WorldWideScience

Sample records for plant life assessment

  1. Remaining life assessment and plant life extension in high temperature components of power and petrochemical plant

    International Nuclear Information System (INIS)

    Fleming, A.

    2003-01-01

    This paper explains the reasons why plant life can so easily be extended beyond the original design life. It details the means by which plant life extension is normally achieved, a structured plan for achieving such plant life extension at reasonable cost and some of the key techniques used in assessing the remaining life and discusses the simple repair options available. (author)

  2. Non-destructive testing for plant life assessment

    International Nuclear Information System (INIS)

    2005-01-01

    The International Atomic Energy Agency (IAEA) is promoting industrial applications of nondestructive testing (NDT) technology, which includes radiography testing (RT) and related methods, to assure safety and reliability of operation of industrial facilities and processes. NDT technology is essentially needed for improvement of the quality of industrial products, safe performance of equipment and plants, including safety of metallic and concrete structures and constructions. The IAEA is playing an important role in promoting the NDT use and technology support to Member States, in harmonisation for training and certification of NDT personnel, and in establishing national accreditation and certifying bodies. All these efforts have led to a stage of maturity and self sufficiency in numerous countries especially in the field of training and certification of personnel, and in provision of services to industries. This has had a positive impact on the improvement of the quality of industrial goods and services. NDT methods are primarily used for detection, location and sizing of surface and internal defects (in welds, castings, forging, composite materials, concrete and many more). Various NDT methods are applied for preventive maintenance (aircraft, bridge), for the inspection of raw materials, half-finished and finished products, for in-service-inspection and for plant life assessment studies. NDT is essential for quality control of the facilities and products, and for fitness - for purpose assessment (so-called plant life assessment). NDT evaluates remaining operation life of plant components (processing lines, pipes, vessels) providing an accurate diagnosis that allows predicting extended life operation beyond design life. Status and trends on the NDT for plant life assessment have been discussed in many IAEA meetings related with NDT development, training and education. Experts have largely demonstrated that, using NDT methods, a comprehensive assessment of the life

  3. Fracture mechanics based life assessment in petrochemical plants

    International Nuclear Information System (INIS)

    Norasiah Ab Kasim; Abd Nassir Ibrahim; Ab Razak Hamzah; Shukri Mohd

    2004-01-01

    The increasing use of thick walled pressure vessels in petrochemical plants operating at high pressure under severe service conditions could lead to catastrophic failure. In the Malaysian Institute for Nuclear Technology Research (MINT), initial efforts are underway to apply fracture mechanics approach for assessment of significance of defects detected during periodic in service inspection (ISI) of industrial plants. This paper outlines the integrity management strategy based on fracture mechanics and proposes a new procedure for life assessment of petrochemical plants based on ASME Boiler and Pressure Vessel Code, Section XI, BSI PD 6493:1991, BSI 6539:1994, BSI Standard 7910:1999 and API 579:2000. Essential relevant data required for the assessment is listed. Several methods available for determination of fracture toughness are reviewed with limitations in their application to petrochemical plants. A new non destructive method for determination of fracture toughness based on hardness testing and normalized key roughness curve is given. Results of fracture mechanics based life assessment conducted for 100 mm thick ammonia converter of Ni r o steel and 70 mm thick plat forming reactor vessel of ASTM A 38 7 grade B steel in operational fertilizer and petroleum refining plants are presented. (Author)

  4. Materials for Nuclear Plants From Safe Design to Residual Life Assessments

    CERN Document Server

    Hoffelner, Wolfgang

    2013-01-01

    The clamor for non-carbon dioxide emitting energy production has directly  impacted on the development of nuclear energy. As new nuclear plants are built, plans and designs are continually being developed to manage the range of challenging requirement and problems that nuclear plants face especially when managing the greatly increased operating temperatures, irradiation doses and extended design life spans. Materials for Nuclear Plants: From Safe Design to Residual Life Assessments  provides a comprehensive treatment of the structural materials for nuclear power plants with emphasis on advanced design concepts.   Materials for Nuclear Plants: From Safe Design to Residual Life Assessments approaches structural materials with a systemic approach. Important components and materials currently in use as well as those which can be considered in future designs are detailed, whilst the damage mechanisms responsible for plant ageing are discussed and explained. Methodologies for materials characterization, material...

  5. Specification of life cycle assessment in nuclear power plants

    International Nuclear Information System (INIS)

    Abbaspour, M.; Kargari, N.; Mastouri, R.

    2008-01-01

    Life Cycle Assessment is an environmental management tool for assessing the environmental impacts of a product of a process. life cycle assessment involves the evaluation of environmental impacts through all stages of life cycle of a product or process. In other words life cycle assessment has a c radle to grave a pproach. Some results of life cycle assessment consist of pollution prevention, energy efficient system, material conservation, economic system and sustainable development. All power generation technologies affect the environment in one way or another. The main environmental impact does not always occur during operation of power plant. The life cycle assessment of nuclear power has entailed studying the entire fuel cycle from mine to deep repository, as well as the construction, operation and demolition of the power station. Nuclear power plays an important role in electricity production for several countries. even though the use of nuclear power remains controversial. But due to the shortage of fossil fuel energy resources many countries have started to try more alternation to their sources of energy production. A life cycle assessment could detect all environmental impacts of nuclear power from extracting resources, building facilities and transporting material through the final conversion to useful energy services

  6. Life Cycle Assessment to Municipal Wastewater Treatment Plant

    International Nuclear Information System (INIS)

    Garcia, J. s.; Herrera, I.; Rodriguez, A.

    2011-01-01

    The evaluation was done at a Municipal Wastewater Treatment Plant (MWTP), through the application of the methodology of Life Cycle Assessment (LCA) performed by using a commercial tool called SIMAPRO. The objective of this study was to apply Life Cycle Assessment (LCA) in two systems: municipal wastewater effluent without treatment and Wastewater Treatment Plant (WTP) that is operating in poor condition and has a direct discharge to a natural body, which is a threat to the environment. A LCA was done using SIMAPRO 7, in order to determine the environmental impact in each scenery was assessed, a comparison of the impacts and propose improvements to decrease, following the steps this methodology and according to the respective standardized normative (ISO 14040/ ISO 14044). In this study, most of used data have been reported by the plant from early 2010 and some data from literature. We identified the environmental impacts generated by the treatment, making emphasis on those related to the subsequent use of the water body receiving the discharge, such as eutrophication (near to 15% reduction). Likewise, a comparative analysis between the impacts in the two systems, with and without treatment by analyzing the variation in the impact categories studied. Finally within this work, alternatives of improvements, in order to reduce the identified and quantified impacts are proposed. (Author) 33 refs.

  7. Environmental sustainability assessment of hydropower plant in Europe using life cycle assessment

    Science.gov (United States)

    Mahmud, M. A. P.; Huda, N.; Farjana, S. H.; Lang, C.

    2018-05-01

    Hydropower is the oldest and most common type of renewable source of electricity available on this planet. The end of life process of hydropower plant have significant environmental impacts, which needs to be identified and minimized to ensure an environment friendly power generation. However, identifying the environmental impacts and health hazards are very little explored in the hydropower processing routes despite a significant quantity of production worldwide. This paper highlight the life-cycle environmental impact assessment of the reservoir based hydropower generation system located in alpine and non-alpine region of Europe, addressing their ecological effects by the ReCiPe and CML methods under several impact-assessment categories such as human health, ecosystems, global warming potential, acidification potential, etc. The Australasian life-cycle inventory database and SimaPro software are utilized to accumulate life-cycle inventory dataset and to evaluate the impacts. The results reveal that plants of alpine region offer superior environmental performance for couple of considered categories: global warming and photochemical oxidation, whilst in the other cases the outcomes are almost similar. Results obtained from this study will take part an important role in promoting sustainable generation of hydropower, and thus towards environment friendly energy production.

  8. Life Cycle Assessment of Daugavgriva Waste Water Treatment Plant

    OpenAIRE

    Romagnoli, F; Fraga Sampaio, F; Blumberga, D

    2009-01-01

    This paper presents the assessment of the environmental impacts caused by the treatment of Riga’s waste water in the Daugavgriva plant with biogas energy cogeneration through the life cycle assessment (LCA). The LCA seems to be a good tool to assess and evaluate the most serious environmental impacts of a facility The results showed clearly that the impact category contributing the most to the total impact –eutrophicationcomes from the wastewater treatment stage. Cl...

  9. The thematic plant life assessment network (PLAN)

    Energy Technology Data Exchange (ETDEWEB)

    Hurst, R C; McGarry, D [EC/JRC Institute for Advanced Materials, Petten (Netherlands); Pedersen, H H [Brite Euram DG XII, Brussels (Belgium)

    1999-12-31

    The Plant Life Assessment Network (PLAN) is a Brite Euram Type II Thematic Network, initiated by the European Commission to facilitate structured co-operation between all cost shared action projects already funded by the Commission which fall under this common technical theme. The projects involved address a multiplicity of problems associated with plant life assessment and are drawn from Brite-Euram, Standards, Measurement and Testing, Nuclear Fission Safety and Esprit EC programmes. The main aim of the Network is to initiate, maintain and monitor a fruitful co-operation process between completed, ongoing and future EC R and D projects, thereby promoting improved cross fertilization and enhanced industrial exploitation of R and D results. As the project is in its infancy, this presentation covers the background to the initiative in some detail. In particular two key aspects are highlighted, namely, the requirement of the EC to launch such a network in the area of plant life assessment including its evolution from two small Thematic Research Actions and, secondly, the mechanism for structuring the Network in an ordered and proven way along the lines of the EC/JRC European Networks, PISC, NESC, AMES, ENIQ, ENAIS and EPERC. The operating and financial structure of the Network is detailed with reference made to the role of the executive Steering Committee, The Network Project Leader and the Network Financial Co-ordinator. Each of the 58 projects involved in the Network, representing a wide range of industrial sectors and disciplines, is distributed in terms of their efforts between 4 disciplinary Clusters covering Inspection, Instrumentation and Monitoring, Structural Mechanics and Maintenance. For each of these Clusters, an expert has been appointed as a Project Technical Auditor to support the elected Cluster Co-ordinator to define Cluster Tasks, which contribute to the overall objectives of the project. From the Project Representatives, Cluster Task Leaders and

  10. The thematic plant life assessment network (PLAN)

    Energy Technology Data Exchange (ETDEWEB)

    Hurst, R.C.; McGarry, D. [EC/JRC Institute for Advanced Materials, Petten (Netherlands); Pedersen, H.H. [Brite Euram DG XII, Brussels (Belgium)

    1998-12-31

    The Plant Life Assessment Network (PLAN) is a Brite Euram Type II Thematic Network, initiated by the European Commission to facilitate structured co-operation between all cost shared action projects already funded by the Commission which fall under this common technical theme. The projects involved address a multiplicity of problems associated with plant life assessment and are drawn from Brite-Euram, Standards, Measurement and Testing, Nuclear Fission Safety and Esprit EC programmes. The main aim of the Network is to initiate, maintain and monitor a fruitful co-operation process between completed, ongoing and future EC R and D projects, thereby promoting improved cross fertilization and enhanced industrial exploitation of R and D results. As the project is in its infancy, this presentation covers the background to the initiative in some detail. In particular two key aspects are highlighted, namely, the requirement of the EC to launch such a network in the area of plant life assessment including its evolution from two small Thematic Research Actions and, secondly, the mechanism for structuring the Network in an ordered and proven way along the lines of the EC/JRC European Networks, PISC, NESC, AMES, ENIQ, ENAIS and EPERC. The operating and financial structure of the Network is detailed with reference made to the role of the executive Steering Committee, The Network Project Leader and the Network Financial Co-ordinator. Each of the 58 projects involved in the Network, representing a wide range of industrial sectors and disciplines, is distributed in terms of their efforts between 4 disciplinary Clusters covering Inspection, Instrumentation and Monitoring, Structural Mechanics and Maintenance. For each of these Clusters, an expert has been appointed as a Project Technical Auditor to support the elected Cluster Co-ordinator to define Cluster Tasks, which contribute to the overall objectives of the project. From the Project Representatives, Cluster Task Leaders and

  11. Plant life management

    International Nuclear Information System (INIS)

    Charbonneau, S.; Framatome, J.B.

    1992-01-01

    Plant life assessment and extension studies have been performed by numerous companies all over the world. Critical equipment has been identified as well as various degradation mechanisms involved in the plant aging process. Nowadays one has to think what to implement to improve the existing situation in the Nuclear Power Plant (NPP). FRAMATOME has undertaken this thought process in order to find the right answers and bring them to utilities facing either critical concern for plant life extension or the problem of management of power plant potential longevity. This is why we prepared a Plant Life Improvement Action Plan, comprising 10 (ten) major items described hereafter using examples of work performed by FRAMATOME for its utility customers desiring to manage the lives of their plants, both in France with EDF and abroad

  12. Environmental life cycle assessment of high temperature nuclear fission and fusion biomass gasification plants

    International Nuclear Information System (INIS)

    Takeda, Shutaro; Sakurai, Shigeki; Kasada, Ryuta; Konishi, Satoshi

    2017-01-01

    The authors propose nuclear biomass gasification plant as an advancement of conventional gasification plants. Environmental impacts of both fission and fusion plants were assessed through life cycle assessment. The result suggested the reduction of green-house gas emissions would be as large as 85.9% from conventional plants, showing a potential for the sustainable future for both fission and fusion plants. (author)

  13. Life-cycle cost assessment of seismically base-isolated structures in nuclear power plants

    International Nuclear Information System (INIS)

    Wang, Hao; Weng, Dagen; Lu, Xilin; Lu, Liang

    2013-01-01

    Highlights: • The life-cycle cost of seismic base-isolated nuclear power plants is modeled. • The change law of life-cycle cost with seismic fortification intensity is studied. • The initial cost of laminated lead rubber bearings can be expressed as the function of volume. • The initial cost of a damper can be expressed as the function of its maximum displacement and tonnage. • The use of base-isolation can greatly reduce the expected damage cost, which leads to the reduction of the life-cycle cost. -- Abstract: Evaluation of seismically base-isolated structural life-cycle cost is the key problem in performance based seismic design. A method is being introduced to address the life-cycle cost of base-isolated reinforced concrete structures in nuclear power plants. Each composition of life-cycle cost is analyzed including the initial construction cost, the isolators cost and the excepted damage cost over life-cycle of the structure. The concept of seismic intensity is being used to estimate the expected damage cost, greatly simplifying the calculation. Moreover, French Cruas nuclear power plant is employed as an example to assess its life-cycle cost, compared to the cost of non-isolated plant at the same time. The results show that the proposed method is efficient and the expected damage cost is enormously reduced because of the application of isolators, which leads to the reduction of the life-cycle cost of nuclear power plants

  14. Aging management and life assessment of buried commodities in nuclear power plants

    International Nuclear Information System (INIS)

    Park, J. H.; Jung, I. S.; Jo, H. S.; Kim, M. G.; Kim, S. T.; Lee, S. S.

    2000-01-01

    General field survey, inspection and life assessment were performed to establish effective aging management program of buried commodities in nuclear power plant. Basic informations on material characteristics, aging degradation experiences and maintenance history were gathered. Considering their degradation effects on power operation or safety, buried commodities were screened for the aging management priority. Various inspection techniques were applied in field survey and inspection, and their results were incorporated in the life assessment of buried commodities. In the aspect of aging degradation, general status of buried commodities were considered still sound while some revealed local degradation

  15. Maximum utilization of primary reformer catalyst tubes careful assessment of remaining life-An experience at an ammonia plant

    International Nuclear Information System (INIS)

    Malik, M.A.

    2005-01-01

    Condition evaluation and residual life assessment of Reformer Catalyst Tubes has always been a point of concern for Ammonia and Methanol Plant operators. Failure of catalyst tubes results in total plant shutdown and consequent production loss. On the other hand, replacement of these tubes entails major cost impact on the company's budget, being a capital expenditure. A careful Residual Life Assessment of the tubes is therefore of utmost importance for maximum utilization of these tubes without jeopardizing plant operational reliability. This paper presents an experience of extracting maximum service life from the catalyst tubes of Primary Reformer of an Ammonia Plant. Fauji Fertilizer Company (FFC) has been operating the plant since 1982, having a designed capacity of 1100 MTPD. Its Primary Reformer has 288 catalyst tubes of IN-519 material (24Cr-24Ni-Nb). The design temperature and pressures are 925 degree C and 38kg/Cm respectively. Thanks to the optimum operating conditions, regular inspections and careful assessment of the residual life, the tubes have achieved more than double of the designed life and are still operating reliably. To evaluate the tube's health, Ultrasonic Inspection (UT) was carried out in 1987 and 1994 using attenuation technique. The tubes with maximum attenuation were marked for further evaluation. Accelerated Creep Rupture Test was carried out on sample tubes periodically (1996, 2001 and 2004). Tubes were selected on the basis of UT results, TMT (Tube Metal Temperature) monitoring and Inspection findings. Based on the combined results of DT, NDT, equipment history and foreseen operational parameters, the life of these tubes was carefully assessed periodically. The tubes have been in service for more than 23 years (design life: 11 years) and a further life of 04 years has been predicted as per last assessment.The experience of successful health evaluation and residual life assessment has saved substantial cost involved in tubes replacement

  16. Development of a support system to make economic and technical assessments for the issues relating to plant life extension

    International Nuclear Information System (INIS)

    Takao, T.; Soneda, N.; Sakai, T.

    1994-01-01

    To realize the life extension of nuclear power plants, overall evaluation for the plant is required, which covers technology, economy such as cost of repair or/and replacement of components, and regal regulations for licensing. A prototype of integrated assessment support system for life extension ''INPLEX'' have developed in order to evaluate the technical and economic issues relating to the plant life extension and to make a life extension scenario. Analysis procedure of INPLEX is as follows. A comparison of the cost between the life extension and the reconstruction is made to see whether the life extension is cost effective or not. Next, components required detailed assessments are selected, and the residual life assessment of these components are made. After those procedures life extension measures are selected and the implementation time schedule is set on the basis of the formulas for predicting the degradation of the components and the component reliability data. Finally the implementation time schedule is optimized from the viewpoint of economy, and the life extension scenario is proposed. INPLEX also has the data base ''PRINS'', in which information and data related to life extension are registered, such as component degradation experiences, degradation management methodologies, degradation mitigation measures, and so on. PRINS can be referred at any time during the operation of INPLEX

  17. Life cycle assessment of a small-scale anaerobic digestion plant from cattle waste

    International Nuclear Information System (INIS)

    Mezzullo, William G.; McManus, Marcelle C.; Hammond, Geoff P.

    2013-01-01

    Highlights: ► Emissions from plant manufacture contributed little towards the lifecycle impacts. ► The use phase of the AD plant could have significant impacts. ► Production of biogas and fertiliser created significant impacts. ► The consequential displacement of kerosene showed a net-benefit. ► The study concluded that it is essential to cover the digestate storage tank. -- Abstract: This paper outlines the results of a comprehensive life cycle study of the production of energy, in the form of biogas, using a small scale farm based cattle waste fed anaerobic digestion (AD) plant. The life cycle assessment (LCA) shows that in terms of environmental and energy impact the plant manufacture contributes very little to the whole life cycle impacts. The results show that compared with alternative energy supply the production and use of biogas is beneficial in terms of greenhouse gases and fossil fuel use. This is mainly due to the replacement of the alternative, kerosene, and from fertiliser production from the AD process. However, these benefits come at a cost to ecosystem health and the production of respiratory inorganics. These were found to be a result of ammonia emissions during the production phase of the biogas. These damages can be significantly reduced if further emission control measures are undertaken.

  18. Towards a more consolidated approach to material data management in life assessment of power plant components

    Energy Technology Data Exchange (ETDEWEB)

    Jovanovic, A; Maile, K [MPA Stuttgart (Germany)

    1999-12-31

    The presentation discusses the necessity of having a more consolidated (unified, possibly `European`) framework for all (not only pure experimental) material data needed for optimized life management and assessment of high-temperature and other components in power and process plants. After setting the main requirements for such a system, a description of efforts done in this direction at MPA Stuttgart in the area of high-temperature components in power plants is given. Furthermore, a reference to other relevant efforts elsewhere is made and an example of practical application of the proposed solution described (optimized material selection and life assessment of high-temperature piping). (orig.) 10 refs.

  19. Towards a more consolidated approach to material data management in life assessment of power plant components

    Energy Technology Data Exchange (ETDEWEB)

    Jovanovic, A.; Maile, K. [MPA Stuttgart (Germany)

    1998-12-31

    The presentation discusses the necessity of having a more consolidated (unified, possibly `European`) framework for all (not only pure experimental) material data needed for optimized life management and assessment of high-temperature and other components in power and process plants. After setting the main requirements for such a system, a description of efforts done in this direction at MPA Stuttgart in the area of high-temperature components in power plants is given. Furthermore, a reference to other relevant efforts elsewhere is made and an example of practical application of the proposed solution described (optimized material selection and life assessment of high-temperature piping). (orig.) 10 refs.

  20. A review of assessment and retrofitting of structures for plant life extension (PLEX) programme

    International Nuclear Information System (INIS)

    Samota, A.; Verma, U.S.P.; Tilak, M.M.

    1994-01-01

    Assessment of the life of existing civil engineering structures for the plant life extension programme has to be made considering various factors such as strength, deterioration, environmental impact particularly with regard to radiation field, etc. which need to be evaluated very carefully. Generally, it is considered that initial design usually caters for a period of around 40 years, though structural failures have been reported even at a much younger stage due to deficiency in design and construction. In the context of nuclear power plant when the initial license is given for a period 30-40 years, it becomes necessary to evaluate the health of the various structures particularly while applying for a license for the extension of plant life. The present paper discuss the various issues connected with the evaluation of the future life of an existing structure in terms of strength and change in its property particularly when the structure is exposed to radiation. The various effects with regard to ageing and radiation exposure and the destructive and non-destructive tests which need to be carried out are discussed in detail. (author). 8 refs., 4 figs

  1. PLEXFIN a computer model for the economic assessment of nuclear power plant life extension. User's manual

    International Nuclear Information System (INIS)

    2007-01-01

    The IAEA developed PLEXFIN, a computer model analysis tool aimed to assist decision makers in the assessment of the economic viability of a nuclear power plant life/licence extension. This user's manual was produced to facilitate the application of the PLEXFIN computer model. It is widely accepted in the industry that the operational life of a nuclear power plant is not limited to a pre-determined number of years, sometimes established on non-technical grounds, but by the capability of the plant to comply with the nuclear safety and technical requirements in a cost effective manner. The decision to extend the license/life of a nuclear power plant involves a number of political, technical and economic issues. The economic viability is a cornerstone of the decision-making process. In a liberalized electricity market, the economics to justify a nuclear power plant life/license extension decision requires a more complex evaluation. This user's manual was elaborated in the framework of the IAEA's programmes on Continuous process improvement of NPP operating performance, and on Models for analysis and capacity building for sustainable energy development, with the support of four consultants meetings

  2. French nuclear plants PWR vessel integrity assessment and life management

    Energy Technology Data Exchange (ETDEWEB)

    Bezdikian, G. [Electricite de France (EDF), Div. Production Nucleaire, 93 - Saint-Denis (France); Quinot, P. [FRAMATOME, Dept. Bloc Reacteur et Boucles Primaires, 92 - Paris-La-Defence (France); Faidy, C.; Churier-Bossennec, H. [Electricite de France (EDF), Div. Ingenierie et Service, 69 - Villeurbanne (France)

    2001-07-01

    The Reactor Pressure Vessel life management of 56 PWR 3 loop and 4 loop reactors units was engaged by the French Utility EDF (Electricite de France) a few years ago and is yet on going on. This paper will present the work carried out within the framework of justifying why the 34 three loop reactor vessels will remain acceptable for operation for a lifetime of at least 40-years. A summary of the measures will be given. An overall review of actions will be presented describing the French approach, using important existing databases, including studies related to irradiation surveillance monitoring program and end of life fluence assessment. The last results obtained are based on generic integrity analyses for all categories of situations (normal upset emergency and faulted conditions) until the end of lifetime, postulating circumferential an radial kinds of flaw located in the stainless steel cladding or shallow sub-cladding area. The results of structural integrity analyses beginning with elastic computations and completed with three-dimensional finite element elastic plastic computations for envelope cases, are compared with code criteria for operating plants. The objective is to evaluate the margins on different parameters as RTNDT (Reference Nil Ductility Transition Temperature), toughness or crack size, to justify the global fitness for service of all these Reactor Pressure Vessels. The paper introduces EDF's maintenance strategy, related to integrity assessment, for those nuclear power plants under operation, based on NDE in-service inspection of the first thirty millimeters in the thickness of the wall and major surveillance programs of the vessels. (author)

  3. French nuclear plants PWR vessel integrity assessment and life management

    International Nuclear Information System (INIS)

    Bezdikian, G.; Quinot, P.; Faidy, C.; Churier-Bossennec, H.

    2001-01-01

    The Reactor Pressure Vessel life management of 56 PWR 3 loop and 4 loop reactors units was engaged by the French Utility EDF (Electricite de France) a few years ago and is yet on going on. This paper will present the work carried out within the framework of justifying why the 34 three loop reactor vessels will remain acceptable for operation for a lifetime of at least 40-years. A summary of the measures will be given. An overall review of actions will be presented describing the French approach, using important existing databases, including studies related to irradiation surveillance monitoring program and end of life fluence assessment. The last results obtained are based on generic integrity analyses for all categories of situations (normal upset emergency and faulted conditions) until the end of lifetime, postulating circumferential an radial kinds of flaw located in the stainless steel cladding or shallow sub-cladding area. The results of structural integrity analyses beginning with elastic computations and completed with three-dimensional finite element elastic plastic computations for envelope cases, are compared with code criteria for operating plants. The objective is to evaluate the margins on different parameters as RTNDT (Reference Nil Ductility Transition Temperature), toughness or crack size, to justify the global fitness for service of all these Reactor Pressure Vessels. The paper introduces EDF's maintenance strategy, related to integrity assessment, for those nuclear power plants under operation, based on NDE in-service inspection of the first thirty millimeters in the thickness of the wall and major surveillance programs of the vessels. (author)

  4. Risk assessment considerations for plant protection products and terrestrial life-stages of amphibians.

    Science.gov (United States)

    Weltje, Lennart; Ufer, Andreas; Hamer, Mick; Sowig, Peter; Demmig, Sandra; Dechet, Friedrich

    2018-04-28

    Some amphibians occur in agricultural landscapes during certain periods of their life cycle and consequently might be exposed to plant protection products (PPPs). While the sensitivity of aquatic life-stages is considered to be covered by the standard assessment for aquatic organisms (especially fish), the situation is less clear for terrestrial amphibian life-stages. In this paper, considerations are presented on how a risk assessment for PPPs and terrestrial life-stages of amphibians could be conducted. It discusses available information concerning the toxicity of PPPs to terrestrial amphibians, and their potential exposure to PPPs in consideration of aspects of amphibian biology. The emphasis is on avoiding additional vertebrate testing as much as possible by using exposure-driven approaches and by making use of existing vertebrate toxicity data, where appropriate. Options for toxicity testing and risk assessment are presented in a flowchart as a tiered approach, progressing from a non-testing approach, to simple worst-case laboratory testing, to extended laboratory testing, to semi-field enclosure tests and ultimately to full-scale field testing and monitoring. Suggestions are made for triggers to progress to higher tiers. Also, mitigation options to reduce the potential for exposure of terrestrial life-stages of amphibians to PPPs, if a risk were identified, are discussed. Finally, remaining uncertainties and research needs are considered by proposing a way forward (road map) for generating additional information to inform terrestrial amphibian risk assessment. Copyright © 2018 Elsevier B.V. All rights reserved.

  5. Nuclear power plants life extension and decommissioning its economic aspects

    International Nuclear Information System (INIS)

    Watanabe, Yoshiaki

    1994-06-01

    In USA where the development of nuclear power was started early, the life of nuclear power plants expires successively around the turn of century, and the serious hindrance to electric power supply is feared. Therefore, the research for extending 40 year approved period of operation is in progress. By the extension of life of nuclear power plants, huge cost reduction is estimated as compared with the construction of new plants. However, due to the rise of the cost for the life extension, there were the cases of forced decommissioning. In this book, the present state of the life extension of nuclear power stations, the economical assessment and analysis of the life extension by DOE, the economical assessment by MIDAS method of Electric Power Research Institute, the economical assessment by cost-benefit method of Northern States Power Co., the assessment of the long term operation possibility of nuclear power stations, the economical assessment system for the life extension in Japan, the present state of the decommissioning of nuclear power stations and that in USA, Canada and Europe, the assessment of the decommissioning cost by OECD/NEA, and the decommissioning cost for thermal power stations are described. (K.I.)

  6. BALTICA III. Plant condition and life management

    International Nuclear Information System (INIS)

    Hietanen, S.; Auerkari, P.

    1995-01-01

    The BALTICA III, International Conference on Plant Condition and Life Management was held on June 6 - 8, 1995 on board Silja Serenade on its cruise between Helsinki - Stockholm and at the Forest Lake Hotel Korpilampi in Espoo. BALTICA III provides forum for the transfer of technology from applied research to practise. This is the second volume of the publications, which contain the presentations given at the BALTICA III, Plant Condition and Life Management. A total of 45 articles report recent experience in plant condition and life management. The conference focuses on recent applications that have been demonstrated for the benefit of safe and economical operation of power plants. Practical approach is emphasised, including the presentations that aim to provide insight into new techniques, improvements in assessment methodologies as well as maintenance strategies. Compared to earlier occasions in the BALTICA series, a new aspect is in the applications of knowledge-based systems in the service of power plant life management. (orig.)

  7. NDT methods for life-time assessment of high temperature plant; Ofoerstoerande provning foer livslaengdsbedoemning av hoegtemperaturanlaeggningar

    Energy Technology Data Exchange (ETDEWEB)

    Storesund, J [Swedish Inst. for Metals Research, Stockholm (Sweden)

    1996-10-01

    A comprehensive literature study of NDT and analysis methods for residual life-time assessment of high temperature plant has been made. The study has been concentrated on components in boilers, steam piping and turbines in fossil fired power plant. Most types of components are exposed to creep which is also the life-time limiting mechanism in many cases. In addition to creep, other stresses and damages which appear in plant are described for each type of component. Thermal fatigue, corrosion and embrittlement as well as combined damage mechanisms are also life-time limiting in many cases. The literature shows a large number of NDT methods developed and under development in purpose to identify and measure the size and extent of damage in the components. The methods and their limitations are described in relation to the experience and understanding of character, distribution and development of damage in different situations. 83 refs, 12 figs, 1 tab

  8. Life cycle assessment (LCA) of an energy recovery plant in the olive oil industries

    Energy Technology Data Exchange (ETDEWEB)

    Intini, Francesca; Kuhtz, Silvana [Dep. Engineering and Environmental Physics, Faculty of Engineering, University of Basilicata (Italy); Gianluca Rospi, [Dep. Engineering and Environmental Physics, Faculty of Architecture, University of Basilicata (Italy)

    2012-07-01

    To reduce the GHG emissions in the UE and to increase the produced energy it is important to spread out decentralized technologies for renewable energy production. In this paper a power plant fed with biomass is studied, in particular the biomass considered is the waste of the olive oil industries. This study focuses on the possibility of using the de-oiled pomace and waste wood as fuel. A life cycle assessment (LCA) of a biomass power plant located in the South of Italy was performed. The global warming potential has been calculated and compared with that of a plant for energy production that uses refuse derived fuel (RDF) and that of one that uses coal. The LCA shows the important environmental advantages of biomass utilization in terms of greenhouse gas emissions reduction. An improved impact assessment methodology may better underline the advantages due to the biomass utilization.

  9. Cost drivers for the assessment of nuclear power plant life extension

    International Nuclear Information System (INIS)

    2002-09-01

    In the period of the nineteen-sixties to eighties, nuclear power had rapidly expanded in many countries of the world. The nuclear power plants built in this period, will reach the end of their planned life in the near future. Statistics drawn from IAEA's Power Reactor Information System (PRIS) indicate that, by the end of 2001, there were 175 nuclear power units (NPPs) with about 122 GWe of net electrical capacity, having 21 to 45 years of operation. This represents about 34% of the total installed nuclear capacity in the world. Since these plants were initially designed for 30-40 years of operation, utilities operating such NPPs will now have to consider whether they will shutdown, decommission, and replace the plants reaching the end of their planned life, or refurbish the plants and extend their original design life. This decision is quite complex, involving a number of political, technical and economic issues. Finally, the utilities involved should manage their assets in a manner that is as close as practicable to the best possible economic optimum scenario. Well before the end of the plant life, NPP operators must evaluate the technical and economic feasibility for PLEX options, seek and obtain regulatory approvals, and implement PLEX schemes that are justified. Often they also have to substantiate the planned life extension, including the economic viability to the relevant governmental bodies, as well as to assure the general public acceptance. Economic feasibility analysis requires cost data that are not readily available. A recent IAEA review of published information on costs of PLEX revealed the scarcity of published information, while the estimated costs of NPP decommissioning are widely available. This is due in part to the reluctance by NPP operators to divulge the cost data that are considered commercial/confidential, as more plant operators are being privatised, and in part to the absence of a common framework and methodology to account for the

  10. Life Cycle Assessment of the MBT plant in Ano Liossia, Athens, Greece

    International Nuclear Information System (INIS)

    Abeliotis, Konstadinos; Kalogeropoulos, Alexandros; Lasaridi, Katia

    2012-01-01

    Highlights: ► We model the operation of an MBT plant in Greece based on LCA. ► We compare four different MBT operating scenarios (among them and with landfilling). ► Even the current operation of the MBT plant is preferable to landfilling. ► Utilization of the MBT compost and metals generates the most environmental gains. ► Thermal exploitation of RDF improves further the environmental performance of the plant. - Abstract: The aim of this paper is the application of Life Cycle Assessment to the operation of the MBT facility of Ano Liossia in the region of Attica in Greece. The region of Attica is home to almost half the population of Greece and the management of its waste is a major issue. In order to explicitly analyze the operation of the MBT plant, five scenarios were generated. Actual operation data of the MBT plant for the year 2008 were provided by the region of Attica and the LCA modeling was performed via the SimaPro 5.1 software while impact assessment was performed utilizing the Eco-indicator’99 method. The results of our analysis indicate that even the current operation of the MBT plant is preferable to landfilling. Among the scenarios of MBT operation, the one with complete utilization of the MBT outputs, i.e. compost, RDF, ferrous and non-ferrous metals, is the one that generates the most environmental gains. Our analysis indicates that the exploitation of RDF via incineration is the key factor towards improving the environmental performance of the MBT plant. Our findings provide a quantitative understanding of the MBT plant. Interpretation of results showed that proper operation of the modern waste management systems can lead to substantial reduction of environmental impacts and savings of resources.

  11. CANDU plant life management - An integrated approach

    International Nuclear Information System (INIS)

    Charlebois, P.; Hart, R.S.; Hopkins, J.R.

    1998-01-01

    Commercial versions of CANDU reactors were put into service starting more than 25 years ago. The first unit of Ontario Hydro's Pickering A station was put into service in 1971, and Bruce A in 1977. Most CANDU reactors, however, are only now approaching their mid-life of 15 to 20 years of operation. In particular, the first series of CANDU 6 plants which entered service in the early 1980's were designed for a 30 year life and are now approaching mid life. The current CANDU 6 design is based on a 40 year life as a result of advancement in design and materials through research and development. In order to assure safe and economic operation of these reactors, a comprehensive CANDU Plant Life Management (PLIM) program is being developed from the knowledge gained during the operation of Ontario Hydro's Pickering, Bruce, and Darlington stations, worldwide information from CANDU 6 stations, CANDU research and development programs, and other national and international sources. This integration began its first phase in 1994, with the identification of most of the critical systems structures and components in these stations, and a preliminary assessment of degradation and mechanisms that could affect their fitness for service for their planned life. Most of these preliminary assessments are now complete, together with the production of the first iteration of Life Management Plans for several of the systems and components. The Generic CANDU 6 PLIM program is now reaching its maturity, with formal processes to systematically identify and evaluate the major CSSCs in the station, and a plan to ensure that the plant surveillance, operation, and maintenance programs monitor and control component degradation well within the original design specifications essential for the plant life attainment. A Technology Watch program is being established to ensure that degradation mechanisms which could impact on plant life are promptly investigated and mitigating programs established. The

  12. Predicting the residual life of plant equipment - Why worry

    International Nuclear Information System (INIS)

    Jaske, C.E.

    1985-01-01

    Predicting the residual life of plant equipment that has been in service for 20 to 30 years or more is a major concern of many industries. This paper reviews the reasons for increased concern for residual-life assessment and the general procedures used in performing such assessments. Some examples and case histories illustrating procedures for assessing remaining service life are discussed. Areas where developments are needed to improve the technology for remaining-life estimation are pointed out. Then, some of the critical issues involved in residual-life assessment are identified. Finally, the future role of residual-life prediction is addressed

  13. Residual life assessment of thick wall boiler parts

    International Nuclear Information System (INIS)

    Mehdizadeh, M.; Rayatpour, M.

