WorldWideScience

Sample records for plant oil feedstock

  1. Potential plant oil feedstock for lipase-catalyzed biodiesel production in Thailand

    International Nuclear Information System (INIS)

    Winayanuwattikun, Pakorn; Kaewpiboon, Chutima; Piriyakananon, Kingkaew; Tantong, Supalak; Thakernkarnkit, Weerasak; Chulalaksananukul, Warawut; Yongvanich, Tikamporn

    2008-01-01

    Twenty-seven types of plants found to contain more than 25% of oil (w/w) were selectively examined from 44 species. Saponification number (SN), iodine value (IV), cetane number (CN) and viscosity (η) of fatty acid methyl esters (FAMEs) of oils were empirically determined, and they varied from 182 to 262, 3.60 to 142.70, 39.32 to 65.80 and 2.29 to 3.95, respectively. Fatty acid compositions, IV, CN and η were used to predict the quality of FAMEs for use as biodiesel. FAMEs of plant oils of 15 species were found to be most suitable for use as biodiesel by meeting the major specification of biodiesel standards of Thailand, USA and European Standard Organization. The oils from these 15 species were further investigated for the conversion efficiency of biodiesel in lipase-catalyzed transesterification reaction with Novozyme 435 and Lipozyme RM IM. Oils of four species, palm (Elaeis guineensis), physic nut (Jatropha curcas), papaya (Carica papaya) and rambutan (Nephelium lappaceum), can be highly converted to biodiesel by transesterification using Novozyme 435- or Lipozyme RM IM-immobilized lipase as catalyst. Therefore, these selected plants would be economically considered as the feedstock for biodiesel production by biocatalyst

  2. Potential plant oil feedstock for lipase-catalyzed biodiesel production in Thailand

    Energy Technology Data Exchange (ETDEWEB)

    Winayanuwattikun, Pakorn; Kaewpiboon, Chutima; Piriyakananon, Kingkaew; Tantong, Supalak; Thakernkarnkit, Weerasak; Yongvanich, Tikamporn [Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330 (Thailand); Biofuel Production by Biocatalyst Research Unit, Faculty of Science, Chulalongkorn University, Bangkok 10330 (Thailand); Chulalaksananukul, Warawut [Department of Botany, Faculty of Science, Chulalongkorn University, Bangkok 10330 (Thailand); Biofuel Production by Biocatalyst Research Unit, Faculty of Science, Chulalongkorn University, Bangkok 10330 (Thailand)

    2008-12-15

    Twenty-seven types of plants found to contain more than 25% of oil (w/w) were selectively examined from 44 species. Saponification number (SN), iodine value (IV), cetane number (CN) and viscosity ({eta}) of fatty acid methyl esters (FAMEs) of oils were empirically determined, and they varied from 182 to 262, 3.60 to 142.70, 39.32 to 65.80 and 2.29 to 3.95, respectively. Fatty acid compositions, IV, CN and {eta} were used to predict the quality of FAMEs for use as biodiesel. FAMEs of plant oils of 15 species were found to be most suitable for use as biodiesel by meeting the major specification of biodiesel standards of Thailand, USA and European Standard Organization. The oils from these 15 species were further investigated for the conversion efficiency of biodiesel in lipase-catalyzed transesterification reaction with Novozyme 435 and Lipozyme RM IM. Oils of four species, palm (Elaeis guineensis), physic nut (Jatropha curcas), papaya (Carica papaya) and rambutan (Nephelium lappaceum), can be highly converted to biodiesel by transesterification using Novozyme 435- or Lipozyme RM IM-immobilized lipase as catalyst. Therefore, these selected plants would be economically considered as the feedstock for biodiesel production by biocatalyst. (author)

  3. Heavy gas oils as feedstock for petrochemicals

    Energy Technology Data Exchange (ETDEWEB)

    Clark, P.D. [Nova Chemicals Ltd., Calgary, AB (Canada); Du Plessis, D. [Alberta Energy Research Inst., Edmonton, AB (Canada)]|[Alberta Economic Development and Trade, Edmonton, AB (Canada)

    2004-07-01

    This presentation reviewed the possibilities for converting heavy aromatic compounds and gas oils obtained from Alberta bitumen into competitively priced feedstock for high value refined products and petrochemicals. Upgrading bitumen beyond synthetic crude oil to refined products and petrochemicals would add value to bitumen in Alberta by expanding the petrochemical industry by providing a secure market for co-products derived from the integration of bitumen upgrading and refining. This presentation also reviewed conventional feedstocks and processes; by-products from bitumen upgrading and refining; production of light olefins by the fluid catalytic cracking (FCC) and hydrocracking process; deep catalytic cracking, catalytic pyrolysis and PetroFCC processes; technical and economic evaluations; and opportunities and challenges. Conventional feeds for steam cracking were listed along with comparative yields on feedstock. The use of synthetic gas liquids from oil sands plants was also reviewed. Current FCC type processes for paraffinic feedstocks are not suitable for Alberta's bitumen, which require better technologies based on hydrotreating and new ring opening catalysts. tabs., figs.

  4. Invasive plants as feedstock for biochar and bioenergy production.

    Science.gov (United States)

    Liao, Rui; Gao, Bin; Fang, June

    2013-07-01

    In this work, the potential of invasive plant species as feedstock for value-added products (biochar and bioenergy) through pyrolysis was investigated. The product yield rates of two major invasive species in the US, Brazilian Pepper (BP) and Air Potato (AP), were compared to that of two traditional feedstock materials, water oak and energy cane. Three pyrolysis temperatures (300, 450, and 600°C) and four feedstock masses (10, 15, 20, and 25 g) were tested for a total of 12 experimental conditions. AP had high biochar and low oil yields, while BP had a high oil yield. At lower temperatures, the minimum feedstock residence time for biochar and bioenergy production increased at a faster rate as feedstock weight increased than it did at higher temperatures. A simple mathematical model was successfully developed to describe the relationship between feedstock weight and the minimum residence time. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. Catalytic hydroprocessing of heavy oil feedstocks

    International Nuclear Information System (INIS)

    Okunev, A G; Parkhomchuk, E V; Lysikov, A I; Parunin, P D; Semeikina, V S; Parmon, V N

    2015-01-01

    A grave problem of modern oil refining industry is continuous deterioration of the produced oil quality, on the one hand, and increase in the demand for motor fuels, on the other hand. This necessitates processing of heavy oil feedstock with high contents of sulfur, nitrogen and metals and the atmospheric residue. This feedstock is converted to light oil products via hydrogenation processes catalyzed by transition metal compounds, first of all, cobalt- or nickel-promoted molybdenum and tungsten compounds. The processing involves desulfurization, denitrogenation and demetallization reactions as well as reactions converting heavy hydrocarbons to lighter fuel components. The review discusses the mechanisms of reactions involved in the heavy feedstock hydroprocessing, the presumed structure and state of the catalytically active components and methods for the formation of supports with the desired texture. Practically used and prospective approaches to catalytic upgrading of heavy oil feedstock as well as examples of industrial processing of bitumen and vacuum residues in the presence of catalysts are briefly discussed. The bibliography includes 140 references

  6. Catalytic hydroprocessing of heavy oil feedstocks

    Science.gov (United States)

    Okunev, A. G.; Parkhomchuk, E. V.; Lysikov, A. I.; Parunin, P. D.; Semeikina, V. S.; Parmon, V. N.

    2015-09-01

    A grave problem of modern oil refining industry is continuous deterioration of the produced oil quality, on the one hand, and increase in the demand for motor fuels, on the other hand. This necessitates processing of heavy oil feedstock with high contents of sulfur, nitrogen and metals and the atmospheric residue. This feedstock is converted to light oil products via hydrogenation processes catalyzed by transition metal compounds, first of all, cobalt- or nickel-promoted molybdenum and tungsten compounds. The processing involves desulfurization, denitrogenation and demetallization reactions as well as reactions converting heavy hydrocarbons to lighter fuel components. The review discusses the mechanisms of reactions involved in the heavy feedstock hydroprocessing, the presumed structure and state of the catalytically active components and methods for the formation of supports with the desired texture. Practically used and prospective approaches to catalytic upgrading of heavy oil feedstock as well as examples of industrial processing of bitumen and vacuum residues in the presence of catalysts are briefly discussed. The bibliography includes 140 references.

  7. Upgrading of petroleum oil feedstocks using alkali metals and hydrocarbons

    Science.gov (United States)

    Gordon, John Howard

    2014-09-09

    A method of upgrading an oil feedstock by removing heteroatoms and/or one or more heavy metals from the oil feedstock composition. This method reacts the oil feedstock with an alkali metal and an upgradant hydrocarbon. The alkali metal reacts with a portion of the heteroatoms and/or one or more heavy metals to form an inorganic phase separable from the organic oil feedstock material. The upgradant hydrocarbon bonds to the oil feedstock material and increases the number of carbon atoms in the product. This increase in the number of carbon atoms of the product increases the energy value of the resulting oil feedstock.

  8. Properties of various plants and animals feedstocks for biodiesel production.

    Science.gov (United States)

    Karmakar, Aninidita; Karmakar, Subrata; Mukherjee, Souti

    2010-10-01

    As an alternative fuel biodiesel is becoming increasingly important due to diminishing petroleum reserves and adverse environmental consequences of exhaust gases from petroleum-fuelled engines. Biodiesel, the non-toxic fuel, is mono alkyl esters of long chain fatty acids derived from renewable feedstock like vegetable oils, animal fats and residual oils. Choice of feedstocks depends on process chemistry, physical and chemical characteristics of virgin or used oils and economy of the process. Extensive research information is available on transesterification, the production technology and process optimization for various biomaterials. Consistent supply of feedstocks is being faced as a major challenge by the biodiesel production industry. This paper reviews physico-chemical properties of the plant and animal resources that are being used as feedstocks for biodiesel production. Efforts have also been made to review the potential resources that can be transformed into biodiesel successfully for meeting the ever increasing demand of biodiesel production. Copyright 2010 Elsevier Ltd. All rights reserved.

  9. Evaluation of Indian milkweed (Calotropis gigantea) seed oil as alternative feedstock for biodiesel

    Science.gov (United States)

    Calotropis gigantea (Indian milkweed) is a common plant in Asia that grows as a weed on open waste ground. Flowering and fruiting take place throughout the year. In this study, Indian milkweed oil was evaluated as a potential feedstock for biodiesel production. The oil was extracted from Indian milk...

  10. Biodiesel from non-food alternative feed-stock

    Science.gov (United States)

    As a potential feedstock for biodiesel (BD) production, Jojoba oil was extracted from Jojoba (Simmondsia chinensis L.) plant seeds that contained around 50-60 wt.%, which were explored as non-food alternative feedstocks. Interestingly, Jojoba oil has long-chain wax esters and is not a typical trigly...

  11. Non-Edible Plant Oils as New Sources for Biodiesel Production

    Directory of Open Access Journals (Sweden)

    M. Rafiqul Islam

    2008-02-01

    Full Text Available Due to the concern on the availability of recoverable fossil fuel reserves and the environmental problems caused by the use those fossil fuels, considerable attention has been given to biodiesel production as an alternative to petrodiesel. However, as the biodiesel is produced from vegetable oils and animal fats, there are concerns that biodiesel feedstock may compete with food supply in the long-term. Hence, the recent focus is to find oil bearing plants that produce non-edible oils as the feedstock for biodiesel production. In this paper, two plant species, soapnut (Sapindus mukorossi and jatropha (jatropha curcas, L. are discussed as newer sources of oil for biodiesel production. Experimental analysis showed that both oils have great potential to be used as feedstock for biodiesel production. Fatty acid methyl ester (FAME from cold pressed soapnut seed oil was envisaged as biodiesel source for the first time. Soapnut oil was found to have average of 9.1% free FA, 84.43% triglycerides, 4.88% sterol and 1.59% others. Jatropha oil contains approximately 14% free FA, approximately 5% higher than soapnut oil. Soapnut oil biodiesel contains approximately 85% unsaturated FA while jatropha oil biodiesel was found to have approximately 80% unsaturated FA. Oleic acid was found to be the dominant FA in both soapnut and jatropha biodiesel. Over 97% conversion to FAME was achieved for both soapnut and jatropha oil.

  12. Effect of Blended Feedstock on Pyrolysis Oil Composition

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Kristin M [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Gaston, Katherine R [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-09-28

    Current techno-economic analysis results indicate biomass feedstock cost represents 27% of the overall minimum fuel selling price for biofuels produced from fast pyrolysis followed by hydrotreating (hydro-deoxygenation, HDO). As a result, blended feedstocks have been proposed as a way to both reduce cost as well as tailor key chemistry for improved fuel quality. For this study, two feedstocks were provided by Idaho National Laboratory (INL). Both were pyrolyzed and collected under the same conditions in the National Renewable Energy Laboratory's (NREL) Thermochemical Process Development Unit (TCPDU). The resulting oil properties were then analyzed and characterized for statistical differences.

  13. Hydrodeoxygenation of fast-pyrolysis bio-oils from various feedstocks using carbon-supported catalysts

    Science.gov (United States)

    While much work has been accomplished in developing hydrodeoxygenation technologies for bio-oil upgrading, very little translation has occurred to other biomass feedstocks and feedstock processing technologies. In this paper, we sought to elucidate the relationships between the feedstock type and th...

  14. Plant oil renewable resources as green alternatives in polymer science

    NARCIS (Netherlands)

    Meier, M.A.R.; Metzger, J.O.; Schubert, U.S.

    2007-01-01

    The utilization of plant oil renewable resources as raw materials for monomers and polymers is discussed and reviewed. In an age of increasing oil prices, global warming and other environmental problems (e.g. waste) the change from fossil feedstock to renewable resources can considerably contribute

  15. Transformation of heavy gas oils derived from oil sands to petrochemical feedstock

    Energy Technology Data Exchange (ETDEWEB)

    Du Plessis, D.; Laureshen, C. [Alberta Energy Research Inst., Edmonton, AB (Canada)

    2006-07-01

    Alberta's petrochemical industry is primarily based on ethane. However, ethane could potentially impede future growth of Alberta's petrochemical industry because of increasing cost and diminishing supplies. Alternately, the rapidly growing oil sands production could provide abundant new feedstocks. Different integration schemes and technologies were evaluated in this study. Research on converting bitumen-derived heavy gas oil into petrochemical feedstock has resulted in the development of two novel technologies and process integration schemes, notably the NOVA heavy oil laboratory catalyst (NHC) process and the aromatic ring cleavage (ARORINCLE) process. This paper described progress to date on these two projects. The paper presented the experimental results for each scheme. For the ARORINCLE process, results were discussed in terms of the effect of process parameters on the hydrogenation step; effect of process parameters on the ring cleavage step; and integrating the upgrading and petrochemical complex. Early laboratory stage results of these two technologies were found to be encouraging. The authors recommended that work should progress to larger scale demonstration of the NHC and ARORINCLE technologies., 13 refs., 2 tabs., 5 figs.

  16. High quality transportation fuels from renewable feedstock

    Energy Technology Data Exchange (ETDEWEB)

    Lindfors, Lars Peter

    2010-09-15

    Hydrotreating of vegetable oils is novel process for producing high quality renewable diesel. Hydrotreated vegetable oils (HVO) are paraffinic hydrocarbons. They are free of aromatics, have high cetane numbers and reduce emissions. HVO can be used as component or as such. HVO processes can also be modified to produce jet fuel. GHG savings by HVO use are significant compared to fossil fuels. HVO is already in commercial production. Neste Oil is producing its NExBTL diesel in two plants. Production of renewable fuels will be limited by availability of sustainable feedstock. Therefore R and D efforts are made to expand feedstock base further.

  17. Influence of feedstock type on heavy coker gas oil quality; A influencia do tipo de carga na qualidade do gasoleo pesado de coque

    Energy Technology Data Exchange (ETDEWEB)

    Costa, Claudine T.A.S.; Barros, Francisco C.C. [PETROBRAS S.A., Rio de Janeiro, RJ (Brazil). Centro de Pesquisas (CENPES)

    2004-07-01

    Over the past few years, the great challenge to the Oil Industry has been the processing of increasingly heavier feedstock seeking to meet the growing demand for medium distillates and, at the same time, the reduction of the production of fuel oils. In this scenario, the Delayed Coking Unit (DCU) appears to be an attractive technology for the processing of heavy and ultra heavy crudes. The addition of Asphaltene Residue produced by the Solvent Deasphalting Unit (SDA) to the Vacuum Residue, traditional feedstock of these units, has been a new tendency in the composition of the feedstock, with the intention of converting the residual fractions into value added liquid oil products. Results obtained in pilot plants show that asphaltene residue alters the yield and the quality of the products of the DCU, especially those of Heavy Coker Gas Oil (HKGO) that is incorporated in the feedstock of the Fluid Catalytic Cracking Unit (FCCU). The alteration in the quality of the HKGO negatively impacts on the conservation of the FCCU. The insertion of DCU in refineries that possess SDA in their refining systems has shown itself to be fundamental for the reduction of the production of fuel oils. However, to define the quantity and quality of asphaltene residue to be incorporated in the feedstock of the UCR, the best operating conditions and the necessary project adaptations to this unit are fundamental and they should be analyzed with the objective of maximizing the profitability of the refineries. (author)

  18. New technology for producing petrochemical feedstock from heavy oils derived from Alberta oil sands

    International Nuclear Information System (INIS)

    Oballa, M.; Simanzhenkov, V.; Clark, P.; Laureshen, C.; Plessis du, D.

    2006-01-01

    This paper presented the results of a study demonstrating the feasibility of producing petrochemical feedstock or petrochemicals from vacuum gas oils derived from oil sands. A typical bitumen upgrader flow scheme was integrated with several new technologies and coupled with an ethane/propane cracker. Technologies included steam cracking, fluid catalytic cracking (FCC); and the catalytic pyrolysis process (CPP). The scheme was then integrated with the Nova Heavy Oil Cracking (NHC) technology. The NHC process uses a reactor to perform catalytic cracking followed by a main tower that separates gas and liquid products. Aromatic ring cleavage (ARORINCLE) technology was explored as a method of catalytic treatment. Experimental runs were conducted in a laboratory scale fixed bed reactor. A stacked catalyst bed was used, followed by a zeolite-based noble metal catalyst. Examples from process run results were presented. Results indicated that the NHC technology should be used on an FCC unit technology platform. The ARORINCLE technology was considered for use on a hydrotreating unit technology platform. Once the catalysts are fully developed and demonstrated, the economics of the technologies will be enhanced through the construction of world-scale complexes integrating upgrading, refining and petrochemical plants. refs., tabs., figs

  19. Quality of feedstock in production of lubricating oils

    Energy Technology Data Exchange (ETDEWEB)

    Martynenko, A.G.; Kalenik, G.S.; Bayburskaya, E.L.; Ledyashova, G.Ye.; Okhrimenko, N.V.; Potashnikov, G.L.; Shiryayeva, G.P.

    1980-01-01

    Data are obtained under industrial conditions concerning production of lubricating oils from the mixture of crudes distinguished in terms of major properties: viscosity, content of light petroleum products, resin, sulfur. The difference in main properties and hydrocarbon composition of the original feedstock caused a change in conditions of selective purification of output of target and intermediate products. It is demonstrated that selection and grading of Eastern Ukrainian petroleum (separation of gas condensate) can achieve a continued increase of production of oils, approximately 30 percent.

  20. Kurdistan crude oils as feedstock for production of aromatics

    Directory of Open Access Journals (Sweden)

    Abdulsalam R. Karim

    2017-05-01

    Full Text Available Crude oils from various locations in Iraqi Kurdistan were fully evaluated, so that enables refiners to improve their operation by selecting the best crude oil that yields high naphtha content to be used as a catalytic reforming feedstock after determination of total sulfur content and then de sulfurizing them, then cyclizing or reforming these sweet naphtha cuts to produce aromatic fractions which can be split into benzene, toluene, and xylenes.

  1. A Saponification Method for Chlorophyll Removal from Microalgae Biomass as Oil Feedstock

    Directory of Open Access Journals (Sweden)

    Tao Li

    2016-09-01

    Full Text Available Microalgae oil is an optimal feedstock for nutraceutical, pharmaceutical and biodiesel production, but its high levels of chlorophyll limit its large-scale application. To date, few effective approaches have been developed to remove chlorophyll from microalgae oil. The main purpose of this study was to present a preprocessing method of algae oil feedstock (Scenedesmus to remove chlorophyll by saponification. The results showed that 96% of chlorophyll in biomass was removed. High quality orange transparent oil could be extracted from the chlorophyll reduced biomass. Specifically, the proportion of neutral lipids and saturation levels of fatty acids increased, and the pigments composition became carotenoids-based. The critical parameters of chlorophyll reduced biodiesel conformed to the standards of the USA, China and EU. Sodium copper chlorophyllin could be prepared from the bleaching effluent. The results presented herein offer a useful pathway to improve the quality of microalgae oil and reduce the cost of microalgae biodiesel.

  2. A Saponification Method for Chlorophyll Removal from Microalgae Biomass as Oil Feedstock

    Science.gov (United States)

    Li, Tao; Xu, Jin; Wu, Hualian; Wang, Guanghua; Dai, Shikun; Fan, Jiewei; He, Hui; Xiang, Wenzhou

    2016-01-01

    Microalgae oil is an optimal feedstock for nutraceutical, pharmaceutical and biodiesel production, but its high levels of chlorophyll limit its large-scale application. To date, few effective approaches have been developed to remove chlorophyll from microalgae oil. The main purpose of this study was to present a preprocessing method of algae oil feedstock (Scenedesmus) to remove chlorophyll by saponification. The results showed that 96% of chlorophyll in biomass was removed. High quality orange transparent oil could be extracted from the chlorophyll reduced biomass. Specifically, the proportion of neutral lipids and saturation levels of fatty acids increased, and the pigments composition became carotenoids-based. The critical parameters of chlorophyll reduced biodiesel conformed to the standards of the USA, China and EU. Sodium copper chlorophyllin could be prepared from the bleaching effluent. The results presented herein offer a useful pathway to improve the quality of microalgae oil and reduce the cost of microalgae biodiesel. PMID:27618070

  3. A Saponification Method for Chlorophyll Removal from Microalgae Biomass as Oil Feedstock.

    Science.gov (United States)

    Li, Tao; Xu, Jin; Wu, Hualian; Wang, Guanghua; Dai, Shikun; Fan, Jiewei; He, Hui; Xiang, Wenzhou

    2016-09-07

    Microalgae oil is an optimal feedstock for nutraceutical, pharmaceutical and biodiesel production, but its high levels of chlorophyll limit its large-scale application. To date, few effective approaches have been developed to remove chlorophyll from microalgae oil. The main purpose of this study was to present a preprocessing method of algae oil feedstock (Scenedesmus) to remove chlorophyll by saponification. The results showed that 96% of chlorophyll in biomass was removed. High quality orange transparent oil could be extracted from the chlorophyll reduced biomass. Specifically, the proportion of neutral lipids and saturation levels of fatty acids increased, and the pigments composition became carotenoids-based. The critical parameters of chlorophyll reduced biodiesel conformed to the standards of the USA, China and EU. Sodium copper chlorophyllin could be prepared from the bleaching effluent. The results presented herein offer a useful pathway to improve the quality of microalgae oil and reduce the cost of microalgae biodiesel.

  4. Dynamic impacts of high oil prices on the bioethanol and feedstock markets

    International Nuclear Information System (INIS)

    Cha, Kyung Soo; Bae, Jeong Hwan

    2011-01-01

    This study investigates the impacts of high international oil prices on the bioethanol and corn markets in the US. Between 2007 and 2008, the prices of major grain crops had increased sharply, reflecting the rise in international oil prices. These dual price shocks had caused substantial harm to the global economy. Employing a structural vector auto-regression model (SVAR), we analyze how increases in international oil prices could impact the prices of and demand for corn, which is used as a major bioethanol feedstock in the US. The results indicate that an increase in the oil price would increase bioethanol demand for corn and corn prices in the short run and that corn prices would stabilize in the long run as corn exports and feedstock demand for corn decline. Consequently, policies supporting biofuels should encourage the use of bioethanol co-products for feed and the development of marginal land to mitigate increases in the feedstock price. - Research highlights: → World economy experienced 'dual shocks', which were caused by skyrocketed oil prices and grain prices between 2007 and 2008. → Sharp increases in ethanol production in response to high oil prices were considered as a major driving force to 'ag-flation' in the United States. → Applying a time series econometric tool, called the 'structural vector auto-regression model', we evaluated relationship between ethanol production and corn prices. → The result shows that ethanol production affects corn prices in the short run, while corn prices are lowered as other corn demands (feed for livestock or export demand) decline in the long run.

  5. Investigating “Egusi” (Citrullus Colocynthis L. Seed Oil as Potential Biodiesel Feedstock

    Directory of Open Access Journals (Sweden)

    Solomon Giwa

    2010-03-01

    Full Text Available Biodiesel’s acceptance as a substitute for fossil-derived diesel has grown the world over. However, the food-fuel debate over conventional vegetable oils has rekindled research interest in exploring lesser known and minor oil crops. In this work, egusi melon seed oil was studied for the first time as a potential feedstock for biodiesel production. Crude egusi melon seed oil was transesterified using sodium methoxide as the catalyst at 60 °C and an oil/methanol ratio of 1:6 to produce its corresponding methyl esters. Egusi melon oil methyl ester (EMOME yield was 82%. Gas chromatographic analysis of EMOME showed that it was composed mainly of palmitic, stearic, oleic, linoleic and linolenic esters, which is similar to the profile of sunflower, soybean and safflower oil. All the measured fuel properties of EMOME satisfied both the ASTM D6751 and the EN 14214 biodiesel standards. Fuel properties of EMOME were essentially identical with those of soybean, safflower and sunflower biodiesel. Remarkably, the kinematic viscosity of EMOME was measured to be 3.83 mm2/s, a value lower than most biodiesel fuels reported in the literature. The potential of egusi melon seed oil as a biodiesel feedstock is clearly presented in this study.

  6. Investigating 'Egusi' (citrullus colocynthis l.) seed oil as potential biodiesel feedstock

    Energy Technology Data Exchange (ETDEWEB)

    Giwa, S.; Adam, N. M. [Alternative and Renewable Energy Laboratory, Institute of Advanced Technology (ITMA)/Mechanical and Manufacturing Engineering Department, Faculty of Engineering, University Putra Malaysia, 43400, Serdang Darul Ehsan, Selangor (Malaysia); Abdullah, L. Ch. [Chemical and Environmental Engineering Department, Faculty of Engineering, University Putra Malaysia, 43400, Serdang Darul Ehsan, Selangor (Malaysia); Laboratory of Biopolymer and Derivatives, Institute of Tropical Forestry and Forest Products (INTROP), University Putra Malaysia, 43400, Serdang Darul Ehsan, Selangor (Malaysia)

    2010-07-01

    Biodiesel's acceptance as a substitute for fossil-derived diesel has grown the world over. However, the food-fuel debate over conventional vegetable oils has rekindled research interest in exploring lesser known and minor oil crops. In this work, egusi melon seed oil was studied for the first time as a potential feedstock for biodiesel production. Crude egusi melon seed oil was transesterified using sodium methoxide as the catalyst at 60 {sup o}C and an oil/methanol ratio of 1:6 to produce its corresponding methyl esters. Egusi melon oil methyl ester (EMOME) yield was 82%. Gas chromatographic analysis of EMOME showed that it was composed mainly of palmitic, stearic, oleic, linoleic and linolenic esters, which is similar to the profile of sunflower, soybean and safflower oil. All the measured fuel properties of EMOME satisfied both the ASTM D6751 and the EN 14214 biodiesel standards. Fuel properties of EMOME were essentially identical with those of soybean, safflower and sunflower biodiesel. Remarkably, the kinematic viscosity of EMOME was measured to be 3.83 mm{sup 2}/s, a value lower than most biodiesel fuels reported in the literature. The potential of egusi melon seed oil as a biodiesel feedstock is clearly presented in this study. (author)

  7. Rhazya stricta Decne seed oil as an alternative, non-conventional feedstock for biodiesel production

    International Nuclear Information System (INIS)

    Nehdi, Imededdine Arbi; Sbihi, Hassen Mohamed; Al-Resayes, Saud Ibrahim

    2014-01-01

    Highlights: • First report of Rhazia stricta seed oil as feedstock for biodiesel production. • Biodiesel is prepared by alkaline transesterification. • Biodiesel from R. stricta oil meets specifications in biodiesel standards. - Abstract: Rhazya stricta Decne (R. stricta) is a hardy, drought-resistant, and arid land plant that is widely distributed from the Middle East to South Asia. The aim of this study was to evaluate the use of R. stricta seed oil as an alternative source of triacylglycerols that may be suitable for the synthesis of biodiesel. The oil content of the seeds was approximately 14% and was mainly composed of the fatty acids linoleic (60.95%) and oleic (25.48%) acid. R. stricta methyl esters (RSME) were prepared by a base-catalyzed transesterification reaction. The conversion rate of the triacylglycerols to the corresponding methyl esters was determined by 1 H-NMR to be approximately 97%. This study showed that the fuel properties of the RSMEs are comparable to other vegetable oil methyl esters that are commonly used as biodiesels. R. stricta plantations will therefore be suitable for promoting sustainable agriculture and for producing biodiesel with viable prices in arid and semi-arid regions throughout the world

  8. Oil extraction from plant seeds for biodiesel production

    Directory of Open Access Journals (Sweden)

    Yadessa Gonfa Keneni

    2017-04-01

    Full Text Available Energy is basic for development and its demand increases due to rapid population growth, urbanization and improved living standards. Fossil fuels will continue to dominate other sources of energy although it is non-renewable and harm global climate. Problems associated with fossil fuels have driven the search for alternative energy sources of which biodiesel is one option. Biodiesel is renewable, non-toxic, environmental-friendly and an economically feasible options to tackle the depleting fossil fuels and its negative environmental impact. It can be produced from vegetable oils, animal fats, waste oils and algae. However, nowadays, the major feedstocks of biodiesel are edible oils and this has created food vs fuel debate. Therefore, the future prospect is to use non-edible oils, animal fats, waste oils and algae as feedstock for biodiesel. Selection of non-expensive feedstock and the extraction and preparation of oil for biodiesel production is a crucial step due to its relevance on the overall technology. There are three main conventional oil extraction methods: mechanical, chemical/solvent and enzymatic extraction methods. There are also some newly developed oil extraction methods that can be used separately or in combination with the conventional ones, to overcome some disadvantages of the conventional oil extraction methods. This review paper presents, compare and discusses different potential biofuel feedstocks, various oil extraction methods, advantages and disadvantages of different oil extraction methods, and propose future prospective for the improvement of oil extraction methods and sustainability of biodiesel production and utilization.

  9. Quality assessment of biodiesels obtained from pure cooking oils of some feedstocks and their waste oils

    International Nuclear Information System (INIS)

    Khan, I.; Ansari, T.M.; Manzoor, S.

    2017-01-01

    Biodiesel being a renewable energy resource possesses compositional variability based on the type of feedstock. Biodiesel is considered a cleaner burning fuel and can be used as pure B100 or blended with petro-diesel. In this study, biodiesel was prepared from pure cooking oils (soybean oil, canola oil, sunflower oil, corn oil) and their waste frying oils by base-catalyzed transesterification with methanol in presence of sodium hydroxide. The optimized experimental parameters were applied to achieve the maximum yield of biodiesel. Various fuel properties like kinematic viscosity, flash point, pour point, cloud point, total acid number, specific gravity, water and sediments, conradson carbon residue, sulfur contents, phosphorous contents, sulphated ash, cetane and copper corrosion were determined and found comparable to ASTM standards. Pure cooking oils, their waste frying oils and prepared biodiesels were characterized by FT-IR. The study showed that the biodiesel derived from waste frying oils can be a promising alternative of the biodiesel from pure cooking oils. (author)

  10. Pumpkin (Cucurbita pepo L.) seed oil as an alternative feedstock for the production of biodiesel in Greece

    Energy Technology Data Exchange (ETDEWEB)

    Schinas, P.; Karavalakis, G.; Davaris, C.; Anastopoulos, G.; Karonis, D.; Zannikos, F.; Stournas, S.; Lois, E. [Laboratory of Fuels and Lubricants Technology, School of Chemical Engineering, National Technical University of Athens, 9 Iroon Polytechniou Street, Zografou Campus, 157 80 Athens (Greece)

    2009-01-15

    In recent years, the acceptance of fatty acid methyl esters (biodiesel) as a substitute to petroleum diesel has rapidly grown in Greece. The raw materials for biodiesel production in this country mainly include traditional seed oils (cotton seed oil, sunflower oil, soybean oil and rapeseed oil) and used frying oils. In the search for new low-cost alternative feedstocks for biodiesel production, this study emphasizes the evaluation of pumpkin seed oil. The experimental results showed that the oil content of pumpkin seeds was remarkably high (45%). The fatty acid profile of the oil showed that is composed primarily of linoleic, oleic, palmitic and stearic acids. The oil was chemically converted via an alkaline transesterification reaction with methanol to methyl esters, with a yield nearly 97.5 wt%. All of the measured properties of the produced biodiesel met the current quality requirements according to EN 14214. Although this study showed that pumpkin oil could be a promising feedstock for biodiesel production within the EU, it is rather difficult for this production to be achieved on a large scale. (author)

  11. An overview of empty fruit bunch from oil palm as feedstock for bio-oil production

    International Nuclear Information System (INIS)

    Chang, Siu Hua

    2014-01-01

    Empty fruit bunch (EFB) from oil palm is one of the potential biomass to produce biofuels like bio-oil due to its abundant supply and favorable physicochemical characteristics. Confirming the assertion, this paper presents an overview of EFB as a feedstock for bio-oil production. The fundamental characteristics of EFB in terms of proximate analysis, ultimate analysis and chemical composition, as well as the recent advances in EFB conversion processes for bio-oil production like pyrolysis and solvolysis are outlined and discussed. A comparison of properties in terms of proximate analysis, ultimate analysis and fuel properties between the bio-oil from EFB and petroleum fuel oil is included. The major challenges and future prospects towards the utilization of EFB as a useful resource for bio-oil production are also addressed. - Highlights: • Palm EFB has high heating value and low greenhouse gas emissions during combustion. • Conversion of EFB to bio-oil is mainly by fast pyrolysis without and with catalyst. • Bio-oil from EFB is lower in heating value, heavier and more acidic than fuel oil. • The viscosity of bio-oil from EFB is between those of light and heavy fuel oils. • The flash and pour points of bio-oil from EFB are close to those of light fuel oil

  12. Aquatic plant Azolla as the universal feedstock for biofuel production.

    Science.gov (United States)

    Miranda, Ana F; Biswas, Bijoy; Ramkumar, Narasimhan; Singh, Rawel; Kumar, Jitendra; James, Anton; Roddick, Felicity; Lal, Banwari; Subudhi, Sanjukta; Bhaskar, Thallada; Mouradov, Aidyn

    2016-01-01

    The quest for sustainable production of renewable and cheap biofuels has triggered an intensive search for domestication of the next generation of bioenergy crops. Aquatic plants which can rapidly colonize wetlands are attracting attention because of their ability to grow in wastewaters and produce large amounts of biomass. Representatives of Azolla species are some of the fastest growing plants, producing substantial biomass when growing in contaminated water and natural ecosystems. Together with their evolutional symbiont, the cyanobacterium Anabaena azollae, Azolla biomass has a unique chemical composition accumulating in each leaf including three major types of bioenergy molecules: cellulose/hemicellulose, starch and lipids, resembling combinations of terrestrial bioenergy crops and microalgae. The growth of Azolla filiculoides in synthetic wastewater led up to 25, 69, 24 and 40 % reduction of NH 4 -N, NO 3 -N, PO 4 -P and selenium, respectively, after 5 days of treatment. This led to a 2.6-fold reduction in toxicity of the treated wastewater to shrimps, common inhabitants of wetlands. Two Azolla species, Azolla filiculoides and Azolla pinnata, were used as feedstock for the production of a range of functional hydrocarbons through hydrothermal liquefaction, bio-hydrogen and bio-ethanol. Given the high annual productivity of Azolla, hydrothermal liquefaction can lead to the theoretical production of 20.2 t/ha-year of bio-oil and 48 t/ha-year of bio-char. The ethanol production from Azolla filiculoides, 11.7 × 10 3  L/ha-year, is close to that from corn stover (13.3 × 10 3  L/ha-year), but higher than from miscanthus (2.3 × 10 3  L/ha-year) and woody plants, such as willow (0.3 × 10 3  L/ha-year) and poplar (1.3 × 10 3  L/ha-year). With a high C/N ratio, fermentation of Azolla biomass generates 2.2 mol/mol glucose/xylose of hydrogen, making this species a competitive feedstock for hydrogen production compared with other bioenergy crops

  13. Biodiesel production with microalgae as feedstock: from strains to biodiesel.

    Science.gov (United States)

    Gong, Yangmin; Jiang, Mulan

    2011-07-01

    Due to negative environmental influence and limited availability, petroleum-derived fuels need to be replaced by renewable biofuels. Biodiesel has attracted intensive attention as an important biofuel. Microalgae have numerous advantages for biodiesel production over many terrestrial plants. There are a series of consecutive processes for biodiesel production with microalgae as feedstock, including selection of adequate microalgal strains, mass culture, cell harvesting, oil extraction and transesterification. To reduce the overall production cost, technology development and process optimization are necessary. Genetic engineering also plays an important role in manipulating lipid biosynthesis in microalgae. Many approaches, such as sequestering carbon dioxide from industrial plants for the carbon source, using wastewater for the nutrient supply, and maximizing the values of by-products, have shown a potential for cost reduction. This review provides a brief overview of the process of biodiesel production with microalgae as feedstock. The methods associated with this process (e.g. lipid determination, mass culture, oil extraction) are also compared and discussed.

  14. Basic properties of crude rubber seed oil and crude palm oil blend as a potential feedstock for biodiesel production with enhanced cold flow characteristics

    Energy Technology Data Exchange (ETDEWEB)

    Yusup, Suzana; Khan, Modhar [Chemical Engineering Department, Universiti Teknologi PETRONAS, Bandar Seri Iskandar, 31750 Tronoh, Perak (Malaysia)

    2010-10-15

    Research and development in the field of biodiesel showed that fatty acid methyl esters synthesized from agriculture or animal oils and fats, which exhibit qualifying properties, can replace diesel fuel used in internal combustion engine. However, the industry had some downfall recently with the fluctuating prices of edible oils and increasing demand for nutritional needs. Crude rubber seed oil (CRSO) and crude palm oil (CPO) were used in this study since both can be extracted and produced locally in Malaysia from their abundant plantations. The benefits of introducing such blend are that CRSO is considered a non-edible feedstock with no major industrial utilizations that has the potential to reduce the usage of CPO in biodiesel industry and was found to enhance the cold flow characteristics when blended with CPO by reducing the saturated fatty acids in the feedstock. The oils and blends were characterized for density, kinematic viscosity, heating value, acid value, free fatty acid content, refractive index, mono-, di- and triglycerides and sulphur content. Fatty acids composition and iodine value were established for an equivolume blend of the oils. (author)

  15. Basic properties of crude rubber seed oil and crude palm oil blend as a potential feedstock for biodiesel production with enhanced cold flow characteristics

    International Nuclear Information System (INIS)

    Yusup, Suzana; Khan, Modhar

    2010-01-01

    Research and development in the field of biodiesel showed that fatty acid methyl esters synthesized from agriculture or animal oils and fats, which exhibit qualifying properties, can replace diesel fuel used in internal combustion engine. However, the industry had some downfall recently with the fluctuating prices of edible oils and increasing demand for nutritional needs. Crude rubber seed oil (CRSO) and crude palm oil (CPO) were used in this study since both can be extracted and produced locally in Malaysia from their abundant plantations. The benefits of introducing such blend are that CRSO is considered a non-edible feedstock with no major industrial utilizations that has the potential to reduce the usage of CPO in biodiesel industry and was found to enhance the cold flow characteristics when blended with CPO by reducing the saturated fatty acids in the feedstock. The oils and blends were characterized for density, kinematic viscosity, heating value, acid value, free fatty acid content, refractive index, mono-, di- and triglycerides and sulphur content. Fatty acids composition and iodine value were established for an equivolume blend of the oils.

  16. Improving fatty acid methyl ester production yield in a lipase-catalyzed process using waste frying oils as feedstock.

    Science.gov (United States)

    Azócar, Laura; Ciudad, Gustavo; Heipieper, Hermann J; Muñoz, Robinson; Navia, Rodrigo

    2010-06-01

    The application of waste frying oil (WFO) mixed with rapeseed oil as a feedstock for the effective production of fatty acid methyl esters (FAME) in a lipase-catalyzed process was investigated. The response surface methodology (RSM) was used to optimize the interaction of four variables: the percentage of WFO in the mixed feedstock, the methanol-to-oil ratio, the dosage of Novozym 435 as a catalyst and the temperature. Furthermore, the addition of methanol to the reaction mixture in a second step after 8 h was shown to effectively diminish enzyme inhibition. Using this technique, the model predicted the optimal conditions that would reach 100% FAME, including a methanol-to-oil molar ratio of 3.8:1, 100% (wt) WFO, 15% (wt) Novozym 435 and incubation at 44.5 degrees C for 12 h with agitation at 200 rpm, and verification experiments confirmed the validity of the model. According to the model, the addition of WFO increased FAME production yield, which is largely due to its higher contents of monoacylglycerols, diacylglycerols and free fatty acids (in comparison to rapeseed oil), which are more available substrates for the enzymatic catalysis. Therefore, the replacement of rapeseed oil with WFO in Novozym 435-catalyzed processes could diminish biodiesel production costs since it is a less expensive feedstock that increases the production yield and could be a potential alternative for FAME production on an industrial scale. (c) 2009 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  17. Manipulating microRNAs for improved biomass and biofuels from plant feedstocks.

    Science.gov (United States)

    Trumbo, Jennifer Lynn; Zhang, Baohong; Stewart, Charles Neal

    2015-04-01

    Petroleum-based fuels are nonrenewable and unsustainable. Renewable sources of energy, such as lignocellulosic biofuels and plant metabolite-based drop-in fuels, can offset fossil fuel use and reverse environmental degradation through carbon sequestration. Despite these benefits, the lignocellulosic biofuels industry still faces many challenges, including the availability of economically viable crop plants. Cell wall recalcitrance is a major economic barrier for lignocellulosic biofuels production from biomass crops. Sustainability and biomass yield are two additional, yet interrelated, foci for biomass crop improvement. Many scientists are searching for solutions to these problems within biomass crop genomes. MicroRNAs (miRNAs) are involved in almost all biological and metabolic process in plants including plant development, cell wall biosynthesis and plant stress responses. Because of the broad functions of their targets (e.g. auxin response factors), the alteration of plant miRNA expression often results in pleiotropic effects. A specific miRNA usually regulates a biologically relevant bioenergy trait. For example, relatively low miR156 overexpression leads to a transgenic feedstock with enhanced biomass and decreased recalcitrance. miRNAs have been overexpressed in dedicated bioenergy feedstocks such as poplar and switchgrass yielding promising results for lignin reduction, increased plant biomass, the timing of flowering and response to harsh environments. In this review, we present the status of miRNA-related research in several major biofuel crops and relevant model plants. We critically assess published research and suggest next steps for miRNA manipulation in feedstocks for increased biomass and sustainability for biofuels and bioproducts. © 2015 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd.

  18. Genetic Improvement of Switchgrass and Other Herbaceous Plants for Use as Biomass Fuel Feedstock

    Energy Technology Data Exchange (ETDEWEB)

    Vogel, K.P.

    2001-01-11

    It should be highly feasible to genetically modify the feedstock quality of switchgrass and other herbaceous plants using both conventional and molecular breeding techniques. Effectiveness of breeding to modify herbages of switchgrass and other perennial and annual herbaceous species has already been demonstrated. The use of molecular markers and transformation technology will greatly enhance the capability of breeders to modify the plant structure and cell walls of herbaceous plants. It will be necessary to monitor gene flow to remnant wild populations of plants and have strategies available to curtail gene flow if it becomes a potential problem. It also will be necessary to monitor plant survival and long-term productivity as affected by genetic changes that improve forage quality. Information on the conversion processes that will be used and the biomass characteristics that affect conversion efficiency and rate is absolutely essential as well as information on the relative economic value of specific traits. Because most forage or biomass quality characteristics are highly affected by plant maturity, it is suggested that plant material of specific maturity stages be used in research to determining desirable feedstock quality characteristics. Plant material could be collected at various stages of development from an array of environments and storage conditions that could be used in conversion research. The same plant material could be used to develop NIRS calibrations that could be used by breeders in their selection programs and also to develop criteria for a feedstock quality assessment program. Breeding for improved feedstock quality will likely affect the rate of improvement of biomass production per acre. If the same level of resources are used, multi-trait breeding simply reduces the selection pressure and hence the breeding progress that can be made for a single trait unless all the traits are highly correlated. Since desirable feedstock traits are likely

  19. Production of biodiesel from melia azedarach seed oil: a non- edible feedstock for biodiesel

    International Nuclear Information System (INIS)

    Akhtar, T.; Tariq, M.I.; Ranaa, S.I.

    2011-01-01

    Biodiesel (BD) is a first-generation biofuel that has emerged as a renewable alternative diesel fuel, obtained by the transesterification of vegetable oils and animals fats, using a short-chain alcohol and a catalyst that may be an acid, a base or an enzyme. BD can be used in the existing compression-ignition engines without any further modification. Presently, most of the BD production is being carried out using edible vegetable oil which has put a strain on the food supply and, hence, has led it into a competition with the food industry. It has also resulted in a rise in the prices of such feed stocks. Hence, search for the newer and non-edible feed stocks is becoming increasingly important. The objective of the present work is to explore the utility of Melia azedarach seed oil, a non-edible feedstock, for the preparation of BD. The oil was extracted by using n-hexane as a solvent and a oil content of 32% was obtained. As a result of transesterification using sodium hydroxide and methanol, 80% conversion of the oil into BD was obtained. Fatty acid profile of the oil and the BD were found to be almost the same. Different fuel properties of the BD prepared were studied including viscosity, iodine number, acid number, cold point and cetane number, and the values obtained are 4.7, 112, 0.45 mg KOH/g, < -10 deg. C and 45, respectively. Although the oxidation stability is less than the required standard value by EN 14214, but it can be enhanced by introducing some additives into the final product. Other properties were found to be in agreement with the required specifications for BD by EN 14214, hence Melia azedarach seed oil is a suitable non-edible feedstock for the production of BD. (author)

  20. The significance of different diacylgycerol synthesis pathways on plant oil composition and bioengineering

    Directory of Open Access Journals (Sweden)

    Philip David Bates

    2012-07-01

    Full Text Available The unique properties of vegetable oils from different plants utilized for food, industrial feedstocks, and fuel is dependent on the fatty acid (FA composition of triacylglycerol (TAG. Plants can use two main pathways to produce diacylglycerol (DAG, the immediate precursor molecule to TAG synthesis: 1 De novo DAG synthesis, and 2 conversion of the membrane lipid phosphatidylcholine (PC to DAG. The FA esterified to PC are also the substrate for FA modification (e.g. desaturation, hydroxylation, etc., such that the FA composition of PC-derived DAG can be substantially different than that of de novo DAG. Since DAG provides two of the three FA in TAG, the relative flux of TAG synthesis from de novo DAG or PC-derived DAG can greatly affect the final oil FA composition. Here we review how the fluxes through these two alternate pathways of DAG/TAG synthesis are determined and present evidence that suggests which pathway is utilized in different plants. Additionally, we present examples of how the endogenous DAG synthesis pathway in a transgenic host plant can produce bottlenecks for engineering of plant oil FA composition, and discuss alternative strategies to overcome these bottlenecks to produce crop plants with designer vegetable oil compositions.

  1. Prediction of the FCC feedstocks crackability

    International Nuclear Information System (INIS)

    Martinez Cruz, Francy L; Navas Guzman, Gustavo; Osorio Suarez, Juan Pablo

    2009-01-01

    This paper presents a statistical model for prediction of feed stock's crackability (potential to generate valuable products on catalytic cracking process), based on experimental reactivity data by micro activity test (MAT - Microscale Fixed Bed Reactor) and detailed physicochemical characterization. A minimum amount of experimental tests corresponding to feed properties (typically available at refinery) is used to build a more complete description of feedstocks including chemical composition and hydrocarbon distribution. Both measured and calculated physicochemical properties are used to predict the yields of main products at several MAT reaction severities. Different well known functions correlating yields and conversion (previously tested with experimental data MAT) allows the evaluation of maximum point of gasoline yield. This point is used like a crackability index and qualitative point comparison of feed stock's potential. Extensive feedstocks data base from Instituto Colombiano del Petroleo (ICP) with a wide range of composition were used to build the model, including the following feeds: 1. Light feedstocks - Ga soils of refinery and laboratory cuts from different types of Colombian crude oils and 2. Heavy feedstocks - Residues or feedstocks combined (blending of ga soil [GO], atmospheric tower bottom [ATB], demetallized oil [DMO] and demetallized oil hydrotreated [DMOH] in several proportions) from the four fluid catalytic cracking units (FCCU) at Ecopetrol S.A. refinery in Barrancabermeja - Colombia. The results of model show the prediction of valuable products such as gasoline for different refinery feedstocks within acceptable accuracy, thus obtaining a reliable ranking of crackability.

  2. Methods for treating a metathesis feedstock with metal alkoxides

    Science.gov (United States)

    Cohen, Steven A.; Anderson, Donde R.; Wang, Zhe; Champagne, Timothy M.; Ung, Thay A.

    2018-04-17

    Various methods are provided for treating and reacting a metathesis feedstock. In one embodiment, the method includes providing a feedstock comprising a natural oil, chemically treating the feedstock with a metal alkoxide under conditions sufficient to diminish catalyst poisons in the feedstock, and, following the treating, combining a metathesis catalyst with the feedstock under conditions sufficient to metathesize the feedstock.

  3. Engineered plant biomass feedstock particles

    Science.gov (United States)

    Dooley, James H [Federal Way, WA; Lanning, David N [Federal Way, WA; Broderick, Thomas F [Lake Forest Park, WA

    2012-04-17

    A new class of plant biomass feedstock particles characterized by consistent piece size and shape uniformity, high skeletal surface area, and good flow properties. The particles of plant biomass material having fibers aligned in a grain are characterized by a length dimension (L) aligned substantially parallel to the grain and defining a substantially uniform distance along the grain, a width dimension (W) normal to L and aligned cross grain, and a height dimension (H) normal to W and L. In particular, the L.times.H dimensions define a pair of substantially parallel side surfaces characterized by substantially intact longitudinally arrayed fibers, the W.times.H dimensions define a pair of substantially parallel end surfaces characterized by crosscut fibers and end checking between fibers, and the L.times.W dimensions define a pair of substantially parallel top and bottom surfaces. The L.times.W surfaces of particles with L/H dimension ratios of 4:1 or less are further elaborated by surface checking between longitudinally arrayed fibers. The length dimension L is preferably aligned within 30.degree. parallel to the grain, and more preferably within 10.degree. parallel to the grain. The plant biomass material is preferably selected from among wood, agricultural crop residues, plantation grasses, hemp, bagasse, and bamboo.

  4. CONTEXT MATTERS: THE IMPORTANCE OF MARKET CHARACTERISTICS IN THE VOLATILITY OF FEEDSTOCK COSTS FOR BIOGAS PLANTS.

    Science.gov (United States)

    Mertens, A; Van Meensel, J; Mondelaers, K; Buysse, J

    2015-01-01

    Recently, biogas plant managers in Flanders face increased financial uncertainty. Between 2011 and 2012, 20% of the Flemish biogas plants went bankrupt. Difficulties in obtaining feedstock at stable and affordable prices is one reason why the biogas sector struggles. In literature, contracting is often proposed as a way to decrease the volatility of the feedstock costs. However, these studies generally do not consider the context in which the biogas plant manager needs to buy the feedstock. Yet, this context could be of specific importance when biogas plant managers are in competition with other users of the same biomass type. Silage maize is an example of such a feedstock, as it is both used by dairy farmers and biogas plant managers. Using a combination of qualitative research and agent-based modelling, we investigated the effect of specific characteristics of the silage maize market on the acquisition of local silage maize by biogas plant managers. This paper details the institutional arrangements of the silage maize market in Flanders and the results of a scenario analysis, simulating three different scenarios. As shown by the results, the time of entry into the market, as well as the different institutional arrangements used by the biogas plant managers as opposed to dairy farmers could explain the difficulties in obtaining a stable supply of local silage maize by biogas plants. Our findings can help to develop mitigation strategies addressing these difficulties.

  5. Extraction and characterization of triglycerides from coffeeweed and switchgrass seeds as potential feedstocks for biodiesel production.

    Science.gov (United States)

    Armah-Agyeman, Grace; Gyamerah, Michael; Biney, Paul O; Woldesenbet, Selamawit

    2016-10-01

    Although switchgrass has been developed as a biofuel feedstock and its potential for bioethanol and bio-oil from fast pyrolysis reported in the literature, the use of the seeds of switchgrass as a source of triglycerides for biodiesel production has not been reported. Similarly, the potential for extracting triglycerides from coffeeweed (an invasive plant of no current economic value) needs to be investigated to ascertain its potential economic use for biodiesel production. The results show that coffeeweed and switchgrass seeds contain known triglycerides which are 983 and 1000 g kg(-1) respectively of the fatty acids found in edible vegetable oils such as sunflower, corn and soybean oils. In addition, the triglyceride yields of 53-67 g kg(-1) of the seed samples are in the range of commercial oil-producing seeds such as corn (42 g kg(-1) ). The results also indicate that the two non-edible oils could be used as substitutes for edible oil for biodiesel production. In addition, the use of seeds of switchgrass for non-edible oil production (as a feedstock for the production of biodiesel) further increases the total biofuel yield when switchgrass is cultivated for use as energy feedstock for pyrolysis oil and biodiesel production. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  6. More valuable as petrochemical feedstock

    International Nuclear Information System (INIS)

    Ramachandran, R.

    2005-01-01

    The problems facing the North American petrochemical industry were discussed with particular reference to the fact that high North American prices present a challenge to competitiveness in a globally traded market. A background of Dow Canada was provided, including details of its upgrading of natural gas liquids that would otherwise be combusted for electrical power generation. The value of the petrochemical industry was outlined, with details of employment, manufacturing output and exports. Alberta's relationship to the natural gas industry was reviewed. The role of petrochemicals as a nexus for bridging the resource sector with manufacturing, retail and transportation was discussed. The historic correlation between world Gross Domestic Product (GDP) and ethylene demand was presented. It was noted that the petrochemical industry currently competes with power generators for smaller volumes of natural gas liquids. As a highly energy intensive industry, inequities in gas pipeline haul charges and even small increases in gas prices has compromised the success of the petrochemical industry. It was noted that while crude oil is a globally traded commodity, natural gas liquids are generally traded at a more localized level, and factors that helped build the petrochemical industry and are now inhibiting growth. Ethane is the primary feedstock in the petrochemical industry. High natural gas prices affected the industry on two levels: volatility in a weakening industry and higher prices on primary feedstocks. It was estimated that changes in current trends were likely to take place in 5 to 10 years, following Northern gas developments. It was estimated that more than 50 per cent of new capacity investment in ethylene plants would take place in the Middle East in the next 5 years. No new plants are planned in Canada. It was concluded that low-cost feedstock advantages, as well as alternative feedstocks and the sustainment of a healthy industry are necessary for the

  7. Optimal Level of Woody Biomass Co-Firing with Coal Power Plant Considering Advanced Feedstock Logistics System

    Directory of Open Access Journals (Sweden)

    Sangpil Ko

    2018-05-01

    Full Text Available Co-firing from woody biomass feedstock is one of the alternatives toward increased use of renewable feedstock in existing coal power plants. However, the economic level of co-firing at a particular power plant depends on several site-specific factors. Torrefaction has been identified recently as a promising biomass pretreatment option to lead to reduction of the feedstock delivered cost, and thus facilitate an increase in the co-firing ratio. In this study, a mixed integer linear program (MILP is developed to integrate supply chain of co-firing and torrefaction process and find the optimal level of biomass co-firing in terms of minimized transportation and logistics costs, with or without tax credits. A case study of 26 existing coal power plants in three Great Lakes States of the US is used to test the model. The results reveal that torrefaction process can lead to higher levels of co-firing, but without the tax credit, the effect is limited to the low capacity of power plants. The sensitivity analysis shows that co-firing ratio has higher sensitivity to variation in capital and operation costs of torrefaction than to the variation in the transportation and feedstock purchase costs.

  8. EARLY ENTRANCE CO-PRODUCTION PLANT - DECENTRALIZED GASIFICATION COGENERATION TRANSPORTATION FUELS AND STEAM FROM AVAILABLE FEEDSTOCKS

    International Nuclear Information System (INIS)

    Unknown

    2001-01-01

    Waste Processors Management Inc. (WMPI), along with its subcontractors entered into a cooperative agreement with the USDOE to assess the techno-economic viability of building an Early Entrance Co-Production Plant (EECP) in the US that produces ultra clean Fischer-Tropsch transportation fuels with either power or steam as the major co-product. The EECP will emphasize on reclaiming and gasifying low-cost coal waste and/or its mixture as the primary feedstocks. The project consists of three phases. Phase I objectives include conceptual development, technical assessment, feasibility design and economic evaluation of a Greenfield commercial co-production plant and a site specific demonstration EECP to be located adjacent to the existing WMPI Gilberton Power Station. There is very little foreseen design differences between the Greenfield commercial coproduction plant versus the EECP plant other than: The greenfield commercial plant will be a stand alone FT/power co-production plant, potentially larger in capacity to take full advantage of economy of scale, and to be located in either western Pennsylvania, West Virginia or Ohio, using bituminous coal waste (gob) and Pennsylvania No.8 coal or other comparable coal as the feedstock; The EECP plant, on the other hand, will be a nominal 5000 bpd plant, fully integrated into the Gilbertson Power Company's Cogeneration Plant to take advantage of the existing infrastructure to reduce cost and minimize project risk. The Gilberton EECP plant will be designed to use eastern Pennsylvania anthracite coal waste and/or its mixture as feedstock

  9. The H-Oil Process : Preferred configurations for application to western Canadian feedstocks

    International Nuclear Information System (INIS)

    Colyar, J.J.; Peer, E.D.

    1997-01-01

    The technical and economic evaluation of a method used to convert and upgrade petroleum residua and heavy oils into lighter products was described. The feasibility of applying the process to typical western Canadian oil sand feedstocks was evaluated. The H-Oil process, developed by HRI Inc., is an ebullated-bed catalytic hydrocracking process that accounts for more than 50 per cent of the worldwide vacuum residue hydroprocessing market. It has a unique flexibility to handle many different types of heavy crudes while producing clean transportation fuels. The unconverted vacuum residue from the process can be used for fuel oil production, blended into asphalt, or routed to a resid catalytic cracker or coker. The residue can also be directly combusted or gasified to produce hydrogen. Four different technologies that have been used commercially in Canada to upgrade western Canadian heavy oil residue have been reviewed and evaluated from a technical and economic viewpoint. The following improvements in the H-oil process have resulted in greater economy and product quality: (1) development of a new generation of high activity catalysts, (2) development of an improved recycle cup, and (3) new outlets for unconverted residue. It was suggested that the H-Oil process produces more revenue than the delayed coker process. As coke becomes harder to dispose of, the H-Oil process will become more attractive for producing synthetic crude from heavy oil. 6 refs., 9 tabs., 9 figs

  10. The U.S. biodiesel use mandate and biodiesel feedstock markets

    Energy Technology Data Exchange (ETDEWEB)

    Thompson, Wyatt; Meyer, Seth; Green, Travis [University of Missouri, 101 Park deVille Drive, Suite E; Columbia, MO 65203 (United States)

    2010-06-15

    Studies of individual biodiesel feedstocks or broad approaches that lump animal fats and vegetable oils into a single aggregate straddle the true case of imperfect but by no means inconsequential substitution among fats and oils by different users. United States biofuel policy includes a biodiesel use mandate that rises to almost 4 hm{sup 3} by 2012, calling for biomass feedstock analysis that recognizes the complex interdependence among potential feedstocks and competition for food and industrial uses. We model biodiesel input markets to investigate the implications of the mandate for quantities and prices with and without a provision disallowing biodiesel made from soybean oil. Findings suggest a hierarchy of price effects that tends to be largest for cheaper fats and oils typically used for industrial and feed purposes and smallest for fats and oils traditionally used exclusively for direct consumption, with the cross-commodity effects and other key economic parameters playing a critical part in determining the scale in each case. Although sensitive to the exact parameters used, our results argue against overly simplifying feedstock markets by holding prices constant when considering the economics of a particular feedstock or if estimating the broader impacts of rising biodiesel production on competing uses. (author)

  11. Comparing Effects of Feedstock and Run Conditions on Pyrolysis Products Produced at Pilot-Scale

    Energy Technology Data Exchange (ETDEWEB)

    Dunning, Timothy C [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Gaston, Katherine R [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Wilcox, Esther [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2018-01-19

    Fast pyrolysis is a promising pathway for mass production of liquid transportable biofuels. The Thermochemical Process Development Unit (TCPDU) pilot plant at NREL is conducting research to support the Bioenergy Technologies Office's 2017 goal of a $3 per gallon biofuel. In preparation for down select of feedstock and run conditions, four different feedstocks were run at three different run conditions. The products produced were characterized extensively. Hot pyrolysis vapors and light gasses were analyzed on a slip stream, and oil and char samples were characterized post run.

  12. Biomass will grow as a chemical feedstock

    Energy Technology Data Exchange (ETDEWEB)

    Coombs, J

    1979-11-30

    This article discusses the possibility of biomass replacing a large fraction of oil use both as a fuel and a chemical feedstock. Problems arise from the low density, calorific value and diffuse nature of plant material which makes collection and processing expensive on both a financial and an energy cost basis. Two distinct sources of biomass are identified: (a) wastes and residues and (b) purpose grown crops. In the same way it is possible to distinguish thermal and biological conversion technologies. Finally, worldwide biomass energy programmes are reviewed.

  13. Example of feedstock optimization

    International Nuclear Information System (INIS)

    Boustros, E.

    1991-01-01

    An example of feedstock optimization at an olefins plant which has the flexibility to process different kinds of raw materials while maintaining the same product slate, is presented. Product demand and prices, and the number of units in service as well as the required resources to operate these units are considered to be fixed. The plant profitability is a function of feedstock choice, plus constant costs which are the non-volume related costs. The objective is to find a set or combination of feedstocks that could match the client product demands and fall within the unit's design and capacity, while maximizing the financial operating results

  14. Potential of feedstock and catalysts from waste in biodiesel preparation: A review

    International Nuclear Information System (INIS)

    Nurfitri, Irma; Maniam, Gaanty Pragas; Hindryawati, Noor; Yusoff, Mashitah M.; Ganesan, Shangeetha

    2013-01-01

    Highlights: • Oils/lipids from waste sources are the suitable candidates for transesterification. • Catalyst derived from waste materials proven its role in transesterification. • The use of materials from waste should be intensify for sustainability. - Abstract: For many years, the cost of production has been the main barrier in commercializing biodiesel, globally. It has been well researched and established in the literature that the cost of feedstock is the major contributor. Biodiesel producers are forced to choose between edible and non-edible feedstock. The use of edible feedstock sparks concern in terms of food security while the inedible feedstock needs additional pretreatment steps. On the other hand, the wide availability of edible feedstock guarantees the supply while the choice of non-edible results in a non-continuous or non-ready supply. With these complications in mind, this review attempts to identify possible solutions by exploring the potential of waste edible oils and waste catalysts in biodiesel preparation. Since edible oils are available and used abundantly, waste or used edible oils have the potential to provide plentiful feedstock for biodiesel. In addition, since traditional homogeneous catalysts are less competent in transesterifying waste/used oils, this review includes the possibility of heterogeneous catalysts from waste sources that are able to aid the transesterification reaction with success

  15. Survey of Alternative Feedstocks for Commodity Chemical Manufacturing

    Energy Technology Data Exchange (ETDEWEB)

    McFarlane, Joanna [ORNL; Robinson, Sharon M [ORNL

    2008-02-01

    The current high prices for petroleum and natural gas have spurred the chemical industry to examine alternative feedstocks for the production of commodity chemicals. High feedstock prices have driven methanol and ammonia production offshore. The U.S. Chemical Industry is the largest user of natural gas in the country. Over the last 30 years, alternatives to conventional petroleum and natural gas feedstocks have been developed, but have limited, if any, commercial implementation in the United States. Alternative feedstocks under consideration include coal from unconventional processing technologies, such as gasification and liquefaction, novel resources such as biomass, stranded natural gas from unconventional reserves, and heavy oil from tar sands or oil shale. These feedstock sources have been evaluated with respect to the feasibility and readiness for production of the highest volume commodity chemicals in the United States. Sources of organic compounds, such as ethanol from sugar fermentation and bitumen-derived heavy crude are now being primarily exploited for fuels, rather than for chemical feedstocks. Overall, government-sponsored research into the use of alternatives to petroleum feedstocks focuses on use for power and transportation fuels rather than for chemical feedstocks. Research is needed to reduce cost and technical risk. Use of alternative feedstocks is more common outside the United States R&D efforts are needed to make these processes more efficient and less risky before becoming more common domestically. The status of alternative feedstock technology is summarized.

  16. Laboratory scale conceptual process development for the isolation of renewable glycolaldehyde from pyrolysis oil to produce fermentation feedstock

    NARCIS (Netherlands)

    Vitasari, C.R.; Meindersma, G.W.; Haan, de A.B.

    2012-01-01

    A laboratory-based separation sequence has been developed to produce an aqueous glycolaldehyde solution as fermentation feedstock. It consists of water extraction of pyrolysis oil, acid removal, water removal, octanol extraction, phenolic removal, back-extraction, and washing. The octanol-free

  17. Process for desulfurizing petroleum feedstocks

    Science.gov (United States)

    Gordon, John Howard; Alvare, Javier

    2014-06-10

    A process for upgrading an oil feedstock includes reacting the oil feedstock with a quantity of an alkali metal, wherein the reaction produces solid materials and liquid materials. The solid materials are separated from the liquid materials. The solid materials may be washed and heat treated by heating the materials to a temperature above 400.degree. C. The heat treating occurs in an atmosphere that has low oxygen and water content. Once heat treated, the solid materials are added to a solution comprising a polar solvent, where sulfide, hydrogen sulfide or polysulfide anions dissolve. The solution comprising polar solvent is then added to an electrolytic cell, which during operation, produces alkali metal and sulfur.

  18. The feasibility of bio-oil production and application on the basis of the rotating cone technology

    International Nuclear Information System (INIS)

    Gansekoele, E.; Wagenaar, B.M.

    2001-07-01

    The overall objective of the project on the title subject is to scale up the novel, rotating cone technology for flash pyrolysis of biomass and examine the related bio-energy system by application of bio-oil from several feedstocks in engines and combustion chambers. The specific objectives are: (1) To identify and characterize biomass feedstocks suitable for conversion to bio-oil by means of flash pyrolysis in a rotating cone reactor; (2) To scale-up the rotating cone reactor to a commercial size (200 kg biomass per hour); (3) To optimize the process with respect to quality and yield of the bio-oil in various test runs; (4) To produce bio-oil from various feedstocks in long lasting production runs; (5) To characterize the bio-oil and test it in properly adapted diesel engines and furnaces; and (6) To estimate the market potential for bio-oil and the economic feasibility of the technology. The objectives of the partners are: (1) to establish the most cost effective pre-treatment procedures to produce proper biomass feedstock for the pyrolysis process. In addition, 25 tons of pretreated biomass feedstock was prepared (CIEMAT, Spain); (2) design of the rotating cone pyrolysis plant at a biomass throughput of 200 kg/h, optimization of the pilot plant, and carrying out long duration runs (BTG, Netherlands); (3) development and construction of the flash pyrolysis pilot plant (KARA, Netherlands); and (4) investigation of the application of bio-oil in a combustion chamber, in a gas turbine and a diesel engine with respect to performance, efficiencies and emissions ( Rostock University, Germany). This report comprises the research results of all the partners for the whole chain: from biomass pre-treatment to bio-oil production and application. The different subjects are Biomass pre-treatment, Development of the 200 kg/h pyrolysis plant, Bio-oil application, and Economics and market potential of bio-oil application. refs

  19. Shale Oil Value Enhancement Research

    Energy Technology Data Exchange (ETDEWEB)

    James W. Bunger

    2006-11-30

    Raw kerogen oil is rich in heteroatom-containing compounds. Heteroatoms, N, S & O, are undesirable as components of a refinery feedstock, but are the basis for product value in agrochemicals, pharmaceuticals, surfactants, solvents, polymers, and a host of industrial materials. An economically viable, technologically feasible process scheme was developed in this research that promises to enhance the economics of oil shale development, both in the US and elsewhere in the world, in particular Estonia. Products will compete in existing markets for products now manufactured by costly synthesis routes. A premium petroleum refinery feedstock is also produced. The technology is now ready for pilot plant engineering studies and is likely to play an important role in developing a US oil shale industry.

  20. High free fatty acid coconut oil as a potential feedstock for biodiesel production in Thailand

    Energy Technology Data Exchange (ETDEWEB)

    Nakpong, Piyanuch; Wootthikanokkhan, Sasiwimol [Department of Chemistry, Faculty of Science and Technology, Rajamangala University of Technology Krungthep, 2 Nanglinchee Road, Sathorn, Bangkok 10120 (Thailand)

    2010-08-15

    Coconut oil having 12.8% free fatty acid (FFA) was used as a feedstock to produce biodiesel by a two-step process. In the first step, FFA level of the coconut oil was reduced to 0.6% by acid-catalyzed esterification. In the second step, triglycerides in product from the first step were transesterified with methanol by using an alkaline catalyst to produce methyl esters and glycerol. Effect of parameters related to these processes was studied and optimized, including methanol-to-oil ratio, catalyst concentration, reaction temperature, and reaction time. Methyl ester content of the coconut biodiesel was determined by GC to be 98.4% under the optimum condition. The viscosity of coconut biodiesel product was very close to that of Thai petroleum diesel and other measured properties met the Thai biodiesel (B100) specification. (author)

  1. Biodiesel production from various feedstocks and their effects on the fuel properties.

    Science.gov (United States)

    Canakci, M; Sanli, H

    2008-05-01

    Biodiesel, which is a new, renewable and biological origin alternative diesel fuel, has been receiving more attention all over the world due to the energy needs and environmental consciousness. Biodiesel is usually produced from food-grade vegetable oils using transesterification process. Using food-grade vegetable oils is not economically feasible since they are more expensive than diesel fuel. Therefore, it is said that the main obstacle for commercialization of biodiesel is its high cost. Waste cooking oils, restaurant greases, soapstocks and animal fats are potential feedstocks for biodiesel production to lower the cost of biodiesel. However, to produce fuel-grade biodiesel, the characteristics of feedstock are very important during the initial research and production stage since the fuel properties mainly depend on the feedstock properties. This review paper presents both biodiesel productions from various feedstocks and their effects on the fuel properties.

