WorldWideScience

Sample records for plant nitrogen concentration

  1. A mesocosm study using four native Hawaiian plants to assess nitrogen accumulation under varying surface water nitrogen concentrations.

    Science.gov (United States)

    Unser, C U; Bruland, G L; Hood, A; Duin, K

    2010-01-01

    Accumulation of nitrogen (N) by native Hawaiian riparian plants from surface water was measured under a controlled experimental mesocosm setting. Four species, Cladium jamaicense, Cyperus javanicus, Cyperus laevigatus, and Cyperus polystachyos were tested for their ability to survive in coconut fiber coir log media with exposure to differing N concentrations. It was hypothesized that the selected species would have significantly different tissue total nitrogen (TN) concentrations, aboveground biomass, and TN accumulation rates because of habitat preference and physiological growth differences. A general linear model (GLM) analysis of variance (ANOVA) determined that species differences accounted for the greatest proportion of variance in tissue TN concentration, aboveground biomass growth, and accumulation rates, when compared with the other main effects (i.e. N concentration, time) and their interactions. A post hoc test of means demonstrated that C. jamaicense had significantly higher tissue TN concentration, aboveground biomass growth, and accumulation rates than the other species under all N concentrations. It was also hypothesized that tissue TN concentrations and biomass growth would increase in plants exposed to elevated N concentrations, however data did not support this hypothesis. Nitrogen accumulation rates by species were controlled by differences in plant biomass growth.

  2. A dynamic growth model of vegetative soya bean plants: model structure and behaviour under varying root temperature and nitrogen concentration

    Science.gov (United States)

    Lim, J. T.; Wilkerson, G. G.; Raper, C. D. Jr; Gold, H. J.

    1990-01-01

    A differential equation model of vegetative growth of the soya bean plant (Glycine max (L.) Merrill cv. Ransom') was developed to account for plant growth in a phytotron system under variation of root temperature and nitrogen concentration in nutrient solution. The model was tested by comparing model outputs with data from four different experiments. Model predictions agreed fairly well with measured plant performance over a wide range of root temperatures and over a range of nitrogen concentrations in nutrient solution between 0.5 and 10.0 mmol NO3- in the phytotron environment. Sensitivity analyses revealed that the model was most sensitive to changes in parameters relating to carbohydrate concentration in the plant and nitrogen uptake rate.

  3. Effects of substrate type on plant growth and nitrogen and nitrate concentration in spinach

    Science.gov (United States)

    The effects of three commercial substrates (a mixture of forest residues, composted grape husks, and white peat; black peat; and coir) on plant growth and nitrogen (N) and nitrate (NO3) concentration and content were evaluated in spinach (Spinacia oleracea L. cv. Tapir). Spinach seedlings were trans...

  4. Nitrogen concentration in dry matter of the fifth leaf during growth of greenhouse tomato plants

    Directory of Open Access Journals (Sweden)

    Rattin Jorge E.

    2002-01-01

    Full Text Available The nitrogen concentration in dry matter of the fifth leaf during growth of a greenhouse tomato crop was determined. Plants of hybrid Monte Carlo were grown in 4.5 L bags, using a commercial substrate, in a plant density of 3.3 plants m-2. A nutrient solution containing, in mmol L-1: KNO3, 4.0; K2SO4, 0.9; Ca(NO32, 3.75; KH2PO4, 1.5; MgSO4, 1.0; iron chelate 19. 10³, was used as reference. Microelements were added by a commercial mixture. The T3 treatment was equal to the reference nutrient solution, whereas in treatments T1, T2, T4 and T5 quantities of all nutrients from T3 were multiplied by 0.25, 0.50, 1.25 and 1.50, respectively. In each treatment, the volume of 1 L of nutrient solution was supplied to each plant once a week by fertigation. Periodically destructive measurements were made from anthesis to ripening of the first truss, to determine dry matter and N concentration in shoot and in fifth leaf tissues, counted from the apex to the bottom of the plant. Five dilution curves were fitted from data of N concentration in the fifth leaf and shoot dry matter accumulation during growth of plants. A general relationship was adjusted between actual N concentration in shoot (Nt and in the fifth leaf (Nf: Nt = 1.287 Nf (R² = 0.80. This relationship could be used to estimate the N status of plants by means of a nitrogen nutrition index (NNI, from analysis of the fifth leaf sap.

  5. Glutamine nitrogen and ammonium nitrogen supplied as a nitrogen source is not converted into nitrate nitrogen of plant tissues of hydroponically grown pak-choi (Brassica chinensis L.).

    Science.gov (United States)

    Wang, H-J; Wu, L-H; Tao, Q-N; Miller, D D; Welch, R M

    2009-03-01

    Many vegetables, especially leafy vegetables, accumulate NO(-) (3)-N in their edible portions. High nitrate levels in vegetables constitute a health hazard, such as cancers and blue baby syndrome. The aim of this study was to determine if (1) ammonium nitrogen (NH(+) (4)-N) and glutamine-nitrogen (Gln-N) absorbed by plant roots is converted into nitrate-nitrogen of pak-choi (Brassica chinensis L.) tissues, and (2) if nitrate-nitrogen (NO(-) (3)-N) accumulation and concentration of pak-choi tissues linearly increase with increasing NO(-) (3)-N supply when grown in nutrient solution. In experiment 1, 4 different nitrogen treatments (no nitrogen, NH(+) (4)-N, Gln-N, and NO(-) (3)-N) with equal total N concentrations in treatments with added N were applied under sterile nutrient medium culture conditions. In experiment 2, 5 concentrations of N (from 0 to 48 mM), supplied as NO(-) (3)-N in the nutrient solution, were tested. The results showed that Gln-N and NH(+) (4)-N added to the nutrient media were not converted into nitrate-nitrogen of plant tissues. Also, NO(-) (3)-N accumulation in the pak-choi tissues was the highest when plants were supplied 24 mM NO(-) (3)-N in the media. The NO(-) (3)-N concentration in plant tissues was quadratically correlated to the NO(-) (3)-N concentration supplied in the nutrient solution.

  6. Nitrogen concentration estimation with hyperspectral LiDAR

    Directory of Open Access Journals (Sweden)

    O. Nevalainen

    2013-10-01

    Full Text Available Agricultural lands have strong impact on global carbon dynamics and nitrogen availability. Monitoring changes in agricultural lands require more efficient and accurate methods. The first prototype of a full waveform hyperspectral Light Detection and Ranging (LiDAR instrument has been developed at the Finnish Geodetic Institute (FGI. The instrument efficiently combines the benefits of passive and active remote sensing sensors. It is able to produce 3D point clouds with spectral information included for every point which offers great potential in the field of remote sensing of environment. This study investigates the performance of the hyperspectral LiDAR instrument in nitrogen estimation. The investigation was conducted by finding vegetation indices sensitive to nitrogen concentration using hyperspectral LiDAR data and validating their performance in nitrogen estimation. The nitrogen estimation was performed by calculating 28 published vegetation indices to ten oat samples grown in different fertilization conditions. Reference data was acquired by laboratory nitrogen concentration analysis. The performance of the indices in nitrogen estimation was determined by linear regression and leave-one-out cross-validation. The results indicate that the hyperspectral LiDAR instrument holds a good capability to estimate plant biochemical parameters such as nitrogen concentration. The instrument holds much potential in various environmental applications and provides a significant improvement to the remote sensing of environment.

  7. Fractionation of Nitrogen Isotopes by Plants with Different Types of Mycorrhiza in Mountain Tundra Ecosystems

    Science.gov (United States)

    Buzin, Igor; Makarov, Mikhail; Maslov, Mikhail; Tiunov, Alexei

    2017-04-01

    We studied nitrogen concentration and nitrogen isotope composition in plants from four mountain tundra ecosystems in the Khibiny Mountains. The ecosystems consisted of a toposequence beginning with the shrub-lichen heath (SLH) on the ridge and upper slope, followed by the Betula nana dominated shrub heath (SH) on the middle slope, the cereal meadow (CM) on the lower slope and the sedge meadow (SM) at the bottom of the slope. The inorganic nitrogen concentration of the soils from the studied ecosystems were significantly different; the SLH soil was found to contain the minimum concentration of N-NH4+ and N-NO3- , while in the soils of the meadow ecosystems these concentrations were much higher. The concentration of nitrogen in leaves of the dominant plant species in all of the ecosystems is directly connected with the concentration of inorganic nitrogen in the soils, regardless of the plant's mycorrhizal symbiosis type. However, such a correlation is not apparent in the case of plant roots, especially for plant roots with ectomycorrhiza and ericoid mycorrhiza. The majority of plant species with these types of mycorrhiza in the SH and particularly in the CM were enriched in 15N in comparison with the SLH (such plants were not found within the SM). This could be due to several reasons: 1) the decreasing role of mycorrhiza in nitrogen consumption and therefore in the fractionation of isotopes in the relatively-N-enriched ecosystems; 2) the use of relatively-15N-enriched forms of nitrogen for plant nutrition in meadow ecosystems. This heavier nitrogen isotope composition in plant roots with ectomycorrhiza and ericoid mycorrhiza in ecosystems with available nitrogen enriched soils doesn't correspond to the classical idea of mycorrhiza decreasing participation in nitrogen plant nutrition. The analysis of the isotope composition of separate labile forms of nitrogen makes it possible to explain the phenomenon. Not all arbuscular mycorrhizal species within the sedge meadow

  8. Nitrogen kinetics in aquatic plants in arctic Alaska

    International Nuclear Information System (INIS)

    McRoy, C.P.; Alexander, V.

    1975-01-01

    The kinetics of nitrogen in terms of ammonia uptake was measured for Carex aquatilis in arctic tundra ponds using 15 N tracer techniques. Nitrogen content of the leaves and primary productivity were measured throughout a growing season. The maximum uptake velocity for ammonia was 2.75 x 10 -2 % N/g dry weight per h with a Ksub(t) of 8.4-12.5 μgatoms/l. A second estimate of nitrogen uptake was made from the increase in nitrogen content throughout the season and from this a rate of 1.85 x 10 -2 % N/g dry weight per day was obtained for Carex aquatilis and 3.6 x 10 -2 % N/g dry weight per day for Arctophylla fulva. The total nitrogen concentration in the leaves was closely related to productivity, possible providing a new approach to productivity measurements for emergent vascular plants. Emergent vascular plants absorb ammonia across and translocate it to all portions of the plant. The ecological significance of this is considerable, since in many waters inorganic nitrogen content of sediment is much higher than that of the water surrounding the leaves and stems, and can provide a source of nitrogen

  9. Enhanced nitrogen removal in trickling filter plants.

    Science.gov (United States)

    Dai, Y; Constantinou, A; Griffiths, P

    2013-01-01

    The Beaudesert Sewage Treatment Plant (STP), originally built in 1966 and augmented in 1977, is a typical biological trickling filter (TF) STP comprising primary sedimentation tanks (PSTs), TFs and humus tanks. The plant, despite not originally being designed for nitrogen removal, has been consistently achieving over 60% total nitrogen reduction and low effluent ammonium concentration of less than 5 mg NH3-N/L. Through the return of a NO3(-)-rich stream from the humus tanks to the PSTs and maintaining an adequate sludge age within the PSTs, the current plant is achieving a substantial degree of denitrification. Further enhanced denitrification has been achieved by raising the recycle flows and maintaining an adequate solids retention time (SRT) within the PSTs. This paper describes the approach to operating a TF plant to achieve a high degree of nitrification and denitrification. The effectiveness of this approach is demonstrated through the pilot plant trial. The results from the pilot trial demonstrate a significant improvement in nitrogen removal performance whilst maximising the asset life of the existing infrastructure. This shows great potential as a retrofit option for small and rural communities with pre-existing TFs that require improvements in terms of nitrogen removal.

  10. Nitrogen fertilization affects silicon concentration, cell wall composition and biofuel potential of wheat straw

    DEFF Research Database (Denmark)

    Murozuka, Emiko; Laursen, Kristian Holst; Lindedam, Jane

    2014-01-01

    Nitrogen is an essential input factor required for plant growth and biomass production. However, very limited information is available on how nitrogen fertilization affects the quality of crop residues to be used as lignocellulosic feedstock. In the present study, straw of winter wheat plants grown...... linearly from 0.32% to 0.71% over the range of nitrogen treatments. Cellulose and hemicellulose were not affected by the nitrogen supply while lignin peaked at medium rates of nitrogen application. The nitrogen treatments had a distinct influence on the silicon concentration, which decreased from 2.5% to 1.......5% of the straw dry matter when the nitrogen supply increased from 48 to 192kgha-1. No further decline in Si occurred at higher rates of nitrogen application. The most abundant metals in the straw were potassium and calcium and their concentrations almost doubled over the range of nitrogen supplies. The enzymatic...

  11. Plant traits related to nitrogen uptake influence plant-microbe competition.

    Science.gov (United States)

    Moreau, Delphine; Pivato, Barbara; Bru, David; Busset, Hugues; Deau, Florence; Faivre, Céline; Matejicek, Annick; Strbik, Florence; Philippot, Laurent; Mougel, Christophe

    2015-08-01

    Plant species are important drivers of soil microbial communities. However, how plant functional traits are shaping these communities has received less attention though linking plant and microbial traits is crucial for better understanding plant-microbe interactions. Our objective was to determine how plant-microbe interactions were affected by plant traits. Specifically we analyzed how interactions between plant species and microbes involved in nitrogen cycling were affected by plant traits related to 'nitrogen nutrition in interaction with soil nitrogen availability. Eleven plant species, selected along an oligotrophic-nitrophilic gradient, were grown individually in a nitrogen-poor soil with two levels of nitrate availability. Plant traits for both carbon and nitrogen nutrition were measured and the genetic structure and abundance of rhizosphere. microbial communities, in particular the ammonia oxidizer and nitrate reducer guilds, were analyzed. The structure of the bacterial community in the rhizosphere differed significantly between plant species and these differences depended on nitrogen availability. The results suggest that the rate of nitrogen uptake per unit of root biomass and per day is a key plant trait, explaining why the effect of nitrogen availability on the structure of the bacterial community depends on the plant species. We also showed that the abundance of nitrate reducing bacteria always decreased with increasing nitrogen uptake per unit of root biomass per day, indicating that there was competition for nitrate between plants and nitrate reducing bacteria. This study demonstrates that nitrate-reducing microorganisms may be adversely affected by plants with a high nitrogen uptake rate. Our work puts forward the role of traits related to nitrogen in plant-microbe interactions, whereas carbon is commonly considered as the main driver. It also suggests that plant traits related to ecophysiological processes, such as nitrogen uptake rates, are more

  12. Insects as a Nitrogen Source for Plants

    Directory of Open Access Journals (Sweden)

    Michael J. Bidochka

    2013-07-01

    Full Text Available Many plants have evolved adaptations in order to survive in low nitrogen environments. One of the best-known adaptations is that of plant symbiosis with nitrogen-fixing bacteria; this is the major route by which nitrogen is incorporated into plant biomass. A portion of this plant-associated nitrogen is then lost to insects through herbivory, and insects represent a nitrogen reservoir that is generally overlooked in nitrogen cycles. In this review we show three specialized plant adaptations that allow for the recovery of insect nitrogen; that is, plants gaining nitrogen from insects. First, we show specialized adaptations by carnivorous plants in low nitrogen habitats. Insect carnivorous plants such as pitcher plants and sundews (Nepenthaceae/Sarraceniaceae and Drosera respectively are able to obtain substantial amounts of nitrogen from the insects that they capture. Secondly, numerous plants form associations with mycorrhizal fungi that can provide soluble nitrogen from the soil, some of which may be insect-derived nitrogen, obtained from decaying insects or insect frass. Finally, a specialized group of endophytic, insect-pathogenic fungi (EIPF provide host plants with insect-derived nitrogen. These soil-inhabiting fungi form a remarkable symbiosis with certain plant species. They can infect a wide range of insect hosts and also form endophytic associations in which they transfer insect-derived nitrogen to the plant. Root colonizing fungi are found in disparate fungal phylogenetic lineages, indicating possible convergent evolutionary strategies between taxa, evolution potentially driven by access to carbon-containing root exudates.

  13. Analysis of hyperspectral field radiometric data for monitoring nitrogen concentration in rice crops

    Science.gov (United States)

    Stroppiana, D.; Boschetti, M.; Confalonieri, R.; Bocchi, S.; Brivio, P. A.

    2005-10-01

    Monitoring crop conditions and assessing nutrition requirements is fundamental for implementing sustainable agriculture. Rational nitrogen fertilization is of particular importance in rice crops in order to guarantee high production levels while minimising the impact on the environment. In fact, the typical flooded condition of rice fields can be a significant source of greenhouse gasses. Information on plant nitrogen concentration can be used, coupled with information about the phenological stage, to plan strategies for a rational and spatially differentiated fertilization schedule. A field experiment was carried out in a rice field Northern Italy, in order to evaluate the potential of field radiometric measurements for the prediction of rice nitrogen concentration. The results indicate that rice reflectance is influenced by nitrogen supply at certain wavelengths although N concentration cannot be accurately predicted based on the reflectance measured at a given wavelength. Regression analysis highlighted that the visible region of the spectrum is most sensitive to plant nitrogen concentration when reflectance measures are combined into a spectral index. An automated procedure allowed the analysis of all the possible combinations into a Normalized Difference Index (NDI) of the narrow spectral bands derived by spectral resampling of field measurements. The derived index appeared to be least influenced by plant biomass and Leaf Area Index (LAI) providing a useful approach to detect rice nutritional status. The validation of the regressive model showed that the model is able to predict rice N concentration (R2=0.55 [p<0.01] RRMSE=29.4; modelling efficiency close to the optimum value).

  14. Effects of nitrogen addition and fire on plant nitrogen use in a temperate steppe.

    Directory of Open Access Journals (Sweden)

    Hai-Wei Wei

    Full Text Available Plant nitrogen (N use strategies have great implications for primary production and ecosystem nutrient cycling. Given the increasing atmospheric N deposition received by most of the terrestrial ecosystems, understanding the responses of plant N use would facilitate the projection of plant-mediated N cycling under global change scenarios. The effects of N deposition on plant N use would be affected by both natural and anthropogenic disturbances, such as prescribed fire in the grassland. We examined the effects of N addition (5.25 g N m(-2 yr(-1 and prescribed fire (annual burning on plant N concentrations and N use characters at both species and community levels in a temperate steppe of northern China. We found that N addition and fire independently affected soil N availability and plant N use traits. Nitrogen addition increased aboveground net primary productivity (ANPP, inorganic N, and N uptake, decreased N response efficiency (NRE, but did not affect biomass-weighed N concentrations at community level. Prescribed fire did not change the community level N concentrations, but largely decreased N uptake efficiency and NRE. At the species level, the effects of N addition and fire on plant N use were species-specific. The divergent responses of plant N use at community and species levels to N addition and fire highlight the importance of the hierarchical responses of plant N use at diverse biological organization levels to the alteration of soil N availability. This study will improve our understanding of the responses of plant-mediated N cycling to global change factors and ecosystem management strategies in the semiarid grasslands.

  15. Effects of Elevated CO2 Concentration on the Biomasses and Nitrogen Concentrations in the Organs of Sainfoin(Onobrychis viciaefolia Scop.)

    Institute of Scientific and Technical Information of China (English)

    ZHOU Zheng-chao; SHANGGUAN Zhou-ping

    2009-01-01

    In forage grasses,the nitrogen concentration is directly related to the nutritional value.The studies examined the hypothesis that global elevation of CO2 concentration probably affects the biomass,nitrogen(N)concentration,and allocation and distribution patterns in the organs of forage grasses.While sainfoin(Onobrychis viciaefolia Scop.)seedlings grew on a low nutrient soil in closed chambers for 90 days,they were exposed to two CO2 concentrations(ambient or ambient+350μmol mol-1 CO2)without adding nutrients to them.After 90 days exposure to CO2,the biomasses of leaves,stems,and roots,and N concentrations and contents of different parts were measured.Compared with the ambient CO2 concentration,the elevated CO2 concentration increased the total dry matter by 25.07%,mainly due to the root and leaf having positive response to the elevated CO2 concentration.However,the elevated CO2 concentration did not change the proportions of the dry matters in different parts and the total plants compared with the ambient CO2 concentration.The elevated CO2 concentration lowered the N concentrations of the plant parts.Because the dry matter was higher,the elevated CO2 concentration had no effect on the N content in the plants compared to the ambient CO2 concentration.The elevated CO2 concentration promoted N allocations of the different parts significantly and increased N allocation of the underground part.The results have confirmed the previous suggestions that the elevated CO2 concentration stimulates plant biomass production and decreases the N concentrations of the plant parts.

  16. Positive and negative effects of nitrogen compounds on plants in the vicinity of a fertilizer factory

    Energy Technology Data Exchange (ETDEWEB)

    Scholl, G

    1975-05-01

    At a distance of 300 m from a fertilizer plant, various grains and fodder plants, as well as spinach, string beans, and peas, were grown consecutively over a period of several years to determine the effects of various concentrations of nitrogen compounds emitted by a fertilizer plant on the cultivations. Injuries that were similar to those observed in fumigation experiments with nitrogen dioxide were observed in the leaves of the experimental plants. In relatively high concentrations, pollutants containing nitrogen were as toxic as sulfur dioxide. Lower concentrations had a positive stimulatory effect and increased vegetative growth. Legumes were the most sensitive to nitrogen pollutants. Production of chlorophyll was reduced in lupine and Alexandrine clover, although no visible injuries were observed. Nodule development of the lupine was significantly restricted. The contamination of food and fodder plants by nitrates was significant and was found to present a real danger to humans through the food chain.

  17. Free amino nitrogen concentration correlates to total yeast assimilable nitrogen concentration in apple juice

    OpenAIRE

    Boudreau, Thomas F.; Peck, Gregory M.; O'Keefe, Sean F.; Stewart, Amanda C.

    2017-01-01

    Abstract Yeast assimilable nitrogen (YAN) is essential for yeast growth and metabolism during apple (Malus x domestica Borkh.) cider fermentation. YAN concentration and composition can impact cider fermentation kinetics and the formation of volatile aroma compounds by yeast. The YAN concentration and composition of apples grown in Virginia, USA over the course of two seasons was determined through analysis of both free amino nitrogen (FAN) and ammonium ion concentration. FAN was the largest f...

  18. Response of biomass and nitrogen yield of white clover to radiation and atmospheric CO2 concentration

    International Nuclear Information System (INIS)

    Manderscheid, R.; Bender, J.; Schenk, U.; Weigel, H.J.

    1997-01-01

    The objectives of the present study were to test (i) whether the effect of season-long CO 2 enrichment on plant dry matter production of white clover (Trifolium repens cv. Karina) depends on the temperature or can solely be explained by changes in radiation use efficiency, and (ii) whether the atmospheric CO 2 concentration affects the relationship between tissue %N and plant biomass. Plants were grown in pots with adequate nutrient and water supply and were exposed to ambient and above ambient CO 2 concentrations (approximately +80 ppm, +160 ppm, +280 ppm) in open-top chambers for two seasons. Nitrogen fertilizer was given only before the experiment started to promote N 2 fixation. Plants were clipped to a height of 5 cm, when the canopy had reached a height of about 20 cm and when the CO 2 effect had not been diminished due to self-shading of the leaves. Photon exposure (400–700 nm) measured above the canopy was linearly related to the above ground biomass, the leaf area index and the nitrogen yield (r 2 > 0.94). The slopes of the curves depended on the CO 2 concentration. Since most of the radiation (>90%) was absorbed by the foliage, the slopes were used to calculate the CO 2 effect on the radiation use efficiency of biomass production, which is shown to increase curvilinearly between 380 and 660 ppm CO 2 from 2.7 g MJ −1 to 3.9 g MJ −1 . CO 2 enrichment increased above ground biomass by increasing the leaf number, the individual leaf weight and the leaf area; specific leaf weight was not affected. The relative CO 2 response varied between harvests; there was a slight but not significant positive relationship with mean daytime temperature. At the beginning of the season, plant nitrogen concentration in the above ground biomass was decreased by CO 2 enrichment. However, at later growth stages, when the plants depended solely on N 2 fixation, nitrogen concentration was found to be increased when the nitrogen concentration value was adjusted for the decrease

  19. Nitrogen concentrations in mosses indicate the spatial distribution of atmospheric nitrogen deposition in Europe

    International Nuclear Information System (INIS)

    Harmens, H.; Norris, D.A.; Cooper, D.M.; Mills, G.; Steinnes, E.; Kubin, E.; Thoeni, L.; Aboal, J.R.; Alber, R.; Carballeira, A.; Coskun, M.; De Temmerman, L.; Frolova, M.; Gonzalez-Miqueo, L.

    2011-01-01

    In 2005/6, nearly 3000 moss samples from (semi-)natural location across 16 European countries were collected for nitrogen analysis. The lowest total nitrogen concentrations in mosses ( 2 = 0.91) linear relationship was found between the total nitrogen concentration in mosses and measured site-specific bulk nitrogen deposition rates. The total nitrogen concentrations in mosses complement deposition measurements, helping to identify areas in Europe at risk from high nitrogen deposition at a high spatial resolution. - Highlights: → Nitrogen concentrations in mosses were determined at ca. 3000 sites across Europe. → Moss concentrations were compared with EMEP modelled nitrogen deposition. → The asymptotic relationship for Europe showed saturation at ca. 15 kg N ha -1 y -1 . → Linear relationships were found with measured nitrogen deposition in some countries. → Moss concentrations complement deposition measurements at high spatial resolution. - Mosses as biomonitors of atmospheric nitrogen deposition in Europe.

  20. Absorption and conversion of nitrogen dioxide by higher plants

    International Nuclear Information System (INIS)

    Durmishidze, S.V.; Nutsubidze, N.N.

    1976-01-01

    An investigation was performed to study the ability of plants to absorb and metabolize NO 2 , as well as to reduce and incorporate nitrogen into amino acid molecules. Experiments on the absorption of NO 2 labeled with 15 N were conducted in special chambers, both on whole plants and on fresh-cut branches. NO 2 was used in various concentrations from 0.01 to 5% of the volume. The exposure of the experiments ranged from 5 min to 7 days, involving more than 60 species of perennial and annual plants. The processes of assimilation and conversion of NO 2 from the air to amino acids by plants are related. The conversion scheme showed close association with physiological state of the plant and with external factors of its vital activity. It is conceivable that plants that intensively absorb and convert oxides of nitrogen and give a large biomass can be used for the purification air

  1. Nitrogen concentrations in mosses indicate the spatial distribution of atmospheric nitrogen deposition in Europe

    Energy Technology Data Exchange (ETDEWEB)

    Harmens, H., E-mail: hh@ceh.ac.uk [Centre for Ecology and Hydrology, Environment Centre Wales, Deiniol Road, Bangor, Gwynedd LL57 2UW (United Kingdom); Norris, D.A., E-mail: danor@ceh.ac.uk [Centre for Ecology and Hydrology, Environment Centre Wales, Deiniol Road, Bangor, Gwynedd LL57 2UW (United Kingdom); Cooper, D.M., E-mail: cooper@ceh.ac.uk [Centre for Ecology and Hydrology, Environment Centre Wales, Deiniol Road, Bangor, Gwynedd LL57 2UW (United Kingdom); Mills, G., E-mail: gmi@ceh.ac.uk [Centre for Ecology and Hydrology, Environment Centre Wales, Deiniol Road, Bangor, Gwynedd LL57 2UW (United Kingdom); Steinnes, E., E-mail: Eiliv.Steinnes@chem.ntnu.no [Department of Chemistry, Norwegian University of Science and Technology, 7491 Trondheim (Norway); Kubin, E., E-mail: Eero.Kubin@metla.fi [Finnish Forest Research Institute, Kirkkosaarentie 7, 91500 Muhos (Finland); Thoeni, L., E-mail: lotti.thoeni@fub-ag.ch [FUB-Research Group for Environmental Monitoring, Alte Jonastrasse 83, 8640 Rapperswil (Switzerland); Aboal, J.R., E-mail: jesusramon.aboal@usc.es [University of Santiago de Compostela, Faculty of Biology, Department of Ecology, 15782 Santiago de Compostela (Spain); Alber, R., E-mail: Renate.Alber@provinz.bz.it [Environmental Agency of Bolzano, 39055 Laives (Italy); Carballeira, A., E-mail: alejo.carballeira@usc.es [University of Santiago de Compostela, Faculty of Biology, Department of Ecology, 15782 Santiago de Compostela (Spain); Coskun, M., E-mail: coskunafm@yahoo.com [Canakkale Onsekiz Mart University, Faculty of Medicine, Department of Medical Biology, 17100 Canakkale (Turkey); De Temmerman, L., E-mail: ludet@var.fgov.be [Veterinary and Agrochemical Research Centre, Tervuren (Belgium); Frolova, M., E-mail: marina.frolova@lvgma.gov.lv [Latvian Environment, Geology and Meteorology Agency, Riga (Latvia); Gonzalez-Miqueo, L., E-mail: lgonzale2@alumni.unav.es [Univ. of Navarra, Irunlarrea No 1, 31008 Pamplona (Spain)

    2011-10-15

    In 2005/6, nearly 3000 moss samples from (semi-)natural location across 16 European countries were collected for nitrogen analysis. The lowest total nitrogen concentrations in mosses (<0.8%) were observed in northern Finland and northern UK. The highest concentrations ({>=}1.6%) were found in parts of Belgium, France, Germany, Slovakia, Slovenia and Bulgaria. The asymptotic relationship between the nitrogen concentrations in mosses and EMEP modelled nitrogen deposition (averaged per 50 km x 50 km grid) across Europe showed less scatter when there were at least five moss sampling sites per grid. Factors potentially contributing to the scatter are discussed. In Switzerland, a strong (r{sup 2} = 0.91) linear relationship was found between the total nitrogen concentration in mosses and measured site-specific bulk nitrogen deposition rates. The total nitrogen concentrations in mosses complement deposition measurements, helping to identify areas in Europe at risk from high nitrogen deposition at a high spatial resolution. - Highlights: > Nitrogen concentrations in mosses were determined at ca. 3000 sites across Europe. > Moss concentrations were compared with EMEP modelled nitrogen deposition. > The asymptotic relationship for Europe showed saturation at ca. 15 kg N ha{sup -1} y{sup -1}. > Linear relationships were found with measured nitrogen deposition in some countries. > Moss concentrations complement deposition measurements at high spatial resolution. - Mosses as biomonitors of atmospheric nitrogen deposition in Europe.

  2. Influence of nitrogen loading and plant nitrogen assimilation on nitrogen leaching and N₂O emission in forage rice paddy fields fertilized with liquid cattle waste.

    Science.gov (United States)

    Riya, Shohei; Zhou, Sheng; Kobara, Yuso; Sagehashi, Masaki; Terada, Akihiko; Hosomi, Masaaki

    2015-04-01

    Livestock wastewater disposal onto rice paddy fields is a cost- and labor-effective way to treat wastewater and cultivate rice crops. We evaluated the influence of nitrogen loading rates on nitrogen assimilation by rice plants and on nitrogen losses (leaching and N2O emission) in forage rice fields receiving liquid cattle waste (LCW). Four forage rice fields were subjected to nitrogen loads of 107, 258, 522, and 786 kg N ha(-1) (N100, N250, N500, and N750, respectively) using basal fertilizer (chemical fertilizer) (50 kg N ha(-1)) and three LCW topdressings (each 57-284 kg N ha(-1)). Nitrogen assimilated by rice plants increased over time. However, after the third topdressing, the nitrogen content of the biomass did not increase in any treatment. Harvested aboveground biomass contained 93, 60, 33, and 31 % of applied nitrogen in N100, N250, N500, and N750, respectively. The NH4 (+) concentration in the pore water at a depth of 20 cm was less than 1 mg N L(-1) in N100, N250, and N500 throughout the cultivation period, while the NH4 (+) concentration in N750 increased to 3 mg N L(-1) after the third topdressing. Cumulative N2O emissions ranged from -0.042 to 2.39 kg N ha(-1); the highest value was observed in N750, followed by N500. In N750, N2O emitted during the final drainage accounted for 80 % of cumulative N2O emissions. This study suggested that 100-258 kg N ha(-1) is a recommended nitrogen loading rate for nitrogen recovery by rice plants without negative environmental impacts such as groundwater pollution and N2O emission.

  3. Nitrogen for growth of stock plants and production of strawberry runner tips

    Directory of Open Access Journals (Sweden)

    Djeimi Isabel Janisch

    2012-01-01

    Full Text Available The objective of this research was to determine growth and dry matter partitioning among organs of strawberry stock plants under five Nitrogen concentrations in the nutrient solution and its effects on emission and growth of runner tips. The experiment was carried out under greenhouse conditions, from September 2010 to March 2011, in a soilless system with Oso Grande and Camino Real cultivars. Nitrogen concentrations of 5.12, 7.6, 10.12 (control, 12.62 and 15.12 mmol L-1 in the nutrient solution were studied in a 5x2 factorial randomised experimental design. All runner tips bearing at least one expanded leaf (patent requested were collected weekly and counted during the growth period. The number of leaves, dry matter (DM of leaves, crown and root, specific leaf area and leaf area index (LAI was determined at the final harvest. Increasing N concentration in the nutrient solution from 5.12 to 15.12 mmol L-1 reduces growth of crown, roots and LAI of strawberry stock plants but did not affect emission and growth of runner tips. It was concluded that for the commercial production of plug plants the optimal nitrogen concentration in the nutrient solution should be 5.12 mmol L-1.

  4. Nitrogen removal from concentrated latex wastewater by land treatment

    Directory of Open Access Journals (Sweden)

    Vikanda Thongnuekhang

    2004-05-01

    Full Text Available Most of the concentrated latex factories in the South of Thailand discharge treated wastewater that contains high level of nitrogen to a nearby river or canals leading to a water pollution problem. A study of land treatment system was conducted to treat and utilize nitrogen in treated wastewater from the concentrated latex factory. The experimental pilot-scale land treatment system was constructed at the Faculty of Engineering, Prince of Songkla University, Hat Yai Campus. It consisted of water convolvulus (Ipomea aquatica, I. Reptans, tropical carpet grass (Axonopus compresus (Swartz Beav. and control unit (no plantation. The treated wastewater from the stabilization pond system of the selected concentrated latex factoryin Songkhla was used to irrigate each experimental unit. Influent and effluent from the experimental units were analyzed for TKN, NH3-N, Org-N, NO3 --N, NO2 --N, BOD5, sulfate, pH and EC. The land treatment system resulted a high removal efficiency for nitrogen. Tropical carpet grass provided higher removal efficiency than other units for all parameters. The removal efficiency of water convolvulus and control unit were not significantly different. The average removal efficiency of TKN, NH3-N, Org-N, BOD5 and sulfate for tropical carpet grass unit were 92, 97, 61, 88 and 52%, for water convolvulus unit were 75, 80, 43, 41 and 30%, and for control unit were 74, 80, 41, 31 and 28%, respectively. Mass balance of nitrogen transformation was conducted. It revealed that plant uptake was the major mechanism for nitrogen removal in land treatment.

  5. The carbon-nitrogen balance of the nodule and its regulation under elevated carbon dioxide concentration.

    Science.gov (United States)

    Libault, Marc

    2014-01-01

    Legumes have developed a unique way to interact with bacteria: in addition to preventing infection from pathogenic bacteria like any other plant, legumes also developed a mutualistic symbiotic relationship with one gender of soil bacteria: rhizobium. This interaction leads to the development of a new root organ, the nodule, where the differentiated bacteria fix for the plant the atmospheric dinitrogen (atmN2). In exchange, the symbiont will benefit from a permanent source of carbon compounds, products of the photosynthesis. The substantial amounts of fixed carbon dioxide dedicated to the symbiont imposed to the plant a tight regulation of the nodulation process to balance carbon and nitrogen incomes and outcomes. Climate change including the increase of the concentration of the atmospheric carbon dioxide is going to modify the rates of plant photosynthesis, the balance between nitrogen and carbon, and, as a consequence, the regulatory mechanisms of the nodulation process. This review focuses on the regulatory mechanisms controlling carbon/nitrogen balances in the context of legume nodulation and discusses how the change in atmospheric carbon dioxide concentration could affect nodulation efficiency.

  6. Slope position and Soil Lithological Effects on Live Leaf Nitrogen Concentration.

    Science.gov (United States)

    Szink, I.; Adams, T. S.; Orr, A. S.; Eissenstat, D. M.

    2017-12-01

    Soil lithology has been shown to have an effect on plant physiology from the roots to the leaves. Soils at ridgetop positions are typically more shallow and drier than soils at valley floor positions. Additionally, sandy soils tend to have a much lower water holding capacity and can be much harder for plants to draw nutrients from. We hypothesized that leaves from trees in shale derived soil at ridgetop positions will have lower nitrogen concentration than those in valley floor positions, and that this difference will be more pronounced in sandstone derived soils. This is due to the movement of nitrogen through the soil in a catchment, and the holding and exchange capacities of shale and sandstone lithologies. To test this, we collected live leaves using shotgun sampling from two locations in Central Pennsylvania from the Susquehanna Shale Hills Critical Zone Observatory (SSHCZO); one location where soils are underlain by the Rose Hill Shale, and one from where soils are underlain by the Tuscarora Sandstone formation. We then measured, dried, and massed in order to determine specific leaf area (SLA). Afterwards, we powderized the leaves to determined their C:N ratio using a CE Instruments EA 1110 CHNS-O elemental Analyzer based on the "Dumas Method". We found that live leaves of the same species at higher elevations had lower nitrogen concentrations than those at lower elevations, which is consistent with our hypothesis. However, the comparison of leaves from all species in the catchment is not as strong, suggesting that there is a species specific effect on nitrogen concentration within leaves. We are currently processing additional leaves from other shale and sandstone sites. These results highlight the effect of abiotic environments on leaf nutrient concentrations, and the connection between belowground and aboveground tree physiology.

  7. Free amino nitrogen concentration correlates to total yeast assimilable nitrogen concentration in apple juice.

    Science.gov (United States)

    Boudreau, Thomas F; Peck, Gregory M; O'Keefe, Sean F; Stewart, Amanda C

    2018-01-01

    Yeast assimilable nitrogen (YAN) is essential for yeast growth and metabolism during apple ( Malus x domestica Borkh.) cider fermentation. YAN concentration and composition can impact cider fermentation kinetics and the formation of volatile aroma compounds by yeast. The YAN concentration and composition of apples grown in Virginia, USA over the course of two seasons was determined through analysis of both free amino nitrogen (FAN) and ammonium ion concentration. FAN was the largest fraction of YAN, with a mean value of 51 mg N L -1 FAN compared to 9 mg N L -1 ammonium. Observed YAN values ranged from nine to 249 mg N L -1 , with a mean value of 59 mg N L -1 . Ninety-four percent of all samples analyzed in this study contained yeast to fully utilize all of the fermentable sugars. FAN concentration was correlated with total YAN concentration, but ammonium concentration was not. Likewise, there was no correlation between FAN and ammonium concentration.

  8. Boreal bog plants: nitrogen sources and uptake of recently deposited nitrogen

    International Nuclear Information System (INIS)

    Nordbakken, J.F.; Ohlson, M.; Hoegberg, P.

    2003-01-01

    The main goals of this study were to determine the δ 15 N signature of quantitatively important boreal bog plants as basis for discussing their N sources, and to assess the effects of five different 3 year N treatments (i.e. 0, 5, 10, 20 and 40 kg N ha -1 year -1 ) on the bog plants and surface peat at different depths (i.e. 0, 5, 10, 20 and 40 cm) by using 15 N as tracer. Plants and peat were analyzed for N concentration, 15 N natural abundance and 15 N at.%. From the results we draw three main conclusions: First, the relative importance of different N sources is species-specific among bog plants. Second, an annual addition of 5 kg N ha -1 year -1 was sufficient to significantly increase the N concentration in Sphagnum mosses, liverworts and shallow rooted vascular plants, and an annual addition of 40 kg N ha -1 year -1 during 3 years was not sufficient to increase the N concentration in deep rooted plants, although the 15 N content increased continuously, indicating a possible longer term effect. Third, an annual addition of 40 kg N ha -1 year -1 during 3 years increased the N content in surface peat at depths of 5 and 10 cm, but not at depths of 20 and 40 cm, indicating the capacity of the living Sphagnum mosses and the surface peat to take up deposited N, and thereby function as a filter. - Living Sphagnum mosses and surface peat function as a filter for added nitrogen

  9. Nitrogen Cycling in the Mycorrhizosphere: Multipartite Interactions and Plant Nitrogen Uptake Vary with Fertilization Legacy

    Science.gov (United States)

    Hestrin, R.; Lehmann, J.

    2017-12-01

    Soil microbes play an important role in rhizosphere nutrient cycling and plant productivity. In this study, the contributions of soil microbes to organic matter mineralization and plant nitrogen uptake were investigated using incubation and microcosm experiments. Microbial inocula included arbuscular mycorrhizal fungi and microbial communities sampled across a long-term gradient of nitrogen fertilization. Stable isotopes, nanoSIMS imaging, and phospholipid fatty acid analysis were used to track carbon and nitrogen movement from organic matter into microbes, mycorrhizal fungi, and plants. Results show that multipartite relationships between plants and microbes increased plant growth and access to nitrogen from organic matter, and that nitrogen fertilization history had a lasting effect on microbial contributions to fungal and plant nitrogen uptake. This research links rhizosphere ecology and land management with terrestrial biogeochemistry.

  10. Biological nitrogen fixation in non-legume plants.

    Science.gov (United States)

    Santi, Carole; Bogusz, Didier; Franche, Claudine

    2013-05-01

    Nitrogen is an essential nutrient in plant growth. The ability of a plant to supply all or part of its requirements from biological nitrogen fixation (BNF) thanks to interactions with endosymbiotic, associative and endophytic symbionts, confers a great competitive advantage over non-nitrogen-fixing plants. Because BNF in legumes is well documented, this review focuses on BNF in non-legume plants. Despite the phylogenic and ecological diversity among diazotrophic bacteria and their hosts, tightly regulated communication is always necessary between the microorganisms and the host plant to achieve a successful interaction. Ongoing research efforts to improve knowledge of the molecular mechanisms underlying these original relationships and some common strategies leading to a successful relationship between the nitrogen-fixing microorganisms and their hosts are presented. Understanding the molecular mechanism of BNF outside the legume-rhizobium symbiosis could have important agronomic implications and enable the use of N-fertilizers to be reduced or even avoided. Indeed, in the short term, improved understanding could lead to more sustainable exploitation of the biodiversity of nitrogen-fixing organisms and, in the longer term, to the transfer of endosymbiotic nitrogen-fixation capacities to major non-legume crops.

  11. High Level of Nitrogen Makes Tomato Plants Releasing Less Volatiles and Attracting More Bemisia tabaci (Hemiptera: Aleyrodidae)

    Science.gov (United States)

    Islam, Md. Nazrul; Hasanuzzaman, Abu Tayeb Mohammad; Zhang, Zhan-Feng; Zhang, Yi; Liu, Tong-Xian

    2017-01-01

    Tomato (Solanum lycopersicum) production is seriously hampered by the infestation of the sweetpotato whitefly, Bemisia tabaci MEAM 1 (Middle East-Asia Minor 1). The infestation behavior of the whiteflies could be affected by the quantity of plant released volatile organic compounds (VOCs) related to nitrogen concentrations of the plant. In this study, we determined the infestation behavior of B. tabaci to the tomato plants that produced different levels of VOCs after application of different levels of nitrogen with a wind tunnel and an olfactometer. We also analyzed the VOCs released from nitrogen-treated tomato plants using solid phase microextraction and gas chromatography-mass spectrometry. The results revealed that the production of eight VOCs (β-pinene, (+)-4-carene, α-terpinene, p-cymene, β-phellandrene, α-copaene, β-caryophyllene, and α-humulene) was reduced after the plants were treated with high levels of nitrogen. However, more whiteflies were attracted to the tomato plants treated with high levels of nitrogen than to the plants treated with normal or below normal levels of nitrogen. These results clearly indicated that nitrogen can change the quality and quantity of tomato plant volatile chemicals, which play important roles in B. tabaci host plant selection. PMID:28408917

  12. Impact of Nitrogen, Phosphorus and Potassium on Brown Planthopper and Tolerance of Its Host Rice Plants

    Directory of Open Access Journals (Sweden)

    Md Mamunur Rashid

    2016-05-01

    Full Text Available The brown planthopper (BPH, Nilaparvata lugens (Stål, appeared as a devastating pest of rice in Asia. Experiments were conducted to study the effects of three nutrients, nitrogen (N, phosphorus (P and potassium (K, on BPH and its host rice plants. Biochemical constituents of BPH and rice plants with varying nutrient levels at different growth stages, and changes in relative water content (RWC of rice plants were determined in the laboratory. Feeding of BPH and the tolerance of rice plants to BPH with different nutrient levels were determined in the nethouse. Concentrations of N and P were found much higher in the BPH body than in its host rice plants, and this elemental mismatch is an inherent constraint on meeting nutritional requirements of BPH. Nitrogen was found as a more limiting element for BPH than other nutrients in rice plants. Application of N fertilizers to the rice plants increased the N concentrations both in rice plants and BPH while application of P and K fertilizers increased their concentrations in plant tissues only but not in BPH. Nitrogen application also increased the level of soluble proteins and decreased silicon content in rice plants, which resulted in increased feeding of BPH with sharp reduction of RWC in rice plants ultimately caused susceptible to the pest. P fertilization increased the concentration of P in rice plant tissues but not changed N, K, Si, free sugar and soluble protein contents, which indicated little importance of P to the feeding of BPH and tolerance of plant against BPH. K fertilization increased K content but reduced N, Si, free sugar and soluble protein contents in the plant tissues which resulted in the minimum reduction of RWC in rice plants after BPH feeding, thereby contributed to higher tolerance of rice plants to brown planthopper.

  13. Changes in the salinity tolerance of sweet pepper plants as affected by nitrogen form and high CO2 concentration.

    Science.gov (United States)

    Piñero, María C; Pérez-Jiménez, Margarita; López-Marín, Josefa; Del Amor, Francisco M

    2016-08-01

    The assimilation and availability of nitrogen in its different forms can significantly affect the response of primary productivity under the current atmospheric alteration and soil degradation. An elevated CO2 concentration (e[CO2]) triggers changes in the efficiency and efficacy of photosynthetic processes, water use and product yield, the plant response to stress being altered with respect to ambient CO2 conditions (a[CO2]). Additionally, NH4(+) has been related to improved plant responses to stress, considering both energy efficiency in N-assimilation and the overcoming of the inhibition of photorespiration at e[CO2]. Therefore, the aim of this work was to determine the response of sweet pepper plants (Capsicum annuum L.) receiving an additional supply of NH4(+) (90/10 NO3(-)/NH4(+)) to salinity stress (60mM NaCl) under a[CO2] (400μmolmol(-1)) or e[CO2] (800μmolmol(-1)). Salt-stressed plants grown at e[CO2] showed DW accumulation similar to that of the non-stressed plants at a[CO2]. The supply of NH4(+) reduced growth at e[CO2] when salinity was imposed. Moreover, NH4(+) differentially affected the stomatal conductance and water use efficiency and the leaf Cl(-), K(+), and Na(+) concentrations, but the extent of the effects was influenced by the [CO2]. An antioxidant-related response was prompted by salinity, the total phenolics and proline concentrations being reduced by NH4(+) at e[CO2]. Our results show that the effect of NH4(+) on plant salinity tolerance should be globally re-evaluated as e[CO2] can significantly alter the response, when compared with previous studies at a[CO2]. Copyright © 2016 Elsevier GmbH. All rights reserved.

  14. Effects of Gibberellic Acid and Nitrogen on Some Physiology Parameters and Micronutrients Concentration in Pistachio under Salt Stress

    Directory of Open Access Journals (Sweden)

    vahid mozafari

    2017-02-01

    /63, Tissue (Sandy loam, electrical conductivity (ECe (1 dS m-1, Silt (23.1%, Clay (5.5%, Organic matter (0.5%, Olsen phosphorus (P (5.35 mg kg-1, Ammonium acetate-extractable K (100 mg kg-1 were determined. Nitrogen treatments 3 weeks after planting, dissolved in irrigation water was added to pots. Salinity, after the establishment of the plant (5 weeks after planting, divided into two equal parts and one-week interval dissolved with irrigation water was added to the pot. as well acid gibberellic treatments, as spray after salt treatment was applied at three times and at intervals of one week. Results and discussion: The results showed that the salinity content of carotenoid and Chlorophyll fluorescence parameters significantly reduced but with increasing acid gibberellic and nitrogen application, mentioned parameters were significantly increased, compared to controls. The ability of photosynthesis improved and increased productivity. Mozafari et al studied the pistachio, reported that with increasing salinity from zero to 150 and 300 mM NaCl, carotenoids decreased more than 16% and 22% compared to control respectively. Carotenoids play a most important role in light, protecting plants against stress condition. Salinity application increased leaf proline, but with application of 150 mg nitrogen and 500 mg per liter foliar application of acid gibberellics, this parameter increased by 55 and 26 percent, respectively. Also, combined use of these two treatments increased proline content by 79 percent compared to control. The researchers stated that the increasing gibberellin concentration caused leaf proline increased, so spraying 100 and 200 mg per liter gibberellin significantly increased leaf proline compared with the non-application of gibberellin. The results also showed with increasing salinity increased iron, manganese and zinc concentrations shoots and roots and decreased copper concentrations, but using 150 mg of nitrogen and acid gibberellic consumption concentrations

  15. Transgenic plants that exhibit enhanced nitrogen assimilation

    Science.gov (United States)

    Coruzzi, Gloria M.; Brears, Timothy

    1999-01-01

    The present invention relates to a method for producing plants with improved agronomic and nutritional traits. Such traits include enhanced nitrogen assimilatory and utilization capacities, faster and more vigorous growth, greater vegetative and reproductive yields, and enriched or altered nitrogen content in vegetative and reproductive parts. More particularly, the invention relates to the engineering of plants modified to have altered expression of key enzymes in the nitrogen assimilation and utilization pathways. In one embodiment of the present invention, the desired altered expression is accomplished by engineering the plant for ectopic overexpression of one of more the native or modified nitrogen assimilatory enzymes. The invention also has a number of other embodiments, all of which are disclosed herein.

  16. The effect of elevated cadmium content in soil on the uptake of nitrogen by plants

    Energy Technology Data Exchange (ETDEWEB)

    Ciecko, Z.; Kalembasa, S.; Wyszkowski, M.; Rolka, E. [University of Warmia & Mazury Olsztyn, Olsztyn (Poland). Dept. of Environmental Chemistry

    2004-07-01

    The aim of this study was to determine the effect of cadmium (10, 20, 30 and 40 mg Cd/kg of soil) contamination in soil with the application of different substances (compost, brown coal, lime and bentonite) on the intake of nitrogen by some plants. The correlations between the nitrogen content in the plants and the cadmium concentration in the soil, as well as the plant yield and the content of micro- and macroelements in the plants were determined. Plant species and cadmium dose determined the effects of soil contamination with cadmium on the content of nitrogen. Large doses of cadmium caused an increase in nitrogen content in the Avena sativa straw and roots and in the Zea mays roots. Soil contamination with cadmium resulted in a decrease of nitrogen content in the Avena sativa grain, in above-ground parts and roots of the Lupinus luteus, in the above-ground parts of the Zea mays and in the above-ground parts and roots of Phacelia tanacaetifolia. Among the experimental different substances, the application of bentonite had the strongest and a usually negative effect on the nitrogen content in plants. The greatest effect of bentonite was on Avena sativa grain, above-ground parts Zea mays and Lupinus luteus and Phacelia tanacaetifolia. The content of nitrogen in the plants was generally positively correlated with the content of the macroelements and some of the microelements, regardless of the substances added to the soil.

  17. Spectral isotopic methods of determining nitrogen and carbon in plant specimens with laser volatization

    International Nuclear Information System (INIS)

    Lazeeva, G.S.

    1986-01-01

    Methods have been devised for the local determination of nitrogen and carbon isotope compositions in plant specimens, which provide separate and joint determination. Local laser evaporation has been combined with spectroscopic determination of the isotope compositions in the gas phase. A continuous-wave CO 2 laser is preferable for the local evaporation; the carbon isotope composition may be determined directly on the sum of the evaporation products, whereas nitrogen must first be separated as N 2 . Methods have also been developed for the local determination of total nitrogen and carbon in a sample with isotope dilution on the basis of laser evaporation. In order to eliminate systematic errors in determining total carbon in plant material, an evaporation method free from a rim has been devised. These methods have been used in determining isotope concentration profiles in plant specimens grown in experiments employing labeled nitrogen and carbon

  18. Global patterns of foliar nitrogen isotopes and their relationships with climate, mycorrhizal fungi, foliar nutrient concentrations, and nitrogen availability

    Science.gov (United States)

    Joseph M. Craine; Andrew J. Elmore; Marcos P. M. Aidar; Mercedes Bustamante; Todd E. Dawson; Erik A. Hobbie; Ansgar Kahmen; Michelle C. Mack; Kendra K. McLauchlan; Anders Michelsen; Gabriela Nardoto; Linda H. Pardo; Josep Penuelas; Peter B. Reich; Edward A.G. Schuur; William D. Stock; Pamela H. Templer; Ross A. Virginia; Jeffrey M. Welker; Ian J. Wright

    2009-01-01

    Ratios of nitrogen (N) isotopes in leaves could elucidate underlying patterns of N cycling across ecological gradients. To better understand global-scale patterns of N cycling, we compiled data on foliar N isotope ratios, foliar N concentrations, mycorrhizal type and climate for over 11 000 plants worldwide. Global-scale comparisons of other components of the N cycle...

  19. Ammonia stress on nitrogen metabolism in tolerant aquatic plant-Myriophyllum aquaticum.

    Science.gov (United States)

    Zhou, Qingyang; Gao, Jingqing; Zhang, Ruimin; Zhang, Ruiqin

    2017-09-01

    Ammonia has been a major reason of macrophyte decline in the water environment, and ammonium ion toxicity should be seen as universal, even in species frequently labeled as "NH 4 + specialists". To study the effects of high NH 4 + -N stress of ammonium ion nitrogen on tolerant submerged macrophytes and investigate the pathways of nitrogen assimilation in different organisms, Myriophyllum aquaticum was selected and treated with various concentrations of ammonium ions at different times. Increasing of ammonium concentration leads to an overall increase in incipient ammonia content in leaves and stems of plants. In middle and later stages, high concentrations of NH 4 + ion nitrogen taken up by M. aquaticum decreased, whereas the content of NO 3 - ion nitrogen increased. Moreover, in M. aquaticum, the activities of the enzymes nitrate reductase, glutamine synthetase and asparagine synthetase changed remarkably in the process of alleviating NH 4 + toxicity and deficiency. The results of the present study may support the studies on detoxification of high ammonium ion content in NH 4 + -tolerant submerged macrophytes and exploration of tissue-specific expression systems. Copyright © 2017. Published by Elsevier Inc.

  20. Plants' use of different nitrogen forms in response to crude oil contamination

    International Nuclear Information System (INIS)

    Nie Ming; Lu Meng; Yang Qiang; Zhang Xiaodong; Xiao Ming; Jiang Lifen; Yang Ji; Fang Changming; Chen Jiakuan; Li Bo

    2011-01-01

    In this study, we investigated Phragmites australis' use of different forms of nitrogen (N) and associated soil N transformations in response to petroleum contamination. 15 N tracer studies indicated that the total amount of inorganic and organic N assimilated by P. australis was low in petroleum-contaminated soil, while the rates of inorganic and organic N uptake on a per-unit-biomass basis were higher in petroleum-contaminated soil than those in un-contaminated soil. The percentage of organic N in total plant-assimilated N increased with petroleum concentration. In addition, high gross N immobilization and nitrification rates relative to gross N mineralization rate might reduce inorganic-N availability to the plants. Therefore, the enhanced rate of N uptake and increased importance of organic N in plant N assimilation might be of great significance to plants growing in petroleum-contaminated soils. Our results suggest that plants might regulate N capture under petroleum contamination. - Plant strategies of utilizing nitrogen in crude oil-contaminated soils.

  1. Real-time analysis of nitrogen translocation in plants

    International Nuclear Information System (INIS)

    Hayashi, Hiroaki

    2000-01-01

    Nitrogen absorbed by roots is transported to the leaves through xylem vessels and then retranslocated to the new leaves, such as root and storage organs through sieve tubes. It is very important to know how this nitrogen movement occurs in the plants and what mechanisms are involved in controlling this movement in order to increase the efficiency of fertilizer. In this experiments, 13 N and 15 N was used to detect the nitrogen circulation in plants, in combination with the technique for positron detection in real time and for collection of sap in sieve tubes and analysis of 15 N in it. By using 13 N, nitrogen movement from root to shoot was analyzed within 10 min after 13 N was applied to the roots. On the other hand, nitrogen retranslocation through sieve tubes was detected by the analysis of 15 N in the phloem sap over 6 hrs. All data suggest the dynamic translocation of nitrogen in rice plants. (author)

  2. Nitrogen and protein contents in some aquatic plant species

    Directory of Open Access Journals (Sweden)

    Krystyna Bytniewska

    2015-01-01

    Full Text Available Nitrogen and protein contents in higher aquatic plants deriving from a natural habitat were determined. The following plants were examined: Spirodela polyrrhiza (L. Schleid., Elodea canadensis Rich., Riccia fluitans L. Total nitrogen and nitrogen of respective fractions were determined by the Kjeldahl method. Nitrogen compounds were fractionated according to Thimann et al. Protein was extracted after Fletcher and Osborne and fractionated after Osborne. It was found, that total protein content in the plants under examination constitutes 18 to 25%o of dry matter. Albumins and glutelins are the most abundant protein fractions.

  3. The effect of plant population and nitrogen fertilizer on

    Directory of Open Access Journals (Sweden)

    mohamad reza asgaripor

    2009-06-01

    Full Text Available Interest has increased towards hemp (Cannabis sativa L. fibre production due to renewed demand for natural fibre in the world. A Study was conducted in 2005 at Shirvan in Northern Khorasan province, Iran, to determine the effects of three plant populations (30, 90 and 150 plant per m2 and three rates of nitrogen application (50, 150 and 250 kg N per ha on final stand, stalk height, basal stalk diameter, total stalk yield as well as fibre content from stalk and fibre yield in male and female plants. A split plot experimental with three replications was used. The result indicated that due to enhanced competition for light at higher population on density and N2 level plant mortality was higher than other treatment Morphological characteristics were highly correlated with plant sexual, plant population and nitrogen fertilizer. Highest stem, leaf and inflorescence yield were obtained at 250 plant m-2 when 150 kg N ha-1 was used. Lowest plant density did not show self-thinning but reduced above ground dry matter. Shoot dry matter increased with increasing plant density and nitrogen supply. Apparently, fibre content was greater at medium density and lowest nitrogen fertilizer, however, fibre yield was greatest at highest plant population and nitrogen fertilizer. In terms of fibre yield, approximate 31.7% of the fibre was located in the bottom parts, 22.4% in the middle and only 9.9% in the top part of the stem. The results suggest that hemp can yield large quantities of useful fibre at Shirvan when planted in proper plant densities and suitable nitrogen fertilizer.

  4. Use of stable nitrogen isotope 15N in investigating nitrogen uptake by plants from allylisothiocyanate decomposition products

    International Nuclear Information System (INIS)

    Dolejskova, J.; Kovar, J.

    1976-01-01

    The assimilability of nitrogen from allylisothiocyanate or from its nitrogenous decomposition products by plants was investigated using 15 N-labelled allylisothiocyanate. The results show that plant nitrogen assimilation from allylisothiocyanate is the higher, the lower the total nitrogen content of the nutritive medium. (author)

  5. Leaf nitrogen remobilisation for plant development and grain filling.

    Science.gov (United States)

    Masclaux-Daubresse, C; Reisdorf-Cren, M; Orsel, M

    2008-09-01

    A major challenge of modern agriculture is to reduce the excessive input of fertilisers and, at the same time, to improve grain quality without affecting yield. One way to achieve this goal is to improve plant nitrogen economy through manipulating nitrogen recycling, and especially nitrogen remobilisation, from senescing plant organs. In this review, the contribution of nitrogen remobilisation efficiency (NRE) to global nitrogen use efficiency (NUE), and tools dedicated to the determination of NRE are described. An overall examination of the physiological, metabolic and genetic aspects of nitrogen remobilisation is presented.

  6. Sensitivity of nitrogen dioxide concentrations to oxides of nitrogen controls in the United Kingdom

    International Nuclear Information System (INIS)

    Dixon, J.

    2001-01-01

    There is a possibility of further controls on emissions to the atmosphere of nitrogen dioxides to meet air quality objectives in the UK. Data in the National Air Quality Archive were used to calculate the likely sensitivity of hourly concentrations of nitrogen dioxide in ambient urban air to changes in the total oxides of nitrogen. Since the role of atmospheric chemical reactions is to make the responses non-linearly dependent on the emissions control, we seek to establish the magnitude and sign of the effects that this non-linearity might cause. We develop a quantitative approach to analysing the non-linearity in the data. Polynomial fits have been developed for the empirical ratio NO 2 :NO x (the 'yield'). They describe nitrogen dioxide concentrations using total oxides of nitrogen. The new functions have the important feature of increased yield in winter episodes. Simpler functions tend to omit this feature of the yields at the highest hourly concentrations. Based on this study, the hourly nitrogen dioxide objective in the UK may require emissions control of no more than about 50% on total oxides of nitrogen at the most polluted sites: other sites require less or even no control. (Author)

  7. The sensitivity of sunflower (Helianthus annuus L. plants to UV-B radiation is altered by nitrogen status

    Directory of Open Access Journals (Sweden)

    Inês Cechin

    2018-02-01

    Full Text Available ABSTRACT: Interaction effects between nitrogen and UV-B radiation were studied in sunflower (Helianthus annuus L. variety IAC-Iarama plants grown in a greenhouse under natural photoperiod conditions. Plants were irradiated with 0.8W m-2 (control or 8.0W m-2 (+UV-B of UV-B radiation for 7h per day. The plants were grown in pots containing vermiculite and watered with 70% of full strength nitrogen-free Long Ashton solution, containing either low (42.3ppm or high (282ppm nitrogen as ammonium nitrate. High nitrogen increased dry matter of stem, leaves and shoot, photosynthetic pigments and photosynthesis (A without any alteration in stomatal conductance (gs nor transpiration (E while it reduced the intercellular CO2 (Ci concentration, and malondialdehyde (MDA content. High UV-B radiation had negative effects on dry matter production, A, gs and E with the effects more marked under high nitrogen, whereas it increased Ci under high nitrogen. Activity of PG-POD was reduced by high UV-B radiation under low nitrogen but it was not changed under high nitrogen. The UV-B radiation increased the MDA content independently of nitrogen level. Results indicate that the effects of UV-B radiation on sunflower plants are dependent of nitrogen supply with high nitrogen making their physiological processes more sensitive to UV-B radiation.

  8. Plant densities and modulation of symbiotic nitrogen fixation in soybean

    Directory of Open Access Journals (Sweden)

    Marcos Javier de Luca

    2014-06-01

    Full Text Available Soybean nitrogen (N demands can be supplied to a large extent via biological nitrogen fixation, but the mechanisms of source/sink regulating photosynthesis/nitrogen fixation in high yielding cultivars and current crop management arrangements need to be investigated. We investigated the modulation of symbiotic nitrogen fixation in soybean [Glycine max (L. Merrill] at different plant densities. A field trial was performed in southern Brazil with six treatments, including non-inoculated controls without and with N-fertilizer, both at a density of 320,000 plants ha−1, and plants inoculated with Bradyrhizobium elkanii at four densities, ranging from 40,000 to 320,000 plants ha−1. Differences in nodulation, biomass production, N accumulation and partition were observed at stage R5, but not at stage V4, indicating that quantitative and qualitative factors (such as sunlight infrared/red ratio assume increasing importance during the later stages of plant growth. Decreases in density in the inoculated treatments stimulated photosynthesis and nitrogen fixation per plant. Similar yields were obtained at the different plant densities, with decreases only at the very low density level of 40,000 plants ha−1, which was also the only treatment to show differences in seed protein and oil contents. Results confirm a fine tuning of the mechanisms of source/sink, photosynthesis/nitrogen fixation under lower plant densities. Higher photosynthesis and nitrogen fixation rates are capable of sustaining increased plant growth.

  9. Effect of organic nitrogen concentration on the efficiency of trickling filters

    Science.gov (United States)

    Kopeć, Łukasz; Drewnowski, Jakub; Fernandez-Morales, F. J.

    2018-02-01

    The study was conducted in Poland at six selected wastewater treatment plants (WWTP) based on the trickling filters Bioclere® technology. The aim of the study was to find the relationship between the influent organic nitrogen concentration and the purification efficiency expressed as effluent COD concentration. In the tests performed, the COD to BOD5 relationship was close to 2 and the ratio of BOD5 to TN was lower than 4. The research indicated that this specific chemical composition of raw wastewater causes appearance of filamentous bacteria on the surface of trickling filter filling and strongly affect the effluent quality.

  10. Effects of simultaneous ozone exposure and nitrogen loads on carbohydrate concentrations, biomass, and growth of young spruce trees (Picea abies)

    International Nuclear Information System (INIS)

    Thomas, V.F.D.; Braun, S.; Flueckiger, W.

    2005-01-01

    Spruce saplings were grown under different nitrogen fertilization regimes in eight chamberless fumigation systems, which were fumigated with either charcoal-filtered (F) or ambient air (O 3 ). After the third growing season trees were harvested for biomass and non-structural carbohydrate analysis. Nitrogen had an overall positive effect on the investigated plant parameters, resulting in increased shoot elongation, biomass production, fine root soluble carbohydrate concentrations, and also slightly increased starch concentrations of stems and roots. Only needle starch concentrations and fine root sugar alcohol concentrations were decreased. Ozone fumigation resulted in needle discolorations and affected most parameters negatively, including decreased shoot elongation and decreased starch concentrations in roots, stems, and needles. In fine roots, however, soluble carbohydrate concentrations remained unaffected or increased by ozone fumigation. The only significant interaction was an antagonistic effect on root starch concentrations, where higher nitrogen levels alleviated the negative impact of ozone. - Simultaneous ozone fumigation and nitrogen fertilization have no synergistic impacts on carbohydrate concentrations, biomass, or growth of Picea abies saplings

  11. Nitrogen-system safety study: Portsmouth Gaseous Diffusion Plant

    International Nuclear Information System (INIS)

    1982-07-01

    The Department of Energy has primary responsibility for the safety of operations at DOE-owned nuclear facilities. The guidelines for the analysis of credible accidents are outlined in DOE Order 5481.1. DOE has requested that existing plant facilities and operations be reviewed for potential safety problems not covered by standard industrial safety procedures. This review is being conducted by investigating individual facilities and documenting the results in Safety Study Reports which will be compiled to form the Existing Plant Final Safety Analysis Report which is scheduled for completion in September, 1984. This Safety Study documents the review of the Plant Nitrogen System facilities and operations and consists of Section 4.0, Facility and Process Description, and Section 5.0, Accident Analysis, of the Final Safety Analysis Report format. The existing nitrogen system consists of a Superior Air Products Company Type D Nitrogen Plant, nitrogen storage facilities, vaporization facilities and a distribution system. The system is designed to generate and distribute nitrogen gas used in the cascade for seal feed, buffer systems, and for servicing equipment when exceptionally low dew points are required. Gaseous nitrogen is also distributed to various process auxiliary buildings. The average usage is approximately 130,000 standard cubic feet per day

  12. The influence of different forms and concentrations of nitrogen on ...

    African Journals Online (AJOL)

    ... mass and leaf area development were enhanced in plants supplied with nitrogen in any form. It was suggested that growth of D. eriantha was influenced by carbohydrate fluctuations.D. eriantha. Keywords: botany; carbohydrates; digitaria eriantha; dry mass; growth; leaf area; leaves; nitrogen; physiology; plant physiology; ...

  13. Control of nitrogen concentration in liquid lithium by hot trapping

    International Nuclear Information System (INIS)

    Sakurai, Toshiharu; Yoneoka, Toshiaki; Tanaka, Satoru; Suzuki, Akihiro; Muroga, Takeo

    2002-01-01

    Nitrogen concentration in liquid lithium was controlled by the method of hot trapping. V-Ti alloy and chromium were used as nitrogen gettering materials. Chromium is known to form ternary nitride with lithium. Gettering experiments were conducted at 823 K for 0.8-2.2 Ms. Under high nitrogen concentration in liquid lithium, above 10 -2 mass%, nitrogen gettering effect of chromium was found to be larger than that of V-10at.% Ti alloy. Nitrogen gettering by chromium at 823 K reached a limit at about 6.5x10 -3 mass% of nitrogen concentration in liquid lithium. Instability of ternary nitride of chromium and lithium below this nitrogen concentration in liquid lithium was considered to be the reason for this limit. The composition of the ternary nitride that was formed in this study was considered to be Li 6 Cr(III) 3 N 5 . In addition, immersion experiments of yttrium with V-10at.% Ti alloy were performed. It was found that nitriding of yttrium in liquid lithium is controlled by nitrogen gettering effect of V-10at.% Ti alloy

  14. Evaluation of plant available nitrogen in concentrated pig slurry

    International Nuclear Information System (INIS)

    Ramirez, M.; Comas, J.; Pujola, M.

    2009-01-01

    In Northeast Spin the expansion of the pig industry has brought as a result the production of vast amounts of pig slurry that exceeds field crops fertilization needs and consequently has contributed to the environmental deterioration of the region particularly ground water with NO 3 pollution. Under such circumstances, it is needed to treat and/or export pig slurry. During the last year the implantation of cogeneration plants that take advantage of the surplus of energy to produce concentrate pig slurry by water evaporation that could easily transported. (Author)

  15. [Hyperspectral remote sensing diagnosis models of rice plant nitrogen nutritional status].

    Science.gov (United States)

    Tan, Chang-Wei; Zhou, Qing-Bo; Qi, La; Zhuang, Heng-Yang

    2008-06-01

    The correlations of rice plant nitrogen content with raw hyperspectral reflectance, first derivative hyperspectral reflectance, and hyperspectral characteristic parameters were analyzed, and the hyperspectral remote sensing diagnosis models of rice plant nitrogen nutritional status with these remote sensing parameters as independent variables were constructed and validated. The results indicated that the nitrogen content in rice plant organs had a variation trend of stem plant nitrogen nutritional status, with the decisive coefficients (R2) being 0.7996 and 0.8606, respectively; while the model with vegetation index (SDr - SDb) / (SDr + SDb) as independent variable, i. e., y = 365.871 + 639.323 ((SDr - SDb) / (SDr + SDb)), was most fit rice plant nitrogen content, with R2 = 0.8755, RMSE = 0.2372 and relative error = 11.36%, being able to quantitatively diagnose the nitrogen nutritional status of rice.

  16. Influence of nitrogen source and concentrations on wheat growth and production inside "Lunar Palace-1"

    Science.gov (United States)

    Dong, Chen; Chu, Zhengpei; Wang, Minjuan; Qin, Youcai; Yi, Zhihao; Liu, Hong; Fu, Yuming

    2018-03-01

    Minimizing nitrogen (N) consumption and maximizing crop productivity are major challenges to growing plants in Bioregenerative Life Support System (BLSS) for future long-term space mission. Plants cultivated in the controlled environments are sensitive to the low recyclable N (such as from the urine). The purpose of this study is to investigate the effects of nitrogen fertilizer (NH4+-N and NO3--N) disturbance on growth, photosynthetic efficiency, antioxidant defence systems and biomass yield and quality of wheat (Triticum aestivum L.) cultivars during ontogenesis. Experiments were divided into 4 controlled groups,Ⅰ: NO3--N: NH4+-N = 7:1 mmol L-1; Ⅱ: NO3--N: NH4+-N = 14:0.5 mmol L-1; Ⅲ: NO3--N: NH4+-N = 7:0.5 mmol L-1 and CK: NO3--N: NH4+-N = 14:1 mmol L-1, and other salt concentrations were the same. The results showed that heading and flowering stages in spring wheat are sensitive to low N concentration, especially NO3--N in group Ⅰ and Ⅲ. NO3- is better to root growth than to shoot growth. The plants were spindling and the output was lower 21.3% when spring wheat was in low N concentration solution. Meanwhile, photosynthetic rate of low N concentrations is worse than that of CK. The soluble sugar content of the edible part of wheat plants is influenced with NO3-: NH4+ ratio. In addition, when N concentration was lowest in group Ⅲ, the lignin content decreased to 2.58%, which was more beneficial to recycle substances in the processes of the environment regeneration.

  17. [Progress in inversion of vegetation nitrogen concentration by hyperspectral remote sensing].

    Science.gov (United States)

    Wang, Li-Wen; Wei, Ya-Xing

    2013-10-01

    Nitrogen is the necessary element in life activity of vegetation, which takes important function in biosynthesis of protein, nucleic acid, chlorophyll, and enzyme etc, and plays a key role in vegetation photosynthesis. The technology about inversion of vegetation nitrogen concentration by hyperspectral remote sensing has been the research hotspot since the 70s of last century. With the development of hyperspectral remote sensing technology in recent years, the advantage of spectral bands subdivision in a certain spectral region provides the powerful technology measure for correlative spectral characteristic research on vegetation nitrogen. In the present paper, combined with the newest research production about monitoring vegetation nitrogen concentration by hyperspectral remote sensing published in main geography science literature in recent several years, the principle and correlated problem about monitoring vegetation nitrogen concentration by hyperspectral remote sensing were introduced. From four aspects including vegetation nitrogen spectral index, vegetation nitrogen content inversion based on chlorophyll index, regression model, and eliminating influence factors to inversion of vegetation nitrogen concentration, main technology methods about inversion of vegetation nitrogen concentration by hyperspectral remote sensing were detailedly introduced. Correlative research conclusions were summarized and analyzed, and research development trend was discussed.

  18. Herbicides effect on the nitrogen fertilizer assimilation by sensitive plants

    International Nuclear Information System (INIS)

    Ladonin, V.F.; Samojlov, L.N.

    1976-01-01

    It has been established in studying the effect of herbicides on pea plants that the penetration of the preparations into the tissues of leaves and stems results in a slight increase of the rate of formation of dry substance in the leaves of the treated plants within 24 hours after treatment as compared with control, whereas in the last period of the analysis the herbicides strongly inhibit the formation of dry substance in leaves. The applied herbicide doses have resulted in drastic changes of the distribution of the plant-assimilated nitrogen between the protein and non-protein fractions in the leaves and stems of pea. When affected by the studied herbicides, the fertilizer nitrogen supply to the pea plants changes and the rate of the fertilizer nitrogen assimilation by the plants varies noticeably. The regularities of the fertilizer nitrogen inclusion in the protein and non-protein nitrogen compounds of the above-ground pea organs have been studied

  19. [Research advance in nitrogen metabolism of plant and its environmental regulation].

    Science.gov (United States)

    Xu, Zhenzhu; Zhou, Guangsheng

    2004-03-01

    Nitrogen metabolism is not only one of the basic processes of plant physiology, but also one of the important parts of global chemical cycle. Plant nitrogen assimilation directly takes part in the synthesis and conversion of amino acid through the reduction of nitrate. During this stage, some key enzymes, e.g., nitrate reductase (NR), glutamine synthetase (GS), glutamate dehydrogenase (GDH), glutamine synthase (GOGAT), aspargine synthetase (AS), and asparate aminotransferase (AspAT) participate these processes. The protein is assimilated in plant cell through amino acid, and becomes a part of plant organism through modifying, classifying, transporting and storing processes, etc. The nitrogen metabolism is associated with carbonic metabolism through key enzyme regulations and the conversion of products, which consists of basic life process. Among these amino acids in plant cell, glutamic acid (Glu), glutamine (Gln), aspartic acid (Asp) and asparagines (Asn), etc., play a key role, which regulates their conversion each other and their contents in the plant cell through regulating formation and activity of those key enzymes. Environmental factors also affect the conversion and recycle of the key amino acids through regulating gene expression of the key enzymes and their activities. Nitrate and light intensity positively regulate the gene transcription of NR, but ammonium ions and Glu, Gln do the negative way. Water deficit is a very serious constraint on N2 fixation rate and soybean (Glycine max Merr.) grain yield, in which, ureide accumulation and degradation under water deficit appear to be the key issues of feedback mechanism on nitrogen fixation. Water stress decreases NR activity, but increases proteinase activity, and thus, they regulate plant nitrogen metabolism, although there are some different effects among species and cultivars. Water stress also decreases plant tissue protein content, ratio of protein and amino acid, and reduces the absorption of amino

  20. Understanding Plant Nitrogen Metabolism through Metabolomics and Computational Approaches

    Directory of Open Access Journals (Sweden)

    Perrin H. Beatty

    2016-10-01

    Full Text Available A comprehensive understanding of plant metabolism could provide a direct mechanism for improving nitrogen use efficiency (NUE in crops. One of the major barriers to achieving this outcome is our poor understanding of the complex metabolic networks, physiological factors, and signaling mechanisms that affect NUE in agricultural settings. However, an exciting collection of computational and experimental approaches has begun to elucidate whole-plant nitrogen usage and provides an avenue for connecting nitrogen-related phenotypes to genes. Herein, we describe how metabolomics, computational models of metabolism, and flux balance analysis have been harnessed to advance our understanding of plant nitrogen metabolism. We introduce a model describing the complex flow of nitrogen through crops in a real-world agricultural setting and describe how experimental metabolomics data, such as isotope labeling rates and analyses of nutrient uptake, can be used to refine these models. In summary, the metabolomics/computational approach offers an exciting mechanism for understanding NUE that may ultimately lead to more effective crop management and engineered plants with higher yields.

  1. Growth and foliar nitrogen concentrations of interplanted native woody legumes and pecan

    Science.gov (United States)

    J.W. Van Sambeek; Nadia E. Navarrete-Tindall; Kenneth L. Hunt

    2008-01-01

    The interplanting and underplanting of nodulated nitrogen-fixing plants in tree plantings can increase early growth and foliage nitrogen content of hardwoods, especially black walnut and pecan. Recent studies have demonstrated that some non-nodulated woody legumes may be capable of fixing significant levels of atmospheric nitrogen. The following nine nurse crop...

  2. Assessment of plant biomass and nitrogen nutrition with plant height in early-to mid-season corn.

    Science.gov (United States)

    Yin, Xinhua; Hayes, Robert M; McClure, M Angela; Savoy, Hubert J

    2012-10-01

    The physiological basis for using non-destructive high-resolution measurements of plant height through plant height sensing to guide variable-rate nitrogen (N) applications on corn (Zea mays L.) during early (six-leaf growth stage, V6) to mid (V12) season is largely unknown. This study was conducted to assess the relationships of plant biomass and leaf N with plant height in early- to mid-season corn under six different N rate treatments. Corn plant biomass was significantly and positively related to plant height under an exponential model when both were measured at V6. This relationship explained 62-78% of the variations in corn biomass production. Leaf N concentration was, in general, significantly and positively related to plant height when both were measured at V6, V8, V10 and V12. This relationship became stronger as the growing season progressed from V6 to V12. The relationship of leaf N with plant height in early- to mid-season corn was affected by initial soil N fertility and abnormal weather conditions. The relationship of leaf N concentration with plant height may provide a physiological basis for using plant height sensing to guide variable-rate N applications on corn. Copyright © 2012 Society of Chemical Industry.

  3. Studies involving tracer techniques for certain nutritional aspects of nitrogen and phosphorus with reference to fertilization of wheat plant

    International Nuclear Information System (INIS)

    Rizk, M. A.

    1987-01-01

    Two short-term experiments were carried out to study the mutual effects between nitrogen and phosphatic fertilizers, wheat seedlings being the indicator plant grown on different soil types, namely; sandy loam of inshas, clay of bahtim and calcareous of salheya. Response of wheat plants to mutual interactions between applied nitrogenous and phosphatic fertilizers. 1- Dry matter content of wheat seedlings are significantly affected by the interactions between sources of nitrogen and phosphorus for the investigated seedlings which may reflect the importance of ion balance between the two concerned elements. 2- Nitrogen content in the two weeks old seedlings is positively affected with the interaction between P-source (ortho and poly-phosphate), nitrogen level and nitrogen source.3- A positive response of total P- uptaken by wheat plants for the rate of applied nitrogenous fertilizer is observed, trend being attributed to influence of nitrogen on the status of P in the soil adjacent to roots as to have a concentration gradient suitable for absorption. 4- Except for nitrogen rate, other parameters and certain interactions have been generally not significantly effective on P - in plant derived from both fertilizer and soil. 5- Utilization percentages of the used P- fertilizer show significant responses to applied N- rate along with interactions with source of applied N and P nutritional elements with one week old plants

  4. Interactions between elevated CO2 concentration, nitrogen and water : effects on growth and water use of six perennial plant species

    NARCIS (Netherlands)

    Arp, W.J.; Mierlo, J.E.M.; Berendse, F.; Snijders, W.

    1998-01-01

    Two experiments are described in which plants of six species were grown for one full season in greenhouse compartments with 350 or 560 mol mol1 CO2. In the first experiment two levels of nitrogen supply were applied to study the interaction between CO2 and nitrogen. In the second experiment two

  5. Symbiotic leghemoglobins are crucial for nitrogen fixation in legume root nodules but not for general plant growth and development

    DEFF Research Database (Denmark)

    Ott, Thomas; van Dongen, Joost T; Günther, Catrin

    2005-01-01

    Hemoglobins are ubiquitous in nature and among the best-characterized proteins. Genetics has revealed crucial roles for human hemoglobins, but similar data are lacking for plants. Plants contain symbiotic and nonsymbiotic hemoglobins; the former are thought to be important for symbiotic nitrogen...... fixation (SNF). In legumes, SNF occurs in specialized organs, called nodules, which contain millions of nitrogen-fixing rhizobia, called bacteroids. The induction of nodule-specific plant genes, including those encoding symbiotic leghemoglobins (Lb), accompanies nodule development. Leghemoglobins...... accumulate to millimolar concentrations in the cytoplasm of infected plant cells prior to nitrogen fixation and are thought to buffer free oxygen in the nanomolar range, avoiding inactivation of oxygen-labile nitrogenase while maintaining high oxygen flux for respiration. Although widely accepted...

  6. Engineering Pseudomonas protegens Pf-5 for Nitrogen Fixation and its Application to Improve Plant Growth under Nitrogen-Deficient Conditions

    Science.gov (United States)

    Setten, Lorena; Soto, Gabriela; Mozzicafreddo, Matteo; Fox, Ana Romina; Lisi, Christian; Cuccioloni, Massimiliano; Angeletti, Mauro; Pagano, Elba; Díaz-Paleo, Antonio; Ayub, Nicolás Daniel

    2013-01-01

    Nitrogen is the second most critical factor for crop production after water. In this study, the beneficial rhizobacterium Pseudomonas protegens Pf-5 was genetically modified to fix nitrogen using the genes encoding the nitrogenase of Pseudomonas stutzeri A1501 via the X940 cosmid. Pf-5 X940 was able to grow in L medium without nitrogen, displayed high nitrogenase activity and released significant quantities of ammonium to the medium. Pf-5 X940 also showed constitutive expression and enzymatic activity of nitrogenase in ammonium medium or in nitrogen-free medium, suggesting a constitutive nitrogen fixation. Similar to Pseudomonas protegens Pf-5, Pseudomonas putida, Pseudomonas veronii and Pseudomonas taetrolens but not Pseudomonas balearica and Pseudomonas stutzeri transformed with cosmid X940 showed constitutive nitrogenase activity and high ammonium production, suggesting that this phenotype depends on the genome context and that this technology to obtain nitrogen-fixing bacteria is not restricted to Pf-5. Interestingly, inoculation of Arabidopsis, alfalfa, tall fescue and maize with Pf-5 X940 increased the ammonium concentration in soil and plant productivity under nitrogen-deficient conditions. In conclusion, these results open the way to the production of effective recombinant inoculants for nitrogen fixation on a wide range of crops. PMID:23675499

  7. Ultraviolet-B radiation and nitrogen affect nutrient concentrations and the amount of nutrients acquired by above-ground organs of maize.