    2004-01-01

    Thick wall components of boiler, such as headers, main steam lines and hot reheat lines, operate at high temperature and stress condition. This condition makes various failure mechanisms to activate during service exposure that gradually deteriorate the microstructure of components. Consequently, knowing about metallurgical condition and remaining life sensitive components particularly in power plants with at least 100,000 her life time is of considerable importance. In this regard, to eliminate unexpected interruptions and reduce the repairing costs, life assessment technology is being used. Various life assessment methods have been developed for power plants components and entered industrial fields. In the present work, remaining life of drums, headers and main steam lines of a power plant were evaluated, using microstructural, hardness changes and dimensional checking methods with non destructive tests. The results show that, the components have appropriate condition according to their service life. Further more, it was revealed that hardness evaluation technique is not a reliable evaluation criteria and various methods should be used for accurate life assessment

  14. Risk informed life cycle plant design

    International Nuclear Information System (INIS)

    Hill, Ralph S. III; Nutt, Mark M.

    2003-01-01

    Many facility life cycle activities including design, construction, fabrication, inspection and maintenance are evolving from a deterministic to a risk-informed basis. The risk informed approach uses probabilistic methods to evaluate the contribution of individual system components to total system performance. Total system performance considers both safety and cost considerations including system failure, reliability, and availability. By necessity, a risk-informed approach considers both the component's life cycle and the life cycle of the system. In the nuclear industry, risk-informed approaches, namely probabilistic risk assessment (PRA) or probabilistic safety assessment (PSA), have become a standard tool used to evaluate the safety of nuclear power plants. Recent studies pertaining to advanced reactor development have indicated that these new power plants must provide enhanced safety over existing nuclear facilities and be cost-competitive with other energy sources. Risk-informed approaches, beyond traditional PRA, offer the opportunity to optimize design while considering the total life cycle of the plant in order to realize these goals. The use of risk-informed design approaches in the nuclear industry is only beginning, with recent promulgation of risk-informed regulations and proposals for risk-informed codes. This paper briefly summarizes the current state of affairs regarding the use of risk-informed approaches in design. Key points to fully realize the benefit of applying a risk-informed approach to nuclear power plant design are then presented. These points are equally applicable to non-nuclear facilities where optimization for cost competitiveness and/or safety is desired. (author)

  15. Plant life management for long term operation of nuclear power plants

    International Nuclear Information System (INIS)

    2005-01-01

    The world's fleet of Nuclear Power Plants (NPPs) is approximately 20 years old on average, and most plants are believed to be able to operate for 60 years or more. The design life of a NPP is typically 30 to 40 years. This may be extended by 10 to 20 years, or more, provided that the plant can demonstrate by analysis, trending, equipment and system upgrades, increased vigilance, testing, ageing management, and other means that license renewal presents no threat to public health and safety. The basic goal of Plant Life Management (PLiM) is to satisfy requirements for safe long-term supplies of electricity in an economically competitive way. The basic goal of the operating company and the owners to operate as long as economically reasonable and possible from safety point of view. PLiM is a management tool for doing that. PLiM is a system of programmes and procedures to satisfy safety requirements for safe operation and for power production in a competitive way and for time which is rational from technical and economical point of view. PLiM is not only a technical system, it is also an attitude of the operational company to keep the plant in operation as long as possible from safety and business point of view. The common objectives of PLiM assessment is to help and review the pre-conditions for PLiM and long-term operation approaches. PLiM should not be associated with extension of operational life-time of the NPP only. It is an owner's attitude and rational approach of the operating company to run the business economically and safely. The effectiveness of PLiM Programme can be assessed by three complementary kinds of assessment: self-assessment, peer review and comprehensive programme review by the plant owner/ operator. IAEA will provide the assessment service for peer review of PLiM. Preparation for a PLiM Assessment service will be initiated only after the IAEA has been formally approached by a MS and funding (e.g. an existing Technical cooperation project) has

  16. Development of life evaluation technology for nuclear power plant components

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Young Jin [Sungkyunkwan Univ., Seoul (Korea, Republic of); Kwon, J. D. [Yeungnam Univ., Gyeongsan (Korea, Republic of); Kang, K. J. [Chonnam National Univ., Gwangju (Korea, Republic of)] (and others)

    2001-03-15

    This research focuses on development of reliable life evaluation technology for nuclear power plant (NPP) components, and is divided into two parts, development of life evaluation systems for pressurized components and evaluation of applicability of emerging technology to operating plants. For the development of life evaluation system for nuclear pressure vessels, the following seven topics are covered: development of expert systems for integrity assessment of pressurized components, development of integrity evaluation systems of steam generator tubes, prediction of failure probability for NPP components based on probabilistic fracture mechanics, development of fatigue damage evaluation technique for plant life extension, domestic round robin analysis for pressurized thermal shock of reactor vessels, domestic round robin analysis of constructing P--T limit curves for reactor vessels, and development of data base for integrity assessment. For evaluation of applicability of emerging technology to operating plants, on the other hand, the following eight topics are covered: applicability of the Leak-Before-Break analysis to Cast S/S piping, collection of aged material tensile and toughness data for aged Cast S/S piping, finite element analyses for load carrying capacity of corroded pipes, development of Risk-based ISI methodology for nuclear piping, collection of toughness data for integrity assessment of bi-metallic joints, applicability of the Master curve concept to reactor vessel integrity assessment, measurement of dynamic fracture toughness, and provision of information related to regulation and plant life extension issues.

  17. Nuclear power plant life management and longer-term operation

    International Nuclear Information System (INIS)

    2006-01-01

    This book, prepared by NEA member country experts, contains data and analyses relevant to nuclear power plant life management and the plants' extended, longer-term operation (LTO). It addresses technical, economic and environmental aspects and provides insights into the benefits and challenges of plant life management and LTO. It will be of interest to policy makers and senior managers in the nuclear power sector and governmental bodies involved in nuclear power programme design and management. The data and information on current trends in nuclear power plant life management will be useful to researchers and analysts working in the field of nuclear energy system assessment. (authors)

  18. State of technology assessment for life extension of electrical and I and C equipment in nuclear power plants

    International Nuclear Information System (INIS)

    DuCharme, A.R.; Boger, R.M.; Meyer, L.C.; Beament, P.R.

    1988-01-01

    As part of the IEEE Working Group 3.4 on Nuclear Plant Life Extension, an assessment is made of the current state of technology for the life extension of certain classes of electrical and IandC equipment. The classes investigated include motors, cables, emergency diesel generators, penetrations, inverters/chargers, switchgear, and reactor protection systems. The work is focussed on assessment of current or recently completed RandD efforts to resolve issues affecting life extension of the equipment. Aspects discussed include the degree of resolution of these issues, potentially affected standards, and technical aspects requiring further research. 15 refs., 2 tabs

  19. State of technology assessment for life extension of electrical and I and C equipment in nuclear power plants

    International Nuclear Information System (INIS)

    Du Charme, A.R.; Boger, R.M.; Meyer, L.C.; Beament, P.R.

    1988-01-01

    As part of the IEEE Working Group 3.4 on Nuclear Plant Life Extension, an assessment is made of the current state of technology for the life extension of certain classes of electrical and I and C equipment. The classes investigated include motors, cables, emergency diesel generators, penetrations, inverters/charges, switchgear, and reactor protection systems. The work is focussed on assessment of current or recently completed R and D efforts to resolve issues affecting life extension of the equipment. Aspects discussed include the degree of resolution of these issues, potentially affected standards, and technical aspects requiring further research

  20. Life cycle assessment of greenhouse gas emissions, water and land use for concentrated solar power plants with different energy backup systems

    International Nuclear Information System (INIS)

    Klein, Sharon J.W.; Rubin, Edward S.

    2013-01-01

    Concentrated solar power (CSP) is unique among intermittent renewable energy options because for the past four years, utility-scale plants have been using an energy storage technology that could allow a CSP plant to operate as a baseload renewable energy generator in the future. No study to-date has directly compared the environmental implications of this technology with more conventional CSP backup energy options. This study compares the life cycle greenhouse gas (GHG) emissions, water consumption, and direct, onsite land use associated with one MW h of electricity production from CSP plants with wet and dry cooling and with three energy backup systems: (1) minimal backup (MB), (2) molten salt thermal energy storage (TES), and (3) a natural gas-fired heat transfer fluid heater (NG). Plants with NG had 4–9 times more life cycle GHG emissions than plants with TES. Plants with TES generally had twice as many life cycle GHG emissions as the MB plants. Dry cooling reduced life cycle water consumption by 71–78% compared to wet cooling. Plants with larger backup capacities had greater life cycle water consumption than plants with smaller backup capacities, and plants with NG had lower direct, onsite life cycle land use than plants with MB or TES. - highlights: • We assess life cycle environmental effects of concentrated solar power (CSP). • We compare CSP with three energy backup technologies and two cooling technologies. • We selected solar field area to minimize energy cost for plants with minimal backup and salt storage. • Life cycle greenhouse gas emissions were 4–9 times lower with thermal energy storage than with fossil fuel backup. • Dry cooling reduced life cycle water use by 71–78% compared to wet cooling

  1. Plant life management at Loviisa

    International Nuclear Information System (INIS)

    Hytoenen, Y.; Savikoski, A.

    1998-01-01

    IVO, Power Engineering Ltd. has developed a company-wide approach to plant life management. The first stage of plant life management comprises operational and maintenance histories, design and plant inspection data using advanced computer systems. The life of the plant can be controlled by maintenance, refurbishment and inspection programs, and by varying the method of plant operation. On-line monitoring is needed, and cost control and training must be taken into account if the life of the plant is to be managed efficiently. Identifying the life-limiting factors is essential at Loviisa. It has been concentrated on the aging in the form of materials degradation due to fatigue, erosion, corrosion, radiation and thermal effects. Certain other life-limiting factors are also mentioned

  2. Safeguard assessment for life extension in nuclear power plants (NPPs) using a production function

    International Nuclear Information System (INIS)

    Woo, Tae-Ho; Lee, Un-Chul

    2011-01-01

    Research highlights: → The numerical value is constructed for the secure operation. → As the power increases, the NSEF increases. → Specific month could be indicated by the relative value of NSEF. → It is suggested for the better power in NPPs. → There is another possibility for the secure operation factors. - Abstract: Life extension is investigated as a safeguard assessment for the stability on the operation of the nuclear power plants (NPPs). The Cobb-Douglas function, one of the production functions, is modified for the nuclear safeguard in NPPs, which was developed for the life quality of the social and natural objects. Nuclear Safeguard Estimator Function (NSEF) is developed for the application in NPPs. The cases of NPPs are compared with each other in the aspect of the secure performance. The results are obtained by the standard productivity comparisons with the designed power operations. The range of secure life extension is between 1.008 and 5.353 in 2000 MW e and the range is between 0.302 and 0.994 in 600 MW e . So, the successfulness of the power operation increases about 5 times higher than that of the interested power in this study, which means that the safeguard assessment has been performed in the life extension of the NPPs. The technology assessment (TA) is suggested for the safe operation which is an advanced method comparing conventional probabilistic safety assessment (PSA).

  3. In-situ metallography for damage assessment and life extension in power plants- a few case studies

    International Nuclear Information System (INIS)

    Raghu, N.; Muralidharan, N.G.; Jayakumar, T.; Kasiviswanathan, K.V.

    1996-01-01

    In-service inspection of components in power plants is necessary for damage assessment, life prediction and extension. The useful life of some of the components like pipelines are most crucial in case they are exposed to the conditions of high temperature and pressure. Periodic inservice inspection by means of non-destructive testing to obtain information on damage assessment is carried out as a routine and mandatory procedure. During these inspections, only reduction in localised and uniform wall thickness are measured. However, the microstructural degradation due to both normal and abnormal temperatures occurring conditions are not revealed by conventional non-destructive test methods during this routine inspection. For life prediction and extension programme, the information on microstructural degradation is essential and the same can be studies in an effective manner through in-situ metallography technique. (author)

  4. Probabilistic residual life assessment of high temperature pipings in nuclear power plants against creep fatigue damage: final report

    International Nuclear Information System (INIS)

    Gupta, Sanjay

    2014-02-01

    Residual life assessment of components of nuclear power plants is essential for their operational safety, reliability and financial viability. The high risks involved in the event of failures in nuclear power plants have led to the development of design philosophies that incorporate extreme conservatism in design. The implications of such conservatism in design leads to more frequent maintenance operations than necessary

  5. Development of life evaluation technology for nuclear power plant components

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Young Jin; Kim, Yun Jae; Choi, Jae Boong [Sungkyunkwan Univ., Seoul (Korea, Republic of)] (and others)

    2002-03-15

    This project focuses on developing reliable life evaluation technology for nuclear power plant components, and is divided into two parts, development of a life evaluation system for nuclear pressure vessels and evaluation of applicability of emerging technology to operating plants. For the development of life evaluation system for nuclear pressure vessels, the following seven topics are covered in this project: defect assessment method for steam generator tubes, development of fatigue monitoring system, assessment of corroded pipes, domestic round robin analysis for constructing P-T limit curve for RPV, development of probabilistic integrity assessment technique, effect of aging on strength of dissimilar welds, applicability of LBB to cast stainless steel, and development of probabilistic piping fracture mechanics.

  6. Life cycle assessment of four potable water treatment plants in northeastern Colombia

    Directory of Open Access Journals (Sweden)

    Oscar Orlando Ortiz Rodriguez

    2016-04-01

    Full Text Available There is currently great concern about the processes that directly or indirectly contribute to the potential for global warming, such as stratospheric ozone depletion or acidification. In this context, and provided that treated water is a basic public utility in urban centers around the world as well as in some rural areas, its impact on the environment is of great interest. Therefore, this study applied the environmental methodology of Life Cycle Assessment (LCA to evaluate the environmental loads of four potable water treatment plants (PWTPs located in northeastern Colombia following the international guidelines delineated in ISO 14040. The different stages of the drinking water process were thoroughly assessed, from the catchment point through pumping to the distribution network. The functional unit was defined as 1 m3 of drinking water produced at the plant. The data were analyzed through the database Ecoinvent v.3.01, and modeled and processed in the software LCA-Data Manager. The results showed that in plants PLA-CA and PLA-PO, the flocculation process has the highest environmental load, which is mostly attributable to the coagulant agent, with a range between 47-73% of the total impact. In plants PLA-TON and PLA-BOS, electricity consumption was identified as the greatest impact source, with percentages ranging from 67 to 85%. Treatment processes and techniques, bioclimatic conditions and culturally driven consumption behavior varied from region to region. Furthermore, changes in treatment processes and techniques are likely to affect the environment during all stages of a plant’s operational cycle.

  7. Characterization of in-containment cables for nuclear plant life extension

    International Nuclear Information System (INIS)

    DuCharme, A.R.; Bustard, L.D.

    1988-01-01

    Electrical cable is made by a large number of manufacturers and used for a variety of applications in nuclear plants. cables have been identified in the Monticello and Surry Pilot Plant life extension studies and the NRC Nuclear Plant Aging Research Program as components important to the economic and safety aspects of life extension. Currently, fitness for service is largely determined by preoperational testing. The US Department of Energy is supporting work at Sandia National Laboratories to assess the technical basis for the life extension of cables found inside containment at US nuclear plants. The work is being performed in coordination with the Nuclear Management and Resource Council's (NUMARC) NUPLEX Working Group. The initial task of this effort is to characterize the design attributes of in-containment cables. This has been completed via development of a data base depicting the manufacturer, type, material composition, use, qualification, and relative popularity of cables installed in containment. Other ongoing work is focused on a review of cable operational experience and assessment of the issues affecting cable life extension. In the long term, the work aims to identify the technical criteria and life extension strategies needed to support continued cable qualification by nuclear plant owner/operators. 7 refs., 4 tabs

  8. Nuclear power plant life management

    International Nuclear Information System (INIS)

    Rorive, P.; Berthe, J.; Lafaille, J.P.; Eussen, G.

    1998-01-01

    Several definitions can be given to the design life of a nuclear power plant just as they can be attributed to the design life of an industrial installation: the book-keeping life which is the duration of the provision for depreciation of the plant, the licensed life which corresponds to the duration for which the plant license has been granted and beyond which a new license should be granted by the safety authorities, the design life which corresponds to the duration specified for ageing and fatigue calculations in the design of some selected components during the plant design phase, the technical life which is the duration of effective technical operation and finally the economic life corresponding to the duration of profitable operation of the plant compared with other means of electricity production. Plant life management refers to the measures taken to cope with the combination of licensed, design, technical and economical life. They can include repairs and replacements of components which have arrived to the end of their life due to known degradation processes such as fatigue, embrittlement, corrosion, wear, erosion, thermal ageing. In all cases however, it is of great importance to plan the intervention so as to minimise the economic impact. Predictive maintenance is used together with in-service inspection programs to fulfil this goal. The paper will go over the methodologies adopted in Belgium in all aspects of electrical, mechanical and civil equipment for managing plant life. (author)

  9. Cost savings from extended life nuclear plants

    International Nuclear Information System (INIS)

    Forest, L.R. Jr.; Deutsch, T.R.; Schenler, W.W.

    1988-09-01

    This study assesses the costs and benefits of nuclear power plant life extension (NUPLEX) for the overall US under widely varying economic assumptions and compares these with alternative new coal- fired plants (NEWCOAL). It is found that NUPLEX saves future electricity consumers more than 3 cents/-kwh compared with NEWCOAL. The NUPLEX costs and benefits for existing individual US nuclear power plants under base-line, or most likely, assumptions are assessed to determine the effects of the basic plant design and plant age. While benefits vary widely, virtually all units would have a positive benefit from NUPLEX. The study also presents a cost-benefit analysis of the nuclear industry's planned advanced light water reactor (ALWR). It is concluded that ALWR offers electrical power at a substantially lower cost than NEWCOAL. 9 refs., 6 figs

  10. Life management plants at nuclear power plants PWR

    International Nuclear Information System (INIS)

    Esteban, G.

    2014-01-01

    Since in 2009 the CSN published the Safety Instruction IS-22 (1) which established the regulatory framework the Spanish nuclear power plants must meet in regard to Life Management, most of Spanish nuclear plants began a process of convergence of their Life Management Plants to practice 10 CFR 54 (2), which is the current standard of Spanish nuclear industry for Ageing Management, either during the design lifetime of the plant, as well as for Long-Term Operation. This article describe how Life Management Plans are being implemented in Spanish PWR NPP. (Author)

  11. Social Life Cycle Assessment of a Concentrated Solar Power Plant in Spain: A Methodological Proposal

    DEFF Research Database (Denmark)

    Corona, Blanca; Bozhilova-Kisheva, Kossara Petrova; Olsen, Stig Irving

    2017-01-01

    of sustainability, namely, economy, environment, and society. Social life cycle assessment (S-LCA) is a novel methodology still under development, used to cover the social aspects of sustainability within LCSA. The aim of this article is to provide additional discussion on the practical application of S...... generation in a concentrated solar power plant in Spain. The inventory phase was completed by using the indicators proposed by the United Nations Environment Program/Society for Environmental Toxicology and Chemistry (UNEP/SETAC) Guidelines on S-LCA. The impact assessment phase was approached by developing...... a social performance indicator that builds on performance reference points, an activity variable, and a numeric scale with positive and negative values. The social performance indicator obtained (+0.42 over a range of –2 to +2) shows that the deployment of the solar power plant increases the social welfare...

  12. Plant condition assessments as a requirement before major investment in life extension for a CANDU nuclear power plant

    International Nuclear Information System (INIS)

    Aubray, Marc

    2002-01-01

    Full text: Since, to extend the life of a CANDU-6 reactor beyond its original design life requires the replacement of reactor components (380 pressure and calandria tubes), a major investment will have to be done. After a preliminary technical and economical feasibility study, Hydro- Quebec, owner of the Gentilly-2 NPP, has decided to perform a more detailed assessment to: 1. Get assurance that it is technically and economically viable to extend Gentilly-2 for another 20 years beyond the original design life; 2. Identify the detailed work to be done during the refurbishment period planned in 2008-2009; 3. Define the overall cost and the general schedule of the refurbishment phase; 4. Ensure an adequate licensing strategy to restart after refurbishment; 5. Complete all the Environmental Impact Studies required to obtain the government authorizations. The business case to support the refurbishment of Gentilly-2 has to take in consideration the reactor core components, which will be the major work to be completed during refurbishment. In summary the following main component will have to be changed or refreshed: The pressure and calandria tubes and the feeders (partial replacement only) (ageing mechanisms); The control computers (obsolescence); The condenser tubes (tubes plugging); The turbine control and electric-governor (obsolescence). An extensive campaign is under way to assess the 'health' of the station systems, structures and components (SSC). Two processes have been used for this assessment: Plant Life Management Studies (PLIM) for approximately 10 critical SSC or families of SSC (PLIM Studies); Condition Assessment Studies for other SSC with a lower impact on the Plant production or safety). The PLIM Studies are done on SSC's, which were judged critical because they are not replaceable (Reactor Building, Calandria), or that their failure could have a significant impact on safety or production (electrical motors, majors pumps, heat exchangers and pressure

  13. Role of organizational leadership in plant life management

    International Nuclear Information System (INIS)

    Mohindra, R.K.; Chou, Q.B.

    2007-01-01

    The nuclear power plant (NPP) operational trend shows that the plants of the same design and brought to service about the same time demonstrate a wide range of life time operational performance. Based on years of performance assessment experience from various types of industry audits, it can be seen that there is a strong relationship between organizational leadership and the good performing plants. A review based on this relationship is provided to suggest important characteristics needed in management and leadership team for an organization to have a successful life management program in a NPP. The required characteristics and attributes are discussed in the following three important organizational elements: Environment, People and Process

  14. Managing BWR plant life extension

    International Nuclear Information System (INIS)

    Ianni, P.W.; Kiss, E.

    1985-01-01

    Recent studies have confirmed that extending the useful life of a large nuclear plant can be justified with very high cost benefit ratio. In turn, experience with large power plant systems and equipment has shown that a well-integrated and -managed plan is essential in order to achieve potential economic benefits. Consequently, General Electric's efforts have been directed at establishing a life extension plan that considers alternative options and cost-effective steps that can be taken in early life, those appropriate during middle life, and those required in late life. This paper briefly describes an approach designed to provide the plant owner a maximum of flexibility in developing a life extension plan

  15. Consequential environmental life cycle assessment of a farm-scale biogas plant.

    Science.gov (United States)

    Van Stappen, Florence; Mathot, Michaël; Decruyenaere, Virginie; Loriers, Astrid; Delcour, Alice; Planchon, Viviane; Goffart, Jean-Pierre; Stilmant, Didier

    2016-06-15

    Producing biogas via anaerobic digestion is a promising technology for meeting European and regional goals on energy production from renewable sources. It offers interesting opportunities for the agricultural sector, allowing waste and by-products to be converted into bioenergy and bio-based materials. A consequential life cycle assessment (cLCA) was conducted to examine the consequences of the installation of a farm-scale biogas plant, taking account of assumptions about processes displaced by biogas plant co-products (power, heat and digestate) and the uses of the biogas plant feedstock prior to plant installation. Inventory data were collected on an existing farm-scale biogas plant. The plant inputs are maize cultivated for energy, solid cattle manure and various by-products from surrounding agro-food industries. Based on hypotheses about displaced electricity production (oil or gas) and the initial uses of the plant feedstock (animal feed, compost or incineration), six scenarios were analyzed and compared. Digested feedstock previously used in animal feed was replaced with other feed ingredients in equivalent feed diets, designed to take account of various nutritional parameters for bovine feeding. The displaced production of mineral fertilizers and field emissions due to the use of digestate as organic fertilizer was balanced against the avoided use of manure and compost. For all of the envisaged scenarios, the installation of the biogas plant led to reduced impacts on water depletion and aquatic ecotoxicity (thanks mainly to the displaced mineral fertilizer production). However, with the additional animal feed ingredients required to replace digested feedstock in the bovine diets, extra agricultural land was needed in all scenarios. Field emissions from the digestate used as organic fertilizer also had a significant impact on acidification and eutrophication. The choice of displaced marginal technologies has a huge influence on the results, as have the

  16. Nuclear plant life extension

    International Nuclear Information System (INIS)

    Negin, C.A.

    1989-01-01

    The nuclear power industry's addressing of life extension is a natural trend in the maturation of this technology after 20 years of commercial operation. With increasing emphasis on how plants are operated, and less on how to build them, attention is turning on to maximizing the use of these substantial investments. The first studies of life extension were conducted in the period from 1978 and 1982. These were motivated by the initiation, by the Nuclear Regulatory Commission (NRC), of studies to support decommissioning rulemaking. The basic conclusions of those early studies that life extension is feasible and worth pursuing have not been changed by the much more extensive investigations that have since been conducted. From an engineering perspective, life extension for nuclear plants is fundamentally the same as for fossil plants

  17. Practical standard for nuclear power plant life management programs: 2007

    International Nuclear Information System (INIS)

    2006-03-01

    The standard specifies the method of implementing nuclear power plant life management programs. The plant life management programs evaluate the integrity of the plant structures, systems and components, assessing if appropriate measures are taken against existing aging phenomena, if there are possibilities of occurrence and development of aging phenomena and if a sufficient level of margin is maintained to assure the integrity throughout the future operating period. The programs also assess the validity of the current maintenance activities, such as trend monitoring, walkdowns, periodic tests and inspections, repair and replacement work for the purpose of preventive maintenance, and utilization of lessons learned from past trouble experience, in order to newly identify maintenance measures. The technical evaluation on aging phenomena is conducted to establish the 10 year maintenance program for nuclear power plants until the plant reaches 30 years of service. The standard was established and issued by the Atomic Energy Society of Japan (AESJ) through the discussion of experts in the associated fields. (T. Tanaka)

  18. The significance of plant life management

    International Nuclear Information System (INIS)

    Myrddin Davies, L.

    2000-01-01

    The paper carries a definition and describes Plant life and plant life management. It also describes the procedures and defines the categorisation of components giving examples and referring to key components. Examples of 'good practice and guidance' are given for the establishment and implementation of plant life management programmes. A description is given of recent and current IAEA activities under the aegis of the International Working Group on Nuclear Power Plant Life Management (IWG-LMNPP). Some of the future activities in this field are described. (author)

  19. Inservice inspection of heavy water plants - a tool in assessing damage to components and life extension

    International Nuclear Information System (INIS)

    Subramanian, C.V.; Thavasimuthu, M.; Bhattacharys, D.K.; Baldev Raj

    1994-01-01

    Any system and its components are expected to give trouble free service over a certain period of time known as life time. The life time is estimated during the design stage. To achieve the design life, certain level of quality are to be defined and this quality has to be worked into the components by proper fabrication processes and their compliance with quality are to be checked. In addition, one has to guard against initiation or propagation of defects which may occur due to normal and abnormal service conditions. Non-destructive test (NDT) techniques are widely used for finding the health of the component. The role of NDT extends from the production stage to the entire life period of the system. This paper highlights the periodic in-service inspection (ISI) carried out on various components of the Heavy Water Plants (HWP) in India in assessing the integrity of the components and predicting the life of the components. (author). 3 refs., 4 figs

  20. FANP concept for plant life management and recent experience

    International Nuclear Information System (INIS)

    Nopper, H.; Daeuwel, W.; Waas, U.

    2002-01-01

    The deregulation of the power generation industry has resulted in increased competitive pressure and is forcing operators to improve plant operating economy while maintaining high levels of plant safety. A key factor to meet this challenge is to apply a comprehensive plant life management (PLIM) approach. The PLIM strategy addresses all relevant ageing and degradation mechanisms, the safety concept and the plant component documentation. In addition, it affects the management of plant personnel, consumables, operations management systems and administrative control procedures. Framatome ANP GmbH has developed an integrated PLIM concept and associated software tools applicable for both new and operating plants. The concept includes procedures and strategies regarding mechanical, electrical and I and C components as well as civil structures. The majority of e.g. mechanical components in a well-kept power plant will experience a technical service life, which is far above the intended design life. In most cases, only a small percentage of mechanical components is subject to significant degradation which may effect the integrity or the function of the component. The intention of an effective PLIM concept is to select safety and availability relevant components, were relevant degradation can not be ruled out. The PLIM concept utilizes a combination of strategies to identify components in a power plant: which are relevant to life management. An integrated safety review identifies components essential to safety, providing a classification of the associated safety levels. Assessment concerning the availability relevance of components is conduced. Components identified to be important to safety and availability are subject to a screening process for further grouping with respect to degradation potential. The selection process provides reasonable prioritisation of ageing relevant components and ensures that efforts are devoted to elements, where ageing is a relevant concern

  1. Life Limiting Issues for Long Term Operation of Nuclear Power Plants

    International Nuclear Information System (INIS)

    Esselman, Thomas; Gaertner, John

    2012-01-01

    This paper reports on a study which identified and characterized life limiting issues for consideration by nuclear plant owners in their decision to extend plant life or seek subsequent license renewal. As nuclear plants operate for longer periods, the risk that a condition in the plant or an event that occurs, at the plant or elsewhere, will cause a plant owner not to extend plant life increases. The Fukushima accident has made this concept concrete. This paper defines 'Life Limiting' concepts for nuclear plants. It identifies the highest risk conditions and events that may limit duration of continued operation in nuclear plants and employs a survey to prioritize these concerns. Methods for evaluating these risks and changing the capability of systems, structures, and components (SSC) to reduce and manage this risk in long term operation are presented. Integrated obsolescence -the existence of an accumulation of events or condition that can threaten long term operation- is discussed. Many of the life limiting conditions or events may be controllable by early identification, recognition, and mitigation of the potential threat. The recognition of conditions may allow measures to be taken to mitigate the condition. Recognition of the potential for events that may be life limiting may allow actions to be taken that will minimize the likelihood or consequences of the event. These actions may include enhanced research on the expected behavior of the SSC, risk assessment and management, and enhanced monitoring and aging management at the plant. (author)

  2. Optimal greenhouse gas emissions in NGCC plants integrating life cycle assessment

    International Nuclear Information System (INIS)

    Bernier, Etienne; Maréchal, François; Samson, Réjean

    2012-01-01

    The optimal design of an energy-intensive process involves a compromise between costs and greenhouse gas emissions, complicated by the interaction between optimal process emissions and supply chain emissions. We propose a method that combines generic abatement cost estimates and the results of existing (LCA) life cycle assessment studies, so that supply chain emissions are properly handled during optimization. This method is illustrated for a (NGCC) natural gas combined cycle power plant model with the following design and procurement options: procurement of natural gas from low-emissions producers, fuel substitution with (SNG) synthetic natural gas from wood, and variable-rate CO 2 capture and sequestration from both the NGCC and SNG plants. Using multi-objective optimization, we show two Pareto-optimal sets with and without the proposed LCA method. The latter can then be shown to misestimate CO 2 abatement costs by a few percent, penalizing alternate fuels and energy-efficient process configurations and leading to sub-optimal design decisions with potential net losses of the order of $1/MWh. Thus, the proposed LCA method can enhance the economic analysis of emissions abatement technologies and emissions legislation in general. -- Highlights: ► Multi-objective optimization and LCA used for process design considering supply chain. ► Off-site emissions in LCA reveal potential future indirect taxes for energy consumers. ► Generic abatement cost curves provide a mitigation model for off-site emissions. ► Off-site mitigation precedes CO 2 capture or biogas substitution in NGCC plant. ► Profitability estimation of capture or substitution depends on off-site mitigation.

  3. Considering plant life management influences on new plant design

    International Nuclear Information System (INIS)

    Dam, R.F.; Choy, E.; Soulard, M.; Nickerson, J.H.; Hopwood, J.

    2003-01-01

    After operating successfully for more than half their design life, owners of CANDU reactors are now engaging in Plant Life Management (PLiM) activities to ensure not only life attainment, but also life extension. For several years, Atomic Energy of Canada Ltd. (AECL) has been working with domestic and offshore CANDU utilities on a comprehensive and integrated CANDU PLiM program that will see existing CANDU plants successfully and reliably operate through their design life and beyond. To support the PLiM program development, a significant level of infrastructure has been, and continues to be, developed at AECL. This includes the development of databases that document relevant knowledge and background to allow for a more accessible and complete understanding of degradation issues and the strategies needed to deal with these issues. As the level of integration with various project, services and R and D activities in AECL increases, this infrastructure is growing to encompass a wider range of design, operations and maintenance details to support comprehensive and quantitative assessment of CANDU stations. With the maturation of the PLiM program, these processes were adapted for application to newer plants. In particular, a fully integrated program was developed that interrelates the design basis, operations, safety, and reliability and maintenance strategies, as applied to meet plant design goals. This has led to the development of the maintenance-based design concept. The various PLiM technologies, developed and applied in the above programs with operating stations, are being modified and tailored to assist with the new plant design processes to assure that ACR- Advanced CANDU Reactor meets its targets for operation, maintenance, and lifetime performance. Currently, the ACR, developed by Atomic Energy of Canada Ltd. (AECL), is being designed with features to increase capacity factors, to reduce the risk of major equipment failures, to improve access to key components

  4. Planning study and economic feasibility for extended life operation of light water reactor plants

    International Nuclear Information System (INIS)

    Negin, C.A.; Goudarzi, L.A.; Kenworthy, L.U.; Lapides, M.E.

    1980-01-01

    The purpose of this planning study was to perform an assessment of the engineering and economic feasibility of extended life operation of present nuclear power plant units and to recommend future programs that may be warranted by the feasibility assessments. This effort concludes, essentially, that there is sufficient economic motivation for refurbishment to warrant more extensive examination for present plants and to identify possible design modifications that would facilitate extended service life in future plants. The costs of replacing the deterioration-prone equipment in a nuclear power plant appear to represent a small portion of the total plant costs, provided downtime is not excessive. A refurbishment and economic analysis is presented

  5. Analysis of environmental impact phase in the life cycle of a nuclear power plant

    International Nuclear Information System (INIS)

    Hernandez del M, C.

    2015-01-01

    The life-cycle analysis covers the environmental aspects of a product throughout its life cycle. The focus of this study was to apply a methodology of life-cycle analysis for the environmental impact assessment of a nuclear power plant by analyzing international standards ISO 14040 and 14044. The methodology of life-cycle analysis established by the ISO 14044 standard was analyzed, as well as the different impact assessment methodologies of life cycle in order to choose the most appropriate for a nuclear power plant; various tools for the life-cycle analysis were also evaluated, as is the use of software and the use of databases to feed the life cycle inventory. The functional unit chosen was 1 KWh of electricity, the scope of analysis ranging from the construction and maintenance, disposal of spent fuel to the decommissioning of the plant, the manufacturing steps of the fuel were excluded because in Mexico is not done this stage. For environmental impact assessment was chosen the Recipe methodology which evaluates up to 18 impact categories depending on the project. In the case of a nuclear power plant were considered only categories of depletion of the ozone layer, climate change, ionizing radiation and formation of particulate matter. The different tools for life-cycle analysis as the methodologies of impact assessment of life cycle, different databases or use of software have been taken according to the modeling of environmental sensitivities of different regions, because in Mexico the methodology for life-cycle analysis has not been studied and still do not have all the tools necessary for the evaluation, so the uncertainty of the data supplied and results could be higher. (Author)

  6. Economic evaluation of Kori and Wolsong Unit 1 plant life extension

    International Nuclear Information System (INIS)

    Song, T. H.; Jeong, I. S.

    2002-01-01

    24 years have been passed since Kori Unit 1 began its commercial operation, and 19 years have been passed since Wolsong Unit 1 began its commercial operation. As the end point of design life become closer, plant life extension and periodic safety assessment is paid more and more attention to by the utility company. In this paper, the methodologies and results of plant lifetime management economic evaluations of both units have been presented in comparison with Korean standard nuclear power plant 10, 20 and 30 year life extension cases respectively. In addition to that, sensitivity analysis and break even point analysis results are presented with the variables of capacity factor, operation and maintenance cost, and discount rate

  7. Gas fired combined cycle plant in Singapore: energy use, GWP and cost-a life cycle approach

    International Nuclear Information System (INIS)

    Kannan, R.; Leong, K.C.; Osman, Ramli; Ho, H.K.; Tso, C.P.

    2005-01-01

    A life cycle assessment was performed to quantify the non-renewable (fossil) energy use and global warming potential (GWP) in electricity generation from a typical gas fired combined cycle power plant in Singapore. The cost of electricity generation was estimated using a life cycle cost analysis (LCCA) tool. The life cycle assessment (LCA) of a 367.5 MW gas fired combined cycle power plant operating in Singapore revealed that hidden processes consume about 8% additional energy in addition to the fuel embedded energy, and the hidden GWP is about 18%. The natural gas consumed during the operational phase accounted for 82% of the life cycle cost of electricity generation. An empirical relation between plant efficiency and life cycle energy use and GWP in addition to a scenario for electricity cost with varying gas prices and plant efficiency have been established

  8. An approach to nuclear-power-plant life management

    International Nuclear Information System (INIS)

    Vojvodic Tuma, J.; Celin, R.; Udovc, M.; Bundara, B.; Zabric, I.