  2. TECHNO-ECONOMIC ANALYSIS: PRELIMINARY ASSESSMENT OF PYROLYSIS OIL PRODUCTION COSTS AND MATERIAL ENERGY BALANCE ASSOCIATED WITH A TRANSPORTABLE FAST PYROLYSIS SYSTEM

    Directory of Open Access Journals (Sweden)

    Phil Badger

    2011-02-01

    Full Text Available A techno-economic analysis was performed for a 100 dry-ton/day (90,719 kg/day fast pyrolysis transportable plant. Renewable Oil International® LLC provided the life cycle cost of operating a 100 dry-ton/day fast pyrolysis system using southern pine wood chips as feedstock. Since data was not available from an actual large-scale plant, the study examined data obtained from an actual 15 dry-ton/day pilot plant and from several smaller plants. These data were used to obtain base figures to aid in the development of models to generate scaled-up costs for a larger 100 dry-ton/day facility. Bio-oil represented 60% of mass of product yield. The cost for the bio-oil from fast pyrolysis was valued at $0.94/gal. Energy cost bio-oil and char was valued at $6.35/MMBTU. Costs associated with purchasing feedstocks can drastically influence the final cost of the bio-oil. The assumed cost of feedstocks was $25/wet ton or $50/dry ton. This paper is part of a larger study investigating the economic and environmental impacts for producing bio-oil / biocide wood preservatives.

  3. An overview of palm, jatropha and algae as a potential biodiesel feedstock in Malaysia

    International Nuclear Information System (INIS)

    Yunus, S; Abdullah, N R; Rashid, A A; Mamat, R

    2013-01-01

    The high demand to replace petroleum fuel makes renewable and sustainable sources such as Palm oil, Jatropha oil and Algae a main focus feedstock for biodiesel production in Malaysia. There are many studies conducted on Palm oil and Jatropha oil, however, the use of Algae as an alternative fuel is still in its infancy. Malaysia already implemented B5 based Palm oil as a feedstock and this biodiesel has been proven safe and can be used without any engine modification. The use of biodiesel produced from these feedstock will also developed domestic economic and provide job opportunities especially in the rural area. In addition, biodiesel has many advantages especially when dealing with the emissions produce as compared to petroleum fuel such as; it can reduce unwanted gases and particulate matter harmful to the atmosphere and mankind. Thus, this paper gathered and examines the most prominent engine emission produced from Palm oil and Jatropha feedstock and also to observe the potential of Algae to be one of the sources of alternative fuel in Malaysia

  4. Processes for liquefying carbonaceous feedstocks and related compositions

    Energy Technology Data Exchange (ETDEWEB)

    MacDonnell, Frederick M.; Dennis, Brian H.; Billo, Richard E.; Priest, John W.

    2017-02-28

    Methods for the conversion of lignites, subbituminous coals and other carbonaceous feedstocks into synthetic oils, including oils with properties similar to light weight sweet crude oil using a solvent derived from hydrogenating oil produced by pyrolyzing lignite are set forth herein. Such methods may be conducted, for example, under mild operating conditions with a low cost stoichiometric co-reagent and/or a disposable conversion agent.

  5. Biological conversion assay using Clostridium phytofermentans to estimate plant feedstock quality.

    Science.gov (United States)

    Lee, Scott J; Warnick, Thomas A; Pattathil, Sivakumar; Alvelo-Maurosa, Jesús G; Serapiglia, Michelle J; McCormick, Heather; Brown, Virginia; Young, Naomi F; Schnell, Danny J; Smart, Lawrence B; Hahn, Michael G; Pedersen, Jeffrey F; Leschine, Susan B; Hazen, Samuel P

    2012-02-08

    There is currently considerable interest in developing renewable sources of energy. One strategy is the biological conversion of plant biomass to liquid transportation fuel. Several technical hurdles impinge upon the economic feasibility of this strategy, including the development of energy crops amenable to facile deconstruction. Reliable assays to characterize feedstock quality are needed to measure the effects of pre-treatment and processing and of the plant and microbial genetic diversity that influence bioconversion efficiency. We used the anaerobic bacterium Clostridium phytofermentans to develop a robust assay for biomass digestibility and conversion to biofuels. The assay utilizes the ability of the microbe to convert biomass directly into ethanol with little or no pre-treatment. Plant samples were added to an anaerobic minimal medium and inoculated with C. phytofermentans, incubated for 3 days, after which the culture supernatant was analyzed for ethanol concentration. The assay detected significant differences in the supernatant ethanol from wild-type sorghum compared with brown midrib sorghum mutants previously shown to be highly digestible. Compositional analysis of the biomass before and after inoculation suggested that differences in xylan metabolism were partly responsible for the differences in ethanol yields. Additionally, we characterized the natural genetic variation for conversion efficiency in Brachypodium distachyon and shrub willow (Salix spp.). Our results agree with those from previous studies of lignin mutants using enzymatic saccharification-based approaches. However, the use of C. phytofermentans takes into consideration specific organismal interactions, which will be crucial for simultaneous saccharification fermentation or consolidated bioprocessing. The ability to detect such phenotypic variation facilitates the genetic analysis of mechanisms underlying plant feedstock quality.

  6. Biological conversion assay using Clostridium phytofermentans to estimate plant feedstock quality

    Directory of Open Access Journals (Sweden)

    Lee Scott J

    2012-02-01

    Full Text Available Abstract Background There is currently considerable interest in developing renewable sources of energy. One strategy is the biological conversion of plant biomass to liquid transportation fuel. Several technical hurdles impinge upon the economic feasibility of this strategy, including the development of energy crops amenable to facile deconstruction. Reliable assays to characterize feedstock quality are needed to measure the effects of pre-treatment and processing and of the plant and microbial genetic diversity that influence bioconversion efficiency. Results We used the anaerobic bacterium Clostridium phytofermentans to develop a robust assay for biomass digestibility and conversion to biofuels. The assay utilizes the ability of the microbe to convert biomass directly into ethanol with little or no pre-treatment. Plant samples were added to an anaerobic minimal medium and inoculated with C. phytofermentans, incubated for 3 days, after which the culture supernatant was analyzed for ethanol concentration. The assay detected significant differences in the supernatant ethanol from wild-type sorghum compared with brown midrib sorghum mutants previously shown to be highly digestible. Compositional analysis of the biomass before and after inoculation suggested that differences in xylan metabolism were partly responsible for the differences in ethanol yields. Additionally, we characterized the natural genetic variation for conversion efficiency in Brachypodium distachyon and shrub willow (Salix spp.. Conclusion Our results agree with those from previous studies of lignin mutants using enzymatic saccharification-based approaches. However, the use of C. phytofermentans takes into consideration specific organismal interactions, which will be crucial for simultaneous saccharification fermentation or consolidated bioprocessing. The ability to detect such phenotypic variation facilitates the genetic analysis of mechanisms underlying plant feedstock quality.

  7. Interactive association between biopolymers and biofunctions in carinata seeds as energy feedstock and their coproducts (carinata meal) from biofuel and bio-oil processing before and after biodegradation: current advanced molecular spectroscopic investigations.

    Science.gov (United States)

    Yu, Peiqiang; Xin, Hangshu; Ban, Yajing; Zhang, Xuewei

    2014-05-07

    Recent advances in biofuel and bio-oil processing technology require huge supplies of energy feedstocks for processing. Very recently, new carinata seeds have been developed as energy feedstocks for biofuel and bio-oil production. The processing results in a large amount of coproducts, which are carinata meal. To date, there is no systematic study on interactive association between biopolymers and biofunctions in carinata seed as energy feedstocks for biofuel and bioethanol processing and their processing coproducts (carinata meal). Molecular spectroscopy with synchrotron and globar sources is a rapid and noninvasive analytical technique and is able to investigate molecular structure conformation in relation to biopolymer functions and bioavailability. However, to date, these techniques are seldom used in biofuel and bioethanol processing in other research laboratories. This paper aims to provide research progress and updates with molecular spectroscopy on the energy feedstock (carinata seed) and coproducts (carinata meal) from biofuel and bioethanol processing and show how to use these molecular techniques to study the interactive association between biopolymers and biofunctions in the energy feedstocks and their coproducts (carinata meal) from biofuel and bio-oil processing before and after biodegradation.

  8. Production of synthetic hydrocarbon lube oil from highly waxy feedstocks

    Energy Technology Data Exchange (ETDEWEB)

    Xue, Q; Ding, Z; Zheng, Sh; Wu, W

    1980-01-01

    A feasible way to utilize the low value soft wax is to convert it into synthetic hydrocarbon lube oil by thermal cracking/polymerization route. The first commercial plant for this purpose has been in normal operation since 1970. It has been proved to be economically sound. The antioxidant response of the product polymer oil can be distinctly improved by hydro-refining. It has been found that the vacuum gas oil from highly waxy crude with or without furfural refining can be used as cracking stock. If high viscosity index polymer oil is desired, it is better to use slack wax as the cracking stock.

  9. Impact of feedstock quality on clean diesel fuel production

    Energy Technology Data Exchange (ETDEWEB)

    Marafi, A.; Stanislaus, A.; Rana, M. [Kuwait Institute for Scientific Research (KISR), Safat (Kuwait)

    2013-06-01

    High sulfur level in diesel fuel has been identified as a major contributor to harmful emissions (sulfur oxides, particulates, etc.) as a result, recent environmental regulations limit the sulfur content of diesel to ultra-low levels in many countries. The diesel fuel specifications are expected to become extremely severe in the coming years. Problem faced by the refiners is the difficulty in meeting the increasing market demand for Ultra-Low Sulfur Diesel (ULSD). Global market for middle distillates is increasing steadily and this trend is expected to continue for the next few years. At the same time, the quality of feed streams is declining. The refiners are, thus, required to produce a ULSD from poor feedstocks such as light cycle oil (LCO) and coker gas oil (CGO). The key to achieving deep desulfurization in gas-oil hydrotreater is in understanding the factors that influence the reactivity of the different types of sulfur compounds present in the feed, namely, feedstock quality, catalyst, process parameters, and chemistry of ULSD production. Among those parameters, feedstock quality is most critical. (orig.)

  10. Markets for Canadian bitumen-based feedstock

    International Nuclear Information System (INIS)

    Lauerman, V.

    2001-01-01

    The best types of refineries for processing western Canadian bitumen-based feedstock (BBF) were identified and a potential market for these feedstock for year 2007 was calculated. In addition, this power point presentation provided an estimation of potential regional and total demand for BBF. BBF included Athabasca bitumen blend, de-asphalted blend, coked sour crude oil (SCO), coked sweet SCO, hydrocracked SCO and hydrocracked/aromatic saturated SCO (HAS). Refinery prototypes included light and mixed prototypes for primary cracking units, light and heavy prototypes for primary coking units, as well as no coking, coking severe and residuum prototypes for primary hydrocracking units. The presentation included graphs depicting the natural market for Western Canadian crudes as well as U.S. crude oil production forecasts by PADD districts. It was forecasted that the market for bitumen-based feedstock in 2007 will be tight and that the potential demand for bitumen-based blends would be similar to expected production. It was also forecasted that the potential demand for SCO is not as promising relative to the expected production, unless price discounting or HAS will be available. 11 figs

  11. Prospective framework for collection and exploitation of waste cooking oil as feedstock for energy conversion

    International Nuclear Information System (INIS)

    Singhabhandhu, Ampaitepin; Tezuka, Tetsuo

    2010-01-01

    From the viewpoint of waste-to-energy, waste cooking oil is one of the attractive and available recycled feedstocks, apart from agricultural residues. The generation of energy from waste cooking oil is considered as an effective technique for waste management, as well as a beneficial form of energy recovery. Two alternative systems and a conventional system of waste cooking oil collection and conversion are evaluated by the cost benefit analysis in order to find a suitable method for waste-to-energy conversion. The results show that the collection of waste cooking oil with waste lubricating oil (System II) a useful alternative to the management of waste cooking oil (B/C > 1). The total heat produced by the combustion of pyrolytic oil at maximum and minimum conversion rates is also determined. The separate collection of waste cooking oil, subjected to chemical pre-treatment prior to introduction in a pyrolysis reactor (System III), is considered an undesirable option (B/C < 1) due to the cost of the chemicals involved. Although the exclusion of chemical pre-treatment makes System III a desirable option, the total amount of heat of combustion generated is less. The increased electricity cost required for the process has no effect on the benefit-cost ratio of System II. However, System III, excluding chemical pre-treatment, becomes an unprofitable alternative when the electricity cost reaches 100% of the fixed capital cost at the minimum conversion rate.

  12. Chinese refining capacity for Canadian heavy oil

    International Nuclear Information System (INIS)

    Bruce, G.W.

    2006-01-01

    This paper discussed China's refining capacity in relation to exports of Canadian heavy oil. Demand for oil is increasing throughout the world, and China is expected to consume 25 per cent of the projected yearly oil supplies. Alberta currently has an estimated 174 billion barrels of recoverable bitumen, and produces 1.06 million barrels per day. Production is expected to increase to 4.5 million barrels per day by the year 2020. Currently bitumen blends are refined and diluted with naphtha and sweet synthetic crude oil. Bitumen is a challenging feedstock for refineries, and requires thermal production methods or gasification processes. Primary conversion into sour synthetic crude is typically followed by hydrocracking and further refining into finished petroleum products. There are currently 50 refineries in China with a 7.4 million barrel per day capacity. Coastal refineries using imported crude oil have a 4 million barrel per day capacity. New facilities are being constructed and existing plants are being upgraded in order to process heavier and more sour crude oils. However, current refining capabilities in Chinese refineries have a limited ability for resid conversion. It was concluded that while China has a refining infrastructure, only refineries on the coast will use oil sands-derived feedstocks. However, there are currently opportunities to design refineries to match future feedstocks. tabs., figs

  13. Deep conversion of black oils with Eni Slurry technology

    Energy Technology Data Exchange (ETDEWEB)

    Panariti, Nicoletta; Rispoli, Giacomo

    2010-09-15

    Eni Slurry Technology represents a significant technological innovation in residue conversion and unconventional oils upgrading. EST allows the almost total conversion of heavy feedstocks into useful products, mainly transportation fuels, with a great major impact on the economic and environmental valorization of hydrocarbon resources. The peculiar characteristics of EST in terms of yields, products quality, absence of undesired by-products and feedstock flexibility constitute its superior economic and environmental attractiveness. The first full scale industrial plant based on this new technology will be realized in Eni's Sannazzaro refinery (23,000 bpd). Oil in is scheduled by 4th quarter 2012.

  14. Biodiesel production from vegetable oil and waste animal fats in a pilot plant.

    Science.gov (United States)

    Alptekin, Ertan; Canakci, Mustafa; Sanli, Huseyin

    2014-11-01

    In this study, corn oil as vegetable oil, chicken fat and fleshing oil as animal fats were used to produce methyl ester in a biodiesel pilot plant. The FFA level of the corn oil was below 1% while those of animal fats were too high to produce biodiesel via base catalyst. Therefore, it was needed to perform pretreatment reaction for the animal fats. For this aim, sulfuric acid was used as catalyst and methanol was used as alcohol in the pretreatment reactions. After reducing the FFA level of the animal fats to less than 1%, the transesterification reaction was completed with alkaline catalyst. Due to low FFA content of corn oil, it was directly subjected to transesterification. Potassium hydroxide was used as catalyst and methanol was used as alcohol for transesterification reactions. The fuel properties of methyl esters produced in the biodiesel pilot plant were characterized and compared to EN 14214 and ASTM D6751 biodiesel standards. According to the results, ester yield values of animal fat methyl esters were slightly lower than that of the corn oil methyl ester (COME). The production cost of COME was higher than those of animal fat methyl esters due to being high cost biodiesel feedstock. The fuel properties of produced methyl esters were close to each other. Especially, the sulfur content and cold flow properties of the COME were lower than those of animal fat methyl esters. The measured fuel properties of all produced methyl esters met ASTM D6751 (S500) biodiesel fuel standards. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Effect of feedstock end boiling point on product sulphur during ultra deep diesel hydrodesulphurization

    Energy Technology Data Exchange (ETDEWEB)

    Stratiev, D.; Ivanov, A.; Jelyaskova, M. [Lukoil Neftochim Bourgas AD, Bourgas (Bulgaria)

    2004-12-01

    An investigation was carried out to test the feasibility of producing 50 and 10 ppm sulphur diesel in a conventional hydrotreating unit operating at low pressure conditions by varying the feedstock end boiling point. Middle distillate fractions distilled from a mixture of Ural crude oil, reduced crude, vacuum gas oil, naphtha and low sulphur crude oils with 95% vol. points of 274, 359, 343, 333, and 322 C (ASTM D-86 method) and sulphur contents of 0.36, 0.63, 0.99, 0.57, and 0.47%, respectively, were hydrotreated using the Akzo Nobel Stars family Co-Mo KF-757 catalyst in a trickle bed pilot plant at following conditions: reactor inlet temperature range of 320-360 C; liquid hourly space velocity (LHSV) range of 1-2 h{sup -1}; total reactor pressure of 3.5 MPa; treating gas: feedstock ratio of 250 Nm{sup 3}/m{sup 3}. It was found that the determinant factor for the attainment of ultra low sulphur levels during middle distillate hydrodesulphurization was not the total sulphur content in the feed but the content of the material boiling above 340 C (according to TBP). For all LHSVs and reactor inlet temperatures studied the product sulphur dependence on the feed 340 C+ fraction content was approximated by second order power law. The specification of 50 ppm sulphur was achieved with all studied feedstocks. However the 10ppm sulphur limit could be met only by feedstocks with 95% vol. points below 333 C, which is accompanied by about 10% reduction of the diesel potential. The hydrotreatment tests on a blend 80% straight run gas oil (ASTM D-86 95% vol. of 274 C)/20%FCC LCO (ASTM D-86 95% vol. of 284 C) showed product sulphur levels which were not higher than those obtained by hydrotreatment of the straight run gas oil, indicating that undercutting the FCC LCO gives the refiner the opportunity to increase the potential for the production of 10 ppm sulphur diesel at the conditions of the conventional hydrotreating unit operating at low pressure. The product cetane index was

  16. Intensification of esterification of non edible oil as sustainable feedstock using cavitational reactors.

    Science.gov (United States)

    Mohod, Ashish V; Subudhi, Abhijeet S; Gogate, Parag R

    2017-05-01

    Using sustainable feed stock such as non-edible oil for the biodiesel production can be one of the cost effective approaches considering the ever growing interest towards renewable energy and problems in existing approaches for production. However, due to the high free fatty acid content, non-edible oils require considerable preprocessing before the actual transesterification reaction for biodiesel production. The present work focuses on intensification of the esterification reaction used as preprocessing step based on acoustic and hydrodynamic cavitation also presenting the comparison with the conventional approach. Karanja oil with initial acid value as 14.15mg of KOH/g of oil has been used as a sustainable feedstock. Effect of operating parameters such as molar ratio, catalyst loading, temperature and type of catalyst (sulfuric acid and Amberlyst-15) on the acid value reduction has been investigated. The maximum reduction in the acid value (final acid value as 2.7mg of KOH/g of oil) was obtained using acoustic cavitation at optimum molar ratio of oil to methanol as 1:5 and 2% sulfuric acid loading at ambient temperature. In the case of hydrodynamic cavitation, acid value reduced upto 4.2mg of KOH under optimized conditions of first stage processing. In the second stage esterification using hydrodynamic cavitation and conventional approach, the final acid value was 3.6 and 3.8mg of KOH/g of oil respectively. Energy requirement analysis for ultrasound and conventional approaches clearly established the superiority of the ultrasound based approach. The present study clearly demonstrated that significant intensification benefits can be obtained in terms of the reduction in the molar ratio and operating temperature for the case of acoustic cavitation as compared to the conventional approach with somewhat lower effects for the hydrodynamic cavitation. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Economically viable production of biodiesel from a rural feedstock from eastern India, P. pinnata oil using a recyclable laboratory synthesized heterogeneous catalyst

    International Nuclear Information System (INIS)

    Singh, Veena; Hameed, Bassim H.; Sharma, Yogesh Chandra

    2016-01-01

    Graphical abstract: Barium zirconate was synthesized by co-precipitation method using nitrates of barium and zirconia and was applied for biodiesel production using karanja oil as feedstock through transesterification reaction. - Highlights: • Barium zirconate have been used as a heterogeneous catalyst for biodiesel production. • Effect of calcination time on stability of catalyst was studied. • 98.79 ± 0.5% of FAME conversion from karanja oil was attained. • Catalyst is stable and can be reused up to nine cycles with conversion up to >65%. • Glycerol obtained as a byproduct was easily purified for better use. - Abstract: Barium zirconate was synthesized by co-precipitation method and its feasibility as a heterogeneous catalyst for production of biodiesel (fatty acid methyl ester) was assessed. Fatty acid methyl ester (FAME) was synthesized through transesterification of karanja oil with methanol. Synthesized barium zirconate was characterized by Thermogravimetric analysis (TGA), Attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR), X-ray diffractometry (XRD), Energy dispersive X-ray spectroscopy (EDS), and Scanning Electron Microscope (SEM). Specific surface area and basicity of the catalyst were also deliberated. Catalyst characterization indicated formation of single phase of barium zirconate which was capable of catalyzing the transesterification of esterified karanja oil with methanol. Feedstock was characterized by Gas Chromatography Mass Spectrometry (GC–MS). Reaction conditions such as molar ratio (oil:methanol), catalyst concentration, temperature, time, stirring speed and catalyst reusability were optimized. Calcination temperature and time significantly affected the catalytic activity of the catalyst because of variation in availability of basic sites. FAME conversion of 98.79 ± 0.5% was obtained at catalyst concentration of 1.0 wt%, 1:27 M ratio (oil:methanol), 65 °C for a 3 h contact time. The catalyst could be

  18. Perspectives of microbial oils for biodiesel production

    Energy Technology Data Exchange (ETDEWEB)

    Li Qiang; Du Wei; Liu Dehua [Tsinghua Univ., Beijing (China). Dept. of Chemical Engineering

    2008-10-15

    Biodiesel has become more attractive recently because of its environmental benefits, and the fact that it is made from renewable resources. Generally speaking, biodiesel is prepared through transesterification of vegetable oils or animal fats with short chain alcohols. However, the lack of oil feedstocks limits the large-scale development of biodiesel to some extent. Recently, much attention has been paid to the development of microbial, oils and it has been found that many microorganisms, such as algae, yeast, bacteria, and fungi, have the ability to accumulate oils under some special cultivation conditions. Compared to other plant oils, microbial oils have many advantages, such as short life cycle, less labor required, less affection by venue, season and climate, and easier to scale up. With the rapid expansion of biodiesel, microbial oils might become one of potential oil feedstocks for biodiesel production in the future, though there are many works associated with microorganisms producing oils need to be carried out further. This review is covering the related research about different oleaginous microorganisms producing oils, and the prospects of such microbial oils used for biodiesel production are also discussed. (orig.)

  19. Biofuel Feedstock Assessment for Selected Countries

    Energy Technology Data Exchange (ETDEWEB)

    Kline, K.L.; Oladosu, G.A.; Wolfe, A.K.; Perlack, R.D.; Dale, V.H.

    2008-02-18

    Findings from biofuel feedstock production assessments and projections of future supply are presented and discussed. The report aims to improve capabilities to assess the degree to which imported biofuel could contribute to meeting future U.S. targets to reduce dependence on imported oil. The study scope was focused to meet time and resource requirements. A screening process identified Argentina, Brazil, Canada, China, Colombia, India, Mexico, and the Caribbean Basin Initiative (CBI) region for initial analysis, given their likely role in future feedstock supply relevant to U.S. markets. Supply curves for selected feedstocks in these countries are projected for 2012, 2017 and 2027. The supply functions, along with calculations to reflect estimated supplies available for export and/or biofuel production, were provided to DOE for use in a broader energy market allocation study. Potential cellulosic supplies from crop and forestry residues and perennials were also estimated for 2017 and 2027. The analysis identified capacity to potentially double or triple feedstock production by 2017 in some cases. A majority of supply growth is derived from increasing the area cultivated (especially sugarcane in Brazil). This is supplemented by improving yields and farming practices. Most future supplies of corn and wheat are projected to be allocated to food and feed. Larger shares of future supplies of sugarcane, soybean and palm oil production will be available for export or biofuel. National policies are catalyzing investments in biofuel industries to meet targets for fuel blending that generally fall in the 5-10% range. Social and environmental concerns associated with rapid expansion of feedstock production are considered. If the 2017 projected feedstock supply calculated as ‘available’ for export or biofuel were converted to fuel, it would represent the equivalent of about 38 billion gallons of gasoline. Sugarcane and bagasse dominate the available supply, representing 64

  20. Biofuel Feedstock Assessment For Selected Countries

    Energy Technology Data Exchange (ETDEWEB)

    Kline, Keith L [ORNL; Oladosu, Gbadebo A [ORNL; Wolfe, Amy K [ORNL; Perlack, Robert D [ORNL; Dale, Virginia H [ORNL

    2008-02-01

    Findings from biofuel feedstock production assessments and projections of future supply are presented and discussed. The report aims to improve capabilities to assess the degree to which imported biofuel could contribute to meeting future U.S. targets to reduce dependence on imported oil. The study scope was focused to meet time and resource requirements. A screening process identified Argentina, Brazil, Canada, China, Colombia, India, Mexico, and the Caribbean Basin Initiative (CBI) region for initial analysis, given their likely role in future feedstock supply relevant to U.S. markets. Supply curves for selected feedstocks in these countries are projected for 2012, 2017 and 2027. The supply functions, along with calculations to reflect estimated supplies available for export and/or biofuel production, were provided to DOE for use in a broader energy market allocation study. Potential cellulosic supplies from crop and forestry residues and perennials were also estimated for 2017 and 2027. The analysis identified capacity to potentially double or triple feedstock production by 2017 in some cases. A majority of supply growth is derived from increasing the area cultivated (especially sugarcane in Brazil). This is supplemented by improving yields and farming practices. Most future supplies of corn and wheat are projected to be allocated to food and feed. Larger shares of future supplies of sugarcane, soybean and palm oil production will be available for export or biofuel. National policies are catalyzing investments in biofuel industries to meet targets for fuel blending that generally fall in the 5-10% range. Social and environmental concerns associated with rapid expansion of feedstock production are considered. If the 2017 projected feedstock supply calculated as 'available' for export or biofuel were converted to fuel, it would represent the equivalent of about 38 billion gallons of gasoline. Sugarcane and bagasse dominate the available supply

  1. Catalytic Hydrothermal Conversion of Wet Biomass Feedstocks and Upgrading – Process Design and Optimization

    DEFF Research Database (Denmark)

    Hoffmann, Jessica; Toor, Saqib; Rosendahl, Lasse

    Liquid biofuels will play a major role for a more sustainable energy system of the future. The CatLiq® process is a 2nd generation biomass conversion process that is based on hydrothermal liquefaction. Hydrothermal liquefaction offers a very efficient and feedstock flexible way of converting...... biomass to bio-oil. Bio-oils from hydrothermal liquefaction are characterised by their high feedstock flexibility. Upgrading of complete bio-oils derived from hydrothermal conversion has not yet been extensively studied. Purpose of this work is to reduce the oxygen content of the bio-oil to improve...

  2. Field-to-Fuel Performance Testing of Various Biomass Feedstocks: Production and Catalytic Upgrading of Bio-Oil to Refinery Blendstocks (Presentation)

    Energy Technology Data Exchange (ETDEWEB)

    Carpenter, D.; Westover, T.; Howe, D.; Evans, R.; French, R.; Kutnyakov, I.

    2014-09-01

    Large-scale, cost-competitive deployment of thermochemical technologies to replace petroleum oil with domestic biofuels will require inclusion of high volumes of low-cost, diverse biomass types into the supply chain. However, a comprehensive understanding of the impacts of feedstock thermo-physical and chemical variability, particularly inorganic matter (ash), on the yield and product distribution

  3. Markets for Canadian bitumen-based feedstock

    International Nuclear Information System (INIS)

    Marshall, R.; Lauerman, V.; Yamaguchi, N.

    2001-02-01

    This study was undertaken in an effort to determine the market potential for crude bitumen and derivative products from the Western Canadian Sedimentary Basin in 2007. As part of the study, CERI assessed the economic viability of a wide range of bitumen-based feedstock based on their refining values, investigated the sensitivity of refinery demand to the prices of these feedstocks, and examined the competitiveness of bitumen-based feedstocks and conventional crudes. A US$18.00 per barrel price for West Texas Intermediate at Cushing, Oklahoma, was assumed in all calculations, including other crude prices, as well as for Western Canadian and US crude oil production forecasts. Four different scenarios have been considered, but only the 'most plausible' scenario is discussed in the report. Consequently, Hydrocracked/Aromatics Saturated Synthetic Crude Oil, which is currently only a hypothetical product, is excluded from consideration. The availability of historical price differentials for the various competing crudes was another assumption used in developing the scenario. Proxy prices for the bitumen-based feedstock were based on their respective supply costs. The study concludes that the principal dilemma facing bitumen producers in Western Canada is to determine the amount of upgrading necessary to ensure an economic market for their product in the future. In general, the greater the degree of upgrading, the higher is the demand for bitumen-based feedstock. However, it must be kept in mind that the upgrading decisions of other bitumen producers, along with many other factors, will have a decisive impact on the economics of any individual project. The combination of coking capacity and asphalt demand limits the market for heavy and extra-heavy crudes. As a result, the researchers concluded that major expansion of heavy crude conversion capacity may have to wait until the end of the current decade. The economic market for bitumen-based blends in 2007 is estimated at

  4. How can we improve biomethane production per unit of feedstock in biogas plants?

    International Nuclear Information System (INIS)

    Asam, Zaki-ul-Zaman; Poulsen, Tjalfe Gorm; Nizami, Abdul-Sattar; Rafique, Rashad; Kiely, Ger; Murphy, Jerry D.

    2011-01-01

    Biogas production is one of the number of tools that may be used to alleviate the problems of global warming, energy security and waste management. Biogas plants can be difficult to sustain from a financial perspective. The facilities must be financially optimized through use of substrates with high biogas potential, low water content and low retention requirement. This research carried out in laboratory scale batch digesters assessed the biogas potential of energy crops (maize and grass silage) and solid manure fractions from manure separation units. The ultimate methane productivity in terms of volatile solids (VS) was determined as 330, 161, 230, 236, 361 L/kg VS from raw pig slurry, filter pressed manure fiber (FPMF), chemically precipitated manure fiber (CPMF), maize silage and grass silage respectively. Methane productivity based on mass (L/kg substrate) was significantly higher in FPMF (55 L/kg substrate), maize silage (68 L/kg substrate) and grass silage (45-124 L/kg substrate (depending on dry solids of feedstock)) as in comparison to raw pig slurry (10 L/kg substrate). The use of these materials as co-substrates with raw pig slurry will increase significantly the biomethane yield per unit feedstock in the biogas plant.

  5. Cryogenic homogenization and sampling of heterogeneous multi-phase feedstock

    Science.gov (United States)

    Doyle, Glenn Michael; Ideker, Virgene Linda; Siegwarth, James David

    2002-01-01

    An apparatus and process for producing a homogeneous analytical sample from a heterogenous feedstock by: providing the mixed feedstock, reducing the temperature of the feedstock to a temperature below a critical temperature, reducing the size of the feedstock components, blending the reduced size feedstock to form a homogeneous mixture; and obtaining a representative sample of the homogeneous mixture. The size reduction and blending steps are performed at temperatures below the critical temperature in order to retain organic compounds in the form of solvents, oils, or liquids that may be adsorbed onto or absorbed into the solid components of the mixture, while also improving the efficiency of the size reduction. Preferably, the critical temperature is less than 77 K (-196.degree. C.). Further, with the process of this invention the representative sample may be maintained below the critical temperature until being analyzed.

  6. Development of a lactic acid production process using lignocellulosic biomass as feedstock

    NARCIS (Netherlands)

    Pol, van der E.C.

    2016-01-01

    The availability of crude oil is finite. Therefore, an alternative feedstock has to be found for the production of fuels and plastics. Lignocellulose is such an alternative feedstock. It is present in large quantities in agricultural waste material such as sugarcane bagasse.

    In this PhD

  7. The Use of Demulsifiers for Separating Water from Anthracene Oil

    Directory of Open Access Journals (Sweden)

    Zečević, N.

    2008-03-01

    Full Text Available The main feedstocks for the production of oil-furnace carbon black are different kinds of liquid hydrocarbons. The quality and utilization of oil-furnace carbon black mainly depends on the type of liquid hydrocarbons contained in the oil feedstocks.In practice, both carbochemical and petrochemical oils are used as feedstock sources. Carbochemical oils are fractions obtained during coal tar distillation. Anthracene oil is one of these oils. Depending on the conditions of distillation, coal tars contain up to w = 18·10 –2 highly aromatic fractions, which can be used as carbon black feedstock. The sulphur fraction of these oils can vary between w = 0.5 and 0.7·10 –2, depending on the origin of the coal. The availability of carbochemical oils obtained from coal tar is largely dependent on the production of coke used in the manufacture of steel. The quantities available today are insufficient to satisfy the demand for carbon black feedstock. In addition, in highly industrialized countries, production of carbochemicaloils is declining.Although, carbochemical oils are preferred in terms of efficiency, petrochemical oils are more important in terms of quantities available, particularly in the production of furnace blacks. These are residual oils resulting either from catalytic cracking processes or from the production of olefins in steam crackers using naphtha or gas oil as raw material. Nevertheless, the choice of carbon black feedstock is not determined merely by price and efficiency, but also by specific quality criteria. However, due to their origin, the feedstocks are mixtures of a large number of individual substances and are, therefore, not easy to characterize. More than 200 different components have been recorded in the range detectable by gas chromatography.Some important components of carbon black feedstock are listed in table 1.1 An important parameter for the evaluation of carbon black feedstock is density, since it increases with

  8. Life cycle inventory analysis of hydrogen production by the steam-reforming process: comparison between vegetable oils and fossil fuels as feedstock

    International Nuclear Information System (INIS)

    Marquevich, M.; Sonnemann, G.W.; Castells, F.; Montane, D.

    2002-01-01

    A life cycle inventory analysis has been conducted to assess the environmental load, specifically CO 2 (fossil) emissions and global warming potential (GWP), associated to the production of hydrogen by the steam reforming of hydrocarbon feedstocks (methane and naphtha) and vegetable oils (rapeseed oil, soybean oil and palm oil). Results show that the GWPs associated with the production of hydrogen by steam reforming in a 100 years time frame are 9.71 and 9.46 kg CO 2 -equivalent/kg H 2 for natural gas and naphtha, respectively. For vegetable oils, the GWP decreases to 6.42 kg CO 2 -equivalent/kg H 2 for rapeseed oil, 4.32 for palm oil and 3.30 for soybean oil. A dominance analysis determined that the part of the process that has the largest effect on the GWP is the steam reforming reaction itself for the fossil fuel-based systems, which accounts for 56.7% and 74% of the total GWP for natural gas and naphtha, respectively. This contribution is zero for vegetable oil-based systems, for which harvesting and oil production are the main sources of CO 2 -eq emissions.(author)

  9. Environment assessment: allocation of petroleum feedstock, Algonquin SNG Inc. , Freetown SNG Plant, Bristol County, MA. [Effects of 100, 78, 49% allocations

    Energy Technology Data Exchange (ETDEWEB)

    1980-01-01

    The proposed administrative action to deny, grant or modify the Algonquin SNG, Inc. (Algonquin) petition for an adjusted allocation of naphtha feedstock may significantly affect the ehuman environment. The volume of feedstock requested is 4,425,571 barrels per year of naphtha to be used in Algonquin's Freetown, MA synthetic natural gas (SNG) plant. Environmental impacts of 100, 78, and 49% allocations were evaluated.

  10. Efficacy of fatty acid profile as a tool for screening feedstocks for biodiesel production

    International Nuclear Information System (INIS)

    Moser, Bryan R.; Vaughn, Steven F.

    2012-01-01

    Fuel properties are largely dependent on the fatty acid (FA) composition of the feedstock from which biodiesel is prepared. Consequently, FA profile was employed as a screening tool for selection of feedstocks high in monounsaturated FAs for further evaluation as biodiesel. Those feedstocks included ailanthus (Ailanthus altissima L.), anise (Pimpinella anisum L.), arugula (Eruca vesicaria L.), cress (Lepidium sativum L.), cumin (Cuminum cyminum L.), Indian cress (Tropaeolum majus L.), shepherd’s purse (Capsella bursa-pastoris L.) and upland cress (Barbarea verna (Mill.) Asch.). Other selection criteria included saturated FA content, iodine value (IV), content of FAs containing twenty or more carbons and content of trienoic FAs. Anise oil satisfied all selection criteria and was therefore selected for further investigation. Arugula, cumin and upland cress oils were selected as antagonists to the selection criteria. Preparation of FA methyl esters (FAMEs, ≥ 92 wt % yield) following conventional alkaline-catalyzed methanolysis preceded fuel property determination. Of particular interest were oxidative stability and cold flow properties. Also measured were kinematic viscosity (40 °C), IV, acid value, free and total glycerol content, sulfur and phosphorous content, cetane number, energy content and lubricity. FAMEs prepared from anise oil yielded properties compliant with biodiesel standards ASTM D6751 and EN 14214 whereas the antagonists failed at least one specification contained within the standards. As a result, FA profile was an efficient predictor of compliance with biodiesel standards and is therefore recommended as a screening tool for investigation of alternative feedstocks. -- Highlights: ► Fatty acid methyl esters were prepared from several alternative feedstocks. ► Fatty acid composition was a principal factor influencing fuel properties. ► Oxidative stability and cold flow properties of biodiesel were examined in detail. ► Limits were developed

  11. Next Generation Protein Interactomes for Plant Systems Biology and Biomass Feedstock Research

    Energy Technology Data Exchange (ETDEWEB)

    Ecker, Joseph Robert [The Salk Inst. for Biological Studies, La Jolla, CA (United States). Genome Analysis and Plant Biology Lab.; Trigg, Shelly [The Salk Inst. for Biological Studies, La Jolla, CA (United States). Genome Analysis and Plant Biology Lab.; Univ. of California, San Diego, CA (United States). Biological Sciences Dept.; Garza, Renee [The Salk Inst. for Biological Studies, La Jolla, CA (United States). Genome Analysis and Plant Biology Lab.; Song, Haili [The Salk Inst. for Biological Studies, La Jolla, CA (United States). Genome Analysis and Plant Biology Lab.; MacWilliams, Andrew [The Salk Inst. for Biological Studies, La Jolla, CA (United States). Genome Analysis and Plant Biology Lab.; Nery, Joseph [The Salk Inst. for Biological Studies, La Jolla, CA (United States). Genome Analysis and Plant Biology Lab.; Reina, Joaquin [The Salk Inst. for Biological Studies, La Jolla, CA (United States). Genome Analysis and Plant Biology Lab.; Bartlett, Anna [The Salk Inst. for Biological Studies, La Jolla, CA (United States). Genome Analysis and Plant Biology Lab.; Castanon, Rosa [The Salk Inst. for Biological Studies, La Jolla, CA (United States). Genome Analysis and Plant Biology Lab.; Goubil, Adeline [The Salk Inst. for Biological Studies, La Jolla, CA (United States). Genome Analysis and Plant Biology Lab.; Feeney, Joseph [The Salk Inst. for Biological Studies, La Jolla, CA (United States). Genome Analysis and Plant Biology Lab.; O' Malley, Ronan [The Salk Inst. for Biological Studies, La Jolla, CA (United States). Genome Analysis and Plant Biology Lab.; Huang, Shao-shan Carol [The Salk Inst. for Biological Studies, La Jolla, CA (United States). Genome Analysis and Plant Biology Lab.; Zhang, Zhuzhu [The Salk Inst. for Biological Studies, La Jolla, CA (United States). Genome Analysis and Plant Biology Lab.; Galli, Mary [The Salk Inst. for Biological Studies, La Jolla, CA (United States). Genome Analysis and Plant Biology Lab.

    2016-11-30

    Biofuel crop cultivation is a necessary step in heading towards a sustainable future, making their genomic studies a priority. While technology platforms that currently exist for studying non-model crop species, like switch-grass or sorghum, have yielded large quantities of genomic and expression data, still a large gap exists between molecular mechanism and phenotype. The aspect of molecular activity at the level of protein-protein interactions has recently begun to bridge this gap, providing a more global perspective. Interactome analysis has defined more specific functional roles of proteins based on their interaction partners, neighborhoods, and other network features, making it possible to distinguish unique modules of immune response to different plant pathogens(Jiang, Dong, and Zhang 2016). As we work towards cultivating heartier biofuel crops, interactome data will lead to uncovering crop-specific defense and development networks. However, the collection of protein interaction data has been limited to expensive, time-consuming, hard-to-scale assays that mostly require cloned ORF collections. For these reasons, we have successfully developed a highly scalable, economical, and sensitive yeast two-hybrid assay, ProCREate, that can be universally applied to generate proteome-wide primary interactome data. ProCREate enables en masse pooling and massively paralleled sequencing for the identification of interacting proteins by exploiting Cre-lox recombination. ProCREate can be used to screen ORF/cDNA libraries from feedstock plant tissues. The interactome data generated will yield deeper insight into many molecular processes and pathways that can be used to guide improvement of feedstock productivity and sustainability.

  12. Processing Cost Analysis for Biomass Feedstocks

    Energy Technology Data Exchange (ETDEWEB)

    Badger, P.C.

    2002-11-20

    The receiving, handling, storing, and processing of woody biomass feedstocks is an overlooked component of biopower systems. The purpose of this study was twofold: (1) to identify and characterize all the receiving, handling, storing, and processing steps required to make woody biomass feedstocks suitable for use in direct combustion and gasification applications, including small modular biopower (SMB) systems, and (2) to estimate the capital and operating costs at each step. Since biopower applications can be varied, a number of conversion systems and feedstocks required evaluation. In addition to limiting this study to woody biomass feedstocks, the boundaries of this study were from the power plant gate to the feedstock entry point into the conversion device. Although some power plants are sited at a source of wood waste fuel, it was assumed for this study that all wood waste would be brought to the power plant site. This study was also confined to the following three feedstocks (1) forest residues, (2) industrial mill residues, and (3) urban wood residues. Additionally, the study was confined to grate, suspension, and fluidized bed direct combustion systems; gasification systems; and SMB conversion systems. Since scale can play an important role in types of equipment, operational requirements, and capital and operational costs, this study examined these factors for the following direct combustion and gasification system size ranges: 50, 20, 5, and 1 MWe. The scope of the study also included: Specific operational issues associated with specific feedstocks (e.g., bark and problems with bridging); Opportunities for reducing handling, storage, and processing costs; How environmental restrictions can affect handling and processing costs (e.g., noise, commingling of treated wood or non-wood materials, emissions, and runoff); and Feedstock quality issues and/or requirements (e.g., moisture, particle size, presence of non-wood materials). The study found that over the

  13. Biofuel potential production from the Orbetello lagoon macroalgae: A comparison with sunflower feedstock

    Energy Technology Data Exchange (ETDEWEB)

    Bastianoni, Simone; Coppola, Fazio; Tiezzi, Enzo [Department of Chemical and Biosystems Sciences, Siena University, via della Diana, 2A, 53100 Siena (Italy); Colacevich, Andrea; Borghini, Francesca; Focardi, Silvano [Department of Environmental Sciences, Siena University, via Mattioli 4, 53100 Siena (Italy)

    2008-07-15

    The diversification of different types and sources of biofuels has become an important energy issue in recent times. The aim of this work is to evaluate the use of two kinds of renewable feedstocks in order to produce biodiesel. We have analyzed the potential production of oil from two species of macroalgae considered as waste coming out from a lagoon system involved in eutrophication and from sunflower seeds. We have tested oil extraction yields of both feedstock. Furthermore, a comparison has been carried out based on the emergy approach, in order to evaluate the sustainability and environmental performance of both processes. The results show that, under present conditions, considering oil extraction yields, the production of oil from sunflower seeds is feasible, because of the lower value of transformity of the final product with respect to macroalgae. On the other hand, the results demonstrate that with improvements of oil extraction methodology, macroalgae could be considered a good residual biomass usable for biofuel production. (author)

  14. Effects of oils on plants

    Energy Technology Data Exchange (ETDEWEB)

    Baker, J M

    1970-01-01

    Oils vary in their toxicity according to the content of low-boiling compounds, unsaturated compounds, aromatics, and acids. The higher the concentration of these constituents, the more toxic the oil. After penetrating into a plant, the oil may travel in the intercellular spaces and possibly also in the vascular system. Cell membranes are damaged by penetration of hydrocarbon molecules, leading to leakage of cell contents, and oil may enter the cells. Oils reduce the transpiration rate, probably by blocking the stomata and intercellular spaces. This may also be the reason for the reduction of the photosynthesis which occurs, though there are other possible explanations of this - such as disruption of chloroplast membranes and inhibition caused by accumulation of end-products. The effects of oils on respiration are variable, but an increase of respiration rate often occurs, possibly due to mitochondrial damage resulting in an uncoupling effect. Oils inhibit translocation probably by physical interference. The severity of the above effects depends on the constituents and amount of the oil, on the environmental conditions, and on the species of plant involved. 88 references, 3 tables.

  15. Yeast: A new oil producer?

    Directory of Open Access Journals (Sweden)

    Beopoulos Athanasios

    2012-01-01

    Full Text Available The increasing demand of plant oils or animal fat for biodiesel and specific lipid derivatives for the oleochemical field (such as lubricants, adhesives or plastics have created price imbalance in both the alimentary and energy field. Moreover, the lack of non-edible oil feedstock has given rise to concerns on land-use practices and on oil production strategies. Recently, much attention has been paid to the exploitation of microbial oils. Most of them present lipid profiles similar in type and composition to plants and could therefore have many advantages as are no competitive with food, have short process cycles and their cultivation is independent of climate factors. Among microorganisms, yeasts seem to be very promising as they can be easily genetically enhanced, are suitable for large-scale fermentation and are devoid of endotoxins. This review will focus on the recent understanding of yeasts lipid metabolism, the succeeding genetic engineering of the lipid pathways and the recent developments on fermentation techniques that pointed out yeasts as promising alternative producers for oil or plastic.

  16. Renewable Enhanced Feedstocks for Advanced Biofuels and Bioproducts (REFABB)

    Energy Technology Data Exchange (ETDEWEB)

    Peoples, Oliver [Metabolix Inc., Cambridge, MA (United States); Snell, Kristi [Metabolix Inc., Cambridge, MA (United States)

    2016-06-09

    The basic concept of the REFABB project was that by genetically engineering the biomass crop switchgrass to produce a natural polymer PHB, which is readily broken down by heating (thermolysis) into the chemical building block crotonic acid, sufficient additional economic value would be added for the grower and processor to make it an attractive business at small scale. Processes for using thermolysis to upgrade biomass to densified pellets (char) or bio-oil are well known and require low capital investment similar to a corn ethanol facility. Several smaller thermolysis plants would then supply the densified biomass, which is easier to handle and transport to a centralized biorefinery where it would be used as the feedstock. Crotonic acid is not by itself a large volume commodity chemical, however, the project demonstrated that it can be used as a feedstock to produce a number of large volume chemicals including butanol which itself is a biofuel target. In effect the project would try to address three key technology barriers, feedstock logistics, feedstock supply and cost effective biomass conversion. This project adds to our understanding of the potential for future biomass biorefineries in two main areas. The first addressed in Task A was the importance and potential of developing an advanced value added biomass feedstock crop. In this Task several novel genetic engineering technologies were demonstrated for the first time. One important outcome was the identification of three novel genes which when re-introduced into the switchgrass plants had a remarkable impact on increasing the biomass yield based on dramatically increasing photosynthesis. These genes also turned out to be critical to increasing the levels of PHB in switchgrass by enabling the plants to fix carbon fast enough to support both plant growth and higher levels of the polymer. Challenges in the critical objective of Task B, demonstrating conversion of the PHB in biomass to crotonic acid at over 90

  17. Torrefaction reduction of coke formation on catalysts used in esterification and cracking of biofuels from pyrolysed lignocellulosic feedstocks

    Science.gov (United States)

    Kastner, James R; Mani, Sudhagar; Hilten, Roger; Das, Keshav C

    2015-11-04

    A bio-oil production process involving torrefaction pretreatment, catalytic esterification, pyrolysis, and secondary catalytic processing significantly reduces yields of reactor char, catalyst coke, and catalyst tar relative to the best-case conditions using non-torrefied feedstock. The reduction in coke as a result of torrefaction was 28.5% relative to the respective control for slow pyrolysis bio-oil upgrading. In fast pyrolysis bio-oil processing, the greatest reduction in coke was 34.9%. Torrefaction at 275.degree. C. reduced levels of acid products including acetic acid and formic acid in the bio-oil, which reduced catalyst coking and increased catalyst effectiveness and aromatic hydrocarbon yields in the upgraded oils. The process of bio-oil generation further comprises a catalytic esterification of acids and aldehydes to generate such as ethyl levulinate from lignified biomass feedstock.

  18. Transgenic perennial biofuel feedstocks and strategies for bioconfinement

    Science.gov (United States)

    The use of transgenic tools for the improvement of plant feedstocks will be required to realize the full economic and environmental benefits of cellulosic and other biofuels, particularly from perennial plants. Traits that are targets for improvement of biofuels crops include he...

  19. Optimization of Jatropha curcas pure plant oil production

    NARCIS (Netherlands)

    Subroto, Erna

    2015-01-01

    The use of pure plant oils as fuel, either directly or after conversion of the oil to bio-diesel, is considered to be one of the potential contributions to the transformation of the current fossil oil based economy to a sustainable bio-based one. The production of oil producing seeds using plants

  20. Pyrolysis as a way to close a CFRC life cycle: Carbon fibers recovery and their use as feedstock for a new composite production

    Science.gov (United States)

    Giorgini, Loris; Benelli, Tiziana; Mazzocchetti, Laura; Leonardi, Chiara; Zattini, Giorgio; Minak, Giangiacomo; Dolcini, Enrico; Tosi, Cristian; Montanari, Ivan

    2014-05-01

    Pyrolysis is shown to be an efficient method for recycling carbon fiber composites in the form of both uncured prepregs scraps or as cured end-of-life objects. The pyrolytic process leads to different products in three physical states of matter. The gaseous fraction, called syngas, can be used as energy feedstock in the process itself. The oil fraction can be used as fuel or chemical feedstock. The solid residue contains substantially unharmed carbon fibers that can be isolated and recovered for the production of new composite materials, thus closing the life cycle of the composite in a "cradle to cradle" approach. All the pyrolysis outputs were thoroughly analyzed and characterized in terms of composition for oil and gas fraction and surface characteristics of the fibers. In particular, it is of paramount importance to correlate the aspect and properties of the fibers obtained with different composite feedstock and operational conditions, that can be significantly different, with the reinforcing performance in the newly produced Recycled Carbon Fibers Reinforced Polymers. Present results have been obtained on a pyrolysis pilot plant that offers the possibility of treating up to 70kg of materials, thus leading to a significant amount of products to be tested in the further composites production, focused mainly on chopped carbon fiber reinforcement.

  1. Morphology and topography study of graphene synthesized from plant oil

    Science.gov (United States)

    Robaiah, M.; Rusop, M.; Abdullah, S.; Khusaimi, Z.; Azhan, H.; Laila, M. O.; Salifairus, M. J.; Asli, N. A.

    2018-05-01

    The graphene is material consists of bonded atom carbon atoms in sheet form one atom thick. The different types of carbon sources which are refined corn oil, palm oil and waste cooking palm oil were used as carbon feedstock to supply carbon atom for synthesizing graphene on the nickel substrate by thermal chemical vapour deposition. The substrate and carbon sources were placed in double zone furnaces. The carbon sources and the substrate were heated at 300 °C and 900 °C respectively. The both furnaces were switched off after synthesis time for cooling process finish. The formation of the graphene on the Ni surface appears due to segregation and precipitation of a high amount of carbon from the source material during the cooling process. FESEM, AFM, UV-VIS Spectroscopy and Raman Spectroscopy were used to characterize and synthesized graphene.

  2. Prospects for using multi-walled carbon nanotubes formed from renewable feedstock in hydrogen energy

    International Nuclear Information System (INIS)

    Onishchenko, D. V.

    2013-01-01

    Mechanoactivation of amorphous carbon synthesized from renewable feedstock promotes formation of multi-walled carbon nanotubes, and the best results were obtained using the feedstock of sphagnum moss. It is shown that the carbon nanotubes formed from different plant feedstock have a high sorption capacity with respect to hydrogen. (author)

  3. The characteristics of palm oil plantation solid biomass wastes as raw material for bio oil

    Science.gov (United States)

    Yanti, RN; Hambali, E.; Pari, G.; Suryani, A.

    2018-03-01

    Indonesia is the largest palm oil plantations estate in the world. It reached 11,30 million hectares in 2015 and increased up to 11,67 million hectares in 2016. The advancement of technology recent, the solid waste of palm oil plantation can be re-produced become bio oil through pyrolysis hydrothermal process and utilized for biofuel. The purpose of this research was to analyze the characteristics of feedstock of bio oil of solid waste of palm oil plantations estate. The feedstock used was derived from solid waste of palm oil plantations in Riau Province. Characteristic analysis of waste oil included chemical compound content (cellulose, hemicellulose, lignin), ultimate analysis (C, H, N, O, S) to know height heating value (HHV). The result of analysis of chemical content showed that solid waste of palm cellulose 31,33 – 66,36 %, hemicellulose 7,54 – 17,94 %, lignin 21,43 - 43,1. The HHV of hydrothermal pyrolysis feedstock was 15,18 kJ/gram - 19,57 kJ/gram. Generally, the solid waste of palm oil plantations estate containing lignocellulose can be utilized as bio oil through hydrothermal pyrolysis. The CG-MS analysis of bio oil indicated hydrocarbon contents such as pentadecane, octadecane, hexadecane and benzene.

  4. Effect of multiple-feedstock strategy on the economic and environmental performance of thermochemical ethanol production under extreme weather conditions

    International Nuclear Information System (INIS)

    Kou, Nannan; Zhao, Fu

    2011-01-01

    Current US transportation sector mainly relies on liquid hydrocarbons derived from petroleum and about 60% of the petroleum consumed is from areas where supply may be disturbed by regional instability. This has led to serious concerns on energy security and global warming. To address these issues, numerous alternative energy carriers have been proposed. Among them, second generation biofuel is one of the most promising technologies. Gasification-based thermochemical conversion will bring flexibility to both feedstock and production sides of a plant, thus presents an attractive technical route to address both the energy security and global warming concerns. In this paper, thermochemical ethanol production using multiple-feedstock (corn stover, municipal solid waste, and wood chips) is simulated using Aspen Plus and compared with the single-feedstock scenario, in terms of economic performances, life cycle greenhouse gas (GHG) emissions and survivability under extreme weather conditions. For a hypothetical facility in southwest Indiana it is found that multiple-feedstock strategy improves the net present value by 18% compared to single-feedstock strategy. This margin is increased to 57% when effects of extreme weather conditions on feedstock supply are considered. Moreover, multiple-feedstock fuel plant has no potential risk of bankruptcy during the payback period, while single-feedstock fuel plant has a 75% chance of bankruptcy. Although the multiple-feedstock strategy has 26% more GHG emission per liter of ethanol produced than the single-feedstock strategy, the trend is reversed if feedstock supply disruption is taken into account. Thus the idea of multiple-feedstock strategy is proposed to the future thermo chemical biofuel plants.

  5. Engineering cyanobacteria as photosynthetic feedstock factories.

    Science.gov (United States)

    Hays, Stephanie G; Ducat, Daniel C

    2015-03-01

    Carbohydrate feedstocks are at the root of bioindustrial production and are needed in greater quantities than ever due to increased prioritization of renewable fuels with reduced carbon footprints. Cyanobacteria possess a number of features that make them well suited as an alternative feedstock crop in comparison to traditional terrestrial plant species. Recent advances in genetic engineering, as well as promising preliminary investigations of cyanobacteria in a number of distinct production regimes have illustrated the potential of these aquatic phototrophs as biosynthetic chassis. Further improvements in strain productivities and design, along with enhanced understanding of photosynthetic metabolism in cyanobacteria may pave the way to translate cyanobacterial theoretical potential into realized application.

  6. Bio-oil fueled diesel power plant; Biooeljyllae toimiva dieselvoimala

    Energy Technology Data Exchange (ETDEWEB)

    Vuorinen, A. [Modigen Oy, Helsinki (Finland)

    1995-12-31

    The project mission is to develop a diesel power plant which is capable of using liquid bio-oils as the main fuel of the power plant. The applicable bio-oils are rape seed oils and pyrolysis oils. The project was started in 1994 by installing a 1.5 MW Vasa 4L32 engine in VTT Energy laboratory in Otaniemi. During 1995 the first tests with the rape seed oils were made. The tests show that the rape seed oil can be used in Vasa 32 engines without difficulties. In the second phase of the project during 1996 and 1997 pyrolysis oil made of wood will be tested. Finally a diesel power plant concept with integrated pyrolysis oil, electricity and heat production will be developed

  7. Bio-oil fueled diesel power plant; Biooeljyllae toimiva dieselvoimala

    Energy Technology Data Exchange (ETDEWEB)

    Vuorinen, A [Modigen Oy, Helsinki (Finland)

    1996-12-31

    The project mission is to develop a diesel power plant which is capable of using liquid bio-oils as the main fuel of the power plant. The applicable bio-oils are rape seed oils and pyrolysis oils. The project was started in 1994 by installing a 1.5 MW Vasa 4L32 engine in VTT Energy laboratory in Otaniemi. During 1995 the first tests with the rape seed oils were made. The tests show that the rape seed oil can be used in Vasa 32 engines without difficulties. In the second phase of the project during 1996 and 1997 pyrolysis oil made of wood will be tested. Finally a diesel power plant concept with integrated pyrolysis oil, electricity and heat production will be developed

  8. Bio-oil fuelled diesel power plant; Biooeljyllae toimiva dieselvoimala

    Energy Technology Data Exchange (ETDEWEB)

    Vuorinen, A [Modigen Oy, Helsinki (Finland)

    1997-12-01

    The project mission is to develop a diesel power plant which is capable of using liquid bio-oils as the main fuel of the power plant. The applicable bio-oils are rape seed oils and pyrolysis oils. The project was started in 1994 by installing a 1.5 MW Vasa 4L32 engine in VTT Energy laboratory in Otaniemi. During 1995 the first tests with the rape seed oils were made. The tests show that the rape seed oil can be used in Vasa 32 engines without difficulties. In the second phase of the project during 1996 pyrolysis oil made of wood was tested. Finally a diesel power plant concept with integrated pyrolysis oil, electricity and heat production will be developed

  9. Engineering of plants with improved properties as biofuels feedstocks by vessel-specific complementation of xylan biosynthesis mutants

    DEFF Research Database (Denmark)

    Petersen, Pia; Lau, Jane; Ebert, Berit

    2012-01-01

    Background: Cost-efficient generation of second-generation biofuels requires plant biomass that can easily be degraded into sugars and further fermented into fuels. However, lignocellulosic biomass is inherently recalcitrant toward deconstruction technologies due to the abundant lignin and cross......-linked hemicelluloses. Furthermore, lignocellulosic biomass has a high content of pentoses, which are more difficult to ferment into fuels than hexoses. Engineered plants with decreased amounts of xylan in their secondary walls have the potential to render plant biomass a more desirable feedstock for biofuel production...... in the xylem vessels is sufficient to complement the irx phenotype of xylan deficient mutants, while maintaining low overall amounts of xylan and lignin in the cell wall. This engineering approach has the potential to yield bioenergy crop plants that are more easily deconstructed and fermented into biofuels....

  10. Plant Oils as Potential Sources of Vitamin D

    Directory of Open Access Journals (Sweden)

    Gabriele I Stangl

    2016-08-01

    Full Text Available To combat vitamin D insufficiency in a population, reliable diet sources of vitamin D are required. The recommendations to consume more oily fish and the use of UVB treated yeast are already applied strategies to address vitamin D insufficiency. This study aimed to elucidate the suitability of plant oils as an alternative vitamin D source. Therefore, plant oils that are commonly used in human nutrition were firstly analyzed for their content of vitamin D precursors and metabolites. Secondly, selected oils were exposed to a short-term UVB irradiation to stimulate the synthesis of vitamin D. Finally, to elucidate the efficacy of plant-derived vitamin D to improve the vitamin D status, we fed UVB-exposed wheat germ oil for 4 weeks to mice and compared them with mice that received non-exposed or vitamin D3 supplemented wheat germ oil. Sterol analysis revealed that the selected plant oils contained high amounts of ergosterol, but also 7-dehydrocholesterol (7-DHC, with the highest concentrations found in wheat germ oil. Exposure to UVB irradiation resulted in a partial conversion of ergosterol and 7-DHC to vitamin D2 and D3 in these oils. Mice fed the UVB-exposed wheat germ oil were able to improve their vitamin D status as shown by the rise in the plasma concentration of 25 hydroxyvitamin D (25(OHD and the liver content of vitamin D compared to mice fed the non-exposed oil. However, the plasma concentration of 25(OHD of mice fed the UVB-treated oil did not reach the values observed in the group fed the D3 supplemented oil. It was striking that the intake of the UVB-exposed oil resulted in distinct accumulation of vitamin D2 in the livers of these mice. In conclusion, plant oils, in particular wheat germ oil, contain considerable amounts of vitamin D precursors which can be converted to vitamin D via UVB exposure. However, the UVB-exposed wheat germ oil was less effective to improve the 25(OHD plasma concentration than a supplementation with vitamin D

  11. Rapeseed oil, olive oil, plant sterols, and cholesterol metabolism: an ileostomy study.

    Science.gov (United States)

    Ellegård, L; Andersson, H; Bosaeus, I

    2005-12-01

    To study whether olive oil and rapeseed oil have different effects on cholesterol metabolism. Short-term experimental study, with controlled diets. Outpatients at a metabolic-ward kitchen. A total of nine volunteers with conventional ileostomies. Two 3-day diet periods; controlled diet including 75 g of rapeseed oil or olive oil. Cholesterol absorption, ileal excretion of cholesterol, and bile acids. Serum levels of cholesterol and bile acid metabolites. Differences between diets evaluated with Wilcoxon's signed rank sum test. Rapeseed oil diet contained 326 mg more plant sterols than the olive oil diet. Rapeseed oil tended to decrease cholesterol absorption by 11% (P = 0.050), and increased excretion of cholesterol, bile acids, and their sum as sterols by 9% (P = 0.021), 32% (P = 0.038), and 51% (P = 0.011) compared to olive oil. A serum marker for bile acid synthesis (7alpha-hydroxy-4-cholesten-3-one) increased by 28% (P = 0.038) within 10 h of consumption, and serum cholesterol levels decreased by 7% (P = 0.024), whereas a serum marker for cholesterol synthesis (lathosterol) as well as serum levels of plant sterols remained unchanged. Rapeseed oil and olive oil have different effects on cholesterol metabolism. Rapeseed oil, tends to decrease cholesterol absorption, increases excretion of cholesterol and bile acids, increases serum marker of bile acid synthesis, and decreases serum levels of cholesterol compared to olive oil. This could in part be explained by different concentrations of natural plant sterols. Supported by the Göteborg Medical Society, the Swedish Medical Society, the Swedish Board for Agricultural Research (SJFR) grant 50.0444/98 and by University of Göteborg.

  12. Shale oil specialty markets: Screening survey for United States applications

    Energy Technology Data Exchange (ETDEWEB)

    1987-12-01

    EG and G requested J. E. Sinor Consultants Inc. to carry out an initial screening study on the possibilities for producing specialty chemicals from oil shale. Raw shale oil is not an acceptable feedstock to refineries and there are not enough user of heavy fuel oil in the western oil shale region to provide a dependable market. The only alternatives are to hydrotreat the oil, or else ship it long distances to a larger market area. Either of these alternatives results in a cost penalty of several dollars per barrel. Instead of attempting to enter the large-volume petroleum products market, it was hypothesized that a small shale oil facility might be able to produce specialty chemicals with a high enough average value to absorb the high costs of shipping small quantities to distant markets and still provide a higher netback to the plant site than sales to the conventional petroleum products market. This approach, rather than attempting to refine shale oil or to modify its characteristics to satisfy the specifications for petroleum feedstocks or products, focuses instead on those particular characteristics which distinguish shale oil from petroleum, and attempts to identify applications which would justify a premium value for those distinctive characteristics. Because byproducts or specialty chemicals production has been a prominent feature of oil shale industries which have flourished for periods of time in various countries, a brief review of those industries provides a starting point for this study. 9 figs., 32 tabs.

  13. Impact of Mixed Feedstocks and Feedstock Densification on Ionic Liquid Pretreatment Efficiency

    Energy Technology Data Exchange (ETDEWEB)

    Jian Shi; Vicki S. Thompson; Neal A. Yancey; Vitalie Stavila; Blake A. Simmons; Seema Singh

    2013-01-01

    Background: Lignocellulosic biorefineries must be able to efficiently process the regional feedstocks that are available at cost-competitive prices year round. These feedstocks typically have low energy densities and vary significantly in composition. One potential solution to these issues is blending and/or densifying the feedstocks in order to create a uniform feedstock. Results/discussion: We have mixed four feedstocks - switchgrass, lodgepole pine, corn stover, and eucalyptus - in flour and pellet form and processed them using the ionic liquid 1-ethyl-3-methylimidazolium acetate. Sugar yields from both the mixed flour and pelletized feedstocks reach 90% within 24 hours of saccharification. Conclusions: Mixed feedstocks, in either flour or pellet form, are efficiently processed using this pretreatment process, and demonstrate that this approach has significant potential.

  14. Techno-economic analysis of the coal-to-olefins process in comparison with the oil-to-olefins process

    International Nuclear Information System (INIS)

    Xiang, Dong; Qian, Yu; Man, Yi; Yang, Siyu

    2014-01-01

    Highlights: • Present the opportunities and challenges of coal-to-olefins (CTO) development. • Conduct a techno-economic analysis on CTO compared with oil-to-olefins (OTO). • Suggest approaches for improving energy efficiency and economic performance of CTO. • Analyze effects of plant scale, feedstock price, CO 2 tax on CTO and OTO. - Abstract: Olefins are one of the most important oil derivatives widely used in industry. To reduce the dependence of olefins industry on oil, China is increasing the production of olefins from alternative energy resources, especially from coal. This study is concerned with the opportunities and obstacles of coal-to-olefins development, and focuses on making an overall techno-economic analysis of a coal-to-olefins plant with the capacity of 0.7 Mt/a olefins. Comparison is made with a 1.5 Mt/a oil-to-olefins plant based on three criteria including energy efficiency, capital investment, and product cost. It was found that the coal-based olefins process show prominent advantage in product cost because of the low price of its feedstock. However, it suffers from the limitations of higher capital investment, lower energy efficiency, and higher emissions. The effects of production scale, raw material price, and carbon tax were varied for the two production routes, and thus the operational regions were found for the coal-to-olefins process to be competitive

  15. Taxonomic perspective of plant species yielding vegetable oils used ...

    African Journals Online (AJOL)

    A search conducted to determine the plants yielding vegetable oils resulted in 78 plant species with potential use in cosmetics and skin care products. The taxonomic position of these plant species is described with a description of vegetable oils from these plants and their use in cosmetic and skin care products.

  16. Transgenic oil palm: production and projection.

    Science.gov (United States)

    Parveez, G K; Masri, M M; Zainal, A; Majid, N A; Yunus, A M; Fadilah, H H; Rasid, O; Cheah, S C

    2000-12-01

    Oil palm is an important economic crop for Malaysia. Genetic engineering could be applied to produce transgenic oil palms with high value-added fatty acids and novel products to ensure the sustainability of the palm oil industry. Establishment of a reliable transformation and regeneration system is essential for genetic engineering. Biolistic was initially chosen as the method for oil palm transformation as it has been the most successful method for monocotyledons to date. Optimization of physical and biological parameters, including testing of promoters and selective agents, was carried out as a prerequisite for stable transformation. This has resulted in the successful transfer of reporter genes into oil palm and the regeneration of transgenic oil palm, thus making it possible to improve the oil palm through genetic engineering. Besides application of the Biolistics method, studies on transformation mediated by Agrobacterium and utilization of the green fluorescent protein gene as a selectable marker gene have been initiated. Upon the development of a reliable transformation system, a number of useful targets are being projected for oil palm improvement. Among these targets are high-oleate and high-stearate oils, and the production of industrial feedstock such as biodegradable plastics. The efforts in oil palm genetic engineering are thus not targeted as commodity palm oil. Due to the long life cycle of the palm and the time taken to regenerate plants in tissue culture, it is envisaged that commercial planting of transgenic palms will not occur any earlier than the year 2020.

  17. Thermodynamic evaluation of distillation columns using exergy loss profiles: a case study on the crude oil atmospheric distillation column

    Energy Technology Data Exchange (ETDEWEB)

    Tarighaleslami, Amir Hossein [Mahshahr Branch, Islamic Azad University, Chemical Engineering Faculty, Mahshar, Khouzestan (Iran, Islamic Republic of); Omidkhah, Mohammad Reza [Tarbiat Modares University, Chemical Engineering Department, Faculty of Engineering, Tehran (Iran, Islamic Republic of); Ghannadzadeh, Ali [University of Toulouse, Department of Process and System Engineering, Chemical Engineering Laboratory, Toulouse (France); Hoseinzadeh Hesas, Roozbeh [University of Malaya, Chemical Engineering Department, Faculty of Engineering, Kuala Lumpur (Malaysia)

    2012-06-15

    This paper presents a case study on the crude oil atmospheric distillation column of Tabriz refinery plant to show the applicability of exergy loss profiles in thermodynamic examination of the different retrofit options. The atmospheric distillation column of Tabriz refinery has been revamped as a consequence of increase of the plant capacity to 100,000 bpd. To cover the deficit of feedstock of the revamped unit, a blend of the existing feedstock with imported crude oil is used as a feedstock. However, to investigate how the blend of these two different types of crudes as a feedstock has an influence on the operating conditions, the examination of the column is needed. Exergy as a comprehensive thermodynamic property which translates the temperature, pressure and composition change into a common unit has been chosen to evaluate the distillation column thermodynamically. Furthermore, the exergy loss profile of the base case serves as a scoping tool to pinpoint the source of inefficiencies. Then, the exergy loss profile as a screening tool has found the retrofit options which are likely to yield greatest energy saving from a list of retrofit options proposed by the industrial partner. In the presented case study, the exergy loss profile identifies the best retrofit option with 17.16% reduction in exergy losses, which finally lead to 3.6% reduction of primary fuel demand. (orig.)