    Science.gov (United States)

    Correia, Carlos M; Coutinho, João F; Bacelar, Eunice A; Gonçalves, Berta M; Björn, Lars Olof; Moutinho Pereira, José

    2012-01-01

    UV-B radiation effects on nutrient concentrations in above-ground organs of maize were investigated at silking and maturity at different levels of applied nitrogen under field conditions. The experiment simulated a 20% stratospheric ozone depletion over Portugal. At silking, UV-B increased N, K, Ca, and Zn concentrations, whereas at maturity Ca, Mg, Zn, and Cu increased and N, P and Mn decreased in some plant organs. Generally, at maturity, N, Ca, Cu, and Mn were lower, while P, K, and Zn concentrations in stems and nitrogen-use efficiency (NUE) were higher in N-starved plants. UV-B and N effects on shoot dry biomass were more pronounced than on nutrient concentrations. Nutrient uptake decreased under high UV-B and increased with increasing N application, mainly at maturity harvest. Significant interactions UV-B x N were observed for NUE and for concentration and mass of some elements. For instance, under enhanced UV-B, N, Cu, Zn, and Mn concentrations decreased in leaves, except on N-stressed plants, whereas they were less affected by N nutrition. In order to minimize nutritional, economical, and environmental negative consequences, fertiliser recommendations based on element concentration or yield goals may need to be adjusted.

  8. Ultraviolet-B Radiation and Nitrogen Affect Nutrient Concentrations and the Amount of Nutrients Acquired by Above-Ground Organs of Maize

    Directory of Open Access Journals (Sweden)

    Carlos M. Correia

    2012-01-01

    Full Text Available UV-B radiation effects on nutrient concentrations in above-ground organs of maize were investigated at silking and maturity at different levels of applied nitrogen under field conditions. The experiment simulated a 20% stratospheric ozone depletion over Portugal. At silking, UV-B increased N, K, Ca, and Zn concentrations, whereas at maturity Ca, Mg, Zn, and Cu increased and N, P and Mn decreased in some plant organs. Generally, at maturity, N, Ca, Cu, and Mn were lower, while P, K, and Zn concentrations in stems and nitrogen-use efficiency (NUE were higher in N-starved plants. UV-B and N effects on shoot dry biomass were more pronounced than on nutrient concentrations. Nutrient uptake decreased under high UV-B and increased with increasing N application, mainly at maturity harvest. Significant interactions UV-B x N were observed for NUE and for concentration and mass of some elements. For instance, under enhanced UV-B, N, Cu, Zn, and Mn concentrations decreased in leaves, except on N-stressed plants, whereas they were less affected by N nutrition. In order to minimize nutritional, economical, and environmental negative consequences, fertiliser recommendations based on element concentration or yield goals may need to be adjusted.

  9. Effect of phosphorus level on nitrogen accumulation and yield in soybean

    International Nuclear Information System (INIS)

    You Yubo; Wu Dongmei; Gong Zhenping; Ma Chunmei

    2012-01-01

    In this paper, the 15 N labeling with sand culture was conducted to study effects of phosphorus level on nitrogen accumulation, nodule nitrogen fixation and yield of soybean plants. Results showed that nitrogen accumulation, fixation and yield of soybean plants all presented a single peak curve with improvement of phosphorus nutrition level, with the peak value of phosphorus concentration in nutrient solution of 31 mg/L. When phosphorus concentration of nutrient solution was 11 mg/L, no obvious promotion was found on the ratio of nodule nitrogen fixation when increasing phosphorus concentration again, However, when phosphorus concentration of nutrient solution was 21 mg/L, increasing phosphorus concentration again had no obvious promotion on soybean plant nitrogen accumulation, nodule nitrogen fixation accumulation and yield, indicating that effect of phosphorus nutrition level on nitrogen fixation was lower than that on yield formation level. (authors)

  10. Effect of Residue Nitrogen Concentration and Time Duration on Carbon Mineralization Rate of Alfalfa Residues in Regions with Different Climatic Conditions

    Directory of Open Access Journals (Sweden)

    saeid shafiei

    2017-08-01

    Full Text Available Introduction Various factors like climatic conditions, vegetation, soil properties, topography, time, plant residue quality and crop management strategies affect the decomposition rate of organic carbon (OC and its residence time in soil. Plant residue management concerns nutrients recycling, carbon recycling in ecosystems and the increasing CO2 concentration in the atmosphere. Plant residue decomposition is a fundamental process in recycling of organic matter and elements in most ecosystems. Soil management, particularly plant residue management, changes soil organic matter both qualitatively and quantitatively. Soil respiration and carbon loss are affected by soil temperature, soil moisture, air temperature, solar radiation and precipitation. In natural agro-ecosystems, residue contains different concentrations of nitrogen. It is important to understand the rate and processes involved in plant residue decomposition, as these residues continue to be added to the soil under different weather conditions, especially in arid and semi-arid climates. Material and methods Organic carbon mineralization of alfalfa residue with different nitrogen concentrations was assessed in different climatic conditions using split-plot experiments over time and the effects of climate was determined using composite analysis. The climatic conditions were classified as warm-arid (Jiroft, temperate arid (Narab and cold semi-arid (Sardouiyeh using cluster analysis and the nitrogen (N concentrations of alfalfa residue were low, medium and high. The alfalfa residue incubated for four different time periods (2, 4, 6 and 8 months. The dynamics of organic carbon in different regions measured using litter bags (20×10 cm containing 20 g alfalfa residue of 2-10 mm length which were placed on the soil surface. Results and discussion The results of this study showed that in a warm-arid (Jiroft, carbon loss and the carbon decomposition rate constant were low in a cold semi

  11. Uptake of organic nitrogen by plants

    Science.gov (United States)

    Torgny Nasholm; Knut Kielland; Ulrika. Ganeteg

    2009-01-01

    Languishing for many years in the shadow of plant inorganic nitrogen (N) nutrition research, studies of organic N uptake have attracted increased attention during the last decade. The capacity of plants to acquire organic N, demonstrated in laboratory and field settings, has thereby been well established. Even so, the ecological significance of organic N uptake for...

  12. Exogenous trehalose improves growth under limiting nitrogen through upregulation of nitrogen metabolism.

    Science.gov (United States)

    Lin, Yingchao; Zhang, Jie; Gao, Weichang; Chen, Yi; Li, Hongxun; Lawlor, David W; Paul, Matthew J; Pan, Wenjie

    2017-12-19

    The trehalose (Tre) pathway has strong effects on growth and development in plants through regulation of carbon metabolism. Altering either Tre or trehalose 6-phosphate (T6P) can improve growth and productivity of plants as observed under different water availability. As yet, there are no reports of the effects of modification of Tre orT6P on plant performance under limiting nutrition. Here we report that nitrogen (N) metabolism is positively affected by exogenous application of Tre in nitrogen-deficient growing conditions. Spraying foliage of tobacco (Nicotiana tabacum) with trehalose partially alleviated symptoms of nitrogen deficiency through upregulation of nitrate and ammonia assimilation and increasing activities of nitrate reductase (NR), glycolate oxidase (GO), glutamine synthetase (GS) and glutamine oxoglutarate aminotransferase (GOGAT) with concomitant changes in ammonium (NH 4 + ) and nitrate (NO 3 - ) concentrations, glutamine and amino acids. Chlorophyll and total nitrogen content of leaves and rates of photosynthesis were increased compared to nitrogen-deficient plants without applied Tre. Total plant biomass accumulation was also higher in Tre -fed nitrogen-deficient plants, with a smaller proportion of dry weight partitioned to roots, compared to nitrogen-deficient plants without applied Tre. Consistent with higher nitrogen assimilation and growth, Tre application reduced foliar starch. Minimal effects of Tre feeding were observed on nitrogen-sufficient plants. The data show, for the first time, significant stimulatory effects of exogenous Tre on nitrogen metabolism and growth in plants growing under deficient nitrogen. Under such adverse conditions metabolism is regulated for survival rather than productivity. Application of Tre can alter this regulation towards maintenance of productive functions under low nitrogen. This has implications for considering approaches to modifying the Tre pathway for to improve crop nitrogen-use efficiency and

  13. Determination of the concentration dependent diffusion coefficient of nitrogen in expanded austenite

    DEFF Research Database (Denmark)

    Christiansen, Thomas; Somers, Marcel A. J.

    2008-01-01

    The concentration dependent diffusion coefficient of nitrogen in expanded austenite was determined from of the rate of retracting nitrogen from thin initially N-saturated coupons. Nitrogen saturated homogeneous foils of expanded austenite were obtained by nitriding AISI 304 and AISI 316 in pure...... in the composition range where nitrogen can be extracted by hydrogen gas at the diffusion temperature. Numerical simulation of the denitriding experiments shows that the thus determined concentration dependent diffusion coefficients are an accurate approximation of the actual diffusivity of nitrogen in expanded...... ammonia at 693 K and 718 K. Denitriding experiments were performed by equilibrating the foils with a successively lower nitrogen activity, as imposed by a gas mixture of ammonia and hydrogen. The concentration dependent diffusion coefficient of nitrogen in expanded austenite was approximated...

  14. Nitrogen concentration profiles in oxy-nitrited high-speed steel

    International Nuclear Information System (INIS)

    Barcz, A.; Turos, A.; Wielunski, L.

    1976-01-01

    Nuclear microanalysis has been applied for the determination of in-depth concentration profiles of nitrogen in oxy-nitrided high-speed steel. The concentration profiles were deduced from measurements of the nitrogen content, determined by means of the 14 N(d,α) 12 C reaction for the set of initially identical samples after the removal of surface layers of sequentially increasing thicknesses. The 1.2 MeV deuterons were obtained from the Institute of Nuclear Research Van de Graaf accelerator LECH. The α-particles produced in the 14 N(d,α) 12 C reaction were detected by means of silicon surface barrier detector mounted at 150 deg C. Strong blocking of the nitrogen diffusion due to the presence of oxygen has been observed. The accuracy of nitrogen detection is of the order of 5% for nitrogen-rich regions and 10% for the matrix. However, the local non-uniformity of the steel may cause a spread of about 20% of the measured values. (T.G.)

  15. Ubiquity of insect-derived nitrogen transfer to plants by endophytic insect-pathogenic fungi: an additional branch of the soil nitrogen cycle.

    Science.gov (United States)

    Behie, Scott W; Bidochka, Michael J

    2014-03-01

    The study of symbiotic nitrogen transfer in soil has largely focused on nitrogen-fixing bacteria. Vascular plants can lose a substantial amount of their nitrogen through insect herbivory. Previously, we showed that plants were able to reacquire nitrogen from insects through a partnership with the endophytic, insect-pathogenic fungus Metarhizium robertsii. That is, the endophytic capability and insect pathogenicity of M. robertsii are coupled so that the fungus acts as a conduit to provide insect-derived nitrogen to plant hosts. Here, we assess the ubiquity of this nitrogen transfer in five Metarhizium species representing those with broad (M. robertsii, M. brunneum, and M. guizhouense) and narrower insect host ranges (M. acridum and M. flavoviride), as well as the insect-pathogenic fungi Beauveria bassiana and Lecanicillium lecanii. Insects were injected with (15)N-labeled nitrogen, and we tracked the incorporation of (15)N into two dicots, haricot bean (Phaseolus vulgaris) and soybean (Glycine max), and two monocots, switchgrass (Panicum virgatum) and wheat (Triticum aestivum), in the presence of these fungi in soil microcosms. All Metarhizium species and B. bassiana but not L. lecanii showed the capacity to transfer nitrogen to plants, although to various degrees. Endophytic association by these fungi increased overall plant productivity. We also showed that in the field, where microbial competition is potentially high, M. robertsii was able to transfer insect-derived nitrogen to plants. Metarhizium spp. and B. bassiana have a worldwide distribution with high soil abundance and may play an important role in the ecological cycling of insect nitrogen back to plant communities.

  16. The Influence of the Ratio of Nitrate to Ammonium Nitrogen on Nitrogen Removal in the Economical Growth of Vegetation in Hybrid Constructed Wetlands

    Directory of Open Access Journals (Sweden)

    Haq Nawaz Abbasi

    2017-03-01

    Full Text Available Growing vegetables economically in the use of constructed wetland for wastewater treatment can play a role in overcoming water and food scarcity. Allium porrum L., Solanum melongena L., Ipomoea aquatica Forsk., and Capsicum annuum L. plants were selected to grow in hybrid constructed wetland (CW under natural conditions. The impact of the ratio of nitrate to ammonium nitrogen on ammonium and nitrate nitrogen removal and on total nitrogen were studied in wastewater. Constructed wetland planted with Ipomoea aquatica Forsk. and Solanum melongena L. showed higher removal efficiency for ammonium nitrogen under higher ammonium concentration, whereas Allium porrum L.-planted CW showed higher nitrate nitrogen removal when NO3–N concentration was high in wastewater. Capsicum annuum L.-planted CW showed little efficiency for both nitrogen sources compared to other vegetables.

  17. Cyclic variations in nitrogen uptake rate of soybean plants: ammonium as a nitrogen source

    Science.gov (United States)

    Henry, L. T.; Raper, C. D. Jr

    1989-01-01

    When NO3- is the sole nitrogen source in flowing solution culture, the net rate of nitrogen uptake by nonnodulated soybean (Glycine max L. Merr. cv Ransom) plants cycles between maxima and minima with a periodicity of oscillation that corresponds with the interval of leaf emergence. Since soybean plants accumulate similar quantities of nitrogen when either NH4+ or NO3- is the sole source in solution culture controlled at pH 6.0, an experiment was conducted to determine if the oscillations in net rate of nitrogen uptake also occur when NH4+ is the nitrogen source. During a 21-day period of vegetative development, net uptake of NH4+ was measured daily by ion chromatography as depletion of NH4+ from a replenished nutrient solution containing 1.0 millimolar NH4+. The net rate of NH4+ uptake oscillated with a periodicity that was similar to the interval of leaf emergence. Instances of negative net rates of uptake indicate that the transition between maxima and minima involved changes in influx and efflux components of net NH4+ uptake.

  18. Effects of permafrost thaw on nitrogen availability and plant nitrogen acquisition in Interior Alaska

    Science.gov (United States)

    Finger, R.; Euskirchen, E. S.; Turetsky, M.

    2013-12-01

    The degradation of ice-rich permafrost, which covers a large portion of Interior Alaska, typically leads to thermokarst and increases in soil saturation. As a result, conifer peat plateaus degrade and are often replaced by wet collapse scar bogs. This state change results in profound changes in regional hydrology, biogeochemical cycling, and plant community composition. Preliminary data suggest that permafrost thaw can increase surface soil inorganic nitrogen (IN) concentrations but it is still unknown whether these changes in nutrient availability are short-lived (pulse releases) and whether or not they impact collapse scar vegetation composition or productivity, particularly as collapse scars undergo succession with time-after-thaw. Therefore we are currently examining changes in plant community composition, N availability and plant N acquisition along three thermokarst gradients in Interior Alaska. Each gradient is comprised of a forested permafrost peat plateau, adjacent ecotones experiencing active permafrost degradation (including a collapsing forest canopy and a saturated moat), and a collapse scar bog where permafrost has completely degraded. We predicted that IN concentrations would be highest along the active thaw margin, and lowest in the peat plateau. We also predicted that IN concentrations would be positively related to shifts in vegetation community composition, nutrient use efficiency (NUE) and tissue 15N concentrations. Preliminary results have shown that IN concentrations increase in newer collapse scar features as well as with thaw depth. Our data also show a shift from feather moss and ericaceous shrub-dominate understories in the permafrost plateau to Sphagnum and sedge dominated thaw ecotone and bog communities. Further successional development of the collapse scar bog results in the reintroduction of small evergreen and deciduous shrubs as the peat mat develops. Over time, collapse scar succession and peat accumulation appears to lead to

  19. Litter quality mediated nitrogen effect on plant litter decomposition regardless of soil fauna presence.

    Science.gov (United States)

    Zhang, Weidong; Chao, Lin; Yang, Qingpeng; Wang, Qingkui; Fang, Yunting; Wang, Silong

    2016-10-01

    Nitrogen addition has been shown to affect plant litter decomposition in terrestrial ecosystems. The way that nitrogen deposition impacts the relationship between plant litter decomposition and altered soil nitrogen availability is unclear, however. This study examined 18 co-occurring litter types in a subtropical forest in China in terms of their decomposition (1 yr of exposure in the field) with nitrogen addition treatment (0, 0.4, 1.6, and 4.0 mol·N·m -2 ·yr -1 ) and soil fauna exclusion (litter bags with 0.1 and 2 cm mesh size). Results showed that the plant litter decomposition rate is significantly reduced because of nitrogen addition; the strength of the nitrogen addition effect is closely related to the nitrogen addition levels. Plant litters with diverse quality responded to nitrogen addition differently. When soil fauna was present, the nitrogen addition effect on medium-quality or high-quality plant litter decomposition rate was -26% ± 5% and -29% ± 4%, respectively; these values are significantly higher than that of low-quality plant litter decomposition. The pattern is similar when soil fauna is absent. In general, the plant litter decomposition rate is decreased by soil fauna exclusion; an average inhibition of -17% ± 1.5% was exhibited across nitrogen addition treatment and litter quality groups. However, this effect is weakly related to nitrogen addition treatment and plant litter quality. We conclude that the variations in plant litter quality, nitrogen deposition, and soil fauna are important factors of decomposition and nutrient cycling in a subtropical forest ecosystem. © 2016 by the Ecological Society of America.

  20. Effect of nitrogen and potassium fertilization on radiocesium absorption in soybean

    International Nuclear Information System (INIS)

    Nihei, Naoto; Hirose, Atsushi; Tanoi, Keitaro; Nakanishi, Tomoko M.

    2015-01-01

    Radioactive materials that were released during the nuclear accident contaminated the soil and agricultural products. It has become clear that potassium fertilization is effective for the reduction of radiocesium concentrations in agricultural crops. However, apart from reports about potassium, few reports have examined how nitrogen, which has a large effect on crop growth, contributes to the radiocesium absorption. Focusing on this point, we studied the effect of nitrogen and potassium fertilizer on the radiocesium absorption in soybean seedlings. The concentration of radiocesium in the seed of soybean was higher in nitrogen-fertilized plants than in plants grown without fertilizer. The radiocesium concentration in the aboveground biomass increased as the amount of nitrogen fertilization increased. But the concentrations of radiocesium were higher in potassium-fertilized plants at high-N than in plants without added nitrogen and potassium. Further study is required to clarify the factors that incur an increase in radiocesium concentration in response to nitrogen fertilization. Special care is required to start farming soybean on fallow fields evacuated after the accident or on fields where rice has been grown before, which tend to have higher available nitrogen than the regularly cultivated fields. (author)

  1. The Effects of Arbuscular Mycorrhiza Fungi on Dry Matter and Concentrations of Nitrogen, Phosphorus and Potassium in Berseem Clover, by Cadmium stress

    Directory of Open Access Journals (Sweden)

    hashem aram

    2016-02-01

    Zanjan, after the complete analysis of soil and obtaining the chemical and physical properties in the laboratory. 6 kg of soil was weighed for each pot and then the soil was contaminated. Cadmium sulfate was used in this experiment. The mycorrhizal fungi weighed 150 grams and was mixed with the soil. After mixing the soil with mycorrhizal fungi, the soil was put in pots and then it was cultivated with clover. In this study, clover seeds weighed 0/5 grams and were disinfected with 10% hydrogen peroxide solution and were added to each pot. Distilled water was used for irrigation. After the completion of growth of plants (about 70 day, plant aerial parts and roots were harvested and before measuring, they were washed with distilled water and then were dried in the oven for 72 hours. Plant aerial parts were harvested. Data were analyzed by SAS (version 9 and MSTATC (version 2.10 software, and obtained variance analysis tables. Mean comparison of different treatments was conducted by Duncan test. Charts were obtained by excel software. Results and Discussion: The results showed that the effects of arbuscular mycorrhizal fungi were significant on all traits measured (P< 0.01. With increasing cadmium concentration in soil, dry matter of 37% and 39%, nitrogen concentration of 35% and 28%, Potassium 9/27% and 37%, and phosphorus concentration of 37% and 39%, reduced in root and aerial, respectively. Also the results showed that arbuscular mycorrhizal fungi increased dry matter amount by 42% and 26%, nitrogen concentration by 40.3% and 30%, phosphorus concentration by 6% and 15.4%, potassium concentrations by 54% and 91.2% in root and aerial, respectively. Interaction between cadmium levels and mycorrhizal fungi in statistics was significant on dry matter aerial, nitrogen concentration in aerial and root, and potassium concentrations in plant root (P< 0.01. Conclusion: The results showed that mycorrhizal fungi were significant on all traits measured in one percent level. Cadmium

  2. A mechanistic, globally-applicable model of plant nitrogen uptake, retranslocation and fixation

    Science.gov (United States)

    Fisher, J. B.; Tan, S.; Malhi, Y.; Fisher, R. A.; Sitch, S.; Huntingford, C.

    2008-12-01

    Nitrogen is one of the nutrients that can most limit plant growth, and nitrogen availability may be a controlling factor on biosphere responses to climate change. We developed a plant nitrogen assimilation model based on a) advective transport through the transpiration stream, b) retranslocation whereby carbon is expended to resorb nitrogen from leaves, c) active uptake whereby carbon is expended to acquire soil nitrogen, and d) biological nitrogen fixation whereby carbon is expended for symbiotic nitrogen fixers. The model relies on 9 inputs: 1) net primary productivity (NPP), 2) plant C:N ratio, 3) available soil nitrogen, 4) root biomass, 5) transpiration rate, 6) saturated soil depth,7) leaf nitrogen before senescence, 8) soil temperature, and 9) ability to fix nitrogen. A carbon cost of retranslocation is estimated based on leaf nitrogen and compared to an active uptake carbon cost based on root biomass and available soil nitrogen; for nitrogen fixers both costs are compared to a carbon cost of fixation dependent on soil temperature. The NPP is then allocated to optimize growth while maintaining the C:N ratio. The model outputs are total plant nitrogen uptake, remaining NPP available for growth, carbon respired to the soil and updated available soil nitrogen content. We test and validate the model (called FUN: Fixation and Uptake of Nitrogen) against data from the UK, Germany and Peru, and run the model under simplified scenarios of primary succession and climate change. FUN is suitable for incorporation into a land surface scheme of a General Circulation Model and will be coupled with a soil model and dynamic global vegetation model as part of a land surface model (JULES).

  3. Soil Microbial Communities and Gas Dynamics Contribute to Arbuscular Mycorrhizal Nitrogen Uptake and Transfer to Plants

    Science.gov (United States)

    Hestrin, R.; Harrison, M. J.; Lehmann, J.

    2016-12-01

    Arbuscular mycorrhizal fungi (AMF) associate with most terrestrial plants and influence ecosystem ecology and biogeochemistry. There is evidence that AMF play a role in soil nitrogen cycling, in part by taking up nitrogen and transferring it to plants. However, many aspects of this process are poorly understood, including the factors that control fungal access to nitrogen stored in soil organic matter. In this study, we used stable isotopes and root exclusion to track nitrogen movement from organic matter into AMF and host plants. AMF significantly increased total plant biomass and nitrogen content, but both AMF and other soil microbes seemed to compete with plants for nitrogen. Surprisingly, gaseous nitrogen species also contributed significantly to plant nitrogen content under alkaline soil conditions. Our current experiments investigate whether free-living microbial communities that have evolved under a soil nitrogen gradient influence AMF access to soil organic nitrogen and subsequent nitrogen transfer to plants. This research links interactions between plants, mycorrhizal symbionts, and free-living microbes with terrestrial carbon and nitrogen dynamics.

  4. Morphogenesis of Tanzania guinea grass under nitrogen doses and plant densities

    Directory of Open Access Journals (Sweden)

    Thiago Gomes dos Santos Braz

    2011-07-01

    Full Text Available The objective of this work was to evaluate effects of nitrogen fertilization and plant density on morphogenesis of Tanzania guinea grass. It was used a random block design with 12 treatments and two replications in a 4 × 3 factorial arrangement, with four doses of nitrogen (N (without N application, 80, 160 or 320 kg/ha.year and three plant densities (9, 25 or 49 plants/m². Harvest was performed at 25 cm from the ground when the canopy intercepted 95% of the incident light. Rates of leaf appearance and pseudostem elongation were positively and linearly influenced by nitrogen, whereas phillochron and leaf life span were influenced linearly and negatively. Leaf elongation responded positively to two factors, whereas leaf senescence rate and number of live leaves were not influenced by the factors evaluated. Number of total, basal and aerial tillers were greater at the density of 9 plants/m² and at the nitrogen dose of 320 kg/ha.year. Nitrogen increases production of leaves and tillers in Tanzania guinea grass defoliated at 95% of light interception, but high density of plants reduces the number of tiller per bunch.

  5. Control of the nitrogen concentration in liquid lithium by the hot trap method

    International Nuclear Information System (INIS)

    Sakurai, Toshiharu; Yoneoka, Toshiaki; Tanaka, Satoru; Suzuki, Akihiro; Muroga, Takeo

    2002-01-01

    The nitrogen concentration in liquid lithium was controlled by the hot-trap method. Titanium, vanadium and a V-Ti alloy were used as nitrogen gettering materials. Gettering experiments were conducted at 673, 773 and 823 K for 0.4-2.8 Ms. After immersion, the nitrogen concentration increased in titanium and V-Ti were tested at 823 K. Especially the nitrogen gettering effect by the V-10at.%Ti alloy was found to be large. Nitrogen was considered to exist mainly as solid solution in the V-10at.%Ti alloy. The decrease of the nitrogen concentration in liquid lithium by the V-Ti gettering was also confirmed

  6. The influence of different forms and concentrations of nitrogen on ...

    African Journals Online (AJOL)

    Reports the results of a study conducted to compare the growth and total reduced nitrogen content of the above ground components of Digitaria eriantha and Chloris gayana plants grown in saline conditions and supplied with different levels of nitrogen in the form of nitrate and ammonia; Chloris gayana and Digitaria ...

  7. Effect of nitrogen concentration on temperature dependent mechanical properties of vanadium

    International Nuclear Information System (INIS)

    Carlson, O.N.; Rehbein, D.K.

    1979-01-01

    The critical resolved shear stress and strain rate sensitivity of vanadium were determined for vanadium-nitrogen alloys over the temperature range of 77K to 400K for concentrations of 1 to 500 wt ppm nitrogen. The concentration dependence of the hardening rate agrees quite well with either the Fleischer or Labusch strengthening model but the combined temperature and concentration dependence follows more closely the form predicted by Ono and Sommer. The strain rate sensitivity exhibits a peak at 140K which decreases with increasing nitrogen content but above 250K there is a reversal in this effect. (orig.) [de

  8. Understanding plant response to nitrogen limitation for the improvement of crop nitrogen use efficiency.

    Science.gov (United States)

    Kant, Surya; Bi, Yong-Mei; Rothstein, Steven J

    2011-02-01

    Development of genetic varieties with improved nitrogen use efficiency (NUE) is essential for sustainable agriculture. Generally, NUE can be divided into two parts. First, assimilation efficiency involves nitrogen (N) uptake and assimilation and second utilization efficiency involves N remobilization. Understanding the mechanisms regulating these processes is crucial for the improvement of NUE in crop plants. One important approach is to develop an understanding of the plant response to different N regimes, especially to N limitation, using various methods including transcription profiling, analysing mutants defective in their normal response to N limitation, and studying plants that show better growth under N-limiting conditions. One can then attempt to improve NUE in crop plants using the knowledge gained from these studies. There are several potential genetic and molecular approaches for the improvement of crop NUE discussed in this review. Increased knowledge of how plants respond to different N levels as well as to other environmental conditions is required to achieve this.

  9. Estimating Canopy Nitrogen Concentration in Sugarcane Using Field Imaging Spectroscopy

    Directory of Open Access Journals (Sweden)

    Marc Souris

    2012-06-01

    Full Text Available The retrieval of nutrient concentration in sugarcane through hyperspectral remote sensing is widely known to be affected by canopy architecture. The goal of this research was to develop an estimation model that could explain the nitrogen variations in sugarcane with combined cultivars. Reflectance spectra were measured over the sugarcane canopy using a field spectroradiometer. The models were calibrated by a vegetation index and multiple linear regression. The original reflectance was transformed into a First-Derivative Spectrum (FDS and two absorption features. The results indicated that the sensitive spectral wavelengths for quantifying nitrogen content existed mainly in the visible, red edge and far near-infrared regions of the electromagnetic spectrum. Normalized Differential Index (NDI based on FDS(750/700 and Ratio Spectral Index (RVI based on FDS(724/700 are best suited for characterizing the nitrogen concentration. The modified estimation model, generated by the Stepwise Multiple Linear Regression (SMLR technique from FDS centered at 410, 426, 720, 754, and 1,216 nm, yielded the highest correlation coefficient value of 0.86 and Root Mean Square Error of the Estimate (RMSE value of 0.033%N (n = 90 with nitrogen concentration in sugarcane. The results of this research demonstrated that the estimation model developed by SMLR yielded a higher correlation coefficient with nitrogen content than the model computed by narrow vegetation indices. The strong correlation between measured and estimated nitrogen concentration indicated that the methods proposed in this study could be used for the reliable diagnosis of nitrogen quantity in sugarcane. Finally, the success of the field spectroscopy used for estimating the nutrient quality of sugarcane allowed an additional experiment using the polar orbiting hyperspectral data for the timely determination of crop nutrient status in rangelands without any requirement of prior

  10. Growth but not photosynthesis response of a host plant to infection by a holoparasitic plant depends on nitrogen supply.

    Directory of Open Access Journals (Sweden)

    Hao Shen

    Full Text Available Parasitic plants can adversely influence the growth of their hosts by removing resources and by affecting photosynthesis. Such negative effects depend on resource availability. However, at varied resource levels, to what extent the negative effects on growth are attributed to the effects on photosynthesis has not been well elucidated. Here, we examined the influence of nitrogen supply on the growth and photosynthesis responses of the host plant Mikania micrantha to infection by the holoparasite Cuscuta campestris by focusing on the interaction of nitrogen and infection. Mikania micrantha plants fertilized at 0.2, 1 and 5 mM nitrate were grown with and without C. campestris infection. We observed that the infection significantly reduced M. micrantha growth at each nitrate fertilization and more severely at low than at high nitrate. Such alleviation at high nitrate was largely attributed to a stronger influence of infection on root biomass at low than at high nitrate fertilization. However, although C. campestris altered allometry and inhibited host photosynthesis, the magnitude of the effects was independent of nitrate fertilizations. The infection reduced light saturation point, net photosynthesis at saturating irradiances, apparent quantum yield, CO2 saturated rate of photosynthesis, carboxylation efficiency, the maximum carboxylation rate of Rubisco, and maximum light-saturated rate of electron transport, and increased light compensation point in host leaves similarly across nitrate levels, corresponding to a similar magnitude of negative effects of the parasite on host leaf soluble protein and Rubisco concentrations, photosynthetic nitrogen use efficiency and stomatal conductance across nitrate concentrations. Thus, the more severe inhibition in host growth at low than at high nitrate supplies cannot be attributed to a greater parasite-induced reduction in host photosynthesis, but the result of a higher proportion of host resources

  11. Growth but Not Photosynthesis Response of a Host Plant to Infection by a Holoparasitic Plant Depends on Nitrogen Supply

    Science.gov (United States)

    Shen, Hao; Xu, Shu-Jun; Hong, Lan; Wang, Zhang-Ming; Ye, Wan-Hui

    2013-01-01

    Parasitic plants can adversely influence the growth of their hosts by removing resources and by affecting photosynthesis. Such negative effects depend on resource availability. However, at varied resource levels, to what extent the negative effects on growth are attributed to the effects on photosynthesis has not been well elucidated. Here, we examined the influence of nitrogen supply on the growth and photosynthesis responses of the host plant Mikania micrantha to infection by the holoparasite Cuscuta campestris by focusing on the interaction of nitrogen and infection. Mikania micrantha plants fertilized at 0.2, 1 and 5 mM nitrate were grown with and without C. campestris infection. We observed that the infection significantly reduced M. micrantha growth at each nitrate fertilization and more severely at low than at high nitrate. Such alleviation at high nitrate was largely attributed to a stronger influence of infection on root biomass at low than at high nitrate fertilization. However, although C. campestris altered allometry and inhibited host photosynthesis, the magnitude of the effects was independent of nitrate fertilizations. The infection reduced light saturation point, net photosynthesis at saturating irradiances, apparent quantum yield, CO2 saturated rate of photosynthesis, carboxylation efficiency, the maximum carboxylation rate of Rubisco, and maximum light-saturated rate of electron transport, and increased light compensation point in host leaves similarly across nitrate levels, corresponding to a similar magnitude of negative effects of the parasite on host leaf soluble protein and Rubisco concentrations, photosynthetic nitrogen use efficiency and stomatal conductance across nitrate concentrations. Thus, the more severe inhibition in host growth at low than at high nitrate supplies cannot be attributed to a greater parasite-induced reduction in host photosynthesis, but the result of a higher proportion of host resources transferred to the parasite at

  12. Control of nitrogen concentration in liquid lithium by iron-titanium alloy

    International Nuclear Information System (INIS)

    Hirakane, Shinji; Yoneoka, Toshiaki; Tanaka, Satoru

    2006-01-01

    Reducing the nitrogen concentration in liquid lithium is one of the most important steps in creating a liquid lithium blanket system. In this study, in order to verify the nitrogen gettering performance of Fe-Ti alloy, the variation in the nitrogen concentration in liquid lithium, into which Fe-10 at.% Ti or Fe-5 at.% Ti getter was immersed, was examined. The results confirmed a gettering performance of Fe-Ti alloy comparable to that of V-Ti alloy, although the effects were not durable in either the Fe-Ti or the V-Ti alloy. After the immersion test, the existing states of nitrogen absorbed in the gettering material were analyzed by means of XRD, XMA and XPS. TiN and some nitrogen dissolved in α-Fe without forming TiN were observed. It was indicated that nitrogen gettering is prevented not only by the surface nitrides, but also by the internal diffusion barriers originating from the absorbed nitrogen

  13. Nitrogen gas supply device in nuclear power plant

    International Nuclear Information System (INIS)

    Nishino, Masami

    1991-01-01

    The present invention concerns a nitrogen gas supply device in a nuclear power plant for supplying nitrogen gases to a reactor container and equipments working with the nitrogen gas as the load. A liquid nitrogen storage pool is disposed to a concrete nuclear buildings and has a two-vessel structure of inner and outer vessels, in which heat insulators are disposed between the inner and the outer vessels. Further, the nitrogen gas supply mechanism is disposed in an evaporation chamber disposed in adjacent with the liquid nitrogen storage pool in the reator building. Accordingly, since liquid nitrogen is stored in the liquid nitrogen storage pool having a structure surrounded by concrete walls, direct sunlight is completely interrupted, thereby enabling to prevent the heat caused by the direct sunlight from conducting to the liquid nitrogen. Further, since the outer vessel is not exposed to the surrounding atmosphere, heat conduction rate relative to the external air is small. This can reduce the amount of liquid nitrogen released to the atmospheric air due to natural evaporation. (I.N.)

  14. Effect of nitrogen supply on some indices of plant-water relations of beans (Phaseolus vulgaris L. )

    Energy Technology Data Exchange (ETDEWEB)

    Shimshi, D

    1970-01-01

    The effect of nitrogen supply on some indices of plant-water relations was studied on potted bean plants. When soil moisture was relatively high, the leaves of N-deficient plants transpired less than those of N-supplied plants, the transpiration rate being closely associated with the chlorophyll content of the leaves of various ages. In detached leaves which were saturated by floating over distilled water, stomatal width was markedly wider in N-supplied than in N-deficient plants. Throughout the available moisture range, the water saturation deficit was higher in N-supplied leaves. In the dry range of soil moisture, chlorotic leaves transpired more than normal green leaves; N-deficient plants failed to exhibit a sharp rise in the content of soluble metabolites in the sap, when approaching the wilting range. The content of cell wall materials was higher in N-deficient plants. The relationships between these indices is discussed; it is tentatively concluded that nitrogen deficiency impairs the ability of the plants to adjust their water status to changes in soil moisture by regulation of stomatal transpiration and of sap solute concentration. 21 references, 2 tables.

  15. Effect of Plant Density, Rate and Split Application of Nitrogen Fertilizer on Quality Characteristics and Nitrogen Use Efficiency of Safflower under Weed Competition

    Directory of Open Access Journals (Sweden)

    M Fuladvand

    2015-09-01

    Full Text Available In order to evaluation of plant density, rate and method of nitrogen fertilizer split application on quality characteristics and nitrogen use efficiency of safflower (Sofeh variety under weed competition a field experiment was carried out in field research Yasouj University in 2013. This experiment was a factorial based on randomized complete block design with three replications. First factor was a two levels plant density (20 and 40 plants m-2 and second factor was nitrogen rate application on nine levels. That included; non nitrogen application and 75 and 150 kgN ha-1 nitrogen application that both used with four split method. Split methods were included; S1 (%50 in pre planting stage - %50 in stem elongation stage, S2 (%25 in pre planting stage - %75 in stem elongation stage, S3 (%25 in pre planting stage - %50 in stem elongation stage -%25 in flowering stage and S4 (%25 in pre planting stage - %25 in stem elongation stage - %25 in flowering stage. Also in this experiment, weed did not control. Results showed that whit increasing crop density, oil yield and protein grain yield increased by 20 percent and nitrogen utilization efficiency increased by 10 percent. The highest oil yield (50.25 g m-2 was obtained from 75 kg ha-1 nitrogen with three-stage split application (S4. Finally, results showed that increasing nitrogen fertilizer application decreased nitrogen utilization efficiency but three-stage split method application increased this trait.

  16. Terrestrial nitrogen cycles: Some unanswered questions

    Science.gov (United States)

    Vitousek, P.

    1984-01-01

    Nitrogen is generally considered to be the element which most often limits the growth of plants in both natural and agricultural ecosystems. It regulates plant growth because photosynthetic rates are strongly dependent on the concentration of nitrogen in leaves, and because relatively large mounts of protein are required for cell division and growth. Yet nitrogen is abundant in the biosphere - the well-mixed pool in the atmosphere is considered inexhaustible compared to biotic demand, and the amount of already fixed organic nitrogen in soils far exceeds annual plant uptake in terrestrial ecosystems. In regions where natural vegetation is not nitrogen limited, continuous cultivation induces nitrogen deficiency. Nitrogen loss from cultivated lands is more rapid than that of other elements, and nitrogen fertilization is generally required to maintain crop yield under any continuous system. The pervasiveness of nitrogen deficiency in many natural and most managed sites is discussed.

  17. Light stress effect and by nitrogen deficiency in plants of Petiveria alliacea measured with two-chlorophyll-fluorescence technique

    Science.gov (United States)

    Zuluaga, H.; Oviedo, A.; Solarte, Efrain; Pena, E. J.

    2004-10-01

    The chlorophyll fluorescence was studied in Petiveria alliacea plants exposed to different nitrogen concentrations and light radiation, the response was measured by two different forms; (1) measuring the photosynthetic efficiency with a pulse amplitude modulated fluorometro (PAM) emitted by a 650 nm diode and (2) measuring the fluorescence spectra caused by high power 452 nm diode with a SD2000 spectrometer. It was found out that the photosynthetic efficiency decreased in the plants exposed to high radiance and low nitrogen. Two chlorophyll fluorescence peaks were observed on 684 nm and 739 nm, the intensities in this wavelengths are inversely related with the light radiance. The correlation between the FIR and photosynthetic efficiency was very strong (r2 = -0.809, p Alliacea plants.

  18. Fate of nitrogen (15N) from velvet bean in the soil-plant system

    International Nuclear Information System (INIS)

    Scivittaro, Walkyria Bueno; Muraoka, Takashi; Boaretto, Antonio Enedi; Trivelin, Paulo Cesar Ocheuze

    2004-01-01

    Because of their potential for N 2 biological fixation, legumes are an alternative source of nitrogen to crops, and can even replace or supplement mineral fertilization. A greenhouse experiment was carried out to evaluate temporal patterns of velvet bean (Mucuna aterrima) green manure release of nitrogen to rice plants, and to study the fate of nitrogen from velvet bean in rice cultivation. The isotopic dilution methodology was used. Treatments consisted of a control and 10 incubation periods of soil fertilized with 15 N-labeled velvet bean (0, 20, 40, 60, 90, 120, 150, 180, 210, and 240 days). The plant material was previously chopped, sifted (10 mm mesh sieve) and oven-dried (65 deg C). Incubation of the plant material (2.2 g kg -1 soil) was initiated by the longest period, in order to synchronize the planting of the test crop, rice (Oryza sativa), at time zero for all treatments. Green manure incorporation promoted increases in rice dry matter yield and nitrogen uptake. These variables showed maximum values at incubation periods of 38 and 169 days, respectively. Green manure nitrogen utilization by rice plants was highest at an incubation period corresponding to 151 days. More than 60% of the green manure nitrogen remained in the soil after rice cultivation. The highest green manure nitrogen recovery from the soil-plant system occurred at an incubation period equivalent to 77 days. (author)

  19. Cd Toxicity and Accumulation in Rice Plants Vary with Soil Nitrogen Status and Their Genotypic Difference can be Partly Attributed to Nitrogen Uptake Capacity

    Directory of Open Access Journals (Sweden)

    Qin DU

    2009-12-01

    Full Text Available Two indica rice genotypes, viz. Milyang 46 and Zhenshan 97B differing in Cd accumulation and tolerance were used as materials in a hydroponic system consisting of four Cd levels (0, 0.1, 1.0 and 5.0 µmol/L and three N levels (23.2, 116.0 and 232.0 mg/L to study the effects of nitrogen status and nitrogen uptake capacity on Cd accumulation and tolerance in rice plants. N-efficient rice genotype, Zhenshan 97B, accumulated less Cd and showed higher Cd tolerance than N-inefficient rice genotype, Milyang 46. There was consistency between nitrogen uptake capacity and Cd tolerance in rice plants. Increase of N level in solution slightly increased Cd concentration in shoots but significantly increased in roots of both genotypes. Compared with the control at low N level, Cd tolerance in both rice genotypes could be significantly enhanced under normal N level, but no significant difference was observed between the Cd tolerances under normal N (116.0 mg/L and high N (232.0 mg/L conditions. The result proved that genotypic differences in Cd accumulation and toxicity could be, at least in part, attributed to N uptake capacity in rice plants.

  20. Monitoring plant tissue nitrogen isotopes to assess nearshore inputs of nitrogen to Lake Crescent, Olympic National Park, Washington

    Science.gov (United States)

    Cox, Stephen E.; Moran, Patrick W.; Huffman, Raegan L.; Fradkin, Steven C.

    2016-05-31

    Mats of filamentous-periphytic algae present in some nearshore areas of Lake Crescent, Olympic National Park, Washington, may indicate early stages of eutrophication from nutrient enrichment of an otherwise highly oligotrophic lake. Natural abundance ratios of stable isotopes of nitrogen (δ15N) measured in plant tissue growing in nearshore areas of the lake indicate that the major source of nitrogen used by these primary producing plants is derived mainly from atmospherically fixed nitrogen in an undeveloped forested ecosystem. Exceptions to this pattern occurred in the Barnes Point area where elevated δ15N ratios indicate that effluent from septic systems also contribute nitrogen to filamentous-periphytic algae growing in the littoral zone of that area. Near the Lyre River outlet of Lake Crescent, the δ15N of filamentous-periphytic algae growing in close proximity to the spawning areas of a unique species of trout show little evidence of elevated δ15N indicating that nitrogen from on-site septic systems is not a substantial source of nitrogen for these plants. The δ15N data corroborate estimates that nitrogen input to Lake Crescent from septic sources is comparatively small relative to input from motor vehicle exhaust and vegetative sources in undeveloped forests, including litterfall, pollen, and symbiotic nitrogen fixation. The seasonal timing of blooms of filamentous-periphytic algal near the lake shoreline is also consistent with nitrogen exported from stands of red alder trees (Alnus rubra). Isotope biomonitoring of filamentous-periphytic algae may be an effective approach to monitoring the littoral zone for nutrient input to Lake Crescent from septic sources.

  1. Relationship between atmospheric ammonia concentration and nitrogen content in terricolous lichen (Cladonia portentosa)

    DEFF Research Database (Denmark)

    Nielsen, Knud Erik; Andersen, Helle Vibeke; Strandberg, Morten Tune

    2014-01-01

    From April 2006 to April 2007, the geographical and seasonal variation in nitrogen content in terricolous lichen (Cladonia portentosa) and atmospheric ammonia concentrations were measured at five heathland sites. The seasonal variation in the nitrogen content of the lichen was small, even though...... there was a large seasonal variation in the air concentration of ammonia. A sizable local variation in the nitrogen content of the lichen was found even at the scale of a few kilometres. The nitrogen content in the lichen showed a high correlation to the yearly mean value of the measured ammonia concentration...

  2. Nitrogen Removal in a Full-Scale Domestic Wastewater Treatment Plant with Activated Sludge and Trickling Filter

    Directory of Open Access Journals (Sweden)

    Davood Nourmohammadi

    2013-01-01

    Full Text Available During the last decade, more stringent effluent requirements concerning the nutrients effluent values have been imposed by legislation and social concern. In this study, efficiency of total nitrogen removal in activated sludge and trickling filter processes (AS/TF was investigated in Tehran North wastewater treatment plant. Biological system in this site was included, anoxic selector tank, aeration tank, final sedimentation, and trickling filter. A part of treated wastewater before chlorination was mixed with supernatant of dewatered sludge and fed to the trickling filter. Supernatant of dewatered sludge with high concentration of NH4-N was diluted by treated wastewater to provide complete nitrification in trickling filter Produced nitrate in trickling filter was arrived to the anoxic tank and converted to nitrogen gas by denitrification. According to the study result, low concentration of organic carbone and high concentration of NH4-N led to nitrification in TF, then nitrate denitrification to nitrogen gas occurred in selector area. NH4-N concentration decreased from 26.8 mg/L to 0.29 mg/L in TF, and NO3-N concentration increased from 8.8 mg/L to 27 mg/L in TF. Consequently, the total nitrogen decreased approximately to 50% in biological process. This efficiency has been observed in returned flow around 24% from final sedimentation into TF. It was concluded that, in comparison with biological nutrient removal processes, this process is very efficient and simple.

  3. Farmer driven national monitoring of nitrogen concentrations in drainage water in Denmark

    Science.gov (United States)

    Piil, Kristoffer; Lemming, Camilla; Kolind Hvid, Søren; Knudsen, Leif

    2014-05-01

    Field drains are often considered to short circuit the hydrological cycle in agricultural catchments and lead to an increased risk of nitrogen loss to the environment. Because of increased regulation of agricultural practices due to catchment management plans, resulting from the implementation of the water frame directive, Danish farmers pushed for a large scale monitoring of nitrogen loss from field drains. Therefore, the knowledge centre for agriculture, Denmark, organized a three year campaign where farmers and local agricultural advisory centres collected water samples from field drains three to five times during the winter season. Samples were analysed for nitrate and total nitrogen. Combined, more than 600 drains were monitored over the three years. During the first two years of monitoring, average winter concentrations of total nitrogen ranged from 0.1 mg N L-1 to 31.1 mg N L-1, and the fraction of total nitrogen present as nitrate ranged from 0% to 100%. This variation is much larger than what is observed in the Danish national monitoring and assessment programme, which monitors only a few drains in selected catchments. Statistical analysis revealed that drainage water nitrogen concentrations were significantly correlated to the cropping system and the landscape type (high ground/lowlands/raised seabed) in which the monitored fields were situated. The average total nitrogen concentration was more than 2 mg N L-1 lower on raised seabed than on high ground, and the average fraction of total nitrogen present as nitrate was more than 20% lower. This indicates that substantial nitrate reduction occurs at or above the drain depth on raised sea flats, in particular in the north of Denmark. This inherent nitrogen retention on raised seabed is not taken into account in the current environmental regulation, nor in the first generation catchment management plans. The monitoring program demonstrated large variation in nitrogen concentrations in drainage water, in

  4. 15N dilution technique of assessing the contribution of nitrogen fixation to rice plant

    International Nuclear Information System (INIS)

    Ventura, Wilbur; Watanabe, Iwao

    1983-01-01

    An attempt to correlate the positive nitrogen balance in rice-soil system with the 15 N dilution in rice plants was made to see if isotope dilution can be used to assess the contribution of nitrogen fixation to the nitrogen nutrition of rice. 15 N ammonium sulfate and sucrose were added to the moist soil in pots to label biomass nitrogen fraction. The rice-soil system with higher nitrogen gain had lower 15 N content in the rice plants. When the surface of pots was covered with black cloths to suppress photodependent N 2 fixation, no significant nitrogen gain was observed. Significant gain was found in the rice-flooded soil system exposed to light, and the 15 N content of plants decreased in allowing the photodependent N 2 fixation by blue-green algae symbiosis. The contribution of plant nitrogen derived from photodependent N 2 fixation was estimated to be 20-30 % of the positive nitrogen gain in the system by the 15 N dilution technique using the rice-covered soil as reference system. (Mori, K.)

  5. Interactive Effects of CO2 Concentration and Water Regime on Stable Isotope Signatures, Nitrogen Assimilation and Growth in Sweet Pepper

    Directory of Open Access Journals (Sweden)

    María D. Serret

    2018-01-01

    Full Text Available Sweet pepper is among the most widely cultivated horticultural crops in the Mediterranean basin, being frequently grown hydroponically under cover in combination with CO2 fertilization and water conditions ranging from optimal to suboptimal. The aim of this study is to develop a simple model, based on the analysis of plant stable isotopes in their natural abundance, gas exchange traits and N concentration, to assess sweet pepper growth. Plants were grown in a growth chamber for near 6 weeks. Two [CO2] (400 and 800 μmol mol−1, three water regimes (control and mild and moderate water stress and four genotypes were assayed. For each combination of genotype, [CO2] and water regime five plants were evaluated. Water stress applied caused significant decreases in water potential, net assimilation, stomatal conductance, intercellular to atmospheric [CO2], and significant increases in water use efficiency, leaf chlorophyll content and carbon isotope composition, while the relative water content, the osmotic potential and the content of anthocyanins did change not under stress compared to control conditions support this statement. Nevertheless, water regime affects plant growth via nitrogen assimilation, which is associated with the transpiration stream, particularly at high [CO2], while the lower N concentration caused by rising [CO2] is not associated with stomatal closure. The stable isotope composition of carbon, oxygen, and nitrogen (δ13C, δ18O, and δ15N in plant matter are affected not only by water regime but also by rising [CO2]. Thus, δ18O increased probably as response to decreases in transpiration, while the increase in δ15N may reflect not only a lower stomatal conductance but a higher nitrogen demand in leaves or shifts in nitrogen metabolism associated with decreases in photorespiration. The way that δ13C explains differences in plant growth across water regimes within a given [CO2], seems to be mediated through its direct

  6. Nitrogen deposition and prey nitrogen uptake control the nutrition of the carnivorous plant Drosera rotundifolia

    Energy Technology Data Exchange (ETDEWEB)

    Millett, J., E-mail: j.millett@lboro.ac.uk [Centre for Hydrological and Ecosystem Science, Department of Geography, Loughborough University, Loughborough LE11 3TU (United Kingdom); Foot, G.W. [Centre for Hydrological and Ecosystem Science, Department of Geography, Loughborough University, Loughborough LE11 3TU (United Kingdom); Svensson, B.M. [Department of Plant Ecology and Evolution, Uppsala University, Norbyvägen 18 D, SE-752 36 Uppsala (Sweden)

    2015-04-15

    Nitrogen (N) deposition has important negative impacts on natural and semi-natural ecosystems, impacting on biotic interactions across trophic levels. Low-nutrient systems are particularly sensitive to changes in N inputs and are therefore more vulnerable to N deposition. Carnivorous plants are often part of these ecosystems partly because of the additional nutrients obtained from prey. We studied the impact of N deposition on the nutrition of the carnivorous plant Drosera rotundifolia growing on 16 ombrotrophic bogs across Europe. We measured tissue N, phosphorus (P) and potassium (K) concentrations and prey and root N uptake using a natural abundance stable isotope approach. Our aim was to test the impact of N deposition on D. rotundifolia prey and root N uptake, and nutrient stoichiometry. D. rotundifolia root N uptake was strongly affected by N deposition, possibly resulting in reduced N limitation. The contribution of prey N to the N contained in D. rotundifolia ranged from 20 to 60%. N deposition reduced the maximum amount of N derived from prey, but this varied below this maximum. D. rotundifolia tissue N concentrations were a product of both root N availability and prey N uptake. Increased prey N uptake was correlated with increased tissue P concentrations indicating uptake of P from prey. N deposition therefore reduced the strength of a carnivorous plant–prey interaction, resulting in a reduction in nutrient transfer between trophic levels. We suggest that N deposition has a negative impact on D. rotundifolia and that responses to N deposition might be strongly site specific. - Highlights: • We measured nutrition of the carnivorous plant Drosera rotundifolia across Europe. • We measured tissue nutrient concentrations and prey and root N uptake at 16 sites. • Tissue N concentrations were a product of root N availability and prey N uptake. • N deposition reduced the maximum amount of N derived from prey. • N deposition reduced the strength of a

  7. Nitrogen deposition and prey nitrogen uptake control the nutrition of the carnivorous plant Drosera rotundifolia

    International Nuclear Information System (INIS)

    Millett, J.; Foot, G.W.; Svensson, B.M.

    2015-01-01

    Nitrogen (N) deposition has important negative impacts on natural and semi-natural ecosystems, impacting on biotic interactions across trophic levels. Low-nutrient systems are particularly sensitive to changes in N inputs and are therefore more vulnerable to N deposition. Carnivorous plants are often part of these ecosystems partly because of the additional nutrients obtained from prey. We studied the impact of N deposition on the nutrition of the carnivorous plant Drosera rotundifolia growing on 16 ombrotrophic bogs across Europe. We measured tissue N, phosphorus (P) and potassium (K) concentrations and prey and root N uptake using a natural abundance stable isotope approach. Our aim was to test the impact of N deposition on D. rotundifolia prey and root N uptake, and nutrient stoichiometry. D. rotundifolia root N uptake was strongly affected by N deposition, possibly resulting in reduced N limitation. The contribution of prey N to the N contained in D. rotundifolia ranged from 20 to 60%. N deposition reduced the maximum amount of N derived from prey, but this varied below this maximum. D. rotundifolia tissue N concentrations were a product of both root N availability and prey N uptake. Increased prey N uptake was correlated with increased tissue P concentrations indicating uptake of P from prey. N deposition therefore reduced the strength of a carnivorous plant–prey interaction, resulting in a reduction in nutrient transfer between trophic levels. We suggest that N deposition has a negative impact on D. rotundifolia and that responses to N deposition might be strongly site specific. - Highlights: • We measured nutrition of the carnivorous plant Drosera rotundifolia across Europe. • We measured tissue nutrient concentrations and prey and root N uptake at 16 sites. • Tissue N concentrations were a product of root N availability and prey N uptake. • N deposition reduced the maximum amount of N derived from prey. • N deposition reduced the strength of a

  8. Forage yield and nutritive value of Tanzania grass under nitrogen supplies and plant densities

    Directory of Open Access Journals (Sweden)

    Fabrício Paiva de Freitas

    2012-04-01

    Full Text Available The objective of this experiment was to evaluate the nitrogen and plant density influence on the yield, forage dissection and nutritive value of Tanzania grass (Panicum maximum Jacq.. The design was of completely randomized blocks with three replications in a factorial arrangement with four nitrogen levels (0, 80, 160 or 320 kg/ha N and three plant densities (9, 25 or 49 plants/m². The plots were cut at 25 cm from soil level when the canopy reached 95% of light interception. The total dry matter forage yield and dry matter forage yield per harvest increased linearly with the nitrogen fertilization. The leaf and stem yield had the same response. The senesced forage yield was quadratically influenced by the nitrogen. The stems ratio in the morphologic composition was high in the high nitrogen levels and in the low plant densities. The leaf:stem ratio showed high values in this trial, but it was increased in plots without nitrogen and high plant density. The pre-grazing height was reduced with the increase in plant density. The nutritive value was favored by the nitrogen fertilization, which increased the crude protein level and reduced neutral detergent fiber and lignin. These factors increased the leaf and stem in vitro digestibility of organic matter. Nitrogen fertilization increases the forage yield of Tanzania grass under rotational grazing. After the establishment, plant density has little influence on the Tanzania grass yield and its forage dissection. The harvest with 95% light interception improves the structure and nutritive value of Tanzania grass pastures.

  9. Investigation of Sulfate concentration influence on Anaerobic Lagoon performance: Birjand Wastewater Treatment plant: A Case study

    Directory of Open Access Journals (Sweden)

    Mohammad Malakootian

    2016-05-01

    Full Text Available Background and Aim: In the present study the influence of the different sulfate concentration on the anaerobic lagoon stabilization was investigated. Materials and Methods: The present study is an experimental research carried out on anaerobic stabilization pond pilot for 7 months in Birjand wastewater treatment plant. After making sure of a steady state sulfate with different concentrations of 200, 300 and 400 mg/L were injected into the pilot. Then parameters including pH, organic nitrogen, ammonia nitrogen, BOD5, COD and nitrate were measured. All of the experiments were carried out according to the methods presented in the book "Standard Method" for the examination of water and wastewater (2005. Results: It was found that by increasing sulfate concentration from 200 to 300 mg/L all of parameters  except BOD5 (10% reduction had no significant changes., but by increasing the sulfate concentration from 200 to 400 mg/L the removal efficiency of the parameters such as BOD5, COD, Organic nitrogen, total kjeldahl nitrogen, nitrate and sulfate reduced to 11, 8, 12, 26, 6 and 10 percent, respectively. PH in the first stage was alkaline and then changed to acidic. Conclusion: Anaerobic stabilization ponds have different capacities for removal of organic compounds at different sulfate concentrations; so that; in sulfate concentration of 200 mg/L, the proper operation was seen and in concentration of 300 mg/L, sulfate-reducing bacteria get dominant and therefore odor is produced..  Alternatively, by increasing the concentration of sulphate to 400 mg/L, ammonia nitrogen increased 2.5 times (150% in the effluent.

  10. Leaf nitrogen assimilation and partitioning differ among subtropical forest plants in response to canopy addition of nitrogen treatments

    Science.gov (United States)

    Nan Liu; Shuhua Wu; Qinfeng Guo; Jiaxin Wang; Ce Cao; Jun Wang

    2018-01-01

    Global increases in nitrogen deposition may alter forest structure and function by interferingwith plant nitrogen metabolism (e.g., assimilation and partitioning) and subsequent carbon assimilation, but it is unclear how these responses to nitrogen deposition differ among species. In this study, we conducted a 2-year experiment to investigate the effects of canopy...

  11. Heterogeneity of soil surface ammonium concentration and other characteristics, related to plant specific variability in a Mediterranean-type ecosystem

    International Nuclear Information System (INIS)

    Cruz, Cristina; Bio, Ana M.F.; Jullioti, Aldo; Tavares, Alice; Dias, Teresa; Martins-Loucao, Maria Amelia

    2008-01-01

    Heterogeneity and dynamics of eight soil surface characteristics essential for plants-ammonium and nitrate concentrations, water content, temperature, pH, organic matter, nitrification and ammonification rates-were studied in a Mediterranean-type ecosystem on four occasions over a year. Soil properties varied seasonally and were influenced by plant species. Nitrate and ammonium were present in the soil at similar concentrations throughout the year. The positive correlation between them at the time of greatest plant development indicates that ammonium is a readily available nitrogen source in Mediterranean-type ecosystems. The results presented here suggest that plant cover significantly affects soil surface characteristics. - In Mediterranean-type ecosystems ammonium is present in the soil throughout the year and its concentration is dependent on plant cover

  12. Atmospheric nitrogen dioxide and northern plants

    Energy Technology Data Exchange (ETDEWEB)

    Aurela, A; Punkkinen, R

    1981-01-01

    Convincing quantitative data have recently been published about the uptake of atmospheric NO/sub 2/ by certain plants. Several qualitative pieces of evidence were found suggesting similar ability in northern plants. The volume fraction of NO/sub 2/ in the air, Phi, was measured at Kevo (70/sup 0/N, 27/sup 0/E). The Saltzman method was used, with a continuously recording detector, especially developed for measurements below the usual analytical limit of this method (0.005 ppm). The systematic error of Phi was estimated to be less than 50%. In general, Phi did not vary much with time. However, when the recorder of the atmospheric electric field at the adjacent Meteorological Station of Kevo once rose up to 4 times the normal value, the Phi-curve simultaneously rose momentarily. By using the measured value of anti-Phi, the annual uptake of NO/sub 2/-nitrogen by plants in the region of Kevo was estimated to be about 0.1 g(N)m/sup -2/ for a canopy of pines and lichens, and about 0.001 g(N)m/sup -2/ for plants at the tops of low mountains. In terms of dry weight of lichens, the uptake rate would be of the order of 0.1 ..mu..g(N)h/sup -1/ (g dry weight)/sup -1/, based on independent measurements. These amount are of the same order of magnitude as the yields of biological nitrogen fixation by lichens in corresponding conditions. A direct experimental study of the uptake of atmospheric NO/sub 2/ by northern plants seems very desirable and readily feasible.

  13. A meta-analysis of leaf nitrogen distribution within plant canopies

    NARCIS (Netherlands)

    Hikosaka, Kouki; Anten, Niels P.R.; Borjigidai, Almaz; Kamiyama, Chiho; Sakai, Hidemitsu; Hasegawa, Toshihiro; Oikawa, Shimpei; Iio, Atsuhiro; Watanabe, Makoto; Koike, Takayoshi; Nishina, Kazuya; Ito, Akihiko

    2016-01-01

    Background and aims Leaf nitrogen distribution in the plant canopy is an important determinant for canopy photosynthesis. Although the gradient of leaf nitrogen is formed along light gradients in the canopy, its quantitative variations among species and environmental responses remain unknown.

  14. Influence of nitrogen deficiency on photosynthesis and chloroplast ultrastructure of pepper plants (Research Note

    Directory of Open Access Journals (Sweden)

    S. DONCHEVA

    2008-12-01

    Full Text Available Pepper plants (Capsicum annuum L. cv. Zlaten Medal were grown on nutrient solution without nitrogen, and photosynthetic response of plants was examined by determination of leaf CO2 fixation and chlorophyll and carotenoid contents. The absence of nitrogen in the medium resulted in a decrease of the leaf area and of plant biomass accumulation, and in an increase of the root-shoot dry weight ratio. The photosynthetic activity and chlorophyll and carotenoid contents decreased significantly under nitrogen deprivation. Examination of nitrogen deficient leaves by transmission electron microscopy showed dramatic changes in chloroplast ultrastructure. The proportion of starch granules and plastoglobules in the stroma matrix was increased and internal membrane system was greatly reduced. It seems that nitrogen plays an important role in the formation of chloroplast structure and hence to the photosynthetic intensity and productivity of pepper plants.

  15. Response of nitrogen metabolism to boron toxicity in tomato plants.

    Science.gov (United States)

    Cervilla, L M; Blasco, B; Ríos, J J; Rosales, M A; Rubio-Wilhelmi, M M; Sánchez-Rodríguez, E; Romero, L; Ruiz, J M

    2009-09-01

    Boron (B) toxicity has become important in areas close to the Mediterranean Sea where intensive agriculture has been developed. The objective of this research was to study the effects of B toxicity (0.5 mM and 2.0 mM B) on nitrogen (N) assimilation of two tomato cultivars that are often used in these areas. Leaf biomass, relative leaf growth rate (RGR(L)), concentration of B, nitrate (NO(3) (-)), ammonium (NH(4) (+)), organic N, amino acids and soluble proteins, as well as nitrate reductase (NR), nitrite reductase (NiR), glutamine synthase (GS), glutamate synthetase (GOGAT) and glutamate dehydrogenase (GDH) activities were analysed in leaves. Boron toxicity significantly decreased leaf biomass, RGR(L), organic N, soluble proteins, and NR and NiR activities. The lowest NO(3) (-) and NH(4) (+) concentration in leaves was recorded when plants were supplied with 2.0 mM B in the root medium. Total B, amino acids, activities of GS, GOGAT and GDH increased under B toxicity. Data from the present study prove that B toxicity causes inhibition of NO(3) (-) reduction and increases NH(4) (+) assimilation in tomato plants.

  16. Absorption of ozone, sulfur dioxide, and nitrogen dioxide by petunia plants

    Energy Technology Data Exchange (ETDEWEB)

    Elkiey, T.; Ormrod, D.P.

    1981-01-01

    Petunia plants (Petunia hybrida Vilm.) of three varieties with differing air pollutant sensitivities were grown in controlled environments and the absorption rates of ozone (O/sub 3/), sulfur dioxide (SO/sub 2/) and nitrogen dioxide (NO/sub 2/) determined during single gas and mixed gas exposures. Additional experiments were conducted to evaluate effects of duration of exposure, leaf age, and plant growth stage on absorption of O/sub 3/. Absorption of all pollutants from single gases or the mixture was generally greater for the more sensitive varieties. Absorption from single gases was generally greater than from the mixed gases. Absorption rates tended to decrease gradually throughout the day and from day to day with continuous exposure. Absorption of O/sub 3/ was proportional to exposure concentration and decreased with time at differing rates for each variety. More O/sub 3/ was absorbed by older than younger leaves and by plants at the early vegetative stage compared with those in the prefloral stage.

  17. Endophytic colonization of plant roots by nitrogen-fixing bacteria

    International Nuclear Information System (INIS)

    Cocking, Edward C.

    2001-01-01

    Nitrogen-fixing bacteria are able to enter into roots from the rhizosphere, particularly at the base of emerging lateral roots, between epidermal cells and through root hairs. In the rhizosphere growing root hairs play an important role in symbiotic recognition in legume crops. Nodulated legumes in endosymbiosis with rhizobia are amongst the most prominent nitrogen-fixing systems in agriculture. The inoculation of non-legumes, especially cereals, with various non-rhizobial diazotrophic bacteria has been undertaken with the expectation that they would establish themselves intercellularly within the root system, fixing nitrogen endophytic ally and providing combined nitrogen for enhanced crop production. However, in most instances bacteria colonize only the surface of the roots and remain vulnerable to competition from other rhizosphere micro-organisms, even when the nitrogen-fixing bacteria are endophytic, benefits to the plant may result from better uptake of soil nutrients rather than from endophytic nitrogen fixation. Azorhizobium caulinodans is known to enter the root system of cereals, other nonlegume crops and Arabidopsis, by intercellular invasion between epidermal cells and to internally colonize the plant intercellularly, including the xylem. This raises the possibility that xylem colonization might provide a nonnodular niche for endosymbiotic nitrogen fixation in rice, wheat, maize, sorghum and other non-legume crops. A particularly interesting, naturally occurring, non-qodular xylem colonising endophytic diazotrophic interaction with evidence for endophytic nitrogen fixation is that of Gluconacetobacter diazotrophicus in sugarcane. Could this beneficial endophytic colonization of sugarcane by G. diazotrophicus be extended to other members of the Gramineae, including the major cereals, and to other major non-legume crops of the World? (author)

  18. How exogenous nitric oxide regulates nitrogen assimilation in wheat seedlings under different nitrogen sources and levels.

    Science.gov (United States)

    Balotf, Sadegh; Islam, Shahidul; Kavoosi, Gholamreza; Kholdebarin, Bahman; Juhasz, Angela; Ma, Wujun

    2018-01-01

    Nitrogen (N) is one of the most important nutrients for plants and nitric oxide (NO) as a signaling plant growth regulator involved in nitrogen assimilation. Understanding the influence of exogenous NO on nitrogen metabolism at the gene expression and enzyme activity levels under different sources of nitrogen is vitally important for increasing nitrogen use efficiency (NUE). This study investigated the expression of key genes and enzymes in relation to nitrogen assimilation in two Australian wheat cultivars, a popular high NUE cv. Spitfire and a normal NUE cv. Westonia, under different combinations of nitrogen and sodium nitroprusside (SNP) as the NO donor. Application of NO increased the gene expressions and activities of nitrogen assimilation pathway enzymes in both cultivars at low levels of nitrogen. At high nitrogen supplies, the expressions and activities of N assimilation genes increased in response to exogenous NO only in cv. Spitfire but not in cv. Westonia. Exogenous NO caused an increase in leaf NO content at low N supplies in both cultivars, while under high nitrogen treatments, cv. Spitfire showed an increase under ammonium nitrate (NH4NO3) treatment but cv. Westonia was not affected. N assimilation gene expression and enzyme activity showed a clear relationship between exogenous NO, N concentration and N forms in primary plant nitrogen assimilation. Results reveal the possible role of NO and different nitrogen sources on nitrogen assimilation in Triticum aestivum plants.

  19. Understanding nitrate uptake, signaling and remobilisation for improving plant nitrogen use efficiency.

    Science.gov (United States)

    Kant, Surya

    2018-02-01

    The majority of terrestrial plants use nitrate as their main source of nitrogen. Nitrate also acts as an important signalling molecule in vital physiological processes required for optimum plant growth and development. Improving nitrate uptake and transport, through activation by nitrate sensing, signalling and regulatory processes, would enhance plant growth, resulting in improved crop yields. The increased remobilisation of nitrate, and assimilated nitrogenous compounds, from source to sink tissues further ensures higher yields and quality. An updated knowledge of various transporters, genes, activators, and microRNAs, involved in nitrate uptake, transport, remobilisation, and nitrate-mediated root growth, is presented. An enhanced understanding of these components will allow for their orchestrated fine tuning in efforts to improving nitrogen use efficiency in plants. Crown Copyright © 2017. Published by Elsevier Ltd. All rights reserved.

  20. Effects of water and nitrogen availability on nitrogen contribution by the legume, Lupinus argenteus Pursh

    Science.gov (United States)

    Erin Goergen; Jeanne C. Chambers; Robert Blank

    2009-01-01

    Nitrogen-fixing species contribute to ecosystem nitrogen budgets, but background resource levels influence nodulation, fixation, and plant growth. We conducted a greenhouse experiment to examine the separate and interacting effects of water and N availability on biomass production, tissue N concentration, nodulation, nodule activity, and rhizodeposition of ...

  1. /sup 15/N dilution technique of assessing the contribution of nitrogen fixation to rice plant

    Energy Technology Data Exchange (ETDEWEB)

    Ventura, W; Watanabe, Iwao [International Rice Research Inst., College, Laguna (Phillippines)

    1983-06-01

    An attempt to correlate the positive nitrogen balance in rice-soil system with the /sup 15/N dilution in rice plants was made to see if isotope dilution can be used to assess the contribution of nitrogen fixation to the nitrogen nutrition of rice. /sup 15/N ammonium sulfate and sucrose were added to the moist soil in pots to label biomass nitrogen fraction. The rice-soil system with higher nitrogen gain had lower /sup 15/N content in the rice plants. When the surface of pots was covered with black cloths to suppress photodependent N/sub 2/ fixation, no significant nitrogen gain was observed. Significant gain was found in the rice-flooded soil system exposed to light, and the /sup 15/N content of plants decreased in allowing the photodependent N/sub 2/ fixation by blue-green algae symbiosis. The contribution of plant nitrogen derived from photodependent N/sub 2/ fixation was estimated to be 20-30 % of the positive nitrogen gain in the system by the /sup 15/N dilution technique using the rice-covered soil as reference system.

  2. Studies on nitrogen metabolism of soybean plants, (4)

    International Nuclear Information System (INIS)

    Kato, Yasumasa; Kitada, Subaru

    1979-01-01

    Nitrogen that came from cotyledons and nitrogen ( 15 N) pulse-fed at 5 different times during the growth of young soybean plants were studied for 33-days after germination. Cotyledons furnished nitrogen to primary leaves, stems, and roots for the first 8 days, but thereafter principally to 1 st and 2 nd trifoliate leaves. Redistribution of the cotyledon-derived nitrogen from primary leaves commenced from the 14 th day after germination when their total nitrogen was still increasing. At the end of the experiment, the cotyledon-derived nitrogen was distributed approximately uniformly among 6 expanded leaves, and very small amount was found in 3 immature leaves. It was shown that soybean leaves took up 15 N (via roots) throughout the entire period of their life, and from their near-mature stage onwards, uptake and redistribution of nitrogen were observed simultaneously. Thus, the nitrogen in mature leaves was partially being renewed constantly. Considering this fact, the nitrogen supplying capacity of soybean leaves was estimated to be about two times as large as that estimated conventionally from the net loss of nitrogen during their senescence. The turnover of leaf nitrogen was closely related to the turnover of leaf protein. Influx of nitrogen was invariably accompanied by the simultaneous synthesis of leaf protein, and conversely, efflux by the simultaneous breakdown of leaf protein. Sink removal (topping treatment) prevented the breakdown of leaf protein (as measured from the rate of release of label after the pulse feeding) as well as the export of nitrogen from the leaves. The nitrogen supplying function of soybean leaves was discussed in relation to the nitrogen and protein turnover of leaves. (Kaihara, S.)

  3. Importance of molybdenum in the nitrogen metabolism of microorganisms and higher plants

    Energy Technology Data Exchange (ETDEWEB)

    Mulder, E G

    1948-01-01

    The effect of molybdenum on the growth of microorganisms and higher plants and on some well-defined biochemical reactions was investigated. Results indicate that Aspergillus niger requires small amounts of molybdenum when growing in a culture solution supplied with nitrate nitrogen. With ammonium sulfate as a source of nitrogen, the response of the fungus to molybdenum was much smaller. It was shown that this different response of Aspergillus to molybdenum was not brought about by a difference in purity of both nitrogen compounds used, nor by a difference in absorption of the molybdenum impurity, but by a considerably higher requirement of molybdenum in a medium with nitrate nitrogen. The growth-rate curve and the increasing sporulation of Aspergillus niger with increasing amounts of molybdenum were used in estimating very small amounts of this element in various materials. In culture solution experiments with tomato, barley and oat plants the effect of traces of molybdenum on the growth of these plants was investigated. In good agreement with the results of the experiments with Aspergillus and denitrifying bacteria it could be shown that in the green plant as in these microorganisms molybdenum is acting as a catalyst in nitrate reduction. In experiments with Azotobacter chroococcum and leguminous plants the effect of molybdenum on the fixation of gaseous N/sub 2/ was studied. In culture solutions with pea plants the effect of molybdenum on the nitrogen fixation of the nodules was investigated. In the absence of molybdenum as well as in a complete nutrient medium many nodules were formed. 30 references, 6 figures, 16 tables.

  4. Optimal Plant Carbon Allocation Implies a Biological Control on Nitrogen Availability

    Science.gov (United States)

    Prentice, I. C.; Stocker, B. D.

    2015-12-01

    The degree to which nitrogen availability limits the terrestrial C sink under rising CO2 is a key uncertainty in carbon cycle and climate change projections. Results from ecosystem manipulation studies and meta-analyses suggest that plant C allocation to roots adjusts dynamically under varying degrees of nitrogen availability and other soil fertility parameters. In addition, the ratio of biomass production to GPP appears to decline under nutrient scarcity. This reflects increasing plant C exudation into the soil (Cex) with decreasing nutrient availability. Cex is consumed by an array of soil organisms and may imply an improvement of nutrient availability to the plant. Thus, N availability is under biological control, but incurs a C cost. In spite of clear observational support, this concept is left unaccounted for in Earth system models. We develop a model for the coupled cycles of C and N in terrestrial ecosystems to explore optimal plant C allocation under rising CO2 and its implications for the ecosystem C balance. The model follows a balanced growth approach, accounting for the trade-offs between leaf versus root growth and Cex in balancing C fixation and N uptake. We assume that Cex is proportional to root mass, and that the ratio of N uptake (Nup) to Cex is proportional to inorganic N concentration in the soil solution. We further assume that Cex is consumed by N2-fixing processes if the ratio of Nup:Cex falls below the inverse of the C cost of N2-fixation. Our analysis thereby accounts for the feedbacks between ecosystem C and N cycling and stoichiometry. We address the question of how the plant C economy will adjust under rising atmospheric CO2 and what this implies for the ecosystem C balance and the degree of N limitation.

  5. Enhanced shoot investment makes invasive plants exhibit growth advantages in high nitrogen conditions.

    Science.gov (United States)

    Liu, X A; Peng, Y; Li, J J; Peng, P H

    2018-03-12

    Resource amendments commonly promote plant invasions, raising concerns over the potential consequences of nitrogen (N) deposition; however, it is unclear whether invaders will benefit from N deposition more than natives. Growth is among the most fundamental inherent traits of plants and thus good invaders may have superior growth advantages in response to resource amendments. We compared the growth and allocation between invasive and native plants in different N regimes including controls (ambient N concentrations). We found that invasive plants always grew much larger than native plants in varying N conditions, regardless of growth- or phylogeny-based analyses, and that the former allocated more biomass to shoots than the latter. Although N addition enhanced the growth of invasive plants, this enhancement did not increase with increasing N addition. Across invasive and native species, changes in shoot biomass allocation were positively correlated with changes in whole-plant biomass; and the slope of this relationship was greater in invasive plants than native plants. These findings suggest that enhanced shoot investment makes invasive plants retain a growth advantage in high N conditions relative to natives, and also highlight that future N deposition may increase the risks of plant invasions.

  6. Nitrogen rate and plant population effects on yield and yield ...

    African Journals Online (AJOL)

    STORAGESEVER

    2008-12-17

    Dec 17, 2008 ... density and nitrogen rate increased plant height, lowest pod height, harvest index and seed yield. ... since some combine harvester heads are unable to pick ..... as effected by population density and plant distribution.

  7. Soil nitrogen dynamics and Capsicum Annuum sp. plant response to biochar amendment in silt loam soil

    Science.gov (United States)

    Horel, Agota; Gelybo, Gyorgyi; Dencso, Marton; Toth, Eszter; Farkas, Csilla; Kasa, Ilona; Pokovai, Klara

    2017-04-01

    The present study investigated the growth of Capsicum Annuum sp. (pepper) in small-scale experiment to observe changes in plant growth and health as reflected by leaf area, plant height, yield, root density, and nitrogen usage. Based on field conditions, part of the study aimed to examine the photosynthetic and photochemical responses of plants to treatments resulting from different plant growth rates. During the 12.5 week long study, four treatments were investigated with biochar amount of 0, 0.5%, 2.5%, and 5.0% (by weight) added to silt loam soil. The plants were placed under natural environmental conditions, such that photosynthetic activities from photosynthetically active radiation (PAR) and the plants photochemical reflectance index (PRI) could be continuously measured after exposure to sunlight. In this study we found that benefits from biochar addition to silt loam soil most distinguishable occurred in the BC2.5 treatments, where the highest plant yield, highest root density, and highest leaf areas were observed compared to other treatments. Furthermore, data showed that too low (0.5%) or too high (5.0%) biochar addition to the soil had diminishing effects on Capsicum Annuum sp. growth and yield over time. At the end of the 12th week, BC2.5 had 22.2%, while BC0.5 and BC5.0 showed 17.4% and 15.7% increase in yield dry weight respectively compared to controls. The collected data also showed that the PRI values of plants growing on biochar treated soils were generally lower compared to control treatments, which could relate to leaf nitrogen levels. Total nitrogen amount showed marginal changes over time in all treatments. The total nitrogen concentration showed 28.6% and 17.7% increase after the 6th week of the experiment for BC2.5 and BC5.0, respectively, while inorganic nutrients of NO3-N and NH4+-N showed a continuous decrease during the course of the study, with a substantial drop during the first few weeks. The present study provides evidence for impact

  8. Nitrogen rate and plant population effects on yield and yield ...

    African Journals Online (AJOL)

    STORAGESEVER

    2008-12-17

    Gan et al., 2003). Nitrogen increases yield by influencing a variety of agronomic and quality parameters. In general, there was an increase in plant height and dry matter accumulation per plant in soybean (Manral and Saxena, ...

  9. Plant species richness enhances nitrogen retention in green roof plots.

    Science.gov (United States)

    Johnson, Catherine; Schweinhart, Shelbye; Buffam, Ishi

    2016-10-01

    Vegetated (green) roofs have become common in many cities and are projected to continue to increase in coverage, but little is known about the ecological properties of these engineered ecosystems. In this study, we tested the biodiversity-ecosystem function hypothesis using commercially available green roof trays as replicated plots with varying levels of plant species richness (0, 1, 3, or 6 common green roof species per plot, using plants with different functional characteristics). We estimated accumulated plant biomass near the peak of the first full growing season (July 2013) and measured runoff volume after nearly every rain event from September 2012 to September 2013 (33 events) and runoff fluxes of inorganic nutrients ammonium, nitrate, and phosphate from a subset of 10 events. We found that (1) total plant biomass increased with increasing species richness, (2) green roof plots were effective at reducing storm runoff, with vegetation increasing water retention more than soil-like substrate alone, but there was no significant effect of plant species identity or richness on runoff volume, (3) green roof substrate was a significant source of phosphate, regardless of presence/absence of plants, and (4) dissolved inorganic nitrogen (DIN = nitrate + ammonium) runoff fluxes were different among plant species and decreased significantly with increasing plant species richness. The variation in N retention was positively related to variation in plant biomass. Notably, the increased biomass and N retention with species richness in this engineered ecosystem are similar to patterns observed in published studies from grasslands and other well-studied ecosystems. We suggest that more diverse plantings on vegetated roofs may enhance the retention capacity for reactive nitrogen. This is of importance for the sustained health of vegetated roof ecosystems, which over time often experience nitrogen limitation, and is also relevant for water quality in receiving waters

  10. [Effects of nitrogen deposition on the concentration and spectral characteristics of dissolved organic matter in soil solution in a young Cunninghamia lanceolata plantation.

    Science.gov (United States)

    Yuan, Xiao Chun; Chen, Yue Min; Yuan, Shuo; Zheng, Wei; Si, You Tao; Yuan, Zhi Peng; Lin, Wei Sheng; Yang, Yu Sheng

    2017-01-01

    To study the effects of nitrogen deposition on the concentration and spectral characteristics of dissolved organic matter (DOM) in the forest soil solution from the subtropical Cunninghamia lanceolata plantation, using negative pressure sampling method, the dynamics of DOM in soil solutions from 0-15 and 15-30 cm soil layer was monitored for two years and the spectroscopic features of DOM were analyzed. The results showed that nitrogen deposition significantly reduced the concentration of dissolved organic carbon (DOC), and increased the aromatic index (AI) and the humic index (HIX), but had no significant effect on dissolved organic nitrogen (DON) concentration in both soil layers. There was obvious seasonal variation in DOM concentration of the soil solution, which was prominently higher in summer and autumn than in spring and winter.Fourier-transform infrared (FTIR) absorption spectrometry indicated that the DOM in forest soil solution had absorption peaks in the similar position of six regions, being the highest in wave number of 1145-1149 cm -1 . Three-dimensional fluorescence spectra indicated that DOM was mainly consisted of protein-like substances (Ex/Em=230 nm/300 nm) and microbial degradation products (Ex/Em=275 nm/300 nm). The availability of protein-like substances from 0-15 cm soil layer was reduced in the nitrogen treatments. Nitrogen deposition significantly reduced the concentration of DOC in soil solution, maybe largely by reducing soil pH, inhibiting soil carbon mineralization and stimulating plant growth. In particular, the decline of DOC concentration in the surface layer was due to the production inhibition of the protein-like substances and carboxylic acids. Short-term nitrogen deposition might be beneficial to the maintenance of soil fertility, while the long-term accumulation of nitrogen deposition might lead to the hard utilization of soil nutrients.