    2007-01-01

    The plant life of a nuclear power plant (NPP) depends on degradation processes and ageing. Degradation is a deterioration phenomenon that can lead to component failure or limit the life of a component or the NPP itself. Ageing describes a continuous time or operational degradation of materials due to operational conditions, which include both normal and operating conditions. As a result of ageing degradation the state of the NPP or component can vary throughout the operating life. The degradation mechanisms for metallic components are general and local corrosion, erosion/corrosion, fatigue, corrosion fatigue, material changes due to irradiation and temperature, creep and wear. All the components of an NPP are subject to ageing, which may lead to the degradation of the physical barriers and redundant components, resulting in an increased probability of common-cause failures. The aims of NPP ageing management are to ensure that the necessary safety margins, adequate reliability and unforeseen and uncontrolled ageing of critical components do not shorten the NPP's lifetime. For the reasons stated above, plans are necessary to maintain the NPP in a state of high reliability. These are plans for an assessment of the life of the components that cannot be readily replaced, plans for operating life assessment or the planned replacement of major components where economic considerations will largely condition whether replacement or decommissioning should be pursued and plans for maintenance and replacements so that outages and delays can be minimised. In this paper some aspects of the process of NPP life management will be presented. (author)

  9. Considerations related to plant life management for Cernavoda-1

    International Nuclear Information System (INIS)

    Cojan, Mihail

    2002-01-01

    Cernavoda-1 NPP, the first CANDU 6 Unit in Eastern Europe, is one of the original five CANDU 6 plants and the first CANDU 6 producing over 700 MWe. CANDU Pressurized Heavy Water Reactors (PHWR) continues to play a significant role in electricity supply both in Canada and some offshore countries (Korea, Argentina, Romania). The commercial versions of CANDU reactors were put into service more than 30 years ago. While the first series of CANDU 6 plants (which entered service in the early 1980's) have now reached the middle portion of their 30 years design life, the Cernavoda-1 was put into service on 2 December 1996. However, the Cernavoda-1 Plant Life Management should be an increasingly important program to Utility ('CNE-Prod') in order to protect the investment and the continued success of plant operation. Over the past three years, INR (Institute for Nuclear Research - Romania) has been working with AECL-Canada on R and D Programs to support a comprehensive and integrated Cernavoda-1 Plant Life Management (PLiM) program that will see the Cernavoda-1 NPP successfully and reliably through to design life and beyond. The PLiM program has a focus on critical systems, structures, and components (CSSCs) and will be applied in three phases: Phase 1 - Planning (assessment and recommendations); Phase 2 - Life attainment implementation, and; Phase 3 - Plant Life Extension (PLEx), also known as plant extended operation. The key activities during each phase are shown. The schedule of each Phase are shown using the in service date of 1983 as the basis. This schedule applies to three original CANDU 6 plants with an in-service date of 1983: Point Lepreau, Gentilly-2, Wolsong-1 and shortly thereafter (1984) the 4th original CANDU 6 Embalse NPP was declared in service. Cernavoda-1 is the 5th original CANDU 6 plant and was put into service on 2 December 1996 (on site activities were started in 1980). The paper will describe the elements of an integrated program, the multiphase

  10. Plant life management optimized utilization of existing nuclear power plants

    International Nuclear Information System (INIS)

    Watzinger, H.; Erve, M.

    1999-01-01

    For safe, reliable and economical nuclear power generation it is of central importance to understand, analyze and manage aging-related phenomena and to apply this information in the systematic utilization and as-necessary extension of the service life of components and systems. An operator's overall approach to aging and plant life management which also improves performance characteristics can help to optimize plant operating economy. In view of the deregulation of the power generation industry with its increased competition, nuclear power plants must today also increasingly provide for or maintain a high level of plant availability and low power generating costs. This is a difficult challenge even for the newest, most modern plants, and as plants age they can only remain competitive if a plant operator adopts a strategic approach which takes into account the various aging-related effects on a plant-wide basis. The significance of aging and plant life management for nuclear power plants becomes apparent when looking at their age: By the year 2000 roughly fifty of the world's 434 commercial nuclear power plants will have been in operation for thirty years or more. According to the International Atomic Energy Agency, as many as 110 plants will have reached the thirty-year service mark by the year 2005. In many countries human society does not push the construction of new nuclear power plants and presumably will not change mind within the next ten years. New construction licenses cannot be expected so that for economical and ecological reasons existing plants have to be operated unchallengeably. On the other hand the deregulation of the power production market is asking just now for analysis of plant life time to operate the plants at a high technical and economical level until new nuclear power plants can be licensed and constructed. (author)

  11. Plant life management and maintenance technologies for nuclear power plants

    International Nuclear Information System (INIS)

    Ikegami, Tsukasa; Aoki, Masataka; Shimura, Takao; Kaimori, Kimihiro; Koike, Masahiro

    2001-01-01

    Nuclear power generation occupying an important position for energy source in Japan and supplying about one third of total electric power usage is now required for further upgrading of its economics under regulation relaxation of electric power business. And, under execution retardation of its new planning plant, it becomes important to operate the already established plants for longer term and to secure their stability. Therefore, technical development in response to the plant life elongation is promoted under cooperation of the Ministry of Economics and Industries, electric power companies, literate, and plant manufacturers. Under such conditions, the Hitachi, Ltd. has progressed some technical developments on check inspection, repairs and maintenance for succession of the already established nuclear power plants for longer term under securing of their safety and reliability. And in future, by proposing the check inspection and maintenance program combined with these technologies, it is planned to exert promotion of maintenance program with minimum total cost from a viewpoint of its plant life. Here were described on technologies exerted in the Hitachi, Ltd. such as construction of plant maintenance program in response to plant life elongation agreeing with actual condition of each plant, yearly change mechanism grasping, life evaluation on instruments and materials necessary for maintenance, adequate check inspection, repairs and exchange, and so forth. (G.K.)

  12. Application of plant life management program and experience at NRU

    International Nuclear Information System (INIS)

    Nickerson, J.; Dam, R.; Arnold, J.; See Hoye, D.

    2004-01-01

    The National Research Universal (NRU) reactor has seen extensive and excellent service since going into operation in 1957. During that time, significant investments in upgrading and improving the facility have been implemented. Recently, as part of the NRU Licenseability Extension (LE) program, AECL has developed a Plant Life Management (PLiM) program to support planned operation to at least 2012. The objective of the PLiM program is to systematically assess the various aging related degradation mechanisms in order to evaluate both current condition and the potential for further extending service life. Another objective is to identify the associated maintenance, surveillance and inspection strategy for service life extension of important Structures, Systems, and Components (SSCs). The strategy uses approaches that build on AECL's PLiM/PLEx experience at CANDU plants, but also utilizes previous Age Management and refurbishment work performed at NRU. The program is multi-faceted, systematic and integrated, and involves the facility operations organization in the assessment process. The PLiM program has used a number of pilot studies in the initial stages to test out PLiM procedures, gain experience with the various aging assessment techniques and enhance effectiveness of interfaces between the aging assessment team and the facility staff. The aging assessment process begins with the screening and prioritization of the facility SSCs. Selection of the appropriate assessment technique is based on priority and component type. Life and condition assessment techniques used at other plants have been adapted to NRU and performed on important components and structures. For important systems, a combination of condition assessment and systematic maintenance assessment techniques are being used. Detailed PLiM procedures have been developed and are in trial use in pilot studies. These procedures are currently being updated with the experience gained during the pilot studies. In

  13. Plant Betterment as Anticipated Measure For Plant Life Management

    International Nuclear Information System (INIS)

    Louvat, J. P.

    1991-01-01

    A lot of modifications have been made since critically on each of the 28 standardized 900 MW class PWR units in France. Most of this technical upgrading was accomplished to facilitate operation, improve availability, or bring the unit design in line with evolving regulatory requirements, but a substantial part of the modifications was dedicated to Plant Life Management. As part of the program launched by EDF for plant life management, this paper introduces the Frustum's contribution for plant betterment and enhancement of reactor operation concurrently to ensure or extend plant service life. The solutions contemplated in this field are provided to reduce the frequency of unexpected reactor trip occurrences, to mitigate their negative effects or to smooth off the reactor operation and thus the magnitude of associated transients. The lifetime evaluation of NPP is basically an economical exercise, which tries to determine how long the operation of the plant will remain competitive, taking into account the long term perspective maintenance costs. There cannot be any conflict between lifetime and safety considerations, based upon the pituitary requisite that the safety requirement must be met at any time of the operation. Plant life management needs a consistent approach that can not be improvised on a case by case basis. Instead, it must be kept in mind from the very beginning of unit operation. This is the sense of the backfitting and technical upgrading carried out in France for the PWRs of the 900 MW class. It is thanks to this necessary anticipation that plant life will be actually managed, giving benefit both from the standpoint of availability and from that of the service lives of sensitive components. Substantial savings will thus be obtained

  14. Strategies and policies for nuclear power plant life management. Proceedings of the IAEA specialists meeting. Working document

    International Nuclear Information System (INIS)

    1998-01-01

    The purpose of the Specialists Meeting organized by the IAEA was to provide an international forum for discussing of recent results in national and utility experience in development of nuclear power plant life management programmes and their technical, regulatory and economic assessments. Plant life management requires detailed knowledge of ageing degradation of the components and the results of mitigation technologies. The basic conclusion includes the need of Guide on NPP Life management which should encompass: plant safety; plant availability; plant operating life extension; human resources policy; research and development needs

  15. R and D in support of CANDU plant life management

    International Nuclear Information System (INIS)

    Tapping, R.L.; Holt, R.A.

    1999-01-01

    One of the keys to the long-term success of CANDUs is a high capacity factor over the station design life. Considerable R and D in underway at AECL to develop technologies for assessing, monitoring and mitigating the effect of plant ageing and for improving plant performance and extending plant life. To achieve longer service life and to realize high capacity factor from CANDU stations, AECL is developing new technologies to enhance fuel channel and steam generator inspection capabilities, to monitor system health, and to allow preventive maintenance and cleaning (e.g., on-line chemical cleaning processes that produce small volumes of wastes). The life management strategy for fuel channels and steam generators requires a program to inspect components on a routine basis to identify mechanisms that could potentially affect fitness-for-service. In the case of fuel channels, the strategy includes inspections for dimensional changes, flaw detection, and deuterium concentration. New techniques are been developed to enhance these inspection capabilities; examples include accurate measurement of the gap between a pressure tube and its calandria tube and rapid full-length inspections of steam generator tubes for all known flaw types. Central to life management of components are Fitness-for-Service Guidelines (FFSG) that have been developed with the CANDU Owners Group (COG) that provide a standardized method to assess the potential for propagation of flaws detected during in-service inspections, and assessment of any change in fracture characteristics of the material. FFSG continue to be improved with the development of new technologies such as the capability to credit relaxation of stresses due to creep and non-rejectable flaws in pressure tubes. Effective management of plant systems throughout their lifetime requires much more than data acquisition and display - it requires that system health is continually monitored and managed. AECL has developed a system Health Monitor

  16. Application of structural reliability and risk assessment to life prediction and life extension decision making

    International Nuclear Information System (INIS)

    Meyer, T.A.; Balkey, K.R.; Bishop, B.A.

    1987-01-01

    There can be numerous uncertainties involved in performing component life assessments. In addition, sufficient data may be unavailable to make a useful life prediction. Structural Reliability and Risk Assessment (SRRA) is primarily an analytical methodology or tool that quantifies the impact of uncertainties on the structural life of plant components and can address the lack of data in component life prediction. As a prelude to discussing the technical aspects of SRRA, a brief review of general component life prediction methods is first made so as to better develop an understanding of the role of SRRA in such evaluations. SRRA is then presented as it is applied in component life evaluations with example applications being discussed for both nuclear and non-nuclear components

  17. Integrated manure utilization system life-cycle value assessment

    Energy Technology Data Exchange (ETDEWEB)

    Row, J.; Neabel, D. [Pembina Inst. for Appropriate Development, Drayton Valley, AB (Canada)

    2005-10-15

    A life-cycle assessment of the Alberta Research Council (ARC) and Highmark Renewables' development of an integrated manure utilization system (IMUS) were presented. The assessment focused on an evaluation of factors of primary importance to government, investors and the livestock industry. IMUS technology uses manure as a resource to produce electricity, heat, bio-based fertilizer and reusable water. Results of the assessment indicated that IMUS plants have the potential to be financially viable if a power purchase of $90 MWh on average can be purchased from a 30,000 head livestock operation. A capital cost of under $11 million is necessary, and an established biofertilizer price of $50 per tonne should be established. An IMUS plant was estimated to reduce life-cycle greenhouse gas emissions by 70 to 80 per cent when compared to land spreading. Reductions are accomplished through displacing electricity from the provincial grid and reducing nitrous oxide (N{sub 2}O) emissions from spreading of manure The IMUS plants lessen environment impacts by reducing the extraction and consumption of non-renewable resources, and by displacing an estimated 11,700 GJ of coal and natural gas per 1000 head of cattle per year. In addition, various pathogens within manure are eliminated. The plants have the potential to eliminate the environmental hazards associated with the disposal of deadstock. The systems reduce manure odour, lessen truck traffic and are expected to contribute to rural economic diversification. Barriers to further implementation of IMUS were discussed, as well as emerging opportunities for IMUS developers. It was concluded that the initial assessments of the IMUS were positive. Further investigation is needed to determine actual life-cycle performance of the operations. 18 refs., 3 tabs., 3 figs.

  18. CANDU steam generator life management: laboratory data and plant experience

    International Nuclear Information System (INIS)

    Tapping, R.L.; Nickerson, J.H.; Subash, N.; Wright, M.D.

    2001-10-01

    As CANDU reactors enter middle age, and the potential value of the plants in a deregulated market is realized, life management and life extension issues become increasingly important. An accurate assessment of critical components, such as the CANDU 6 steam generators (SGs), is crucial for successful life extension, and in this context, material issues are a key factor. For example, service experience with Alloy 900 tubing indicates very low levels of degradation within CANDU SGs; the same is also noted worldwide. With little field data for extrapolation, life management and life extension decisions for the tube bundles rely heavily on laboratory data. Similarly, other components of the SGs, in particular the secondary side internals, have only limited inspection data upon which to base a condition assessment. However, in this case there are also relatively little laboratory data. Decisions on life management and life extension are further complicated--not only is inspection access often restricted, but repair or replacement options for internal components are, by definition, also limited. The application of CANDU SG life management and life extension requires a judicious blend of in-service data, laboratory research and development (R and D) and materials and engineering judgment. For instance, the available laboratory corrosion and fretting wear data for Alloy 800 SG tubing have been compared with plant experience (with all types of tubing), and with crevice chemistry simulations, in order to provide an appropriate inspection guide for a 50-year SG life. A similar approach has been taken with other SG components, where the emphasis has been on known degradation mechanisms worldwide. This paper provides an outline of the CANDU SG life management program, including the results to date, a summary of the supporting R and D program showing the integration with condition assessment and life management activities, and the approach taken to life extension for a typical

  19. CANDU plant life management - An integrated approach

    International Nuclear Information System (INIS)

    Hopkins, J.R.

    1998-01-01

    An integrated approach to plant life management has been developed for CANDU reactors. Strategies, methods, and procedures have been developed for assessment of critical systems structures and components and for implementing a reliability centred maintenance program. A Technology Watch program is being implemented to eliminate 'surprises'. Specific work has been identified for 1998. AECL is working on the integrated program with CANDU owners and seeks participation from other CANDU owners

  20. Development of overall evaluation system for nuclear plant life extension, (3)

    International Nuclear Information System (INIS)

    Soneda, Naoki; Takao, Takeshi

    1990-01-01

    Life and integrity assessment of structural components is essential for the nuclear plant life evaluation. Many works have been done on the life and integrity assessment methods up to date. However, there are few methods for the reliability evaluation of analysis results obtained by those methods. This report presents a reliability evaluation method of analysis results based on knowledge base and its application to the integrity assessment of PWR reactor pressure vessel against PTS event. Probabilistic fracture mechanics method is used to obtain the sensitivity of failure probability to analysis inputs. Knowledge base of fuzzy rules is constructed using the sensitivity analysis results. This method makes it possible to set reasonable safety margins to the analysis results. (author)

  1. Countermeasure to plant life management of the nuclear power plants out of Japan

    International Nuclear Information System (INIS)

    1999-01-01

    Some investigations on countermeasure to plant life management of the nuclear power plants were begun since beginning of 1990s under cooperation with Ministry of International Trade and Industry and all electric power companies under consideration of recent state on abroad and at concept of preventive conservation implementation against the plant life management. As a result, the Tokyo Electric Power Company, the Kansai Electric Power Company and the Japan Atomic Power Company settled each program on countermeasure to plant life management of the Fukushima-1 Power Plant, the Mihama-1 Power Plant and the Tsuruga-1 Power Plant, respectively, which were reported to the Atomic Energy Safety Commission to issue on February, 1999, after deliberation in the Adviser Group of Ministry of International Trade and Industry. Such investigations on countermeasure to the plant life management are also conducted out of Japan in parallel to those in Japan, which contain programs reflecting states of operation and maintenance of nuclear power plants and atmosphere around atomic energy in each country. Here were described on some present states of the countermeasures to plant life management in U.S.A., France, Germany, Sweden, England and so forth. (G.K.)

  2. An integrated approach to plant life management

    International Nuclear Information System (INIS)

    Fredlund, L.

    1998-01-01

    Plant life is no longer determined by components, almost everything can be replaced. A plant life management program should aim at actions and replacements being performed at the right time. In order to manage this there is need for experience feedback systems, a plant specific risk study and safety upgrades. (author)

  3. Material aging and degradation detection and remaining life assessment for plant life management

    International Nuclear Information System (INIS)

    Ramuhalli, P.; Henager, C.H. Jr.; Griffin, J.W.; Meyer, R.M.; Coble, J.B.; Pitman, S.G.; Bond, L.J.

    2012-01-01

    One of the major factors that may impact long-term operations is structural material degradation. Detecting materials degradation, estimating the remaining useful life (RUL) of the component, and determining approaches to mitigating the degradation are important from the perspective of long-term operations. In this study, multiple nondestructive measurement and monitoring methods were evaluated for their ability to assess the material degradation state. Metrics quantifying the level of damage from these measurements were defined and evaluated for their ability to provide estimates of remaining life of the component. An example of estimating the RUL from nondestructive measurements of material degradation condition is provided. (author)

  4. Plant life management (PLIM) in Swiss nuclear power plants

    International Nuclear Information System (INIS)

    Stejskal, Jan; Steudler, Daniel; Thoma, Kurt; Fuchs, Reinhard

    2002-01-01

    Full text: The Swiss Utility Working group for ageing Management (AM) presented their programme for the first time at the PLIM/PLEX 93. In the meantime the key guideline documents have been prepared and the most so called S teckbrief - files for Safety Class 1 (SC1) are issued. The 'Steckbrief' file is a summary of the component history and includes the results of the Reviews performed and measures taken or planned to counteract ageing mechanisms. The scope of these activities does not only serve the important aspect of reliable plant service but also facilitates component and plant life extension feasibility. The older plants have been operated now for up to 30 years, so PLEX will become a more important topic for Swiss NPP. It is very encouraging, that there is an official memorandum of the Swiss authority with the clear statement, that they could not identify any technical reason, why the older plants should not extend their design life of 40 years for at least 10 and the younger for 20 years. The result of this is that a well established Ageing Management Programme (AMP) provide a good basis for Plant Life Extension (PLEX), e.g. the Swiss AMP has to be seen as a PLIM. (author)

  5. Life cycle GHG assessment of fossil fuel power plants with carbon capture and storage

    International Nuclear Information System (INIS)

    Odeh, Naser A.; Cockerill, Timothy T.

    2008-01-01

    The evaluation of life cycle greenhouse gas emissions from power generation with carbon capture and storage (CCS) is a critical factor in energy and policy analysis. The current paper examines life cycle emissions from three types of fossil-fuel-based power plants, namely supercritical pulverized coal (super-PC), natural gas combined cycle (NGCC) and integrated gasification combined cycle (IGCC), with and without CCS. Results show that, for a 90% CO 2 capture efficiency, life cycle GHG emissions are reduced by 75-84% depending on what technology is used. With GHG emissions less than 170 g/kWh, IGCC technology is found to be favorable to NGCC with CCS. Sensitivity analysis reveals that, for coal power plants, varying the CO 2 capture efficiency and the coal transport distance has a more pronounced effect on life cycle GHG emissions than changing the length of CO 2 transport pipeline. Finally, it is concluded from the current study that while the global warming potential is reduced when MEA-based CO 2 capture is employed, the increase in other air pollutants such as NO x and NH 3 leads to higher eutrophication and acidification potentials

  6. A creep life assessment method for boiler pipes using small punch creep test

    International Nuclear Information System (INIS)

    Izaki, Toru; Kobayashi, Toshimi; Kusumoto, Junichi; Kanaya, Akihiro

    2009-01-01

    The small punch creep (SPC) test is considered as a highly useful method for creep life assessment for high temperature plant components. SPC uses miniature-sized specimens and does not cause any serious sampling damages, and its assessment accuracy is at a high level. However, in applying the SPC test to the residual creep life assessment of the boiler in service, there are some issues to be studied. In order to apply SPC test to the residual creep life assessment of the 2.25Cr-1Mo steel boiler pipe, the relationship between uniaxial creep stress and the SPC test load has been studied. The virgin material, pre-crept, weldment and service aged samples of 2.25Cr-1Mo steel were tested. It was confirmed that the relationship between uniaxial creep stress and the SPC test load at the same rupture time can be described as a single straight line independent of test conditions and materials. Therefore a life assessment is possible by using SPC test in place of uniaxial creep tests. The creep life assessment using SPC was applied to actual thermal power plant components which are in service.

  7. Life extension, power upgrade, and return to service work for Pickering NGS and other PWR and CANDU plants

    International Nuclear Information System (INIS)

    Millman, J.; Idvorian, N.; Schneider, W.

    2002-01-01

    Work on life extension, power upgrade and return to service has been performed and is in progress for a number of PWR and CANDU plants. For PWR plants, power upgrade work has been done for the new replacement steam generators in several cases. This work consists of redoing the formal equipment qualification analysis and reports for the uprated operating conditions to support the application for license adjustment. Life extension assessments have been performed for several CANDU plants. These are highly detailed assessments in which the particular steam generator is reassessed part by part as to the ability of each to sustain full life operation and also extended life operation. Return to service work for Pickering NGSA specifically has included this type of assessment and also specific repair, cleaning and retrofit activities including secondary side inspection, waterlancing, divider plate repair, eddy current inspection, etc. Steam generator modifications and retrofit work have been performed in a number of cases. The paper discusses various life extension, power upgrade, equipment modification and return to service activities all of which are part of the renewed drive in the industry to realise the full potential of nuclear plants by getting more and better performance from the extended service of existing plants. (author)

  8. Current activities in support of CANDU plant life management: an industry perspective

    International Nuclear Information System (INIS)

    Shalaby, B.A.; Price, E.G.; Hopkins, J.; Charlebois, P.

    1998-01-01

    The current focus of the CANDU industry is to position the nuclear option as a cost competitive, safe and reliable means of electricity production. To achieve its goal the CANDU industry as a whole is undertaking steps to improve further its performance and safety of its nuclear power plants. A number of programs have been planned and implemented particularly for plants in the mid-life range. Some of these programs include life assessment studies of critical systems, Structures and Components (SSCS), refurbishment and upgrading programs and monitoring and periodic inspection programs. Some elements of the programs have been in place from station start up and some are being instituted as part of the aging management and performance improvement program. The industry recognizes that the key to sustaining high performance over the life of the plant is the implementation of an integrated aging management program that encompasses all elements of plant operation and maintenance. A systematically implemented program on optimized maintenance and inspection strategy, standardized work processes, component rehabilitation programs, and applying lessons learned are some of the elements of a sustainable high performance and an effective plant life assurance program. The paper will describe the elements of an integrated program, the multiphase approach defined for CANDU PLIM and some of the activities undertaken by the industry to further improve and sustain plant safety, reliability and performance. (author)

  9. NDE and plant life extension

    International Nuclear Information System (INIS)

    Liu, S.N.; Ammirato, F.V.; Nottingham, L.D.

    1991-01-01

    Component life extension is the process of making run-repair-replace decisions for plant components and includes a thorough analysis of the capability of the component to perform throughout the projected lifetime. For many critical plant components, nondestructive evaluation (NDE) is essential in determining whether the component can be operated safely and economically in the extended life period and to help utilities determine safe and economic inspection intervals. NDE technology is required for not only detecting defects that could grow to a size of concern during extended lifetimes, but also will be called upon to measure and monitor accumulating material degradation that strongly affects component reliability. This paper discusses the role of NDE in life extension by reviewing three examples--a reactor pressure vessel, steam turbine-generator rotors, and generator retaining rings. In each example, the contribution of NDE to life extension decisions is described. (author)

  10. Motor life management at Gentilly 2 nuclear power plant

    International Nuclear Information System (INIS)

    Lazic, L.; Renaud, P.; Marcotte, P.

    2002-01-01

    Hydro Quebec's Gentilly 2 CANDU Nuclear Power Plant (NPP) located on the St. Lawrence River about 150 kms NE of Montreal Quebec Canada, is completing its second full decade of commercial operation. Since the original design life of 30 years is fast approaching, Hydro Quebec (HQ) is positioning itself proactively, to ensure plant operation for the original design life as well implementing a plant life management program to achieve a plant life extension to 50 years. All components in a nuclear plant are affected by ageing during the plant service life. This affects the availability, reliability, and safety of the plant operation and could affect the plant service life. However, if a life management program (LMP) is implemented; the ageing mechanisms can be understood and monitored, and their effects can be controlled and even mitigated. Among other vital equipment in the plant, the station motors are being examined to determine what has to be done to ensure that the motors do not contribute negatively to the plant operating plan. Gentilly 2 NPP has almost 900 motors of various configurations. Their size ranges from 0.1 HP to 9000 HP. A distribution of quantity at different horsepower levels is given. This paper will describe the plant's motor history, method of operation, and proposed future changes required to ensure effective life management of the motors. Up to the present time, Gentilly 2 NPP staff has had very good experience with plant motor operation and reliability. Nevertheless, indications from other industry motor experiences indicate that this favourable trend is unlikely to continue. A plant motor life management strategy as outlined in this paper, based on condition based maintenance in combination with traditional types of maintenance, can help to ensure protection against unexpected plant motor problems and help to ensure achievement of motor design life and beyond. Although nothing will ever replace a thorough visual inspection for discovering

  11. Economics and policies of nuclear plant life management

    International Nuclear Information System (INIS)

    Yamagata, H.

    1998-01-01

    NEA provides an opportunity for international exchange of information on the economics and policies of nuclear plant life management for governments and plant owners. The NEA Secretariat is finalising the 'state-of-the-art report' on the economics and policies of nuclear plant life management, including the model approach and national summaries. In order to meet power supply obligations in the early 2000, taking into account energy security, environmental impact, and the economics of nuclear power plants whose lives have been extended, initiatives at national level must be taken to monitor, co-ordinate, and support the various industry programmes of nuclear plant life management by integrated and consistent policies, public acceptance, R and D, and international co-operation. Nuclear power owners should establish an organisation and objectives to carry nuclear plant life management in the most economic and smoothest way taking into consideration internal and external influences. The organisation must identify the critical item and the ageing processes, and optimise equipment reliability and maintenance workload. (author)

  12. NULIFE - the European NoE 'Nuclear Plant Life Prediction'

    International Nuclear Information System (INIS)

    Cojan, Mihail

    2008-01-01

    INR Pitesti become on the 29th September 2006 a partner in the European Network of Excellence Nuclear Plant Life Prediction (NULIFE) coordinated by Technical Research Centre of Finland (VTT). The EU's Network of Excellence NULIFE has been launched under the EURATOM FP6 Program with a clear focus on integrating safety-oriented research on materials, structures and systems and exploiting the results of this integration through the production of harmonized lifetime assessment methods. NULIFE will help provide a better common understanding of, and information on, the factors affecting the lifetime of nuclear power plants which, together with associated management methods, will help facilitate extensions to the safe and economic lifetime of existing nuclear power plants. (author)

  13. Life cycle inventories for bioenergy and fossil-fuel fired cogeneration plants

    International Nuclear Information System (INIS)

    Braennstroem-Norberg, B.M.; Dethlefsen, U.

    1998-06-01

    Life-cycle inventories for heat production from forest fuel, Salix, coal and oil are presented. Data from the Oerebro cogeneration plant are used for the bioenergy and coal cycles, whereas the oil-fired cycle is based on a fictive plant producing 53 MW electricity and 106 MW heat, also located in the town of Oerebro. This life cycle analysis only covers the inventory stage. A complete life cycle analysis also includes an environmental impact assessment. The methods for assessing environmental impact are still being developed and thus this phase has been omitted here. The intention is, instead, to provide an overall perspective of where in the chain the greatest environmental load for each fuel can be found. Production and energy conversion of fuel requires energy, which is often obtained from fossil fuel. This input energy corresponds to about 11% of the extracted amount of energy for oil, 9% for coal, 6% for Salix, whereas it is about 4% for forest fuel. Utilization of fossil fuel in the coal cycle amounts to production of electricity using coal condensation intended for train transports within Poland. In a life cycle perspective, biofuels show 20-30 times lower emissions of greenhouse gases in comparison with fossil fuels. The chains for biofuels also give considerably lower SO 2 emissions than the chains for coal and oil. The coal chain shows about 50% higher NO x emission than the other fuels. Finally, the study illustrates that emission of particles are similar for all sources of energy. The biofuel cycle is assessed to be generally applicable to plants of similar type and size and with similar transport distances. The oil cycle is probably applicable to small-scale cogeneration plants. However, at present there are no cogeneration plants in Sweden that are solely fired with oil. In the case of the coal cycle, deep mining and a relatively long transport distance within Poland have been assumed. If the coal mining had been from open-cast mines, and if the

  14. Life cycle assessment of coal-fired power plants and sensitivity analysis of CO2 emissions from power generation side

    Science.gov (United States)

    Yin, Libao; Liao, Yanfen; Zhou, Lianjie; Wang, Zhao; Ma, Xiaoqian

    2017-05-01

    The life cycle assessment and environmental impacts of a 1000MW coal-fired power plant were carried out in this paper. The results showed that the operation energy consumption and pollutant emission of the power plant are the highest in all sub-process, which accounts for 93.93% of the total energy consumption and 92.20% of the total emission. Compared to other pollutant emissions from the coal-fired power plant, CO2 reached up to 99.28%. Therefore, the control of CO2 emission from the coal-fired power plants was very important. Based on the BP neural network, the amount of CO2 emission from the generation side of coal-fired power plants was calculated via carbon balance method. The results showed that unit capacity, coal quality and unit operation load had great influence on the CO2 emission from coal-fired power plants in Guangdong Province. The use of high volatile and high heat value of coal also can reduce the CO2 emissions. What’s more, under higher operation load condition, the CO2 emissions of 1 kWh electric energy was less.

  15. Integrating life cycle assessment and emergy synthesis for the evaluation of a dry steam geothermal power plant in Italy

    International Nuclear Information System (INIS)

    Buonocore, Elvira; Vanoli, Laura; Carotenuto, Alberto; Ulgiati, Sergio

    2015-01-01

    Greenhouse gas emissions, climate change and the rising energy demand are currently seen as most crucial environmental concerns. With the exploration of renewable energy sources to meet the challenges of energy security and climate change, geothermal energy is expected to play an important role. In this study a LCA (Life Cycle Assessment) and an EMA (Emergy Assessment) of a 20 MW dry steam geothermal power plant located in the Tuscany Region (Italy) are performed and discussed. The plant is able to produce electricity by utilizing locally available renewable resources together with a moderate support by non-renewable resources. This makes the geothermal source eligible to produce renewable electricity. However, the direct utilization of the geothermal fluid generates the release into the atmosphere of carbon dioxide, hydrogen sulfide, mercury, arsenic and other chemicals that highly contribute to climate change, acidification potential, eutrophication potential, human toxicity and photochemical oxidation. The study aims to understand to what extent the geothermal power plant is environmentally sound, in spite of claims by local populations, and if there are steps and/or components that require further attention. The application of the Emergy Synthesis method provides a complementary perspective to LCA, by highlighting the direct and indirect contribution in terms of natural capital and ecosystem services to the power plant construction and operation. The environmental impacts of the geothermal power plant are also compared to those of renewable and fossil-based power plants. The release of CO 2 -eq calculated for the investigated geothermal plant (248 g kWh −1 ) is lower than fossil fuel based power plants but still higher than renewable technologies like solar photovoltaic and hydropower plant. Moreover, the SO 2- eq release associated to the geothermal power plant (3.37 g kWh −1 ) is comparable with fossil fuel based power plants. Results suggest the

  16. Cofiring versus biomass-fired power plants: GHG (Greenhouse Gases) emissions savings comparison by means of LCA (Life Cycle Assessment) methodology

    International Nuclear Information System (INIS)

    Sebastian, F.; Royo, J.; Gomez, M.

    2011-01-01

    One way of producing nearly CO 2 free electricity is by using biomass as a combustible. In many cases, removal of CO 2 in biomass grown is almost the same as the emissions for the bioelectricity production at the power plant. For this reason, bioelectricity is generally considered CO 2 neutral. For large-scale biomass electricity generation two alternatives can be considered: biomass-only fired power plants, or cofiring in an existing coal power plant. Among other factors, two important aspects should be analyzed in order to choose between the two options. Firstly, which is the most appealing alternative if their Greenhouse Gases (GHG) Emissions savings are taken into account. Secondly, which biomass resource is the best, if the highest impact reduction is sought. In order to quantify all the GHG emissions related to each system, a Life Cycle Assessment (LCA) methodology has been performed and all the processes involved in each alternative have been assessed in a cradle-to-grave manner. Sensitivity analyses of the most dominant parameters affecting GHG emissions, and comparisons between the obtained results, have also been carried out.

  17. An overview of actions concerning life management of nuclear power plants in Argentina

    International Nuclear Information System (INIS)

    Pochettino, A.A.

    1995-01-01

    An overview of actions concerning life management of nuclear power plants in Argentina is presented including the following issues: reorganization of nuclear activities in Argentina; life extension actions; main specific research and development actions (reactor pressure vessel integrity assessment project; reactor internal components project; heat exchanges project); other research and development actions (non-destructive testing developments; eddy current techniques; acoustic emission applications; materials; vibrations and fretting wear; reactor chemistry; control and instrumentation; probabilistic safety assessment)

  18. Japan's policy on the nuclear power plant life management, life management for nuclear power plants and measures to cope with aging

    International Nuclear Information System (INIS)

    Takuma, Masao

    2002-01-01

    Full text: Nuclear Plant is born after a lengthy, multi-year construction period, and ends its life decades later, having generated a vast amount of electricity. Its period of operation is, far longer than its period of construction. 'Construction' is the process of 'creating something of value', a new nuclear plant, using technology. 'Operation' is the process of 'raising the child with care' so that its potential can be realized to the fullest over the course of its life. From the view point of plant life management, it is appropriate to divide the life of a power plant into three stages, 'fostering, mature and aging', from the start of operation to the end of its operation. It is important to manage a plant accordingly. It is recently become important to the Utility companies under the competitive power market to manage aging plants effectively, in order to extend its life with sustained high level of performances, with plant safety in the first place. Whether this is, in fact, possible or not, depends upon how the plant was operated in the prior stages, that means, depends upon how it was 'brought up'. This report briefly shows what are important points of management in these 3 stages, and also describes general significances of plant maintenance and inspection, with the practices applied to the plants in Japan. Currently 52 plants Light Water Reactor Nuclear Plants are in operation in Japan, and 13 plants within next 5 years and 23 plants within 10 years are regarded as aged plants. So the contents of periodic inspections by the government and maintenance requirements on the Utilities will be modified to keep and enhance safe and stable operations of the aged plants. In the year 1994, Japanese Government released the report 'Basic Concepts on the Nuclear Power Plant Aging', the objectives of which was the evaluation of the soundness of major equipment and to establish the concepts of aging measures, assuming the plant to be operated 60 years. Utilities, in

  19. Using systematic aging assessments to improve effectiveness of plant maintenance programs

    International Nuclear Information System (INIS)

    Watson, P.; Yang, J.X.; Dam, R.F.; Nickerson, J.H.