  18. Two novel approaches used to produce biodiesel from low-cost feedstocks

    Energy Technology Data Exchange (ETDEWEB)

    Fan, X.; Chen, F. [Clemson Univ., SC (United States). Dept. of Food Science and Human Nutrition; Wang, X. [Clemson Univ., SC (United States). Dept. of Genetics and Biochemistry

    2010-07-01

    The cost of feedstock has a significant effect of the economic viability of biodiesel production. The paper discussed a preliminary study looking at 2 approaches used to economically produce biodiesel, one from waste cooking oil (WCO) and the other from flaked cottonseed. Ultrasound-assisted synthesis was used to produce biodiesel from WCO, and in situ transesterification was used to produce biodiesel from the flaked cottonseed. The use of WCO solves the problem of waste disposal and also generates an environmentally benign fuel while at the same time lowering the costs involved in producing biodiesel. Ultrasonification has proven to be an efficient, low-cost, energy saving means of producing biodiesel. In situ transesterification makes solvent extraction and oil cleanup prior to biodiesel synthesis unnecessary, thereby simplifying the reaction steps. Based on the results of gas chromatography and high-performance liquid chromatography tests, both approaches are feasible for the production of biodiesel from low-cost feedstock. 15 refs., 4 figs.

  19. Calophyllum inophyllum L. as a future feedstock for bio-diesel production

    Energy Technology Data Exchange (ETDEWEB)

    Atabania, A.E. [Department of Mechanical Engineering, University of Khartoum (Sudan)], email: a_atabani2@msn.com, email: ardinsu@yahoo.co.id; Silitonga, A.S.; Mahlia, T.M.I.; Masjukia, H.H.; Badruddin, I.A. [University of Malaya (Malaysia)

    2011-07-01

    Due to the energy crisis and the concerns about climate change, the possibility of using biodiesel as an alternative energy resource has been examined. It has been found that biodiesel could be a solution for the future but the first generation of biodiesel, prepared from edible vegetable oils, has raised important concerns about food and environmental problems. The aim of this study is to assess if Calophyllum inophyllum, a non-edible oil, could be used for biodiesel production. Density, kinematic viscosity, cetane number, flashpoint and iodine value were determined on Calophyllum inophyllum trees from Cilacap, Indonesia and compared in light of ASTM D6751 biodiesel standards. It was found that Calophyllum inophyllum would be a satisfactory feedstock to produce biodiesel in the future. This study demonstrated that Calophyllum inophyllum has the potential to be a biodiesel feedstock and further research should be carried out on engine performance, combustion and emission performance of biodiesel produced from Calophyllum inophyllum.

  20. Algae as a Feedstock for Biofuels: An Assessment of the State of Technology and Opportunities. Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Sikes, K.; McGill, R. [Sentech, Inc. (United States); Van Walwijk, M. [Independent Consultant (France)

    2011-05-15

    The pursuit of a stable, economically-sound, and environmentally-friendly source of transportation fuel has led to extensive research and development (R&D) efforts focused on the conversion of various feedstocks into biofuels. Some feedstocks, such as sugar cane, corn and woody biomass, are targeted because their structures can be broken down into sugars and fermented into alcohols. Other feedstocks, such as vegetable oils, are appealing because they contain considerable amounts of lipids, which can be extracted and converted into biodiesel or other fuels. While significant R&D and commercial strides have been made with each of these feedstocks, technical and market barriers (e.g., cost, scalability, infrastructure requirements, and 'food vs. fuel' debates) currently limit the penetration of the resultant biofuels into the mainstream. Because of algae's ability to potentially address several of these barriers, its use as a feedstock for biofuels has led to much excitement and initiative within the energy industry. Algae are highly diverse, singleor multi-cellular organisms comprised of mostly lipids, protein, and carbohydrates, which may be used to produce a wide variety of biofuels. Algae offer many competitive advantages over other feedstocks, including: 1) Higher potential lipid content than terrestrial plants, sometimes exceeding 50% of the cell's dry biomass (U.S. DOE, May '10; Tornabene et al., 1983) 2) Rapid growth rates that are 20-30 times higher than terrestrial crops (McDill, 2009) and, in some cases, capable of doubling in size with 10 hours 3) Diverse number of species that can collectively thrive in a wide range of environments throughout the world, presenting an overall high overall tolerance for climate, sunlight, nutrient levels, etc. 4) Daily harvesting potential instead of seasonal harvest periods associated with terrestrial crops 5) Potential to redirect CO2 from industry operations to algal cultivation facilities to be

  1. Algae as a Feedstock for Biofuels: An Assessment of the State of Technology and Opportunities. Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Sikes, K; McGill, R [Sentech, Inc. (United States); Van Walwijk, M [Independent Consultant (France)

    2011-05-15

    The pursuit of a stable, economically-sound, and environmentally-friendly source of transportation fuel has led to extensive research and development (R&D) efforts focused on the conversion of various feedstocks into biofuels. Some feedstocks, such as sugar cane, corn and woody biomass, are targeted because their structures can be broken down into sugars and fermented into alcohols. Other feedstocks, such as vegetable oils, are appealing because they contain considerable amounts of lipids, which can be extracted and converted into biodiesel or other fuels. While significant R&D and commercial strides have been made with each of these feedstocks, technical and market barriers (e.g., cost, scalability, infrastructure requirements, and 'food vs. fuel' debates) currently limit the penetration of the resultant biofuels into the mainstream. Because of algae's ability to potentially address several of these barriers, its use as a feedstock for biofuels has led to much excitement and initiative within the energy industry. Algae are highly diverse, singleor multi-cellular organisms comprised of mostly lipids, protein, and carbohydrates, which may be used to produce a wide variety of biofuels. Algae offer many competitive advantages over other feedstocks, including: 1) Higher potential lipid content than terrestrial plants, sometimes exceeding 50% of the cell's dry biomass (U.S. DOE, May '10; Tornabene et al., 1983) 2) Rapid growth rates that are 20-30 times higher than terrestrial crops (McDill, 2009) and, in some cases, capable of doubling in size with 10 hours 3) Diverse number of species that can collectively thrive in a wide range of environments throughout the world, presenting an overall high overall tolerance for climate, sunlight, nutrient levels, etc. 4) Daily harvesting potential instead of seasonal harvest periods associated with terrestrial crops 5) Potential to redirect CO2 from industry operations to algal cultivation facilities to be used in an algal biofuel

  2. Sweet almond (Prunus amygdalus “dulcis” seeds as a potential feedstock for Nigerian Biodiesel Automotive Project

    Directory of Open Access Journals (Sweden)

    Solomon Giwa

    2014-01-01

    Full Text Available This work presents sweet almond (Prunus amygdalus “dulcis” seed oil (SASO as a non-conventional feedstock for the preparation of biodiesel in Nigeria, rather than the traditional oils of palm, groundnut and palm kernel. SASO was extracted via the solvent method, pretreated to reduce the acid value, and transesterified using methanol (solvent and sodium hydroxide (catalyst. The oil content and acid value of SASO were 51.45 ± 3.92% and 1.07 mg KOH/g, respectively. The fatty acid composition of SASO reveals the predominance of oleic acid (69.7%, linoleic acid (18.2% and palmitic acid (9.3%. Specific fuel properties of sweet almond oil methyl esters (SAOME were determined using standard test methods and were found to satisfy both EN 14214 and ASTM D6751 biodiesel standards; the cold flow properties were particularly outstanding (cloud point; -3ºC and pour point; -9ºC. SASO appears to offer great promise as a potential feedstock for biodiesel production in Nigeria.

  3. Demand and supply of hydrogen as chemical feedstock in USA

    Science.gov (United States)

    Huang, C. J.; Tang, K.; Kelley, J. H.; Berger, B. J.

    1979-01-01

    Projections are made for the demand and supply of hydrogen as chemical feedstock in USA. Industrial sectors considered are petroleum refining, ammonia synthesis, methanol production, isocyanate manufacture, edible oil processing, coal liquefaction, fuel cell electricity generation, and direct iron reduction. Presently, almost all the hydrogen required is produced by reforming of natural gas or petroleum fractions. Specific needs and emphases are recommended for future research and development to produce hydrogen from other sources to meet the requirements of these industrial sectors. The data and the recommendations summarized in this paper are based on the Workshop 'Supply and Demand of Hydrogen as Chemical Feedstock' held at the University of Houston on December 12-14, 1977.

  4. Syngas. The flexible solution in a volatile feed-stock market

    Energy Technology Data Exchange (ETDEWEB)

    Wurzel, T. [Air Liquide Global E und C Solutions c/o Lurgi GmbH, Frankfurt a.M. (Germany)

    2013-11-01

    The paper presents the versatility of syngas allowing the extended application of new feedstock sources such as shale gas or coal to deliver fuels and chemicals traditionally derived from crude oil. In order to provide a holistic view on this topic of current interest, the syngas market, the pre-dominant production technologies and main economic consideration for selected applications are presented and analyzed. It can be concluded that a broad portfolio of well-mastered and referenced syngas production technologies which are continuously improved to meet actual market requirements (e.g. ability to valorize biomass) will remain key to enable economic solutions in a world characterized by growing dynamics with regards to the supply of (carbonaceous) feedstock. (orig.)

  5. Homogeneous, heterogeneous and enzymatic catalysis for transesterification of high free fatty acid oil (waste cooking oil) to biodiesel: a review.

    Science.gov (United States)

    Lam, Man Kee; Lee, Keat Teong; Mohamed, Abdul Rahman

    2010-01-01

    In the last few years, biodiesel has emerged as one of the most potential renewable energy to replace current petrol-derived diesel. It is a renewable, biodegradable and non-toxic fuel which can be easily produced through transesterification reaction. However, current commercial usage of refined vegetable oils for biodiesel production is impractical and uneconomical due to high feedstock cost and priority as food resources. Low-grade oil, typically waste cooking oil can be a better alternative; however, the high free fatty acids (FFA) content in waste cooking oil has become the main drawback for this potential feedstock. Therefore, this review paper is aimed to give an overview on the current status of biodiesel production and the potential of waste cooking oil as an alternative feedstock. Advantages and limitations of using homogeneous, heterogeneous and enzymatic transesterification on oil with high FFA (mostly waste cooking oil) are discussed in detail. It was found that using heterogeneous acid catalyst and enzyme are the best option to produce biodiesel from oil with high FFA as compared to the current commercial homogeneous base-catalyzed process. However, these heterogeneous acid and enzyme catalyze system still suffers from serious mass transfer limitation problems and therefore are not favorable for industrial application. Nevertheless, towards the end of this review paper, a few latest technological developments that have the potential to overcome the mass transfer limitation problem such as oscillatory flow reactor (OFR), ultrasonication, microwave reactor and co-solvent are reviewed. With proper research focus and development, waste cooking oil can indeed become the next ideal feedstock for biodiesel.

  6. Successful phytoremediation of crude-oil contaminated soil at an oil exploration and production company by plants-bacterial synergism.

    Science.gov (United States)

    Fatima, Kaneez; Imran, Asma; Amin, Imran; Khan, Qaiser M; Afzal, Muhammad

    2018-06-07

    Phytoremediation is a promising approach for the cleanup of soil contaminated with petroleum hydrocarbons. This study aimed to develop plant-bacterial synergism for the successful remediation of crude oil-contaminated soil. A consortia of three endophytic bacteria was augmented to two grasses, Leptochloa fusca and Brachiaria mutica, grown in oil-contaminated soil (46.8 g oil kg -1 soil) in the vicinity of an oil exploration and production company. Endophytes augmentation improved plant growth, crude oil degradation, and soil health. Maximum oil degradation (80%) was achieved with B. mutica plants augmented with the endophytes and it was significantly (P oil reduction indicates that catabolic gene expression is important for hydrocarbon mineralization. This investigation showed that the use of endophytes with appropriate plant is an effective strategy for the cleanup of oil-contaminated soil under field conditions.

  7. ANTIMICROBIAL ACTIVITY OF ESSENTIAL OILS OF PLANTS BELONGING TO LAMIACEAE JUSS. FAMILY

    Directory of Open Access Journals (Sweden)

    Shanayda M.I.

    2015-12-01

    Full Text Available Introduction. One of the important sources of therapeutic and prophylactic agents of modern medicines are essential oils of medicinal plants. Essential oils are the main group of biologically active substances of a number of plants belonging to Lamiaceae Juss. Family. Antibacterial activity of medicinal plants belonging to Lamiaceae Family many scientists associated with containing of essential oils. In this regard, considerable interest presents the comparative analysis of the antimicrobial properties of essential oils of Lamiaceae Family representatives. Material and methods.The antimicrobial activity of essential oils of investigated plants was studied with using in vitro condition. The essential oils derived from the aerial parts of cultivated plants of Ocimum, Hyssopus, Dracocephalum, Lophanthus, Monarda and Satureja genus harvested during flowering period (in terms of Ternopil region. The antimicrobial activity of essential oils studied plants was studied by serial dilution method and disk diffusion assay. It has been applied on standard microorganism test strains: Bacillus subtilis ATCC 6633, Escherichia coli ATCC 25922, Staphylococcus aureus ATCC 6538, Pseudomonas aeruginosa ATCC 9027 and Candida albicans ATCC 885-653. Results and discussion. It was conducted a comparative study of the influence of some essential oils of cultivated plants belonging to Lamiaceae family on microorganisms in conditions in vitro. It was found that essential oils of the studied plants were most effective in the maximum concentration (1:10. Gram-positive cocci S. aureus and yeast C. albicans were the most sensitive to influence of investigated essential oils. It was analyzed the relationship of the biological activity with the component composition of essential oils of plants. Essential oils of L. anisatus, M. fistulosa and S. hortensis characterized by the dominance of aromatic compounds and had shown stronger antimicrobial activity than essential oils of

  8. Lignocellulosic feedstock resource assessment

    Energy Technology Data Exchange (ETDEWEB)

    Rooney, T.

    1998-09-01

    This report provides overall state and national information on the quantity, availability, and costs of current and potential feedstocks for ethanol production in the United States. It characterizes end uses and physical characteristics of feedstocks, and presents relevant information that affects the economic and technical feasibility of ethanol production from these feedstocks. The data can help researchers focus ethanol conversion research efforts on feedstocks that are compatible with the resource base.

  9. Waste vegetable oil survey report

    Energy Technology Data Exchange (ETDEWEB)

    MacLeod, R. [Science enterprise Algoma seA, Sault Ste. Marie, ON (Canada)

    2009-02-06

    This study was conducted to estimate potential sources of feedstock waste oils for biodiesel production in the Sault Ste. Marie region of Ontario. Two feedstocks were investigated over a period of several months, notably cooking oil and waste vegetable oil. The study was conducted to examine oil throughput, collection practices, and to gauge interest in local initiatives. A distribution list of commercial restaurant listings was developed, and surveys were conducted with members of private enterprises, city government, and non-profit stakeholders in the region. Average volumes of waste vegetable oil were presented for different types of restaurants. The various types of oil used in the restaurants were also quantified. Results of the study showed a positive public response to the idea of a local biodiesel initiative. Steak house, fast food, and Italian establishments generated the largest portion of waste vegetable oil amongst survey respondents. However, the highest response rates came from establishments with little or no oil consumption. Many franchise fast food restaurants are already in contracts with waste oil removal companies. 3 tabs., 3 figs.

  10. An economically viable synthesis of biodiesel from a crude Millettia pinnata oil of Jharkhand, India as feedstock and crab shell derived catalyst.

    Science.gov (United States)

    Madhu, Devarapaga; Chavan, Supriya B; Singh, Veena; Singh, Bhaskar; Sharma, Yogesh C

    2016-08-01

    Biodiesel has emerged as a prominent source to replace petroleum diesel. The cost incurred in the production of biodiesel is higher than that for refining of crude oil to obtain mineral diesel. The heterogeneous catalyst was prepared from crab shells by calcining the crushed mass at 800°C. The solid waste catalyst was characterized with XRD, XPS, BET, SEM-EDS, and FT-IR. Millettia pinnata (karanja) oil extracted from its seeds was used as a feedstock for the synthesis of biodiesel. Biodiesel was synthesized through esterification followed by transesterification in a two-step process. Characterization of biodiesel was done using proton NMR spectroscopy. Reaction parameters such as reaction time, reaction temperature, concentration of catalyst and stirrer speed were optimized. Reusability of catalyst was checked and found that there was no loss of catalytic activity up to five times. Copyright © 2016. Published by Elsevier Ltd.

  11. Potential bioethanol feedstock availability around nine locations in the Republic of Ireland

    International Nuclear Information System (INIS)

    Deverell, R.; McDonnell, K.; Devlin, G.

    2009-01-01

    The Republic of Ireland, like many other countries is trying to diversify energy sources to counteract environmental, political and social concerns. Bioethanol from domestically grown agricultural crops is an indigenously produced alternative fuel that can potentially go towards meeting the goal of diversified energy supply. The Republic of Ireland's distribution of existing soils and agricultural land-uses limit arable crop land to around 10% of total agricultural area. Demand for land to produce arable crops is expected to decrease, which could open the opportunity for bioethanol production. Bioethanol production plants are required to be of a sufficient scale in order to compete economically with other fuel sources, it is important therefore to determine if enough land exists around potential ethanol plant locations to meet the potential demands for feedstock. This study determines, through the use of a developed GIS based model, the potential quantities of feedstock that is available in the hinterlands of nine locations in the Republic of Ireland. The results indicate that three locations can meet all its feedstock demands using indigenously grown sugarbeet, while only one location can meet its demands using a combination of indigenous wheat and straw as the two locally sourced feedstocks. (author)

  12. Single cell oil of oleaginous fungi from the tropical mangrove wetlands as a potential feedstock for biodiesel

    Directory of Open Access Journals (Sweden)

    Khot Mahesh

    2012-05-01

    Full Text Available Abstract Background Single cell oils (SCOs accumulated by oleaginous fungi have emerged as a potential alternative feedstock for biodiesel production. Though fungi from mangrove ecosystem have been reported for production of several lignocellulolytic enzymes, they remain unexplored for their SCO producing ability. Thus, these oleaginous fungi from the mangrove ecosystem could be suitable candidates for production of SCOs from lignocellulosic biomass. The accumulation of lipids being species specific, strain selection is critical and therefore, it is of importance to evaluate the fungal diversity of mangrove wetlands. The whole cells of these fungi were investigated with respect to oleaginicity, cell mass, lipid content, fatty acid methyl ester profiles and physicochemical properties of transesterified SCOs in order to explore their potential for biodiesel production. Results In the present study, 14 yeasts and filamentous fungi were isolated from the detritus based mangrove wetlands along the Indian west coast. Nile red staining revealed that lipid bodies were present in 5 of the 14 fungal isolates. Lipid extraction showed that these fungi were able to accumulate > 20% (w/w of their dry cell mass (4.14 - 6.44 g L-1 as lipids with neutral lipid as the major fraction. The profile of transesterified SCOs revealed a high content of saturated and monounsaturated fatty acids i.e., palmitic (C16:0, stearic (C18:0 and oleic (C18:1 acids similar to conventional vegetable oils used for biodiesel production. The experimentally determined and predicted biodiesel properties for 3 fungal isolates correlated well with the specified standards. Isolate IBB M1, with the highest SCO yield and containing high amounts of saturated and monounsaturated fatty acid was identified as Aspergillus terreus using morphotaxonomic study and 18 S rRNA gene sequencing. Batch flask cultures with varying initial glucose concentration revealed that maximal cell biomass

  13. Single cell oil of oleaginous fungi from the tropical mangrove wetlands as a potential feedstock for biodiesel.

    Science.gov (United States)

    Khot, Mahesh; Kamat, Srijay; Zinjarde, Smita; Pant, Aditi; Chopade, Balu; Ravikumar, Ameeta

    2012-05-30

    Single cell oils (SCOs) accumulated by oleaginous fungi have emerged as a potential alternative feedstock for biodiesel production. Though fungi from mangrove ecosystem have been reported for production of several lignocellulolytic enzymes, they remain unexplored for their SCO producing ability. Thus, these oleaginous fungi from the mangrove ecosystem could be suitable candidates for production of SCOs from lignocellulosic biomass. The accumulation of lipids being species specific, strain selection is critical and therefore, it is of importance to evaluate the fungal diversity of mangrove wetlands. The whole cells of these fungi were investigated with respect to oleaginicity, cell mass, lipid content, fatty acid methyl ester profiles and physicochemical properties of transesterified SCOs in order to explore their potential for biodiesel production. In the present study, 14 yeasts and filamentous fungi were isolated from the detritus based mangrove wetlands along the Indian west coast. Nile red staining revealed that lipid bodies were present in 5 of the 14 fungal isolates. Lipid extraction showed that these fungi were able to accumulate > 20% (w/w) of their dry cell mass (4.14 - 6.44 g L-1) as lipids with neutral lipid as the major fraction. The profile of transesterified SCOs revealed a high content of saturated and monounsaturated fatty acids i.e., palmitic (C16:0), stearic (C18:0) and oleic (C18:1) acids similar to conventional vegetable oils used for biodiesel production. The experimentally determined and predicted biodiesel properties for 3 fungal isolates correlated well with the specified standards. Isolate IBB M1, with the highest SCO yield and containing high amounts of saturated and monounsaturated fatty acid was identified as Aspergillus terreus using morphotaxonomic study and 18 S rRNA gene sequencing. Batch flask cultures with varying initial glucose concentration revealed that maximal cell biomass and lipid content were obtained at 30gL-1

  14. Screening of Antibacterial Activities of Essential Oils from Selected Medicinal Plants

    International Nuclear Information System (INIS)

    Le Le Phyo; Moe Moe Thwe; Mar Lar Than

    2010-12-01

    Essential oils were extracted from the five medicinal plants (Syzygium aromaticum Linn, Cinnamoum tamala. Nees, Piper betle. Linn, Ocimum sanctum, Clausena exacavata Burn) by steam distillation method and percolation method with petroleum ether. These plants do not contain cyanogenic glycosides according to phytochemical tests. Essential oils from these plants were also tested on antimicrobial activity by agar well diffusion method. It was observed that essential oils extracted from these five plants have various effects on Gram-positive and Gram-negative bacteria and fungus. Among them, essential oils of Syzygium aromaticum possess the highest antimicrobial activity aganist all test organisms. B. pumalis and Calbican are the most susceptible to the five plants.

  15. Screening of Antibacterial Activities of Essential Oils from Selected Medicinal Plants

    Energy Technology Data Exchange (ETDEWEB)

    Phyo, Le Le; Thwe, Moe Moe; Than, Mar Lar

    2010-12-15

    Essential oils were extracted from the five medicinal plants (Syzygium aromaticum Linn, Cinnamoum tamala. Nees, Piper betle. Linn, Ocimum sanctum, Clausena exacavata Burn) by steam distillation method and percolation method with petroleum ether. These plants do not contain cyanogenic glycosides according to phytochemical tests. Essential oils from these plants were also tested on antimicrobial activity by agar well diffusion method. It was observed that essential oils extracted from these five plants have various effects on Gram-positive and Gram-negative bacteria and fungus. Among them, essential oils of Syzygium aromaticum possess the highest antimicrobial activity aganist all test organisms. B. pumalis and Calbican are the most susceptible to the five plants.

  16. Genetic and Genomic Analysis of the Tree Legume Pongamia pinnata as a Feedstock for Biofuels

    OpenAIRE

    Bandana Biswas; Stephen H. Kazakoff; Qunyi Jiang; Sharon Samuel; Peter M. Gresshoff; Paul T. Scott

    2013-01-01

    The tree legume Pongamia { (L.) Pierre [syn. (L.) Panigrahi]} is emerging as an important biofuels feedstock. It produces about 30 kg per tree per year of seeds, containing up to 55% oil (w/v), of which approximately 50% is oleic acid (C). The capacity for biological N fixation places Pongamia in a more sustainable position than current nonlegume biofuel feedstocks. Also due to its drought and salinity tolerance, Pongamia can grow on marginal land not destined for production of food. As part...

  17. Plan for addressing issues relating to oil shale plant siting

    Energy Technology Data Exchange (ETDEWEB)

    Noridin, J. S.; Donovan, R.; Trudell, L.; Dean, J.; Blevins, A.; Harrington, L. W.; James, R.; Berdan, G.

    1987-09-01

    The Western Research Institute plan for addressing oil shale plant siting methodology calls for identifying the available resources such as oil shale, water, topography and transportation, and human resources. Restrictions on development are addressed: land ownership, land use, water rights, environment, socioeconomics, culture, health and safety, and other institutional restrictions. Descriptions of the technologies for development of oil shale resources are included. The impacts of oil shale development on the environment, socioeconomic structure, water availability, and other conditions are discussed. Finally, the Western Research Institute plan proposes to integrate these topics to develop a flow chart for oil shale plant siting. Western Research Institute has (1) identified relative topics for shale oil plant siting, (2) surveyed both published and unpublished information, and (3) identified data gaps and research needs. 910 refs., 3 figs., 30 tabs.

  18. Tomatoes in oil recovery. [Plant waste additives improve yield

    Energy Technology Data Exchange (ETDEWEB)

    1981-01-01

    The waste from processing tomato, squash and pepper stalks found unexpected use in recovery of oil. Even a negligible amount thereof in an aqueous solution pumped into an oil-bearing formation turned out to be sufficient to increase the yield. Substances of plant origin, which improve dramatically the oil-flushing properties of water, not only increase the recovery of oil, but reduce the volume of fluid to be pumped into the stratum. The staff of the Institute of Deep Oil and Gas Deposits of the Azerbaijan Academy of Sciences, who proved the technological and economical advantages of using the waste from plant processing, transmitted their findings to the oil workers of Baku. The scientists have concluded that there is a good raw material base in this republic for utilizing this method on oil-bearing formations.

  19. Preliminary screening of plant essential oils against larvae of Culex ...

    African Journals Online (AJOL)

    Preliminary screenings of 22 plant essential oils were tested for mortality of the mosquito larvae Culex quinquefasciatus under laboratory conditions. Percent (%) mortality of the mosquito larvae were obtained for each essential oil. At different exposure periods, viz. 1, 3, 6, 12 and 24 h among the 22 plant oils tested, eight ...

  20. Screening of plants for phytoremediation of oil-contaminated soil.

    Science.gov (United States)

    Ikeura, Hiromi; Kawasaki, Yu; Kaimi, Etsuko; Nishiwaki, Junko; Noborio, Kosuke; Tamaki, Masahiko

    2016-01-01

    Several species of ornamental flowering plants were evaluated regarding their phytoremediation ability for the cleanup of oil-contaminated soil in Japanese environmental conditions. Thirty-three species of plants were grown in oil-contaminated soil, and Mimosa, Zinnia, Gazania, and cypress vine were selected for further assessment on the basis of their favorable initial growth. No significant difference was observed in the above-ground and under-ground dry matter weight of Gazania 180 days after sowing between contaminated and non-contaminated plots. However, the other 3 species of plants died by the 180th day, indicating that Gazania has an especially strong tolerance for oil-contaminated soil. The total petroleum hydrocarbon concentration of the soils in which the 4 species of plants were grown decreased by 45-49% by the 180th day. Compared to an irrigated plot, the dehydrogenase activity of the contaminated soil also increased significantly, indicating a phytoremediation effect by the 4 tested plants. Mimosa, Zinnia, and cypress vine all died by the 180th day after seeding, but the roots themselves became a source of nutrients for the soil microorganisms, which led to a phytoremediation effect by increase in the oil degradation activity. It has been indicated that Gazania is most appropriate for phytoremediation of oil-contaminated soil.

  1. Preparation and Evaluation of Jojoba Oil Methyl Ester as Biodiesel and as Blend Components in Ultra Low Sulfur Diesel Fuel

    Science.gov (United States)

    The jojoba plant (Simmondsia chinensis L.) produces seeds that contain around 50 to 60 weight percent of inedible long-chain wax esters that are suitable as a potential feedstock for biodiesel production. A Jojoba oil methyl ester (JME) was prepared in effort to evaluate an important fuel propertie...

  2. Fatty acid profile of alternative feedstocks for biodiesel production and implications for fuel properties

    Science.gov (United States)

    Feedstock accounts for approximately 80% of biodiesel production expenses when commodity lipids such as soybean oil are utilized. Furthermore, commodity lipids have competing food-related applications. Consequently, low-cost alternatives that do not displace existing food production are of interest ...

  3. Heavy oil : PetroChina's perspective

    Energy Technology Data Exchange (ETDEWEB)

    He, C. [PetroChina Co., Ltd., Beijing (China)

    2010-07-01

    This keynote presentation discussed China's future in relation to heavy oil refining. An overview of PetroChina's overseas operations was also presented. China currently has six 200,000 bpd refineries as well as an additional 12 refineries with a 100,000 bpd capacity that are able to process lower quality feedstocks with a high acid and sulphur content. Seven new 200,000 bpd refineries will be built by 2020. Poor and heavy crude oil from global heavy oil reserves will form a significant percentages of China's refinery feedstocks, and Canada is expected to provide a significant portion of its heavy oil and bitumen resources for further refining in China. China's existing refineries are being reconfigured and optimized for the processing of heavy crude oils. Additional hydrotreating and hydrocracking technologies have been added, and resid fluid catalytic cracking technologies have been retrofitted. China envisages a future with steady increases in oil consumption, high oil prices, and an increased reliance on heavy and poor quality crude oils. China's strong economic growth will increase demand for petrochemical feedstocks. Various research organizations and institutions have been established to accelerate innovation and technology development for ensuring that clean fuels standards are met. New refineries in China will include resid upgrading and new generation catalyst technologies. Details of various technologies were included. tabs., figs.

  4. Alternative coke production from unconventional feedstocks

    Energy Technology Data Exchange (ETDEWEB)

    Smoot, D.; Eatough, C.N.; Heaton, J.S.; Eatough, S.R.; Miller, A.B. [Combustion Resources, Provo, UT (US)

    2004-07-01

    This presentation reports on US Department of Energy and company sponsored research and development to develop a technology and process for making metallurgical-quality coke from alternate feedstocks, including by-product and waste carbonaceous materials. The basic patent-pending process blends and presses these carbon-containing materials into briquettes of specified size. This product is referred to as CR Clean Coke because pollutant emission levels are carefully controlled to low levels with little or no vagrant emissions during processing. A wide range of feedstock materials has been investigated in over 600 tests for run-of-mine and waste coal fines of various rank with blends of coal tars and pitches, coal and biomass chars, met-coke breeze or petroleum coke. For various coal/pet-coke/tar feedstocks, CR has produced uniform-sized briquettes in commercial-scale briquettes in three nominal sizes: one inch, two inch, and three inch. These products have been successfully qualified according to stringent requirements for conventional met-coke use in a blast furnace. Several formulation have met and frequently exceeded these established met-coke specifications. One specific product containing coal, tar and pet-coke was selected as a base formulation for which preliminary process design and cost estimates have been completed for construction and operation of a demonstration plant capable of producing 120,000 tons per year of CR Clean Coke. Plant design elements and blast furnace test plans are presented. Tailoring of CR Clean Coke products to other prospective end users including foundry, sugar, soda ash, and ferrometals industries presents additional opportunities. The text is accompanied by 30 slides/overheads. 14 refs., 3 figs., 9 tabs.

  5. Low-cost feedstock conversion to biodiesel via ultrasound technology

    Energy Technology Data Exchange (ETDEWEB)

    Babajide, O.; Petrik, L.; Amigun, B.; Ameer, F. [Environmental and Nano Science Research Group, Department of Chemistry, University of the Western Cape, Bellville, Cape Town 7535 (South Africa); Amigun, B. [Sustainable Energy Futures, Council for Scientific and Industrial Research (CSIR), Stellenbosch (South Africa)

    2010-10-15

    Biodiesel has attracted increasing interest and has proved to be a good substitute for fossil-based fuels due to its environmental advantages and availability from renewable resources such as refined and waste vegetable oils. Several studies have shown that biodiesel is a better fuel than the fossil-derived diesel in terms of engine performance, emissions reduction, lubricity and environmental benefits. The increasing popularity of biodiesel has generated great demand for its commercial production methods, which in turn calls for the development of technically and economically sound process technologies. This paper explores the applicability of ultrasound in the optimization of low-cost feedstock - in this case waste cooking oil - in the transesterification conversion to biodiesel. It was found that the conversion efficiency of the waste oil using ultrasound was higher than with the mechanical stirring method. The optimized variables of 6:1 methanol/oil ratio at a reaction temperature of 30 {sup o}C, a reaction time of 30 min and 0.75% KOH (wt/wt) catalyst concentration were obtained for the transesterification of the waste oil via the use of ultrasound. (authors)

  6. Low-Cost Feedstock Conversion to Biodiesel via Ultrasound Technology

    Energy Technology Data Exchange (ETDEWEB)

    Babajide, Omotola [Environmental and Nano Science Research Group, Dept. of Chemistry, Univ. of the Western Cape, Bellville, Cape Town (South Africa); Petrik, Leslie [Environmental and Nano Science Research Group, Dept. of Chemistry, Univ. of the Western Cape, Bellville, Cape Town (South Africa); Amigun, Bamikole [Environmental and Nano Science Research Group, Dept. of Chemistry, Univ. of the Western Cape, Bellville, Cape Town (South Africa) and Sustainable Energy Futures, Council for Scientific and Industrial Research (CSIR), Stellenbosch (South Africa); Ameer, Faraouk [Environmental and Nano Science Research Group, Dept. of Chemistry, Univ. of the Western Cape, Bellville, Cape Town (South Africa)

    2010-09-15

    Biodiesel has attracted increasing interest and has proved to be a good substitute for fossil-based fuels due to its environmental advantages and availability from renewable resources such as refined and waste vegetable oils. Several studies have shown that biodiesel is a better fuel than the fossil-derived diesel in terms of engine performance, emissions reduction, lubricity and environmental benefits. The increasing popularity of biodiesel has generated great demand for its commercial production methods, which in turn calls for the development of technically and economically sound process technologies. This paper explores the applicability of ultrasound in the optimization of low-cost feedstock – in this case waste cooking oil – in the transesterification conversion to biodiesel. It was found that the conversion efficiency of the waste oil using ultrasound was higher than with the mechanical stirring method. The optimized variables of 6:1 methanol/oil ratio at a reaction temperature of 30 deg C and a reaction time of 30 min and 0.75% KOH (wt/wt) catalyst concentration was obtained for the transesterification of the waste oil via the use of ultrasound.

  7. Agave: a biofuel feedstock for arid and semi-arid environments

    Energy Technology Data Exchange (ETDEWEB)

    Gross, Stephen; Martin, Jeffrey; Simpson, June; Wang, Zhong; Visel, Axel

    2011-05-31

    Efficient production of plant-based, lignocellulosic biofuels relies upon continued improvement of existing biofuel feedstock species, as well as the introduction of newfeedstocks capable of growing on marginal lands to avoid conflicts with existing food production and minimize use of water and nitrogen resources. To this end, specieswithin the plant genus Agave have recently been proposed as new biofuel feedstocks. Many Agave species are adapted to hot and arid environments generally unsuitable forfood production, yet have biomass productivity rates comparable to other second-generation biofuel feedstocks such as switchgrass and Miscanthus. Agavesachieve remarkable heat tolerance and water use efficiency in part through a Crassulacean Acid Metabolism (CAM) mode of photosynthesis, but the genes andregulatory pathways enabling CAM and thermotolerance in agaves remain poorly understood. We seek to accelerate the development of agave as a new biofuelfeedstock through genomic approaches using massively-parallel sequencing technologies. First, we plan to sequence the transcriptome of A. tequilana to provide adatabase of protein-coding genes to the agave research community. Second, we will compare transcriptome-wide gene expression of agaves under different environmentalconditions in order to understand genetic pathways controlling CAM, water use efficiency, and thermotolerance. Finally, we aim to compare the transcriptome of A.tequilana with that of other Agave species to gain further insight into molecular mechanisms underlying traits desirable for biofuel feedstocks. These genomicapproaches will provide sequence and gene expression information critical to the breeding and domestication of Agave species suitable for biofuel production.

  8. Graphene growth with ‘no’ feedstock

    Science.gov (United States)

    Qing, Fangzhu; Jia, Ruitao; Li, Bao-Wen; Liu, Chunlin; Li, Congzhou; Peng, Bo; Deng, Longjiang; Zhang, Wanli; Li, Yanrong; Ruoff, Rodney S.; Li, Xuesong

    2017-06-01

    Synthesis of graphene by chemical vapor deposition (CVD) from hydrocarbons on Cu foil substrates can yield high quality and large area graphene films. In a typical CVD process, a hydrocarbon in the gas phase is introduced for graphene growth and hydrogen is usually required to achieve high quality graphene. We have found that in a low pressure CVD system equipped with an oil mechanical vacuum pump located downstream, graphene can be grown without deliberate introduction of a carbon feedstock but with only trace amounts of C present in the system, the origin of which we attribute to the vapor of the pump oil. This finding may help to rationalize the differences in graphene growth reported by different research groups. It should also help to gain an in-depth understanding of graphene growth mechanisms with the aim to improve the reproducibility and structure control in graphene synthesis, e.g. the formation of large area single crystal graphene and uniform bilayer graphene.

  9. Geoffroea decorticans for Biofuels: A Promising Feedstock

    Directory of Open Access Journals (Sweden)

    Claudia Santibáñez

    2017-01-01

    Full Text Available In this work, chañar (Geoffroea decorticans fruit is evaluated as a potential feedstock for biodiesel and biomass pellets production with reference to some relevant properties. The fatty acid profile of this oil (83% unsaturated acids is found to be comparable to similar seed oils which have been attempted for biodiesel production. As a result, the methyl esters (biodiesel obtained from this oil exhibits high quality properties. Chañar biodiesel quality meets all other biodiesel international standards (ASTM D6751 and EN 14214. Moreover, the husk that surrounds the kernel showed a high potential for usage as densified solid fuels. The results demonstrate that chañar husks pellets have a higher calorific value when compared with other biomass pellets, typically, approximately 21 MJ kg−1 with 1.8% of ashes (which is equivalent to that obtained from the combustion of pellets produced from forest wastes. This study indicates that chañar can be used as a multipurpose energy crop in semiarid regions for biodiesel and densified solid fuels (pellets production.

  10. Identification and thermochemical analysis of high-lignin feedstocks for biofuel and biochemical production

    Directory of Open Access Journals (Sweden)

    Mendu Venugopal

    2011-10-01

    Full Text Available Abstract Background Lignin is a highly abundant biopolymer synthesized by plants as a complex component of plant secondary cell walls. Efforts to utilize lignin-based bioproducts are needed. Results Herein we identify and characterize the composition and pyrolytic deconstruction characteristics of high-lignin feedstocks. Feedstocks displaying the highest levels of lignin were identified as drupe endocarp biomass arising as agricultural waste from horticultural crops. By performing pyrolysis coupled to gas chromatography-mass spectrometry, we characterized lignin-derived deconstruction products from endocarp biomass and compared these with switchgrass. By comparing individual pyrolytic products, we document higher amounts of acetic acid, 1-hydroxy-2-propanone, acetone and furfural in switchgrass compared to endocarp tissue, which is consistent with high holocellulose relative to lignin. By contrast, greater yields of lignin-based pyrolytic products such as phenol, 2-methoxyphenol, 2-methylphenol, 2-methoxy-4-methylphenol and 4-ethyl-2-methoxyphenol arising from drupe endocarp tissue are documented. Conclusions Differences in product yield, thermal decomposition rates and molecular species distribution among the feedstocks illustrate the potential of high-lignin endocarp feedstocks to generate valuable chemicals by thermochemical deconstruction.

  11. Potential bioethanol feedstock availability around nine locations in the Republic of Ireland

    Energy Technology Data Exchange (ETDEWEB)

    Deverell, R.; McDonnell, K.; Devlin, G. [Department of Biosystems Engineering, Agriculture and Food Science Building, University College Dublin, Belfield (Ireland)

    2009-07-01

    The Republic of Ireland, like many other countries is trying to diversify energy sources to counteract environmental, political and social concerns. Bioethanol from domestically grown agricultural crops is an indigenously produced alternative fuel that can potentially go towards meeting the goal of diversified energy supply. The Republic of Ireland's distribution of existing soils and agricultural land-uses limit arable crop land to around 10% of total agricultural area. Demand for land to produce arable crops is expected to decrease, which could open the opportunity for bioethanol production. Bioethanol production plants are required to be of a sufficient scale in order to compete economically with other fuel sources, it is important therefore to determine if enough land exists around potential ethanol plant locations to meet the potential demands for feedstock. This study determines, through the use of a developed GIS based model, the potential quantities of feedstock that is available in the hinterlands of nine locations in the Republic of Ireland. The results indicate that three locations can meet all its feedstock demands using indigenously grown sugarbeet, while only one location can meet its demands using a combination of indigenous wheat and straw as the two locally sourced feedstocks. (author)

  12. Potential Bioethanol Feedstock Availability Around Nine Locations in the Republic of Ireland

    Directory of Open Access Journals (Sweden)

    Rory Deverell

    2009-03-01

    Full Text Available The Republic of Ireland, like many other countries is trying to diversify energy sources to counteract environmental, political and social concerns. Bioethanol from domestically grown agricultural crops is an indigenously produced alternative fuel that can potentially go towards meeting the goal of diversified energy supply. The Republic of Ireland’s distribution of existing soils and agricultural land-uses limit arable crop land to around 10% of total agricultural area. Demand for land to produce arable crops is expected to decrease, which could open the opportunity for bioethanol production. Bioethanol production plants are required to be of a sufficient scale in order to compete economically with other fuel sources, it is important therefore to determine if enough land exists around potential ethanol plant locations to meet the potential demands for feedstock. This study determines, through the use of a developed GIS based model, the potential quantities of feedstock that is available in the hinterlands of nine locations in the Republic of Ireland. The results indicate that three locations can meet all its feedstock demands using indigenously grown sugarbeet, while only one location can meet its demands using a combination of indigenous wheat and straw as the two locally sourced feedstocks.

  13. Detection of plant oil DNA using high resolution melting (HRM) post PCR analysis: a tool for disclosure of olive oil adulteration.

    Science.gov (United States)

    Vietina, Michelangelo; Agrimonti, Caterina; Marmiroli, Nelson

    2013-12-15

    Extra virgin olive oil is frequently subjected to adulterations with addition of oils obtained from plants other than olive. DNA analysis is a fast and economic tool to identify plant components in oils. Extraction and amplification of DNA by PCR was tested in olives, in milled seeds and in oils, to investigate its use in olive oil traceability. DNA was extracted from different oils made of hazelnut, maize, sunflower, peanut, sesame, soybean, rice and pumpkin. Comparing the DNA melting profiles in reference plant materials and in the oils, it was possible to identify any plant components in oils and mixtures of oils. Real-Time PCR (RT-PCR) platform has been added of the new methodology of high resolution melting (HRM), both were used to analyse olive oils mixed with different percentage of other oils. Results showed HRM a cost effective method for efficient detection of adulterations in olive oils. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. Exploration of process parameters for continuous hydrolysis of canola oil, camelina oil and algal oil

    KAUST Repository

    Wang, Weicheng

    2012-07-01

    Thermal hydrolysis of triglycerides to form free fatty acid (FFA) is a well-established industry practice. Recently, this process has been employed as a first step in the production of biofuels from lipids. To that end, batch and continuous hydrolysis of various feedstocks has been examined at the laboratory scale. Canola, the primary feedstock in this paper, camelina and algal oils were converted to high quality FFA. For the different reaction temperatures, the continuous hydrolysis system was found to provide better yields than the laboratory batch system. In addition, CFD simulation with ANSYS-CFX was used to model the performance and reactant/product separation in the continuous, counter-flow reactor. The effects of reaction temperature, water-to-oil ratio (ratio of water and oil volumetric inflow rate), and preheating of the reactants were examined experimentally. Optimization of these parameters has resulted in an improved, continuous process with high mass yields (89-93%, for reactor temperature of 260°C and water-to-oil ratio of 4:1) and energy efficiency (76%, for reactor temperature of 250°C and water-to-oil ratio of 2:1). Based on the product quality and energy efficiency considerations, the reactor temperature of 260°C and water-to-oil ratio of 4:1 have provided the optimal condition for the lab scale continuous hydrolysis reaction. © 2012 Elsevier B.V.

  15. Exploration of process parameters for continuous hydrolysis of canola oil, camelina oil and algal oil

    KAUST Repository

    Wang, Weicheng; Turner, Timothy L.; Stikeleather, Larry F.; Roberts, William L.

    2012-01-01

    Thermal hydrolysis of triglycerides to form free fatty acid (FFA) is a well-established industry practice. Recently, this process has been employed as a first step in the production of biofuels from lipids. To that end, batch and continuous hydrolysis of various feedstocks has been examined at the laboratory scale. Canola, the primary feedstock in this paper, camelina and algal oils were converted to high quality FFA. For the different reaction temperatures, the continuous hydrolysis system was found to provide better yields than the laboratory batch system. In addition, CFD simulation with ANSYS-CFX was used to model the performance and reactant/product separation in the continuous, counter-flow reactor. The effects of reaction temperature, water-to-oil ratio (ratio of water and oil volumetric inflow rate), and preheating of the reactants were examined experimentally. Optimization of these parameters has resulted in an improved, continuous process with high mass yields (89-93%, for reactor temperature of 260°C and water-to-oil ratio of 4:1) and energy efficiency (76%, for reactor temperature of 250°C and water-to-oil ratio of 2:1). Based on the product quality and energy efficiency considerations, the reactor temperature of 260°C and water-to-oil ratio of 4:1 have provided the optimal condition for the lab scale continuous hydrolysis reaction. © 2012 Elsevier B.V.

  16. Oils and rubber from arid land plants

    Science.gov (United States)

    Johnson, J. D.; Hinman, C. W.

    1980-05-01

    In this article the economic development potentials of Cucurbita species (buffalo gourd and others), Simmondsia chinensis (jojoba), Euphorbia lathyris (gopher plant), and Parthenium argentatum (guayule) are discussed. All of these plants may become important sources of oils or rubber.

  17. Articulating feedstock delivery device

    Science.gov (United States)

    Jordan, Kevin

    2013-11-05

    A fully articulable feedstock delivery device that is designed to operate at pressure and temperature extremes. The device incorporates an articulating ball assembly which allows for more accurate delivery of the feedstock to a target location. The device is suitable for a variety of applications including, but not limited to, delivery of feedstock to a high-pressure reaction chamber or process zone.

  18. Sustainable Use of Biotechnology for Bioenergy Feedstocks

    Science.gov (United States)

    Moon, Hong S.; Abercrombie, Jason M.; Kausch, Albert P.; Stewart, C. Neal

    2010-10-01

    Done correctly, cellulosic bioenergy should be both environmentally and economically beneficial. Carbon sequestration and decreased fossil fuel use are both worthy goals in developing next-generation biofuels. We believe that biotechnology will be needed to significantly improve yield and digestibility of dedicated perennial herbaceous biomass feedstocks, such as switchgrass and Miscanthus, which are native to the US and China, respectively. This Forum discusses the sustainability of herbaceous feedstocks relative to the regulation of biotechnology with regards to likely genetically engineered traits. The Forum focuses on two prominent countries wishing to develop their bioeconomies: the US and China. These two countries also share a political desire and regulatory frameworks to enable the commercialization and wide release of transgenic feedstocks with appropriate and safe new genetics. In recent years, regulators in both countries perform regular inspections of transgenic field releases and seriously consider compliance issues, even though the US framework is considered to be more mature and stringent. Transgene flow continues to be a pertinent environmental and regulatory issue with regards to transgenic plants. This concern is largely driven by consumer issues and ecological uncertainties. Regulators are concerned about large-scale releases of transgenic crops that have sexually compatible crops or wild relatives that can stably harbor transgenes via hybridization and introgression. Therefore, prior to the commercialization or extensive field testing of transgenic bioenergy feedstocks, we recommend that mechanisms that ensure biocontainment of transgenes be instituted, especially for perennial grasses. A cautionary case study will be presented in which a plant’s biology and ecology conspired against regulatory constraints in a non-biomass crop perennial grass (creeping bentgrass, Agrostis stolonifera), in which biocontainment was not attained. Appropriate

  19. Nanocrystalline K–CaO for the transesterification of a variety of feedstocks: Structure, kinetics and catalytic properties

    International Nuclear Information System (INIS)

    Kumar, Dinesh; Ali, Amjad

    2012-01-01

    The work presented in current manuscript demonstrated the preparation of potassium ion impregnated calcium oxide in nano particle form and its application as solid catalyst for the transesterification of a variety of triglycerides. The catalyst was characterized by powder X-ray diffraction, scanning electron and transmission electron microscopic, BET surface area measurement, and Hammett indicator studies in order to establish the effect of K + impregnation on catalyst structure, particle size, surface morphology, and basic strength. The catalyst prepared by impregnating a mass fraction of 3.5% K + in CaO was found to exist as ∼40 nm sized particles, and same was employed in present study as solid catalyst for the transesterification of a variety of feedstocks viz., mutton fat, soybean, virgin cotton seed, waste cotton seed, castor, karanja and jatropha oil. Under optimized conditions, K–CaO was found to yield 98 ± 2% fatty acid methyl esters (FAMEs) from the employed feedstocks, and showed a high tolerance to the free fatty acid and moisture contents. A pseudo first order kinetic model was applied to evaluate the kinetic parameters and under optimized conditions first order rate constant and activation energy was found to be 0.062 min −1 and 54 kJ mol −1 , respectively. The Koros–Nowak criterion test has been employed to demonstrate that measured catalytic activity was independent of the influence of transport phenomenon. Finally, few physicochemical properties of the FAMEs prepared from waste cotton seed oil, karanja oil and jatropha oils have been studied and compared with European standards. -- Graphical abstract: TEM image of 3.5–K–CaO. Display Omitted Highlights: ► K–CaO as nanosized solid catalyst for the transesterification of variety of feedstock has been prepared and characterized. ► K–CaO was found effective even when 8.4% free fatty acid and 10.3% moisture contents were present in the feedstock. ► K–CaO was reused 3 times and

  20. Anti-Inflammatory and Skin Barrier Repair Effects of Topical Application of Some Plant Oils.

    Science.gov (United States)

    Lin, Tzu-Kai; Zhong, Lily; Santiago, Juan Luis

    2017-12-27

    Plant oils have been utilized for a variety of purposes throughout history, with their integration into foods, cosmetics, and pharmaceutical products. They are now being increasingly recognized for their effects on both skin diseases and the restoration of cutaneous homeostasis. This article briefly reviews the available data on biological influences of topical skin applications of some plant oils (olive oil, olive pomace oil, sunflower seed oil, coconut oil, safflower seed oil, argan oil, soybean oil, peanut oil, sesame oil, avocado oil, borage oil, jojoba oil, oat oil, pomegranate seed oil, almond oil, bitter apricot oil, rose hip oil, German chamomile oil, and shea butter). Thus, it focuses on the therapeutic benefits of these plant oils according to their anti-inflammatory and antioxidant effects on the skin, promotion of wound healing and repair of skin barrier.

  1. Genetically engineered plants with increased vegetative oil content

    Science.gov (United States)

    Benning, Christoph

    2017-05-23

    The invention relates to genetically modified agricultural plants with increased oil content in vegetative tissues, as well as to expression systems, plant cells, seeds and vegetative tissues related thereto.

  2. Profitability and sustainability of small - medium scale palm biodiesel plant

    Science.gov (United States)

    Solikhah, Maharani Dewi; Kismanto, Agus; Raksodewanto, Agus; Peryoga, Yoga

    2017-06-01

    The mandatory of biodiesel application at 20% blending (B20) has been started since January 2016. It creates huge market for biodiesel industry. To build large-scale biodiesel plant (> 100,000 tons/year) is most favorable for biodiesel producers since it can give lower production cost. This cost becomes a challenge for small - medium scale biodiesel plants. However, current biodiesel plants in Indonesia are located mainly in Java and Sumatra, which then distribute biodiesel around Indonesia so that there is an additional cost for transportation from area to area. This factor becomes an opportunity for the small - medium scale biodiesel plants to compete with the large one. This paper discusses the profitability of small - medium scale biodiesel plants conducted on a capacity of 50 tons/day using CPO and its derivatives. The study was conducted by performing economic analysis between scenarios of biodiesel plant that using raw material of stearin, PFAD, and multi feedstock. Comparison on the feasibility of scenarios was also conducted on the effect of transportation cost and selling price. The economic assessment shows that profitability is highly affected by raw material price so that it is important to secure the source of raw materials and consider a multi-feedstock type for small - medium scale biodiesel plants to become a sustainable plant. It was concluded that the small - medium scale biodiesel plants will be profitable and sustainable if they are connected to palm oil mill, have a captive market, and are located minimally 200 km from other biodiesel plants. The use of multi feedstock could increase IRR from 18.68 % to 56.52 %.

  3. Investigation of heterogeneous solid acid catalyst performance on low grade feedstocks for biodiesel production: A review

    International Nuclear Information System (INIS)

    Mansir, Nasar; Taufiq-Yap, Yun Hin; Rashid, Umer; Lokman, Ibrahim M.

    2017-01-01

    Highlights: • Solid acid catalysts are proficient to esterifying high free fatty acid feedstocks to biodiesel. • Heterogeneous catalysts have the advantage of easy separation and reusability. • Heterogeneous basic catalysts have limitations due to high FFA of low cost feedstocks. • Solid catalysts having acid and base sites reveal better catalyst for biodiesel production. - Abstract: The conventional fossil fuel reserves are continually declining worldwide and therefore posing greater challenges to the future of the energy sources. Biofuel alternatives were found promising to replace the diminishing fossil fuels. However, conversion of edible vegetable oils to biodiesel using homogeneous acids and base catalysts is now considered as indefensible for the future particularly due to food versus fuel competition and other environmental problems related to catalyst system and feedstock. This review has discussed the progression in research and growth related to heterogeneous catalysts used for biodiesel production for low grade feedstocks. The heterogeneous base catalysts have revealed effective way to produce biodiesel, but it has the limitation of being sensitive to high free fatty acid (FFA) or low grade feedstocks. Alternatively, solid acid catalysts are capable of converting the low grade feedstocks to biodiesel in the presence of active acid sites. The paper presents a comprehensive review towards the investigation of solid acid catalyst performance on low grade feedstock, their category, properties, advantages, limitations and possible remedy to their drawbacks for biodiesel production.

  4. Towards the development of a sustainable soya bean-based feedstock for aquaculture.

    Science.gov (United States)

    Park, Hyunwoo; Weier, Steven; Razvi, Fareha; Peña, Pamela A; Sims, Neil A; Lowell, Jennica; Hungate, Cory; Kissinger, Karma; Key, Gavin; Fraser, Paul; Napier, Johnathan A; Cahoon, Edgar B; Clemente, Tom E

    2017-02-01

    Soya bean (Glycine max (L.) Merr.) is sought after for both its oil and protein components. Genetic approaches to add value to either component are ongoing efforts in soya bean breeding and molecular biology programmes. The former is the primary vegetable oil consumed in the world. Hence, its primary usage is in direct human consumption. As a means to increase its utility in feed applications, thereby expanding the market of soya bean coproducts, we investigated the simultaneous displacement of marine ingredients in aquafeeds with soya bean-based protein and a high Omega-3 fatty acid soya bean oil, enriched with alpha-linolenic and stearidonic acids, in both steelhead trout (Oncorhynchus mykiss) and Kampachi (Seriola rivoliana). Communicated herein are aquafeed formulations with major reduction in marine ingredients that translates to more total Omega-3 fatty acids in harvested flesh. Building off of these findings, subsequent efforts were directed towards a genetic strategy that would translate to a prototype design of an optimal identity-preserved soya bean-based feedstock for aquaculture, whereby a multigene stack approach for the targeted synthesis of two value-added output traits, eicosapentaenoic acid and the ketocarotenoid, astaxanthin, were introduced into the crop. To this end, the systematic introduction of seven transgenic cassettes into soya bean, and the molecular and phenotypic evaluation of the derived novel events are described. © 2016 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.

  5. Combined hydrothermal liquefaction and catalytic hydrothermal gasification system and process for conversion of biomass feedstocks

    Science.gov (United States)

    Elliott, Douglas C.; Neuenschwander, Gary G.; Hart, Todd R.

    2017-09-12

    A combined hydrothermal liquefaction (HTL) and catalytic hydrothermal gasification (CHG) system and process are described that convert various biomass-containing sources into separable bio-oils and aqueous effluents that contain residual organics. Bio-oils may be converted to useful bio-based fuels and other chemical feedstocks. Residual organics in HTL aqueous effluents may be gasified and converted into medium-BTU product gases and directly used for process heating or to provide energy.

  6. Siemens fuel gasification technology for the Canadian oil sands industry

    Energy Technology Data Exchange (ETDEWEB)

    Morehead, H. [Siemens Energy Inc., Orlando, FL (United States). IGCC and Gasification Sales and Marketing

    2010-07-01

    The Siemens fuel gasification (SFG) technology can be used to gasify a range of feedstocks, including petcoke, hard coal, lignite, and low-ranking fuels such as biomass and refinery residuals. The technology has recently been applied to a number of projects over the last 3 years. This paper discussed some of the issues related to the technology and it's use at a start-up facility in China. Five entrained-flow gasifiers with a thermal capacity of 500 MW are being installed at a coal gasification plant in northwestern China. The technology's use in hydrogen, steam and power production applications for the oil sands industry was also discussed. Issues related to feedstock quality, process characteristics, and equipment requirements for commercial gasifier systems were reviewed. The paper concluded by observing that improvements in gasification technology will make coal and petcoke gasification feasible options for power generation. IGCC is the most advanced and cost-effective technology for reducing emissions from coal-fired power plants. Gasification-based plants are also able to capture carbon dioxide (CO{sub 2}) for storage and sequestration. Details of the Siemens gasification test center in Germany were also included. 1 tab., 4 figs.

  7. Optimization of oil extraction from waste “Date pits” for biodiesel production

    International Nuclear Information System (INIS)

    Jamil, Farrukh; Al-Muhtaseb, Ala’a H.; Al-Haj, Lamya; Al-Hinai, Mohab A.; Hellier, Paul; Rashid, Umer

    2016-01-01

    Highlights: • Oil extraction from “Date pits” has been optimized first time by using RSM. • Optimized conditions for oil extraction gave oil yield of 16.5%. • “Date pits” oil as non-edible feedstock was transformed to biodiesel. • Biodiesel from “Date pits” oil posses potential fuel properties. - Abstract: Biodiesel produced from non-edible feedstocks is increasingly attractive alternative to both fossil diesels and renewable fuels derived from food crops. Date pits are one such lipid containing feedstock, and are widely available in Oman as a waste stream. This study analyses the effects of soxhlet process parameters (temperature, solvent to seed ratio and time) on the extraction of oils from waste Date pits and the subsequent production of biodiesel from it. The highest yield of oil extracted from the Date pits was 16.5 wt% obtained at a temperature of 70 °C, solvent to seed ratio of 4:1 and extraction duration of 7 h. Gas Chromatography analysis showed that Date pits oil consisted of 54.85% unsaturated fatty acids (UFA). Transesterification of the oil extracted was undertaken at 65 °C, a methanol to oil ratio of 6:1 and a reaction time of 1 h for biodiesel production. Biodiesel produced from the Date pits oil was found to have a cetane number of 58.23, density 870 of kg m"−"3, cloud point of 4 °C, pour point of −1 °C, CFPP of −0.5 °C and kinematic viscosity of 3.97 mm"2 s"−"1 (40 °C). In general, Date pit oil appears to be a potential alternative feedstock for biodiesel production.

  8. Assessing the potential of fatty acids produced by filamentous fungi as feedstock for biodiesel production.

    Science.gov (United States)

    Rivaldi, Juan Daniel; Carvalho, Ana Karine F; da Conceição, Leyvison Rafael V; de Castro, Heizir F

    2017-11-26

    Increased costs and limited availability of traditional lipid sources for biodiesel production encourage researchers to find more sustainable feedstock at low prices. Microbial lipid stands out as feedstock replacement for vegetable oil to convert fatty acid esters. In this study, the potential of three isolates of filamentous fungi (Mucor circinelloides URM 4140, M. hiemalis URM 4144, and Penicillium citrinum URM 4126) has been assessed as single-cell oil (SCO) producers. M. circinelloides 4140 had the highest biomass concentration with lipid accumulation of up to 28 wt% at 120 hr of cultivation. The profile of fatty acids revealed a high content of saturated (SFA) and monounsaturated fatty acids (MUFA), including palmitic (C16:0, 33.2-44.1 wt%) and oleic (C18:1, 20.7-31.2 wt%) acids, with the absence of polyunsaturated fatty acids (PUFA) having more than four double bonds. Furthermore, the predicted properties of biodiesel generated from synthesized SCOs have been estimated by using empirical models which were in accordance with the limits imposed by the USA (ASTM D6715), European Union (EN 14214), and Brazilian (ANP 45/2014) standards. These results suggest that the assessed filamentous fungus strains can be considered as alternative feedstock sources for high-quality biofuel production.

  9. Genetic and Genomic Analysis of the Tree Legume Pongamia pinnata as a Feedstock for Biofuels

    Directory of Open Access Journals (Sweden)

    Bandana Biswas

    2013-11-01

    Full Text Available The tree legume Pongamia { (L. Pierre [syn. (L. Panigrahi]} is emerging as an important biofuels feedstock. It produces about 30 kg per tree per year of seeds, containing up to 55% oil (w/v, of which approximately 50% is oleic acid (C. The capacity for biological N fixation places Pongamia in a more sustainable position than current nonlegume biofuel feedstocks. Also due to its drought and salinity tolerance, Pongamia can grow on marginal land not destined for production of food. As part of the effort to domesticate Pongamia our research group at The University of Queensland has started to develop specific genetic and genomic tools. Much of the preliminary work to date has focused on characterizing the genetic diversity of wild populations. This diversity is reflective of the outcrossing reproductive biology of Pongamia and necessitates the requirement to develop clonal propagation protocols. Both the chloroplast and mitochondrial genomes of Pongamia have been sequenced and annotated (152,968 and 425,718 bp, respectively, with similarities to previously characterized legume organelle genomes. Many nuclear genes associated with oil biosynthesis and nodulation in Pongamia have been characterized. The continued application of genetic and genomic tools will support the deployment of Pongamia as a sustainable biofuel feedstock.

  10. Quarterly oil statistics. Second quarter, 1978

    Energy Technology Data Exchange (ETDEWEB)

    1978-01-01

    This issue presents rapid and accurate information on supply and disposal of crude oil, oil products, and natural gas, including production, refinery output, trade, bunkers, refinery fuel and losses and stock changes. Detailed import and export data are given for 42 origins and 29 destinations for crude oil and products. NGL, feedstocks, naphtha, LPG, gasoline, kerosene, gas/diesel oil, and heavy fuel oil (residual) are covered. (DLC)

  11. Prospects of Tectona Grandis as a Feedstock for Biodiesel

    International Nuclear Information System (INIS)

    Sarin, Amit; Singh, Meetu; Sharma, Neerja; Singh, N. P.

    2017-01-01

    The limited availability of fossil fuels has encouraged the need of replacement fuels of renewable nature. Among the renewable fuels, biodiesel produced from oil seeds and food wastes has been favored by the majority of researchers. In this study, Tectona Grandis seed oil has been investigated as a non-edible feedstock for biodiesel. The oil content of seed is 43% which makes it suitable for commercial production of biodiesel. The synthesis of biodiesel from T. Grandis oil was done with transesterification reaction giving high percentage yield of biodiesel which reached to 89%. The T. Grandis biodiesel was subjected to determine various physicochemical parameters by standard testing methods and found in agreement with the ASTM D-6751 and EN-14214 standards. The fatty-acid methyl ester composition for the biodiesel is composed of 42.71% oleic acid, 13.1% palmitic acid, and 31.51% linoleic acid. The biodiesel showed low oxidation stability which is attributed to high percentage of unsaturation. To address this issue, synthetic antioxidants were added to increase its resistance towards oxidation. By considering all the parameters, the present study reveals that T. Grandis seed oil is reliable for the production of biodiesel with encouraging probability in future.

  12. Prospects of Tectona Grandis as a Feedstock for Biodiesel

    Energy Technology Data Exchange (ETDEWEB)

    Sarin, Amit, E-mail: amit.sarin@yahoo.com [Department of Physical Sciences, I.K. Gujral Punjab Technical University, Kapurthala (India); Singh, Meetu [Department of Applied Sciences, I.K. Gujral Punjab Technical University, Kapurthala (India); Sharma, Neerja [PG Department of Physics and Electronics, DAV College, Amritsar (India); Singh, N. P. [Department of Planning and External Development, I.K. Gujral Punjab Technical University, Kapurthala (India)

    2017-10-26

    The limited availability of fossil fuels has encouraged the need of replacement fuels of renewable nature. Among the renewable fuels, biodiesel produced from oil seeds and food wastes has been favored by the majority of researchers. In this study, Tectona Grandis seed oil has been investigated as a non-edible feedstock for biodiesel. The oil content of seed is 43% which makes it suitable for commercial production of biodiesel. The synthesis of biodiesel from T. Grandis oil was done with transesterification reaction giving high percentage yield of biodiesel which reached to 89%. The T. Grandis biodiesel was subjected to determine various physicochemical parameters by standard testing methods and found in agreement with the ASTM D-6751 and EN-14214 standards. The fatty-acid methyl ester composition for the biodiesel is composed of 42.71% oleic acid, 13.1% palmitic acid, and 31.51% linoleic acid. The biodiesel showed low oxidation stability which is attributed to high percentage of unsaturation. To address this issue, synthetic antioxidants were added to increase its resistance towards oxidation. By considering all the parameters, the present study reveals that T. Grandis seed oil is reliable for the production of biodiesel with encouraging probability in future.

  13. Low-Cost Feedstock Conversion to Biodiesel via Ultrasound Technology

    Directory of Open Access Journals (Sweden)

    Farouk Ameer

    2010-10-01

    Full Text Available Biodiesel has attracted increasing interest and has proved to be a good substitute for fossil-based fuels due to its environmental advantages and availability from renewable resources such as refined and waste vegetable oils. Several studies have shown that biodiesel is a better fuel than the fossil-derived diesel in terms of engine performance, emissions reduction, lubricity and environmental benefits. The increasing popularity of biodiesel has generated great demand for its commercial production methods, which in turn calls for the development of technically and economically sound process technologies. This paper explores the applicability of ultrasound in the optimization of low-cost feedstock – in this case waste cooking oil – in the transesterification conversion to biodiesel. It was found that the conversion efficiency of the waste oil using ultrasound was higher than with the mechanical stirring method. The optimized variables of 6:1 methanol/oil ratio at a reaction temperature of 30 °C and a reaction time of 30 min and 0.75% KOH (wt/wt catalyst concentration was obtained for the transesterification of the waste oil via the use of ultrasound.

  14. Anti-Inflammatory and Skin Barrier Repair Effects of Topical Application of Some Plant Oils

    Directory of Open Access Journals (Sweden)

    Tzu-Kai Lin

    2017-12-01

    Full Text Available Plant oils have been utilized for a variety of purposes throughout history, with their integration into foods, cosmetics, and pharmaceutical products. They are now being increasingly recognized for their effects on both skin diseases and the restoration of cutaneous homeostasis. This article briefly reviews the available data on biological influences of topical skin applications of some plant oils (olive oil, olive pomace oil, sunflower seed oil, coconut oil, safflower seed oil, argan oil, soybean oil, peanut oil, sesame oil, avocado oil, borage oil, jojoba oil, oat oil, pomegranate seed oil, almond oil, bitter apricot oil, rose hip oil, German chamomile oil, and shea butter. Thus, it focuses on the therapeutic benefits of these plant oils according to their anti-inflammatory and antioxidant effects on the skin, promotion of wound healing and repair of skin barrier.

  15. Automatic Method for Controlling the Iodine Adsorption Number in Carbon Black Oil Furnaces

    Directory of Open Access Journals (Sweden)

    Zečević, N.

    2008-12-01

    Full Text Available There are numerous of different inlet process factors in carbon black oil furnaces which must be continuously and automatically adjusted, due to stable quality of final product. The most important six inlet process factors in carbon black oil-furnaces are:1. volume flow of process air for combustion2. temperature of process air for combustion3. volume flow of natural gas for insurance the necessary heat for thermal reaction of conversionthe hydrocarbon oil feedstock in oil-furnace carbon black4. mass flow rate of hydrocarbon oil feedstock5. type and quantity of additive for adjustment the structure of oil-furnace carbon black6. quantity and position of the quench water for cooling the reaction of oil-furnace carbon black.The control of oil-furnace carbon black adsorption capacity is made with mass flow rate of hydrocarbon feedstock, which is the most important inlet process factor. Oil-furnace carbon black adsorption capacity in industrial process is determined with laboratory analyze of iodine adsorption number. It is shown continuously and automatically method for controlling iodine adsorption number in carbon black oil-furnaces to get as much as possible efficient control of adsorption capacity. In the proposed method it can be seen the correlation between qualitatively-quantitatively composition of the process tail gasses in the production of oil-furnace carbon black and relationship between air for combustion and hydrocarbon feedstock. It is shown that the ratio between air for combustion and hydrocarbon oil feedstock is depended of adsorption capacity summarized by iodine adsorption number, regarding to BMCI index of hydrocarbon oil feedstock.The mentioned correlation can be seen through the figures from 1. to 4. From the whole composition of the process tail gasses the best correlation for continuously and automatically control of iodine adsorption number is show the volume fraction of methane. The volume fraction of methane in the

  16. Essential oil composition of some plants of family zygophyllaceae and euphorbiaceae

    International Nuclear Information System (INIS)

    Dastagir, G.

    2014-01-01

    Our objectives were to find out the chemical constituents of some selected plants of family Zygophyllaceae and Euphorbiaceae collected from Peshawar and Attock Hills during 2009, by GC/MS. The oil obtained from three analysed plants of family Zygophyllaceae showed that oxygenated monoterpenes were the highest (90.99%) in Tribulus terrestris, followed by Fagonia cretica (89.94%) and the lowest (36.01%) found in Peganum harmala. Peganum harmala had maximum esters (11.58%) followed by Tribulus terrestris (5.8%) and Fagonia cretica (5.5%). Monoterpenes hydrocarbons were the highest (1.22%) in Fagonia cretica followed by Peganum harmala and absent in Tribulus terrestris. Sesquiterpenes hydrocarbons were maximum (11.01%) in Peganum harmala and absent in Tribulus terrestris. The analysis of essential oils revealed that Fagonia cretica oils had 17 compounds that constituted 100% of the oil composition. Oxygenated monoterpenes (89.94%), were a major group of compounds. Peganum harmala oil had 18 compounds. There were 10 compounds in Tribulus terrestris oil that consisted 100% of the total oil composition. Eight compounds were identified in Chrozophora tinctoria oils giving complete oil composition. It had oxygenated monoterpenes (86.93%), constituting 2(4H) - Benzofuranone, 5, 6, 7, 7a tetrahydro-4, 4, 7a-trimethy (50.718%). Ricinus communis . oil had 8 compounds with 100% of the oil composition. The present study exhibited that phytochemical attributes and chemical composition of the studied plants have potential uses for food, pharmaceutical and cosmetic industry in future. Detailed research work on the antioxidant principles and biological activities of the studied plants is further recommended. (author)

  17. Application of Volatile Antifungal Plant Essential Oils for Controlling Pepper Fruit Anthracnose by Colletotrichum gloeosporioides.