  11. [Effects of elevated atmospheric CO2 and nitrogen application on cotton biomass, nitrogen utilization and soil urease activity].

    Science.gov (United States)

    Lyu, Ning; Yin, Fei-hu; Chen, Yun; Gao, Zhi-jian; Liu, Yu; Shi, Lei

    2015-11-01

    In this study, a semi-open-top artificial climate chamber was used to study the effect of CO2 enrichment (360 and 540 µmol · mol(-1)) and nitrogen addition (0, 150, 300 and 450 kg · hm(-2)) on cotton dry matter accumulation and distribution, nitrogen absorption and soil urease activity. The results showed that the dry matter accumulation of bud, stem, leaf and the whole plant increased significantly in the higher CO2 concentration treatment irrespective of nitrogen level. The dry matter of all the detected parts of plant with 300 kg · hm(-2) nitrogen addition was significantly higher than those with the other nitrogen levels irrespective of CO2 concentration, indicating reasonable nitrogen fertilization could significantly improve cotton dry matter accumulation. Elevated CO2 concentration had significant impact on the nitrogen absorption contents of cotton bud and stem. Compared to those under CO2 concentration of 360 µmol · mol(-1), the nitrogen contents of bud and stem both increased significantly under CO2 concentration of 540 µmol · mol(-1). The nitrogen content of cotton bud in the treatment of 300 kg · hm(-2) nitrogen was the highest among the four nitrogen fertilizer treatments. While the nitrogen contents of cotton stem in the treatments of 150 kg · hm(-2) and 300 kg · hm(-2) nitrogen levels were higher than those in the treatment of 0 kg · hm(-2) and 450 kg · hm(-2) nitrogen levels. The nitrogen content of cotton leaf was significantly influenced by the in- teraction of CO2 elevation and N addition as the nitrogen content of leaf increased in the treatments of 0, 150 and 300 kg · hm(-2) nitrogen levels under the CO2 concentration of 540 µmol · mol(-1). The nitrogen content in cotton root was significantly increased with the increase of nitrogen fertilizer level under elevated CO2 (540 µmol · mol(-1)) treatment. Overall, the cotton nitrogen absorption content under the elevated CO2 (540 µmol · mol(-1)) treatment was higher than that

  12. Exchange of nitrogen dioxide (NO2) between plants and the atmosphere under laboratory and field conditions

    Science.gov (United States)

    Breuninger, C.; Meixner, F. X.; Thielmann, A.; Kuhn, U.; Dindorf, T.; Kesselmeier, J.

    2012-04-01

    Nitric oxide (NO), nitrogen dioxide (NO2), often denoted as nitrogen oxides (NOx), and ozone (O3) are considered as most important compounds in atmospheric chemistry. In remote areas NOx concentration is related to biological activities of soils and vegetation. The emitted NOx will not entirely be subject of long range transport through the atmosphere. Aside oxidation of NO2 by the OH radical (forming HNO3), a considerable part of it is removed from the atmosphere through the uptake of NO2 by plants. The exchange depends on stomatal activity and on NO2 concentrations in ambient air. It is known that NO2 uptake by plants represents a large NO2 sink, but the magnitude and the NO2 compensation point concentration are still under discussion. Our dynamic chamber system allows exchange measurements of NO2 under field conditions (uncontrolled) as well as studies under controlled laboratory conditions including fumigation experiments. For NO2 detection we used a highly NO2 specific blue light converter (photolytic converter) with subsequent chemiluminescence analysis of the generated NO. Furthermore, as the exchange of NO2 is a complex interaction of transport, chemistry and plant physiology, in our field experiments we determined fluxes of NO, NO2, O3, CO2 and H2O. For a better knowledge of compensation point values for the bi-directional NO2 exchange we investigated a primary representative of conifers, Picea abies, under field and laboratory conditions, and re-analyzed older field data of the deciduous tree Quercus robur.

  13. Effects of Plant Density and Nitrogen Fertilizer on Quantity and Quality of Forage Corn in Daregaz Region (Iran

    Directory of Open Access Journals (Sweden)

    N. Saadatzadeh

    2011-01-01

    Full Text Available In order to evaluate the effects of plant density and nitrogen on quantity and quality of forage corn an experiment was conducted in Daregaz region in cropping season 2008 – 2009. The experimental design was a split – plot based on randomized complete block with three replications. The main plots were four levels of nitrogen (0 , 75, 150 and 225 kg/ha and sub plots were three levels of plant density (75000, 100000 and 125000 plant/ha. The results showed that increasing nitrogen levels and plant density, plant height, percentage crude protein and total protein production (ton/ha were increased. By increasing plant density, stem diameter, leaf and ear weight decreased while they increased with increased nitrogen levels. The highest forage yield obtained at nitrogen level 150 kg/ha (46 ton/ha and 100000 plant per hectare (40.27 ton/ha. The highest total protein production (7 ton/ha obtained at nitrogen level of 150 kg/ha and plant density of 125000 plant/ha.

  14. Aluminum–Nitrogen Interactions in the Soil–Plant System

    Directory of Open Access Journals (Sweden)

    Xue Q. Zhao

    2018-06-01

    Full Text Available Aluminum (Al is the most abundant metal in the Earth’s crust and is not an essential element for plant growth. In contrast, nitrogen (N is the most important mineral element for plant growth, but this non-metal is often present at low levels in soils, and plants are often N deficient. Aluminum toxicity is dominant in acid soils, and so plants growing in acid soils have to overcome both Al toxicity and N limitation. Because of low N-use efficiency, large amounts of N fertilizers are applied to crop fields to achieve high yields, leading to soil acidification and potential Al toxicity. Aluminum lowers plant N uptake and N-use efficiency because Al inhibits root growth. Although numerous studies have investigated the interactions between Al and N, a complete review of these studies was lacking. This review describes: (1 the link between plant Al tolerance and ammonium/nitrate (NH4+/NO3- preference; (2 the effects of NH4+/NO3- and pH on Al toxicity; (3 the effects of Al on soil N transformations; and (4 the effects of Al on NH4+/NO3- uptake and assimilation by plants. Acid soils are characterized chemically by a relatively high ratio of NH4+ to NO3- and high concentrations of toxic Al. Aluminum-tolerant plants generally prefer NH4+ as an N source, while Al-sensitive plants prefer NO3-. Compared with NO3-, NH4+ increases the solubilization of toxic Al into soil solutions, but NH4+ generally alleviates Al phytotoxicity under solution culture because the protons from NH4+ compete with Al3+ for adsorption sites on the root surface. Plant NO3- uptake and nitrate reductase activity are both inhibited by Al, while plant NH4+ uptake is inhibited to a smaller degree than NO3-. Together, the results of numerous studies indicate that there is a synergistic interaction between plant Al tolerance and NH4+ nutrition. This has important implications for the adaptation of plants to acid soils that are dominated chemically by toxic Al as well as NH4+. Finally, we

  15. The Effects of Source and Rate of Nitrogen Fertilizer and Irrigation on Nitrogen Uptake of Silage Corn and Residual Soil Nitrate

    Directory of Open Access Journals (Sweden)

    M. A. Khodshenas

    2016-09-01

    Full Text Available Introduction: Growing irrigation demand for corn production, along side with draws of ground water from stressed water sources, should be limited due to scarce resources and environmental protection aspects. Nitrogen fertilizer applied at rates higher than the optimum requirement for crop production may cause an increase in nitrate accumulation below the root zone and pose a risk of nitrate leaching. Improving nitrogen management for corn production has a close relation with soil water content. In this study, we investigated the effects of source and rate of nitrogen fertilizer and irrigation on silage corn production and nitrogen concentration, nitrogen uptake and residual soil nitrate in two depths. Materials and Methods: This experiment carried out as split spli- plot in a Randomized Complete Block design (RCBD with three replications, in Arak station (Agricultural research center of markazi province, 34.12 N, 49.7 E; 1715 m above mean sea level during three years. The soil on the site was classified as a Calcaric Regosols (loamy skeletal over fragmental, carbonatic, thermic, calcixerollic xerochrepts. Main plots were irrigation treatments based on 70, 100 and 130 mm cumulative evaporation from A class Pan. Sub plots were two kinds of nitrogen fertilizers (Urea and Ammonium nitrate and sub sub-plots were five levels of nitrogen rates (0, 100, 200, 300 and 400 kgN.ha-1. Nitrogen fertilizer rates were split into three applications: 1/3 was applied at planting, 1/3 at 7-9 leaf stage and 1/3 remainder was applied before tasseling as a banding method. Phosphorus was applied at a rate of 150 kg.ha-1in each season and potassium at a rate of 30kg.ha-1 (only in first growth season based on soil testing as triple super phosphate and potassium sulfate, respectively. The corn variety of single cross 704 was planted at 20 m2 plots. The plants were sampled at dough stage from the two rows and weighted in each plot. Plant samples were dried in a forced air

  16. Planting Date and Seeding Rate Effects on Sunn Hemp Biomass and Nitrogen Production for a Winter Cover Crop

    Directory of Open Access Journals (Sweden)

    Kipling S. Balkcom

    2011-01-01

    Full Text Available Sunn hemp (Crotalaria juncea L. is a tropical legume that produces plant biomass and nitrogen (N quickly. Our objectives were to assess the growth of a new sunn hemp cultivar breed to produce seed in a temperate climate and determine the residual N effect on a rye (Secale cereale L. cover crop in east-central Alabama from 2007 to 2009. Plant populations, plant height, stem diameter, biomass production, and N content were determined for two sunn hemp planting dates, following corn (Zea mays L. and wheat (Triticum aestivum L. harvest, across different seeding rates (17, 34, 50, and 67 kg/ha. Rye biomass was measured the following spring. Sunn hemp biomass production was inconsistent across planting dates, but did relate to growing degree accumulation. Nitrogen concentrations were inversely related to biomass production, and subsequent N contents corresponded to biomass levels. Neither planting date nor seeding rate affected rye biomass production, but rye biomass averaged over both planting dates following wheat/sunn hemp averaged 43% and 33% greater than rye following fallow. Rye biomass following corn/sunn hemp was equivalent to fallow plots. Early planting dates are recommended for sunn hemp with seeding rates between 17 and 34 kg/ha to maximize biomass and N production.

  17. Using nitrogen concentration and isotopic composition in lichens to spatially assess the relative contribution of atmospheric nitrogen sources in complex landscapes

    International Nuclear Information System (INIS)

    Pinho, P.; Barros, C.; Augusto, S.; Pereira, M.J.

    2017-01-01

    Reactive nitrogen (Nr) is an important driver of global change, causing alterations in ecosystem biodiversity and functionality. Environmental assessments require monitoring the emission and deposition of both the amount and types of Nr. This is especially important in heterogeneous landscapes, as different land-cover types emit particular forms of Nr to the atmosphere, which can impact ecosystems distinctively. Such assessments require high spatial resolution maps that also integrate temporal variations, and can only be feasibly achieved by using ecological indicators. Our aim was to rank land-cover types according to the amount and form of emitted atmospheric Nr in a complex landscape with multiple sources of N. To do so, we measured and mapped nitrogen concentration and isotopic composition in lichen thalli, which we then related to land-cover data. Results suggested that, at the landscape scale, intensive agriculture and urban areas were the most important sources of Nr to the atmosphere. Additionally, the ocean greatly influences Nr in land, by providing air with low Nr concentration and a unique isotopic composition. These results have important consequences for managing air pollution at the regional level, as they provide critical information for modeling Nr emission and deposition across regional as well as continental scales. - Highlights: • Which land-cover types are reactive nitrogen sources or sinks at a landscape level? • Nitrogen concentration and isotopic composition were analyzed in lichens. • This allowed determination of the main nitrogen sources: agricultural and urban areas. • Marine sources provided persistent low concentrations of reactive nitrogen. • The typical signature of each source was also determined. - Reactive-nitrogen concentration and isotopic composition in lichens were used to rank Nr sources at a landscape level.

  18. A case study of the relative effects of power plant nitrogen oxides and sulfur dioxide emission reductions on atmospheric nitrogen deposition.

    Science.gov (United States)

    Vijayaraghavan, Krish; Seigneur, Christian; Bronson, Rochelle; Chen, Shu-Yun; Karamchandani, Prakash; Walters, Justin T; Jansen, John J; Brandmeyer, Jo Ellen; Knipping, Eladio M

    2010-03-01

    The contrasting effects of point source nitrogen oxides (NOx) and sulfur dioxide (SO2) air emission reductions on regional atmospheric nitrogen deposition are analyzed for the case study of a coal-fired power plant in the southeastern United States. The effect of potential emission reductions at the plant on nitrogen deposition to Escambia Bay and its watershed on the Florida-Alabama border is simulated using the three-dimensional Eulerian Community Multiscale Air Quality (CMAQ) model. A method to quantify the relative and individual effects of NOx versus SO2 controls on nitrogen deposition using air quality modeling results obtained from the simultaneous application of NOx and SO2 emission controls is presented and discussed using the results from CMAQ simulations conducted with NOx-only and SO2-only emission reductions; the method applies only to cases in which ambient inorganic nitrate is present mostly in the gas phase; that is, in the form of gaseous nitric acid (HNO3). In such instances, the individual effects of NOx and SO2 controls on nitrogen deposition can be approximated by the effects of combined NOx + SO2 controls on the deposition of NOy, (the sum of oxidized nitrogen species) and reduced nitrogen species (NHx), respectively. The benefit of controls at the plant in terms of the decrease in nitrogen deposition to Escambia Bay and watershed is less than 6% of the overall benefit due to regional Clean Air Interstate Rule (CAIR) controls.

  19. Biofilter design for effective nitrogen removal from stormwater - influence of plant species, inflow hydrology and use of a saturated zone.

    Science.gov (United States)

    Payne, Emily G I; Pham, Tracey; Cook, Perran L M; Fletcher, Tim D; Hatt, Belinda E; Deletic, Ana

    2014-01-01

    The use of biofilters to remove nitrogen and other pollutants from urban stormwater runoff has demonstrated varied success across laboratory and field studies. Design variables including plant species and use of a saturated zone have large impacts upon performance. A laboratory column study of 22 plant species and designs with varied outlet configuration was conducted across a 1.5-year period to further investigate the mechanisms and influences driving biofilter nitrogen processing. This paper presents outflow concentrations of total nitrogen from two sampling events across both 'wet' and 'dry' frequency dosing, and from sampling across two points in the outflow hydrograph. All plant species were effective under conditions of frequent dosing, but extended drying increased variation between species and highlighted the importance of a saturated zone in maintaining biofilter function. The saturated zone also effectively treated the volume of stormwater stored between inflow events, but this extended detention provided no additional benefit alongside the rapid processing of the highest performing species. Hence, the saturated zone reduced performance differences between plant species, and potentially acts as an 'insurance policy' against poor sub-optimal plant selection. The study shows the importance of biodiversity and inclusion of a saturated zone in protecting against climate variability.

  20. Optimization of Nitrogen Rate and Planting Density for Improving Yield, Nitrogen Use Efficiency, and Lodging Resistance in Oilseed Rape

    Directory of Open Access Journals (Sweden)

    Shahbaz Khan

    2017-05-01

    Full Text Available Yield and lodging related traits are essential for improving rapeseed production. The objective of the present study was to investigate the influence of plant density (D and nitrogen (N rates on morphological and physiological traits related to yield and lodging in rapeseed. We evaluated Huayouza 9 for two consecutive growing seasons (2014–2016 under three plant densities (LD, 10 plants m−2; MD, 30 plants m−2; HD, 60 plants m−2 and four N rates (0, 60, 120, and 180 kg ha−1. Experiment was laid out in split plot design using density as a main factor and N as sub-plot factor with three replications each. Seed yield was increased by increasing density and N rate, reaching a peak at HD with 180 kg N ha−1. The effect of N rate was consistently positive in increasing the plant height, pod area index, 1,000 seed weight, shoot and root dry weights, and root neck diameter, reaching a peak at 180 kg N ha−1. Plant height was decreased by increasing D, whereas the maximum radiation interception (~80% and net photosynthetic rate were recorded at MD at highest N. Lodging resistance and nitrogen use efficiency significantly increased with increasing D from 10 to 30 plants m−2, and N rate up to 120 kg ha−1, further increase of D and N decreased lodging resistance and NUE. Hence, our study implies that planting density 30 plants m−2 can improve yield, nitrogen use efficiency, and enhance lodging resistance by improving crop canopy.

  1. Modelling the ecosystem effects of nitrogen deposition: Model of Ecosystem Retention and Loss of Inorganic Nitrogen (MERLIN

    Directory of Open Access Journals (Sweden)

    B. J. Cosby

    1997-01-01

    Full Text Available A catchment-scale mass-balance model of linked carbon and nitrogen cycling in ecosystems has been developed for simulating leaching losses of inorganic nitrogen. The model (MERLIN considers linked biotic and abiotic processes affecting the cycling and storage of nitrogen. The model is aggregated in space and time and contains compartments intended to be observable and/or interpretable at the plot or catchment scale. The structure of the model includes the inorganic soil, a plant compartment and two soil organic compartments. Fluxes in and out of the ecosystem and between compartments are regulated by atmospheric deposition, hydrological discharge, plant uptake, litter production, wood production, microbial immobilization, mineralization, nitrification, and denitrification. Nitrogen fluxes are controlled by carbon productivity, the C:N ratios of organic compartments and inorganic nitrogen in soil solution. Inputs required are: 1 temporal sequences of carbon fluxes and pools- 2 time series of hydrological discharge through the soils, 3 historical and current external sources of inorganic nitrogen; 4 current amounts of nitrogen in the plant and soil organic compartments; 5 constants specifying the nitrogen uptake and immobilization characteristics of the plant and soil organic compartments; and 6 soil characteristics such as depth, porosity, bulk density, and anion/cation exchange constants. Outputs include: 1 concentrations and fluxes of NO3 and NH4 in soil solution and runoff; 2 total nitrogen contents of the organic and inorganic compartments; 3 C:N ratios of the aggregated plant and soil organic compartments; and 4 rates of nitrogen uptake and immobilization and nitrogen mineralization. The behaviour of the model is assessed for a combination of land-use change and nitrogen deposition scenarios in a series of speculative simulations. The results of the simulations are in broad agreement with observed and hypothesized behaviour of nitrogen

  2. Plant-ants feed their host plant, but above all a fungal symbiont to recycle nitrogen.

    Science.gov (United States)

    Defossez, Emmanuel; Djiéto-Lordon, Champlain; McKey, Doyle; Selosse, Marc-André; Blatrix, Rumsaïs

    2011-05-07

    In ant-plant symbioses, plants provide symbiotic ants with food and specialized nesting cavities (called domatia). In many ant-plant symbioses, a fungal patch grows within each domatium. The symbiotic nature of the fungal association has been shown in the ant-plant Leonardoxa africana and its protective mutualist ant Petalomyrmex phylax. To decipher trophic fluxes among the three partners, food enriched in (13)C and (15)N was given to the ants and tracked in the different parts of the symbiosis up to 660 days later. The plant received a small, but significant, amount of nitrogen from the ants. However, the ants fed more intensively the fungus. The pattern of isotope enrichment in the system indicated an ant behaviour that functions specifically to feed the fungus. After 660 days, the introduced nitrogen was still present in the system and homogeneously distributed among ant, plant and fungal compartments, indicating efficient recycling within the symbiosis. Another experiment showed that the plant surface absorbed nutrients (in the form of simple molecules) whether or not it is coated by fungus. Our study provides arguments for a mutualistic status of the fungal associate and a framework for investigating the previously unsuspected complexity of food webs in ant-plant mutualisms.

  3. Removal of ammonia nitrogen in wastewater by microwave radiation: A pilot-scale study

    International Nuclear Information System (INIS)

    Lin Li; Chen Jing; Xu Zuqun; Yuan Songhu; Cao Menghua; Liu Huangcheng; Lu Xiaohua

    2009-01-01

    A large removal of ammonia nitrogen in wastewater has been achieved by microwave (MW) radiation in our previous bench-scale study. This study developed a continuous pilot-scale MW system to remove ammonia nitrogen in real wastewater. A typical high concentration of ammonia nitrogen contaminated wastewater, the coke-plant wastewater from a Coke company, was treated. The output power of the microwave reactor was 4.8 kW and the handling capacity of the reactor was about 5 m 3 per day. The ammonia removal efficiencies under four operating conditions, including ambient temperature, wastewater flow rate, aeration conditions and initial concentration were evaluated in the pilot-scale experiments. The ammonia removal could reach about 80% for the real coke-plant wastewater with ammonia nitrogen concentrations of 2400-11000 mg/L. The running cost of the MW technique was a little lower than the conventional steam-stripping method. The continuous microwave system showed the potential as an effective method for ammonia nitrogen removal in coke-plant water treatment. It is proposed that this process is suitable for the treatment of toxic wastewater containing high concentrations of ammonia nitrogen.

  4. Toward a mechanistic modeling of nitrogen limitation on vegetation dynamics.

    Science.gov (United States)

    Xu, Chonggang; Fisher, Rosie; Wullschleger, Stan D; Wilson, Cathy J; Cai, Michael; McDowell, Nate G

    2012-01-01

    Nitrogen is a dominant regulator of vegetation dynamics, net primary production, and terrestrial carbon cycles; however, most ecosystem models use a rather simplistic relationship between leaf nitrogen content and photosynthetic capacity. Such an approach does not consider how patterns of nitrogen allocation may change with differences in light intensity, growing-season temperature and CO(2) concentration. To account for this known variability in nitrogen-photosynthesis relationships, we develop a mechanistic nitrogen allocation model based on a trade-off of nitrogen allocated between growth and storage, and an optimization of nitrogen allocated among light capture, electron transport, carboxylation, and respiration. The developed model is able to predict the acclimation of photosynthetic capacity to changes in CO(2) concentration, temperature, and radiation when evaluated against published data of V(c,max) (maximum carboxylation rate) and J(max) (maximum electron transport rate). A sensitivity analysis of the model for herbaceous plants, deciduous and evergreen trees implies that elevated CO(2) concentrations lead to lower allocation of nitrogen to carboxylation but higher allocation to storage. Higher growing-season temperatures cause lower allocation of nitrogen to carboxylation, due to higher nitrogen requirements for light capture pigments and for storage. Lower levels of radiation have a much stronger effect on allocation of nitrogen to carboxylation for herbaceous plants than for trees, resulting from higher nitrogen requirements for light capture for herbaceous plants. As far as we know, this is the first model of complete nitrogen allocation that simultaneously considers nitrogen allocation to light capture, electron transport, carboxylation, respiration and storage, and the responses of each to altered environmental conditions. We expect this model could potentially improve our confidence in simulations of carbon-nitrogen interactions and the vegetation

  5. Toward a Mechanistic Modeling of Nitrogen Limitation on Vegetation Dynamics

    Science.gov (United States)

    Xu, Chonggang; Fisher, Rosie; Wullschleger, Stan D.; Wilson, Cathy J.; Cai, Michael; McDowell, Nate G.

    2012-01-01

    Nitrogen is a dominant regulator of vegetation dynamics, net primary production, and terrestrial carbon cycles; however, most ecosystem models use a rather simplistic relationship between leaf nitrogen content and photosynthetic capacity. Such an approach does not consider how patterns of nitrogen allocation may change with differences in light intensity, growing-season temperature and CO2 concentration. To account for this known variability in nitrogen-photosynthesis relationships, we develop a mechanistic nitrogen allocation model based on a trade-off of nitrogen allocated between growth and storage, and an optimization of nitrogen allocated among light capture, electron transport, carboxylation, and respiration. The developed model is able to predict the acclimation of photosynthetic capacity to changes in CO2 concentration, temperature, and radiation when evaluated against published data of Vc,max (maximum carboxylation rate) and Jmax (maximum electron transport rate). A sensitivity analysis of the model for herbaceous plants, deciduous and evergreen trees implies that elevated CO2 concentrations lead to lower allocation of nitrogen to carboxylation but higher allocation to storage. Higher growing-season temperatures cause lower allocation of nitrogen to carboxylation, due to higher nitrogen requirements for light capture pigments and for storage. Lower levels of radiation have a much stronger effect on allocation of nitrogen to carboxylation for herbaceous plants than for trees, resulting from higher nitrogen requirements for light capture for herbaceous plants. As far as we know, this is the first model of complete nitrogen allocation that simultaneously considers nitrogen allocation to light capture, electron transport, carboxylation, respiration and storage, and the responses of each to altered environmental conditions. We expect this model could potentially improve our confidence in simulations of carbon-nitrogen interactions and the vegetation feedbacks

  6. Toward a mechanistic modeling of nitrogen limitation on vegetation dynamics.

    Directory of Open Access Journals (Sweden)

    Chonggang Xu

    Full Text Available Nitrogen is a dominant regulator of vegetation dynamics, net primary production, and terrestrial carbon cycles; however, most ecosystem models use a rather simplistic relationship between leaf nitrogen content and photosynthetic capacity. Such an approach does not consider how patterns of nitrogen allocation may change with differences in light intensity, growing-season temperature and CO(2 concentration. To account for this known variability in nitrogen-photosynthesis relationships, we develop a mechanistic nitrogen allocation model based on a trade-off of nitrogen allocated between growth and storage, and an optimization of nitrogen allocated among light capture, electron transport, carboxylation, and respiration. The developed model is able to predict the acclimation of photosynthetic capacity to changes in CO(2 concentration, temperature, and radiation when evaluated against published data of V(c,max (maximum carboxylation rate and J(max (maximum electron transport rate. A sensitivity analysis of the model for herbaceous plants, deciduous and evergreen trees implies that elevated CO(2 concentrations lead to lower allocation of nitrogen to carboxylation but higher allocation to storage. Higher growing-season temperatures cause lower allocation of nitrogen to carboxylation, due to higher nitrogen requirements for light capture pigments and for storage. Lower levels of radiation have a much stronger effect on allocation of nitrogen to carboxylation for herbaceous plants than for trees, resulting from higher nitrogen requirements for light capture for herbaceous plants. As far as we know, this is the first model of complete nitrogen allocation that simultaneously considers nitrogen allocation to light capture, electron transport, carboxylation, respiration and storage, and the responses of each to altered environmental conditions. We expect this model could potentially improve our confidence in simulations of carbon-nitrogen interactions and the

  7. Effect of soil-moisture stress on nitrogen uptake and fixation by plants

    International Nuclear Information System (INIS)

    Mitrosuhardjo, M.M.

    1983-01-01

    The effect of four levels of soil moisture, namely 25, 30, 35, and 40% (g/g) on nitrogen uptake and fixation by plants was studied in a greenhouse experiment. Soybean and wheat were used in this experiment. Both crops were grown in pots containing 7 kg loamy alluvial soil. Rhizobium japonicum was used as an inoculant for soybean, one week after planting. Nitrogen-15 labelled urea with 10% atom excess was applied to each pot with a dose rate of 70 mg N/pot (20 kg N/ha) two weeks after planting. Soil moisture was regularly controlled with porous-cup mercury tensiometers, and the amount of water consumed by plants was always recorded. Water was applied to each pot with a distribution pipe which was laid down in the centre of the soil depth, horizontally in a circular form, and was connected with a smaller pipe to the soil surface. The result obtained showed that the amount of water consumed by plants grown in a higher level of soil moisture was increased until soil aeration problems arose. A different amount of water consumption between soybean and wheat was observed at least until a certain period of growing time. Fertilizer nitrogen taken up by both crops varied with the different levels of soil moisture. Generally, greater fertilizer nitrogen was taken up by both crops grown in a higher level of soil moisture. The symbiotic fixation of nitrogen was reasonable, although no clarification has been found about the role of the four levels of soil-moisture treatment on it. A similar effect of soil-moisture stress on nodule dry matter and acetylene reduction was found. (author)

  8. Effect of plant species on nitrogen recovery in aquaponics.

    Science.gov (United States)

    Hu, Zhen; Lee, Jae Woo; Chandran, Kartik; Kim, Sungpyo; Brotto, Ariane Coelho; Khanal, Samir Kumar

    2015-01-01

    Nitrogen transformations in aquaponics with different edible plant species, i.e., tomato (Lycopersicon esculentum) and pak choi (Brassica campestris L. subsp. chinensis) were systematically examined and compared. Results showed that nitrogen utilization efficiencies (NUE) of tomato- and pak choi-based aquaponic systems were 41.3% and 34.4%, respectively. The abundance of nitrifying bacteria in tomato-based aquaponics was 4.2-folds higher than that in pak choi-based aquaponics, primarily due to its higher root surface area. In addition, tomato-based aquaponics had better water quality than that of pak choi-based aquaponics. About 1.5-1.9% of nitrogen input were emitted to atmosphere as nitrous oxide (N2O) in tomato- and pak choi-based aquaponic systems, respectively, suggesting that aquaponics is a potential anthropogenic source of N2O emission. Overall, this is the first intensive study that examined the role plant species played in aquaponics, which could provide new strategy in designing and operating an aquaponic system. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Responses of Ammonia-Oxidising Bacterial Communities to Nitrogen, Lime, and Plant Species in Upland Grassland Soil

    International Nuclear Information System (INIS)

    Rooney, D.C.; Kennedy, N.M.; Clipson, N.J.W.; Rooney, D.C.; Kennedy, N.M.; Gleeson, D.B.

    2010-01-01

    Agricultural improvement of semi natural grasslands has been shown to result in changes to plant and microbial diversity, with consequences for ecosystem functioning. A microcosm approach was used to elucidate the effects of two key components of agricultural improvement (nitrogen addition and liming) on ammonia-oxidising bacterial (AOB) communities in an upland grassland soil. Plant species characteristic of unimproved and improved pastures (A. capillaries and L. perenne) were planted in microcosms, and lime, nitrogen (NH 4 NO 3 ), or lime plus nitrogen added. The AOB community was profiled using terminal restriction fragment length polymorphism (TRFLP) of the amoA gene. AOB community structure was largely altered by NH 4 NO 3 addition, rather than liming, although interactions between nitrogen addition and plant species were also evident. Results indicate that nitrogen addition drives shifts in the structure of key microbial communities in upland grassland soils, and that plant species may play a significant role in determining AOB community structure

  10. Gnotobiotic cultures of rice plants up to ear stage in the absence of combined nitrogen source but in the presence of free living nitrogen fixing bacteria Azotobacter vinelandii and Rhodopseudomonas capsulata

    International Nuclear Information System (INIS)

    Maudinas, B.; Chemardin, M.; Yovanovitch, E.; Gadal, P.

    1981-01-01

    An all glass tight growth chamber, entirely sterilizable, has been constructed to carry out axenic and gnotobiotic cultures of rice plants (Oryza sativa L.). When grown in liquid medium and in the absence of combined nitrogen but in the presence of the diazotrophs Azotobacter vinelandii and Rhodopseudomonas capsulata, rice plants exhibited a complete biological cycle from germination up to ear stage, during a period of time similiar to the one encountered in French paddy soil of Camargue. In one experiment, mannitol was given to rice culture medium together with Azotobacter vinelandii and Rhodopseudomonas capsulata. In another experiment, mannitol was not given together with Rhodopseudomonas, and still positive nitrogen gain was obtained, although it was less than culture with mannitol. When 15 N labeled cells of Rhodopseudomonas were added in rice culture medium, 15 N was partly transferred to rice plant. Among the nitrogen substances excreted from the bacteria in the rhizosphere medium, large organic molecules were shown to be the most abundant in our experimental conditions. Moreover, the concentration of free ammonia or aminoacids present in the rice rhizosphere were always compatible with a bacterial nitrogenase activity. (orig.)

  11. Ultraviolet-B Radiation and Nitrogen Affect Nutrient Concentrations and the Amount of Nutrients Acquired by Above-Ground Organs of Maize

    OpenAIRE

    Correia, Carlos M.; Coutinho, João F.; Bacelar, Eunice A.; Gonçalves, Berta M.; Björn, Lars Olof; Moutinho Pereira, José

    2012-01-01

    UV-B radiation effects on nutrient concentrations in above-ground organs of maize were investigated at silking and maturity at different levels of applied nitrogen under field conditions. The experiment simulated a 20% stratospheric ozone depletion over Portugal. At silking, UV-B increased N, K, Ca, and Zn concentrations, whereas at maturity Ca, Mg, Zn, and Cu increased and N, P and Mn decreased in some plant organs. Generally, at maturity, N, Ca, Cu, and Mn were lower, while P, K, and Zn con...

  12. Impact of glycerol and nitrogen concentration on Enterobacter A47 growth and exopolysaccharide production.

    Science.gov (United States)

    Torres, Cristiana A V; Marques, Rodolfo; Ferreira, Ana R V; Antunes, Sílvia; Grandfils, Christian; Freitas, Filomena; Reis, Maria A M

    2014-11-01

    Enterobacter A47 produces a fucose-containing exopolysaccharide (EPS) by cultivation in mineral medium supplemented with glycerol. EPS synthesis by Enterobacter A47 was shown to be influenced by both the initial glycerol and nitrogen concentrations and by the nutrients' feeding rate during the fed-batch phase. Initial nitrogen concentrations above 1.05g/L were detrimental for EPS synthesis: the productivity was reduced to 0.35-0.62g/Ld (compared to 1.89-2.04g/Ld under lower nitrogen concentrations) and the polymer had lower fucose content (14-17%mol, compared to 36-38%mol under lower nitrogen concentrations). On the other hand, EPS productivity was improved to 5.66g/Ld by increasing the glycerol and nitrogen feeding rates during the fed-batch phase. However, the EPS thus obtained had lower fucose (26%mol) and higher galactose (34%mol) contents, as well as lower average molecular weight (7.2×10(5)). The ability of Enterobacter A47 to synthesize EPS with different physico-chemical characteristics may be useful for the generation of biopolymers with distinct functional properties suitable for different applications. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Elevated nitrogen allows the weak invasive plant Galinsoga quadriradiata to become more vigorous with respect to inter-specific competition.

    Science.gov (United States)

    Liu, Gang; Yang, Ying-Bo; Zhu, Zhi-Hong

    2018-02-16

    Elevated nitrogen associated with global change is believed to promote the invasion of many vigorous exotic plants. However, it is unclear how a weak exotic plant will respond to elevated nitrogen in the future. In this study, the competitive outcome of a weak invasive plant (Galinsoga quadriradiata) and two non-invasive plants was detected. The plants were subjected to 3 types of culture (mixed, monoculture or one-plant), 2 levels of nitrogen (ambient or elevated at a rate of 2 g m -2 yr -1 ) and 2 levels of light (65% shade or full sunlight). The results showed that elevated nitrogen significantly promoted the growth of both the weak invader and the non-invasive plants in one-plant pots; however, growth promotion was not observed for the non-invasive species in the mixed culture pots. The presence of G. quadriradiata significantly inhibited the growth of the non-invasive plants, and a decreased negative species interaction was detected as a result of elevated nitrogen. Our results suggest that competitive interactions between G. quadriradiata and the non-invasive plants were altered by elevated nitrogen. It provides exceptional evidence that an initially weak invasive plant can become an aggressive invader through elevated nitrogen deposition.

  14. Calcium constrains plant control over forest ecosystem nitrogen cycling.

    Science.gov (United States)

    Groffman, Peter M; Fisk, Melany C

    2011-11-01

    Forest ecosystem nitrogen (N) cycling is a critical controller of the ability of forests to prevent the movement of reactive N to receiving waters and the atmosphere and to sequester elevated levels of atmospheric carbon dioxide (CO2). Here we show that calcium (Ca) constrains the ability of northern hardwood forest trees to control the availability and loss of nitrogen. We evaluated soil N-cycling response to Ca additions in the presence and absence of plants and observed that when plants were present, Ca additions "tightened" the ecosystem N cycle, with decreases in inorganic N levels, potential net N mineralization rates, microbial biomass N content, and denitrification potential. In the absence of plants, Ca additions induced marked increases in nitrification (the key process controlling ecosystem N losses) and inorganic N levels. The observed "tightening" of the N cycle when Ca was added in the presence of plants suggests that the capacity of forests to absorb elevated levels of atmospheric N and CO2 is fundamentally constrained by base cations, which have been depleted in many areas of the globe by acid rain and forest harvesting.

  15. Nitrogen and COD Removal from Septic Tank Wastewater in Subsurface Flow Constructed Wetlands: Plants Effects.

    Science.gov (United States)

    Collison, R S; Grismer, M E

    2015-11-01

    We evaluated subsurface flow (SSF) constructed wetland treatment performance with respect to organics (COD) and nitrogen (ammonium and nitrate) removal from domestic (septic tank) wastewater as affected by the presence of plants, substrate "rock" cation exchange capacity (CEC), laboratory versus field conditions and use of synthetic as compared to actual domestic wastewater. This article considers the effects of plants on constructed wetland treatment in the field. Each constructed wetland system was comprised of two beds (2.6 m long by 0.28 m wide and deep filled with ~18 mm crushed lava rock) separated by an aeration tank connected in series. The lava rock had a porosity of ~47% and a CEC of 4 meq/100 gm. One pair of constructed wetland systems was planted with cattails in May 2008, while an adjacent pair of systems remained un-planted. Collected septic tank or synthesized wastewater was allowed to gravity feed each constructed wetland system and effluent samples were regularly collected and tested for COD and nitrogen species during four time periods spanning November 2008 through June 2009. These effluent concentrations were tested for statistical differences at the 95% level for individual time periods as well as the overall 6-month period. Organics removal from domestic wastewater was 78.8% and 76.1% in the planted and un-planted constructed wetland systems, respectively, while ammonium removal was 94.5% and 90.2%, respectively. Similarly, organics removal from the synthetic wastewater of equivalent strength was 88.8% and 90.1% for planted and un-planted constructed wetland systems, respectively, while ammonium removal was 96.9% and 97.3%, respectively.

  16. Nitrogen to phosphorus ratio of plant biomass versus soil solution in a tropical pioneer tree, Ficus insipida.

    Science.gov (United States)

    Garrish, Valerie; Cernusak, Lucas A; Winter, Klaus; Turner, Benjamin L

    2010-08-01

    It is commonly assumed that the nitrogen to phosphorus (N:P) ratio of a terrestrial plant reflects the relative availability of N and P in the soil in which the plant grows. Here, this was assessed for a tropical pioneer tree, Ficus insipida. Seedlings were grown in sand and irrigated with nutrient solutions containing N:P ratios ranging from 100. The experimental design further allowed investigation of physiological responses to N and P availability. Homeostatic control over N:P ratios was stronger in leaves than in stems or roots, suggesting that N:P ratios of stems and roots are more sensitive indicators of the relative availability of N and P at a site than N:P ratios of leaves. The leaf N:P ratio at which the largest plant dry mass and highest photosynthetic rates were achieved was approximately 11, whereas the corresponding whole-plant N:P ratio was approximately 6. Plant P concentration varied as a function of transpiration rate at constant nutrient solution P concentration, possibly due to transpiration-induced variation in the mass flow of P to root surfaces. The transpiration rate varied in response to nutrient solution N concentration, but not to nutrient solution P concentration, demonstrating nutritional control over transpiration by N but not P. Water-use efficiency varied as a function of N availability, but not as a function of P availability.

  17. Nitrogen and potassium concentrations in the nutrients solution for melon plants growing in coconut fiber without drainage.

    Science.gov (United States)

    Gratieri, Luiz Augusto; Cecílio Filho, Arthur Bernardes; Barbosa, José Carlos; Pavani, Luiz Carlos

    2013-01-01

    With the objective of evaluating the effects of N and K concentrations for melon plants, an experiment was carried out from July 1, 2011 to January 3, 2012 in Muzambinho city, Minas Gerais State, Brazil. The "Bonus no. 2" was cultivated at the spacing of 1.1 × 0.4. The experimental design was a randomized complete block with three replications in a 4 × 4 factorial scheme with four N concentrations (8, 12, 16, and 20 mmol L(-1)) and four K concentrations (4, 6, 8, and 10 mmol L(-1)). The experimental plot constituted of eight plants. It was observed that the leaf levels of N and K, of N-NO₃ and of K, and the electrical conductivity (CE) of the substrate increased with the increment of N and K in the nutrients' solution. Substratum pH, in general, was reduced with increments in N concentration and increased with increasing K concentrations in the nutrients' solution. Leaf area increased with increments in N concentration in the nutrients solution. Fertigation with solutions stronger in N (20 mmol L(-1)) and K (10 mmol L(-1)) resulted in higher masses for the first (968 g) and the second (951 g) fruits and crop yield (4,425 gm(-2)).

  18. Nitrogen dose and plant density effects on popcorn grain yield ...

    African Journals Online (AJOL)

    and plant densities on grain yield and yield-related plant characteristics of popcorn in Hatay, located at Southern Mediterranean region of Turkey, during 2002 and 2003. The experiment was designed in a randomized complete block design with a split-plot arrangement with three replications. Nitrogen doses of 0, 120, 180 ...

  19. Nitrogen deposition increases the acquisition of phosphorus and potassium by heather Calluna vulgaris

    International Nuclear Information System (INIS)

    Rowe, Edwin C.; Smart, Simon M.; Kennedy, Valerie H.; Emmett, Bridget A.; Evans, Christopher D.

    2008-01-01

    Increased plant productivity due to nitrogen pollution increases the strength of the global carbon sink, but is implicated in plant diversity loss. However, modelling and experimental studies have suggested that these effects are constrained by availability of other nutrients. In a survey of element concentrations in Calluna vulgaris across an N deposition gradient in the UK, shoot concentrations of N and more surprisingly phosphorus and potassium were positively correlated with N deposition; tissue N/P ratio even decreased with N deposition. Elevated P and K concentrations possibly resulted from improved acquisition due to additional enzyme production or mycorrhizal activity. Heather occurs on organic soils where nutrient limitations are likely due to availability constraints rather than small stocks. However, if this effect extends to other plant and soil types, effects of N deposition on C sinks and plant competition may not be as constrained by availability of other nutrients as previously proposed. - Heather tissue phosphorus and potassium concentrations increased across a nitrogen deposition gradient, implying that nitrogen limited acquisition of other plant nutrients

  20. Plant community responses to simultaneous changes in temperature, nitrogen availability, and invasion.

    Directory of Open Access Journals (Sweden)

    Elise S Gornish

    Full Text Available Increasing rates of change in climate have been observed across the planet and have contributed to the ongoing range shifts observed for many species. Although ecologists are now using a variety of approaches to study how much and through what mechanisms increasing temperature and nutrient pollution may influence the invasions inherent in range shifts, accurate predictions are still lacking.In this study, we conducted a factorial experiment, simultaneously manipulating warming, nitrogen addition and introduction of Pityopsis aspera, to determine how range-shifting species affect a plant community. We quantified the resident community using ordination scores, then used structural equation modeling to examine hypotheses related to how plants respond to a network of experimental treatments and environmental variables. Variation in soil pH explained plant community response to nitrogen addition in the absence of invasion. However, in the presence of invasion, the direct effect of nitrogen on the community was negligible and soil moisture was important for explaining nitrogen effects. We did not find effects of warming on the native plant community in the absence of invasion. In the presence of invasion, however, warming had negative effects on functional richness directly and invasion and herbivory explained the overall positive effect of warming on the plant community.This work highlights the variation in the biotic and abiotic factors responsible for explaining independent and collective climate change effects over a short time scale. Future work should consider the complex and non-additive relationships among factors of climate change and invasion in order to capture more ecologically relevant features of our changing environment.

  1. Azospirillum Inoculation Alters Nitrate Reductase Activity and Nitrogen Uptake in Wheat Plant Under Water Deficit Conditions

    OpenAIRE

    N. Aliasgharzad, N. Aliasgharzad; Heydaryan, Zahra; Sarikhani, M.R

    2014-01-01

    Water deficit stress usually diminishes nitrogen uptake by plants. There are evidences that some nitrogen fixing bacteria can alleviate this stress by supplying nitrogen and improving its metabolism in plants. Four Azospirillum strains, A. lipoferum AC45-II, A. brasilense AC46-I, A. irakense AC49-VII and A. irakense AC51-VI were tested for nitrate reductase activity (NRA). In a pot culture experiment using a sandy loam soil, wheat plants (Triticum aestivum L. cv. Sardari) were inoculated with...

  2. Nitrogen and Potassium Concentrations in the Nutrients Solution for Melon Plants Growing in Coconut Fiber without Drainage

    Directory of Open Access Journals (Sweden)

    Luiz Augusto Gratieri

    2013-01-01

    Full Text Available With the objective of evaluating the effects of N and K concentrations for melon plants, an experiment was carried out from July 1, 2011 to January 3, 2012 in Muzambinho city, Minas Gerais State, Brazil. The “Bonus no. 2” was cultivated at the spacing of 1.1 × 0.4. The experimental design was a randomized complete block with three replications in a 4 × 4 factorial scheme with four N concentrations (8, 12, 16, and 20 mmol L−1 and four K concentrations (4, 6, 8, and 10 mmol L−1. The experimental plot constituted of eight plants. It was observed that the leaf levels of N and K, of N-NO3 and of K, and the electrical conductivity (CE of the substrate increased with the increment of N and K in the nutrients' solution. Substratum pH, in general, was reduced with increments in N concentration and increased with increasing K concentrations in the nutrients' solution. Leaf area increased with increments in N concentration in the nutrients solution. Fertigation with solutions stronger in N (20 mmol L−1 and K (10 mmol L−1 resulted in higher masses for the first (968 g and the second (951 g fruits and crop yield (4,425 gm−2.

  3. Simultaneous nitrogen, phosphorous, and hardness removal from reverse osmosis concentrate by microalgae cultivation.

    Science.gov (United States)

    Wang, Xiao-Xiong; Wu, Yin-Hu; Zhang, Tian-Yuan; Xu, Xue-Qiao; Dao, Guo-Hua; Hu, Hong-Ying

    2016-05-01

    While reverse osmosis (RO) is a promising technology for wastewater reclamation, RO concentrate (ROC) treatment and disposal are important issues to consider. Conventional chemical and physical treatment methods for ROC present certain limitations, such as relatively low nitrogen and phosphorus removal efficiencies as well as the requirement of an extra process for hardness removal. This study proposes a novel biological approach for simultaneous removal of nitrogen, phosphorus, and calcium (Ca(2+)) and magnesium (Mg(2+)) ions from the ROC of municipal wastewater treatment plants by microalgal cultivation and algal biomass production. Two microalgae strains, Chlorella sp. ZTY4 and Scenedesmus sp. LX1, were used for batch cultivation of 14-16 days. Both strains grew well in ROC with average biomass production of 318.7 mg/L and lipid contents up to 30.6%, and nitrogen and phosphorus could be effectively removed with efficiencies of up to 89.8% and 92.7%, respectively. Approximately 55.9%-83.7% Ca(2+) could be removed from the system using the cultured strains. Mg(2+) removal began when Ca(2+) precipitation ceased, and the removal efficiency of the ion could reach up to 56.0%. The most decisive factor influencing Ca(2+) and Mg(2+) removal was chemical precipitation with increases in pH caused by algal growth. The results of this study provide a new biological approach for removing nitrogen, phosphorous, and hardness from ROC. The results suggest that microalgal cultivation presents new opportunities for applying an algal process to ROC treatment. The proposed approach serves dual purposes of nutrient and hardness reduction and production of lipid rich micro-algal biomass. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Analyzing nitrogen concentration using carrier illumination (CI) technology for DPN ultra-thin gate oxide

    International Nuclear Information System (INIS)

    Li, W.S.; Wu, Bill; Fan, Aki; Kuo, C.W.; Segovia, M.; Kek, H.A.

    2005-01-01

    Nitrogen concentration in the gate oxide plays a key role for 90 nm and below ULSI technology. Techniques like secondary ionization mass spectroscopy (SIMS) and X-ray photoelectron spectroscopy (XPS) are commonly used for understanding N concentration. This paper describes the application of the carrier illuminationTM (CI) technique to measure the nitrogen concentration in ultra-thin gate oxides. A set of ultra-thin gate oxide wafers with different DPN (decoupled plasma nitridation) treatment conditions were measured using the CI technique. The CI signal has excellent correlation with the N concentration as measured by XPS

  5. Spectral measurements at different spatial scales in potato: relating leaf, plant and canopy nitrogen status

    Science.gov (United States)

    Jongschaap, Raymond E. E.; Booij, Remmie

    2004-09-01

    Chlorophyll contents in vegetation depend on soil nitrogen availability and on crop nitrogen uptake, which are important management factors in arable farming. Crop nitrogen uptake is important, as nitrogen is needed for chlorophyll formation, which is important for photosynthesis, i.e. the conversion of absorbed radiance into plant biomass. The objective of this study was to estimate leaf and canopy nitrogen contents by near and remote sensing observations and to link observations at leaf, plant and canopy level. A theoretical base is presented for scaling-up leaf optical properties to whole plants and crops, by linking different optical recording techniques at leaf, plant and canopy levels through the integration of vertical nitrogen distribution. Field data come from potato experiments in The Netherlands in 1997 and 1998, comprising two potato varieties: Eersteling and Bintje, receiving similar nitrogen treatments (0, 100, 200 and 300 kg N ha -1) in varying application schemes to create differences in canopy nitrogen status during the growing season. Ten standard destructive field samplings were performed to follow leaf area index and crop dry weight evolution. Samples were analysed for inorganic nitrogen and total nitrogen contents. At sampling dates, spectral measurements were taken both at leaf level and at canopy level. At leaf level, an exponential relation between SPAD-502 readings and leaf organic nitrogen contents with a high correlation factor of 0.91 was found. At canopy level, an exponential relation between canopy organic nitrogen contents and red edge position ( λrep, nm) derived from reflectance measurements was found with a good correlation of 0.82. Spectral measurements (SPAD-502) at leaf level of a few square mm were related to canopy reflectance measurements (CropScan™) of approximately 0.44 m 2. Statistical regression techniques were used to optimise theoretical vertical nitrogen profiles that allowed scaling-up leaf chlorophyll measurements

  6. Fast-freezing with liquid nitrogen preserves bulk dissolved organic matter concentrations, but not its composition

    DEFF Research Database (Denmark)

    Thieme, Lisa; Graeber, Daniel; Kaupenjohann, Martin

    2016-01-01

    -freezing with liquid nitrogen) on DOM concentrations measured as organic carbon (DOC) concentrations and on spectroscopic properties of DOM from different terrestrial ecosystems (forest and grassland). Fresh and differently frozen throughfall, stemflow, litter leachate and soil solution samples were analyzed for DOC...... concentrations, UV-vis absorption and fluorescence excitation–emission matrices combined with parallel factor analysis (PARAFAC). Fast-freezing with liquid nitrogen prevented a significant decrease of DOC concentrations observed after freezing at −18 °C. Nonetheless, the share of PARAFAC components 1 (EXmax...... component 4 (EXmax: 280 nm, EXmax: 328 nm) to total fluorescence was not affected by freezing. We recommend fast-freezing with liquid nitrogen for preservation of bulk DOC concentrations of samples from terrestrial sources, whereas immediate measuring is preferable to preserve spectroscopic properties...

  7. Carbon cost of plant nitrogen acquisition: global carbon cycle impact from an improved plant nitrogen cycle in the Community Land Model.

    Science.gov (United States)

    Shi, Mingjie; Fisher, Joshua B; Brzostek, Edward R; Phillips, Richard P

    2016-03-01

    Plants typically expend a significant portion of their available carbon (C) on nutrient acquisition - C that could otherwise support growth. However, given that most global terrestrial biosphere models (TBMs) do not include the C cost of nutrient acquisition, these models fail to represent current and future constraints to the land C sink. Here, we integrated a plant productivity-optimized nutrient acquisition model - the Fixation and Uptake of Nitrogen Model - into one of the most widely used TBMs, the Community Land Model. Global plant nitrogen (N) uptake is dynamically simulated in the coupled model based on the C costs of N acquisition from mycorrhizal roots, nonmycorrhizal roots, N-fixing microbes, and retranslocation (from senescing leaves). We find that at the global scale, plants spend 2.4 Pg C yr(-1) to acquire 1.0 Pg N yr(-1) , and that the C cost of N acquisition leads to a downregulation of global net primary production (NPP) by 13%. Mycorrhizal uptake represented the dominant pathway by which N is acquired, accounting for ~66% of the N uptake by plants. Notably, roots associating with arbuscular mycorrhizal (AM) fungi - generally considered for their role in phosphorus (P) acquisition - are estimated to be the primary source of global plant N uptake owing to the dominance of AM-associated plants in mid- and low-latitude biomes. Overall, our coupled model improves the representations of NPP downregulation globally and generates spatially explicit patterns of belowground C allocation, soil N uptake, and N retranslocation at the global scale. Such model improvements are critical for predicting how plant responses to altered N availability (owing to N deposition, rising atmospheric CO2 , and warming temperatures) may impact the land C sink. © 2015 John Wiley & Sons Ltd.

  8. Co-optimal distribution of leaf nitrogen and hydraulic conductance in plant canopies.

    Science.gov (United States)

    Peltoniemi, Mikko S; Duursma, Remko A; Medlyn, Belinda E

    2012-05-01

    Leaf properties vary significantly within plant canopies, due to the strong gradient in light availability through the canopy, and the need for plants to use resources efficiently. At high light, photosynthesis is maximized when leaves have a high nitrogen content and water supply, whereas at low light leaves have a lower requirement for both nitrogen and water. Studies of the distribution of leaf nitrogen (N) within canopies have shown that, if water supply is ignored, the optimal distribution is that where N is proportional to light, but that the gradient of N in real canopies is shallower than the optimal distribution. We extend this work by considering the optimal co-allocation of nitrogen and water supply within plant canopies. We developed a simple 'toy' two-leaf canopy model and optimized the distribution of N and hydraulic conductance (K) between the two leaves. We asked whether hydraulic constraints to water supply can explain shallow N gradients in canopies. We found that the optimal N distribution within plant canopies is proportional to the light distribution only if hydraulic conductance, K, is also optimally distributed. The optimal distribution of K is that where K and N are both proportional to incident light, such that optimal K is highest to the upper canopy. If the plant is constrained in its ability to construct higher K to sun-exposed leaves, the optimal N distribution does not follow the gradient in light within canopies, but instead follows a shallower gradient. We therefore hypothesize that measured deviations from the predicted optimal distribution of N could be explained by constraints on the distribution of K within canopies. Further empirical research is required on the extent to which plants can construct optimal K distributions, and whether shallow within-canopy N distributions can be explained by sub-optimal K distributions.

  9. Achieving low effluent NO3-N and TN concentrations in low influent chemical oxygen demand (COD) to total Kjeldahl nitrogen (TKN) ratio without using external carbon source

    Science.gov (United States)

    Cao, Jiashun; Oleyiblo, Oloche James; Xue, Zhaoxia; Otache, Y. Martins; Feng, Qian

    2015-07-01

    Two mathematical models were used to optimize the performance of a full-scale biological nutrient removal (BNR) activated treatment plant, a plug-flow bioreactors operated in a 3-stage phoredox process configuration, anaerobic anoxic oxic (A2/O). The ASM2d implemented on the platform of WEST2011 software and the BioWin activated sludge/anaerobic digestion (AS/AD) models were used in this study with the aim of consistently achieving the designed effluent criteria at a low operational cost. Four ASM2d parameters (the reduction factor for denitrification , the maximum growth rate of heterotrophs (µH), the rate constant for stored polyphosphates in PAOs ( q pp), and the hydrolysis rate constant ( k h)) were adjusted. Whereas three BioWin parameters (aerobic decay rate ( b H), heterotrophic dissolved oxygen (DO) half saturation ( K OA), and Y P/acetic) were adjusted. Calibration of the two models was successful; both models have average relative deviations (ARD) less than 10% for all the output variables. Low effluent concentrations of nitrate nitrogen (N-NO3), total nitrogen (TN), and total phosphorus (TP) were achieved in a full-scale BNR treatment plant having low influent chemical oxygen demand (COD) to total Kjeldahl nitrogen (TKN) ratio (COD/TKN). The effluent total nitrogen and nitrate nitrogen concentrations were improved by 50% and energy consumption was reduced by approximately 25%, which was accomplished by converting the two-pass aerobic compartment of the plug-flow bioreactor to anoxic reactors and being operated in an alternating mode. Findings in this work are helpful in improving the operation of wastewater treatment plant while eliminating the cost of external carbon source and reducing energy consumption.

  10. Nitrogen Removal Efficiency at Centralized Domestic Wastewater Treatment Plants in Bangkok, Thailand

    Directory of Open Access Journals (Sweden)

    Pongsak Noophan

    2009-07-01

    Full Text Available In this study, influents and effluents from centralized domestic wastewater treatment systems in Bangkok (Rattanakosin, Dindaeng, Chongnonsi, Nongkhaem, and Jatujak were randomly collected in order to measure organic nitrogen plus ammonium-nitrogen (total Kjeldahl nitrogen, total organic carbon, total suspended solids, and total volatile suspended solids by using Standard Methods for the Examination of Water and Wastewater 1998. Characteristics of influent and effluent (primary data of the centralized domestic wastewater treatment system from the Drainage and Sewerage Department of Bangkok Metropolitan Administration were used to analyze efficiency of systems. Fluorescent in situ hybridization (FISH was used to identify specific nitrifying bacteria (ammonium oxidizing bacteria specific for Nitrosomonas spp. and nitrite oxidizing bacteria specific for Nitrobacter spp. and Nitrospira spp.. Although Nitrosomonas spp. and Nitrobacter spp. were found, Nitrospira spp. was most prevalent in the aeration tank of centralized wastewater treatment systems. Almost all of the centralized domestic wastewater treatment plants in Bangkok are designed for activated sludge type biological nutrient removal (BNR. However, low efficiency nitrogen removal was found at centralized wastewater treatment plants in Bangkok. Influent ratio of TOC:N at centralized treatment plant is less than 2.5. Centralized wastewater treatment systems have not always been used suitability and used successfully in some areas of Bangkok Thailand.

  11. Integrated use of plant growth promoting rhizobacteria, biogas slurry and chemical nitrogen for sustainable production of maize under salt-affected conditions

    International Nuclear Information System (INIS)

    Ahmad, M.; Jamil, M.; Akhtar, F.U.Z.

    2014-01-01

    Salinity is one of the most critical constraints hampering agricultural production throughout the world, including Pakistan. Some plant growth promoting rhizobacteria (PGPR) have the ability to reduce the deleterious effect of salinity on plants due to the presence of ACC-deaminase enzyme along with some other mechanisms. The integrated use of organic, chemical and biofertilizers can reduce dependence on expensive chemical inputs. To sustain high crop yields without deterioration of soil fertility, it is important to work out optimal combination of chemical and biofertilizers, and manures in the cropping system. A pot trial was conducted to study the effect of integrated use of PGPR, chemical nitrogen, and biogas slurry for sustainable production of maize under salt-stressed conditions and for good soil health. Results showed that sole application of PGPR, chemical nitrogen and biogas slurry enhanced maize growth but their combined application was more effective. Maximum improvement in maize growth, yield, ionic concentration in leaves and nutrient concentration in grains was observed in the treatment where PGPR and biogas slurry was used in the presence of 100% recommended nitrogen as chemical fertilizer. It also improved the soil pH, ECe, and available N, P and K contents. It is concluded that integrated use of PGPR, biogas slurry and chemical nitrogen not only enhanced maize growth, yield and quality but also improved soil health. So, it may be evaluated under field conditions to get sustained yield of maize from salt-affected soils. (author)

  12. Effects of high nitrogen concentrations on the growth of submersed macrophytes at moderate phosphorus concentrations.

    Science.gov (United States)

    Yu, Qing; Wang, Hong-Zhu; Li, Yan; Shao, Jian-Chun; Liang, Xiao-Min; Jeppesen, Erik; Wang, Hai-Jun

    2015-10-15

    Eutrophication of lakes leading to loss of submersed macrophytes and higher turbidity is a worldwide phenomenon, attributed to excessive loading of phosphorus (P). However, recently, the role of nitrogen (N) for macrophyte recession has received increasing attention. Due to the close relationship between N and P loading, disentanglement of the specific effects of these two nutrients is often difficult, and some controversy still exists as to the effects of N. We studied the effects of N on submersed macrophytes represented by Vallisneria natans (Lour.) Hara in pots positioned at three depths (0.4 m, 0.8 m, and 1.2 m to form a gradient of underwater light conditions) in 10 large ponds having moderate concentrations of P (TP 0.03 ± 0.04 mg L(-1)) and five targeted concentrations of total nitrogen (TN) (0.5, 2, 10, 20, and 100 mg L(-1)), there were two ponds for each treatment. To study the potential shading effects of other primary producers, we also measured the biomass of phytoplankton (ChlaPhyt) and periphyton (ChlaPeri) expressed as chlorophyll a. We found that leaf length, leaf mass, and root length of macrophytes declined with increasing concentrations of TN and ammonium, while shoot number and root mass did not. All the measured growth indices of macrophytes declined significantly with ChlaPhyt, while none were significantly related to ChlaPeri. Neither ChlaPhyt nor ChlaPeri were, however, significantly negatively related to the various N concentrations. Our results indicate that shading by phytoplankton unrelated to the variation in N loading and perhaps toxic stress exerted by high nitrogen were responsible for the decline in macrophyte growth. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Nitrogen Limitation Alters Biomass Production but Enhances Steviol Glycoside Concentration in Stevia rebaudiana Bertoni.

    Directory of Open Access Journals (Sweden)

    Claire Barbet-Massin

    Full Text Available The need for medicinal and aromatic plants for industrial uses creates an opportunity for farmers to produce alternative crops. Stevia rebaudiana Bertoni, a perennial shrub originating from Paraguay, is of increasing interest as a source of zero-calorie natural sweeteners: the steviol glycosides (SVglys. The aim of this study was to investigate the relevance of nitrogen (N supply for leaf yield and for SVgly concentrations in leaves, which are the two major components of S. rebaudiana productivity. In this regard, the relationship between leaf N concentration, CO2 assimilation, leaf production and SVgly accumulation was investigated. The experiments were conducted consecutively in growth-chamber (CC: controlled conditions, in greenhouse (SCC: semi-controlled conditions and in field conditions (FC on two genotypes. In CC and SCC, three levels of N fertilization were applied. Plants were grown on four locations in the FC experiment. Both N supply (CC and SCC and location (FC had a significant effect on N content in leaves. When light was not limiting (SCC and FC N content in leaves was positively correlated with CO2 assimilation rate and biomass accumulation. Irrespective of the growth conditions, N content in leaves was negatively correlated with SVgly content. However, increased SVgly content was correlated with a decreased ratio of rebaudioside A over stevioside. The evidence that the increased SVgly accumulation compensates for the negative effect on biomass production suggests that adequate SVgly productivity per plant may be achieved with relatively low fertilization.

  14. Nitrogen Limitation Alters Biomass Production but Enhances Steviol Glycoside Concentration in Stevia rebaudiana Bertoni

    Science.gov (United States)

    Barbet-Massin, Claire; Giuliano, Simon; Alletto, Lionel; Daydé, Jean; Berger, Monique

    2015-01-01

    The need for medicinal and aromatic plants for industrial uses creates an opportunity for farmers to produce alternative crops. Stevia rebaudiana Bertoni, a perennial shrub originating from Paraguay, is of increasing interest as a source of zero-calorie natural sweeteners: the steviol glycosides (SVglys). The aim of this study was to investigate the relevance of nitrogen (N) supply for leaf yield and for SVgly concentrations in leaves, which are the two major components of S. rebaudiana productivity. In this regard, the relationship between leaf N concentration, CO2 assimilation, leaf production and SVgly accumulation was investigated. The experiments were conducted consecutively in growth-chamber (CC: controlled conditions), in greenhouse (SCC: semi-controlled conditions) and in field conditions (FC) on two genotypes. In CC and SCC, three levels of N fertilization were applied. Plants were grown on four locations in the FC experiment. Both N supply (CC and SCC) and location (FC) had a significant effect on N content in leaves. When light was not limiting (SCC and FC) N content in leaves was positively correlated with CO2 assimilation rate and biomass accumulation. Irrespective of the growth conditions, N content in leaves was negatively correlated with SVgly content. However, increased SVgly content was correlated with a decreased ratio of rebaudioside A over stevioside. The evidence that the increased SVgly accumulation compensates for the negative effect on biomass production suggests that adequate SVgly productivity per plant may be achieved with relatively low fertilization. PMID:26192921

  15. Effect of nitrogen supply on leaf appearance, leaf growth, leaf nitrogen economy and photosynthetic capacity in maize (Zea mays L.)

    NARCIS (Netherlands)

    Vos, J.; Putten, van der P.E.L.; Birch, C.J.

    2005-01-01

    Leaf area growth and nitrogen concentration per unit leaf area, Na (g m-2 N) are two options plants can use to adapt to nitrogen limitation. Previous work indicated that potato (Solanum tuberosum L.) adapts the size of leaves to maintain Na and photosynthetic capacity per unit leaf area. This paper

  16. Trends in stream nitrogen concentrations for forested reference catchments across the USA

    Science.gov (United States)

    A. Argerich; S.L. Johnson; S.D. Sebestyen; C.C. Rhoades; E. Greathouse; J.D. Knoepp; M.B. Adams; G.E. Likens; J.L. Campbell; W.H. McDowell; F.N. Scatena; G.G. Ice

    2013-01-01

    To examine whether stream nitrogen concentrations in forested reference catchments have changed over time and if patterns were consistent across the USA, we synthesized up to 44 yr of data collected from 22 catchments at seven USDA Forest Service Experimental Forests. Trends in stream nitrogen presented high spatial variability both among catchments at a site and among...

  17. On nitrogen solubility in water

    International Nuclear Information System (INIS)

    Kalajda, Yu.A.; Katkov, Yu.D.; Kuznetsov, V.A.; Lastovtsev, A.Yu.; Lastochkin, A.P.; Susoev, V.S.

    1980-01-01

    Presented are the results of experimental investigations on nitrogen solubility in water under 0-15 MPa pressure, at the temperature of 100-340 deg C and nitrogen concentration of 0-5000 n.ml. N 2 /kg H 2 O. Empiric equations are derived and a diagram of nitrogen solubility in water is developed on the basis of the experimental data, as well as critically evaluated published data. The investigation results can be used in analyzing water-gas regime of a primary heat carrier in stream-generating plants with water-water reactors

  18. A caveat regarding diatom-inferred nitrogen concentrations in oligotrophic lakes

    Science.gov (United States)

    Arnett, Heather A.; Saros, Jasmine E.; Mast, M. Alisa

    2012-01-01

    Atmospheric deposition of reactive nitrogen (Nr) has enriched oligotrophic lakes with nitrogen (N) in many regions of the world and elicited dramatic changes in diatom community structure. The lakewater concentrations of nitrate that cause these community changes remain unclear, raising interest in the development of diatom-based transfer functions to infer nitrate. We developed a diatom calibration set using surface sediment samples from 46 high-elevation lakes across the Rocky Mountains of the western US, a region spanning an N deposition gradient from very low to moderate levels (phosphorus, and hypolimnetic water temperature were related to diatom distributions. A transfer function was developed for nitrate and applied to a sedimentary diatom profile from Heart Lake in the central Rockies. The model coefficient of determination (bootstrapping validation) of 0.61 suggested potential for diatom-inferred reconstructions of lakewater nitrate concentrations over time, but a comparison of observed versus diatom-inferred nitrate values revealed the poor performance of this model at low nitrate concentrations. Resource physiology experiments revealed that nitrogen requirements of two key taxa were opposite to nitrate optima defined in the transfer function. Our data set reveals two underlying ecological constraints that impede the development of nitrate transfer functions in oligotrophic lakes: (1) even in lakes with nitrate concentrations below quantification (<1 μg L−1), diatom assemblages were already dominated by species indicative of moderate N enrichment; (2) N-limited oligotrophic lakes switch to P limitation after receiving only modest inputs of reactive N, shifting the controls on diatom species changes along the length of the nitrate gradient. These constraints suggest that quantitative inferences of nitrate from diatom assemblages will likely require experimental approaches.

  19. Leaf reflectance-nitrogen-chlorophyll relations among three south Texas woody rangeland plant species

    Science.gov (United States)

    Gausman, H. W.; Everitt, J. H.; Escobar, D. E. (Principal Investigator)

    1982-01-01

    Annual variations in the nitrogen-chlorophyll leaf reflectance of hackberry, honey mesquite and live oak in south Texas, were compared. In spring, leaf reflectance at the 0.55 m wavelength and nitrogen (N) concentration was high but leaf chlorophyll (chl) concentrations were low. In summer, leaf reflectance and N-concentration were low but lead chl concentrations were high. Linear correlations for both spring and summer of leaf reflectance with N and chl concentration or deviations from linear regression were not statistically significant.

  20. Growth and nitrogen dynamics of glycine max inoculated with bradyrhizobium japonicum and exposed to elevated atmospheric carbon dioxide

    International Nuclear Information System (INIS)

    Rehman, A.; Hamid, N.; Jawaid, F.

    2010-01-01

    Seeds of Glycine max (soybean) were inoculated with N-fixing bacterium Bradyrhizobium japonicum and grown in growth chamber to investigate interactive effects of atmospheric CO/sub 2/ and plants Nitrogen status on root and shoot length and biomass, nodule formation and Nitrogen concentration. Plants were grown with CO/sub 2/ at 3500 and 1000 ppm with or without Bradyrhizobium japonicum inoculation. Root and shoot length and dry mass of Glycine max increased significantly with CO/sub 2/ enrichment provided with Bradyrhizobium japonicum as compared to deficient Nitrogen fixing bacterium. While ambient and enriched CO/sub 2/ levels resulted in increased Nitrogen concentration of Glycine max shoot and root which is inoculated with N-fixing bacterium. Nodule formation was also enhanced in plants supplied with Bradyrhizobium japonicum as compared to plants which is Bradyrhizobium japonicum deficient at both CO/sub 2/ concentrations. (author)

  1. Effects of the addition of different nitrogen sources in the tequila fermentation process at high sugar concentration.

    Science.gov (United States)

    Arrizon, J; Gschaedler, A

    2007-04-01

    To study the effect of the addition of different nitrogen sources at high sugar concentration in the tequila fermentation process. Fermentations were performed at high sugar concentration (170 g l(-1)) using Agave tequilana Weber blue variety with and without added nitrogen from different sources (ammonium sulfate; glutamic acid; a mixture of ammonium sulfate and amino acids) during the exponential phase of growth. All the additions increased the fermentation rate and alcohol efficiency. The level of synthesis of volatile compounds depended on the source added. The concentration of amyl alcohols and isobutanol were decreased while propanol and acetaldehyde concentration increased. The most efficient nitrogen sources for fermentation rate were ammonium sulfate and the mixture of ammonium sulfate and amino acids. The level of volatile compounds produced depended upon types of nitrogen. The synthesis of some volatile compounds increased while others decreased with nitrogen addition. The addition of nitrogen could be a strategy for improving the fermentation rate and efficiency in the tequila fermentation process at high sugar Agave tequilana concentration. Furthermore, the sensory quality of the final product may change because the synthesis of the volatile compounds is modified.

  2. Dissolved organic nitrogen recalcitrance and bioavailable nitrogen quantification for effluents from advanced nitrogen removal wastewater treatment facilities

    International Nuclear Information System (INIS)

    Fan, Lu; Brett, Michael T.; Jiang, Wenju; Li, Bo

    2017-01-01

    The objective of this study was to determine the composition of nitrogen (N) in the effluents of advanced N removal (ANR) wastewater treatment plants (WWTPs). This study also tested two different experimental protocols for determining dissolved N recalcitrance. An analysis of 15 effluent samples from five WWTPs, showed effluent concentrations and especially effluent composition varied greatly from one system to the other, with total nitrogen (TN) ranging between 1.05 and 8.10 mg L −1 . Nitrate (NO 3 − ) accounted for between 38 ± 32% of TN, and ammonium accounted for a further 29 ± 28%. All of these samples were dominated by dissolved inorganic nitrogen (DIN; NO 3 −  + NH 4 + ), and uptake experiments indicated the DIN fraction was as expected highly bioavailable. Dissolved organic N (DON) accounted for 20 ± 11% for the total dissolved N in these effluents, and uptake experiments indicated the bioavailability of this fraction varied between 27 ± 26% depending on the WWTP assessed. These results indicate near complete DIN removal should be the primary goal of ANR treatment systems. The comparison of bioavailable nitrogen (BAN) quantification protocols showed that the dissolved nitrogen uptake bioassay approach was clearly a more reliable way to determine BAN concentrations compared to the conventional cell yield protocol. Moreover, because the nitrogen uptake experiment was much more sensitive, this protocol made it easier to detect extrinsic factors (such as biological contamination or toxicity) that could affect the accuracy of these bioassays. Based on these results, we recommend the nitrogen uptake bioassay using filtered and autoclaved samples to quantify BAN concentrations. However, for effluent samples indicating toxicity, algal bioassays will not accurately quantify BAN. - Highlights: • DIN was the dominated N pool for most of the tested effluent samples. • DON bioavailability considerably varied depending on the WWTP assessed.

  3. Internal nitrogen removal from sediments by the hybrid system of microbial fuel cells and submerged aquatic plants.

    Directory of Open Access Journals (Sweden)

    Peng Xu

    Full Text Available Sediment internal nitrogen release is a significant pollution source in the overlying water of aquatic ecosystems. This study aims to remove internal nitrogen in sediment-water microcosms by coupling sediment microbial fuel cells (SMFCs with submerged aquatic plants. Twelve tanks including four treatments in triplicates were designed: open-circuit (SMFC-o, closed-circuit (SMFC-c, aquatic plants with open-circuit (P-SMFC-o and aquatic plants with closed-circuit (P-SMFC-c. The changes in the bio-electrochemical characteristics of the nitrogen levels in overlying water, pore water, sediments, and aquatic plants were documented to explain the migration and transformation pathways of internal nitrogen. The results showed that both electrogenesis and aquatic plants could facilitate the mineralization of organic nitrogen in sediments. In SMFC, electrogenesis promoted the release of ammonium from the pore water, followed by the accumulation of ammonium and nitrate in the overlying water. The increased redox potential of sediments due to electrogenesis also contributed to higher levels of nitrate in overlying water when nitrification in pore water was facilitated and denitrification at the sediment-water interface was inhibited. When the aquatic plants were introduced into the closed-circuit SMFC, the internal ammonium assimilation by aquatic plants was advanced by electrogenesis; nitrification in pore water and denitrification in sediments were also promoted. These processes might result in the maximum decrease of internal nitrogen with low nitrogen levels in the overlying water despite the lower power production. The P-SMFC-c reduced 8.1%, 16.2%, 24.7%, and 25.3% of internal total nitrogen compared to SMFC-o on the 55th, 82th, 136th, and 190th days, respectively. The smaller number of Nitrospira and the larger number of Bacillus and Pseudomonas on the anodes via high throughput sequencing may account for strong mineralization and denitrification in the

  4. Artificial intelligence models for predicting the performance of biological wastewater treatment plant in the removal of Kjeldahl Nitrogen from wastewater

    Science.gov (United States)

    Manu, D. S.; Thalla, Arun Kumar

    2017-11-01

    The current work demonstrates the support vector machine (SVM) and adaptive neuro-fuzzy inference system (ANFIS) modeling to assess the removal efficiency of Kjeldahl Nitrogen of a full-scale aerobic biological wastewater treatment plant. The influent variables such as pH, chemical oxygen demand, total solids (TS), free ammonia, ammonia nitrogen and Kjeldahl Nitrogen are used as input variables during modeling. Model development focused on postulating an adaptive, functional, real-time and alternative approach for modeling the removal efficiency of Kjeldahl Nitrogen. The input variables used for modeling were daily time series data recorded at wastewater treatment plant (WWTP) located in Mangalore during the period June 2014-September 2014. The performance of ANFIS model developed using Gbell and trapezoidal membership functions (MFs) and SVM are assessed using different statistical indices like root mean square error, correlation coefficients (CC) and Nash Sutcliff error (NSE). The errors related to the prediction of effluent Kjeldahl Nitrogen concentration by the SVM modeling appeared to be reasonable when compared to that of ANFIS models with Gbell and trapezoidal MF. From the performance evaluation of the developed SVM model, it is observed that the approach is capable to define the inter-relationship between various wastewater quality variables and thus SVM can be potentially applied for evaluating the efficiency of aerobic biological processes in WWTP.

  5. Simulation of the decomposition and nitrogen mineralization of aboveground plant material in two unfertilized grassland ecosystems.

    NARCIS (Netherlands)

    Bloemhof, H.S.; Berendse, F.

    1995-01-01

    A simple model of the decomposition and nitrogen mineralization of plant material from two unfertilized grassland ecosystems has been developed, with only the proportion of leaves and stems in the original material, the initial nitrogen contents of these plant parts and temperature as input data.

  6. Native plants fare better against an introduced competitor with native microbes and lower nitrogen availability.

    Science.gov (United States)

    Gaya Shivega, W; Aldrich-Wolfe, Laura

    2017-01-24

    While the soil environment is generally acknowledged as playing a role in plant competition, the relative importance of soil resources and soil microbes in determining outcomes of competition between native and exotic plants has rarely been tested. Resilience of plant communities to invasion by exotic species may depend on the extent to which native and exotic plant performance are mediated by abiotic and biotic components of the soil. We used a greenhouse experiment to compare performance of two native prairie plant species and one exotic species, when grown in intraspecific competition and when each native was grown in interspecific competition with the exotic species, in the presence and absence of a native prairie soil community, and when nitrogen availability was elevated or was maintained at native prairie levels. We found that elevated nitrogen availability was beneficial to the exotic species and had no effect on or was detrimental to the native plant species, that the native microbial community was beneficial to the native plant species and either had no effect or was detrimental to the exotic species, and that intraspecific competition was stronger than interspecific competition for the exotic plant species and vice-versa for the natives. Our results demonstrate that soil nitrogen availability and the soil microbial community can mediate the strength of competition between native and exotic plant species. We found no evidence for native microbes enhancing the performance of the exotic plant species. Instead, loss of the native soil microbial community appears to reinforce the negative effects of elevated N on native plant communities and its benefits to exotic invasive species. Resilience of plant communities to invasion by exotic plant species is facilitated by the presence of an intact native soil microbial community and weakened by anthropogenic inputs of nitrogen. Published by Oxford University Press on behalf of the Annals of Botany Company.

  7. Symbiosome-like intracellular colonization of cereals and other crop plants by nitrogen-fixing bacteria for reduced inputs of synthetic nitrogen fertilizers.

    Science.gov (United States)

    Cocking, Edward C; Stone, Philip J; Davey, Michael R

    2005-09-01

    It has been forecast that the challenge of meeting increased food demand and protecting environmental quality will be won or lost in maize, rice and wheat cropping systems, and that the problem of environmental nitrogen enrichment is most likely to be solved by substituting synthetic nitrogen fertilizers by the creation of cereal crops that are able to fix nitrogen symbiotically as legumes do. In legumes, rhizobia present intracellularly in membrane-bound vesicular compartments in the cytoplasm of nodule cells fix nitrogen endosymbiotically. Within these symbiosomes, membrane-bound vesicular compartments, rhizobia are supplied with energy derived from plant photosynthates and in return supply the plant with biologically fixed nitrogen, usually as ammonia. This minimizes or eliminates the need for inputs of synthetic nitrogen fertilizers. Recently we have demonstrated, using novel inoculation conditions with very low numbers of bacteria, that cells of root meristems of maize, rice, wheat and other major non-legume crops, such as oilseed rape and tomato, can be intracellularly colonized by the non-rhizobial, non-nodulating, nitrogen fixing bacterium,Gluconacetobacter diazotrophicus that naturally occurs in sugarcane.G. diazotrophicus expressing nitrogen fixing (nifH) genes is present in symbiosome-like compartments in the cytoplasm of cells of the root meristems of the target cereals and non-legume crop species, somewhat similar to the intracellular symbiosome colonization of legume nodule cells by rhizobia. To obtain an indication of the likelihood of adequate growth and yield, of maize for example, with reduced inputs of synthetic nitrogen fertilizers, we are currently determining the extent to which nitrogen fixation, as assessed using various methods, is correlated with the extent of systemic intracellular colonization byG. diazotrophicus, with minimal or zero inputs.

  8. Application of titration methods for measuring the contents of ammonium nitrogen and volatile fatty acids in agricultural biogas plants.

    Science.gov (United States)

    Piątek, Michał; Lisowski, Aleksander; Lisowska, Barbara

    2017-12-20

    The aim of our research was to assess a relatively new method of estimating ammonium nitrogen concentration in anaerobic digestion of plant substrates. We analysed our own data, received from the anaerobic digestion of maize silage (PM), as well as data published by Purser et al. (2014) who measured energy crops and slurry (ECS), and food waste (FW). In our study, the process was monitored for VFA content that was determined by gas chromatography, and for the content of ammonium nitrogen determined using the HACH LANGE LCK 303 cuvette test. We created polynomial regression models that bind the content of ammonium nitrogen with the volume of H 2 SO 4 used to titrate the sample from initial pH to pH 5. To estimate parameters of model, the PM dataset was used. The obtained models were positively validated using ECS and FW datasets. Our results confirmed the effectiveness of the Purser et al. method with an average absolute error of less than 223mgl -1 of the VFA concentration, which was approximately 20-times less than the level that caused inhibition. In conclusion, we can affirm the suitability of using titration methods to assess the ammonium nitrogen content of bioreactors with a stable composition. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Effect of nitrogen concentration of urea ammonium nitrate, and ...

    African Journals Online (AJOL)

    Liquid urea ammonium nitrate (UAN) was applied to dryland Pennisetum clandestinum (Kikuyu (Chiov)) and Cynodon hybrid (Coastcross II (L.) (Pers.)) pastures at two levels (207 and 414 kg N/ha/season) and at three concentrations (10, 5; 21 and 42% N) of nitrogen. The degree of leaf scorch increased as both the amount ...

  10. Emissions of nitric oxide from 79 plant species in response to simulated nitrogen deposition

    International Nuclear Information System (INIS)

    Chen Juan; Wu Feihua; Liu Tingwu; Chen Lei; Xiao Qiang; Dong Xuejun; He Junxian; Pei Zhenming; Zheng Hailei

    2012-01-01

    To assess the potential contribution of nitric oxide (NO) emission from the plants grown under the increasing nitrogen (N) deposition to atmospheric NO budget, the effects of simulated N deposition on NO emission and various leaf traits (e.g., specific leaf area, leaf N concentration, net photosynthetic rate, etc.) were investigated in 79 plant species classified by 13 plant functional groups. Simulated N deposition induced the significant increase of NO emission from most functional groups, especially from conifer, gymnosperm and C 3 herb. Moreover, the change rate of NO emission was significantly correlated with the change rate of various leaf traits. We conclude that the plants grown under atmospheric N deposition, especially in conifer, gymnosperm and C 3 herb, should be taken into account as an important biological source of NO and potentially contribute to atmospheric NO budget. - Highlights: ► Simulated N deposition induces the significant increase of NO emission from plants. ► The increased NO emission is closely related to leaf N level and net photosynthesis. ► Abundant nitrite accumulation is a reason of NO emission induced by excess N input. ► The plants grown under N deposition potentially contribute to atmospheric NO budget. - Simulated N deposition induced a significant increase of NO emission from 79 plants.