    2003-01-01

    Nuclear plant equipment aging assessment studies provided by AECL include life assessments, condition assessments or systematic assessments of maintenance. AECL has developed several tools to apply the results of aging assessment studies to improve the effectiveness of actual plant maintenance programs. The Systematic Assessment of Maintenance and the SYSTMS tool generate maintenance tasks for a system. The System Maintenance Datastore tool assesses the maintenance resources on a system basis, and can thus quantify the savings realized by optimizing the maintenance program. Long term trends in condition-based maintenance due to component aging can be predicted, and resource savings due to optimum timing of component replacement or general plant refurbishment can be quantified. The System based Adaptive Maintenance Process ensures the maintenance program is continually updated to reflect the latest plant equipment condition and maintenance strategy information. (author)

  20. Environmental Impact Assessment for Olkiluoto 4 Nuclear Power Plant Unit in Finland

    International Nuclear Information System (INIS)

    Dersten, Riitta; Gahmberg, Sini; Takala, Jenni

    2008-01-01

    In order to improve its readiness for constructing additional production capacity, Teollisuuden Voima Oyj (TVO) initiated in spring 2007 the environmental impact assessment procedure (EIA procedure) concerning a new nuclear power plant unit that would possibly be located at Olkiluoto. When assessing the environmental impacts of the Olkiluoto nuclear power plant extension project, the present state of the environment was first examined, and after that, the changes caused by the projects as well as their significance were assessed, taking into account the combined impacts of the operations at Olkiluoto. The environmental impact assessment for the planned nuclear power plant unit covers the entire life cycle of the plant unit. (authors)

  1. Environmental Impact Assessment for Olkiluoto 4 Nuclear Power Plant Unit in Finland

    Energy Technology Data Exchange (ETDEWEB)

    Dersten, Riitta; Gahmberg, Sini; Takala, Jenni [Teollisuuden Voima Oyj, Olkiluoto, FI-27160 Eurajoki (Finland)

    2008-07-01

    In order to improve its readiness for constructing additional production capacity, Teollisuuden Voima Oyj (TVO) initiated in spring 2007 the environmental impact assessment procedure (EIA procedure) concerning a new nuclear power plant unit that would possibly be located at Olkiluoto. When assessing the environmental impacts of the Olkiluoto nuclear power plant extension project, the present state of the environment was first examined, and after that, the changes caused by the projects as well as their significance were assessed, taking into account the combined impacts of the operations at Olkiluoto. The environmental impact assessment for the planned nuclear power plant unit covers the entire life cycle of the plant unit. (authors)

  2. Plant control system upgrades in the context of industry trends towards plant life-extension

    International Nuclear Information System (INIS)

    De Grosbois, J.; Basso, R.; Hepburn, A.; Kumar, V.

    2002-01-01

    Domestic CANDU nuclear plants were brought online between 1972 and 1986. Over the next decade, most of these stations will be nearing the end of their designed operating life. Effort has traditionally been placed on ensuring that the existing installed plant control system equipment could operate reliably until the end of this design life. Until recently, little attention has been given to plant control system upgrades or replacements to meet the expected requirement for 30+ years of additional plant operation following potential plant refurbishments. Industry developments are changing this thinking. The combination of expected increases in electricity demand (and prices), and the many recent successful turnaround stories of U.S. nuclear power plants has resulted in new interest in plant life improvement and plant life extension programs. Plant control system upgrade decisions are now being driven by the need to replace or upgrade these systems to support plant life extension. This article is the first of several that investigate aspects of plant control system upgrades or replacement, specifically in the context of the CANDU station digital control computers (DCCs). It sets the context for the discussion in the subsequent articles by providing a brief review of industry trends favouring plant refurbishment, by outlining the basic issues of aging and obsolescence of control system equipment, by establishing the need for upgrades and replacements, and by introducing some of the basic challenges to be addressed by the industry as it moves forward. (author)

  3. Life cycle assessment of a floating offshore wind turbine

    Energy Technology Data Exchange (ETDEWEB)

    Weinzettel, Jan [Department of Electrotechnology, Faculty of Electrical Engineering, Czech Technical University in Prague, Technicka 2, Praha 166 27 (Czech Republic); Charles University in Prague Environment Center, U Krize 8, Prague 158 00 (Czech Republic); Reenaas, Marte; Solli, Christian [Industrial Ecology Programme, Norwegian University of Science and Technology (NTNU), 7491 Trondheim (Norway); Hertwich, Edgar G. [Industrial Ecology Programme, Norwegian University of Science and Technology (NTNU), 7491 Trondheim (Norway); Department of Energy and Process Engineering, Norwegian University of Science and Technology (NTNU), 7491 Trondheim (Norway)

    2009-03-15

    A development in wind energy technology towards higher nominal power of the wind turbines is related to the shift of the turbines to better wind conditions. After the shift from onshore to offshore areas, there has been an effort to move further from the sea coast to the deep water areas, which requires floating windmills. Such a concept brings additional environmental impact through higher material demand. To evaluate additional environmental burdens and to find out whether they can be rebalanced or even offset by better wind conditions, a prospective life cycle assessment (LCA) study of one floating concept has been performed and the results are presented in this paper. A comparison with existing LCA studies of conventional offshore wind power and electricity from a natural gas combined cycle is presented. The results indicate similar environmental impacts of electricity production using floating wind power plants as using non-floating offshore wind power plants. The most important stage in the life cycle of the wind power plants is the production of materials. Credits that are connected to recycling these materials at the end-of-life of the power plant are substantial. (author)

  4. Development of procedural requirements for life extension of nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Sang Hoon; Son, Moon Kyu [Korea Association for Nuclear Technology, Taejon (Korea, Republic of); Jeong, Ji Hwan [Baekseok College, Cheonan (Korea, Republic of); Chang, Keun Sun [Sunmoon Univ., Asan (Korea, Republic of); Ham, Chul Hoon [The Catholic University of Korea, Seoul (Korea, Republic of); Chang, Soon Hong [Korea Advanced Institute of Science and Technology, Taejon (Korea, Republic of)

    2002-03-15

    Technical issues relevant to life extension of NPP were investigated. The GALL report, domestic PSR and periodic inspection rules were reviewed. Technical issues appearing in the safety evaluation reports related to license renewal of Calvert Ciffs 1 and 2 and Qconee 1,2 and 3 NPPs were reviewed. Preliminary study on PSA usage in NPP life extension assessment was performed and further works were suggested. The environment of rules and regulations was analyzed from the viewpoint of plant life extension. Two alternatives are suggested to revise the current domestic nuclear acts.

  5. Development of procedural requirements for life extension of nuclear power plants

    International Nuclear Information System (INIS)

    Lee, Sang Hoon; Son, Moon Kyu; Jeong, Ji Hwan; Chang, Keun Sun; Ham, Chul Hoon; Chang, Soon Hong

    2002-03-01

    Technical issues relevant to life extension of NPP were investigated. The GALL report, domestic PSR and periodic inspection rules were reviewed. Technical issues appearing in the safety evaluation reports related to license renewal of Calvert Ciffs 1 and 2 and Qconee 1,2 and 3 NPPs were reviewed. Preliminary study on PSA usage in NPP life extension assessment was performed and further works were suggested. The environment of rules and regulations was analyzed from the viewpoint of plant life extension. Two alternatives are suggested to revise the current domestic nuclear acts

  6. Nuclear plant life - A business decision

    International Nuclear Information System (INIS)

    Joosten, J.K.

    1995-01-01

    Regarding the future of the nuclear power option, many scenarios have been put forth over the years. The most commonly accepted projections for installed nuclear capacity show it growing at a rate of about 2% per year throughout the next few decades. These projections appear modes on the surface. However, underlying the projections are critical assumptions and sometimes misconceptions about the lifetimes of existing reactors and how they are determined. The notion of a 40 year plant life is very common. Consequently, many projections start either with the assumption that no plants will be retired in the near terms or with the assumption that each retired plant will be replaced by another nuclear plant after 40 years. Effectively, these assumptions yield future projections for installed capacity that might be characterized as low growth, medium growth and high growth scenarios - or grow, grow, grow. The question remains as to whether or not these assumptions accurately model the driving forces and constraints to nuclear development. After all, there is no scientific basis for believing that all plants, PWRs BWRs, RBMKs, etc., should have the same 40 year life. Most power plant owners purchase the plant for the main reason of supplying electrical power to their consumer. For these owners, electricity production is a day to day commercial activity with various alternatives on how to achieve the prime objective. The decision of which electricity generation alternative to select (gas, coal, nuclear or renewable energy) and how long to operate the plant before replacing it with a new one is essentially a business decision. The paper discusses ageing, the nuclear plant life decision process, the factors which influence the decision and their ramifications regarding the near term growth of nuclear power capacity. The modelling of nuclear plant lifetimes is also discussed. (author). 5 refs, 10 figs, 1 tab

  7. Aging and Plant Life Management with the Software Tool COMSY

    International Nuclear Information System (INIS)

    Nopper, Helmut; Rossner, Roland; Zander, Andre

    2006-01-01

    Within the scope of PLEX, a systematic and efficient ageing and plant life management system is becoming more and more important to ensure a safe and economical power plant operation in spite of continuous plant ageing. For the methodical implementation of PLIM and PLEX strategies, AREVA NP has developed the software tool COMSY. This knowledge-based program integrates degradation analysis tools with an inspection data management system. COMSY provides the capability to establish a program guided technical documentation by utilizing a virtual plant model which includes information regarding thermal hydraulic operation, water chemical conditions and materials applied for mechanical components. It provides the option to perform a plant-wide screening for identifying system areas, which are sensitive for degradation mechanisms typically experienced in nuclear power plants (FAC, corrosion fatigue, IGSCC, Pitting, etc.). If a system area is identified as being susceptible to degradation, a detailed analysis function enables the condition-oriented service life evaluation of vessels and piping systems in order to localize and conservatively quantify the effect of degradation. Based on these forecasts with COMSY, specific strategies can be developed to mitigate the effect of degradation and inspection activities can be focused on degradation sensitive areas. In addition, a risk-informed assessment tool serves to optimize inspection activities in respect to degradation potential and the associated damage consequence. After an in-service inspection is performed for a distinct location, the inspection data is to be evaluated according to generally accepted procedures. For this purpose an integrated inspection data management system module provides standardized, interactively operated evaluation functions. The key inspection results are transmitted as feedback in respect to the as-is condition of the component. Subsequently, all further life evaluations of the associated

  8. Integration of plant life management in operation and maintenance

    International Nuclear Information System (INIS)

    Hutin, Jean-Pierre

    2002-01-01

    Full text: 1 - INTRODUCTION. Electricite de France is now operating 58 PWR nuclear power plants which produce 75% of french electricity. Besides maintaining safety and availability on a routine basis, it is outmost important to protect the investment. Indeed, such an asset is a tremendous advantage just as the company is going to face the new european electricity market. That is the reason why EDF is devoting important effort to implement ageing management as an integral part of operation and maintenance programs. But it must be recognized that NPP lifetime is not threatened only by component-related problems: other less technical issues must be seriously considered like industrial support, information system, skilled people, public acceptance, etc. 2 - LIFE MANAGEMENT POLICY. In France, there is no limited licensing period for NPPs. The life management policy of nuclear power plants is based on three principles: - safe and cost-effective operation, looking for excellence in daily activities, with an effective experience feedback organisation taking advantage of the high level of standardization of the units, - every ten years, a new set of safety standards, a complete review of each facility and an upgrading of its safety level through appropriate modifications while maintaining unit standardization in all the fleet, - a Life Management Program, at corporate level, which permanently scrutinizes operation and maintenance activities to identify decisions which could impair plant lifetime and which surveys research and development programs related to ageing phenomenon understanding. 3 - INTEGRATION OF LIFETIME CONCERN IN O and M ACTIVITIES. It is outmost important to take in account lifetime concern in daily operation and maintenance activities and this must be done as early as possible in plant life. Even though sophisticated assessments require engineering capacity, many good ideas may arise from plant staff. For that reason, increasing lifetime awareness of plant

  9. Reactor vessel assessment and the development of a reactor vessel life extension program for Calvert Cliffs Units One and Two

    International Nuclear Information System (INIS)

    Montgomery, B.; Hijeck, P.J.

    1988-01-01

    A study has been undertaken to provide a general assessment of the life extension capabilities for the Calvert Cliffs Units One and Two reactor pressure vessels. The purpose of the study is to assess the general life extension capabilities for the Calvert Cliffs reactor pressure vessels based upon an extension and variation of the Surry pilot plant life extension study. This assessment provided a detailed reactor vessel surveillance program for plant life extension along with a hierarchy of specific tasks necessary for attaining maximum useful life. The assessment identified a number of critical issues which may impact life attainment and extension along with potential solutions to address these issues to ensure the life extension option is not precluded

  10. A methodology for on-line fatigue life monitoring of Indian nuclear power plant components

    International Nuclear Information System (INIS)

    Mukhopadhyay, N.K.; Dutta, B.K.; Kushawaha, H.S.

    1992-01-01

    Fatigue is one of the most important aging effects of nuclear power plant components. Information about accumulation of fatigue helps in assessing structural degradation of the components. This assists in-service inspection and maintenance and may also support future life extension program of a plant. In the present report a methodology is being proposed for monitoring on line fatigue life of nuclear power plant components using available plant instrumentations. Major factors affecting fatigue life of a nuclear power plant components are the fluctuations of temperature, pressure and flow rate. Green's function technique is used in on line fatigue monitoring as computation time is much less than finite element method. A code has been developed which computes temperature and stress Green's functions in 2-D and axisymmetric structure by finite element method due to unit change in various fluid parameters. A post processor has also been developed which computes the temperature and stress responses using corresponding Green's functions and actual fluctuation in fluid parameters. In this post processor, the multiple site problem is solved by superimposing single site Green's function technique. It is also shown that Green's function technique is best suited for on line fatigue life monitoring of nuclear power plant components. (author). 6 refs., 43 figs

  11. Plant life management in Hungary

    International Nuclear Information System (INIS)

    Gillemot, F.

    1998-01-01

    The life management in Hungary is in an early stage. The preparation of a suitable database, development of maintenance systems and education of the plant and consultant staff is essential. The Act of Nuclear Safety, the introduction of the 10 years periodic safety review system (periodic licence extension) is a good basis for life management. At the same time the economic changes in the country make the life management difficult. Presently most important task is to prepare the technical environment and the methodology for NPP Life management, and within a few years, when the economy would be consolidated, a real life management will be performed

  12. Life management of power plant based on structural damage testing

    Energy Technology Data Exchange (ETDEWEB)

    Tallermo, H; Klevtsov, I [Thermal Engineering Department of Tallinn Technical University, Tallinn (Estonia); Arras, V [Eesti Energia, Tallinn (Estonia)

    1999-12-31

    Life management system is based on the valid nowadays in Estonian power plants regulation documentation. The system allows to estimate stress distribution in components, find computational assessment of cumulated creep damage, determine when and where it is necessary to cut off the particular number of microsamples or take replicas. Finally, the real metal condition may be assessed on the basis of metallographic specimen research and reasonable 3-R decision - run, repair, replacement - made on further component use. (orig.) 6 refs.

  13. Life management of power plant based on structural damage testing

    Energy Technology Data Exchange (ETDEWEB)

    Tallermo, H.; Klevtsov, I. [Thermal Engineering Department of Tallinn Technical University, Tallinn (Estonia); Arras, V. [Eesti Energia, Tallinn (Estonia)

    1998-12-31

    Life management system is based on the valid nowadays in Estonian power plants regulation documentation. The system allows to estimate stress distribution in components, find computational assessment of cumulated creep damage, determine when and where it is necessary to cut off the particular number of microsamples or take replicas. Finally, the real metal condition may be assessed on the basis of metallographic specimen research and reasonable 3-R decision - run, repair, replacement - made on further component use. (orig.) 6 refs.

  14. Residual life assessment of major LWR components: NPAR approach and results

    International Nuclear Information System (INIS)

    Shah, V.N.; Weidenhamer, G.H.; Vora, J.P.

    1991-01-01

    The nuclear plant aging research (NPAR) program is systematically addressing the technical issues associated with understanding and managing aging of major LWR components. Twenty-one major components have been identified and prioritized according to their relevance to plant safety. Qualitative aging assessment has identified pertinent design features, materials, stressors, environments, aging mechanisms. and failure modes for each of the components. Emerging inspection, surveillance, and monitoring methods to characterize aging damage and mitigation methods to reduce the damage are currently being assessed. The results of all these assessments are used to develop life-assessment procedures for the components and are included in appropriate documents supporting the regulatory requirements for license renewal. (author)

  15. Use of NDE and FM for the assessment of remaining life of steam turbines

    Energy Technology Data Exchange (ETDEWEB)

    Alley, T [Duke Power Co., Charlotte, NC (United States); Stone, R [Electric Power Research Inst., Charlotte, NC (United States). Nondestructive Evaluation Center

    1988-12-31

    Catastrophic failures of rotating turbine components, such as the Gallatin rotor burst in 1974 and the shrunk-on disk rupture at Hinkley Point in 1969, alerted the utility industry to the failure potential of these components. Such failures can cause severe financial loss; endanger personnel; and, in nuclear plants, damage safety related equipment. To adequately predict the remaining life of a turbine rotor requires accurate information about component flaws, material properties, future operating loads, relevant failure mechanisms, and an approach to combine this information to make an assessment of remaining life. EPRI has supported the development of improved ultrasonic test equipment for use from the rotor bore (bore-sonic examination) and a fracture mechanics based life assessment code called SAFER (Stress and Fracture Evaluation of Rotors). The EPRI NDE Center has supported the transfer of this technology to industry. This presentation deals with the NDE Center`s transfer of the NDE and life assessment technology to industry and discusses a particular application by Duke Power Company at their Allen Plant, Unit 1 to extend the operating life of an IP/LP turbine. (author).

  16. Use of NDE and FM for the assessment of remaining life of steam turbines

    International Nuclear Information System (INIS)

    Alley, T.; Stone, R.

    1988-01-01

    Catastrophic failures of rotating turbine components, such as the Gallatin rotor burst in 1974 and the shrunk-on disk rupture at Hinkley Point in 1969, alerted the utility industry to the failure potential of these components. Such failures can cause severe financial loss; endanger personnel; and, in nuclear plants, damage safety related equipment. To adequately predict the remaining life of a turbine rotor requires accurate information about component flaws, material properties, future operating loads, relevant failure mechanisms, and an approach to combine this information to make an assessment of remaining life. EPRI has supported the development of improved ultrasonic test equipment for use from the rotor bore (bore-sonic examination) and a fracture mechanics based life assessment code called SAFER (Stress and Fracture Evaluation of Rotors). The EPRI NDE Center has supported the transfer of this technology to industry. This presentation deals with the NDE Center's transfer of the NDE and life assessment technology to industry and discusses a particular application by Duke Power Company at their Allen Plant, Unit 1 to extend the operating life of an IP/LP turbine. (author)

  17. Remanent life management of nuclear power plants

    International Nuclear Information System (INIS)

    Pinedo, J.; Gomez Santamaria, J.

    1995-01-01

    The concept of life in the nuclear power plants is very special. The main aceptions are: design life, economic life and useful life. The good management of NPP will do the prolongation of the life in the NPP. The remanent of management life summarizes certain activities in order to prolong the lifetime of the NPP. This article presents the activities of the RML program, the technological program and its benefits

  18. Overview of plant life management for long term operation in nuclear power plants

    International Nuclear Information System (INIS)

    Kang, K.S.; Vincze, P.; Bychkov, A.

    2014-01-01

    Many IAEA member states have given high priority to licensing their nuclear power plants to operate for terms longer than the time frame originally anticipated (generally 40 years). The task of managing plant ageing is assigned in most member states to an engineering specialty called 'plant life management' (PLiM) applying a systematic analysis methodology to System Structure Components (SSCs) ageing. In many countries, the safety performance of nuclear power plants is periodically assessed and characterized via the periodic safety review (PSR) process. Regulatory review and acceptance of PSRs constitutes for these countries the licensing requirement for continued operation of the plant to the following PSR cycle (usually 10 years). In the USA and in other countries operating US designed plants, instead of PSR process, a license renewal application (LRA) process is followed, which requires certain prerequisites such as ageing management programs, particularly for passive irreplaceable SSCs. Active components are normally addressed via the maintenance rule (MR) requirements and other established regulatory processes. A third group of member states have adopted a combined approach that incorporates elements of both the PSR process and selected LRA specific requirements, such as time limited ageing analysis. The article ends with some IAEA recommendations for the implementation of national PLiM programs

  19. U.S. National and regional impacts nuclear plant life extension

    International Nuclear Information System (INIS)

    Makovick, L.; Fletcher, T.; Harrison, D.L.

    1987-01-01

    The purpose of this study was to evaluate the economic impacts of nuclear plant life extension on a national and regional level. Nuclear generating capacity is expected to reach 104 Gigawatts (119 units) in the 1994-1995 period. Nuclear units of the 1970 to 1980 vintage are expected to account for 96% of nuclear capacity. As operating licenses expire, a precipitous decline in nuclear capacity results, with an average of 5 gigawatts of capacity lost each year from 2010 to 2030. Without life extension, 95% of all nuclear capacity is retired between the years 2010 and 2030. Even with historically slow growth in electric demand and extensive fossil plant life extension, the need for new generating capacity in the 2010-2030 time period is eight times greater than installed nuclear capacity. Nuclear plant life extension costs and benefits were quantified under numerous scenarios using the DRI Electricity Market Model. Under a wide range of economic assumptions and investment requirements, nuclear plant life extension resulted in a net benefit to electricity consumers. The major source of net benefits from nuclear plant life extension results from the displacement of fossil-fired generating sources. In the most likely case, nuclear plant life extension provides a dollar 200 billion net savings through the year 2030. Regions with a large nuclear capacity share, newer nuclear units and relatively higher costs of alternative fuels benefit the most from life extension. This paper also discusses the importance of regulatory policies on nuclear plant life extension

  20. Environmental impact assessment of nuclear desalination plant at KANUPP

    International Nuclear Information System (INIS)

    Sleem, M.

    2010-01-01

    A Nuclear Desalination Demonstration Plant (NDDP) of 1600 m/sup 3//d capacity is being installed at Karachi Nuclear Power Plant (KANUPP). A Nuclear Desalination Plant (NDP) can impact the aquatic environment mainly by subjecting the aquatic life to possible temperature increase and salinity changes in the vicinity of the cooling water and brine discharges. Any wastewater effluent, which will be discharged from the NDDP, may have some adverse effects on the marine life and general environment. In order to protect the environment and comply with the requirement of the Pakistan Environmental Protection Agency (PEPA) an Environmental Impact Assessment (EIA) for the discharged effluent from NDDP was carried out. In the present work baseline study was carried out for project location, climate, water resources, and ecology. Checklist has been prepared for identification of possible environmental impacts of the project and marked as insignificant, small, moderate or major impact. Appropriate mitigation measures have been recommended that can be incorporated into the intended program to minimize environmental impacts identified during the assessment. Specific conclusions of the study and recommendations have also been provided in this paper.

  1. An evaluation of information sources and requirements for nuclear plant-aging research with life-extension implications

    International Nuclear Information System (INIS)

    Jacobs, P.T.

    1986-01-01

    Information requirements for plant-aging and life-extension research are discussed. Various information sources that have been used in plant-aging studies and reliability assessments are described. Data-base searches and analyses were performed for a specific system using several data bases and plant sources. Comments are provided on the results using the various information sources

  2. Assessment of volatile organic compound removal by indoor plants-a novel experimental setup

    DEFF Research Database (Denmark)

    Dela Cruz, Majbrit; Müller, Renate; Svensmark, Bo

    2014-01-01

    plants which allows for an improved real-life simulation. Parameters such as relative humidity, air exchange rate and VOC concentration are controlled and can be varied to simulate different real-life settings. For example, toluene diffusion through a needle gave concentrations in the range of 0......Indoor plants can remove volatile organic compounds (VOCs) from the air. The majority of knowledge comes from laboratory studies where results cannot directly be transferred to real-life settings. The aim of this study was to develop an experimental test system to assess VOC removal by indoor.......10-2.35 μg/L with deviations from theoretical values of 3.2-10.5 %. Overall, the system proved to be functional for the assessment of VOC removal by indoor plants with Hedera helix reaching a toluene removal rate of up to 66.5 μg/m2/h. The mode of toluene exposure (semi-dynamic or dynamic) had a significant...

  3. Investigation of the environmental impacts of municipal wastewater treatment plants through a Life Cycle Assessment software tool.

    Science.gov (United States)

    De Feo, G; Ferrara, C

    2017-08-01

    This paper investigates the total and per capita environmental impacts of municipal wastewater treatment in the function of the population equivalent (PE) with a Life Cycle Assessment (LCA) approach using the processes of the Ecoinvent 2.2 database available in the software tool SimaPro v.7.3. Besides the wastewater treatment plant (WWTP), the study also considers the sewerage system. The obtained results confirm that there is a 'scale factor' for the wastewater collection and treatment even in environmental terms, in addition to the well-known scale factor in terms of management costs. Thus, the more the treatment plant size is, the less the per capita environmental impacts are. However, the Ecoinvent 2.2 database does not contain information about treatment systems with a capacity lower than 30 PE. Nevertheless, worldwide there are many sparsely populated areas, where it is not convenient to realize a unique centralized WWTP. Therefore, it would be very important to conduct an LCA study in order to compare alternative on-site small-scale systems with treatment capacity of few PE.

  4. Plant life extensions for German nuclear power plants? Controversial discussion profit taking of nuclear power plant operators

    International Nuclear Information System (INIS)

    Matthes, Felix C.

    2009-10-01

    The discussion on the plant life extensions for German nuclear power plants beyond the residual quantity of electricity particularly focus on three aspects: Effects for the emission of carbon dioxide as a greenhouse gas; Development of the electricity price for which a reduction or attenuation is postulated due to a plant life extension; Skimming of additional profits at operating companies and their use in the safeguarding of the future (development of renewable energies, support of energy efficiency, promotion of the research, consolidation of the public budget, and so on). Under this aspect, the author of the contribution under consideration reports on the profit taking of nuclear power plant operators. The presented analysis considers three aspects: (a) Specification of the quantity structures for the investigated model of plant life extension; (b) The decisive parameter is the revenue situation and thus the price development for electricity at wholesale markets; (c) Determination and evaluation of the course in time of the profit taking.

  5. The full size validation of remanent life assessment methods

    International Nuclear Information System (INIS)

    Hepworth, J.K.; Williams, J.A.

    1988-03-01

    A range of possible life assessment techniques for the remanent life appraisal of creeping structures is available in the published literature. However, due to the safety implications, the true conservatism of such methods cannot be assessed on operating plant. Consequently, the CEGB set up a four vessel programme in the Pressure Vessel Test Facility at the Marchwood Engineering Laboratories of the CEGB to underwrite and quantify the accuracy of these methods. The application of two non-destructive methods, namely strain monitoring and hardness measurement, to the data generated during about 12,000 hours of testing is examined. The current state of development of these methods is reviewed. Finally, the future CEGB programme relating to these vessels is discussed. (author)

  6. Life cycle assessment of crystalline photovoltaics in the Swiss ecoinvent database

    Energy Technology Data Exchange (ETDEWEB)

    Jungbluth, Niels [ESU-services, Environmental Consultancy for Business and Authorities, Uster (Switzerland)

    2005-07-01

    This paper describes the life cycle assessment (LCA) for photovoltaic (PV) power plants in the new ecoinvent database. Twelve different, grid-connected photovoltaic systems were studied for the situation in Switzerland in the year 2000. They are manufactured as panels or laminates, from monocrystalline or polycrystalline silicon, installed on facades, slanted or flat roofs, and have 3 kW{sub p} capacity. The process data include quartz reduction, silicon purification, wafer, panel and laminate production, mounting structure, 30 years operation and dismantling. In contrast to existing LCA studies, country-specific electricity mixes have been considered in the life cycle inventory (LCI) in order to reflect the present market situation. The new approach for the allocation procedure in the inventory of silicon purification, as a critical issue of former studies, is discussed in detail. The LCI for photovoltaic electricity shows that each production stage is important for certain elementary flows. A life cycle impact assessment (LCIA) shows that there are important environmental impacts not directly related to the energy use (e.g., process emissions of NO{sub x} from wafer etching). The assumption for the used supply energy mixes is important for the overall LCIA results of different production stages. The presented life cycle inventories for photovoltaic power plants are representative for newly constructed plants and for the average photovoltaic mix in Switzerland in the year 2000. A scenario for a future technology (until 2010) helps to assess the relative influence of technology improvements for some processes. The very detailed ecoinvent database forms a good basis for similar studies in other European countries or for other types of solar cells. (Author)

  7. Life-cycle assessment of a Waste-to-Energy plant in central Norway: Current situation and effects of changes in waste fraction composition.

    Science.gov (United States)

    Lausselet, Carine; Cherubini, Francesco; Del Alamo Serrano, Gonzalo; Becidan, Michael; Strømman, Anders Hammer

    2016-12-01

    Waste-to-Energy (WtE) plants constitute one of the most common waste management options to deal with municipal solid waste. WtE plants have the dual objective to reduce the amount of waste sent to landfills and simultaneously to produce useful energy (heat and/or power). Energy from WtE is gaining steadily increasing importance in the energy mix of several countries. Norway is no exception, as energy recovered from waste currently represents the main energy source of the Norwegian district heating system. Life-cycle assessments (LCA) of WtE systems in a Norwegian context are quasi-nonexistent, and this study assesses the environmental performance of a WtE plant located in central Norway by combining detailed LCA methodology with primary data from plant operations. Mass transfer coefficients and leaching coefficients are used to trace emissions over the various life-cycle stages from waste logistics to final disposal of the ashes. We consider different fractions of input waste (current waste mix, insertion of 10% car fluff, 5% clinical waste and 10% and 50% wood waste), and find a total contribution to Climate Change Impact Potential ranging from 265 to 637gCO 2 eq/kg of waste and 25 to 61gCO 2 eq/MJ of heat. The key drivers of the environmental performances of the WtE system being assessed are the carbon biogenic fraction and the lower heating value of the incoming waste, the direct emissions at the WtE plant, the leaching of the heavy metals at the landfill sites and to a lesser extent the use of consumables. We benchmark the environmental performances of our WtE systems against those of fossil energy systems, and we find better performance for the majority of environmental impact categories, including Climate Change Impact Potential, although some trade-offs exist (e.g. higher impacts on Human Toxicity Potential than natural gas, but lower than coal). Also, the insertion of challenging new waste fractions is demonstrated to be an option both to cope with the

  8. Life Cycle Assessment of Coal-fired Power Production

    Energy Technology Data Exchange (ETDEWEB)

    Spath, P. L.; Mann, M. K.; Kerr, D. R.

    1999-09-01

    Coal has the largest share of utility power generation in the US, accounting for approximately 56% of all utility-produced electricity (US DOE, 1998). Therefore, understanding the environmental implications of producing electricity from coal is an important component of any plan to reduce total emissions and resource consumption. A life cycle assessment (LCA) on the production of electricity from coal was performed in order to examine the environmental aspects of current and future pulverized coal boiler systems. Three systems were examined: (1) a plant that represents the average emissions and efficiency of currently operating coal-fired power plants in the US (this tells us about the status quo), (2) a new coal-fired power plant that meets the New Source Performance Standards (NSPS), and (3) a highly advanced coal-fired power plant utilizing a low emission boiler system (LEBS).

  9. International requirements for life extension of nuclear power plants

    International Nuclear Information System (INIS)

    Wernicke, Robert

    2009-01-01

    Lifetime extension or long-term operation of nuclear facilities are topics of great international significance against the backdrop of a fleet of nuclear power plants of which many have reached 2/3 of their planned life. The article deals with the conditions for, and the specific requirements of, seeking long-term operation of nuclear power plants as established internationally and on the basis of IAEA collections. Technically, long-term operation is possible for many of the nuclear power plants in the world because, normally, they were built on the basis of conservative rules and regulations and, as a consequence, incorporate significant additional safety. Application of requirements to specific plants implies assessments of technical safety which show that conservative design philosophies created reserves and, as a consequence, there is an adequate level of safety also in long-term plant operation. For this purpose, the technical specifications must be revised, necessary additions made, and (international) operating experience taken into account and management of aging established. Two examples are presented to show how the approach to long-term plant operation is put into practice on a national level. (orig.)

  10. Green Plants in the Red: A Baseline Global Assessment for the IUCN Sampled Red List Index for Plants.

    Directory of Open Access Journals (Sweden)

    Neil A Brummitt

    Full Text Available Plants provide fundamental support systems for life on Earth and are the basis for all terrestrial ecosystems; a decline in plant diversity will be detrimental to all other groups of organisms including humans. Decline in plant diversity has been hard to quantify, due to the huge numbers of known and yet to be discovered species and the lack of an adequate baseline assessment of extinction risk against which to track changes. The biodiversity of many remote parts of the world remains poorly known, and the rate of new assessments of extinction risk for individual plant species approximates the rate at which new plant species are described. Thus the question 'How threatened are plants?' is still very difficult to answer accurately. While completing assessments for each species of plant remains a distant prospect, by assessing a randomly selected sample of species the Sampled Red List Index for Plants gives, for the first time, an accurate view of how threatened plants are across the world. It represents the first key phase of ongoing efforts to monitor the status of the world's plants. More than 20% of plant species assessed are threatened with extinction, and the habitat with the most threatened species is overwhelmingly tropical rain forest, where the greatest threat to plants is anthropogenic habitat conversion, for arable and livestock agriculture, and harvesting of natural resources. Gymnosperms (e.g. conifers and cycads are the most threatened group, while a third of plant species included in this study have yet to receive an assessment or are so poorly known that we cannot yet ascertain whether they are threatened or not. This study provides a baseline assessment from which trends in the status of plant biodiversity can be measured and periodically reassessed.

  11. Environmental impact efficiency of natural gas combined cycle power plants: A combined life cycle assessment and dynamic data envelopment analysis approach.

    Science.gov (United States)

    Martín-Gamboa, Mario; Iribarren, Diego; Dufour, Javier

    2018-02-15

    The energy sector is still dominated by the use of fossil resources. In particular, natural gas represents the third most consumed resource, being a significant source of electricity in many countries. Since electricity production in natural gas combined cycle (NGCC) plants provides some benefits with respect to other non-renewable technologies, it is often seen as a transitional solution towards a future low‑carbon power generation system. However, given the environmental profile and operational variability of NGCC power plants, their eco-efficiency assessment is required. In this respect, this article uses a novel combined Life Cycle Assessment (LCA) and dynamic Data Envelopment Analysis (DEA) approach in order to estimate -over the period 2010-2015- the environmental impact efficiencies of 20 NGCC power plants located in Spain. A three-step LCA+DEA method is applied, which involves data acquisition, calculation of environmental impacts through LCA, and the novel estimation of environmental impact efficiency (overall- and term-efficiency scores) through dynamic DEA. Although only 1 out of 20 NGCC power plants is found to be environmentally efficient, all plants show a relatively good environmental performance with overall eco-efficiency scores above 60%. Regarding individual periods, 2011 was -on average- the year with the highest environmental impact efficiency (95%), accounting for 5 efficient NGCC plants. In this respect, a link between high number of operating hours and high environmental impact efficiency is observed. Finally, preliminary environmental benchmarks are presented as an additional outcome in order to further support decision-makers in the path towards eco-efficiency in NGCC power plants. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Analysis of integrated plant upgrading/life extension programs

    International Nuclear Information System (INIS)

    McCutchan, D.A.; Massie, H.W. Jr.; McFetridge, R.H.

    1988-01-01

    A present-worth generating cost model has been developed and used to evaluate the economic value of integrated plant upgrading life extension project in nuclear power plants. This paper shows that integrated plant upgrading programs can be developed in which a mix of near-term availability, power rating, and heat rate improvements can be obtained in combination with life extension. All significant benefits and costs are evaluated from the viewpoint of the utility, as measured in discounted revenue requirement differentials between alternative plans which are equivalent in system generating capacity. The near-term upgrading benefits are shown to enhance the benefit picture substantially. In some cases the net benefit is positive, even if the actual life extension proves to be less than expected

  13. Nuclear plant life cycle management implementation guide. Final report

    International Nuclear Information System (INIS)

    Sliter, G.E.; Negin, C.A.

    1998-11-01

    Nuclear power plants, as baseload suppliers of electricity, are major corporate assets. As the nuclear industry enters its fourth decade as a major producer of clean electricity, the structure of the utility industry is undergoing a historical landmark transition from economic deregulation to a competitive, market-driven industry. An integral part of competition is to manage the operation of the key asset, the plant, in the long term, thereby enhancing its long-term profitability. Life cycle management (LCM) is a well-known technical-economic decision-making process for any large industrial facility. LCM optimizes the service life of a facility and maximizes its life-cycle asset value. LCM integrates aging management (maintaining the availability of costly-to-replace components and structures) with asset management (plant valuation and investment strategies that account for economic, performance, regulatory, and environmental uncertainties). LCM involves predicting maintenance, repair, and other capital costs for a nuclear unit far into the future, as well as planning and managing strategic issues such as waste disposal, fuel storage, decommissioning, and public acceptance. This Life Cycle Management Implementation Guide introduces the reader to the LCM concept and its benefits, describes the elements and activities associated with an LCM program (most of which already exist in all plants), gives an overview of asset and aging management, and provides key references related to life cycle management for nuclear power plants. It also summarizes the major elements of life cycle management required for license renewal or, for newer plants, keeping open the option of license renewal

  14. Status of NDE research and applications for life management of nuclear power plants in india

    Energy Technology Data Exchange (ETDEWEB)

    Raj, B.; Shyamsunder, M.T.; Jayakumar, T. [Indira Gandhi Centre for Atomic Research, Kalpakkam (India). Metallurgy and Materials Group

    1999-08-01

    The development and application of various nondestructive evaluation techniques and methodologies for the life management of nuclear power plants in India are described. The indigenous development carried out to meet the stringent quality requirements in evaluation of fabricated components and innovative methodologies using multidisciplinary approaches and advances for assessment of inservice performance of plants are highlighted. (orig.)

  15. Status of NDE research and applications for life management of nuclear power plants in india

    International Nuclear Information System (INIS)

    Raj, B.; Shyamsunder, M.T.; Jayakumar, T.