    Science.gov (United States)

    Hong, Jeum Kyu; Yang, Hye Ji; Jung, Heesoo; Yoon, Dong June; Sang, Mee Kyung; Jeun, Yong-Chull

    2015-09-01

    Anthracnose caused by Colletotrichum gloeosporioides has been destructive during pepper fruit production in outdoor fields in Korea. In vitro antifungal activities of 15 different plant essential oils or its components were evaluated during conidial germination and mycelial growth of C. gloeosporioides. In vitro conidial germination was most drastically inhibited by vapour treatments with carvacrol, cinnamon oil, trans-cinnamaldehyde, citral, p-cymene and linalool. Inhibition of the mycelial growth by indirect vapour treatment with essential oils was also demonstrated compared with untreated control. Carvacrol, cinnamon oil, trans-cinnamaldehyde, citral and eugenol were among the most inhibitory plant essential oils by the indirect antifungal efficacies. Plant protection efficacies of the plant essential oils were demonstrated by reduced lesion diameter on the C. gloeosporioides-inoculated immature green pepper fruits compared to the inoculated control fruits without any plant essential oil treatment. In planta test showed that all plant essential oils tested in this study demonstrated plant protection efficacies against pepper fruit anthracnose with similar levels. Thus, application of different plant essential oils can be used for eco-friendly disease management of anthracnose during pepper fruit production.

  18. Allelopatic effects of some medicinal plant essential oils on plant seeds germination

    Directory of Open Access Journals (Sweden)

    ALI SHOKOUHIAN

    2016-04-01

    Full Text Available The effect of essential oils from some medicinal plants on seed germination was studied with the aim of assessing their potential use as bioherbicides. The experiment was conducted as factorial based on completely randomized design (CRD with three replications. Seeds of 3 summer crops including lettuce (Lactuca sativa, pepper (Piper longum and tomato (Solanum lycopersicum were exposed to essential oils of rosemary (Rosmarinus officinalis, thyme (Thymus vulgaris and anise (Pimpinella anisum at 3 different concentrations (25 and 50% diluted and undiluted. Treated seeds were grown in a growth chamber at 25°C for 5 days. The number of germinated seeds in each Petri dish was daily counted. After five days seed germination percentage (Ge was calculated. Biplot analysis was performed using genotype plus genotype environment interaction (GGE method. Results showed that the allelopathic effect on Ge was varied among studied plants, which was mainly due to i differences in the composition of the studied essential oils and ii different allelopathic effects of the studied essential oils on Ge. Accordingly, compared to the individual use, combining several essential oils would have a greater inhibitory effect on Ge of weeds.

  19. EARLY ENTRANCE CO-PRODUCTION PLANT - DECENTRALIZED GASIFICATION COGENERATION TRANSPORTATION FUELS AND STEAM FROM AVAILABLE FEEDSTOCKS

    International Nuclear Information System (INIS)

    Unknown

    2001-01-01

    Waste Processors Management, Inc. (WMPI), along with its subcontractors Texaco Power and Gasification, SASOL Technology Ltd., and Nexant Inc. entered into a Cooperative Agreement DE-FC26-00NT40693 with the US Department of Energy (DOE), National Energy Technology Laboratory (NETL) to assess the techno-economic viability of building an Early Entrance Co-Production Plant (EECP) in the US to produce ultra clean Fischer-Tropsch (FT) transportation fuels with either power or steam as the major co-product. The EECP designs emphasize on recovery and gasification of low-cost coal waste (culm) from coal clean operations and will assess blends of the culm and coal or petroleum coke as feedstocks. The project is being carried out in three phases. Phase I involves definition of concept and engineering feasibility study to identify areas of technical, environmental and financial risk. Phase II consists of an experimental testing program designed to validate the coal waste mixture gasification performance. Phase III involves updating the original EECP design, based on results from Phase II, to prepare a preliminary engineering design package and financial plan for obtaining private funding to build a 5,000 BPD coal gasification/liquefaction plant next to an existing co-generation plant in Gilberton, Schuylkill County, Pennsylvania

  20. EARLY ENTRANCE CO-PRODUCTION PLANT - DECENTRALIZED GASIFICATION COGENERATION TRANSPORTATION FUELS AND STEAM FROM AVAILABLE FEEDSTOCKS

    Energy Technology Data Exchange (ETDEWEB)

    Unknown

    2001-12-01

    Waste Processors Management, Inc. (WMPI), along with its subcontractors Texaco Power & Gasification, SASOL Technology Ltd., and Nexant Inc. entered into a Cooperative Agreement DE-FC26-00NT40693 with the US Department of Energy (DOE), National Energy Technology Laboratory (NETL) to assess the techno-economic viability of building an Early Entrance Co-Production Plant (EECP) in the US to produce ultra clean Fischer-Tropsch (FT) transportation fuels with either power or steam as the major co-product. The EECP designs emphasize on recovery and gasification of low-cost coal waste (culm) from coal clean operations and will assess blends of the culm and coal or petroleum coke as feedstocks. The project is being carried out in three phases. Phase I involves definition of concept and engineering feasibility study to identify areas of technical, environmental and financial risk. Phase II consists of an experimental testing program designed to validate the coal waste mixture gasification performance. Phase III involves updating the original EECP design, based on results from Phase II, to prepare a preliminary engineering design package and financial plan for obtaining private funding to build a 5,000 BPD coal gasification/liquefaction plant next to an existing co-generation plant in Gilberton, Schuylkill County, Pennsylvania.

  1. The Design and Manufacturing of Essential oil Distillation Plant for ...

    African Journals Online (AJOL)

    The Design and Manufacturing of Essential oil Distillation Plant for rural poverty ... The adaptation of oil distillation technology for essential oil production is ... based on local resources and the first prototype has been manufactured and tested.

  2. Effect of oil spills on coastal power plants, refineries, and desalination plants

    International Nuclear Information System (INIS)

    Kiefer, C.; Mussali, Y.

    1992-01-01

    Major oil spills such as those experienced in the Gulf War, in Alaska, and in the Gulf of Mexico have raised concern for the protection of coastal facilities which use seawater for cooling or process purposes such as power stations, refineries, and desalination plants. Because of the availability of large quantities of cooling water, many power stations and refineries are located along the coastline in the United States and throughout the world. In addition, many countries in the Middle East, the Caribbean, and other areas of the world depend on desalination plants located along the coast for the vital supply of drinking water. The objective of this paper is to determine the levels of oil contamination which will adversely affect plant performance or result in damage to specific plant equipment such as condensers, heat exchangers, pumps, screens, water treatment equipment, and other vital water handling mechanisms

  3. Application of Volatile Antifungal Plant Essential Oils for Controlling Pepper Fruit Anthracnose by Colletotrichum gloeosporioides

    Directory of Open Access Journals (Sweden)

    Jeum Kyu Hong

    2015-09-01

    Full Text Available Anthracnose caused by Colletotrichum gloeosporioides has been destructive during pepper fruit production in outdoor fields in Korea. In vitro antifungal activities of 15 different plant essential oils or its components were evaluated during conidial germination and mycelial growth of C. gloeosporioides. In vitro conidial germination was most drastically inhibited by vapour treatments with carvacrol, cinnamon oil, trans-cinnamaldehyde, citral, p-cymene and linalool. Inhibition of the mycelial growth by indirect vapour treatment with essential oils was also demonstrated compared with untreated control. Carvacrol, cinnamon oil, trans-cinnamaldehyde, citral and eugenol were among the most inhibitory plant essential oils by the indirect antifungal efficacies. Plant protection efficacies of the plant essential oils were demonstrated by reduced lesion diameter on the C. gloeosporioides-inoculated immature green pepper fruits compared to the inoculated control fruits without any plant essential oil treatment. In planta test showed that all plant essential oils tested in this study demonstrated plant protection efficacies against pepper fruit anthracnose with similar levels. Thus, application of different plant essential oils can be used for eco-friendly disease management of anthracnose during pepper fruit production.

  4. Bioethanol - Status report on bioethanol production from wood and other lignocellulosic feedstocks

    Energy Technology Data Exchange (ETDEWEB)

    Scott-Kerr, Chris; Johnson, Tony; Johnson, Barbara; Kiviaho, Jukka

    2010-09-15

    Lignocellulosic biomass is seen as an attractive feedstock for future supplies of renewable fuels, reducing the dependence on imported petroleum. However, there are technical and economic impediments to the development of commercial processes that utilise biomass feedstocks for the production of liquid fuels such as ethanol. Significant investment into research, pilot and demonstration plants is on-going to develop commercially viable processes utilising the biochemical and thermochemical conversion technologies for ethanol. This paper reviews the current status of commercial lignocellulosic ethanol production and identifies global production facilities.

  5. Biotechnological processes for biodiesel production using alternative oils

    Energy Technology Data Exchange (ETDEWEB)

    Azocar, Laura; Ciudad, Gustavo [La Frontera Univ., Temuco (Chile). Nucleo Cietifico Tecnologico en Biorrecursos; Heipieper, Hermann J. [Helmholtz Centre for Environmental Research-UFZ, Leipzig (Germany). Dept. of Environmental Biotechnology; Navia, Rodrigo [La Frontera Univ., Temuco (Chile). Nucleo Cietifico Tecnologico en Biorrecursos; La Frontera Univ., Temuco (Chile). Dept. de Ingenieria Quimica

    2010-10-15

    As biodiesel (fatty acid methyl ester (FAME)) is mainly produced from edible vegetable oils, crop soils are used for its production, increasing deforestation and producing a fuel more expensive than diesel. The use of waste lipids such as waste frying oils, waste fats, and soapstock has been proposed as low-cost alternative feedstocks. Non-edible oils such as jatropha, pongamia, and rubber seed oil are also economically attractive. In addition, microalgae, bacteria, yeast, and fungi with 20% or higher lipid content are oleaginous microorganisms known as single cell oil and have been proposed as feedstocks for FAME production. Alternative feedstocks are characterized by their elevated acid value due to the high level of free fatty acid (FFA) content, causing undesirable saponification reactions when an alkaline catalyst is used in the transesterification reaction. The production of soap consumes the conventional catalyst, diminishing FAME production yield and simultaneously preventing the effective separation of the produced FAME from the glycerin phase. These problems could be solved using biological catalysts, such as lipases or whole-cell catalysts, avoiding soap production as the FFAs are esterified to FAME. In addition, by-product glycerol can be easily recovered, and the purification of FAME is simplified using biological catalysts. (orig.)

  6. Consequential environmental life cycle assessment of a farm-scale biogas plant.

    Science.gov (United States)

    Van Stappen, Florence; Mathot, Michaël; Decruyenaere, Virginie; Loriers, Astrid; Delcour, Alice; Planchon, Viviane; Goffart, Jean-Pierre; Stilmant, Didier

    2016-06-15

    Producing biogas via anaerobic digestion is a promising technology for meeting European and regional goals on energy production from renewable sources. It offers interesting opportunities for the agricultural sector, allowing waste and by-products to be converted into bioenergy and bio-based materials. A consequential life cycle assessment (cLCA) was conducted to examine the consequences of the installation of a farm-scale biogas plant, taking account of assumptions about processes displaced by biogas plant co-products (power, heat and digestate) and the uses of the biogas plant feedstock prior to plant installation. Inventory data were collected on an existing farm-scale biogas plant. The plant inputs are maize cultivated for energy, solid cattle manure and various by-products from surrounding agro-food industries. Based on hypotheses about displaced electricity production (oil or gas) and the initial uses of the plant feedstock (animal feed, compost or incineration), six scenarios were analyzed and compared. Digested feedstock previously used in animal feed was replaced with other feed ingredients in equivalent feed diets, designed to take account of various nutritional parameters for bovine feeding. The displaced production of mineral fertilizers and field emissions due to the use of digestate as organic fertilizer was balanced against the avoided use of manure and compost. For all of the envisaged scenarios, the installation of the biogas plant led to reduced impacts on water depletion and aquatic ecotoxicity (thanks mainly to the displaced mineral fertilizer production). However, with the additional animal feed ingredients required to replace digested feedstock in the bovine diets, extra agricultural land was needed in all scenarios. Field emissions from the digestate used as organic fertilizer also had a significant impact on acidification and eutrophication. The choice of displaced marginal technologies has a huge influence on the results, as have the

  7. Aquatic weeds as the next generation feedstock for sustainable bioenergy production.

    Science.gov (United States)

    Kaur, Manpreet; Kumar, Manoj; Sachdeva, Sarita; Puri, S K

    2018-03-01

    Increasing oil prices and depletion of existing fossil fuel reserves, combined with the continuous rise in greenhouse gas emissions, have fostered the need to explore and develop new renewable bioenergy feedstocks that do not require arable land and freshwater resources. In this regard, prolific biomass growth of invasive aquatic weeds in wastewater has gained much attention in recent years in utilizing them as a potential feedstock for bioenergy production. Aquatic weeds have an exceptionally higher reproduction rates and are rich in cellulose and hemicellulose with a very low lignin content that makes them an efficient next generation biofuel crop. Considering their potential as an effective phytoremediators, this review presents a model of integrated aquatic biomass production, phytoremediation and bioenergy generation to reduce the land, fresh water and fertilizer usage for sustainable and economical bioenergy. Copyright © 2017. Published by Elsevier Ltd.

  8. An Evaluation of Holistic Sustainability Assessment Framework for Palm Oil Production in Malaysia

    OpenAIRE

    Lim, Chye; Biswas, Wahidul

    2015-01-01

    Palm oil based biodiesel offers an alternative energy source that can reduce current dependence on conventional fossil fuels and may reduce greenhouse gas (GHG) emissions depending on the type of feedstock and processes used. In the Malaysian context, the palm oil industry not only provides high-yield, renewable feedstock to the world, it brings socio-economic development to the Malaysian rural community and contributes to the national income. However, the sustainability of palm oil remains c...

  9. Coal-oil coprocessing at HTI - development and improvement of the technology

    Energy Technology Data Exchange (ETDEWEB)

    Stalzer, R.H.; Lee, L.K.; Hu, J.; Comolli, A. [Hydrocarbon Technologies, Inc., Lawrenceville, NJ (United States)

    1995-12-31

    Co-Processing refers to the combined processing of coal and petroleum-derived heavy oil feedstocks. The coal feedstocks used are those typically utilized in direct coal liquefaction: bituminous, subbituminous, and lignites. Petroleum-derived oil, is typically a petroleum residuum, containing at least 70 W% material boiling above 525{degrees}C. The combined coal and oil feedstocks are processed simultaneously with the dual objective of liquefying the coal and upgrading the petroleum-derived residuum to lower boiling (<525{degrees}C) premium products. HTI`s investigation of the Co-Processing technology has included work performed in laboratory, bench and PDU scale operations. The concept of co-processing technology is quite simple and a natural outgrowth of the work done with direct coal liquefaction. A 36 month program to evaluate new process concepts in coal-oil coprocessing at the bench-scale was begun in September 1994 and runs until September 1997. Included in this continuous bench-scale program are provisions to examine new improvements in areas such as: interstage product separation, feedstock concentrations (coal/oil), improved supported/dispersed catalysts, optimization of reactor temperature sequencing, and in-line hydrotreating. This does not preclude other ideas from DOE contracts and other sources that can lead to improved product quality and economics. This research work has led to important findings which significantly increased liquid yields, improved product quality, and improved process economics.

  10. Synthesis of polyhydroxyalkanoate from palm oil and some new applications.

    Science.gov (United States)

    Sudesh, Kumar; Bhubalan, Kesaven; Chuah, Jo-Ann; Kek, Yik-Kang; Kamilah, Hanisah; Sridewi, Nanthini; Lee, Yan-Fen

    2011-03-01

    Polyhydroxyalkanoate (PHA) is a potential substitute for some petrochemical-based plastics. This biodegradable plastic is derived from microbial fermentation using various carbon substrates. Since carbon source has been identified as one of the major cost-absorbing factors in PHA production, cheap and renewable substrates are currently being investigated as substitutes for existing sugar-based feedstock. Plant oils have been found to result in high-yield PHA production. Malaysia, being the world's second largest producer of palm oil, is able to ensure continuous supply of palm oil products for sustainable PHA production. The biosynthesis and characterization of various types of PHA using palm oil products have been described in detail in this review. Besides, by-products and waste stream from palm oil industry have also demonstrated promising results as carbon sources for PHA biosynthesis. Some new applications in cosmetic and wastewater treatment show the diversity of PHA usage. With proper management practices and efficient milling processes, it may be possible to supply enough palm oil-based raw materials for human consumption and other biotechnological applications such as production of PHA in a sustainable manner.

  11. Antibacterial activity of essential oils from Australian native plants.

    Science.gov (United States)

    Wilkinson, Jenny M; Cavanagh, Heather M A

    2005-07-01

    To date, of the Australian essential oils, only tea tree (Melaleuca alternifolia) and Eucalyptus spp. have undergone extensive investigation. In this study a range of Australian essential oils, including those from Anethole anisata, Callistris glaucophyllia, Melaleuca spp. and Thyptomine calycina, were assayed for in vitro antibacterial activity. M. alternifolia was also included for comparison purposes. Activity was determined using standard disc diffusion assays with each oil assayed at 100%, 10% and 1% against five bacteria (Escherichia coli, Salmonella typhimurium, Staphylococcus aureus, Pseudomonas aeruginosa and Alcaligenes faecalis) and the yeast, Candida albicans. All bacteria, with the exception of Ps. aeruginosa, were susceptible to one or more of the essential oils at 100%, with only Eremophilia mitchelli inhibiting the growth of any bacteria at 1% (inhibition of Sal. typhimurium). Where multiple samples of a single oil variety were tested variability in activity profiles were noted. This suggests that different methods of preparation of essential oils, together with variability in plant chemical profiles has an impact on whether or not the essential oil is of use as an antimicrobial agent. These results show that essential oils from Australian plants may be valuable antimicrobial agents for use alone or incorporated into cosmetics, cleaning agents and pharmaceutical products.

  12. Decanter cake as a feedstock for biodiesel production: A first report

    International Nuclear Information System (INIS)

    Maniam, Gaanty Pragas; Hindryawati, Noor; Nurfitri, Irma; Jose, Rajan; Ab. Rahim, Mohd Hasbi; Dahalan, Farrah Aini; Yusoff, Mashitah M.

    2013-01-01

    Highlights: • Decanter cake as a potential waste feedstock for biodiesel production. • Ultrasound-aided transesterification achieving nearly 86% conversion in 1 h. • Boiler ash, a waste product, was successfully used as a catalyst. - Abstract: Decanter cake (DC), with an oil content of 11.5 ± 0.18 wt.%, was subjected to ultrasound-aided transesterification using boiler ash as a base catalyst, petroleum ether and hexane as co-solvents. Optimization work revealed that at MeOH:oil mass ratio of 6:1 and 2.3 wt.% catalyst (based on DC weight) with 1:2 co-solvents:DC mass ratio as the optimal reaction conditions. Both decanter cake and boiler ash, waste materials from oil palm mill, were successfully utilized to produce methyl ester (biodiesel) with highest conversion of 85.9 wt.% in a 1 h reaction period at 55 °C

  13. New technologies and alternative feedstocks in petrochemistry and refining. Preprints of the conference

    Energy Technology Data Exchange (ETDEWEB)

    Ernst, S.; Jess, A.; Lercher, J.A.; Lichtscheidl, J.; Marchionna, M. (eds.)

    2013-11-01

    This international conference paper provides a forum for chemists and engineers from refinery, petrochemistry and the chemical industry as well as from academia to discuss new technologies and alternative feedstocks in petrochemistry and refining with the special topic ''Shale Gas, Heavy Oils and Coal''. 23 Lectures and 18 Posters are presented. All papers are analyzed for the ENERGY database.

  14. Evaluation of attached periphytical algal communities for biofuel feedstock generation

    Energy Technology Data Exchange (ETDEWEB)

    Sandefur, H.N.; Matlock, M.D.; Costello, T.A. [Arkansas Univ., Division of Agriculture, Fayetteville, AR (United States). Dept. of Biological and Agricultural Engineering, Center for Agricultural and Rural Sustainability

    2010-07-01

    This paper reported on a study that investigated the feasibility of using algal biomass as a feedstock for biofuel production. Algae has a high lipid content, and with its high rate of production, it can produce more oil on less land than traditional bioenergy crops. In addition, algal communities can remove nutrients from wastewater. Enclosed photobioreactors and open pond systems are among the many different algal growth systems that can be highly productive. However, they can also be difficult to maintain. The objective of this study was to demonstrate the ability of a pilot scale algal turf scrubber (ATS) to facilitate the growth of attached periphytic algal communities for the production of biomass feedstock and the removal of nutrients from a local stream in Springdale, Arizona. The ATS operated for a 9 month sampling period, during which time the system productivity averaged 26 g per m{sup 2} per day. The removal of total phosphorus and total nitrogen averaged 48 and 13 per cent, respectively.

  15. Preparation of Jojoba Oil Ester Derivatives for Biodiesel Evaluation

    Science.gov (United States)

    As a result of the increase in commodity vegetable oil prices, it is imperative that non-food oils should be considered as alternative feedstocks for biodiesel production. Jojoba oil is unusual in that it is comprised of wax esters as opposed to the triglycerides found in typical vegetable oils. A...

  16. Plant Essential Oils Used Against Some Bee Diseases

    Directory of Open Access Journals (Sweden)

    Hidayet Tutun

    2018-02-01

    Full Text Available The most common honey bee diseases are American foulbrood (AFB caused by the bacterium Paenibacillus larvae, Chalkbrood caused by fungus Ascosphaera apis and diseases caused by parasitic mites such as Acarapis woodi, Varroa destructor. These diseases and pests not only cause economic loss but also cause ecological problems related to the role of honey bees, as the most important pollinators on Earth. Synthetic acaricides and antibiotics are used to keep the diseases and mites in control. Use of the drugs lead to the development of drug-resistant organisms, detrimental effect on non-target organisms and the residue problem in bee products. For this reasons, the need for alternative control methods has become compulsory in recent years. It has been known that some plant oils used widely in perfumery and food industry for flavor and smell have been used as repellent to certain insects, bactericide and fungicide. Therefore, intensive studies have been carried out on plants with anti-mites, antibacterial and antifungal potentials and these studies are still going on. Recently, studies in this area have shown that essential oils of plants such as thyme, cloves, mint, lemon grass, cinnamon, grapefruit, rosemary, marigold, are lethal to some mites, bacteria and fungi. In addition, it has been reported that some components, isolated from these plants such as sanguinarine, thymoquinone, capsaicin, carvacrol, citral, eugenol, thymol, show these effects on the organisms. As a result, in countries rich in biodiversity due to endemic plant species, the essential oils used in control of these diseases should be favored instead of or in combination with conventional drugs in integrated the disease management programs because of the lack of harmful effects of essential oils on non-target organisms and environment.

  17. Assessment of process variables on the use of macauba pulp oil as feedstock for the continuous production of ethyl esters under pressurized conditions

    Directory of Open Access Journals (Sweden)

    T. A. da S. Colonelli

    Full Text Available ABSTRACT This study evaluated the potential of macauba pulp oil (MPO as a feedstock for continuous ester production using ethanol under pressurized conditions. Experiments were performed in order to obtain data for the effect of process variables on ethyl ester (FAEE and free fatty acid (FFA conversion in a catalyst-free process. From the results, it appears that the MPO to ethanol mass ratio and the pressure were the variables with more favorable effect on the evaluated response variables. The addition of n-hexane caused an increase in the production of esters; however, this had a negative effect on FFA conversion. The addition of water was unfavorable for oil processing with high acidity. In this process, esterification and transesterification occur simultaneously, and the high FFA content in MPO provides high yields (85 wt% of esters; 93% FFA conversion at low temperature, since the esterification reaction rate is higher than the transesterification. The decomposition of fatty acids was evaluated and levels <5% were observed under the evaluated experimental conditions.

  18. Biomass Feedstocks | Bioenergy | NREL

    Science.gov (United States)

    Feedstocks Biomass Feedstocks Our mission is to enable the coordinated development of biomass generic biomass thermochemical conversion process (over a screened-back map of the United States) showing U.S. Biomass Resources, represented by photos of timber, corn stover, switchgrass, and poplar. All

  19. Oil from coal: alchemy for the 1990's

    Energy Technology Data Exchange (ETDEWEB)

    Whitehead, J

    1980-06-06

    Gulf Oil Chemical is taking a great interest in developments in the energy and synthetic feedstocks area, and is one of the leaders of technological advance in obtaining feedstocks from coal. The company's work in this direction, and the problems facing the petrochemical industry in the USA are reviewed in this article.

  20. Study of the nature of clarified oils and their potential uses

    Energy Technology Data Exchange (ETDEWEB)

    Nagpal, J.M.; Singh, I.D.; Tiwari, G.B.; Goyal, B.S.; Chandola, H.C. [Indian Institute of Petroleum, Dehradun (India)

    1996-12-31

    Vacuum Gas Oils (VGOs) from waxy crudes contain appreciable amounts of wax. During catalytic cracking of VGO, due to lop sided cracking of n-paraffins, a substantial amount of wax is retained in clarified oils. These clarified oils generally find their way into refinery fuel. Wax separated from clarified oils were characterised using nuclear magnetic resonance (n.m.r.) and infrared (i.r.) spectroscopy. The groupwise composition of the clarified oils were also studied and the data compared with a typical short residue. Waxes separated from the clarified oils contain an appreciably high proportion of n-paraffins indicating a potential feedstock for making {alpha}-olefins. Group type composition showed that the polar aromatics separated from the clarified oils have high BMCI values indicating the possibility of using them as feedstocks for carbon rich materials. 8 refs., 3 tabs.

  1. The environmental sustainability of a pilot plant for the manufacture of biodiesel from frying oil: a case study: Universidade de Brasilia UNB/FGA, Gama, DF, Brazil; A sustentabilidade ambiental de uma planta piloto para fabricacao de biodiesel a partir de oleo de fritura: estudo de caso: Universidade de Brasilia UnB/FGA, Gama, DF, Brasil

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Glecia Virgolino da; Falla, Pilar Hidalgo; Ginoris, Yovanka Perez; Oliveira, Alessandro Borges de S.; Alves, Marcos Antonio de S. [Universidade de Brasilia (FGA/UnB), Gama, DF (Brazil)

    2010-07-01

    Whereas the efforts of the Brazilian government and its researchers to explore new renewable energy alternatives such as biofuels, and considering the existing methodologies for the production of biodiesel, including the processes of washing out, which consumes a large amount of water treated, University of Brasilia/FGA/Gama installs in about July 2010 a pilot plant for biodiesel production. The pilot plant will use feedstock used frying oil collected in homes, restaurants and coffee shop in the region, preventing this oil remains released to sewage in natura. Thus, this project aims to develop academic research and the improvement of the community in the city of Gama / DF. This study aimed to carry out preliminary studies of the methodology and water to be used in biodiesel production in order to confirm the reduction of fuel costs the University to contribute to reducing the release of oils into the sewer and use of distillers for water will wash the biodiesel, reducing the energy consumption of the plant. (author)

  2. The antibacterial and antifungal activity of essential oils extracted from Guatemalan medicinal plants.

    Science.gov (United States)

    Miller, Andrew B; Cates, Rex G; Lawrence, Michael; Soria, J Alfonso Fuentes; Espinoza, Luis V; Martinez, Jose Vicente; Arbizú, Dany A

    2015-04-01

    Essential oils are prevalent in many medicinal plants used for oral hygiene and treatment of diseases. Medicinal plant species were extracted to determine the essential oil content. Those producing sufficient oil were screened for activity against Staphylococcus aureus, Escherichia coli, Streptococcus mutans, Lactobacillus acidophilus, and Candida albicans. Plant samples were collected, frozen, and essential oils were extracted by steam distillation. Minimum inhibitory concentrations (MIC) were determined using a tube dilution assay for those species yielding sufficient oil. Fifty-nine of the 141 plant species produced sufficient oil for collection and 12 species not previously reported to produce essential oils were identified. Essential oil extracts from 32 species exhibited activity against one or more microbes. Oils from eight species were highly inhibitory to S. mutans, four species were highly inhibitory to C. albicans, and 19 species yielded MIC values less than the reference drugs. RESULTS suggest that 11 species were highly inhibitory to the microbes tested and merit further investigation. Oils from Cinnamomum zeylanicum Blume (Lauraceae), Citrus aurantiifolia (Christm.) Swingle (Rutaceae), Lippia graveolens Kunth (Verbenaceae), and Origanum vulgare L. (Lamiaceae) yielded highly significant or moderate activity against all microbes and have potential as antimicrobial agents. Teas prepared by decoction or infusion are known methods for extracting essential oils. Oils from 11 species were highly active against the microbes tested and merit investigation as to their potential for addressing health-related issues and in oral hygiene.

  3. Oil Crop Potential for Biodiesel Production: Summary of Three Years of Spring Mustard Research -- Methodologies, Results, and Recommendations; 2000-2003

    Energy Technology Data Exchange (ETDEWEB)

    Brown, J.

    2005-07-01

    This report summarizes a project whose goal was to support R&D to develop an oil-seed crop that has the potential to reduce the feedstock cost of biodiesel to between 7 and 8 cents per pound of oil and expand supplies of biodiesel as demand for biodiesel grows. The key to this goal is that the non-oil fraction of the oil crop (the seed meal) must have a high value outside of the animal feed markets and produce oil that is not suitable for human consumption. To that end, a spring breeding program was developed to increase diversity of glucosinolate and the concentration of glucosinolates in the meal and to optimize the oil composition for biodiesel fuels. This report presents the research on the spring planted hybrids.

  4. Larvicidal activity of Neem oil and three plant essential oils from Senegal against Chrysodeixis chalcites (Esper, 1789

    Directory of Open Access Journals (Sweden)

    Saliou Ngom

    2018-01-01

    Full Text Available Objective: To evaluate the insecticide, larvicidal and repellent activity of the essential oils from Callistemon viminalis, Melaleuca leucadendron, and Hyptis suaveolens against Chrysodeixis chalcites and to compare it with neem oil (Azadirachta indica. Methods: The essential oils of the leaves of these aromatiques plants were extracted by steam distillation and contacts tests were carried out. Results: Essential oils in ethanol from Callistemon viminalis showed a higher biological activity than the neem with 100% larval mortality at the concentration of 2 μg/mL for 6 h, 100% and 90% in ethanol from Melaleuca leucadendron and Hyptis suaveolens, respectively at the concentration of 4 μg/mL for 24 h. By inhalation, the essential oils from Melaleuca leucadendron and of Hyptis suaveolens were more effective with mortality rates of larvae 100% and 50% respectively at 2 μg/L air applied after 24 h. Nevertheless, the neem has shown to be a repulsive plant and anti-nutritional plant. A significant difference in the percentages of consumption between leaves treated with neem oil and the control samples was observed (Newman-Keuls test except for Melaleuca leucadendron. Conclusions: The results of the study highlight remarkable biocide, properties of tested extracts, which provides important opportunities for the development of biopesticides.

  5. Association with an ammonium-excreting bacterium allows diazotrophic culture of oil-rich eukaryotic microalgae.

    Science.gov (United States)

    Ortiz-Marquez, Juan Cesar Federico; Do Nascimento, Mauro; Dublan, Maria de Los Angeles; Curatti, Leonardo

    2012-04-01

    Concerns regarding the depletion of the world's reserves of oil and global climate change have promoted an intensification of research and development toward the production of biofuels and other alternative sources of energy during the last years. There is currently much interest in developing the technology for third-generation biofuels from microalgal biomass mainly because of its potential for high yields and reduced land use changes in comparison with biofuels derived from plant feedstocks. Regardless of the nature of the feedstock, the use of fertilizers, especially nitrogen, entails a potential economic and environmental drawback for the sustainability of biofuel production. In this work, we have studied the possibility of nitrogen biofertilization by diazotrophic bacteria applied to cultured microalgae as a promising feedstock for next-generation biofuels. We have obtained an Azotobacter vinelandii mutant strain that accumulates several times more ammonium in culture medium than wild-type cells. The ammonium excreted by the mutant cells is bioavailable to promote the growth of nondiazotrophic microalgae. Moreover, this synthetic symbiosis was able to produce an oil-rich microalgal biomass using both carbon and nitrogen from the air. This work provides a proof of concept that artificial symbiosis may be considered an alternative strategy for the low-N-intensive cultivation of microalgae for the sustainable production of next-generation biofuels and other bioproducts.

  6. Catalytic hydrotreating of waste cooking oil for renewable diesel production

    Energy Technology Data Exchange (ETDEWEB)

    Bezergianni, Stella; Dimitriadis, Athanasios [Centre for Research and Technology Hellas (CERTH), Thessaloniki (Greece)

    2013-06-01

    A new technology based on catalytic hydrotreating of Waste Cooking Oil (WCO) for biodiesel production has been developed in the Centre for Research and Technology Hellas (CERTH). The main premise of this process is the conversion of the WCO fatty acids into normal- and iso-paraffins. The technology was evaluated in hydroprocessing pilot plants of CERTH where feedstock origin as well as optimal catalysts and operating parameters where identified. The fractionated diesel product, called ''white'' diesel exhibits excellent fuel properties including higher heating value (over 49 MJ/kg), negligible acidity, higher oxidation stability and higher cetane number ({proportional_to}77) than conventional biodiesel. The overall product yield is {proportional_to}92% v/v. This new suggested technology is extremely appealing as it employs existing refinery infrastructure and expertise, offers feedstock flexibility, leaves no by-product and above all is economically attractive. (orig.)

  7. Radioactive Study of Malagasy medicinal plants and essential oil by gamma spectrometry

    International Nuclear Information System (INIS)

    RAMAROSON, V.

    1997-01-01

    Medicinal plants and essential oil derived from environmental samples such as plants, flowers, bushes or wild trees. Then, it is normal that naturally occuring radionuclides from Thorium and Uranium series on the one hand, K-40, a primordial radionuclide and common for all the samples on the other hand have been identified in such samples. Their activity are very low as it was expected to be, and Pb-210, one of the most radiotoxic among all natural radionuclides was not detected. Particularly, for essential oil, only the light radionuclide K-40 remains in the obtained oil, it is estimated that heavy metals such as Pb-212, identified in plants could not follow the vapour phase during the distillation process. However, detected counts per second of K-40 decrease from plants to oil which are then non-radioactive [fr

  8. [Study on essential oils of medicinal plants in insect repellent].

    Science.gov (United States)

    Zhao, Hong-Zheng; Luo, Jiao-Yang; Liu, Qiu-Tao; Lv, Ze-Liang; Yang, Shi-Hai; Yang, Mei-Hua

    2016-01-01

    Mosquitoes are seriously harmful to human health for transmitting some mortal diseases. Among the methods of mosquito control, synthetical insecticides are the most popular. However, as a result of longterm use of these insecticides, high resistant mosquitos and heavy environmental pollution appear. Thus, eco-friendly prevention measures are taken into the agenda. Essential oils extracted from medicinal plants have repellent and smoked killing effects on mosquitoes. With abundant medical plants resources and low toxicity, they have the potential of being developed as a new type of mosquito and insect repellent agent. The recent application advances of essential oils of medicinal plants in insect repellent and its application limitations are overviewed. This review will provide references for the future development and in-depth study of essential oils. Copyright© by the Chinese Pharmaceutical Association.

  9. Dedicated Industrial Oilseed Crops as Metabolic Engineering Platforms for Sustainable Industrial Feedstock Production.

    Science.gov (United States)

    Zhu, Li-Hua; Krens, Frans; Smith, Mark A; Li, Xueyuan; Qi, Weicong; van Loo, Eibertus N; Iven, Tim; Feussner, Ivo; Nazarenus, Tara J; Huai, Dongxin; Taylor, David C; Zhou, Xue-Rong; Green, Allan G; Shockey, Jay; Klasson, K Thomas; Mullen, Robert T; Huang, Bangquan; Dyer, John M; Cahoon, Edgar B

    2016-02-26

    Feedstocks for industrial applications ranging from polymers to lubricants are largely derived from petroleum, a non-renewable resource. Vegetable oils with fatty acid structures and storage forms tailored for specific industrial uses offer renewable and potentially sustainable sources of petrochemical-type functionalities. A wide array of industrial vegetable oils can be generated through biotechnology, but will likely require non-commodity oilseed platforms dedicated to specialty oil production for commercial acceptance. Here we show the feasibility of three Brassicaceae oilseeds crambe, camelina, and carinata, none of which are widely cultivated for food use, as hosts for complex metabolic engineering of wax esters for lubricant applications. Lines producing wax esters >20% of total seed oil were generated for each crop and further improved for high temperature oxidative stability by down-regulation of fatty acid polyunsaturation. Field cultivation of optimized wax ester-producing crambe demonstrated commercial utility of these engineered crops and a path for sustainable production of other industrial oils in dedicated specialty oilseeds.

  10. Nuclear heat source design for an advanced HTGR process heat plant

    International Nuclear Information System (INIS)

    McDonald, C.F.; O'Hanlon, T.W.

    1983-01-01

    A high-temperature gas-cooled reactor (HTGR) coupled with a chemical process facility could produce synthetic fuels (i.e., oil, gasoline, aviation fuel, methanol, hydrogen, etc.) in the long term using low-grade carbon sources (e.g., coal, oil shale, etc.). The ultimate high-temperature capability of an advanced HTGR variant is being studied for nuclear process heat. This paper discusses a process heat plant with a 2240-MW(t) nuclear heat source, a reactor outlet temperature of 950 0 C, and a direct reforming process. The nuclear heat source outputs principally hydrogen-rich synthesis gas that can be used as a feedstock for synthetic fuel production. This paper emphasizes the design of the nuclear heat source and discusses the major components and a deployment strategy to realize an advanced HTGR process heat plant concept

  11. Garden cress (Lepidium sativum Linn.) seed oil as a potential feedstock for biodiesel production.

    Science.gov (United States)

    Nehdi, Imededdine Arbi; Sbihi, Hassen; Tan, Chin Ping; Al-Resayes, Saud Ibrahim

    2012-12-01

    Lepidium sativum L. (garden cress) is a fast growing annual herb, native to Egypt and west Asia but widely cultivated in temperate climates throughout the world. L. sativum seed oil (LSO) extracted from plants grown in Tunisia was analyzed to determine whether it has potential as a raw material for biodiesel production. The oil content of the seeds was 26.77%, mainly composed of polyunsaturated (42.23%) and monounsaturated (39.62%) fatty acids. Methyl esters (LSOMEs) were prepared by base-catalyzed transesterification with a conversion rate of 96.8%. The kinematic viscosity (1.92 mm(2)/s), cetane number (49.23), gross heat value (40.45), and other fuel properties were within the limits for biodiesel specified by the ASTM (American Standard for Testing and Materials). This study showed that LSOMEs have the potential to supplement petroleum-based diesel. Copyright © 2012 Elsevier Ltd. All rights reserved.

  12. National Gas Survey. Synthesized gaseous hydrocarbon fuels

    Energy Technology Data Exchange (ETDEWEB)

    None

    1978-06-01

    The supply-Technical Advisory Task Force-Synthesized Gaseous Hydrocarbon Fuels considered coal, hydrocarbon liquids, oil shales, tar sands, and bioconvertible materials as potential feedstocks for gaseous fuels. Current status of process technology for each feedstock was reviewed, economic evaluations including sensitivity analysis were made, and constraints for establishment of a synthesized gaseous hydrocarbon fuels industry considered. Process technology is presently available to manufacture gaseous hydrocarbon fuels from each of the feedstocks. In 1975 there were eleven liquid feedstock SNG plants in the United States having a capacity of 1.1 billion SCFD. There can be no contribution of SNG before 1982 from plants using feedstocks other than liquids because there are no plants in operation or under construction as of 1977. Costs for SNG are higher than current regulated prices for U.S. natural gas. Because of large reserves, coal is a prime feedstock candidate although there are major constraints in the area of coal leases, mining and water permits, and others. Commercial technology is available and several new gasification processes are under development. Oil shale is also a feedstock in large supply and commercial process technology is available. There are siting and permit constraints, and water availability may limit the ultimate size of an oil shale processing industry. Under projected conditions, bioconvertible materials are not expected to support the production of large quantities of pipeline quality gas during the next decade. Production of low or medium Btu gas from municipal solid wastes can be expected to be developed in urban areas in conjunction with savings in disposal costs. In the economic evaluations presented, the most significant factor for liquid feedstock plants is the anticipated cost of feedstock and fuel. The economic viability of plants using other feedstocks is primarily dependent upon capital requirements.

  13. Avocado and olive oil methyl esters

    International Nuclear Information System (INIS)

    Knothe, Gerhard

    2013-01-01

    Biodiesel, the mono-alkyl esters of vegetable oils, animal fats or other triacylglycerol-containing materials and an alternative to conventional petroleum-based diesel fuel, has been derived from a variety of feedstocks. Numerous feedstocks have been investigated as potential biodiesel sources, including commodity oils, however, the methyl esters of avocado and olive oil would likely be suitable as biodiesel fuel. In order to expand the database and comprehensive evaluation of the properties of vegetable oil esters, in this work the fuel-related properties of avocado and olive oil methyl esters, which exhibit similar fatty acid profiles including high oleic acid content, are determined. The cetane numbers of avocado oil methyl esters and olive oil methyl esters are relatively high, determined as 59.2 and 62.5, respectively, due to their elevated content of methyl oleate. Other properties are well within the ranges specified in biodiesel standards. The cloud points of both esters are slightly above 0 °C due to their content of saturated esters, especially methyl palmitate. Overall, avocado and olive oil yield methyl esters with fuel properties comparable to methyl esters from other commodity vegetable oils. The 1 H and 13 C NMR spectra of avocado and olive oil methyl esters are reported. -- Highlights: • Methyl esters of avocado and olive oil meet biodiesel fuel standards. • Provides comparison for methyl esters of other vegetable oils with high oleic content. • Discusses and compares present results with prior literature

  14. Comparison of inhalation risks : oil- versus gas-fired urban power plants

    International Nuclear Information System (INIS)

    Levin, L.

    2000-01-01

    The risks due to inhalation of emitted trace substances from natural gas-fired power plants tend to be significantly lower than those from oil- or coal-fired plants. A 1994 study suggested that the median inhalation life-time cancer risk from gas-fired plants was about 4 in one billion. This is an acceptable risk range according to the United States Environmental Protection Agency (US EPA) classification of risks. In the same study, median oil plant risks were 8 in one billion. coal plant median risks ranged from 2 to 3 in one billion depending on the grade of coal being burned. The US EPA classifies risks from 1 to one million to one to 10,000 as being in an acceptable risk range. In some cases, gas plants were shown to exhibit higher inhalation risks than oil plants due to terrain, air circulation patterns, enhanced stack or building downwash or mechanical turbulence. Higher concentrations of very potent trace substances could also result in high inhalation risks. An examination of several power plants in an urban area showed that initial judgements about risk can often be incorrect

  15. Combined effect of gamma irradiation and plant oils on the potato tuber moth, Phthorimaea operculella (Z)

    International Nuclear Information System (INIS)

    HASSAN, A.I.A.

    2012-01-01

    1- Susceptibility of Phthorimaea operculella to plant oil and gamma- irradiation. 2- Susceptibility of Phthorimaea operculella to powder of some plants and gamma irradiation.-selection of the suitable concentration of plant oils. - effect on male fertility. -effect on female fecundity. -effect on adult survival. 3- Separate and combined effects of radiation and plant oil on the male mating competitiveness using the sterile dose. 4- Separate and combined effects of radiation and plant oil on the male mating competitiveness using the sub sterile dose. 5- The effects of gamma- irradiation and plant oil on the pest when the potato tubers store for different periods. 6- Some biochemical studies. o Determine the adult total protein content of treated pupae. Determine the effect of plant oils and gamma- irradiation on the activity of some enzymes as proteinase, ATPase, keitenase cholinesterase.

  16. Biomass Feedstock National User Facility

    Data.gov (United States)

    Federal Laboratory Consortium — Bioenergy research at the Biomass Feedstock National User Facility (BFNUF) is focused on creating commodity-scale feed-stocks from native biomass that meet the needs...

  17. Algae as a Feedstock for Transportation Fuels. The Future of Biofuels?

    Energy Technology Data Exchange (ETDEWEB)

    McGill, Ralph [Sentech, Inc., Fuels, Engines, and Emissions Consulting, Knoxville, TN (United States)

    2008-05-15

    Events in world energy markets over the past several years have prompted many new technical developments as well as political support for alternative transportation fuels, especially those that are renewable. We have seen dramatic rises in the demand for and production of fuel ethanol from sugar cane and corn and biodiesel from vegetable oils. The quantities of these fuels being used continue to rise dramatically, and their use is helping to create a political climate for doing even more. But, the quantities are still far too small to stem the tide of rising crude prices worldwide. In fact, the use of some traditional crops (corn, sugar, soy, etc.) in making fuels instead of food is apparently beginning to impact the cost of food worldwide. Thus, there is considerable interest in developing alternative biofuel feedstocks for use in making fuels -- feedstocks that are not used in the food industries. Of course, we know that there is a lot of work in developing cellulosic-based ethanol that would be made from woody biomass. Process development is the critical path for this option, and the breakthrough in reducing the cost of the process has been elusive thus far. Making biodiesel from vegetable oils is a well-developed and inexpensive process, but to date there have been few reasonable alternatives for making biodiesel, although advanced processes such as gasification of biomass remain an option.

  18. The impact of feedstock cost on technology selection and optimum size

    International Nuclear Information System (INIS)

    Cameron, Jay B.; Kumar, Amit; Flynn, Peter C.

    2007-01-01

    Development of biomass projects at optimum size and technology enhances the role that biomass can make in mitigating greenhouse gas. Optimum sized plants can be built when biomass resources are sufficient to meet feedstock demand; examples include wood and forest harvest residues from extensive forests, and grain straw and corn stover from large agricultural regions. The impact of feedstock cost on technology selection is evaluated by comparing the cost of power from the gasification and direct combustion of boreal forest wood chips. Optimum size is a function of plant cost and the distance variable cost (DVC, $ dry tonne -1 km -1 ) of the biomass fuel; distance fixed costs (DFC, $ dry tonne -1 ) such as acquisition, harvesting, loading and unloading do not impact optimum size. At low values of DVC and DFC, as occur with wood chips sourced from the boreal forest, direct combustion has a lower power cost than gasification. At higher values of DVC and DFC, gasification has a lower power cost than direct combustion. This crossover in most economic technology will always arise when a more efficient technology with a higher capital cost per unit of output is compared to a less efficient technology with a lower capital cost per unit of output. In such cases technology selection cannot be separated from an analysis of feedstock cost

  19. Strategic Global Logistics Management for Sourcing Road Oil in the U.S.

    Directory of Open Access Journals (Sweden)

    Raj Bridgelall

    2017-12-01

    Full Text Available The demand for asphalt and road oil heavily leverages local supply because the product is a hot binder of aggregates that form the final mix needed to pave roads. This paper discusses the supply chain characteristics of crude oil feedstock by considering the overall logistics of sourcing heavy crude oil domestically, or importing it from international trading partners. Heavy crude oil is a source of asphalt and road oil production. The study examines critical global and domestic logistics factors such as customs, regulations, security, environmental compliance, and natural events that will affect costs, schedules, and risks. The study provides a framework for decision-making in sourcing the feedstock. The study helps global logisticians and transportation managers improve strategic design and planning towards efficient sourcing.

  20. Biological Activities of Essential Oils: From Plant Chemoecology to Traditional Healing Systems

    Directory of Open Access Journals (Sweden)

    Javad Sharifi-Rad

    2017-01-01

    Full Text Available Essential oils are complex mixtures of hydrocarbons and their oxygenated derivatives arising from two different isoprenoid pathways. Essential oils are produced by glandular trichomes and other secretory structures, specialized secretory tissues mainly diffused onto the surface of plant organs, particularly flowers and leaves, thus exerting a pivotal ecological role in plant. In addition, essential oils have been used, since ancient times, in many different traditional healing systems all over the world, because of their biological activities. Many preclinical studies have documented antimicrobial, antioxidant, anti-inflammatory and anticancer activities of essential oils in a number of cell and animal models, also elucidating their mechanism of action and pharmacological targets, though the paucity of in human studies limits the potential of essential oils as effective and safe phytotherapeutic agents. More well-designed clinical trials are needed in order to ascertain the real efficacy and safety of these plant products.

  1. The Design and Manufacturing of Essential oil Distillation Plant for ...

    African Journals Online (AJOL)

    Choice-Academy

    The paper presents economic value of the design and manufacturing of essential oil production plant ... system with the required precision for standard quality of oil at affordable cost. Thus, the ..... still, steam injection and distribution systems,.

  2. Heterogeneous catalyzed biodiesel production from Moringa oleifera oil

    Energy Technology Data Exchange (ETDEWEB)

    Kafuku, Gerald; Mbarawa, Makame [Department of Mechanical Engineering, Tshwane University of Technology, Private Bag X680, Pretoria 001 (South Africa); Lam, Man Kee; Kansedo, Jibrail; Lee, Keat Teong [School of Chemical Engineering, Universiti Sains Malaysia, Engineering Campus, Seri Ampangan, 14300 Nibong Tebal, Pulau Pinang (Malaysia)

    2010-11-15

    In this study, biodiesel was produced from Moringa oleifera oil using sulfated tin oxide enhanced with SiO{sub 2} (SO{sub 4}{sup 2-}/SnO{sub 2}-SiO{sub 2}) as super acid solid catalyst. The experimental design was done using design of experiment (DoE), specifically, response surface methodology based on three-variable central composite design (CCD) with alpha ({alpha}) = 2. The reaction parameters studied were reaction temperature (60 C to 180 C), reaction period (1 h to 3 h) and methanol to oil ratio (1:6 to 1:24). It was observed that the yield up to 84 wt.% of Moringa oleifera methyl esters can be obtained with reaction conditions of 150 C temperature, 150 min reaction time and 1:19.5 methanol to oil ratio, while catalyst concentration and agitation speed are kept at 3 wt.% and 350-360 rpm respectively. Therefore this study presents the possibility of converting a relatively new oil feedstock, Moringa oleifera oil to biodiesel and thus reducing the world's dependency on existing edible oil as biodiesel feedstock. (author)

  3. Triacylglycerol-based fuels: An evaluation

    Science.gov (United States)

    A variety of feedstocks exist and several processes have been developed to produce alternative diesel fuels from triacylglycerol-based materials, such as plant and algal oils as well as animal fats and used cooking oils. Biodiesel is obtained by transesterifying a triacylglycerol feedstock with an a...

  4. Pollution control in oil, gas and chemical plants

    CERN Document Server

    Bahadori, Alireza

    2014-01-01

    This unique book covers the fundamental requirements for air, soil, noise and water pollution control in oil and gas refineries, chemical plants, oil terminals, petrochemical plants, and related facilities. Coverage includes design and operational considerations relevant to critical systems such as monitoring of water pollution control, equipment, and engineering techniques as well as engineering/technological methods related to soil, noise and air pollution control. This book also: ·         Covers a diverse list of pollution control strategies important to practitioners, ranging from waste water gathering systems and oil/suspended solids removal to chemical flocculation units, biological treatment, and sludge handling and treatment ·         Provides numerous step-by-step tutorials that orient both entry level and veteran engineers to the essentials of pollution control methods in petroleum and chemical industries ·         Includes a comprehensive glossary providing readers with...

  5. Feasibilities of a Coal-Biomass to Liquids Plant in Southern West Virginia

    Energy Technology Data Exchange (ETDEWEB)

    Bhattacharyya, Debangsu [West Virginia Univ., Morgantown, WV (United States); DVallance, David [West Virginia Univ., Morgantown, WV (United States); Henthorn, Greg [West Virginia Univ., Morgantown, WV (United States); Grushecky, Shawn [West Virginia Univ., Morgantown, WV (United States)

    2016-09-30

    This project has generated comprehensive and realistic results of feasibilities for a coal-biomass to liquids (CBTL) plant in southern West Virginia; and evaluated the sensitivity of the analyses to various anticipated scenarios and parametric uncertainties. Specifically the project has addressed economic feasibility, technical feasibility, market feasibility, and financial feasibility. In the economic feasibility study, a multi-objective siting model was developed and was then used to identify and rank the suitable facility sites. Spatial models were also developed to assess the biomass and coal feedstock availabilities and economics. Environmental impact analysis was conducted mainly to assess life cycle analysis and greenhouse gas emission. Uncertainty and sensitivity analysis were also investigated in this study. Sensitivity analyses on required selling price (RSP) and greenhouse gas (GHG) emissions of CBTL fuels were conducted according to feedstock availability and price, biomass to coal mix ratio, conversion rate, internal rate of return (IRR), capital cost, operational and maintenance cost. The study of siting and capacity showed that feedstock mixed ratio limited the CBTL production. The price of coal had a more dominant effect on RSP than that of biomass. Different mix ratios in the feedstock and conversion rates led to RSP ranging from $104.3 - $157.9/bbl. LCA results indicated that GHG emissions ranged from 80.62 kg CO2 eq to 101.46 kg CO2 eq/1,000 MJ of liquid fuel at various biomass to coal mix ratios and conversion rates if carbon capture and storage (CCS) was applied. Most of water and fossil energy were consumed in conversion process. Compared to petroleum-derived-liquid fuels, the reduction in GHG emissions could be between -2.7% and 16.2% with CBTL substitution. As for the technical study, three approaches of coal and biomass to liquids, direct, indirect and hybrid, were considered in the analysis. The process models including

  6. Field-to-Fuel Performance Testing of Lignocellulosic Feedstocks: An Integrated Study of the Fast Pyrolysis/Hydrotreating Pathway

    Energy Technology Data Exchange (ETDEWEB)

    Howe, Daniel T.; Westover, Tyler; Carpenter, Daniel; Santosa, Daniel M.; Emerson, Rachel; Deutch, Steve; Starace, Anne; Kutnyakov, Igor V.; Lukins, Craig D.

    2015-05-21

    Feedstock composition can affect final fuel yields and quality for the fast pyrolysis and hydrotreatment upgrading pathway. However, previous studies have focused on individual unit operations rather than the integrated system. In this study, a suite of six pure lignocellulosic feedstocks (clean pine, whole pine, tulip poplar, hybrid poplar, switchgrass, and corn stover) and two blends (equal weight percentages whole pine/tulip poplar/switchgrass and whole pine/clean pine/hybrid poplar) were prepared and characterized at Idaho National Laboratory. These blends then underwent fast pyrolysis at the National Renewable Energy Laboratory and hydrotreatment at Pacific Northwest National Laboratory. Although some feedstocks showed a high fast pyrolysis bio-oil yield such as tulip poplar at 57%, high yields in the hydrotreater were not always observed. Results showed overall fuel yields of 15% (switchgrass), 18% (corn stover), 23% (tulip poplar, Blend 1, Blend 2), 24% (whole pine, hybrid poplar) and 27% (clean pine). Simulated distillation of the upgraded oils indicated that the gasoline fraction varied from 39% (clean pine) to 51% (corn stover), while the diesel fraction ranged from 40% (corn stover) to 46% (tulip poplar). Little variation was seen in the jet fuel fraction at 11 to 12%. Hydrogen consumption during hydrotreating, a major factor in the economic feasibility of the integrated process, ranged from 0.051 g/g dry feed (tulip poplar) to 0.070 g/g dry feed (clean pine).

  7. Proceedings. Feedstock preparation and quality 1997 workshop

    Energy Technology Data Exchange (ETDEWEB)

    Mattsson, Jan Erik [ed.

    1998-06-01

    The IEA Bioenergy Feedstock Preparation and Quality 1997 Workshop dealt with fuel feedstock quality improvement and methods to determine feedstock properties. It was arranged by the Swedish Univ. of Agricultural Sciences on behalf of the IEA Bioenergy Task XII Activity 4.1 Feedstock Preparation and Quality. This Activity is a 3-year cooperation 1995-1997 between Denmark, Sweden and the USA, mainly based on information exchange. The workshop had two sections: presentations by invited experts, and country reports on recent development in feedstock preparation and quality in the three participating countries. Separate abstracts have been prepared for four of the six papers presented

  8. Influence of feedstock chemical composition on product formation and characteristics derived from the hydrothermal carbonization of mixed feedstocks.

    Science.gov (United States)

    Lu, Xiaowei; Berge, Nicole D

    2014-08-01

    As the exploration of the carbonization of mixed feedstocks continues, there is a distinct need to understand how feedstock chemical composition and structural complexity influence the composition of generated products. Laboratory experiments were conducted to evaluate the carbonization of pure compounds, mixtures of the pure compounds, and complex feedstocks comprised of the pure compounds (e.g., paper, wood). Results indicate that feedstock properties do influence carbonization product properties. Carbonization product characteristics were predicted using results from the carbonization of the pure compounds and indicate that recovered solids energy contents are more accurately predicted than solid yields and the carbon mass in each phase, while predictions associated with solids surface functional groups are more difficult to predict using this linear approach. To more accurately predict carbonization products, it may be necessary to account for feedstock structure and/or additional feedstock properties. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Antifungal Effect of Plant Essential Oils on Controlling Phytophthora Species

    Directory of Open Access Journals (Sweden)

    Jahanshir Amini

    2016-02-01

    Full Text Available In this study, antifungal activity of essential oils of Cymbopogon citratus and Ocimum basilicum and two fungicides Mancozeb and Metalaxyl-Mancozeb in six different concentrations were investigated for controlling three species of Phytophthora, including P. capsici, P. drechsleri and P. melonis on pepper, cucumber and melon under in vitro and greenhouse conditions, respectively. Under the in vitro condition, the median effective concen- tration (EC₅₀ values (ppm of plant essential oils and fungicides were measured. In greenhouse, soil infested with Phytophthora species was treated by adding 50 ml of essential oils and fungicides (100 ppm. Disease severity was determined after 28 days. Among two tested plant essential oils, C. citratus had the lowest EC₅₀ values for inhibition of the mycelial growth of P. capsici (31.473, P. melonis (33.097 and P. drechsleri (69.112, respectively. The mean EC₅₀ values for Metalaxyl-Mancozeb on these pathogens were 20.87, 20.06 and 17.70, respectively. Chemical analysis of plant essential oils by GC-MS showed that, among 42 compounds identified from C. citratus, two compounds β-geranial (α-citral (39.16% and z-citral (30.95% were the most abundant. Under the greenhouse condition, Metalaxyl-Mancozeb caused the greatest reduction in disease severity, 84.2%, 86.8% and 92.1% on melon, cucumber, and pepper, respectively. The C. citratus essential oil reduced disease severity from 47.4% to 60.5% compared to the untreated control (p≤0.05. Essential oils of O. basilicum had the lowest effects on the pathogens under in vitro and greenhouse conditions. These results show that essential oils may contribute to the development of new antifungal agents to protect the crops from Phytophthora diseases.

  10. Chemical composition and antioxidant activity of essential oils isolated from Colombian plants

    Directory of Open Access Journals (Sweden)

    Jesús Olivero-Verbel

    Full Text Available Thirteen essential oils from Colombian plants, obtained by hydrodistillation or microwave-assisted hydrodistillation of total plant, stem, leaves, and flowers were analyzed by gas-chromatography-mass spectrometry techniques. Cytotoxicity of essential oils was assessed using the brine shrimp assay, and their antioxidant activities measuring their effects on the levels of thiobarbituric acid reactive substances on rat liver microsomes induced by Fe2+/H2O2. Five oils showed high cytotoxicity (LC501000 µg/mL.

  11. Enhancing Biodiesel from Kemiri Sunan Oil Manufacturing using Ultrasonics

    Science.gov (United States)

    Supriyadi, Slamet; Purwanto; Anggoro, Didi Dwi; Hermawan

    2018-02-01

    Kemiri Sunan (Reutalis trisperma (Blanco) Airy Shaw) is a potential plant to be developed as biodiesel feedstock. The advantage of Kemiri Sunan seeds when compared to other biodiesel raw materials is their high oil content. This plant is also very good for land conservation. Due the increasingly demand for biodiesel, research and new methods to increase its biodiesel production continue to be undertaken. The weakness of conventional biodiesel manufacturing process is in the mixing process in which mechanical stirring and heating in the trans-esterification process require more energy and a longer time. A higher and stronger mixing process is required to increase the contact area between the two phases of the mixed substance to produce the emulsion. Ultrasonic is a tool that can be useful for a liquid mixing process that tends to be separated. Ultrasonic waves can cause mixing intensity at the micro level and increase mass transfer, so the reaction can be performed at a much faster rate. This study is to figure out the effect of ultrasonic irradiation on the transesterification process of biodiesel from Kemiri Sunan Oil.

  12. Plant Essential Oils from Apiaceae Family as Alternatives to Conventional Insecticides

    Directory of Open Access Journals (Sweden)

    Asgar Ebadollahi

    2013-06-01

    Full Text Available Main method to control insect pest is using synthetic insecticides, but the development of insect resistance to this products, the high operational cost, environmental pollution, toxicity to humans and harmful effect on non-target organisms have created the need for developing alternative approaches to control insect pest. Furthermore, the demand for organic crops, especially vegetables for the fresh market, has greatly increased worldwide. The ideal insecticide should control target pests adequately and should be target-specific, rapidly degradable, and low in toxicity to humans and other mammals. Plant essential oils could be an alternative source for insect pest control because they constitute a rich source of bioactive chemicals and are commonly used as flavoring agents in foods. These materials may be applied to food crops shortly before harvest without leaving excessive residues. Moreover, medically safe of these plant derivatives has emphasized also. For these reasons, much effort has been focused on plant essential oils or their constituents as potential sources of insect control agents. In this context, Apiaceae (Umbelliferae family would rank among the most important families of plants. In the last few years more and more studies on the insecticidal properties of essential oils from Apiaceae family have been published and it seemed worthwhile to compile them. The focus of this review lies on the lethal (ovicidal, larvicidal, pupicidal and adulticidal and sublethal (antifeedant, repellent, oviposition deterrent, Growth inhibitory and progeny production activities of plant essential oils and theirmain components from Apiaceae family. These features indicate that pesticides based on Apiaceae essential oils could be used in a variety of ways to control a large number of pests. It can be concluded that essential oils and phytochemicals isolated from Apiaceae family may be efficacious and safe replacements for conventional synthetic

  13. The Synthesis of Biodiesel from Used Temple Oil

    Science.gov (United States)

    Saddu, Sharanabasappa; Kivade, S. B.; Ramana, P.

    2018-05-01

    Safe and sustainable resources of energy is required for the financial and industrial growth. A new approach in investigating, growth, production and the economy is necessary, for the future reorganization of a sustainable natural raw material. In India, because of many mythological and religious beliefs thousands of devotees pour oil in lamps in various temples and also over the idols in Hanuman and Shani temples. This poured oil cannot be utilized and was ultimately wasted. One of tender advertisements by department of Muzarai of Karnataka Government, the used oil potential at shree Renuka yallamma temple Soundatti, Belagavi district is 18,900 kg for the year 2016-2017. This is only one temple oil potential; the number of Hindu temples in India is a Puzzle. This used temple oil was used as alternative feedstock, to decrease the cost of bio fuel. Using ASTM standard methods, the properties of used temple oil biodiesel were analyzed. From the tests it is clear that the, properties of used temple oil biodiesel are similar to diesel fuel. The obtained yield of biodiesel was 94.51%. This study identified that the price of the feedstock was one of the most significant factors.

  14. Life-Cycle Assessment of Pyrolysis Bio-Oil Production*

    Energy Technology Data Exchange (ETDEWEB)

    Steele, Philip; Puettmann, Maureen E.; Penmetsa, Venkata Kanthi; Cooper, Jerome E.

    2012-07-01

    As part ofthe Consortium for Research on Renewable Industrial Materials' Phase I life-cycle assessments ofbiofuels, lifecycle inventory burdens from the production of bio-oil were developed and compared with measures for residual fuel oil. Bio-oil feedstock was produced using whole southern pine (Pinus taeda) trees, chipped, and converted into bio-oil by fast pyrolysis. Input parameters and mass and energy balances were derived with Aspen. Mass and energy balances were input to SimaPro to determine the environmental performance of bio-oil compared with residual fuel oil as a heating fuel. Equivalent functional units of 1 MJ were used for demonstrating environmental preference in impact categories, such as fossil fuel use and global warming potential. Results showed near carbon neutrality of the bio-oil. Substituting bio-oil for residual fuel oil, based on the relative carbon emissions of the two fuels, estimated a reduction in CO2 emissions by 0.075 kg CO2 per MJ of fuel combustion or a 70 percent reduction in emission over residual fuel oil. The bio-oil production life-cycle stage consumed 92 percent of the total cradle-to-grave energy requirements, while feedstock collection, preparation, and transportation consumed 4 percent each. This model provides a framework to better understand the major factors affecting greenhouse gas emissions related to bio-oil production and conversion to boiler fuel during fast pyrolysis.

  15. Effect of plant age on fresh rhizome yield and volatile oil composition of Acorus calamus linn

    International Nuclear Information System (INIS)

    Osman, M.A.; Bahl, J.R.; Darokar, M. P.; Garg, S.N.; Lal, R.K.; Khanuja, S.P.S.

    2008-01-01

    The effect of plant age on growth, yield and oil content and composition of sweet flag (Acorus calamus) was studied in four populations at four different ages, raised at CIMAP experimental research Farm, India. The plant age had significant effect on total fresh yield and leaves and rhizomes fresh weights. These parameters showed increasing trend with advancement of harvesting age up to 6 years, and age increase to more than 15 years resulted in their decrease . Significantly highest number of shoots per square meter was recorded in more than 15 year old crop, and the lowest number was recorded in the 6 year old crop. The highest oil yield of rhizomes was obtained from the six year old plants. Shoot length, rhizome leaf ratio (R/L) and oil yield of leaves did not show significant differences with the age of the plant. However, 6 year old plants recorded the highest average shoot length, and the three year old plants gave the highest oil yield of leaves. The total fresh yield showed a highly significant positive correlation with rhizomes fresh weight (r = 0.999), leaves fresh weight (r=0.994) and with rhizome: leaf ratio (r = 0.998). Highly significant positive correlations (r = 0.999) were also obtained between rhizomes oil content and rhizomes oil yield and between leaves oil content and leaves oil yield. β-asarone was the most dominant constituent in the oils of both leaves and rhizomes , constituting an average of 84.2% in the leaves and 88.9% in the rhizomes oil. The study indicated that the oil content of fresh rhizomes and leaves is the main contributor to their oil yields, and selection for high oil content will be effective. The constituents of the volatile oil remained the same irrespective of the plant age.(Author)

  16. In vitro antimicrobial activity and antagonistic effect of essential oils from plant species.

    Science.gov (United States)

    Toroglu, Sevil

    2007-07-01

    Kahramanmaras, is a developing city located in the southern part of Turkey Thymus eigii (M. Zohary and RH. Davis) Jalas, Pinus nigraAm. sub sp pallasiana and Cupressus sempervirens L. are the useful plants of the Kahramanmaras province and have been understudy since 2004 for the traditional uses of plants empiric drug, spice, herbal tea industry herbal gum and fuel. The study was designed to examine the antimicrobial activities of essential oils of these plants by the disc diffusion and minimum inhibitory concentration (MIC) methods. In addition, antimicrobial activity of Thymus eigii was researched by effects when it was used together with antibiotics and even when it was combined with other essential oils. When the results of this study were compared with vancomycin (30 mcg) and erytromycin (15 mcg) standards, it was found that Thymus eigii essential oil was particularly found to possess strongerantimicrobial activity whereas other essential oils showed susceptible or moderate activity However, antimicrobial activity changed also by in vitro interactions between antibiotics and Thymus eigii essential oil, also between essential oils of these plants and that of Thymus eigii causing synergic, additive, antagonist effect.

  17. Desind an operation of pilot plant production of biodisel fron frying oils

    Directory of Open Access Journals (Sweden)

    Nelly Morales Pedraza

    2008-06-01

    Full Text Available The objective of this article is present the pilot plant used in the research titled: Production of biodiesel from used edible oils to industrial level for the production of methyl or ethyl esters from vegetable oils used in the food industry that be used as a fuel in diesel engines type, in order to generate alternative use for these oils are reused, and additionally, generate new options in biofuels that can replace methyl ester, since these need of methanol, a product that usually is a derived petrochemical and highly toxic. In this small-scale plant for the production of ethyl esters (biodiesel can be evaluated spent oils of different kinds and diverse origin, or study oils from food industries, which are usually a blend of palm oil and soybean oil, and other times palm oils hydrogenated or mixtures of oil spent with palm oil refning RBD (refned, bleached and deodorized. The results are the basis for the design and construction of a pilot plant to produce biodiesel by lot of 6 liter by hour approximately, which is evaluated under simulated conditions of loading and operation. It was designed and implemented a batch reactor with heating and stirring mechanics, drivers with temperature, condensation and total alcohol refux, maintaining a molar relationship of 6:1 (alcohol/oil, which is considered the best relation for a esterification with basic catalysis several scientifc publications. The temperature of the reaction is set at 60 °C and atmospheric pressure. The productivity of the reaction

  18. Modification of Corn Starch Ethanol Refinery to Efficiently Accept Various High-Impact Cellulosic Feedstocks

    Energy Technology Data Exchange (ETDEWEB)

    Derr, Dan [Logos Technologies, Fairfax, VA (United States)

    2013-12-30

    The goal of the Corn-to-Cellulosic Migration (CCM) pilot facility was to demonstrate the implementation of advanced technologies and methods for conversion of non-food, cellulosic feedstocks into ethanol, assess the economics of the facility and evaluate potential environmental benefits for biomass to fuels conversion. The CCM project was comprised of design, build, and operate phases for the CCM pilot facility as well as research & development, and modeling components. The CCM pilot facility was designed to process 1 tonne per day of non-food biomass and biologically convert that biomass to ethanol at a rate of 70 gallons per tonne. The plant demonstrated throughputs in excess of 1 tonne per day for an extended run of 1400 hours. Although target yields were not fully achieved, the continuous operation validated the design and operability of the plant. These designs will permit the design of larger scale operations at existing corn milling operations or for greenfield plants. EdeniQ, a partner in the project and the owner of the pilot plant, continues to operate and evaluate other feedstocks.

  19. Impacts of oil sands process water on fen plants: Implications for plant selection in required reclamation projects

    International Nuclear Information System (INIS)

    Pouliot, Rémy; Rochefort, Line; Graf, Martha D.