  11. Optimization of Nitrogen Rate and Planting Density for Improving Yield, Nitrogen Use Efficiency, and Lodging Resistance in Oilseed Rape

    OpenAIRE

    Khan, Shahbaz; Anwar, Sumera; Kuai, Jie; Ullah, Sana; Fahad, Shah; Zhou, Guangsheng

    2017-01-01

    Yield and lodging related traits are essential for improving rapeseed production. The objective of the present study was to investigate the influence of plant density (D) and nitrogen (N) rates on morphological and physiological traits related to yield and lodging in rapeseed. We evaluated Huayouza 9 for two consecutive growing seasons (2014–2016) under three plant densities (LD, 10 plants m−2; MD, 30 plants m−2; HD, 60 plants m−2) and four N rates (0, 60, 120, and 180 kg ha−1). Experiment wa...

  12. Dissolved organic nitrogen recalcitrance and bioavailable nitrogen quantification for effluents from advanced nitrogen removal wastewater treatment facilities.

    Science.gov (United States)

    Fan, Lu; Brett, Michael T; Jiang, Wenju; Li, Bo

    2017-10-01

    The objective of this study was to determine the composition of nitrogen (N) in the effluents of advanced N removal (ANR) wastewater treatment plants (WWTPs). This study also tested two different experimental protocols for determining dissolved N recalcitrance. An analysis of 15 effluent samples from five WWTPs, showed effluent concentrations and especially effluent composition varied greatly from one system to the other, with total nitrogen (TN) ranging between 1.05 and 8.10 mg L -1 . Nitrate (NO 3 - ) accounted for between 38 ± 32% of TN, and ammonium accounted for a further 29 ± 28%. All of these samples were dominated by dissolved inorganic nitrogen (DIN; NO 3 -  + NH 4 + ), and uptake experiments indicated the DIN fraction was as expected highly bioavailable. Dissolved organic N (DON) accounted for 20 ± 11% for the total dissolved N in these effluents, and uptake experiments indicated the bioavailability of this fraction varied between 27 ± 26% depending on the WWTP assessed. These results indicate near complete DIN removal should be the primary goal of ANR treatment systems. The comparison of bioavailable nitrogen (BAN) quantification protocols showed that the dissolved nitrogen uptake bioassay approach was clearly a more reliable way to determine BAN concentrations compared to the conventional cell yield protocol. Moreover, because the nitrogen uptake experiment was much more sensitive, this protocol made it easier to detect extrinsic factors (such as biological contamination or toxicity) that could affect the accuracy of these bioassays. Based on these results, we recommend the nitrogen uptake bioassay using filtered and autoclaved samples to quantify BAN concentrations. However, for effluent samples indicating toxicity, algal bioassays will not accurately quantify BAN. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Past and future trends in concentrations of sulphur and nitrogen compounds in the Arctic

    DEFF Research Database (Denmark)

    Hole, Lars R.; Christensen, Jesper H.; Ruoho-Airola, Tuija

    2009-01-01

    Recent trends in nitrogen and sulphur compounds in air and precipitation from a range of Arctic monitoring stations are presented, with seasonal data from the late 70s to 2004 or 2005. Earlier findings of declining sulphur concentrations are confirmed for most stations, while the pattern is less...... clear for reduced and oxidized nitrogen. In fact there are positive trends for nitrogen compounds in air at several stations. Acidity is generally reduced at many stations while the precipitation amount is either increasing or stable. Variability of sulphate concentrations in air for the period 1991......-2000 is reasonably well reproduced at most stations using an Eulerian, hemispherical model. Results for nitrogen compounds are weaker. Scenario studies show that even if large sulphur emission reductions take place in important source regions in South-East Asia in the coming decades, only small changes in Arctic...

  14. Compressed-air and backup nitrogen systems in nuclear power plants

    International Nuclear Information System (INIS)

    Hagen, E.W.

    1982-07-01

    This report reviews and evaluates the performance of the compressed-air and pressurized-nitrogen gas systems in commercial nuclear power units. The information was collected from readily available operating experiences, licensee event reports, system designs in safety analysis reports, and regulatory documents. The results are collated and analyzed for significance and impact on power plant safety performance. Under certain circumstances, the fail-safe philosophy for a piece of equipment or subsystem of the compressed-air systems initiated a series of actions culminating in reactor transient or unit scram. However, based on this study of prevailing operating experiences, reclassifying the compressed-gas systems to a higher safety level will neither prevent (nor mitigate) the reoccurrences of such happenings nor alleviate nuclear power plant problems caused by inadequate maintenance, operating procedures, and/or practices. Conversely, because most of the problems were derived from the sources listed previously, upgrading of both maintenance and operating procedures will not only result in substantial improvement in the performance and availability of the compressed-air (and backup nitrogen) systems but in improved overall plant performance

  15. The sensitivity of sunflower (Helianthus annuus L.) plants to UV-B radiation is altered by nitrogen status

    OpenAIRE

    Cechin, Inês; Gonzalez, Gisely Cristina; Corniani, Natália; Fumis, Terezinha de Fátima

    2018-01-01

    ABSTRACT: Interaction effects between nitrogen and UV-B radiation were studied in sunflower (Helianthus annuus L. variety IAC-Iarama) plants grown in a greenhouse under natural photoperiod conditions. Plants were irradiated with 0.8W m-2 (control) or 8.0W m-2 (+UV-B) of UV-B radiation for 7h per day. The plants were grown in pots containing vermiculite and watered with 70% of full strength nitrogen-free Long Ashton solution, containing either low (42.3ppm) or high (282ppm) nitrogen as ammoniu...

  16. Efficiency of an emissions payment system for nitrogen in sewage treatment plants - a case study.

    Science.gov (United States)

    Malmaeus, J Mikael; Ek, Mats; Åmand, Linda; Roth, Susanna; Baresel, Christian; Olshammar, Mikael

    2015-05-01

    An emissions payment system for nitrogen in Swedish sewage treatment plants (STPs) was evaluated using a semi-empirical approach. The system was based on a tariff levied on each unit of nitrogen emitted by STPs, and profitable measures to reduce nitrogen emissions were identified for twenty municipal STPs. This was done through direct involvement with the plant personnel and the results were scaled up to cover all treatment plants larger than 2000 person equivalents in the Swedish tributary areas of the Kattegat and the Baltic Proper. The sum of costs and nitrogen reductions were compared with an assumed command-and-control regulation requiring all STPs to obtain 80% total nitrogen reduction in their effluents. Costs for the latter case were estimated using a database containing standard estimates for reduction costs by six specified measures. For both cases a total reduction target of 3000 tonnes of nitrogen was set. We did not find that the emissions payment system was more efficient in terms of total reduction costs, although some practical and administrative advantages could be identified. Our results emphasize the need to evaluate the performance of policy instruments on a case-by-case basis since the theoretical efficiency is not always reflected in practice. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Nitrogen fixation and induction of pseudo-nodules in grass

    International Nuclear Information System (INIS)

    Rasul, G.; Hassan, U.; Mehnaz, S.; Malik, K.A.

    1993-01-01

    The rice grown nitrogen depleted saline sols showed higher values for in-situ ARA. Isolations of N/sub 2/ fixing bacteria were carried out on soil Azotobacter was observed in plant rhizosphere. The 2,4-D (0.5 and 1 ppm) with diazo trophic bacteria induced nodule like structure on the wheat roots. The bacteria were found in nodules in the form of micro colonies or bacterial aggregates which were responsible for nitrogen fixation providing optimum 02 concentrations was incorporations /sup 15/N dilution data indicated that 125-46.5% atmosphere N was incorporated in nitrogen pool of inoculated plants. (author)

  18. Plant phenology, growth and nutritive quality of Briza maxima: Responses induced by enhanced ozone atmospheric levels and nitrogen enrichment

    International Nuclear Information System (INIS)

    Sanz, J.; Bermejo, V.; Muntifering, R.; Gonzalez-Fernandez, I.; Gimeno, B.S.; Elvira, S.; Alonso, R.

    2011-01-01

    An assessment of the effects of tropospheric ozone (O 3 ) levels and substrate nitrogen (N) supplementation, singly and in combination, on phenology, growth and nutritive quality of Briza maxima was carried out. Two serial experiments were developed in Open-Top Chambers (OTC) using three O 3 and three N levels. Increased O 3 exposure did not affect the biomass-related parameters, but enhanced senescence, increased fiber foliar content (especially lignin concentration) and reduced plant life span; these effects were related to senescence acceleration induced by the pollutant. Added N increased plant biomass production and improved nutritive quality by decreasing foliar fiber concentration. Interestingly, the effects of N supplementation depended on meteorological conditions and plant physiological activity. N supplementation counteracted the O 3 -induced senescence but did not modifiy the effects on nutritive quality. Nutritive quality and phenology should be considered in new definitions of the O 3 limits for the protection of herbaceous vegetation. - Research highlights: → Forage quality (foliar protein and fiber content) and phenology are more O 3 -sensitive than growth parameters in the Mediterranean annual grass Briza maxima. → The effects of N supplementation depended on meteorological conditions and plant physiological activity. → Increase in nitrogen supplementation counterbalanced the O 3 -induced increase in senescence biomass. → Nutritive quality and phenology should be considered in new definitions of the O 3 limits for the protection of natural herbaceous vegetation. - Forage quality and phenology are more O 3 -sensitive than growth parameters in the Mediterranean annual grass Briza maxima.

  19. In-situ Monitoring of Plant-microbe Communication to Understand the Influence of Soil Properties on Symbiotic Biological Nitrogen Fixation

    Science.gov (United States)

    Webster, T.; Del Valle, I.; Cheng, H. Y.; Silberg, J. J.; Masiello, C. A.; Lehmann, J.

    2016-12-01

    Plant-microbe signaling is important for many symbiotic and pathogenic interactions. While this signaling often occurs in soils, very little research has evaluated the role that the soil mineral and organic matter matrix plays in plant-microbe communication. One hurdle to these studies is the lack of simple tools for evaluating how soil mineral phases and organic matter influence the availability of plant-produced flavonoids that initiate the symbiosis between nitrogen-fixing bacteria and legumes. Because of their range of hydrophobic and electrostatic properties, flavonoids represent an informative class of signaling molecules. In this presentation, we will describe studies examining the bioavailable concentrations of flavonoids in soils using traditional techniques, such as high-pressure liquid chromatography and fluorescent microbial biosensors. Additionally, we will describe our progress developing a Rhizobium leguminosarum reporter that can be deployed into soils to report on flavonoid levels. This new microbial reporter is designed so that Rhizobium only generates a volatile gas signal when it encounters a defined concentration of flavonoids. By monitoring the output of this biosensor using gas chromatography-mass spectrometry during real time during soil incubations, we are working to establish the impact of soil organic matter, pH, and mineral phases on the reception of these signaling molecules. We expect that the findings from these studies will be useful for recommending soil management strategies that can enhance the communication between legumes and nitrogen fixing bacteria. This research highlights the importance of studying the role of soil as a mediator of plant-microbe communication.

  20. NEMA, a functional-structural model of nitrogen economy within wheat culms after flowering. I. Model description.

    Science.gov (United States)

    Bertheloot, Jessica; Cournède, Paul-Henry; Andrieu, Bruno

    2011-10-01

    Models simulating nitrogen use by plants are potentially efficient tools to optimize the use of fertilizers in agriculture. Most crop models assume that a target nitrogen concentration can be defined for plant tissues and formalize a demand for nitrogen, depending on the difference between the target and actual nitrogen concentrations. However, the teleonomic nature of the approach has been criticized. This paper proposes a mechanistic model of nitrogen economy, NEMA (Nitrogen Economy Model within plant Architecture), which links nitrogen fluxes to nitrogen concentration and physiological processes. A functional-structural approach is used: plant aerial parts are described in a botanically realistic way and physiological processes are expressed at the scale of each aerial organ or root compartment as a function of local conditions (light and resources). NEMA was developed for winter wheat (Triticum aestivum) after flowering. The model simulates the nitrogen (N) content of each photosynthetic organ as regulated by Rubisco turnover, which depends on intercepted light and a mobile N pool shared by all organs. This pool is enriched by N acquisition from the soil and N release from vegetative organs, and is depleted by grain uptake and protein synthesis in vegetative organs; NEMA accounts for the negative feedback from circulating N on N acquisition from the soil, which is supposed to follow the activities of nitrate transport systems. Organ N content and intercepted light determine dry matter production via photosynthesis, which is distributed between organs according to a demand-driven approach. NEMA integrates the main feedbacks known to regulate plant N economy. Other novel features are the simulation of N for all photosynthetic tissues and the use of an explicit description of the plant that allows how the local environment of tissues regulates their N content to be taken into account. We believe this represents an appropriate frame for modelling nitrogen in

  1. Global scale analysis and evaluation of an improved mechanistic representation of plant nitrogen and carbon dynamics in the Community Land Model (CLM)

    Science.gov (United States)

    Ghimire, B.; Riley, W. J.; Koven, C. D.; Randerson, J. T.; Mu, M.; Kattge, J.; Rogers, A.; Reich, P. B.

    2014-12-01

    In many ecosystems, nitrogen is the most limiting nutrient for plant growth and productivity. However mechanistic representation of nitrogen uptake linked to root traits, and functional nitrogen allocation among different leaf enzymes involved in respiration and photosynthesis is currently lacking in Earth System models. The linkage between nitrogen availability and plant productivity is simplistically represented by potential photosynthesis rates, and is subsequently downregulated depending on nitrogen supply and other nitrogen consumers in the model (e.g., nitrification). This type of potential photosynthesis rate calculation is problematic for several reasons. Firstly, plants do not photosynthesize at potential rates and then downregulate. Secondly, there is considerable subjectivity on the meaning of potential photosynthesis rates. Thirdly, there exists lack of understanding on modeling these potential photosynthesis rates in a changing climate. In addition to model structural issues in representing photosynthesis rates, the role of plant roots in nutrient acquisition have been largely ignored in Earth System models. For example, in CLM4.5, nitrogen uptake is linked to leaf level processes (e.g., primarily productivity) rather than root scale process involved in nitrogen uptake. We present a new plant model for CLM with an improved mechanistic presentation of plant nitrogen uptake based on root scale Michaelis Menten kinetics, and stronger linkages between leaf nitrogen and plant productivity by inferring relationships observed in global databases of plant traits (including the TRY database and several individual studies). We also incorporate improved representation of plant nitrogen leaf allocation, especially in tropical regions where significant over-prediction of plant growth and productivity in CLM4.5 simulations exist. We evaluate our improved global model simulations using the International Land Model Benchmarking (ILAMB) framework. We conclude that

  2. Nitrogen derived from fertilization and straw for plant cane nutrition

    International Nuclear Information System (INIS)

    Vitti, Andre Cesar; Faroni, Carlos Eduardo

    2011-01-01

    The objective of this work was to evaluate the recovery, by plant cane, of the nitrogen ( 15 N) from urea and from sugarcane (Saccharum spp.) crop residues - straw and root system - incorporated into the soil. The experiment was settled in 2005/2006 with the sugarcane cultivar SP81 3250. At planting, microplots of 2 m length and 1.5 m width were installed, and N applications were done with 80 kg ha-1 N (urea with 5.05% in 15 N atoms) and 14 Mg ha -1 crop residues - 9 Mg ha -1 of sugarcane straw and 5 Mg ha -1 of root system, labeled with 15 N (1.07 and 0.81% in 15 N atoms, respectively). The total N accumulation by plants was determined during the crop cycle. Although the N use by shoot from crop residue mineralization (PA and SR) increased significantly over time, this source hardly contributed to crop nutrition. The recovery of the 15 N-urea, 15 N-SS and 15 N-RS by plant cane was 30.3 +- 3.7%, 13.9 +- 4.5% and 6.4 +- 0.9%, respectively, representing 15.9, 4.7 and 1.4% of total nitrogen uptake by shoot. (author)

  3. Control of Seed Germination and Plant Development by Carbon and Nitrogen Availability

    Directory of Open Access Journals (Sweden)

    Daniel eOsuna

    2015-11-01

    Full Text Available Little is known about the molecular basis of the influence of external carbon/nitrogen (C/N ratio and other abiotic factors on phytohormones regulation during seed germination and plant developmental processes, and the identification of elements that participate in this response is essential to understand plant nutrient perception and signaling. Sugars (sucrose, glucose and nitrate not only act as nutrients but also as signaling molecules in plant development. A connection between changes in auxin transport and nitrate signal transduction has been reported in Arabidopsis thaliana through the NRT1.1, a nitrate sensor and transporter that also functions as a repressor of lateral root growth under low concentrations of nitrate by promoting auxin transport. Nitrate inhibits the elongation of lateral roots, but this effect is significantly reduced in abscisic acid (ABA-insensitive mutants, what suggests that ABA might mediate the inhibition of lateral root elongation by nitrate. Gibberellin (GA biosynthesis has been also related to nitrate level in seed germination and its requirement is determined by embryonic ABA. These mechanisms connect nutrients and hormones signaling during seed germination and plant development. Thus, the genetic identification of the molecular components involved in nutrients-dependent pathways would help to elucidate the potential crosstalk between nutrients, nitric oxide (NO and phytohormones (ABA, auxins and GAs in seed germination and plant development. In this review we focus on changes in C and N levels and how they control seed germination and plant developmental processes through the interaction with other plant growth regulators, such as phytohormones.

  4. Heavy metal and nitrogen concentrations in mosses are declining across Europe whilst some “hotspots” remain in 2010

    International Nuclear Information System (INIS)

    Harmens, H.; Norris, D.A.; Sharps, K.; Mills, G.; Alber, R.; Aleksiayenak, Y.; Blum, O.; Cucu-Man, S.-M.; Dam, M.; De Temmerman, L.; Ene, A.; Fernández, J.A.; Martinez-Abaigar, J.; Frontasyeva, M.; Godzik, B.; Jeran, Z.

    2015-01-01

    In recent decades, naturally growing mosses have been used successfully as biomonitors of atmospheric deposition of heavy metals and nitrogen. Since 1990, the European moss survey has been repeated at five-yearly intervals. In 2010, the lowest concentrations of metals and nitrogen in mosses were generally found in northern Europe, whereas the highest concentrations were observed in (south-)eastern Europe for metals and the central belt for nitrogen. Averaged across Europe, since 1990, the median concentration in mosses has declined the most for lead (77%), followed by vanadium (55%), cadmium (51%), chromium (43%), zinc (34%), nickel (33%), iron (27%), arsenic (21%, since 1995), mercury (14%, since 1995) and copper (11%). Between 2005 and 2010, the decline ranged from 6% for copper to 36% for lead; for nitrogen the decline was 5%. Despite the Europe-wide decline, no changes or increases have been observed between 2005 and 2010 in some (regions of) countries. - Highlights: • In 2010, heavy metal and nitrogen concentrations in mosses were determined at up to 4400 sites across Europe. • Moss concentrations complement deposition measurements at high spatial resolution. • For most metals, concentrations in mosses have significantly declined since 1990. • Heavy metal pollution remains high in (South-)eastern Europe. • Nitrogen pollution remains high in the central European belt. - Heavy metal pollution remains high particularly in (south-)eastern Europe, whereas nitrogen pollution remains high in the central belt of Europe

  5. Nitrogen and azolla response on growth of rice plant of Mitra-I variety with SRI method

    International Nuclear Information System (INIS)

    Nurmayulis; Putra Utama; Dewi Firnia; Hasnan Yani; Ania Citraresmini

    2011-01-01

    The research was conducted in Cisadap, Bunter Village, District of Sukadana, Ciamis Regency, West Java Province from January to May 2011. This study was carried out to know the response of growth of rice plant which was fertilized by nitrogen fertilizer and Azolla michrophylla using the system of rice intensification. This research used five dozes of nitrogen fertilizer (0 %, 25 %, 50 %, 75 %, 100 %) from N 92 kg ha -1 as a recommended nitrogen fertilizer (urea 200 kg ha -1 ), and also 1,13 ton ha -1 Azolla michrophylla. The result obtained from this research showed that the application of N fertilizer at 50 % of the recommend dose (100 kg ha -1 ) with adding Azolla at a rate of 1.13 t ha -1 gave good result in the terms of plant height at 2-6 weeks after planting and number of tillers at 2-7 weeks after planting. Interaction of the 50 % N fertilizer from the recommended dose planting 1,13 t ha -1 give the highest dry weight of Azolla of plants at seven weeks after planting. (author)

  6. Laboratory Investigation of Mineralization of Refractory Nitrogen from Sewage Treatment Plants.

    Science.gov (United States)

    Benoit, Gaboury; Wang, Peng

    2017-12-01

    Laboratory studies were conducted and modeled to evaluate whether refractory organic nitrogen in tertiary-treated wastewater effluent could become bioavailable by conversion to mineral forms. Multiday incubations of effluent collected from the Branford and New Haven, Connecticut, waste water treatment plants (WWTP) revealed low but steady conversion of organic nitrogen to nitrate (NO 3 - ). In Branford, the principal form of organic nitrogen was dissolved, and in New Haven it was particulate. Modeling suggested that in both the cases conversion to NO 3 - from organic forms occurred at several per cent per day, and appeared to happen via the intermediary NH 4 + . The results suggest that organic nitrogen may be an important source of bioavailable N, contributing to the problem of hypoxia in Long Island Sound and other estuaries.

  7. Laboratory Investigation of Mineralization of Refractory Nitrogen from Sewage Treatment Plants

    Science.gov (United States)

    Benoit, Gaboury; Wang, Peng

    2017-12-01

    Laboratory studies were conducted and modeled to evaluate whether refractory organic nitrogen in tertiary-treated wastewater effluent could become bioavailable by conversion to mineral forms. Multiday incubations of effluent collected from the Branford and New Haven, Connecticut, waste water treatment plants (WWTP) revealed low but steady conversion of organic nitrogen to nitrate (NO3 -). In Branford, the principal form of organic nitrogen was dissolved, and in New Haven it was particulate. Modeling suggested that in both the cases conversion to NO3 - from organic forms occurred at several per cent per day, and appeared to happen via the intermediary NH4 +. The results suggest that organic nitrogen may be an important source of bioavailable N, contributing to the problem of hypoxia in Long Island Sound and other estuaries.

  8. Effect of nitrogen supply rate on disease resistance in tomato depends on the pathogen

    NARCIS (Netherlands)

    Hoffland, E.; Jeger, M.J.; Beusichem, van M.L.

    2000-01-01

    The aim of this study was to investigate the effect of tissue nitrogen concentration, as a consequence of nitrogen supply rate, on the susceptibility of tomato plants to three pathogens.We varied tissue N concentration by supplying N at different rates by adding nitrate in different, exponentially

  9. Cyclic variations in nitrogen uptake rate of soybean plants: effects of external nitrate concentration

    Science.gov (United States)

    Tolley-Henry, L.; Raper, C. D. Jr; Granato, T. C.; Raper CD, J. r. (Principal Investigator)

    1988-01-01

    Net uptake of NO3- by non-nodulated soybean plants [Glycine max (L.) Merr. cv. Ransom] growing in flowing hydroponic cultures containing 0.5, 1.0 and 10.0 mol m-3 NO3- was measured daily during a 24-d period of vegetative development to determine if amplitude of maximum and minimum rates of net NO3- uptake are responsive to external concentrations of NO3-. Removal of NO3- from the replenished solutions during each 24-h period was determined by ion chromatography. Neither dry matter accumulation nor the periodicity of oscillations in net uptake rate was altered by the external NO3- concentrations. The maxima of the oscillations in net uptake rate, however, increased nearly 3-fold in response to external NO3- concentrations. The maxima and minima, respectively, changed from 4.0 and 0.6 mmol NO3- per gram root dry weight per day at an external solution level of 0.5 mol m-3 NO3- to 15.2 and -2.7 mmol NO3- per gram root dry weight per day at an external solution level of 10.0 mol m-3 NO3-. The negative values for minimum net uptake rate from 10.0 mol m-3 NO3- solutions show that net efflux was occurring and indicate that the magnitude of the efflux component of net uptake was responsive to external concentration of NO3-.

  10. Physiological studies on photochemical oxidant injury in rice plants. IV. Effect of nitrogen application on endogenous abscisic acid (ABA) production and ozone injury of rice plants

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Y.H.; Ota, Y.

    1981-12-01

    In order to determine the effects of nitrogen application on ABA content of rice plants and their ozone-sensitivity, ABA production and ozone injuries were observed under different levels of nitrogen application with two Japonica and two Japonica X Indica type varieties. In all varieties, endogenous ABA content decreased with the increasing level of nitrogen applied, although total nitrogen content increased with the increasing level of nitrogen applied. Ozone injury was found with increasing level of nitrogen applied and to change depending on the varieties. Ozone injury was found to be more serious with increasing nitrogen content in Jinheung and Nongback, however it was less pronounced in Tongil and Milyang No. 23. Endogenous ABA content and ozone-sensitivity were related to the nitrogen content in the rice plants.

  11. Legacy effects of diversity in space and time driven by winter cover crop biomass and nitrogen concentration

    NARCIS (Netherlands)

    Barel, Janna M.; Kuyper, Thomas W.; de Boer, Wietse; Douma, Jacob C.; De Deyn, Gerlinde B.

    2018-01-01

    * Plant diversity can increase nitrogen cycling and decrease soil-borne pests, which are feedback mechanisms influencing subsequent plant growth. The relative strength of these mechanisms is unclear, as is the influence of preceding plant quantity and quality. Here, we studied how plant diversity in

  12. Legacy effects of diversity in space and time driven by winter cover crop biomass and nitrogen concentration

    NARCIS (Netherlands)

    Barel, J.M.; Kuijper, T.W.M.; Boer, de W.; Douma, Bob; Deyn, de G.B.

    2018-01-01

    1. Plant diversity can increase nitrogen cycling and decrease soil-borne pests, which are feedback mechanisms influencing subsequent plant growth. The relative strength of these mechanisms is unclear, as is the influence of preceding plant quantity and quality. Here, we studied how plant diversity

  13. Induction of phenolic metabolites and physiological changes in chamomile plants in relation to nitrogen nutrition.

    Science.gov (United States)

    Kováčik, Jozef; Klejdus, Bořivoj

    2014-01-01

    Alternative tools, such as the manipulation of mineral nutrition, may affect secondary metabolite production and thus the nutritional value of food/medicinal plants. We studied the impact of nitrogen (N) nutrition (nitrate/NO3(-) or ammonium/NH4(+) nitrogen) and subsequent nitrogen deficit on phenolic metabolites and physiology in Matricaria chamomilla plants. NH4(+)-fed plants revealed a strong induction of selected phenolic metabolites but, at the same time, growth, Fv/Fm, tissue water content and soluble protein depletion occurred in comparison with NO3(-)-fed ones. On the other hand, NO3(-)-deficient plants also revealed an increase in phenolic metabolites but growth depression was not observed after the given exposure period. Free amino acids were more accumulated in NH4(+)-fed shoots (strong increase in arginine and proline mainly), while the pattern of roots' accumulation was independent of N form. Among phenolic acids, NH4(+) strongly elevated mainly the accumulation of chlorogenic acid. Within flavonoids, flavonols decreased while flavones strongly increased in response to N deficiency. Coumarin-related metabolites revealed a similar increase in herniarin glucosidic precursor in response to N deficiency, while herniarin was more accumulated in NO3(-)- and umbelliferone in NH4(+)-cultured plants. These data indicate a negative impact of NH4(+) as the only source of N on physiology, but also a higher stimulation of some valuable phenols. Nitrogen-induced changes in comparison with other food/crop plants are discussed. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. High nitrogen availability reduces polyphenol content in Sphagnum peat.

    Science.gov (United States)

    Bragazza, Luca; Freeman, Chris

    2007-05-15

    Peat mosses of the genus Sphagnum constitute the bulk of living and dead biomass in bogs. These plants contain peculiar polyphenols which hamper litter peat decomposition through their inhibitory activity on microbial breakdown. In the light of the increasing availability of biologically active nitrogen in natural ecosystems, litter derived from Sphagnum mosses is an ideal substrate to test the potential effects of increased atmospheric nitrogen deposition on polyphenol content in litter peat. To this aim, we measured total nitrogen and soluble polyphenol concentration in Sphagnum litter peat collected in 11 European bogs under a chronic gradient of atmospheric nitrogen deposition. Our results demonstrate that increasing nitrogen concentration in Sphagnum litter, as a consequence of increased exogenous nitrogen availability, is accompanied by a decreasing concentration of polyphenols. This inverse relationship is consistent with reports that in Sphagnum mosses, polyphenol and protein biosynthesis compete for the same precursor. Our observation of modified Sphagnum litter chemistry under chronic nitrogen eutrophication has implications in the context of the global carbon balance, because a lower content of decay-inhibiting polyphenols would accelerate litter peat decomposition.

  15. Potential nitrogen critical loads for northern Great Plains grassland vegetation

    Science.gov (United States)

    Symstad, Amy J.; Smith, Anine T.; Newton, Wesley E.; Knapp, Alan K.

    2015-01-01

    The National Park Service is concerned that increasing atmospheric nitrogen deposition caused by fossil fuel combustion and agricultural activities could adversely affect the northern Great Plains (NGP) ecosystems in its trust. The critical load concept facilitates communication between scientists and policy makers or land managers by translating the complex effects of air pollution on ecosystems into concrete numbers that can be used to inform air quality targets. A critical load is the exposure level below which significant harmful effects on sensitive elements of the environment do not occur. A recent review of the literature suggested that the nitrogen critical load for Great Plains vegetation is 10-25 kg N/ha/yr. For comparison, current atmospheric nitrogen deposition in NGP National Park Service (NPS) units ranges from ~4 kg N/ha/yr in the west to ~13 kg N/ha/yr in the east. The suggested critical load, however, was derived from studies far outside of the NGP, and from experiments investigating nitrogen loads substantially higher than current atmospheric deposition in the region.Therefore, to better determine the nitrogen critical load for sensitive elements in NGP parks, we conducted a four-year field experiment in three northern Great Plains vegetation types at Badlands and Wind Cave National Parks. The vegetation types were chosen because of their importance in NGP parks, their expected sensitivity to nitrogen addition, and to span a range of natural fertility. In the experiment, we added nitrogen at rates ranging from below current atmospheric deposition (2.5 kg N/ha/yr) to far above those levels but commensurate with earlier experiments (100 kg N/ha/yr). We measured the response of a variety of vegetation and soil characteristics shown to be sensitive to nitrogen addition in other studies, including plant biomass production, plant tissue nitrogen concentration, plant species richness and composition, non-native species abundance, and soil inorganic

  16. Plant litter chemistry and mycorrhizal roots promote a nitrogen feedback in a temperate forest.

    Science.gov (United States)

    Nina Wurzburger; Ronald L. Hendrick

    2009-01-01

    1. Relationships between mycorrhizal plants and soil nitrogen (N) have led to the speculation that the chemistry of plant litter and the saprotrophy of mycorrhizal symbionts can function together to...

  17. Round Robin test for the determination of nitrogen concentration in solid Lithium

    International Nuclear Information System (INIS)

    Favuzza, P.; Antonelli, A.; Furukawa, T.; Groeschel, F.; Hedinger, R.; Higashi, T.; Hirakawa, Y.; Iijima, M.; Ito, Y.; Kanemura, T.; Knaster, J.; Kondo, H.; Miccichè, G.; Nitti, F.S.; Ohira, S.; Severi, M.; Sugimoto, M.; Suzuki, A.; Traversi, R.; Wakai, E.

    2016-01-01

    Highlights: • Nitrogen contained in solid Lithium is converted into Ammonium ion. • Ammonium ion is suitably quantified by ionic chromatograph or by Ammonia sensor. • Good agreement of the partner’s results has been achieved. • Maximum operative reproducibility and blank subtraction are necessary. - Abstract: Three different partners, ENEA, JAEA ed University of Tokyo, have been involved during 2014–2015 in the Round Robin experimentation for the assessment of the soundness of the analitycal procedure for the determination of the Nitrogen impurities contained inside a solid Lithium sample. Two different kinds of Lithium samples, differing by about an order of magnitude in Nitrogen concentration (∼230 wppm; ∼20–30 wppm), have been selected for this cross analysis. The agreement of the achieved results appears very good for what concerns the most concentrated Lithium and indicates each partner’s procedure is appropriate and intrinsecally able to lead to meaningful values, characterized by a relative uncertainty of just few %. The smaller agreement in the case of the less concentrated Lithium anyway points out that particular attention must be paid to reduce as much as possible any source of external contamination and highlights the importance of the proper blank subtraction.

  18. Round Robin test for the determination of nitrogen concentration in solid Lithium

    Energy Technology Data Exchange (ETDEWEB)

    Favuzza, P., E-mail: paolo.favuzza@enea.it [ENEA Center, Via Madonna del Piano 10, 50019 Sesto Fiorentino (Italy); Antonelli, A. [ENEA Research Center, Brasimone, 40035, Camugnano (Italy); Furukawa, T. [JAEA Research Center, Tokai-mura, Ibaraki (Japan); Groeschel, F. [KIT Research Center, Hermann-von-Helmholtz-Platz 1,76344 Eggenstein-Leopoldshafen (Germany); Hedinger, R. [F4E Research Center, Boltzmannstraße 2, 85748 Garching (Germany); Higashi, T. [University of Tokyo (Japan); Hirakawa, Y.; Iijima, M.; Ito, Y.; Kanemura, T. [JAEA Research Center, Tokai-mura, Ibaraki (Japan); Knaster, J. [IFMIF-EVEDA Project Team, Rokkasho (Japan); Kondo, H. [JAEA Research Center, Tokai-mura, Ibaraki (Japan); Miccichè, G.; Nitti, F.S. [ENEA Research Center, Brasimone, 40035, Camugnano (Italy); Ohira, S. [JAEA Research Center, Tokai-mura, Ibaraki (Japan); Severi, M. [University of Firenze, Via della Lastruccia 3, 50019 Sesto Fiorentino (Italy); Sugimoto, M. [JAEA Research Center, Rokkasho (Japan); Suzuki, A. [University of Tokyo (Japan); Traversi, R. [University of Firenze, Via della Lastruccia 3, 50019 Sesto Fiorentino (Italy); Wakai, E. [JAEA Research Center, Tokai-mura, Ibaraki (Japan)

    2016-06-15

    Highlights: • Nitrogen contained in solid Lithium is converted into Ammonium ion. • Ammonium ion is suitably quantified by ionic chromatograph or by Ammonia sensor. • Good agreement of the partner’s results has been achieved. • Maximum operative reproducibility and blank subtraction are necessary. - Abstract: Three different partners, ENEA, JAEA ed University of Tokyo, have been involved during 2014–2015 in the Round Robin experimentation for the assessment of the soundness of the analitycal procedure for the determination of the Nitrogen impurities contained inside a solid Lithium sample. Two different kinds of Lithium samples, differing by about an order of magnitude in Nitrogen concentration (∼230 wppm; ∼20–30 wppm), have been selected for this cross analysis. The agreement of the achieved results appears very good for what concerns the most concentrated Lithium and indicates each partner’s procedure is appropriate and intrinsecally able to lead to meaningful values, characterized by a relative uncertainty of just few %. The smaller agreement in the case of the less concentrated Lithium anyway points out that particular attention must be paid to reduce as much as possible any source of external contamination and highlights the importance of the proper blank subtraction.

  19. The role of power plant atmospheric emissions in the deposition of nitrogen to the Chesapeake Bay

    International Nuclear Information System (INIS)

    Miller, P.E.

    1994-01-01

    The Maryland Power Plant Research Program (PPRP) has sponsored research on several aspects of atmospheric nitrogen emissions, source attribution, deposition estimation and impact assessment since the mid-eighties. The results of these studies will be presented and discussed in the context of power plant emissions control impact on nitrogen loadings to the Chesapeake Bay and watershed. Information needs with respect to power plant contribution and emission control policy will be identified and discussed from the perspective of PPRP

  20. Effects of experimental nitrogen additions on plant diversity in tropical forests of contrasting disturbance regimes in southern China

    International Nuclear Information System (INIS)

    Lu Xiankai; Mo Jiangming; Gilliam, Frank S.; Yu Guirui; Zhang Wei; Fang Yunting; Huang Juan

    2011-01-01

    Responses of understory plant diversity to nitrogen (N) additions were investigated in reforested forests of contrasting disturbance regimes in southern China from 2003 to 2008: disturbed forest (with harvesting of understory vegetation and litter) and rehabilitated forest (without harvesting). Experimental additions of N were administered as the following treatments: Control, 50 kg N ha -1 yr -1 , and 100 kg N ha -1 yr -1 . Nitrogen additions did not significantly affect understory plant richness, density, and cover in the disturbed forest. Similarly, no significant response was found for canopy closure in this forest. In the rehabilitated forest, species richness and density showed no significant response to N additions; however, understory cover decreased significantly in the N-treated plots, largely a function of a significant increase in canopy closure. Our results suggest that responses of plant diversity to N deposition may vary with different land-use history, and rehabilitated forests may be more sensitive to N deposition. - Highlights: → Nitrogen addition had no significant effect on understory plant diversity in the disturbed forest. → Nitrogen addition significantly decreased understory plant cover. → Nitrogen addition had no effect on richness and density in the rehabilitated forest. → The decrease is largely a function of a significant increase in canopy closure. → Land-use practices may dominate the responses of plant diversity to N addition. - Research in disturbed forests of southeastern China demonstrates that land-use history can substantially alter effects of excess nitrogen deposition on plant diversity of tropical forest ecosystems.

  1. (Blastomogenic action of low concentrations of nitrosodimethylamine, dimethylamine and nitrogen dioxide)

    Energy Technology Data Exchange (ETDEWEB)

    Benemanskii, V V; Prusakov, V M; Leshchenko, M E

    1981-01-01

    The round-the clock inhalation of the mixture of nitrosodimethylamine (NDMA), dimethylamine (DMA) and nitrogen dioxide, with NDMA concentrations varying within 0.66-0.0026 mg/m3, was followed by development of tumors in the kidney, liver, lungs and at other sites in albino nonbred rats, after a year of exposure. Application of DMA and nitrogen dioxide modified the carcinogenic effect of NDMA. In male rats, the blastogenic effect of the mixture was higher, as compared with that of inhalation of NDMA alone. NDMA inhalation resulted in a lower tumor yield in female rats.

  2. Prescribed fire, soil inorganic nitrogen dynamics, and plant responses in a semiarid grassland

    Science.gov (United States)

    David J. Augustine; Paul Brewer; Dana M. Blumenthal; Justin D. Derner; Joseph C. von Fischer

    2014-01-01

    In arid and semiarid ecosystems, fire can potentially affect ecosystem dynamics through changes in soil moisture, temperature, and nitrogen cycling, as well as through direct effects on plant meristem mortality. We examined effects of annual and triennial prescribed fires conducted in early spring on soil moisture, temperature, and N, plant growth, and plant N content...

  3. The impact of nitrogen deposition on acid grasslands in the Atlantic region of Europe

    Energy Technology Data Exchange (ETDEWEB)

    Stevens, Carly J., E-mail: c.j.stevens@open.ac.uk [Department of Life Sciences, The Open University, Walton Hall, Milton Keynes MK7 6AA (United Kingdom); Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ (United Kingdom); Dupre, Cecilia [Institute of Ecology, FB 2, University of Bremen, Leobener Str., DE-28359 Bremen (Germany); Dorland, Edu [Ecology and Biodiversity Group, Department of Biology, Institute of Environmental Biology, Utrecht University, PO Box 80.058, 3508 TB Utrecht (Netherlands); Gaudnik, Cassandre [University of Bordeaux 1, UMR INRA 1202 Biodiversity, Genes and Communities, Equipe Ecologie des Communautes, Batiment B8 - Avenue des Facultes, F-33405 Talence (France); Gowing, David J.G. [Department of Life Sciences, The Open University, Walton Hall, Milton Keynes MK7 6AA (United Kingdom); Bleeker, Albert [Department of Air Quality and Climate Change, Energy Research Centre of the Netherlands, PO Box 1, 1755 ZG Petten (Netherlands); Diekmann, Martin [Institute of Ecology, FB 2, University of Bremen, Leobener Str., DE-28359 Bremen (Germany); Alard, Didier [University of Bordeaux 1, UMR INRA 1202 Biodiversity, Genes and Communities, Equipe Ecologie des Communautes, Batiment B8 - Avenue des Facultes, F-33405 Talence (France); Bobbink, Roland [B-WARE Research Centre, Radboud University, PO Box 9010, 6525 ED Nijmegen (Netherlands); Fowler, David [NERC Centre for Ecology and Hydrology, Bush Estate, Penicuik, Midlothian EH26 0QB (United Kingdom); Corcket, Emmanuel [University of Bordeaux 1, UMR INRA 1202 Biodiversity, Genes and Communities, Equipe Ecologie des Communautes, Batiment B8 - Avenue des Facultes, F-33405 Talence (France); Mountford, J. Owen [NERC Centre for Ecology and Hydrology, MacLean Building, Benson Lane, Crowmarsh Gifford, Wallingford, Oxfordshire OX10 8BB (United Kingdom); Vandvik, Vigdis [Department of Biology, University of Bergen, Box 7800, N-5020 Bergen (Norway)

    2011-10-15

    A survey of 153 acid grasslands from the Atlantic biogeographic region of Europe indicates that chronic nitrogen deposition is changing plant species composition and soil and plant-tissue chemistry. Across the deposition gradient (2-44 kg N ha{sup -1} yr{sup -1}) grass richness as a proportion of total species richness increased whereas forb richness decreased. Soil C:N ratio increased, but soil extractable nitrate and ammonium concentrations did not show any relationship with nitrogen deposition. The above-ground tissue nitrogen contents of three plant species were examined: Agrostis capillaris (grass), Galium saxatile (forb) and Rhytidiadelphus squarrosus (bryophyte). The tissue nitrogen content of neither vascular plant species showed any relationship with nitrogen deposition, but there was a weak positive relationship between R. squarrosus nitrogen content and nitrogen deposition. None of the species showed strong relationships between above-ground tissue N:P or C:N and nitrogen deposition, indicating that they are not good indicators of deposition rate. - Highlights: > N deposition is negatively correlated with forb richness as a proportion of species richness. > Soil C:N ratio increased with increasing N deposition. > Soil extractable nitrate and ammonium were not related to nitrogen deposition. > Plant-tissue N content was not a good indicator of N deposition. - Atmospheric nitrogen deposition affects soils, plant-tissue chemistry and plant species composition in acid grasslands in the Atlantic biogeographic region of Europe.

  4. The impact of nitrogen deposition on acid grasslands in the Atlantic region of Europe

    International Nuclear Information System (INIS)

    Stevens, Carly J.; Dupre, Cecilia; Dorland, Edu; Gaudnik, Cassandre; Gowing, David J.G.; Bleeker, Albert; Diekmann, Martin; Alard, Didier; Bobbink, Roland; Fowler, David; Corcket, Emmanuel; Mountford, J. Owen; Vandvik, Vigdis

    2011-01-01

    A survey of 153 acid grasslands from the Atlantic biogeographic region of Europe indicates that chronic nitrogen deposition is changing plant species composition and soil and plant-tissue chemistry. Across the deposition gradient (2-44 kg N ha -1 yr -1 ) grass richness as a proportion of total species richness increased whereas forb richness decreased. Soil C:N ratio increased, but soil extractable nitrate and ammonium concentrations did not show any relationship with nitrogen deposition. The above-ground tissue nitrogen contents of three plant species were examined: Agrostis capillaris (grass), Galium saxatile (forb) and Rhytidiadelphus squarrosus (bryophyte). The tissue nitrogen content of neither vascular plant species showed any relationship with nitrogen deposition, but there was a weak positive relationship between R. squarrosus nitrogen content and nitrogen deposition. None of the species showed strong relationships between above-ground tissue N:P or C:N and nitrogen deposition, indicating that they are not good indicators of deposition rate. - Highlights: → N deposition is negatively correlated with forb richness as a proportion of species richness. → Soil C:N ratio increased with increasing N deposition. → Soil extractable nitrate and ammonium were not related to nitrogen deposition. → Plant-tissue N content was not a good indicator of N deposition. - Atmospheric nitrogen deposition affects soils, plant-tissue chemistry and plant species composition in acid grasslands in the Atlantic biogeographic region of Europe.

  5. 15N isotopic techniques to study nitrogen cycle in soil-plant-atmosphere system

    International Nuclear Information System (INIS)

    Kumar, Manoj; Chandrakala, J.U.; Sachdev, M.S.; Sachdev, P.

    2009-01-01

    Intensification of agriculture to meet the increasing food demand has caused severe disruption in natural balance of global as well as regional nitrogen cycle, potentially threatening the future sustainability of agriculture and environment of the total fertilizer nitrogen used in agriculture globally, only less than half is recovered by crop plants, rest is lost to the environment, resulting in several environmental problems such as ground water pollution and global warming, besides huge economic loss of this costly input in agriculture. Improving fertilizer nitrogen use efficiency and minimising N loss to the environment is the key to regain the lost control of nitrogen cycle in agriculture. Fertilizer nitrogen use efficiency depends largely on N requirement of crops, N supply from soil and fertilizer through N transformations in soil, and N losses from the soil-water-plant system. 15 N isotopic techniques have the potential to provide accurate measurement quantification of different processes involved in N cycle such as fixation of atmospheric N 2 , transformations- mineralization and immobilization- of soil and fertilizer N which governs N supply to plants, and N losses to the environment through ammonia volatilization, denitrification and nitrate leaching. 15 N tracers can also give precise identification of ways and sources of N loss from agriculture. These information can be used to develop strategies for increasing fertilizer N use efficiency and minimizing the loss of this costly input from agriculture to environment, which in turn will help to achieve the tripartite goal of food security, agricultural profitability and environmental quality. (author)

  6. Nitrogen signalling in plant interactions with associative and endophytic diazotrophic bacteria.

    Science.gov (United States)

    Carvalho, T L G; Balsemão-Pires, E; Saraiva, R M; Ferreira, P C G; Hemerly, A S

    2014-10-01

    Some beneficial plant-interacting bacteria can biologically fix N2 to plant-available ammonium. Biological nitrogen fixation (BNF) is an important source of nitrogen (N) input in agriculture and represents a promising substitute for chemical N fertilizers. Diazotrophic bacteria have the ability to develop different types of root associations with different plant species. Among the highest rates of BNF are those measured in legumes nodulated by endosymbionts, an already very well documented model of plant-diazotrophic bacterial association. However, it has also been shown that economically important crops, especially monocots, can obtain a substantial part of their N needs from BNF by interacting with associative and endophytic diazotrophic bacteria, that either live near the root surface or endophytically colonize intercellular spaces and vascular tissues of host plants. One of the best reported outcomes of this association is the promotion of plant growth by direct and indirect mechanisms. Besides fixing N, these bacteria can also produce plant growth hormones, and some species are reported to improve nutrient uptake and increase plant tolerance against biotic and abiotic stresses. Thus, this particular type of plant-bacteria association consists of a natural beneficial system to be explored; however, the regulatory mechanisms involved are still not clear. Plant N status might act as a key signal, regulating and integrating various metabolic processes that occur during association with diazotrophic bacteria. This review will focus on the recent progress in understanding plant association with associative and endophytic diazotrophic bacteria, particularly on the knowledge of the N networks involved in BNF and in the promotion of plant growth. © The Author 2014. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  7. The effect of plant density and nitrogen fertilizer on light interception and dry matter yield in hemp (Cannabis sativa L.

    Directory of Open Access Journals (Sweden)

    mohamad reza asghari poor

    2009-06-01

    Full Text Available The effect of plant density and nitrogen fertilizer on canopy light interception and on flowering was investigated in hemp (Cannabis sativa L. cv. ‘Kompolti’ Crop grown at initial densities of 50, 150 and 250 plants/m2 at the Mashhad and 30, 90 and 150 plants/m2 at the Shirvan. Nitrogen fertilizer was applied before and 45 days after sowing at a rates of 50 and 200 kg/ha at the Mashhad, and 50, 150 and 250 kg/ha at the Shirvan. Rate of canopy development increased with increasing plant density and nitrogen fertilizer in both sites. At the Mashhad, interception of 90% of light was attained at 380 to 665 degree days (base 2°C from emergence for the crop grown at different densities. At Shirvan, rate of canopy development was slower. Interception of 90% of light was attained at 586 degree days from emergence for the crop grown at 30 plants/m2 and at 712 degree days for the crop grown at 150 plants/m2, probably as a result of cold weather. Nitrogen fertilizer in a similar way as plant density increased light interception. Maximum light interception did not depend on plant density and nitrogen fertilizer and was about 95%. In both sites, the flowering date was later with increasing plant density. Dates of 75% flowering for the initial densities of 50, 150 and 250 plants/m2 in Mashhad and 30, 90 and 150 plants/m2 in Shirvan were, respectively 26 August, 1, 6, 6, 11 and 12 September. Independent of plant density, canopy light interception started to decline at about 150 degree days after flowering, reaching 58 to 75% at about 700 degree days post-flowering. Morphological characteristics at both sites were highly correlated with plant sexual, plant population and nitrogen fertilizer. Highest stem, leaf and inflorescence yield were obtained in Mashhad at 250 plant/m-2 and in Shirvan at 150 plant m-2 when 200 kg N ha-1 in Mashhad and 250 kg N/ha in Shirvan was used. Above ground dry matter increased at both sites with increasing plant density and

  8. Nitrogen Limited Red and Green Leaf Lettuce Accumulate Flavonoid Glycosides, Caffeic Acid Derivatives, and Sucrose while Losing Chlorophylls, ?-Carotene and Xanthophylls

    OpenAIRE

    Becker, Christine; Urli?, Branimir; Juki? ?pika, Maja; Kl?ring, Hans-Peter; Krumbein, Angelika; Baldermann, Susanne; Goreta Ban, Smiljana; Perica, Slavko; Schwarz, Dietmar

    2015-01-01

    Reduction of nitrogen application in crop production is desirable for ecological and health-related reasons. Interestingly, nitrogen deficiency can lead to enhanced concentrations of polyphenols in plants. The reason for this is still under discussion. The plants' response to low nitrogen concentration can interact with other factors, for example radiation intensity. We cultivated red and green leaf lettuce hydroponically in a Mediterranean greenhouse, supplying three different levels of nitr...

  9. Growth and Nitrogen Uptake in Sorghum Plants Manured with Leucaena Leucocaphala Leaves as Affected by Nitrogen Rate and Time of Application

    International Nuclear Information System (INIS)

    Kurd Ali, F.; Al-Shammaa, M.

    2011-01-01

    A pot experiment was conducted to determine the effect of four rates of nitrogen (N) in the form of leucaena leaves and the time of application on the performance of sorghum plants using the 15 N isotopic dilution technique. Results showed that leucaena green manure (LGM) increased dry matter and N yield of sorghum. Nitrogen recoveries of LGM ranged between 23 and 47%. An additional beneficial effect of LGM was attributed to the enhancement of soil N uptake. The best timing of LGM incorporation for obtaining more N derived from LGM, less soil N uptake, and greater dry matter and N in sorghum leaves seemed to be at planting. However, the appropriate timing and rate of LGM to obtain greater dry matter and N yield in panicles, as well as in the whole plant of sorghum, appeared to be at 30 days before planting, particularly a rate of 120 kg N ha - 1. (author)

  10. Elevated CO2 concentration around alfalfa nodules increases N2 fixation

    OpenAIRE

    Fischinger, Stephanie A.; Hristozkova, Marieta; Mainassara, Zaman-Allah; Schulze, Joachim

    2009-01-01

    Nodule CO2 fixation via PEPC provides malate for bacteroids and oxaloacetate for N assimilation. The process is therefore of central importance for efficient nitrogen fixation. Nodule CO2 fixation is known to depend on external CO2 concentration. The hypothesis of the present paper was that nitrogen fixation in alfalfa plants is enhanced when the nodules are exposed to elevated CO2 concentrations. Therefore nodulated plants of alfalfa were grown in a hydroponic system that allowed separate ae...

  11. Optimization of free ammonia concentration for nitrite accumulation in shortcut biological nitrogen removal process.

    Science.gov (United States)

    Chung, Jinwook; Shim, Hojae; Park, Seong-Jun; Kim, Seung-Jin; Bae, Wookeun

    2006-03-01

    A shortcut biological nitrogen removal (SBNR) utilizes the concept of a direct conversion of ammonium to nitrite and then to nitrogen gas. A successful SBNR requires accumulation of nitrite in the system and inhibition of the activity of nitrite oxidizers. A high concentration of free ammonia (FA) inhibits nitrite oxidizers, but unfortunately decreases the ammonium removal rate as well. Therefore, the optimal range of FA concentration is necessary not only to stabilize nitrite accumulation but also to achieve maximum ammonium removal. In order to derive such optimal FA concentrations, the specific substrate utilization rates of ammonium and nitrite oxidizers were measured. The optimal FA concentration range appeared to be 5-10 mg/L for the adapted sludge. The simulated results from the modified inhibition model expressed by FA and ammonium/nitrite concentrations were shown very similar to the experimental results.

  12. Available nitrogen: A time-based study of manipulated resource islands

    Science.gov (United States)

    Stubbs, Michelle M.; Pyke, David A.

    2005-01-01

    Spatial and temporal heterogeneity of available nitrogen are critical determinants of the distribution and abundance of plants and animals in ecosystems. Evidence for the resource island theory suggests that soils below tree and shrub canopies contain higher amounts of resources, including available nitrogen, than are present in interspace areas. Disturbances, such as prescribed fire and tree removal, are common management practices in shrub-woodland ecosystems, but it is not known if these practices affect resource islands. We examined temporal variation in resource islands of available nitrogen and their retention after fire and woody plant removal. From August 1997 to October 1998, soil nitrate (NO3−) and ammonium (NH4+) were measured monthly from canopy and interspace plots within four juniper-sagebrush sites along a precipitation gradient in central Oregon, USA. At each site, soil samples were collected from untreated plots, plots in which woody plants were removed, and those treated with prescribed fire in fall 1997. In burned treatments, canopy concentrations were significantly higher than interspace concentrations throughout the measurement period. Canopy NO3− and NH4+ concentrations were significantly higher on burned vs. unburned treatments for four months after fire. After woody plant removal, NO3− and NH4+ concentrations did not differ from the controls. Untreated control areas had higher NO3− and NH4+ concentrations under juniper canopies for nearly all months. Wetter sites had smaller differences between canopy and interspace concentrations through time than did the two drier sites. In relation to NO3− and NH4+ in this ecosystem, resource islands appear to be more ephemeral in wetter sites, and more pronounced following fire disturbances than in controls or those treated by woody plant removal.

  13. Nitrogen Limited Red and Green Leaf Lettuce Accumulate Flavonoid Glycosides, Caffeic Acid Derivatives, and Sucrose while Losing Chlorophylls, Β-Carotene and Xanthophylls.

    Science.gov (United States)

    Becker, Christine; Urlić, Branimir; Jukić Špika, Maja; Kläring, Hans-Peter; Krumbein, Angelika; Baldermann, Susanne; Goreta Ban, Smiljana; Perica, Slavko; Schwarz, Dietmar

    2015-01-01

    Reduction of nitrogen application in crop production is desirable for ecological and health-related reasons. Interestingly, nitrogen deficiency can lead to enhanced concentrations of polyphenols in plants. The reason for this is still under discussion. The plants' response to low nitrogen concentration can interact with other factors, for example radiation intensity. We cultivated red and green leaf lettuce hydroponically in a Mediterranean greenhouse, supplying three different levels of nitrogen (12 mM, 3 mM, 0.75 mM), either in full or reduced (-50%) radiation intensity. In both red and green lettuce, we found clear effects of the nitrogen treatments on growth characteristics, phenolic and photosynthetic compounds, nitrogen, nitrate and carbon concentration of the plants. Interestingly, the concentrations of all main flavonoid glycosides, caffeic acid derivatives, and sucrose increased with decreasing nitrogen concentration, whereas those of chlorophylls, β-carotene, neoxanthin, lactucaxanthin, all trans- and cis-violaxanthin decreased. The constitutive concentrations of polyphenols were lower in the green cultivar, but their relative increase was more pronounced than in the red cultivar. The constitutive concentrations of chlorophylls, β-carotene, neoxanthin, all trans- and cis-violaxanthin were similar in red and green lettuce and with decreasing nitrogen concentration they declined to a similar extent in both cultivars. We only detected little influence of the radiation treatments, e.g. on anthocyanin concentration, and hardly any interaction between radiation and nitrogen concentration. Our results imply a greater physiological plasticity of green compared to the red lettuce regarding its phenolic compounds. They support the photoprotection theory regarding anthocyanins as well as the theory that the deamination activity of phenylalanine ammonia-lyase drives phenylpropanoid synthesis.

  14. Nitrogen Limited Red and Green Leaf Lettuce Accumulate Flavonoid Glycosides, Caffeic Acid Derivatives, and Sucrose while Losing Chlorophylls, Β-Carotene and Xanthophylls.

    Directory of Open Access Journals (Sweden)

    Christine Becker

    Full Text Available Reduction of nitrogen application in crop production is desirable for ecological and health-related reasons. Interestingly, nitrogen deficiency can lead to enhanced concentrations of polyphenols in plants. The reason for this is still under discussion. The plants' response to low nitrogen concentration can interact with other factors, for example radiation intensity. We cultivated red and green leaf lettuce hydroponically in a Mediterranean greenhouse, supplying three different levels of nitrogen (12 mM, 3 mM, 0.75 mM, either in full or reduced (-50% radiation intensity. In both red and green lettuce, we found clear effects of the nitrogen treatments on growth characteristics, phenolic and photosynthetic compounds, nitrogen, nitrate and carbon concentration of the plants. Interestingly, the concentrations of all main flavonoid glycosides, caffeic acid derivatives, and sucrose increased with decreasing nitrogen concentration, whereas those of chlorophylls, β-carotene, neoxanthin, lactucaxanthin, all trans- and cis-violaxanthin decreased. The constitutive concentrations of polyphenols were lower in the green cultivar, but their relative increase was more pronounced than in the red cultivar. The constitutive concentrations of chlorophylls, β-carotene, neoxanthin, all trans- and cis-violaxanthin were similar in red and green lettuce and with decreasing nitrogen concentration they declined to a similar extent in both cultivars. We only detected little influence of the radiation treatments, e.g. on anthocyanin concentration, and hardly any interaction between radiation and nitrogen concentration. Our results imply a greater physiological plasticity of green compared to the red lettuce regarding its phenolic compounds. They support the photoprotection theory regarding anthocyanins as well as the theory that the deamination activity of phenylalanine ammonia-lyase drives phenylpropanoid synthesis.

  15. Dry matter and nitrogen accumulation are not affected by superoptimal concentration of ammonium in flowing solution culture with pH control

    Science.gov (United States)

    Rideout, J. W.; Raper, C. D. Jr; Raper CD, J. r. (Principal Investigator)

    1994-01-01

    While it is known that superoptimal concentrations of the nitrate (NO3-) ion in solution culture do not increase NO3- uptake or dry matter accumulation, the same is not known for the ammonium (NH4+) ion. An experiment was conducted utilizing flowing solution culture with pH control to investigate the influence of superoptimal NH4+ concentrations on dry matter, nitrogen (N), potassium (K), calcium (Ca), and magnesium (Mg) accumulation by nonnodulated soybean plants. Increasing the NH4+ concentration in solution from 1 to 10 mM did not affect dry matter or N accumulation. Accumulations of K, Ca, and Mg were slightly decreased with increased NH4+ concentration. The NH4+ uptake system, which is saturated at less than 1mM NH4+, is able to regulate uptake of NH4+ at concentrations as high as 10 mM.

  16. Mobilization of interactions between functional diversity of plant and soil organisms on nitrogen availability and use

    Science.gov (United States)

    Drut, Baptiste; Cassagne, Nathalie; Cannavacciuolo, Mario; Brauman, Alain; Le Floch, Gaëtan; Cobo, Jose; Fustec, Joëlle

    2017-04-01

    Keywords: legumes, earthworms, microorganisms, nitrogen, interactions Both aboveground and belowground biodiversity and their interactions can play an important role in crop productivity. Plant functional diversity, such as legume based intercrops have been shown to improve yields through plant complementarity for nitrogen use (Corre-Hellou et al., 2006). Moreover, plant species or plant genotype may influence the structure of soil microorganism communities through the composition of rhizodeposits in the rhizosphere (Dennis et al., 2010). Belowground diversity can also positively influence plant performance especially related to functional dissimilarity between soil organisms (Eisenhauer, 2012). Earthworms through their burrowing activity influence soil microbial decomposers and nutrient availability and have thus been reported to increase plant growth (Brown, 1995; Brown et al., 2004). We hypothesize that i) plant functional (genetic and/or specific) diversity associated to functional earthworms diversity are key drivers of interactions balance to improve crop performances and ii) the improvement of plant performances can be related to change in the structure of soil microorganism communities due to the diversity of rhizodeposits and the burrowing activity of earthworms. In a first mesocosm experiment, we investigated the effect of a gradient of plant diversity - one cultivar of wheat (Triticum aestivum L.), 3 different wheat cultivars, and 3 different cultivars intercropped with clover (Trifolium hybridum L.) - and the presence of one (endogeic) or two (endogeic and anecic) categories of earthworms on biomass and nitrogen accumulation of wheat. In a second mesocosm experiment, we investigated the influence of three species with different rhizodeposition - wheat, rapeseed (Brassica napus L. ) and faba bean (Vicia faba L.) in pure stand or intercropped - and the presence of endogeic earthworms on microbial activity and nitrogen availability. In the first experiment

  17. The role of symbiotic nitrogen fixation in nitrogen availability, competition and plant invasion into the sagebrush steppe

    Science.gov (United States)

    Erin M. Goergen

    2009-01-01

    In the semi-arid sagebrush steppe of the Northeastern Sierra Nevada, resources are both spatially and temporally variable, arguably making resource availability a primary factor determining invasion success. N fixing plant species, primarily native legumes, are often relatively abundant in sagebrush steppe and can contribute to ecosystem nitrogen budgets. ...

  18. Health Risk Assessment of Nitrogen Dioxide and Sulfur Dioxide Exposure from a New Developing Coal Power Plant in Thailand

    Directory of Open Access Journals (Sweden)

    Tin Thongthammachart

    2017-07-01

    Full Text Available Krabi coal-fired power plant is the new power plant development project of the Electricity Generating Authority of Thailand (EGAT. This 800 megawatts power plant is in developing process. The pollutants from coal-fired burning emissions were estimated and included in an environmental impact assessment report. This study aims to apply air quality modeling to predict nitrogen dioxide (NO2 and sulfur dioxide (SO2 concentration which could have health impact to local people. The health risk assessment was studied following U.S. EPA regulatory method. The hazard maps were created by ArcGIS program. The results indicated the influence of the northeast and southwest monsoons and season variation to the pollutants dispersion. The daily average and annual average concentrations of NO2 and SO2 were lower than the NAAQS standard. The hazard quotient (HQ of SO2 and NO2 both short-term and long-term exposure were less than 1. However, there were some possibly potential risk areas indicating in GIS based map. The distribution of pollutions and high HI values were near this power plant site. Although the power plant does not construct yet but the environment health risk assessment was evaluated to compare with future fully developed coal fire plant.

  19. Autophagy supports biomass production and nitrogen use efficiency at the vegetative stage in rice.

    Science.gov (United States)

    Wada, Shinya; Hayashida, Yasukzu; Izumi, Masanori; Kurusu, Takamitsu; Hanamata, Shigeru; Kanno, Keiichi; Kojima, Soichi; Yamaya, Tomoyuki; Kuchitsu, Kazuyuki; Makino, Amane; Ishida, Hiroyuki

    2015-05-01

    Much of the nitrogen in leaves is distributed to chloroplasts, mainly in photosynthetic proteins. During leaf senescence, chloroplastic proteins, including Rubisco, are rapidly degraded, and the released nitrogen is remobilized and reused in newly developing tissues. Autophagy facilitates the degradation of intracellular components for nutrient recycling in all eukaryotes, and recent studies have revealed critical roles for autophagy in Rubisco degradation and nitrogen remobilization into seeds in Arabidopsis (Arabidopsis thaliana). Here, we examined the function of autophagy in vegetative growth and nitrogen usage in a cereal plant, rice (Oryza sativa). An autophagy-disrupted rice mutant, Osatg7-1, showed reduced biomass production and nitrogen use efficiency compared with the wild type. While Osatg7-1 showed early visible leaf senescence, the nitrogen concentration remained high in the senescent leaves. (15)N pulse chase analysis revealed suppression of nitrogen remobilization during leaf senescence in Osatg7-1. Accordingly, the reduction of nitrogen available for newly developing tissues in Osatg7-1 likely led its reduced leaf area and tillers. The limited leaf growth in Osatg7-1 decreased the photosynthetic capacity of the plant. Much of the nitrogen remaining in senescent leaves of Osatg7-1 was in soluble proteins, and the Rubisco concentration in senescing leaves of Osatg7-1 was about 2.5 times higher than in the wild type. Transmission electron micrographs showed a cytosolic fraction rich with organelles in senescent leaves of Osatg7-1. Our results suggest that autophagy contributes to efficient nitrogen remobilization at the whole-plant level by facilitating protein degradation for nitrogen recycling in senescent leaves. © 2015 American Society of Plant Biologists. All Rights Reserved.

  20. Bacillus spp. from rainforest soil promote plant growth under limited nitrogen conditions.

    Science.gov (United States)

    Huang, X-F; Zhou, D; Guo, J; Manter, D K; Reardon, K F; Vivanco, J M

    2015-03-01

    The aim of this study was to evaluate effects of PGPR (plant growth-promoting rhizobacteria) isolated from rainforest soil on different plants under limited nitrogen conditions. Bacterial isolates from a Peruvian rainforest soil were screened for plant growth-promoting effects on Arabidopsis (Col-0). Four selected isolates including one Bacillus subtilis, two B. atrophaeus and one B. pumilus significantly promoted growth of Zea mays L. and Solanum lycopersicum under greenhouse conditions. Moreover, the PGPRs significantly promoted growth of S. lycopersicum in both low and nitrogen-amended soil conditions. These PGPR strains were further studied to obtain insights into possible mechanisms of plant growth promotion. Volatile chemicals from those isolates promoted Arabidopsis growth, and the expression of genes related to IAA production was induced in the Arabidopsis plants treated with PGPRs. Further, selected PGPR strains triggered induced systemic resistance (ISR) against Pseudomonas syringae pv tomato DC3000 in Arabidopsis. PGPR strains isolated from the rainforest soil promoted the plant growth of Arabidopsis, corn and tomato. New PGPR that have wider adaptability to different crops, soils and environmental conditions are needed to decrease our reliance on agricultural amendments derived from fossil-based fuels. The PGPRs isolated from a nonagricultural site constitute new plant growth-promoting strains that could be developed for agricultural uses. © 2014 The Society for Applied Microbiology.

  1. Effect of nitrogen fertiliser rates and plant density on grain yield of ...

    African Journals Online (AJOL)

    Low soil fertility has constrained maize production in Sidama district in the Southern region of Ethiopia. The effects of four levels of nitrogen fertiliser (0, 46, 92, 138 kg N ha-1) and four plant populations (44000, 53000, 67000 and 89000 plants ha-1) on grain yield of maize were evaluated over four years (1995-98) at Awassa ...

  2. Endophytic Actinobacteria and the Interaction of Micromonospora and Nitrogen Fixing Plants

    Science.gov (United States)

    Trujillo, Martha E.; Riesco, Raúl; Benito, Patricia; Carro, Lorena

    2015-01-01

    For a long time, it was believed that a healthy plant did not harbor any microorganisms within its tissues, as these were often considered detrimental for the plant. In the last three decades, the numbers of studies on plant microbe-interactions has led to a change in our view and we now know that many of these invisible partners are essential for the overall welfare of the plant. The application of Next Generation Sequencing techniques is a powerful tool that has permitted the detection and identification of microbial communities in healthy plants. Among the new plant microbe interactions recently reported several actinobacteria such as Micromonospora are included. Micromonospora is a Gram-positive bacterium with a wide geographical distribution; it can be found in the soil, mangrove sediments, and freshwater and marine ecosistems. In the last years our group has focused on the isolation of Micromonospora strains from nitrogen fixing nodules of both leguminous and actinorhizal plants and reported for the first time its wide distribution in nitrogen fixing nodules of both types of plants. These studies have shown how this microoganism had been largely overlooked in this niche due to its slow growth. Surprisingly, the genetic diversity of Micromonospora strains isolated from nodules is very high and several new species have been described. The current data indicate that Micromonospora saelicesensis is the most frequently isolated species from the nodular tissues of both leguminous and actinorhizal plants. Further studies have also been carried out to confirm the presence of Micromonospora inside the nodule tissues, mainly by specific in situ hybridization. The information derived from the genome of the model strain, Micromonospora lupini, Lupac 08, has provided useful information as to how this bacterium may relate with its host plant. Several strategies potentially necessary for Micromonospora to thrive in the soil, a highly competitive, and rough environment, and

  3. Nitrogen fertilisation increases biogenic amines and amino acid concentrations in Vitis vinifera var. Riesling musts and wines.

    Science.gov (United States)

    Smit, Inga; Pfliehinger, Marco; Binner, Antonie; Großmann, Manfred; Horst, Walter J; Löhnertz, Otmar

    2014-08-01

    Wines rich in biogenic amines can cause adverse health effects to the consumer. Being nitrogen-containing substances, the amount of amines in wines might be strongly influenced by the rate of nitrogen fertiliser application during grape production. The aim of this work was to evaluate the effect of nitrogen fertilisation in the vineyard on the formation of biogenic amines in musts and wines. In a field experiment which compared unfertilised and fertilised (60 and 150 kg N ha(-1)) vines over two separate years, the total amine concentrations in must and wine increased. The latter was due to an increase of individual amines such as ethylamine, histamine, isopentylamine, phenylethylamine and spermidine in the musts and wines with the nitrogen application. Furthermore, the fermentation process increased the concentration of histamine and ethylamine in most of the treatments, while spermidine, spermine and isopentylamine concentrations generally decreased. Throughout both vintages, the concentrations of tyramine and histamine of the investigated musts and wines never reached detrimental levels to the health of non-allergenic people. Nitrogen fertilisation has a significant effect on amines formation in musts and wines. Furthermore, during fermentation, ethylamine and histamine increased while other amines were presumably serving as N sources during fermentation. © 2013 Society of Chemical Industry.

  4. Ammonium Nitrogen Removal from Urea Fertilizer Plant Wastewater via Struvite Crystal Production

    Science.gov (United States)

    Machdar, I.; Depari, S. D.; Ulfa, R.; Muhammad, S.; Hisbullah, A. B.; Safrul, W.

    2018-05-01

    Elimination of ammonium concentration from urea fertilizer plant wastewater through struvite crystal (NH4MgPO4.6H2O) formation by adding MgCl2, KH2PO4, and KOH were studied. This method of elimination has two benefits, namely, reducing ammonium nitrogen content in the wastewater, as well as production of a valuable material (struvite crystal). Struvite is known as a slow-release fertilizer and less soluble. This report presents the ammonium removal efficiencies during struvite formation. The growth of struvite production under different molar ratios of Mg2+:NH4 +:PO4 3- and solution pH is also discussed. To find the efficiencies and measure the growth rates, lab-scale experiments were conducted in a batch crystallizer-reactor. SEM, XRD, and FTIR observation were also applied to investigate the characteristics of struvite. The reactant molar ratios of Mg2+:NH4 +:PO4 3- of 1.2:1:1, 1:1:1.2, and 1:1:1 were evaluated. Each of the molar ratios was treated at the solution pH of 8, 9, and 10. It was found that, the highest ammonium removal efficiency was 94.7% at the molar ratio of 1.2:1:1 and pH of 9. Primarily, the growth rate of struvite formation complied with a first-order kinetic model. The rate constants (k1) were calculated to be 2.6, 4.3, and 5.0 h-1 for solution pH of 8, 9, and 10, respectively. The findings of the study provide suggestion for an alternative sustainable recovery of ammonium nitrogen content in a urea fertilizer plant effluent.

  5. Seasonal variation in nitrogen pools and 15N/13C natural abundances in different tissues of grassland plants

    Directory of Open Access Journals (Sweden)

    J. K. Schjoerring

    2012-05-01

    Full Text Available Seasonal changes in nitrogen (N pools, carbon (C content and natural abundance of 13C and 15N in different tissues of ryegrass plants were investigated in two intensively managed grassland fields in order to address their ammonia (NH3 exchange potential. Green leaves generally had the largest total N concentration followed by stems and inflorescences. Senescent leaves had the lowest N concentration, indicating N re-allocation. The seasonal pattern of the Γ value, i.e. the ratio between NH4+ and H+ concentrations, was similar for the various tissues of the ryegrass plants but the magnitude of Γ differed considerably among the different tissues. Green leaves and stems generally had substantially lower Γ values than senescent leaves and litter. Substantial peaks in Γ were observed during spring and summer in response to fertilization and grazing. These peaks were associated with high NH4+ rather than with low H+ concentrations. Peaks in Γ also appeared during the winter, coinciding with increasing δ15N values, indicating absorption of N derived from mineralization of soil organic matter. At the same time, δ13C values were declining, suggesting reduced photosynthesis and capacity for N assimilation. δ15N and δ13C values were more influenced by mean monthly temperature than by the accumulated monthly precipitation. In conclusion, ryegrass plants showed a clear seasonal pattern in N pools. Green leaves and stems of ryegrass plants generally seem to constitute a sink for NH3, while senescent leaves have a large potential for NH3 emission. However, management events such as fertilisation and grazing may create a high NH3 emission potential even in green plant parts. The obtained results provide input for future modelling of plant-atmosphere NH3 exchange.

  6. Pre-breeding blood urea nitrogen concentration and reproductive performance of Bonsmara heifers within different management systems.

    Science.gov (United States)

    Tshuma, Takula; Holm, Dietmar Erik; Fosgate, Geoffrey Theodore; Lourens, Dirk Cornelius

    2014-08-01

    This study investigated the association between pre-breeding blood urea nitrogen (BUN) concentration and reproductive performance of beef heifers within different management systems in South Africa. Bonsmara heifers (n = 369) from five herds with different estimated levels of nitrogen intake during the month prior to the commencement of the breeding season were sampled in November and December 2010 to determine BUN concentrations. Body mass, age, body condition score (BCS) and reproductive tract score (RTS) were recorded at study enrolment. Trans-rectal ultrasound and/or palpation was performed 4-8 weeks after a 3-month breeding season to estimate the stage of pregnancy. Days to pregnancy (DTP) was defined as the number of days from the start of the breeding season until the estimated conception date. Logistic regression and Cox proportional hazards survival analysis were performed to estimate the association of pre-breeding BUN concentration with subsequent pregnancy and DTP, respectively. After stratifying for herd and adjusting for age, heifers with relatively higher pre-breeding BUN concentration took longer to become pregnant when compared to those with relatively lower BUN concentration (P = 0.011). In the herd with the highest estimated nitrogen intake (n = 143), heifers with relatively higher BUN were less likely to become pregnant (P = 0.013) and if they did, it was only later during the breeding season (P = 0.017), after adjusting for body mass. These associations were not present in the herd (n = 106) with the lowest estimated nitrogen intake (P > 0.500). It is concluded that Bonsmara heifers with relatively higher pre-breeding BUN concentration, might be at a disadvantage because of this negative impact on reproductive performance, particularly when the production system includes high levels of nitrogen intake.

  7. Nitrogen Removal in Greywater Living Walls: Insights into the Governing Mechanisms

    Directory of Open Access Journals (Sweden)

    Harsha S. Fowdar

    2018-04-01

    Full Text Available Nitrogen is a pollutant of great concern when present in excess in surface waters. Living wall biofiltration systems that employ ornamentals and climbing plants are an emerging green technology that has recently demonstrated significant potential to reduce nitrogen concentrations from greywater before outdoor domestic re-use. However, there still exists a paucity of knowledge around the mechanisms governing this removal, particularly in regards to the fate of dissolved organic nitrogen (DON within these systems. Understanding the fate of nitrogen in living wall treatment systems is imperative both to optimise designs and to predict the long-term viability of these systems, more so given the growing interest in adopting green infrastructure within urban cities. A laboratory study was undertaken to investigate the transformation and fate of nitrogen in biofilters planted with different climbing plants and ornamental species. An isotropic tracer (15N-urea was applied to quantify the amount removed through coupled nitrification-denitrification. The results found that nitrification-denitrification formed a minor removal pathway in planted systems, comprising only 0–15% of added 15N. DON and ammonium were effectively reduced by all biofilter designs, indicating effective mineralisation and nitrification rates. However, in designs with poor nitrogen removal, the effluent was enriched with nitrate, suggesting limited denitrification rates. Given the likely dominance of plant assimilation in removal, this indicates that plant selection is a critical design parameter, as is maintaining healthy plant growth for optimal nitrogen removal in greywater living wall biofilters in their early years of operation.

  8. Biological invasion by Myrica faya in Hawaii: Plant demography, nitrogen fixation, ecosystem effects

    International Nuclear Information System (INIS)

    Vitousek, P.M.; Walker, L.R.

    1989-01-01

    Myrica faya, an introduced actinorhizal nitrogen fixer, in invading young volcanic sites in Hawaii Volcanoes National Park. We examined the population biology of the invader and ecosystem-level consequences of its invasion in open-canopied forests resulting from volcanic cinder-fall. Although Myrica faya is nominally dioecious, both males and females produce large amounts of fruit that are utilized by a number of exotic and native birds, particularly the exotic Zosterops japonica. In areas of active colonization, Myrica seed rain under perch trees of the dominant native Metrosideros polymorpha ranged from 6 to 60 seeds m -2 yr -1 ; no seeds were captured in the open. Planted seeds of Myrica also germinated an established better under isolated individuals of Metrosideros than in the open. Diameter growth of Myrica is > 15-fold greater than that of Metrosideros, and the Myrica population is increasing rapidly. Rates of nitrogen fixation were measured using the acetylene reduction assay calibrated with 15 N. Myrica nodules reduced acetylene at between 5 and 20 μmol g -1 h -1 , a rate that extrapolated to nitrogen fixation of 18 kg ha -1 in a densely colonized site. By comparison, all native sources of nitrogen fixation summed to 0.2 kg ha -1 yr -1 , and precipitation added -1 yr -1 . Measurements of litter decomposition and nitrogen release, soil nitrogen mineralization, and plant growth in bioassays all demonstrated that nitrogen fixed by Myrica becomes available to other organisms as well. We conclude that biological invasion by Myrica faya alters ecosystem-level properties in this young volcanic area; at least in this case, the demography and physiology of one species controls characteristics of a whole ecosystem

  9. Mutational rectification of plant type for introducing responsiveness to nitrogen in rice

    International Nuclear Information System (INIS)

    Chakrabarti, S.N.; Sen, S.

    1975-01-01

    Dhairal, a local indica cultigen, although is very popular in many parts of Eastern India to several desirable traits, possesses the draw-back of low response to the application of nitrogen fertilizer. Attempts were made to alter the plant type and introduce the trait of 'high-responsiveness to nitrogen fertilizer' into this variety through induction of mutation using once and recurrent X-ray radiation. In field trails with several mutant strains along with the control selections in successive seasons at various levels of nitrogen (0 to 180 kg N/ha), selection x nitrogen interaction and the differential responses of the mutant strains were noted to be highly significant with regard to grain yield. Increased genotypic variance for grain yield at high 'N' level indicated the change in 'spread' amongst mutant strains. Few strains showed considerably high response to nitrogen application as expressed from grain yield and performance with regard to several agronomic attributes. (author)

  10. Long-term trends in nitrogen isotope composition and nitrogen concentration in brazilian rainforest trees suggest changes in nitrogen cycle.

    Science.gov (United States)

    Hietz, Peter; Dünisch, Oliver; Wanek, Wolfgang

    2010-02-15

    Direct or indirect anthropogenic effects on ecosystem nitrogen cycles are important components of global change. Recent research has shown that N isotopes in tree rings reflect changes in ecosystem nitrogen sources or cycles and can be used to study past changes. We analyzed trends in two tree species from a remote and pristine tropical rainforest in Brazil, using trees of different ages to distinguish between the effect of tree age and long-term trends. Because sapwood differed from heartwood in delta(15)N and N concentration and N can be translocated between living sapwood cells, long-term trends are best seen in dead heartwood. Heartwood delta(15)N in Spanish cedar (Cedrela odorata) and big-leaf mahogany (Swietenia macrophylla) increased with tree age, and N concentrations increased with age in Cedrela. Controlling for tree age, delta(15)N increased significantly during the past century even when analyzing only heartwood and after removing labile N compounds. In contrast to northern temperate and boreal forests where wood delta(15)N often decreased, the delta(15)N increase in a remote rainforest is unlikely to be a direct signal of changed N deposition. More plausibly, the change in N isotopic composition indicates a more open N cycle, i.e., higher N losses relative to internal N cycling in the forest, which could be the result of changed forest dynamics.

  11. Long-term N and P additions alter the scaling of plant nitrogen to phosphorus in a Tibetan alpine meadow.

    Science.gov (United States)

    Zhang, Juanjuan; Yan, Xuebin; Su, Fanglong; Li, Zhen; Wang, Ying; Wei, Yanan; Ji, Yangguang; Yang, Yi; Zhou, Xianhui; Guo, Hui; Hu, Shuijin

    2018-06-01

    Nitrogen and phosphorus are two important nutrient elements for plants. The current paradigm suggests that the scaling of plant tissue N to P is conserved across environments and plant taxa because these two elements are coupled and coordinately change with each other following a constant allometric trajectory. However, this assumption has not been vigorously examined, particularly in changing N and P environments. We propose that changes in relative availability of N and P in soil alter the N to P relationship in plants. Taking advantage of a 4-yr N and P addition experiment in a Tibetan alpine meadow, we examined changes in plant N and P concentrations of 14 common species. Our results showed that while the scaling of N to P under N additions was similar to the previously reported pattern with a uniform 2/3 slope of the regression between log N and log P, it was significantly different under P additions with a smaller slope. Also, graminoids had different responses from forbs. These results indicate that the relative availability of soil N and P is an important determinant regulating the N and P concentrations in plants. These findings suggest that alterations in the N to P relationships may not only alter plant photosynthate allocation to vegetative or reproductive organs, but also regulate the metabolic and growth rate of plant and promote shifts in plant community composition in a changing nutrient loading environment. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Nitrogen oxides emissions from thermal power plants in china: current status and future predictions.