    1999-01-01

    The development and application of various nondestructive evaluation techniques and methodologies for the life management of nuclear power plants in India are described. The indigenous development carried out to meet the stringent quality requirements in evaluation of fabricated components and innovative methodologies using multidisciplinary approaches and advances for assessment of inservice performance of plants are highlighted. (orig.)

  16. Proceedings of the topical meeting on nuclear power plant life extension

    International Nuclear Information System (INIS)

    Anon.

    1988-01-01

    This book contains the proceedings of the topical meeting on nuclear power plant life extension. The sessions are organized under the following headings: Perspectives on nuclear power plant life extension, the potential for additional years of power production, NRC and industry life extension initiatives, concrete and structures degradation and evaluation of useful remaining life, plant life extension programs, Reactor pressure vessel and intervals degradation and evaluation of useful remaining life, life extension decision making issues and institutions, systems degradation and evaluation of remaining life, monitoring and repair, design records and maintenance activities for life extension, Mechanical and electrical component degradation and evaluation of remaining life, expert systems and other techniques for enhanced and continued operation, life extension aspect of codes, standards, and related technologies, piping and valve degradation and evaluation of useful remaining life

  17. Dynamic assessment for life extension of nuclear power plants (NPPs) using system dynamics (SD) method

    International Nuclear Information System (INIS)

    Woo, Tae Ho

    2012-01-01

    It has been proposed to extend the life of nuclear power plants (NPPs) for the economic purpose. Especially, the primary systems in reactor are considered in the thermohydraulic and neutronic aspect, which is related to the safety system. The electric power and the lifespan of components are expressed as economic situation. In addition, political considerations are given by the presidential change and the nuclear non-proliferation characteristics. The dynamical investigation using system dynamics (SD) shows the effective time for the life extension of the NPPs by Monte-Carlo simulations. This non-linear algorithm is incorporated with the feedback loop of the event sequences. The expected event is related to the past event, which affects to the dynamical simulations of lifetime in the NPPs. In the conclusions, the safety guarantee as well as the economic profit in the re-use of long term operated power plants is presented, which is mentioned as the transient time between 2019 and 2021 in this paper. (orig.)

  18. Dynamic assessment for life extension of nuclear power plants (NPPs) using system dynamics (SD) method

    Energy Technology Data Exchange (ETDEWEB)

    Woo, Tae Ho [Seoul National Univ. (Korea, Republic of). Dept. of Nuclear Engineering

    2012-12-15

    It has been proposed to extend the life of nuclear power plants (NPPs) for the economic purpose. Especially, the primary systems in reactor are considered in the thermohydraulic and neutronic aspect, which is related to the safety system. The electric power and the lifespan of components are expressed as economic situation. In addition, political considerations are given by the presidential change and the nuclear non-proliferation characteristics. The dynamical investigation using system dynamics (SD) shows the effective time for the life extension of the NPPs by Monte-Carlo simulations. This non-linear algorithm is incorporated with the feedback loop of the event sequences. The expected event is related to the past event, which affects to the dynamical simulations of lifetime in the NPPs. In the conclusions, the safety guarantee as well as the economic profit in the re-use of long term operated power plants is presented, which is mentioned as the transient time between 2019 and 2021 in this paper. (orig.)

  19. Integrated plant life management (PLiM)-the IAEA contribution

    International Nuclear Information System (INIS)

    Kang, K.-S.; Clark, C.R.; Omoto, A.; )

    2005-01-01

    For the past couple of decades there has been a change of emphasis in the world nuclear power from that of building new Nuclear Power Plants (NPP) to that of taking measures to optimize the life cycle of operational plants. National approaches in many countries showed an increase of interest in Plant Life Management (PLiM), both in terms of plant service life assurance and in optimizing the service or operational life of NPP. A strong convergence of views is emerging from different National approaches, particularly in the area of the economic aspects of NPP operation and in the evolution in the scope of NPP PLIM. The latter can directly affect the cost of electricity from NPP in an increasingly competitive environment. The safety considerations of a NPP are paramount and those requirements have to be met to obtain and to extend/renew the operating license. To achieve the goal of the long term safe, economic and reliable operation of the plant an integrated Plant Life Management Programme (PLiM) is necessary. Some countries already have advanced PLiM Programmes while others still have none. The PLiM objective is to identify all that factors and requirements for the overall plant life cycle. The optimization of these requirements would allow for the minimum period of the investment return and maximum of the revenue from the sell of the produced electricity. Recognizing the importance of this issue and in response to the requests of the Member States the IAEA Division of Nuclear Power implements the Sub-programme on 'Engineering and Management Support for Competitive Nuclear Power'. Four projects within this sub-programme deal with different aspects of the NPP life cycle management with the aim to increase the capabilities of interested Member States in implementing and maintenance of the competitive and sustainable nuclear power. Although all four projects contain certain issues of PLiM there is one specific project on guidance on engineering and management practices

  20. Environmental flows and life cycle assessment of associated petroleum gas utilization via combined heat and power plants and heat boilers at oil fields

    International Nuclear Information System (INIS)

    Rajović, Vuk; Kiss, Ferenc; Maravić, Nikola; Bera, Oskar

    2016-01-01

    Highlights: • Environmental impact of associated petroleum gas flaring is discussed. • A modern trend of introducing cogeneration systems to the oil fields is presented. • Three alternative utilization options evaluated with life cycle assessment method. • Producing electricity and/or heat instead of flaring would reduce impacts. - Abstract: Flaring of associated petroleum gas is a major resource waste and causes considerable emissions of greenhouse gases and air pollutants. New environmental regulations are forcing oil industry to implement innovative and sustainable technologies in order to compete in growing energy market. A modern trend of introducing energy-effective cogeneration systems to the oil fields by replacing flaring and existing heat generation technologies powered by associated petroleum gas is discussed through material flow analysis and environmental impact assessment. The environmental assessment is based on the consequential life cycle assessment method and mainly primary data compiled directly from measurements on Serbian oil-fields or company-supplied information. The obtained results confirm that the utilization of associated petroleum gas via combined heat and power plants and heat boilers can provide a significant reduction in greenhouse gas emissions and resource depletion by displacing marginal production of heat and electricity. At the base case scenario, which assumes a 100% heat realization rate, the global warming potential of the combined heat and power plant and heat boiler scenarios were estimated at −4.94 and −0.54 kg CO_2_e_q Sm"−"3, whereas the cumulative fossil energy requirements of these scenarios were −48.7 and −2.1 MJ Sm"−"3, respectively. This is a significant reduction compared to the global warming potential (2.25 kg CO_2_e_q Sm"−"3) and cumulative fossil energy requirements (35.36 MJ Sm"−"3) of flaring. Nevertheless, sensitivity analyses have shown that life cycle assessment results are sensitive

  1. Life Cycle Assessment and Risk Assessment

    DEFF Research Database (Denmark)

    Olsen, Stig Irving

    Life Cycle Assessment (LCA) is a tool for environmental assessment of product and systems – over the whole life cycle from acquisition of raw materials to the end-of-life of the product – and encompassing all environmental impacts of emissions and resource usage, e.g. global warming, acidification...... cycle. The models for assessing toxic impacts in LCA are to a large extent based on those developed for RA, e.g. EUSES, and require basic information about the inherent properties of the emissions like solubility, LogKow,ED50 etc. Additionally, it is a prerequisite to know how to characterize...

  2. Plant life history and above–belowground interactions

    NARCIS (Netherlands)

    Deyn, de Gerlinde

    2017-01-01

    The importance of above–belowground interactions for plant growth and community dynamics became clear in the last decades, whereas the numerous studies on plant life history improved our knowledge on eco-evolutionary dynamics. However, surprisingly few studies have linked both research fields

  3. Using Plants to Explore the Nature & Structural Complexity of Life

    Science.gov (United States)

    Howard, Ava R.

    2014-01-01

    Use of real specimens brings the study of biology to life. This activity brings easily acquired plant specimens into the classroom to tackle common alternative conceptions regarding life, size, complexity, the nature of science, and plants as multicellular organisms. The activity occurs after a discussion of the characteristics of life and engages…

  4. BALTICA IV. Plant maintenance for managing life and performance

    Energy Technology Data Exchange (ETDEWEB)

    Hietanen, S; Auerkari, P [eds.; VTT Manufacturing Technology, Espoo (Finland). Operational Reliability

    1999-12-31

    BALTICA IV International Conference on Plant Maintenance Managing Life and performance held on September 7-9, 1998 on board M/S Silja Symphony on its cruise between Helsinki-Stockholm and at Aavaranta in Kirkkonummi. The BALTICA IV conference provides a forum for the transfer of technology from applied research to practice. This is one of the two volumes of the proceedings of the BALTICA IV International Conference on Plant Maintenance Managing Life and Performance. The BALTICA IV conference focuses on new technology, recent experience and applications of condition and life management, and on improvements in maintenance strategies for safe and economical operation of power plants. (orig.)

  5. BALTICA IV. Plant maintenance for managing life and performance

    Energy Technology Data Exchange (ETDEWEB)

    Hietanen, S.; Auerkari, P. [eds.] [VTT Manufacturing Technology, Espoo (Finland). Operational Reliability

    1998-12-31

    BALTICA IV International Conference on Plant Maintenance Managing Life and performance held on September 7-9, 1998 on board M/S Silja Symphony on its cruise between Helsinki-Stockholm and at Aavaranta in Kirkkonummi. The BALTICA IV conference provides a forum for the transfer of technology from applied research to practice. This is one of the two volumes of the proceedings of the BALTICA IV International Conference on Plant Maintenance Managing Life and Performance. The BALTICA IV conference focuses on new technology, recent experience and applications of condition and life management, and on improvements in maintenance strategies for safe and economical operation of power plants. (orig.)

  6. Investigation on life cycle assessment of lead and zinc production

    Directory of Open Access Journals (Sweden)

    Sabere Nazari

    2015-12-01

    Full Text Available Lead and zinc production is one of the main predisposing factors of excessive greenhouse gases emissions, air pollution and water consumption. In this paper, the environmental problems of lead and zinc production in Calcimin plant are expressed and life cycle assessment of this plant is assessed. The data regarding the amount of induced global warming and pollution, acidification, and depletion of water resources were collected and discussed. It was concluded that depletion of water resources affected the environment and this was the main issue of the lead and zinc production of this plant. According to the results, in the global warming’s impact category, the proportion of carbon dioxide is more than that of methane. The results also showed that in the acidification’s impact category, the nitrogen oxide proportion is greater compared to that of the sulfur dioxide.

  7. [The evolution of plant life span: facts and hypotheses].

    Science.gov (United States)

    2006-01-01

    There are two different views on the evolution of life forms in Cormophyta: from woody plants to herbaceous ones or in opposite direction - from herbs to trees. In accordance with these views it is supposed that life span in plants changed in the course of evolution from many years (perennials) to few years (annuals, biennials), or went in reverse - from few years to many years. The author discusses the problems of senescence and longevity in Cormophyta in the context of various hypotheses of ageing (programmed death theory, mutation accumulation, antagonistic pleiotropy, disposable soma, genes of ageing, genes of longevity). Special attention is given to bio-morphological aspects of longevity and cases of non-ageing plants ("negative senescence", "potential immortality"). It is proposed to distinguish seven models of simple ontogenesis in Cormophyta that can exemplify the diversity of mechanisms of ageing and longevity. The evolution of life span in plants is considered as an indirect result of natural selection of other characteristics of organisms or as a consequence of fixation of modifications (episelectional evolution). It seems that short life span could emerge several times during evolution of one group of plants, thus favoring its adaptive radiation.

  8. Transportation life cycle assessment (LCA) synthesis : life cycle assessment learning module series.

    Science.gov (United States)

    2015-03-12

    The Life Cycle Assessment Learning Module Series is a set of narrated, self-advancing slideshows on : various topics related to environmental life cycle assessment (LCA). This research project produced the first 27 of such modules, which : are freely...

  9. Emissions from cycling of thermal power plants in electricity systems with high penetration of wind power: Life cycle assessment for Ireland

    DEFF Research Database (Denmark)

    Turconi, Roberto; O'Dwyer, C.; Flynn, D.

    2014-01-01

    demand. The environmental impacts related to potential future energy systems in Ireland for 2025 with high shares of wind power were evaluated using life cycle assessment (LCA), focusing on cycling emissions (due to part-load operation and start-ups) from dispatchable generators. Part-load operations...... significantly affect the average power plant efficiency, with all units seeing an average yearly efficiency noticeably less than optimal. In particular, load following units, on average, saw an 11% reduction. Given that production technologies are typically modeled assuming steady-state operation at full load...

  10. Institutionalization of safety re-assessment system for operating nuclear power plants

    International Nuclear Information System (INIS)

    Kim, H. J.; Cho, J. C.; Min, B. K.; Park, J. S.; Jung, H. D.; Oh, K. M.; Kim, W. K.; Lim, J. H.

    1999-01-01

    In this study, in-depth reviews of the foreign countries' experiences and practices in applications of the periodic safety review (PSR), backfitting and license renewal systems as well as the current status of nuclear power safety assurance programs and activities in Korea have been performed to investigate the necessity and feasibility of the application of the systems for the domestic operating nuclear power plants and to establish effective strategy and methodology for the institutionalization of a periodic safety re-assessment system appropriate to both the domestic and international nuclear power environments by incorporating the PSR with the backfitting and license renewal systems. For these purposes, the regulatory policy, fundamental principles and detailed requirements for the institutionalization of the safety re-assessment system and the effective measures for active implementation of the backfitting program have been developed and then a comparative study of benefits and shortcomings has been conducted for the three different models of the periodic safety re-assessment system incorporated with either the license renewal or life extension process, which have been considered as practicable ones in the domestic situation. The model chosen in this study as the most appropriate safety re-assessment system is the one that the re-assessments are performed at the interval of ten years throughout the service life of nuclear power plant and the ten-year license renewal or life extension after the expiration of design life can be permitted based on the regulatory review of the re-assessment results and follow-up measures. Finally, this paper has discussed on the details of the requirements, approach and procedures established for the institutionalization of the periodic safety re-assessment system chosen as the most appropriate one for domestic applications

  11. Green-house gas mitigation capacity of a small scale rural biogas plant calculations for Bangladesh through a general life cycle assessment.

    Science.gov (United States)

    Rahman, Khondokar M; Melville, Lynsey; Fulford, David; Huq, Sm Imamul

    2017-10-01

    Calculations towards determining the greenhouse gas mitigation capacity of a small-scale biogas plant (3.2 m 3 plant) using cow dung in Bangladesh are presented. A general life cycle assessment was used, evaluating key parameters (biogas, methane, construction materials and feedstock demands) to determine the net environmental impact. The global warming potential saving through the use of biogas as a cooking fuel is reduced from 0.40 kg CO 2 equivalent to 0.064 kg CO 2 equivalent per kilogram of dung. Biomethane used for cooking can contribute towards mitigation of global warming. Prior to utilisation of the global warming potential of methane (from 3.2 m 3 biogas plant), the global warming potential is 13 t of carbon dioxide equivalent. This reduced to 2 t as a result of complete combustion of methane. The global warming potential saving of a bioenergy plant across a 20-year life cycle is 217 t of carbon dioxide equivalent, which is 11 t per year. The global warming potential of the resultant digestate is zero and from construction materials is less than 1% of total global warming potential. When the biogas is used as a fuel for cooking, the global warming potential will reduce by 83% compare with the traditional wood biomass cooking system. The total 80 MJ of energy that can be produced from a 3.2 m 3 anaerobic digestion plant would replace 1.9 t of fuel wood or 632 kg of kerosene currently used annually in Bangladesh. The digestate can also be used as a nutrient rich fertiliser substituting more costly inorganic fertilisers, with no global warming potential impact.

  12. Life cycle assessment (LCA)

    DEFF Research Database (Denmark)

    Thrane, Mikkel; Schmidt, Jannick Andresen

    2004-01-01

    The chapter introduces Life Cycle Assessment (LCA) and its application according to the ISO 1404043 standards.......The chapter introduces Life Cycle Assessment (LCA) and its application according to the ISO 1404043 standards....

  13. Life management plants at nuclear power plants PWR; Planes de gestion de vida en centrales nucleares PWR

    Energy Technology Data Exchange (ETDEWEB)

    Esteban, G.

    2014-10-01

    Since in 2009 the CSN published the Safety Instruction IS-22 (1) which established the regulatory framework the Spanish nuclear power plants must meet in regard to Life Management, most of Spanish nuclear plants began a process of convergence of their Life Management Plants to practice 10 CFR 54 (2), which is the current standard of Spanish nuclear industry for Ageing Management, either during the design lifetime of the plant, as well as for Long-Term Operation. This article describe how Life Management Plans are being implemented in Spanish PWR NPP. (Author)

  14. Life Cycle Assessment of the wind farm alpha ventus

    Directory of Open Access Journals (Sweden)

    Wagner H.-J.

    2013-06-01

    Full Text Available Life Cycle Assessments (LCA is an important tool for industry and policy makers, used to determine the actual emissions of a product or technology throughout its whole life cycle. In case of energy production systems or power plants, analysis of energy required to produce the materials and processes; emissions resulting from various processes for materials production and processes resulting into their Cumulated Energy Demand (CED and Global Warming Potential (GWP become important parameters when making decisions on further research, development and deployment of any technology. The method of carrying out such analysis is explained through a case study.

  15. Complex investigations for the technical diagnosis and constructive optimization of the pipe systems from Rovinari power plant to extend their remaining life

    Energy Technology Data Exchange (ETDEWEB)

    Delamarian, C. [Technischer Ueberwachungs-Verein Sueddeutschland (TUeV), Muenchen (Germany); Lupescu, L.; Nicolescu, N. [Institutul de Studii si Proiectari Energetice, Bucharest (Romania); Pisc, I.; Botis, A. [ISIM, Timisoara (Romania)

    2003-07-01

    The remnant life assessment of power plant components is an issue of a high importance all over the Europe and not only. The need of power products, the environmental-related restrictions within this field as well as the task of lowering the fabrication costs led to and increased importance of maintenance and retrofit activities of old power equipment during the last decade. Replacement of pipe lines exceeding their designed life is no longer regarded as an option for power plant managers. Instead, life assessment techniques combined with state of the art design and fabrication methods focusing on the replacement of damaged components as well as redesign of pipe line systems in order to eliminate overloading and/or secondary stresses that usually lead to premature life exhaustion are only some of the issues discussed within this paper. It deals with the retrofit of a conventional power plant (Group no. 3 of Rovinari Power Plant) which reached its designed life after about 110.000 operating hours. The need of improvement of the boiler efficiency as well as the extension of the plant life, maintaining in the same time old, but still good components determined the three companies (ISPE, ISIM and TUeV) to gather their skills in order to reach this task. (orig.)

  16. Framatome ANP worldwide experience in ageing and plant life management

    International Nuclear Information System (INIS)

    Daeuwel, W.; Kastner, B.; Nopper, H.

    2004-01-01

    The deregulation of the power generation industry has resulted in increased competitive pressure and is forcing operators to improve plant operating economy while maintaining high levels of plant safety. A key factor to meet this challenge is to apply a comprehensive plant life management (PLIM) approach which addresses all relevant ageing and degradation mechanisms regarding the safety concept, plant components and documentation, plant personnel, consumables, operations management system and administrative controls. For this reason, Framatome ANP has developed an integrated PLIM concept focussing on the safety concept, plant components and documentation. Representative examples for plant wide analyses are described in the following. The results of the analyses support the plant owner for taking the strategic decisions, involved in plant life extension (PLEX). (orig.)

  17. Dispersal and life span spectra in plant communities : a key to safe site dynamics, species coexistence and conservation

    NARCIS (Netherlands)

    Strykstra, RJ; Bekker, RM; Van Andel, J

    Dispersal and life span of individual plant species within five plant communities were assessed to obtain a characterization of these communities in this respect. Such a characterization is important in the context of restoration and maintenance. The most frequent species of five communities were

  18. The ASME Section 11 Special Working Group On Plant Life Extension

    International Nuclear Information System (INIS)

    Katz, L.R.

    1990-01-01

    The codes and standards applicable to plant life extension have not been identified in the U.S. at this time. However, several initiatives have been taken to establish specific codes and standards pertaining to nuclear plant life extension (PLEX). One of these initiatives, sponsored by ASME, is the Section XI Special Working Group on Plant Life Extension (SWG-PLEX). The SWG-PLEX reports to the ASME Section XI Subcommittee and is responsible for recommending or drafting rules and requirements for modifying Section XI to accommodate age-related degradation to support nuclear plant life extension. This paper summarizes the results and reports the activities of the SWG-PLEX during the 1989/1990 period

  19. Maintenance and life assessment of steam generators at Embalse Nuclear Station

    International Nuclear Information System (INIS)

    Luna, P.; Diaz, G.; Sveruga, H.; Sainz, R.

    2006-01-01

    The Embalse Nuclear Generating Station (ENGS) has four vertical I-800 U-tubes Steam Generators (SGs) manufactured by Babcock and Wilcox (B and W). They are one of the most important components from the point of view of safety and cost-related elements for potential life extensions in case of a replacement thereof. A Life Management program has been started covering the entire plant and starting with the Life Assessment (LA) of this component which consists in a systematic way to evaluate aging mechanisms focused on the plant refurbishment and life extension. Because of this, maintenance-based ageing assessment from beginning of operation is analyzed and current LA-frame maintenance and inspections programs are carried out in order to maintain a high availability of the SGs then to enable the planning for the plant life extension. The most important taken actions have been the Eddy Current (EC) In Service Inspection program which performs 100% of the tubes of two SG every 1.5 years started in 1992, the mechanical cleaning by blasting of the internal tube surface, the sludge removal from the secondary side tubesheet, the divider plate replacement, the installation of antivibration bars (AVB's), installation of TSP inspection ports and an exhaustive inspection of the secondary internals as a preliminary result of the Life Assessment started during early 2000. The most relevant aging mechanism up to 2004 was the Flow Accelerated Corrosion (FAC) of U-bend supports and consequent fretting of tubes. The eddy current inspections allowed the fretting degradation to be detected and mitigated by installing AVB's. Currently, efficiency of this mitigating action is being performed by vibration measurements and visual inspections. However, other degradation mechanism that could have origin due to the U-bend FAC like loose part damage (LPD) is being to be analyzed since could be an issue in the future. At present, FAC degradation on the cold leg side and sludge deposition on the

  20. Aging of concrete components and its significance relative to life extension of nuclear power plants

    International Nuclear Information System (INIS)

    Naus, D.J.

    1987-01-01

    Nuclear power currently supplies about 16% of the US electricity requirements, with the percentage expected to rise to 20% by 1990. Despite the increasing role of nuclear power in energy production, cessation of orders for new nuclear plants in combination with expiration of operating licenses for several plants in the next 15 to 20 years results in a potential loss of electrical generating capacity of 50 to 60 gigawatts during the time period 2005 to 2020. A potential timely and cost-effective solution to the problem of meeting future energy demand is available through extension of the service life of existing nuclear plants. Any consideration of plant life extension, however, must consider the concrete components in these plants, since they play a vital safety role. Under the USNRC Nuclear Plant Aging Research (NPAR) Program, a study was conducted to review operating experience and to provide background that will lead to subsequent development of a methodology for assessing and predicting the effects of aging on the performance of concrete-based structures. The approach followed was in conformance with the NPAR strategy

  1. Life Cycle Assessment to Municipal Wastewater Treatment Plant; Analisis de Ciclo de Vida de una Planta de Tratamiento de Aguas Residuales Municipales. Caso: PTARM de Yautepec (Morelos, Mexico)

    Energy Technology Data Exchange (ETDEWEB)

    Garcia, J s; Herrera, I; Rodriguez, A

    2011-05-13

    The evaluation was done at a Municipal Wastewater Treatment Plant (MWTP), through the application of the methodology of Life Cycle Assessment (LCA) performed by using a commercial tool called SIMAPRO. The objective of this study was to apply Life Cycle Assessment (LCA) in two systems: municipal wastewater effluent without treatment and Wastewater Treatment Plant (WTP) that is operating in poor condition and has a direct discharge to a natural body, which is a threat to the environment. A LCA was done using SIMAPRO 7, in order to determine the environmental impact in each scenery was assessed, a comparison of the impacts and propose improvements to decrease, following the steps this methodology and according to the respective standardized normative (ISO 14040/ ISO 14044). In this study, most of used data have been reported by the plant from early 2010 and some data from literature. We identified the environmental impacts generated by the treatment, making emphasis on those related to the subsequent use of the water body receiving the discharge, such as eutrophication (near to 15% reduction). Likewise, a comparative analysis between the impacts in the two systems, with and without treatment by analyzing the variation in the impact categories studied. Finally within this work, alternatives of improvements, in order to reduce the identified and quantified impacts are proposed. (Author) 33 refs.

  2. Life management of SG for WWER plants

    International Nuclear Information System (INIS)

    Trunov, N. B.; Dragunov, Yu. G.; Banyuk, G. F.

    2004-01-01

    Nowadays, 252 steam generators (SG) of horizontal type are in operation at WWER plants constructed by the Russian designs. In connection with end of the specified service life of the reactor plant equal to 30 years the activities are performed on service life extension of the main equipment including the SG. At some Units, throughout the design service life of SG there were problems resulting in necessity of SG replacement. At the same time the SGs at some Units are in successful operation above the design service life. This report deals with the peculiarities of operation of the horizontal SGs and the problems to be highlighted as the most important for service life extension. The main component to determine possibility for SG service life extension is the SG tubing. As the operating experience shows it is water chemistry of the secondary circuit that is the main factor influencing operability of the SG tubing. Therefore, differences in water chemistry organization leads to significant differences in operability of the SG tubing at various Units and in some cases within one Unit. Owing to the fact that the cases of water chemistry disturbance and the process of tubes fouling with the corrosion products of the main condensate system are not excluded, the damages continue to occur. Tube integrity shall be inspected by eddy current method using the various instrument complexes. This method has certain disadvantages but allows to estimate the degree and direction of degradation processes. The results of eddy current test (ECT) can be used to determine the plugging criterion for defective tubes. The significant number of defective tubes at some Units makes a choice of the plugging criterion to be an important problem, on which solution the SG safety, reliability and service life depends. The report deals with directions of activities in service life management for the SG at WWER plants. Main activities are improvement of water chemistry and non-destructive tests.(author)

  3. Service life monitoring of the main components at the Temelin nuclear power plant

    International Nuclear Information System (INIS)

    Hahn, J.; Vincour, D.

    2007-01-01

    Knowledge and experience gained from the introduction and periodical implementation of life assessment of the major components of the Temelin nuclear power plant is summarized. The initial Soviet technical design of the plant did not incorporate lifetime monitoring and evaluation, therefore it was completed with demonstrative strength and lifetime calculations from Czech companies. Moreover, a Westinghouse primary circuit diagnosis and monitoring system, including the monitoring of temperature and pressure cycles for low-cycle fatigue evaluation, was installed at the plant. The DIALIFE code for the calculation of mainly the low-cycle fatigue of the key pressure components, was developed and installed subsequently as a superstructure to the monitoring system. (author)

  4. Interrelationships of food safety and plant pathology: the life cycle of human pathogens on plants.

    Science.gov (United States)

    Barak, Jeri D; Schroeder, Brenda K

    2012-01-01

    Bacterial food-borne pathogens use plants as vectors between animal hosts, all the while following the life cycle script of plant-associated bacteria. Similar to phytobacteria, Salmonella, pathogenic Escherichia coli, and cross-domain pathogens have a foothold in agricultural production areas. The commonality of environmental contamination translates to contact with plants. Because of the chronic absence of kill steps against human pathogens for fresh produce, arrival on plants leads to persistence and the risk of human illness. Significant research progress is revealing mechanisms used by human pathogens to colonize plants and important biological interactions between and among bacteria in planta. These findings articulate the difficulty of eliminating or reducing the pathogen from plants. The plant itself may be an untapped key to clean produce. This review highlights the life of human pathogens outside an animal host, focusing on the role of plants, and illustrates areas that are ripe for future investigation.

  5. Oconee: Is life extension in the cards for plants of this vintage

    International Nuclear Information System (INIS)

    Killian, D.E.; Moore, K.E.; Tally, C.W.

    1986-01-01

    Recent nuclear-industry interest in plant life extension is prompted by the realization that the economics of plant life extension are clearly favorable. Studies sponsored by the Electric Power Research Institute (EPRI) show that replacing even the most costly nuclear components can easily be justified, if the life of the plant can be extended just a few years. This may not be apparent for the early, small plants, but its applicability to the larger plants that started to appear in the early 70s-such as the three 860-MW Oconee units-is hard to dispute. The large capital investment in the typical nuclear station and extensive decommissioning costs add impetus to life-extension efforts. The same is true for fossil plants, and they are being successfully refurbished to extend their operating lives. Refurbishment of a fossil plant is comparatively simple, however, especially with regard to licensing and environmental qualifications where recognized standards are already in place. In the case of nuclear plants, much work must be done before all the pertinent issues and alternatives are identified. Potentially conflicting objectives may require resolution before a utility makes long-term decisions about life extension. For example, a utility may decide to designate a plant to accommodate grid load swings. In the near term, this may be a logical choice. However, the long-term negative aspects of component thermal cycling should be considered, especially if plant life extension is deemed important

  6. Life Cycle Assessment of a HYSOL Concentrated Solar Power Plant: Analyzing the Effect of Geographic Location

    Directory of Open Access Journals (Sweden)

    Blanca Corona

    2016-05-01

    Full Text Available Concentrating Solar Power (CSP technology is developing in order to achieve higher energy efficiency, reduced economic costs, and improved firmness and dispatchability in the generation of power on demand. To this purpose, a research project titled HYSOL has developed a new power plant, consisting of a combined cycle configuration with a 100 MWe steam turbine and an 80 MWe gas-fed turbine with biomethane. Technological developments must be supported by the identification, quantification, and evaluation of the environmental impacts produced. The aim of this paper is to evaluate the environmental performance of a CSP plant based on HYSOL technology using a Life Cycle Assessment (LCA methodology while considering different locations. The scenarios investigated include different geographic locations (Spain, Chile, Kingdom of Saudi Arabia, Mexico, and South Africa, an alternative modelling procedure for biomethane, and the use of natural gas as an alternative fuel. Results indicate that the geographic location has a significant influence on the environmental profile of the HYSOL CSP plant. The results obtained for the HYSOL configuration located in different countries presented significant differences (between 35% and 43%, depending on the category, especially in climate change and water stress categories. The differences are mainly attributable to the local availability of solar and water resources and composition of the national electricity mix. In addition, HYSOL technology performs significantly better when hybridizing with biomethane instead of natural gas. This evidence is particularly relevant in the climate change category, where biomethane hybridization emits 27.9–45.9 kg CO2 eq per MWh (depending on the biomethane modelling scenario and natural gas scenario emits 264 kg CO2 eq/MWh.

  7. Enhanced design, operation and maintenance practices for a longer plant service life

    International Nuclear Information System (INIS)

    Raimondo, E.; Courcoux, A.

    2004-01-01

    Plant service life problems have been under detailed investigation in France and the experience acquired by our company over the past 25 years in the design, construction and maintenance of Pressurized Water Reactors has contributed to develop skills, equipment and capabilities available for efficient plant aging management and component service life extension. The service life of a nuclear power plant is deeply dependant of the provisions made during the design stage, directly linked to good operating conditions and adequate maintenance practices. This paper presents the importance of these three steps (design, operation and maintenance) for plant service life concern. (author)

  8. Fast-slow continuum and reproductive strategies structure plant life-history variation worldwide.

    Science.gov (United States)

    Salguero-Gómez, Roberto; Jones, Owen R; Jongejans, Eelke; Blomberg, Simon P; Hodgson, David J; Mbeau-Ache, Cyril; Zuidema, Pieter A; de Kroon, Hans; Buckley, Yvonne M

    2016-01-05

    The identification of patterns in life-history strategies across the tree of life is essential to our prediction of population persistence, extinction, and diversification. Plants exhibit a wide range of patterns of longevity, growth, and reproduction, but the general determinants of this enormous variation in life history are poorly understood. We use demographic data from 418 plant species in the wild, from annual herbs to supercentennial trees, to examine how growth form, habitat, and phylogenetic relationships structure plant life histories and to develop a framework to predict population performance. We show that 55% of the variation in plant life-history strategies is adequately characterized using two independent axes: the fast-slow continuum, including fast-growing, short-lived plant species at one end and slow-growing, long-lived species at the other, and a reproductive strategy axis, with highly reproductive, iteroparous species at one extreme and poorly reproductive, semelparous plants with frequent shrinkage at the other. Our findings remain consistent across major habitats and are minimally affected by plant growth form and phylogenetic ancestry, suggesting that the relative independence of the fast-slow and reproduction strategy axes is general in the plant kingdom. Our findings have similarities with how life-history strategies are structured in mammals, birds, and reptiles. The position of plant species populations in the 2D space produced by both axes predicts their rate of recovery from disturbances and population growth rate. This life-history framework may complement trait-based frameworks on leaf and wood economics; together these frameworks may allow prediction of responses of plants to anthropogenic disturbances and changing environments.

  9. Nuclear power plant life management. Proceedings of a symposium

    International Nuclear Information System (INIS)

    2003-01-01

    Presently, an area of major interest of the IAEA is the management of the nuclear power plant (NPP) life cycle from concept development to decommissioning and disposal, with the primary objective of maximising the return on investment in nuclear facilities through efficient operation of NPPs. 441 NPPs, with a capacity of about 350GW(e) supplied 16% of global electricity in 2002. Of these, about 300 NPPs have been in operation for 15 years or more and these older units with partially or fully amortized capital costs have proven to be the most profitable. Moreover, there are no significant safety or economic reasons not to continue the operation of well managed NPPs over a longer period and consequently the issues of plant life management and license extension are receiving increasing emphasis in many countries. Forecasts of nuclear power growth over the next two decades range from 350GW(e) in the worst case to 500GW(e) in the best case. This will need additional personnel and expansion of the infrastructure in the developing countries, particularly as much of the new demand growth is forecast to take place outside the countries where most of the existing infrastructure resides. All aspects of NPP life cycle management are addressed by the IAEA and are briefly described in these proceedings. The IAEA Technical Working Group on Life Management of Nuclear Power Plants (TWG-LMNPP) recommended, during its regular meeting in February 1999, that the IAEA should consider holding a symposium on this subject area in 2002. This TWG-LMNPP Proposal was approved and, this symposium was held, attended by 138 participants from 32 Member States and 2 international organizations. The objectives of the symposium were as follows: Emphasise the role of NPP life management programmes in assuring a safe and reliable NPP operating cycle; Identify progress in methodological and technological developments for managing ageing processes and understanding ageing mechanisms; Provide a forum for

  10. The life cycle emission of greenhouse gases associated with plant oils used as biofuel

    NARCIS (Netherlands)

    Reijnders, L.

    2011-01-01

    Life cycle assessment of greenhouse gas emissions associated with biofuels should not only consider fossil fuel inputs, but also N2O emissions and changes in carbon stocks of (agro) ecosystems linked to the cultivation of biofuel crops. When this is done, current plant oils such as European rapeseed

  11. UNIRAM modeling for increased nuclear-plant availability and life extension

    International Nuclear Information System (INIS)

    O'Mara, R.L.

    1988-01-01

    At the start of a nuclear-power plant's design life of 40 years, most parts of the plant are effectively brand new, but some subcomponents have already experienced significant wear and aging effects. In short, the spectrum of where each component is in its life cycle at any time is quite broad, and this makes the prediction of the future availability of the plant a complex issue. Predictive models that account for the differential effects of aging, wear, and functional failure on the plant are desirable as a means to represent this complex behavior. This paper addresses the task of using a computer model to account for the relationships between components, systems, and plant availability, in the context of current and future needs, including eventual life extension. The computer model is based on the Electric Power Research Institute's (EPRI) code, UNIRAM, which has a large and growing user base among utilities

  12. Plant/life form considerations in the rangeland hydrology and erosion model (RHEM)

    Science.gov (United States)

    Resilience of rangeland to erosion has largely been attributed to adequate plant cover; however, plant life/growth form, and individual species presence can have a dramatic effect on hydrologic and erosion dynamics on rangelands. Plant life/growth form refers to genetic tendency of a plant to grow i...

  13. Engineering support for plant life management: the IAEA contribution

    International Nuclear Information System (INIS)

    Kang, K.; Hezoucky, F.; Clark, R. C.; )

    2007-01-01

    For the past couple of decades there has been a change of emphasis in the world nuclear power from that of building new Nuclear Power Plants (NPP) to that of taking measures to optimize the life cycle of operational plants. National approaches in many countries showed an increase of interest in Plant Life Management (PLiM), both in terms of plant service life assurance and in optimizing the service or operational life of NPP. The safety considerations of a NPP are paramount and those requirements have to be met to obtain and to extend/renew the operating license. To achieve the goal of the long term safe, economic and reliable operation of the plant, PLiM programme is essential. Some countries already have advanced PLiM programmes while others still have none. The PLiM objective is to identify all that factors and requirements for the overall plant life cycle. The optimization of these requirements would allow for the minimum period of the investment return and maximum of the revenue from the sell of the produced electricity. Recognizing the importance of this issue and in response to the requests of the Member States the IAEA Division of Nuclear Power implements the Sub-programme on 'Engineering and Management Support for Competitive Nuclear Power'. Three projects within this sub-programme deal with different aspects of the NPP life cycle management with the aim to increase the capabilities of interested Member States in implementing and maintenance of the competitive and sustainable nuclear power. Although all three projects contain certain issues of PLiM, there is one specific project on guidance on engineering and management practices for optimization of NPP service life. This particular project deals with different specific issues of PLiM including aspects of ageing phenomena and their monitoring, issues of control and instrumentation, maintenance and operation issues, economic evaluation of PLiM including guidance on its earlier shut down and decommissioning

  14. Actions concerning nuclear power plant life evaluation

    International Nuclear Information System (INIS)

    Chocron, M.; Fabbri, S.; Mizrahi, R.; Savino, E.J.; Versaci, R.A.