    2012-01-01

    Fen plant growth in peat contaminated with groundwater discharges of oil sands process water (OSPW) was assessed in a greenhouse over two growing seasons. Three treatments (non-diluted OSPW, diluted OSPW and rainwater) were tested on five vascular plants and four mosses. All vascular plants tested can grow in salinity and naphthenic acids levels currently produced by oil sands activity in northwestern Canada. No stress sign was observed after both seasons. Because of plant characteristics, Carex species (C. atherodes and C. utriculata) and Triglochin maritima would be more useful for rapidly restoring vegetation and creating a new peat-accumulating system. Groundwater discharge of OSPW proved detrimental to mosses under dry conditions and ensuring adequate water levels would be crucial in fen creation following oil sands exploitation. Campylium stellatum would be the best choice to grow in contaminated areas and Bryum pseudotriquetrum might be interesting as it has spontaneously regenerated in all treatments. - Highlights: ► Fen plant growth was assessed under groundwater discharges of oil sands process water. ► Sedge and grass species were not stressed after two growing seasons in greenhouse. ► Carex species and Triglochin maritima would be helpful in created contaminated fens. ► In dry conditions, contaminated groundwater discharge was detrimental for mosses. ► Campylium stellatum would be the best choice in created fens with contaminated water. - Sedges and grasses tolerated the contact with oil sands process water and could probably grow well in contaminated created fens, but mosses were particularly affected under dry conditions.

  20. Expected international demand for woody and herbaceous feedstock

    Energy Technology Data Exchange (ETDEWEB)

    Lamers, Patrick [Idaho National Lab. (INL), Idaho Falls, ID (United States); Jacobson, Jacob [Idaho National Lab. (INL), Idaho Falls, ID (United States); Mohammad, Roni [Idaho National Lab. (INL), Idaho Falls, ID (United States); Wright, Christopher [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-03-01

    The development of a U.S. bioenergy market and ultimately ‘bioeconomy’ has primarily been investigated with a national focus. Limited attention has been given to the potential impacts of international market developments. The goal of this project is to advance the current State of Technology of a single biorefinery to the global level providing quantitative estimates on how international markets may influence the domestic feedstock supply costs. The scope of the project is limited to feedstock that is currently available and new crops being developed to be used in a future U.S. bioeconomy including herbaceous residues (e.g., corn stover), woody biomass (e.g., pulpwood), and energy crops (e.g., switchgrass). The timeframe is set to the periods of 2022, 2030, and 2040 to align with current policy targets (e.g., the RFS2) and future updates of the Billion Ton data. This particular milestone delivers demand volumes for generic woody and herbaceous feedstocks for the main (net) importing regions along the above timeframes. The regional focus of the study is the European Union (EU), currently the largest demand region for U.S. pellets made from pulpwood and forest residues. The pellets are predominantly used in large-scale power plants (>5MWel) in the United Kingdom (UK), the Netherlands (NL), Belgium (BE), and Denmark (DK).

  1. Liquid fuels from alternative feedstocks

    Energy Technology Data Exchange (ETDEWEB)

    Andrew, S

    1984-01-01

    The problem of fuels and feedstocks is not technological but political and financial. Methanol is discussed as the lowest cost gasoline substitute to produce. There are two possibilities included for production of methanol: from coal or lignite - either in the US or in Europe, or from natural gas. Biologically produced fuels and feedstocks have the advantage of being renewable. The use of agricultural feedstocks are discussed but only sugar, starch and cellulose are suitable. In the microbiological field, only the metabolic waste product ethanol is cheap enough for use.

  2. JOJOBA: an oil plant for arid or semi-arid regions

    Energy Technology Data Exchange (ETDEWEB)

    Marull, J E

    1978-01-01

    Jojoba (Simmondsia chinesis) grows in regions with a rainfall of 250 to 450 mm, producing 4.5 kg seeds/tree after 36 months and attaining an average production of 13.8 kg seeds/tree when full grown. Productivity can be maintained for up to 100 years. Planting density is about 1600 plants/ha, at distances of 1.50 x 3.00 m. The seeds contain 50% edible oil, and the press-cake 35% proteins. The characteristics of the oil are listed.

  3. Jojoba, an oil plant for arid or semi-arid regions

    Energy Technology Data Exchange (ETDEWEB)

    Marull, J E

    1978-01-01

    Jojoba (Simmondsia chinensis) grows in regions with a rainfall of 250-450 mm, producing 4.5 kg seeds/tree after 36 months and attaining an average production of 13.8 kg seeds/tree when full grown. Productivity can be maintained for up to 100 years. Planting density is about 1600 plants/ha, at distances of 1.50 x 3.00 m. The seeds contain 50% edible oil, and the press-cake 35% proteins. The characteristics of the oil are listed.

  4. Hazardous air pollutants emission from coal and oil-fired power plants

    Energy Technology Data Exchange (ETDEWEB)

    Deepak Pudasainee; Jeong-Hun Kim; Sang-Hyeob Lee; Ju-Myon Park; Ha-Na Jang; Geum-Ju Song; Yong-Chil Seo [Yonsei University, Wonju (Republic of Korea). Department of Environmental Engineering

    2010-03-15

    Hazardous air pollutants (HAPs) emission characteristics from coal (anthracite, bituminous) and oil-fired power plants were studied in order to control pollutants by formulating US maximum achievable control technology (MACT)-like regulation in Korea. Sampling and analysis were carried out according to either Korean standard test method or US EPA method. Relatively lower levels of NOx and SOx were emitted from plants burning bituminous than the anthracite coal. Less dust was emitted from oil-fired power plants. Mercury, lead, and chromium were dominant in coal-fired power plants, following which, nickel and chromium were emitted from oil-fired power plants. The major volatile organic compounds (VOCs) emitted from coal-fired plants were 1,2-dichloroethane, benzene, carbon tetrachloride, chloroform, trichloro-ethylene. The emission of mercury and other heavy metals in flue gas was attributed to fuel types, operating conditions, residence time in the control devices and the type of air pollution control devices. After emission tests in the field and on analysis of the continuous emission monitoring data collected from facilities under operation and consideration of other various factors, management guidelines will be suggested with special reference to US MACT-like regulation.

  5. Steam producing plant concept of 4S for oil sand extraction

    International Nuclear Information System (INIS)

    Matsuyama, Shinichiro; Nishiguchi, Youhei; Sakashita, Yoshiaki; Kasuga, Shoji; Kawashima, Masatoshi

    2009-01-01

    Plant concept of small fast reactor '4S' applying to continuous steam production for recovery of crude oil from oil sands was investigated. Assuming typical steam assisted gravity drainage (SAGD) plant whose production scale is 120,000 barrels per day of a crude oil, concept of nuclear steam supply system consisting of eight reactor modules for steam production and three reactor modules for electric generation of the 4S with a thermal rating of 135 MWt was established without any essential or significant design change from the preceding 4S with a thermal rating of 30 MWt. The 4S, provided for an oil sand extraction, will reduce greenhouse gas emission significantly, and has not much burden for development and licensing and has economic competitiveness. (author)

  6. Effect of essential oil of Origanum rotundifolium on some plant pathogenic bacteria, seed germination and plant growth of tomato

    Science.gov (United States)

    Dadaşoǧlu, Fatih; Kotan, Recep; Karagöz, Kenan; Dikbaş, Neslihan; Ćakmakçi, Ramazan; Ćakir, Ahmet; Kordali, Şaban; Özer, Hakan

    2016-04-01

    The aim of this study is to determine effect of Origanum rotundifolium's essential oil on some plant pathogenic bacterias, seed germination and plant growth of tomato. Xanthomonas axanopodis pv. vesicatoria strain (Xcv-761) and Clavibacter michiganensis ssp. michiganensis strain (Cmm) inoculated to tomato seed. The seeds were tested for germination in vitro and disease severity and some plant growth parameters in vivo. In vitro assay, maximum seed germination was observed at 62,5 µl/ml essential oil treatment in seeds inoculated with Xcv-761 and at 62,5 µl/ml essential oil and streptomycin treatment in seeds inoculated with Cmm. The least infected cotiledon number was observed at 500 µg/ml streptomycin treatment in seeds inoculated with Cmm. In vivo assay, maximum seed germination was observed at 250 µl/ml essential oil teratment in tomato inoculated with Cmm. Lowest disease severity, is seen in the CMM infected seeds with 250 µl/ml essential oil application these results were statistically significant when compared with pathogen infected seeds. Similarly, in application conducted with XCV-761 infected seed, the lowest disease severity was observed for seeds as a result of 250 µl/ml essential oil application. Also according to the results obtained from essential oil application of CMM infected seeds conducted with 62,5 µl/ml dose; while disease severity was found statistically insignificant compared to 250 µl/ml to essential oil application, ıt was found statistically significant compared to pathogen infected seeds. The results showed that essential oil of O. rotundifolium has a potential for some suppressed plant disease when it is used in appropriate dose.

  7. Assessment of the influence of energy density and feedstock transport distance on the environmental performance of methane from maize silages.

    Science.gov (United States)

    Bacenetti, Jacopo; Lovarelli, Daniela; Ingrao, Carlo; Tricase, Caterina; Negri, Marco; Fiala, Marco

    2015-10-01

    In Europe, thanks to public subsidy, the production of electricity from anaerobic digestion (AD) of agricultural feedstock has considerably grown and several AD plants were built. When AD plants are concentrated in specific areas (e.g., Northern Italy), increases of feedstock' prices and transport distances can be observed. In this context, as regards low-energy density feedstock, the present research was designed to estimate the influence of the related long-distance transport on the environmental performances of the biogas-to-electricity process. For this purpose the following transport systems were considered: farm trailers and trucks. For small distances (<5 km), the whole plant silage shows the lowest impact; however, when distances increase, silages with higher energy density (even though characterised by lower methane production per hectare) become more environmentally sustainable. The transport by trucks achieves better environmental performances especially for distances greater than 25 km. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. CARBONIZER TESTS WITH LAKELAND FEEDSTOCKS

    Energy Technology Data Exchange (ETDEWEB)

    C. Lu; Z. Fan; R. Froehlich; A. Robertson

    2003-09-01

    Research has been conducted under United States Department of Energy Contract (USDOE) DE-AC21-86MC21023 to develop a new type of coal-fired plant for electric power generation. This new type of plant, called a Second Generation Pressurized Fluidized Bed Combustion Plant (2nd Gen PFB), offers the promise of efficiencies greater than 48%, with both emissions and a cost of electricity that are significantly lower than those of conventional pulverized coal-fired (PC) plants with wet flue gas desulfurization/scrubbers. The 2nd Gen PFB plant incorporates the partial gasification of coal in a carbonizer, the combustion of carbonizer char in a pressurized circulating fluidized (PCFB) bed boiler, and the combustion of carbonizer syngas in a topping combustor to achieve gas turbine inlet temperatures of 2700 F and higher. Under the USDOE Clean Coal V Demonstration Plant Program, a nominal 260 MWe plant demonstrating 2nd Gen PFB technology has been proposed for construction at the McIntosh Power Plant of the City of Lakeland, Florida. In the September-December 1997 time period, four test runs were conducted in Foster Wheeler's 12-inch diameter carbonizer pilot plant in Livingston New Jersey to ascertain carbonizer performance characteristics with the Kentucky No. 9 coal and Florida limestone proposed for use in the Lakeland plant. The tests were of a short-term nature exploring carbonizer carbon conversions, sulfur capture efficiencies and syngas alkali levels. The tests were successful; observed carbonizer performance was in agreement with predictions and no operating problems, attributed to the planned feedstocks, were encountered. The results of the four test runs are reported herein.

  9. Pilot plant for the radioactive decontamination of spent oils

    International Nuclear Information System (INIS)

    Flores E, R.M.; Ortiz O, H.V.; Cisneros L, L.; Lopez G, R.

    2002-01-01

    In this work the operation parameters obtained in the laboratory of oil storage are presented, as well as the operations which shape the pilot plant, the design criteria and the basic design of the core equipment of the developed process. Finally, the comparative results obtained the decontamination process of oil are given as well as laboratory scale. (Author)

  10. 1170-MW(t) HTGR-PS/C plant application study report: heavy oil recovery application

    International Nuclear Information System (INIS)

    Rao, R.; McMain, A.T. Jr.

    1981-05-01

    This report describes the application of a high-temperature gas-cooled reactor (HTGR) which operates in a process steam/cogeneration (PS/C) mode in supplying steam for enhanced recovery of heavy oil and in exporting electricity. The technical and economic merits of an 1170-MW(t) HTGR-PS/C are compared with those of coal-fired plants and (product) oil-fired boilers for this application. The utility requirements for enhanced oil recovery were calculated by establishing a typical pattern of injection wells and production wells for an oil field similar to that of Kern County, California. The safety and licensing issues of the nuclear plant were reviewed, and a comparative assessment of the alternative energy sources was performed. Technically and economically, the HTGR-PS/C plant has attractive merits. The major offsetting factors would be a large-scale development of a heavy oil field by a potential user for the deployment of a 1170-MW(t) HTGR-PS/C; plant and the likelihood of available prime heavy oil fields for the mid-1990 operation

  11. [Repellent activity of plant essential oils against bites of Lutzomyia migonei (Diptera: Psychodidae)].

    Science.gov (United States)

    Nieves, Elsa; Fernández Méndez, Janett; Lias, José; Rondón, Maritza; Briceño, Benito

    2010-12-01

    Natural repellents from plant extracts have demonstrated good efficacy against bites of some insect species. The present study evaluated the repellent effect of essential oils extracted from 8 plants species against bites of Lutzomyia migonei, the Leishmania vector. The essential oils were extracted by steam destillation in Clevenger chamber, from the following plants: Hyptis suaveolens, Pimenta racemosa, Piper marginatum, Monticalia imbricatifolia, Pseudognaphalium caeruleocanum, Espeletia shultzii, Plecthranthus amboinicus and Cinnamomun zeylanicum. Repellency tests were performed under laboratory conditions by the human hand method in cage assays, using female colonies of L. migonei. The more effective oils were tested at variable concentrations on different volunteers. The protection percentage and time were calculated. The results showed what oils of P. caeruleocanum and C. zeylanicum were the most effective. Although P. amboinicus oil also had repellent effect showed an irritant effect. The oils P. marginatum, H. suaveolens and P. racemosa showed no repellent effect, while the rest of oil extracts showed significant repellency in variable degrees. P. caeruleocanum and C. zeylanicum oils provided the 95% protection against bites of L. migonei for 3 h. The P. caeruleocanum oil showed the greatest protection time, with a mean over 4h and 3h at concentrations of 50% and 10% respectively. The results suggest that the P. caeruleocanum oil could represent a potential natural repellent against Leishmania vectors.

  12. Harvesting, oil extraction, and conversion of local filamentous algae growing in wastewater into biodiesel

    Energy Technology Data Exchange (ETDEWEB)

    Grayburn, W.S.; Holbrook, G.P. [Department of Biological Sciences, Northern Illinois University, DeKalb, IL 60115 (United States); Tatara, R.A. [Department of Technology, Northern Illinois University, DeKalb, IL 60115 (United States); Rosentrater, K.A. [Department of Agricultural and Biosystems Engineering, Iowa State University, Ames, IA 50011 (United States)

    2013-07-01

    Algae are known to be a potential feedstock in the production of biodiesel fuel. Although much of the focus has been on microalgal species, macroalgae are also suitable as a source of lipids. In this study, a locally abundant (central Illinois) filamentous algae has been harvested from a water treatment plant; dried to about 10% of its initial weight; pulverized in a hammermill; and treated with methanol to extract the oil. The algae are a combination of several coexisting species including Cladophora sp. and Rhizoclonium. Oil yields ranged from 3% to 6%, by weight, of the dried mass. This oil was reacted by transesterification to yield fatty acid methyl esters (biodiesel fuel) with an overall mass conversion efficiency of 68%. A B5 blend of this algal biodiesel and petrodiesel was run in a 13.4-kW test engine. Measurements indicated similar performance compared to pure petrodiesel in terms of fuel efficiency and carbon dioxide and carbon monoxide exhaust emissions. Significantly, there was a 22% reduction in nitrogen oxides when using the B5 fuel. It has been demonstrated that filamentous macroalgae may be cultivated as biodiesel feedstock and have inherent advantages such as an ability to remove phosphorus and nitrogen compounds from wastewater, simplicity of harvesting, and natural resistance to local aquatic grazers and competing organisms.

  13. Effects of production and market factors on ethanol profitability for an integrated first and second generation ethanol plant using the whole sugarcane as feedstock.

    Science.gov (United States)

    Macrelli, Stefano; Galbe, Mats; Wallberg, Ola

    2014-02-21

    Sugarcane is an attractive feedstock for ethanol production, especially if the lignocellulosic fraction can also be treated in second generation (2G) ethanol plants. However, the profitability of 2G ethanol is affected by the processing conditions, operating costs and market prices. This study focuses on the minimum ethanol selling price (MESP) and maximum profitability of ethanol production in an integrated first and second generation (1G + 2G) sugarcane-to-ethanol plant. The feedstock used was sugarcane juice, bagasse and leaves. The lignocellulosic fraction was hydrolysed with enzymes. Yields were assumed to be 95% of the theoretical for each of the critical steps in the process (steam pretreatment, enzymatic hydrolysis (EH), fermentation, solid/liquid separation, anaerobic digestion) in order to obtain the best conditions possible for ethanol production, to assess the lowest production costs. Techno-economic analysis was performed for various combinations of process options (for example use of pentoses, addition of leaves), EH conditions (water-insoluble solids (WIS) and residence time), operating cost (enzymes) and market factors (wholesale prices of electricity and ethanol, cost of the feedstock). The greatest reduction in 2G MESP was achieved when using the pentoses for the production of ethanol rather than biogas. This was followed, in decreasing order, by higher enzymatic hydrolysis efficiency (EHE), by increasing the WIS to 30% and by a short residence time (48 hours) in the EH. The addition of leaves was found to have a slightly negative impact on 1G + 2G MESP, but the effect on 2G MESP was negligible. Sugarcane price significantly affected 1G + 2G MESP, while the price of leaves had a much lower impact. Net present value (NPV) analysis of the most interesting case showed that integrated 1G + 2G ethanol production including leaves could be more profitable than 1G ethanol, despite the fact that the MESP was higher than in 1G ethanol

  14. EFFECT OF SILVER NANOPARTICLES ON THE PHYSICAL AND CHEMICAL PROPERTIES OF PLANT OILS AND THEIR ANTIMICROBIAL ACTIVITY

    Directory of Open Access Journals (Sweden)

    V. M. Minarchenko

    2017-12-01

    Full Text Available The aim of our research was to investigate the influence of silver nanoparticles on the physical and chemical features of plant oils of dogrose, flax, cedar, amaranth and watermelon and their antimicrobial activity. Plant oils were saturated with silver nanoparticles using electron-beam technology for depositing a molecular stream of metal in a vacuum. To characterize the rancidity of plant oils, the acid, iodine, peroxide, ester and saponification values were determined. A sharp drop in the iodine number and an increase in the peroxide number in oils saturated with silver nanoparticles were observed, as compared to pure oils, indicating a decrease in the number of unsaturated bonds in fatty acids and the formation of peroxides in oils. All pure plant oils and a separate sample of silver nanoparticles suppressed the growth of only E. faecalis colonies. Plant oils that were saturated with silver nanoparticles delayed the growth of S. aureus, S. epidermidis, E. faecalis, E. coli, P. aeruginosa, and C. albicans; the greatest delay in the growth of colonies was caused by flaxseed oil. Thus, the features of the plant oils under study essentially changed after they are aturated with silver nanoparticles. It can be assumed that the metal acted as a catalyst for peroxide oxidation of lipids in the investigated plant oil samples, the products of which caused toxic effects on cultures of bacteria and fungi in the experiment.

  15. development of u-channel screw jack for vegetable oil extraction

    African Journals Online (AJOL)

    HOD

    the performance of the machine in terms of oil yield, extraction efficiency and extraction loss with groundnut as the feedstock. ... The world production of oil seed stocks was estimated to ..... published by Asoke K. Ghosh PHI Learning. Limited ...

  16. Biotechnological Perspectives of Pyrolysis Oil for a Bio-Based Economy.

    Science.gov (United States)

    Arnold, Stefanie; Moss, Karin; Henkel, Marius; Hausmann, Rudolf

    2017-10-01

    Lignocellulosic biomass is an important feedstock for a potential future bio-based economy. Owing to its compact structure, suitable decomposition technologies will be necessary to make it accessible for biotechnological conversion. While chemical and enzymatic hydrolysis are currently established methods, a promising alternative is provided by fast pyrolysis. The main resulting product thereof, referred to as pyrolysis oil, is an energy-rich and easily transportable liquid. Many of the identified constituents of pyrolysis oil, however, have previously been reported to display adverse effects on microbial growth. In this Opinion we discuss relevant biological, biotechnological, and technological challenges that need to be addressed to establish pyrolysis oil as a reliable microbial feedstock for a bio-based economy of the future. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Global volatile profile of virgin olive oils flavoured by aromatic/medicinal plants.

    Science.gov (United States)

    Perestrelo, R; Silva, C; Silva, P; Câmara, J S

    2017-07-15

    The global volatile profile of commercial virgin olive oils and flavoured olive oils with aromatic/medicinal plants, was established using liquid-liquid microextraction (LLME) and headspace solid-phase microextraction (HS-SPME) combined with gas chromatography-quadrupole mass spectrometry (GC-qMS). More than 60 volatile organic compounds (VOCs belonging to different groups were identified using both methods. Olive oils volatile profile was slightly influenced by maceration process, which occurred at room temperature (20±2°C) for 15days. The predominant differences were observed in terpenoids group, since some of them were only identified in the flavoured olive oils, while others showed an increase with the maceration process. VOCs mass transfer from plants to olive oils could explain the observed results. Principal components analysis (PCA) applied to LLME/GC-qMS data allowed to distinguish the olive oils. The flavoured oils would increase the use of olive oil among consumers as consequence of the improvement of its aromatic profile and healthy properties. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Lightning protection of oil and gas industrial plants

    Energy Technology Data Exchange (ETDEWEB)

    Bouquegneau, Christian [Polytechnical University of Mons (Belgium)

    2007-07-01

    The paper brings some cases and presents the general principles, what the IEC 62305 international standard says, the warning and avoidance and the conclusion about lightning protection of oil and gas industrial plants.

  19. Repellence and toxicity of plant essential oils to the potato aphid, Macrosiphum euphorbiae

    NARCIS (Netherlands)

    Munneke, M.E.; Bruin, de A.; Moskal, J.R.; Tol, van R.W.H.M.

    2004-01-01

    Several plant essential oils were tested for their effect on behaviour and mortality of M. euphorbiae. Olfactory and contact experiments were performed to study these effects. We found that host plant and formulation of the different oils have a strong influence on repellence and mortality of the

  20. Biodiesel from plant seed oils as an alternate fuel for compression ignition engines-a review.

    Science.gov (United States)

    Vijayakumar, C; Ramesh, M; Murugesan, A; Panneerselvam, N; Subramaniam, D; Bharathiraja, M

    2016-12-01

    The modern scenario reveals that the world is facing energy crisis due to the dwindling sources of fossil fuels. Environment protection agencies are more concerned about the atmospheric pollution due to the burning of fossil fuels. Alternative fuel research is getting augmented because of the above reasons. Plant seed oils (vegetable oils) are cleaner, sustainable, and renewable. So, it can be the most suitable alternative fuel for compression ignition (CI) engines. This paper reviews the availability of different types of plant seed oils, several methods for production of biodiesel from vegetable oils, and its properties. The different types of oils considered in this review are cashew nut shell liquid (CNSL) oil, ginger oil, eucalyptus oil, rice bran oil, Calophyllum inophyllum, hazelnut oil, sesame oil, clove stem oil, sardine oil, honge oil, polanga oil, mahua oil, rubber seed oil, cotton seed oil, neem oil, jatropha oil, egunsi melon oil, shea butter, linseed oil, Mohr oil, sea lemon oil, pumpkin oil, tobacco seed oil, jojoba oil, and mustard oil. Several methods for production of biodiesel are transesterification, pre-treatment, pyrolysis, and water emulsion are discussed. The various fuel properties considered for review such as specific gravity, viscosity, calorific value, flash point, and fire point are presented. The review also portrays advantages, limitations, performance, and emission characteristics of engine using plant seed oil biodiesel are discussed. Finally, the modeling and optimization of engine for various biofuels with different input and output parameters using artificial neural network, response surface methodology, and Taguchi are included.

  1. Biodiesel Production from Chlorella protothecoides Oil by Microwave-Assisted Transesterification

    OpenAIRE

    G?lyurt, Mustafa ?mer; ?z?imen, Didem; ?nan, Benan

    2016-01-01

    In this study, biodiesel production from microalgal oil by microwave-assisted transesterification was carried out to investigate its efficiency. Transesterification reactions were performed by using Chlorella protothecoides oil as feedstock, methanol, and potassium hydroxide as the catalyst. Methanol:oil ratio, reaction time and catalyst:oil ratio were investigated as process parameters affected methyl ester yield. 9:1 methanol/oil molar ratio, 1.5% KOH catalyst/oil ratio and 10 min were opti...

  2. Efficacy of plant derived oils and extracts against white-fly, bemisia tabaci (gennadius) on sesame crop

    International Nuclear Information System (INIS)

    Iram, A.; Irfan, M.; Aslam, S.

    2014-01-01

    Whitefly, Bemisia tabaci (Genn.) is a polyphagous pest and is reported on more than 600 host plants worldwide. Different methods are being used for its control. The present experiment was conducted to determine the effect of some plant extracts of mint (Mentha spp.) and gera-nium (Pelargonium graveolens) and soybean oil (Glycine max), mustard oil (Brassica spp.) and taramera oil (Eruca sativa) against whitefly, Bemisia tabaci on sesame crop. The data were recorded 24h before and 24h, 48h, 72h and 168h after application of each spray material. The results showed that whitefly population was significantly suppressed by both the botanical oils and extracts as compared to the control treatment but in general botanical oils showed significant results as compared to plant extracts. Soybean oil was quite effective in reducing whitefly population per leaf, while after second spray soybean oil and extract of Mentha spp. was more effective in the reducing whitefly population per leaf. The results indicated that plant derived oils and extracts have the potential to be used in plant protection strategies but still more research has to be incorporated in the pest management programmes. (author)

  3. Evolution and Development of Effective Feedstock Specifications

    Energy Technology Data Exchange (ETDEWEB)

    Garold Gresham; Rachel Emerson; Amber Hoover; Amber Miller; William Bauer; Kevin Kenney

    2013-09-01

    The U.S. Department of Energy promotes the production of a range of liquid fuels and fuel blend stocks from lignocellulosic biomass feedstocks by funding fundamental and applied research that advances the state of technology in biomass collection, conversion, and sustainability. As part of its involvement in this program, the Idaho National Laboratory (INL) investigates the feedstock logistics economics and sustainability of these fuels. The 2012 feedstock logistics milestone demonstrated that for high-yield areas that minimize the transportation distances of a low-density, unstable biomass, we could achieve a delivered cost of $35/ton. Based on current conventional equipment and processes, the 2012 logistics design is able to deliver the volume of biomass needed to fulfill the 2012 Renewable Fuel Standard’s targets for ethanol. However, the Renewable Fuel Standard’s volume targets are continuing to increase and are expected to peak in 2022 at 36 billion gallons. Meeting these volume targets and achieving a national-scale biofuels industry will require expansion of production capacity beyond the 2012 Conventional Feedstock Supply Design Case to access diverse available feedstocks, regardless of their inherent ability to meet preliminary biorefinery quality feedstock specifications. Implementation of quality specifications (specs), as outlined in the 2017 Design Case – “Feedstock Supply System Design and Economics for Conversion of Lignocellulosic Biomass to Hydrocarbon Fuels” (in progress), requires insertion of deliberate, active quality controls into the feedstock supply chain, whereas the 2012 Conventional Design only utilizes passive quality controls.

  4. Transesterification catalyzed by Lipozyme TLIM for biodiesel production from low cost feedstock

    Science.gov (United States)

    Halim, Siti Fatimah Abdul; Hassan, Hamizura; Amri, Nurulhuda; Bashah, Nur Alwani Ali

    2015-05-01

    The development of new strategies to efficiently synthesize biodiesel is of extreme important. This is because biodiesel has been accepted worldwide as an alternative fuel for diesel engines. Biodiesel as alkyl ester derived from vegetable oil has considerable advantages in terms of environmental protection. The diminishing petroleum reserves are the major driving force for researchers to look for better strategies in producing biodiesel. The main hurdle to commercialization of biodiesel is the cost of the raw material. Biodiesel is usually produced from food-grade vegetable oil that is more expensive than diesel fuel. Therefore, biodiesel produced from food-grade vegetable oil is currently not economically feasible. Use of an inexpensive raw material such as waste cooking palm oil and non edible oil sea mango are an attractive option to lower the cost of biodiesel. This study addresses an alternative method for biodiesel production which is to use an enzymatic approach in producing biodiesel fuel from low cost feedstock waste cooking palm oil and unrefined sea mango oil using immobilized lipase Lipozyme TL IM. tert-butanol was used as the reaction medium, which eliminated both negative effects caused by excessive methanol and glycerol as the byproduct. Two variables which is methanol to oil molar ratio and enzyme loading were examine in a batch system. Transesterification of waste cooking palm oil reach 65% FAME yield (methanol to oil molar ratio 6:1 and 10% Novozyme 435 based on oil weight), while transesterification of sea mango oil can reach 90% FAME yield (methanol to oil molar ratio 6:1 and 10% Lipozyme TLIM based on oil weight).

  5. Results of the International Energy Agency Round Robin on Fast Pyrolysis Bio-oil Production

    Energy Technology Data Exchange (ETDEWEB)

    Elliott, Douglas C.; Meier, Dietrich; Oasmaa, Anja; van de Beld, Bert; Bridgwater, Anthony V.; Marklund, Magnus

    2017-04-06

    An international round robin study of the production of fast pyrolysis bio-oil was undertaken. Fifteen institutions in six countries contributed. Three biomass samples were distributed to the laboratories for processing in fast pyrolysis reactors. Samples of the bio-oil produced were transported to a central analytical laboratory for analysis. The round robin was focused on validating the pyrolysis community understanding of production of fast pyrolysis bio-oil by providing a common feedstock for bio-oil preparation. The round robin included: •distribution of 3 feedstock samples from a common source to each participating laboratory; •preparation of fast pyrolysis bio-oil in each laboratory with the 3 feedstocks provided; •return of the 3 bio-oil products (minimum 500 ml) with operational description to a central analytical laboratory for bio-oil property determination. The analyses of interest were: density, viscosity, dissolved water, filterable solids, CHN, S, trace element analysis, ash, total acid number, pyrolytic lignin, and accelerated aging of bio-oil. In addition, an effort was made to compare the bio-oil components to the products of analytical pyrolysis through GC/MS analysis. The results showed that clear differences can occur in fast pyrolysis bio-oil properties by applying different reactor technologies or configurations. The comparison to analytical pyrolysis method suggested that Py-GC/MS could serve as a rapid screening method for bio-oil composition when produced in fluid-bed reactors. Furthermore, hot vapor filtration generally resulted in the most favorable bio-oil product, with respect to water, solids, viscosity, and total acid number. These results can be helpful in understanding the variation in bio-oil production methods and their effects on bio-oil product composition.

  6. Canola Oil Fuel Cell Demonstration: Volume 2 - Market Availability of Agricultural Crops for Fuel Cell Applications

    National Research Council Canada - National Science Library

    Adams, John W; Cassarino, Craig; Spangler, Lee; Johnson, Duane; Lindstrom, Joel; Binder, Michael J; Holcomb, Franklin H; Lux, Scott M

    2006-01-01

    .... The reformation of vegetable oil crops for fuel cell uses is not well known; yet vegetable oils such as canola oil represent a viable alternative and complement to traditional fuel cell feedstocks...

  7. Utilization of oil shale in power plants and environmental protection; Polevkivienergeetika ja keskkonna saastumine

    Energy Technology Data Exchange (ETDEWEB)

    Ots, A [Tallinn Technical Univ. (Estonia)

    1994-04-01

    Estonia n oil shale was first used as a power fuel in 1924 at the Tallinn Power Plant. The first pulverized oil-shale-fired steam boilers were used in the end of forties. A new period in the utilization of the Estonia n oil shale began in the years of 1959-1960, when the first power units were applied at the Baltic Thermal Power Plant. The project capacity of the plant was 1600 MW. In the 1973 the Estonia n thermal Power Plant was put into operation with the capacity of 1610 MW. The output of the electric power generated by oil.shale power plants in 1989, was 17.4 TWh; the maximum output was achieved in 1979 - 19.1 TWh. In 1989, the amount of the Estonia n oil shale consumed to generate electric power was equal to 22.3{center_dot}10{sup 6}t. On burning oil shale the main atmospheric pollutants are the following: nitrogen oxides, sulphur oxides, and fly ash. The concentration of nitrogen oxide in the oil-shale flue gas leaving the chimney, expressed as nitrogen dioxide by an excess air factor 1.5, is in the range of 0.15-0.20 g/m{sup 3.} The total emission of nitrogen oxide into the atmosphere is approximately 15-20 thousand ton per year. the concentration of sulphur dioxide in the oil-shale flue gas leaving the boiler by an excess air factor 1.5 in the range of 1.0-1.8 g/m{sup 3.} the total emission of sulphur dioxide into atmosphere is in range of 140-160 thousand per year. As the oil-shale ash contains a large amount of the components capable of combining with sulphur in furnace and in boiler gas passes, the sulphur binding effect from ash is high, and it is in the range of 0.75-0.85. The boilers in oil-shale power plants are equipped with two-stage ash separation systems: cyclone and electrostatic al precipitators. The fly ash concentration in oil shale flue gas after electrostatic al precipitators by excess air factor 1.5 is 1-2 g/m{sup 3.} (author).

  8. Genetic control of soybean seed oil: II. QTL and genes that increase oil concentration without decreasing protein or with increased seed yield.

    Science.gov (United States)

    Eskandari, Mehrzad; Cober, Elroy R; Rajcan, Istvan

    2013-06-01

    Soybean [Glycine max (L.) Merrill] seed oil is the primary global source of edible oil and a major renewable and sustainable feedstock for biodiesel production. Therefore, increasing the relative oil concentration in soybean is desirable; however, that goal is complex due to the quantitative nature of the oil concentration trait and possible effects on major agronomic traits such as seed yield or protein concentration. The objectives of the present study were to study the relationship between seed oil concentration and important agronomic and seed quality traits, including seed yield, 100-seed weight, protein concentration, plant height, and days to maturity, and to identify oil quantitative trait loci (QTL) that are co-localized with the traits evaluated. A population of 203 F4:6 recombinant inbred lines, derived from a cross between moderately high oil soybean genotypes OAC Wallace and OAC Glencoe, was developed and grown across multiple environments in Ontario, Canada, in 2009 and 2010. Among the 11 QTL associated with seed oil concentration in the population, which were detected using either single-factor ANOVA or multiple QTL mapping methods, the number of QTL that were co-localized with other important traits QTL were six for protein concentration, four for seed yield, two for 100-seed weight, one for days to maturity, and one for plant height. The oil-beneficial allele of the QTL tagged by marker Sat_020 was positively associated with seed protein concentration. The oil favorable alleles of markers Satt001 and GmDGAT2B were positively correlated with seed yield. In addition, significant two-way epistatic interactions, where one of the interacting markers was solely associated with seed oil concentration, were identified for the selected traits in this study. The number of significant epistatic interactions was seven for yield, four for days to maturity, two for 100-seed weight, one for protein concentration, and one for plant height. The identified molecular

  9. Construction of power plants to have oil for a long term

    International Nuclear Information System (INIS)

    Freiberger, S.; Barthelt, K.

    1980-01-01

    Most of our oil is literally burnt out ; therefore there should be a search for possibilities especially in the field of heat production to lessen our dependence on oil. Coal- and nuclear power plants, electric heat pumps and district heating could unburden the oil market in a shorter term than all other substitution technologies. This way, oil could be saved for applications where it is difficult to be replaced, e.g. in the road traffic. (orig.) [de

  10. Oil shale highlights

    International Nuclear Information System (INIS)

    1994-01-01

    The low prices of crude oil have continued to retard the commercial development of oil shale and other syn fuels. Although research funds are more difficult to find, some R and D work by industry, academia, and governmental agencies continues in the United States and in other parts of the world. Improvements in retorting technology, upgrading oil-shale feedstock, and developing high-value niche-market products from shale oil are three notable areas of research that have been prominent for the past several years. Although the future prices of conventional crude cannot be predicted, it seems evident that diminishing supplies and a burgeoning world population will force us to turn to alternate fossil fuels as well as to cleaner sources of non-fossil energy. (author)

  11. Transfer of 210Po, 210Pb and 238U from some medicinal plants to their essential oils

    International Nuclear Information System (INIS)

    Al-Masri, M.S.; Amin, Y.; Ibrahim, S.; Nassri, M.

    2015-01-01

    Essential oils were extracted from 35 medicinal plants used by Syrians, organic compounds were determined in these oils and concentrations of 210 Po 210 Pb and 238 U were determined in the original plants and in the essential oils. The results showed that the highest activity concentrations of 210 Po and 210 Pb were found in leaves with large surfaces and in Sage were as high as 73.5 Bq kg −1 and 73.2 Bq kg −1 , respectively. The activity concentration of 238 U was as high as 4.26 Bq kg −1 in Aloe. On the other hand, activity concentrations of 210 Po ranged between 0.2 and 71.1 Bq kg −1 in extracted essential oils for Rosemary and False yellowhead, respectively. The activity concentration of 210 Pb reached 63.7 Bq kg −1 in Aloe oil. The activity concentrations of 238 U were very low in all extracted oils; the highest value was 0.31 Bq kg −1 in peel of Orange oil. The transfer of 210 Po and 210 Pb from plant to its oil was the highest for Eugenia; 7.1% and 5.5% for 210 Po and 210 Pb, respectively. A linear relationship was found between the transfer factor of radionuclides from plant to its essential oil and the chemical content of this oil. - Highlights: • Natural radionuclides 210 Po, 210 Pb and 238 U were determined in 35 medicinal plants and their essential oils. • The highest activity concentration of 210 Po and 210 Pb were 73.5 Bq kg −1 and 73.2 Bq kg −1 in Sage, respectively. • The transfer of 210 Po and 210 Pb from Eugenia plant to its oil was the highest amongst other plants. • The data obtained in this study can be considered the first reported data for medicinal plants and their oils in Syria

  12. Opportunities for Biorenewables in Oil Refineries

    Energy Technology Data Exchange (ETDEWEB)

    Marker, T.L.

    2005-12-19

    Abstract: The purpose of this study was to evaluate the potential for using biorenewable feedstocks in oil refineries. Economic analyses were conducted, with support from process modeling and proof of principle experiments, to assess a variety of potential processes and configurations. The study considered two primary alternatives: the production of biodiesel and green diesel from vegetable oils and greases and opportunities for utilization of pyrolysis oil. The study identified a number of promising opportunities for biorenewables in existing or new refining operations.

  13. Plant species responses to oil degradation and toxicity reduction in ...

    African Journals Online (AJOL)

    Vegetated plots were established by planting different plant species – legumes and vegetable (Abelmoschus, esculentus, Telfaria occidentalis and Vigna unguiculata) and applied with sawdust and chromolaena leaves at different intensities of oil pollution. Toxicity of the soil was evaluated using germination percentage, ...

  14. SO2 pollution of heavy oil-fired steam power plants in Iran

    International Nuclear Information System (INIS)

    Nazari, S.; Shahhoseini, O.; Sohrabi-Kashani, A.; Davari, S.; Sahabi, H.; Rezaeian, A.

    2012-01-01

    Steam power plants using heavy oil provided about 17.4%, equivalent to 35.49 TWh, of electricity in Iran in 2007. However, having 1.55–3.5 weight percentage of sulfur, heavy oil produces SO 2 pollutant. Utilization of Flue Gas Desulfurization systems (FGD) in Iran's steam power plants is not common and thereby, this pollutant is dispersed in the atmosphere easily. In 2007, the average emission factor of SO 2 pollutant for steam power plants was 15.27 g/kWh, which means regarding the amount of electricity generated by steam power plants using heavy oil, 541,000 Mg of this pollutant was produced. In this study, mass distribution of SO 2 in terms of Mg/yr is considered and dispersion of this pollutant in each of the 16 steam power plants under study is modeled using Atmospheric Dispersion Modeling System (ADMS). Details of this study are demonstrated using Geographical Information System (GIS) software, ArcGIS. Finally, the average emission factor of SO 2 and the emission of it in Iran's steam power plants as well as SO 2 emission reduction programs of this country are compared with their alternatives in Turkey and China.

  15. In vitro antibacterial activity of some plant essential oils

    Directory of Open Access Journals (Sweden)

    Ignacimuthu Savarimuthu

    2006-11-01

    Full Text Available Abstract Background: To evaluate the antibacterial activity of 21 plant essential oils against six bacterial species. Methods: The selected essential oils were screened against four gram-negative bacteria (Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, Proteus vulgaris and two gram-positive bacteria Bacillus subtilis and Staphylococcus aureus at four different concentrations (1:1, 1:5, 1:10 and 1:20 using disc diffusion method. The MIC of the active essential oils were tested using two fold agar dilution method at concentrations ranging from 0.2 to 25.6 mg/ml. Results: Out of 21 essential oils tested, 19 oils showed antibacterial activity against one or more strains. Cinnamon, clove, geranium, lemon, lime, orange and rosemary oils exhibited significant inhibitory effect. Cinnamon oil showed promising inhibitory activity even at low concentration, whereas aniseed, eucalyptus and camphor oils were least active against the tested bacteria. In general, B. subtilis was the most susceptible. On the other hand, K. pneumoniae exhibited low degree of sensitivity. Conclusion: Majority of the oils showed antibacterial activity against the tested strains. However Cinnamon, clove and lime oils were found to be inhibiting both gram-positive and gram-negative bacteria. Cinnamon oil can be a good source of antibacterial agents.

  16. EFFECT OF SOME PLANT OILS ON THE FATTY ACIDS OF HUMP BEETLE GIBBIUM PSYLLOIDES

    International Nuclear Information System (INIS)

    ABBASY, S.A.; ALY, W.M.; REZK, S.A.

    2008-01-01

    The efficiency of some plant oils (sesame oil, camphor oil, castor oil and camomile oil) as insecticides were studied on newly emerged males and females Gibbium psylloids and also the effect of LC50 of each plant oils on fatty acids composition and relative concentration were determined. The obtained results showed that sesame oil had proved to be more effective with it's advantage over other tested oils of being used at lower concentration and it followed by chamomile oil then camphor oil and finally castor oil. The susceptibility of the males and females to plant oils was the same. There were differences in the number and relative concentration of fatty acids between males and females. Nine fatty acids were detected by the analysis of the whole body of untreated males , these fatty acids are capric (C10) , lauric (C12) , myristic (C14), palmiloleic (C16), margic (C17), stearic (C18) , oleic (C18:1) , linoleic (C18:2) and linolenic (C18:3) . Treatments of males with LC50 sesame oil lead to the appearance of ten fatty acids with increase of caprylic acid (C8) while LC50 chamomile oil lead to the appearance of six fatty acids and fatty acid with C10 , C18:1 and C18:2 were disappeared as compared to control. LC50 of camphor oil lead to the appearance of ten fatty acids and castor oil lead to the appearance of six fatty acids. In untreated females, five fatty acids with C12 , C16 , C17 , C18 and C18:1 were detected. Treatments with sesame oil lead to the appearance of new fatty acid with C18:2 and chamomile oil lead to the appearance of nine fatty acids with increase of C8 , C10 , C14 and C18:2 as compared with untreated females. Camphor oil treatment lead to the appearance of nine fatty acids with increase of four fatty acids with C6 , C8 , C10 and C18:2 as compared to untreated females and fatty acid with C18:1 was disappeared in the treatments. Castor oil leads to the appearance of seven fatty acids. The relative concentration of C12 was the highest fatty acid in

  17. Purification of oil-contaminated soils from heavy metals using plants

    International Nuclear Information System (INIS)

    Zamanova, A.

    2014-01-01

    Full text : Purification of local areas of oil-contaminated soils with contamination degree of 5-8 percent using plant resistant to salinity and high temperature and rehabilitation of these soils is the most urgent task for Apsheron Peninsula which is the main territory of oil onshore in Azerbaijan. This method is environmentally compatible and economically viable against other methods. Despite the fact that in this area it has been carried out numerous scientific researches, for each level of contamination, for each specific soil type, for each specific climatic conditions and the group of plants requires more and more researches

  18. The effects of crude oil and the effectiveness of cleaner application following oiling on US Gulf of Mexico coastal marsh plants.

    Science.gov (United States)

    Pezeshki, S R; DeLaune, R D; Jugsujinda, A

    2001-01-01

    Field studies were conducted in two different marsh habitats in Louisiana coastal wetlands to evaluate the effects of oiling (using South Louisiana Crude oil, SLC) and the effectiveness of a shoreline cleaner (COREXIT 9580) in removing oil from plant canopies. The study sites represented two major marsh habitats; the brackish marsh site was covered by Spartina patens and the freshwater marsh was covered by Sagittaria lancifolia. Field studies were conducted in each habitat using replicated 5.8 m2 plots that were subjected to three treatments; oiled only, oiled + cleaner (cleaner was used 2 days after oiling), and a control. Plant gas exchange responses, survival, growth, and biomass accumulation were measured. Results indicated that oiling led to rapid reductions in leaf gas exchange rates in both species. However, both species in 'oiled + cleaned' plots displayed improved leaf conductance and CO2 fixation rates. Twelve weeks after treatment initiation, photosynthetic carbon fixation in both species had recovered to normal levels. Over the short-term, S. patens showed more sensitivity to oiling with SLC than S. lancifolia as was evident from the data of the number of live shoots and above-ground biomass. Above-ground biomass remained significantly lower than control in S. patens under 'oiled' and 'oiled + cleaned' treatments while it was comparable to controls in S. lancifolia. These studies indicated that the cleaner removed oil from marsh grasses and alleviated the short-term impact of oil on gas exchange function of the study plants. However, use of cleaner had no detectable effects on above-ground biomass production or regeneration at the end of the first growing season in S. patens. Similarly, no beneficial effects of cleaner on carbon fixation and number of live shoots were apparent beyond 12 weeks in S. lancifolia.

  19. A multi-factor evaluation of Jatropha as a feedstock for biofuels: the case of sub-Saharan Africa

    Directory of Open Access Journals (Sweden)

    Raphael M. Jingura

    2015-09-01

    Full Text Available Sub-Saharan Africa (SSA is a geographical region consisting of 49 countries, out of which, 39 countries have experiences with the cultivation of Jatropha curcas L. Since the year 2000 Jatropha production escalated in the region and peaked in around 2007/2008. The major drivers of this trend were claims made about Jatropha including include its ability to grow on marginal lands, high seed and oil yields, and drought tolerant, amongst other attributes. However, the reality has shown that these attributes have not been realised.  The objective of the present paper is to analyse the performance of Jatropha as a biofuel feedstock in SSA based on agronomic, economic, social and environmental factors involved in its production. Evidences in SSA show that the major challenge with Jatropha cultivation has been low seed yields, ranging between 0.1 and 2 t/ha. This in turn has led to oil yields which are not sufficiently viable for use in production of biofuels such as biodiesel. There have also been reported challenges with production on wastelands, low use of inputs, unimproved planting materials and vulnerability to pests and diseases. These have negatively affected the performance of Jatropha causing the original claims made about this energy crop not materialised in the SSA.

  20. In-vitro antibacterial activity of essential oils extracted from locally available medicinal plants

    International Nuclear Information System (INIS)

    Ara, G.; Shawar, D.; Akbar, A.; Kanwal, F.; Imran, M.

    2011-01-01

    Extraction of essential oils from locally available species of four plants, Nigella sativa, Syzygium aromaticum, Cinnamomum tenuis and Curcuma aromatica was carried out using steam distillation followed by ether extraction. Dried and purified extracted oils were screened for their antibacterial activity against three bacterial strains namely, Bacillus lichaniformis (Gram +ve), Micrococcus leutus (Gram +ve) and Salmonella Typhimurium (Gram -ve) using Mc. Cartney's method. Minimum Inhibition Concentration (MIC) values of these oils were also determined. It was observed that the oils extracted from Nigella sativa and Cinnamomum tenuis were found to be more potent as compared to other two species. With the exception of Nigella sativa, all the other oils showed bacterial inhibition at 50 mmol concentration. These results support that these plant oils can be used to cure bacterial infections and may also have role as pharmaceuticals and preservatives. (author)

  1. The Design and Manufacturing of Essential oil Distillation Plant for ...

    African Journals Online (AJOL)

    Choice-Academy

    industry in the country do not have the capacity to manufacture the complete distillation plant system with the required precision for standard quality of oil at affordable cost. Thus, the design and the experiment in the use of a prototype small size distillation unit showed that the technology is appropriate for essential oil ...

  2. Rheological properties of alumina injection feedstocks

    Directory of Open Access Journals (Sweden)

    Vivian Alexandra Krauss

    2005-06-01

    Full Text Available The rheological behavior of alumina molding feedstocks containing polyethylene glycol (PEG, polyvinylbutyral (PVB and stearic acid (SA and having different powder loads were analyzed using a capillary rheometer. Some of the feedstocks showed a pseudoplastic behavior of n < 0, which can lead to the appearance of weld lines on molded parts. Their viscosity also displayed a strong dependence on the shear rate. The slip phenomenon, which can cause an unsteady front flow, was also observed. The results indicate that the feedstock containing a lower powder load displayed the best rheological behavior. The 55 vol. % powder loaded feedstock presented the best rheological behavior, thus appearing to be more suitable than the formulation containing a vol. 59% powder load, which attained viscosities exceeding 10³ Pa.s at low shear rates, indicating its unsuitability for injection molding.

  3. Environmental Impacts and Costs of Hydrotreated Vegetable Oils, Transesterified Lipids and Woody BTL—A Review

    Directory of Open Access Journals (Sweden)

    Andreas Brekke

    2011-05-01

    Full Text Available This article reviews and compares assessments of three biodiesel fuels: (1 transesterified lipids, (2 hydrotreated vegetable oils (HVO, and (3 woody biomass-to-liquid (BTL Fischer-Tropsch diesel and selected feedstock options. The article attempts to rank the environmental performance and costs of fuel and feedstock combinations. Due to inter-study differences in goal and study assumptions, the ranking was mostly qualitative and intra-study results are emphasized. Results indicate that HVO made from wastes or by-products such as tall oil, tallow or used cooking oil outperform transesterified lipids and BTL from woody material, both with respect to environmental life cycle impacts and costs. These feedstock options are, however, of limited availability, and to produce larger volumes of biofuels other raw materials must also be used. BTL from woody biomass seems promising with good environmental performance and the ability not to compete with food production. Production of biofuels from agricultural feedstock sources requires much energy and leads to considerable emissions due to agrochemical inputs. Thus, such biodiesel fuels are ranked lowest in this comparison. Production of feedstock is the most important life cycle stage. Avoiding detrimental land use changes and maintaining good agricultural or forestry management practices are the main challenges to ensure that biofuels can be a sustainable option for the future transport sector.

  4. Inhibition of cholinesterase by essential oil from food plant.

    Science.gov (United States)

    Chaiyana, Wantida; Okonogi, Siriporn

    2012-06-15

    Inhibition of cholinesterase has attracted much attention recently because of its potential for the treatment of Alzheimer's disease. In this work, the anticholinesterase activities of plant oils were investigated using Ellman's colorimetric method. The results indicate that essential oils obtained from Melissa officinalis leaf and Citrus aurantifolia leaf showed high acetylcholinesterase and butyrylcholinesterase co-inhibitory activities. C. aurantifolia leaf oil revealed in this study has an IC(50) value on acetylcholinesterase and butyrylcholinesterase of 139 ± 35 and 42 ± 5 μg/ml, respectively. GC/MS analysis revealed that the major constituents of C. aurantifolia leaf oil are monoterpenoids including limonene, l-camphor, citronellol, o-cymene and 1,8-cineole. Copyright © 2012 Elsevier GmbH. All rights reserved.

  5. Oil Spills

    Science.gov (United States)

    ... up. How Oil Harms Animals and Plants in Marine Environments In general, oil spills can affect animals and plants in two ways: from the oil ... up. How Oil Harms Animals and Plants in Marine Environments In general, oil spills can affect animals and plants in two ways: from the oil ...

  6. Biodiesel Production from Chlorella protothecoides Oil by Microwave-Assisted Transesterification.

    Science.gov (United States)

    Gülyurt, Mustafa Ömer; Özçimen, Didem; İnan, Benan

    2016-04-22

    In this study, biodiesel production from microalgal oil by microwave-assisted transesterification was carried out to investigate its efficiency. Transesterification reactions were performed by using Chlorella protothecoides oil as feedstock, methanol, and potassium hydroxide as the catalyst. Methanol:oil ratio, reaction time and catalyst:oil ratio were investigated as process parameters affected methyl ester yield. 9:1 methanol/oil molar ratio, 1.5% KOH catalyst/oil ratio and 10 min were optimum values for the highest fatty acid methyl ester yield.

  7. The potential impact of invasive woody oil plants on protected areas in China under future climate conditions.

    Science.gov (United States)

    Dai, Guanghui; Yang, Jun; Lu, Siran; Huang, Conghong; Jin, Jing; Jiang, Peng; Yan, Pengbo

    2018-01-18

    Biodiesel produced from woody oil plants is considered a green substitute for fossil fuels. However, a potential negative impact of growing woody oil plants on a large scale is the introduction of highly invasive species into susceptible regions. In this study, we examined the potential invasion risk of woody oil plants in China's protected areas under future climate conditions. We simulated the current and future potential distributions of three invasive woody oil plants, Jatropha curcas, Ricinus communis, and Aleurites moluccana, under two climate change scenarios (RCP2.6 and RCP8.5) up to 2050 using species distribution models. Protected areas in China that will become susceptible to these species were then identified using a spatial overlay analysis. Our results showed that by 2050, 26 and 41 protected areas would be threatened by these invasive woody oil plants under scenarios RCP2.6 and RCP8.5, respectively. A total of 10 unique forest ecosystems and 17 rare plant species could be potentially affected. We recommend that the invasive potential of woody oil plants be fully accounted for when developing forest-based biodiesel, especially around protected areas.

  8. Conversion of solid organic wastes into oil via Boettcherisca peregrine (Diptera: Sarcophagidae larvae and optimization of parameters for biodiesel production.

    Directory of Open Access Journals (Sweden)

    Sen Yang

    Full Text Available The feedstocks for biodiesel production are predominantly from edible oils and the high cost of the feedstocks prevents its large scale application. In this study, we evaluated the oil extracted from Boettcherisca peregrine larvae (BPL grown on solid organic wastes for biodiesel production. The oil contents detected in the BPL converted from swine manure, fermentation residue and the degreased food waste, were 21.7%, 19.5% and 31.1%, respectively. The acid value of the oil is 19.02 mg KOH/g requiring a two-step transesterification process. The optimized process of 12∶1 methanol/oil (mol/mol with 1.5% H(2SO(4 reacted at 70°C for 120 min resulted in a 90.8% conversion rate of free fatty acid (FFA by esterification, and a 92.3% conversion rate of triglycerides into esters by alkaline transesterification. Properties of the BPL oil-based biodiesel are within the specifications of ASTM D6751, suggesting that the solid organic waste-grown BPL could be a feasible non-food feedstock for biodiesel production.

  9. Conversion of solid organic wastes into oil via Boettcherisca peregrine (Diptera: Sarcophagidae) larvae and optimization of parameters for biodiesel production.

    Science.gov (United States)

    Yang, Sen; Li, Qing; Zeng, Qinglan; Zhang, Jibin; Yu, Ziniu; Liu, Ziduo

    2012-01-01

    The feedstocks for biodiesel production are predominantly from edible oils and the high cost of the feedstocks prevents its large scale application. In this study, we evaluated the oil extracted from Boettcherisca peregrine larvae (BPL) grown on solid organic wastes for biodiesel production. The oil contents detected in the BPL converted from swine manure, fermentation residue and the degreased food waste, were 21.7%, 19.5% and 31.1%, respectively. The acid value of the oil is 19.02 mg KOH/g requiring a two-step transesterification process. The optimized process of 12∶1 methanol/oil (mol/mol) with 1.5% H(2)SO(4) reacted at 70°C for 120 min resulted in a 90.8% conversion rate of free fatty acid (FFA) by esterification, and a 92.3% conversion rate of triglycerides into esters by alkaline transesterification. Properties of the BPL oil-based biodiesel are within the specifications of ASTM D6751, suggesting that the solid organic waste-grown BPL could be a feasible non-food feedstock for biodiesel production.

  10. High-level accumulation of oleyl oleate in plant seed oil by abundant supply of oleic acid substrates to efficient wax ester synthesis enzymes.

    Science.gov (United States)

    Yu, Dan; Hornung, Ellen; Iven, Tim; Feussner, Ivo

    2018-01-01

    Biotechnology enables the production of high-valued industrial feedstocks from plant seed oil. The plant-derived wax esters with long-chain monounsaturated acyl moieties, like oleyl oleate, have favorite properties for lubrication. For biosynthesis of wax esters using acyl-CoA substrates, expressions of a fatty acyl reductase (FAR) and a wax synthase (WS) in seeds are sufficient. For optimization of the enzymatic activity and subcellular localization of wax ester synthesis enzymes, two fusion proteins were created, which showed wax ester-forming activities in Saccharomyces cerevisiae . To promote the formation of oleyl oleate in seed oil, WSs from Acinetobactor baylyi ( Ab WSD1) and Marinobacter aquaeolei ( Ma WS2), as well as the two created fusion proteins were tested in Arabidopsis to evaluate their abilities and substrate preference for wax ester production. The tested seven enzyme combinations resulted in different yields and compositions of wax esters. Expression of a FAR of Marinobacter aquaeolei ( Ma FAR) with Ab WSD1 or Ma WS2 led to a high incorporation of C 18 substrates in wax esters. The Ma FAR/TM Mm AWAT2- Ab WSD1 combination resulted in the incorporation of more C 18:1 alcohol and C 18:0 acyl moieties into wax esters compared with Ma FAR/ Ab WSD1. The fusion protein of a WS from Simmondsia chinensis ( Sc WS) with MaFAR exhibited higher specificity toward C 20:1 substrates in preference to C 18:1 substrates. Expression of Ma FAR/ Ab WSD1 in the Arabidopsis fad2 fae1 double mutant resulted in the accumulation of oleyl oleate (18:1/18:1) in up to 62 mol% of total wax esters in seed oil, which was much higher than the 15 mol% reached by Ma FAR/ Ab WSD1 in Arabidopsis Col-0 background. In order to increase the level of oleyl oleate in seed oil of Camelina , lines expressing Ma FAR/ Sc WS were crossed with a transgenic high oleate line. The resulting plants accumulated up to >40 mg g seed -1 of wax esters, containing 27-34 mol% oleyl oleate. The

  11. Financial return from traditional wood products, feedstock, and carbon sequestration in loblolly pine plantations in the Southern U.S

    Science.gov (United States)

    Umesh K. Chaudhan; Michael B. Kane

    2015-01-01

    We know that planting trees is a key approach for mitigating climate change; however, we are uncertain of what planting density per unit of land and what cultural regimes are needed to optimize traditional timber products, feedstock, and carbon sequestration.

  12. Upgrading Unconventional Oil Resources with the EST Process

    Energy Technology Data Exchange (ETDEWEB)

    Delbianco, Alberto; Meli, Salvatori; Panariti, Nicolleta; Rispoli, Giacomo

    2007-07-01

    We strongly believe that unconventional oils will play a much larger role in the growth of supply than is currently recognized. As a matter of fact, whereas the earth's conventional proven world oil reserves are 1.3 trillion barrels, extra-heavy plus bitumen resources amount to about 4 trillion barrels. The unconventional oils are characterized by low API gravity (<10), high viscosity and high concentration of poisons such as sulphur, nitrogen, metals, and asphaltenes. For this reason, a key role for the full exploitation of these hydrocarbon resources is played by the downstream processes that are required to upgrade and convert them into valuable products. In this scenario, Eni has developed a novel hydrocracking process (EST: Eni Slurry Technology) which is particularly well-suited for the conversion and upgrading of heavy feedstocks (conventional vacuum residues, extra-heavy oils and bitumen). EST employs nano-sized hydrogenation catalysts and an original process scheme that allow complete feedstock conversion to an upgraded synthetic crude oil (SCO) with an API gravity gain greater than 20 and avoid the production of residual by-products, such as pet-coke or heavy fuel oil. A Commercial Demonstration Unit (CDP) of 1200 bbl/d capacity is successfully operating in the Eni's Taranto refinery since November 2005. (auth)

  13. Compost feedstock characteristics and ratio modelling for organic waste materials co-composting in Malaysia.

    Science.gov (United States)

    Chai, E W; H'ng, P S; Peng, S H; Wan-Azha, W M; Chin, K L; Chow, M J; Wong, W Z

    2013-01-01

    In Malaysia, large amounts of organic materials, which lead to disposal problems, are generated from agricultural residues especially from palm oil industries. Increasing landfill costs and regulations, which limit many types of waste accepted at landfills, have increased the interest in composting as a component of waste management. The objectives of this study were to characterize compost feedstock properties of common organic waste materials available in Malaysia. Thus, a ratio modelling of matching ingredients for empty fruit bunches (EFBs) co-composting using different organic materials in Malaysia was done. Organic waste materials with a C/N ratio of composting. The outcome of this study suggested that the percentage of EFB ranged between 50% and 60%, which is considered as the ideal mixing ratio in EFB co-composting. Conclusively, EFB can be utilized in composting if appropriate feedstock in term of physical and chemical characteristics is coordinated in the co-composting process.

  14. An Evaluation of Holistic Sustainability Assessment Framework for Palm Oil Production in Malaysia

    Directory of Open Access Journals (Sweden)

    Chye Ing Lim

    2015-12-01

    Full Text Available Palm oil based biodiesel offers an alternative energy source that can reduce current dependence on conventional fossil fuels and may reduce greenhouse gas (GHG emissions depending on the type of feedstock and processes used. In the Malaysian context, the palm oil industry not only provides high-yield, renewable feedstock to the world, it brings socio-economic development to the Malaysian rural community and contributes to the national income. However, the sustainability of palm oil remains controversial, due to deforestation, pollution and social conflicts associated with its production. Sustainability assessment is vital for the palm oil industry to identify weaknesses, improve its sustainability performance and improve consumer confidence. This paper proposes a holistic sustainability assessment framework for palm oil production with the aim to address the weaknesses of existing palm oil sustainability assessment methods. It identifies environmental, social and economic Headline Performance Indicators, Key Performance Indicators and their Performance Measures in crude palm oil production in a structured framework. Each quantitative/semi-quantitative performance measure is translated into Likert Scale of 1–5, where 3 is the threshold value, 5 is the ideal condition, and 1 is the worst case scenario. Calculation methods were established for the framework to provide quantitative assessment results. The framework was tested using a hypothetical example with data from existing studies. The results suggest that crude palm oil production in Malaysia is below the sustainability threshold. Evaluations of this sustainability assessment framework also demonstrate that it is a comprehensive assessment method for assessing sustainability of feedstock for biofuel production.

  15. Waste cooking oil as an alternate feedstock for biodiesel production

    Energy Technology Data Exchange (ETDEWEB)

    Chhetri, A. B.; Rafiqul Islam, M. [Civil and Resources Engineering Dalhousie University, Room D510, 1360 Barrington St., Box 1000, Halifax, N.S. B3J 2X4 (Canada); Watts, K. Ch. [Process Engineering, Dalhousie University, Halifax, NS, Box 1000, Halifax, N.S. B3J 2X4 (Canada)

    2008-07-01

    As crude oil price reach a new high, the need for developing alternate fuels has become acute. Alternate fuels should be economically attractive in order to compete with currently used fossil fuels. In this work, biodiesel (ethyl ester) was prepared from waste cooking oil collected from a local restaurant in Halifax, Nova Scotia, Canada. Ethyl alcohol with sodium hydroxide as a catalyst was used for the transesterification process. The fatty acid composition of the final biodiesel esters was determined by gas chromatography. The biodiesel was characterized by its physical and fuel properties including density, viscosity, acid value, flash point, cloud point, pour point, cetane index, water and sediment content, total and free glycerin content, diglycerides and monoglycerides, phosphorus content and sulfur content according to ASTM standards. The viscosity of the biodiesel ethyl ester was found to be 5.03 mm{sup 2}/sec at 40 {sup o}C. The viscosity of waste cooking oil measured in room temperature (at 21 {sup o}C) was 72 mm{sup 2}/sec. From the tests, the flash point was found to be 164 {sup o}C, the phosphorous content was 2 ppm, those of calcium and magnesium were 1 ppm combined, water and sediment was 0 %, sulfur content was 2 ppm, total acid number was 0.29 mg KOH/g, cetane index was 61, cloud point was -1 {sup o}C and pour point was -16 {sup o}C. Production of biodiesel from waste cooking oils for diesel substitute is particularly important because of the decreasing trend of economical oil reserves, environmental problems caused due to fossil fuel use and the high price of petroleum products in the international market. (author)

  16. Waste Cooking Oil as an Alternate Feedstock for Biodiesel Production

    Directory of Open Access Journals (Sweden)

    M. Rafiqul Islam

    2008-04-01

    Full Text Available As crude oil price reach a new high, the need for developing alternate fuels has become acute. Alternate fuels should be economically attractive in order to compete with currently used fossil fuels. In this work, biodiesel (ethyl ester was prepared from waste cooking oil collected from a local restaurant in Halifax, Nova Scotia, Canada. Ethyl alcohol with sodium hydroxide as a catalyst was used for the transesterification process. The fatty acid composition of the final biodiesel esters was determined by gas chromatography. The biodiesel was characterized by its physical and fuel properties including density, viscosity, acid value, flash point, cloud point, pour point, cetane index, water and sediment content, total and free glycerin content, diglycerides and monoglycerides, phosphorus content and sulfur content according to ASTM standards. The viscosity of the biodiesel ethyl ester was found to be 5.03 mm2/sec at 40oC. The viscosity of waste cooking oil measured in room temperature (at 21° C was 72 mm2/sec. From the tests, the flash point was found to be 164oC, the phosphorous content was 2 ppm, those of calcium and magnesium were 1 ppm combined, water and sediment was 0 %, sulfur content was 2 ppm, total acid number was 0.29 mgKOH/g, cetane index was 61, cloud point was -1oC and pour point was -16oC. Production of biodiesel from waste cooking oils for diesel substitute is particularly important because of the decreasing trend of economical oil reserves, environmental problems caused due to fossil fuel use and the high price of petroleum products in the international market.

  17. Interfacing feedstock logistics with bioenergy conversion

    Energy Technology Data Exchange (ETDEWEB)

    Sokhansanj, S. [British Columbia Univ., Vancouver, BC (Canada). Oak Ridge National Lab

    2010-07-01

    The interface between biomass production and biomass conversion platforms was investigated. Functional relationships were assembled in a modeling platform to simulate the flow of biomass feedstock from farm and forest to a densification plant. The model considers key properties of biomass for downstream pre-processing and conversion. These properties include moisture content, cellulose, hemicelluloses, lignin, ash, particle size, specific density and bulk density. The model simulates logistical operations such as grinding to convert biomass to pellets that are supplied to a biorefinery for conversion to heat, power, or biofuels. Equations were developed to describe the physical aspects of each unit operation. The effect that each of the process variables has on the efficiency of the conversion processes was described.

  18. Production and characterization of biodiesel derived from Hodgsonia macrocarpa seed oil

    International Nuclear Information System (INIS)

    Cao, Leichang; Zhang, Shicheng

    2015-01-01

    Highlights: • The oil content of HM seed was 71.65 wt%. The HM biodiesel yield was 95.46 wt%. • HM biodiesel satisfied ASTM D6751 and EN 14214 standards, with the exception of OS. • The transportation safety and cold flow properties of HM biodiesel were excellent. • After treatment with 400 ppm TBHQ, the OS of HM biodiesel satisfied EN 14214. - Abstract: Using inexpensive and high-quality oil feedstock is an effective means to produce low-cost biodiesel. This work investigated the production and fuel properties of biodiesel derived from Hodgsonia macrocarpa (HM). The oil content of HM seed was 71.65 wt%, which is much higher than that of many potential oil plants. With traditional base-catalyzed transesterification, biodiesel was readily prepared from HM seed oil. The biodiesel yield was 95.46 wt% from HM seed oil. Biodiesel derived from HM met all ASTM D6751 and EN 14214 specifications, except for oxidative stability (OS). The OS specifications of the two biodiesel standards were met after treatment of HM biodiesel with 400 ppm tertbutyl hydroquinone. The biodiesel exhibited excellent transportation safety and cold flow properties, with flash point of 153 °C, pour point of −9 °C, and cold filter plugging point of −7 °C

  19. Morphological classification of coke formed from the Castilla and Jazmin crude oils

    International Nuclear Information System (INIS)

    Picon Hernandez, Hector Julio; Centeno Hurtado, Aristobulo; Pantoja Agreda, Edgar Francisco

    2008-01-01

    A morphological classification of cokes from the Castilla and Jazmin Colombian crude oils was completed. These heavy-nature crude oils, after being fractioned during the refining stages, were physicochemical characterized and submitted to the coking process. The conclusions of this work are based on the characterization of the feedstock chemical composition according to the type of aromatic carbon. UV visible spectrophotometry and the corresponding micrographs obtained by a Scan Electron Microscope (SEM), in amplification intervals from 100X to 5000X for the samples of formed cokes, were analyzed. Results of this work allowed the determination of the morphological classification intervals in function of the polyaromatic compound concentration ratio (tetraromatic/triaromatic, and diaromatic/triaromatic) of the different coked feedstock. Furthermore, high content of calcium and sulfur in the feedstock promotes morphologies of the associated - shot type

  20. Decomposition of residual oil by large scale HSC plant

    Energy Technology Data Exchange (ETDEWEB)

    Washimi, Koichi; Ogata, Yoshitaka; Limmer, H.; Schuetter, H. (Toyo Engineering Corp., funabashi, Japan VEB Petrolchemisches Kombinat Schwedt, Schwedt (East Germany))

    1989-07-01

    Regarding large scale and high decomposition ratio visbreaker HSC, characteristic points and operation conditions of a new plant in East Germany were introduced. As for the characteristics of the process, high decomposition ratio and stable decpmposed oil, availability of high sulfur content oil or even decomposed residuum of visbreaker, stableness of produced light oil with low content of unsaturated components, low investment with low running cost, were indicated. For the realization of high decomposition ratio, designing for suppressing the decomposition in heating furnace and accelaration of it in soaking drum, high space velocity of gas phase for better agitation, were raised. As the main subject of technical development, design of soaking drum was indicated with main dimensions for the designing. Operation conditions of the process in East Germany using residual oil supplied from already working visbreaker for USSR crude oil were introduced. 6 refs., 4 figs., 2 tabs.

  1. Distillation Parameters for Pilot Plant Production of Laurus nobilis Essential oil

    Directory of Open Access Journals (Sweden)

    Temel Özek

    2012-01-01

    Full Text Available Essential oils have increasing importance in flavour and fragrance industries. They are obtained by distillation techniques. In order to produce an oil with market potential its optimum production parameters have to be well known prior to its commercial production. Determination of the steam distillation parameters of commercially available Laurel leaves oil in pilot plant scale is described. The effect of steam rate and processing time play a major role in distillation of essential oils. Distillation speed was high in the beginning of the process, then gradually reduced as the distillation proceeded. The main component of the oil of Laurel leaf oil was 1,8-cineole accumulating significantly in the early fractions.