    Science.gov (United States)

    Tian, Hezhong; Liu, Kaiyun; Hao, Jiming; Wang, Yan; Gao, Jiajia; Qiu, Peipei; Zhu, Chuanyong

    2013-10-01

    Increasing emissions of nitrogen oxides (NOx) over the Chinese mainland have been of great concern due to their adverse impacts on regional air quality and public health. To explore and obtain the temporal and spatial characteristics of NOx emissions from thermal power plants in China, a unit-based method is developed. The method assesses NOx emissions based on detailed information on unit capacity, boiler and burner patterns, feed fuel types, emission control technologies, and geographical locations. The national total NOx emissions in 2010 are estimated at 7801.6 kt, of which 5495.8 kt is released from coal-fired power plant units of considerable size between 300 and 1000 MW. The top provincial emitter is Shandong where plants are densely concentrated. The average NOx-intensity is estimated at 2.28 g/kWh, markedly higher than that of developed countries, mainly owing to the inadequate application of high-efficiency denitrification devices such as selective catalytic reduction (SCR). Future NOx emissions are predicted by applying scenario analysis, indicating that a reduction of about 40% by the year 2020 can be achieved compared with emissions in 2010. These results suggest that NOx emissions from Chinese thermal power plants could be substantially mitigated within 10 years if reasonable control measures were implemented effectively.

  13. Estimations of Nitrogen Concentration in Sugarcane Using Hyperspectral Imagery

    Directory of Open Access Journals (Sweden)

    Poonsak Miphokasap

    2018-04-01

    Full Text Available This study aims to estimate the spatial variation of sugarcane Canopy Nitrogen Concentration (CNC using spectral data, which were measured from a spaceborne hyperspectral image. Stepwise Multiple Linear Regression (SMLR and Support Vector Regression (SVR were applied to calibrate and validate the CNC estimation models. The raw spectral reflectance was transformed into a First-Derivative Spectrum (FDS and absorption features to remove the spectral noise and finally used as input variables. The results indicate that the estimation models developed by non-linear SVR based Radial Basis Function (RBF kernel yield the higher correlation coefficient with CNC compared with the models computed by SMLR. The best model shows the coefficient of determination value of 0.78 and Root Mean Square Error (RMSE value of 0.035% nitrogen. The narrow sensitive spectral wavelengths for quantifying nitrogen content in the combined cultivar environments existed mainly in the electromagnetic spectrum of the visible-red, longer portion of red edge, shortwave infrared regions and far-near infrared. The most important conclusion from this experiment is that spectral signals from the space hyperspectral data contain the meaningful information for quantifying sugarcane CNC across larger geographic areas. The nutrient deficient areas could be corrected by applying suitable farm management.

  14. Prediction of traffic-related nitrogen oxides concentrations using Structural Time-Series models

    Science.gov (United States)

    Lawson, Anneka Ruth; Ghosh, Bidisha; Broderick, Brian

    2011-09-01

    Ambient air quality monitoring, modeling and compliance to the standards set by European Union (EU) directives and World Health Organization (WHO) guidelines are required to ensure the protection of human and environmental health. Congested urban areas are most susceptible to traffic-related air pollution which is the most problematic source of air pollution in Ireland. Long-term continuous real-time monitoring of ambient air quality at such urban centers is essential but often not realistic due to financial and operational constraints. Hence, the development of a resource-conservative ambient air quality monitoring technique is essential to ensure compliance with the threshold values set by the standards. As an intelligent and advanced statistical methodology, a Structural Time Series (STS) based approach has been introduced in this paper to develop a parsimonious and computationally simple air quality model. In STS methodology, the different components of a time-series dataset such as the trend, seasonal, cyclical and calendar variations can be modeled separately. To test the effectiveness of the proposed modeling strategy, average hourly concentrations of nitrogen dioxide and nitrogen oxides from a congested urban arterial in Dublin city center were modeled using STS methodology. The prediction error estimates from the developed air quality model indicate that the STS model can be a useful tool in predicting nitrogen dioxide and nitrogen oxides concentrations in urban areas and will be particularly useful in situations where the information on external variables such as meteorology or traffic volume is not available.

  15. Nitrogen dynamics model for a pilot field-scale novel dewatered alum sludge cake-based constructed wetland system.

    Science.gov (United States)

    Kumar, J L G; Zhao, Y Q; Hu, Y S; Babatunde, A O; Zhao, X H

    2015-01-01

    A model simulating the effluent nitrogen (N) concentration of treated animal farm wastewater in a pilot on-site constructed wetland (CW) system, using dewatered alum sludge cake (DASC) as wetland substrate, is presented. The N-model was developed based on the Structural Thinking Experiential Learning Laboratory with Animation software and is considering organic nitrogen, ammonia nitrogen (NH3) and nitrate nitrogen (NO3-N) as the major forms of nitrogen involved in the transformation chains. Ammonification (AMM), ammonia volatilization, nitrification (NIT), denitrification, plant uptake, plant decaying and uptake of inorganic nitrogen by algae and bacteria were considered in this model. pH, dissolved oxygen, temperature, precipitation, solar radiation and nitrogen concentrations were considered as forcing functions in the model. The model was calibrated by observed data with a reasonable agreement prior to its applications. The simulated effluent detritus nitrogen, NH4-N, NO3-N and TN had a considerably good agreement with the observed results. The mass balance analysis shows that NIT accounts for 65.60%, adsorption (ad) (11.90%), AMM (8.90%) followed by NH4-N (Plants) (5.90%) and NO3-N (Plants) (4.40%). The TN removal was found 52% of the total influent TN in the CW. This study suggested an improved overall performance of a DASC-based CW and efficient N removal from wastewater.

  16. Low-to-moderate nitrogen and phosphorus concentrations accelerate microbially driven litter breakdown rates

    Science.gov (United States)

    John S. Kominoski; Amy D. Rosemond; Jonathan P. Benstead; Vladislav Gulis; John C. Maerz; David Manning

    2015-01-01

    Particulate organic matter (POM) processing is an important driver of aquatic ecosystem productivity that is sensitive to nutrient enrichment and drives ecosystem carbon (C) loss. Although studies of single concentrations of nitrogen (N) or phosphorus (P) have shown effects at relatively low concentrations, responses of litter breakdown rates along gradients of low-to-...

  17. Nitrogen Uptake During Fall, Winter and Spring Differs Among Plant Functional Groups in a Subarctic Heath Ecosystem

    DEFF Research Database (Denmark)

    Larsen, Klaus Steenberg; Michelsen, Anders; Jonasson, Sven

    2012-01-01

    Nitrogen (N) is a critical resource for plant growth in tundra ecosystems, and species differences in the timing of N uptake may be an important feature regulating community composition and ecosystem productivity. We added 15N-labelled glycine to a subarctic heath tundra dominated by dwarf shrubs...... to 37 ± 7% by April indicating significant microbial N turnover prior to spring thaw. Only the evergreen dwarf shrubs showed active 15N acquisition before early May indicating that they had the highest potential of all functional groups for acquiring nutrients that became available in early spring....... The faster-growing deciduous shrubs did not resume 15N acquisition until after early May indicating that they relied more on nitrogen made available later during the spring/early summer. The graminoids and mosses had no significant increases in 15N tracer recovery or tissue 15N tracer concentrations after...

  18. Absorption of atmospheric NO2 by plants and soils, (1)

    International Nuclear Information System (INIS)

    Matsumaru, Tsuneo; Shiratori, Koji; Yoneyama, Tadakatsu; Totsuka, Tsumugu.

    1979-01-01

    Tomato, sunflower and corn plants were grown in culture solution containing three different concentrations of 15 N-labelled KNO 3 (260 ppm N, 105 ppm N, and 26 ppm N) as a nitrogen nutrient, and fumigated with 0.3 ppm NO 2 for 2 weeks during their vegetative stages. The amount of NO 2 nitrogen absorbed into the plants was estimated by ''difference method'' and '' 15 N method.'' '' 15 N method'' was found to give more probable values than ''difference method.'' According to '' 15 N method,'' the nitrogen derived from NO 2 was about 16% (tomato), 22% (sunflower), and 14% (corn) of the increased amount of total nitrogen in the whole plants in the 105 ppm N plot, and these percentages increased in the 26 ppm N plot. Difference in nitrogen concentration of the culture solution resulted in big change in the dry-weight increase of the tomato and sunflower plants, but the absorption rate of NO 2 nitrogen based on the dry weight changed slightly. The absorption rate of NO 2 nitrogen was around 0.8 mg (gDW) -1 day -1 in tomato and sunflower plants, and 0.3 mg (gDW) -1 day -1 in corn plant. Leaves were found to be an active sink of NO 2 and the nitrogen of NO 2 seemed to be rapidly transformed into compounds of high molecules in the leaf cells. (author)

  19. Use of 15N enriched plant material for labelling of soil nitrogen in legume dinitrogen fixation experiments

    International Nuclear Information System (INIS)

    Jensen, E.S.

    1989-06-01

    The soil nitrogen in a field plot was labelled with nitrogen-15 (15N) by incorporating labelled plant material derived from previous experiments. The plot was used the following 3 years for determination of the amount of N2 fixed by different leguminous plants. The atom % 15N excess in grains of cereals grown as reference crops was 0.20, 0.05 and 0.03 in the 3 years, respectively. In the first year the level of enrichment was adequate for estimating symbiotic nitrogen fixation. In the second and third year lack of precision in determination of the 15N/14N ratios of legume N, may have caused an error in estimates of nitrogen fixation. About 23% of the labelled N was taken up by plants during the 3 years of cropping; after 4 years about 44% of the labelled N was found still to be present in the top soil. The labelling of the soil nitrogen with organic bound 15N, compared to adding mineral 15N at sowing, is advantageous because the labelled N is released by mineralization so that the enrichment of the plant available soil N pool become more uniform during the growth season; and high levels of mineral N, which may depress the fixation process, is avoided. (author) 7 tabs., 1 ill., 30 refs

  20. Use of Potato Nitrogen Concentrate in the Production of α-Amylase by Aspergillus oryzae

    Directory of Open Access Journals (Sweden)

    Eric Thaller

    2007-01-01

    Full Text Available The influence of various nitrogen sources and media supplements on α-amylase (EC 3.2.1.1 formation by Aspergillus oryzae ATCC 1011 was investigated in shake flask experiments and batch fermentations. Both inorganic and organic nitrogen-containing supplements have been applied, while corn starch and ammonium sulphate were used as the major source of carbon and nitrogen, respectively. Shake flask experiments revealed that potato nitrogen concentrate (PNC is almost equivalent to corn steep liquor (CSL in supporting amylase formation. A pretreatment step consisting of clarification of the turbid material did not show any significant effect. The replacement of the inorganic nitrogen source by sodium nitrate led to lower enzyme yields. Other complex supplements may reduce the enzyme level formed, e.g. casein hydrolysate, or increase the amylase titre slightly, e.g. yeast extract or malt extract. Cultivations in instrumented bench top reactors on media supplemented with PNC led to higher cell growth rates and yields of α-amylase in comparison with the medium without any supplement. Replacement of PNC by CSL revealed a slightly increased enzyme level, which is in the range of 9–17 % after 100 h of cultivation. Only minor differences were revealed in the growth kinetics and enzyme formation when PNC was used as the sole nitrogen source, replacing a mixture of soybean meal, yeast extract, malt extract and casein hydrolysate in bioreactor cultivations with lactose as the carbon source. However, metabolic differences as seen from the course of dissolved oxygen tension (DOT, α-amino nitrogen concentration and the amount of acid needed to maintain a constant pH were observed.

  1. Trends in stream nitrogen concentrations for forested reference catchments across the USA

    International Nuclear Information System (INIS)

    Argerich, A; Greathouse, E; Johnson, S L; Sebestyen, S D; Rhoades, C C; Knoepp, J D; Adams, M B; Likens, G E; Campbell, J L; McDowell, W H; Scatena, F N; Ice, G G

    2013-01-01

    To examine whether stream nitrogen concentrations in forested reference catchments have changed over time and if patterns were consistent across the USA, we synthesized up to 44 yr of data collected from 22 catchments at seven USDA Forest Service Experimental Forests. Trends in stream nitrogen presented high spatial variability both among catchments at a site and among sites across the USA. We found both increasing and decreasing trends in monthly flow-weighted stream nitrate and ammonium concentrations. At a subset of the catchments, we found that the length and period of analysis influenced whether trends were positive, negative or non-significant. Trends also differed among neighboring catchments within several Experimental Forests, suggesting the importance of catchment-specific factors in determining nutrient exports. Over the longest time periods, trends were more consistent among catchments within sites, although there are fewer long-term records for analysis. These findings highlight the critical value of long-term, uninterrupted stream chemistry monitoring at a network of sites across the USA to elucidate patterns of change in nutrient concentrations at minimally disturbed forested sites. (letter)

  2. Home interventions are effective at decreasing indoor nitrogen dioxide concentrations.

    Science.gov (United States)

    Paulin, L M; Diette, G B; Scott, M; McCormack, M C; Matsui, E C; Curtin-Brosnan, J; Williams, D L; Kidd-Taylor, A; Shea, M; Breysse, P N; Hansel, N N

    2014-08-01

    Nitrogen dioxide (NO2 ), a by-product of combustion produced by indoor gas appliances such as cooking stoves, is associated with respiratory symptoms in those with obstructive airways disease. We conducted a three-armed randomized trial to evaluate the efficacy of interventions aimed at reducing indoor NO2 concentrations in homes with unvented gas stoves: (i) replacement of existing gas stove with electric stove; (ii) installation of ventilation hood over existing gas stove; and (iii) placement of air purifiers with high-efficiency particulate air (HEPA) and carbon filters. Home inspection and NO2 monitoring were conducted at 1 week pre-intervention and at 1 week and 3 months post-intervention. Stove replacement resulted in a 51% and 42% decrease in median NO2 concentration at 3 months of follow-up in the kitchen and bedroom, respectively (P = 0.01, P = 0.01); air purifier placement resulted in an immediate decrease in median NO2 concentration in the kitchen (27%, P kitchen (20%, P = 0.05). NO2 concentrations in the kitchen and bedroom did not significantly change following ventilation hood installation. Replacing unvented gas stoves with electric stoves or placement of air purifiers with HEPA and carbon filters can decrease indoor NO2 concentrations in urban homes. Several combustion sources unique to the residential indoor environment, including gas stoves, produce nitrogen dioxide (NO2), and higher NO2 concentrations, are associated with worse respiratory morbidity in people with obstructive lung disease. A handful of studies have modified the indoor environment by replacing unvented gas heaters; this study, to our knowledge, is the first randomized study to target unvented gas stoves. The results of this study show that simple home interventions, including replacement of an unvented gas stove with an electric stove or placement of HEPA air purifiers with carbon filters, can significantly decrease indoor NO2 concentrations. © 2013 John Wiley & Sons A

  3. Correlation between the nitrogen concentration of two epiphytic lichens and the traffic density in an urban area

    International Nuclear Information System (INIS)

    Gombert, S.; Asta, J.; Seaward, M.R.D.

    2003-01-01

    Nitrogen concentrations of the lichen Physcia adscendens are related to traffic exposure. - A field experiment was carried out in the urban environment of the Grenoble area using two epiphytic lichens: the nitrophytic Physcia adscendens and the acidiphytic Hypogymnia physodes. Two complementary studies characterized this experiment. Firstly, a sampling of the two lichens in 48 sites randomly located throughout the Grenoble area indicated that roads (size and proximity to sampling sites) influenced the nitrogen concentrations of P. adscendens, but not those of H. physodes. Secondly, to study more accurately the influence of roads, a traffic index was calculated and applied along two transects located perpendicularly to urban motorways. Significant positive correlations were found between this traffic index and the total nitrogen concentration of P. adscendens

  4. Concentration of plutonium in desert plants from contaminated area

    International Nuclear Information System (INIS)

    Xu Hui; Jin Yuren; Tian Mei; Li Weiping; Zeng Ke; Wang Yaoqin; Wang Yu

    2012-01-01

    The investigation of plutonium in desert plants from contaminated sites contributes to the evaluation of its pollution situation and to the survey of plutonium hyper accumulator. The concentration of 239 Pu in desert plants collected from a contaminated site was determined, and the influence factors were studied. The concentration of 239 Pu in plants was (1.8±4.9) Bq/kg in dry weight, and it means that the plants were contaminated, moreover, the resuspension results in dramatic plutonium pollution of plant surface. The concentration of plutonium in plants depends on species, live stages and the content of plutonium in the rhizosphere soil. The concentration of plutonium in herbage is higher than that in woody plant, and for the seven species of desert plants investigated, it decreases in the order of Hexinia polydichotoma, Phragmites australis, Halostashys caspica, Halogeton arachnoideus, Lycium ruthenicum, Tamarix hispida and Calligonum aphyllum. (authors)

  5. Nitrogen split dose fertilization, plant age and frost effects on phytochemical content and sensory properties of curly kale (Brassica oleracea L. var. sabellica).

    Science.gov (United States)

    Groenbaek, Marie; Jensen, Sidsel; Neugart, Susanne; Schreiner, Monika; Kidmose, Ulla; Kristensen, Hanne L

    2016-04-15

    We investigated how concentrations of sensory relevant compounds: glucosinolates (GLSs), flavonoid glycosides, hydroxycinnamic acid derivatives and sugars in kale responded to split dose and reduced nitrogen (N) fertilization, plant age and controlled frost exposure. In addition, frost effects on sensory properties combined with N supply were assessed. Seventeen week old kale plants showed decreased aliphatic GLSs at split dose N fertilization; whereas reduced N increased aliphatic and total GLSs. Ontogenetic effects were demonstrated for all compounds: sugars, aliphatic and total GLSs increased throughout plant development, whereas kaempferol and total flavonoid glycosides showed higher concentrations in 13 week old plants. Controlled frost exposure altered sugar composition slightly, but not GLSs or flavonoid glycosides. Reduced N supply resulted in less bitterness, astringency and pungent aroma, whereas frost exposure mainly influenced aroma and texture. N treatment explained most of the sensory variation. Producers should not rely on frost only to obtain altered sensory properties. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Herbivory alters plant carbon assimilation, patterns of biomass allocation and nitrogen use efficiency

    Science.gov (United States)

    Peschiutta, María Laura; Scholz, Fabián Gustavo; Goldstein, Guillermo; Bucci, Sandra Janet

    2018-01-01

    Herbivory can trigger physiological processes resulting in leaf and whole plant functional changes. The effects of chronic infestation by an insect on leaf traits related to carbon and nitrogen economy in three Prunus avium cultivars were assessed. Leaves from non-infested trees (control) and damaged leaves from infested trees were selected. The insect larvae produce skeletonization of the leaves leaving relatively intact the vein network of the eaten leaves and the abaxial epidermal tissue. At the leaf level, nitrogen content per mass (Nmass) and per area (Narea), net photosynthesis per mass (Amass) and per area (Aarea), photosynthetic nitrogen-use efficiency (PNUE), leaf mass per area (LMA) and total leaf phenols content were measured in the three cultivars. All cultivars responded to herbivory in a similar fashion. The Nmass, Amass, and PNUE decreased, while LMA and total content of phenols increased in partially damaged leaves. Increases in herbivore pressure resulted in lower leaf size and total leaf area per plant across cultivars. Despite this, stem cumulative growth tended to increase in infected plants suggesting a change in the patterns of biomass allocation and in resources sequestration elicited by herbivory. A larger N investment in defenses instead of photosynthetic structures may explain the lower PNUE and Amass observed in damaged leaves. Some physiological changes due to herbivory partially compensate for the cost of leaf removal buffering the carbon economy at the whole plant level.

  7. Plant root proliferation in nitrogen-rich patches confers competitive advantage

    Science.gov (United States)

    Robinson, D.; Hodge, A.; Griffiths, B. S.; Fitter, A. H.

    1999-01-01

    Plants respond strongly to environmental heterogeneity, particularly below ground, where spectacular root proliferations in nutrient-rich patches may occur. Such 'foraging' responses apparently maximize nutrient uptake and are now prominent in plant ecological theory. Proliferations in nitrogen-rich patches are difficult to explain adaptively, however. The high mobility of soil nitrate should limit the contribution of proliferation to N capture. Many experiments on isolated plants show only a weak relation between proliferation and N uptake. We show that N capture is associated strongly with proliferation during interspecific competition for finite, locally available, mixed N sources, precisely the conditions under which N becomes available to plants on generally infertile soils. This explains why N-induced root proliferation is an important resource-capture mechanism in N-limited plant communities and suggests that increasing proliferation by crop breeding or genetic manipulation will have a limited impact on N capture by well-fertilized monocultures.

  8. Effects of Nitrogen and Nutrient Removal on Nitrate Accumulation and Growth Characteristics of Spinach (Spinacia oleraceae L.

    Directory of Open Access Journals (Sweden)

    mohammadsadegh sadeghi

    2017-12-01

    Full Text Available Introduction: Spinach is a leafy vegetable which is rich source of vitamins, antioxidant compounds (e.g. flavonoids, acid ascorbic and essential elements (e.g. Fe, and Se. Spinach is capable of accumulating large amounts of nitrogen in the form of nitrate in shoot tissues which is undesirablein the human diet. The concentration of nitrate in plants is affected by species, fertilizer use, and growing conditions. Green leafy vegetables such as spinach, generally contain higher levels of nitrate than other foods. Nitrate ofplant tissueslevels are clearly related to both form and concentration of N fertilizers applied. Nitrogen fertilizers have been known as the major factors that influence nitrate content in vegetables. Ideally, the N fertility level must be managed to produce optimum crop yield without leading to excessive accumulation of nitrate in the harvested tissues.Usinghigh amounts ofN fertilizer produced higher yield with higher nitrate inleaves but the highest amount of nitrate was accumulated in the petioles.There are several plant species that may accumulate nitrate, including the Brassica plants, green cereal grains (barley, wheat, rye and maize, sorghum and Sudan grasses, corn, beets, rape, docks, sweet clover and nightshades. The presence of nitrate in vegetables, as in water and generally in other foods, is a serious threat to man’s health. Nitrate is relatively non-toxic, but approximately 5% of all ingested nitrate is converted in saliva and the gastrointestinal tract to the more toxic nitrite. This study was aimed to investigate theeffects of nitrogen and nutrient removal on nitrate accumulation and growth characteristics of spinach (Spinacia oleraceae L.. Materials and Methods: A pot hydroponic experiment was carried out to evaluate the effect of different levels of nitrogen and nutrient removal (one week before harvest on nitrate accumulation and growth characters. A factorial experiment based on completely randomized design

  9. Inhibition of apparent photosynthesis by nitrogen oxides

    Energy Technology Data Exchange (ETDEWEB)

    Hill, A C; Bennett, J H

    1970-01-01

    The nitrogen oxides (NO/sub 2/ and NO) inhibited apparent photosynthesis of oats and alfalfa at concentrations below those required to cause visible injury. There appeared to be a threshold concentration of about 0.6 ppm for each pollutant. An additive effect in depressing apparent photosynthesis occurred when the plants were exposed to a mixture of NO and NO/sub 2/. Although NO produced a more rapid effect on the plants, lower concentrations of NO/sub 2/ were required to cause a given inhibition after 2 hour of exposure. Inhibition by nitric oxide was more closely related to its partial pressure than was inhibition by NO/sub 2/.

  10. Data from: Legacy effects of diversity in space and time driven by winter cover crop biomass and nitrogen concentration

    NARCIS (Netherlands)

    Barel, J.M.; Kuijper, T.W.M.; Boer, de W.; Douma, J.C.; Deyn, de G.B.

    2017-01-01

    Plant diversity can increase nitrogen cycling and decrease soil-borne pests, which are feedback mechanisms influencing subsequent plant growth. The relative strength of these mechanisms is unclear, as is the influence of preceding plant quantity and quality. Here, we studied how plant diversity in

  11. Atmospheric nitrogen dioxide at ambient levels stimulates growth and development of horticultural plants

    International Nuclear Information System (INIS)

    Adam, S.E.H.; Shigeto, J.; Sakamoto, A.; Takahashi, M.; Morikawa, H.

    2008-01-01

    Studies have demonstrated that ambient levels of atmospheric nitrogen dioxide (NO 2 ) can cause Nicotiana plumbaginifolia to double its biomass as well as its cell contents. This paper examined the influence of NO 2 on lettuce, sunflower, cucumber, and pumpkin plants. Plants were grown in environments supplemented with stable isotope-labelled NO 2 for approximately 6 weeks and irrigated with nitrates. Measured growth parameters included leaf number, internode number, stem length, number of flower buds, and root length. Results of the study demonstrated that the addition of NO 2 doubled the aboveground and belowground biomass of sunflowers, while only the aboveground biomass of pumpkin, cucumbers, and lettuces was doubled. Levels of carbon (C), nitrogen (N), phosphorus (P), potassium (K), calcium (Ca), and magnesium (Mg) were also doubled in the lettuce samples. A mass spectrometry analysis showed that only a small percentage of total plant N was derived from NO 2 . It was concluded that exogenous NO 2 additions function as a signal rather than as a significant nutrient source in horticultural plants. 22 refs., 2 tabs., 1 fig

  12. Tightening the nitrogen cycle

    OpenAIRE

    Christensen, B.T.

    2004-01-01

    The availability of nitrogen to crop plants is a universally important aspect of soil quality, and often nitrogen represents the immediate limitation to crop productivity in modern agriculture. Nitrogen is decisive for the nutritive value of plant products and plays a key role in the environmental impact of agricultural production. The fundamental doctrine of nitrogen management is to optimise the nitrogen use efficiency of both introduced and native soil nitrogen by increasing the temporal a...

  13. The effect of glyphosate and nitrogen on plant communities and the soil fauna in terrestrial biotopes at field margins

    DEFF Research Database (Denmark)

    Damgaard, Christian; Strandberg, Beate; Dupont, Yoko

    were assessed at the ecosystem level by measuring biodiversity and functional traits. We have obtained an increased understanding of the causal relationship between plant communities and the soil fauna at the ecosystem level and increased knowledge on how and by what mechanisms important drivers...... that are known to affect plant communities may affect pollination and the soil fauna. The combined use of plant trait and soil fauna trait data in a full-factorial field experiment of glyphosate and nitrogen has never been explored before. The focus on plant and soil fauna traits rather than species enabled...... nitrogen, generally, resulted in increasing total plant cover and biomass, especially of fast-growing and competitive species as grasses and a few herbs such as Tanacetum vulgare. Using plant traits we found that increase in nitrogen promoted an increase in the average specific leaf area (SLA) and canopy...

  14. Nitrogen Immobilization in Plant Growth Substrates: Clean Chip Residual, Pine Bark, and Peatmoss

    Directory of Open Access Journals (Sweden)

    Cheryl R. Boyer

    2012-01-01

    Full Text Available Rising costs of potting substrates have caused horticultural growers to search for alternative, lower-cost materials. Objectives of this study were to determine the extent of nitrogen immobilization and microbial respiration in a high wood-fiber content substrate, clean chip residual. Microbial activity and nitrogen availability of two screen sizes (0.95 cm and 0.48 cm of clean chip residual were compared to control treatments of pine bark and peatmoss in a 60-day incubation experiment. Four rates (0, 1, 2, or 3 mg of supplemental nitrogen were assessed. Peatmoss displayed little microbial respiration over the course of the study, regardless of nitrogen rate; followed by pine bark, 0.95 cm clean chip residual, and 0.48 cm clean chip residual. Respiration increased with increasing nitrogen. Total inorganic nitrogen (plant available nitrogen was greatest with peatmoss; inorganic nitrogen in other treatments were similar at the 0, 1, and 2 mg supplemental nitrogen rates, while an increase occurred with the highest rate (3 mg. Clean chip residual and pine bark were similar in available nitrogen compared to peatmoss. This study suggests that nitrogen immobilization in substrates composed of clean chip residual is similar to pine bark and can be treated with similar fertilizer amendments during nursery production.

  15. [Influence of elevated atmospheric CO2 concentration on photosynthesis and leaf nitrogen partition in process of photosynthetic carbon cycle in Musa paradisiaca].

    Science.gov (United States)

    Sun, G; Zhao, P; Zeng, X; Peng, S

    2001-06-01

    The photosynthetic rate (Pn) in leaves of Musa paradisiaca grown under elevated CO2 concentration (700 +/- 56 microliters.L-1) for one week was 5.14 +/- 0.32 mumol.m-2.s-1, 22.1% higher than that under ambient CO2 concentration, while under elevated CO2 concentration for 8 week, the Pn decreased by 18.1%. It can be inferred that the photosynthetic acclimation to elevated CO2 concentration and the Pn inhibition occurred in leaves of M. paradisiaca. The respiration rate in light (Rd) was lower in leaves under higher CO2 concentration, compared with that under ambient CO2 concentration. If the respiration in light was not included, the difference in CO2 compensation point for the leaves of both plants was not significant. Under higher CO2 concentration for 8 weeks, the maximum carboxylation rate(Vcmax) and electron transportation rate (J) in leaves decreased respectively by 30.5% and 14.8%, compared with that under ambient CO2 concentration. The calculated apparent quantum yield (alpha) in leaves under elevated CO2 concentration according to the initial slope of Pn/PAR was reduced to 0.014 +/- 0.010 molCO2.mol-1 quanta, compared with the value of 0.025 +/- 0.005 molCO2.mol-1 quanta in the control. The efficiency of light energy conversion also decreased from 0.203 to 0.136 electrons.quanta-1 in plants under elevated CO2 concentration. A lower partitioning coefficient for leaf nitrogen in Rubisco, bioenergetics and thylakoid light-harvesting components was observed in plants under higher CO2 concentration. The results indicated that the multi-process of photosynthesis was suppressed significantly by a long-term (8 weeks) higher CO2 concentration incubation.

  16. Carbon-nitrogen interactions and biomass partitioning of Carex rostrata grown at three levels of nitrogen supply

    Energy Technology Data Exchange (ETDEWEB)

    Saarinen, T [Helsinki Univ. (Finland). Dept. of Ecology and Systematics

    1997-12-31

    Biomass and production of vascular plants constitutes a major source of carbon input in peatlands. As rates of decomposition vary considerably with depth, the vertical distribution of biomass may substantially affect accumulation of carbon in peatlands. Therefore, allocation patterns between shoot and roots are particularly important when considering carbon balance of peatland ecosystems. The stimulatory effect of increasing atmospheric concentration of CO{sub 2} or photosynthesis may increase availability of carbon to most C3 plants. Availability of nitrogen may also alter both due to increased atmospheric deposition and changer in mineralisation rates associated with climate change. Most root-shoot partitioning models predict that allocation of biomass is dependent of the availability and uptake of carbon and nitrogen. A decrease in supply of carbon would favour allocation to shoots and a decrease in supply of nitrogen would increase allocation to roots. At a cellular level, non structural carbohydrates and free amino acids are thought to represent the biochemically available fraction of carbon and nitrogen, respectively. The aim of this work is study the long-term growth responses of Carex rostrata to changes in the availability of nitrogen. Special attention is paid to soluble sugars ant free amino acids, which may control partitioning of biomass. (10 refs.)

  17. Carbon-nitrogen interactions and biomass partitioning of Carex rostrata grown at three levels of nitrogen supply

    Energy Technology Data Exchange (ETDEWEB)

    Saarinen, T. [Helsinki Univ. (Finland). Dept. of Ecology and Systematics

    1996-12-31

    Biomass and production of vascular plants constitutes a major source of carbon input in peatlands. As rates of decomposition vary considerably with depth, the vertical distribution of biomass may substantially affect accumulation of carbon in peatlands. Therefore, allocation patterns between shoot and roots are particularly important when considering carbon balance of peatland ecosystems. The stimulatory effect of increasing atmospheric concentration of CO{sub 2} or photosynthesis may increase availability of carbon to most C3 plants. Availability of nitrogen may also alter both due to increased atmospheric deposition and changer in mineralisation rates associated with climate change. Most root-shoot partitioning models predict that allocation of biomass is dependent of the availability and uptake of carbon and nitrogen. A decrease in supply of carbon would favour allocation to shoots and a decrease in supply of nitrogen would increase allocation to roots. At a cellular level, non structural carbohydrates and free amino acids are thought to represent the biochemically available fraction of carbon and nitrogen, respectively. The aim of this work is study the long-term growth responses of Carex rostrata to changes in the availability of nitrogen. Special attention is paid to soluble sugars ant free amino acids, which may control partitioning of biomass. (10 refs.)

  18. Application technique affects the potential of mineral concentrates from livestock manure to replace inorganic nitrogen fertilizer

    NARCIS (Netherlands)

    Klop, G.; Velthof, G.L.; Groenigen, van J.W.

    2012-01-01

    It has been suggested that mineral concentrates (MCs) produced from livestock manure might partly replace inorganic N fertilizers, thereby further closing the nitrogen (N) cycle. Here, we quantified nitrogen use efficiency (NUE) and N loss pathways associated with MCs, compared with inorganic

  19. Effect of nitrogen concentration and temperature on the critical resolved shear stress and strain rate sensitivity of vanadium

    International Nuclear Information System (INIS)

    Rehbein, D.K.

    1980-08-01

    The critical resolved shear stress and strain rate sensitivity were measured over the temperature range from 77 to 400 0 K for vanadium-nitrogen alloys containing from 0.0004 to 0.184 atom percent nitrogen. These properties were found to be strongly dependent on both the nitrogen concentration and temperature. The following observations were seen in this investigation: the overall behavior of the alloys for the temperature and concentration range studied follows a form similar to that predicted; the concentration dependence of the critical resolved shear stress after subtracting the hardening due to the pure vanadium lattice obeys Labusch's c/sup 2/3/ relationship above 200 0 K and Fleischer's c/sup 1/2/ relationship below 200 0 K; the theoretical predictions of Fleischer's model for the temperature dependence of the critical resolved shear stress are in marked disagreement with the behavior found; and the strain rate sensitivity, par. delta tau/par. deltaln γ, exhibits a peak at approximately 100 0 K that decreases in height as the nitrogen concentration increases. A similar peak has been observed in niobium by other investigators but the effect of concentration on the peak height is quite different

  20. Effects of Invasive-Plant Management on Nitrogen-Removal Services in Freshwater Tidal Marshes.

    Directory of Open Access Journals (Sweden)

    Mary Alldred

    Full Text Available Establishing relationships between biodiversity and ecosystem function is an ongoing endeavor in contemporary ecosystem and community ecology, with important practical implications for conservation and the maintenance of ecosystem services. Removal of invasive plant species to conserve native diversity is a common management objective in many ecosystems, including wetlands. However, substantial changes in plant community composition have the potential to alter sediment characteristics and ecosystem services, including permanent removal of nitrogen from these systems via microbial denitrification. A balanced assessment of costs associated with keeping and removing invasive plants is needed to manage simultaneously for biodiversity and pollution targets. We monitored small-scale removals of Phragmites australis over four years to determine their effects on potential denitrification rates relative to three untreated Phragmites sites and adjacent sites dominated by native Typha angustifolia. Sediment ammonium increased following the removal of vegetation from treated sites, likely as a result of decreases in both plant uptake and nitrification. Denitrification potentials were lower in removal sites relative to untreated Phragmites sites, a pattern that persisted at least two years following removal as native plant species began to re-colonize treated sites. These results suggest the potential for a trade-off between invasive-plant management and nitrogen-removal services. A balanced assessment of costs associated with keeping versus removing invasive plants is needed to adequately manage simultaneously for biodiversity and pollution targets.

  1. Effects of Invasive-Plant Management on Nitrogen-Removal Services in Freshwater Tidal Marshes.

    Science.gov (United States)

    Alldred, Mary; Baines, Stephen B; Findlay, Stuart

    2016-01-01

    Establishing relationships between biodiversity and ecosystem function is an ongoing endeavor in contemporary ecosystem and community ecology, with important practical implications for conservation and the maintenance of ecosystem services. Removal of invasive plant species to conserve native diversity is a common management objective in many ecosystems, including wetlands. However, substantial changes in plant community composition have the potential to alter sediment characteristics and ecosystem services, including permanent removal of nitrogen from these systems via microbial denitrification. A balanced assessment of costs associated with keeping and removing invasive plants is needed to manage simultaneously for biodiversity and pollution targets. We monitored small-scale removals of Phragmites australis over four years to determine their effects on potential denitrification rates relative to three untreated Phragmites sites and adjacent sites dominated by native Typha angustifolia. Sediment ammonium increased following the removal of vegetation from treated sites, likely as a result of decreases in both plant uptake and nitrification. Denitrification potentials were lower in removal sites relative to untreated Phragmites sites, a pattern that persisted at least two years following removal as native plant species began to re-colonize treated sites. These results suggest the potential for a trade-off between invasive-plant management and nitrogen-removal services. A balanced assessment of costs associated with keeping versus removing invasive plants is needed to adequately manage simultaneously for biodiversity and pollution targets.

  2. Effects of different nitrogen levels and plant density on flower, essential oils and extract production and nitrogen use efficiency of Marigold (Calendula officinalis.

    Directory of Open Access Journals (Sweden)

    ali akbar ameri

    2009-06-01

    Full Text Available Efficient use of nitrogen for medicinal plants production, might increase flower dry matter, essential oil and extract yield and reduce cost of yield production. A two year (2005 and 2006 field study was conducted in Torogh region(36,10° N,59.33° E and 1300 m altitude of Mashhad, Iran, to observe the effects of different nitrogen and densities on flower dry matter, essential oil and extract production and nitrogen use efficiency (NUE in a multi-harvested Marigold (Calendula officinalis. The levels of Nitrogen fertilizer (N were 0, 50, 100 and 150 kg ha-1 and levels of density were 20, 40, 60 and 80 plant m-2. The combined analysis results revealed significant effects of N and density levels on flower dry matter, essential oil and extract production and NUE of Marigold. The highest dry flower production obtained by 150 kg ha-1 N and 80 plant m-2 plant population (102.86 g m-2. The higher flower dry matter production caused more essential oil and extract production in high nitrogen and density levels. Agronomic N-use efficiency (kg flower dry matter yield per kg N applied, physiological efficiency (kg flower dry matter yield per kg N absorbed and fertilizer N-recovery efficiency (kg N absorbed per kg N applied, expressed as % for marigold across treatments ranged from 6.8 to14.9, 12.3 to 33.6 and 55.5 to 77.6, respectively and all were greater for N application at 50 compared with150 kg N ha-1, and under high density than low density. The amount of essential oil and extract per 100g flower dry matter decreased during the flower harvesting period. The higher amount of essential oil and extract obtained at early flowering season. The essential oil and extract ranged from 0.22 to 0.12 (ml. per 100g flower dry matter and 2.74 to 2.13 (g per 100g flower dry matter respectively.

  3. Soil-to-plant concentration factors for radiological assessments

    International Nuclear Information System (INIS)

    Ng, Y.C.; Thompson, S.E.; Colsher, C.S.

    1982-09-01

    This report presents the results of a literature review to derive soil-to-plant concentration factors to predict the concentration of a radionuclide in plants from that in soil. The concentration factor, B/sub v/ is defined as the ratio of the concentration of a nuclide in the edible plant part to that in dry soil. CR (the concentration ratio) is similarly defined to denote the concentration factor for dry feed consumed by livestock. B/sub v/ and CR values are used to assess the dose from radionuclides deposited onto soil and transferred into crop plants via roots. Approaches for deriving B/sub v/ and CR values are described, and values for food and feed are tabulated for individual elements. The sources of uncertainty are described, and the factors that contribute to the inherent variability of the B/sub v/ and CR values are discussed. Summary tables of elemental B/sub v/ and CR values and statistical parameters that characterize their distributions provide a basis for a systematic updating of many of the B/sub v/ values in Regulatory Guide 1.109. They also provide a basis for selecting B/sub v/ and CR values for other applications that involve the use of equilibrium models to predict the concentration of radionuclides in plants from that in soil

  4. Nitrogen acquisition by plants and microorganisms in a temperate grassland.

    Science.gov (United States)

    Liu, Qianyuan; Qiao, Na; Xu, Xingliang; Xin, Xiaoping; Han, Jessie Yc; Tian, Yuqiang; Ouyang, Hua; Kuzyakov, Yakov

    2016-03-10

    Nitrogen (N) limitation is common in most terrestrial ecosystems, often leading to strong competition between microorganisms and plants. The mechanisms of niche differentiation to reduce this competition remain unclear. Short-term (15)N experiments with NH4(+), NO3(-), and glycine were conducted in July, August and September in a temperate grassland to evaluate the chemical, spatial and temporal niche differentiation by competition between plants and microorganisms for N. Microorganisms preferred NH4(+) and NO3(-), while plants preferred NO3(-). Both plants and microorganisms acquired more N in August and September than in July. The soil depth had no significant effects on microbial uptake, but significantly affected plant N uptake. Plants acquired 67% of their N from the 0-5 cm soil layer and 33% from the 5-15 cm layer. The amount of N taken up by microorganisms was at least seven times than plants. Although microorganisms efficiently compete for N with plants, the competition is alleviated through chemical partitioning mainly in deeper soil layer. In the upper soil layer, neither chemical nor temporal niche separation is realized leading to strong competition between plants and microorganisms that modifies N dynamics in grasslands.

  5. Determination of the Fate of Dissolved Organic Nitrogen in the Three Wastewater Treatment Plants, Jordan

    Science.gov (United States)

    Wedyan, Mohammed; Al Harahsheh, Ahmed; Qnaisb, Esam

    2016-01-01

    This research aimed to assess the composition of total dissolved nitrogen (TDN) species, particularly dissolved organic nitrogen (DON), over the traditional wastewater treatment operations in three biological nutrient removal (BNR) wastewater treatment plants (WWTPs) in Jordan. It had been found that the DON percentage was up to 30% of TDN within…

  6. Startup and oxygen concentration effects in a continuous granular mixed flow autotrophic nitrogen removal reactor.

    Science.gov (United States)

    Varas, Rodrigo; Guzmán-Fierro, Víctor; Giustinianovich, Elisa; Behar, Jack; Fernández, Katherina; Roeckel, Marlene

    2015-08-01

    The startup and performance of the completely autotrophic nitrogen removal over nitrite (CANON) process was tested in a continuously fed granular bubble column reactor (BCR) with two different aeration strategies: controlling the oxygen volumetric flow and oxygen concentration. During the startup with the control of oxygen volumetric flow, the air volume was adjusted to 60mL/h and the CANON reactor had volumetric N loadings ranging from 7.35 to 100.90mgN/Ld with 36-71% total nitrogen removal and high instability. In the second stage, the reactor was operated at oxygen concentrations of 0.6, 0.4 and 0.2mg/L. The best condition was 0.2 mgO2/L with a total nitrogen removal of 75.36% with a CANON reactor activity of 0.1149gN/gVVSd and high stability. The feasibility and effectiveness of CANON processes with oxygen control was demonstrated, showing an alternative design tool for efficiently removing nitrogen species. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Growth analysis partitioning of assimilate in tomato plants cv. Micro-Tom submitted to nitrogen and pyraclostrobin

    Directory of Open Access Journals (Sweden)

    Emanuela Garbin Martinazzo

    2015-10-01

    Full Text Available This work aimed at comparing the growth and partitioning of assimilate in tomato plants cv. Micro-Tom subjected to nitrogen and pyraclostrobin. This substance favors the development of chloroplasts and the synthesis of chlorophyll. Tomato plants were submitted to the treatments: T1, complete nutrient solution without pyraclostrobin, T2, complete nutrient solution + pyraclostrobin, T3, ½ strength nutrient solution without N pyraclostrobin and T4, ½ strength nutrient solution N + pyraclostrobin. Plants were collected at regular intervals of seven days after transplantation throughout the crop cycle, with dry mass and leaf area being determined. From the primary data, growth analysis was carried out to calculate total dry matter (Wt, the instantaneous rates of dry matter production (Ct, relative growth (Rw e net assimilation (Ea, leaf area (Af, production rates (Ca and relative growth of leaf area index (Ra and leaf weight (Fw specific leaf area (Sa the dry matter partitioning between organs and number (Nfr and fresh fruit weight (Wfr. Plants of T1 showed higher Wt, Ct and Wfr compared to those of other treatments. However, the T2 plants exhibited similar Nfr to T1 plants, being superior to others. Also allocated on the total dry matter and at the end of the cycle, a higher percentage of dry matter in the seafood compared to T3 and T4 plants. Also they allocated relative to the total dry matter and at the end of the cycle, a higher percentage in fruits of plants to T3 and T4. The association between nitrogen and pyraclostrobin changes the growth and assimilated partition on tomato plants cv. Micro – Tom, and those submitted to ½ dose of nitrogen have a higher total dry matter and less final percentage of total dry matter in fruits , comparatively to those submitted to the association ½ dose of nitrogen and pyraclostrobin.

  8. Growth response of four freshwater algal species to dissolved organic nitrogen of different concentration and complexity

    DEFF Research Database (Denmark)

    Fiedler, Dorothea; Graeber, Daniel; Badrian, Maria

    2015-01-01

    1. Dissolved organic nitrogen (DON) compounds dominate the nitrogen pool of many lakes, but their importance as nitrogen sources for freshwater phytoplankton is not fully understood. Previous growth experiments demonstrated the availability of urea and amino acids but often at unnaturally high...... (DCAA), natural organic matter (NOM)) or with nitrate as the sole nitrogen source. Monocultures of Chlamydomonas spp., Cyclotella meneghiniana, Microcystis aeruginosa and Anabaena flos-aquae were incubated with dissolved nitrogen compounds at concentrations ranging from 0.01 to 0.5 mg N L−1, which...... and their compound preferences. Therefore, DON composition can influence biomass and structure of phytoplankton communities. 6. These experiments demonstrate the importance of the main DON compounds for phytoplankton growth when no inorganic nitrogen is available. DON should in future be included in nitrogen budget...

  9. The re-assimilation of ammonia produced by photorespiration and the nitrogen economy of C3 higher plants.

    Science.gov (United States)

    Keys, Alfred J

    2006-02-01

    Photorespiration involves the conversion of glycine to serine with the release of ammonia and CO(2). In C(3) terrestrial higher plants the flux through glycine and serine is so large that it results in the production of ammonia at a rate far exceeding that from reduction of new nitrogen entering the plant. The photorespiratory nitrogen cycle re-assimilates this ammonia using the enzymes glutamine synthetase and glutamine:2-oxoglutarateaminotransferase.

  10. Effects of nitrogen application and plant densities on flower yield, essential oils, and radiation use efficiency of Marigold (Calendula officinalis L.)

    International Nuclear Information System (INIS)

    Ameri, A.A.; Nasiri Mahalati, M.

    2010-01-01

    Efficient use of radiation for medicinal plants production, might increase flower yield, essential oils and extract yield .A split plot design.was used in a two years (2005 and 2006) field study in Torogh region(36,10° N,59.33° E and 1300 m altitude) of Mashhad, Iran, to observe the effects of different nitrogen application and plants densities on flower dry matter production, essential oils, and radiation use efficiency in a multi-harvested Marigold (Calendula officinalis). The levels of nitrogen fertilizer were 0, 50, 100 and 150 kg ha-1 and levels of density were 20, 40, 60 and 80 plant m-2. The combined analysis results revealed significant effects of nitrogen and density levels on flower dry matter production, essential oils, and radiation use efficiency of Marigold. The highest dry flower production obtained by 150 kg ha-1 N and 80 plant m-2 plant population (102.86 g m-2). The higher flower dry matter production caused more essential oils and extract production in high nitrogen and density levels. The amount of essential oils and extract per 100g flower dry matter decreased during the flower harvesting period. The higher amount of essential oil and extract obtained at early flowering season. The essential oil and extract ranged from 0.22 to 0.12 (ml. per 100g flower dry matter) and 2.74 to 2.13 (g per 100g flower dry matter) respectively. Increase of both nitrogen and density caused higher radiation use efficiency. The most radiation use efficiency obtained at 150 kg ha-1 nitrogen and 80 Plant m-2desity treatments. In 150 kg ha-1 nitrogen treatment, increase of density levels from 20 plant m-2 to 80 Plant m-2 caused increase in radiation use efficiency from 1.41 g MJ-1 to 1.44 g MJ-1 respectively

  11. A dynamic modelling approach for estimating critical loads of nitrogen based on plant community changes under a changing climate

    International Nuclear Information System (INIS)

    Belyazid, Salim; Kurz, Dani; Braun, Sabine; Sverdrup, Harald; Rihm, Beat; Hettelingh, Jean-Paul

    2011-01-01

    A dynamic model of forest ecosystems was used to investigate the effects of climate change, atmospheric deposition and harvest intensity on 48 forest sites in Sweden (n = 16) and Switzerland (n = 32). The model was used to investigate the feasibility of deriving critical loads for nitrogen (N) deposition based on changes in plant community composition. The simulations show that climate and atmospheric deposition have comparably important effects on N mobilization in the soil, as climate triggers the release of organically bound nitrogen stored in the soil during the elevated deposition period. Climate has the most important effect on plant community composition, underlining the fact that this cannot be ignored in future simulations of vegetation dynamics. Harvest intensity has comparatively little effect on the plant community in the long term, while it may be detrimental in the short term following cutting. This study shows: that critical loads of N deposition can be estimated using the plant community as an indicator; that future climatic changes must be taken into account; and that the definition of the reference deposition is critical for the outcome of this estimate. - Research highlights: → Plant community changes can be used to estimate critical loads of nitrogen. → Climate change is decisive for future changes of geochemistry and plant communities. → Climate change cannot be ignored in estimates of critical loads. → The model ForSAFE-Veg was successfully used to set critical loads of nitrogen. - Plant community composition can be used in dynamic modelling to estimate critical loads of nitrogen deposition, provided the appropriate reference deposition, future climate and target plant communities are defined.

  12. Optimization of an Sbr process for nitrogen removal from concentrated wastewater via nitrite

    International Nuclear Information System (INIS)

    Longhi, L.; Basilico, D.; Meloni, A.; Canziani, R.

    2009-01-01

    The results of an experimentation carried out on a pilot-scale Sbr for nitrogen removal via nitridation-denitration are reported. The experimentation was carried out in the period July October 2007 and was aimed at achieving design data for the upgrade of a full scale wastewater treatment plant (WWTP), following the new regulations issued by Lombardy Regional Authority for the discharge of effluents into sensitive areas. One aspect that has been considered in the upgrade is nitrogen removal from the supernatant coming from anaerobic sludge digestion. The experimental results provided sound design data based on real biological activity measurements and operational process parameters such as oxygen and organic carbon requirements. [it

  13. In-vehicle nitrogen dioxide concentrations in road tunnels

    Science.gov (United States)

    Martin, Ashley N.; Boulter, Paul G.; Roddis, Damon; McDonough, Liza; Patterson, Michael; Rodriguez del Barco, Marina; Mattes, Andrew; Knibbs, Luke D.

    2016-11-01

    There is a lack of knowledge regarding in-vehicle concentrations of nitrogen dioxide (NO2) during transit through road tunnels in urban environments. Furthermore, previous studies have tended to involve a single vehicle and the range of in-vehicle NO2 concentrations that vehicle occupants may be exposed to is not well defined. This study describes simultaneous measurements of in-vehicle and outside-vehicle NO2 concentrations on a route through Sydney, Australia that included several major tunnels, minor tunnels and busy surface roads. Tests were conducted on nine passenger vehicles to assess how vehicle characteristics and ventilation settings affected in-vehicle NO2 concentrations and the in-vehicle-to-outside vehicle (I/O) concentration ratio. NO2 was measured directly using a cavity attenuated phase shift (CAPS) technique that gave a high temporal and spatial resolution. In the major tunnels, transit-average in-vehicle NO2 concentrations were lower than outside-vehicle concentrations for all vehicles with cabin air recirculation either on or off. However, markedly lower I/O ratios were obtained with recirculation on (0.08-0.36), suggesting that vehicle occupants can significantly lower their exposure to NO2 in tunnels by switching recirculation on. The highest mean I/O ratios for NO2 were measured in older vehicles (0.35-0.36), which is attributed to older vehicles having higher air exchange rates. The results from this study can be used to inform the design and operation of future road tunnels and modelling of personal exposure to NO2.

  14. Growth Analysis of Fenugreek (Trigonella foenum- graecum L. under Various Levels of Nitrogen and Plant Density

    Directory of Open Access Journals (Sweden)

    L Bazrkar-Khatibani

    2018-02-01

    Full Text Available Introduction Fenugreek (Trigonella foenum-graecum L. is a specific condiment crop mostly grown for its edible parts, and is used as a green fodder and fresh vegetable. The seeds have medicinal value solely against digestive disorders, whereas its leaves are rich source of minerals and nutrients. The growth and yield of fenugreek is particularly affected by the application of nitrogen fertilizer and planting arrangement. Plant growth is a process of biomass accumulation which in turn is derived out of the interaction of the respiration, photosynthesis, water relations, long-distance transport, and mineral nutrition processes. Growth is the most important process in predicting plant reactions to environment. Irradiance, temperature, soil-water potential, nutrient supply and enhanced concentrations of atmospheric carbon dioxide are among some external components influencing crop growth and development. Growth analysis is a useful tool in studying the complex interactions between plant growth and the environment, clarifying and interpreting physiological responses. Plants total dry matter (TDM production and accumulation can be appraised via relative growth rate (RGR and crop growth rate (CGR which are the most important growth indices. Leaf area index (LAI is a factor of crop growth analysis that accounts for the potential of the crop to assimilate light energy and is a determinant component in understanding the function of many crop management practices. Materials and Methods A field investigation was conducted in a paddy field at Shaft County (Guilan Province for eight consecutive months (from November 2009 to June 2010, to study the effect of four levels of nitrogen fertilizer (0, 25, 50 and 75 Kg N ha-1 and four levels of planting density (60, 80,100, and 120 plants m-2 on the growth indices of fenugreek (Trigonella foenum graecum L. crop. The soil for the experiment was loam in texture and strongly acidic in reaction (pH 4.5. Sixteen treatment

  15. The Effect of Nitrogen and Zinc Levels on Essential Oil Yield and some Morphological Traits of Hypericum perforatums

    Directory of Open Access Journals (Sweden)

    M.R. Zadeh Esfahlan

    2014-07-01

    Full Text Available To study the effects of nitrogen and zinc fertilizer on the morphological traits and essential oil yield of St. John’s wort (Hypericum perforatum a greenhouse experiment in a factorial randomized complete block design with three replications was conducted at University of Tabriz, Iran in 2012. Treatments consisted of three levels of zinc sulphate with a concentration of zinc fertilizer (zero, 3 and 6 parts per thousand and four levels of nitrogen fertilizer (zero, 50, 100, 150 kg/ha. One half of the fertilizers were applied 20 days after planting of plants and the rest 40 days after transplanting. Traits evaluated were plant height, inflorescence number, leaf area, plant fresh and dry weights and plant essential oil content. The results showed that the traits under study were affected by rate of fertilizer applications. Highest plant height, number of inflorescences, leaf area and essential oil yield were obtained by using 150 kg/ha of nitrogen and applying zinc with 0.006 concentration. Highest fresh and dry weights of above ground parts were also produced by using 150 kg/ha of nitrogen fertilizer along with zinc fertilizer 0.003.

  16. Effects of Nitrogen Fertilizers on the Growth and Nitrate Content of Lettuce (Lactuca sativa L.)

    Science.gov (United States)

    Liu, Cheng-Wei; Sung, Yu; Chen, Bo-Ching; Lai, Hung-Yu

    2014-01-01

    Nitrogen is an essential element for plant growth and development; however, due to environmental pollution, high nitrate concentrations accumulate in the edible parts of these leafy vegetables, particularly if excessive nitrogen fertilizer has been applied. Consuming these crops can harm human health; thus, developing a suitable strategy for the agricultural application of nitrogen fertilizer is important. Organic, inorganic, and liquid fertilizers were utilized in this study to investigate their effect on nitrate concentrations and lettuce growth. The results of this pot experiment show that the total nitrogen concentration in soil and the nitrate concentration in lettuce increased as the amount of nitrogen fertilizer increased. If the recommended amount of inorganic fertilizer (200 kg·N·ha−1) is used as a standard of comparison, lettuce augmented with organic fertilizers (200 kg·N·ha−1) have significantly longer and wider leaves, higher shoot, and lower concentrations of nitrate. PMID:24758896

  17. Plant delta 15N correlates with the transpiration efficiency of nitrogen acquisition in tropical trees.

    Science.gov (United States)

    Cernusak, Lucas A; Winter, Klaus; Turner, Benjamin L

    2009-11-01

    Based upon considerations of a theoretical model of (15)N/(14)N fractionation during steady-state nitrate uptake from soil, we hypothesized that, for plants grown in a common soil environment, whole-plant delta(15)N (deltaP) should vary as a function of the transpiration efficiency of nitrogen acquisition (F(N)/v) and the difference between deltaP and root delta(15)N (deltaP - deltaR). We tested these hypotheses with measurements of several tropical tree and liana species. Consistent with theoretical expectations, both F(N)/v and deltaP - deltaR were significant sources of variation in deltaP, and the relationship between deltaP and F(N)/v differed between non-N(2)-fixing and N(2)-fixing species. We interpret the correlation between deltaP and F(N)/v as resulting from variation in mineral nitrogen efflux-to-influx ratios across plasma membranes of root cells. These results provide a simple explanation of variation in delta(15)N of terrestrial plants and have implications for understanding nitrogen cycling in ecosystems.

  18. Tritium concentration in the heavy water upgrading plants

    International Nuclear Information System (INIS)

    Croitoru, C.; Pop, F.; Titescu, Gh.; Dumitrescu, M.; Ciortea, C.; Stefanescu, I.; Peculea, M.; Pitigoi, Gh.; Trancota, D. . E-mail of corresponding author: croitoru@icsi.ro; Croitoru, C.)

    2005-01-01

    In the course of time heavy water used in CANDU nuclear power plants, as moderator or coolant, degrades, as a result of its impurification with light water and tritium. Concentration diminution below 99.8% mol for moderator and 99.75% mol for coolant causes an inefficient functioning of CANDU reactor. By isotopic distillation, light water is removed. Simultaneously tritium concentration takes place. The heavy water upgrading plant from Cernavoda is an isotopic separation cascade with two stages. The paper presents, for this plant, a theoretical study of the tritium concentration. (author)

  19. Elevational Variation in Soil Amino Acid and Inorganic Nitrogen Concentrations in Taibai Mountain, China.

    Directory of Open Access Journals (Sweden)

    Xiaochuang Cao

    Full Text Available Amino acids are important sources of soil organic nitrogen (N, which is essential for plant nutrition, but detailed information about which amino acids predominant and whether amino acid composition varies with elevation is lacking. In this study, we hypothesized that the concentrations of amino acids in soil would increase and their composition would vary along the elevational gradient of Taibai Mountain, as plant-derived organic matter accumulated and N mineralization and microbial immobilization of amino acids slowed with reduced soil temperature. Results showed that the concentrations of soil extractable total N, extractable organic N and amino acids significantly increased with elevation due to the accumulation of soil organic matter and the greater N content. Soil extractable organic N concentration was significantly greater than that of the extractable inorganic N (NO3--N + NH4+-N. On average, soil adsorbed amino acid concentration was approximately 5-fold greater than that of the free amino acids, which indicates that adsorbed amino acids extracted with the strong salt solution likely represent a potential source for the replenishment of free amino acids. We found no appreciable evidence to suggest that amino acids with simple molecular structure were dominant at low elevations, whereas amino acids with high molecular weight and complex aromatic structure dominated the high elevations. Across the elevational gradient, the amino acid pool was dominated by alanine, aspartic acid, glycine, glutamic acid, histidine, serine and threonine. These seven amino acids accounted for approximately 68.9% of the total hydrolyzable amino acid pool. The proportions of isoleucine, tyrosine and methionine varied with elevation, while soil major amino acid composition (including alanine, arginine, aspartic acid, glycine, histidine, leucine, phenylalanine, serine, threonine and valine did not vary appreciably with elevation (p>0.10. The compositional

  20. Evaluation of the performance of the Tyson Foods wastewater treatment plant for nitrogen removal.

    Science.gov (United States)

    Ubay-Cokgor, E; Randall, C W; Orhon, D

    2005-01-01

    In this paper, the performance of the Tyson Foods wastewater treatment plant with an average flow rate of 6500 m3/d was evaluated before and after upgrading of the treatment system for nitrogen removal. This study was also covered with an additional recommendation of BIOWIN BNR program simulation after the modification period to achieve an additional nutrient removal. The results clearly show that the upgrading was very successful for improved nitrogen removal, with a 57% decrease on the total nitrogen discharge. There also were slight reductions in the discharged loads of biological oxygen demand, total suspended solids, ammonium and total phosphorus with denitrification, even though the effluent flow was higher during operation of the nitrogen removal configuration.

  1. Global patterns of foliar nitrogen isotopes and their relationships with climate, mycorrhizal fungi, foliar nutrient concentrations, and nitrogen availability

    DEFF Research Database (Denmark)

    Craine, J M; Elmore, A J; Aidar, M P M

    2009-01-01

    Ratios of nitrogen (N) isotopes in leaves could elucidate underlying patterns of N cycling across ecological gradients. To better understand global-scale patterns of N cycling, we compiled data on foliar N isotope ratios (d15N), foliar N concentrations, mycorrhizal type and climate for over 11 00...

  2. Nitrogen removal capacity and bacterial community dynamics of a Canon biofilter system at different organic matter concentrations.

    Science.gov (United States)

    García-Ruiz, María J; Maza-Márquez, Paula; González-López, Jesús; Osorio, Francisco

    2018-02-01

    Three Canon bench-scale bioreactors with a volume of 2 L operating in parallel were configured as submerged biofilters. In the present study we investigated the effects of a high ammonium concentration (320 mgNH 4 + · L -1 ) and different concentrations of organic matter (0, 100 and 400 mgCOD·L -1 ) on the nitrogen removal capacity and the bacterial community structure. After 60 days, the Canon biofilters operated properly under concentrations of 0 and 100 mgCOD·L -1 of organic matter, with nitrogen removal efficiencies up to 85%. However, a higher concentration of organic matter (400 mgCOD·L -1 ) produced a partial inhibition of nitrogen removal (68.1% efficiency). The addition of higher concentrations of organic matter a modified the bacterial community structure in the Canon biofilter, increasing the proliferation of heterotrophic bacteria related to the genera of Thauera, Longilinea, Ornatilinea, Thermomarinilinea, unclassified Chlorobiales and Denitratisoma. However, heterotrophic bacteria co-exist with Nitrosomonas and Candidatus Scalindua. Thus, our study confirms the co-existence of different microbial activities (AOB, Anammox and denitrification) and the adaptation of a fixed-biofilm system to different concentrations of organic matter. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Control characteristics of inert gas recovery plant

    International Nuclear Information System (INIS)

    Mikawa, Hiroji; Kato, Yomei; Kamiya, Kunio

    1980-01-01

    This paper presents a dynamic simulator and the control characteristics for a radioactive inert gas recovery plant which uses a cryogenic liquefying process. The simulator was developed to analyze the operational characteristics and is applicable to gas streams which contain nitrogen, argon, oxygen and krypton. The characteristics analysis of the pilot plant was performed after the accuracy of the simulator was checked using data obtained in fundamental experiments. The relationship between the reflux ratio and krypton concentration in the effluent gas was obtained. The decontamination factor is larger than 10 9 when the reflux ratio is more than 2. 0. The control characteristics of the plant were examined by changing its various parameters. These included the amount of gas to be treated, the heater power inside the evaporator and the liquid nitrogen level in the condenser. These characteristics agreed well with the values obtained in the pilot plant. The results show that the krypton concentration in the effluent gas increases when the liquid nitrogen level is decreased. However, in this case, the krypton concentration can be minimized by applying a feed forward control to the evaporator liquid level controller. (author)

  4. Insurance risk of nuclear power plant concentrations

    International Nuclear Information System (INIS)

    Feldmann, J.

    1976-01-01

    The limited number of sites available in the Federal Republic of Germany for the erection of nuclear power plants has resulted in the construction of multiple nuclear generating units on a few sites, such as Biblis, Gundremmingen and Neckarwestheim. At a value invested of approximately DM 1,200/kW this corresponds to a property concentration on one site worth DM 2 - 3 billion and more. This raises the question whether a concentration of value of this magnitude does not already exceed the limits of bearable economic risks. The property risk of a nuclear power plant, as that of any other industrial plant, is a function of the property that can be destroyed in a maximum probable loss. Insurance companies subdivide plants into so-called complex areas in which fire damage or nuclear damage could spread. While in some foreign countries twin nuclear power plants are built, where the technical systems of both units are installed in one building without any physical separation, dual unit plants are built in the Federal Republic in which the complexes with a high concentration of valuable property are physically separate building units. As a result of this separation, property insurance companies have no grounds for assessing the risk and hence, the premium different from those of single unit plants. (orig.) [de

  5. The global stoichiometry of litter nitrogen mineralization.

    Science.gov (United States)

    Manzoni, Stefano; Jackson, Robert B; Trofymow, John A; Porporato, Amilcare

    2008-08-01

    Plant residue decomposition and the nutrient release to the soil play a major role in global carbon and nutrient cycling. Although decomposition rates vary strongly with climate, nitrogen immobilization into litter and its release in mineral forms are mainly controlled by the initial chemical composition of the residues. We used a data set of approximately 2800 observations to show that these global nitrogen-release patterns can be explained by fundamental stoichiometric relationships of decomposer activity. We show how litter quality controls the transition from nitrogen accumulation into the litter to release and alters decomposers' respiration patterns. Our results suggest that decomposers lower their carbon-use efficiency to exploit residues with low initial nitrogen concentration, a strategy used broadly by bacteria and consumers across trophic levels.

  6. HIGH FOLIAR NITROGEN IN DESERT SHRUBS: AN IMPORTANT ECOSYSTEM TRAIT OR DEFECTIVE DESERT DOCTRINE?

    Science.gov (United States)

    Nitrogen concentrations in green and senesced leaves of perennial desert shrubs were compiled from a worldwide literature search to test the validity of the doctrine that desert shrubs produce foliage and leaf litter much richer in nitrogen than that in the foliage of plants from...

  7. Salinity and Salicylic Acid Interactions in Affecting Nitrogen Assimilation, Enzyme Activity, Ions Content and Translocation Rate of Maize Plants

    International Nuclear Information System (INIS)

    Khodary, S.E.A.; Moussa, H.R.

    2002-01-01

    This study was carried out to establish the relationship between nitrogen metabolism, enzyme activity, ions concentration as well as the translocation rate (TR) of carbohydrates and salicylic acid (SA) in salt-stressed maize (Zea mays L). Salicylic acid plus salinity treatment highly significantly increased: nucleic acids (DNA and RNA), protein content, phosphoenolpyruvate carboxylase (PEPCase) and nitrate reductase (NR) and inhibited nucleases (DNase and RNase) activities compared with Na CI-treated plants. In addition, the ionic levels of potassium (K), phosphorus (P), nitrate (NO 3 ) and the translocation rate of the labelled photo assimilates have also been stimulated while sodium (Na) ions content was decreased. It is concluded that, salinazid maize plants might show an enhancement in their growth pattern upon salicylic acid application

  8. Glutamine Synthetases GLN1;2 and GLN2 in Relation to Arabidopsis Growth Response to Elevated Atmospheric Carbon Dioxide and Varying Nitrogen Forms

    DEFF Research Database (Denmark)

    Vurrakula, Swathi

    content while diluting nitrogen concentrations. Such a reduction in nitrogen concentration will affect plant response to stress and seed/grain yield. Glutamine synthetase (GS) is the central nitrogen-assimilatory enzyme, performing primary and secondary nitrogen assimilation, in response to environmental....... Plants grown under elevated CO2 absorbed ammonia from the atmosphere, except with a high ammonium supply. GLN1;2 had a non-redundant role in determining vegetative growth and ammonium tolerance in response to elevated CO2. Under elevated CO2, GLN1;2 was compensable by GLN2 in assimilating nitrate...

  9. Complexities of Nitrogen Isotope Biogeochemistry in Plant-Soil Systems: Implications for the Study of Ancient Agricultural and Animal Management Practices

    Directory of Open Access Journals (Sweden)

    Paul eSzpak

    2014-06-01

    Full Text Available Nitrogen isotopic studies have potential to shed light on the structure of ancient ecosystems, agropastoral regimes, and human-environment interactions. Until relatively recently, however, little attention was paid to the complexities of nitrogen transformations in ancient plant-soil systems and their potential impact on plant and animal tissue nitrogen isotopic compositions. This paper discusses the importance of understanding nitrogen dynamics in ancient contexts, and highlights several key areas of archaeology where a more detailed understanding of these processes may enable us to answer some fundamental questions. This paper explores two larger themes that are prominent in archaeological studies using stable nitrogen isotope analysis: (1 agricultural practices (use of animal fertilizers, burning of vegetation or shifting cultivation, and tillage and (2 animal domestication and husbandry (grazing intensity/stocking rate and the foddering of domestic animals with cultigens. The paucity of plant material in ancient deposits necessitates that these issues are addressed primarily through the isotopic analysis of skeletal material rather than the plants themselves, but the interpretation of these data hinges on a thorough understanding of the underlying biogeochemical processes in plant-soil systems. Building on studies conducted in modern ecosystems and under controlled conditions, these processes are reviewed, and their relevance discussed for ancient contexts.

  10. ASSESS CONCENTRATIONS OF THE FORMS OF NITROGEN IN URBANIZED CATCHMENT FOR EXAMPLE OLIWA STREAM

    Directory of Open Access Journals (Sweden)

    Karolina Matej-Łukowicz

    2017-06-01

    Full Text Available In the article the results of nitrogen compounds (NH4, NO2-, NO3- in water samples collected at six locations (sampling points at the Oliwa Stream will be presented. The study was carried out in 2016-2017, analyzing the changes caused by rainfall in the urban catchment. After the spring rain the concentration of ammonia nitrogen is considerably higher than in autumn. The results were compared with the Regulation of the Minister of the Environment, which describes two main classes of water purity. In addition, the article describes the results of the nitrogen compounds after the rainfall of 15th July 2016 will be presented.

  11. The effect of nitrogen rate on transgenic corn Cry3Bb1 protein expression.

    Science.gov (United States)

    Marquardt, Paul T; Krupke, Christian H; Camberato, James J; Johnson, William G

    2014-05-01

    Combining herbicide-resistant and Bacillus thuringiensis (Bt) traits in corn (Zea mays L.) hybrids may affect insect resistance management owing to volunteer corn. Some Bt toxins may be expressed at lower levels by nitrogen-deficient corn roots. Corn plants with sublethal levels of Bt expression could accelerate the evolution of Bt resistance in target insects. The present objective was to quantify the concentration of Bt (Cry3Bb1) in corn root tissue with varying tissue nitrogen concentrations. Expression of Cry3Bb1 toxin in root tissue was highly variable, but there were no differences in the overall concentration of Cry3Bb1 expressed between roots taken from Cry3Bb1-positive volunteer and hybrid corn plants. The nitrogen rate did affect Cry3Bb1 expression in the greenhouse, less nitrogen resulted in decreased Cry3Bb1 expression, yet this result was not documented in the field. A positive linear relationship of plant nitrogen status on Cry3Bb1 toxin expression was documented. Also, high variability in Cry3Bb1 expression is potentially problematic from an insect resistance management perspective. This variability could create a mosaic of toxin doses in the field, which does not fit into the high-dose refuge strategy and could alter predictions about the speed of evolution of resistance to Cry3Bb1 in western corn rootworm Diabrotica virgifera virgifera LeConte. © 2013 Society of Chemical Industry.

  12. Use of recovered cold nitrogen for tritium separation plant safety and environmental protection

    Energy Technology Data Exchange (ETDEWEB)

    Popescu, Gheorghe, E-mail: popescu.gheorghe@icsi.ro; Gherghinescu, Sorin, E-mail: sorin.gherghinescu@icsi.ro

    2013-10-15

    Highlights: • Cold exhausted gas from the liquid nitrogen storage tank used to speed up the regeneration stage, if molecular sieve adsorbers are further used. • Cold nitrogen use for safer plant through ITGR (atmosphere detritiation system) efficiency and availability upgrade of the system. • Easier decontamination in flushing the installation with water and significantly mitigate the risk of radiation for the operators. • Drying surfaces contaminated with liquid DTO, causing a decrease in the specific activity of the washing water used in decontamination. -- Abstract: This work started with the identification of some operating parameters deviations from the purification module of the Pilot Detritiation Plant, in confront with their design levels, namely: the tritiated heavy water vapor degree of retention in the deuterium flow was more than 5 ppm, less than the design value of max. 2 ppm; the cooling duration from 128 °C to the 20 °C was 20 h, more than the design value of max. 5 h. On meeting these challenges we came up with the proposal of cold nitrogen utilization to increase the adsorption specific capacity of the molecular sieve, on one hand, and to shorten its cooling time after regeneration, on the other hand. The theoretical model of this solution was made by using Langmuir theory and then its validation was done experimentally by cooling one of the two adsorbers with cold nitrogen vapors coming from the liquid nitrogen tank; in the second part of the experiment the adsorber was replaced with an experimental cryoadsorber. Further we present a number of other opportunities that this solution brings, such as: reducing the risk of fire/explosion in the nuclear detritiation plant, environmental protection by increasing the efficiency and availability of the atmospheric detritiation system, solving the problem of dismantling, transport and storing contaminated adsorbers in the event of radiological accident, easier decontamination in flushing the

  13. Changes in Growth and Oil Yield Indices of Rapeseed (Brassica napus L., cv. Hyola 401 in Different Concentrations andTimes of Application of Supplementary Nitrogen Fertilizer

    Directory of Open Access Journals (Sweden)

    P. Tousi Kehal

    2013-03-01

    Full Text Available In order to investigate the effect of concentration and time of supplementary nitrogen fertilizer spray on growth indices of rapeseed (cv. Hyola 401, a field experiment was conducted at Rice Research Institute of Iran as a randomized complete blocks design with 16 treatments and 3 replications in 2008-2009. The treatments included concentration of nitrogen fertilizer (urea at two levels (5 and 10 ppm in seven levels of application time:1 spraying at 6-8- leaf stage, 2 beginning of stem elongation, 3 prior to flowering, 4 at 6-8- leaf stage + beginning of stem elongation, 5 at 6-8- leaf + prior to flowering, 6 beginning of stem elongation+ prior to flowering, and 7 at 6-8- leaf + beginning of stem elongation+ prior to flowering, which were compared with two control treatments (no fertilizer nitrogen and conventional soil fertilization. Results showed that significant difference was observed between spray treatments including concentration and times of nitrogen application, between controls and between controls with spray treatments, of grain and oil yield, crop growth rate (CGR, leaf area index (LAI and leaf area duration (LAD. Application of nitrogen (10 ppm at the beginning of stem elongation+ prior to flowering stages produced maximum grain yield (4221.7 kg/ha and oil yield (1771.1 kg/ha. Spray treatments produced maximum oil yield index (15.3% compared to controls. Maximum LAI (6.9 and 5.6 respectively, CGR (15.2 and 14.3 g/m2.10 GDD, respectively and LAD (1204 and 1029 cm2/10 GDD, respectively were also obtained from spray application of nitrogen (10 ppm at the beginning of stem elongation+ prior to flowering stages and at 6-8-leaf stage + beginning of stem elongation + prior to flowering. According to the results of the present investigation, it seems that foliar application of supplementary nitrogen fertilizer at the end growth stages (beginning of stem elongation and prior to flowering of rapeseed plants may help to enhance growth indices

  14. Atmospheric nitrogen dioxide at ambient levels stimulates growth and development of horticultural plants

    Energy Technology Data Exchange (ETDEWEB)

    Adam, S.E.H.; Shigeto, J. [Hiroshima Univ., Hiroshima (Japan). Dept. of Mathematical and Life Sciences; Sakamoto, A.; Takahashi, M.; Morikawa, H. [Hiroshima Univ., Hiroshima (Japan). Dept. of Mathematical and Life Sciences, Core Research for Evolutional Science and Technology

    2008-02-15

    Studies have demonstrated that ambient levels of atmospheric nitrogen dioxide (NO{sub 2}) can cause Nicotiana plumbaginifolia to double its biomass as well as its cell contents. This paper examined the influence of NO{sub 2} on lettuce, sunflower, cucumber, and pumpkin plants. Plants were grown in environments supplemented with stable isotope-labelled NO{sub 2} for approximately 6 weeks and irrigated with nitrates. Measured growth parameters included leaf number, internode number, stem length, number of flower buds, and root length. Results of the study demonstrated that the addition of NO{sub 2} doubled the aboveground and belowground biomass of sunflowers, while only the aboveground biomass of pumpkin, cucumbers, and lettuces was doubled. Levels of carbon (C), nitrogen (N), phosphorus (P), potassium (K), calcium (Ca), and magnesium (Mg) were also doubled in the lettuce samples. A mass spectrometry analysis showed that only a small percentage of total plant N was derived from NO{sub 2}. It was concluded that exogenous NO{sub 2} additions function as a signal rather than as a significant nutrient source in horticultural plants. 22 refs., 2 tabs., 1 fig.

  15. Groundwater Depth Affects Phosphorus But Not Carbon and Nitrogen Concentrations of a Desert Phreatophyte in Northwest China.

    Science.gov (United States)

    Zhang, Bo; Gao, Xiaopeng; Li, Lei; Lu, Yan; Shareef, Muhammad; Huang, Caibian; Liu, Guojun; Gui, Dongwei; Zeng, Fanjiang

    2018-01-01

    Ecological stoichiometry is an important aspect in the analysis of the changes in ecological system composition, structure, and function and understanding of plant adaptation in habitats. Leaf carbon (C), nitrogen (N), and phosphorus (P) concentrations in desert phreatophytes can be affected by different depths of groundwater through its effect on the adsorption and utilization of nutrient and plant biomass. We examined the biomass, soil organic C, available (mineral) N, and available P, and leaf C, N, and P concentrations of Alhagi sparsifolia grown at varying groundwater depths of 2.5, 4.5, and 11.0 m in 2015 and 2016 growing seasons in a desert-oasis ecotone in northwest China. The biomass of A. sparsifolia and the C, N, and P concentrations in soil and A. sparsifolia showed different responses to various groundwater depths. The leaf P concentration of A. sparsifolia was lower at 4.5 m than at 2.5 and 11.0 m likely because of a biomass dilution effect. By contrast, leaf C and N concentrations were generally unaffected by groundwater depth, thereby confirming that C and N accumulations in A. sparsifolia were predominantly determined by C fixation through the photosynthesis and biological fixation of atmospheric N 2 , respectively. Soil C, N, and P concentrations at 4.5 m were significantly lower than those at 11.0 m. Leaf P concentration was significantly and positively correlated with soil N concentration at all of the groundwater depths. The C:N and C:P mass ratios of A. sparsifolia at 4.5 m were higher than those at the other groundwater depths, suggesting a defensive life history strategy. Conversely, A. sparsifolia likely adopted a competitive strategy at 2.5 and 11.0 m as indicated by the low C:N and C:P mass ratios. To our knowledge, this study is the first to elucidate the variation in the C, N, and P stoichiometry of a desert phreatophyte at different groundwater depths in an arid ecosystem.

  16. Effect of some plant growth promoting rhizobacteria and nitrogen fertilizer on morphological characteristics of german chamomile (Matricaria chamomilla L.

    Directory of Open Access Journals (Sweden)

    S. Dastborhan

    2016-04-01

    Full Text Available .In order to investigate the effects of plant growth promoting rhizobacteria and nitrogen fertilizer on morphological traits of german chamomile (Matricaria chamomilla L., a field experiment was carried out as factorial based on randomized complete block design with three replications in Research Farm of the Faculty of Agriculture, University of Tabriz, Iran, during 2007-2008. Factors were inoculation with plant growth promoting rhizobacteria (B0: no-inoculation, B1: inoculation with Azotobacter chroocuccum, B2: inoculation with Azospirillum lipoferum and B3: inoculation with a mixture of two bacteria and nitrogen fertilizer (N0:0, N1:50, N2:100 and N3:150 kgN.ha-1. Results showed that inoculation with bacteria significantly improved plant height, stem diameter, number of lateral branches, number of flowers per plant, dry weight of flowers, stems, leaves and total dry weight per plant. These traits were significantly similar for inoculation with Azotobacter, inoculation with Azospirillum and inoculation with a mixture of two bacteria. Effect of nitrogen fertilizer on all traits (except number of lateral branches was positive, but there were no significant differences among 50, 100 and 150 kg.ha-1 nitrogen. The highest and the lowest number and weight of flowers per plant were recorded for inoculation + 50 kg.ha-1 nitrogen application and no-inoculation + no-fertilizer, respectively. In general, application of biofertilizers had positive and significant effects on morphological traits of german chamomile. In addition, with adding 50 kg N.ha-1 the performance of bacteria increased and the highest flower yield were produced.

  17. Integrative response of plant mitochondrial electron transport chain to nitrogen source.

    Science.gov (United States)

    Hachiya, Takushi; Noguchi, Ko

    2011-02-01

    Nitrogen (N) availability is widely known as a determinant of plant growth and respiration rate. However, less attention has been paid to the effect of the type of N source (nitrate, nitrite or ammonium) on the respiratory system. This review summarizes the latest findings on this topic, with an emphasis on the effect of ammonium and nitric oxide (NO) on the respiratory system, and the physiological role of alternative oxidase (AOX). First, concentrated ammonium has been found to increase plant respiration rate (ammonium-dependent respiratory increase, ARI). We will introduce two hypotheses to explain ARI, futile ammonium cycling and excess reducing equivalents, and verify the validity of each hypothesis. We suggest that these two hypotheses are not necessarily mutually exclusive. Second, gene expression of AOX is suppressed when N is predominately available as nitrate instead of ammonium. We will discuss possible signaling pathways leading to this expression pattern. Third, while AOX expression is induced by NO, AOX activity itself is insensitive to NO. In contrast, activity of cytochrome c oxidase (COX) is sensitive to NO. We outline the NO production pathway, focusing on nitrite-dependent NO production, and discuss the physiological significance of the fact that AOX activity is insensitive to NO. Finally, this review aims to build an integrated scheme of the respiratory response to the type of N source, considering leaves in high light conditions or hypoxic roots.

  18. The effect of water stress on nitrate reductase activity and nitrogen and phosphorus contents in cuminum cyminum l

    Energy Technology Data Exchange (ETDEWEB)

    Sepehr, M F [Islamic Azad University, Saveh (Iran, Islamic Republic of). Dept. of Biology; Amini, F [Tehran Shomal Branch Islamic Azad University, Tehran (Iran, Islamic Republic of). Dept. of Biology

    2012-06-15

    Cumin (Cuminum cyminum L.) is a plant with great medicinal importance cultivated in many regions such as Iran, India, Indonesia, Afghanistan, Pakistan, Lebanon, Syria and Turkey. In this research, nitrogen and phosphorus concentrations and nitrate reductase enzyme activity were studied in cumin under flooding stress. Cumin plants were cultivated in pots containing garden soil (in 1 cm depth, 15 -20 degree C, 14 h light and 10 h darkness). Germination took place after 2 weeks. Flooding stress was applied 6 weeks after germination on a number of pots according to their field capacity (FC) (2, 3, and 4 fold) for 1 week; a number of pots were also considered as controls with field capacity. Plants were then harvested and chemical analysis of the factors under study was done using roots and shoots of the plants exposed to flooding conditions and the control plants. The experiment had a completely randomized design in which four levels of water in the soil (2FC, 3FC, 4FC) were compared. Analysis of variance was carried out using SPSS software and means were compared by Duncan's test at [ greater or equal to = 0.05 significance level. The results showed that in comparison with control plants, nitrogen and phosphorus concentrations were significantly lower in both shoots and roots of flooded plants. This decrease was more pronounced in treated plants exposed to 4 X field capacity conditions. Nitrogen concentration in roots and shoots of treated plants showed a significant decrease in comparison with control plants and this was more noticeable in treated plants exposed to 4 X field capacity conditions. Moreover, concentration of nitrite produced from nitrate reduction catalyzed by nitrate reductase enzyme in roots and shoots of treated plants had a significant increase in comparison with control plants. Treated plants exposed to 4 X field capacity conditions showed the most increase. Also the study showed that cumin seeds could survive in flooding environment for 14 days

  19. The effect of water stress on nitrate reductase activity and nitrogen and phosphorus contents in cuminum cyminum l

    International Nuclear Information System (INIS)

    Sepehr, M.F.; Amini, F.