    1998-01-01

    One of the main activities to be undertaken by CNEA will be to provide technological assistance to NASA in problems concerning NPP operation. Works on life extensions of NPP are included in these activities. To fulfill these requirements the Atomic Energy National Commission (CNEA) has constituted a technical committee for Nuclear Power Plants Support (CAPCEN). CAPCEN should be the knowledge reservoir of those issues concerning the performance, safety and life extension of Nuclear Power Plants. One of CAPCEN's most important activities is to promote research work connected with such issues. The main technical areas are: Pressure Vessel and Piping, Heat Exchanges and Fuel Channels and Reactor Inner Components. Efforts are focused on the identification of the main components susceptible of ageing, the study of their ageing mechanisms, the follow-up of their behaviour during operation, and the measures taken to extend their life. (author)

  15. Advanced maintenance strategies for power plant operators--introducing inter-plant life cycle management

    International Nuclear Information System (INIS)

    Graeber, Ulrich

    2004-01-01

    One of the most important goals of competing power plant operators is to ensure safe operation of their plants, characterized by maximum availability throughout the entire life cycle and minimized specific generating costs. One parameter crucial to the total price of electricity--and one that can be actively influenced by the power plant operators--is maintenance. Up to 30% of all electricity generating costs accrue from maintenance. In the past years maintenance measures have been optimized particularly by the application and continuing development of testing and diagnostic techniques, by the increased level of system and component automation as well as more efficient organization structures. Despite the considerable success of these efforts, the potential for further cost reductions is still far from exhausted. But the risks connected to reliability, availability and safety need to be analyzed in greater detail in order to ensure the sustainability of the savings already achieved as well as those yet to be realized. The systematic application of condition-based maintenance and the implementation of structured life cycle management are essential requirements. An inter-plant approach is recommended to make a quick implementation of maintenance optimization potentials possible. Plant-specific improvement potentials can be established with the help of a best-practice comparison, and measures and priorities can be defined for realizing them. Creating an inter-plant database will allow experience and findings to be analyzed quickly and efficiently by experts and made available to all participants on a neutral platform. Despite--or maybe owing to--the increasingly competitive marketplace, a sustained reduction in the maintenance costs of power plant operators can only be achieved through a structured, inter-plant exchange of experience. The ZES offers the industry a suitable platform for cooperation with its 'Condition-Based Maintenance' research focus. The introduction

  16. Nuclear power plant life management processes: Guidelines and practices for heavy water reactors. Report prepared within the framework of the Technical Working Groups on Advanced Technologies for Heavy Water Reactors and on Life Management of Nuclear Power Plants

    International Nuclear Information System (INIS)

    2006-06-01

    The time is right to address nuclear power plant life management and ageing management issues in terms of processes and refurbishments for long term operation and license renewal aspects of heavy water reactors (HWRs) because some HWRs are close to the design life. In general, HWR nuclear power plant (NPP) owners would like to keep their NPPs in service as long as they can be operated safely and economically. This involves the consideration of a number of factors, such as the material condition of the plant, comparison with current safety standards, the socio-political climate and asset management/ business planning considerations. This TECDOC deals with organizational and managerial means to implement effective plan life management (PLiM) into existing plant in operating HWR NPPs. This TECDOC discusses the current trend of PLiM observed in NPPs to date and an overview of PLiM programmes and considerations. This includes key objectives of such programs, regulatory considerations, an overall integrated approach, organizational and technology infrastructure considerations, importance of effective plant data management and finally, human issues related to ageing and finally integration of PLiM with economic planning. Also general approach to HWR PLiM, including the key PLiM processes, life assessment for critical structures and components, conditions assessment of structures and components and obsolescence is mentioned. Technical aspects are described on component specific technology considerations for condition assessment, example of a proactive ageing management programme, and Ontario power generation experiences in appendices. Also country reports from Argentina, Canada, India, the Republic of Korea and Romania are attached in the annex to share practices and experiences to PLiM programme. This TECDOC is primarily addressed to both the management (decision makers) and technical staff (engineers and scientists) of NPP owners/operators and technical support

  17. Remaining life assessment of a high pressure turbine rotor

    International Nuclear Information System (INIS)

    Nguyen, Ninh; Little, Alfie

    2012-01-01

    This paper describes finite element and fracture mechanics based modelling work that provides a useful tool for evaluation of the remaining life of a high pressure (HP) steam turbine rotor that had experienced thermal fatigue cracking. An axis-symmetrical model of a HP rotor was constructed. Steam temperature, pressure and rotor speed data from start ups and shut downs were used for the thermal and stress analysis. Operating history and inspection records were used to benchmark the damage experienced by the rotor. Fracture mechanics crack growth analysis was carried out to evaluate the remaining life of the rotor under themal cyclic loading conditions. The work confirmed that the fracture mechanics approach in conjunction with finite element modelling provides a useful tool for assessing the remaining life of high temperature components in power plants.

  18. Near-term benefits of life extension planning for nuclear power plants

    International Nuclear Information System (INIS)

    Pickens, T.; Gregor, F.E.

    1988-01-01

    Life Extension of Nuclear Power Plants is now viewed as a realistic alternative to construction of new generating facilities. The subject has been under intensive study since 1984 and two comprehensive pilot plant programs have been completed under EPRI, U.S. Department of Energy and utility sponsorship. A major lesson learned from these studies is that planning for life extension must start early and that many activities must be implemented as early in life as possible to enhance the option for life extension through mitigate and preventive actions. It was also determined that achievement of a 40-year licensed life is by no means guaranteed without substantial effort during the remaining plant life. In examining these recommended actions, it becomes obvious that conscientious implementation also leads to realization of significant short-term benefits in the form of availability improvement, outage reduction, maintenance optimization and longer term planning decisions. In addition to the economic benefits, plant safety is also enhanced by reducing challenges to the safety systems and slowly switching from a corrective maintenance to a preventive maintenance program

  19. Plant life management of the ACR-1000 Concrete containment structure

    International Nuclear Information System (INIS)

    Abrishami, H.H.; Ricciuti, R.; Elgohary, M.

    2009-01-01

    The Ageing of reinforced concrete structures due to service conditions, aggressive environments, or accidents may cause their strength, serviceability and durability to decrease over time. For a new plant, a Plant Life Management (PLiM) program should start in the design process and then continues through the plant operation and decommissioning. Hence, PLiM must provide not only Ageing Management program (AMP) but also provide requirements on material characteristic and design criteria as well. The purpose of this paper is to present the Plant Life Management (PLiM) strategy for the concrete containment structure of the ACR-10001 (Advanced CANDU Reactor) designed by AECL. The ACR-1000 is designed for a 100-year plant life including 60-year operating life and an additional 40-year decommissioning period. The approach adopted for the PLiM strategy of the concrete containment structure is a preventive one, key areas being: 1) design methodology, 2) material performance and 3) ageing management program. During the design phase, in addition to strength and serviceability, durability, throughout the service life and decommissioning phase of the ACR-1000 structure, is a major consideration. Factors affecting durability design include: a) concrete performance, b) structural application, and c) consideration of environmental conditions. In addition to addressing the design methodology and material performance requirements, a systematic approach for the ageing management program for the concrete containment structure is presented. (authors)

  20. Plant life management study of Japanese nuclear power plants

    International Nuclear Information System (INIS)

    Fukuda, Toshihiko

    1999-01-01

    Already more than twenty-five years have passed since the first commercial LWR plant went into operation in Japan. In this situation, MITI and 3 electric utilities (Tokyo Electric Power Company, Kansai Electric Power Co., Inc, Japan Atomic Power Company) have started a plant life management (PLM) study from 1994 to evaluate the long-term integrity of major systems, structures and components of aged LWR plants and ensure the safe, steady and highly reliable long-term operation. It consists of two phases: part 1 study and part 2 study. The part 1 study started in 1994 and focused on seven typical safety-related components. The part 1 study reports were made public in 1996. The part 2 study started in 1997. In this study we reviewed not only safety-related components but also plant reliability related components. The part 2 study reports were opened to the public in February 1999. This paper shows a summary of the part 2 study and our future PLM program. (author)

  1. Update on the status of life extension in U.S. Nuclear Power Plants

    International Nuclear Information System (INIS)

    Hevia Ruperez, F.; Lehnert, D.F.; Gregor, F.E.

    1997-01-01

    The purpose of this paper is to provide an update on the status of key activities that may affect the plant life extension option for U.S. nuclear power plants and to explain how the progress on the regulatory and technical developments may affect the world-wide nuclear industry. Establishing a predictable and stable regulatory process is the final piece that is needed by U.S. utilities to confidently consider the plant life extension option in their strategic planning. Certain technical issues were also identified in the previous studies where additional investigation would benedict the U.S. nuclear power industry's understanding of an aging effect and/or capability to demonstrate that the aging effect can be effectively managed. It is concluded that the lessons learned from the U.S. industry activities and the associated interactions with the NRC are leading to a positive indication that U.S. utilities believe the differences between the NRC and industry on the implementation of the amended license renewal rule can be successfully resolved and the that many utilities generally are interested in pursuing the life extension option as part of their strategic planning. The methodology and guidance developed in the U.S. for performing integrated plant assessments and evaluating time-limited aging analyses will be of significant interest to utilities and regulators in other countries. They will undoubtedly lay the foundation for an acceptable approach for demonstrating that aging processes are being processes are being effectively managed by plant programs and that safety margins or bases will be maintained during an extended operating period. (Author)

  2. Life-cycle assessment of semiconductors

    CERN Document Server

    Boyd, Sarah B

    2012-01-01

    Life-Cycle Assessment of Semiconductors presents the first and thus far only available transparent and complete life cycle assessment of semiconductor devices. A lack of reliable semiconductor LCA data has been a major challenge to evaluation of the potential environmental benefits of information technologies (IT). The analysis and results presented in this book will allow a higher degree of confidence and certainty in decisions concerning the use of IT in efforts to reduce climate change and other environmental effects. Coverage includes but is not limited to semiconductor manufacturing trends by product type and geography, unique coverage of life-cycle assessment, with a focus on uncertainty and sensitivity analysis of energy and global warming missions for CMOS logic devices, life cycle assessment of flash memory and life cycle assessment of DRAM. The information and conclusions discussed here will be highly relevant and useful to individuals and institutions. The book also: Provides a detailed, complete a...

  3. Cost versus life cycle assessment-based environmental impact optimization of drinking water production plants.

    Science.gov (United States)

    Capitanescu, F; Rege, S; Marvuglia, A; Benetto, E; Ahmadi, A; Gutiérrez, T Navarrete; Tiruta-Barna, L

    2016-07-15

    Empowering decision makers with cost-effective solutions for reducing industrial processes environmental burden, at both design and operation stages, is nowadays a major worldwide concern. The paper addresses this issue for the sector of drinking water production plants (DWPPs), seeking for optimal solutions trading-off operation cost and life cycle assessment (LCA)-based environmental impact while satisfying outlet water quality criteria. This leads to a challenging bi-objective constrained optimization problem, which relies on a computationally expensive intricate process-modelling simulator of the DWPP and has to be solved with limited computational budget. Since mathematical programming methods are unusable in this case, the paper examines the performances in tackling these challenges of six off-the-shelf state-of-the-art global meta-heuristic optimization algorithms, suitable for such simulation-based optimization, namely Strength Pareto Evolutionary Algorithm (SPEA2), Non-dominated Sorting Genetic Algorithm (NSGA-II), Indicator-based Evolutionary Algorithm (IBEA), Multi-Objective Evolutionary Algorithm based on Decomposition (MOEA/D), Differential Evolution (DE), and Particle Swarm Optimization (PSO). The results of optimization reveal that good reduction in both operating cost and environmental impact of the DWPP can be obtained. Furthermore, NSGA-II outperforms the other competing algorithms while MOEA/D and DE perform unexpectedly poorly. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Development and Initial Psychometric Assessment of the Plant Attitude Questionnaire

    Science.gov (United States)

    Fančovičová, Jana; Prokop, Pavol

    2010-10-01

    Plants are integral parts of ecosystems which determine life on Earth. People's attitudes toward them are however, largely overlooked. Here we present initial psychometric assessment of self-constructed Plant Attitude Scale (PAS) that was administered to a sample of 310 Slovakian students living in rural areas aged 10-15 years. The final version of PAS consists from 29 Likert-scale items that were loaded to four distinct dimensions (Interest, Importance, Urban trees and Utilization). Mean scores revealed that Slovakian students lack positive attitudes toward plants and that gender had no effect on their mean attitude scores. Living in a family with a garden was associated with a more positive attitude toward plants. Further correlative research on diverse samples containing urban children and experimental research examining the impact of gardening in schools on student attitudes toward plants is required.

  5. Plant Life Management of the EC6 Concrete Containment Structure

    Energy Technology Data Exchange (ETDEWEB)

    Abrishami, Homayoun; Ricciuti, Rick; Khan, Azhar [CANDU Energy Inc., Mississauga (Canada)

    2012-03-15

    Aging of reinforced concrete structures due to service conditions, aggressive environments, or accidents may cause their strength, serviceability and durability to decrease over time. Due to the complex nature of safety-related structures in nuclear power plants in comparison to other structures, they possess a number of characteristics that make them comparison to other structures, they possess a number of characteristics that make them unique. These characteristics are: thick concrete cross-sections, heavy reinforcement, often one-side access only, subjected to such ageing stresses as irradiation and elevated temperature, in addition to other typical ageing mechanisms (i. e., exposure to freeze/thaw cycles, aggressive chemicals, etc.) that typically affects other types of non-nuclear structures. For a new plant, the Plant Life Management Program (PLiM) should start in the design process and then continues through construction, plant operation and decommissioning. Hence PLiM must provide not only Ageing Management program (AMP) but also provide requirements on material characteristic and the design criteria as well. The purpose of this paper is to present the Plant Life Management (PLiM) strategy for the concrete containment structure of EC6 (Enhanced CANDU 6) Nuclear Power Plant designed by CANDU Energy Inc. The EC6 is designed for 100-year plant life including a 60-year operating life and an additional 40-year decommissioning period of time. The approach adopted for the PLiM strategy of the concrete containment structure is a preventive one, key areas being: 1) design methodology, 2) material performance and 3) life cycle management and ageing management program. In addition to strength and serviceability, durability is a major consideration during the design phase, service life and up to the completion of decommissioning. Factors affecting durability design include: a) concrete performance, b) structural application, and c) consideration of environmental

  6. Plant Life Management of the EC6 Concrete Containment Structure

    International Nuclear Information System (INIS)

    Abrishami, Homayoun; Ricciuti, Rick; Khan, Azhar

    2012-01-01

    Aging of reinforced concrete structures due to service conditions, aggressive environments, or accidents may cause their strength, serviceability and durability to decrease over time. Due to the complex nature of safety-related structures in nuclear power plants in comparison to other structures, they possess a number of characteristics that make them comparison to other structures, they possess a number of characteristics that make them unique. These characteristics are: thick concrete cross-sections, heavy reinforcement, often one-side access only, subjected to such ageing stresses as irradiation and elevated temperature, in addition to other typical ageing mechanisms (i. e., exposure to freeze/thaw cycles, aggressive chemicals, etc.) that typically affects other types of non-nuclear structures. For a new plant, the Plant Life Management Program (PLiM) should start in the design process and then continues through construction, plant operation and decommissioning. Hence PLiM must provide not only Ageing Management program (AMP) but also provide requirements on material characteristic and the design criteria as well. The purpose of this paper is to present the Plant Life Management (PLiM) strategy for the concrete containment structure of EC6 (Enhanced CANDU 6) Nuclear Power Plant designed by CANDU Energy Inc. The EC6 is designed for 100-year plant life including a 60-year operating life and an additional 40-year decommissioning period of time. The approach adopted for the PLiM strategy of the concrete containment structure is a preventive one, key areas being: 1) design methodology, 2) material performance and 3) life cycle management and ageing management program. In addition to strength and serviceability, durability is a major consideration during the design phase, service life and up to the completion of decommissioning. Factors affecting durability design include: a) concrete performance, b) structural application, and c) consideration of environmental

  7. Fast-slow continuum and reproductive strategies structure plant life-history variation worldwide

    DEFF Research Database (Denmark)

    Salguero-Gómez, Roberto; Jones, Owen R; Jongejans, Eelke

    2016-01-01

    The identification of patterns in life-history strategies across the tree of life is essential to our prediction of population persistence, extinction, and diversification. Plants exhibit a wide range of patterns of longevity, growth, and reproduction, but the general determinants of this enormous...... variation in life history are poorly understood. We use demographic data from 418 plant species in the wild, from annual herbs to supercentennial trees, to examine how growth form, habitat, and phylogenetic relationships structure plant life histories and to develop a framework to predict population...

  8. Redistribution of natural radioactive elements resulting from animal and plant life activity in regions with high radioactivity

    International Nuclear Information System (INIS)

    Malslov, V.I.; Maslova, K.I.; Alexakhin, R.M.

    1980-01-01

    A quantitative assessment is made of the influence of plant and animal life on the migration and redistribution of naturally occurring radionuclides in several localized areas with unusually high soil concentrations of 226 Ra, 238 U, or 232 Th. In the taiga and tundra zones examined, the effects of radionuclide accumulation in certain plant species and of the feeding and burrowing habits of small mammals were particularly significant. The observed regularities have predictive applications in assessing the redistribution of radionuclides in regions of high radioactivity

  9. Report on countermeasure to plant life management of the nuclear power plants at three electric power companies

    International Nuclear Information System (INIS)

    1999-01-01

    Three nuclear power reactors of the Fukushima-1 nuclear power plant, the Mihama-1 power plant and the Tsuruga-1 power plant were investigated according to the estimation plan shown in the Fundamental Concept on Plant Life Management of Agency of Natural Resources and Energy, Ministry of International Trade and Industry on April, 1996. Their reports contained the technical evaluation against, the responsive items to and the future examinations of the plant life management. In special, in the responsive items, some items to be added to the present maintenance process and some technical developmental problems are described in details and concretely. (G.K.)

  10. US national and regional impacts of nuclear plant life extension

    International Nuclear Information System (INIS)

    Makovich, L.; Forest, L.; Fletcher, T.

    1988-01-01

    The US will need new sources of electricity in the early 21st century due to retirement of much of the nation's generating capacity. Almost all of the US nuclear capacity would be included in those retirements if, as originally expected, the nuclear units were shut down and decommissioned as the operating licenses expired between 2005 and 2025. However, given the large demands for new capacity during that period, nuclear plant life extension (NUPLEX) -- the extension of operating life beyond the original license period -- needs to be considered as an electricity source. This study assesses the benefits and costs of NUPLEX relative to the anticipated competing sources of electricity supply in the early 21st century. We find that NUPLEX yields large net benefits under a wide range of plausible economic conditions. This study associates net benefits with electricity cost savings, thereby abstracting from speculative reliability considerations. To illustrate the effects of uncertainty, the study assesses NUPLEX net benefits under varying assumptions on NUPLEX investment costs and other future economic conditions

  11. 78 FR 66892 - BASF Plant Science LP; Availability of Plant Pest Risk Assessment and Environmental Assessment...

    Science.gov (United States)

    2013-11-07

    .... Kevin Shea, Administrator, Animal and Plant Health Inspection Service. [FR Doc. 2013-26701 Filed 11-6-13... DEPARTMENT OF AGRICULTURE Animal and Plant Health Inspection Service [Docket No. APHIS-2012-0028] BASF Plant Science LP; Availability of Plant Pest Risk Assessment and Environmental Assessment for...

  12. Life cycle assessment of wastewater treatment options for small and decentralized communities.

    Science.gov (United States)

    Machado, A P; Urbano, L; Brito, A G; Janknecht, P; Salas, J J; Nogueira, R

    2007-01-01

    Sustainability has strong implications on the practice of engineering. Life cycle assessment (LCA) is an appropriate methodology for assessing the sustainability of a wastewater treatment plant design. The present study used a LCA approach for comparing alternative wastewater treatment processes for small and decentralised rural communities. The assessment was focused on two energy-saving systems (constructed wetland and slow rate infiltration) and a conventional one (activated sludge process). The low environmental impact of the energy-saving wastewater treatment plants was demonstrated, the most relevant being the global warming indicator. Options for reduction of life cycle impacts were assessed including materials used in construction and operational lifetime of the systems. A 10% extension of operation lifetime of constructed wetland and slow rate infiltration systems led to a 1% decrease in CO2 emissions, in both systems. The decrease in the abiotic depletion was 5 and 7%, respectively. Also, replacing steel with HDPE in the activated sludge tank resulted in a 1% reduction in CO2 emission and 1% in the abiotic depletion indicator. In the case of the Imhoff tank a 1% reduction in CO2 emissions and 5% in the abiotic depletion indicator were observed when concrete was replaced by HDPE.

  13. Life cycle assessment of an intensive sewage treatment plant in Barcelona (Spain) with focus on energy aspects.

    Science.gov (United States)

    Bravo, L; Ferrer, I

    2011-01-01

    Life Cycle Assessment was used to evaluate environmental impacts associated to a full-scale wastewater treatment plant (WWTP) in Barcelona Metropolitan Area, with a treatment capacity of 2 million population equivalent, focussing on energy aspects and resources consumption. The wastewater line includes conventional pre-treatment, primary settler, activated sludge with nitrogen removal, and tertiary treatment; and the sludge line consists of thickening, anaerobic digestion, cogeneration, dewatering and thermal drying. Real site data were preferably included in the inventory. Environmental impacts of the resulting impact categories were determined by the CLM 2 baseline method. According to the results, the combustion of natural gas in the cogeneration engine is responsible for the main impact on Climate Change and Depletion of Abiotic Resources, while the combustion of biogas in the cogeneration unit accounts for a minor part. The results suggest that the environmental performance of the WWTP would be enhanced by increasing biogas production through improved anaerobic digestion of sewage sludge.

  14. ASSESSING CHEMICAL HAZARDS AT THE PLUTONIUM FINISHING PLANT FOR PLANNING FUTURE DECONTAMINATION AND DECOMMISSIONING

    International Nuclear Information System (INIS)

    HOPKINS, A.M.; KLOS, D.B.; MINETT, M.J.

    2007-01-01

    This paper documents the fiscal year (FY) 2006 assessment to evaluate potential chemical and radiological hazards associated with vessels and piping in the former plutonium process areas at Hanford's Plutonium Finishing Plant (PFP). Evaluations by PFP engineers as design authorities for specific systems and other subject-matter experts were conducted to identify the chemical hazards associated with transitioning the process areas for the long-term layup of PFP before its eventual final decontamination and decommissioning (D and D). D and D activities in the main process facilities were suspended in September 2005 for a period of between 5 and 10 years. A previous assessment conducted in FY 2003 found that certain activities to mitigate chemical hazards could be deferred safely until the D and D of PFP, which had been scheduled to result in a slab-on-grade condition by 2009. As a result of necessary planning changes, however, D and D activities at PFP will be delayed until after the 2009 time frame. Given the extended project and plant life, it was determined that a review of the plant chemical hazards should be conducted. This review to determine the extended life impact of chemicals is called the ''Plutonium Finishing Plant Chemical Hazards Assessment, FY 2006''. This FY 2006 assessment addresses potential chemical and radiological hazard areas identified by facility personnel and subject-matter experts who reevaluated all the chemical systems (items) from the FY 2003 assessment. This paper provides the results of the FY 2006 chemical hazards assessment and describes the methodology used to assign a hazard ranking to the items reviewed

  15. Safe and effective nuclear power plant life cycle management towards decommissioning

    International Nuclear Information System (INIS)

    2002-08-01

    The objective of this publication is to promote and communicate the need for a longer-term perspective among senior managers and policy or strategy makers for decisions that have the potential to affect the life cycle management of a nuclear power plant including decommissioning. The following sections provide practical guidance in the subject areas that might have the potential to have such an impact. The publication should be used as an aid to help strategic planning take place in an informed way through the proper consideration of any longer-term decisions to enforce recognition of the point that decommissioning is a part of the whole life cycle of a nuclear power plant. The guidance contained in this publication is relevant to all life cycle stages of a nuclear power plant, with particular emphasis on how these decisions have the potential to impact effective decommissioning. The intended users of this publication are: Strategic decision makers within a Utility through all the various life cycle stages; The senior representatives of the owners of a nuclear power plant. This publication is divided into two basic sections. Section 2 provides guidance on the topics considered generic inputs to plant life cycle management and Section 3 provides guidance on the topics that contribute to effective decommissioning

  16. Life cycle assessment of peat utilisation in Finland

    International Nuclear Information System (INIS)

    Maelkki, H.

    1997-01-01

    Environmental issues related to the production of peat and its use in energy generation have been the subject of public debate and research over the past few years in Finland. Peat is both an indigenous and a locally utilised fuel. Finland has no fossil fuel resources, and the transportation distances of imported fuels into Finland are normally long. In Finland the large peat resources can be utilised locally and peat-burning power plants are situated near the peatlands. Peat production and energy conversion methods are being continuously developed to make use of the environmentally and technically best available technology. In Finland peat formation exceeds peat utilisation and an increase in peat utilisation is therefore sustainable. The life cycle assessment concept gives an opportunity to evaluate and improve the environmental quality of peat utilisation options. The study focuses on an inventory analysis, but some of the most common methods of impact assessment with valuation are also included. The study also includes a comparison of fossil fuels and a discussion part. All the calculated results are based on net emissions. The background emissions of natural peatland are subtracted from the emissions of the utilisation phases. Milled peat and sod peat are reported in this study. Horticultural peat is studied simultaneously, but it will be reported later. The Sod Wave, Haku and Tehoturve methods are studied for the production of peat. The power plants of the study are Kempele heating plant and Rauhalahti cogeneration plant. The functional unit is 1 MWh produced total energy. The temporal boundaries vary from 112 to 128 years, depending on the peat production methods used. The restoration time is 100 years in all options. The emissions of greenhouse gases are based on the reports of The Finnish Research Programme on Climate Change. The water emissions are based on control monitoring reports from 1994 and 1995. The water emissions of the restoration phase are

  17. Technology and testing for the extension of plant life

    International Nuclear Information System (INIS)

    Blumer, U.R.; Edelmann, X.

    1988-01-01

    This paper describes selected portions of a recommended program for the application of equipment-manufacturing-related technology and testing for the extension of life for operating nuclear power plants. It is appropriate to mention that the Swiss nuclear plants, their staffs, and the supporting Swiss nuclear industry are rightfully proud of their record of performance. Plant staffs have been intimately involved in system and equipment design and engineering from the very beginnings of their plants. Maintenance of the plant systems and equipment is referred to as engineering rather than maintenance, because it is viewed as a technical effort and an extension of the original plant and equipment design and construction effort. Care, competence, cleanliness, and attention to detail have been bywords for the Swiss plants. Success has been demonstrated through enviable availability performance. With operation and availability capability already demonstrated, the Swiss are now turning their attention to the extension of plant life. This summary describes some aspects of this work, which is fundamentally based on the application of technology and testing skills developed for equipment manufacture and the original installation of this equipment in the plants, but has been enhanced by research and development (R and D) and an ongoing effort to serve utilities in their maintenance activities

  18. Computational models for residual creep life prediction of power plant components

    International Nuclear Information System (INIS)

    Grewal, G.S.; Singh, A.K.; Ramamoortry, M.

    2006-01-01

    All high temperature - high pressure power plant components are prone to irreversible visco-plastic deformation by the phenomenon of creep. The steady state creep response as well as the total creep life of a material is related to the operational component temperature through, respectively, the exponential and inverse exponential relationships. Minor increases in the component temperature can thus have serious consequences as far as the creep life and dimensional stability of a plant component are concerned. In high temperature steam tubing in power plants, one mechanism by which a significant temperature rise can occur is by the growth of a thermally insulating oxide film on its steam side surface. In the present paper, an elegantly simple and computationally efficient technique is presented for predicting the residual creep life of steel components subjected to continual steam side oxide film growth. Similarly, fabrication of high temperature power plant components involves extensive use of welding as the fabrication process of choice. Naturally, issues related to the creep life of weldments have to be seriously addressed for safe and continual operation of the welded plant component. Unfortunately, a typical weldment in an engineering structure is a zone of complex microstructural gradation comprising of a number of distinct sub-zones with distinct meso-scale and micro-scale morphology of the phases and (even) chemistry and its creep life prediction presents considerable challenges. The present paper presents a stochastic algorithm, which can be' used for developing experimental creep-cavitation intensity versus residual life correlations for welded structures. Apart from estimates of the residual life in a mean field sense, the model can be used for predicting the reliability of the plant component in a rigorous probabilistic setting. (author)

  19. Low-level radioactive waste associated with plant life extension

    International Nuclear Information System (INIS)

    Sciacca, F.; Zigler, G.; Walsh, R.

    1992-01-01

    Many utilities operating nuclear power plants are expected to seek to extend the useful life of their plants through license renewal. These US Nuclear Regulatory Commission (NRC) licensees are expected to implement enhanced inspection, surveillance, testing, and monitoring (ISTM) as needed to detect and mitigate age-related degradation of important structures, systems, and components (SSCs). In addition, utilities may undertake various refurbishment and upgrade activities at these plants to better assure economic and reliable power generation. These activities performed for safety and/or economic reasons can result in radioactive waste generation, which is incremental to that generated in the original licensing term. Work was performed for the NRC to help define and characterize potential environmental impacts associated with nuclear plant license renewal and plant life extension. As part of this work, projections were made of the types and quantities of low-level radioactive waste (LLRW) likely to be generated by licensee programs. These projections were needed to estimate environmental impacts related to the disposal of such wastes

  20. Operational data collection and analysis for nuclear plant life extension

    International Nuclear Information System (INIS)

    DuCharme, A.R.; Berg, R.M.; Bailey, T.L.

    1989-01-01

    This paper describes initial work undertaken by the US Department of Energy, through Sandia National Laboratories in Albuquerque, New Mexico, to define the operational data necessary for support of nuclear plant life extension (PLEX) programs. This work is being performed in coordination with the Working Group on Plant Life Extension of the US Nuclear Management and Resources Council. The intent of the effort is to use results gained initially from pilot PLEX programs a US BWR and a US PWR to build towards the use of ''PLEX indicators'' by which a plant's readiness for successful life extension can be measured. Another objective of the study was to examine chemistry data in detail to determine how well US plants are collecting, preserving, and trending the chemistry data that is important to PLEX. The methods used to disseminate this data to outside agencies and other utilities were studied. Finally, an analysis was made to determine additional chemistry data needed to support PLEX

  1. Life cycle analysis of photovoltaic cell and wind power plants

    International Nuclear Information System (INIS)

    Uchiyama, Yohji

    1997-01-01

    The paper presents life cycle analyses of net energy and CO 2 emissions on photovoltaic cell and wind power generation plants. Energy requirements associated with a plant are estimated for producing materials, manufacturing equipment, constructing facilities, acid operating plants. Energy ratio and net supplied energy are calculated by the process energy analysis that examines the entire energy inventory of input and output during life time of a plant. Life cycle CO 2 emission can also be calculated from the energy requirements obtained by the net energy analysis. The emission also includes greenhouse effect equivalent to CO 2 emission of methane gas leakage at a mining as well as CO 2 emissions from fossil fuel combustion during generating electricity, natural gas treatment at an extracting well and cement production in industry. The commercially available and future-commercial technologies are dealt with in the study. Regarding PV technologies, two different kinds of installation are investigated; roof-top typed installation of residential houses and ground installation of electric utilities. (author)

  2. Life cycle assessment-driven selection of industrial ecology strategies.

    Science.gov (United States)

    Ardente, Fulvio; Cellura, Maurizio; Lo Brano, Valerio; Mistretta, Marina

    2010-01-01

    The paper presents an application of the Life-Cycle Assessment (LCA) to the planning and environmental management of an “eco-industrial cluster.” A feasibility study of industrial symbiosis in southern Italy is carried out, where interlinked companies share subproducts and scraps, services, structures, and plants to reduce the related environmental impact. In particular, the research focuses on new recycling solutions to create open recycling loops in which plastic subproducts and scraps are transferred to external production systems. The main environmental benefits are the reduction of resource depletion, air emissions, and landfilled wastes. The proposed strategies are also economically viable and they suggest cost abatement for the involved companies. This research shows the need for a multidisciplinary approach to data processing and to complexity managing of the investigated systems. In this context, life-cycle thinking is required to be promoted throughout the economy, as well to be as a part of all decisions on products and other criteria such as functionality, health, and safety. The Life-Cycle Assessment approach can be assumed as a methodology for influencing decision makers to make sustainable choices.

  3. US electric industry response to carbon constraint: a life-cycle assessment of supply side alternatives

    International Nuclear Information System (INIS)

    Meier, P.J.; Wilson, P.P.H.; Kulcinski, G.L.; Denholm, P.L.

    2005-01-01

    This study explores the boundaries of electric industry fuel switching in response to US carbon constraints. A ternary model quantifies how supply side compliance alternatives would change under increasingly stringent climate policies and continued growth in electricity use. Under the White House Climate Change Initiative, greenhouse gas emissions may increase and little or no change in fuel-mix is necessary. As expected, the more significant carbon reductions proposed under the Kyoto Protocol (1990--7% levels) and Climate Stewardship Act (CSA) (1990 levels) require an increase of some combination of renewable, nuclear, or natural gas generated electricity. The current trend of natural gas power plant construction warrants the investigation of this technology as a sustainable carbon-mitigating measure. A detailed life-cycle assessment shows that significant greenhouse gas emissions occur upstream of the natural gas power plant, primarily during fuel-cycle operations. Accounting for the entire life-cycle increases the base emission rate for combined-cycle natural gas power by 22%. Two carbon-mitigating strategies are tested using life-cycle emission rates developed for US electricity generation. Relying solely on new natural gas plants for CSA compliance would require a 600% increase in natural gas generated electricity and almost complete displacement of coal from the fuel mix. In contrast, a 240% increase in nuclear or renewable resources meets the same target with minimal coal displacement. This study further demonstrates how neglecting life-cycle emissions, in particular those occurring upstream of the natural gas power plant, may cause erroneous assessment of supply side compliance alternatives

  4. Life-cycle phases of a zinc- and cadmium-resistant ecotype of Silene vulgaris in risk assessment of polymetallic mine soils.

    NARCIS (Netherlands)

    Ernst, W.H.O.; Nelissen, H.J.M.