  2. Bibliography on Biomass Feedstock Research: 1978-2002

    Energy Technology Data Exchange (ETDEWEB)

    Cushman, J.H.

    2003-05-01

    This report provides bibliographic citations for more than 1400 reports on biomass feedstock development published by Oak Ridge National Laboratory and its collaborators from 1978 through 2002. Oak Ridge National Laboratory is engaged in analysis of biomass resource supplies, research on the sustainability of feedstock resources, and research on feedstock engineering and infrastructure. From 1978 until 2002, Oak Ridge National Laboratory also provided technical leadership for the U.S. Department of Energy's Bioenergy Feedstock Development Program (BFDP), which supported research to identify and develop promising energy crops. This bibliography lists reports published by Oak Ridge National Laboratory and by its collaborators in the BFDP, including graduate student theses and dissertations.

  3. Low oxygen biomass-derived pyrolysis oils and methods for producing the same

    Science.gov (United States)

    Marinangeli, Richard; Brandvold, Timothy A; Kocal, Joseph A

    2013-08-27

    Low oxygen biomass-derived pyrolysis oils and methods for producing them from carbonaceous biomass feedstock are provided. The carbonaceous biomass feedstock is pyrolyzed in the presence of a catalyst comprising base metal-based catalysts, noble metal-based catalysts, treated zeolitic catalysts, or combinations thereof to produce pyrolysis gases. During pyrolysis, the catalyst catalyzes a deoxygenation reaction whereby at least a portion of the oxygenated hydrocarbons in the pyrolysis gases are converted into hydrocarbons. The oxygen is removed as carbon oxides and water. A condensable portion (the vapors) of the pyrolysis gases is condensed to low oxygen biomass-derived pyrolysis oil.

  4. Effects of Biochar Feedstock and Pyrolysis Temperature on Growth of Corn, Soybean, Lettuce and Carrot

    Science.gov (United States)

    Biochar, the carbon-rich material remaining after pyrolysis (low oxygen) of cellulosic feedstocks, has the potential as a soil amendment to sequester carbon, improve soil water-holding capacity, and increase nutrient retention thereby enhancing soil conditions to benefit plant gr...

  5. Selection of High Oil Yielding Trees of Millettia pinnata (L. Panigrahi, Vegetative Propagation and Growth in the Field

    Directory of Open Access Journals (Sweden)

    Ni Luh Arpiwi

    2017-09-01

    Full Text Available Millettia pinnata (L. Panigrahi is a potential legume tree that produces seed oil for biodiesel feedstock. The initial step for raising a large-scale plantation of the species is selection of high oil yielding trees from the natural habitat. This is followed by vegetative propagation of the selected trees and then testing the growth of the clone in the field.  The aim of the present study was to select high-oil yielding trees of M. pinnata, to propagate the selected trees by budding and to evaluate the survival and growth of budded plants in the field. Pods were collected from 30 trees in Lovina Beach, Buleleng Regency, Bali. Oil was extracted from seeds using soxhlet with hexane as a solvent.  The high oil yielding trees were propagated by budding using root stocks grown from M. pinnata seeds.  Scions were taken from young branches of selected trees. Incision was made on rootstock and the same size of cut was made on a scion containing a single bud.  The scion was inserted to the incision of rootstock then closed tightly using plastic strips.   The plastic was removed when the scion grew into a little green shoot. One month after plastic removal, the scion union grew into a single shoot and then the budded plants were removed to polybags. Budded plants were planted in the field of Bukit Jimbaran, Badung Regency, Bali with 4 × 4 spacing. Results showed all budded plants successfully grow new shoots. Two months after planting the survival of budded plants was 100%. Plant height increased by 22.13 cm, stem diameter increased by 2.43 mm and the number of compound leaf increased by 2.08.  It can be concluded that four high oil yielding trees were selected from Lovina Beach and successfully propagated by budding. Survival of budded plants was 100% with vigorous growth.

  6. Using biomass of starch-rich transgenic Arabidopsis vacuolar as feedstock for fermentative hydrogen production

    Energy Technology Data Exchange (ETDEWEB)

    Lo, Yung-Chung; Cheng, Chieh-Lun; Chen, Chun-Yen [National Cheng Kung Univ., Tainan, Taiwan (China). Dept. of Chemical Engineering; Huang, Li-Fen; Chang, Jo-Shu [Yuan Ze Univ., Tao-yuan, Taiwan (China). Graduate School of Biotechnology and Bioengineering

    2010-07-01

    Cellulose is the major constitute of plant biomass and highly available in agricultural wastes and industrial effluents, thereby being a cost-effective feedstock for bioenergy production. However, most hydrogen producing bacteria (HPB) could not directly convert cellulosic materials (such as rice husk and rice straw) into hydrogen whereas most HPB could utilize sugar and starch for hydrogen production. In this work, we used an indigenous bacterial isolate Clostridium butyricum CGS2 as HPB, which could directly convert soluble starch into H2 with a maximum H2 production rate and a H2 yield of 205.07 ml H2/h/l and 6.46 mmol H2/g starch, respectively. However, C. butyricum CGS2 could not ferment pure cellulosic materials such as carboxymethyl cellulose and xylan. Moreover, we found that C. butyricum CGS2 could utilize rich husk to produce H2 at a rate of 13.19 ml H2/h/l due to the starch content in rice husk (H2 yield = 1.49 mmol H2/g rice husk). In contrast, since lacking starch content, rice straw cannot be converted to H2 by C. butyricum CGS2. The foregoing results suggest that increasing the starch content in the natural agricultural wastes may make them better feedstock for fermentative H2 production. Hence, a genetically modified plant (Arabidopsis vacuolar) was constructed to enhance its starch concentration. The starch concentration of mutant plant S1 increased to 10.67 mg/fresh weight, which is four times higher than that of wild type plant. Using mutant plant S1 as carbon source, C. butyricum CGS2 was able to give a high cumulative H2 production and H2 production rate of 285.4 ml H2/l and 43.6 ml/h/l, respectively. The cumulative H2 production and H2 production rate both increased when the concentration of the transgenic plant was increased. Therefore, this study successful demonstrated the feasibility of expressing starch on genetically-modified plants to create a more effective feedstock for dark H2 fermentation. (orig.)

  7. Waste Cooking Oil as an Alternate Feedstock for Biodiesel Production

    OpenAIRE

    Arjun B. Chhetri; K. Chris Watts; M. Rafiqul Islam

    2008-01-01

    As crude oil price reach a new high, the need for developing alternate fuels has become acute. Alternate fuels should be economically attractive in order to compete with currently used fossil fuels. In this work, biodiesel (ethyl ester) was prepared from waste cooking oil collected from a local restaurant in Halifax, Nova Scotia, Canada. Ethyl alcohol with sodium hydroxide as a catalyst was used for the transesterification process. The fatty acid composition of the final biodiesel esters was ...

  8. Techno-economic evaluation of biodiesel production from waste cooking oil--a case study of Hong Kong.

    Science.gov (United States)

    Karmee, Sanjib Kumar; Patria, Raffel Dharma; Lin, Carol Sze Ki

    2015-02-18

    Fossil fuel shortage is a major challenge worldwide. Therefore, research is currently underway to investigate potential renewable energy sources. Biodiesel is one of the major renewable energy sources that can be obtained from oils and fats by transesterification. However, biodiesel obtained from vegetable oils as feedstock is expensive. Thus, an alternative and inexpensive feedstock such as waste cooking oil (WCO) can be used as feedstock for biodiesel production. In this project, techno-economic analyses were performed on the biodiesel production in Hong Kong using WCO as a feedstock. Three different catalysts such as acid, base, and lipase were evaluated for the biodiesel production from WCO. These economic analyses were then compared to determine the most cost-effective method for the biodiesel production. The internal rate of return (IRR) sensitivity analyses on the WCO price and biodiesel price variation are performed. Acid was found to be the most cost-effective catalyst for the biodiesel production; whereas, lipase was the most expensive catalyst for biodiesel production. In the IRR sensitivity analyses, the acid catalyst can also acquire acceptable IRR despite the variation of the WCO and biodiesel prices.

  9. Evaluation of tolerance to soils contaminated with diesel oil in plant species with bioremediation potential

    International Nuclear Information System (INIS)

    Petenello, Maria Cristina; Feldman, Susana Raquel.

    2012-01-01

    Soils contaminated with hydrocarbons or their derivate can be remediated by different methods. Many of them use live organisms such as plants that are able to mineralize these compounds, turning them into more simple molecules, similar to natural molecules. When the use of plants is decided, it is important to employ native plants because they are already adapted to the particular ecological conditions of the site. The response of spartina argentinensis, paspalum atratum, paspalum guenoarun and melilotus albus to the presence of diesel oil was evaluated considering seed germination, plant emergence and biomass production of plants growing on soils experimentally contaminated with different concentrations of diesel oil (1 and 2 %). Although all the parameters evaluated showed the negative impact of the presence of diesel-oil, the plants continued growing; therefore they can be considered useful management options for soil phytoremediation.

  10. Effect of Light Spectral Quality on Essential Oil Components in Ocimum Basilicum and Salvia Officinalis Plants

    Directory of Open Access Journals (Sweden)

    A. S. IVANITSKIKH

    2014-07-01

    Full Text Available In plants grown with artificial lighting, variations in light spectral composition can be used for the directed biosynthesis of the target substances including essential oils, e.g. in plant factories. We studied the effect of light spectral quality on the essential oil composition in Ocimum basilicum and Salvia officinalis plants grown in controlled environment. The variable-spectrum light modules were designed using three types of high-power light-emitting diodes (LEDs with emission peaked in red, blue and red light, white LEDs, and high-pressure sodium lamps as reference. Qualitative and quantitative essential oil determinations were conducted using gas chromatography with mass selective detection and internal standard method.Sweet basil plant leaves contain essential oils (са. 1 % including linalool, pinene, eugenol, camphor, cineole, and other components. And within the genetic diversity of the species, several cultivar groups can be identified according to the flavor (aroma perceived by humans: eugenol, clove, camphor, vanilla basil. Essential oil components produce particular flavor of the basil leaves. In our studies, we are using two sweet basil varieties differing in the essential oil qualitative composition – “Johnsons Dwarf” (camphor as a major component of essential oils and “Johnsons Lemon Flavor” (contains large amount of citral defining its lemon flavor.In sage, essential oil composition is also very variable. As for the plant responses to the light environment, the highest amount of the essential oils was observed at the regimes with white and red + blue LED light. And it was three times less with red light LEDs alone. In the first two environments, thujone accumulation was higher in comparison with camphor, while red LED light and sodium lamp light favored camphor biosynthesis (three times more than thujone. The highest amount of eucalyptol was determined in plants grown with red LEDs.

  11. Utilization of immobilized lipases as catalysts in the transesterification of non-edible vegetable oils with ethanol

    Directory of Open Access Journals (Sweden)

    P. C. Tiosso

    2014-12-01

    Full Text Available This work reports the use of commercially available immobilized lipase preparations (Novozym® 435 and Lipozyme TL IM, both from Novozymes, and Lipase PS IM from Amano as catalysts in the transesterification reaction of different alkyl-chain triglycerides with ethanol. The ethanolysis of native oils from Brazilian Amazon plants andiroba (Carapa guianensis, babassu (Orbignya sp., jatropa (Jatropha curcas, and palm (Elaeis sp. was studied in a solvent-free system. In a typical reaction, the immobilized preparations were added to the mixture of vegetable oil-to-ethanol in a molar ratio of 1:9. The reactions were performed at 50 ºC for a maximum period of 48 h. Under the conditions used, all the immobilized lipase preparations were able to generate the main esters of fatty acids present in the tested feedstocks, and both the reaction rate and ester yield were dependent on the source of lipase and vegetable oil. The viscosity values for the samples obtained in each reaction displayed a consistent reduction in relation to their original feedstocks, which also confirms the high conversion of triglycerides to ethyl esters (99.8-74.0%. The best performances were obtained with Amano PS IM and Novozym® 435, with the biodiesel samples from the babassu and jatropha oils exhibiting viscosity values in accordance with those predicted by the technical standards of ASTM D6751 (1.9-6.0 mm²/s. Lipozyme TL IM displayed an unsatisfactory performance, indicating that the conditions of the transesterification reaction should be improved. This comparative study using different catalysts and several vegetable oil sources with varying fatty acid compositions is particularly important for all tropical countries with a diversity of native vegetable oil sources.

  12. Mild Biomass Liquefaction Process for Economic Production of Stabilized Refinery-Ready Bio-oil

    Energy Technology Data Exchange (ETDEWEB)

    Gangwal, Santosh [Southern Research, Durham, NC (United States); Meng, Jiajia [Southern Research, Durham, NC (United States); McCabe, Kevin [Southern Research, Durham, NC (United States); Larson, Eric [Princeton Univ., NJ (United States). Princeton Environmental Inst.; Mastro, Kelly [Southern Research, Durham, NC (United States)

    2016-04-25

    Southern Research (SR) in cooperation with U.S. Department of Energy (DOE), Bioenergy Technology Office (BETO), investigated a biomass liquefaction process for economic production of stabilized refinery-ready bio-oil. The project was awarded by DOE under a Funding Opportunity Announcement (DE-FOA-0000686) for Bio-oil Stabilization and Commoditization that intended to evaluate the feasibility of using bio-oil as a potential feedstock in an existing petroleum refinery. SR investigated Topic Area 1 of the FOA at Technology Readiness Level 2-3 to develop thermochemical liquefaction technologies for producing a bio-oil feedstock from high-impact biomass that can be utilized within a petroleum refinery. Bio-oil obtained from fast pyrolysis of biomass is a green intermediate that can be further upgraded into a biofuel for blending in a petroleum refinery using a hydro-deoxygenation (HDO) route. Co-processing pyrolysis bio-oil in a petroleum refinery is an attractive approach to leverage the refinery’s existing capital. However, the petroleum industry is reluctant to accept pyrolysis bio-oil because of a lack of a standard definition for an acceptable bio-oil feedstock in existing refinery processes. Also per BETO’s multiyear program plan, fast pyrolysis-based bio-fuel is presently not cost competitive with petroleum-based transportation fuels. SR aims to develop and demonstrate a cost-effective low-severity thermal liquefaction and hydrodeoxygenation (HDO) process to convert woody biomass to stabilized bio-oils that can be directly blended with hydrotreater input streams in a petroleum refinery for production of gasoline and/or diesel range hydrocarbons. The specific project objectives are to demonstrate the processes at laboratory scale, characterize the bio-oil product and develop a plan in partnership with a refinery company to move the technology towards commercialization.

  13. Understanding hydrodeoxygenation of oils and fats

    DEFF Research Database (Denmark)

    Madsen, Anders Theilgaard; Riisager, Anders; Fehrmann, Rasmus

    2009-01-01

    Production of diesel fuels from renewable feedstock is increasing. One auspicious route could be by hydrodeoxygenating waste fats and oils to result long-chain alkanes, a process well suited for existing fuel infrastructure. This was studied over metal oxide-supported platinum-group metals...

  14. Social and environmental advantages of palm oil biodiesel in Brazil; Vantagens socioambientais do biodiesel de palma no Brasil

    Energy Technology Data Exchange (ETDEWEB)

    Ferreira, Lucas Rueda [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil)

    2012-07-01

    The production of biodiesel has seen a fast growth in Brazil during the last years, making the country one of the top producers in the world. This growth is explained by the mandatory blendings of biodiesel in conventional diesel. This article is about how the biodiesel industry developed having soy oil as the main feedstock and how the big oilseed crushers have taken the main role in the industry, with family farmers, the original beneficiaries of the program, having a marginal role. If the scenario of B10 or B20 in 2020 is verified, then it is going to use so much soy oil that it will interfere in another uses of soy, like exportation. Besides that, the article criticizes the failure of the social aspect of the program, arguing that the objective of integration of family farmers has failed, and that the numbers are not worse only because the action of the government, through PETROBRAS. Then it is presented the palm oil as a alternative to share the role of main feedstock with the soy oil, because palm has a bigger production of vegetal oil per hectare than most oilseeds, is capable of a bigger reduction in green house gas emissions than soy oil, the fact that Brazil has plenty of land available to plant palm, without the necessity of deforestation and that this process can bring development to family farmers in the north of the country. The article ends with the summary of the main projects of palm production for biodiesel, like the ones from PETROBRAS, Vale and Oleoplan, and how these are going to be the main determinants of the success or failure of the palm oil as an alternative to the biodiesel sector. (author)

  15. Oil uptake by plant-based sorbents and its biodegradation by their naturally associated microorganisms

    International Nuclear Information System (INIS)

    Dashti, Narjes; Ali, Nedaa; Khanafer, Majida; Radwan, Samir S.

    2017-01-01

    The plant waste-products, wheat straw, corn-cobs and sugarcane bagasse took up respectively, 190, 110 and 250% of their own weights crude oil. The same materials harbored respectively, 3.6 × 10 5 , 8.5 × 10 3 and 2.3 × 10 6  g −1  cells of hydrocarbonoclastic microorganisms, as determined by a culture-dependent method. The molecular, culture-independent analysis revealed that the three materials were associated with microbial communities comprising genera known for their hydrocarbonoclastic activity. In bench-scale experiments, inoculating oily media with samples of the individual waste products led to the biodegradation of 34.0–44.9% of the available oil after 8 months. Also plant-product samples, which had been used as oil sorbents lost 24.3–47.7% of their oil via their associated microorganisms, when kept moist for 8 months. In this way, it is easy to see that those waste products are capable of remediating spilled oil physically, and that their associated microbial communities can degrade it biologically. - Highlights: • Wheat straw, corn-cobs and sugarcane bagasse take up large amounts of oil. • The three materials harbor hydrocarbonoclastic microorganisms. • Inoculating oily liquid media with the three materials separately led to biodegradation of oil. - Plant-based oil sorbents harbor microorganisms with hydrocarbon-utilization potential which makes such natural materials valuable tools for bioremediation of oil spilled in the environment.

  16. Biomass Feedstock and Conversion Supply System Design and Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Jacobson, Jacob J. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Roni, Mohammad S. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Lamers, Patrick [Idaho National Lab. (INL), Idaho Falls, ID (United States); Cafferty, Kara G. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2014-09-01

    Idaho National Laboratory (INL) supports the U.S. Department of Energy’s bioenergy research program. As part of the research program INL investigates the feedstock logistics economics and sustainability of these fuels. A series of reports were published between 2000 and 2013 to demonstrate the feedstock logistics cost. Those reports were tailored to specific feedstock and conversion process. Although those reports are different in terms of conversion, some of the process in the feedstock logistic are same for each conversion process. As a result, each report has similar information. A single report can be designed that could bring all commonality occurred in the feedstock logistics process while discussing the feedstock logistics cost for different conversion process. Therefore, this report is designed in such a way that it can capture different feedstock logistics cost while eliminating the need of writing a conversion specific design report. Previous work established the current costs based on conventional equipment and processes. The 2012 programmatic target was to demonstrate a delivered biomass logistics cost of $55/dry ton for woody biomass delivered to fast pyrolysis conversion facility. The goal was achieved by applying field and process demonstration unit-scale data from harvest, collection, storage, preprocessing, handling, and transportation operations into INL’s biomass logistics model. The goal of the 2017 Design Case is to enable expansion of biofuels production beyond highly productive resource areas by breaking the reliance of cost-competitive biofuel production on a single, low-cost feedstock. The 2017 programmatic target is to supply feedstock to the conversion facility that meets the in-feed conversion process quality specifications at a total logistics cost of $80/dry T. The $80/dry T. target encompasses total delivered feedstock cost, including both grower payment and logistics costs, while meeting all conversion in-feed quality targets

  17. Process modeling and supply chain design for advanced biofuel production based on bio-oil gasification

    Science.gov (United States)

    Li, Qi

    As a potential substitute for petroleum-based fuel, second generation biofuels are playing an increasingly important role due to their economic, environmental, and social benefits. With the rapid development of biofuel industry, there has been an increasing literature on the techno-economic analysis and supply chain design for biofuel production based on a variety of production pathways. A recently proposed production pathway of advanced biofuel is to convert biomass to bio-oil at widely distributed small-scale fast pyrolysis plants, then gasify the bio-oil to syngas and upgrade the syngas to transportation fuels in centralized biorefinery. This thesis aims to investigate two types of assessments on this bio-oil gasification pathway: techno-economic analysis based on process modeling and literature data; supply chain design with a focus on optimal decisions for number of facilities to build, facility capacities and logistic decisions considering uncertainties. A detailed process modeling with corn stover as feedstock and liquid fuels as the final products is presented. Techno-economic analysis of the bio-oil gasification pathway is also discussed to assess the economic feasibility. Some preliminary results show a capital investment of 438 million dollar and minimum fuel selling price (MSP) of $5.6 per gallon of gasoline equivalent. The sensitivity analysis finds that MSP is most sensitive to internal rate of return (IRR), biomass feedstock cost, and fixed capital cost. A two-stage stochastic programming is formulated to solve the supply chain design problem considering uncertainties in biomass availability, technology advancement, and biofuel price. The first-stage makes the capital investment decisions including the locations and capacities of the decentralized fast pyrolysis plants and the centralized biorefinery while the second-stage determines the biomass and biofuel flows. The numerical results and case study illustrate that considering uncertainties can be

  18. Role of plant growth regulators on oil yield and biodiesel production of linseed (linum usitatissimum l)

    International Nuclear Information System (INIS)

    Faizanullah, A.; Bano, A.; Nosheen, A.

    2010-01-01

    A field experiment was conducted to compare the effect of plant growth regulators (PGRs) viz. kinetin (K), chlorocholine chloride (CCC) and salicylic acid (SA) on seed yield, oil content and oil quality of Linseed (Linum usitatissimum L) cv. Chandni with a new perspective to biodiesel production. The growth regulators (10-6M) were applied as seed soaking for 10 h prior to cultivation. Kinetin significantly increased the number of capsules/plant, seed number/capsule, 1000 seed weight and total seed yield (kg/h). The growth regulators increased the seed oil content maximum being in kinetin and CCC treatments. Kinetin and CCC significantly decreased the oil acid value, free fatty acid content (% oleic acid) and increased the pH of oil. Nevertheless, SA significantly decreased the oil specific gravity and did not alter the pH. Only kinetin significantly increased the oil iodine value. The oil extracted from seeds of kinetin and CCC treated plants showed maximum conversion (% w/w) to methyl esters/biodiesel after transesterification. It can be inferred that PGRs can be utilized successfully for improving the biodiesel yield of linseed. (author)

  19. Assessment of Bermudagrass and Bunch Grasses as Feedstock for Conversion to Ethanol

    Science.gov (United States)

    Anderson, William F.; Dien, Bruce S.; Brandon, Sarah K.; Peterson, Joy Doran

    Research is needed to allow more efficient processing of lignocellulose from abundant plant biomass resources for production to fuel ethanol at lower costs. Potential dedicated feedstock species vary in degrees of recalcitrance to ethanol processing. The standard dilute acid hydrolysis pretreatment followed by simultaneous sacharification and fermentation (SSF) was performed on leaf and stem material from three grasses: giant reed (Arundo donax L.), napiergrass (Pennisetum purpureum Schumach.), and bermudagrass (Cynodon spp). In a separate study, napiergrass, and bermudagrass whole samples were pretreated with esterase and cellulose before fermentation. Conversion via SSF was greatest with two bermudagrass cultivars (140 and 122 mg g-1 of biomass) followed by leaves of two napiergrass genotypes (107 and 97 mg g-1) and two giant reed clones (109 and 85 mg g-1). Variability existed among bermudagrass cultivars for conversion to ethanol after esterase and cellulase treatments, with Tifton 85 (289 mg g) and Coastcross II (284 mg g-1) being superior to Coastal (247 mg g-1) and Tifton 44 (245 mg g-1). Results suggest that ethanol yields vary significantly for feedstocks by species and within species and that genetic breeding for improved feedstocks should be possible.

  20. Alternative, Renewable and Novel Feedstocks for Producing Chemicals

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2007-07-01

    Vision2020 and ITP directed the Alternative, Renewable and Novel Feedstocks project to identify industrial options and to determine the work required to make alternative, renewable and novel feedstock options attractive to the U.S. chemicals industry. This report presents the Alternative, Renewable and Novel Feedstocks project findings which were based on a technology review and industry workshop.

  1. Effect of acid, steam explosion, and size reduction pretreatments on bio-oil production from sweetgum, switchgrass, and corn stover.

    Science.gov (United States)

    Wang, Hui; Srinivasan, Radhakrishnan; Yu, Fei; Steele, Philip; Li, Qi; Mitchell, Brian; Samala, Aditya

    2012-05-01

    Bio-oil produced from biomass by fast pyrolysis has the potential to be a valuable substitute for fossil fuels. In a recent work on pinewood, we found that pretreatment alters the structure and chemical composition of biomass, which influence fast pyrolysis. In this study, we evaluated dilute acid, steam explosion, and size reduction pretreatments on sweetgum, switchgrass, and corn stover feedstocks. Bio-oils were produced from untreated and pretreated feedstocks in an auger reactor at 450 °C. The bio-oil's physical properties of pH, water content, acid value, density, and viscosity were measured. The chemical characteristics of the bio-oils were determined by gas chromatography-mass spectrometry. The results showed that bio-oil yield and composition were influenced by the pretreatment method and feedstock type. Bio-oil yields of 52, 33, and 35 wt% were obtained from medium-sized (0.68-1.532 mm) untreated sweetgum, switchgrass, and corn stover, respectively, which were higher than the yields from other sizes. Bio-oil yields of 56, 46, and 51 wt% were obtained from 1% H(2)SO(4)-treated medium-sized sweetgum, switchgrass, and corn stover, respectively, which were higher than the yields from untreated and steam explosion treatments.

  2. Antibacterial and Anticandidal Activity of Essential Oils of some Medicinal Plants in Saudi Arabia

    International Nuclear Information System (INIS)

    Abed, Kawther F

    2007-01-01

    The antibacterial and anticandidal properties of essential oils obtained from 7 plant species used in traditional medicine in Saudi Arabia and other Middle East countries were evaluated for activity against test bacteria; Staphylococcus aureus, Bacillus subtilis, Escherichia coli, Pseudomonas aeruginosa and Candida albicans using an agar dilution method. Our results showed that oils from Azadirachta indica, Ziziphus spine, Matricaria chamomilla, Agrimonia eupatoria and Lupinus albus, even at the highest concentration did not inhibit any of the tested organisms. The essential oil extracted from Juniperus communis and Lavandula hybrida plants did not show any antibacterial activities. However, essential oil extracts from Juniperus communis and Lavandula hybrida exhibited varying degrees of growth inhibition of Candida albicans. The minimum inhibitory concentrations were 2.0%( v/v) of Juniper oil and 0.5% (v/v) for Lavender oil against Candida albicans. Our results suggest that the anticandidal properties of Juniper and Lavender oils may be further investigated to explore the possibility of using them in the treatment of candidal infections. (author)

  3. Repellent Activity of Apiaceae Plant Essential Oils and their Constituents Against Adult German Cockroaches.

    Science.gov (United States)

    Lee, Hyo-Rim; Kim, Gil-Hah; Choi, Won-Sil; Park, Il-Kwon

    2017-04-01

    We evaluated the repellent activity of 12 Apiaceae plant essential oils and their components against male and female adult German cockroaches, Blattella germanica L., to find new natural repellents. Of all the plant essential oils tested, ajowan (Trachyspermum ammi Sprague) and dill (Anethum graveolens L.) essential oils showed the most potent repellent activity against male and female adult German cockroaches. Repellent activities of chemicals already identified in active oils were also investigated. Of the compounds identified, carvacrol, thymol, and R-(-)-carvone showed >80% repellent activity against male and female adult German cockroaches at 2.5 µg/cm2. S-(+)-Carvone, (+)-dihydrocarvone, and terpinen-4-ol showed >70% repellent activity against male and female adult German cockroaches at 10 µg/cm2. Our results indicated that Apiaceae plant essential oils and their constituents have good potential as natural repellents against adult German cockroaches. © The Authors 2016. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  4. Extra heavy oil and refinery residues upgrading through Eni Slurry Technology : first EST commercial unit

    Energy Technology Data Exchange (ETDEWEB)

    Rispoli, G.; Sanfilippo, D.; Amoroso, A [Eni S.p.A., Rome (Italy)

    2009-07-01

    The production of heavy crude oils is projected to continue to grow in the upstream oil industry given that large reserves of unconventional extra heavy crude and bitumen exist in several geographic areas including Canada and Venezuela. As reserves of conventional crude oil continue to decline, these unconventional feedstocks are becoming an opportunity to pursue, but they require effective technologies for upgrading and meeting the growing demand for light and middle distillate fuels. This paper described the proprietary technology that offers a solution to upstream and downstream oil producers for bottom-of-the-barrel upgrading. En i Slurry Technology (EST) is constructing an industrial plant in its Sannazzaro refinery in Italy. The plant is designed to convert 23,000 BPSD of vacuum residue into high quality diesel and other valuable refinery streams such as liquefied petroleum gas, naphtha and jet fuel. EST is an H-addition process characterized by the use of a special homogeneous isothermal intrinsically safe reactor, and of a nano-dispersed non-ageing catalyst. EST converts more than 98 per cent of any type of residues to about 110 per cent volume of light products and distillates or extra heavy oils to high quality bottomless SCO. In typical performance, HDS is greater than 85 per cent, HDM greater than 99 per cent and HDCCR greater than 97 per cent. EST also achieves the target of zero fuel oil - zero coke. 12 refs., 4 tabs., 5 figs.

  5. Effect of Plant Density and Nitrogen Fertilizeron Morphological Traits, Seed and Essential Oil Yield and Essential Oil Content of Ajowan (Carum copticum L.

    Directory of Open Access Journals (Sweden)

    S.Ali Tabatabaei

    2017-08-01

    Full Text Available Introduction: Ajowan (Carum copticum Benth. & Hook. is an annual herbaceous essential oil bearing plant belonging to the Apiaceae family, which grows in India, Iran, and Egypt. Ajowan seeds have essential oil as an active substance, which is used in pharmaceutical industry as a diuretic, antivomiting, analgesic, antiasthma, antispasmodic and a carminative. Nitrogen is a part of all living cells and is a necessary part of all proteins, enzymes and metabolic processes involved in the synthesis and transfer of energy. Also, nitrogen is a part of chlorophyll, the green pigment of the plant that is responsible for photosynthesis. Generally, proper agronomic management including suitable plant density has a high influence on growth and yield of medicinal plants. In this regard, Kloss et al., (2012 highlighted the need for strategies to improve crop growth, make irrigation more efficient and sustainable and conserve farmlands. In addition, yield is influenced by inter-row spacing and sowing density. Ghilavizadeh et al., (2013 have reported that application of suitable amount of nitrogen fertilizer and plant density of 25 plan/m2 increased seed yield, essential oil yield and essential oil content of ajowan. In another research, Borumand Rezazadeh et al., (2009 reported that the plant density of 50 plant/m2 have produced the highest seed yield, essential oil yield and essential oil content. Generally, with regard to importance of medicinal plants and the necessity of understanding their crop and the impact of plant density and nitrogen fertilizer on the performance of these plants, this study was conducted to investigate the impact of these factors on some traits of ajowan. Materials and Methods: In order to evaluate the effect of plant density and nitrogen fertilizer on different traits of ajowan (Carum copticum L., an experiment was conducted using factorial based on randomized complete block design with three replications at Agricultural and Natural

  6. Production of portland cement using Moroccan oil shale and comparative study between conventional cement plant and cement plant using oil shale

    International Nuclear Information System (INIS)

    Doumbouya, M.; Kacemi, K.E.; Kitane, S.

    2012-01-01

    Like the use of coal ash from power plants as an addition to cement, oil shale are used for cement production on an industrial scale in Estonia, China, USA and Germany. Oil shale can be utilized in manufacturing the cement. In addition to the utilization of these by-products after combustion, it can also reduce the required temperature for the clinkering reactions during the production of Portland clinker. We performed a study on the Moroccan oil shale to maximize the use of oil shale ash in the manufacturing of Portland cement. We found that Moroccan oil shale ash can be used up to 30% with 70% Portland clinker without altering its principle properties. The corresponding temperature required to generate the required liquid for the clinkering reactions as well as the essential ingredients for clinker was found to be around 850 to 1000 deg. C. The operating temperatures for this optimized blend ratio were found to 1000 deg. C. The resulting Portland clinker from this ratio will need further testing in accordance with international standards for Portland cement to examine properties like strength and setting time. (author)

  7. Gasification : converting low value feedstocks to high value products

    International Nuclear Information System (INIS)

    Koppel, P.; Lorden, D.

    2009-01-01

    This presentation provided a historic overview of the gasification process and described the process chemistry of its two primary reactions, notably partial oxidation and steam reforming. The gasification process involves converting low value carbonaceous solid or liquid feeds to a synthetic gas by reacting the feed with oxygen and steam under high pressure and temperature conditions. Since the gasifier operates under a reducing environment instead of an oxidizing environment, mist sulphur is converted to hydrogen sulphide instead of sulphur dioxide. The gasification process also involves cleaning up synthetic gas and acid gas removal; recovery of conventional sulphur; and combustion or further processing of clean synthetic gas. This presentation also outlined secondary reactions such as methanation, water shift, and carbon formation. The negative effects of gasification were also discussed, with particular reference to syngas; metal carbonyls; soot; and slag. Other topics that were presented included world syngas production capacity by primary feedstock; operating IGCC projects; natural gas demand by oil sands supply and demand considerations; reasons for using the gasification process; gasifier feedstocks; and gasification products. The presentation concluded with a discussion of gasification licensors; gasification technologies; gasification experience; and the regulatory situation for greenhouse gas. Gasification has demonstrated excellent environmental performance with sulphur recovery greater than 99 per cent, depending on the the recovery process chosen. The opportunity also exists for carbon dioxide recovery. tabs., figs.

  8. Engineering of plants with improved properties as biofuels feedstocks by vessel-specific complementation of xylan biosynthesis mutants

    Directory of Open Access Journals (Sweden)

    Petersen Pia Damm

    2012-11-01

    Full Text Available Abstract Background Cost-efficient generation of second-generation biofuels requires plant biomass that can easily be degraded into sugars and further fermented into fuels. However, lignocellulosic biomass is inherently recalcitrant toward deconstruction technologies due to the abundant lignin and cross-linked hemicelluloses. Furthermore, lignocellulosic biomass has a high content of pentoses, which are more difficult to ferment into fuels than hexoses. Engineered plants with decreased amounts of xylan in their secondary walls have the potential to render plant biomass a more desirable feedstock for biofuel production. Results Xylan is the major non-cellulosic polysaccharide in secondary cell walls, and the xylan deficient irregular xylem (irx mutants irx7, irx8 and irx9 exhibit severe dwarf growth phenotypes. The main reason for the growth phenotype appears to be xylem vessel collapse and the resulting impaired transport of water and nutrients. We developed a xylan-engineering approach to reintroduce xylan biosynthesis specifically into the xylem vessels in the Arabidopsis irx7, irx8 and irx9 mutant backgrounds by driving the expression of the respective glycosyltransferases with the vessel-specific promoters of the VND6 and VND7 transcription factor genes. The growth phenotype, stem breaking strength, and irx morphology was recovered to varying degrees. Some of the plants even exhibited increased stem strength compared to the wild type. We obtained Arabidopsis plants with up to 23% reduction in xylose levels and 18% reduction in lignin content compared to wild-type plants, while exhibiting wild-type growth patterns and morphology, as well as normal xylem vessels. These plants showed a 42% increase in saccharification yield after hot water pretreatment. The VND7 promoter yielded a more complete complementation of the irx phenotype than the VND6 promoter. Conclusions Spatial and temporal deposition of xylan in the secondary cell wall of

  9. Synthesis of novel plant oil derivatives: Furan and Diels-Alder reaction products

    Science.gov (United States)

    Plant oils are useful sustainable raw materials for the development of new chemical products. In this work epoxidized soybean oil was treated with different acids, and variable amounts of furan structures were produced from the epoxidized linoleate moiety. From process studies, the highest yields of...

  10. Oleaginous crops as integrated production platforms for food, feed, fuel and renewable industrial feedstock

    Directory of Open Access Journals (Sweden)

    Beaudoin Frédéric

    2014-11-01

    Full Text Available The world faces considerable challenges including how to produce more biomass for food, feed, fuel and industrial feedstock without significantly impacting on our environment or increasing our consumption of limited resources such as water or petroleum-derived carbon. This has been described as sustainable intensification. Oleaginous crops have the potential to provide renewable resources for all these commodities, provided they can be engineered to meet end-use requirements, and that they can be produced on sufficient scale to meet current growing world population and industrial demand. Although traditional breeding methods have been used successfully to modify the fatty acid composition of oils, metabolic engineering provides a more rapid and direct method for manipulating plant lipid composition. Recent advances in our understanding of the biochemical mechanisms of seed oil biogenesis and the cloning of genes involved in fatty acid and oil metabolic pathways, have allowed the generation of oilseed crops that produce ‘designer oils’ tailored for specific applications and the conversion of high biomass crops into novel oleaginous crops. However, improvement of complex quantitative traits in oilseed crops remains more challenging as the underlying genetic determinants are still poorly understood. Technological advances in sequencing and computing have allowed the development of an association genetics method applicable to crops with complex genomes. Associative transcriptomics approaches and high throughput lipidomic profiling can be used to identify the genetic components controlling quantitative variation for lipid related traits in polyploid crops like oilseed rape and provide molecular tools for marker assisted breeding. In this review we are citing examples of traits with potential for bio-refining that can be harvested as co-products in seeds, but also in non-harvested biomass.

  11. Production of biodiesel by enzymatic transesterification of waste sardine oil and evaluation of its engine performance.

    Science.gov (United States)

    Arumugam, A; Ponnusami, V

    2017-12-01

    Waste sardine oil, a byproduct of fish industry, was employed as a low cost feedstock for biodiesel production. It has relatively high free fatty acid (FFA) content (32 mg KOH/g of oil). Lipase enzyme immobilized on activated carbon was used as the catalyst for the transesterification reaction. Process variables viz. reaction temperature, water content and oil to methanol molar ratio were optimized. Optimum methanol to oil molar ratio, water content and temperature were found to be 9:1, 10 v/v% and 30 °C respectively. Reusability of immobilized lipase was studied and it was found after 5 cycles of reuse there was about 13% drop in FAME yield. Engine performance of the produced biodiesel was studied in a Variable Compression Engine and the results confirm that waste sardine oil is a potential alternate and low-cost feedstock for biodiesel production.

  12. Evaluation of fungicidal and fungistatic activity of plant essential oils towards plant pathogenic and saprophytic fungi

    Directory of Open Access Journals (Sweden)

    Zia BANIHASHEMI

    2011-09-01

    Full Text Available   The contact and vapor effects of essential oils from different plants were studied in vitro for fungicidal and fungistatic activity towards different Basidiomycete, Ascomycete, Zygomycete and Oomycete taxa. Of nine essential oils tested, most were fungicidal at very low concentrations to most of the fungi. Hyphae were more sensitive than spores to the formulations. The essential oils citral, β-citronellol, geraniol and oil of lavender, at 1 μL mL-1 medium or 12 μL L-1 of air, inhibited growth and germination in the fungal species examined. Different species of fungal genera reacted differently to the formulations. Some of the formulations were fungistatic to spore germination.

  13. Developing a sustainable bioprocessing strategy based on a generic feedstock.

    Science.gov (United States)

    Webb, C; Koutinas, Wang R; Wang, R

    2004-01-01

    Based on current average yields of wheat per hectare and the saccharide content of wheat grain, it is feasible to produce wheat-based alternatives to many petrochemicals. However, the requirements in terms of wheat utilization would be equivalent to 82% of current production if intermediates and primary building blocks such as ethylene, propylene, and butadiene were to be produced in addition to conventional bioproducts. If only intermediates and bioproducts were produced this requirement would fall to just 11%, while bioproducts alone would require only 7%. These requirements would be easily met if the global wheat yield per hectare of cultivated land was increased from the current average of 2.7 to 5.5 tonnes ha(-1) (well below the current maximum). Preliminary economic evaluation taking into account only raw material costs demonstrated that the use of wheat as a generic feedstock could be advantageous in the case of bioproducts and specific intermediate petrochemicals. Gluten plays a significant role considering the revenue occurring when it is sold as a by-product. A process leading to the production of a generic fermentation feedstock from wheat has been devised and evaluated in terms of efficiency and economics. This feedstock aims at providing a replacement for conventional fermentation media and petrochemical feedstocks. The process can be divided into four major stages--wheat milling; fermentation of whole wheat flour by A. awamori leading to the production of enzymes and fungal cells; glucose enhancement via enzymatic hydrolysis of flour suspensions; and nitrogen/micronutrient enhancement via fungal cell autolysis. Preliminary costings show that the operating cost of the process depends on plant capacity, cereal market price, presence and market value of added-value by-products, labour costs, and mode of processing (batch or continuous).

  14. Short range attraction of Ceratitis capitata (Diptera: Tephritidae) sterile males to six commercially available plant essential oils

    Science.gov (United States)

    Plant essential oils have a number of roles in insect pest management. For male Ceratitis capitata, this includes use of angelica seed oil as long range attractants and ginger root oil as aromatherapy, which is exposure to sterile males to increase mating success. Neither of these plants are hosts f...

  15. Effects of mycorrhiza on growth and essential oil production in selected aromatic plants

    Directory of Open Access Journals (Sweden)

    Waed Tarraf

    2015-09-01

    Full Text Available Arbuscular mycorrhizal (AM symbiosis is widely investigated in aromatic herbs. Several studies have shown different effects on secondary metabolites, biomass production, as well as oil quantitative and qualitative aspects. The seeking to increase the yield of plants and their oils is an interesting topic in the world of medicinal and aromatic plant production. In tune with that, this study evaluated the effectiveness of two mycorrhiza fungi, Funneliformis mosseae (syn. Glomus mosseae and Septoglomus viscosum (syn. Glomus viscosum, on three species from Lamiaceae family: Salvia officinalis L., Origanum vulgare L., and Thymus vulgaris L. besides untreated control. It was found that the effect of symbiosis on growth was more favourable with S. viscosum than other AM fungus. The S. viscosum inoculation raised the yield of essential oil in oregano. Analysis of gas chromatography/mass spectrometry showed that manool obtained the highest abundance in leaf essential oil of inoculated sage; thymol was the major component whatever the treatment in thyme and lower relative content of carvacrol was reported with arbuscular mycorrhizal fungi inoculation in oregano. The results suggest the mycorrhizal inoculation as a promising technology in sustainable agricultural system to improve the plant productivity performance. Specific inocula are strategic to enhance the chemical profile of essential oils.

  16. Advanced Systems for Preprocessing and Characterizing Coal-Biomass Mixtures as Next-Generation Fuels and Feedstocks

    Energy Technology Data Exchange (ETDEWEB)

    Karmis, Michael [Virginia Polytechnic Inst. and State Univ. (Virginia Tech), Blacksburg, VA (United States); Luttrell, Gerald [Virginia Polytechnic Inst. and State Univ. (Virginia Tech), Blacksburg, VA (United States); Ripepi, Nino [Virginia Polytechnic Inst. and State Univ. (Virginia Tech), Blacksburg, VA (United States); Bratton, Robert [Virginia Polytechnic Inst. and State Univ. (Virginia Tech), Blacksburg, VA (United States); Dohm, Erich [Virginia Polytechnic Inst. and State Univ. (Virginia Tech), Blacksburg, VA (United States)

    2014-09-30

    The research activities presented in this report are intended to address the most critical technical challenges pertaining to coal-biomass briquette feedstocks. Several detailed investigations were conducted using a variety of coal and biomass feedstocks on the topics of (1) coal-biomass briquette production and characterization, (2) gasification of coal-biomass mixtures and briquettes, (3) combustion of coal-biomass mixtures and briquettes, and (4) conceptual engineering design and economic feasibility of briquette production. The briquette production studies indicate that strong and durable co-firing feedstocks can be produced by co-briquetting coal and biomass resources commonly available in the United States. It is demonstrated that binderless coal-biomass briquettes produced at optimized conditions exhibit very high strength and durability, which indicates that such briquettes would remain competent in the presence of forces encountered in handling, storage and transportation. The gasification studies conducted demonstrate that coal-biomass mixtures and briquettes are exceptional gasification feedstocks, particularly with regard to the synergistic effects realized during devolatilization of the blended materials. The mixture combustion studies indicate that coal-biomass mixtures are exceptional combustion feedstocks, while the briquette combustion study indicates that the use of blended briquettes reduces NOx, CO2, and CO emissions, and requires the least amount of changes in the operating conditions of an existing coal-fired power plant. Similar results were obtained for the physical durability of the pilot-scale briquettes compared to the bench-scale tests. Finally, the conceptual engineering and feasibility analysis study for a commercial-scale briquetting production facility provides preliminary flowsheet and cost simulations to evaluate the various feedstocks, equipment selection and operating parameters.

  17. Problems created on delayed supply of feedstock for the HDPE plant of Jam Petrochemical Complex (JPC) in Iran : a case study[The 1. international construction specialty conference

    Energy Technology Data Exchange (ETDEWEB)

    Etemadzadeh, S.; Mortaheb, M. [Sharif Univ. of Technology, Tehran (Iran, Islamic Republic of). Dept. of Civil Engineering; Beigi, H. [Jam Petrochemical Co., Assaluyeh, Bushehr (Iran, Islamic Republic of)

    2006-07-01

    The total loss incurred due to delays in supply of feedstock and utilities over the past 2 years during Iran's construction boom in petrochemical plants was evaluated. The problems associated with the delay of feedstock supply and its impact on the final stages of a petrochemical project were discussed and the factors that affect the financial viability of a project were identified. In particular, the paper reviewed issues regarding equipment warranty and their pre-mature expiration; unavoidable rework prior to pre-commissioning; preservation and maintenance cost of equipment in a humid and hot environment; changes in technology and market demands; and, additional fixed costs covering salaries and maintenance costs. Remedial action plans addressing these issues were proposed in order to reduce the costs and any further delays of a project. The importance of technical audits at the feasibility stage of a project was emphasized along with the need to verify the accuracy of initial data for proper design and completion of a project.

  18. The waste-to-energy framework for integrated multi-waste utilization: Waste cooking oil, waste lubricating oil, and waste plastics

    Energy Technology Data Exchange (ETDEWEB)

    Singhabhandhu, Ampaitepin; Tezuka, Tetsuo [Energy Economics Laboratory, Department of Socio-Environmental Energy Science, Graduate School of Energy Science, Kyoto University, Yoshida-honmachi, Sakyo-ku, Kyoto 606-8501 (Japan)

    2010-06-15

    Energy generation by wastes is considered one method of waste management that has the benefit of energy recovery. From the waste-to-energy point of view, waste cooking oil, waste lubricating oil, and waste plastics have been considered good candidates for feedstocks for energy conversion due to their high heating values. Compared to the independent management of these three wastes, the idea of co-processing them in integration is expected to gain more benefit. The economies of scale and the synergy of co-processing these wastes results in higher quality and higher yield of the end products. In this study, we use cost-benefit analysis to evaluate the integrated management scenario of collecting the three wastes and converting them to energy. We report the total heat of combustion of pyrolytic oil at the maximum and minimum conversion rates, and conduct a sensitivity analysis in which the parameters of an increase of the electricity cost for operating the process and increase of the feedstock transportation cost are tested. We evaluate the effects of economy of scale in the case of integrated waste management. We compare four cases of waste-to-energy conversion with the business as usual (BAU) scenario, and our results show that the integrated co-processing of waste cooking oil, waste lubricating oil, and waste plastics is the most profitable from the viewpoints of energy yield and economics. (author)

  19. Field-to-Fuel Performance Testing of Lignocellulosic Feedstocks for Fast Pyrolysis and Upgrading: Techno-economic Analysis and Greenhouse Gas Life Cycle Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Meyer, Pimphan A.; Snowden-Swan, Lesley J.; Rappé, Kenneth G.; Jones, Susanne B.; Westover, Tyler L.; Cafferty, Kara G.

    2016-11-17

    This work shows preliminary results from techno-economic analysis and life cycle greenhouse gas analysis of the conversion of seven (7) biomass feedstocks to produce liquid transportation fuels via fast pyrolysis and upgrading via hydrodeoxygenation. The biomass consists of five (5) pure feeds (pine, tulip poplar, hybrid poplar, switchgrass, corn stover) and two blends. Blend 1 consists of equal weights of pine, tulip poplar and switchgrass, and blend 2 is 67% pine and 33% hybrid poplar. Upgraded oil product yield is one of the most significant parameters affecting the process economics, and is a function of both fast pyrolysis oil yield and hydrotreating oil yield. Pure pine produced the highest overall yield, while switchgrass produced the lowest. Interestingly, herbaceous materials blended with woody biomass performed nearly as well as pure woody feedstock, suggesting a non-trivial relationship between feedstock attributes and production yield. Production costs are also highly dependent upon hydrotreating catalyst-related costs. The catalysts contribute an average of ~15% to the total fuel cost, which can be reduced through research and development focused on achieving performance at increased space velocity (e.g., reduced catalyst loading) and prolonging catalyst lifetime. Green-house-gas reduction does not necessarily align with favorable economics. From the greenhouse gas analysis, processing tulip poplar achieves the largest GHG emission reduction relative to petroleum (~70%) because of its lower hydrogen consumption in the upgrading stage that results in a lower natural gas requirement for hydrogen production. Conversely, processing blend 1 results in the smallest GHG emission reduction from petroleum (~58%) because of high natural gas demand for hydrogen production.

  20. ASSERT FY16 Analysis of Feedstock Companion Markets

    Energy Technology Data Exchange (ETDEWEB)

    Lamers, Patrick [Idaho National Lab. (INL), Idaho Falls, ID (United States); Hansen, Jason [Idaho National Lab. (INL), Idaho Falls, ID (United States); Jacobson, Jacob J. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Nguyen, Thuy [Idaho National Lab. (INL), Idaho Falls, ID (United States); Nair, Shyam [Idaho National Lab. (INL), Idaho Falls, ID (United States); Searcy, Erin [Idaho National Lab. (INL), Idaho Falls, ID (United States); Hess, J. Richard [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2016-09-01

    Meeting Co-Optima biofuel production targets will require large quantities of mobilized biomass feedstock. Mobilization is of key importance as there is an abundance of biomass resources, yet little is available for purchase, let alone at desired quantity and quality levels needed for a continuous operation, e.g., a biorefinery. Therefore Co-Optima research includes outlining a path towards feedstock production at scale by understanding routes to mobilizing large quantities of biomass feedstock. Continuing along the vertically-integrated path that pioneer cellulosic biorefineries have taken will constrain the bioenergy industry to high biomass yield areas, limiting its ability to reach biofuel production at scale. To advance the cellulosic biofuels industry, a separation between feedstock supply and conversion is necessary. Thus, in contrast to the vertically integrated supply chain, two industries are required: a feedstock industry and a conversion industry. The split is beneficial for growers and feedstock processers as they are able to sell into multiple markets. That is, depots that produce value-add feedstock intermediates that are fully fungible in both the biofuels refining and other, so-called companion markets. As the biofuel industry is currently too small to leverage significant investment in up-stream infrastructure build-up, it requires an established (companion) market to secure demand, which de-risks potential investments and makes a build-up of processing and other logistics infrastructure more likely. A common concern to this theory however is that more demand by other markets could present a disadvantage for biofuels production as resource competition may increase prices leading to reduced availability of low-cost feedstock for biorefineries. To analyze the dynamics across multiple markets vying for the same resources, particularly the potential effects on resource price and distribution, the Companion Market Model (CMM) has been developed in this

  1. ASSERT FY16 Analysis of Feedstock Companion Markets

    International Nuclear Information System (INIS)

    Lamers, Patrick; Hansen, Jason; Jacobson, Jacob J.; Nguyen, Thuy; Nair, Shyam; Searcy, Erin; Hess, J. Richard

    2016-01-01

    Meeting Co-Optima biofuel production targets will require large quantities of mobilized biomass feedstock. Mobilization is of key importance as there is an abundance of biomass resources, yet little is available for purchase, let alone at desired quantity and quality levels needed for a continuous operation, e.g., a biorefinery. Therefore Co-Optima research includes outlining a path towards feedstock production at scale by understanding routes to mobilizing large quantities of biomass feedstock. Continuing along the vertically-integrated path that pioneer cellulosic biorefineries have taken will constrain the bioenergy industry to high biomass yield areas, limiting its ability to reach biofuel production at scale. To advance the cellulosic biofuels industry, a separation between feedstock supply and conversion is necessary. Thus, in contrast to the vertically integrated supply chain, two industries are required: a feedstock industry and a conversion industry. The split is beneficial for growers and feedstock processers as they are able to sell into multiple markets. That is, depots that produce value-add feedstock intermediates that are fully fungible in both the biofuels refining and other, so-called companion markets. As the biofuel industry is currently too small to leverage significant investment in up-stream infrastructure build-up, it requires an established (companion) market to secure demand, which de-risks potential investments and makes a build-up of processing and other logistics infrastructure more likely. A common concern to this theory however is that more demand by other markets could present a disadvantage for biofuels production as resource competition may increase prices leading to reduced availability of low-cost feedstock for biorefineries. To analyze the dynamics across multiple markets vying for the same resources, particularly the potential effects on resource price and distribution, the Companion Market Model (CMM) has been developed in this

  2. Control of Varroa Mite (Varroa destructor on Honeybees by Aromatic Oils and Plant Materials

    Directory of Open Access Journals (Sweden)

    I.K. Nazer

    2003-01-01

    Full Text Available The effect of several volatile plant oils, plant materials and fluvalinate (Apistan® strips on the control of the mite Varroa destructor on honeybee (Apis mellifera L. colonies was studied. The volatile oils were: clove, lavender, peppermint, sage, and thyme. The plant materials were: cumin fruits, eucalyptus leaves, and worm wood flowers. For each tested material, three treatment periods were carried out. Each period lasted for 24 days followed by eight days no-treatment. Within each treatment period, an average of three to six treatments were applied. Dead mites were counted one hour before and after each treatment. An increase in dead mites was recorded for the three treatment periods. It indicated that worm wood flowers, peppermint oil and clove oil treatments gave the best results in the control of Varroa mites but not significantly different than the control. The overall increase in the dead mites was 3.92, 3.62 and 3.34 fold, respectively.

  3. Transesterification Of Kapok Oil Using Calcium Oxide Catalyst Methyl Esters Yield With Catalyst Loading

    Directory of Open Access Journals (Sweden)

    Yunusa Tukur

    2015-08-01

    Full Text Available Abstract This investigation was necessitated to find other feedstocks for biodiesel production that would not compete with food. Kapok oil with 0.8 FFA was transesterified with methanol using a heterogeneous catalyst CaO to determine its potential for biodiesel production. Methyl esters yields of 70.4 65.6 78.2 71.9 and 72.5 were obtained with catalyst loading of 0.8 1.2 1.6 2.0 and 2.4 wt. of oil. The products had high compositions of FFA and alcohols which indicates that the oil require more esterification to reduce the feedstock FFA far below 0.8. Some unsaturated hydrocarbons such as alkenes and alkynes were also formed which could make the products unstable.

  4. Biodiesel production from Jatropha curcas oil

    Energy Technology Data Exchange (ETDEWEB)

    Jain, Siddharth; Sharma, M.P. [Alternate Hydro Energy Centre, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667 (India)

    2010-12-15

    In view of the fast depletion of fossil fuel, the search for alternative fuels has become inevitable, looking at huge demand of diesel for transportation sector, captive power generation and agricultural sector, the biodiesel is being viewed a substitute of diesel. The vegetable oils, fats, grease are the source of feedstocks for the production of biodiesel. Significant work has been reported on the kinetics of transesterification of edible vegetable oils but little work is reported on non-edible oils. Out of various non-edible oil resources, Jatropha curcas oil (JCO) is considered as future feedstocks for biodiesel production in India and limited work is reported on the kinetics of transesterification of high FFA containing oil. The present study reports a review of kinetics of biodiesel production. The paper also reveals the results of kinetics study of two-step acid-base catalyzed transesterification process carried out at pre-determined optimum temperature of 65 and 50 C for esterification and transesterification process, respectively, under the optimum condition of methanol to oil ratio of 3:7 (v/v), catalyst concentration 1% (w/w) for H{sub 2}SO{sub 4} and NaOH and 400 rpm of stirring. The yield of methyl ester (ME) has been used to study the effect of different parameters. The maximum yield of 21.2% of ME during esterification and 90.1% from transesterification of pretreated JCO has been obtained. This is the first study of its kind dealing with simplified kinetics of two-step acid-base catalyzed transesterification process carried at optimum temperature of both the steps which took about 6 h for complete conversion of TG to ME. (author)

  5. Methods of refining natural oils, and methods of producing fuel compositions

    Science.gov (United States)

    Firth, Bruce E.; Kirk, Sharon E.

    2015-10-27

    A method of refining a natural oil includes: (a) providing a feedstock that includes a natural oil; (b) reacting the feedstock in the presence of a metathesis catalyst to form a metathesized product that includes olefins and esters; (c) passivating residual metathesis catalyst with an agent that comprises nitric acid; (d) separating the olefins in the metathesized product from the esters in the metathesized product; and (e) transesterifying the esters in the presence of an alcohol to form a transesterified product and/or hydrogenating the olefins to form a fully or partially saturated hydrogenated product. Methods for suppressing isomerization of olefin metathesis products produced in a metathesis reaction, and methods of producing fuel compositions are described.

  6. Research Concerning Antimicrobial Activities of Some Essential Oils Extracted from Plants

    Directory of Open Access Journals (Sweden)

    ADRIANA DALILA CRISTE

    2014-10-01

    Full Text Available The principal components of some essential oils extracted from plants have been found to have microbial activity. Depending on the concentration, the members of this class are known to be bactericide or bacteriostatic. Their action mechanism is unclear, but some studies suggest that the compounds penetrate the cell, where they interfere with cellular metabolism. The purpose of this study was to evaluate the antimicrobial activity of 5 essential oils extracted from plants on Escherichia coli, Pseudomonas aeruginosa, Salmonella enterica, Staphylococcus aureus and Bacillus cereus and to determinate how different amount of the used oils can influence the results of inhibition tests. These results showed that mainly all the natural extracts presented an antimicrobial effect. Thereby, some extracts were more efficient than another and the order is: Eucalyptus globulus (eucalyptus, Mentha piperita (mint, Lavandula angustifolia (lavender, Matricaria chamomilla (chamomile, Calendula officinalis (calendula.

  7. Utilization of two invasive free-floating aquatic plants (Pistia stratiotes and Eichhornia crassipes) as sorbents for oil removal.

    Science.gov (United States)

    Yang, Xunan; Chen, Shanshan; Zhang, Renduo

    2014-01-01

    Free-floating aquatic plants Pistia stratiotes and Eichhornia crassipes are well-known invasive species in the tropics and subtropics. The aim of this study was to utilize the plants as cost-effective and environmentally friendly oil sorbents. Multilevel wrinkle structure of P. stratiotes leaf (PL), rough surface of E. crassipes leaf (EL), and box structure of E. crassipes stalk (ES) were observed using the scanning electron microscope. The natural hydrophobic structures and capillary rise tests supported the idea to use P. stratiotes and E. crassipes as oil sorbents. Experiments indicated that the oil sorption by the plants was a fast process. The maximum sorption capacities for different oils reached 5.1-7.6, 3.1-4.8, and 10.6-11.7 g of oil per gram of sorbent for PL, EL, and ES, respectively. In the range of 5-35 °C, the sorption capacities of the plants were not significantly different. These results suggest that the plants can be used as efficient oil sorbents.

  8. Bacterial Structure and Characterization of Plant Growth Promoting and Oil Degrading Bacteria from the Rhizospheres of Mangrove Plants

    NARCIS (Netherlands)

    do Carmo, Flavia Lima; dos Santos, Henrique Fragoso; Martins, Edir Ferreira; van Elsas, Jan Dirk; Rosado, Alexandre Soares; Peixoto, Raquel Silva

    Most oil from oceanic spills converges on coastal ecosystems, such as mangrove forests, which are threatened with worldwide disappearance. Particular bacteria that inhabit the rhizosphere of local plant species can stimulate plant development through various mechanisms; it would be advantageous if

  9. Trends of non-destructive analytical methods for identification of biodiesel feedstock in diesel-biodiesel blend according to European Commission Directive 2012/0288/EC and detecting diesel-biodiesel blend adulteration: A brief review.

    Science.gov (United States)

    Mazivila, Sarmento Júnior

    2018-04-01

    Discrimination of biodiesel feedstock present in diesel-biodiesel blend is challenging due to the great similarity in the spectral profile as well as digital image profile of each type of feedstock employed in biodiesel production. Once the marketed diesel-biodiesel blend is subsidized, in which motivates adulteration in biofuel blend by cheaper supplies with high solubility to obtain profits associated with the subsidies involved in biodiesel production. Non-destructive analytical methods based on qualitative and quantitative analysis for detecting marketed diesel-biodiesel blend adulteration are reviewed. Therefore, at the end is discussed the advantage of the qualitative analysis over quantitative analysis, when the systems require immediate decisions such as to know if the marketed diesel-biodiesel blend is unadulterated or adulterated in order to aid the analyst in selecting the most appropriate green analytical procedure for detecting diesel-biodiesel blend adulteration proceeding in fast way. This critical review provides a brief review on the non-destructive analytical methods reported in scientific literature based on different first-order multivariate calibration models coupled with spectroscopy data and digital image data to identify the type of biodiesel feedstock present in diesel-biodiesel blend in order to meets the strategies adopted by European Commission Directive 2012/0288/EC as well as to monitoring diesel-biodiesel adulteration. According to that Directive, from 2020 biodiesel produced from first-generation feedstock, that is, oils employed in human food such as sunflower, soybean, rapeseed, palm oil, among other oils should not be subsidized. Therefore, those non-destructive analytical methods here reviewed are helpful for discrimination of biodiesel feedstock present in diesel-biodiesel blend according to European Commission Directive 2012/0288/EC as well as for detecting diesel-biodiesel blend adulteration. Copyright © 2017 Elsevier B

  10. A review of phenolic compounds in oil-bearing plants: Distribution, identification and occurrence of phenolic compounds.

    Science.gov (United States)

    Alu'datt, Muhammad H; Rababah, Taha; Alhamad, Mohammad N; Al-Mahasneh, Majdi A; Almajwal, Ali; Gammoh, Sana; Ereifej, Khalil; Johargy, Ayman; Alli, Inteaz

    2017-03-01

    Over the last two decades, separation, identification and measurement of the total and individual content of phenolic compounds has been widely investigated. Recently, the presence of a wide range of phenolic compounds in oil-bearing plants has been shown to contribute to their therapeutic properties, including anti-cancer, anti-viral, anti-oxidant, hypoglycemic, hypo-lipidemic, and anti-inflammatory activities. Phenolics in oil-bearing plants are now recognized as important minor food components due to several organoleptic and health properties, and they are used as food or sources of food ingredients. Variations in the content of phenolics in oil-bearing plants have largely been attributed to several factors, including the cultivation, time of harvest and soil types. A number of authors have suggested that the presence phenolics in extracted proteins, carbohydrates and oils may contribute to objectionable off flavors The objective of this study was to review the distribution, identification and occurrence of free and bound phenolic compounds in oil-bearing plants. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Side-stream products of edible oil refining as feedstocks in biodiesel production

    Directory of Open Access Journals (Sweden)

    Cvetković Bojan S.

    2016-01-01

    Full Text Available Biodiesel, a diesel fuel alternative, is produced from vegetable oils and animal fats by the transesterification reaction of triacylglycerols and lower aliphatic alcohols. Beside number advantages related to fossil fuels, the main barrier to biodiesel wider commercial use is the high price of edible oils. Recently, the special attention was given to side-stream products of edible oil refining as low-cost triacylglycerol sources for biodiesel production because of their positive economic and ecological effects. In this paper, the different procedures for biodiesel production from side-stream refining products such as soapstock, spent bleaching earth and deodorizer distillate were analyzed. The main goal of this paper is to analyze the possibilities for reusing the by-products of edible oil refinement in the biodiesel production.

  12. Plant essential oils potency as natural antibiotic in Indonesian medicinal herb of “jamu”

    Science.gov (United States)

    Soetjipto, H.; Martono, Y.

    2017-02-01

    The main purposes of this study are to compile antibacterial activity data of essential oils from Indonesian’s plants in order which can be used as a natural antibiotic in “jamu” to increase potential Indonesian medicinal herb. By using Agar Diffusing method, Bioautography and Gas Chromatography Mass Spectrum, respectively, antibacterial activity and chemical compounds of 12 plants essential oils were studied in the Natural Product Chemistry Laboratory, Department of Chemistry, Faculty of Science and Mathematics, Satya Wacana Christian University, Salatiga since 2007 until 2015. The results of this studies showed that all of the essential oils have a medium to a strong antibacterial activity which are in the range of 30 - 2,500 μg and 80-5,000 μg. Further on, the essential oils analyzed by GCMS showed that each essential oils have different dominant compounds. These data can be used as basic doses in the usage of essential oils as natural antibiotics.

  13. Model-free pyrolysis kinetics of sunflower seed and its de-oiled cake

    International Nuclear Information System (INIS)

    Özsin, Gamzenur; Kilic, Murat; Pütün, Ersan; Pütün, Ayşe E.

    2015-01-01

    Sunflower seed wastes from oil production are a potential biomass source for bio- energy production due to extensive and excessive oil production from sunflower seeds. Considering global energy requirement, pyrolysis seems a promising route for utilisation of such industrial biomass wastes. To develop, scale-up and operate pyrolysis plants efficiently, a fundamental understanding of pyrolysis behaviour and kinetics is essential. In this study, sunflower seeds and their waste cakes after extraction were evaluated as a potential biomass feedstock in pyrolysis process. In order to enlighten pyrolytic degradation behaviours, samples were pyrolysed under dynamic conditions from room temperature to 1000 °C using multiple heating rates. The main degradation regimes of the structures were characterized by high weight loss rates. Reaction kinetics was investigated with respect to conversion degree. It is anticipated that this study will be beneficial in optimizing the thermochemical processes, which may be utilize industrial biomass wastes. (full text)

  14. Innovative technological paradigm-based approach towards biofuel feedstock

    International Nuclear Information System (INIS)

    Xu, Jiuping; Li, Meihui

    2017-01-01

    Highlights: • DAS was developed through an innovative approach towards literature mining and technological paradigm theory. • A novel concept of biofuel feedstock development paradigm (BFDP) is proposed. • The biofuel production diffusion velocity model gives predictions for the future. • Soft path appears to be the driving force for the new paradigm shift. • An integrated biofuel production feedstock system is expected to play a significant role in a low-carbon sustainable future. - Abstract: Biofuels produced from renewable energy biomass are playing a more significant role because of the environmental problems resulting from the use of fossil fuels. However, a major problem with biofuel production is that despite the range of feedstock that can be used, raw material availability varies considerably. By combining a series of theories and methods, the research objective of this study is to determine the current developments and the future trends in biofuel feedstock. By combining technological paradigm theory with literature mining, it was found that biofuel feedstock production development followed a three-stage trajectory, which was in accordance with the traditional technological paradigm – the S-curve. This new curve can be divided into BFDP (biofuel feedstock development paradigm) competition, BFDP diffusion, and BFDP shift. The biofuel production diffusion velocity model showed that there has been constant growth from 2000, with the growth rate reaching a peak in 2008, after which time it began to drop. Biofuel production worldwide is expected to remain unchanged until 2030 when a paradigm shift is expected. This study also illustrates the results of our innovative procedure – a combination of the data analysis system and the technological paradigm theory – for the present biofuel feedstock soft path that will lead to this paradigm shift, with integrated biofuel production feedstock systems expected to be a significant new trend.

  15. Hydrothermal Processing of Macroalgal Feedstocks in Continuous-Flow Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Elliott, Douglas C.; Hart, Todd R.; Neuenschwander, Gary G.; Rotness, Leslie J.; Roesijadi, Guri; Zacher, Alan H.; Magnuson, Jon K.

    2014-02-03

    Wet macroalgal slurries have been converted into a biocrude by hydrothermal liquefaction (HTL) in a bench-scale continuous-flow reactor system. Carbon conversion to a gravity-separable oil product of 58.8% was accomplished at relatively low temperature (350 °C) in a pressurized (subcritical liquid water) environment (20 MPa) when using feedstock slurries with a 21.7% concentration of dry solids. As opposed to earlier work in batch reactors reported by others, direct oil recovery was achieved without the use of a solvent, and biomass trace mineral components were removed by processing steps so that they did not cause processing difficulties. In addition, catalytic hydrothermal gasification (CHG) was effectively applied for HTL byproduct water cleanup and fuel gas production from water-soluble organics. Conversion of 99.2% of the carbon left in the aqueous phase was demonstrated. Finally, as a result, high conversion of macroalgae to liquid and gas fuel products was found with low levels of residual organic contamination in byproduct water. Both process steps were accomplished in continuous-flow reactor systems such that design data for process scale-up was generated.

  16. The Growth of Agarwood Plants on the Different Canopy Covers Level and Fertilizer in Oil Palm Plantation

    Science.gov (United States)

    Rahayu Prastyaningsih, Sri; Azwin

    2017-12-01

    The development of agar wood plants in oil palm plantation requires the forestry techniques in order to obtain maximum production. In an oil palm stands, the age of plant will affect the height, diameter, population and stands density. The older age of an oil palm stands will affect the canopy cover on the forest floor. Agar wood plants are semi-tolerant growth and oil palm can be used as shade. Unilak has an oil palm plantation area of 10 hectares around the campus with 10 years old and 20 years old. The soil condition at the study is Podsolik Merah Kuning (PMK) which poor nutrient and needs fertilization to increase soil fertility. This study aims to find out the effect of age of oil palm stands and fertilization for optimal growth. The split plot design with 2 main plots of the age of palm tree ( 10 years old and 20 years old) and five kinds of fertilizing sub plot (without fertilizer, 40 gram/plant of NPK, 80 gram/plat of NPK, 120 gram/plant of NPK and 180 gram/plant of NPK were used. The results of this research showed that the age of palm tree (canopy cover) treatment gave non-significant influence on the growing of agar wood until it reaches 4 months of growth. The canopyy cover by 10 years old of oil palm tree produce the best response on height (15 cm) and diameter (0,4 cm) growth of agar woods..Fertilizing treatment di not give any significant influence on the heigh and diameter growth of agarwood plants until reach 3 months. The interaction by 10 years old of palm with fertilizing gave non significant results.