    2012-01-01

    Cumin (Cuminum cyminum L.) is a plant with great medicinal importance cultivated in many regions such as Iran, India, Indonesia, Afghanistan, Pakistan, Lebanon, Syria and Turkey. In this research, nitrogen and phosphorus concentrations and nitrate reductase enzyme activity were studied in cumin under flooding stress. Cumin plants were cultivated in pots containing garden soil (in 1 cm depth, 15 -20 degree C, 14 h light and 10 h darkness). Germination took place after 2 weeks. Flooding stress was applied 6 weeks after germination on a number of pots according to their field capacity (FC) (2, 3, and 4 fold) for 1 week; a number of pots were also considered as controls with field capacity. Plants were then harvested and chemical analysis of the factors under study was done using roots and shoots of the plants exposed to flooding conditions and the control plants. The experiment had a completely randomized design in which four levels of water in the soil (2FC, 3FC, 4FC) were compared. Analysis of variance was carried out using SPSS software and means were compared by Duncan's test at [ greater or equal to = 0.05 significance level. The results showed that in comparison with control plants, nitrogen and phosphorus concentrations were significantly lower in both shoots and roots of flooded plants. This decrease was more pronounced in treated plants exposed to 4 X field capacity conditions. Nitrogen concentration in roots and shoots of treated plants showed a significant decrease in comparison with control plants and this was more noticeable in treated plants exposed to 4 X field capacity conditions. Moreover, concentration of nitrite produced from nitrate reduction catalyzed by nitrate reductase enzyme in roots and shoots of treated plants had a significant increase in comparison with control plants. Treated plants exposed to 4 X field capacity conditions showed the most increase. Also the study showed that cumin seeds could survive in flooding environment for 14 days

  20. Effects of policy measures implemented in Denmark on nitrogen pollution of the aquatic environment

    DEFF Research Database (Denmark)

    Kronvang, Brian; Andersen, Hans Estrup; Børgesen, Christen Duus

    2008-01-01

    Since 1985, seven national Action Plans (AP) have been implemented in Denmark to reduce nitrogen discharges from point sources and nitrogen losses from agriculture. The instruments applied include regulations on point source discharges from waste water treatment plants, area-related measures, e.g...... to delays in travel time in groundwater. Until now, the regulation has been performed on a national scale. A more regional or local approach is believed to be necessary in future to meet the demands of the EU Water Framework Directive......Since 1985, seven national Action Plans (AP) have been implemented in Denmark to reduce nitrogen discharges from point sources and nitrogen losses from agriculture. The instruments applied include regulations on point source discharges from waste water treatment plants, area-related measures, e...... indicators were defined: nitrogen discharges from point sources, nitrogen surplus in agriculture, nitrogen leaching from agricultural land and nitrogen concentrations and loads in surface waters. Since the introduction of mitigation programmes, discharges of nitrogen from point sources have been reduced...

  1. Plasma urea nitrogen and progesterone concentrations and follicular dynamics in ewes fed proteins of different degradability

    Directory of Open Access Journals (Sweden)

    Gustavo Bianchi Lazarin

    2012-07-01

    Full Text Available The effects of overfeeding with protein of different degradability on body condition, plasma urea nitrogen and progesterone concentrations, ovulation number and follicular dynamics were assessed in Santa Ines ewes. Twelve ewes were assigned to a randomized block design according to body weight and received overfeeding with soybean meal or with corn gluten meal or maintenance diet for 28 days before ovulation and during the next estrous cycle. Blood samples were taken on days 7, 14, 21, and 28 after the beginning of treatments for analysis of plasma urea nitrogen and on days 3, 6, 9, 12, and 15 into the estrous cycle for analysis of plasma urea nitrogen and progesterone. Follicular dynamics was monitored daily by ultrasound during one estrous cycle. Dry matter and crude protein intake, weight gain, plasma urea nitrogen concentration before ovulation, number of ovulations, diameter of the largest follicle of the 1st and of the 2nd waves and the growth rate of the largest follicle of the 1st wave were higher in the ewes that received overfeeding. The growth rate of the largest follicle of the 3rd wave was higher in the ewes fed maintenance diet. The back fat thickness, plasma urea nitrogen before ovulation and progesterone concentrations, diameter of the largest follicle of the 2nd wave and growth rate of the largest follicle of the 3rd wave were higher in ewes that received overfeeding with soybean meal. The growth rate of the largest follicle of the 1st wave was higher in ewes that received overfeeding with corn gluten meal. Overfeeding with protein-rich feeds may increase the ovulation number and with soybean meal, it may be effective in increasing plasma progesterone concentration in ewes.

  2. Effect of water and nitrogen additions on free-living nitrogen fixer populations in desert grass root zones.

    Science.gov (United States)

    Herman, R P; Provencio, K R; Torrez, R J; Seager, G M

    1993-01-01

    In this study we measured changes in population levels of free-living N2-fixing bacteria in the root zones of potted Bouteloua eriopoda and Sporobolus flexuosus plants as well as the photosynthetic indices of the plants in response to added nitrogen, added water, and added water plus nitrogen treatments. In addition, N2 fixer population changes in response to added carbon source and nitrogen were measured in plant-free soil columns. There were significant increases in the numbers of N2 fixers associated with both plant species in the water and the water plus nitrogen treatments. Both treatments increased the photosynthetic index, suggesting that plant exudates were driving N2 fixer population changes. Population increases were greatest in the water plus nitrogen treatments, indicating that added nitrogen was synergistic with added water and suggesting that nitrogen addition spared bacteria the metabolic cost of N2 fixation, allowing greater reproduction. Plant-free column studies demonstrated a synergistic carbon-nitrogen effect when carbon levels were limiting (low malate addition) but not when carbon was abundant (high malate), further supporting this hypothesis. The results of this study indicate the presence of N2 fixer populations which interact with plants and which may play a role in the nitrogen balance of desert grasslands. PMID:8215373

  3. Nitrogen Limited Red and Green Leaf Lettuce Accumulate Flavonoid Glycosides, Caffeic Acid Derivatives, and Sucrose while Losing Chlorophylls, Β-Carotene and Xanthophylls

    Science.gov (United States)

    Becker, Christine; Urlić, Branimir; Jukić Špika, Maja; Kläring, Hans-Peter; Krumbein, Angelika; Baldermann, Susanne; Goreta Ban, Smiljana; Perica, Slavko; Schwarz, Dietmar

    2015-01-01

    Reduction of nitrogen application in crop production is desirable for ecological and health-related reasons. Interestingly, nitrogen deficiency can lead to enhanced concentrations of polyphenols in plants. The reason for this is still under discussion. The plants’ response to low nitrogen concentration can interact with other factors, for example radiation intensity. We cultivated red and green leaf lettuce hydroponically in a Mediterranean greenhouse, supplying three different levels of nitrogen (12 mM, 3 mM, 0.75 mM), either in full or reduced (-50%) radiation intensity. In both red and green lettuce, we found clear effects of the nitrogen treatments on growth characteristics, phenolic and photosynthetic compounds, nitrogen, nitrate and carbon concentration of the plants. Interestingly, the concentrations of all main flavonoid glycosides, caffeic acid derivatives, and sucrose increased with decreasing nitrogen concentration, whereas those of chlorophylls, β-carotene, neoxanthin, lactucaxanthin, all trans- and cis-violaxanthin decreased. The constitutive concentrations of polyphenols were lower in the green cultivar, but their relative increase was more pronounced than in the red cultivar. The constitutive concentrations of chlorophylls, β-carotene, neoxanthin, all trans- and cis-violaxanthin were similar in red and green lettuce and with decreasing nitrogen concentration they declined to a similar extent in both cultivars. We only detected little influence of the radiation treatments, e.g. on anthocyanin concentration, and hardly any interaction between radiation and nitrogen concentration. Our results imply a greater physiological plasticity of green compared to the red lettuce regarding its phenolic compounds. They support the photoprotection theory regarding anthocyanins as well as the theory that the deamination activity of phenylalanine ammonia-lyase drives phenylpropanoid synthesis. PMID:26569488

  4. Nitrogen Fertilizer Replacement Value of Concentrated Liquid Fraction of Separated Pig Slurry Applied to Grassland

    NARCIS (Netherlands)

    Middelkoop, Van J.C.; Holshof, G.

    2017-01-01

    Seven grassland experiments on sandy and clay soils were performed during a period of 4 years to estimate the nitrogen (N) fertilizer replacement value (NFRV) of concentrated liquid fractions of separated pig slurry (mineral concentrate: MC). The risk of nitrate leaching when applying MC was

  5. Effect of Soil Salinity, Type and Amount of Nitrogen Fertilizer on Yield and Biochemical Properties of Mustard (Brassica rapa L.

    Directory of Open Access Journals (Sweden)

    S Tandisseh

    2017-03-01

    Full Text Available Introduction Soil salinity is a major limiting factor in agricultural development within Iran. Nitrogen is the most important nutrient that its uptake is limited over other elements under saline conditions due to decrease in the permeability of plant roots, soil microbial activity and mineralization of organic compounds and nitrate uptake by high concentrations of chloride anions in the root zone of the plant. Mustard plant has a good compatibility to weather conditions and since there is an extreme need of vegetable oilseed in our country and also wide extent of saline soils in Iran, this study was conducted to determine the best type and amount of nitrogen fertilizers between calcium nitrate and ammonium sulfate under saline conditions. Materials and Methods A greenhouse experiment was conducted in a completely randomized design (factorial with three replications in February 2012 in the Research greenhouse of the Ferdowsi University of Mashhad. The treatments were consisted of two types of nitrogen fertilizer (calcium nitrate and ammonium sulfate, each with three levels of N (40, 80 and 120 mg per kg of soil in three levels of soil salinity (C0= control, C1= 5 and C2= 10dS m-1. Experimental soil (control collected from agricultural experimental station was leached by salt solutions containing salts of calcium chloride, magnesium chloride and sodium sulfate with specified concentrations and ratios during 50 days to reach the similar salt concentrations of leached water consisting the desired levels of salinity. The seeds of mustard were planted at a depth of one centimeter in soil of each pot and were irrigated with tap water to field capacity (by weight. Plants were harvested after 5 months and plant fresh and dry weights and nitrogen concentration and uptake of plant were measured by the Kjeldahl method. Irrigation water and physical and chemical properties of soil before and after harvest were determined. Data obtained were analyzed using

  6. Influence of drainage and nutrient-solution nitrogen and potassium concentrations on the agronomic behavior of bell-pepper plants cultivated in a substrate.

    Science.gov (United States)

    Wamser, Anderson Fernando; Cecilio Filho, Arthur Bernardes; Nowaki, Rodrigo Hiyoshi Dalmazzo; Mendoza-Cortez, Juan Waldir; Urrestarazu, Miguel

    2017-01-01

    The interactive effects of N (6, 9, 12 and 15 mmol L-1) and K (3, 5, 7, and 9 mmol L-1) concentrations in nutrient solutions were evaluated on bell pepper grown in a coconut-coir substrate and fertilized without drainage. An additional treatment with drainage was evaluated using N and K concentrations of 12 and 7 mmol L-1, respectively. The hybrid Eppo cultivar of yellow bell pepper was cultivated for 252 days beginning 9 November 2012. Electrical conductivity (EC), the N and K concentrations in the substrate solution, marketable fruit yield, total dry weight and macronutrient concentrations in shoots were periodically evaluated. Fruit production was lower in the system without drainage, regardless of the N and K concentrations, compared to the recommended 10-20% drainage of the volume of nutrient solution applied. Higher K concentrations in the nutrient solution did not affect plant production in the system without drainage for the substrate with an initial K concentration of 331.3 mg L-1. Fruit yield was higher without drainage at a nutrient-solution N concentration of 10.7 mmol L-1. The upper EC limit of the substrate solution in the system without drainage was exceeded 181 days after planting. Either lower nutrient concentrations in the nutrient solution or a drainage system could thus control the EC in the substrate solution.

  7. Plant traits and trait-based vegetation modeling in the Arctic

    Science.gov (United States)

    Xu, C.; Sevanto, S.; Iversen, C. M.; Salmon, V. G.; Rogers, A.; Wullschleger, S.; Wilson, C. J.

    2017-12-01

    Arctic tundra environments are characterized by extremely cold temperatures, strong winds, short growing season and thin, nutrient-poor soil layer impacted by permafrost. To survive in this environment vascular plants have developed traits that simultaneously promote high productivity under favorable environments, and survival in harsh conditions. To improve representation of Arctic tundra vegetation in Earth System Models we surveyed plant trait data bases for key trait parameters that influence modeled ecosystem carbon balance, and compared the traits within plant families occurring in the boreal, temperate and arctic zones. The parameters include photosynthetic carbon uptake efficiency (Vcmax and Jmax), root:shoot ratio, and root and leaf nitrogen content, and we focused on woody shrubs. Our results suggest that root nitrogen content in non-nitrogen fixing tundra shrubs is lower than in representatives of the same families in the boreal or temperate zone. High tissue nitrogen concentrations have been related to high vulnerability to drought. The low root nitrogen concentrations in tundra shrubs may thus be an indication of acclimation to shallow soils, and frequent freezing that has a similar impact on the plant conductive tissue as drought. With current nitrogen availability, nitrogen limitation reduces the benefits of increased temperatures and longer growing seasons to the tundra ecosystem carbon balance. Thawing of permafrost will increase nitrogen availability, and promote plant growth and carbon uptake, but it could also make the shrubs more vulnerable to freeze-thaw cycles, with the overall result of reduced shrub coverage. The final outcome of warming temperatures and thawing of permafrost on tundra shrubs will thus depend on the relative speed of warming and plant acclimation.

  8. Inhibition of tomato shoot growth by over-irrigation is linked to nitrogen deficiency and ethylene.

    Science.gov (United States)

    Fiebig, Antje; Dodd, Ian C

    2016-01-01

    Although physiological effects of acute flooding have been well studied, chronic effects of suboptimal soil aeration caused by over-irrigation of containerized plants have not, despite its likely commercial significance. By automatically scheduling irrigation according to soil moisture thresholds, effects of over-irrigation on soil properties (oxygen concentration, temperature and moisture), leaf growth, gas exchange, phytohormone [abscisic acid (ABA) and ethylene] relations and nutrient status of tomato (Solanum lycopersicum Mill. cv. Ailsa Craig) were studied. Over-irrigation slowly increased soil moisture and decreased soil oxygen concentration by 4%. Soil temperature was approximately 1°C lower in the over-irrigated substrate. Over-irrigating tomato plants for 2 weeks significantly reduced shoot height (by 25%) and fresh weight and total leaf area (by 60-70%) compared with well-drained plants. Over-irrigation did not alter stomatal conductance, leaf water potential or foliar ABA concentrations, suggesting that growth inhibition was not hydraulically regulated or dependent on stomatal closure or changes in ABA. However, over-irrigation significantly increased foliar ethylene emission. Ethylene seemed to inhibit growth, as the partially ethylene-insensitive genotype Never ripe (Nr) was much less sensitive to over-irrigation than the wild type. Over-irrigation induced significant foliar nitrogen deficiency and daily supplementation of small volumes of 10 mM Ca(NO3 )2 to over-irrigated soil restored foliar nitrogen concentrations, ethylene emission and shoot fresh weight of over-irrigated plants to control levels. Thus reduced nitrogen uptake plays an important role in inhibiting growth of over-irrigated plants, in part by stimulating foliar ethylene emission. © 2015 Scandinavian Plant Physiology Society.

  9. [Response of Algae to Nitrogen and Phosphorus Concentration and Quantity of Pumping Water in Pumped Storage Reservoir].

    Science.gov (United States)

    Wan, You-peng; Yin, Kui-hao; Peng, Sheng-hua

    2015-06-01

    Taking a pumped storage reservoir located in southern China as the research object, the paper established a three-dimensional hydrodynamic and eutrophication model of the reservoir employing EFDC (environmental fluid dynamics code) model, calibrated and verified the model using long-term hydraulic and water quality data. Based on the model results, the effects of nitrogen and phosphorus concentrations on the algae growth were analyzed, and the response of algae to nitrogen and phosphorus concentration and quantity of pumping water was also calculated. The results showed that the nitrogen and phosphorus concentrations had little limit on algae growth rate in the reservoir. In the nutrients reduction scenarios, reducing phosphorus would gain greater algae biomass reduction than reducing nitrogen. When reducing 60 percent of nitrogen, the algae biomass did not decrease, while 12.4 percent of algae biomass reduction could be gained with the same reduction ratio of phosphorus. When the reduction ratio went to 90 percent, the algae biomass decreased by 17.9 percent and 35.1 percent for nitrogen and phosphorus reduction, respectively. In the pumping water quantity regulation scenarios, the algae biomass decreased with the increasing pumping water quantity when the pumping water quantity was greater than 20 percent of the current value; when it was less than 20 percent, the algae biomass increased with the increasing pumping water quantity. The algae biomass decreased by 25.7 percent when the pumping water quantity was doubled, and increased by 38.8 percent when it decreased to 20 percent. The study could play an important role in supporting eutrophication controlling in water source area.

  10. Home interventions are effective at decreasing indoor nitrogen dioxide concentrations

    OpenAIRE

    Paulin, L. M.; Diette, G. B.; Scott, M.; McCormack, M. C.; Matsui, E. C.; Curtin-Brosnan, J.; Williams, D. L.; Kidd-Taylor, A.; Shea, M.; Breysse, P. N.; Hansel, N. N.

    2014-01-01

    Nitrogen dioxide (NO2), a by-product of combustion produced by indoor gas appliances such as cooking stoves, is associated with respiratory symptoms in those with obstructive airways disease. We conducted a three-armed randomized trial to evaluate the efficacy of interventions aimed at reducing indoor NO2 concentrations in homes with unvented gas stoves: (i) replacement of existing gas stove with electric stove; (ii) installation of ventilation hood over existing gas stove; and (iii) placemen...

  11. Variations in plant forage quality in the range of the Porcupine caribou herd

    Directory of Open Access Journals (Sweden)

    Jill Johnstone

    2002-06-01

    Full Text Available Understanding potential impacts of vegetation change on caribou energetics requires information on variations in forage quality among different plant types and over time. We synthesized data on forage quality (nitrogen, neutral detergent fiber and dry matter digestibility for 10 plant growth forms from existing scientific literature and from field research in the Arctic National Wildlife Refuge, Alaska. These data describe forage quality of plant species in habitats found within the summer and winter range of the Porcupine caribou herd in northwestern Canada and northern Alaska, U.S.A. We compared mean levels of summer forage quality among growth forms and, where possible, estimated seasonal changes in forage quality. Preferred forage groups (deciduous shrubs, forbs, and cottongrass flowers had higher nitrogen and digestibility, and lower fiber content, than other growth forms. Nitrogen concentration in green biomass peaked at the onset of the growing season in forbs and deciduous shrubs, whereas graminoids reached peak nitrogen concentrations approximately 15-30 days after growth initiation. In vitro dry matter digestibility (IVDMD and concentration of neutral detergent fiber (NDF of green biomass differed among growth forms, but did not show strong seasonal changes. IVDMD and NDF concentrations were correlated with nitrogen concentrations in studies that had paired sampling.

  12. Fate of dissolved organic nitrogen in two stage trickling filter process.

    Science.gov (United States)

    Simsek, Halis; Kasi, Murthy; Wadhawan, Tanush; Bye, Christopher; Blonigen, Mark; Khan, Eakalak

    2012-10-15

    Dissolved organic nitrogen (DON) represents a significant portion of nitrogen in the final effluent of wastewater treatment plants (WWTPs). Biodegradable portion of DON (BDON) can support algal growth and/or consume dissolved oxygen in the receiving waters. The fate of DON and BDON has not been studied for trickling filter WWTPs. DON and BDON data were collected along the treatment train of a WWTP with a two-stage trickling filter process. DON concentrations in the influent and effluent were 27% and 14% of total dissolved nitrogen (TDN). The plant removed about 62% and 72% of the influent DON and BDON mainly by the trickling filters. The final effluent BDON values averaged 1.8 mg/L. BDON was found to be between 51% and 69% of the DON in raw wastewater and after various treatment units. The fate of DON and BDON through the two-stage trickling filter treatment plant was modeled. The BioWin v3.1 model was successfully applied to simulate ammonia, nitrite, nitrate, TDN, DON and BDON concentrations along the treatment train. The maximum growth rates for ammonia oxidizing bacteria (AOB) and nitrite oxidizing bacteria, and AOB half saturation constant influenced ammonia and nitrate output results. Hydrolysis and ammonification rates influenced all of the nitrogen species in the model output, including BDON. Copyright © 2012 Elsevier Ltd. All rights reserved.

  13. Effect of sequences of ozone and nitrogen dioxide on plant dry ...

    African Journals Online (AJOL)

    Ozone (O3) is the most important gaseous air pollutant in the world because of its adverse effects on vegetation in general and crop plants in particular. Since nitrogen dioxide (NO2) is a precursor of ozone, studying the implication of sequences of these two gases is very important. Hence, the effects of sequences of ...

  14. Effects of nitrogen applocation on yield and nitrogen accumulation in soybean

    International Nuclear Information System (INIS)

    Di Wei; Jin Xijun; Ma Chunmei; Dong Shoukun; Gong Zhenping; Zhang Lei

    2010-01-01

    Methods of sand cultre and 15 N tracing were used to study the effects of nitrogen application on yield and nitrogen accumulation in soybean variety SN 14 . The results showed as follows: accumulated nitrogen in the whole plant, petiole, pod shell and seed increased at the beginning and then decreased with the increase of nitrogen levels; Nitrogen accumulation in leaf and stem increased in 3 and 5 times for N 150 than that of N 0 , which indicated that high nitrogen levels promoted the nitrogen accumulation in leaf and stem, however compared with N 0 , nitrogen accumulation in root, Nodulation-N accumulated in the whole plant and seed of N 150 decreased by 60.3%, 74. 9% and 85.7% respectively, and Fertilizer-N harvest index of N 150 decreased, which was 19.8% lower than that of N 50 , as well as Nodulation-N harvest index 25.5% lower than that of N 50 . The nitrogen levels of soybean yield also firstly increased and then decreased; Compared with N 0 , plant height, pod height and lowest pod nodes of soybean treated with N 150 increased by 55.2%, 199.7% and 142.9% respectively, while no effects were found on node number. (authors)

  15. Relative importance of plant uptake and plant associated denitrification for removal of nitrogen from mine drainage in sub-arctic wetlands.

    Science.gov (United States)

    Hallin, Sara; Hellman, Maria; Choudhury, Maidul I; Ecke, Frauke

    2015-11-15

    Reactive nitrogen (N) species released from undetonated ammonium-nitrate based explosives used in mining or other blasting operations are an emerging environmental problem. Wetlands are frequently used to treat N-contaminated water in temperate climate, but knowledge on plant-microbial interactions and treatment potential in sub-arctic wetlands is limited. Here, we compare the relative importance of plant uptake and denitrification among five plant species commonly occurring in sub-arctic wetlands for removal of N in nitrate-rich mine drainage in northern Sweden. Nitrogen uptake and plant associated potential denitrification activity and genetic potential for denitrification based on quantitative PCR of the denitrification genes nirS, nirK, nosZI and nosZII were determined in plants growing both in situ and cultivated in a growth chamber. The growth chamber and in situ studies generated similar results, suggesting high relevance and applicability of results from growth chamber experiments. We identified denitrification as the dominating pathway for N-removal and abundances of denitrification genes were strong indicators of plant associated denitrification activity. The magnitude and direction of the effect differed among the plant species, with the aquatic moss Drepanocladus fluitans showing exceptionally high ratios between denitrification and uptake rates, compared to the other species. However, to acquire realistic estimates of N-removal potential of specific wetlands and their associated plant species, the total plant biomass needs to be considered. The species-specific plant N-uptake and abundance of denitrification genes on the root or plant surfaces were affected by the presence of other plant species, which show that both multi- and inter-trophic interactions are occurring. Future studies on N-removal potential of wetland plant species should consider how to best exploit these interactions in sub-arctic wetlands. Copyright © 2015 Elsevier Ltd. All rights

  16. Enhanced nitrogen deposition over China

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Xuejun; Zhang, Ying; Han, Wenxuan; Tang, Aohan; Shen, Jianlin; Cui, Zhenling; Christie, Peter; Zhang, Fusuo [College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193 (China); Vitousek, Peter [Department of Biology, Stanford University, Stanford, California 94305 (United States); Erisman, Jan Willem [VU University Amsterdam, 1081 HV Amsterdam (Netherlands); Goulding, Keith [The Sustainable Soils and Grassland Systems Department, Rothamsted Research, Harpenden AL5 2JQ (United Kingdom); Fangmeier, Andreas [Institute of Landscape and Plant Ecology, University of Hohenheim, 70593 Stuttgart (Germany)

    2013-02-28

    China is experiencing intense air pollution caused in large part by anthropogenic emissions of reactive nitrogen. These emissions result in the deposition of atmospheric nitrogen (N) in terrestrial and aquatic ecosystems, with implications for human and ecosystem health, greenhouse gas balances and biological diversity. However, information on the magnitude and environmental impact of N deposition in China is limited. Here we use nationwide data sets on bulk N deposition, plant foliar N and crop N uptake (from long-term unfertilized soils) to evaluate N deposition dynamics and their effect on ecosystems across China between 1980 and 2010. We find that the average annual bulk deposition of N increased by approximately 8 kilograms of nitrogen per hectare (P < 0.001) between the 1980s (13.2 kilograms of nitrogen per hectare) and the 2000s (21.1 kilograms of nitrogen per hectare). Nitrogen deposition rates in the industrialized and agriculturally intensified regions of China are as high as the peak levels of deposition in northwestern Europe in the 1980s, before the introduction of mitigation measures. Nitrogen from ammonium (NH4+) is the dominant form of N in bulk deposition, but the rate of increase is largest for deposition of N from nitrate (NO3-), in agreement with decreased ratios of NH3 to NOx emissions since 1980. We also find that the impact of N deposition on Chinese ecosystems includes significantly increased plant foliar N concentrations in natural and semi-natural (that is, non-agricultural) ecosystems and increased crop N uptake from long-term-unfertilized croplands. China and other economies are facing a continuing challenge to reduce emissions of reactive nitrogen, N deposition and their negative effects on human health and the environment.

  17. Effect of clonal integration on nitrogen cycling in rhizosphere of rhizomatous clonal plant, Phyllostachys bissetii, under heterogeneous light.

    Science.gov (United States)

    Li, Yang; Chen, Jing-Song; Xue, Ge; Peng, Yuanying; Song, Hui-Xing

    2018-07-01

    Clonal integration plays an important role in clonal plant adapting to heterogeneous habitats. It was postulated that clonal integration could exhibit positive effects on nitrogen cycling in the rhizosphere of clonal plant subjected to heterogeneous light conditions. An in-situ experiment was conducted using clonal fragments of Phyllostachys bissetii with two successive ramets. Shading treatments were applied to offspring or mother ramets, respectively, whereas counterparts were treated to full sunlight. Rhizomes between two successive ramets were either severed or connected. Extracellular enzyme activities and nitrogen turnover were measured, as well as soil properties. Abundance of functional genes (archaeal or bacterial amoA, nifH) in the rhizosphere of shaded, offspring or mother ramets were determined using quantitative polymerase chain reaction. Carbon or nitrogen availabilities were significantly influenced by clonal integration in the rhizosphere of shaded ramets. Clonal integration significantly increased extracellular enzyme activities and abundance of functional genes in the rhizosphere of shaded ramets. When rhizomes were connected, higher nitrogen turnover (nitrogen mineralization or nitrification rates) was exhibited in the rhizosphere of shaded offspring ramets. However, nitrogen turnover was significantly decreased by clonal integration in the rhizosphere of shaded mother ramets. Path analysis indicated that nitrogen turnover in the rhizosphere of shaded, offspring or mother ramets were primarily driven by the response of soil microorganisms to dissolved organic carbon or nitrogen. This unique in-situ experiment provided insights into the mechanism of nutrient recycling mediated by clonal integration. It was suggested that effects of clonal integration on the rhizosphere microbial processes were dependent on direction of photosynthates transport in clonal plant subjected to heterogeneous light conditions. Copyright © 2018 Elsevier B.V. All rights

  18. Nutrient accumulation models in the banana (Musa AAA Simmonds cv Williams plant under nitrogen doses

    Directory of Open Access Journals (Sweden)

    Jaime Torres Bazurto

    2017-07-01

    Full Text Available This research determined the effect of four nitrogen (N doses on the nutritional behavior of (N, potassium (K, phosphorus (P, calcium (Ca and magnesium (Mg, respectively, in banana Williams, during five plant development stages and two productive cycles. The treatments were as follows: 1 absolute control, 2 0 N, 3 161 kg N ha-1, 4 321.8 kg N ha-1 and 5 483 kg N ha-1, respectively. A multivariate approach of the differences among cycles was used to adjust the models and eliminate their individual effect, with a randomized complete block design with repeated measurements over time. There were significant differences among plant development stages, with an increase in nutrient accumulation in the banana plant, there were no differences among treatments or blocks, nor in the interaction block by treatment, but the dose of 321.8 kg of N, exhibited a fructification increase in terms of N accumulation, harvest was exceeded by the dose of 483 kg of nitrogen, Ca and Mg, were the other nutrients, which showed effect at the dose of 483 kg of N but increasing only to harvest. It was concluded that high doses of nitrogen showed a trend to increase nutrient accumulation during the development of the banana plant, but especially until fructification, with the exception of Ca and Mg, which achieved the greatest accumulation in harvest.

  19. Arbuscular mycorrhiza improve growth, nitrogen uptake, and nitrogen use efficiency in wheat grown under elevated CO2.

    Science.gov (United States)

    Zhu, Xiancan; Song, Fengbin; Liu, Shengqun; Liu, Fulai

    2016-02-01

    Effects of the arbuscular mycorrhizal (AM) fungus Rhizophagus irregularis on plant growth, carbon (C) and nitrogen (N) accumulation, and partitioning was investigated in Triticum aestivum L. plants grown under elevated CO2 in a pot experiment. Wheat plants inoculated or not inoculated with the AM fungus were grown in two glasshouse cells with different CO2 concentrations (400 and 700 ppm) for 10 weeks. A (15)N isotope labeling technique was used to trace plant N uptake. Results showed that elevated CO2 increased AM fungal colonization. Under CO2 elevation, AM plants had higher C concentration and higher plant biomass than the non-AM plants. CO2 elevation did not affect C and N partitioning in plant organs, while AM symbiosis increased C and N allocation into the roots. In addition, plant C and N accumulation, (15)N recovery rate, and N use efficiency (NUE) were significantly higher in AM plants than in non-AM controls under CO2 enrichment. It is concluded that AM symbiosis favors C and N partitioning in roots, increases C accumulation and N uptake, and leads to greater NUE in wheat plants grown at elevated CO2.

  20. Nitrogen removal and recovery from lagoon-pretreated swine wastewater by constructed wetlands under sustainable plant harvesting management.

    Science.gov (United States)

    Luo, Pei; Liu, Feng; Zhang, Shunan; Li, Hongfang; Yao, Ran; Jiang, Qianwen; Xiao, Runlin; Wu, Jinshui

    2018-06-01

    A series of three-stage pilot-scale surface flow constructed wetlands (CWs) planted with Myriophyllum aquaticum were fed with three strengths of lagoon-pretreated swine wastewater to study nitrogen (N) removal and recovery under sustainable plant harvesting management. The CWs had mean removal efficiency of 87.7-97.9% for NH 4 + -N and 85.4-96.1% for total N (TN). The recovered TN mass via multiple harvests of M. aquaticum was greatest (120-222 g N m -2  yr -1 ) when TN concentrations were 21.8-282 mg L -1 . The harvested TN mass accounted for 0.85-100% of the total removal in the different CW units. Based on mass balance estimation, plant uptake, sediment storage, and microbial removal accounted for 13.0-55.0%, 4.9-8.0%, and 33.0-67.5% of TN loading mass, respectively. The results of this study confirm that M. aquaticum is appropriate for the removal and recovery of nutrients in CW systems designed for treating swine wastewater in conjunction with sustainable plant harvesting strategies. Copyright © 2018 Elsevier Ltd. All rights reserved.

  1. Mycorrhizal fungi enhance plant nutrient acquisition and modulate nitrogen loss with variable water regimes.

    Science.gov (United States)

    Bowles, Timothy M; Jackson, Louise E; Cavagnaro, Timothy R

    2018-01-01

    Climate change will alter both the amount and pattern of precipitation and soil water availability, which will directly affect plant growth and nutrient acquisition, and potentially, ecosystem functions like nutrient cycling and losses as well. Given their role in facilitating plant nutrient acquisition and water stress resistance, arbuscular mycorrhizal (AM) fungi may modulate the effects of changing water availability on plants and ecosystem functions. The well-characterized mycorrhizal tomato (Solanum lycopersicum L.) genotype 76R (referred to as MYC+) and the mutant mycorrhiza-defective tomato genotype rmc were grown in microcosms in a glasshouse experiment manipulating both the pattern and amount of water supply in unsterilized field soil. Following 4 weeks of differing water regimes, we tested how AM fungi affected plant productivity and nutrient acquisition, short-term interception of a 15NH4+ pulse, and inorganic nitrogen (N) leaching from microcosms. AM fungi enhanced plant nutrient acquisition with both lower and more variable water availability, for instance increasing plant P uptake more with a pulsed water supply compared to a regular supply and increasing shoot N concentration more when lower water amounts were applied. Although uptake of the short-term 15NH4+ pulse was higher in rmc plants, possibly due to higher N demand, AM fungi subtly modulated NO3- leaching, decreasing losses by 54% at low and high water levels in the regular water regime, with small absolute amounts of NO3- leached (<1 kg N/ha). Since this study shows that AM fungi will likely be an important moderator of plant and ecosystem responses to adverse effects of more variable precipitation, management strategies that bolster AM fungal communities may in turn create systems that are more resilient to these changes. © 2017 John Wiley & Sons Ltd.

  2. Assimilation of 15N-labelled urea nitrogen and ammonium nitrate nitrogen by plants in case of root and non-root fertilization

    International Nuclear Information System (INIS)

    Muravin, Eh.A.; Kozhemyachko, V.A.; Vernichenko, I.V.

    1974-01-01

    Assimilation of 15 N labeled urea and ammonium nitrate in root and foliar application by spring wheat and barley has been studied during 1970-1973 period in a series of vegetative experiments at the Department of Agrochemistry, Timiryazev Agricultural Academy, and at D.N. Pryanishnikov Experimental Agrochemical Station. Additional fertilizer nitrogen applied at later ontogenesis stages (flowering and milky ripeness) is utilized mostly for protein synthesis in developing grains, thus leading to a significant increase in the relative grain protein content. A transfer of a part of nitrogen from the main ortion of fertilizer at later stages of nitrition results, at the same time, in a lower yield. Nitrogen utilization degree of urea and ammonium nitrate, when introduced before sowing or at the flowering stage is similar but in the latter case, however, additional assimilation of soil nitrogen is lower. The assimilation rate of nitrogen in root application is the lower the later the fertilizer is applied. When ammonium nitrate is additionally applied as nutrition to barley at the milky ripeness stage, ammonia and nitrate nitrogen are assimilated at the same rate and to the same extent but ammonia nitrogen is more rapidly used for protein synthesis and the rate of its transfer to the developing grains is higher. The rate of nitrogen assimilation at plant is much higher in foliar than in root application. Wheat utilizes more urea nitrogen at the flowering stage when root application is used but at the milky ripeness stage foliar application is more effective

  3. Soil carbon, nitrogen, and phosphorus stoichiometry of three dominant plant communities distributed along a small-scale elevation gradient in the East Dongting Lake

    Science.gov (United States)

    Hu, Cong; Li, Feng; Xie, Yong-hong; Deng, Zheng-miao; Chen, Xin-sheng

    2018-02-01

    Soil carbon (C), nitrogen (N), and phosphorus (P) stoichiometry greatly affects plant community succession and structure. However, few studies have examined the soil stoichiometric changes in different vegetation communities of freshwater wetland ecosystems along an elevation gradient distribution. In the present study, soil nutrient concentrations (C, N, and P), soil stoichiometry (C:N, C:P, and N:P ratios), and other soil physicochemical characteristics were measured and analyzed in 62 soil samples collected from three dominant plant communities (Carex brevicuspis, Artemisia selengensis, and Miscanthus sacchariflorus) in the East Dongting Lake wetlands. The concentration ranges of soil organic carbon (SOC), total soil nitrogen (TN), and total soil phosphorus (TP) were 9.42-45.97 g/kg, 1.09-5.50 g/kg, and 0.60-1.70 g/kg, respectively. SOC and TN concentrations were the highest in soil from the C. brevicuspis community (27.48 g/kg and 2.78 g/kg, respectively) and the lowest in soil from the A. selengensis community (17.97 g/kg and 1.71 g/kg, respectively). However, the highest and lowest TP concentrations were detected in soil from the A. selengensis (1.03 g/kg) and M. sacchariflorus (0.89 g/kg) communities, respectively, and the C:N ratios were the highest and lowest in soil from the M. sacchariflorus (12.72) and A. selengensis (12.01) communities, respectively. C:P and N:P ratios were the highest in soil from the C. brevicuspis community (72.77 and 6.46, respectively) and the lowest in soil from the A. selengensis community (45.52 and 3.76, respectively). Correlation analyses confirmed that SOC concentrations were positively correlated with TN and TP, and C:N and N:P ratios were positively correlated with C:P. These data indicated that soil C, N, and P stoichiometry differed significantly among different plant communities and that these differences might be accounted for by variations in the hydrological conditions of the three communities.

  4. Interspecific Plant Interactions Reflected in Soil Bacterial Community Structure and Nitrogen Cycling in Primary Succession.

    Science.gov (United States)

    Knelman, Joseph E; Graham, Emily B; Prevéy, Janet S; Robeson, Michael S; Kelly, Patrick; Hood, Eran; Schmidt, Steve K

    2018-01-01

    Past research demonstrating the importance plant-microbe interactions as drivers of ecosystem succession has focused on how plants condition soil microbial communities, impacting subsequent plant performance and plant community assembly. These studies, however, largely treat microbial communities as a black box. In this study, we sought to examine how emblematic shifts from early successional Alnus viridus ssp. sinuata (Sitka alder) to late successional Picea sitchensis (Sitka spruce) in primary succession may be reflected in specific belowground changes in bacterial community structure and nitrogen cycling related to the interaction of these two plants. We examined early successional alder-conditioned soils in a glacial forefield to delineate how alders alter the soil microbial community with increasing dominance. Further, we assessed the impact of late-successional spruce plants on these early successional alder-conditioned microbiomes and related nitrogen cycling through a leachate addition microcosm experiment. We show how increasingly abundant alder select for particular bacterial taxa. Additionally, we found that spruce leachate significantly alters the composition of these microbial communities in large part by driving declines in taxa that are enriched by alder, including bacterial symbionts. We found these effects to be spruce specific, beyond a general leachate effect. Our work also demonstrates a unique influence of spruce on ammonium availability. Such insights bolster theory relating the importance of plant-microbe interactions with late-successional plants and interspecific plant interactions more generally.

  5. Improving the biological nitrogen removal process in pharmaceutical wastewater treatment plants: a case study.

    Science.gov (United States)

    Torrijos, M; Carrera, J; Lafuente, J

    2004-04-01

    The Biological Nitrogen Removal (BNR) process of some pharmaceutical wastewater treatment plants has important operational problems. This study shows that, in order to solve these problems, the design of industrial BNR processes should start by analysing three key parameters: the characteristics of the wastewater load, the determination of the maximum TKN removal rate and the detection of toxic or inhibitory compounds in the wastewater. A case study of this analysis in pharmaceutical wastewater is presented here. In this case, the conventional TKN analytical method does not make an accurate characterisation of the wastewater load because it measures a concentration of 100 mg TKN l(-1) whereas the real concentration, determined with a modified TKN analytical method, is 150-500 mg TKN l(-1). Also, the TKN removal of the treatment system is insufficient in some periods because it falls below legal requirements. This problem might be a consequence of the wrong characterisation of wastewater during the design process. The maximum TKN removal at 27 degrees C (24 mg N g VSS(-1) d(-1) or 197 mg N l(-1) d(-1)) was evaluated in a pilot-scale plant. This value is six times greater than the average NLR applied in the full-scale plant. Finally, some of the components of the wastewater, such as p-phenylenediamine, might have inhibitory or toxic effects on the biological process. P-phenylenediamine causes a large decrease in the nitrification rate. This effect was determined by respirometry. This methodology shows that the effect is mainly inhibitory with a contact time of 30 min and if the contact time is longer, 14 hours, a toxic effect is observed.

  6. Protective role of anthocyanins in plants under low nitrogen stress.

    Science.gov (United States)

    Liang, Jian; He, Junxian

    2018-04-15

    Nitrogen (N) is a major nutrient of plants but often a limiting factor for plant growth and crop yield. To adapt to N deficiency, plants have evolved adaptive responses including accumulation of anthocyanins. However, it is still unclear whether the accumulated anthocyanins are part of the components of plant tolerance under low N stress. Here, we demonstrate that low N-induced anthocyanins contribute substantially to the low N tolerance of Arabidopsis thaliana. pap1-1, a mutant defective in MYB75 (PAP1), a MYB-type transcription factor that positively regulates anthocyanin biosynthesis in Arabidopsis, was found to have significantly decreased survival rate to low N stress compared to its wild-type plants. Similarly, tt3, a mutant with severe deficiency in dihydroflavonol 4-reductase (DFR), a key enzyme in anthocyanin biosynthesis, also showed much lower survival rate under low N stress. These results indicate that anthocyanins are substantial contributors of plant tolerance to low N stress. Furthermore, a metabolomics analysis using LC-MS revealed changes in flavonoid profile in the pap1-1 and tt3 plants, which established a causal relationship between plant adaptation to low N stress and these compounds including anthocyanins. Our results showed an important role of anthocyanins rather than flavonols in conferring plant tolerance to low N stress. Copyright © 2018 Elsevier Inc. All rights reserved.

  7. Autophagy Supports Biomass Production and Nitrogen Use Efficiency at the Vegetative Stage in Rice1[OPEN

    Science.gov (United States)

    Hayashida, Yasukazu; Kurusu, Takamitsu; Kojima, Soichi; Makino, Amane

    2015-01-01

    Much of the nitrogen in leaves is distributed to chloroplasts, mainly in photosynthetic proteins. During leaf senescence, chloroplastic proteins, including Rubisco, are rapidly degraded, and the released nitrogen is remobilized and reused in newly developing tissues. Autophagy facilitates the degradation of intracellular components for nutrient recycling in all eukaryotes, and recent studies have revealed critical roles for autophagy in Rubisco degradation and nitrogen remobilization into seeds in Arabidopsis (Arabidopsis thaliana). Here, we examined the function of autophagy in vegetative growth and nitrogen usage in a cereal plant, rice (Oryza sativa). An autophagy-disrupted rice mutant, Osatg7-1, showed reduced biomass production and nitrogen use efficiency compared with the wild type. While Osatg7-1 showed early visible leaf senescence, the nitrogen concentration remained high in the senescent leaves. 15N pulse chase analysis revealed suppression of nitrogen remobilization during leaf senescence in Osatg7-1. Accordingly, the reduction of nitrogen available for newly developing tissues in Osatg7-1 likely led its reduced leaf area and tillers. The limited leaf growth in Osatg7-1 decreased the photosynthetic capacity of the plant. Much of the nitrogen remaining in senescent leaves of Osatg7-1 was in soluble proteins, and the Rubisco concentration in senescing leaves of Osatg7-1 was about 2.5 times higher than in the wild type. Transmission electron micrographs showed a cytosolic fraction rich with organelles in senescent leaves of Osatg7-1. Our results suggest that autophagy contributes to efficient nitrogen remobilization at the whole-plant level by facilitating protein degradation for nitrogen recycling in senescent leaves. PMID:25786829

  8. Slow-release nitrogen fertilizers can improve yield and reduce Cd concentration in pakchoi (Brassica chinensis L.) grown in Cd-contaminated soil.

    Science.gov (United States)

    Zhang, Ran-Ran; Liu, Yue; Xue, Wan-Lei; Chen, Rong-Xin; Du, Shao-Ting; Jin, Chong-Wei

    2016-12-01

    Cadmium (Cd) pollution in vegetable crops has become a serious problem in recent years. Owing to the limited availability of arable land resources, large areas of Cd-contaminated lands are inevitably being used for the production of vegetables, posing great risks to human health via the food chain. However, strategies to improve yield and reduce Cd concentration in crops grown in contaminated soils are being developed. In the present study, using pot experiments, we investigated the effects of two slow-release nitrogen fertilizers (SRNFs), resin-coated ammonium nitrate (Osmocote 313s ), and resin-coated urea (urea 620 ), on the growth and Cd concentration of the Cd-contaminated pakchoi. The results showed that pakchoi grown in soil containing 5 mg kg -1 of Cd-induced oxidative stress (indicated by malondialdehyde (MDA), H 2 O 2 , and O 2 ·- ) and photosynthesis inhibition, which in turn was restored with the application of SRNFs. However, pakchoi grown in Cd-contaminated soil supplied with Osmocote 313s and urea 620 showed 103 and 203 % increase in fresh weight and 51-55 % and 44-56 % decrease in Cd concentration, respectively, as compared with their controls (pakchoi treated with instant soluble nitrogen fertilizers). On the basis of an increase in their tolerance index (47-238 %) and a decrease in their translocation factor (7.5-21.6 %), we inferred that the plants treated with SRNFs have a stronger tolerance to Cd and a lower efficiency of Cd translocation to edible parts than those treated with instant soluble nitrogen fertilizers. Therefore, in terms of both crop production and food safety, application of SRNFs could be an effective strategy for improving both biomass production and quality in pakchoi grown under Cd stress.

  9. Nitrogen enrichment of host plants has mostly beneficial effects on the life-history traits of nettle-feeding butterflies

    Science.gov (United States)

    Kurze, Susanne; Heinken, Thilo; Fartmann, Thomas

    2017-11-01

    Butterflies rank among the most threatened animal groups throughout Europe. However, current population trends differ among species. The nettle-feeding butterflies Aglais io and Aglais urticae cope successfully with the anthropogenic land-use change. Both species are assumed to be pre-adapted to higher nitrogen contents in their host plant, stinging nettle (Urtica dioica). However, it is currently unknown, whether this pre-adaptation enables both Aglais species to cope successfully or even to benefit from the excessive nitrogen availabilities in nettles growing in modern farmlands. For this reason, this study focused on the response of both Aglais species to unfertilized nettles compared to nettles receiving 150 or 300 kg N ha-1 yr-1 (i.e., common fertilizer quantities of modern-day agriculture). Fertilized nettles were characterized by higher nitrogen concentrations and lower C:N ratios compared to the control group. In both Aglais species, the individuals feeding on fertilized nettles had higher survival rates, shorter larval periods and heavier pupae and, in A. urticae also longer forewings. All these trait shifts are beneficial for the individuals, lowering their risk to die before reproduction and increasing their reproductive potential. These responses agree with the well-accepted nitrogen-limitation hypothesis predicting a positive relationship between the nitrogen content of the diet and the performance of herbivorous insects. Furthermore, our findings suggest that the increasing abundance of both Aglais species may result not only from the increasing spread of nettles into the farmland but also from changes in their quality due to the eutrophication of the landscape during recent decades.

  10. Nitrogen source tracking with δ15N content of coastal wetland plants in Hawaii

    Science.gov (United States)

    Gregory L. Bruland; Richard A.. Mackenzie

    2010-01-01

    Inter- and intra-site comparisons of the nitrogen (N) stable isotope composition of wetland plant species have been used to identify sources of N in coastal areas. In this study, we compared δ15N values from different herbaceous wetland plants across 34 different coastal wetlands from the five main Hawaiian Islands and investigated relationships of δ15N with...

  11. Tidal marsh plant responses to elevated CO2 , nitrogen fertilization, and sea level rise.

    Science.gov (United States)

    Adam Langley, J; Mozdzer, Thomas J; Shepard, Katherine A; Hagerty, Shannon B; Patrick Megonigal, J

    2013-05-01

    Elevated CO2 and nitrogen (N) addition directly affect plant productivity and the mechanisms that allow tidal marshes to maintain a constant elevation relative to sea level, but it remains unknown how these global change drivers modify marsh plant response to sea level rise. Here we manipulated factorial combinations of CO2 concentration (two levels), N availability (two levels) and relative sea level (six levels) using in situ mesocosms containing a tidal marsh community composed of a sedge, Schoenoplectus americanus, and a grass, Spartina patens. Our objective is to determine, if elevated CO2 and N alter the growth and persistence of these plants in coastal ecosystems facing rising sea levels. After two growing seasons, we found that N addition enhanced plant growth particularly at sea levels where plants were most stressed by flooding (114% stimulation in the + 10 cm treatment), and N effects were generally larger in combination with elevated CO2 (288% stimulation). N fertilization shifted the optimal productivity of S. patens to a higher sea level, but did not confer S. patens an enhanced ability to tolerate sea level rise. S. americanus responded strongly to N only in the higher sea level treatments that excluded S. patens. Interestingly, addition of N, which has been suggested to accelerate marsh loss, may afford some marsh plants, such as the widespread sedge, S. americanus, the enhanced ability to tolerate inundation. However, if chronic N pollution reduces the availability of propagules of S. americanus or other flood-tolerant species on the landscape scale, this shift in species dominance could render tidal marshes more susceptible to marsh collapse. © 2013 Blackwell Publishing Ltd.

  12. Ecological occurrence of Gluconacetobacter diazotrophicus and nitrogen-fixing Acetobacteraceae members: their possible role in plant growth promotion.

    Science.gov (United States)

    Saravanan, V S; Madhaiyan, M; Osborne, Jabez; Thangaraju, M; Sa, T M

    2008-01-01

    Gluconacetobacter diazotrophicus has a long-standing history of bacterial-plant interrelationship as a symbiotic endophyte capable of fixing atmospheric nitrogen. In low nitrogen fertilized sugarcane fields it plays a significant role and its occurrence was realised in most of the sugarcane growing countries. In this mini review, the association of G. diazotrophicus with sugarcane, other crop plants and with various hosts is discussed. The factors affecting survival in the rhizosphere and the putative soil mode of transmission are emphasized. In addition, other N(2)-fixing Acetobacteraceae members, including Gluconacetobacter azotocaptans, Gluconacetobacter johannae and Swaminathania salitolerans, occurring in coffee, corn and rice plants are also covered. Lastly, the plant-growth-promoting traits identified in this group of bacteria, including N(2) fixation, phytohormone synthesis, P and Zn solubilization and biocontrol, are analysed.

  13. Concentration, composition, bioavailability, and N-nitrosodimethylamine formation potential of particulate and dissolved organic nitrogen in wastewater effluents: A comparative study

    International Nuclear Information System (INIS)

    Hu, Haidong; Ma, Haijun; Ding, Lili; Geng, Jinju; Xu, Ke; Huang, Hui; Zhang, Yingying; Ren, Hongqiang

    2016-01-01

    Wastewater-derived organic nitrogen (org-N) can act as both nutrients and carcinogenic nitrogenous disinfection byproduct precursors. In this study, the concentration, composition, bioavailability, and N-nitrosodimethylamine (NDMA) formation potential of particulate organic nitrogen (PON) from three different municipal wastewater treatment plants were characterized and compared with that of effluent dissolved organic nitrogen (DON). The average effluent PON and DON concentrations ranged from 0.09 to 0.55 mg N/L and from 0.91 to 1.88 mg N/L, respectively. According to principal component analysis, org-N composition and characterization differed in PON and DON samples (n = 20). Compared with DON, PON tended to be enriched in protein and nucleic acids, and showed a more proteinaceous character. Composition of org-N functional groups estimated from the X-ray photoelectron spectroscopy N 1s spectra indicate no significant differences in the molecular weight distribution of the protein-like materials between PON and DON. Moreover, PON exhibited a significantly higher bioavailability (61.0 ± 13.3%) compared to DON (38.5 ± 12.4%, p < 0.05, t-test) and a significantly higher NDMA yields (791.4 ± 404.0 ng/mg-N) compared to DON (374.8 ± 62.5 ng/mg-N, p < 0.05, t-test). Accordingly, PON contributed to approximately 12.3–41.7% of the total bioavailable org-N and 22.0–38.4% of the total NDMA precursors in wastewater effluents. Thus, the potential adverse effects of PON on wastewater discharge and reuse applications should not be overlooked, even though it only accounted for 7.4–26.8% of the total effluent org-N. - Highlights: • The concentration, composition, bioavailability, and NDMA FP of PON and DON in wastewater effluents are compared. • PON is enriched in protein and nucleic acids. • PON is more bioavailable and shows higher NDMA yields compared to DON. • PON contributes12–42% of total bioavailable org-N and 22–38% of total NDMA precursors.

  14. Concentration, composition, bioavailability, and N-nitrosodimethylamine formation potential of particulate and dissolved organic nitrogen in wastewater effluents: A comparative study

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Haidong; Ma, Haijun; Ding, Lili; Geng, Jinju; Xu, Ke; Huang, Hui; Zhang, Yingying; Ren, Hongqiang, E-mail: hqren@nju.edu.cn

    2016-11-01

    Wastewater-derived organic nitrogen (org-N) can act as both nutrients and carcinogenic nitrogenous disinfection byproduct precursors. In this study, the concentration, composition, bioavailability, and N-nitrosodimethylamine (NDMA) formation potential of particulate organic nitrogen (PON) from three different municipal wastewater treatment plants were characterized and compared with that of effluent dissolved organic nitrogen (DON). The average effluent PON and DON concentrations ranged from 0.09 to 0.55 mg N/L and from 0.91 to 1.88 mg N/L, respectively. According to principal component analysis, org-N composition and characterization differed in PON and DON samples (n = 20). Compared with DON, PON tended to be enriched in protein and nucleic acids, and showed a more proteinaceous character. Composition of org-N functional groups estimated from the X-ray photoelectron spectroscopy N 1s spectra indicate no significant differences in the molecular weight distribution of the protein-like materials between PON and DON. Moreover, PON exhibited a significantly higher bioavailability (61.0 ± 13.3%) compared to DON (38.5 ± 12.4%, p < 0.05, t-test) and a significantly higher NDMA yields (791.4 ± 404.0 ng/mg-N) compared to DON (374.8 ± 62.5 ng/mg-N, p < 0.05, t-test). Accordingly, PON contributed to approximately 12.3–41.7% of the total bioavailable org-N and 22.0–38.4% of the total NDMA precursors in wastewater effluents. Thus, the potential adverse effects of PON on wastewater discharge and reuse applications should not be overlooked, even though it only accounted for 7.4–26.8% of the total effluent org-N. - Highlights: • The concentration, composition, bioavailability, and NDMA FP of PON and DON in wastewater effluents are compared. • PON is enriched in protein and nucleic acids. • PON is more bioavailable and shows higher NDMA yields compared to DON. • PON contributes12–42% of total bioavailable org-N and 22–38% of total NDMA precursors.

  15. Effect of cotton leaf-curl virus on the yield-components and fibre properties of cotton genotypes under varying plant spacing and nitrogen fertilizer

    International Nuclear Information System (INIS)

    Ahmad, S.; Hayat, K.; Ashraf, F.; Sadiq, M.A.

    2008-01-01

    Cotton leaf-curl virus (CLCu VB. Wala strain) is one of the major biotic constraints of cotton production in Punjab. Development of resistant cotton genotype is the most feasible, economical and effective method to combat this hazardous problem, but so far no resistant genotype has been reported. Therefore, the objective of this study was to compare yield and yield-components and fiber traits of different genotypes/varieties under different plant spacing and nitrogen fertilizer as a management strategy to cope with this viral disease. Field experiment was conducted during 2006-07 to evaluate the effect of genotype, plant spacing and nitrogen fertilizer on cotton. Five genotypes (MNH-786, MNH-789, MNH- 6070, CIM- 496, and BH-160), three plant-spacings (15, 30 and 45 cm) and three nitrogen fertilizer-levels (6.5, 8.6 and 11 bags Urea / ha) were studied. Results showed that significant differences exist for plant height, no. of bolls/m/sup -2/, seed-cotton yield (kg/ha) due to genotype, interaction of genotype with plant spacing and nitrogen fertilizer level. Whereas boll weight, ginning out-turn, staple length and fiber fineness were not affected significantly by the plant spacing and nitrogen fertilizer, the effect due to genotype was significant for these traits. CLCuV infestation varied significantly with genotypes, while all other factors, i.e., plant spacing and nitrogen fertilizers, have non-significant effect. As the major objective of cotton cultivation is production of lint for the country and seed- cotton yield for the farmers, it is noted that genotypes grown in narrow plant-spacing (15 cm) and higher nitrogen fertilizer level (11.0 bags of urea/ha) produced maximum seed-cotton yield under higher CLCu V infestation in case of CIM-496, MNH-789 and BH-I60, while the new strain MNH-6070 gave maximum yield under 30cm plant-spacing and 8.6 bags of urea/ha has the 2.3% CLCu V infestation was observed in this variety. From the present study, it is concluded that

  16. Eighth international congress on nitrogen fixation

    Energy Technology Data Exchange (ETDEWEB)

    1990-01-01

    This volume contains the proceedings of the Eighth International Congress on Nitrogen Fixation held May 20--26, 1990 in Knoxville, Tennessee. The volume contains abstracts of individual presentations. Sessions were entitled Recent Advances in the Chemistry of Nitrogen Fixation, Plant-microbe Interactions, Limiting Factors of Nitrogen Fixation, Nitrogen Fixation and the Environment, Bacterial Systems, Nitrogen Fixation in Agriculture and Industry, Plant Function, and Nitrogen Fixation and Evolution.

  17. Aromatic plants play an important role in promoting soil biological activity related to nitrogen cycling in an orchard ecosystem.

    Science.gov (United States)

    Chen, Xinxin; Song, Beizhou; Yao, Yuncong; Wu, Hongying; Hu, Jinghui; Zhao, Lingling

    2014-02-15

    Aromatic plants can substantially improve the diversity and structure of arthropod communities, as well as reduce the number of herbivore pests and regulate the abundance of predators and parasitoids. However, it is not clear whether aromatic plants are also effective in improving soil quality by enhancing nutrient cycling. Here, field experiments are described involving intercropping with aromatic plants to investigate their effect on soil nitrogen (N) cycling in an orchard ecosystem. The results indicate that the soil organic nitrogen and available nitrogen contents increased significantly in soils intercropped with aromatic plants. Similarly, the activities of soil protease and urease increased, together with total microbial biomass involved in N cycling, including nitrifying bacteria, denitrifying bacteria and azotobacters, as well as the total numbers of bacteria and fungi. This suggests that aromatic plants improve soil N cycling and nutrient levels by enriching the soil in organic matter through the regulation of both the abundance and community structure of microorganisms, together with associated soil enzyme activity, in orchard ecosystems. Copyright © 2013 Elsevier B.V. All rights reserved.

  18. Direct estimation of aboveground forest productivity through hyperspectral remote sensing of canopy nitrogen

    Science.gov (United States)

    Marie-Louise Smith; Scott V. Ollinger; Mary E. Martin; John D. Aber; Richard A. Hallett; Christine L. Goodale

    2002-01-01

    The concentration of nitrogen in foliage has been related to rates of net photosynthesis across a wide range of plant species and functional groups and thus represents a simple and biologically meaningful link between terrestrial cycles of carbon and nitrogen. Although foliar N is used by ecosystem models to predict rates of leaf-level photosynthesis, it has rarely...

  19. Regulation of nitrogen uptake and assimilation: Effects of nitrogen source and root-zone and aerial environment on growth and productivity of soybean

    Science.gov (United States)

    Raper, C. David, Jr.

    1994-01-01

    The interdependence of root and shoot growth produces a functional equilibrium as described in quantitative terms by numerous authors. It was noted that bean seedlings grown in a constant environment tended to have a constant distribution pattern of dry matter between roots and leaves characteristic of the set of environmental conditions. Disturbing equilibrium resulted in a change in relative growth of roots and leaves until the original ratio was restored. To define a physiological basis for regulation of nitrogen uptake within the balance between root and shoot activities, the authors combined a partioning scheme and a utilization priority assumption in which: (1) all carbon enters the plant through photosynthesis in leaves and all nitrogen enters the plant through active uptake by roots, (2) nitrogen uptake by roots and secretion into the xylem for transport to the shoots are active processes, (3) availability of exogenous nitrogen determines concentration of soluble carbohydrates within the roots, (4) leaves are a source and a sink for carbohydrates, and (5) the requirement for nitrogen by leaf growth is proportionally greater during initiation and early expansion than during later expansion.

  20. Effect of seed inoculation with Azospirillum brasilense and nitrogen fertilization rates on maize plant yield and silage quality

    Directory of Open Access Journals (Sweden)

    Fernando Reimann Skonieski

    Full Text Available ABSTRACT The objective of this study was to determine the effect of Azospirillum brasilense inoculation and different nitrogen (N rates applied as topdressing on the productivity of a maize crop and the nutritional value of maize silage. Two experiments were conducted in the 2012/2013 and 2013/2014 harvests. Treatments were distributed in a randomized block design in a factorial arrangement, which consisted of two maize hybrids (AS 1572 and Defender coupled with nitrogen rates (0, 60, 120, 240, and 480 kg ha-1, inoculated or uninoculated with A. brasilense. Inoculated seeds were treated with the A. brasilense strains Ab-V5 and Ab-V6. Inoculation with A. brasilense showed interaction with the hybrids, agricultural years, and nitrogen rates for the maize plant yield. In the 2012/2013 agricultural year, inoculation increased the AS 1572 hybrid silage yield by 6.16% and, in the 2013/2014 harvest, A. brasilense inoculation produced an increase of 16.15% for the Defender hybrid. Nitrogen fertilization applied at 0, 60, and 120 kg ha-1 N benefited the plants inoculated with A. brasilense. The statistical equations revealed that N rates between 0 and 184 kg ha-1 in A. brasilense inoculated plants raised the plant productivity for silage when compared with the control plants. Regarding the nutritional value of the silage, inoculation with A. brasilense increased the ether extract levels and total digestible nutrients and reduced the amount of acid detergent fiber. For all this, positive results with inoculation for silage yield are dependent on nitrogen fertilization rate. Inoculation with A. brasilense can promote changes in the maize silage quality, but with obtained results it is not possible to definitely conclude upon nutritive value of maize silage.

  1. Earthworm functional traits and interspecific interactions affect plant nitrogen acquisition and primary production

    NARCIS (Netherlands)

    Andriuzzi, Walter; Schmidt, Olaf; Brussaard, L.; Faber, J.H.; Bolger, T.

    2016-01-01

    We performed a greenhouse experiment to test how the functional diversity of earthworms, the dominant group of soil macro-invertebrates in many terrestrial ecosystems, affects nitrogen cycling and plant growth. Three species were chosen to represent a range of functional traits: Lumbricus terrestris

  2. Decreasing Fertilizer use by Optimizing Plant-microbe Interactions for Sustainable Supply of Nitrogen for Bioenergy Crops

    Science.gov (United States)

    Schicklberger, M. F.; Huang, J.; Felix, P.; Pettenato, A.; Chakraborty, R.

    2013-12-01

    Nitrogen (N) is an essential component of DNA and proteins and consequently a key element of life. N often is limited in plants, affecting plant growth and productivity. To alleviate this problem, tremendous amounts of N-fertilizer is used, which comes at a high economic price and heavy energy demand. In addition, N-fertilizer also significantly contributes to rising atmospheric greenhouse gas concentrations. Therefore, the addition of fertilizer to overcome N limitation is highly undesirable. To explore reduction in fertilizer use our research focuses on optimizing the interaction between plants and diazotrophic bacteria, which could provide adequate amounts of N to the host-plant. Therefore we investigated the diversity of microbes associated with Tobacco (Nicotiana tabacum) and Switchgrass (Panicum virgatum), considered as potential energy crop for bioenergy production. Several bacterial isolates with representatives from Alphaproteobacteria, Gammaproteobacteria, Actinobacteria, Bacteriodetes and Bacilli were obtained from the roots, leaves, rhizoplane and rhizosphere of these plants. Majority of these isolates grew best with simple sugars and small organic acids. As shown by PCR amplification of nifH, several of these isolates are potential N2-fixing bacteria. We investigated diazotrophs for their response to elevated temperature and salinity (two common climate change induced stresses found on marginal lands), their N2-fixing ability, and their response to root exudates (which drive microbial colonization of the plant). Together this understanding is necessary for the development of eco-friendly, economically sustainable energy crops by decreasing their dependency on fertilizer.

  3. Heavy metal concentrations in plants and different harvestable parts: A soil-plant equilibrium model

    International Nuclear Information System (INIS)

    Guala, Sebastian D.; Vega, Flora A.; Covelo, Emma F.

    2010-01-01

    A mathematical interaction model, validated by experimental results, was developed to modeling the metal uptake by plants and induced growth decrease, by knowing metal in soils. The model relates the dynamics of the uptake of metals from soil to plants. Also, two types of relationships are tested: total and available metal content. The model successfully fitted the experimental data and made it possible to predict the threshold values of total mortality with a satisfactory approach. Data are taken from soils treated with Cd and Ni for ryegrass (Lolium perenne, L.) and oats (Avena sativa L.), respectively. Concentrations are measured in the aboveground biomass of plants. In the latter case, the concentration of metals in different parts of the plants (tillering, shooting and earing) is also modeled. At low concentrations, the effects of metals are moderate, and the dynamics appear to be linear. However, increasing concentrations show nonlinear behaviors. - The model proposed in this study makes possible to characterize the nonlinear behavior of the soil-plant interaction with metal pollution.

  4. Heavy metal concentrations in plants and different harvestable parts: A soil-plant equilibrium model

    Energy Technology Data Exchange (ETDEWEB)

    Guala, Sebastian D. [Instituto de Ciencias, Universidad Nacional de General Sarmiento, Gutierrez 1150, Los Polvorines, Buenos Aires (Argentina); Vega, Flora A. [Departamento de Bioloxia Vexetal e Ciencia do Solo, Facultade de Bioloxia, Universidade de Vigo, Lagoas, Marcosende, 36310 Vigo, Pontevedra (Spain); Covelo, Emma F., E-mail: emmaf@uvigo.e [Departamento de Bioloxia Vexetal e Ciencia do Solo, Facultade de Bioloxia, Universidade de Vigo, Lagoas, Marcosende, 36310 Vigo, Pontevedra (Spain)

    2010-08-15

    A mathematical interaction model, validated by experimental results, was developed to modeling the metal uptake by plants and induced growth decrease, by knowing metal in soils. The model relates the dynamics of the uptake of metals from soil to plants. Also, two types of relationships are tested: total and available metal content. The model successfully fitted the experimental data and made it possible to predict the threshold values of total mortality with a satisfactory approach. Data are taken from soils treated with Cd and Ni for ryegrass (Lolium perenne, L.) and oats (Avena sativa L.), respectively. Concentrations are measured in the aboveground biomass of plants. In the latter case, the concentration of metals in different parts of the plants (tillering, shooting and earing) is also modeled. At low concentrations, the effects of metals are moderate, and the dynamics appear to be linear. However, increasing concentrations show nonlinear behaviors. - The model proposed in this study makes possible to characterize the nonlinear behavior of the soil-plant interaction with metal pollution.

  5. Effects of climate, CO2 concentration, nitrogen deposition, and stand age changes on the carbon budget of China's forests

    Science.gov (United States)

    Zhang, C.; Ju, W.; Zhang, F.; Mao, D.; Wang, X.

    2017-12-01

    Forests play an irreplaceable role in the Earth's terrestrial carbon budget which retard the atmospheric CO2 buildup. Understanding the factors controlling forest carbon budget is critical for reducing uncertainties in projections of future climate. The relative importance of climate, atmospheric CO2 concentration, nitrogen deposition, and stand age changes on carbon budget, however, remains unclear for China's forests. In this study, we quantify individual contribution of these drivers to the trends of forest carbon budget in China from 1901 to 2012 by integrating national datasets, the updated Integrated Terrestrial Ecosystem Carbon Cycle (InTEC) model and factorial simulations. Results showed that the average carbon sink in China's forests from 1982 to 2012 was 186.9 Tg C yr-1 with 68% (127.6 Tg C yr-1) of the sink in living biomass because of the integrated effects of climate, atmospheric CO2 concentration, nitrogen deposition, and stand age factors. Compared with the simulation of all factors combined, the estimated carbon sink during 1901-2012 would be reduced by 41.8 Tg C yr-1 if climate change, atmospheric CO2 concentration and nitrogen deposition factors were omitted, and reduced by 25.0 Tg C yr-1 if stand age factor was omitted. In most decades, these factors increased forest carbon sinks with the largest of 101.3, 62.9, and 44.0 Tg C yr-1 from 2000 to 2012 contributed by stand age, CO2 concentration and nitrogen deposition, respectively. During 1901-2012, climate change, CO2 concentration, nitrogen deposition and stand age contributed -13.3, 21.4, 15.4 and 25.0 Tg C yr-1 to the averaged carbon sink of China's forests, respectively. Our study also showed diverse regional patterns of forest carbon budget related to the importance of driving factors. Stand age effect was the largest in most regions, but the effects of CO2 concentration and nitrogen deposition were dominant in southern China.

  6. Winter cover crops as a best management practice for reducing nitrogen leaching

    Science.gov (United States)

    Ritter, W. F.; Scarborough, R. W.; Chirnside, A. E. M.

    1998-10-01

    The role of rye as a winter cover crop to reduce nitrate leaching was investigated over a three-year period on a loamy sand soil. A cover crop was planted after corn in the early fall and killed in late March or early April the following spring. No-tillage and conventional tillage systems were compared on large plots with irrigated corn. A replicated randomized block design experiment was conducted on small plots to evaluate a rye cover crop under no-tillage and conventional tillage and with commercial fertilizer, poultry manure and composted poultry manure as nitrogen fertilizer sources. Nitrogen uptake by the cover crop along with nitrate concentrations in groundwater and the soil profile (0-150 cm) were measured on the large plots. Soil nitrate concentrations and nitrogen uptake by the cover crop were measured on the small plots. There was no significant difference in nitrate concentrations in the groundwater or soil profile with and without a cover crop in either no-tillage or conventional tillage. Annual amounts of nitrate-N leached to the water-table varied from 136.0 to 190.1 kg/ha in 1989 and from 82.4 to 116.2 kg/ha in 1991. Nitrate leaching rates were somewhat lower with a cover crop in 1989, but not in 1990. There was no statistically significant difference in corn grain yields between the cover crop and non-cover crop treatments. The planting date and adequate rainfall are very important in maximizing nitrogen uptake in the fall with a rye cover crop. On the Delmarva Peninsula, the cover crop should probably be planted by October 1 to maximize nitrogen uptake rates in the fall. On loamy sand soils, rye winter cover crops cannot be counted on as a best management practice for reducing nitrate leaching in the Mid-Atlantic states.

  7. Functions of Glutamine Synthetase Isoforms in the Nitrogen Metabolism of Plants

    DEFF Research Database (Denmark)

    Guan, Miao

    Nitrogen is one of the major plant nutrients limiting crop production worldwide. In many parts of the world the availability of N fertilizers is limited, whereas in other parts of the world too much N fertilizer is applied, leading to serious negative environmental consequences. The use of N...... fertilizers accordingly needs to be optimized in order to make agriculture more sustainable. One pathway to achieve such optimization is to improve plant N use efficiency (NUE) by developing new crop genotypes with improved yield per unit of N fertilizer applied. For this purpose, more and better knowledge...... about bottlenecks in plant N assimilation is needed. Based on a reverse genetics strategy embracing characterization of knockout mutants in the model plant species Arabidopsis, the results obtained in this PhD study have provided new information about the specific roles of two genes Gln1;1 and Gln1...

  8. Non-Destructive Evaluation of the Leaf Nitrogen Concentration by In-Field Visible/Near-Infrared Spectroscopy in Pear Orchards

    Directory of Open Access Journals (Sweden)

    Jie Wang

    2017-03-01

    Full Text Available Non-destructive and timely determination of leaf nitrogen (N concentration is urgently needed for N management in pear orchards. A two-year field experiment was conducted in a commercial pear orchard with five N application rates: 0 (N0, 165 (N1, 330 (N2, 660 (N3, and 990 (N4 kg·N·ha−1. The mid-portion leaves on the year’s shoot were selected for the spectral measurement first and then N concentration determination in the laboratory at 50 and 80 days after full bloom (DAB. Three methods of in-field spectral measurement (25° bare fibre under solar conditions, black background attached to plant probe, and white background attached to plant probe were compared. We also investigated the modelling performances of four chemometric techniques (principal components regression, PCR; partial least squares regression, PLSR; stepwise multiple linear regression, SMLR; and back propagation neural network, BPNN and three vegetation indices (difference spectral index, normalized difference spectral index, and ratio spectral index. Due to the low correlation of reflectance obtained by the 25° field of view method, all of the modelling was performed on two spectral datasets—both acquired by a plant probe. Results showed that the best modelling and prediction accuracy were found in the model established by PLSR and spectra measured with a black background. The randomly-separated subsets of calibration (n = 1000 and validation (n = 420 of this model resulted in high R2 values of 0.86 and 0.85, respectively, as well as a low mean relative error (<6%. Furthermore, a higher coefficient of determination between the leaf N concentration and fruit yield was found at 50 DAB samplings in both 2015 (R2 = 0.77 and 2014 (R2 = 0.59. Thus, the leaf N concentration was suggested to be determined at 50 DAB by visible/near-infrared spectroscopy and the threshold should be 24–27 g/kg.

  9. Nocturnal uptake and assimilation of nitrogen dioxide by C3 and CAM plants.

    Science.gov (United States)

    Takahashi, Misa; Konaka, Daisuke; Sakamoto, Atsushi; Morikawa, Hiromichi

    2005-01-01

    In order to investigate nocturnal uptake and assimilation of NO2 by C3 and crassulacean acid metabolism (CAM) plants, they were fumigated with 4 microl l(-1) 15N-labeled nitrogen dioxide (NO2) for 8 h. The amount of NO2 and assimilation of NO2 by plants were determined by mass spectrometry and Kjeldahl-nitrogen based mass spectrometry, respectively. C3 plants such as kenaf (Hibiscus cannabinus), tobacco (Nicotiana tabacum) and ground cherry (Physalis alkekengi) showed a high uptake and assimilation during daytime as high as 1100 to 2700 ng N mg(-1) dry weight. While tobacco and ground cherry strongly reduced uptake and assimilation of NO2 during nighttime, kenaf kept high nocturnal uptake and assimilation of NO2 as high as about 1500 ng N mg(-1) dry weight. Stomatal conductance measurements indicated that there were no significant differences to account for the differences in the uptake of NO2 by tobacco and kenaf during nighttime. CAM plants such as Sedum sp., Kalanchoe blossfeldiana (kalanchoe) and Aloe arborescens exhibited nocturnal uptake and assimilation of NO2. However, the values of uptake and assimilation of NO2 both during daytime and nighttime was very low (at most about 500 ng N mg(-1) dry weight) as compared with those of above mentioned C3 plants. The present findings indicate that kenaf is an efficient phytoremediator of NO2 both during daytime and nighttime.

  10. Assimilation of /sup 15/N-labelled urea nitrogen and ammonium nitrate nitrogen by plants in case of root and non-root fertilization

    Energy Technology Data Exchange (ETDEWEB)

    Muravin, E A; Kozhemyachko, V A; Vernichenko, I V

    1974-01-01

    Assimilation of /sup 15/N labeled urea and ammonium nitrate in root and foliar application by spring wheat and barley has been studied during 1970-1973 period in a series of vegetative experiments at the Department of Agrochemistry, Timiryazev Agricultural Academy, and at D.N. Pryanishnikov Experimental Agrochemical Station. Additional fertilizer nitrogen applied at later ontogenesis stages (flowering and milky ripeness) is utilized mostly for protein synthesis in developing grains, thus leading to a significant increase in the relative grain protein content. A transfer of a part of nitrogen from the main portion of fertilizer at later stages of nitrition results, at the same time, in a lower yield. Nitrogen utilization degree of urea and ammonium nitrate, when introduced before sowing or at the flowering stage is similar but in the latter case, however, additional assimilation of soil nitrogen is lower. The assimilation rate of nitrogen in root application is the lower the later the fertilizer is applied. When ammonium nitrate is additionally applied as nutrition to barley at the milky ripeness stage, ammonia and nitrate nitrogen are assimilated at the same rate and to the same extent but ammonia nitrogen is more rapidly used for protein synthesis and the rate of its transfer to the developing grains is higher. The rate of nitrogen assimilation at plant is much higher in foliar than in root application. Wheat utilizes more urea nitrogen at the flowering stage when root application is used but at the milky ripeness stage foliar application is more effective.

  11. Overexpression of the CC-type glutaredoxin, OsGRX6 affects hormone and nitrogen status in rice plants

    Directory of Open Access Journals (Sweden)

    Ashraf eEl-Kereamy

    2015-11-01

    Full Text Available Glutaredoxins (GRXs are small glutathione dependent oxidoreductases that belong to the Thioredoxin (TRX superfamily and catalyze the reduction of disulfide bonds of their substrate proteins. Plant GRXs include three different groups based on the motif sequence, namely CPYC, CGFS and CC-type proteins. The rice CC-type proteins, OsGRX6 was identified during the screening for genes whose expression changes depending on the level of available nitrate. Overexpression of OsGRX6 in rice displayed a semi-dwarf phenotype. The OsGRX6 overexpressors contain a higher nitrogen content than the wild type, indicating that OsGRX6 plays a role in homeostatic regulation of nitrogen use. Consistent with this, OsGRX6 overexpressors displayed delayed chlorophyll degradation and senescence compared to the wild type plants. To examine if the growth defect of these transgenic lines attribute to disturbed plant hormone actions, plant hormone levels were measured. The levels of two cytokinins (CKs, 2-isopentenyladenine and trans-zeatin, and gibberellin A1 (GA1 were increased in these lines. We also found that these transgenic lines were less sensitive to exogenously applied GA, suggesting that the increase in GA1 is a result of the feedback regulation. These data suggest that OsGRX6 affects hormone signaling and nitrogen status in rice plants.

  12. Biogeochemistry and nitrogen cycling in an Arctic, volcanic ecosystem

    Science.gov (United States)

    Fogel, M. L.; Benning, L.; Conrad, P. G.; Eigenbrode, J.; Starke, V.

    2007-12-01

    As part of a study on Mars Analogue environments, the biogeochemistry of Sverrefjellet Volcano, Bocfjorden, Svalbard, was conducted and compared to surrounding glacial, thermal spring, and sedimentary environments. An understanding of how nitrogen might be distributed in a landscape that had extinct or very cold adapted, slow- growing extant organisms should be useful for detecting unknown life forms. From high elevations (900 m) to the base of the volcano (sea level), soil and rock ammonium concentrations were uniformly low, typically less than 1- 3 micrograms per gm of rock or soil. In weathered volcanic soils, reduced nitrogen concentrations were higher, and oxidized nitrogen concentrations lower. The opposite was found in a weathered Devonian sedimentary soil. Plants and lichens growing on volcanic soils have an unusually wide range in N isotopic compositions from -5 to +12‰, a range rarely measured in temperate ecosystems. Nitrogen contents and isotopic compositions of volcanic soils and rocks were strongly influenced by the presence or absence of terrestrial herbivores or marine avifauna with higher concentrations of N and elevated N isotopic compositions occurring as patches in areas immediately influenced by reindeer, Arctic fox ( Alopex lagopus), and marine birds. Because of the extreme conditions in this area, ephemeral deposition of herbivore feces results in a direct and immediate N pulses into the ecosystem. The lateral extent and distribution of marine- derived nitrogen was measured on a landscape scale surrounding an active fox den. Nitrogen was tracked from the bones of marine birds to soil to vegetation. Because of extreme cold, slow biological rates and nitrogen cycling, a mosaic of N patterns develops on the landscape scale.

  13. Action of Gibberellins on Growth and Metabolism of Arabidopsis Plants Associated with High Concentration of Carbon Dioxide1[W

    Science.gov (United States)

    Ribeiro, Dimas M.; Araújo, Wagner L.; Fernie, Alisdair R.; Schippers, Jos H.M.; Mueller-Roeber, Bernd

    2012-01-01

    Although the positive effect of elevated CO2 concentration [CO2] on plant growth is well known, it remains unclear whether global climate change will positively or negatively affect crop yields. In particular, relatively little is known about the role of hormone pathways in controlling the growth responses to elevated [CO2]. Here, we studied the impact of elevated [CO2] on plant biomass and metabolism in Arabidopsis (Arabidopsis thaliana) in relation to the availability of gibberellins (GAs). Inhibition of growth by the GA biosynthesis inhibitor paclobutrazol (PAC) at ambient [CO2] (350 µmol CO2 mol−1) was reverted by elevated [CO2] (750 µmol CO2 mol−1). Thus, we investigated the metabolic adjustment and modulation of gene expression in response to changes in growth of plants imposed by varying the GA regime in ambient and elevated [CO2]. In the presence of PAC (low-GA regime), the activities of enzymes involved in photosynthesis and inorganic nitrogen assimilation were markedly increased at elevated [CO2], whereas the activities of enzymes of organic acid metabolism were decreased. Under ambient [CO2], nitrate, amino acids, and protein accumulated upon PAC treatment; however, this was not the case when plants were grown at elevated [CO2]. These results suggest that only under ambient [CO2] is GA required for the integration of carbohydrate and nitrogen metabolism underlying optimal biomass determination. Our results have implications concerning the action of the Green Revolution genes in future environmental conditions. PMID:23090585

  14. Nitrogen metabolism in a grapevine in vitro system

    Directory of Open Access Journals (Sweden)

    Nuria Llorens

    2002-09-01

    Full Text Available Ammonium, nitrate, nitrite, protein and individual and total amino acid contents were determined in grapevine (cv Sauvignon cultured in vitro. The enzyme activities of nitrate and nitrite reductases, glutamine synthetase, glutamate synthetase and dehydrogenase were also determined. The nitrogen taken up by the plants was 70% of the total nitrogen in the medium after 75 days of in vitro culture. Most of the nitrogen taken up was recovered in the leaves, yet only ammonia and amino acid concentrations were significantly higher in leaves. In roots, glutamine was the most abundant amino acid. In leaves, the most abundant amino acids were aspartate, glutamate, glutamine, alanine, arginine and g-aminobutirate. All enzyme activities were higher in roots than in leaves. These results suggest that both roots and leaves incorporate inorganic nitrogen into organic forms.

  15. [Leaf nitrogen and phosphorus stoichiometry of shrubland plants in the rocky desertification area of Southwestern Hunan, China.