    2000-01-01

    Short-term exposure of plants to heavy metals is often used for risk assessment of metal-enriched soils (OECD guideline 208) without considering the reliability of the assessment for long-term exposure, i.e. for the completion of a plant's life-cycle. In the present study with 15 orogenic soils

  5. Ocean Thermal Energy Conversion Life Cycle Cost Assessment, Final Technical Report, 30 May 2012

    Energy Technology Data Exchange (ETDEWEB)

    Martel, Laura [Lockheed Martin, Manassas, VA (United States); Smith, Paul [John Halkyard and Associates: Glosten Associates, Houston, TX (United States); Rizea, Steven [Makai Ocean Engineering, Waimanalo, HI (United States); Van Ryzin, Joe [Makai Ocean Engineering, Waimanalo, HI (United States); Morgan, Charles [Planning Solutions, Inc., Vancouver, WA (United States); Noland, Gary [G. Noland and Associates, Inc., Pleasanton, CA (United States); Pavlosky, Rick [Lockheed Martin, Manassas, VA (United States); Thomas, Michael [Lockheed Martin, Manassas, VA (United States); Halkyard, John [John Halkyard and Associates: Glosten Associates, Houston, TX (United States)

    2012-05-30

    The Ocean Thermal Energy Conversion (OTEC) Life Cycle Cost Assessment (OLCCA) is a study performed by members of the Lockheed Martin (LM) OTEC Team under funding from the Department of Energy (DOE), Award No. DE-EE0002663, dated 01/01/2010. OLCCA objectives are to estimate procurement, operations and maintenance, and overhaul costs for two types of OTEC plants: -Plants moored to the sea floor where the electricity produced by the OTEC plant is directly connected to the grid ashore via a marine power cable (Grid Connected OTEC plants) -Open-ocean grazing OTEC plant-ships producing an energy carrier that is transported to designated ports (Energy Carrier OTEC plants) Costs are developed using the concept of levelized cost of energy established by DOE for use in comparing electricity costs from various generating systems. One area of system costs that had not been developed in detail prior to this analysis was the operations and sustainment (O&S) cost for both types of OTEC plants. Procurement costs, generally referred to as capital expense and O&S costs (operations and maintenance (O&M) costs plus overhaul and replacement costs), are assessed over the 30 year operational life of the plants and an annual annuity calculated to achieve a levelized cost (constant across entire plant life). Dividing this levelized cost by the average annual energy production results in a levelized cost of electricity, or LCOE, for the OTEC plants. Technical and production efficiency enhancements that could result in a lower value of the OTEC LCOE were also explored. The thermal OTEC resource for Oahu, Hawaii and projected build out plan were developed. The estimate of the OTEC resource and LCOE values for the planned OTEC systems enable this information to be displayed as energy supplied versus levelized cost of the supplied energy; this curve is referred to as an Energy Supply Curve. The Oahu Energy Supply Curve represents initial OTEC deployment starting in 2018 and demonstrates the

  6. Comparison of Plant Life Management Approaches for Long Term Operations

    International Nuclear Information System (INIS)

    Kang, Kisig

    2012-01-01

    Plant life management can be defined as the integration of ageing and economic planning to maintain a high level of safety and optimize operations. Many Member States have given high priority to long term operation of nuclear power plants beyond the time frame originally anticipated (e. g. 30 or 40 years). Out of a total of 445 (369 GWe) operating nuclear power plants, 349 units (297 GWe) have been in operation for more than 20 years (as of November 2011). The need for engineering support to operation, maintenance, safety review and life management for long term operation as well as education and training in the field is increasingly evident. In addition the Fukushima accident has rendered all stake holders even more attentive to safety concerns and to the provision of beyond safety measures in the preparation and scrutiny of applications for operational design life extensions. In many countries, the safety performance of NPPs is periodically followed and characterized via the periodic safety review (PSR) approach. The regulatory The regulatory review and acceptance of the PSR gives the licensee the permission to operate the plant for up to the end of the next PSR cycle (usually 10 years). In the USA and other countries operating US designed plants, the license renewal application is based on the five pre-requisite requirements and ageing management programme for passive long life system structure and components(SSCs) and active systems is adequately addressed by the maintenance rule (MR) requirements and other established regulatory processes. Other Member States have adopted a combined approach that incorporates elements of both PSR and additional LRA specific requirements primarily focused on time limited ageing analysis. Taking into account this variety of approaches, the international atomic energy agency (IAEA) initiated work for collecting and sharing information among Member States about good practices on plant life management for long term operation in

  7. Evaluation of the integrity and duration of the Laguna Verde nuclear power plant life- Plant Life Management program (PLIM). TC MEX 04/53 Technical Cooperation Project

    International Nuclear Information System (INIS)

    Arganis J, C.R.; Diaz S, A.; Aguilar T, J.A.

    2006-01-01

    As part of the IAEA TC MEX 04/53 Project 'Evaluation of the integrity and extension of life of the Laguna Verde nuclear power plant Handling Program of plant' whose objective is the one of beginning the actions to apply the methodology of Handling of plant life in the Unit 1 of the Laguna Verde Nucleo electric Central for to obtain the Renovation of License in 2020 the ININ, through the Department of Synthesis and Characterization of materials has carried out more of 20 analysis of susceptibility to the intergranular cracking for corrosion under effort in interns so much of the reactor of the unit 1 like of the unit 2 documenting the current state of components based on the type or types of materials that conform them, to it thermomechanical history, operational and of production, as well as of the particularities associated to its use and operation. For the application of the methodology of life handling of plant 5 structure systems or pilot components were selected, to carry out the programs of handling of the aging and handling of plant life: The encircling of the reactor core (Core Shroud), the reactor pressure vessel (Reactor Pressure Vessel), the primary container (Primary Containment), the recirculation system of feeding water (Reactor Feed Water) and cables. (Author)

  8. Life styles of Colletotrichum species and implications for plant biosecurity

    NARCIS (Netherlands)

    Silva, Dilani D. De; Crous, Pedro W.; Ades, Peter Kevin; Hyde, Kevin D.; Taylor, Paul W. J.

    Colletotrichum is a genus of major plant pathogens causing anthracnose diseases in many plant crops worldwide. The genus comprises a highly diverse group of pathogens that infect a wide range of plant hosts. The life styles of Colletotrichum species can be broadly categorised as necrotrophic,

  9. Pattern-recognition system application to EBR-II plant-life extension

    International Nuclear Information System (INIS)

    King, R.W.; Radtke, W.H.; Mott, J.E.

    1988-01-01

    A computer-based pattern-recognition system, the System State Analyzer (SSA), is being used as part of the EBR-II plant-life extension program for detection of degradation and other abnormalities in plant systems. The SSA is used for surveillance of the EBR-II primary system instrumentation, primary sodium pumps, and plant heat balances. Early results of this surveillance indicate that the SSA can detect instrumentation degradation and system performance degradation over varying time intervals, and can provide derived signal values to replace signals from failed critical sensors. These results are being used in planning for extended-life operation of EBR-II

  10. Life cycle assessment of onshore and offshore wind energy-from theory to application

    International Nuclear Information System (INIS)

    Bonou, Alexandra; Laurent, Alexis; Olsen, Stig I.

    2016-01-01

    Highlights: • An LCA of 2 onshore and 2 offshore wind power plants was performed. • Onshore wind power performs better than offshore per kWh delivered to the grid. • Materials are responsible for more than 79% and 70% of climate change impacts onshore and offshore respectively. • The bigger, direct drive turbines perform better than the smaller geared ones. • Climate change is a good KPI for wind power plant hotspot identification. - Abstract: This study aims to assess the environmental impacts related to the provision of 1 kWh to the grid from wind power in Europe and to suggest how life cycle assessment can inform technology development and system planning. Four representative power plants onshore (with 2.3 and 3.2 MW turbines) and offshore (4.0 and 6.0 MW turbines) with 2015 state-of-the-art technology data provided by Siemens Wind Power were assessed. The energy payback time was found to be less than 1 year for all technologies. The emissions of greenhouse gases amounted to less than 7 g CO_2-eq/kWh for onshore and 11 g CO_2-eq/kWh for offshore. Climate change impacts were found to be a good indicator for overall hotspot identification however attention should also be drawn to human toxicity and impacts from respiratory inorganics. The overall higher impact of offshore plants, compared to onshore ones, is mainly due to larger high-impact material requirements for capital infrastructure. In both markets the bigger turbines with more advanced direct drive generator technology is shown to perform better than the smaller geared ones. Capital infrastructure is the most impactful life cycle stage across impacts. It accounts for more than 79% and 70% of climate change impacts onshore and offshore respectively. The end-of-life treatment could lead to significant savings due to recycling, ca. 20–30% for climate change. In the manufacturing stage the impacts due to operations at the case company do not exceed 1% of the total life cycle impacts. This finding

  11. Plant life management and modernisation: Research challenges in the EU

    International Nuclear Information System (INIS)

    Rintamaa, R.; Aho-Mantila, I.

    2011-01-01

    The European network of excellence NULIFE (nuclear plant life prediction) has been launched with a clear focus on integrating safety-oriented research on materials, structures and systems and exploiting the results of this integration through the production of harmonised lifetime assessment methods. NULIFE will help provide a better common understanding of the factors affecting the lifetime of nuclear power plants which, together with associated management methods, will help facilitate safe and economic long-term operation of existing nuclear power plants. In addition, NULIFE will help in the development of design criteria for future generations of nuclear power plant. NULIFE was kicked-off in October 2006 and will work over a 5-year period to create a single organization structure, capable of providing harmonised research and development (R and D) at European level to the nuclear power industry and the related safety authorities. Led by VTT (Technical Research Centre of Finland), the project has a total budget in excess of 8 million euros, with over 40 partners drawn from leading research institutions, technical support organizations, electric power utilities and manufacturers throughout Europe. NULIFE also involves many industrial organizations and, in addition to their R and D contributions, these take part in a dedicated End User Group. Over the last 15 years the European Commission has sponsored a significant number of R and D projects under the Euratom Framework Programme and its Joint Research Centre has developed co-operative European Networks for mutual benefits on specific topics related to plant life management. However, their overall impact has been reduced due to fragmentation. These networks are considered forerunners to NULIFE. The importance of the long-term operation of the plants has been recognized at European level, in the strategic research agenda of SNETP (Sustainable Nuclear Energy Technology Platform). In NULIFE, the joint EU

  12. Life Cycle Assessment for Biofuels

    Science.gov (United States)

    A presentation based on life cycle assessment (LCA) for biofuels is given. The presentation focuses on energy and biofuels, interesting environmental aspects of biofuels, and how to do a life cycle assessment with some examples related to biofuel systems. The stages of a (biofuel...

  13. Nuclear power plant life management in a changing business world

    International Nuclear Information System (INIS)

    2000-01-01

    At the end of 1999, there were 348 nuclear power plants connected to the grid in OECD Member countries, representing a total capacity of 296 GWe and generating some 24% of their electricity. One third of these nuclear power plants had been in operation for over 20 years. The demand for electricity throughout OECD countries is increasing steadily but the construction of new nuclear power plants has become increasingly difficult. Many utilities would like to keep existing nuclear power plants operating for as long as they can continue to function safely and economically because. extending the lifetime of nuclear power plants is a substitute to constructing new plants. Therefore, nuclear plant life management (PLIM) has been carried out in many OECD Member countries and has played a very important role in the nuclear generation field. Nuclear power plant owners seek to economically optimise the output from their plants, taking into consideration internal and external influences, as well as equipment reliability and maintenance workload. Nuclear power plant life management and extension is generally an attractive option for utilities supplying electricity because of its low marginal cost and low investment risk. PLIM has become an important issue in the context of changing business circumstances caused by regulatory reform of the electricity market. Specifically, the economic aspect of PLIM has become an important focus in the competitive electricity market. The international workshop on 'Plant Life Management in a Changing Business World' was hosted by the United States Department of Energy (USDOE) in co-operation with the Electric Power Research Institute (EPRI) and the Nuclear Energy Institute (NEI) in Washington, DC, on 26-27 June 2000. Some 50 senior utility executives and policy makers from 12 Member countries, the International Energy Agency (IEA) and the European Commission (EC) attended the meeting. The objective of the workshop was to examine the status of

  14. Life cycle assessment and evaluation of sustainable product design strategies for combined cycle power plants; Lebenszyklusanalyse und Bestimmung von Einflussfaktoren zur nachhaltigen Produktgestaltung von GuD-Kraftwerken

    Energy Technology Data Exchange (ETDEWEB)

    Parthey, Falko

    2010-03-26

    The growth of the national GDP on a worldwide level and the associated increasing demand for primary energy inevitably result in higher emissions levels. According to recent international scientific studies the energy sector (including electricity generation, industrial activities and traffic) contributes up to 83 % to the worldwide greenhouse gas emissions. Climate change and the projection of its impacts have been acknowledged also on the political level and concise measures are being considered. Since access to electricity and sustainable development are inseparable, the question arises whether and how adequate answers can be given within the coming years. Furthermore, the definite lifetime of the existing power plant fleet will result in a gap of up to 12.000 MWh in 2020, depending on the scenario. One part of the answer lies in the sustainable design of power plants. The main contribu-tion of this work is therefore the life cycle analysis of a combined cycle power plant from of a manufacturer's perspective. The visualisation of the entire product system and the re-sults of the impact assessment facilitate the determination of improvement potential. The system boundaries for this study include all relevant phases of the product life cycle (materials, manufacturing, transport, operation, service and end of life). The life cycle inventory consists of all bills of materials and energy consumption for all components and life cycle phases. The interpretation of the results of the impact assessment showed the expected significant contribution in kg CO{sub 2}e for the emission of the full load operation. Nevertheless, the results for all impact categories over the entire lifecycle are given. Various operation scenarios and configurations can now be analysed based on the elaborated modules, and can now serve as decision support already during product development. The visualisation of impacts of design decisions on the ecological footprint of the product system in

  15. Plant life management in Belgium: an integrated project

    International Nuclear Information System (INIS)

    Wacquier, W.; Smet, M. de; Hennart, J.C.; Greer, J.L.; Breesch, Ch.; Havard, P.

    2001-01-01

    In Belgium, a specific plant life management project, named ''Continuous Operation of Belgian NPPs'' is currently developing. Its final objective is to centralize all safety and economic aspects of plant life management in order to determine, for each NPP unit, the optimal actions required to maintain their safe and reliable operation. As the lifetime of safety-related active components is permanently controlled by the current maintenance programs, the project focuses only on passive safety-related components and on non-safety components important for the availability of the plants. These structures and components were evaluated and compared on the basis of a set of weighted criteria in order to measure their criticality and to identify those which must be considered in the project. The selection and the ranking of those components is based on the KBM TM methodology (Knowledge Based Maintenance). This methodology facilitates the collection, formalization and exchange of know-how and gives immediate results thanks to a sequential and systematic step by step analysis. (author)

  16. Systems Modeling For The Laser Fusion-Fission Energy (LIFE) Power Plant

    International Nuclear Information System (INIS)

    Meier, W.R.; Abbott, R.; Beach, R.; Blink, J.; Caird, J.; Erlandson, A.; Farmer, J.; Halsey, W.; Ladran, T.; Latkowski, J.; MacIntyre, A.; Miles, R.; Storm, E.

    2008-01-01

    A systems model has been developed for the Laser Inertial Fusion-Fission Energy (LIFE) power plant. It combines cost-performance scaling models for the major subsystems of the plant including the laser, inertial fusion target factory, engine (i.e., the chamber including the fission and tritium breeding blankets), energy conversion systems and balance of plant. The LIFE plant model is being used to evaluate design trade-offs and to identify high-leverage R and D. At this point, we are focused more on doing self consistent design trades and optimization as opposed to trying to predict a cost of electricity with a high degree of certainty. Key results show the advantage of large scale (>1000 MWe) plants and the importance of minimizing the cost of diodes and balance of plant cost

  17. Assessment and management of ageing of major nuclear power plant components important to safety: BWR pressure vessels

    International Nuclear Information System (INIS)

    2005-10-01

    At present, there are over four hundred operational nuclear power plants (NPPs) in IAEA Member States. Operating experience has shown that ineffective control of the ageing degradation of the major NPP components (caused for instance by unanticipated phenomena and by operating, maintenance or manufacturing errors) can jeopardize plant safety and also plant life. Ageing in these NPPs must be therefore effectively managed to ensure the availability of design functions throughout the plant service life. From the safety perspective, this means controlling, within acceptable limits, the ageing degradation and wear out of plant components important to safety so that adequate safety margins remain, i.e. integrity and functional capability in excess of normal operating requirements. This TECDOC is one in a series of reports on the assessment and management of ageing of the major NPP components important to safety. The reports are based on experience and practices of NPP operators, regulators, designers, manufacturers and technical support organizations and a widely accepted Methodology for the Management of Ageing of NPP Components Important to Safety, which was issued by the IAEA in 1992. Since the reports are written from a safety perspective, they do not address life or life cycle management of plant components, which involves economic considerations. The current practices for the assessment of safety margins (fitness for service) and the inspection, monitoring and mitigation of ageing degradation of selected components of Canada deuterium-uranium (CANDU) reactors, boiling water reactors (BWRs), pressurized water reactors (PWRs), and water moderated, water cooled energy reactors (WWERs) are documented in the reports. These practices are intended to help all involved directly and indirectly in ensuring the safe operation of NPPs, and also to provide a common technical basis for dialogue between plant operators and regulators when dealing with age related licensing issues

  18. Fatigue life assessment for pipeline welds by x-ray diffraction technique

    International Nuclear Information System (INIS)

    Lee, Sang Guk; Yoo, Keun Bong

    2006-01-01

    The objective of this study is to estimate the feasibility of X-ray diffraction method application for fatigue life assessment of the high-temperature pipeline steel such as main steam pipe, re-heater pipe and header etc. in power plant. In this study, X-ray diffraction tests using various types of specimen simulated low cycle fatigue damage were performed in order to analyze fatigue properties when fatigue damage conditions become various stages such as 1/4, l/2 and 3/4 of fatigue life, respectively. As a result off-ray diffraction tests for specimens simulated fatigue damages, we conformed that the variation of the full width at half maximum intensity decreased in proportion to the increase of fatigue life ratio. And also, He ratio of the full width at half maximum intensity due to fatigue damage has linear relationship with fatigue life ratio algebraically. From this relationship, it was suggested that direct expectation of the life consumption rate was feasible.

  19. Nuclear power plant life extension in the United Kingdom

    International Nuclear Information System (INIS)

    Goodison, D.; Seddon, J.W.; Pape, E.M.

    1991-01-01

    The safety cases for the United Kingdom's older nuclear power plant have been reviewed by their utilities in order to justify continued operation of the reactors up to an age of at least 30 year. These 'long term safety reviews' have identified worthwhile plant modifications and aspects where further studies or plant inspections are required. As the plants approach the age of 30 years, 'life extension reviews' are now being undertaken, concentrating on management of ageing, to support operation to at least 40 years. (author)

  20. Biomass from agriculture in small-scale combined heat and power plants - A comparative life cycle assessment

    International Nuclear Information System (INIS)

    Kimming, M.; Sundberg, C.; Nordberg, A.; Baky, A.; Bernesson, S.; Noren, O.; Hansson, P.-A.

    2011-01-01

    Biomass produced on farm land is a renewable fuel that can prove suitable for small-scale combined heat and power (CHP) plants in rural areas. However, it can still be questioned if biomass-based energy generation is a good environmental choice with regards to the impact on greenhouse gas emissions, and if there are negative consequences of using of agricultural land for other purposes than food production. In this study, a simplified life cycle assessment (LCA) was conducted over four scenarios for supply of the entire demand of power and heat of a rural village. Three of the scenarios are based on utilization of biomass in 100 kW (e) combined heat and power (CHP) systems and the fourth is based on fossil fuel in a large-scale plant. The biomass systems analyzed were based on 1) biogas production with ley as substrate and the biogas combusted in a microturbine, 2) gasification of willow chips and the product gas combusted in an IC-engine and 3) combustion of willow chips for a Stirling engine. The two first scenarios also require a straw boiler. The results show that the biomass-based scenarios reduce greenhouse gas emissions considerably compared to the scenario based on fossil fuel, but have higher acidifying emissions. Scenario 1 has by far the best performance with respect to global warming potential and the advantage of utilizing a byproduct and thus not occupying extra land. Scenario 2 and 3 require less primary energy and less fossil energy input than 1, but set-aside land for willow production must be available. The low electric efficiency of scenario 3 makes it an unsuitable option.

  1. Environmentally Clean Mitigation of Undesirable Plant Life Using Lasers

    Energy Technology Data Exchange (ETDEWEB)

    Rubenchik, A M; McGrann, T J; Yamamoto, R M; Parker, J M

    2009-07-01

    This concept comprises a method for environmentally clean destruction of undesirable plant life using visible or infrared radiation. We believe that during the blossom stage, plant life is very sensitive to electromagnetic radiation, with an enhanced sensitivity to specific spectral ranges. Small doses of irradiation can arrest further plant growth, cause flower destruction or promote plant death. Surrounding plants, which are not in the blossoming stage, should not be affected. Our proposed mechanism to initiate this effect is radiation produced by a laser. Tender parts of the blossom possess enhanced absorptivity in some spectral ranges. This absorption can increase the local tissue temperature by several degrees, which is sufficient to induce bio-tissue damage. In some instances, the radiation may actually stimulate plant growth, as an alternative for use in increased crop production. This would be dependent on factors such as plant type, the wavelength of the laser radiation being used and the amount of the radiation dose. Practical, economically viable realization of this concept is possible today with the advent of high efficiency, compact and powerful laser diodes. The laser diodes provide an efficient, environmentally clean source of radiation at a variety of power levels and radiation wavelengths. Figure 1 shows the overall concept, with the laser diodes mounted on a movable platform, traversing and directing the laser radiation over a field of opium poppies.

  2. Safety assessment principles for nuclear plants

    International Nuclear Information System (INIS)

    1992-01-01

    The present Safety Assessment Principles result from the revision of those which were drawn up following a recommendation arising from the Sizewell-B enquiry. The principles presented here relate only to nuclear safety; there is a section on risks from normal operation and accident conditions and the standards against which those risks are assessed. A major part of the document deals with the principles that cover the design of nuclear plants. The revised Safety assessment principles are aimed primarily at the safety assessment of new nuclear plants but they will also be used in assessing existing plants. (UK)

  3. Life cycle sustainability assessment of chemical processes

    DEFF Research Database (Denmark)

    Xu, Di; Lv, Liping; Ren, Jingzheng

    2017-01-01

    In this study, an integrated vector-based three-dimensional (3D) methodology for the life cycle sustainability assessment (LCSA) of chemical process alternatives is proposed. In the methodology, a 3D criteria assessment system is first established by using the life cycle assessment, the life cycl...

  4. Plant maintenance and plant life extension issue, 2008

    International Nuclear Information System (INIS)

    Agnihotri, Newal

    2008-01-01

    The focus of the March-April issue is on plant maintenance and plant life extension. Major articles include the following: Exciting time to be at the U.S. NRC, by Dale Klein, Nuclear Regulatory Commission; Extraordinary steps to ensure a minimal environmental impact, by George Vanderheyden, UniStar Nuclear Energy, LLC.; Focused on consistent reduction of outages, by Kevin Walsh, GE Hitachi Nuclear Energy; On the path towards operational excellence, by Ricardo Perez, Westinghouse Electric Company; Ability to be refuelled on-line, by Ian Trotman, CANDU Services, Atomic Energy of Canada, Ltd.; ASCA Application for maintenance of SG secondary side, by Patrick Wagner, Wolf Creek Nuclear Operating Corporation, Phillip Battaglia and David Selfridge, Westinghouse Electric Company; and, An integral part of the landscape and lives, by Tyler Lamberts, Entergy Nuclear Operations, Inc. The Industry Innovation article is titled Steam generator bowl drain repairs, by John Makar and Richard Gimple, Wolf Creek Nuclear Operating Corporation

  5. Life Cycle Management Managing the Aging of Critical Nuclear Plant Components

    International Nuclear Information System (INIS)

    Meyer, Theodore A.; Elder, G. Gary; Llovet, Ricardo

    2002-01-01

    Life Cycle Management is a structured process to manage equipment aging and long-term equipment reliability for nuclear plant Systems, Structures and Components (SSCs). The process enables the identification of effective repair, replace, inspect, test and maintenance activities and the optimal timing of the activities to maximize the economic value to the nuclear plant. This paper will provide an overview of the process and some of the tools that can be used to implement the process for the SSCs deemed critical to plant safety and performance objectives. As nuclear plants strive to reduce costs, extend life and maximize revenue, the LCM process and the supporting tools summarized in this paper can enable development of a long term, cost efficient plan to manage the aging of the plant SSCs. (authors)

  6. COMSY - A Software Tool for Aging and Plant Life Management

    International Nuclear Information System (INIS)

    Zander, Andre; Nopper, Helmut

    2012-01-01

    A Plant-wide and systematic Aging and Plant Life Management is essential for the safe operation and/or availability of nuclear power plants. The Aging Management (AM) has the objective to monitor and control degradation effects for safety relevant Systems, Structures and Components (SSCs) which may compromise safety functions of the plant. The Plant Life Management (PLM) methodology also includes aging surveillance for availability relevant SSCs. AM and PLM cover mechanical components, electrical and I and C systems and civil structures All Aging and Plant Life Management rules call for a comprehensive approach, requiring the systematic collection of various aging and safety relevant data on a plant-wide basis. This data needs to be serviced and periodically evaluated. Due to the complexity of the process, this activity needs to be supported by a qualified software tool for the management of aging relevant data and associated documents (approx. 30 000 SSCs). In order to support the power plant operators AREVA NP has developed the software tool COMSY. The COMSY software with its integrated AM modules enables the design and setup of a knowledge-based power plant model compatible to the requirements of international and national rules (e.g. IAEA Safety Guide NS-G-2.12, KTA 1403). In this process, a key task is to identify and monitor degradation mechanisms. For this purpose the COMSY tool provides prognosis and trending functions, which are based on more than 30 years of experience in the evaluation of degradation effects and numerous experimental studies. Since 1998 COMSY has been applied successfully in more than fifty reactor units in this field. The current version 3.0 was revised completely and offers additional AM functions. All aging-relevant component data are compiled and allocated via an integrated power plant model. Owing to existing interfaces to other software solutions and flexible import functions, COMSY is highly compatible with already existing data

  7. EPRI/DOE nuclear plant life extension overview

    International Nuclear Information System (INIS)

    Carey, J.J.; Lapides, M.E.; Harrison, D.; Ducharme, A.

    1987-01-01

    Recognizing the major investment in current U.S. nuclear capacity and the excellent prospects that these units have a useful life substantially in excess of their 40 year license term, EPRI and DOE have jointly undertaken a comprehensive, multiyear, nuclear plant life extension program. The program, which has its antecedents in EPRI studies of 1978-9, aims to support U.S. utilities, first in verifying the requirements of extended operation and then in implementing a plan for achieving extended service and license renewal. The effort, begun in 1985, has already yielded numerous benefits and is expected to further aid in improving near-term performance of nuclear units. A utility LWR Plant Life Extension Committee has been established to provide overview and guidance to the DOE/EPRI research and development activities and also to develop and integrate utility responses to licensing and codes and standards issues. Pilot study projects, performed by Virginia Power and Northern States Power, were the initial EPRI/DOE focus. This base has gradually expanded to incorporate other utilities and generating units, as well as a broad base of technology support. The latter includes: a) economic and financial analysis methods applicable at the unit, region and national level, b) long-term materials deterioration analysis and sampling, c) component life prediction methods and d) refurbishment and repair evaluations. This paper presents the history and status of the overall EPRI/DOE program

  8. Introducing Life Cycle Impact Assessment

    DEFF Research Database (Denmark)

    Hauschild, Michael Zwicky; Huijbregts, Mark AJ

    2015-01-01

    This chapter serves as an introduction to the presentation of the many aspects of life cycle impact assessment (LCIA) in this volume of the book series ‘LCA Compendium’. It starts with a brief historical overview of the development of life cycle impact assessment driven by numerous national LCIA...... methodology projects and presents the international scientific discussions and methodological consensus attempts in consecutive working groups under the auspices of the Society of Environmental Toxicology and Chemistry (SETAC) as well as the UNEP/ SETAC Life Cycle Initiative, and the (almost) parallel...

  9. Life Cycle Impact Assessment

    DEFF Research Database (Denmark)

    Rosenbaum, Ralph K.; Hauschild, Michael Zwicky; Boulay, Anne-Marie

    2018-01-01

    This chapter is dedicated to the third phase of an LCA study, the Life Cycle Impact Assessment (LCIA) where the life cycle inventory’s information on elementary flows is translated into environmental impact scores. In contrast to the three other LCA phases, LCIA is in practice largely automated...

  10. Life Cycle Cost Analysis of Ready Mix Concrete Plant

    Science.gov (United States)

    Topkar, V. M.; Duggar, A. R.; Kumar, A.; Bonde, P. P.; Girwalkar, R. S.; Gade, S. B.

    2013-11-01

    India, being a developing nation is experiencing major growth in its infrastructural sector. Concrete is the major component in construction. The requirement of good quality of concrete in large quantities can be fulfilled by ready mix concrete batching and mixing plants. The paper presents a technique of applying the value engineering tool life cycle cost analysis to a ready mix concrete plant. This will help an investor or an organization to take investment decisions regarding a ready mix concrete facility. No economic alternatives are compared in this study. A cost breakdown structure is prepared for the ready mix concrete plant. A market survey has been conducted to collect realistic costs for the ready mix concrete facility. The study establishes the cash flow for the ready mix concrete facility helpful in investment and capital generation related decisions. Transit mixers form an important component of the facility and are included in the calculations. A fleet size for transit mixers has been assumed for this purpose. The life cycle cost has been calculated for the system of the ready mix concrete plant and transit mixers.

  11. Evaluation of new alternatives in wastewater treatment plants based on dynamic modelling and life cycle assessment (DM-LCA).

    Science.gov (United States)

    Bisinella de Faria, A B; Spérandio, M; Ahmadi, A; Tiruta-Barna, L

    2015-11-01

    With a view to quantifying the energy and environmental advantages of Urine Source-Separation (USS) combined with different treatment processes, five wastewater treatment plant (WWTP) scenarios were compared to a reference scenario using Dynamic Modelling (DM) and Life Cycle Assessment (LCA), and an integrated DM-LCA framework was thus developed. Dynamic simulations were carried out in BioWin(®) in order to obtain a realistic evaluation of the dynamic behaviour and performance of plants under perturbation. LCA calculations were performed within Umberto(®) using the Ecoinvent database. A Python™ interface was used to integrate and convert simulation data and to introduce them into Umberto(®) to achieve a complete LCA evaluation comprising foreground and background processes. Comparisons between steady-state and dynamic simulations revealed the importance of considering dynamic aspects such as nutrient and flow peaks. The results of the evaluation highlighted the potential of the USS scenario for nutrient recovery whereas the Enhanced Primary Clarification (EPC) scenario gave increased biogas production and also notably decreased aeration consumption, leading to a positive energy balance. Both USS and EPC scenarios also showed increased stability of plant operation, with smaller daily averages of total nitrogen and phosphorus. In this context, USS and EPC results demonstrated that the coupled USS + EPC scenario and its combinations with agricultural spreading of N-rich effluent and nitritation/anaerobic deammonification could present an energy-positive balance with respectively 27% and 33% lower energy requirements and an increase in biogas production of 23%, compared to the reference scenario. The coupled scenarios also presented lesser environmental impacts (reduction of 31% and 39% in total endpoint impacts) along with effluent quality well within the specified limits. The marked environmental performance (reduction of global warming) when nitrogen is used

  12. Life cycle assessment of genetically modified products as a basis for a comprehensive assessment of possible environmental effects

    International Nuclear Information System (INIS)

    Kloepffer, W.; Renner, I.; Schmidt, E.; Tappeser, B.; Gensch, C.O.; Gaugitsch, H.

    2001-01-01

    In the preceding project 'Life Cycle Assessment of genetically modified products as a basis for a comprehensive assessment of possible environmental effects' for the first time the risks of deliberate release of genetically modified organisms (GMOs) into the environment have been taken into account in a Life Cycle Assessment (LCA). This was performed by a risk assessment in addition to a quantitative impact assessment. As from a methodological perspective this was not satisfactory, the Federal Environment Agency commissioned the C.A.U. GmbH and the Institute of Applied Ecology Freiburg to further develop the impact assessment methodology for the risks of GMOs. Any further development of the methodology of impact assessment in LCAs has to be performed on the basis of the standard EN/ISO 14042. There are 2 options for taking into account risks of deliberate release of GMOs: 1. allocation of the potential effects resulting from the genetic modification on human beings and the environment to existing categories of the impact assessment and attempt to quantify within those existing methods of characterization; 2. development of a new category, e.g. 'effects of genetically modified crop plants'. In order to asses the possibilities under option 1 various models of characterization within the categories human toxicity, ecotoxicity and land use (appropriation of environmental space) have been analyzed. The risks of GMOs identified and dealt with in the preceding study were allocated to these categories. It seemed to be impossible to integrate the risks in existing models of characterization for human toxicity and ecotoxicity, as these are based on exposure and impact factors. The development of a factor for exposure seems possible for GMOs, however a suitable impact factor is not possible to generate. In addition it was analyzed if in other impact categories which are difficult to quantify any solutions for operationalization exist. This does not seem to be the case. As a

  13. Plant life extensions for German nuclear power plants? Controversial discussion on potential electricity price effects

    International Nuclear Information System (INIS)

    Matthes, Felix C.; Hermann, Hauke

    2009-06-01

    The discussions on electricity price effects in case of the plant life extension of German nuclear power plants covers the following topics: (1) Introduction and methodology. (2) Electricity generation in nuclear power plants and electricity price based on an empirical view: electricity generation in nuclear power plants and final consumption price for households and industry in the European Union; electricity generation in nuclear power plants and electricity wholesale price in case of low availability of nuclear power plants in Germany; comparison of electricity wholesale prices in Germany and France. (3) Model considerations in relation to electricity prices and nuclear phase-out. (4) Concluding considerations.

  14. Influence of service life on Life Cycle Assessments

    NARCIS (Netherlands)

    van Nunen, H.; Hendriks, N.A.; Erkelens, P.A.

    2003-01-01

    Environmental assessment is part of present decision making. But, because of difficulties the assessments are not as profound as could be. Life Cycle Assessment (LCA) is a cradle-to-grave approach and consequently a time factor is embedded. Until now this time factor is fixed and calculations are

  15. Analysis of environmental impact phase in the life cycle of a nuclear power plant; Analisis de la fase de impacto ambiental en el ciclo de vida de una central nuclear

    Energy Technology Data Exchange (ETDEWEB)

    Hernandez del M, C.

    2015-07-01

    The life-cycle analysis covers the environmental aspects of a product throughout its life cycle. The focus of this study was to apply a methodology of life-cycle analysis for the environmental impact assessment of a nuclear power plant by analyzing international standards ISO 14040 and 14044. The methodology of life-cycle analysis established by the ISO 14044 standard was analyzed, as well as the different impact assessment methodologies of life cycle in order to choose the most appropriate for a nuclear power plant; various tools for the life-cycle analysis were also evaluated, as is the use of software and the use of databases to feed the life cycle inventory. The functional unit chosen was 1 KWh of electricity, the scope of analysis ranging from the construction and maintenance, disposal of spent fuel to the decommissioning of the plant, the manufacturing steps of the fuel were excluded because in Mexico is not done this stage. For environmental impact assessment was chosen the Recipe methodology which evaluates up to 18 impact categories depending on the project. In the case of a nuclear power plant were considered only categories of depletion of the ozone layer, climate change, ionizing radiation and formation of particulate matter. The different tools for life-cycle analysis as the methodologies of impact assessment of life cycle, different databases or use of software have been taken according to the modeling of environmental sensitivities of different regions, because in Mexico the methodology for life-cycle analysis has not been studied and still do not have all the tools necessary for the evaluation, so the uncertainty of the data supplied and results could be higher. (Author)

  16. A case study by life cycle assessment

    Science.gov (United States)

    Li, Shuyun

    2017-05-01

    This article aims to assess the potential environmental impact of an electrical grinder during its life cycle. The Life Cycle Inventory Analysis was conducted based on the Simplified Life Cycle Assessment (SLCA) Drivers that calculated from the Valuation of Social Cost and Simplified Life Cycle Assessment Model (VSSM). The detailed results for LCI can be found under Appendix II. The Life Cycle Impact Assessment was performed based on Eco-indicator 99 method. The analysis results indicated that the major contributor to the environmental impact as it accounts for over 60% overall SLCA output. In which, 60% of the emission resulted from the logistic required for the maintenance activities. This was measured by conducting the hotspot analysis. After performing sensitivity analysis, it is evidenced that changing fuel type results in significant decrease environmental footprint. The environmental benefit can also be seen from the negative output values of the recycling activities. By conducting Life Cycle Assessment analysis, the potential environmental impact of the electrical grinder was investigated.

  17. Assessment and Management of Ageing of Major Nuclear Power Plant Components Important to Safety: Steam Generators. 2011 Update

    International Nuclear Information System (INIS)

    2011-11-01

    At present there are over four hundred forty operational nuclear power plants (NPPs) in IAEA Member States. Ageing degradation of the systems, structures of components during their operational life must be effectively managed to ensure the availability of design functions throughout the plant service life. From the safety perspective, this means controlling, within acceptable limits, the ageing degradation and wear-out of plant components important to safety so that adequate safety margins remain, i.e. integrity and functional capability in excess of normal operating requirements. This IAEA-TECDOC is one in a series of reports on the assessment and management of ageing of the major NPP components important to safety. The reports are based on experience and practices of NPP operators, regulators, designers, manufacturers, and technical support organizations. The current practices for the assessment of safety margins (fitness for service) and the inspection, monitoring and mitigation of ageing degradation of selected components of Canada deuteriumuranium (CANDU) reactor, boiling water reactor (BWR), pressurized water reactor (PWR), and water moderated, water cooled energy reactor (WWER) plants are documented in the reports. These practices are intended to help all involved directly and indirectly in ensuring the safe operation of NPPs, and also to provide a common technical basis for dialogue between plant operators and regulators when dealing with age related licensing issues. Since the reports are written from a safety perspective, they do not address life or life cycle management of the plant components, which involves the integration of ageing management and economic planning. The target audience of the reports consists of technical experts from NPPs and from regulatory, plant design, manufacturing and technical support organizations dealing with specific plant components addressed in the reports. The component addressed in the present publication is the steam

  18. Comparative life cycle assessment of biowaste to resource management systems - A Danish case study

    DEFF Research Database (Denmark)

    Thomsen, Marianne; Seghetta, Michele; Mikkelsen, Mette Hjorth

    2017-01-01

    Waste to Energy combustion plants currently process most of the organic fraction of the household waste. This study presents an assessment of the environmental performance of an increased circular bioresource management system obtained by reallocating the organic fraction of the household waste...... from combustion (Reference Scenario) to biogas and fertilizer production (Alternative Scenario). The goals defined in the Danish National resource action plan for waste management, i.e. 33% reduction of organic fraction household waste dry weight, is taken as a case study. A comparative life cycle...... assessment of the diverting of the organic fraction of the household waste away from a Waste to Energy combustion plant towards sludge- and manure-based biogas plants in North Zealand (Denmark) shows a net increase in renewable electricity production of 39% at the expense of a reduction in heat production...