  17. Methyl esters (biodiesel) from Melanolepis multiglandulosa (alim) seed oil and their properties

    Science.gov (United States)

    Sufficient supply of feedstock oils is a major issue facing biodiesel in order to increase the still limited amounts available. In this work, the fatty acid methyl esters, also known as biodiesel, of the seed oil of Melanolepsi multiglandulosa, a member of the Euphorbiaceae family, were prepared and...

  18. Effect of soil contamination with oil substances on the growth of selected plants

    International Nuclear Information System (INIS)

    Sara, V.; Kult, L.; Vavra, J.

    1993-12-01

    The growth of barley, maize, wheat and alfalfa was studied in dependence on the level of soil pollution with crude oil. Attention was also paid to the effect of such contamination on the vanadium and nickel contents of the above-ground parts of the plants. Experiments revealed that, with the exception of alfalfa, the vanadium content of plants which had been grown in the contaminated soil was about one-half with respect to the values observed in plants grown in uncontaminated soil, and the nickel content was also lower than in control plants. Introduced into the soil by injection in concentrations of 180 to 500 ppm, crude oil was found to induce local damage in the plants, resulting in a smaller size of the plants and a delayed or missing earing phase, with repercussions on the grain size and quantity. (J.B.). 2 tabs., 6 figs

  19. Effects of organic plant oils and role of oxidation on nutrient utilization in juvenile rainbow trout (Oncorhynchus mykiss)

    DEFF Research Database (Denmark)

    Lund, Ivar; Dalsgaard, Anne Johanne Tang; Jacobsen, Charlotte

    2013-01-01

    Producing organic fish diets requires that the use of both fishmeal and fish oil (FO) be minimized and replaced by sustainable, organic sources. The purpose of the present study was to replace FO with organic oils and evaluate the effects on feed intake, feed conversion ratio (FCR), daily specifi...... with plant-based organic oils without negatively affecting nutrient digestibility and growth performance. Furthermore, plant-based organic oils are less likely to oxidize than FOs, prolonging the shelf life of such organic diets...... growth rate (SGR) and nutrient digestibility in diets in which fishmeal protein was partly substituted by organic plant protein concentrates. It is prohibited to add antioxidants to organic oils, and therefore the effects of force-oxidizing the oils (including FO) on feed intake and nutrient...... very different dietary fatty acid profiles. All organic plant oils had a positive effect on apparent lipid digestibility compared with the FO diet (P,0.05), whereas there were no effects on the apparent digestibility of other macronutrients when compared with the FO diet (P.0.05). Organic vegetable...

  20. Mild separation system for olive oil: quality evaluation and pilot plant design

    Directory of Open Access Journals (Sweden)

    Francesco Genovese

    2013-09-01

    Full Text Available The entire process of olive oil extraction involves the breakage of olive fruits to obtain a paste, the kneading of the paste, a centrifugation, and a further cleaning, performed by a disc stack centrifuge, to separate the residual water. In this research, in order to evaluate the effect of final centrifugal separation on olive oil quality and to both define and design the settings of a innovative separation system, olive oil was separated off from water using an accelerated separation process, tested in comparison with a disc centrifuge. The laboratory plant used for the trials was constituted by a twin cylindrical separator equipped with 4 variable frequency inverters, in order to regulate the fluid flow rates in the plant. Oil samples were collected during the trials to evaluate the influence of the proposed innovative process on oil quality; measuring some parameters as free acidity, peroxides (PV, specific extinction coefficients K232 and K270, chlorophylls , carotenoids, total polyphenols (POL and turbidity. Results showed statistically significant differences (p-values<0.05 in some parameters as POL, PV, and ultraviolet absorption K232 and K270.

  1. Plant-wide Control for Better De-oiling of Produced Water in Offshore Oil & Gas Production

    DEFF Research Database (Denmark)

    Yang, Zhenyu; Stigkær, Jens Peter; Løhndorf, Bo

    2013-01-01

    This paper discusses the application of plant-wide control philosophy to enhance the performance and capacity of the Produced Water Treatment (PWT) in offshore oil & gas production processes. Different from most existing facility- or material-based PWT innovation methods, the objective of this work...

  2. A continuum of research projects to improve extraction of oil and proteins in oilseed plants

    Directory of Open Access Journals (Sweden)

    Miquel Martine

    2011-05-01

    Full Text Available A key challenge in the actual context of fossil sources rarefaction, global warming, and of increase of the world global population, is to promote the use of molecules derived from renewable sources such as plants. Among these molecules, lipids and proteins are targets of interest. Plant lipids from oilseeds are attractive substitutes to the use of fossil oil. Till the beginning of the 20th century, numerous products used in the daily life were derived from natural renewable products. For instance, plant oil was commonly used as fuel for vehicles and was entering in the composition of paintings, lubricants etc. Unfortunately, natural oils have been progressively replaced by cheaper fossil oil in the fabrication of these products. Nowadays, fossil oils are becoming increasingly expensive being a finite comodity. It is thus important to reduce our dependence from fossil oil and develop substitution industries. Oilseeds contain important amounts of proteins which are mainly used in feed. As several kilograms of plant protein are needed to obtain one kilogram of animal protein, the interest toward using plant protein in food is reinforced. The developments of the use of plant lipids, as well as proteins are a major stakes for the competitiveness of European agriculture and industry, as well as for sustainable development. Extraction of oil and proteins from rapeseed has a significant cost, in term of energy and solvent uses, and finally affects the ultimate quality of the products (protein digestibility. In order to quantitatively extract seed reserves under mild conditions, it will be necessary to limit the amount of energy needed, and avoid any use of solvents. Ideally, seeds should be processed in a bio refinery. In this paper, we will describe how oilseeds store their reserves, and roadblocks for improving actual oilseed extraction processes. A continuum of research projects aimed at answering targeted questions will be presented, with selected

  3. Analysis of fuel oil consumption in industrial steam boiler plants in Republic of Macedonia

    International Nuclear Information System (INIS)

    Armenski, Slave; Dimitrov, Konstantin; Tashevski, Done

    1999-01-01

    The steam boiler plants with heavy and light fuel oils in Republic of Macedonia are analyzed and determined. Depending of the working exit pressure, they are grouped in main industrial branches. The heat capacity and the steam production for the steam boiler plants are determined both total and separately by the different industrial branches. Depending of heat capacity and working period per year, the consumption of heavy and light oil is analyzed and determined particular for each industrial branch and total for all steam boiler plants for summer and winter period. (Author)

  4. Production of biodiesel by enzymatic transesterification of waste sardine oil and evaluation of its engine performance

    Directory of Open Access Journals (Sweden)

    A. Arumugam

    2017-12-01

    Full Text Available Waste sardine oil, a byproduct of fish industry, was employed as a low cost feedstock for biodiesel production. It has relatively high free fatty acid (FFA content (32 mg KOH/g of oil. Lipase enzyme immobilized on activated carbon was used as the catalyst for the transesterification reaction. Process variables viz. reaction temperature, water content and oil to methanol molar ratio were optimized. Optimum methanol to oil molar ratio, water content and temperature were found to be 9:1, 10 v/v% and 30 °C respectively. Reusability of immobilized lipase was studied and it was found after 5 cycles of reuse there was about 13% drop in FAME yield. Engine performance of the produced biodiesel was studied in a Variable Compression Engine and the results confirm that waste sardine oil is a potential alternate and low-cost feedstock for biodiesel production.

  5. Experimental data of thermal cracking of soybean oil and blends with hydrogenated fat

    Directory of Open Access Journals (Sweden)

    R.F. Beims

    2018-04-01

    Full Text Available This article presents the experimental data on the thermal cracking of soybean oil and blends with hydrogenated fat. Thermal cracking experiments were carried out in a plug flow reactor with pure soybean oil and two blends with hydrogenated fat to reduce the degree of unsaturation of the feedstock. The same operational conditions was considered. The data obtained showed a total aromatics content reduction by 14% with the lowest degree of unsaturation feedstock. Other physicochemical data is presented, such as iodine index, acid index, density, kinematic viscosity. A distillation curve was carried out and compared with the curve from a petroleum sample.

  6. The plants with essence oil are potential radio protectors

    International Nuclear Information System (INIS)

    Rzayev, N.R.; Guluyev, N.T.

    2010-01-01

    Azerbaijan flora is considered as one of the richest countries according to its genera and species abundance in all over the world. There are 4545 plant species in the Azerbaijan flora the native areal (origin) of many of which is just Azerbaijan. Majority of these plants is used in different fields of the national economy as useful plants. Existance of vertical zonality, abundance of the soil with balanced microelements and etc. Here resulted more amount of biologically active substances in the content of the plants that warrants to use them on the purpose of food, medicine and so on. Also while studying the collection dynamics of biologically active substances in their content quality and quantity index is usually high. Based on our 30 years experience it can be said with certainty: study of bioecological features of basil, melissa and tarragon spread in Azerbaijan Republic area, their use by their biochemical research on the purpose of quality increase of the extracts, ether and fat oils, medicaments of biologically active substances, alcohol-free drinks and food obtained of them is necessary, actual and important for the present time in tinned meat and fish production, in cosmetics and tooth pastes technology working out. In this article it is intended to prepare aerosol, consisted of essence oils and lipid mixtures, for respiratory system treatment in extreme conditions having radiation threat. Flavonoids, carotenoids and antocians along with the activeness of vitamin P and vitamin A possess antiradical, antioxidant, antimutagen, anticanceregenic and antivirus abilities. Besides the medicine they are applied in food, textile, tanning and other industries. The commenced research activities on the purpose of preparation of protector in solders food in an extremal condition, antidote and mithridate against heavy metals, also products against radioactive radiations, preparation of medical aerosols with fragrant aroma against injure of the respiratory system on the

  7. Methyl esters from vegetable oils with hydroxy fatty acids: Comparison of lesquerella and castor methyl esters

    Science.gov (United States)

    The search for alternative feedstocks for biodiesel as partial replacement for petrodiesel has recently extended to castor oil. In this work, the castor oil methyl esters were prepared and their properties determined in comparison to the methyl esters of lesquerella oil, which in turn is seen as alt...

  8. Bio ethanol production from oil palm empty fruit bunches

    International Nuclear Information System (INIS)

    Loh Soh Kheang; Muhammad Asyraf Kasim; Nasrin Abu Bakar

    2010-01-01

    Full text: The oil palm industry has an abundance of oil palm biomass. The type of biomass generated includes empty fruit bunches (EFB), oil palm trunk (OPT), kernel, shell and fronds. Generally, ligno celluloses biomass derived from oil palm has great potential to be converted into various forms of renewable energy. In this study, EFB in pulverized form was used as a feedstock for bio ethanol production. EFB contains lignin, hemicelluloses and cellulose which can be converted into fermentable sugar and bio ethanol. The EFB was initially pre-treated with 1% NaOH followed by acid hydrolysis with 0.7% sulfuric acid and enzyme prior to fermentation process with Saccharomyces cerevisea. The various process parameters for bio ethanol production was optimized i.e. pH, temperature, rate of agitation and initial feedstock concentration. The fermentation of EFB hydrolysate was at pH 4, 30 degree Celsius and 100 rpm within 72 hours of incubation yielded 10.48 g/L of bio ethanol from 50 g/L of EFB. The bio ethanol production in a 6-L bioreactor showed 36% conversion of fermentable sugar from EFB into bio ethanol. (author)

  9. Oil use of the effluent plant ETEO (Effluent Station of Oil Treatment) as combustible for generation of energy in the power plant UG-50Hz; Utulizacao de oleo da ETEO (Estacao de Tratamento de Efluentes Oleosos) para geracao de energia na UG-50Hz

    Energy Technology Data Exchange (ETDEWEB)

    Souza, Jose Francisco de; Nascimento, Jose Maria do; Silva, Luiz Antonio da; Salazar, Marcos Vinicios; Baptista, Reinaldo Lopes; Barros, Sueli Aguiar [Companhia Siderurgica Nacional (CSN), Volta Redonda, RJ (Brazil)

    2009-11-01

    The areas of finishing products of CSN Steel Plant generate contaminated effluents with oil and grease , that are treated in ETEO (Effluent Station of Oil Treatment). In this plant, the oil is processed to be sold for the consuming market. However, some seasons of the year, the market does not absorb the oil, and CSN is obliged to defray the burning of this oil, to not interrupt the productive process and cause an environmental impact. Because of this situation, we search alternatives for the viable use of this oil inside CSN steel plant, taking care for the security of the processes and the impact to the environment. This paper describes the details of the work and the implantation of the burning of this oil of the ETEO with BPF oil (type of petrochemical oil) as combustible in the boiler 7 of the power plant UG 50 Hz. For the implantation of this project, operational contingencies of security for equipment was prepared . Moreover, the work included chemical analyses of the oil and the conditions of the boiler using this mixing of oils. The reached results demonstrate the total viability of this project and it was proved another alternative of the use of this residue, with reduction of the fuel costs , steam costs and the electric energy generated in the power plant of CSN. (author)

  10. Growth potential in gas plant ethane production and the impact on propane import trends

    International Nuclear Information System (INIS)

    Lippe, D.L.

    1996-01-01

    In varying degrees in most ethylene plants, ethane and propane are used interchangeably as feedstocks. During the next five years, several new ethylene plants will be built in the Gulf Coast area. Most of these plants will be based on LPG feedstocks and will have some flexibility to operate with ethane and propane feedstocks. The completion of new ethylene plants will increase feedstock demand for ethane by 65--90 Mbpd by 1998 and by an additional 50--80 Mbpd by 2000. Thus, the availability of ethane will have a significant impact on Gulf Coast waterborne propane import requirements. Sustained growth in the gas processing industry's ethane recovery capability will effectively minimize waterborne propane import requirements for the next five to ten years. Petral Worldwide's approach to feedstock supply analysis highlights investment opportunities in domestic supply sources. Projects of these types will also limit a growth dependence on NGL feedstock supplies from politically unstable supply sources in North Africa and the Middle East. This paper examines the potential for growth in the gas processing industry's ethane recovery capability and the impact on Gulf Coast feedstock markets

  11. Acute Dermal Irritation Study In New Zealand White Rabbits: Four Alcohol-to-Jet (ATJ) Synthetic Paraffinic Kerosene (SPK) Alternative Jet Fuels Compared With Petroleum-Derived JP-8

    Science.gov (United States)

    2014-09-19

    isobutanol feedstock. The Gevo proprietary process utilizes a yeast biocatalyst to ferment sugars from a mixed biological source feedstock into isobutanol...similar mixed alcohol feedstock. Alcohol sources may be non-renewable (from petrochemical sources) or renewable (from the fermentation of sugars...sources may be non-renewable (from petrochemical sources) or renewable (from the fermentation of sugars provided through plant oils and animal fats

  12. In vitro ROOTING OF TENERA HYBRID OIL PALM (Elaeis guineensis Jacq. PLANTS1

    Directory of Open Access Journals (Sweden)

    Marlúcia Souza Souza Pádua

    2018-04-01

    Full Text Available ABSTRACT Oil palm is a woody monocot of economic importance due to high oil production from its fruits. Currently, the conventional method most used to propagate oil palm is seed germination, but success is limited by long time requirements and low germination percentage. An alternative for large-scale propagation of oil palm is the biotechnological technique of somatic embryogenesis. The rooting of plants germinated from somatic embryos is a difficult step, yet it is of great importance for later acclimatization and success in propagation. The aim of this study was to evaluate the effect of the auxins indole acetic acid (IAA and indole butyric acid (IBA on the rooting of somatic embryos of Tenera hybrid oil palm. Plants obtained by somatic embryogenesis were inoculated in modified MS medium with 10% sucrose and 0.6% agar and supplemented with IAA or IBA at concentrations of 5 µM, 10 µM, and 15 µM, and the absence of growth regulators. After 120 days, the presence of roots, root type, length of the longest root, number of roots, number of leaves, and shoot length were analyzed. Growth regulators were favorable to rooting; plants cultivated with IBA growth regulator at 15 µM showed higher rooting percentage (87% and better results for the parameters of number of roots (1.33 and shoot length (9.83.

  13. First international congress on plant oil fuels. Proceedings; Erster Internationaler Kongress zu Pflanzenoel-Kraftstoffen. Tagungsband

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-07-01

    The conference proceedings contain 31 contributions on the following topics: biofuels - status and perspectives; ecological evaluation; plant oils: engineering - production and quality; plant oils: international markets and economy; mobile applications - techniques and emissions; stationary applications: techniques and economy; the renewable energies law (EEG), the biofuel quoting law (BioKraftQuG) and the energy tax law (EnergieStG).

  14. Effects of organic plant oils and role of oxidation on nutrient utilization in juvenile rainbow trout (Oncorhynchus mykiss).

    Science.gov (United States)

    Lund, I; Dalsgaard, J; Jacobsen, C; Hansen, J H; Holm, J; Jokumsen, A

    2013-03-01

    Producing organic fish diets requires that the use of both fishmeal and fish oil (FO) be minimized and replaced by sustainable, organic sources. The purpose of the present study was to replace FO with organic oils and evaluate the effects on feed intake, feed conversion ratio (FCR), daily specific growth rate (SGR) and nutrient digestibility in diets in which fishmeal protein was partly substituted by organic plant protein concentrates. It is prohibited to add antioxidants to organic oils, and therefore the effects of force-oxidizing the oils (including FO) on feed intake and nutrient digestibility was furthermore examined. Four organic oils with either a relatively high or low content of polyunsaturated fatty acids were considered: linseed oil, rapeseed oil, sunflower oil and grapeseed oil. Substituting FO with organic oils did not affect feed intake (P > 0.05), FCR or SGR (P > 0.05) despite very different dietary fatty acid profiles. All organic plant oils had a positive effect on apparent lipid digestibility compared with the FO diet (P digestibility of other macronutrients when compared with the FO diet (P > 0.05). Organic vegetable oils did not undergo auto-oxidation as opposed to the FO, and the FO diet consequently had a significantly negative effect on the apparent lipid digestibility. Feed intake was not affected by oxidation of any oils. In conclusion, the study demonstrated that it is possible to fully substitute FO with plant-based organic oils without negatively affecting nutrient digestibility and growth performance. Furthermore, plant-based organic oils are less likely to oxidize than FOs, prolonging the shelf life of such organic diets.

  15. Essential oil composition and nutrient analysis of selected medicinal plants in Sultanate of Oman

    Directory of Open Access Journals (Sweden)

    Javid Hussain

    2013-12-01

    Full Text Available Objective: To evaluate the nutrients and essential oils of five medicinal plants, Juniperus excelsa (J. excelsa, Dodonaea viscosa, Euryops pinifolius, Teucrium polium (T. polium, and Helianthemum lippii that were collected from Jabal Al Akhdar, Oman. Methods: Proximate parameters (moisture, dry matter, ash, crude fats, proteins, fibers, nitrogen, carbohydrates, and energy values and nutrient analysis (K, Na, Ca, Fe, P, Mg etc. were evaluated in the five medicinal plants using standard techniques. On the basis of these analysis, T. polium and J. excels were selected for essential oil analysis using a rapid solvent-free microwave extraction method and GC-MS. Results: The results showed that leaves of J. excelsa had highest proportion of crude fats, fibers and energy value while ash was highest in T. polium. J. excelsa was also rich in essential minerals such as calcium, magnesium, potassium and iron while the trace elements and heavy metals composition was marginal. A rapid solvent-free microwave extraction method to extract oil from medicinal plants species showed that only T. polium and J. excelsa yielded oil. The chemical composition of essential oils showed higher proportion of delta-3-carene, limonene, β-eudesmol, ledeneoxide (II, α-trans-bergamatene, linalyl acetate and germacrene. Conclusions: J. excelsa and T. polium are a good source of proximate, minerals and essential oils, which can be considered for healthy life besides their medicinal values.

  16. Activity of Six Essential Oils Extracted from Tunisian Plants against Legionella pneumophila.

    Science.gov (United States)

    Chaftar, Naouel; Girardot, Marion; Quellard, Nathalie; Labanowski, Jérôme; Ghrairi, Tawfik; Hani, Khaled; Frère, Jacques; Imbert, Christine

    2015-10-01

    The aim of this study was to investigate the composition of six essential oils extracted from Tunisian plants, i.e., Artemisia herba-alba Asso, Citrus sinensis (L.) Osbeck, Juniperus phoenicea L., Rosmarinus officinalis L., Ruta graveolens L., and Thymus vulgaris L., and to evaluate their activity against Legionella pneumophila (microdilution assays). Eight Legionella pneumophila strains were studied, including the two well-known serogroup 1 Lens and Paris strains as controls and six environmental strains isolated from Tunisian spas belonging to serogroups 1, 4, 5, 6, and 8. The essential oils were generally active against L. pneumophila. The activities of the A. herba-alba, C. sinensis, and R. officinalis essential oils were strain-dependent, whereas those of the J. phoenicea and T. vulgaris oils, showing the highest anti-Legionella activities, with minimum inhibitory concentrations (MICs) lower than 0.03 and lower than or equal to 0.07 mg/ml, respectively, were independent of the strains' serogroup. Moreover, the microorganisms treated with T. vulgaris essential oil were shorter, swollen, and less electron-dense compared to the untreated controls. Isoborneol (20.91%), (1S)-α-pinene (18.30%) β-phellandrene (8.08%), α-campholenal (7.91%), and α-phellandrene (7.58%) were the major components isolated from the J. phoenicea oil, while carvacrol (88.50%) was the main compound of the T. vulgaris oil, followed by p-cymene (7.86%). This study highlighted the potential interest of some essential oils extracted from Tunisian plants as biocides to prevent the Legionella risk. Copyright © 2015 Verlag Helvetica Chimica Acta AG, Zürich.

  17. Deoxy-liquefaction of three different species of macroalgae to high-quality liquid oil.

    Science.gov (United States)

    Li, Jinhua; Wang, Guoming; Chen, Ming; Li, Jiedong; Yang, Yaoyao; Zhu, Qiuyan; Jiang, Xiaohuan; Wang, Zonghua; Liu, Haichao

    2014-10-01

    Three species of macroalgae (Ulva lactuca, Laminaria japonica and Gelidium amansii) were converted into liquid oils via deoxy-liquefaction. The elemental analysis, FTIR and GC-MS results showed that the three liquid oils were all mainly composed of aromatics, phenols, alkanes and alkenes, other oxygen-containing compounds, and some nitrogen-containing compounds though there were some differences in terms of their types or contents due to the different constituents in the macroalgae feedstocks. The oxygen content was only 5.15-7.30% and the H/C molar ratio was up to 1.57-1.73. Accordingly, the HHV of the three oils were 42.50, 41.76 and 40.00 MJ/kg, respectively. The results suggested that U. lactuca, L. japonica and G. amansii have potential as biomass feedstock for fuel and chemicals and that deoxy-liquefaction technique may be an effective way to convert macroalgae into high-quality liquid oil. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Micro-algae: the Rise of Next Generation Biofuels

    CSIR Research Space (South Africa)

    Moodley, G

    2015-03-01

    Full Text Available The search for a suitable replacement to conventionally used fossil fuels as a feedstock for diesel production, has been gaining momentum over the recent years. The use of first generation feed-stocks such as edible and non-edible plant oils have...

  19. Insecticidal and repellant activities of plants oil against stored grain pest, Tribolium castaneum (Herbst (Coleoptera:Tenebrionidae

    Directory of Open Access Journals (Sweden)

    S.R.Pugazhvendan

    2012-05-01

    Full Text Available Objective: The present investigation was aimed to assess the impact of five plants oil for their insecticidal and repellent activity against Tribolium castaneum (Herbst, a stored grain pest and they were tested in the laboratory. Method: Five plants oil Citrus autantium, Cinnamomum zeylanicum, Gaultheria fragrantissima, Lavandula officinalis, and Ocimum sanctum were evaluated for their insecticidal and repellent activities against T. castaneum by adapting the standard protocol in vitro. Results: In Tulsi oil showed powerful repellent against T. castaneum beetles at both the concentration and this property can be clearly seen from the values at 5毺 1 (-0.60 and -0.73 in 1h and 6hr respectively and 10毺 1 (-0.56 and -0.81 in 1h and 6h respectively. Tulsi oil had more repelling property than other oil tested here against T. castaneum. Maximum percentage of mortality (76 and 92% at 48h and 72 hours after treatment respectively in Tulsi oil. Wintergreen oil showed 86% mortality at 72 hours after treatment. Conclusions: The present work for botanical products to control the insect pest of stored grain T. castaneum .These results suggest the presence of actives principles in the plant oils. Further exploration of active principles and their structural elucidations are underway.

  20. NORM emissions from heavy oil and natural gas fired power plants in Syria

    International Nuclear Information System (INIS)

    Al-Masri, M.S.; Haddad, Kh.

    2012-01-01

    Naturally occurring radioactive materials (NORM) have been determined in fly and bottom ash collected from four major Syrian power plants fired by heavy oil and natural gas. 210 Pb and 210 Po were the main NORM radionuclides detected in the fly and bottom ash. 210 Pb activity concentrations have reached 3393 ± 10 Bq kg −1 and 4023 ± 7 Bq kg −1 in fly ash and bottom ash, respectively; lower values of 210 Po were observed due to its high volatility. In addition, 210 Po and 210 Pb annual emissions in bottom ash from mixed (heavy oil and natural gas) fired power plants varied between 2.7 × 10 9 –7.95 × 10 9 Bq and 3.5 × 10 9 –10 10 Bq, respectively; higher emissions of 210 Po and 210 Pb from gas power plants being observed. However, the present study showed that 210 Po and 210 Pb emissions from thermal power plants fired by natural gas are much higher than the coal power plants operated in the World. - Highlights: ► NORM have been determined in fly and bottom ash collected from Syrian power plants fired by heavy oil and natural gas. ► 210 Pb and 210 Po were the main NORM radionuclides detected in the fly and bottom ash. ► 210 Po and 210 Pb annual emissions from these power plants were estimated.

  1. Volatile oils from the plant and hairy root cultures of Ageratum conyzoides L.

    Science.gov (United States)

    Abdelkader, Mohamed Salaheldin A; Lockwood, George B

    2011-05-01

    Two lines of hairy root culture of Ageratum conyzoides L. induced by Agrobacterium rhizogenes ATCC 15834 were established under either complete darkness or 16 h light/8 h dark photoperiod conditions. The volatile oil yields from aerial parts and roots of the parent plant, the hairy root culture photoperiod line and the hairy root culture dark line were 0.2%, 0.08%, 0.03% and 0.02%, (w/w), respectively. The compositions of the volatiles from the hairy roots, plant roots and aerial parts were analysed by GC and GC-MS. The main components of the volatiles from the hairy root cultures were β-farnesene, precocene I and β-caryophyllene, in different amounts, depending on light conditions and also on the age of cultures. Precocene I, β-farnesene, precocene II and β-caryophyllene were the main constituents of the volatile oils from the parent plant roots, whereas precocene I, germacrene D, β-caryophyllene and precocene II were the main constituents of the aerial parts of the parent plant. Growth and time-course studies of volatile constituents of the two hairy root lines were compared. Qualitative and quantitative differences were found between the volatile oils from the roots of the parent plant and those from the hairy roots.

  2. In Vitro Antibacterial Activity of Several Plant Extracts and Oils against Some Gram-Negative Bacteria

    Directory of Open Access Journals (Sweden)

    Ayman Al-Mariri

    2014-01-01

    Full Text Available Background: Medicinal plants are considered new resources for producing agents that could act as alternatives to antibiotics in the treatment of antibiotic-resistant bacteria. The aim of this study was to evaluate the antibacterial activity of 28 plant extracts and oils against four Gram-negative bacterial species. Methods: Experimental, in vitro, evaluation of the activities of 28 plant extracts and oils as well as some antibiotics against E. coli O157:H7, Yersinia enterocolitica O9, Proteus spp., and Klebsiella pneumoniae was performed. The activity against 15 isolates of each bacterium was determined by disc diffusion method at a concentration of 5%. Microdilution susceptibility assay was used in order to determine the minimal inhibitory concentrations (MICs of the plant extracts, oils, and antibiotics. Results: Among the evaluated herbs, only Origanum syriacum L., Thymus syriacus Boiss., Syzygium aromaticum L., Juniperus foetidissima Wild, Allium sativum L., Myristica fragrans Houtt, and Cinnamomum zeylanicum L. essential oils and Laurus nobilis L. plant extract showed anti-bacterial activity. The MIC50 values of these products against the Gram-negative organisms varied from 1.5 (Proteus spp. and K. pneumoniae( and 6.25 µl/ml (Yersinia enterocolitica O9 to 12.5 µl/ml (E. coli O:157. Conclusion: Among the studied essential oils, O. syriacum L., T. syriacus Boiss., C. zeylanicum L., and S. aromaticum L. essential oils were the most effective. Moreover, Cephalosporin and Ciprofloxacin were the most effective antibiotics against almost all the studied bacteria. Therefore, O. syriacum L., T. syriacus Boiss., C. zeylanicum L., and S. aromaticum L. could act as bactericidal agents against Gram-negative bacteria.

  3. Feedstock characterization and recommended procedures

    International Nuclear Information System (INIS)

    Chum, H.L.; Milne, T.A.; Johnson, D.K.; Agblevor, F.A.

    1993-01-01

    Using biomass for non-conventional applications such as feedstocks for fuels, chemicals, new materials, and electric power production requires knowledge of biomass characteristics important to these processes, and characterization techniques that are more appropriate than those employed today for conventional applications of food, feed, and fiber. This paper reviews feedstock characterization and standardization methodologies, and identifies research and development needs. It reviews the international cooperation involved in determining biomass characteristics and standards that has culminated in preparing four biomass samples currently available from the National Institute of Standards and Technology (NIST)

  4. Testing market efficiency of crude palm oil futures to European participants

    OpenAIRE

    Liu, Xing

    2009-01-01

    Palm oil is the most consumed and traded vegetable oils in the EU and the world. Increasing non-food uses for vegetable oils in especially feedstock of biofuels in recent years have caused the price volatility to rise in both EU and global market. The most efficient pricing of crude palm oil (CPO) is to found on Bursa Malaysia (BMD), and it provides by far the world’s most liquid palm oil contract. The goal of this study is to investigate CPO futures market efficiency of BMD for the European ...

  5. Beneficial synergistic effect on bio-oil production from co-liquefaction of sewage sludge and lignocellulosic biomass.

    Science.gov (United States)

    Leng, Lijian; Li, Jun; Yuan, Xingzhong; Li, Jingjing; Han, Pei; Hong, Yuchun; Wei, Feng; Zhou, Wenguang

    2018-03-01

    Co-liquefaction of municipal sewage sludge (MSS) and lignocellulosic biomass such as rice straw or wood sawdust at different mixing ratios and the characterization of the obtained bio-oil and bio-char were investigated. Synergistic effects were found during co-processing of MSS with biomass for production of bio-oil with higher yield and better fuel properties than those from individual feedstock. The co-liquefaction of MSS/rice straw (4/4, wt) increased the bio-oil yield from 22.74% (bio-oil yield from liquefaction of MSS individually) or 23.67% (rice straw) to 32.45%. Comparable increase on bio-oil yield was also observed for MSS/wood sawdust mixtures (2/6, wt). The bio-oils produced from MSS/biomass mixtures were mainly composed of esters and phenols with lower boiling points (degradation temperatures) than those from individual feedstock (identified with higher heavy bio-oil fractions). These synergistic effects were probably resulted from the interactions between the intermittent products of MSS and those of biomass during processing. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Toxic effects of six plant oils alone and in combination with controlled atmosphere on Liposcelis bostrychophila (Psocoptera: Liposcelididae).

    Science.gov (United States)

    Wang, J J; Tsai, J H; Ding, W; Zhao, Z M; Li, L S

    2001-10-01

    Six plant essential oils alone as repellent and fumigant, and in combination with the controlled atmosphere against Liposcelis bostrychophila Badonnel were assessed in the laboratory. These essential oils were extracted from the leaves of six source plants: Citrus tangerina Tanaka, Citrus aurantium L., Citrus bergamia Risso et Poiteau, Pinus sylvestris L., Cupressus funebris End]., and Eucalyptus citriodora Hook. The repellency test indicated that L. bostrychophila adults were repelled by filter paper strips treated with six essential oils. Of these essential oils, the C. funebris oil was most effective followed by that of F. sylvestris, C. tangerina, C. bergamia, and E. citriodora. The average repellency of the C. aurantium oil against L. bostrychophila adults was significantly lower than other five test oils by day 14. These essential oils had a high level of toxicity in the fumigation assay against L. bostrychophila adults at both 10 and 20 ppm. When combined with two controlled atmosphere treatments (12% CO2 + 9% O2, and 10% CO2 + 5% O2, balanced N2), the toxicity of plant oils was enhanced significantly.

  7. Effects of different irrigation intervals and plant density on morphological characteristics, grain and oil yields of sesame (Sesamum indicum

    Directory of Open Access Journals (Sweden)

    parviz rezvani moghadam

    2009-06-01

    Full Text Available In order to study the effects of different irrigation intervals and plant density on morphological characteristics, grain and oil yields of sesame, an experiment was conducted at experimental station, college of agriculture, Ferdowsi University of Mashhad. Four different irrigation intervals (one, two, three and four weeks with four plant densities (20, 30, 40 and 50 plants/m2 were compared in a spilt plot arrangement based on randomized complete block design with four replications. Irrigation intervals and plant densities allocated in main plots and subplots, respectively. Different characteristics such as plant height, distance of first capsule from soil surface, number of branches per plant, number of grains per capsule, number of capsules per plant, grain yield, 1000-seed weight, harvest index and oil yield were recorded. The results showed that there were no significant difference between different irrigation intervals in terms of distance of first capsule from soil surface, number of grains per capsule, 1000-seed weight and harvest index. Different irrigation intervals had significant effects on plant height, number of branches per plant, number of capsules per plant, grain yield and oil yield. There were significant differences between different plant densities in terms of distance of first capsule from soil surface, number of branches per plant, number of graines per capsule, number of capsules per plant, grain yield, harvest index and oil yield. The highest grain yield (798/7 kg/ha and oil yield (412/8 kg/ha were obtained at one week and four weeks irrigation intervals, respectively. Between all treatments, 50 plants/m2 and one week irrigation interval produced the highest grain yield (914/7 kg/ha and oil yield (478/6 kg/ha. Because of shortage of water in Mashhad condition, the results recommended that, 50 plants/m2 and two weeks irrigation interval produced rather acceptable grain yield, with less water consumption.

  8. Super oil cracking update

    International Nuclear Information System (INIS)

    Mulraney, D.

    1997-01-01

    The conversion of residual fuel oil to usable middle distillates was discussed. The residue conversion processing paths are usually based on separation, carbon rejection, or hydrogen addition principles. Super Oil Cracking (SOC) uses a slurry catalyst system in a new, tubular reactor to achieve high levels of hydrothermal conversion. SOC can upgrade a variety of heavy, high metals residue feedstocks with high yields of middle distillates. The SOC products can also be further treated into feedstocks for FCC or hydrocracking. The SOC process can be incorporated easily into a refinery to obtain incremental residue conversion directly. It can also be integrated with other residue processes, acting as a demetallization and decarbonization step which results in enhanced overall conversion. The relative rate of coke formation and its handling are distinguishing characteristics between residue upgrading technologies. The SOC process operates at higher temperatures that other residue hydrocracking processes resulting in higher rates of thermal decomposition, thus preventing coke formation. SOC process can operate as a stand-alone upgrader or can be integrated with other bottoms processing steps to extend the refiner's range of options for increasing bottoms conversion.3 tabs., 14 figs

  9. Investigations into the cause of the oil fire in the nuclear power plant, Muehleberg

    International Nuclear Information System (INIS)

    Hagn, L.; Huppmann, H.

    1972-01-01

    At the end of July, 1971, an oil fire broke out in the turbine hall of the Swiss Nuclear Power Plant Muehleberg. The cause of the escape of oil from a pressure-oil pipe was the loosening of a cutting ring screwed pipe connection on the servo-motor of a control valve. Material and vibration tests on the main components showed the evolution of the damage to be the combined influences of two factors, viz. 1. vibration stress on the piping and screw joints - dependent on the operational state of the turbine - and resultant possible loosening of the screw caps; 2. loss of the vibration absorbant clip fastenings of the piping. Undetected deformations and dislocations in the screwed pipe connections ensuing from erection were presumably contributory influences. The oil escaping from the leak ignited by autoxidation in the sprayed-on asbestos insulation of the valve housing. From the results of these investigations and the analyses of other oil fires in steam turbine plants insured with the Allianz, recommendations ensue for the prevention and minimising of oil fire damage. (orig.) [de

  10. Hydrotreatment of Oils and Fats for Biodiesel

    DEFF Research Database (Denmark)

    Madsen, Anders Theilgaard; Riisager, Anders; Fehrmann, Rasmus

    The use of renewable biofuels in the transport sector represents an important step towards a sustainable society. Biodiesel is currently produced by the transesterification of fats and oils with methanol, but another viable method could be reaction of the feedstock with H2 to produce long...

  11. Electrocatalytic upgrading of biomass pyrolysis oils to chemical and fuel

    Science.gov (United States)

    Lam, Chun Ho

    The present project's aim is to liquefy biomass through fast pyrolysis and then upgrade the resulting "bio-oil" to renewable fuels and chemicals by intensifying its energy content using electricity. This choice reflects three points: (a) Liquid hydrocarbons are and will long be the most practical fuels and chemical feedstocks because of their energy density (both mass and volume basis), their stability and relative ease of handling, and the well-established infrastructure for their processing, distribution and use; (b) In the U.S., the total carbon content of annually harvestable, non-food biomass is significantly less than that in a year's petroleum usage, so retention of plant-captured carbon is a priority; and (c) Modern technologies for conversion of sunlight into usable energy forms---specifically, electrical power---are already an order of magnitude more efficient than plants are at storing solar energy in chemical form. Biomass fast pyrolysis (BFP) generates flammable gases, char, and "bio-oil", a viscous, corrosive, and highly oxygenated liquid consisting of large amounts of acetic acid and water together with hundreds of other organic compounds. With essentially the same energy density as biomass and a tendency to polymerize, this material cannot practically be stored or transported long distances. It must be upgraded by dehydration, deoxygenation, and hydrogenation to make it both chemically and energetically compatible with modern vehicles and fuels. Thus, this project seeks to develop low cost, general, scalable, robust electrocatalytic methods for reduction of bio-oil into fuels and chemicals.

  12. Oil and gas information 1995

    International Nuclear Information System (INIS)

    1996-07-01

    This reference book on current developments in oil and gas supply and demand contains country-specific statistics for OECD countries on production, trade, demand and prices. This book is divided in four parts. Part 1 gives the statistics sources for oil, gas and by products (lubricants, bitumen, paraffin waxes etc..) supply, demand, consumption, origin, feedstocks, import and export prices, spot and end-user prices and taxes, and gives also the definitions of products, supply and consumption items reported in this book. Part 2 provides summary tables of world oil and gas market developments with time series back to the early 1970's. Parts 3 and 4 provide, in tables form, a more detailed and comprehensive picture of oil and gas supply and demand for the OECD by region and individual countries. (J.S.)

  13. Tea seed upgrading facilities and economic assessment of biodiesel production from tea seed oil

    Energy Technology Data Exchange (ETDEWEB)

    Demirbas, Ayhan [Sirnak University, Engineering Faculty, Sirnak (Turkey); Sila Science, Trabzon (Turkey)

    2010-12-15

    Green tea seed (Camellia sinensis L. Kuntze) oil was used in this work. The tea seed oil contains more than 84% unsaturated fatty acid, such as oleic acid (62.5% by weight), linoleic acid (18.1% by weight) and linolenic acid. The biodiesel from tea seed oil in itself is not significantly different from biodiesel produced from vegetable oils. However, tea seed oil has lower pour point and lower viscosity as different common vegetable oils. Crude tea seed oil is one of the cheapest vegetable oil feedstocks with average price, 514 (US$/ton). (author)

  14. Tea seed upgrading facilities and economic assessment of biodiesel production from tea seed oil

    International Nuclear Information System (INIS)

    Demirbas, Ayhan

    2010-01-01

    Green tea seed (Camellia sinensisL. Kuntze) oil was used in this work. The tea seed oil contains more than 84% unsaturated fatty acid, such as oleic acid (62.5% by weight), linoleic acid (18.1% by weight) and linolenic acid. The biodiesel from tea seed oil in itself is not significantly different from biodiesel produced from vegetable oils. However, tea seed oil has lower pour point and lower viscosity as different common vegetable oils. Crude tea seed oil is one of the cheapest vegetable oil feedstocks with average price, 514 (US$/ton).

  15. Price implications for Russia's oil refining

    International Nuclear Information System (INIS)

    Khartukov, Eugene M.

    1998-01-01

    Over the past several years, Russia's oil industry has undergone its radical transformation from a wholly state-run and generously subsidized oil distribution system toward a substantially privatized, cash-strapped, and quasi-market ''petropreneurship''. This fully applies to the industry's downstream sector. Still unlike more dynamic E and C operations, the country's refining has turned out better fenced off competitive market forces and is less capable to respond to market imperatives. Consequently, jammed between depressed product prices and persistent feedstock costs, Russian refiners were badly hit by the world oil glut - which has made a radical modernization of the obsolete refining sector clearly a must. (author)

  16. Plant oils thymol and eugenol affect cattle and swine waste emissions differently.

    Science.gov (United States)

    Varel, V H; Miller, D N; Lindsay, A D

    2004-01-01

    Wastes generated from the production of cattle and swine in confined facilities create the potential for surface and groundwater pollution, emission of greenhouse gases, transmission of pathogens to food and water sources, and odor. It is our hypothesis that something which inhibits microbial fermentation in livestock wastes will be beneficial to solving some of the environmental problems. Our work has concentrated on the use of antimicrobial plant oils, thymol, thyme oil, carvacrol, eugenol and clove oil. Anaerobic one-litre flasks with a working volume of 0.5 L cattle or swine manure were used to evaluate the effect of thymol and eugenol on production of fermentation gas, short-chain volatile fatty acids, lactate, and bacterial populations. Either oil at 0.2% in both wastes essentially stopped all production of gas and volatile fatty acids, and eliminated all fecal coliform bacteria. In cattle but not swine waste, thymol prevented the accumulation of lactate. However, eugenol stimulated lactate formation in cattle and swine wastes. Thus, eugenol may offer a distinct advantage over thymol, because lactate accumulation in the wastes causes the pH to drop more rapidly, further inhibiting microbial activity and nutrient emissions. We conclude that plant oils may offer solutions to controlling various environmental problems associated with livestock wastes, assuming that they are cost-effective.

  17. Aromatic Medicinal Plants of the Lamiaceae Family from Uzbekistan: Ethnopharmacology, Essential Oils Composition, and Biological Activities

    Directory of Open Access Journals (Sweden)

    Nilufar Z. Mamadalieva

    2017-02-01

    Full Text Available Plants of the Lamiaceae family are important ornamental, medicinal, and aromatic plants, many of which produce essential oils that are used in traditional and modern medicine, and in the food, cosmetics, and pharmaceutical industry. Various species of the genera Hyssopus, Leonurus, Mentha, Nepeta, Origanum, Perovskia, Phlomis, Salvia, Scutellaria, and Ziziphora are widespread throughout the world, are the most popular plants in Uzbek traditional remedies, and are often used for the treatment of wounds, gastritis, infections, dermatitis, bronchitis, and inflammation. Extensive studies of the chemical components of these plants have led to the identification of many compounds, as well as essentials oils, with medicinal and other commercial values. The purpose of this review is to provide a critical overview of the literature surrounding the traditional uses, ethnopharmacology, biological activities, and essential oils composition of aromatic plants of the family Lamiaceae, from the Uzbek flora.

  18. Advances in operations research in the oil and gas industry

    International Nuclear Information System (INIS)

    Breton, M.; Zaccour, G.

    1991-01-01

    Various theories and examples of modelling, forecasting and optimization designing in the different parts of the petroleum and gas industries are presented, stochastic programming for long term planning in the refining industry, stochastic model for gasoline blending, feedstock optimization, location and sizing for offshore platforms, hydrocarbon exploration simulation rapid method, valuation of oil field development leases, economic models for petroleum allocation, models for oil supply market, trade embargo game theory, stochastic programming of gas contract portfolio management, scheduling transportation of oil and gas, strategic planning in an oil pipeline company, simulation of offshore oil terminal systems, hierarchical selection of oil and gas distribution systems

  19. Estimation and Comparison of Bio-Oil Components from Different Pyrolysis Conditions

    Energy Technology Data Exchange (ETDEWEB)

    Lyu, Gaojin [Key Lab of Pulp and Paper Science and Technology of Ministry of Education, Qilu University of Technology, Jinan (China); State Key Lab of Pulp and Paper Engineering, South China University of Technology, Guangzhou (China); Wu, Shubin, E-mail: shubinwu@scut.edu.cn; Zhang, Hongdan [State Key Lab of Pulp and Paper Engineering, South China University of Technology, Guangzhou (China)

    2015-06-15

    In the case of development and utilization of bio-oils, a quantitative chemical characterization is necessary to evaluate its actual desired characteristics for downstream production. This paper describes an analytical approach for the determination of families of lightweight chemicals from bio-oils by using GC-MS techniques. And on this basis, new explorations in the field of influence factors, such as feedstocks, pyrolysis temperatures, and low-temperature pretreatment, on the composition and products yields of bio-oil were further investigated. Up to 40% (wt.%) of the bio-oil is successfully quantified by the current method. Chemical functionalities in the bio-oil correlate strongly with the original feedstocks because of their different chemical compositions and structure. Pyrolysis temperature plays a vital role in the yields of value-added compounds, both overall and individually. Higher temperature favored the generation of small aldehydes and acids, accompanied by a reduction of phenols. The optimal temperatures for maximum furans and ketones yields were 520 and 550°C, respectively. The low-temperature pretreatment of biomass has a good enrichment for the lightweight components of the bio-oils. In this case, much higher amounts of compounds, such as furans, ketones, and phenols were produced. Such a determination would contribute greatly to a deeper understanding of the chemical efficiency of the pyrolysis reaction and how the bio-oils could be more properly utilized.

  20. Estimation and Comparison of Bio-Oil Components from Different Pyrolysis Conditions

    International Nuclear Information System (INIS)

    Lyu, Gaojin; Wu, Shubin; Zhang, Hongdan

    2015-01-01

    In the case of development and utilization of bio-oils, a quantitative chemical characterization is necessary to evaluate its actual desired characteristics for downstream production. This paper describes an analytical approach for the determination of families of lightweight chemicals from bio-oils by using GC-MS techniques. And on this basis, new explorations in the field of influence factors, such as feedstocks, pyrolysis temperatures, and low-temperature pretreatment, on the composition and products yields of bio-oil were further investigated. Up to 40% (wt.%) of the bio-oil is successfully quantified by the current method. Chemical functionalities in the bio-oil correlate strongly with the original feedstocks because of their different chemical compositions and structure. Pyrolysis temperature plays a vital role in the yields of value-added compounds, both overall and individually. Higher temperature favored the generation of small aldehydes and acids, accompanied by a reduction of phenols. The optimal temperatures for maximum furans and ketones yields were 520 and 550°C, respectively. The low-temperature pretreatment of biomass has a good enrichment for the lightweight components of the bio-oils. In this case, much higher amounts of compounds, such as furans, ketones, and phenols were produced. Such a determination would contribute greatly to a deeper understanding of the chemical efficiency of the pyrolysis reaction and how the bio-oils could be more properly utilized.

  1. Esterification of oil adsorbed on palm decanter cake into methyl ester using sulfonated rice husk ash as heterogeneous acid catalyst

    Science.gov (United States)

    Hindryawati, Noor; Erwin, Maniam, Gaanty Pragas

    2017-02-01

    Palm Decanter cake (PDC) which is categorized as the waste from palm oil mill has been found to contain residual crude palm oil. The oil adsorbed on the PDC (PDC-oil) can be extracted and potentially used as feedstock for biodiesel production. Feedstock from waste like PDC-oil is burdened with high free fatty acids (FFAs) which make the feedstock difficult to be converted into biodiesel using basic catalyst. Therefore, in this study, a solid acid, RHA-SO3H catalyst was synthesized by sulfonating rice husk ash (RHA) with concentrated sulfuric acid. The RHA-SO3H prepared was characterized with TGA, FTIR, BET, XRD, FE-SEM, and Hammett indicators (methyl red, bromophenol blue, and crystal violet). PDC was found to have about 11.3 wt. % oil recovered after 1 hour extraction using ultrasound method. The presence of sulfonate group was observed in IR spectrum, and the surface area of RHA-SO3H was reduced to 37 m2.g-1 after impregnation of sulfonate group. The RHA-SO3H catalyst showed that it can work for both esterification of free fatty acid which is present in PDC-oil, and transesterification of triglycerides into methyl ester. The results showed highest methyl ester content of 70.2 wt.% at optimal conditions, which was 6 wt.% catalyst amount, methanol to oil molar ratio of 17:1 for 5 hours at 120 °C.

  2. Analysis of biodiesel

    Science.gov (United States)

    Biodiesel is a biogenic alternative to diesel fuel derived from petroleum. It is produced by a transesterification reaction from materials consisting largely of triacylglycerols such as vegetable and other plant oils, animal fats, used cooking oils, and “alternative” feedstocks such as algal oils. T...

  3. Toxic effects of essential plant oils in adult Sitophilus oryzae (Linnaeus (Coleoptera, Curculionidae

    Directory of Open Access Journals (Sweden)

    Andréa Roveré Franz

    2011-03-01

    Full Text Available Toxic effects of essential plant oils in adult Sitophilus oryzae (Linnaeus (Coleoptera, Curculionidae. Stored grains are subject to losses in quality nutritional value and in sanitation from the time they are stored to the time they are consumed. Botanical insecticides may offer an alternative solution for pest control. The objective was to test the insecticidal properties of the essential oils of Cymbopogon citratus (leaf, Zingiber officinale (root and Mentha sp. (leaf. The efficacy of these oils was tested to control the rice weevil, S. oryzae, using hydrodistillation. Chemical analysis of the essential oils was carried out by gas chromatography. Major components of C. citratus were geranial (48% and neral (31%, of Z. officinale were α-zingibereno (13%, geranial (16%, neral (10% and α-farneseno (5% and of Mentha sp. was menthol (92%. Bioassays were carried out by fumigation and topical application. In topical application assays, the essential oil of C. citratus had greater toxicity (LC50 0.027 µL mL-1 and shorter exposure time than the oils of the other two plants. After 24 h and 48 h, 70% and 100% mortality of S. oryzae occurred, respectively. In fumigation assays, essential oil of Z. officinale had a lower LC50 (1.18 µL cm-2 and 70% mortality after 24 h exposure. Therefore, we recommend the use of essential oils of C. citratus and Z. officinale to control the rice weevil S. oryzae.

  4. Evaluation of the Leishmanicidal and Cytotoxic Potential of Essential Oils Derived from Ten Colombian Plants

    Directory of Open Access Journals (Sweden)

    JF Sanchez-Suarez

    2013-03-01

    Full Text Available Background: The leishmanicidal and cytotoxic activity of ten essential oils obtained from ten plant specimens were evaluated.Methods: Essential oils were obtained by the steam distillation of plant leaves without any prior processing. Cytotoxicity was tested on J774 macrophages and leishmanicidal activity was assessed against four species of Leishmania associated with cutaneous leishmaniasis. Results: Seven essential oils exhibited activity against Leishmania parasites, five of which were toxic against J774 macrophages. Selectivity indices of >6 and 13 were calculated for the essential oils of Ocimum basilicum and Origanum vulgare, respectively.Conclusion: The essential oil of Ocimum basilicum was active against promastigotes of Leishmania and innocuous to J774 macrophages at concentrations up to 1600 µg/mL and should be further investi­gated for leishmanicidal activity in others in vitro and in vivo experimental models.

  5. Restructuring upstream bioprocessing: technological and economical aspects for production of a generic microbial feedstock from wheat.

    Science.gov (United States)

    Koutinas, A A; Wang, R; Webb, C

    2004-03-05

    Restructuring and optimization of the conventional fermentation industry for fuel and chemical production is necessary to replace petrochemical production routes. Guided by this concept, a novel biorefinery process has been developed as an alternative to conventional upstream processing routes, leading to the production of a generic fermentation feedstock from wheat. The robustness of Aspergillus awamori as enzyme producer is exploited in a continuous fungal fermentation on whole wheat flour. Vital gluten is extracted as an added-value byproduct by the conventional Martin process from a fraction of the overall wheat used. Enzymatic hydrolysis of gluten-free flour by the enzyme complex produced by A. awamori during fermentation produces a liquid stream rich in glucose (320 g/L). Autolysis of fungal cells produces a micronutrient-rich solution similar to yeast extract (1.6 g/L nitrogen, 0.5 g/L phosphorus). The case-specific combination of these two liquid streams can provide a nutrient-complete fermentation medium for a spectrum of microbial bioconversions for the production of such chemicals as organic acids, amino acids, bioethanol, glycerol, solvents, and microbial biodegradable plastics. Preliminary economic analysis has shown that the operating cost required to produce the feedstock is dependent on the plant capacity, cereal market price, presence and market value of added-value byproducts, labor costs, and mode of processing (batch or continuous). Integration of this process in an existing fermentation plant could lead to the production of a generic feedstock at an operating cost lower than the market price of glucose syrup (90% to 99% glucose) in the EU, provided that the plant capacity exceeds 410 m(3)/day. Further process improvements are also suggested. Copyright 2004 Wiley Periodicals, Inc.

  6. Early impact of oil palm planting density on vegetative and oil yield variables in West Africa

    Directory of Open Access Journals (Sweden)

    Bonneau Xavier

    2014-07-01

    Full Text Available A range of various different planting distances (from 7.5 to 9.5 m between oil palms were tested using an equilateral triangle design in a plantation density experiment which was settled in an oil palm commercial plantation in Nigeria. Climatic conditions were quite stable, with two seasons and around 2000 mm of annual rainfall. The soil was of desaturated ferralitic type, sandy on the surface, deep and without coarse elements. The early impact of plantation density was analysed at eight years after planting. Some early signs of depressive effect on yields were found for high planting densities (180 and 205 p/ha. Such a negative impact was not severe enough to counteract the effects of a higher number of palms per hectare. As a consequence, a gradient could be observed as yields (in tons of bunches per hectare increased with density. We can anticipate that the competition effect between palms will increase over time with high densities, so that the counteracting point ought to be reached in a few years. A thinning treatment has been included in the protocol. Thinning was carried out at the end of the eight-year period.

  7. Investigation of Hydrodeoxygenation of Oils and Fats

    DEFF Research Database (Denmark)

    Madsen, Anders Theilgaard; Riisager, Anders; Fehrmann, Rasmus

    The use of renewable biofuels in the transport sector represents an important step towards a sustainable society. Biodiesel is currently produced by the transesterification of fats and oils with methanol, but another viable method could be reaction of the feedstock with H2 to produce long-chain a...

  8. Feedstock and Conversion Supply System Design and Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Jacobson, J. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Mohammad, R. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Cafferty, K. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Kenney, K. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Searcy, E. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Hansen, J. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2014-09-01

    The success of the earlier logistic pathway designs (Biochemical and Thermochemical) from a feedstock perspective was that it demonstrated that through proper equipment selection and best management practices, conventional supply systems (referred to in this report as “conventional designs,” or specifically the 2012 Conventional Design) can be successfully implemented to address dry matter loss, quality issues, and enable feedstock cost reductions that help to reduce feedstock risk of variable supply and quality and enable industry to commercialize biomass feedstock supply chains. The caveat of this success is that conventional designs depend on high density, low-cost biomass with no disruption from incremental weather. In this respect, the success of conventional designs is tied to specific, highly productive regions such as the southeastern U.S. which has traditionally supported numerous pulp and paper industries or the Midwest U.S for corn stover.

  9. Tribological Effects of Mineral-Oil Lubricant Contamination with Biofuels: A Pin-on-Disk Tribometry and Wear Study

    Directory of Open Access Journals (Sweden)

    S. M. Shanta

    2011-01-01

    Full Text Available Use of biodiesel produces engine oil dilution because of unburned biodiesel impinging on cold walls of the combustion chamber, being scrapped to the oil pan, and leading to changes of oil friction, wear and lubricity properties. In this paper, mixtures of SAE 15W-40 oil, which were contaminated by known percentages of the biodiesels from canola oil, peanut oil, soybean oil, and chicken fat, were tested in a pin-on-disk tribometer. A contact was employed of AISI 1018 steel disk and AISI 316 stainless-steel ball for pin material, and friction force and specific wear were measured. Wear on the disk surfaces showed that any degree of mineral-oil dilution by the tested biodiesels reduces the wear protection of engine oil even at small mixture percentages. However, these reductions were not substantially different than those observed for same percentages of dilution of mineral oil by fossil diesel. The tested mixture of oil contaminated with animal fat feedstock (e.g., chicken fat biodiesel showed the best wear behavior as compared to those for the other tested mixtures (of mineral oil with vegetable feedstock biodiesel dilutions. Obtained results are discussed as baseline for further studies in a renewable energy multidisciplinary approach on biofuels and biolubes.

  10. Biodiesel production from wet microalgae feedstock using sequential wet extraction/transesterification and direct transesterification processes.

    Science.gov (United States)

    Chen, Ching-Lung; Huang, Chien-Chang; Ho, Kao-Chia; Hsiao, Ping-Xuan; Wu, Meng-Shan; Chang, Jo-Shu

    2015-10-01

    Although producing biodiesel from microalgae seems promising, there is still a lack of technology for the quick and cost-effective conversion of biodiesel from wet microalgae. This study was aimed to develop a novel microalgal biodiesel producing method, consisting of an open system of microwave disruption, partial dewatering (via combination of methanol treatment and low-speed centrifugation), oil extraction, and transesterification without the pre-removal of the co-solvent, using Chlamydomonas sp. JSC4 with 68.7 wt% water content as the feedstock. Direct transesterification with the disrupted wet microalgae was also conducted. The biomass content of the wet microalgae increased to 56.6 and 60.5 wt%, respectively, after microwave disruption and partial dewatering. About 96.2% oil recovery was achieved under the conditions of: extraction temperature, 45°C; hexane/methanol ratio, 3:1; extraction time, 80 min. Transesterification of the extracted oil reached 97.2% conversion within 15 min at 45°C and 6:1 solvent/methanol ratio with simultaneous Chlorophyll removal during the process. Nearly 100% biodiesel conversion was also obtained while conducting direct transesterification of the disrupted oil-bearing microalgal biomass. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Protecting innovation: genomics-based intellectual property for the development of feedstock for second-generation biofuels.

    Science.gov (United States)

    Harfouche, Antoine; Grant, Kannan; Selig, Marcus; Tsai, Daniel; Meilan, Richard

    2010-06-01

    One of the many controversies surrounding large-scale biofuel production is the diversion of land and other resources that might otherwise be used for food crops. Recent innovations will lead to a second generation of biofuel crops that can co-exist with food crops with little or no competition. Feedstocks from these bio-energy crops will be used to produce liquid fuel from cellulose, the most abundant polymer on the planet. Cell walls of higher plants are mainly composed of cellulose, hemicellulose, and lignin polymers. Cellulose and hemicellulose are polysaccharides with obvious value for biofuel production. However, lignin, while vital for plant growth and development, is widely known to negatively impact conversion efficiencies. Biomass pre-treatment, which is aimed at lignin removal, is not straightforward, and presents one of the major scientific and technical challenges and expenses associated with secondgeneration biofuel production. Scientific breakthroughs associated with altering the expression of key genes in the lignin biosynthetic pathway of biomass crops is a promising path toward solving this problem, and will likely impact the feedstock patent landscape in the near future. This review summarizes some of the recent and most important issued patents and patent applications associated with lignin-modification genes and methods of developing transgenic plants with altered lignin content and composition.

  12. The process greasoline {sup registered}. Catalytic cracking of used vegetable oils and vegetable products; Das greasoline {sup registered} -Verfahren. Katalytisches Cracken von gebrauchten Pflanzenoelen und Pflanzenprodukten

    Energy Technology Data Exchange (ETDEWEB)

    Danzig, Joachim; Fastabend, Anna; Greve, Anna; Heil, Volker; Juricev-Spiric, Marko; Kraft, Axel; Krzanowski, Marcin; Meller, Karl; Menne, Andreas; Unger, Christoph; Urban, Wolfgang [Fraunhofer-Institut fuer Umwelt-, Sicherheits- und Energietechnik UMSICHT, Oberhausen (Germany)

    2009-12-15

    Converting bio-based waste oils and fats as well as non-edible plant oils into oxygen-free components for quality aviation, shipping and automotive fuels represents a promising option to use these materials. Catalytic cracking over microporous and mesoporous catalysts like activated carbon offers a suitable process of considerable commercial and ecological potential. Moreover, this technology can be applied in order to produce high-caloric fuel gases like bio-based LPG. For example, these gases could be used for upgrading bio-methane into true bio-based synthetic natural gas without adding fossil components. Such a mixture would be ready to be fed into natural gas pipelines. In the future, used bio-hydraulic-oils could be collected and used as biofuels feedstock. Conversion of bio-hydraulic-oils as model substances resulted in organic liquid product yields of up to 64 wt.-%. Catalytic cracking of Jatropha Curcas-oil revealed the catalyst's usage time to be as important as the reaction temperature for optimising fuel gas production. (orig.)

  13. Evaluating Sustainability: Soap versus Biodiesel Production from Plant Oils

    Science.gov (United States)

    Pohl, Nicola L. B.; Streff, Jennifer M.; Brokman, Steve

    2012-01-01

    Herein we describe a series of experiments for the undergraduate organic laboratory curriculum in which various plant oils (soybean, rapeseed, and olive) are subjected to saponification and transesterification reactions to create a set of compounds that can function as soaps or as fuels. The experiments introduce students to and asks them to…

  14. Essential oil of Croton flavens L. (Welensali), a medicinal plant from Curacao

    NARCIS (Netherlands)

    Woerdenbag, HJ; Bos, R; van Meeteren, HE; Baarslag, JJJ; de Jong-van den Berg, LTW; Pras, N; do Rego Kuster, G; Petronia, RRL

    2000-01-01

    The volatile constituents from aerial and underground parts of Croton flavens L., a medicinal plant from Curacao, were investigated by GC and GC/MS (EI) analysis. The various plant parts yielded 0.27-0.50%, (v/w) essential oil on a dry weight basis. There were only small differences in the

  15. Washington biofuel feedstock crop supply under output price and quantity uncertainty

    International Nuclear Information System (INIS)

    Zheng Qiujie; Shumway, C. Richard

    2012-01-01

    Subsidized development of an in-state biofuels industry has received some political support in the state of Washington, USA. Utilizing in-state feedstock supplies could be an efficient way to stimulate biofuel industries and the local economy. In this paper we estimate supply under output price and quantity uncertainty for major biofuel feedstock crops in Washington. Farmers are expected to be risk averse and maximize the utility of profit and uncertainty. We estimate very large Washington price elasticities for corn and sugar beets but a small price elasticity for a third potential feedstock, canola. Even with the large price elasticities for two potential feedstocks, their current and historical production levels in the state are so low that unrealistically large incentives would likely be needed to obtain sufficient feedstock supply for a Washington biofuel industry. Based on our examination of state and regional data, we find low likelihood that a Washington biofuels industry will develop in the near future primarily using within-state biofuel feedstock crops. - Highlights: ► Within-state feedstock crop supplies insufficient for Washington biofuel industry. ► Potential Washington corn and sugar beet supplies very responsive to price changes. ► Feedstock supplies more responsive to higher expected profit than lower risk. ► R and D for conversion of waste cellulosic feedstocks is potentially important policy.

  16. Fumigant activity of plant essential oils and components from horseradish (Armoracia rusticana), anise (Pimpinella anisum) and garlic (Allium sativum) oils against Lycoriella ingenua (Diptera: Sciaridae).

    Science.gov (United States)

    Park, Ii-Kwon; Choi, Kwang-Sik; Kim, Do-Hyung; Choi, In-Ho; Kim, Lee-Sun; Bak, Won-Chull; Choi, Joon-Weon; Shin, Sang-Chul

    2006-08-01

    Plant essential oils from 40 plant species were tested for their insecticidal activities against larvae of Lycoriella ingénue (Dufour) using a fumigation bioassay. Good insecticidal activity against larvae of L. ingenua was achieved with essential oils of Chenopodium ambrosioides L., Eucalyptus globulus Labill, Eucalyptus smithii RT Baker, horseradish, anise and garlic at 10 and 5 microL L(-1) air. Horseradish, anise and garlic oils showed the most potent insecticidal activities among the plant essential oils. At 1.25 microL L(-1), horseradish, anise and garlic oils caused 100, 93.3 and 13.3% mortality, but at 0.625 microL L(-1) air this decreased to 3.3, 0 and 0% respectively. Analysis by gas chromatography-mass spectrometry led to the identification of one major compound from horseradish, and three each from anise and garlic oils. These seven compounds and m-anisaldehyde and o-anisaldehyde, two positional isomers of p-anisaldehyde, were tested individually for their insecticidal activities against larvae of L. ingenua. Allyl isothiocyanate was the most toxic, followed by trans-anethole, diallyl disulfide and p-anisaldehyde with LC(50) values of 0.15, 0.20, 0.87 and 1.47 microL L(-1) respectively.

  17. Security of feedstocks supply for future bio-ethanol production in Thailand

    International Nuclear Information System (INIS)

    Silalertruksa, Thapat; Gheewala, Shabbir H.

    2010-01-01

    This study assesses the security of feedstock supply to satisfy the increased demand for bio-ethanol production based on the recent 15 years biofuels development plan and target (year 2008-2022) of the Thai government. Future bio-ethanol systems are modeled and the feedstock supply potentials analyzed based on three scenarios including low-, moderate- and high-yields improvement. The three scenarios are modeled and key dimensions including availability; diversity; and environmental acceptability of feedstocks supply in terms of GHG reduction are evaluated through indicators such as net feedstock balances, Shannon index and net life cycle GHG emissions. The results show that only the case of high yields improvement scenario can result in a reliable and sufficient supply of feedstocks to satisfy the long-term demands for bio-ethanol and other related industries. Cassava is identified as the critical feedstock and a reduction in cassava export is necessary. The study concludes that to enhance long-term security of feedstocks supply for sustainable bio-ethanol production in Thailand, increasing use of sugarcane juice as feedstock, improved yields of existing feedstocks and promoting production of bio-ethanol derived from agricultural residues are three key recommendations that need to be urgently implemented by the policy makers. - Research highlights: →Bioethanol in Thailand derived from molasses, cassava, sugarcane juice could yield reductions of 64%, 49% and 87% in GHGs when compared to conventional gasoline. →High yields improvement are required for a reliable and sufficient supply of molasses, cassava and sugarcane to satisfy the long-term demands for bio-ethanol and other related industries. →Other factors to enhance long-term security of feedstocks supply for sustainable bioethanol production in Thailand include increasing use of sugarcane juice as feedstock and promoting production of bioethanol derived from agricultural residues.

  18. Coupling hydrothermal liquefaction and anaerobic digestion for energy valorization from model biomass feedstocks.

    Science.gov (United States)

    Posmanik, Roy; Labatut, Rodrigo A; Kim, Andrew H; Usack, Joseph G; Tester, Jefferson W; Angenent, Largus T

    2017-06-01

    Hydrothermal liquefaction converts food waste into oil and a carbon-rich hydrothermal aqueous phase. The hydrothermal aqueous phase may be converted to biomethane via anaerobic digestion. Here, the feasibility of coupling hydrothermal liquefaction and anaerobic digestion for the conversion of food waste into energy products was examined. A mixture of polysaccharides, proteins, and lipids, representing food waste, underwent hydrothermal processing at temperatures ranging from 200 to 350°C. The anaerobic biodegradability of the hydrothermal aqueous phase was examined through conducting biochemical methane potential assays. The results demonstrate that the anaerobic biodegradability of the hydrothermal aqueous phase was lower when the temperature of hydrothermal processing increased. The chemical composition of the hydrothermal aqueous phase affected the anaerobic biodegradability. However, no inhibition of biodegradation was observed for most samples. Combining hydrothermal and anaerobic digestion may, therefore, yield a higher energetic return by converting the feedstock into oil and biomethane. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Essential oils of aromatic Egyptian plants repel nymphs of the tick Ixodes ricinus (Acari: Ixodidae).

    Science.gov (United States)

    El-Seedi, Hesham R; Azeem, Muhammad; Khalil, Nasr S; Sakr, Hanem H; Khalifa, Shaden A M; Awang, Khalijah; Saeed, Aamer; Farag, Mohamed A; AlAjmi, Mohamed F; Pålsson, Katinka; Borg-Karlson, Anna-Karin

    2017-09-01

    Due to the role of Ixodes ricinus (L.) (Acari: Ixodidae) in the transmission of many serious pathogens, personal protection against bites of this tick is essential. In the present study the essential oils from 11 aromatic Egyptian plants were isolated and their repellent activity against I. ricinus nymphs was evaluated Three oils (i.e. Conyza dioscoridis L., Artemisia herba-alba Asso and Calendula officinalis L.) elicited high repellent activity in vitro of 94, 84.2 and 82%, respectively. The most active essential oil (C. dioscoridis) was applied in the field at a concentration of 6.5 µg/cm 2 and elicited a significant repellent activity against I. ricinus nymphs by 61.1%. The most repellent plants C. dioscoridis, C. officinalis and A. herba-alba yielded essential oils by 0.17, 0.11 and 0.14%, respectively. These oils were further investigated using gas chromatography-mass spectrometry analysis. α-Cadinol (10.7%) and hexadecanoic acid (10.5%) were the major components of C. dioscoridis whereas in C. officinalis, α-cadinol (21.2%) and carvone (18.2%) were major components. Artemisia herba-alba contained piperitone (26.5%), ethyl cinnamate (9.5%), camphor (7.7%) and hexadecanoic acid (6.9%). Essential oils of these three plants have a potential to be used for personal protection against tick bites.

  20. Integrated oil production and upgrading using molten alkali metal

    Science.gov (United States)

    Gordon, John Howard

    2016-10-04

    A method that combines the oil retorting process (or other process needed to obtain/extract heavy oil or bitumen) with the process for upgrading these materials using sodium or other alkali metals. Specifically, the shale gas or other gases that are obtained from the retorting/extraction process may be introduced into the upgrading reactor and used to upgrade the oil feedstock. Also, the solid materials obtained from the reactor may be used as a fuel source, thereby providing the heat necessary for the retorting/extraction process. Other forms of integration are also disclosed.

  1. Monoglyceride contents in biodiesel from various plants oil and the effect to low temperature properties

    Science.gov (United States)

    Aisyah, L.; Wibowo, C. S.; Bethari, S. A.; Ufidian, D.; Anggarani, R.