    Science.gov (United States)

    Jing, Yi Ran; Deng, Xiang Wen; Wei, Hui; Li, Yan Qiong; Deng, Dong Hua; Liu, Hao Jian; Xiang, Wen Hua

    2017-02-01

    In this paper, we took the leaves of shrubland plants in rocky desertification area in Southwestern Hunan as the research object to analyze the nitrogen (N) and phosphorus (P) stoichiometry characteristics for different functional groups and different grades of rocky desertification, i.e., light rocky desertification (LRD), moderate rocky desertification (MRD) and intense rocky desertification (IRD). The results showed that the average contents of N and P were 12.89 and 1.19 g·kg -1 , respectively, and N/P was 11.24 in common shrubland plants in the study area, which indicated that the growth of most plants were mainly limited by N. The content of N was declined in order of deciduous shrubs > evergreen shrubs > annual herbs > perennial herbs. The content of P and N/P were higher in deciduous shrubs than in perennial herbs. Significant differences were found among the main families of plants in terms of the contents of N, P and N/P in the study sites. The plants of Gramineae had the lowest contents of N and P, andtheir growth was mostly restricted by N, while Leguminosae had the highest content of N and N/P, and their productivity was majorly controlled by P. The contents of N and P in the leaves were significantly higher in dicotyledon plants and C3 plants than in monocotyledon plants and C4 plants, but the N/P was not significantly diffe-rent between these two plant categories. The nitrogen-fixing plants had higher content of N and N/P than the non-nitrogen-fixing plants, but the P content was not significantly different between these two plant groups. There were significant correlations between contents of N and P, N/P and N in all study plots. No significant correlation was found between N/P and P content in the examined rocky desertification sites, except for that in MRD. There were no significant differences of the contents of N, P and N/P under different grades of rocky desertification.

  16. Effect of Different Planting Methods of Onion (Allium cepa L. and Nitrogen Rate on Onion Growth Pattern under Interference with Purple Nutsedge (Cyperus rotundus

    Directory of Open Access Journals (Sweden)

    N Karimi Arpnahy

    2016-07-01

    Full Text Available Introduction Human always has looked for improving food production through increasing crops yield. In this path, weeds through competition with crop for environmental factors and inputs have reduced the quantity and quality of crop products. Competition for nitrogen absorption not only is the most common form of intra-specific competition amongst crop plants, but also is the most popular form of inter-specific competition in the system of weed-crop interference. Therefore, understanding the method of nitrogen absorption and its allocation in competing plants, will be a key tool to improve weed management strategies. Materials and Methods In order to study the effect of sowing method and nitrogen rate on the growth pattern of onion under interference with purple nutsedge, a factorial experiment based on a randomized complete block design was conducted with three replications at the Research Greenhouse of University of Birjand in 2013. The first factor included three sowing methods of onion (seed sowing, onion set and transplanting and the second factor consisted of three levels of nitrogen (50, 100 and 150 kg N ha-1, equivalent of 25, 50 and 75 mg N kg-1 soil that urea fertilizer with a purity of 46% was used for this purpose. Results and Discussion The results of the analysis of variance showed that nitrogen levels had significant effects on plant height, leaf area index as well as aboveground and bulb dry weights. Furthermore, sowing methods revealed significant effects on plant height, leaf number, leaf area index as well as aboveground and bulb dry weights. Moreover, the interaction between sowing methods and levels of nitrogen had a significant effect on plant height, leaf area index and aboveground dry weight, while it had no significant effect on leaf number and bulb dry weight. The results of the comparisons of the means of onion planting methods and nitrogen levels interactions confirmed that the superiority of the influence of onion set

  17. ROLE OF ETHYLENE IN RESPONSES OF PLANTS TO NITROGEN AVAILABILITY

    Directory of Open Access Journals (Sweden)

    M Iqbal R Khan

    2015-10-01

    Full Text Available Ethylene is a plant hormone involved in several physiological processes and regulates the plant development during the whole life. Stressful conditions usually activate ethylene biosynthesis and signalling in plants. The availability of nutrients, shortage or excess, influences plant metabolism and ethylene plays an important role in plant adaptation under suboptimal conditions. Among the plant nutrients, the nitrogen (N is one the most important mineral element required for plant growth and development. The availability of N significantly influences plant metabolism, including ethylene biology. The interaction between ethylene and N affects several physiological process such as leaf gas exchanges, roots architecture, leaf, fruits and flowers development. Low plant N use efficiency leads to N loss and N deprivation, which affect ethylene biosynthesis and tissues sensitivity, inducing cell damage and ultimately lysis. Plants may respond differently to N availability balancing ethylene production through its signalling network. This review discusses the recent advances in the interaction between N availability and ethylene at whole plant and different organ levels, and explores how N availability induces ethylene biology and plant responses. Exogenously applied ethylene seems to cope the stress conditions and improves plant physiological performance. This can be explained considering the expression of ethylene biosynthesis and signalling genes under different N availability. A greater understanding of the regulation of N by means of ethylene modulation may help to increase N use efficiency and directly influence crop productivity under conditions of limited N availability, leading to positive effects on the environment. Moreover, efforts should be focused on the effect of N deficiency or excess in fruit trees, where ethylene can have detrimental effects especially during postharvest.

  18. Adjustment of nitrogen fertilization to the needs of plants and limitations posed by the risk of nitrate accumulation and pollution of the soil and subsoil

    Energy Technology Data Exchange (ETDEWEB)

    Muller, J C

    1980-01-01

    In chalky Champagne, nitrogen balance is study to adjust availability to plant response. For this, it is necessary to know some parameters whose measurement is obtained progressively; plants exportation, nitrogen transformations in terms of transport processes in soil system, kinetic of mineralization of soil organic nitrogen, plants residus and agricultural waste waters. Lysimeters with rotation of Champagne (wheat, sugarbeet, potatoes...) are used to measure losses of nitrogen and follow transport of nitrates by mean of soil solution captors. Comparisons with field results, lysimeters results and laboratory experimentations are used to adjust an experimental model. Two examples show: 1) Nitrogen fertilizer requirement for wheat. 2) Possibility of maximum application for agricultural waste waters.

  19. Nitrogen fixed by wheat plants as affected by nitrogen fertilizer levels and Non-symbiotic bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Soliman, S; Aly, S S.M.; Gadalla, A M [Soils and Water Dept., Atomic Energy Authority, Cairo (Egypt); Abou Seeda, M [Soils and Water Dept., National Res. Centre, Cairo (Egypt)

    1995-10-01

    Inorganic nitrogen is required for all egyptian soils for wheat. Free living and N 2-fixing microorganisms are able associate closely related with the roots of geraminacae. Pot experiment studies were carried out to examine the response of wheat plants to inoculation with Azospirillum Brasilense and Azotobacter Chroococcum, single or in combination, under various levels of ammonium sulfate interaction between both the inoculants increased straw or grain yield as well as N-uptake by wheat plants with increasing N levels. Results showed that grains of wheat plants derived over 19,24 and 15% of its N content from the atmospheric - N 2 (Ndfa) with application of 25,50 and 75 mg N kg-1 soil in the presence of + Azospirillum + azotobacter. The final amount of N 2-fixers. The highest values of N 2-fixed were observed with mixed inoculants followed by inoculation with Azospirillum and then azotobacter. The recovery of applied ammonium sulfate-N was markedly increased by inoculation with combined inoculants, but less in uninoculated treatments. Seeds inoculated with non-symbiotic fixing bacteria could be saved about 25 kg N without much affecting the grain yield. i fig., 4 tabs.

  20. Nitrogen fixed by wheat plants as affected by nitrogen fertilizer levels and Non-symbiotic bacteria

    International Nuclear Information System (INIS)

    Soliman, S.; Aly, S.S.M.; Gadalla, A.M.; Abou Seeda, M.

    1995-01-01

    Inorganic nitrogen is required for all egyptian soils for wheat. Free living and N 2-fixing microorganisms are able associate closely related with the roots of geraminacae. Pot experiment studies were carried out to examine the response of wheat plants to inoculation with Azospirillum Brasilense and Azotobacter Chroococcum, single or in combination, under various levels of ammonium sulfate interaction between both the inoculants increased straw or grain yield as well as N-uptake by wheat plants with increasing N levels. Results showed that grains of wheat plants derived over 19,24 and 15% of its N content from the atmospheric - N 2 (Ndfa) with application of 25,50 and 75 mg N kg-1 soil in the presence of + Azospirillum + azotobacter. The final amount of N 2-fixers. The highest values of N 2-fixed were observed with mixed inoculants followed by inoculation with Azospirillum and then azotobacter. The recovery of applied ammonium sulfate-N was markedly increased by inoculation with combined inoculants, but less in uninoculated treatments. Seeds inoculated with non-symbiotic fixing bacteria could be saved about 25 kg N without much affecting the grain yield. i fig., 4 tabs

  1. Total recovery of nitrogen and phosphorus from three wetland plants by fast pyrolysis technology.

    Science.gov (United States)

    Liu, Wu-Jun; Zeng, Fan-Xin; Jiang, Hong; Yu, Han-Qing

    2011-02-01

    Fast pyrolysis of three wetland plants (Alligator weed, Oenanthe javanica and Typha angustifolia) in a vertical drop fixed bed reactor was investigated in this study. The experiments were carried out at different pyrolysis temperatures, and the maximum bio-oil yields achieved were 42.3%, 40.2% and 43.6% for Alligator weed, Oenanthe javanica and Typha angustifolia, respectively. The elemental composition of the bio-oil and char were analyzed, and the results show that a low temperature was appropriate for the nitrogen and phosphorus enrichment in char. GC-MS analysis shows that nitrogenous compounds, phenols and oxygenates were the main categories in the bio-oil. A series of leaching tests were carried out to examine the recovery of the nitrogen and phosphorus in the char, and the results indicate that significant fractions of nitrogen and phosphorus could be recovered by leaching process. Copyright © 2010 Elsevier Ltd. All rights reserved.

  2. Plant physiological responses to hydrologically mediated changes in nitrogen supply on a boreal forest floodplain: a mechanism explaining the discrepancy in nitrogen demand and supply

    Science.gov (United States)

    Lina Koyama; Knut. Kielland

    2011-01-01

    A discrepancy between plant demand and soil supply of nitrogen (N) has been observed in early successional stages of riparian vegetation in interior Alaska. We hypothesized that a hydrologically mediated N supply serves as a mechanism to balance this apparent deficiency of plant N supply. To test this hypothesis, we conducted a tracer experiment and measured the...

  3. Intercropping of green garlic (Allium sativum L.) induces nutrient concentration changes in the soil and plants in continuously cropped cucumber (Cucumis sativus L.) in a plastic tunnel.

    Science.gov (United States)

    Xiao, Xuemei; Cheng, Zhihui; Meng, Huanwen; Liu, Lihong; Li, Hezi; Dong, Yinxin

    2013-01-01

    A pot-based experiment was conducted to investigate nutrient concentrations in cucumber plants intercropped with various amounts of green garlic. In addition, the soil nutrient contents were studied over two consecutive growing seasons. The results revealed that the accumulation of biomass and the nutritional elements nitrogen (N), phosphorus (P), potassium (K), calcium (Ca) and manganese (Mn) in cucumber plants were significantly increased for intercropping treatments during the two growing seasons compared to monoculture. Conversely, magnesium (Mg) concentrations were decreased in the cucumber plants. Shoot iron (Fe) concentrations decreased whereas root Fe concentrations increased in the intercropping system. Shoot and root zinc (Zn) concentrations decreased during the fall of 2011 but increased during the spring of 2012. Soil organic matter and available N, P and K were significantly increased as the proportion of intercropped green garlic increasing. Medium levels of intercropping green garlic improved cucumber nutrient concentrations the most. The regression analysis showed that the concentrations of most elements were significantly related to the amounts of garlic bulbs, especially the microelements in the spring 2011. The available soil N and organic matter were linearly related to the amounts of garlic bulbs. The results indicate that the nutritional status of the soil and plants of continuously cropped cucumber could be improved by intercropping with green garlic.

  4. Carbon and Nitrogen Isotopic Survey of Northern Peruvian Plants: Baselines for Paleodietary and Paleoecological Studies

    Science.gov (United States)

    Szpak, Paul; White, Christine D.; Longstaffe, Fred J.; Millaire, Jean-François; Vásquez Sánchez, Víctor F.

    2013-01-01

    The development of isotopic baselines for comparison with paleodietary data is crucial, but often overlooked. We review the factors affecting the carbon (δ13C) and nitrogen (δ15N) isotopic compositions of plants, with a special focus on the carbon and nitrogen isotopic compositions of twelve different species of cultivated plants (n = 91) and 139 wild plant species collected in northern Peru. The cultivated plants were collected from nineteen local markets. The mean δ13C value for maize (grain) was −11.8±0.4 ‰ (n = 27). Leguminous cultigens (beans, Andean lupin) were characterized by significantly lower δ15N values and significantly higher %N than non-leguminous cultigens. Wild plants from thirteen sites were collected in the Moche River Valley area between sea level and ∼4,000 meters above sea level (masl). These sites were associated with mean annual precipitation ranging from 0 to 710 mm. Plants growing at low altitude sites receiving low amounts of precipitation were characterized by higher δ15N values than plants growing at higher altitudes and receiving higher amounts of precipitation, although this trend dissipated when altitude was >2,000 masl and MAP was >400 mm. For C3 plants, foliar δ13C was positively correlated with altitude and precipitation. This suggests that the influence of altitude may overshadow the influence of water availability on foliar δ13C values at this scale. PMID:23341996

  5. Carbon and nitrogen isotopic survey of northern peruvian plants: baselines for paleodietary and paleoecological studies.

    Directory of Open Access Journals (Sweden)

    Paul Szpak

    Full Text Available The development of isotopic baselines for comparison with paleodietary data is crucial, but often overlooked. We review the factors affecting the carbon (δ(13C and nitrogen (δ(15N isotopic compositions of plants, with a special focus on the carbon and nitrogen isotopic compositions of twelve different species of cultivated plants (n = 91 and 139 wild plant species collected in northern Peru. The cultivated plants were collected from nineteen local markets. The mean δ(13C value for maize (grain was -11.8±0.4 ‰ (n = 27. Leguminous cultigens (beans, Andean lupin were characterized by significantly lower δ(15N values and significantly higher %N than non-leguminous cultigens. Wild plants from thirteen sites were collected in the Moche River Valley area between sea level and ∼4,000 meters above sea level (masl. These sites were associated with mean annual precipitation ranging from 0 to 710 mm. Plants growing at low altitude sites receiving low amounts of precipitation were characterized by higher δ(15N values than plants growing at higher altitudes and receiving higher amounts of precipitation, although this trend dissipated when altitude was >2,000 masl and MAP was >400 mm. For C(3 plants, foliar δ(13C was positively correlated with altitude and precipitation. This suggests that the influence of altitude may overshadow the influence of water availability on foliar δ(13C values at this scale.

  6. Nitrogen balance, plasma free amino acid concentrations and urinary orotic acid excretion during long-term fasting in cats.

    Science.gov (United States)

    Biourge, V; Groff, J M; Fisher, C; Bee, D; Morris, J G; Rogers, Q R

    1994-07-01

    The purpose of this study was to ascertain the changes in nitrogen balance, plasma free amino acid concentrations, urinary orotic acid excretion and body weight during long-term fasting in adult obese cats. Results from eight cats that fasted rather than eat an unpalatable diet are reported. After 5 to 6 wk of weight loss, six of the eight cats developed signs of hepatic lipidosis, and the livers of all cats were severely infiltrated with lipids. Cats lost (mean +/- SE) 33.2 +/- 1.4% of their pre-fasting body weight. Mean nitrogen balance (+/- SE) was -547 +/- 54 mg.d-1.kg-2/3 for the first week, and then the net nitrogen losses decreased to a plateau (-303 +/- 52 mg.d-1.kg-2/3) after 4 wk. Fasting was associated with a decrease in plasma concentration of essential amino acids. When plasma amino acid concentrations were considered individually, concentrations of alanine, methionine, taurine, citrulline, arginine and tryptophan decreased the most (> or = 50%), whereas concentrations of glutamine, glutamate and ornithine significantly increased. Orotic acid was not detected in the urine during the fast. After 1 wk of fasting, obese cats had reduced nitrogen excretion, but not to the same extent as has been shown in obese humans or obese rats. It is suggested that the availability of several amino acids may become limiting for liver protein synthesis during fasting and that these deficiencies may contribute to the development of hepatic lipidosis. Orotic acid was not linked to hepatic lipidosis caused by fasting in cats.

  7. Optimal offering strategy for a concentrating solar power plant

    International Nuclear Information System (INIS)

    Dominguez, R.; Baringo, L.; Conejo, A.J.

    2012-01-01

    Highlights: ► Concentrating solar power (CSP) plants are becoming economically viable. ► CSP production is positively correlated with the demand. ► CSP plants can be made dispatchable by using molten salt storage facilities. ► Integrating CSP plants in a market constitutes a relevant challenge. -- Abstract: This paper provides a methodology to build offering curves for a concentrating solar power plant. This methodology takes into account the uncertainty in the thermal production from the solar field and the volatility of market prices. The solar plant owner is a price-taker producer that participates in a pool-based electricity market with the aim of maximizing its expected profit. To enhance the value of the concentrating solar power plant, a molten salt heat storage is considered, which allows producing electricity during periods without availability of the solar resource. To derive offering curves, a mixed-integer linear programming model is proposed, which is robust from the point of view of the uncertainty associated with the thermal production of the solar field and stochastic from the point of view of the uncertain market prices.

  8. The decrease in the population of Gluconacetobacter diazotrophicus in sugarcane after nitrogen fertilization is related to plant physiology in split root experiments.

    Science.gov (United States)

    Rodríguez-Andrade, Osvaldo; Fuentes-Ramírez, Luis E; Morales-García, Yolanda E; Molina-Romero, Dalia; Bustillos-Cristales, María R; Martínez-Contreras, Rebeca D; Muñoz-Rojas, Jesús

    2015-01-01

    It has been established that a decrease in the population of Gluconacetobacter diazotrophicus associated with sugarcane occurs after nitrogen fertilization. This fact could be due to a direct influence of NH(4)NO(3) on bacterial cells or to changes in plant physiology after fertilizer addition, affecting bacterial establishment. In this work, we observed that survival of G. diazotrophicus was directly influenced when 44.8mM of NH(4)NO(3) (640mgN/plant) was used for in vitro experiments. Furthermore, micropropagated sugarcane plantlets were inoculated with G. diazotrophicus and used for split root experiments, in which both ends of the system were fertilized with a basal level of NH(4)NO(3) (0.35mM; 10mgN/plant). Twenty days post inoculation (dpi) one half of the plants were fertilized with a high dose of NH(4)NO(3) (6.3mM; 180 mgN/plant) on one end of the system. This nitrogen level was lower than that directly affecting G. diazotrophicus cells; however, it caused a decrease in the bacterial population in comparison with control plants fertilized with basal nitrogen levels. The decrease in the population of G. diazotrophicus was higher in pots fertilized with a basal nitrogen level when compared with the corresponding end supplied with high levels of NH4NO3 (100dpi; 80 days post fertilization) of the same plant system. These observations suggest that the high nitrogen level added to the plants induce systemic physiological changes that affect the establishment of G. diazotrophicus. Copyright © 2015 Asociación Argentina de Microbiología. Publicado por Elsevier España, S.L.U. All rights reserved.

  9. Carbon and nitrogen metabolism in arbuscular mycorrhizal maize plants under low-temperature stress

    DEFF Research Database (Denmark)

    Zhu, Xian-Can; Song, Feng-Bin; Liu, Fulai

    2015-01-01

    Effects of the arbuscular mycorrhizal (AM) fungus Glomus tortuosum on carbon (C) and nitrogen (N) metabolism of Zea mays L. grown under low-temperature stress was investigated. Maize plants inoculated or not inoculated with AM fungus were grown in a growth chamber at 258C for 4 weeks...... temperature regimes. AM symbiosis modulated C metabolic enzymes, thereby inducing an accumulation of soluble sugars, which may have contributed to an increased tolerance to low temperature, and therefore higher Pn in maize plants....

  10. Nitrogen transfer from forage legumes to nine neighbouring plants in a multi-species grassland

    DEFF Research Database (Denmark)

    Pirhofer-Walzl, Karin; Rasmussen, Jim; Jensen, Henning Høgh

    2012-01-01

    Legumes play a crucial role in nitrogen supply to grass-legume mixtures for ruminant fodder. To quantify N transfer from legumes to neighbouring plants in multi-species grasslands we established a grass-legume-herb mixture on a loamy-sandy site in Denmark. White clover (Trifolium repens L.), red...... amounts of N from legumes than dicotyledonous plants which generally have taproots. Slurry application mainly increased N transfer from legumes to grasses. During the growing season the three legumes transferred approximately 40 kg N ha-1 to neighbouring plants. Below-ground N transfer from legumes...

  11. Changes in the content of total nitrogen and mineral nitrogen in the basil herb depending on the cultivar and nitrogen nutrition

    Directory of Open Access Journals (Sweden)

    Katarzyna Dzida

    2013-04-01

    Full Text Available Among fundamental nutrients, nitrogen fertilization is considered one of the most effective factors affecting both the yield and the quality of plant material. Nitrogen form used for fertilizing is also of great importance. The aim of this study was to investigate the impact of nitrogen nutrition (calcium nitrate, ammonium nitrate, and urea as well as (green, purple, and‘Fino Verde’ on the chemical composition and yielding of basil (Ocimum basilicumL.. After drying the plant material at a temperature of 60°C and milling, total nitrogen was determined by means of Kjeldahl method, while mineral nitrogen content (N-NH 4, N-NO 3 was analyzed in 2% acetic acid extract. Yield of fresh basil matter depended significantly on the variety grown. The highest yields were obtained from a cultivar of ‘Fino Verde’ fertilized with ammonium nitrate. The purple variety plants fertilized with urea were characterized by a largest amount of total nitrogen. The‘Fino Verde’cultivar fertilized with urea accumulated the least quantities of nitrates in the basil herb.

  12. The effects of nitrogen fixation and plant growth-promoting in rice-diazotroph association

    International Nuclear Information System (INIS)

    Lin Fan; Wang Lu

    1999-05-01

    This is a review of studies on applications of the genetic engineered ammonium-tolerant diazotroph as an inoculum with the effects of nitrogen-fixation, plant growth-promoting and yield-increasing on rice and some crops by using 15 N tracer in mini-plot and field experiments in resent years

  13. How the use of nitrogen fertiliser may switch plant suitability for aphids: the case of Miscanthus, a promising biomass crop, and the aphid pest Rhopalosiphum maidis.

    Science.gov (United States)

    Bogaert, Florent; Chesnais, Quentin; Catterou, Manuella; Rambaud, Caroline; Doury, Géraldine; Ameline, Arnaud

    2017-08-01

    The use of nitrogen fertiliser in agrosystems can alter plant nitrogen and consequently improve nutrient availability for herbivores, potentially leading to better performance for herbivores and higher pest pressure in the field. We compared, in laboratory conditions, the effects of nitrogen fertilisation on a promising biomass crop, Miscanthus × giganteus, and its parents M. sinensis and M. sacchariflorus. The plant-mediated effects were compared on the second trophic level, the green corn leaf aphid Rhopalosiphum maidis. Results showed that the biomass and leaf C:N ratio of M. sinensis plants treated with nitrogen fertiliser were significantly greater than those of non-treated plants. As regards M. × giganteus and M. sacchariflorus, the only reported change was a significantly smaller leaf C:N ratio for treated M. sacchariflorus compared with non-treated plants. Surprisingly, nitrogen fertilisation had opposite effects on plant-herbivore interactions. Following nitrogen treatments, M. sinensis was less suitable in terms of intrinsic rate of increase for R. maidis, the feeding behaviour of which was negatively affected, while M. sacchariflorus and M. × giganteus exhibited greater suitability in terms of aphid weight. Nitrogen fertilisation had contrasting effects on the three species of Miscanthus plants. These effects cascaded up to the second trophic level, R. maidis aphid pests, either through a modification of their weight or demographic parameters. The implications of these results were discussed in the context of agricultural sustainability and intensive production practices. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  14. Technical Note: Comparison between a direct and the standard, indirect method for dissolved organic nitrogen determination in freshwater environments with high dissolved inorganic nitrogen concentrations

    DEFF Research Database (Denmark)

    Graeber, Daniel; Gelbrecht, Jörg; Kronvang, Brian

    2012-01-01

    Research on dissolved organic nitrogen (DON) in aquatic systems with high dissolved inorganic nitrogen (DIN, the sum of NO3–, NO2– and NH4+) concentrations is often hampered by high uncertainties regarding the determined DON concentration. The reason is that DON is determined indirectly...... accuracy at high DIN : TDN ratios, we investigated the DON measurement accuracy of this standard approach according to the DIN : TDN ratio and compared it to the direct measurement of DON by size-exclusion chromatography (SEC) for freshwater systems. For this, we used standard compounds and natural samples...... separation of DON from DIN. For SEC, DON recovery rates were 91–108% for five pure standard compounds and 89–103% for two standard compounds, enriched with DIN. Moreover, SEC resulted in 93–108% recovery rates for DON concentrations of natural samples at a DIN : TDN ratio of 0.8 and the technique...

  15. Regulation of reactive oxygen and nitrogen species by salicylic acid in rice plants under salinity stress conditions

    Science.gov (United States)

    Mun, Bong-Gyu; Khan, Abdul Latif; Waqas, Muhammad; Kim, Hyun-Ho; Shahzad, Raheem; Imran, Muhammad

    2018-01-01

    This study investigated the regulatory role of exogenous salicylic acid (SA) in rice and its effects on toxic reactive oxygen and nitrogen species during short-term salinity stress. SA application (0.5 and 1.0 mM) during salinity-induced stress (100 mM NaCl) resulted in significantly longer shoot length and higher chlorophyll and biomass accumulation than with salinity stress alone. NaCl-induced reactive oxygen species production led to increased levels of lipid peroxidation in rice plants, which were significantly reduced following SA application. A similar finding was observed for superoxide dismutase; however, catalase (CAT) and ascorbate peroxidase (APX) were significantly reduced in rice plants treated with SA and NaCl alone and in combination. The relative mRNA expression of OsCATA and OsAPX1 was lower in rice plants during SA stress. Regarding nitrogenous species, S-nitrosothiol (SNO) was significantly reduced initially (one day after treatment [DAT]) but then increased in plants subjected to single or combined stress conditions. Genes related to SNO biosynthesis, S-nitrosoglutathione reductase (GSNOR1), NO synthase-like activity (NOA), and nitrite reductase (NIR) were also assessed. The mRNA expression of GSNOR1 was increased relative to that of the control, whereas OsNOA was expressed at higher levels in plants treated with SA and NaCl alone relative to the control. The mRNA expression of OsNR was decreased in plants subjected to single or combination treatment, except at 2 DAT, compared to the control. In conclusion, the current findings suggest that SA can regulate the generation of NaCl-induced oxygen and nitrogen reactive species in rice plants. PMID:29558477

  16. Recent Nitrogen Deposition In Poland Monitored With The Moss Pleurozium Schreberi

    Directory of Open Access Journals (Sweden)

    Kapusta Paweł

    2014-07-01

    Full Text Available In this study, atmospheric deposition of nitrogen was determined for Poland by moss biomonitoring. Nitrogen content was measured in the moss Pleurozium schreberi (Willd. ex Brid. Mitt. sampled in 2010 from 320 sites evenly distributed throughout the country. Mosses (green parts contained an average 1.56% nitrogen. The result places Poland among the European countries most polluted by airborne nitrogen. The highest nitrogen concentrations were found in mosses from the central and southern parts of the country, and the lowest in samples from some eastern and northern regions. Multiple regression showed that this variability was due mostly to nitrogen emissions from agricultural and industrial areas (moss nitrogen was positively associated with the consumption of mineral nitrogen fertilizers and the magnitude of particulate pollution. Some details of the spatial variability of the nitrogen data indicate that local and regional point sources of pollution (e.g., chemical plants played an important role in shaping the nitrogen deposition pattern

  17. Effects of CO2 enrichment on photosynthesis, growth, and nitrogen metabolism of the seagrass Zostera noltii

    Science.gov (United States)

    Alexandre, Ana; Silva, João; Buapet, Pimchanok; Björk, Mats; Santos, Rui

    2012-01-01

    Seagrass ecosystems are expected to benefit from the global increase in CO2 in the ocean because the photosynthetic rate of these plants may be Ci-limited at the current CO2 level. As well, it is expected that lower external pH will facilitate the nitrate uptake of seagrasses if nitrate is cotransported with H+ across the membrane as in terrestrial plants. Here, we investigate the effects of CO2 enrichment on both carbon and nitrogen metabolism of the seagrass Zostera noltii in a mesocosm experiment where plants were exposed for 5 months to two experimental CO2 concentrations (360 and 700 ppm). Both the maximum photosynthetic rate (Pm) and photosynthetic efficiency (α) were higher (1.3- and 4.1-fold, respectively) in plants exposed to CO2-enriched conditions. On the other hand, no significant effects of CO2 enrichment on leaf growth rates were observed, probably due to nitrogen limitation as revealed by the low nitrogen content of leaves. The leaf ammonium uptake rate and glutamine synthetase activity were not significantly affected by increased CO2 concentrations. On the other hand, the leaf nitrate uptake rate of plants exposed to CO2-enriched conditions was fourfold lower than the uptake of plants exposed to current CO2 level, suggesting that in the seagrass Z. noltii nitrate is not cotransported with H+ as in terrestrial plants. In contrast, the activity of nitrate reductase was threefold higher in plant leaves grown at high-CO2 concentrations. Our results suggest that the global effects of CO2 on seagrass production may be spatially heterogeneous and depend on the specific nitrogen availability of each system. Under a CO2 increase scenario, the natural levels of nutrients will probably become limiting for Z. noltii. This potential limitation becomes more relevant because the expected positive effect of CO2 increase on nitrate uptake rate was not confirmed. PMID:23145346

  18. Effects of CO(2) enrichment on photosynthesis, growth, and nitrogen metabolism of the seagrass Zostera noltii.

    Science.gov (United States)

    Alexandre, Ana; Silva, João; Buapet, Pimchanok; Björk, Mats; Santos, Rui

    2012-10-01

    Seagrass ecosystems are expected to benefit from the global increase in CO(2) in the ocean because the photosynthetic rate of these plants may be C(i)-limited at the current CO(2) level. As well, it is expected that lower external pH will facilitate the nitrate uptake of seagrasses if nitrate is cotransported with H(+) across the membrane as in terrestrial plants. Here, we investigate the effects of CO(2) enrichment on both carbon and nitrogen metabolism of the seagrass Zostera noltii in a mesocosm experiment where plants were exposed for 5 months to two experimental CO(2) concentrations (360 and 700 ppm). Both the maximum photosynthetic rate (P(m)) and photosynthetic efficiency (α) were higher (1.3- and 4.1-fold, respectively) in plants exposed to CO(2)-enriched conditions. On the other hand, no significant effects of CO(2) enrichment on leaf growth rates were observed, probably due to nitrogen limitation as revealed by the low nitrogen content of leaves. The leaf ammonium uptake rate and glutamine synthetase activity were not significantly affected by increased CO(2) concentrations. On the other hand, the leaf nitrate uptake rate of plants exposed to CO(2)-enriched conditions was fourfold lower than the uptake of plants exposed to current CO(2) level, suggesting that in the seagrass Z. noltii nitrate is not cotransported with H(+) as in terrestrial plants. In contrast, the activity of nitrate reductase was threefold higher in plant leaves grown at high-CO(2) concentrations. Our results suggest that the global effects of CO(2) on seagrass production may be spatially heterogeneous and depend on the specific nitrogen availability of each system. Under a CO(2) increase scenario, the natural levels of nutrients will probably become limiting for Z. noltii. This potential limitation becomes more relevant because the expected positive effect of CO(2) increase on nitrate uptake rate was not confirmed.

  19. Tillering dynamics of Tanzania guinea grass under nitrogen levels and plant densities - doi: 10.4025/actascianimsci.v34i4.13382

    Directory of Open Access Journals (Sweden)

    Manoel Eduardo Rozalino Santos

    2012-10-01

    Full Text Available This study evaluated the influence of nitrogen levels (N and plant density (D on the tillering dynamics of Tanzania guinea grass (Panicum maximum Jacq.. Treatments were arranged in a completely randomized block design with 12 treatments and two replicates in a factorial scheme (4 × 3 with four levels of N (0, 80, 160 or 320 kg ha-1 N and three plant densities (9, 25, and 49 plant m-². Higher number of tillers was observed in the treatment with 9 plants m-² and under higher levels of N, especially in the second and third generations. Still, the N influenced quadratically the appearance rate of basal and total tillers, which were also affected by plant density and interaction N × D. However, the appearance rate of aerial tiller was not influenced by factors evaluated. The mortality rate of total tiller was influenced quadratically by the nitrogen levels and plant densities. The mortality rate of basal tiller responded quadratically to plant density, whereas the mortality rate of aerial tiller increased linearly with fertilization. Pastures with low or intermediate densities fertilized with nitrogen, presented a more intense pattern of tiller renewal.

  20. Chronic disease associated with long-term concentrations of nitrogen dioxide

    Energy Technology Data Exchange (ETDEWEB)

    Abbey, D.E.; Colome, S.D.; Mills, P.K.; Burchette, R.; Beeson, W.L.; Tian, Y. (Loma Linda Univ., CA (United States))

    1993-04-01

    A prospective epidemiologic cohort study of 6,000 residentially stable and non-smoking Seventh-day Adventists (SDA) in California was conducted to evaluate long-term cumulative levels of ambient nitrogen dioxide (NO2) in association with several chronic diseases. These diseases included respiratory symptoms, cancer, myocardial infarction (MI), and all natural causes mortality. Cumulative ambient concentrations of NO2 were estimated for each study subject using monthly interpolations from fixed site monitoring stations and applying these estimates to the monthly residence and work place zip code histories of study participants. In addition, a personal NO2 exposure study on a randomly selected sample of 650 people in southern California was conducted to predict total personal NO2 exposure using household and lifestyle characteristics and ambient NO2 concentrations. It was found that good predictability could be obtained (correlation coefficient between predicted and observed values = 0.79) from a model predicting personal NO2. The resulting regression equations from the personal NO2 exposure study were applied to the epidemiologic study cohort to adjust ambient concentrations of NO2.

  1. Regime shift by an exotic nitrogen-fixing shrub mediates plant facilitation in primary succession.

    Directory of Open Access Journals (Sweden)

    Adriano Stinca

    Full Text Available Ecosystem invasion by non-native, nitrogen-fixing species is a global phenomenon with serious ecological consequences. However, in the Mediterranean basin few studies addressed the impact of invasion by nitrogen-fixing shrubs on soil quality and hydrological properties at local scale, and the possible effects on succession dynamics and ecosystem invasibility by further species. In this multidisciplinary study we investigated the impact of Genista aetnensis (Biv. DC., an exotic nitrogen-fixing shrub, on the Vesuvius Grand Cone (Southern Italy. Specifically, we tested the hypotheses that the invasion of G. aetnensis has a significant impact on soil quality, soil hydrological regime, local microclimate and plant community structure, and that its impact increases during the plant ontogenetic cycle. We showed that G. aetnensis, in a relatively short time-span (i.e. ~ 40 years, has been able to build-up an island of fertility under its canopy, by accumulating considerable stocks of C, N, and P in the soil, and by also improving the soil hydrological properties. Moreover, G. aetnensis mitigates the daily range of soil temperature, reducing the exposure of coexisting plants to extremely high temperatures and water loss by soil evaporation, particularly during the growing season. Such amelioration of soil quality, coupled with the mitigation of below-canopy microclimatic conditions, has enhanced plant colonization of the barren Grand Cone slopes, by both herbaceous and woody species. These results suggest that the invasion of G. aetnensis could eventually drive to the spread of other, more resource-demanding exotic species, promoting alternative successional trajectories that may dramatically affect the local landscape. Our study is the first record of the invasion of G. aetnensis, an additional example of the regime shifts driven by N-fixing shrubs in Mediterranean region. Further studies are needed to identity specific management practices that can

  2. Differences in Plant Traits among N-fixing Trees in Hawaii Affect Understory Nitrogen Cycling

    Science.gov (United States)

    August-Schmidt, E.; D'Antonio, C. M.

    2016-12-01

    Nitrogen (N) fixing trees are frequently used to restore soil functions to degraded ecosystems because they can increase soil organic matter and N availability. Although N-fixers are lumped into a single functional group, the quality and quantity of the plant material they produce and the rate at which they accrete and add N to the cycling pool likely vary. This talk will focus on the questions: (1) How does N-cycling differ among N-fixing tree species? And (2) Which plant traits are most important in distinguishing the soil N environment? To address these questions, we investigated planted stands of two Hawaiian native N-fixing trees (Acacia koa and Sophora chrysophylla) and `natural' stands of an invasive N-fixing tree (Morella faya) in burned seasonal submontane woodlands in Hawaii Volcanoes National Park. We measured the relative availability of nitrogen in the soil pool and understory plant community as well as characterizing the rate and amount of N cycling in these stands both in the field and using long term soil incubations in the laboratory. We found that N is cycled very differently under these three N-fixers and that this correlates with differences in their leaf traits. S. chrysophylla had the highest foliar %N and highest specific leaf area, and stands of these trees are associated with faster N-cycling, resulting in greater N availability compared to all other site types. Incubated S. chrysophylla soils mineralized almost twice as much N as any other soil type over the course of the experiment. The comparatively high-N environment under S. chrysophylla suggests that litter quality may be more important than litter quantity in determining nitrogen availability to the understory community.

  3. Antibiotics impact plant traits, even at small concentrations

    Science.gov (United States)

    Deloy, Andrea; Volkert, Anna Martina; Leonhardt, Sara Diana; Pufal, Gesine

    2017-01-01

    Abstract Antibiotics of veterinary origin are released to agricultural fields via grazing animals or manure. Possible effects on human health through the consumption of antibiotic exposed crop plants have been intensively investigated. However, information is still lacking on the effects of antibiotics on plants themselves, particularly on non-crop species, although evidence suggests adverse effects of antibiotics on growth and performance of plants. This study evaluated the effects of three major antibiotics, penicillin, sulfadiazine and tetracycline, on the germination rates and post-germinative traits of four plant species during ontogenesis and at the time of full development. Antibiotic concentrations were chosen as to reflect in vivo situations, i.e. concentrations similar to those detected in soils. Plant species included two herb species and two grass species, and represent two crop-species and two non-crop species commonly found in field margins, respectively. Germination tests were performed in climate chambers and effects on the remaining plant traits were determined in greenhouse experiments. Results show that antibiotics, even in small concentrations, significantly affect plant traits. These effects include delayed germination and post-germinative development. Effects were species and functional group dependent, with herbs being more sensitive to antibiotics then grasses. Responses were either negative or positive, depending on plant species and antibiotic. Effects were generally stronger for penicillin and sulfadiazine than for tetracycline. Our study shows that cropland species respond to the use of different antibiotics in livestock industry, for example, with delayed germination and lower biomass allocation, indicating possible effects on yield in farmland fertilized with manure containing antibiotics. Also, antibiotics can alter the composition of plant species in natural field margins, due to different species-specific responses, with unknown

  4. Interspecific Plant Interactions Reflected in Soil Bacterial Community Structure and Nitrogen Cycling in Primary Succession

    Directory of Open Access Journals (Sweden)

    Joseph E. Knelman

    2018-02-01

    Full Text Available Past research demonstrating the importance plant–microbe interactions as drivers of ecosystem succession has focused on how plants condition soil microbial communities, impacting subsequent plant performance and plant community assembly. These studies, however, largely treat microbial communities as a black box. In this study, we sought to examine how emblematic shifts from early successional Alnus viridus ssp. sinuata (Sitka alder to late successional Picea sitchensis (Sitka spruce in primary succession may be reflected in specific belowground changes in bacterial community structure and nitrogen cycling related to the interaction of these two plants. We examined early successional alder-conditioned soils in a glacial forefield to delineate how alders alter the soil microbial community with increasing dominance. Further, we assessed the impact of late-successional spruce plants on these early successional alder-conditioned microbiomes and related nitrogen cycling through a leachate addition microcosm experiment. We show how increasingly abundant alder select for particular bacterial taxa. Additionally, we found that spruce leachate significantly alters the composition of these microbial communities in large part by driving declines in taxa that are enriched by alder, including bacterial symbionts. We found these effects to be spruce specific, beyond a general leachate effect. Our work also demonstrates a unique influence of spruce on ammonium availability. Such insights bolster theory relating the importance of plant–microbe interactions with late-successional plants and interspecific plant interactions more generally.

  5. Determination of the nitrogen concentration in epitaxial layers of GaAs /SUB 1-x/ p /SUB x/ by the optical method

    International Nuclear Information System (INIS)

    Lupal, M.V.; Klot, B; Nikhter, K.; Pikhtin, A.N.; Trapp, M.

    1986-01-01

    This paper determines the dependence of the cross section for absorption in the A /SUB N/ line of a bound exciton on the nitrogen content in the solid solution GaAs /SUB 1-x/ P /SUB x/ by comparing the results of optical measurements with the data from secondary ionic mass spectrometry, and these results are used to study the effect of technological factors on the nitrogen concentration epitaxial layers obtained by the gas-transport method. Doping was carried out with nitrogen by injecting ammonia into the reactor zone; the partial pressure of the ammonia was varied from 1 to 25 kPa. Aside from nitrogen, the authors doped the layers with shallow donor Te. It is established that the solubility of nitrogen in the solid solution decreases as the arsenic content increases when the convenient optical method for determining the nitrogen concentration in epitaxial GaAs /SUB 1-x/ P /SUB x/ layers is used

  6. Influence of seed priming and nitrogen application on the growth and development of maize seedlings in saline conditions

    International Nuclear Information System (INIS)

    Cao, D.; Zhang, Y.; Zhang, Y.; Guan, B.

    2018-01-01

    Seed priming and nitrogen application can promote plant tolerance and resistance to salt stress. To explore the combined effects of these two factors on the growth of salt-stressed seedlings, four treatments (priming + nitrogen application, PN; priming + no nitrogen application, P; unprimed + nitrogen application, UPN; and control treatment unprimed + no nitrogen application, UP) were applied to evaluate the responses of plant morphology, antioxidase systems, physiological and biochemical parameters of the maize seedlings under different concentrations of salt stress (0, 100, 200, and 300 mM). The results indicated that under salt stress, the priming treatment facilitated the growth of seedlings of root and stems, increased the amount of osmoregulatory substances, and enhanced the antioxidase activity and resistance of the maize seedlings. After nitrogen application during the maize growth stage, the growth of young leaves was greatly promoted along with an increase in the soluble protein and chlorophyll content. The combination of seed priming and nitrogen application significantly improved the plant growth, antioxidase activities and physiological and biochemical parameters. (author)

  7. Effect of plant spacing and nitrogen fertilizer on the growth and yeild ...

    African Journals Online (AJOL)

    A field trial on pepper (capsicum annum L. var Nsukka yellow pepper) was conducted at the Ebonyi State University, Faculty of Agriculture experimental farm during the 1999 cropping season. Four nitrogen rates (0,50, 100 and 150kgN/ha) and three plant spacings (30cm x 75cm, 45cm x 75cm, 60cm x 75cm) were ...

  8. Economic analysis of nitrogen fertilization in winter bean plant under no-tillage system

    Directory of Open Access Journals (Sweden)

    Michelle Traete Sabundjian

    2014-09-01

    Full Text Available With the expansion and diversity of the no-tillage system, it is necessary to evaluate the economic benefits generated throughout the production cycle, especially those related to remnants of previous crops and nitrogen fertilizer management of succeeding crops. This study aimed to evaluate the economic viability of four cover nitrogen doses on winter bean grain yield grown under no-tillage system after different crops. The experimental design was randomized blocks with four replications, in a 8x4 factorial scheme, with 32 treatments consisting of a combination of crop remnants (mayze; mayze - Azospirillum brasilense; Urochloa ruziziensis; Urochloa ruziziensis - Azospirillum brasilense; mayze + U. ruziziensis; mayze -A. brasilense + U. ruziziensis; mayze + U. ruziziensis - A. brasilense; mayze -A. brasilense + U. ruziziensis - A. brasilense and cover nitrogen doses (0 kg ha-1, 30 kg ha-1, 60 kg ha-1 and 90 kg ha-1. It was possible to conclude that the highest grain yield of winter bean plants irrigated by aspersion was obtained with the use of 90 kg ha-1 of cover nitrogen in succession to Urochloa ruziziensis without the inoculation of Azospirillum brasilense. In order to improve profits, it is recommended to apply 90 kg ha-1 of cover nitrogen to bean crops succeeding the other crops, except for inoculated Urochloa ruziziensis.

  9. Efeito da concentração de nitrogênio na solução nutritiva e do número de frutos por planta sobre a produção do meloeiro Effect of nitrogen concentration in nutrient solution and number of fruits per plant on yield of melon

    Directory of Open Access Journals (Sweden)

    Luis Felipe V. Purquerio

    2003-06-01

    Full Text Available O trabalho foi conduzido em casa de vegetação, na UNESP em Jaboticabal (SP, de junho a novembro de 2001, com o objetivo de avaliar a produção do melão (Cucumis melo var. reticulatus, híbrido Bônus nº2, cultivado em sistema hidropônico NFT, em função da concentração de nitrogênio na solução nutritiva (80, 140, 200 e 300 mg L-1 e número de frutos por planta (2, 3, 4 e livre. O delineamento experimental utilizado foi o de blocos ao acaso, em parcelas subdivididas, com seis repetições. Aos 80 dias após o transplantio, foram observados 2, 3, 4 e 5,1 frutos por planta e, posteriormente na colheita, 2, 2,9, 3,0 e 3,4 frutos por planta, respectivamente para os tratamentos com 2, 3, 4 e fixação livre, sendo esta redução atribuída ao abortamento de frutos. Houve redução no peso médio do 1º, 2º e 3º fruto colhido, com o aumento da concentração de nitrogênio. Plantas com o menor número de frutos, apresentaram maior peso médio dos mesmos, porém com menor produção por planta. A maior produção (2.474 g/planta foi obtida com 80 mg L-1 de nitrogênio na solução nutritiva.The effects of different nitrogen concentrations (80; 140; 200 and 300 mg L-1 and fruit number per plant (2; 3; 4 and free setting, were investigated on net melon production (Cucumis melo var. reticulatus, Bonus nº 2 hybrid. The experiment was carried out in Jaboticabal, São Paulo State, Brazil, in NFT hydroponic system, from June to November, 2001. The experimental design was of randomized split plots, replicated six times. At 80 days after seedling transplant 2; 3; 4 and 5.1 fruits per plant were found. However, at harvest there were 2; 2.9; 3.0 and 3.4 fruits per plant, relative to 2; 3; 4 and free setting per plant treatment. This observed fruit reduction was attributed to fruit abortion. With the increase of nitrogen concentrations a reduction in first, second and third fruit weight was found. Plants with fewer fruits, produced higher average

  10. The effect of nitrogen on the development and photosynthetic activity ...

    African Journals Online (AJOL)

    Whole plant net photosynthetic rates appeared to vary according to the units in which the activity is expressed. The optimum levels of photosynthetic activity differed with the stage of development, depending on the basis of expression. The form and concentration of nitrogen applied influenced morphological development ...

  11. Carbon Concentration and Carbon-to-Nitrogen Ratio Influence Submerged-Culture Conidiation by the Potential Bioherbicide Colletotrichum truncatum NRRL 13737

    Science.gov (United States)

    Jackson, Mark A.; Bothast, Rodney J.

    1990-01-01

    We assessed the influence of various carbon concentrations and carbon-to-nitrogen (C:N) ratios on Colletotrichum truncatum NRRL 13737 conidium formation in submerged cultures grown in a basal salts medium containing various amounts of glucose and Casamino Acids. Under the nutritional conditions tested, the highest conidium concentrations were produced in media with carbon concentrations of 4.0 to 15.3 g/liter. High carbon concentrations (20.4 to 40.8 g/liter) inhibited sporulation and enhanced the formation of microsclerotiumlike hyphal masses. At all the carbon concentrations tested, a culture grown in a medium with a C:N ratio of 15:1 produced more conidia than cultures grown in media with C:N ratios of 40:1 or 5:1. While glucose exhaustion was often coincident with conidium formation, cultures containing residual glucose sporulated and those with high carbon concentrations (>25 g/liter) exhausted glucose without sporulation. Nitrogen source studies showed that the levels of C. truncatum NRRL 13737 conidiation were similar for all protein hydrolysates tested. Reduced conidiation occurred when amino acid and inorganic nitrogen sources were used. Of the nine carbon sources evaluated, acetate as the sole carbon source resulted in the lowest level of sporulation. Images PMID:16348348

  12. Plant yield and nitrogen content of a digitgrass in response to azospirillum inoculation

    Energy Technology Data Exchange (ETDEWEB)

    Schank, S.C.; Weier, K.L.; MacRae, I.C.

    1981-02-01

    Two Australian soils, a vertisol (pH 6.8, 0.299% N) and a sandy yellow podzol (pH 6.2, 0.042% N), were used with digitgrass, Digitaria sp. X46-2 (PI 421785), in a growth room experiment. Comparisons were made between plants inoculated with live and autoclaved bacterial suspensions of Australian and Brazilian isolates of Azospirillum brasilense. Seedlings were inoculated on days 10 and 35. Acetylene-reducing activity was measured five times during the experiment. Dry matter yields of the digitgrass on the podzol (low N) inoculated with liver bacteria were 23% higher than those of the controls. On the vertisol (high N), yield increases from inoculation with live bacteria were 8.5%. The higher-yielding plants had significantly lower precent nitrogen, but when total nitrogen of the tops was calculated, the inoculated plants had a higher total N than did the controls (P = 0.04). Acetylene-reducing activity was variable in the experiment, ranging from 0.5 to 11.9 mu mol of C2H2 core -1 day -1. Live bacterial treatment induced a proliferation of roots, possible earlier maturity, higher percent dry matter, and a higher total N in the tops. (Refs. 21).

  13. Responses of the nitrogen-fixing aquatic fern Azolla to water contaminated with ciprofloxacin: Impacts on biofertilization.

    Science.gov (United States)

    Gomes, Marcelo Pedrosa; de Brito, Júlio César Moreira; Carvalho Carneiro, Marília Mércia Lima; Ribeiro da Cunha, Mariem Rodrigues; Garcia, Queila Souza; Figueredo, Cleber Cunha

    2018-01-01

    We investigated the ability of the aquatic fern Azolla to take up ciprofloxacin (Cipro), as well as the effects of that antibiotic on the N-fixing process in plants grown in medium deprived (-N) or provided (+N) with nitrogen (N). Azolla was seen to accumulate Cipro at concentrations greater than 160 μg g -1 dry weight when cultivated in 3.05 mg Cipro l -1 , indicating it as a candidate for Cipro recovery from water. Although Cipro was not seen to interfere with the heterocyst/vegetative cell ratios, the antibiotic promoted changes with carbon and nitrogen metabolism in plants. Decreased photosynthesis and nitrogenase activity, and altered plant's amino acid profile, with decreases in cell N concentrations, were observed. The removal of N from the growth medium accentuated the deleterious effects of Cipro, resulting in lower photosynthesis, N-fixation, and assimilation rates, and increased hydrogen peroxide accumulation. Our results shown that Cipro may constrain the use of Azolla as a biofertilizer species due to its interference with nitrogen fixation processes. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Relationships between net photosynthesis and foliar nitrogen concentrations in a loblobby pine forest ecosystem grown in elevated atmospheric carbon dioxide

    International Nuclear Information System (INIS)

    Springer, C. J.; Thomas, R. B.; Delucia, E. H.

    2005-01-01

    The effects of elevated carbon dioxide concentration on the relationship between light-saturated net photosynthesis and area-based foliar nitrogen concentration in the canopy of a loblobby pine forest at the Duke Forest FACE experiment was examined. Two overstory and four understory tree species were examined at their growth carbon dioxide concentrations during the early summer and late summer of 1999, 2001 and 2002. Light-saturated net photosynthesis and foliar nitrogen relationship were compared to determine if the stimulatory effects of elevated carbon dioxide on net photosynthesis had declined. Results at all three sample times showed no difference in either the slopes, or in the y-intercepts of the net photosynthesis-foliar nitrogen relationship when measured at common carbon dioxide concentrations. Net photosynthesis was also unaffected by growth in elevated carbon dioxide, indicating that these overstory and understory trees continued to show strong stimulation of photosynthesis by elevated carbon dioxide. 46 refs., 6 tabs., 3 figs

  15. Effects of biochar addition on toxic element concentrations in plants

    DEFF Research Database (Denmark)

    Peng, Xin; Deng, Yinger; Peng, Yan

    2018-01-01

    Consuming food contaminated by toxic elements (TEs) could pose a substantial risk to human health. Recently, biochar has been extensively studied as an effective soil ameliorant in situ because of its ability to suppress the phytoavailability of TEs. However, despite the research interest......, the effects of biochar applications to soil on different TE concentrations in different plant parts remain unclear. Here, we synthesize 1813 individual observations data collected from 97 articles to evaluate the effects of biochar addition on TE concentrations in plant parts. We found that (1) the experiment...... type, biochar feedstock and pyrolysis temperature all significantly decreased the TE concentration in plant parts; (2) the responses of Cd and Pb concentrations in edible and indirectly edible plant parts were significantly more sensitive to the effect of biochar than the Zn, Ni, Mn, Cr, Co and Cu...

  16. Effect of Plant Density and Nitrogen Fertilizeron Morphological Traits, Seed and Essential Oil Yield and Essential Oil Content of Ajowan (Carum copticum L.

    Directory of Open Access Journals (Sweden)

    S.Ali Tabatabaei

    2017-08-01

    Full Text Available Introduction: Ajowan (Carum copticum Benth. & Hook. is an annual herbaceous essential oil bearing plant belonging to the Apiaceae family, which grows in India, Iran, and Egypt. Ajowan seeds have essential oil as an active substance, which is used in pharmaceutical industry as a diuretic, antivomiting, analgesic, antiasthma, antispasmodic and a carminative. Nitrogen is a part of all living cells and is a necessary part of all proteins, enzymes and metabolic processes involved in the synthesis and transfer of energy. Also, nitrogen is a part of chlorophyll, the green pigment of the plant that is responsible for photosynthesis. Generally, proper agronomic management including suitable plant density has a high influence on growth and yield of medicinal plants. In this regard, Kloss et al., (2012 highlighted the need for strategies to improve crop growth, make irrigation more efficient and sustainable and conserve farmlands. In addition, yield is influenced by inter-row spacing and sowing density. Ghilavizadeh et al., (2013 have reported that application of suitable amount of nitrogen fertilizer and plant density of 25 plan/m2 increased seed yield, essential oil yield and essential oil content of ajowan. In another research, Borumand Rezazadeh et al., (2009 reported that the plant density of 50 plant/m2 have produced the highest seed yield, essential oil yield and essential oil content. Generally, with regard to importance of medicinal plants and the necessity of understanding their crop and the impact of plant density and nitrogen fertilizer on the performance of these plants, this study was conducted to investigate the impact of these factors on some traits of ajowan. Materials and Methods: In order to evaluate the effect of plant density and nitrogen fertilizer on different traits of ajowan (Carum copticum L., an experiment was conducted using factorial based on randomized complete block design with three replications at Agricultural and Natural

  17. System implementation of hazard analysis and critical control points (HACCP) in a nitrogen production plant

    International Nuclear Information System (INIS)

    Barrantes Salazar, Alexandra

    2014-01-01

    System of hazard analysis and critical control points are deployed in a production plant of liquid nitrogen. The fact that the nitrogen has become a complement to food packaging to increase shelf life, or provide a surface that protect it from manipulation, has been the main objective. Analysis of critical control points for the nitrogen production plant has been the adapted methodology. The knowledge of both the standard and the production process, as well as the on site verification process, have been necessary. In addition, all materials and/or processing units that are found in contact with the raw material or the product under study were evaluated. Such a way that the intrinsic risks of each were detected, from the physical, chemical and biological points of view according to the origin or pollution source. For each found risk was evaluated the probability of occurrence according to the frequency and gravity of it, with these variables determined was achieved the definition of the type of risk detected. In the cases that was presented a greater risk or critical, these were subjected decision tree; with which is concluded the non determination of critical control points. However, for each one of them were established the maximum permitted limits. To generate each of the results it has literature or scientific reference of reliable provenance, where is indicated properly the support of the evaluated matter. In a general way, the material matrix and the process matrix are found without critical control points; so that the project is concluded in the analysis, and it has to generate without the monitoring system and verification. To increase this project is suggested in order to cover the packaging system of gaseous nitrogen, due to it was delimited to liquid nitrogen. Furthermore, the liquid nitrogen is a 100% automated and closed process so the introduction of contaminants is very reduced, unlike the gaseous nitrogen process. (author) [es

  18. Relationships between Concentrations of Phytoplankton Chlorophyll a and Total Nitrogen in Ten U.S. Estuaries

    Science.gov (United States)

    This presentation focuses on the summertime response of phytoplankton chlorophyll to nitrogen concentrations in the upper water columns of ten U.S. estuaries. Using publicly available data from monitoring programs, regression relationships have been developed between summer surfa...

  19. Leaf litter nitrogen concentration as related to climatic factors in Eurasian forests

    DEFF Research Database (Denmark)

    Liu, Chunjiang; Berg, Bjørn; Kutsch, Werner

    2006-01-01

    The aim of this study is to determine the patterns of nitrogen (N) concentrations in leaf litter of forest trees as functions of climatic factors, annual average temperature (Temp, °C) and annual precipitation (Precip, dm) and of forest type (coniferous vs. broadleaf, deciduous vs. evergreen, Pinus...... concentration and Temp and Precip by means of regression analysis. Leaf litter data from N2-fixing species were excluded from the analysis. Results: Over the Eurasian continent, leaf litter N concentration increased with increasing Temp and Precip within functional groups such as conifers, broadleaf, deciduous....... In the context of global warming, these regression equations are useful for a better understanding and modelling of the effects of geographical and climatic factors on leaf litter N at a regional and continental scale....

  20. Industrial plants for production of highly enriched nitrogen-15

    International Nuclear Information System (INIS)

    Krell, E.; Jonas, C.

    1977-01-01

    A discussion is presented of the present stage of development of large-scale enrichment of 15 N. The most important processes utilized to separate nitrogen isotopes, namely chemical exchange in the NO/NO 2 /HNO 3 system and low-temperature distillation of NO at -151 0 C, are compared, especially with respect to their economics and use of energy. As examples, chemical exchange plants in the GDR are discussed, and the research activities necessary to optimize the process, especially to solve aerodynamic, hydrodynamic, interface and processing problems, are reviewed. Good results were obtained by the choice of an optimum location and the design of a plant for pre-enrichment to 10 at.% 15 N and an automatically operating two-section cascade for the high enrichment of 15 N to more than 99 at.%. The chemical industry has taken over operation of the plant with the consequence that the raw materials are all available without additional transport. All by-products (nitrous gases and sulphuric acid) are returned for use elsewhere within the industry. The technology of the plant has been chosen so that the quantity of highly enriched product can be varied within a wide range. The final product is used to synthesize more than 250 different 15 N-labelled compounds which are also produced on an industrial scale. (author)

  1. The effect of hydraulic lift on organic matter decomposition, soil nitrogen cycling, and nitrogen acquisition by a grass species.

    Science.gov (United States)

    Armas, Cristina; Kim, John H; Bleby, Timothy M; Jackson, Robert B

    2012-01-01

    Hydraulic lift (HL) is the passive movement of water through plant roots, driven by gradients in water potential. The greater soil-water availability resulting from HL may in principle lead to higher plant nutrient uptake, but the evidence for this hypothesis is not universally supported by current experiments. We grew a grass species common in North America in two-layer pots with three treatments: (1) the lower layer watered, the upper one unwatered (HL), (2) both layers watered (W), and (3) the lower layer watered, the upper one unwatered, but with continuous light 24 h a day to limit HL (no-HL). We inserted ingrowth cores filled with enriched-nitrogen organic matter ((15)N-OM) in the upper layer and tested whether decomposition, mineralization and uptake of (15)N were higher in plants performing HL than in plants without HL. Soils in the upper layer were significantly wetter in the HL treatment than in the no-HL treatment. Decomposition rates were similar in the W and HL treatments and lower in no-HL. On average, the concentration of NH(4)(+)-N in ingrowth cores was highest in the W treatment, and NO(3)(-)-N concentrations were highest in the no-HL treatment, with HL having intermediate values for both, suggesting differential mineralization of organic N among treatments. Aboveground biomass, leaf (15)N contents and the (15)N uptake in aboveground tissues were higher in W and HL than in no-HL, indicating higher nutrient uptake and improved N status of plants performing HL. However, there were no differences in total root nitrogen content or (15)N uptake by roots, indicating that HL affected plant allocation of acquired N to photosynthetic tissues. Our evidence for the role of HL in organic matter decomposition and nutrient cycling suggests that HL could have positive effects on plant nutrient dynamics and nutrient turnover.

  2. History on the biological nitrogen fixation research in graminaceous plants: special emphasis on the Brazilian experience.

    Science.gov (United States)

    Baldani, José I; Baldani, Vera L D

    2005-09-01

    This review covers the history on Biological Nitrogen Fixation (BNF) in Graminaceous plants grown in Brazil, and describes research progress made over the last 40 years, most of which was coordinated by Johanna Döbereiner. One notable accomplishment during this period was the discovery of several nitrogen-fixing bacteria such as the rhizospheric (Beijerinckia fluminensis and Azotobacter paspali), associative (Azospirillum lipoferum, A. brasilense, A. amazonense) and the endophytic (Herbaspirillum seropedicae, H. rubrisubalbicans, Gluconacetobacter diazotrophicus, Burkholderia brasilensis and B. tropica). The role of these diazotrophs in association with grasses, mainly with cereal plants, has been studied and a lot of progress has been achieved in the ecological, physiological, biochemical, and genetic aspects. The mechanisms of colonization and infection of the plant tissues are better understood, and the BNF contribution to the soil/plant system has been determined. Inoculation studies with diazotrophs showed that endophytic bacteria have a much higher BNF contribution potential than associative diazotrophs. In addition, it was found that the plant genotype influences the plant/bacteria association. Recent data suggest that more studies should be conducted on the endophytic association to strengthen the BNF potential. The ongoing genome sequencing programs: RIOGENE (Gluconacetobacter diazotrophicus) and GENOPAR (Herbaspirillum seropedicae) reflect the commitment to the BNF study in Brazil and should allow the country to continue in the forefront of research related to the BNF process in Graminaceous plants.

  3. Manganese toxicity effects on nodulation and nitrogen fixation of beans (Phaseolus vulgaris L. ), in acid soils

    Energy Technology Data Exchange (ETDEWEB)

    Doebereiner, J

    1966-02-01

    Three greenhouse experiments were conducted to study manganese toxicity effects on the nitrogen fixing symbiosis of beans (Phaseolus vulgaris). Addition of 40 ppm of manganese to two acid soils affected nodulation and nitrogen fixation. Dependent on the Rhizobion strain either nodule numbers or efficiency in nitrogen fixation were reduced; the efficiency of one Rhizobium-host combination was more affected than another. Under less severe conditions of manganese toxicity, reduction of nodule numbers or of efficiency in nitrogen fixation could be compensated by an increase of nodule size. In the absence of manganese toxicity nodulation and nitrogen fixation of beans were abundant in a soil with pH 4.4. Naturally occurring manganese toxicity in a gray hydromorphic soil was eliminated by liming. The total nitrogen content of bean plants which were dependent on symbiotic nitrogen fixation decreased linearly with the logarithm of the manganese concentration in the plants. This did not happen when the plants were grown with mineral nitrogen. The role of manganese toxicity in the well known sensitivity to acid soil conditions of certain legumes and the importance of selection of manganese tolerant Rhizobium strains for the inoculation of beans in acid tropical soils, are discussed. 25 references, 1 figure, 6 tables.

  4. Impact of Tile Drainage on the Distribution of Concentration and Age of Inorganic Soil Nitrogen.

    Science.gov (United States)

    Woo, D.; Kumar, P.

    2017-12-01

    Extensive network of tile drainage network across the Midwestern United States, northern Europe and other regions of the world have enhanced agricultural productivity. Because of its impact on sub-surface flow patterns and moisture and temperature dynamics, it controls the nitrogen cycle in agricultural systems, and its influence on nitrogen dynamics plays a key role in determining the short- and long-term evolution of soil inorganic nitrogen concentration and age. The spatial mapping of nitrogen concentration and age under tile-drained fields has, therefore, the potential to open up novel solution to the vexing challenge of reducing environmental impacts while at the same time maintaining agricultural productivity. The objective of this study is to explore the impacts of tile drains on the age dynamics of nitrate, immobile ammonium, mobile ammonia/um, and non-reactive tracer (such as chloride) by implementing two mobile interacting pore domains to capture matrix and preferential flow paths in a coupled ecohydrology and biogeochemistry model, Dhara. We applied this model to an agricultural farm supporting a corn-soybean rotation in the Midwestern United States. It should be expected that the installation of tile drains decrease the age of soil nutrient due to nutrient losses through tile drainage. However, an increase in the age of mobile ammonia/um is observed in contrast to the cases for nitrate, immobile ammonium, and non-reactive tracer. These results arise because the depletion of mobile ammonia/um due to tile drainage causes a high mobility flux from immobile ammonium to mobile ammonia/um, which also carries a considerable amount of relatively old age of immobile ammonium to mobile ammonia/um. In addition, the ages of nitrate and mobile ammonia/um in tile drainage range from 1 to 3 years, and less than a year, respectively, implying that not considering age transformations between nitrogen species would result in substantial underestimation of nitrogen ages

  5. Simultaneous effect of nitrate (NO3- concentration, carbon dioxide (CO2 supply and nitrogen limitation on biomass, lipids, carbohydrates and proteins accumulation in Nannochloropsis oculata

    Directory of Open Access Journals (Sweden)

    Aarón Millán-Oropeza

    2015-03-01

    Full Text Available Biodiesel from microalgae is a promising technology. Nutrient limitation and the addition of CO2 are two strategies to increase lipid content in microalgae. There are two different types of nitrogen limitation, progressive and abrupt limitation. In this work, the simultaneous effect of initial nitrate concentration, addition of CO2, and nitrogen limitation on biomass, lipid, protein and carbohydrates accumulation were analyzed. An experimental design was established in which initial nitrogen concentration, culture time and CO2 aeration as independent numerical variables with three levels were considered. Nitrogen limitation was taken into account as a categorical independent variable. For the experimental design, all the experiments were performed with progressive nitrogen limitation. The dependent response variables were biomass, lipid production, carbohydrates and proteins. Subsequently, comparison of both types of limitation i.e. progressive and abrupt limitation, was performed. Nitrogen limitation in a progressive mode exerted a greater effect on lipid accumulation. Culture time, nitrogen limitation and the interaction of initial nitrate concentration with nitrogen limitation had higher influences on lipids and biomass production. The highest lipid production and productivity were at 582 mgL-1 (49.7 % lipid, dry weight basis and 41.5 mgL-1d-1, respectively; under the following conditions: 250 mgL-1 of initial nitrate concentration, CO2 supply of 4% (v/v, 12 d of culturing and 2 d in state of nitrogen starvation induced by progressive limitation. This work presents a novel way to perform simultaneous analysis of the effect of the initial concentration of nitrate, nitrogen limitation, and CO2 supply on growth and lipid production of Nannochloropsis oculata, with the aim to produce potential biofuels feedstock.

  6. Past and future trends in concentrations of sulphur and nitrogen compounds in the Arctic

    DEFF Research Database (Denmark)

    Hole, Lars R.; Christensen, Jesper H.; Ruoho-Airola, Tuija

    2009-01-01

    Recent trends in nitrogen and sulphur compounds in air and precipitation from a range of Arctic monitoring stations are presented, with seasonal data from the late 70s to 2004 or 2005. Earlier findings of declining sulphur concentrations are confirmed for most stations, while the pattern is less ...

  7. [Effects of water deficit and nitrogen fertilization on winter wheat growth and nitrogen uptake].

    Science.gov (United States)

    Qi, You-Ling; Zhang, Fu-Cang; Li, Kai-Feng

    2009-10-01

    Winter wheat plants were cultured in vitro tubes to study their growth and nitrogen uptake under effects of water deficit at different growth stages and nitrogen fertilization. Water deficit at any growth stages could obviously affect the plant height, leaf area, dry matter accumulation, and nitrogen uptake. Jointing stage was the most sensitive stage of winter wheat growth to water deficit, followed by flowering stage, grain-filling stage, and seedling stages. Rewatering after the water deficit at seedling stage had a significant compensation effect on winter wheat growth, and definite compensation effect was observed on the biomass accumulation and nitrogen absorption when rewatering was made after the water deficit at flowering stage. Under the same nitrogen fertilization levels, the nitrogen accumulation in root with water deficit at seedling, jointing, flowering, and grain-filling stages was reduced by 25.82%, 55.68%, 46.14%, and 16.34%, and the nitrogen accumulation in aboveground part was reduced by 33.37%, 51.71%, 27.01%, and 2.60%, respectively, compared with no water deficit. Under the same water deficit stages, the nitrogen content and accumulation of winter wheat decreased with decreasing nitrogen fertilization level, i. e., 0.3 g N x kg(-1) FM > 0.2 g N x kg(-1) FM > 0.1 g N x kg(-1) FM. Nitrogen fertilization had obvious regulation effect on winter wheat plant growth, dry matter accumulation, and nitrogen uptake under water stress.

  8. Foliage nitrogen turnover: differences among nitrogen absorbed at different times by Quercus serrata saplings

    Science.gov (United States)

    Ueda, Miki U.; Mizumachi, Eri; Tokuchi, Naoko

    2011-01-01

    Background and Aims Nitrogen turnover within plants has been intensively studied to better understand nitrogen use strategies. However, differences among the nitrogen absorbed at different times are not completely understood and the fate of nitrogen absorbed during winter is largely uncharacterized. In the present study, nitrogen absorbed at different times of the year (growing season, winter and previous growing season) was traced, and the within-leaf nitrogen turnover of a temperate deciduous oak Quercus serrata was investigated. Methods The contributions of nitrogen absorbed at the three different times to leaf construction, translocation during the growing season, and the leaf-level resorption efficiency during leaf senescence were compared using 15N. Key Results Winter- and previous growing season-absorbed nitrogen significantly contributed to leaf construction, although the contribution was smaller than that of growing season-absorbed nitrogen. On the other hand, the leaf-level resorption efficiency of winter- and previous growing season-absorbed nitrogen was higher than that of growing season-absorbed nitrogen, suggesting that older nitrogen is better retained in leaves than recently absorbed nitrogen. Conclusions The results demonstrate that nitrogen turnover in leaves varies with nitrogen absorption times. These findings are important for understanding plant nitrogen use strategies and nitrogen cycles in forest ecosystems. PMID:21515608

  9. Altering young tomato plant growth by nitrate and CO2 preserves the proportionate relation linking long-term organic-nitrogen accumulation to intercepted radiation.

    Science.gov (United States)

    Adamowicz, Stéphane; Le Bot, Jacques

    2008-01-01

    * A previously published model of crop nitrogen (N) status based on intercepted photosynthetically active radiation (R(i), mol per plant) suggested that plant organic N accumulation is related to R(i) by a constant ratio, defined hereafter as the radiation use efficiency for N (NRUE). The aim of this paper was to compare the effects of N nutrition and CO2 enrichment on NRUE and RUE (radiation use efficiency for biomass accumulation). * In three unrelated glasshouse experiments, tomato plants (Solanum lycopersicum) grown in hydroponics were fed for 28 d (exponential growth) with full solutions containing constant NO3(-) concentrations ([NO3(-)]) ranging from 0.05 to 15 mol m(-3), both under ambient or CO2-enriched (1000 microl l(-1)) air. * Each experiment comprised five harvests. Low [NO3(-)] (radiation efficiency for organic N acquisition (NRUE) did not depend on C or N nutrition for young plants grown under unstressed conditions.

  10. Nitrogen supply of crops by biological nitrogen fixation. 2

    International Nuclear Information System (INIS)

    Jensen, E.S.; Andersen, A.J.; Soerensen, H.; Thomsen, J.D.

    1985-02-01

    In the present work the contributions from combined N-sources and symbiotic nitrogen fixation to the nitrogen supply of field-grown peas and field beans were evaluated by means of 15 N fertilizer dilution. The effect of N-fertilizer, supplied at sowing and at different stages of plant development, on nitrogen fixation, yield and protein production in peas, was studied in pot experiments. (author)

  11. Modeling Nitrogen Decrease in Water Lettuce Ponds from Waste Stabilization Ponds

    Science.gov (United States)

    Putri, Gitta Agnes; Sunarsih

    2018-02-01

    This paper presents about the dynamic modeling of the Water Lettuce ponds as a form of improvement from the Water Hyacinth ponds. The purpose of this paper is to predict nitrogen decrease and nitrogen transformation in Water Lettuce ponds integrated with Waste Stabilization Ponds. The model consists of 4 mass balances, namely Dissolved Organic Nitrogen (DON), Particulate Organic Nitrogen (PON), ammonium (NH4+), Nitrate and Nitrite (NOx). The process of nitrogen transformation which considered in a Water Lettuce ponds, namely hydrolysis, mineralization, nitrification, denitrification, plant and bacterial uptake processes. Numerical simulations are performed by giving the values of parameters and the initial values of nitrogen compounds based on a review of previous studies. Numerical results show that the rate of change in the concentration of nitrogen compounds in the integration ponds of waste stabilization and water lettuce decreases and reaches stable at different times.

  12. Intercropping of Green Garlic (Allium sativum L.) Induces Nutrient Concentration Changes in the Soil and Plants in Continuously Cropped Cucumber (Cucumis sativus L.) in a Plastic Tunnel

    Science.gov (United States)

    Xiao, Xuemei; Cheng, Zhihui; Meng, Huanwen; Liu, Lihong; Li, Hezi; Dong, Yinxin

    2013-01-01

    A pot-based experiment was conducted to investigate nutrient concentrations in cucumber plants intercropped with various amounts of green garlic. In addition, the soil nutrient contents were studied over two consecutive growing seasons. The results revealed that the accumulation of biomass and the nutritional elements nitrogen (N), phosphorus (P), potassium (K), calcium (Ca) and manganese (Mn) in cucumber plants were significantly increased for intercropping treatments during the two growing seasons compared to monoculture. Conversely, magnesium (Mg) concentrations were decreased in the cucumber plants. Shoot iron (Fe) concentrations decreased whereas root Fe concentrations increased in the intercropping system. Shoot and root zinc (Zn) concentrations decreased during the fall of 2011 but increased during the spring of 2012. Soil organic matter and available N, P and K were significantly increased as the proportion of intercropped green garlic increasing. Medium levels of intercropping green garlic improved cucumber nutrient concentrations the most. The regression analysis showed that the concentrations of most elements were significantly related to the amounts of garlic bulbs, especially the microelements in the spring 2011. The available soil N and organic matter were linearly related to the amounts of garlic bulbs. The results indicate that the nutritional status of the soil and plants of continuously cropped cucumber could be improved by intercropping with green garlic. PMID:23637994

  13. Intercropping of green garlic (Allium sativum L. induces nutrient concentration changes in the soil and plants in continuously cropped cucumber (Cucumis sativus L. in a plastic tunnel.

    Directory of Open Access Journals (Sweden)

    Xuemei Xiao

    Full Text Available A pot-based experiment was conducted to investigate nutrient concentrations in cucumber plants intercropped with various amounts of green garlic. In addition, the soil nutrient contents were studied over two consecutive growing seasons. The results revealed that the accumulation of biomass and the nutritional elements nitrogen (N, phosphorus (P, potassium (K, calcium (Ca and manganese (Mn in cucumber plants were significantly increased for intercropping treatments during the two growing seasons compared to monoculture. Conversely, magnesium (Mg concentrations were decreased in the cucumber plants. Shoot iron (Fe concentrations decreased whereas root Fe concentrations increased in the intercropping system. Shoot and root zinc (Zn concentrations decreased during the fall of 2011 but increased during the spring of 2012. Soil organic matter and available N, P and K were significantly increased as the proportion of intercropped green garlic increasing. Medium levels of intercropping green garlic improved cucumber nutrient concentrations the most. The regression analysis showed that the concentrations of most elements were significantly related to the amounts of garlic bulbs, especially the microelements in the spring 2011. The available soil N and organic matter were linearly related to the amounts of garlic bulbs. The results indicate that the nutritional status of the soil and plants of continuously cropped cucumber could be improved by intercropping with green garlic.

  14. Transformation of fertilizer nitrogen in soil

    International Nuclear Information System (INIS)

    Soechting, H.

    1980-01-01

    Pot experiments are described in which the transformations between nitrogen added as fertilizer urea, plant-assimilated nitrogen, and different chemical fractions of soil or added straw nitrogen were studied with 15 N as a tracer. The data indicated that: (a) The transformation of added fertilizer nitrogen to immobilized amide nitrogen is decreased with added decomposable organic carbon. The transformation to immobilized α-amino N is increased, on the other hand, by the addition of decomposable organic carbon. (b) The freshly immobilized amide nitrogen is more readily remineralized than the α-amino form. The immobilization of added nitrogen continues in the presence of growing plants. (c) Mineralization of nitrogen added as 15 N-labelled straw is also increased with increasing fertilizer-nitrogen additions. (author)

  15. Terricolous alpine lichens are sensitive to both load and concentration of applied nitrogen and have potential as bioindicators of nitrogen deposition

    International Nuclear Information System (INIS)

    Britton, Andrea J.; Fisher, Julia M.

    2010-01-01

    The influence of applied nitrogen (N) concentration and load on thallus chemistry and growth of five terricolous alpine lichen species was investigated in a three-month N addition study. Thallus N content was influenced by both concentration and load; but the relative importance of these parameters varied between species. Growth was most affected by concentration. Thresholds for effects observed in this study support a low critical load for terricolous lichen communities ( -1 y -1 ) and suggest that concentrations of N currently encountered in UK cloudwater may have detrimental effects on the growth of sensitive species. The significance of N concentration effects on sensitive species also highlights the need to avoid artificially high concentrations when designing N addition experiments. Given the sensitivity of some species to extremely low loads and concentrations of N we suggest that terricolous lichens have potential as indicators of deposition and impact in northern and alpine ecosystems. - Terricolous lichen species' N content responds to both applied N concentration and load while applied N concentration has greatest effects on growth.

  16. Terricolous alpine lichens are sensitive to both load and concentration of applied nitrogen and have potential as bioindicators of nitrogen deposition

    Energy Technology Data Exchange (ETDEWEB)

    Britton, Andrea J., E-mail: a.britton@macaulay.ac.u [Macaulay Land Use Research Institute, Craigiebuckler, Aberdeen AB15 8QH (United Kingdom); Fisher, Julia M. [Macaulay Land Use Research Institute, Craigiebuckler, Aberdeen AB15 8QH (United Kingdom)

    2010-05-15

    The influence of applied nitrogen (N) concentration and load on thallus chemistry and growth of five terricolous alpine lichen species was investigated in a three-month N addition study. Thallus N content was influenced by both concentration and load; but the relative importance of these parameters varied between species. Growth was most affected by concentration. Thresholds for effects observed in this study support a low critical load for terricolous lichen communities (<7.5 kg N ha{sup -1} y{sup -1}) and suggest that concentrations of N currently encountered in UK cloudwater may have detrimental effects on the growth of sensitive species. The significance of N concentration effects on sensitive species also highlights the need to avoid artificially high concentrations when designing N addition experiments. Given the sensitivity of some species to extremely low loads and concentrations of N we suggest that terricolous lichens have potential as indicators of deposition and impact in northern and alpine ecosystems. - Terricolous lichen species' N content responds to both applied N concentration and load while applied N concentration has greatest effects on growth.

  17. Fate of fertilizer nitrogen in soil-plant system under irrigating condition. Pt.1: Effect of nitrogen level

    International Nuclear Information System (INIS)

    Chen Qing; Wen Xianfang; Zheng Xingyun; Pan Jiarong

    1997-01-01

    Three nitrogen fertilization levels including optimum rate of nitrogen applied (N1.0, 150 kg N·ha -1 ), 150% of optimum rate (N1.5, 225 kg N·ha -1 ) and 50% of optimum rate (N0.5, 75 kg N·ha -1 ) were selected to determine the fate of nitrogen in soil plant system by 15 N technique in 1994∼1995 field experiment which was conducted in Shijiazhuang. The results showed that under irrigated condition the nitrogen use efficiencies (NUE) of ammonium bicarbonate by winter wheat in fertilized treatments were 38.5%, 32.3% and 22.4% respectively, while the highest NUE of winter wheat was found in N0.5 treatment due to a relatively high fertility. The highest yield (6.8 x 10 3 kg grain·ha -1 , 14.7 x 10 3 kg top·ha -1 ) was obtained in N1.0 treatment, but nitrogen uptake and grain yield in N1.5 treatment were lower than those of other fertilizer treatments and there was no significant difference between N0.0 and N1.5 in grain yield. the highest residue of fertilizer N was determined in N1.5 treatment, of which 46% existed in the top layer of the soil (0∼50 cm). There was no significant difference in residual fertilizer N in soil between the other two treatments (31.28% in N0.5, 31.12% in N1.0). In 15 N balance calculation, the unaccounted part of applied N which was leaching down 50 cm in the soil profile as nitrate or gaseous loss through volatilization, denitrification were 30.20%, the soil profile as nitrate or gaseous loss through volatilization, denitrification were 30.20%, 36.56%, 31.25% in N0.5, N1.5 treatments, respectively. It is very important to control residual N in order to prevent N pollution and promote the growth of next crop

  18. Defect concentration in nitrogen-doped graphene grown on Cu substrate: A thickness effect

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, Dhananjay K., E-mail: dhananjay@ua.pt [Department of Physics & CICECO – Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro (Portugal); Department of Mechanical Engineering & Centre for Mechanical Technology & Automation, University of Aveiro, 3810-193 Aveiro (Portugal); Fateixa, Sara [Department of Chemistry & CICECO – Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro (Portugal); Hortigüela, María J. [Department of Mechanical Engineering & Centre for Mechanical Technology & Automation, University of Aveiro, 3810-193 Aveiro (Portugal); Vidyasagar, Reddithota [Department of Physics & CICECO – Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro (Portugal); Otero-Irurueta, Gonzalo [Department of Mechanical Engineering & Centre for Mechanical Technology & Automation, University of Aveiro, 3810-193 Aveiro (Portugal); Nogueira, Helena I.S. [Department of Chemistry & CICECO – Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro (Portugal); Singh, Manoj Kumar [Department of Mechanical Engineering & Centre for Mechanical Technology & Automation, University of Aveiro, 3810-193 Aveiro (Portugal); Kholkin, Andrei, E-mail: kholkin@ua.pt [Department of Physics & CICECO – Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro (Portugal); School of Natural Sciences and Mathematics, Ural Federal University, 620000 Ekaterinburg (Russian Federation)

    2017-05-15

    Tuning the band-gap of graphene is a current need for real device applications. Copper (Cu) as a substrate plays a crucial role in graphene deposition. Here we report the fabrication of in-situ nitrogen (N) doped graphene via chemical vapor deposition (CVD) technique and the effect of Cu substrate thickness on the growth mechanism. The ratio of intensities of G and D peaks was used to evaluate the defect concentration based on local activation model associated with the distortion of the crystal lattice due to incorporation of nitrogen atoms into graphene lattice. The results suggest that Cu substrate of 20 µm in thickness exhibits higher defect density (1.86×10{sup 12} cm{sup −2}) as compared to both 10 and 25 µm thick substrates (1.23×10{sup 12} cm{sup −2} and 3.09×10{sup 11} cm{sup −2}, respectively). Furthermore, High Resolution -X-ray Photoelectron Spectroscopy (HR-XPS) precisely affirms ~0.4 at% of nitrogen intercalations in graphene. Our results show that the substitutional type of nitrogen doping dominates over the pyridinic configuration. In addition, X-ray diffraction (XRD) shows all the XRD peaks associated with carbon. However, the peak at ~24° is suppressed by the substrate peaks (Cu). These results suggest that nitrogen atoms can be efficiently incorporated into the graphene using thinner copper substrates, rather than the standard 25 µm ones. This is important for tailoring the properties by graphene required for microelectronic applications.

  19. Organic Nitrogen in Atmospheric Drops and Particles: Concentrations, (Limited) Speciation, and Chemical Transformations

    Science.gov (United States)

    Anastasio, C.; Zhang, Q.

    2003-12-01

    While quite a bit is known of the concentrations, speciation, and chemistry of inorganic forms of nitrogen in the atmosphere, the same cannot be said for organic forms. Despite this, there is growing evidence that organic N (ON) is ubiquitous in the atmosphere, especially in atmospheric condensed phases such as fog/cloud drops and aerosol particles. Although the major compounds that make up organic N are generally unknown, as are the sources of these compounds, it is clear that there are significant fluxes of ON between the atmosphere and ecosystems. It also appears that organic N can have significant effects in both spheres. The goal of our recent work in this area has been to better describe the atmospheric component of the biogeochemistry of organic nitrogen. Based on particle, gas, and fogwater samples from Northern California we have made three major findings: 1) Organic N represents a significant component, approximately 20%, of the total atmospheric N loading in these samples. This is broadly consistent with studies from other locations. 2) Amino compounds, primarily as combined amino acids, account for approximately 20% of the measured ON in our condensed phase samples. Given the properties of amino acids, these compounds could significantly affect the chemical and physical properties of atmospheric particles. 3) Organic nitrogen in atmospheric particles and drops is transformed to inorganic forms - primarily ammonium, nitrate, and nitrogen oxides (NOx) - during exposure to sunlight and/or ozone. These chemical reactions likely increase the bioavailability of the condensed phase nitrogen pool and enhance its biological effects after deposition to ecosystems.

  20. Trends in concentrations and export of nitrogen in boreal forest streams

    Energy Technology Data Exchange (ETDEWEB)

    Sarkkola, S.; Nieminen, M. [Finnish Forest Research Inst., Vantaa (Finland); Koivusalo, H. [Aalto University School of Science and Technology, Espoo (Finland), Dept. of Civil and Environmental Engineering] [and others

    2012-11-01

    Temporal trends in inorganic and organic nitrogen (N) export in the stream water between 1979 and 2006 were studied in eight forested headwater catchments in eastern Finland, where an increasing air-temperature trend and a decreasing N-deposition trend has been observed since the 1980s. The Seasonal Kendall test was conducted to study if the stream water N concentrations have changed concurrently and a mixed model regression analysis was used to study which catchment characteristics and hydrometeorological variables were related to the variation in stream water N. The annual concentrations of total organic N (TON) increased at two catchments and the concentrations of nitrate (NO{sub 3}-N) and ammonium (NH{sub 4}-N) decreased at three and four catchments, respectively. The main factor explaining variation in concentrations and export of N was percentage of peatlands in a catchment. The NH{sub 4}-N concentrations were also related to the N deposition, and the exports of NO{sub 3}, NH{sub 4}, and TON to precipitation. Quantitative changes in both the N concentrations and exports were small. The results suggested relatively small changes in the N concentrations and exports between 1979 and 2006, most probably because the effects of increased air and stream water temperatures largely have been concealed behind the concurrent decrease in N deposition. (orig.)

  1. Eighth international congress on nitrogen fixation. Final program

    Energy Technology Data Exchange (ETDEWEB)

    1990-12-31

    This volume contains the proceedings of the Eighth International Congress on Nitrogen Fixation held May 20--26, 1990 in Knoxville, Tennessee. The volume contains abstracts of individual presentations. Sessions were entitled Recent Advances in the Chemistry of Nitrogen Fixation, Plant-microbe Interactions, Limiting Factors of Nitrogen Fixation, Nitrogen Fixation and the Environment, Bacterial Systems, Nitrogen Fixation in Agriculture and Industry, Plant Function, and Nitrogen Fixation and Evolution.

  2. Water balance and N-metabolism in broccoli (Brassica oleracea L. var. Italica) plants depending on nitrogen source under salt stress and elevated CO2.

    Science.gov (United States)

    Zaghdoud, Chokri; Carvajal, Micaela; Ferchichi, Ali; Del Carmen Martínez-Ballesta, María

    2016-11-15

    Elevated [CO2] and salinity in the soils are considered part of the effects of future environmental conditions in arid and semi-arid areas. While it is known that soil salinization decreases plant growth, an increased atmospheric [CO2] may ameliorate the negative effects of salt stress. However, there is a lack of information about the form in which inorganic nitrogen source may influence plant performance under both conditions. Single factor responses and the interactive effects of two [CO2] (380 and 800ppm), three different NO3(-)/NH4(+) ratios in the nutrient solution (100/0, 50/50 and 0/100, with a total N concentration of 3.5mM) and two NaCl concentrations (0 and 80mM) on growth, leaf gas exchange parameters in relation to root hydraulic conductance and N-assimilating enzymes of broccoli (Brassica oleracea L. var. Italica) plants were determined. The results showed that a reduced NO3(-) or co-provision of NO3(-) and NH4(+) could be an optimal source of inorganic N for broccoli plants. In addition, elevated [CO2] ameliorated the effect of salt exposure on the plant growth through an enhanced rate of photosynthesis, even at low N-concentration. However, NO3(-) or NO3(-)/NH4(+) co-provision display differential plant response to salt stress regarding water balance, which was associated to N metabolism. The results may contribute to our understanding of N-fertilization modes under increasing atmospheric [CO2] to cope with salt stress, where variations in N nutrition significantly influenced plant response. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Use of Calluna vulgaris to detect signals of nitrogen deposition across an urban-rural gradient

    Science.gov (United States)

    Power, S. A.; Collins, C. M.

    2010-05-01

    Densely populated cities can experience high concentrations of traffic-derived pollutants, with oxides of nitrogen and ammonia contributing significantly to the overall nitrogen (N) budget of urban ecosystems. This study investigated changes in the biochemistry of in situ Calluna vulgaris plants to detect signals of N deposition across an urban-rural gradient from central London to rural Surrey, UK. Foliar N concentrations and δ 15N signatures were higher, and C/N ratios lower, in urban areas receiving the highest rates of N deposition. Plant phosphorus (P) concentrations were also highest in these areas, suggesting that elevated rates of N deposition are unlikely to result in progressive P-limitation in urban habitats. Free amino acid concentrations were positively related to N deposition for asparagine, glutamine, glycine, phenylalanine, isoleucine, leucine and lysine. Overall, relationships between tissue chemistry and N deposition were similar for oxidised, reduced and total N, although the strength of relationships varied with the different biochemical indicators. The results of this study indicate that current rates of N deposition are having substantial effects on plant biochemistry in urban areas, with likely implications for the biodiversity and functioning of urban ecosystems.

  4. Evaluation of wastewater nitrogen transformation in a natural wetland (Ulaanbaatar, Mongolia) using dual-isotope analysis of nitrate

    International Nuclear Information System (INIS)

    Itoh, Masayuki; Takemon, Yasuhiro; Makabe, Akiko; Yoshimizu, Chikage; Kohzu, Ayato; Ohte, Nobuhito; Tumurskh, Dashzeveg; Tayasu, Ichiro; Yoshida, Naohiro; Nagata, Toshi

    2011-01-01

    The Tuul River, which provides water for the daily needs of many residents of Ulaanbaatar, Mongolia, has been increasingly polluted by wastewater from the city's sewage treatment plant. Information on water movement and the transformation of water-borne materials is required to alleviate the deterioration of water quality. We conducted a synoptic survey of general water movement, water quality including inorganic nitrogen concentrations, and isotopic composition of nitrogen (δ 15 N-NO 3 - , δ 18 O-NO 3 - , and δ 15 N-NH 4 + ) and water (δ 18 O-H 2 O) in a wetland area that receives wastewater before it enters the Tuul River. We sampled surface water, groundwater, and spring water along the two major water routes in the wetland that flow from the drain of the sewage treatment plant to the Tuul River: a continuous tributary and a discontinuous tributary. The continuous tributary had high ammonium (NH 4 + ) concentrations and nearly stable δ 15 N-NH 4 + , δ 15 N-NO 3 - , and δ 18 O-NO 3 - concentrations throughout its length, indicating that nitrogen transformation (i.e., nitrification and denitrification) during transit was small. In contrast, NH 4 + concentrations decreased along the discontinuous tributary and nitrate (NO 3 - ) concentrations were low at many points. Values of δ 15 N-NH 4 + , δ 15 N-NO 3 - , and δ 18 O-NO 3 - increased with flow along the discontinuous route. Our results indicate that nitrification and denitrification contribute to nitrogen removal in the wetland area along the discontinuous tributary with slow water transport. Differences in hydrological pathways and the velocity of wastewater transport through the wetland area greatly affect the extent of nitrogen removal. - Research Highlights: → Dual-isotope analysis of nitrate was used to assess wastewater nitrogen status. → Wetland that receives the wastewater contributed to nitrogen removal. → Differences in hydrological pathways greatly affect the extent of nitrogen removal.

  5. Effects of Nitrogen and Phosphorus Fertilizer and Topsoil Amendment on Native Plant Cover in Roadside Revegetation Projects.

    Science.gov (United States)

    Hillhouse, Heidi L; Schacht, Walter H; Soper, Jonathan M; Wienhold, Carol E

    2018-01-01

    Establishing vegetation on roadsides following construction can be challenging, especially for relatively slow growing native species. Topsoil is generally removed during construction, and the surface soil following construction ("cut-slope soils") is often compacted and low in nutrients, providing poor growing conditions for vegetation. Nebraska Department of Transportation (NDOT) protocols have historically called for nitrogen (N) and phosphorus (P) fertilization when planting roadside vegetation following construction, but these recommendations were developed for cool-season grass plantings and most current plantings use slower-establishing, native warm-season grasses that may benefit less than expected from current planting protocols. We evaluated the effects of nitrogen and phosphorus fertilization, and also topsoil amendment, on the foliar cover of seeded and non-seeded species planted into two post-construction roadside sites in eastern Nebraska. We also examined soil movement to determine how planting protocols and plant growth may affect erosion potential. Three years after planting, we found no consistent effects of N or P fertilization on foliar cover. Plots receiving topsoil amendment had 14% greater cover of warm-season grasses, 10% greater total foliar cover, and 4-13% lower bare ground (depending on site) than plots without topsoil. None of the treatments consistently affected soil movement. We recommend that NDOT change their protocols to remove N and P fertilization and focus on stockpiling and spreading topsoil following construction.

  6. Effects of Nitrogen and Phosphorus Fertilizer and Topsoil Amendment on Native Plant Cover in Roadside Revegetation Projects

    Science.gov (United States)

    Hillhouse, Heidi L.; Schacht, Walter H.; Soper, Jonathan M.; Wienhold, Carol E.

    2018-01-01

    Establishing vegetation on roadsides following construction can be challenging, especially for relatively slow growing native species. Topsoil is generally removed during construction, and the surface soil following construction ("cut-slope soils") is often compacted and low in nutrients, providing poor growing conditions for vegetation. Nebraska Department of Transportation (NDOT) protocols have historically called for nitrogen (N) and phosphorus (P) fertilization when planting roadside vegetation following construction, but these recommendations were developed for cool-season grass plantings and most current plantings use slower-establishing, native warm-season grasses that may benefit less than expected from current planting protocols. We evaluated the effects of nitrogen and phosphorus fertilization, and also topsoil amendment, on the foliar cover of seeded and non-seeded species planted into two post-construction roadside sites in eastern Nebraska. We also examined soil movement to determine how planting protocols and plant growth may affect erosion potential. Three years after planting, we found no consistent effects of N or P fertilization on foliar cover. Plots receiving topsoil amendment had 14% greater cover of warm-season grasses, 10% greater total foliar cover, and 4-13% lower bare ground (depending on site) than plots without topsoil. None of the treatments consistently affected soil movement. We recommend that NDOT change their protocols to remove N and P fertilization and focus on stockpiling and spreading topsoil following construction.

  7. Effects of vermicompost and nitrogen fertilizers on growth of Jimson weed (Datura stramonium L. as a medicinal plant

    Directory of Open Access Journals (Sweden)

    Ramin Abbaspour

    2016-05-01

    Full Text Available An experiment was conducted in order to evaluate the effect of organic (3 and 6 ton/ha vermicompost and chemical (150 and 300 kg/ha nitrogen fertilizers on growth, seed dispersal and heteroblasty of jimson weed at green house of Shiraz University in 2012. The results showed that the highest and the lowest plant growth, seed production and seed dispersal was in 300 kg/ha N and 6 ton/ha vermicompost, respectively. Position of the seeds on maternal plant had an important influence on the emergence percentage. Seeds on the middle and lowest parts of the plants had less emergence percentage compared with those on the higher parts. In general, application of 300 kg/ha nitrogen accelerated the growth of jimson weed and increase dispersal and heteroblasty of the jimson seed.

  8. Spatial variations in nitrogen dioxide concentrations in urban Ljubljana, Slovenia

    Directory of Open Access Journals (Sweden)

    Vintar Mally Katja

    2015-09-01

    Full Text Available Ambient nitrogen dioxide (NO2 concentrations are regularly measured at only two monitoring stations in the city centre of Ljubljana, and such scanty data are inadequate for drawing conclusions about spatial patterns of pollution within the city, or to decide on effective measures to further improve air quality. In order to determine the spatial distribution of NO2 concentrations in different types of urban space in Ljubljana, two measuring campaigns throughout the city were carried out, during the summer of 2013 and during the winter of 2014. The main source of NO2 in Ljubljana is road transport. Accordingly, three types of urban space have been identified (urban background, open space along roads, and street canyon, and their NO2 pollution level was measured using Palmes diffusive samplers at a total of 108 measuring spots. This article analyses the results of both measuring campaigns and compares the pollution levels of different types of urban space.

  9. Effects of Cycocel and Nitrogen Application on Yield and Yield Components of Autumn-Grown Oilseed Rape at Different Plant Densities

    Directory of Open Access Journals (Sweden)

    S. Majd

    2013-06-01

    Full Text Available In this research, which was carried out as two experiments (in the field and greenhouse at Research Farm of College of Agriculture, Shiraz University, Shiraz, Iran, in 2009-2010 growing season, the effects of different levels of nitrogen, plant density and cycocel application on yield and yield components of autumn-grown oilseed rape (Talaye cultivar were investigated. The field experiment was designed as split-split plot based on completely randomized blocks design. Treatments included nitrogen level (80, 140, 200 and 260 kg/ha as the main plot, plant density (70 and 90 plants/m2 as sub-plot and cycocel rate (0, 1.4 and 2.8 L/ha as sub- subplot. The greenhouse experiment, which was arranged as a factorial based on complete randomized design, included nitrogen level (0, 50, 100, 150 and 200 kg/ha and cycocel rate (0, 1.4 and 2.8 L/ha. Results showed that the highest seed yield was achieved at 200 kg N/ha, 2.8 L/ha cycocel and plant density of 90 plants/m2 (533.17, 533.96 and 521.6 g/m2, respectively. Application of 2.8 L/ha cycocel was associated with increased number of siliques per plant and final plants dry weight. Increasing plant density from 70 to 90 plants/m2 was associated with decreased number of siliques per plant, plant dry weight and number of seeds per silique. It appears that application of 200 kg N/ha, 2.8 L/ha cycocel and plant density of 90 plants/m2 could be recommended for maximum grain yield of autumn-grown rapeseed cv. Talaye, in agroclimatic conditions similar to this research

  10. The better growth phenotype of DvGS1-transgenic arabidopsis thaliana is attributed to the improved efficiency of nitrogen assimilation

    Directory of Open Access Journals (Sweden)

    Zhu Chenguang

    2015-01-01

    Full Text Available The overexpression of the algal glutamine synthetase (GS gene DvGS1 in Arabidopsis thaliana resulted in higher plant biomass and better growth phenotype. The purpose of this study was to recognize the biological mechanism for the growth improvement of DvGS1-transgenic Arabidopsis. A series of molecular and biochemical investigations related to nitrogen and carbon metabolism in the DvGS1-transgenic line was conducted. Analysis of nitrogen use efficiency (NUE-related gene transcription and enzymatic activity revealed that the transcriptional level and enzymatic activity of the genes encoding GS, glutamate synthase, glutamate dehydrogenase, alanine aminotransferase and aspartate aminotransferase, were significantly upregulated, especially from leaf tissues of the DvGS1-transgenic line under two nitrate conditions. The DvGS1-transgenic line showed increased total nitrogen content and decreased carbon: nitrogen ratio compared to wild-type plants. Significant reduced concentrations of free nitrate, ammonium, sucrose, glucose and starch, together with higher concentrations of total amino acids, individual amino acids (glutamate, aspartate, asparagine, methionine, soluble proteins and fructose in leaf tissues confirmed that the DvGS1-transgenic line demonstrated a higher efficiency of nitrogen assimilation, which subsequently affected carbon metabolism. These improved metabolisms of nitrogen and carbon conferred the DvGS1-transgenic Arabidopsis higher NUE, more biomass and better growth phenotype compared with the wild-type plants.

  11. Nitrogen cycling in a flooded-soil ecosystem planted to rice (Oryza sativa L.)

    International Nuclear Information System (INIS)

    Reddy, K.R.

    1982-01-01

    15 N studies of various aspects of the nitrogen cycle in a flooded rice ecosystem on Crowley silt loam soil in Louisiana were reviewed to construct a mass balance model of the nitrogen cycle for this system. Nitrogen transformations modeled included 1) net ammonification (0.22 mg NH 4+ -N kg dry soil - 1 day - 1 ). 2) net nitrification (207 mg NO 3- -N kg dry soil - 1 day - 1 ). 3) denitrification (0.37 mg N kg dry soil - 1 day - 1 ), and 4) biological N 2 fixation (0.16 mg N kg dry soil - 1 day - 1 ). Nitrogen inputs included 1) application of fertilizers, 2) incorporation of crop residues, 3) biological N 2 fixation, and 4) deposition. Nitrogen outputs included 1) crop removal, 2) gaseous losses from NH 3 volatilization and simultaneous occurrence of nitrification-denitrification, and 3) leaching and runoff. Mass balance calculations indicated that 33% of the available inorganic nitrogen was recovered by rice, and the remaining nitrogen was lost from the system. Losses of N due to ammonia volatilization were minimal because fertilizer-N was incorporated into the soil. A significant portion of inorganic-N was lost by ammonium diffusion from the anaerobic layer to the aerobic layer in response to a concentration gradient and subsequent nitrification in the aerobic layer followed by nitrate diffusion into the anaerobic layer and denitrification into gaseous end products. Leaching and surface runoff losses were minimal. (orig.)

  12. Low nitrogen stress stimulating the indole-3-acetic acid biosynthesis of Serratia sp. ZM is vital for the survival of the bacterium and its plant growth-promoting characteristic.

    Science.gov (United States)

    Ouyang, Liming; Pei, Haiyan; Xu, Zhaohui

    2017-04-01

    Serratia sp. ZM is a plant growth-promoting (PGP) bacterial strain isolated from the rhizospheric soil of Populus euphratica in northwestern China. In this study, low nitrogen supply significantly stimulated the production of indole-3-acetic acid (IAA) in Serratia sp.ZM. The inoculation of the bacterium to wheat seedlings improved plant growth compared with the uninoculated group, and the stimulating effect was more prominent under low nitrogen stress. Inactivation of the predicted key gene in the IAA biosynthesis pathway impaired IAA production and significantly hampered mutant growth in poor medium. Furthermore, the IAA-deficient mutant lost the PGP effect under either normal or low nitrogen conditions in plant experiments. This study revealed the significant impact of environmental nitrogen levels on IAA production in the PGP strain and the vital effect of IAA on resistance physiology of both the bacterium and host plant. The characteristics of Serratia sp. ZM also indicated its application potential as a biofertilizer for plants, especially those suffering from poor nitrogen soil.

  13. Temperature sensitivity of nitrogen productivity

    OpenAIRE

    Ladanai, Svetlana; Ågren, Göran

    2002-01-01

    Environmental conditions control physiological processes in plants and thus their growth. The predicted global warming is expected to accelerate tree growth. However, the growth response is a complex function of several processes. To circumvent this problem we have used the nitrogen productivity (dry matter production per unit of nitrogen in the plant), which is an aggregate parameter. Data on needle dry matter, production, and nitrogen content in needles of Scots pine (Pinus sylvestris) from...

  14. "Afterlife experiment": use of MALDI-MS and SIMS imaging for the study of the nitrogen cycle within plants.

    Science.gov (United States)

    Seaman, Callie; Flinders, Bryn; Eijkel, Gert; Heeren, Ron M A; Bricklebank, Neil; Clench, Malcolm R

    2014-10-21

    As part of a project to demonstrate the science of decay, a series of mass spectrometry imaging experiments were performed. The aim was to demonstrate that decay and decomposition are only part of the story and to show pictorially that atoms and molecules from dead plants and animals are incorporated into new life. Radish plants (Raphanus sativus) were grown hydroponically using a nutrient system containing (15)N KNO3 (98% labeled) as the only source of nitrogen. Plants were cropped and left to ferment in water for 2 weeks to create a radish "tea", which was used as a source of nitrogen for radish grown in a second hydroponics experiment. After 5 weeks of growth, the radish plants were harvested and cryosectioned, and sections were imaged by positive-ion MALDI and SIMS mass spectrometry imaging. The presence of labeled species in the plants grown using (15)N KNO3 as nutrient and those grown from the radish "tea" was readily discernible. The uptake of (15)N into a number of identifiable metabolites has been studied by MALDI-MS and SIMS imaging.

  15. Nitrogen from mountain to fjord - Annual report 1993; Nitrogen fra fjell til fjord. Aarsrapport 1993

    Energy Technology Data Exchange (ETDEWEB)

    Kaste, Oe; Bechmann, M; Toerset, K

    1994-07-01

    ``Nitrogen from mountain to fjord`` is an interdisciplinary research programme which studies the nitrogen cycle from deposition to discharge into the sea. The project includes investigation of the nitrogen budgets for two catchments and selected areas of mountain, heath, forest, crop land and fresh water. The main purpose of the project is to increase the knowledge of uptake and runoff of nitrogen and thus to improve the prediction of future effects on soil, forest, fresh water and fjords. The activities are concentrated about two water courses in Norway: Bjerkreimsvassdraget and Aulivassdraget. In Bjerkreimsvassdraget the nitrate concentration changed only little from 1992 to 1993. Relatively large variations in the nitrate concentrations were found in the forest and heath areas of the system. In Aulivassdraget the nitrogen concentration has changed considerably in 1992 and 1993. The maximum concentration measured in the main river was 13.2 mg N/l. In autumn 1992 and spring 1993 much nitrogen remained in the soil after the poor harvest of 1992 and at that time much nitrogen was carried away by the runoff. 16 refs., 19 figs., 16 tabs.

  16. How Plant Root Exudates Shape the Nitrogen Cycle.

    Science.gov (United States)

    Coskun, Devrim; Britto, Dev T; Shi, Weiming; Kronzucker, Herbert J

    2017-08-01

    Although the global nitrogen (N) cycle is largely driven by soil microbes, plant root exudates can profoundly modify soil microbial communities and influence their N transformations. A detailed understanding is now beginning to emerge regarding the control that root exudates exert over two major soil N processes - nitrification and N 2 fixation. We discuss recent breakthroughs in this area, including the identification of root exudates as nitrification inhibitors and as signaling compounds facilitating N-acquisition symbioses. We indicate gaps in current knowledge, including questions of how root exudates affect newly discovered microbial players and N-cycle components. A better understanding of these processes is urgent given the widespread inefficiencies in agricultural N use and their links to N pollution and climate change. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Indoor-outdoor nitric oxide and nitrogen dioxide concentrations at three sites in Riyadh, Saudi Arabia

    Energy Technology Data Exchange (ETDEWEB)

    Rowe, D.R. (D.R. Rowe Engineering Services, Inc., Bowling Green, KY (United States)); Al-Dhowalia, K.H.; Mansour, M.E. (King Saud Univ., Riyadh (Saudi Arabia))

    1991-08-01

    The objective of this study was to evaluate the nitric oxide and nitrogen oxide concentrations indoors and outdoors at three sites in Riyadh, Saudi Arabia. Results show that the outdoor and indoor concentrations for NO were at least 270 and 16 times the reported average worldwide NO concentrations, respectively. The NO(sub 2) concentrations were about 14 times reported outdoor worldwide levels; however, NO(sub 2) concentrations indoors were generally below those reported in the literature. The data presented, in combination with information presented in previous articles, will provide a valuable background database for use in dispersion models to determine the effect of the Kuwaiti oil well fires on the air quality of Riyadh.

  18. Developments in nitrogen generators

    International Nuclear Information System (INIS)

    Ayres, C.L.; Abrardo, J.M.; Himmelberger, L.M.

    1984-01-01

    Three process cycles for the production of nitrogen by the cryogenic separation of air are described in detail. These cycles are: (1) a waste expander cycle; (2) an air expander cycle; and (3) a cycle for producing large quantities of gaseous nitrogen. Each cycle has distinct advantages for various production ranges and delivery pressures. A dicussion of key parameters that must be considered when selecting a cycle to meet specific product requirements is presented. The importance of high plant reliability and a dependable liquid nitrogen back up system is also presented. Lastly, a discussion of plant safety dealing with the hazards of nitrogen, enriched oxygen, and hydrocarbons present in the air is reviewed

  19. The Effects of Application Vinasseand additive nitrogen and phosphorus on Growth and Yield of Tomato

    Directory of Open Access Journals (Sweden)

    Ahmad Golchin

    2017-02-01

    Full Text Available Introduction:Vinasse is a byproduct of the sugar industry. Sugarcane or Sugarbeet is processed to produce crystallinesugar, pulp and molasses. The latter isfurther processed by fermentation to ethanol, ascorbicacid or other products. After the removal of the desired product (alcohol, ascorbicacid, etc. the remaining material is called vinasse. Vinasse is sold after a partial dehydration and usually has a viscositycomparable to molasses. Commercially offered vinasse comes either from sugarcaneand is called cane-vinasse or from sugarbeet and is called beet-vinasse. On average, for each liter of vinasse, 12 liters alcohol produced. Vinasse is a material with dark brown color and the smell of burned sugar, which is rich in potassium, calcium, magnesium, phosphorus and nitrogen. Materials and Methods:To determine the effect of vinasse and additive nitrogen and phosphorus on growth and yield of tomato, a factorial pot experiment was conducted at ZanjanUniversity in 2008. Two different plant nutrient including N and P and their combination (N+P were added to vinasse with three different concentrations to form experimental treatments. In addition to these treatments, three control treatments with vinasse of different concentrations, but with no additive were also included in the experiment. Each treatment used with two different application methods (soil application and soil + foliar application.The experiment had 24 treatments, a complete randomized design and three replications. The vinasse used in this experiment was diluted with water 10, 20 and 40 times to make a nutrient solution of three different concentrations of tomato plant. The amounts of nitrogen and phosphorus that were added to vinasse were 224 and 62 mg/l, respectively. Phosphorus and nitrogen were applied to as super-phosphate triple and calcium nitrate and ammonium nitrate respectively. After being deployed to ensure complete installation of tomatoes in pots containing perlite (about 2

  20. Effect of N deposition on tree amino acid concentrations in two Sphagnum species

    Energy Technology Data Exchange (ETDEWEB)

    Karsisto, M; Kitunen, V [Finnish Forest Research Inst., Vantaa (Finland). Vantaa Research Centre; Jauhiainen, J [Joensuu Univ. (Finland). Dept. of Biology; Vasander, H [Helsinki Univ. (Finland). Dept. of Forest Ecology

    1997-12-31

    Nitrogen saturation of ecosystems occurs when the availability of nitrogen is not a growth limiting factor. This situation can be reached through fertilisation or by nitrogen deposition. Prolonged nitrogen saturation may overload the ecosystem and cause changes in the vigour and eventually in the composition of plant communities. But before this stage is reached, certain changes in nitrogen metabolism occur. These changes can be used as an early warning of nitrogen overload to ecosystems. A change in the amino acid pool of plants has been used as an indication of various kind of stress, including, temperature, nutrient imbalance, shading, drought or excess water. It has been postulated that such stresses have an effect on protein synthesis but not on the nitrogen uptake of plants. The result is an increase in the concentration of NH{sub 4}{sup +} ions in plant cells, which may have toxic effects to the plant and the processes that assimilate the free NH{sub 4}{sup +} ions. One of such process is the synthesis of amino acids, especially those containing a significant proportion of nitrogen, e.g. arginine, glutamine and asparagine. This study about the quantification of amino acids in two species of Sphagnum mosses is part of a larger study, the aim of which is to clarify how a number of Sphagnum species will cope with climatic change and nitrogen deposition. Sphagna are the most important members of the peat forming communities in the boreal zone. Sphagnum communities are formed by species specialised to grow in conditions of low nutrient availability, mainly provided via deposition. The present structure and composition of mire communities may be endangered due to elevated levels of nitrogen deposition that have persisted over the last few decades. (20 refs.)

  1. Effect of N deposition on tree amino acid concentrations in two Sphagnum species

    Energy Technology Data Exchange (ETDEWEB)

    Karsisto, M.; Kitunen, V. [Finnish Forest Research Inst., Vantaa (Finland). Vantaa Research Centre; Jauhiainen, J. [Joensuu Univ. (Finland). Dept. of Biology; Vasander, H. [Helsinki Univ. (Finland). Dept. of Forest Ecology

    1996-12-31

    Nitrogen saturation of ecosystems occurs when the availability of nitrogen is not a growth limiting factor. This situation can be reached through fertilisation or by nitrogen deposition. Prolonged nitrogen saturation may overload the ecosystem and cause changes in the vigour and eventually in the composition of plant communities. But before this stage is reached, certain changes in nitrogen metabolism occur. These changes can be used as an early warning of nitrogen overload to ecosystems. A change in the amino acid pool of plants has been used as an indication of various kind of stress, including, temperature, nutrient imbalance, shading, drought or excess water. It has been postulated that such stresses have an effect on protein synthesis but not on the nitrogen uptake of plants. The result is an increase in the concentration of NH{sub 4}{sup +} ions in plant cells, which may have toxic effects to the plant and the processes that assimilate the free NH{sub 4}{sup +} ions. One of such process is the synthesis of amino acids, especially those containing a significant proportion of nitrogen, e.g. arginine, glutamine and asparagine. This study about the quantification of amino acids in two species of Sphagnum mosses is part of a larger study, the aim of which is to clarify how a number of Sphagnum species will cope with climatic change and nitrogen deposition. Sphagna are the most important members of the peat forming communities in the boreal zone. Sphagnum communities are formed by species specialised to grow in conditions of low nutrient availability, mainly provided via deposition. The present structure and composition of mire communities may be endangered due to elevated levels of nitrogen deposition that have persisted over the last few decades. (20 refs.)

  2. Influences of Air, Oxygen, Nitrogen, and Carbon Dioxide Nanobubbles on Seed Germination and Plant Growth.

    Science.gov (United States)

    Ahmed, Ahmed Khaled Abdella; Shi, Xiaonan; Hua, Likun; Manzueta, Leidy; Qing, Weihua; Marhaba, Taha; Zhang, Wen

    2018-05-23

    Nanobubbles (NBs) hold promise in green and sustainable engineering applications in diverse fields (e.g., water/wastewater treatment, food processing, medical applications, and agriculture). This study investigated the effects of four types of NBs on seed germination and plant growth. Air, oxygen, nitrogen, and carbon dioxide NBs were generated and dispersed in tap water. Different plants, including lettuce, carrot, fava bean, and tomato, were used in germination and growth tests. The seeds in water-containing NBs exhibited 6-25% higher germination rates. Especially, nitrogen NBs exhibited considerable effects in the seed germination, whereas air and carbon dioxide NBs did not significantly promote germination. The growth of stem length and diameter, leave number, and leave width were promoted by NBs (except air). Furthermore, the promotion effect was primarily ascribed to the generation of exogenous reactive oxygen species by NBs and higher efficiency of nutrient fixation or utilization.

  3. Pathway and mechanism of nitrogen transformation during composting: Functional enzymes and genes under different concentrations of PVP-AgNPs.

    Science.gov (United States)

    Zeng, Guangming; Zhang, Lihua; Dong, Haoran; Chen, Yaoning; Zhang, Jiachao; Zhu, Yuan; Yuan, Yujie; Xie, Yankai; Fang, Wei

    2018-04-01

    Polyvinylpyrrolidone coated silver nanoparticles (PVP-AgNPs) were applied at different concentrations to reduce total nitrogen (TN) losses and the mechanisms of nitrogen bio-transformation were investigated in terms of the nitrogen functional enzymes and genes. Results showed that mineral N in pile 3 which was treated with AgNPs at a concentration of 10 mg/kg compost was the highest (6.58 g/kg dry weight (DW) compost) and the TN loss (47.07%) was the lowest at the end of composting. Correlation analysis indicated that TN loss was significantly correlated with amoA abundance. High throughput sequencing showed that the dominant family of ammonia-oxidizing bacteria (AOB) was Nitrosomonadaceae, and the number of Operational Taxonomic Units (OTUs) reduced after the beginning of composting when compared with day 1. In summary, treatment with AgNPs at a concentration of 10 mg/kg compost was considerable to reduce TN losses and reserve more mineral N during composting. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Water and Nitrogen Limitations of Ecosystem Processes Across Three Dryland Plant Communities

    Science.gov (United States)

    Beltz, C.; Lauenroth, W. K.; Burke, I. C.

    2017-12-01

    The availability of water and nitrogen (N) play a major role in controlling the distribution of ecosystem types and the rates of ecosystem processes across the globe. Both these resources are being altered by human activity. Anthropogenic fixation of N has increased inputs into the biosphere from 0.5 kg N ha-1 yr-1 to upwards of 10 kg N ha-1 yr-1, while the amount and seasonality of precipitation are expected to continue to change. Within dryland environments, the relationships between increasingly available N and ecosystem processes are especially complex due to dryland's characteristic strong limitation by low and highly variable precipitation. Other experiments have shown that this interplay between N and water can cause temporally complex co-limitation and spatially complex responses with variable effects on ecosystems, such as those to net primary productivity, soil respiration, and plant community composition. Research spanning multiple dryland plant communities is critical for generalizing findings to the 40% of the Earth's terrestrial surface covered in dryland ecosystems. Given IPCC projections in which both N availability and precipitation are altered, examining their interactive effect across multiple plant communities is critical to increasing our understanding of the limitations to ecosystem process in drylands. We are studying a gradient of three plant communities representing a C4 grassland (shortgrass steppe), a C3/C4 grassland (mixed grass prairie), and a shrub-dominated ecosystem with C3 and C4 grasses (sagebrush steppe). We added two levels of N (10 kg N ha-1 and 100 kg N ha-1) and increased summer monthly precipitation by 20%. Sites responded differently to treatments, with the scale of effect varying by treatment. The high-level nitrogen increased soil N availability and soil respiration, while decreasing soil carbon in the labile pool in the upper soil layers. These results will allow for better understanding of increased N in combination with

  5. [Effects of reduced nitrogen application and soybean intercropping on nitrogen balance of sugarcane field].

    Science.gov (United States)

    Liu, Yu; Zhang, Ying; Yang, Wen-ting; Li, Zhi-xian; Guan, Ao-mei

    2015-03-01

    A four-year (2010-2013) field experiment was carried out to explore the effects of three planting patterns (sugarcane, soybean monoculture and sugarcane-soybean 1:2 intercropping) with two nitrogen input levels (300 and 525 kg . hm-2) on soybean nitrogen fixation, sugarcane and soybean nitrogen accumulation, and ammonia volatilization and nitrogen leaching in sugarcane field. The results showed that the soybean nitrogen fixation efficiency (NFE) of sugarcane-soybean inter-cropping was lower than that of soybean monoculture. There was no significant difference in NFE among the treatments with the two nitrogen application rates. The nitrogen application rate and inter-cropping did not remarkably affect nitrogen accumulation of sugarcane and soybean. The ammonia volatilization of the reduced nitrogen input treatment was significantly lower than that of the conventional nitrogen input treatment. Furthermore, there was no significant difference in nitrogen leaching at different nitrogen input levels and among different planting patterns. The sugarcane field nitrogen balance analysis indicated that the nitrogen application rate dominated the nitrogen budget of sugarcane field. During the four-year experiment, all treatments leaved a nitrogen surplus (from 73.10 to 400.03 kg . hm-2) , except a nitrogen deficit of 66.22 kg . hm-2 in 2011 in the treatment of sugarcane monoculture with the reduced nitrogen application. The excessive nitrogen surplus might increase the risk of nitrogen pollution in the field. In conclusion, sugarcane-soybean intercropping with reduced nitrogen application is feasible to practice in consideration of enriching the soil fertility, reducing nitrogen pollution and saving production cost in sugarcane field.

  6. Study of plant pigment concentration using synchronous luminescence spectroscopy

    International Nuclear Information System (INIS)

    Pawar, B.H.; Raghuvanshi, F.C.; Mahalle, N.S.; Munde, B.S.; Devhade, S.K.; Arsad, S.S.; Kadam, K.P.; Pachkawade, A.P.; Hiswankar, S.U.

    2006-01-01

    We have recorded the SL (Synchronous Luminescence) spectra emitted by several plant leaves. We investigate in detail SL spectra emitted by the leaf of the plants like Hibiscus Schizopetalus, Ficus Benghalensis, Ficus Religiosa and Ficus Glomerata and study the concentration of the pigments in the plant leaves and the mechanism of photosynthesis process taking place in the leaves. The SL spectra have several features which may help in revealing the density and structure of the molecules present in the samples. The SL spectra exhibit two, three, four and five peaked structure. The peak appear at different wavelengths and their spectral widths are also different. The chlorophyll, xanthophyll and carotene concentration may be obtained from the study of the spectra. The plant species may be identified from the study of SL spectroscopy. (author)

  7. Importance of Foliar Nitrogen Concentration to Predict Forest Productivity in the Mid-Atlantic Region

    Science.gov (United States)

    Yude Pan; John Hom; Jennifer Jenkins; Richard Birdsey

    2004-01-01

    To assess what difference it might make to include spatially defined estimates of foliar nitrogen in the regional application of a forest ecosystem model (PnET-II), we composed model predictions of wood production from extensive ground-based forest inventory analysis data across the Mid-Atlantic region. Spatial variation in foliar N concentration was assigned based on...

  8. Role of plants in nitrogen and sulfur transformations in floating hydroponic root mats: A comparison of two helophytes.

    Science.gov (United States)

    Saad, Rania A B; Kuschk, Peter; Wiessner, Arndt; Kappelmeyer, Uwe; Müller, Jochen A; Köser, Heinz

    2016-10-01

    Knowledge about the roles helophytes play in constructed wetlands (CWs) is limited, especially regarding their provision of organic rhizodeposits. Here, transformations of inorganic nitrogen and sulfur were monitored in a CW variety, floating hydroponic root mat (FHRM), treating synthetic wastewater containing low concentration of organic carbon. Two helophytes, Phragmites australis and Juncus effusus, were compared in duplicates. Striking differences were found between the FHRM of the two helophytes. Whereas ammonium was removed in all FHRMs to below detection level, total nitrogen of 1.15 ± 0.4 g m(-2) d(-1) was removed completely only in P. australis systems. The mats with J. effusus displayed effective nitrification but incomplete denitrification as 77% of the removed ammonium-nitrogen accumulated as nitrate. Furthermore, the P. australis treatment units showed on average 3 times higher sulfate-S removal rates (1.1 ± 0.45 g m(-2) d(-1)) than the systems planted with J. effusus (0.37 ± 0.29 g m(-2) d(-1)). Since the influent organic carbon was below the stoichiometric requirement for the observed N and S transformation processes, helophytes' organic rhizodeposits apparently contributed to these transformations, while P. australis provided about 6 times higher bioavailable organic rhizodeposits than J. effusus. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Nitrogen acquisition in Agave tequilana from degradation of endophytic bacteria.

    Science.gov (United States)

    Beltran-Garcia, Miguel J; White, James F; Prado, Fernanda M; Prieto, Katia R; Yamaguchi, Lydia F; Torres, Monica S; Kato, Massuo J; Medeiros, Marisa H G; Di Mascio, Paolo

    2014-11-06

    Plants form symbiotic associations with endophytic bacteria within tissues of leaves, stems, and roots. It is unclear whether or how plants obtain nitrogen from these endophytic bacteria. Here we present evidence showing nitrogen flow from endophytic bacteria to plants in a process that appears to involve oxidative degradation of bacteria. In our experiments we employed Agave tequilana and its seed-transmitted endophyte Bacillus tequilensis to elucidate organic nitrogen transfer from (15)N-labeled bacteria to plants. Bacillus tequilensis cells grown in a minimal medium with (15)NH4Cl as the nitrogen source were watered onto plants growing in sand. We traced incorporation of (15)N into tryptophan, deoxynucleosides and pheophytin derived from chlorophyll a. Probes for hydrogen peroxide show its presence during degradation of bacteria in plant tissues, supporting involvement of reactive oxygen in the degradation process. In another experiment to assess nitrogen absorbed as a result of endophytic colonization of plants we demonstrated that endophytic bacteria potentially transfer more nitrogen to plants and stimulate greater biomass in plants than heat-killed bacteria that do not colonize plants but instead degrade in the soil. Findings presented here support the hypothesis that some plants under nutrient limitation may degrade and obtain nitrogen from endophytic microbes.

  10. Determination of Microbial Nitrogen Production by Using Urinary Allantoin and Blood Metabolite Concentrate in Growing Brahman Cattle Fed the Different Proportion of Roughage and Concentrate in Diets

    International Nuclear Information System (INIS)

    Suthikrai, Wanvipa; Usawang, Sungwon; Kijsamrej, Suriya; Sophon, Sunpetch; Jetana, Thongsuk

    2003-06-01

    Determination of microbial nitrogen synthesis by using urinary allantoin and blood metabolite for evaluating the efficiency of feed utilization, in this study was conducted by using four Brahman bulls (about 1 year old). Animals were fed ad libitum with 4 fixed diets of four combinations of pineapple fibre (P) and concentrate (C) in the proportions, on dry matter basis of 0.8:0.2 (P80:C20), 0.6:0.04(P60:C40), 0.4:0.6(P40:C60) and 0.2:0.8 (P20:C80). The experiment was designed as a 4x4 Latin square design The Results showed that increasing in the proportion of concentrate linearly increased the rumen microbial nitrogen production (p<0.001), the concentrations of Insulin and urea-N in plasma and the concentration of urea-N in the urine, but not affected on the concentrations of glucose and creatinine in plasma. In conclusion, the using of allantoin urinary associated with blood metabolite can evaluate the accuracy in evaluation of feed utilization in Brahman cattle

  11. A nitrogen response pathway regulates virulence in plant pathogenic fungi: role of TOR and the bZIP protein MeaB.

    Science.gov (United States)

    López-Berges, Manuel S; Rispail, Nicolas; Prados-Rosales, Rafael C; Di Pietro, Antonio

    2010-12-01

    Virulence in plant pathogenic fungi is controlled through a variety of cellular pathways in response to the host environment. Nitrogen limitation has been proposed to act as a key signal to trigger the in planta expression of virulence genes. Moreover, a conserved Pathogenicity mitogen activated protein kinase (MAPK) cascade is strictly required for plant infection in a wide range of pathogens. We investigated the relationship between nitrogen signaling and the Pathogenicity MAPK cascade in controlling infectious growth of the vascular wilt fungus Fusarium oxysporum. Several MAPK-activated virulence functions such as invasive growth, vegetative hyphal fusion and host adhesion were strongly repressed in the presence of the preferred nitrogen source ammonium. Repression of these functions by ammonium was abolished by L-Methionine sulfoximine (MSX) or rapamycin, two specific inhibitors of Gln synthetase and the protein kinase TOR (Target Of Rapamycin), respectively, and was dependent on the bZIP protein MeaB. Supplying tomato plants with ammonium rather than nitrate resulted in a significant delay of vascular wilt symptoms caused by the F. oxysporum wild type strain, but not by the ΔmeaB mutant. Ammonium also repressed invasive growth in two other pathogens, the rice blast fungus Magnaporthe oryzae and the wheat head blight pathogen Fusarium graminearum. Our results suggest the presence of a conserved nitrogen-responsive pathway that operates via TOR and MeaB to control infectious growth in plant pathogenic fungi.

  12. Carbon Nanotubes Filled with Different Ferromagnetic Alloys Affect the Growth and Development of Rice Seedlings by Changing the C:N Ratio and Plant Hormones Concentrations.

    Science.gov (United States)

    Hao, Yi; Yu, Feifan; Lv, Ruitao; Ma, Chuanxin; Zhang, Zetian; Rui, Yukui; Liu, Liming; Cao, Weidong; Xing, Baoshan

    2016-01-01

    The aim of this study was to investigate the phytotoxicity of thin-walled carbon nanotubes (CNTs) to rice (Oryza sativa L.) seedlings. Three different CNTs, including hollow multi-walled carbon nanotubes (MWCNTs), Fe-filled carbon nanotubes (Fe-CNTs), and Fe-Co-filled carbon nanotubes (FeCo-CNTs), were evaluated. The CNTs significantly inhibited rice growth by decreasing the concentrations of endogenous plant hormones. The carbon to nitrogen ratio (C:N ratio) significantly increased in rice roots after treatments with CNTs, and all three types of CNTs had the same effects on the C:N ratio. Interestingly, the increase in the C:N ratio in roots was largely because of decreased N content, indicating that the CNTs significantly decreased N assimilation. Analyses of the Fe and Co contents in plant tissues, transmission electron microscope (TEM) observations and energy dispersive X-ray spectroscopy (EDS) analysis proved that the CNTs could penetrate the cell wall and the cell membrane, and then enter the root cells. According to the author's knowledge, this is the first time to study the relationship between carbon nanotubes and carbon nitrogen ratio and plant hormones.

  13. Effect of nitrogen on cellular production and release of the neurotoxin anatoxin-a in a nitrogen-fixing cyanobacterium

    Directory of Open Access Journals (Sweden)

    Alexis eGagnon

    2012-06-01

    Full Text Available Anatoxin-a (ANTX is a neurotoxin produced by several freshwater cyanobacteria and implicated in lethal poisonings of domesticated animals and wildlife. The factors leading to its production in nature and in culture are not well understood. Resource availability may influence its cellular production as suggested by the carbon-nutrient hypothesis, which links the amount of secondary metabolites produced by plants or microbes to the relative abundance of nutrients. We tested the effects of nitrogen supply on ANTX production and release in a toxic strain of the cyanobacterium Aphanizomenon issatschenkoi (Nostocales. We hypothesized that nitrogen deficiency might constrain the production of ANTX. However, the total concentration and more significantly the cellular content of anatoxin-a peaked (max. 146 µg/L and 1683 µg•g-1 dry weight at intermediate levels of nitrogen supply when N-deficiency was evident based on phycocyanin to chlorophyll a and carbon to nitrogen ratios. The results suggest that the cellular production of anatoxin-a may be stimulated by moderate nutrient stress as described recently for another cyanotoxin (microcystin.

  14. Availability of residual nitrogen from fertilizers in soil

    International Nuclear Information System (INIS)

    Jakovljevic, M.; Filipovic, R.; Petrovic, M.

    1983-01-01

    The plant availability of residual fertilizer nitrogen for the next crop was studied in chernozem and pseudogley soils. Release of nitrogen was examined after incubation at 3 and 30 0 C. It was found that the use of increased doses of nitrogen fertilizer (ammonium nitrate) led to an increased release of residual fertilizer nitrogen into plant available forms. The release of this nitrogen fraction was 5-10 times faster in comparison with the remaining soil nitrogen. (author)

  15. Availability of residual nitrogen from fertilizers in soil

    Energy Technology Data Exchange (ETDEWEB)

    Jakovljevic, M.; Filipovic, R.; Petrovic, M. (Institut za Primeni Nuklearne Energije u Poljoprivedri, Veterinarstvu i Sumarstvu, Zemun (Yugoslavia))

    1983-05-01

    The plant availability of residual fertilizer nitrogen for the next crop was studied in chernozem and pseudogley soils. Release of nitrogen was examined after incubation at 3 and 30/sup 0/C. It was found that the use of increased doses of nitrogen fertilizer (ammonium nitrate) led to an increased release of residual fertilizer nitrogen into plant available forms. The release of this nitrogen fraction was 5-10 times faster in comparison with the remaining soil nitrogen.

  16. Nitrogen utilization efficiency and nitrogen nutrition of rice crops at MADA using the microplot nitrogen balance method

    International Nuclear Information System (INIS)

    Ahmad Nazrul Abd Wahid; Abdul Razak Ruslan; Latiffah Norddin; Hazlina Abdullah; Khairuddin Abdul Rahim

    2004-01-01

    Nitrogen (N) is a very important nutrient for rice crops and is a main component of protein. Nitrogen is essential in the production of plant chlorophyll and involves in vegetative and fruit growth and development processes. Nitrogen is a critical input and exert high cost in rice crop production. Nitrogen fertilizer is not fully utilised by the rice crop; some is lost due the processes of vaporization, hydrolysis, erosion, leaching and used by other plants and microorganisms. Several agronomic practices have been studied and adopted in this country with the purpose of increasing the efficiency nitrogen fertilizer utilization and thus, reducing the output cost for rice crops. The microplot nitrogen balance method is one of the methods used to determine uptake efficiency of nitrogen fertilizers by rice crops. In this research, the microplot of 1 m x 1 m squares in paddy plot were used, to ensure that sequential sampling was done at predetermined areas. Scheduled monthly sampling of soil and rice crops was conducted until the mature stage, harvest and post-harvest period. This MINT-MADA cooperative project contains the elements of information sharing on fertilizer efficiency measurement methods by using the N-15 isotopic tracer technique and the N-balance technique in soil, besides the cooperation on use of infrastructure and facilities, expertise and labour. (Author)

  17. Leather Industry Solid Waste as Nitrogen Source for Growth of Common Bean Plants

    International Nuclear Information System (INIS)

    Lima, D.Q.; Oliveira, L.C.A.; Bastos, A.R.R.; Carvalho, G.S.; Marques, J.G.S.M.; Carvalho, J.G.; De Souza, G.A.

    2010-01-01

    The leather industry generates large amounts of a Cr-containing solid waste (wet blue leather). This material is classified by the Brazilian Environmental Council as a category-one waste, requiring a special disposal. The patented process Br n. PI 001538 is a technique to remove chromium from wet blue leather, with the recovery of a solid collagenic material (collagen), containing high nitrogen levels. This work aimed to evaluate the residual effect of soil application of collagen on the production of dry matter, content and accumulation of N in common bean plants (Phaseolus vulgaris L.), after the previous growth of elephant grass (Pennisetum purpureum Schumach.) cv. Napier, as well as to quantify the mineralization rate of N in the soil. The application of collagen, at rates equivalent to 16 and 32 tha-1, provided greater N contents in the common bean plants, indicating residual effect of these rates of application; the same was observed for the rates of 4 and 8tha-1, though in smaller proportions. Higher mineralization rates of N collagen occurred next to 16 days after soil incubation. During the 216 days of incubation, the treatments with collagen showed higher amounts of mineralized nitrogen.

  18. Robust biological nitrogen fixation in a model grass-bacterial association.

    Science.gov (United States)

    Pankievicz, Vânia C S; do Amaral, Fernanda P; Santos, Karina F D N; Agtuca, Beverly; Xu, Youwen; Schueller, Michael J; Arisi, Ana Carolina M; Steffens, Maria B R; de Souza, Emanuel M; Pedrosa, Fábio O; Stacey, Gary; Ferrieri, Richard A

    2015-03-01

    Nitrogen-fixing rhizobacteria can promote plant growth; however, it is controversial whether biological nitrogen fixation (BNF) from associative interaction contributes to growth promotion. The roots of Setaria viridis, a model C4 grass, were effectively colonized by bacterial inoculants resulting in a significant enhancement of growth. Nitrogen-13 tracer studies provided direct evidence for tracer uptake by the host plant and incorporation into protein. Indeed, plants showed robust growth under nitrogen-limiting conditions when inoculated with an ammonium-excreting strain of Azospirillum brasilense. (11)C-labeling experiments showed that patterns in central carbon metabolism and resource allocation exhibited by nitrogen-starved plants were largely reversed by bacterial inoculation, such that they resembled plants grown under nitrogen-sufficient conditions. Adoption of S. viridis as a model should promote research into the mechanisms of associative nitrogen fixation with the ultimate goal of greater adoption of BNF for sustainable crop production. © 2015 The Authors The Plant Journal © 2015 John Wiley & Sons Ltd.

  19. Tritium concentration in ambient air around Kaiga Nuclear Power Plant

    Directory of Open Access Journals (Sweden)

    Srinivas S Kamath

    2018-01-01

    Full Text Available Tritium (3H is one of the important long-lived radioisotopes in the gaseous effluent from nuclear power plants. In this article, we present the results of 3H monitoring in ambient air samples around the Kaiga Nuclear Power Plant, on the West Coast of India. Air samples were collected by moisture condensation method and the 3H concentration was determined by liquid scintillation spectrometry. The 3H concentration in the 2.3–15 km zone of the power plant varied in the range of <0.04–6.64 Bq m−3 with a median of 0.67 Bq m−3. The samples collected from the 2.3–5 km zone of the power plant exhibit marginally higher concentration when compared to the 5–10 km and 10–15 km zones, which is as expected. The values observed in the present study for Kaiga region are similar to those reported from other nuclear power plants, both within India and other parts of the world.

  20. EFFECTS OF NITROGEN NUTRIENT ON THE PHOTOSYNTHETIC PIGMENTS ACCUMULATION AND YIELD OF SOLANUM LYCOPERSICUM

    Directory of Open Access Journals (Sweden)

    Adekunle Ajayi ADELUSI

    2015-12-01

    Full Text Available This study investigated photosynthetic pigment accumulation and yield of Solanum lycopersicum so as to ascertain the maximum concentration of nitrogen needed for optimum production. Seeds of S. lycopersicum tagged with VG-TH-017 were firstly raised in nursery bed. At the end of 28th day after sowing, the seedlings with uniform height were transplanted into experimental pots with 4 seedlings per pot under greenhouse. All the experimental pots were 40 in total, 4 levels of nitrogen (KNO3 and NH4NO3 treatment (n, N, 5N, 10N with 10 replicates. All the plants in the four treatments received 200ml of distilled water at 6a.m. in the morning every day. At 6p.m. in the evening, 100 ml of the differential treatments were applied. The photosynthetic pigments were determined spectrophotometrically. The number of flowers and fruits per plant per pot were counted and recorded. The fruit lengths and fruit diameters in each treatment were determined with the use of a Vernier Caliper. The fruits biomass were also determined. The 10N-plants and 5N-plants had leaves with deep-green colouration indicating an increase in chlorophyll content as well as an increase in the photosynthetic capacity. The highest number of flowers and early flowering discovered in 10N-plants and 5N-plants. The best yield was obtained in the treatments for the 5N-plants in which the concentration of nitrogen in the nutrient solution had been increased to a factor of 5. It is therefore suggested that when the seeds of tomato plants VG-TH-017 are to be grown, the 5N treatment is the most suitable level of application.

  1. On the water-soluble organic nitrogen concentration and mass size distribution during the fog season in the Po Valley, Italy.

    Science.gov (United States)

    Montero-Martínez, Guillermo; Rinaldi, Matteo; Gilardoni, Stefania; Giulianelli, Lara; Paglione, Marco; Decesari, Stefano; Fuzzi, Sandro; Facchini, Maria Cristina

    2014-07-01

    The study of organic nitrogen gained importance in recent decades due to its links with acid rain, pollution, and eutrophication. In this study, aerosol and fog water samples collected from two sites in Italy during November 2011 were analyzed to characterize their organic nitrogen content. Organic nitrogen contributed 19-25% of the total soluble nitrogen in the aerosol and around 13% in fog water. The largest water soluble organic nitrogen concentrations in the PM1.2 fraction occurred during the diurnal period with mean values of 2.03 and 2.16 μg-N m(-3) (154 and 145 nmol-N m(-3)) at Bologna and San Pietro Capofiume (SPC), respectively. The mean PM10 WSON concentration during diurnal periods at SPC was 2.30 μg-N m(-3) (164 nmol-N m(-3)) while it was 1.34 and 0.82 μg-N m(-3) (95.7 and 58.5 nmol-N m(-3)) in the night and fog water samples, respectively. Aerosol mass distribution profiles obtained during fog changed significantly with respect to those estimated in periods without fog periods due to fog scavenging, which proved to be over 80% efficient. Linear correlations suggested secondary processes related to combustion and, to a lesser extent, biomass burning, as plausible sources of WSON. Regarding the inorganic nitrogen fraction, the results showed that ammonium was the largest soluble inorganic nitrogen component in the samples. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. The effects of oxides of carbon and nitrogen emissions on the isotope and element abundances in foliage of C3 plants

    International Nuclear Information System (INIS)

    Sucgang, Raymond; Pabroa, Preciosa Corazon; Petrache, Cristina; Bulanhagui, Jaika Faye; Legaspi, Charmaine; Niegas, Elaine; Enerva, Lorna; Luces, Arnicole

    2014-01-01

    The carbon and nitrogen stable isotope abundance of C3 plants mango (Magnifera indica L), molave (Vitex parviflora Juss), talisay (Terminalia catappa L.) leaves harvested from sites with ambient air conditions and sites receiving air pollution contributions from coal-fired power plants were determined and compared. Isotope Ratio Mass Spectroscopy, IRMS was used to determine 13 C and 15 N in the samples. The elemental composition of the samples was determined using Inductively Coupled Plasma-Atomic Emission Spectrometry, ICP-AES. The 13 C of the leaves grown in ambient air were found to fall within the range of -25.0 to -22.0 per mill and a close agreement with the literature values for the natural abundance of 13 C in C3 plants (-27.0 to -21.0 per mill). The 13 C abundance of plants obtained from sites polluted by coal-fired plants were sporadic from -35 to 24.0 per mille. The 15 N abundance in leaves grown under ambient air condition (-1.0 to 2.0 per mille) were way below the 15 N abundance of plants from coal-fired plant-polluted regions (16.0 to 17.5 per mille). Elemental exposition indicated no differences in element concentrations in leaves from ambient and polluted sites. Differences exist in the Ca, Mg, K ratios across species and are affected by seasonal variation. (author)

  3. Nitrogen Deifciency Limited the Improvement of Photosynthesis in Maize by Elevated CO2 Under Drought

    Institute of Scientific and Technical Information of China (English)

    ZONG Yu-zheng; SHANGGUAN Zhou-ping

    2014-01-01

    Global environmental change affects plant physiological and ecosystem processes. The interaction of elevated CO2, drought and nitrogen (N) deficiency result in complex responses of C4 species photosynthetic process that challenge our current understanding. An experiment of maize (Zea mays L.) involving CO2 concentrations (380 or 750 µmol mol-1, climate chamber), osmotic stresses (10% PEG-6000, -0.32 MPa) and nitrogen constraints (N deficiency treated since the 144th drought hour) was carried out to investigate its photosynthesis capacity and leaf nitrogen use efficiency. Elevated CO2 could alleviate drought-induced photosynthetic limitation through increasing capacity of PEPC carboxylation (Vpmax) and decreasing stomatal limitations (SL). The N deifciency exacerbated drought-induced photosynthesis limitations in ambient CO2. Elevated CO2 partially alleviated the limitation induced by drought and N deifciency through improving the capacity of Rubisco carboxylation (Vmax) and decreasing SL. Plants with N deifciency transported more N to their leaves at elevated CO2, leading to a high photosynthetic nitrogen-use efifciency but low whole-plant nitrogen-use efifciency. The stress mitigation by elevated CO2 under N deifciency conditions was not enough to improving plant N use efifciency and biomass accumulation. The study demonstrated that elevated CO2 could alleviate drought-induced photosynthesis limitation, but the alleviation varied with N supplies.

  4. Dissecting hormonal pathways in nitrogen-fixing rhizobium symbioses

    NARCIS (Netherlands)

    Zeijl, van Arjan

    2017-01-01

    Nitrogen is a key element for plant growth. To meet nitrogen demands, some plants establish an endosymbiotic relationship with nitrogen-fixing rhizobium or Frankia bacteria. This involves formation of specialized root lateral organs, named nodules. These nodules are colonized

  5. A Mathematical Model of Neutral Lipid Content in terms of Initial Nitrogen Concentration and Validation in Coelastrum sp. HA-1 and Application in Chlorella sorokiniana

    Directory of Open Access Journals (Sweden)

    Zhenhua Yang

    2017-01-01

    Full Text Available Microalgae are considered to be a potential major biomass feedstock for biofuel due to their high lipid content. However, no correlation equations as a function of initial nitrogen concentration for lipid accumulation have been developed for simplicity to predict lipid production and optimize the lipid production process. In this study, a lipid accumulation model was developed with simple parameters based on the assumption protein synthesis shift to lipid synthesis by a linear function of nitrogen quota. The model predictions fitted well for the growth, lipid content, and nitrogen consumption of Coelastrum sp. HA-1 under various initial nitrogen concentrations. Then the model was applied successfully in Chlorella sorokiniana to predict the lipid content with different light intensities. The quantitative relationship between initial nitrogen concentrations and the final lipid content with sensitivity analysis of the model were also discussed. Based on the model results, the conversion efficiency from protein synthesis to lipid synthesis is higher and higher in microalgae metabolism process as nitrogen decreases; however, the carbohydrate composition content remains basically unchanged neither in HA-1 nor in C. sorokiniana.

  6. A Mathematical Model of Neutral Lipid Content in terms of Initial Nitrogen Concentration and Validation in Coelastrum sp. HA-1 and Application in Chlorella sorokiniana

    Science.gov (United States)

    Zhao, Yue; Liu, Zhiyong; Liu, Chenfeng; Hu, Zhipeng

    2017-01-01

    Microalgae are considered to be a potential major biomass feedstock for biofuel due to their high lipid content. However, no correlation equations as a function of initial nitrogen concentration for lipid accumulation have been developed for simplicity to predict lipid production and optimize the lipid production process. In this study, a lipid accumulation model was developed with simple parameters based on the assumption protein synthesis shift to lipid synthesis by a linear function of nitrogen quota. The model predictions fitted well for the growth, lipid content, and nitrogen consumption of Coelastrum sp. HA-1 under various initial nitrogen concentrations. Then the model was applied successfully in Chlorella sorokiniana to predict the lipid content with different light intensities. The quantitative relationship between initial nitrogen concentrations and the final lipid content with sensitivity analysis of the model were also discussed. Based on the model results, the conversion efficiency from protein synthesis to lipid synthesis is higher and higher in microalgae metabolism process as nitrogen decreases; however, the carbohydrate composition content remains basically unchanged neither in HA-1 nor in C. sorokiniana. PMID:28194424

  7. Concentration of Cs in plants and water resulting from radioactive pollution

    Energy Technology Data Exchange (ETDEWEB)

    Ishizaki, A., E-mail: azusa.ishizaki@qse.tohoku.ac.jp [Department of Quantum Science and Energy Engineering, Tohoku University, Aramaki-Aza-Aoba 6-6-01, Aoba-ku, Sendai 980-8579 (Japan); Ishii, K.; Matsuyama, S.; Fujishiro, F.; Arai, H.; Osada, N.; Sugai, H.; Koshio, S.; Yamauchi, S.; Kusano, K.; Nozawa, Y.; Karahashi, M.; Oshikawa, S.; Kikuchi, K.; Watanabe, K.; Itoh, S.; Kasahara, K.; Toyama, S. [Department of Quantum Science and Energy Engineering, Tohoku University, Aramaki-Aza-Aoba 6-6-01, Aoba-ku, Sendai 980-8579 (Japan); Suzuki, Y. [Graduate School of Biomedical Engineering, Tohoku University, Aramaki-Aza-Aoba 6-6-04, Aoba-ku, Sendai 980-8578 (Japan)

    2014-01-01

    The consumption of plants cultivated in soils contaminated by radioactive cesium can lead to internal exposure and health problems in humans. It is therefore very important to clarify the uptake mechanism of radioactive cesium from contaminated soils. In this study, the variation of cesium concentrations in plants was examined using mediums that contained no potassium and different cesium concentrations of 50, 100, 250 and 500 ppm. Raphanus sativus was selected as a typical edible vegetable and hydroponically cultivated. Cesium concentrations in leaves were analyzed with a submilli-PIXE camera. The concentration of cesium in plants was observed to increase as concentrations in the medium increased. As the concentration of cesium in the medium increased, the transfer coefficient decreased. However, there was little difference between the 250 and 500 ppm treatments. In future work, PIXE analysis will be performed on different mediums and the relationship with other materials will be investigated.

  8. Natural uranium concentrations of native plants over a low-grade ore body

    International Nuclear Information System (INIS)

    Sheppard, M.I.; Thibault, D.H.

    1984-01-01

    Plant uranium concentrations generally reflect soil or rock substrate concentrations in upland areas, but they may not in lowland areas where the rhizoids of Sphagnum spp. and rocks of Ledum groenlandicum may be in direct contact either continuously or on a seasonal basis with the groundwater. This study points out the importance of selecting plant species and collection sites where the true substrate can be well defined and sampled. Sphagnum spp. and Ledum groenlandicum best reflect the substrate uranium concentrations in lowland areas, Umbilicaria spp. and Cladonia spp. in rock outcrop, and Picea mariana and Betula papyrifera in upland locations. The study shows the best plant part to sample is the older tissue such as the stems, twigs, and wood. Since no systematic changes in plant tissue concentrations were found throughout the season, sampling can be carried out anytime. Expression of soil concentrations on an ash weight basis gave a considerably different result than those on a dry weight basis, particularly when comparisons were made between litter-enriched mineral soil and true organic soils. The amount of ash varied among plant organs, species, and taxonomic divisions, and a constant value cannot be used to convert plant ash concentrations on a dry weight basis

  9. Using nitrogen concentration and isotopic composition in lichens to spatially assess the relative contribution of atmospheric nitrogen sources in complex landscapes.

    Science.gov (United States)

    Pinho, P; Barros, C; Augusto, S; Pereira, M J; Máguas, C; Branquinho, C

    2017-11-01

    Reactive nitrogen (Nr) is an important driver of global change, causing alterations in ecosystem biodiversity and functionality. Environmental assessments require monitoring the emission and deposition of both the amount and types of Nr. This is especially important in heterogeneous landscapes, as different land-cover types emit particular forms of Nr to the atmosphere, which can impact ecosystems distinctively. Such assessments require high spatial resolution maps that also integrate temporal variations, and can only be feasibly achieved by using ecological indicators. Our aim was to rank land-cover types according to the amount and form of emitted atmospheric Nr in a complex landscape with multiple sources of N. To do so, we measured and mapped nitrogen concentration and isotopic composition in lichen thalli, which we then related to land-cover data. Results suggested that, at the landscape scale, intensive agriculture and urban areas were the most important sources of Nr to the atmosphere. Additionally, the ocean greatly influences Nr in land, by providing air with low Nr concentration and a unique isotopic composition. These results have important consequences for managing air pollution at the regional level, as they provide critical information for modeling Nr emission and deposition across regional as well as continental scales. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. The vernal dam: Plant-microbe competition for nitrogen in northern hardwood forests

    International Nuclear Information System (INIS)

    Zak, D.R.; Groffman, P.M.; Pregitzer, K.S.; Tiedje, J.M.; Christensen, S.

    1990-01-01

    Nitrogen (N) uptake by spring ephemeral communities has been proposed as a mechanism that retains N within northern hardwood forests during the season of maximum loss. To understand better the importance of these plants in retaining N, the authors followed the movement of 15 NH 4 + and 15 NO 3 - into plant and microbial biomass. Two days following isotope addition, microbial biomass represented the largest labile pool of N and contained 8.5 times as much N as Allium tricoccum L. biomass. Microbial immobilization of 15 N was 10-20 times greater than uptake by A. tricoccum. Nitrification of 15 NH 4 + was five times lower in cores containing A. tricoccum compared to those without the spring ephemeral. Spring N retention within northern hardwood forests cannot be fully explained by plant uptake because microbial immobilization represented a significantly larger sink for N. Results suggest that plant and microbial uptake of NH 4 + may reduce the quantity of substrate available for nitrification and thereby lessen the potential for NO 3 - loss via denitrification and leaching

  11. Biome-scale nitrogen fixation strategies selected by climatic constraints on nitrogen cycle.

    Science.gov (United States)

    Sheffer, Efrat; Batterman, Sarah A; Levin, Simon A; Hedin, Lars O

    2015-11-23

    Dinitrogen fixation by plants (in symbiosis with root bacteria) is a major source of new nitrogen for land ecosystems(1). A long-standing puzzle(2) is that trees capable of nitrogen fixation are abundant in nitrogen-rich tropical forests, but absent or restricted to early successional stages in nitrogen-poor extra-tropical forests. This biome-scale pattern presents an evolutionary paradox(3), given that the physiological cost(4) of nitrogen fixation predicts the opposite pattern: fixers should be out-competed by non-fixers in nitrogen-rich conditions, but competitively superior in nitrogen-poor soils. Here we evaluate whether this paradox can be explained by the existence of different fixation strategies in tropical versus extra-tropical trees: facultative fixers (capable of downregulating fixation(5,6) by sanctioning mutualistic bacteria(7)) are common in the tropics, whereas obligate fixers (less able to downregulate fixation) dominate at higher latitudes. Using a game-theoretic approach, we assess the ecological and evolutionary conditions under which these fixation strategies emerge, and examine their dependence on climate-driven differences in the nitrogen cycle. We show that in the tropics, transient soil nitrogen deficits following disturbance and rapid tree growth favour a facultative strategy and the coexistence of fixers and non-fixers. In contrast, sustained nitrogen deficits following disturbance in extra-tropical forests favour an obligate fixation strategy, and cause fixers to be excluded in late successional stages. We conclude that biome-scale differences in the abundance of nitrogen fixers can be explained by the interaction between individual plant strategies and climatic constraints on the nitrogen cycle over evolutionary time.

  12. The Relative Concentrations of Nutrients and Toxins Dictate Feeding by a Vertebrate Browser, the Greater Glider Petauroides volans.

    Directory of Open Access Journals (Sweden)

    Lora M Jensen

    Full Text Available Although ecologists believe that vertebrate herbivores must select a diet that allows them to meet their nutritional requirements, while avoiding intoxication by plant secondary metabolites, this is remarkably difficult to show. A long series of field and laboratory experiments means that we have a good understanding of the factors that affect feeding by leaf-eating marsupials. This knowledge and the natural intraspecific variation in Eucalyptus chemistry allowed us to test the hypothesis that the feeding decisions of greater gliders (Petauroides volans depend on the concentrations of available nitrogen (incorporating total nitrogen, dry matter digestibility and tannins and of formylated phloroglucinol compounds (FPCs, potent antifeedants unique to Eucalyptus. We offered captive greater gliders foliage from two species of Eucalyptus, E. viminalis and E. melliodora, which vary naturally in their concentrations of available nitrogen and FPCs. We then measured the amount of foliage eaten by each glider and compared this with our laboratory analyses of foliar total nitrogen, available nitrogen and FPCs for each tree offered. The concentration of FPCs was the main factor that determined how much gliders ate of E. viminalis and E. melliodora, but in gliders fed E. viminalis the concentration of available nitrogen was also a significant influence. In other words, greater gliders ate E. viminalis leaves with a particular combination of FPCs and available nitrogen that maximised the nutritional gain but minimised their ingestion of toxins. In contrast, the concentration of total nitrogen was not correlated with feeding. This study is among the first to empirically show that browsing herbivores select a diet that balances the potential gain (available nutrients and the potential costs (plant secondary chemicals of eating leaves. The major implication of the study is that it is essential to identify the limiting nutrients and relevant toxins in a system in

  13. PLANT-MICROBIAL INTERACTIONS IN THE RHIZOSPHERE – STRATEGIES FOR PLANT GROWTH-PROMOTION

    Directory of Open Access Journals (Sweden)

    Marius Stefan

    2012-03-01

    Full Text Available Plant growth-promoting rhizobacteria (PGPR are a group of bacteria that can actively colonize plant rootsand enhance plant growth using different mechanisms: production of plant growth regulators like indoleacetic acid,gibberellic acid, cytokinins and ethylene(Zahir et al., 2003, providing the host plant with fixed nitrogen, solubilizationof soil phosphorus, enhance Fe uptake, biocontrol, reducing the concentration of heavy metals. PGPR are perfectcandidates to be used as biofertilizers – eco-friendly alternative to common applied chemical fertilizer in today’sagriculture. The most important benefit of PGPR usage is related to the reduction of environmental pollution in conditionof increasing crop yield. This review presents the main mechanisms involved in PGPR promotion of plant growth.

  14. Legume Shrubs Are More Nitrogen-Homeostatic than Non-legume Shrubs.

    Science.gov (United States)

    Guo, Yanpei; Yang, Xian; Schöb, Christian; Jiang, Youxu; Tang, Zhiyao

    2017-01-01

    Legumes are characterized as keeping stable nutrient supply under nutrient-limited conditions. However, few studies examined the legumes' stoichiometric advantages over other plants across various taxa in natural ecosystems. We explored differences in nitrogen (N) and phosphorus (P) stoichiometry of different tissue types (leaf, stem, and root) between N 2 -fixing legume shrubs and non-N 2 -fixing shrubs from 299 broadleaved deciduous shrubland sites in northern China. After excluding effects of taxonomy and environmental variables, these two functional groups differed considerably in nutrient regulation. N concentrations and N:P ratios were higher in legume shrubs than in non-N 2 -fixing shrubs. N concentrations were positively correlated between the plants and soil for non-N 2 -fixing shrubs, but not for legume shrubs, indicating a stronger stoichiometric homeostasis in legume shrubs than in non-N 2 -fixing shrubs. N concentrations were positively correlated among three tissue types for non-N 2 -fixing shrubs, but not between leaves and non-leaf tissues for legume shrubs, demonstrating that N concentrations were more dependent among tissues for non-N 2 -fixing shrubs than for legume shrubs. N and P concentrations were correlated within all tissues for both functional groups, but the regression slopes were flatter for legume shrubs than non-N 2 -fixing shrubs, implying that legume shrubs were more P limited than non-N 2 -fixing shrubs. These results address significant differences in stoichiometry between legume shrubs and non-N 2 -fixing shrubs, and indicate the influence of symbiotic nitrogen fixation (SNF) on plant stoichiometry. Overall, N 2 -fixing legume shrubs are higher and more stoichiometrically homeostatic in N concentrations. However, due to excess uptake of N, legumes may suffer from potential P limitation. With their N advantage, legume shrubs could be good nurse plants in restoration sites with degraded soil, but their P supply should be taken care

  15. Nitrogen fate and Transport in Diverse Agricultural Watersheds

    Science.gov (United States)

    Essaid, H.; McCarthy, K. A.; Baker, N. T.

    2010-12-01

    Nitrogen mass budgets have been estimated for ten agricultural watersheds located in a range of hydrologic settings in order to understand the factors controlling the fate of nitrogen applied at the surface. The watersheds, study areas of the Agricultural Chemical Sources, Transport and Fate study of the U.S. Geological Survey National Water Quality Assessment Program, are located in Indiana (IN), Iowa (IA), Maryland (MD), Nebraska (NE), Mississippi (MS) and Washington (WA). They range in size from 7 to 1254 km2, with four of the watersheds nested within larger watersheds. Surface water outflow (normalized to watershed area) ranged from 4 to 83 cm/yr. Crops planted include corn, soybean, small grains, rice, cotton, orchards and vegetables. “Surplus nitrogen” was determined for each watershed by subtracting estimates of crop uptake and volatilization from estimates of nitrogen input from atmospheric deposition, plant fixation, and fertilizer and manure applications for the period from 1987 to 2004. This surplus nitrogen is transported though the watershed via surface and subsurface flow paths, while simultaneously undergoing transformations (such as denitrification and in-stream processing) that result in less export of nitrogen from the watershed. Surface-water discharge and concentration data were used to estimate the export of nitrogen from the watersheds (groundwater outflow from the watersheds was minimal). Subtracting nitrogen export from surplus nitrogen provides an estimate of the net amount of nitrogen removal occurring during internal watershed transport. Watershed average nitrogen surplus ranged from 6 to 49 kg-N/ha. The more permeable and/or greater water flux watersheds (MD, NE, and WA) tended to have larger surplus nitrogen, possibly due to less crop uptake caused by greater leaching and runoff of nitrogen. Almost all of the surplus nitrogen in the low permeability (MS) and tile drained watersheds (IA, IN) was exported from the watershed with

  16. Rhizosphere bacterial communities of dominant steppe plants shift in response to a gradient of simulated nitrogen deposition

    Directory of Open Access Journals (Sweden)

    An eYang

    2015-08-01

    Full Text Available We evaluated effects of 9-year simulation of simulated nitrogen (N deposition on microbial composition and diversity in the rhizosphere of two dominant temperate grassland species: grass Stipa krylovii and forb Artemisia frigida. Microbiomes in S. krylovii and A.frigida rhizosphere differed, but changed consistently along the N gradient. These changes were correlated to N-induced shifts to plant community. Hence, as plant biomass changed, so did bacterial rhizosphere communities, a result consistent with the role that N fertilizer has been shown to play in altering plant-microbial mutualisms. A total of 23 bacterial phyla were detected in the two rhizospheric soils by pyrosequencing, with Proteobacteria, Acidobacteria and Bacteroidetes dominating the sequences of all samples. Bacterioidetes and Proteobacteria tended to increase, while Acidobacteria declined with increase in N addition rates. TM7 increased >5-fold in the high N addition rates, especially in S. krylovii rhizosphere. Nitrogen addition also decreased diversity of OTUs (operational taxonomic units, Shannon and Chao1 indices of rhizospheric microbes regardless of plant species. These results suggest that there were both similar but also specific changes in microbial communities of temperate steppes due to N deposition.

  17. Zn-biofortification enhanced nitrogen metabolism and photorespiration process in green leafy vegetable Lactuca sativa L.

    Science.gov (United States)

    Barrameda-Medina, Yurena; Lentini, Marco; Esposito, Sergio; Ruiz, Juan M; Blasco, Begoña

    2017-04-01

    Excessive rates of nitrogen (N) fertilizers may result in elevated concentrations of nitrate (NO 3 - ) in plants. Considering that many programs of biofortification with trace elements are being performed, it has become important to study how the application of these elements affects plant physiology and, particularly, N utilization in leaf crops. The main objective of the present study was to determine whether the NO 3 - accumulation and the nitrogen use efficiency was affected by the application of different doses of Zn in Lactuca sativa plants. Zn doses in the range 80-100 µmol L -1 produced an increase in Zn concentration provoking a decrease of NO 3 - concentration and increase of the nitrate reductase, glutamine synthetase and aspartate aminotransferase activities, as well as the photorespiration processes. As result, we observed an increase in reduced N, total N concentration and N utilization efficiency. Consequently, at a dose of 80 µmol L -1 of Zn, the amino acid concentration increased significantly. Adequate Zn fertilization is an important critical player in lettuce, especially at a dose of 80 µmol L -1 of Zn, because it could result in an increase in the Zn concentration, a reduction of NO 3 - levels and an increase the concentration of essential amino acids, with all of them having beneficial properties for the human diet. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  18. Seasonal variation of diclofenac concentration and its relation with wastewater characteristics at two municipal wastewater treatment plants in Turkey.

    Science.gov (United States)

    Sari, Sevgi; Ozdemir, Gamze; Yangin-Gomec, Cigdem; Zengin, Gulsum Emel; Topuz, Emel; Aydin, Egemen; Pehlivanoglu-Mantas, Elif; Okutman Tas, Didem

    2014-05-15

    The pharmaceutically active compound diclofenac has been monitored during one year at separate treatment units of two municipal wastewater treatment plants (WWTPs) to evaluate its seasonal variation and the removal efficiency. Conventional wastewater characterization was also performed to assess the possible relationship between conventional parameters and diclofenac. Diclofenac concentrations in the influent and effluent of both WWTPs were detected in the range of 295-1376 and 119-1012ng/L, respectively. Results indicated that the higher diclofenac removal efficiency was observed in summer season in both WWTPs. Although a consistency in diclofenac removal was observed in WWTP_1, significant fluctuation was observed at WWTP_2 based on seasonal evaluation. The main removal mechanism of diclofenac in the WWTPs was most often biological (55%), followed by UV disinfection (27%). When diclofenac removal was evaluated in terms of the treatment units in WWTPs, a significant increase was achieved at the treatment plant including UV disinfection unit. Based on the statistical analysis, higher correlation was observed between diclofenac and suspended solids concentrations among conventional parameters in the influent whereas the removal of diclofenac was highly correlated with nitrogen removal efficiency. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Review of avian mortality studies at concentrating solar power plants

    Science.gov (United States)

    Ho, Clifford K.

    2016-05-01

    This paper reviews past and current avian mortality studies at concentrating solar power (CSP) plants and facilities including Solar One in California, the Solar Energy Development Center in Israel, Ivanpah Solar Electric Generating System in California, Crescent Dunes in Nevada, and Gemasolar in Spain. Findings indicate that the leading causes of bird deaths at CSP plants are from collisions (primarily with reflective surfaces; i.e., heliostats) and singeing caused by concentrated solar flux. Safe irradiance levels for birds have been reported to range between 4 and 50 kW/m2. Above these levels, singeing and irreversible damage to the feathers can occur. Despite observations of large numbers of "streamers" in concentrated flux regions and reports that suggest these streamers indicate complete vaporization of birds, analyses in this paper show that complete vaporization of birds is highly improbable, and the observed streamers are likely due to insects flying into the concentrated flux. The levelized avian mortality rate during the first year of operation at Ivanpah was estimated to be 0.7 - 3.5 fatalities per GWh, which is less than the levelized avian mortality reported for fossil fuel plants but greater than that for nuclear and wind power plants. Mitigation measures include acoustic, visual, tactile, and chemosensory deterrents to keep birds away from the plant, and heliostat aiming strategies that reduce the solar flux during standby.

  20. Activity concentration of radionuclides in plants in the environment of western Ghats

    International Nuclear Information System (INIS)

    Manigandan, P. K.

    2009-01-01

    A field study on the transfer of primordial radionuclides 238 U, 232 Th, 40 K and fallout radionuclides 210 Po in different plant species in tropical forest of western Ghats environment is presented. Material and Methods: The Top storey, Second storey, Shrubs and epiphytic plant species were chosen and concentration of these radionuclides in plant and soil were measured by employing gamma ray spectrometer and alpha counter. Results: The concentration ratio shows the variation in different species while a wild plant Elaeocarpus oblongus and epiphytic plants indicated preferential uptake of these radionuclides. Conclusion: The dust trapped in the root system of. epiphytic plants could be used as bio indicator to monitor fallout radionuclides in the Western Ghats. The concentration of 232 Th and 40 K in leaves depends on the age of the leaves.