    2018-03-01

    Monoglyceride is a by-product component of biodiesel process that relates to sedimentation problem at low temperature environment. To prevent the problem in using biodiesel-diesel fuel blends, it is necessary to limit of the monoglyceride content. The factor affecting monoglyceride content in biodiesel is the transesterification reaction and also the plant that is used. In this study, we investigate the monoglyceride content in biodiesel made from 4 plant oils; kemiri sunan (Reutealis trisperma) oil, coconut oil, nyamplung (Calophyllum inophyllum) oil, and waste cooking oil. These oils are purified and checked for its critical properties then converted to biodiesel. The biodiesel tested refer to Standard National of Indonesia for biodiesel (SNI 7182:2015). The monoglyceride content of biodiesel from kemiri sunan (Reutealis trisperma) oil, coconut oil, nyamplung (Calophyllum inophyllum) oil, and waste cooking oil, are 8.86%, 0.69%, 4.0%, and 2.69% consecutively. The low temperature properties represented by viscosity (@40 0C) for the 4 samples in the same order as before are 6.1 cSt, 2.7 cSt, 4.71 cSt, and 4.90 cSt. The cloud point is measured with the result of 30 °C, -20 °C, -60 °C and 30 °C respectively. The conclusions indicate that monoglyceride content can affect the low temperature properties of biodiesel.

  2. Economic Analysis of Diesel-Fuel Replacement by Crude Palm Oil in Indonesian Power Plants

    Directory of Open Access Journals (Sweden)

    Petr Procházka

    2018-02-01

    Full Text Available Indonesia needs to find an alternative fuel to substitute diesel in their power plants in order to reduce the use of nonrenewable energy sources. The Indonesian government has a target to reduce oil fuel consumption while improving the efficiency of energy utilization. Crude palm oil is proposed to be used for this substitution. In this paper, the authors conduct an economic analysis of the replacement of diesel by crude palm oil. To predict future prices, a time series analysis is conducted using AutoRegressive Integrated Moving-Average method. A financial analysis of a specific project (0.75-MW power plant is conducted using static financial indicators (payback period, return on investment. Results show that replacing diesel with crude palm oil may be profitable. This is especially true for the proposed prospects of diesel price evolution. Analysis shows that the price of crude oil, which is the main factor in the pricing of diesel, may go up. Also, recently Indonesian currency depreciated against the US dollar, which also implies a higher cost of diesel.

  3. Vernonia DGATs can complement the disrupted oil and protein metabolism in epoxygenase-expressing soybean seeds.

    Science.gov (United States)

    Li, Runzhi; Yu, Keshun; Wu, Yongmei; Tateno, Mizuki; Hatanaka, Tomoko; Hildebrand, David F

    2012-01-01

    Plant oils can be useful chemical feedstocks such as a source of epoxy fatty acids. High seed-specific expression of a Stokesia laevis epoxygenase (SlEPX) in soybeans only results in 3-7% epoxide levels. SlEPX-transgenic soybean seeds also exhibited other phenotypic alterations, such as altered seed fatty acid profiles, reduced oil accumulation, and variable protein levels. SlEPX-transgenic seeds showed a 2-5% reduction in total oil content and protein levels of 30.9-51.4%. To address these pleiotrophic effects of SlEPX expression on other traits, transgenic soybeans were developed to co-express SlEPX and DGAT (diacylglycerol acyltransferase) genes (VgDGAT1 & 2) isolated from Vernonia galamensis, a high accumulator of epoxy fatty acids. These side effects of SlEPX expression were largely overcome in the DGAT co-expressing soybeans. Total oil and protein contents were restored to the levels in non-transgenic soybeans, indicating that both VgDGAT1 and VgDGAT2 could complement the disrupted phenotypes caused by over-expression of an epoxygenase in soybean seeds. Copyright © 2011 Elsevier Inc. All rights reserved.

  4. Using modern plant breeding to improve the nutritional and technological qualities of oil crops

    Directory of Open Access Journals (Sweden)

    Murphy Denis J.

    2014-11-01

    Full Text Available The last few decades have seen huge advances in our understanding of plant biology and in the development of new technologies for the manipulation of crop plants. The application of relatively straightforward breeding and selection methods made possible the “Green Revolution” of the 1960s and 1970s that effectively doubled or trebled cereal production in much of the world and averted mass famine in Asia. During the 2000s, much attention has been focused on genomic approaches to plant breeding with the deployment of a new generation of technologies, such as marker-assisted selection, next-generation sequencing, transgenesis (genetic engineering or GM and automatic mutagenesis/selection (TILLING, TargetIng Local Lesions IN Genomes. These methods are now being applied to a wide range of crops and have particularly good potential for oil crop improvement in terms of both overall food and non-food yield and nutritional and technical quality of the oils. Key targets include increasing overall oil yield and stability on a per seed or per fruit basis and very high oleic acid content in seed and fruit oils for both premium edible and oleochemical applications. Other more specialised targets include oils enriched in nutritionally desirable “fish oil”-like fatty acids, especially very long chain !-3 acids such as eicosapentaenoic acid (EPA and docosahexaenoic acid (DHA, or increased levels of lipidic vitamins such as carotenoids, tocopherols and tocotrienes. Progress in producing such oils in commercial crops has been good in recent years with several varieties being released or at advanced stages of development.

  5. Future prospects for palm oil refining and modifications

    Directory of Open Access Journals (Sweden)

    Gibon Véronique

    2009-07-01

    Full Text Available Palm oil is rich in minor components that impart unique nutritional properties and need to be preserved. In this context, refining technologies have been improved, with the dual temperature deodorizer, the double condensing unit and the ice condensing system. The DOBI is a good tool to assess quality of the crude palm oil and its ability to be properly refined. Specially refined oils open a market for new high quality products (golden palm oil, red palm oil, white soaps, etc.. Palm oil is a good candidate for the multi-step dry fractionation process, aiming to the production of commodity oils and specialty fats (cocoa butter replacers. New technological developments allow quality and yield improvements. Palm oil and fractions are also valuable feedstock for enzymatic interesterification in which applications are for commodity oil (low-trans margarines and shortenings and for special products (cocoa butter equivalents, infant formulation, ….

  6. Bioenergy Feedstock Development Program Status Report

    Energy Technology Data Exchange (ETDEWEB)

    Kszos, L.A.

    2001-02-09

    The U.S. Department of Energy's (DOE's) Bioenergy Feedstock Development Program (BFDP) at Oak Ridge National Laboratory (ORNL) is a mission-oriented program of research and analysis whose goal is to develop and demonstrate cropping systems for producing large quantities of low-cost, high-quality biomass feedstocks for use as liquid biofuels, biomass electric power, and/or bioproducts. The program specifically supports the missions and goals of DOE's Office of Fuels Development and DOE's Office of Power Technologies. ORNL has provided technical leadership and field management for the BFDP since DOE began energy crop research in 1978. The major components of the BFDP include energy crop selection and breeding; crop management research; environmental assessment and monitoring; crop production and supply logistics operational research; integrated resource analysis and assessment; and communications and outreach. Research into feedstock supply logistics has recently been added and will become an integral component of the program.

  7. Some defaults of OILs under emergency conditions in nuclear power plant

    International Nuclear Information System (INIS)

    Zhang Pengfei; Zhong Chongjun; Gou Quanlu; Wu Deqiang

    2005-01-01

    Based on the formulae presented in IAEA-TECDOC-955 for operational intervention levels (OILs) under emergency conditions in nuclear power plant (NPP) and by InterRAS1.3 computer code, this paper calculates OIL1 and OIL2 for two kinds of postulated severe accidents (core melt-containment integrity failure or leakage accident and SG integrity severe failure accident) of PWR NPP respectively. OIL1 and OIL2 are used to recommend for public evacuation and taking iodine-blocking agent during the period of plume exposure resulted from the above postulated severe accidents. The effects on OIL1 and OIL2 calculation results of related times (e.g. expected plume exposure time, beginning time of the radioactivity released into the environment), weather conditions (wind speed, height of mixing layer, stability, and rainfall), distance from release source and release patterns (release at low elevation and high elevation) are also discussed. On the basis of the calculation and discussion, this paper presents the relevant recommended defaults of OIL1 and OIL2 for above-mentioned postulated severe accidents, and also points out that OIL1 and OIL2 not only depend on the specific type of accidents, but also on the factors such as whether radioactivity are reduced before being released into the environment, so the defaults shall be presented for different accident types and specific conditions under which radioactivity are how reduced. (authors)

  8. Modeling of cumulative release on long term leaching behaviour of selected oil sludge from crude oil terminal and petroleum refining plant

    International Nuclear Information System (INIS)

    Mohd Fadzil, S.; Khoo, K.S.; Sarmani, S.; Majid, A.Ab.; Hamzah, A.

    2013-01-01

    Management of oil sludge containing environmentally toxic elements is a major problem in crude oil processing industry. Oil sludge samples from the petroleum refinery plant in Melaka and crude oil terminal in Sarawak were analysed. The aim of present work is to study long term leaching behaviour of arsenic (As), cobalt (Co), chromium (Cr) and zinc (Zn) from oil sludge. Tank leaching test was carried out and the samples were analysed using inductively coupled plasma-mass spectrometry (ICP-MS). The results were studied using LeachXS software to plot the graphs of elements concentration in order to study the leaching behaviour of toxic elements in oil sludge. The long term leaching (100 years) modeling was calculated using equations referred to National Institute of Public Health and the Environment Bilthoven (RIVM) and the results were plotted for cumulative release in different areas of oil sludge. Tank leaching test of the oil sludge samples from petroleum refinery plant in Melaka showed concentrations of As, Co, Cr and Zn ranging from 0.205 to 1.102, 0.031-0.454, 0.016-0.086 and 0.409-8.238 mg/l, respectively while the concentrations of As, Co, Cr and Zn in oil sludge samples from crude oil terminal in Sarawak were in the range of 0.002-0.089, 0.001-0.033, 0.006-1.016 and 0.100-2.744 mg/l, respectively. On the other hand, results on cumulative release from the modeling of long term leaching (100 years) showed that As, Co, Cr and Zn concentrations were proportional to the quantity of oil sludge. In conclusion, during extrapolation of release of toxic elements using the data in the laboratory, several other factors were taken into account to suit environmental conditions such as soil moisture, the negative logarithm of the effective diffusion coefficient (pD e ) and temperature, while the long-term behaviour of As, Co, Cr and Zn was proportional to the quantity of oil sludge to be disposed off. (author)

  9. Embryo-specific expression of soybean oleosin altered oil body morphogenesis and increased lipid content in transgenic rice seeds.

    Science.gov (United States)

    Liu, Wen Xian; Liu, Hua Liang; Qu, Le Qing

    2013-09-01

    Oleosin is the most abundant protein in the oil bodies of plant seeds, playing an important role in regulating oil body formation and lipid accumulation. To investigate whether lipid accumulation in transgenic rice seeds depends on the expression level of oleosin, we introduced two soybean oleosin genes encoding 24 kDa proteins into rice under the control of an embryo-specific rice promoter REG-2. Overexpression of soybean oleosin in transgenic rice leads to an increase of seed lipid content up to 36.93 and 46.06 % higher than that of the non-transgenic control, respectively, while the overall fatty acid profiles of triacylglycerols remained unchanged. The overexpression of soybean oleosin in transgenic rice seeds resulted in more numerous and smaller oil bodies compared with wild type, suggesting that an inverse relationship exists between oil body size and the total oleosin level. The increase in lipid content is accompanied by a reduction in the accumulation of total seed protein. Our results suggest that it is possible to increase rice seed oil content for food use and for use as a low-cost feedstock for biodiesel by overexpressing oleosin in rice seeds.

  10. Ecotoxicological characterization of biochars: role of feedstock and pyrolysis temperature.

    Science.gov (United States)

    Domene, X; Enders, A; Hanley, K; Lehmann, J

    2015-04-15

    Seven contrasting feedstocks were subjected to slow pyrolysis at low (300 or 350°C) and high temperature (550 or 600°C), and both biochars and the corresponding feedstocks tested for short-term ecotoxicity using basal soil respiration and collembolan reproduction tests. After a 28-d incubation, soil basal respiration was not inhibited but stimulated by additions of feedstocks and biochars. However, variation in soil respiration was dependent on both feedstock and pyrolysis temperature. In the last case, respiration decreased with pyrolysis temperature (r=-0.78; pmanagement recommendations. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Are commercially available essential oils from Australian native plants repellent to mosquitoes?

    Science.gov (United States)

    Maguranyi, Suzann K; Webb, Cameron E; Mansfield, Sarah; Russell, Richard C

    2009-09-01

    While the use of topical insect repellents, particularly those containing synthetic active ingredients such as deet (N,N-diethyl-3-methylbenzamide), are a mainstay in personal protection strategies emphasized in public health messages, there is a growing demand in the community for alternative repellents, particularly those of botanical origin and thus deemed to be "natural." This study evaluated the repellency of essential oils from 11 Australian native plants in 5% v/v formulations against Aedes aegypti, Culex quinquefasciatus, and Culex annulirostris under laboratory conditions. A blend of the top 3 performing oils was then compared with deet and a commercially available botanical insect repellent. All essential oils provided at least some protection against the 3 mosquito species, with the longest protection time (110 min) afforded by Prostanthera melissifolia against Cx. quinquefasciatus. Mean protection times against Ae. aegypti were substantially lower than those for the Culex spp. tested. Deet provided significantly longer protection against Ae. aegypti than both the 5% v/v blend of Leptospermum petersonii, Prostanthera melissifolia, and Melaleuca alternifolia (the 3 most effective oils) and the commercial botanical repellent. The results of this study indicate that these essential oils from Australian native plants offer limited protection against biting mosquitoes and that a blend of essential oils holds may offer commercial potential as a short-period repellent or under conditions of low mosquito abundance. However, it is important that public health messages continue to emphasize the greater effectiveness of deet-based repellents in areas with risks of mosquito-borne disease.

  12. The Next Generation Feedstock of Biofuel: Jatropha or Chlorella as Assessed by Their Life-Cycle Inventories

    Directory of Open Access Journals (Sweden)

    Pu Peng

    2014-07-01

    Full Text Available Promising energy crops such as Jatropha curcas Linnaeus (JCL, which are planted on marginal lands, or microalgae such as Chlorella, which are cultivated in ponds located on mudflats or deserts, have been regarded with high hopes to solve the shortage of food crops and increase the amount of biodiesel (Fatty Acid Methyl Ester, FAME production. However, the annual yields of biomass and transport fuels (t/ha of both are still unclear and often exaggerated in the literature. Large portions of JCL biomass, including tree trunks and leaves, can also be used to generate electricity along with FAME, which is produced from seed lipids. Meanwhile, lipid extracted algae (LEA are composed of proteins, polysaccharides, and lipids other than glycerides which are unable to be esterified to form FAME and much more abundant in the microalgae than oil cake in the oil crops. Therefore, it has been strongly suggested that not only transesterification or esterification but also Fischer-Tropsch (FT process and bio-electricity generation should be considered as routes to produce biofuels. Otherwise, the yield of biofuel would be extremely low using either JCL or Chlorella as feedstock. The Life-Cycle Inventories (LCI of the biofuel processes with whole biomass of JCL and Chlorella were compared based on their net energy ratio (NER and CO2 emission saving (CES. It was shown that the technological improvement of irrigation, cultivation, and processing for either economic-crops or microalgae were all necessary to meet the requirements of commercial biofuel production.

  13. Genotoxic studies of selected plant oil extracts on Rhyzopertha dominica (Coleoptera: Bostrichidae

    Directory of Open Access Journals (Sweden)

    Sameer H. Qari

    2017-05-01

    Full Text Available This study was conducted to compare the genotoxic effects of various concentrations of plant oils from Eruca sativa (Brassicaceae, Zingiber officinale (Zingiberaceae and Origanum majorana (Lamiaceae to the conventional organophosphate insecticide (Chlorpyrifos against Rhyzopertha dominica Fabricius. The R. dominica population was reared for several generations without exposure to any insecticide. Wheat grains were sterilized at 55 °C for 6 h in order to eliminate any hidden infestation, treated with serial dilutions of Chlorpyrifos and plant oil extracts, and subsequently fed to R. dominica for 1, 2, 3, 6 and 8 days. The results indicated that the LC50 values of oils from E. sativa, Z. officinale and O. Majorana were 0.14, 0.23 and 0.32%, respectively, after 2 days. Genetic variations in DNA fragments after treatment with LC50 and LC25 concentrations of E. sativa, Z. officinale and O. majorana were detected by RAPD-PCR analysis using five primers. The results exhibited distinct DNA polymorphisms or alterations in DNA bands. These alterations varied depending on the substance being examined. Chlorpyrifos causes the highest level of DNA alterations (based on the appearance and disappearance DNA bands followed by E. sativa, Z. officinale and O. majorana. These results were in direct correlation with the differences in mortality rates between extracts. It could be concluded that the plant oil extracts can be used as one of the integrated pest management tools to control R. dominica in stored products, as they are safer than chemical insecticides.

  14. Evaluation of castor oil samples for potential toxin contamination

    Science.gov (United States)

    Castor oil and its derivatives are widely used as a chemical feedstock for production of lubricants and greases, and for engineering plastics, plasticizers and surfactants. They also have wide application in consumer goods such as lipstick, deodorants and medicinal products. Due to concerns about th...

  15. Epicotyl dormancy of tree peony as an oil plant broken by cyanamide

    Science.gov (United States)

    Xu, Jiajie; Gong, Mingfu; Liu, Fang; Wu, Sanlin; Liu, Xiaojie; Zhang, Ya; Xu, Gaoyu

    2018-04-01

    This test materials is `feng Dan', an oil peony, or tree peony as an oil plant, growing in Yangtze river basin. Impact of cyanamide on oil peony epicotyl dormancy was represented with germination rate of peony feeds, a-amylase activity, soluble sugar content, soluble protein content and peroxidase (POD) activity. Results showed that hypocotyls' dormancy of peony seeds was significant breaken by 0.3% cyanamide concentration. Alpha-amylase activity, soluble sugar content, soluble protein content and POD activity in 0.3% cyanamide concentration treatment was significantly higher than other treatments. There was no significant difference between the rest treatments.

  16. Phytoremediation of Alberta oil sand tailings using native plants and fungal endophytes

    Science.gov (United States)

    Repas, T.; Germida, J.; Kaminskyj, S.

    2012-04-01

    Fungal endophytes colonize host plants without causing disease. Some endophytes confer plant tolerance to harsh environments. One such endophyte, Trichoderma harzianum strain TSTh20-1, was isolated from a plant growing on Athabasca oil sand tailings. Tailing sands are a high volume waste product from oil sand extraction that the industry is required to remediate. Tailing sands are low in organic carbon and mineral nutrients, and are hydrophobic due to residual polyaromatic hydrocarbons. Typically, tailing sands are remediated by planting young trees in large quantities of mulch plus mineral fertilizer, which is costly and labour intensive. In greenhouse trials, TSTh20-1 supports growth of tomato seedlings on tailing sands without fertilizer. The potential use of TSTh20-1 in combination with native grasses and forbs to remediate under field conditions is being assessed. Twenty-three commercially available plant species are being screened for seed germination and growth on tailing sands in the presence of TSTh20-1. The best candidates from this group will be used in greenhouse and small scale field trials. Potential mechanisms that contribute to endophyte-induced plant growth promotion, such as plant hormone production, stress tolerance, mineral solubilization, and uptake are also being assessed. As well, TSTh20-1 appears to be remarkably frugal in its nutrient requirements and the possibility that this attribute is characteristic of other plant-fungal endophytes from harsh environments is under study.

  17. Potential of waste frying oil as a feedstock for the production of bio-diesel

    Energy Technology Data Exchange (ETDEWEB)

    Quadri, Syed M Raza [Dept. of Chemical Engineering, Z.H.C.E.T, A.M.U, Aligarh (India)], e-mail: chemicalraza@gmail.com; Wani, Omar Bashir; Athar, Moina [Dept. of Petroleum Studies, Z.H.C.E.T, A.M.U, Aligarh (India)

    2012-11-01

    To face the challenges of climbing Petroleum demand and of climate changes related to Carbon dioxide emissions, interest grows in sustainable fuels made from organic matter. World production of bio fuels has experienced phenomenal growth. The search for alternatives to petroleum based fuel has led to the development of fuels from various renewable sources, including feed stocks, such as fats and oils. Several kinds of fuels can be derived from these feed stocks. One of them is biodiesel, which is mono alkyl esters of vegetables oils and animal fats and produced by transesterification of oil and fats with alcohols in the presence of acid, alkali or enzyme base catalysts. The main hurdle in using the biodiesel is its cost which is mainly the cost of virgin oil. In India every year Millions of liters of waste frying oil are discarded into the sewage system which adds cost to its treatment and add up to the pollution of ground water. This paper proposed the production of Bio-diesel from the very same waste frying oil. The production of Bio-diesel from this waste frying oil offers economic, social, environmental and health benefits. The Bio-diesel produced finds the same use as the conventional diesel but this happens to be cost effective.

  18. Influence of corn oil recovery on life-cycle greenhouse gas emissions of corn ethanol and corn oil biodiesel.

    Science.gov (United States)

    Wang, Zhichao; Dunn, Jennifer B; Han, Jeongwoo; Wang, Michael Q

    2015-01-01

    Corn oil recovery and conversion to biodiesel has been widely adopted at corn ethanol plants recently. The US EPA has projected 2.6 billion liters of biodiesel will be produced from corn oil in 2022. Corn oil biodiesel may qualify for federal renewable identification number (RIN) credits under the Renewable Fuel Standard, as well as for low greenhouse gas (GHG) emission intensity credits under California's Low Carbon Fuel Standard. Because multiple products [ethanol, biodiesel, and distiller's grain with solubles (DGS)] are produced from one feedstock (corn), however, a careful co-product treatment approach is required to accurately estimate GHG intensities of both ethanol and corn oil biodiesel and to avoid double counting of benefits associated with corn oil biodiesel production. This study develops four co-product treatment methods: (1) displacement, (2) marginal, (3) hybrid allocation, and (4) process-level energy allocation. Life-cycle GHG emissions for corn oil biodiesel were more sensitive to the choice of co-product allocation method because significantly less corn oil biodiesel is produced than corn ethanol at a dry mill. Corn ethanol life-cycle GHG emissions with the displacement, marginal, and hybrid allocation approaches are similar (61, 62, and 59 g CO2e/MJ, respectively). Although corn ethanol and DGS share upstream farming and conversion burdens in both the hybrid and process-level energy allocation methods, DGS bears a higher burden in the latter because it has lower energy content per selling price as compared to corn ethanol. As a result, with the process-level allocation approach, ethanol's life-cycle GHG emissions are lower at 46 g CO2e/MJ. Corn oil biodiesel life-cycle GHG emissions from the marginal, hybrid allocation, and process-level energy allocation methods were 14, 59, and 45 g CO2e/MJ, respectively. Sensitivity analyses were conducted to investigate the influence corn oil yield, soy biodiesel, and defatted DGS displacement credits

  19. Improvement in biodiesel production from soapstock oil by one-stage lipase catalyzed methanolysis

    International Nuclear Information System (INIS)

    Su, Erzheng; Wei, Dongzhi

    2014-01-01

    Highlights: • Soapstock is a less expensive feedstock reservoir for biodiesel production. • Addition of tert-alcohol can enhance the yield of fatty acid methyl ester significantly. • One-stage lipase catalyzed methanolysis of soapstock oil was successfully developed. • FAME yield of 95.2% was obtained with low lipase loading in a shorter reaction time. - Abstract: A major obstacle in the commercialization of biodiesel is its cost of manufacturing, primarily the raw material cost. In order to decrease the cost of biodiesel, soapstock oil was investigated as the feedstock for biodiesel production. Because the soapstock oil containing large amounts of free fatty acids (FFAs) cannot be effectively converted to biodiesel, complicated two-stage process (esterification followed by transesterification) was generally adopted. In this study, simple one-stage lipase catalyzed methanolysis of soapstock oil was developed via one-pot esterification and transesterification. Water produced by lipase catalyzed esterification of FFAs affected the lipase catalyzed transesterification of glycerides in the soapstock oil severely. Addition of tert-alcohol could overcome this problem and enhance the fatty acid methyl ester (FAME) yield from 42.8% to 76.4%. The FAME yield was further elevated to 95.2% by optimizing the methanol/oil molar ratio, lipase amount, and water absorbent. The developed process enables the simple, efficient, and green production of biodiesel from soapstock oil, providing with a potential industrial application

  20. Antimicrobial Properties of Plant Essential Oils against Human Pathogens and Their Mode of Action: An Updated Review

    Directory of Open Access Journals (Sweden)

    Mallappa Kumara Swamy

    2016-01-01

    Full Text Available A wide range of medicinal and aromatic plants (MAPs have been explored for their essential oils in the past few decades. Essential oils are complex volatile compounds, synthesized naturally in different plant parts during the process of secondary metabolism. Essential oils have great potential in the field of biomedicine as they effectively destroy several bacterial, fungal, and viral pathogens. The presence of different types of aldehydes, phenolics, terpenes, and other antimicrobial compounds means that the essential oils are effective against a diverse range of pathogens. The reactivity of essential oil depends upon the nature, composition, and orientation of its functional groups. The aim of this article is to review the antimicrobial potential of essential oils secreted from MAPs and their possible mechanisms of action against human pathogens. This comprehensive review will benefit researchers who wish to explore the potential of essential oils in the development of novel broad-spectrum key molecules against a broad range of drug-resistant pathogenic microbes.

  1. Antimicrobial Properties of Plant Essential Oils against Human Pathogens and Their Mode of Action: An Updated Review

    Science.gov (United States)

    2016-01-01

    A wide range of medicinal and aromatic plants (MAPs) have been explored for their essential oils in the past few decades. Essential oils are complex volatile compounds, synthesized naturally in different plant parts during the process of secondary metabolism. Essential oils have great potential in the field of biomedicine as they effectively destroy several bacterial, fungal, and viral pathogens. The presence of different types of aldehydes, phenolics, terpenes, and other antimicrobial compounds means that the essential oils are effective against a diverse range of pathogens. The reactivity of essential oil depends upon the nature, composition, and orientation of its functional groups. The aim of this article is to review the antimicrobial potential of essential oils secreted from MAPs and their possible mechanisms of action against human pathogens. This comprehensive review will benefit researchers who wish to explore the potential of essential oils in the development of novel broad-spectrum key molecules against a broad range of drug-resistant pathogenic microbes. PMID:28090211

  2. A comparative study on the effect of unsaturation degree of camelina and canola oils on the optimization of bio-diesel production

    Directory of Open Access Journals (Sweden)

    Jie Yang

    2016-11-01

    Full Text Available Transesterification is the most common method of producing biodiesel from vegetable oils. A comparative study on the optimization of reaction variables for refined canola oil, unrefined canola oil, and unrefined camelina oil using a four-factor (temperature, time, molar ratio of methanol to oil, and catalyst loading face-centered central composite design (FCCCD was carried out. The optimum settings of these four factors that jointly maximize product, fatty acid methyl ester (FAME and biodiesel yields for each of refined canola, unrefined canola and unrefined camelina were determined. Results showed that the optimized conditions were associated with the fatty acid profile and physical properties of the parent oils. The optimum temperature of vegetable oil with low polyunsaturation degree was higher than that of oils with high polyunsaturation degree. High free fatty acid content in parent oils led to low optimized catalyst concentration, and the decreased reaction rate could be compensated by increased reaction temperature due to significant interaction effect between reaction temperature and catalyst loading in the transesterification process. The highest biodiesel yields from the optimum setting for refined canola oil, unrefined canola oil, and unrefined camelina oil were 97.7%, 95.2%, and 95.6%, respectively. This study provided guidelines on how to optimize different reaction variables taking economic viability and feedstock availability into consideration when producing biodiesel at plant scale.

  3. Evaluation of the biological methane potential of various feedstock for the production of biogas to supply agricultural tractors

    International Nuclear Information System (INIS)

    Matuszewska, Anna; Owczuk, Marlena; Zamojska-Jaroszewicz, Anna; Jakubiak-Lasocka, Joanna; Lasocki, Jakub; Orliński, Piotr

    2016-01-01

    Highlights: • Biochemical methane potential for mixtures of whey, manures and silages was tested. • High impact of feedstock type on composition and yield of biogas was observed. • Simple mathematical model of methanogenic fermentation was proposed. • Exhaust emissions from dual fuel (biogas and diesel oil) engine were investigated. • Using biogas in engine reduces particulate matter and nitrogen oxides emissions. - Abstract: This work is divided into three parts. The first one presents results of biological methane potential of agriculture raw materials available in Poland. In the second part the simple mathematical model of methanogenic fermentation is proposed. The data for this model were obtained from experimental digestion process of chosen mixtures. Last part includes the results of research of exhaust emissions generated by dual dual-fuel engine of agricultural tractor powered by mixture of model biogas (60% and 70% of methane) and diesel oil. The obtained results revealed that there was a significant difference in chemical composition and yield of biogas between considered feedstock types. The highest biogas and methane production was obtained for mixtures in ratio of 6:4 for swine manure/maize silage and whey/grass silage. Due to agriculture conditions in Poland and obtain results, the maize silage and swine manure were chosen to development of mathematical model of fermentation process. It showed a satisfactory match to the experimental results. Results of emission tests on dual-fuel tractor engine supplied with biogas and diesel oil showed the higher concentrations of hydrocarbons and carbon oxide and lower concentrations of particulate matter in exhaust gases. Level of emission of particular components depends on the biogas composition.

  4. Mass spectrometry of oil sands naphthenic acids : degradation in OSPW and wetland plants

    Energy Technology Data Exchange (ETDEWEB)

    Headley, J. [Environment Canada, Saskatoon, SK (Canada). Water Science and Technology Directorate

    2009-07-01

    This presentation discussed mass spectrometry of oil sands naphthenic acids and the degradation in OSPW and wetland plants. It presented background information on the Athabasca oil sands and naphthenic acids which involve a mixture of alkanes and cycloalkane carboxylic acids with aliphatic side chains. The presentation also discussed mass spectrometry with electrospray operating in negative ion modes. Loop injection, external standard methods and solid phase extraction were reviewed along with improved analysis by removing background ions. Other topics that were presented included hydroponic test systems and wetland plant toxicity, growth and transpiration. It was concluded that dissipation included species containing oxygen, ozone, O{sub 4}, and O{sub 5}. tabs., figs.

  5. Comparison of the Insecticidal Characteristics of Commercially Available Plant Essential Oils Against Aedes aegypti and Anopheles gambiae (Diptera: Culicidae).

    Science.gov (United States)

    Norris, Edmund J; Gross, Aaron D; Dunphy, Brendan M; Bessette, Steven; Bartholomay, Lyric; Coats, Joel R

    2015-09-01

    Aedes aegypti and Anopheles gambiae are two mosquito species that represent significant threats to global public health as vectors of Dengue virus and malaria parasites, respectively. Although mosquito populations have been effectively controlled through the use of synthetic insecticides, the emergence of widespread insecticide-resistance in wild mosquito populations is a strong motivation to explore new insecticidal chemistries. For these studies, Ae. aegypti and An. gambiae were treated with commercially available plant essential oils via topical application. The relative toxicity of each essential oil was determined, as measured by the 24-h LD(50) and percentage knockdown at 1 h, as compared with a variety of synthetic pyrethroids. For Ae. aegypti, the most toxic essential oil (patchouli oil) was ∼1,700-times less toxic than the least toxic synthetic pyrethroid, bifenthrin. For An. gambiae, the most toxic essential oil (patchouli oil) was ∼685-times less toxic than the least toxic synthetic pyrethroid. A wide variety of toxicities were observed among the essential oils screened. Also, plant essential oils were analyzed via gas chromatography/mass spectrometry (GC/MS) to identify the major components in each of the samples screened in this study. While the toxicities of these plant essential oils were demonstrated to be lower than those of the synthetic pyrethroids tested, the large amount of GC/MS data and bioactivity data for each essential oil presented in this study will serve as a valuable resource for future studies exploring the insecticidal quality of plant essential oils. © The Authors 2015. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  6. Essential Oils from Ugandan Aromatic Medicinal Plants: Chemical Composition and Growth Inhibitory Effects on Oral Pathogens

    Directory of Open Access Journals (Sweden)

    Francis Ocheng

    2015-01-01

    Full Text Available The study assessed the growth inhibitory effects of essential oils extracted from ten Ugandan medicinal plants (Bidens pilosa, Helichrysum odoratissimum, Vernonia amygdalina, Hoslundia opposita, Ocimum gratissimum, Cymbopogon citratus, Cymbopogon nardus, Teclea nobilis, Zanthoxylum chalybeum, and Lantana trifolia used traditionally in the management of oral diseases against oral pathogens. Chemical compositions of the oils were explored by GC-MS. Inhibitory effects of the oils were assessed on periodontopathic Porphyromonas gingivalis and Aggregatibacter actinomycetemcomitans and cariogenic Streptococcus mutans and Lactobacillus acidophilus using broth dilution methods at concentrations of 1%, 0.1%, and 0.01%. The most sensitive organism was A. actinomycetemcomitans. Its growth was markedly inhibited by six of the oils at all the concentrations tested. Essential oil from C. nardus exhibited the highest activity with complete growth inhibition of A. actinomycetemcomitans and P. gingivalis at all the three concentrations tested, the major constituents in the oil being mainly oxygenated sesquiterpenes. Most of the oils exhibited limited effects on L. acidophilus. We conclude that essential oils from the studied plants show marked growth inhibitory effects on periodontopathic A. actinomycetemcomitans and P. gingivalis, moderate effects on cariogenic S. mutans, and the least effect on L. acidophilus. The present study constitutes a basis for further investigations and development of certain oils into alternative antiplaque agents.

  7. Essential Oils from Ugandan Aromatic Medicinal Plants: Chemical Composition and Growth Inhibitory Effects on Oral Pathogens

    Science.gov (United States)

    Ocheng, Francis; Bwanga, Freddie; Joloba, Moses; Softrata, Abier; Azeem, Muhammad; Pütsep, Katrin; Borg-Karlson, Anna-Karin; Obua, Celestino; Gustafsson, Anders

    2015-01-01

    The study assessed the growth inhibitory effects of essential oils extracted from ten Ugandan medicinal plants (Bidens pilosa, Helichrysum odoratissimum, Vernonia amygdalina, Hoslundia opposita, Ocimum gratissimum, Cymbopogon citratus, Cymbopogon nardus, Teclea nobilis, Zanthoxylum chalybeum, and Lantana trifolia) used traditionally in the management of oral diseases against oral pathogens. Chemical compositions of the oils were explored by GC-MS. Inhibitory effects of the oils were assessed on periodontopathic Porphyromonas gingivalis and Aggregatibacter actinomycetemcomitans and cariogenic Streptococcus mutans and Lactobacillus acidophilus using broth dilution methods at concentrations of 1%, 0.1%, and 0.01%. The most sensitive organism was A. actinomycetemcomitans. Its growth was markedly inhibited by six of the oils at all the concentrations tested. Essential oil from C. nardus exhibited the highest activity with complete growth inhibition of A. actinomycetemcomitans and P. gingivalis at all the three concentrations tested, the major constituents in the oil being mainly oxygenated sesquiterpenes. Most of the oils exhibited limited effects on L. acidophilus. We conclude that essential oils from the studied plants show marked growth inhibitory effects on periodontopathic A. actinomycetemcomitans and P. gingivalis, moderate effects on cariogenic S. mutans, and the least effect on L. acidophilus. The present study constitutes a basis for further investigations and development of certain oils into alternative antiplaque agents. PMID:26170872

  8. Preprocessing Moist Lignocellulosic Biomass for Biorefinery Feedstocks

    Energy Technology Data Exchange (ETDEWEB)

    Neal Yancey; Christopher T. Wright; Craig Conner; J. Richard Hess

    2009-06-01

    Biomass preprocessing is one of the primary operations in the feedstock assembly system of a lignocellulosic biorefinery. Preprocessing is generally accomplished using industrial grinders to format biomass materials into a suitable biorefinery feedstock for conversion to ethanol and other bioproducts. Many factors affect machine efficiency and the physical characteristics of preprocessed biomass. For example, moisture content of the biomass as received from the point of production has a significant impact on overall system efficiency and can significantly affect the characteristics (particle size distribution, flowability, storability, etc.) of the size-reduced biomass. Many different grinder configurations are available on the market, each with advantages under specific conditions. Ultimately, the capacity and/or efficiency of the grinding process can be enhanced by selecting the grinder configuration that optimizes grinder performance based on moisture content and screen size. This paper discusses the relationships of biomass moisture with respect to preprocessing system performance and product physical characteristics and compares data obtained on corn stover, switchgrass, and wheat straw as model feedstocks during Vermeer HG 200 grinder testing. During the tests, grinder screen configuration and biomass moisture content were varied and tested to provide a better understanding of their relative impact on machine performance and the resulting feedstock physical characteristics and uniformity relative to each crop tested.

  9. Regional Feedstock Partnership Summary Report: Enabling the Billion-Ton Vision

    Energy Technology Data Exchange (ETDEWEB)

    Owens, Vance N. [South Dakota State Univ., Brookings, SD (United States). North Central Sun Grant Center; Karlen, Douglas L. [Dept. of Agriculture Agricultural Research Service, Ames, IA (United States). National Lab. for Agriculture and the Environment; Lacey, Jeffrey A. [Idaho National Lab. (INL), Idaho Falls, ID (United States). Process Science and Technology Division

    2016-07-12

    The U.S. Department of Energy (DOE) and the Sun Grant Initiative established the Regional Feedstock Partnership (referred to as the Partnership) to address information gaps associated with enabling the vision of a sustainable, reliable, billion-ton U.S. bioenergy industry by the year 2030 (i.e., the Billion-Ton Vision). Over the past 7 years (2008–2014), the Partnership has been successful at advancing the biomass feedstock production industry in the United States, with notable accomplishments. The Billion-Ton Study identifies the technical potential to expand domestic biomass production to offset up to 30% of U.S. petroleum consumption, while continuing to meet demands for food, feed, fiber, and export. This study verifies for the biofuels and chemical industries that a real and substantial resource base could justify the significant investment needed to develop robust conversion technologies and commercial-scale facilities. DOE and the Sun Grant Initiative established the Partnership to demonstrate and validate the underlying assumptions underpinning the Billion-Ton Vision to supply a sustainable and reliable source of lignocellulosic feedstock to a large-scale bioenergy industry. This report discusses the accomplishments of the Partnership, with references to accompanying scientific publications. These accomplishments include advances in sustainable feedstock production, feedstock yield, yield stability and stand persistence, energy crop commercialization readiness, information transfer, assessment of the economic impacts of achieving the Billion-Ton Vision, and the impact of feedstock species and environment conditions on feedstock quality characteristics.

  10. Oil palm biomass as a sustainable energy source: A Malaysian case study

    International Nuclear Information System (INIS)

    Shuit, S.H.; Tan, K.T.; Lee, K.T.; Kamaruddin, A.H.

    2009-01-01

    It has been widely accepted worldwide that global warming is by far the greatest threat and challenge in the new millennium. In order to stop global warming and to promote sustainable development, renewable energy is a perfect solution to achieve both targets. Presently million hectares of land in Malaysia is occupied with oil palm plantation generating huge quantities of biomass. In this context, biomass from oil palm industries appears to be a very promising alternative as a source of raw materials including renewable energy in Malaysia. Thus, this paper aims to present current scenario of biomass in Malaysia covering issues on availability and sustainability of feedstock as well as current and possible utilization of oil palm biomass. This paper will also discuss feasibility of some biomass conversion technologies and some ongoing projects in Malaysia related to utilization of oil palm biomass as a source of renewable energy. Based on the findings presented, it is definitely clear that Malaysia has position herself in the right path to utilize biomass as a source of renewable energy and this can act as an example to other countries in the world that has huge biomass feedstock. (author)

  11. Repellent effectiveness of seven plant essential oils, sunflower oil and natural insecticides against horn flies on pastured dairy cows and heifers.

    Science.gov (United States)

    Lachance, S; Grange, G

    2014-06-01

    Plant essential oils (basil, geranium, balsam fir, lavender, lemongrass, peppermint, pine and tea tree), mixed with either sunflower oil or ethyl alcohol, were applied at 5% concentrations to the sides of Holstein cattle. Pastured cattle treated with essential oils diluted in sunflower oil had less flies than the untreated control for a 24-h period. However, the essential oil treatments were not significantly different than the carrier oil alone. Barn-held heifers treated with essential oils and sunflower oil alone had significantly less flies than the untreated control for up to 8 h after treatment. Basil, geranium, lavender, lemongrass and peppermint repelled more flies than sunflower oil alone for a period ranging from 1.5 to 4 h after treatments applied to heifers. All essential oils repelled > 75% of the flies on the treated area for 6 and 8 h on pastured cows and indoor heifers, respectively. Geranium, lemongrass and peppermint stayed effective for a longer duration. Essential oils mixed with ethyl alcohol demonstrated less repellence than when mixed with the carrier oil. Safer's soap, natural pyrethrins without piperonyl butoxide and ethyl alcohol alone were not efficient at repelling flies. Essential oils could be formulated for use as fly repellents in livestock production. © 2013 The Royal Entomological Society.

  12. Effect of selected essential oil plants on bacterial wilt disease ...

    African Journals Online (AJOL)

    Objective: Bacterial wilt disease caused by Ralstonia solanacearum is a major constrain to production of potatoes (Solanum tuberosum). Control of bacterial wilt is very difficult as there are no effective curative chemicals. This study was aimed at investigating the potential roles of essential oil plants in control of the disease.

  13. Quarterly oil statistics. First quarter 1978

    Energy Technology Data Exchange (ETDEWEB)

    1978-01-01

    The aim of this report is to provide rapid, accurate and detailed statistics on oil supply and demand in the OECD area. Main components of the system are: complete balances of production, trade, refinery intake and output, final consumption, stock levels and changes; separate data for crude oil, NGL, feedstocks and nine product groups; separate trade data for main product groups, LPG and naphtha; imports for 41 origins; exports for 29 destinations; marine bunkers and deliveries to international civil aviation by product group; aggregates of quarterly data to annual totals; and natural gas supply and consumption.

  14. Decarbonisation of olefin processes using biomass pyrolysis oil

    International Nuclear Information System (INIS)

    Sharifzadeh, M.; Wang, L.; Shah, N.

    2015-01-01

    Highlights: • Decarbonization of olefin processes using biomass pyrolysis oil was proposed. • The decarbonization is based on integrated catalytic processing of bio-oil. • The retrofitted process features significant economic and environmental advantages. - Abstract: An imperative step toward decarbonisation of current industrial processes is to substitute their petroleum-derived feedstocks with biomass and biomass-derived feedstocks. For decarbonisation of the petrochemical industry, integrated catalytic processing of biomass pyrolysis oil (also known as bio-oil) is an enabling technology. This is because, under certain conditions, the reaction products form a mixture consisting of olefins and aromatics, which are very similar to the products of naphtha hydro-cracking in the conventional olefin processes. These synergies suggest that the catalytic bio-oil upgrading reactors can be seamlessly integrated to the subsequent separation network with minimal retrofitting costs. In addition, the integrated catalytic processing provides a high degree of flexibility for optimization of different products in response to market fluctuations. With the aim of assessing the techno-economic viability of this pathway, five scenarios in which different fractions of bio-oil (water soluble/water insoluble) were processed with different degrees of hydrogenation were studied in the present research. The results showed that such a retrofit is not only economically viable, but also provides a high degree of flexibility to the process, and contributes to decarbonisation of olefin infrastructures. Up to 44% reductions in greenhouse gas emissions were observed in several scenarios. In addition, it was shown that hydrogen prices lower than 6 $/kg will result in bio-based chemicals which are cheaper than equivalent petrochemicals. Alternatively, for higher hydrogen prices, it is possible to reform the water insoluble phase of bio-oil and produce bio-based chemicals, cheaper than

  15. Influence of Plant Growth Regulators (PGRs and Planting Method on Growth and Yield in Oil Pumpkin (Cucurbita pepo var. styriaca

    Directory of Open Access Journals (Sweden)

    Shirzad SURE

    2012-05-01

    Full Text Available The effect of plant growth regulators IBA (indole butyric acid, GA3 (gibberellin and ethylene (as ethephon in two methods of planting was investigated (each method was considered as a separate experiment on morphological characters and yield of medicinal pumpkin. The experiments were carried out in a factorial trial based on completely randomized block design, with four replicates. The treatments were combined with priming and spraying with the above PGRs. The first seed priming with control (water, IBA 100 ppm, GA3 25 ppm and ethephon 200 ppm, and when seedling developed to 4 leaf stage sprayed there with control (water, IBA 100 ppm, GA3 25 ppm and ethephon 200 ppm for three times. In both planting methods, there were all of these treatments. The result showed that PGRs and planting method had significant effects on vegetative, flowering and yield characteristics including: leaf area %DM plant, number of male and female flowers per plant, number of fruit/plant, fruits fresh weight, seeds length and width, number of seed per fruit, seed yield, % seeds oil and oil yield. Hence spraying with GA3 25 ppm in four leaf stage at trellis method could be a suitable treatment for enhancing growth and yield of medicinal pumpkin.

  16. Bio-Based Nano Composites from Plant Oil and Nano Clay

    Science.gov (United States)

    Lu, Jue; Hong, Chang K.; Wool, Richard P.

    2003-03-01

    We explored the combination of nanoclay with new chemically functionalized, amphiphilic, plant oil resins to form bio-based nanocomposites with improved physical and mechanical properties. These can be used in many new applications, including the development of self-healing nanocomposites through controlled reversible exfoliation/intercalation, and self-assembled nano-structures. Several chemically modified triglyceride monomers of varying polarity, combined with styrene (ca 30include acrylated epoxidized soybean oil (AESO), maleated acrylated epoxidized soybean oil (MAESO) and soybean oil pentaerythritol glyceride maleates (SOPERMA), containing either hydroxyl group or acid functionality or both. The clay used is a natural montmorillonite modified with methyl tallow bis-2-hydroxyethyl quaternary ammonium chloride, which has hydroxyl groups. Both XRD and TEM showed a completely exfoliated structure at 3 wtwhen the clay content is above 5 wtconsidered a mix of intercalated and partially exfoliated structure. The controlled polarity of the monomer has a major effect on the reversible dispersion of clay in the polymer matrix. The bio-based nanocomposites showed a significant increase in flexural modulus and strength. Supported by EPA and DoE

  17. Anti-quorum sensing activity of essential oils from Colombian plants.

    Science.gov (United States)

    Jaramillo-Colorado, Beatriz; Olivero-Verbel, Jesus; Stashenko, Elena E; Wagner-Döbler, Irene; Kunze, Brigitte

    2012-01-01

    Essential oils from Colombian plants were characterised by GC-MS, and assayed for anti-quorum sensing activity in bacteria sensor strains. Two major chemotypes were found for Lippia alba, the limonene-carvone and the citral (geranial-neral). For other species, the main components included α-pinene (Ocotea sp.), β-pinene (Swinglea glutinosa), cineol (Elettaria cardamomun), α-zingiberene (Zingiber officinale) and pulegone (Minthostachys mollis). Several essential oils presented promising inhibitory properties for the short chain AHL quorum sensing (QS) system, in Escherichia coli containing the biosensor plasmid pJBA132, in particular Lippia alba. Moderate activity as anti-QS using the same plasmid, were also found for selected constituents of essential oils studied here, such as citral, carvone and α-pinene, although solely at the highest tested concentration (250 µg mL(-1)). Only citral presented some activity for the long chain AHL QS system, in Pseudomonas putida containing the plasmid pRK-C12. In short, essential oils from Colombian flora have promising properties as QS modulators.

  18. Contribution de la pyrolyse des produits lourds à la valorisation des pétroles bruts Contribution of the Pyrolysis of Heavy Products to the Upgrading of Crude Oils

    Directory of Open Access Journals (Sweden)

    Charlot J. C.

    2006-11-01

    of products meeting quality specifications for sale in proportions corresponding to the needs of the market. For this, a general balance must be attained between the supply of crude oil and the demand for finished products by the market. The factors that show crude oils are evolving (preoccupation with geographic and political diversification, desire by producers to process easy crudes and to export heavy crudes, more or less extensive competitivity of unconventional crudes, great availability of heavy oils indicate that supplies are gradually becoming heavier. The increasing cost of petroleum products is causing a greater and greater lightening of market requirements (slight increase in fuels, decrease in middle distillates, sharp drop in heavy fuel oils. Because conventional oils are becoming heavier, the great availability of heavy oils and the considerable lightening of the market for finished products, it is becoming necessary to use heavier and heavier feedstocks in conversion processes. Olefins can be produced from a very wide range of oil cuts, but when an attempt is made to use heavier feeds in pyrolysis units, then the following questions must be asked: (a what is the flexibility of existing and future plants with respect to the feedstock? (b what is the industrial limit to using heavier feedstocks? (c what is the role of impurities on the operating of plants? (d what technological problems are raised by processing such feedstocks? (e what happens to the improvement of energy and economic balances when the feedstock gets heavier?

  19. Hydrogenation upgrading of heavy oil residues

    Energy Technology Data Exchange (ETDEWEB)

    Krichko, A.A.; Maloletnev, A.S.; Mazneva, O.A.; Galkina, N.I. [Fossil Fuel Inst., Moscow (Russian Federation). Hydrogenation and Gasification Dept.; Suvorov, U.P.; Khadjiev, S.N. [Inst. Oil and Chemical Synthesis, Moscow (Russian Federation). Hydrogenation of Heavy Residues Dept.

    1997-12-31

    At present time in the world there is no simple and effective technology at low pressure (<15-20 MPa) which could give the opportunity to use oil residues for distillate fractions production. In Russia a process for hydrogenation (up 6 MPa hydrogen pressure) of high boiling point (b.p. >520 C) oil products, including high S, V and Ni contents ones, into distillates, feedstock for catalytic cracking (b.p. 360-520 C) and metal concentrates. The main point of the new process is as follows: the water solution of catalytic additive, for which purpose water soluble metal salts of VI-VIII groups are used, is mixed with heavy oil residues, dispersed and then subjected to additional supercavitation in a special apparatus. (orig.)

  20. Estimating Biofuel Feedstock Water Footprints Using System Dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Inman, Daniel; Warner, Ethan; Stright, Dana; Macknick, Jordan; Peck, Corey

    2016-07-01

    Increased biofuel production has prompted concerns about the environmental tradeoffs of biofuels compared to petroleum-based fuels. Biofuel production in general, and feedstock production in particular, is under increased scrutiny. Water footprinting (measuring direct and indirect water use) has been proposed as one measure to evaluate water use in the context of concerns about depleting rural water supplies through activities such as irrigation for large-scale agriculture. Water footprinting literature has often been limited in one or more key aspects: complete assessment across multiple water stocks (e.g., vadose zone, surface, and ground water stocks), geographical resolution of data, consistent representation of many feedstocks, and flexibility to perform scenario analysis. We developed a model called BioSpatial H2O using a system dynamics modeling and database framework. BioSpatial H2O could be used to consistently evaluate the complete water footprints of multiple biomass feedstocks at high geospatial resolutions. BioSpatial H2O has the flexibility to perform simultaneous scenario analysis of current and potential future crops under alternative yield and climate conditions. In this proof-of-concept paper, we modeled corn grain (Zea mays L.) and soybeans (Glycine max) under current conditions as illustrative results. BioSpatial H2O links to a unique database that houses annual spatially explicit climate, soil, and plant physiological data. Parameters from the database are used as inputs to our system dynamics model for estimating annual crop water requirements using daily time steps. Based on our review of the literature, estimated green water footprints are comparable to other modeled results, suggesting that BioSpatial H2O is computationally sound for future scenario analysis. Our modeling framework builds on previous water use analyses to provide a platform for scenario-based assessment. BioSpatial H2O's system dynamics is a flexible and user

  1. Plant Essential Oils Synergize and Antagonize Toxicity of Different Conventional Insecticides against Myzus persicae (Hemiptera: Aphididae)

    Science.gov (United States)

    Faraone, Nicoletta; Hillier, N. Kirk; Cutler, G. Christopher

    2015-01-01

    Plant-derived products can play an important role in pest management programs. Essential oils from Lavandula angustifolia (lavender) and Thymus vulgaris (thyme) and their main constituents, linalool and thymol, respectively, were evaluated for insecticidal activity and synergistic action in combination with insecticides against green peach aphid, Myzus persicae (Sulzer) (Hemiptera: Aphididae). The essential oils and their main constituents exerted similar insecticidal activity when aphids were exposed by direct sprays, but were non-toxic by exposure to treated leaf discs. In synergism experiments, the toxicity of imidacloprid was synergized 16- to 20-fold by L. angustifolia and T. vulgaris essential oils, but far less synergism occurred with linalool and thymol, indicating that secondary constituents of the oils were probably responsible for the observed synergism. In contrast to results with imidacloprid, the insecticidal activity of spirotetramat was antagonized by L. angustifolia and T. vulgaris essential oils, and linalool and thymol. Our results demonstrate the potential of plant essential oils as synergists of insecticides, but show that antagonistic action against certain insecticides may occur. PMID:26010088

  2. Biomass as Feedstock for a Bioenergy and Bioproducts Industry: The Technical Feasability of a Billion-Ton Annual Supply

    Energy Technology Data Exchange (ETDEWEB)

    Perlack, R.D.

    2005-12-15

    The U.S. Department of Energy (DOE) and the U.S. Department of Agriculture (USDA) are both strongly committed to expanding the role of biomass as an energy source. In particular, they support biomass fuels and products as a way to reduce the need for oil and gas imports; to support the growth of agriculture, forestry, and rural economies; and to foster major new domestic industries--biorefineries--making a variety of fuels, chemicals, and other products. As part of this effort, the Biomass R&D Technical Advisory Committee, a panel established by the Congress to guide the future direction of federally funded biomass R&D, envisioned a 30 percent replacement of the current U.S. petroleum consumption with biofuels by 2030. Biomass--all plant and plant-derived materials including animal manure, not just starch, sugar, oil crops already used for food and energy--has great potential to provide renewable energy for America's future. Biomass recently surpassed hydropower as the largest domestic source of renewable energy and currently provides over 3 percent of the total energy consumption in the United States. In addition to the many benefits common to renewable energy, biomass is particularly attractive because it is the only current renewable source of liquid transportation fuel. This, of course, makes it invaluable in reducing oil imports--one of our most pressing energy needs. A key question, however, is how large a role could biomass play in responding to the nation's energy demands. Assuming that economic and financial policies and advances in conversion technologies make biomass fuels and products more economically viable, could the biorefinery industry be large enough to have a significant impact on energy supply and oil imports? Any and all contributions are certainly needed, but would the biomass potential be sufficiently large to justify the necessary capital replacements in the fuels and automobile sectors? The purpose of this report is to determine

  3. Feasibility study of microalgal and jatropha biodiesel production plants: Exergy analysis approach

    International Nuclear Information System (INIS)

    Ofori-Boateng, Cynthia; Keat, Teong Lee; JitKang, Lim

    2012-01-01

    The exergy analyses performed in this study are based on three thermodynamic performance parameters namely exergy destruction, exergy efficiency and thermodynamic improvement potentials. After mathematical analysis with Aspen Plus software, the results showed that 64% and 44% of the total exergy content of the input resources into microalgal methyl ester (MME) and jatropha methyl ester (JME) production plants were destroyed respectively for 1 ton of biodiesel produced. This implies that only 36% and 56% (for MME and JME production plants respectively) useful energy in the products is available to do work. The highest and lowest exergy destructions were recorded in the oil extraction units (38% and 39% of the total exergy destroyed for MME and JME plants respectively) and transesterification units (5% and 2% of total exergy destroyed for MME and JME plants respectively) respectively for 1 ton biodiesel produced. Since sustainable biodiesel production depends on cultivation of feedstock, oil extraction and transesterification processes, exergy analysis which is carried out on only the transesterification unit cannot justify the thermodynamic feasibility of the whole biodiesel production plant unless a complete thermodynamic assessment has been done for the whole plant. Thus, according to this study which considers all the biodiesel production processes, MME and JME production plants are not thermodynamically feasible. - Highlights: ► 64% of exergy content of input resources into MME production plant is destroyed. ► 44% of exergy content of input resources into JME production plant is destroyed. ► Exergetic efficiencies of MME and JME production plants are far less than 1. ► Thermodynamically, MME and JME production plants are unsustainable. ► Exergy loss can be reduced by using heat integrated reactive distillation process.

  4. The Social and Environmental Impacts of Biofuel Feedstock Cultivation: Evidence from Multi-Site Research in the Forest Frontier

    Directory of Open Access Journals (Sweden)

    Laura German

    2011-09-01

    Full Text Available Preoccupation with global energy supplies and climate change in the global North, and a desire to improve the balance of trade and capture value in the emerging carbon market by developing countries, together place biofuels firmly on the map of global land use change. Much of this recent land use change is occurring in developing countries where large agro-ecologically suitable tracts of land may be accessed at lower economic and opportunity cost. This is leading to the gradual penetration of commercial crops that provide suitable biofuel feedstocks (e.g., sugarcane, soybean, oil palm, jatropha into rural communities and forested landscapes throughout many areas of the global South. Expansion of biofuel feedstock cultivation in developing countries is widely embraced by producer country governments as a means to achieve energy security and stimulate rural economic development through employment and smallholder market integration. It is also expected that foreign and domestic investments in biofuel feedstock cultivation will lead to positive economic spillovers from knowledge transfer and investor contributions to social and physical infrastructure. While biofuel feedstocks are expanding through large industrial-scale plantations and smallholder production alike, the expansion of industrial-scale production systems has been countered by a critical response by civil society actors concerned about the implications for rural livelihoods, customary land rights, and the environmental effects of biofuel feedstock cultivation. To date, however, limited data exist to demonstrate the conditions under which widely anticipated economic and climate change mitigation benefits accrue in practice, and the implications of these developments for forests, local livelihoods, and the climate change mitigation potential of biofuels. In such a situation, debates are easily polarized into those for and against biofuels. This special issue seeks to nuance this debate by

  5. Framework methodology for increased energy efficiency and renewable feedstock integration in industrial clusters

    International Nuclear Information System (INIS)

    Hackl, Roman; Harvey, Simon

    2013-01-01

    Highlights: • Framework methodology for energy efficiency of process plants and total sites. • Identification of suitable biorefinery based on host site future energy systems. • Case study results show large energy savings of site wide heat integration. • Case study on refrigeration systems: 15% shaft work savings potential. • Case study on biorefinery integration: utility savings potential of up to 37%. - Abstract: Energy intensive industries, such as the bulk chemical industry, are facing major challenges and adopting strategies to face these challenges. This paper investigates options for clusters of chemical process plants to decrease their energy and emission footprints. There is a wide range of technologies and process integration opportunities available for achieving these objectives, including (i) decreasing fossil fuel and electricity demand by increasing heat integration within individual processes and across the total cluster site; (ii) replacing fossil feedstocks with renewables and biorefinery integration with the existing cluster; (iii) increasing external utilization of excess process heat wherever possible. This paper presents an overview of the use of process integration methods for development of chemical clusters. Process simulation, pinch analysis, Total Site Analysis (TSA) and exergy concepts are combined in a holistic approach to identify opportunities to improve energy efficiency and integrate renewable feedstocks within such clusters. The methodology is illustrated by application to a chemical cluster in Stenungsund on the West Coast of Sweden consisting of five different companies operating six process plants. The paper emphasizes and quantifies the gains that can be made by adopting a total site approach for targeting energy efficiency measures within the cluster and when investigating integration opportunities for advanced biorefinery concepts compared to restricting the analysis to the individual constituent plants. The

  6. Analysis of ethanol production potential from cellulosic feedstocks

    Energy Technology Data Exchange (ETDEWEB)

    Stone, J E

    1982-03-01

    This report provides a comprehensive and scientific overview of results emerging from research on ethanol producton from cellulosic materials and indicates those areas which appear to warrant additional support. Many published economic analyses of production costs are examined, but the emphasis of the report is on research and on its potential for reducing the cost of ethanol production. The author concludes that the uncertainty surrounding the cost of producing ethanol from cellulosic feedstocks via enzymatic hydrolysis will not be resolved until a pilot plant has been built of sufficient size to produce realistic engineering data. He gives five reasons why Canada should build such a pilot plant: Canada's apparent leadership in developing a steam pre-treatment process, the desirability of encouraging developments and building a cadre of experts in biotechnology, the absence of a pilot plant in Canada where the various organisms and biochemical processes involved in ethanol production and by-product utilization can be developed on a reasonably large scale, Canadian expertise in lignin chemistry which might be used to capitalize upon the reactive lignin residue, and research in progress at National Research Council and elsewhere on the conversion of C/sub 5/ sugars to ethanol. 37 refs., 2 figs., 4 tabs.

  7. Kinetics study of Jatropha oil esterification with ethanol in the presence of tin (II) chloride catalyst for biodiesel production

    Science.gov (United States)

    Kusumaningtyas, Ratna Dewi; Ratrianti, Naomi; Purnamasari, Indah; Budiman, Arief

    2017-01-01

    Jatropha oil is one of the promising feedstocks for biodiesel production. Jatropha oil is non-edible oil hence utilization of this oil would not compete with the needs of food. However, crude jatropha oil usually has high free fatty acid (FFA) content. Due to this fact, direct alkaline-catalyzed transesterification of crude jatropha oil for biodiesel production cannot be performed. FFA in crude jatropha oil will react with a base catalyst, resulting in soap as by product and hindering methyl ester (biodiesel) production. Therefore, prior to a transesterification reaction, it is crucial to run a pretreatment step of jatropha oil which can lower the FFA content in the oil. In this work, the pretreatment process was conducted through the esterification reaction of FFA contained in crude jatropha oil with ethanol over tin (II) chloride catalyst to reduce the acid value of the feedstock. The feedstock was Indonesia crude jatropha oil containing 12.03% of FFA. The esterification reaction was carried out in a batch reactor with a molar ratio of FFA to ethanol was 1:60 and total reaction time was 180 minutes. Tin (II) chloride catalyst was varied at 2.5, 5, 7.5, and 10% wt, whereas the effect of the reaction temperature was studied at 35, 34, 55, and 65 °C. The best reaction conversion was 71.55%, achieved at the following condition: a reaction temperature of 65 °C, catalyst concentration of 10% wt, the reaction time of 180 min, and the molar ratio of FFA to ethanol was 1:60. Kinetics study was also conducted in this work. It was found that esterification reaction of jatropha oil FFA with ethanol catalyzed by tin(II) chloride fitted the first-order pseudo-homogeneous kinetics model. It was also revealed that the frequency factor (A) and the activation energy (Ea) were 4.3864 × 106 min-1 and 56.2513 kJ/mole, respectively.

  8. Protection Ability Comparison of Several Mosquito Repellent Lotion Incorporated with Essential Oils of Mosquito Repellent Plants

    Directory of Open Access Journals (Sweden)

    Pramono Putro Utomo

    2014-12-01

    Full Text Available Most mosquito repellent lotions available on the market today contain the active ingredient diethyltoluamide (DEET which is very harmful to the skin. Natural mosquito repellent research using various essential oils (geranium oil, lemon oil, citronella oil and lavender oil as the active ingredient and the addition of aloe vera gel as a moisturizer has been done on a laboratory scale. The purpose of this study was to compare the protection ability of the mosquito repellent plants in Indonesia. The results showed that geranium oil, lemongrass oil, lavender oil and lemon oil could act as mosquito repellent. Best lotion formula all containing 15% essential oils have the effectiveness above 50% until the sixth hour were geranium oil, citronella oil and lavender oil while lemon oil only giving effectiveness above 50% until the second hour.

  9. Hurricane Andrew causes major oil spill at Florida Power ampersand Light Company's Turkey Point Power Plant, Homestead, Florida

    International Nuclear Information System (INIS)

    Jones, M.A.; Butts, R.L.; Lindsay, J.R.; McCully, B.S.; Pickering, T.H.

    1993-01-01

    On August 24, 1992, Hurricane Andrew slammed into South Florida with wind gusts in excess of 160 mph. At 4:00 a.m. that day, the eye of this category four storm passed over Florida Power ampersand Light Company's Turkey Point power plant, south of Miami. Although the plant's two nuclear units escaped any significant damage, the storm caused extensive destruction to buildings and transmission facilities, and damaged two 400 foot tall emission stacks associated with the site's two fossil fuel generating units. In addition, a 90,000 to 110,000 gallon spill of No. 6 fuel oil resulted when a piece of wind-blown debris punctured the steel of the unit One 12,000 barrel fuel oil metering tank approximately 30 feet up from the tank bottom. Despite the presence of a secondary containment structure around the tank, the intense wind blew oil throughout the plant site. The damage to the metering tank apparently occurred during the first half hour of the hurricane. As the tank's oil level fell due to the puncture, transfer pumps from the bulk oil storage tanks received a low level alarm which automatically began transferring oil to the damaged metering tank. To prevent the further discharge of oil, plant personnel entered the power block and secured the pumps during the passage of the hurricane eye. Immediately following the storm, facility personnel deployed booms across the barge canal and the Units 1 and 2 intake canal to contain the oil which had entered the water. The response strategy and implementation is described in detail. The remediation costs were approximately $14/gallon spilled, including 54,000 gallons recovered for electricity generation

  10. Influence of phosphorus content of coconut oil on deposit and performance of plant oil pressure stoves

    Energy Technology Data Exchange (ETDEWEB)

    Kratzeisen, M.; Mueller, J. [Institut fuer Agrartechnik, Universitaet Hohenheim (440e), Garbenstrasse 9, D-70593 Stuttgart (Germany)

    2010-11-15

    Influence of phosphorus lipids on formation of deposits and performance of plant oil pressure stoves was investigated. Refined coconut oil with an original phosphorous content of 5.9 mg/kg was used as base for fuel blends by adding lecithin to adjust increased phosphorous concentrations of 32.2, 51.6 and 63.0 mg/kg. The fuel blends were analysed for acid value, iodine value, total contamination, ash content and Conradson carbon residue according to standard methods. In burning trials, the specific fuel consumption, the required frequency of nozzle cleaning and the amount of deposits in the vaporizer were measured. Results showed an exponential increase of deposits in the vaporizer when phosphorous content was increased: deposits amounted to 0.12 g/kg of consumed fuel for unblended coconut oil and 0.92 g/kg for the blend with the highest phosphorous content. Furthermore, increased phosphorous content caused higher fuel consumption of 0.375 kg/h compared to 0.316 kg/h for the control. (author)

  11. Influence of Tunisian aromatic plants on the prevention of oxidation in soybean oil under heating and frying conditions.

    Science.gov (United States)

    Saoudi, Salma; Chammem, Nadia; Sifaoui, Ines; Bouassida-Beji, Maha; Jiménez, Ignacio A; Bazzocchi, Isabel L; Silva, Sandra Diniz; Hamdi, Moktar; Bronze, Maria Rosário

    2016-12-01

    The aim of this study was to improve the oxidative stability of soybean oil by using aromatic plants. Soybean oil flavored with rosemary (ROS) and soybean oil flavored with thyme (THY) were subjected to heating for 24h at 180°C. The samples were analyzed every 6h for their total polar compounds, anisidine values, oxidative stability and polyphenols content. The tocopherols content was determined and volatile compounds were also analyzed. After 24h of heating, the incorporation of these plants using a maceration process reduced the polar compounds by 69% and 71% respectively, in ROS and THY compared to the control. Until 6h of heating, the ROS kept the greatest oxidative stability. The use of the two extracts preserves approximately 50% of the total tocopherols content until 18h for the rosemary and 24h for the thyme flavored oils. Volatile compounds known for their antioxidant activity were also detected in the formulated oils. Aromatic plants added to the soybean oil improved the overall acceptability of potato crisps (p<0.05) until the fifteenth frying. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. The enrichment behavior of natural radionuclides in pulverized oil shale-fired power plants

    International Nuclear Information System (INIS)

    Vaasma, Taavi; Kiisk, Madis; Meriste, Tõnis; Tkaczyk, Alan Henry

    2014-01-01

    The oil shale industry is the largest producer of NORM (Naturally Occurring Radioactive Material) waste in Estonia. Approximately 11–12 million tons of oil shale containing various amounts of natural radionuclides is burned annually in the Narva oil shale-fired power plants, which accounts for approximately 90% of Estonian electricity production. The radionuclide behavior characteristics change during the fuel combustion process, which redistributes the radionuclides between different ash fractions. Out of 24 operational boilers in the power plants, four use circulating fluidized bed (CFB) technology and twenty use pulverized fuel (PF) technology. Over the past decade, the PF boilers have been renovated, with the main objective to increase the efficiency of the filter systems. Between 2009 and 2012, electrostatic precipitators (ESP) in four PF energy blocks were replaced with novel integrated desulphurization technology (NID) for the efficient removal of fly ash and SO 2 from flue gases. Using gamma spectrometry, activity concentrations and enrichment factors for the 238 U ( 238 U, 226 Ra, 210 Pb) and 232 Th ( 232 Th, 228 Ra) family radionuclides as well as 40 K were measured and analyzed in different PF boiler ash fractions. The radionuclide activity concentrations in the ash samples increased from the furnace toward the back end of the flue gas duct. The highest values in different PF boiler ash fractions were in the last field of the ESP and in the NID ash, where radionuclide enrichment factors were up to 4.2 and 3.3, respectively. The acquired and analyzed data on radionuclide activity concentrations in different PF boiler ashes (operating with an ESP and a NID system) compared to CFB boiler ashes provides an indication that changes in the fuel (oil shale) composition and boiler working parameters, as well as technological enhancements in Estonian oil shale fired power plants, have had a combined effect on the distribution patterns of natural radionuclides in

  13. Chemical composition and repellency of essential oils from four medicinal plants against Ixodes ricinus nymphs (Acari: Ixodidae).

    Science.gov (United States)

    El-Seedi, Hesham R; Khalil, Nasr S; Azeem, Muhammad; Taher, Eman A; Göransson, Ulf; Pålsson, Katinka; Borg-Karlson, Anna-Karin

    2012-09-01

    In our search for effective tick repellents from plant origin, we investigated the effect of essential oils of four medicinal and culinary plants belonging to the family Lamiaceae on nymphs of the tick Ixodes ricinus (L.). The essential oils of the dry leaves of Rosmarinus officinalis (Rosemary) (L.), Mentha spicata (Spearmint) (L.), Origanum majorana (Majoram) (L.), and Ocimum basilicum (Basil) (L.) were isolated by steam distillation and 15 microg/cm2 concentration of oils was tested against ticks in a laboratory bioassay. The oils of R. officinalis, M. spicata, and O. majorana showed strong repellency against the ticks 100, 93.2, and 84.3%, respectively, whereas O. basilicum only showed 64.5% repellency. When tested in the field, the oils of R. officinalis and M. spicata showed 68.3 and 59.4% repellency at a concentration of 6.5 microg/cm2 on the test cloths. The oils were analyzed by gas chromatography mass spectrometry and the major compounds from the most repellent oils were 1,8-cineole, camphor, linalool, 4-terpineol, borneol, and carvone.

  14. Optimization of the process of methylic transesterification of palm oil an experimental plant in batches in RECOPE

    International Nuclear Information System (INIS)

    Delgado Quesada, Adrian

    2013-01-01

    The production process of biodiesel is optimized in the Laboratorio de Investigacion of RECOPE. A subp