  19. Replacement of major nuclear power plant components for service life extension

    International Nuclear Information System (INIS)

    Novak, S.

    1987-01-01

    Problems are discussed associated with replacement of nuclear power plant components with the aim to extend their original scheduled life. The existing foreign experience shows that it is technically feasible to replace practically all basic components for which the necessity of replacement is established. Data is summed up on the replacement of steam generators in US and West German nuclear power plants showing the duration of the job, the total consumption of manhours, the collective dose equivalent and the cost. Attention is also focused on implemented and projected replacements of circulation pipes in nuclear power plants abroad. Based on these figures, the cost is estimated of the replacement of the reactor vessel and the steam generators for WWER-440 nuclear power plants. The conclusion is arrived at that even based on a conservative estimate, the extension by 20 years of the service life of a nuclear power plant is economically more effective than the construction of a new plant. (Z.M.) 2 tabs., 15 refs., 3 figs

  20. Life cycle assessment of medium-density fiberboard (MDF) manufacturing process in Brazil.

    Science.gov (United States)

    Piekarski, Cassiano Moro; de Francisco, Antonio Carlos; da Luz, Leila Mendes; Kovaleski, João Luiz; Silva, Diogo Aparecido Lopes

    2017-01-01

    Brazil is one of the largest producers of medium-density fibreboard (MDF) in the world, and also the MDF has the highest domestic consumption and production rate in the country. MDF applications are highlighted into residential and commercial furniture design and also a wide participation in the building sector. This study aimed to propose ways of improving the environmental cradle-to-gate life-cycle of one cubic meter MDF panel by means of a life-cycle assessment (LCA) study. Complying with requirements of ISO 14040 and 14,044 standards, different MDF manufacturing scenarios were modelled using Umberto® v.5.6 software and the Ecoinvent v.2.2 life-cycle inventory (LCI) database for the Brazilian context. Environmental and human health impacts were assessed by using the CML (2001) and USEtox (2008) methods. The evaluated impact categories were: acidification, global warming, ozone layer depletion, abiotic resource depletion, photochemical formation of tropospheric ozone, ecotoxicity, eutrophication and human toxicity. Results identified the following hotspots: gas consumption at the thermal plant, urea-formaldehyde resin, power consumption, wood chip consumption and wood chip transportation to the plant. The improvement scenario proposals comprised the following actions: eliminate natural gas consumption at the thermal plant, reduce electrical power consumption, reduce or replace urea-formaldehyde resin consumption, reduce wood consumption and minimize the distance to wood chip suppliers. The proposed actions were analysed to verify the influence of each action on the set of impact categories. Among the results, it can be noted that a joint action of the proposed improvements can result in a total reduction of up to 38.5% of impacts to OD, 34.4% to AD, 31.2% to ET, and 30.4% to HT. Finally, MDF was compared with particleboard production in Brazil, and additional opportunities to improve the MDF environmental profile were identified. Copyright © 2016 Elsevier B

  1. Assessing Cd-induced stress from plant spectral response

    Science.gov (United States)

    Kancheva, Rumiana; Georgiev, Georgi

    2014-10-01

    Remote sensing plays a significant role in local, regional and global monitoring of land covers. Ecological concerns worldwide determine the importance of remote sensing applications for the assessment of soil conditions, vegetation health and identification of stress-induced changes. The extensive industrial growth and intensive agricultural land-use arise the serious ecological problem of environmental pollution associated with the increasing anthropogenic pressure on the environment. Soil contamination is a reason for degradation processes and temporary or permanent decrease of the productive capacity of land. Heavy metals are among the most dangerous pollutants because of their toxicity, persistent nature, easy up-take by plants and long biological half-life. This paper takes as its focus the study of crop species spectral response to Cd pollution. Ground-based experiments were performed, using alfalfa, spring barley and pea grown in Cd contaminated soils and in different hydroponic systems under varying concentrations of the heavy metal. Cd toxicity manifested itself by inhibition of plant growth and synthesis of photosynthetic pigments. Multispectral reflectance, absorbance and transmittance, as well as red and far red fluorescence were measured and examined for their suitability to detect differences in plant condition. Statistical analysis was performed and empirical relationships were established between Cd concentration, plant growth variables and spectral response Various spectral properties proved to be indicators of plant performance and quantitative estimators of the degree of the Cd-induced stress.

  2. Leaf and life history traits predict plant growth in a green roof ecosystem.

    Directory of Open Access Journals (Sweden)

    Jeremy Lundholm

    Full Text Available Green roof ecosystems are constructed to provide services such as stormwater retention and urban temperature reductions. Green roofs with shallow growing media represent stressful conditions for plant survival, thus plants that survive and grow are important for maximizing economic and ecological benefits. While field trials are essential for selecting appropriate green roof plants, we wanted to determine whether plant leaf traits could predict changes in abundance (growth to provide a more general framework for plant selection. We quantified leaf traits and derived life-history traits (Grime's C-S-R strategies for 13 species used in a four-year green roof experiment involving five plant life forms. Changes in canopy density in monocultures and mixtures containing one to five life forms were determined and related to plant traits using multiple regression. We expected traits related to stress-tolerance would characterize the species that best grew in this relatively harsh setting. While all species survived to the end of the experiment, canopy species diversity in mixture treatments was usually much lower than originally planted. Most species grew slower in mixture compared to monoculture, suggesting that interspecific competition reduced canopy diversity. Species dominant in mixture treatments tended to be fast-growing ruderals and included both native and non-native species. Specific leaf area was a consistently strong predictor of final biomass and the change in abundance in both monoculture and mixture treatments. Some species in contrasting life-form groups showed compensatory dynamics, suggesting that life-form mixtures can maximize resilience of cover and biomass in the face of environmental fluctuations. This study confirms that plant traits can be used to predict growth performance in green roof ecosystems. While rapid canopy growth is desirable for green roofs, maintenance of species diversity may require engineering of conditions that

  3. Leaf and life history traits predict plant growth in a green roof ecosystem.

    Science.gov (United States)

    Lundholm, Jeremy; Heim, Amy; Tran, Stephanie; Smith, Tyler

    2014-01-01

    Green roof ecosystems are constructed to provide services such as stormwater retention and urban temperature reductions. Green roofs with shallow growing media represent stressful conditions for plant survival, thus plants that survive and grow are important for maximizing economic and ecological benefits. While field trials are essential for selecting appropriate green roof plants, we wanted to determine whether plant leaf traits could predict changes in abundance (growth) to provide a more general framework for plant selection. We quantified leaf traits and derived life-history traits (Grime's C-S-R strategies) for 13 species used in a four-year green roof experiment involving five plant life forms. Changes in canopy density in monocultures and mixtures containing one to five life forms were determined and related to plant traits using multiple regression. We expected traits related to stress-tolerance would characterize the species that best grew in this relatively harsh setting. While all species survived to the end of the experiment, canopy species diversity in mixture treatments was usually much lower than originally planted. Most species grew slower in mixture compared to monoculture, suggesting that interspecific competition reduced canopy diversity. Species dominant in mixture treatments tended to be fast-growing ruderals and included both native and non-native species. Specific leaf area was a consistently strong predictor of final biomass and the change in abundance in both monoculture and mixture treatments. Some species in contrasting life-form groups showed compensatory dynamics, suggesting that life-form mixtures can maximize resilience of cover and biomass in the face of environmental fluctuations. This study confirms that plant traits can be used to predict growth performance in green roof ecosystems. While rapid canopy growth is desirable for green roofs, maintenance of species diversity may require engineering of conditions that favor less

  4. Framatome ANP GmbH concept of Plant Life Management (PLIM)

    International Nuclear Information System (INIS)

    Daeuwel, W.; Biemann, W.; Danisch, R.; Kastner, B.; Meyer, W.; Nopper, H.; Waas, U.; Warnken, L.

    2002-01-01

    The deregulation of the power generation industry has resulted in increased competitive pressure and is forcing operators to improve plant operating economy while maintaining high levels of plant safety. A key factor to meeting this challenge is to apply a comprehensive plant life management (PLIM) approach which addresses all relevant ageing and degradation mechanisms regarding the safety concept, plant component structures and documentation, plant personnel, consumables, operations management system and administrative controls. For this reason, Framatome ANP GmbH has developed an integrated PLIM concept applicable for both new and operating plants and focusing on the safety concept, plant component structures and documentation. (orig.)

  5. Pythium invasion of plant-based life support systems: biological control and sources

    Science.gov (United States)

    Jenkins, D. G.; Cook, K. L.; Garland, J. L.; Board, K. F.; Sager, J. C. (Principal Investigator)

    2000-01-01

    Invasion of plant-based life support systems by plant pathogens could cause plant disease and disruption of life support capability. Root rot caused by the fungus, Pythium, was observed during tests of prototype plant growth systems containing wheat at the Kennedy Space Center (KSC). We conducted experiments to determine if the presence of complex microbial communities in the plant root zone (rhizosphere) resisted invasion by the Pythium species isolated from the wheat root. Rhizosphere inocula of different complexity (as assayed by community-level physiological profile: CLPP) were developed using a dilution/extinction approach, followed by growth in hydroponic rhizosphere. Pythium growth on wheat roots and concomitant decreases in plant growth were inversely related to the complexity of the inocula during 20-day experiments in static hydroponic systems. Pythium was found on the seeds of several different wheat cultivars used in controlled environmental studies, but it is unclear if the seed-borne fungal strain(s) were identical to the pathogenic strain recovered from the KSC studies. Attempts to control pathogens and their effects in hydroponic life support systems should include early inoculation with complex microbial communities, which is consistent with ecological theory.

  6. Life Cycle Assessment for the Production of Oil Palm Seeds.

    Science.gov (United States)

    Muhamad, Halimah; Ai, Tan Yew; Khairuddin, Nik Sasha Khatrina; Amiruddin, Mohd Din; May, Choo Yuen

    2014-12-01

    The oil palm seed production unit that generates germinated oil palm seeds is the first link in the palm oil supply chain, followed by the nursery to produce seedling, the plantation to produce fresh fruit bunches (FFB), the mill to produce crude palm oil (CPO) and palm kernel, the kernel crushers to produce crude palm kernel oil (CPKO), the refinery to produce refined palm oil (RPO) and finally the palm biodiesel plant to produce palm biodiesel. This assessment aims to investigate the life cycle assessment (LCA) of germinated oil palm seeds and the use of LCA to identify the stage/s in the production of germinated oil palm seeds that could contribute to the environmental load. The method for the life cycle impact assessment (LCIA) is modelled using SimaPro version 7, (System for Integrated environMental Assessment of PROducts), an internationally established tool used by LCA practitioners. This software contains European and US databases on a number of materials in addition to a variety of European- and US-developed impact assessment methodologies. LCA was successfully conducted for five seed production units and it was found that the environmental impact for the production of germinated oil palm was not significant. The characterised results of the LCIA for the production of 1000 germinated oil palm seeds showed that fossil fuel was the major impact category followed by respiratory inorganics and climate change.

  7. A study on the optimization of plant life extension and decommissioning for the improvement of economy in nuclear power plant

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Jae In; Jung, K. J.; Chung, U. S.; Baik, S. T.; Park, S. K.; Lee, D. G.; Kim, H. R.; Park, B. Y

    2000-01-01

    Fundamentals on the plan, the national policy, the safety securities for the life extension of the nuclear power plant was established from the domestic/abroad documents and case studies in relation with the life extension and decommissioning of the nuclear power plant. Concerning the decommissioning of the nuclear power plant, the management according to decommissioning stages was analyzed by the investigation of the domestic/abroad standard of the decommissioning (decontamination. dismantling) technology and regulation. Moreover, the study on the cost estimation method has been carried out for the decommissioning of the nuclear power plant. (author)

  8. Assessment and management of ageing of major nuclear power plant components important to safety: BWR pressure vessel internals

    International Nuclear Information System (INIS)

    2005-10-01

    At present, there are over four hundred operational nuclear power plants (NPPs) in IAEA Member States. Operating experience has shown that ineffective control of the ageing degradation of the major NPP components (caused for instance by unanticipated phenomena and by operating maintenance or manufacturing errors) can jeopardize plant safety and also plant life. Ageing in these NPPs must be therefore effectively managed to ensure the availability of design functions throughout the plant service life. From the safety perspective, this means controlling, within acceptable limits, the ageing degradation and ware out of components important to safety so that adequate safety margins remain, i.e. integrity and functional capability in excess of normal operating requirements. This TECDOC is one in a series of guidance reports on the assessment and management of ageing of the major NPP components important to safety. The reports are based on experience and practices of NPP operators, regulators, designers, manufacturers, and technical support organizations and a widely accepted Methodology for the Management of Ageing of NPP Components Important to Safety, which was issued by the IAEA in 1992. Since the reports are written from a safety perspective, they do not address life or life cycle management of plant components, which involves economic considerations. The current practices for the assessment of safety margins (fitness for service) and the inspection, monitoring and mitigation of ageing degradation of selected components of heavy water moderated reactors (HWRs), boiling water reactors (BWRs), pressurized water reactors (PWRs), and water moderated, water cooled energy reactors (WWERs) are documented in the reports. These practices are intended to help all involved directly and indirectly in ensuring the safe operation of NPPs, and also to provide a common technical basis for dialogue between plant operators and regulators when dealing with age related licensing issues

  9. Enquiring into the roots of bioenergy - epistemic uncertainties in life cycle assessments

    DEFF Research Database (Denmark)

    Saez de Bikuna Salinas, Koldo

    global warming impacts than the respective fossil fuels they replace unless planted on abandoned lands. With Papers I-II, the selection of the land-use references and time horizons involved in LCA of biofuels was demonstrated to be crucial for the characterization of the resulting environmental impacts......The research for this Thesis was originally framed around the “sustainability assessment of full chain bioenergy”. However, it is known for some years that the critical impacts of dedicated bioenergy relate to induced land use changes (LUC). Their criticality derives from their potential...... to dominate environmental impacts from a life-cycle perspective and from the uncertainty that accompanies them. On the other hand, continued land use may be a concern for soil’s long-term sustainability (understood as fertility), which has recently received attention in environmental life-cycle assessments...

  10. Plant life management for long term operation of light water reactors. Principles and guidelines

    International Nuclear Information System (INIS)

    2006-01-01

    The subject of this report was originally suggested by the IAEA Technical Working Group on Life Management of Nuclear Power Plants. It was then approved by the IAEA for work to begin in 2004. The participants in the group felt that it was time to address plant life management and ageing issues from the point of view of long term operation and licence renewal. It is believed that the nuclear power industry will only be able to survive if plant economics are favourable and safety is maintained. Therefore, the issue of ageing and obsolescence has to be addressed from an operational and safety standpoint, but also in the context of plant economics in terms of the cost of electricity production, including initial and recurring capital costs. Use of new technologies, such as advanced in-service inspection and condition based maintenance, should be considered, not only to predict the consequences of ageing and guard against them, but also to monitor equipment performance throughout the lifetime of the plant and to help establish replacement schedules for critical systems, structures and components, and to better estimate the optimum end of the operating licence, which means the end of the nuclear power plant's lifetime. The importance of nuclear power plant life management in facilitating the technical and economic goals of long term operation is presented in this report in terms of the requirement to ensure safe long term supplies of electricity in the most economically competitive way. Safe and reliable operation is discussed in terms of the overall economic benefits when plant life management is implemented. Preconditions for plant life management for long term operation are identified and approaches are reviewed. Plant life management should not be associated only with the extension of the operational lifetime of the nuclear power plant, but with an owner's attitude and a rational approach of the operating company towards running the business economically and safely

  11. Assessment and management of ageing of major nuclear power plant components important to safety: CANDU reactor assemblies

    International Nuclear Information System (INIS)

    2001-02-01

    At present, there are over four hundred operational nuclear power plants (NPPs) in IAEA Member States. Operating experience has shown that ineffective control of the ageing degradation of the major NPP components (e.g. caused by unanticipated phenomena and by operating, maintenance, design or manufacturing errors) can jeopardize plant safety and also plant life. Ageing in these NPPs must therefore be effectively managed to ensure the availability of design functions throughout the plant service life. From the safety perspective, this means controlling within acceptable limits the ageing degradation and wearout of plant components important to safety so that adequate safety margins remain, i.e. integrity and functional capability in excess of normal operating requirements. This TECDOC is one in a series of reports on the assessment and management of ageing of the major NPP components important to safety. The reports are based on experience and practices of NPP operators, regulators, designers, manufacturers, and technical support organizations and a widely accepted Methodology for the Management of Ageing of NPP Components Important to Safety which was issued by the IAEA in 1992. The current practices for the assessment of safety margins (fitness for service) and the inspection, monitoring, and mitigation of ageing degradation of selected components of Canada deuterium-uranium (CANDU) reactors, boiling water reactors (BWRs), pressurized water reactors (PWRs) including the Soviet designed water moderated and water cooled energy reactors (WWERs), are documented in the reports. These practices are intended to help all involved directly and indirectly in ensuring the safe operation of NPPs and also to provide a common technical basis for dialogue between plant operators and regulators when dealing with age-related licensing issues. Since the reports are written from a safety perspective, they do not address life or life-cycle management of the plant components, which

  12. Probabilistic assessment of fatigue life including statistical uncertainties in the S-N curve

    International Nuclear Information System (INIS)

    Sudret, B.; Hornet, P.; Stephan, J.-M.; Guede, Z.; Lemaire, M.

    2003-01-01

    A probabilistic framework is set up to assess the fatigue life of components of nuclear power plants. It intends to incorporate all kinds of uncertainties such as those appearing in the specimen fatigue life, design sub-factor, mechanical model and applied loading. This paper details the first step, which corresponds to the statistical treatment of the fatigue specimen test data. The specimen fatigue life at stress amplitude S is represented by a lognormal random variable whose mean and standard deviation depend on S. This characterization is then used to compute the random fatigue life of a component submitted to a single kind of cycles. Precisely the mean and coefficient of variation of this quantity are studied, as well as the reliability associated with the (deterministic) design value. (author)

  13. Life cycle assessment : Past, present, and future

    NARCIS (Netherlands)

    Guinée, Jeroen B.; Heijungs, Reinout; Huppes, Gjalt; Zamagni, Alessandra; Masoni, Paolo; Buonamici, Roberto; Ekvall, Tomas; Rydberg, Tomas

    2011-01-01

    Environmental life cycle assessment (LCA) has developed fast over the last three decades. Whereas LCA developed from merely energy analysis to a comprehensive environmental burden analysis in the 1970s, full-fledged life cycle impact assessment and life cycle costing models were introduced in the

  14. Recent developments in Life Cycle Assessment

    NARCIS (Netherlands)

    Finnveden, Göran; Hauschild, Michael Z.; Ekvall, Tomas; Guinée, Jeroen B.; Heijungs, Reinout; Hellweg, Stefanie; Koehler, Annette; Pennington, David; Suh, Sangwon

    2009-01-01

    Life Cycle Assessment is a tool to assess the environmental impacts and resources used throughout a product's life cycle, i.e., from raw material acquisition, via production and use phases, to waste management. The methodological development in LCA has been strong, and LCA is broadly applied in

  15. Life extension of nuclear power plants. World situation and the USA case

    International Nuclear Information System (INIS)

    Leon, Pablo T.; Cuesta, Loreto; Serra, Eduardo; Yaguee, Luis

    2010-01-01

    Life extension of Nuclear Power Plants above 40 years of operation is an important issue in many countries. The Kyoto limits for CO 2 emissions, the security of supply, the costs and predictability of renewable energy, etc., are putting nuclear energy in the agenda of many countries all around the world. The delay, due to the economic crisis, of the new nuclear projects in many countries, push governments to continue operation of nuclear plants above the 40 years design life. This is the case in the USA, where 59 units have obtained the extension of operation license from 40 to 60 years, and currently have 19 units are in the reviewing process. The life extension of these plants permits savings in CO 2 emissions and in the consumption of additional amounts of fossil fuels. In this paper, the position of the different nuclear countries about the Extension of Life will be reviewed, with a special emphasis on the situation in the USA. In this last case, the NRC approach for operation licenses above 40 years will be explained, and actions taken by nuclear companies in the country will be reviewed. In this country, the debate about life extension over 40 years has been surpassed, and the new technical discussion focuses on the operation of nuclear power plants above 60 years. (authors)

  16. Life extension of nuclear power plants. World situation and the USA case

    Energy Technology Data Exchange (ETDEWEB)

    Leon, Pablo T.; Cuesta, Loreto; Serra, Eduardo; Yaguee, Luis [Endesa. C/ Ribera del Loira, No.60, 28042 Madrid (Spain)

    2010-07-01

    Life extension of Nuclear Power Plants above 40 years of operation is an important issue in many countries. The Kyoto limits for CO{sub 2} emissions, the security of supply, the costs and predictability of renewable energy, etc., are putting nuclear energy in the agenda of many countries all around the world. The delay, due to the economic crisis, of the new nuclear projects in many countries, push governments to continue operation of nuclear plants above the 40 years design life. This is the case in the USA, where 59 units have obtained the extension of operation license from 40 to 60 years, and currently have 19 units are in the reviewing process. The life extension of these plants permits savings in CO{sub 2} emissions and in the consumption of additional amounts of fossil fuels. In this paper, the position of the different nuclear countries about the Extension of Life will be reviewed, with a special emphasis on the situation in the USA. In this last case, the NRC approach for operation licenses above 40 years will be explained, and actions taken by nuclear companies in the country will be reviewed. In this country, the debate about life extension over 40 years has been surpassed, and the new technical discussion focuses on the operation of nuclear power plants above 60 years. (authors)

  17. Assessment and Management of ageing of major nuclear power plant components important to safety: PWR pressure vessels

    International Nuclear Information System (INIS)

    1999-10-01

    At present, there are over four hundred operational nuclear power plants (NPPs) in IAEA Member States. Operating experience has shown that ineffective control of the ageing degradation of the major NPP components (e.g., caused by unanticipated phenomena and by operating, maintenance or manufacturing errors) can jeopardize plant safety and also plant life. Ageing in these NPPs must be therefore effectively managed to ensure the availability of design functions throughout the plant service life. From the safety perspective, this means controlling within acceptable limits the ageing degradation and wear-out of plant components important to safety so that adequate safety margins remain, i.e. integrity and functional capability in excess of normal operating requirements. This TECDOC is one in a series of reports on the assessment and management of ageing of the major NPP components important to safety. The reports are based on experience and practices of NPP operators, regulators, designers, manufacturers and technical support organizations and a widely accepted Methodology for the Management of Ageing of NPP Components Important to Safety which was issued by the IAEA in 1992. The current practices for the assessment of safety margins (fitness-for-service) and the inspection, monitoring and mitigation of ageing degradation of selected components of Canada deuterium-uranium (CANDU) reactors, boiling water reactors (BWRs), pressurized water reactors (PWRs), including water moderated, water cooled energy reactors (WWERs) are documented in the reports. These practices are intended to help all involved directly and indirectly in ensuring the safe operation of NPPs; and also to provide a common technical basis for dialogue between plant operators and regulators when dealing with age related licensing issues. Since the reports are written from a safety perspective, they do not address life or life-cycle management of the plant components, which involves the integration of

  18. Reliability Centered Maintenance as a tool for plant life extension

    International Nuclear Information System (INIS)

    Elliott, J.O.; Mulay, J.N.; Nakahara, Y.

    1991-01-01

    Currently in the nuclear industry there is a growing interest in lowering the cost and complexity of maintenance activities while at the same time improving plant reliability and safety in an effort to prepare for the technical and regulatory challenges of life extension. This seemingly difficult task is being aided by the introduction of a maintenance philosophy developed originally by the airline industry and subsequently applied with great success both in that industry and the U.S. military services. Reliability Centered Maintenance (RCM), in its basic form, may be described as a consideration of reliability and maintenance problems from a systems level approach, allowing a focus on preservation of system function as the aim of a maintenance program optimized for both safety and economics. It is this systematic view of plant maintenance, with the emphasis on overall functions rather than individual parts and components which sets RCM apart from past nuclear plant maintenance philosophies. It is also the factor which makes application of RCM an ideal first step in development of strategies for life extension, both for aging plants, and for plants just beginning their first license term. (J.P.N.)

  19. Comparative life cycle assessment of wastewater treatment in Denmark including sensitivity and uncertainty analysis

    DEFF Research Database (Denmark)

    Niero, Monia; Pizzol, Massimo; Gundorph Bruun, Henrik

    2014-01-01

    Wastewater treatment has nowadays multiple functions and produces both clean effluents and sludge, which is increasingly seen as a resource rather than a waste product. Technological as well as management choices influence the performance of wastewater treatment plants (WWTPs) on the multiple...... functions. In this context, Life Cycle Assessment (LCA) can determine what choices provide the best environmental performance. However, the assessment is not straightforward due to the intrinsic space and time-related variability of the wastewater treatment process. These challenges were addressed...... in a comparative LCA of four types of WWTPs, representative of mainstream treatment options in Denmark. The four plant types differ regarding size and treatment technology: aerobic versus anaerobic, chemical vs. combined chemical and biological. Trade-offs in their environmental performance were identified...

  20. Environmental assessment of waste incineration in a life-cycle-perspective (EASEWASTE).

    Science.gov (United States)

    Riber, Christian; Bhander, Gurbakhash S; Christensen, Thomas H

    2008-02-01

    A model for life-cycle assessment of waste incinerators is described and applied to a case study for illustrative purposes. As life-cycle thinking becomes more integrated into waste management, quantitative tools for assessing waste management technologies are needed. The presented model is a module in the life-cycle assessment model EASEWASTE. The module accounts for all uses of materials and energy and credits the incinerator for electricity and heat recovered. The energy recovered is defined by the user as a percentage of the energy produced, calculated on the lower heating value of the wet waste incinerated. Emissions are either process-specific (related to the amount of waste incinerated) or input-specific (related to the composition of the waste incinerated), while mass transfer to solid outputs are governed by transfer coefficients specified by the user. The waste input is defined by 48 material fractions and their chemical composition. The model was used to quantify the environmental performance of the incineration plant in Aarhus, Denmark before and after its upgrading in terms of improved flue gas cleaning and energy recovery. It demonstrated its usefulness in identifying the various processes and substances that contributed to environmental loadings as well as to environmental savings. The model was instrumental in demonstrating the importance of the energy recovery system not only for electricity but also heat from the incinerator.

  1. Concrete component aging and its significance relative to life extension of nuclear power plants

    International Nuclear Information System (INIS)

    Naus, D.J.

    1986-09-01

    The objectives of this study are to (1) expand upon the work that was initiated in the first two Electric Power Research Institute studies relative to longevity and life extension considerations of safety-related concrete components in light-water reactor (LWR) facilities and (2) provide background that will logically lead to subsequent development of a methodology for assessing and predicting the effects of aging on the performance of concrete-based materials and components. These objectives are consistent with Nuclear Plant Aging Research (NPAR) Program goals: (1) to identify and characterize aging and service wear effects that, if unchecked, could cause degradation of structures, components, and systems and, thereby, impair plant safety; (2) to identify methods of inspection, surveillance, and monitoring or of evaluating residual life of structures, components, and systems that will ensure timely detection of significant aging effects before loss of safety function; and (3) to evaluate the effectiveness of storage, maintenance, repair, and replacement practices in mitigating the rate and extent of degradation caused by aging and service wear

  2. Japanese plant life extension program

    International Nuclear Information System (INIS)

    Yoshitsugu, M.

    1988-01-01

    As one of the main items of up-grading light water reactor program in Japan, plant life extension has been recommended by Advisory Committee of Ministry of International trade and Industry and the practical work has begun to be carried out. It is overviewed here. After preliminary works, including investigation on the state of the arts through a entrusted survey work, participation in international meetings and exchange of informations with related organizations, actual work has just started. So-called critical components based on our experience during the past 17 years have been listed up and some experimental works inaugurated as from 1987

  3. Friends or foes? Monetized Life Cycle Assessment and Cost-Benefit Analysis of the site remediation of a former gas plant.

    Science.gov (United States)

    Huysegoms, Lies; Rousseau, Sandra; Cappuyns, Valérie

    2018-04-01

    Site contamination is a global concern because of the potential risks for human health and ecosystem quality. Every contaminated site has its own specific characteristics and the increased availability and efficiency of remediation techniques makes the choice of remediation alternative increasingly complicated. In this paper an attributional Life Cycle Assessment (LCA) of the secondary environmental impacts of a site remediation is performed and its results are monetized using two different monetization techniques, namely Stepwise 2006 and Ecovalue 08. Secondly, we perform a social Cost-Benefit Analysis (CBA) on the same case study using the same data sources. The case study used in this paper entails the soil and groundwater remediation of a tar, poly-aromatic hydrocarbons (PAH) and cyanide contamination of a school ground by a former gas plant. The remediation alternative chosen in this case study is excavation with off-site thermal treatment of the contaminated soil. The outcome of the social CBA, stating that the remediation project is socially beneficial in the long term, is critically compared to the outcome of the different LCA monetization methods. This comparison indicates that monetized LCA is a good complement to social CBA when it comes to the assessment of secondary environmental impacts. Combining the two methods provides decision makers with a more extensive and detailed assessment of the soil remediation project. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Assessment and management of ageing of major nuclear power plant components important to safety. Primary piping in PWRs

    International Nuclear Information System (INIS)

    2003-07-01

    At present, there are over four hundred operational nuclear power plants (NPPs) in IAEA Member States. Operating experience has shown that ineffective control of the ageing degradation of the major NPP components (caused for instance by unanticipated phenomena and by operating, maintenance or manufacturing errors) can jeopardize plant safety and also plant life. Ageing in these NPPs must therefore be effectively managed to ensure the availability of design functions throughout the plant service life. From the safety perspective, this means controlling, within acceptable limits, the ageing degradation and wear out of plant components important to safety so that adequate safety margins remain, i.e. integrity and functional capability in excess of normal operating requirements. This TECDOC is one in a series of reports on the assessment and management of ageing of the major NPP components important to safety. The reports are based on experience and practices of NPP operators, regulators, designers, manufacturers, technical support organizations and a widely accepted Methodology for the Management of Ageing of NPP Components Important to Safety, which was issued by the IAEA in 1992. Since the reports are written from a safety perspective, they do not address life or life cycle management of plant components, which involves economic considerations. The current practices for the assessment of safety margins (fitness-for-service) and the inspection, monitoring and mitigation of ageing degradation of selected components of Canada deuterium-uranium (CANDU) reactors, boiling water reactors (BWRs), pressurized water reactors (PWRs), and water moderated, water cooled energy reactors (WWERs) are documented in the reports. These practices are intended to help all involved directly and indirectly in ensuring the safe operation of NPPs, and to provide a common technical basis for dialogue between plant operators and regulators when dealing with age-related licensing issues. The

  5. Life prediction study of reactor pressure vessel as essential technical foundation for plant life extension

    International Nuclear Information System (INIS)

    Nakajima, H.; Nakajima, N.; Kondo, T.

    1987-01-01

    The life of a LWR plant is determined essentially by the limit of reliable performance of the components which are difficult to replace without high economic and/or safety risks. Typical of such a component is the reactor pressure vessel (RPV). The engineering life of a RPV of a given quality of steel is considered to be a complex function of factors such as the resistance to fracture, which has deteriorated due to neutron irradiation and thermal aging, and generation of surface flaws by environmental effects such as corrosion and their growth under operational load that varies during steady state operation and transients. In an attempt to evaluate the engineering life of a RPV of a LWR, a preliminary survey was made by applying a set of knowledge accumulated primarily in the field of subcritical crack growth behavior of RPV steels in reactor water environments. The major conclusions drawn are: (1) the life of a RPV is dependent on the quality of steel used, particularly with respect to any minor impurities it contains. (2) The issue of plant life extension in RPV aspect is found to be optimistic for cases where the steels used satisfy a reasonable level of quality control. (3) The importance of providing sound scientific foundation is stressed for the implementation of a practicable life extension scheme: this can be established through intensified studies of flaw growth and fracture behaviours in well defined testings under reasonably simulated service conditions

  6. Life cycle assessment of onshore and offshore wind energy - from theory to application

    DEFF Research Database (Denmark)

    Bonou, Alexandra; Laurent, Alexis; Olsen, Stig Irving

    2016-01-01

    material requirements for capital infrastructure. In both markets the bigger turbines with more advanced direct drive generator technology is shown to perform better than the smaller geared ones. Capital infrastructure is the most impactful life cycle stage across impacts. It accounts for more than 79......This study aims to assess the environmental impacts related to the provision of 1 kWh to the grid from wind power in Europe and to suggest how life cycle assessment can inform technology development and system planning. Four representative power plants onshore (with 2.3 and 3.2 MW turbines......) and offshore (4.0 and 6.0 MW turbines) with 2015 state-of-the-art technology data provided by Siemens Wind Power were assessed. The energy payback time was found to be less than 1 year for all technologies. The emissions of greenhouse gases amounted to less than 7 g CO2-eq/kWh for onshore and 11 g CO2-eq...

  7. Ageing and plant life management software Comsy

    Energy Technology Data Exchange (ETDEWEB)

    Nopper, H.; Daeuwel, W.; Kastner, W. [Siemens Nuclear Power GmbH (SNP), Erlangen (Germany)

    2001-07-01

    Cost-effective power generation is becoming more important as the prices charged by power producers in the energy market continue to fall. To ease the cost situation there is a growing demand for innovative maintenance management methods which allow power plants to be economically operated over their entire lifetime. The purpose of a systematic ageing and plant life management program is to allow the lifetime of plant components to be planned, and to indicate when a component has reached the end of its effective lifetime before it fails. Another important function of such programs is to increase the availability of power plants as they age, and to enable implementation of a targeted maintenance strategy in terms of its economic and technical effect. Implementation of such programs requires the existence of detailed information concerning the status of the components as well as their operating conditions. Based on this information, an understanding of how the relevant ageing and degradation mechanisms work enables a prediction to be made concerning component lifetime. Advanced software programs provide such predictions at reasonable cost across all systems. (author)

  8. Ageing and plant life management software Comsy

    International Nuclear Information System (INIS)

    Nopper, H.; Daeuwel, W.; Kastner, W.

    2001-01-01

    Cost-effective power generation is becoming more important as the prices charged by power producers in the energy market continue to fall. To ease the cost situation there is a growing demand for innovative maintenance management methods which allow power plants to be economically operated over their entire lifetime. The purpose of a systematic ageing and plant life management program is to allow the lifetime of plant components to be planned, and to indicate when a component has reached the end of its effective lifetime before it fails. Another important function of such programs is to increase the availability of power plants as they age, and to enable implementation of a targeted maintenance strategy in terms of its economic and technical effect. Implementation of such programs requires the existence of detailed information concerning the status of the components as well as their operating conditions. Based on this information, an understanding of how the relevant ageing and degradation mechanisms work enables a prediction to be made concerning component lifetime. Advanced software programs provide such predictions at reasonable cost across all systems. (author)

  9. Plant life extension program for Indian PHWR power plants - Actual experience and future plans

    International Nuclear Information System (INIS)

    Sharma, M.B.; Ghoshal, B.; Shirolkar, K.M.; Ahmad, S.N.

    2002-01-01

    Full text: The Nuclear Power Corporation of India Limited (NPCIL) is responsible for design, construction and operation for all nuclear power plants in India. Currently, it has fourteen (14) reactor units under operation and another eight units are under various stages of planning and construction. India has adopted Pressurised Heavy Water Reactors (PHWRs) for the initial phase of its nuclear power program. In the earlier PHWRs zircaloy-2 has been used as coolant tube material. Subsequent studies and experience have shown their life to be considerably lower (about 10 full power years) than originally estimated. This meant that reactors at Rajasthan - 1 and 2 Madras - 1 and 2 Narora - 1 and 2 and Kakrapara-1 would require en-masse coolant channel replacement at least once in their lifetime. Subsequent reactors from Kakrapara-2 onwards would not need this en-masse coolant channel replacement as the coolant tube material has been upgraded to Zr 2.5% Nb. En-masse coolant channel replacement and other life extension work have been carried out successfully in Rajasthan Unit-2 (RAPS-2). Madras unit-2 (MAPS-2) has been shutdown since January 2002 and preparatory work for en-masse coolant channel replacement and plant life extension is in progress. This paper discusses in brief the experience of RAPS-2 in carrying out the above jobs as well as the strategies being adopted for MAPS-2. Since the coolant channel replacement work requires a plant outage of about 18 months, this opportunity is used to extend life of existing systems as well as upgradation work. This life extension and upgradation program is based on the results of detailed in service inspection, evaluation of performance of critical equipment, obsolescence and other strategic reasons. This paper discusses in detail some of the major areas of work done, for example introduction of supplementary control room, process control, computer based plant information and event analysis systems, provision of enhanced

  10. Life cycle assessment of biofuels from an integrated Brazilian algae-sugarcane biorefinery

    International Nuclear Information System (INIS)

    Souza, Simone P.; Gopal, Anand R.; Seabra, Joaquim E.A.

    2015-01-01

    Sugarcane ethanol biorefineries in Brazil produce carbon dioxide, electricity and heat as byproducts. These are essential inputs for algae biodiesel production. In this paper, we assessed ethanol's life cycle greenhouse gas emissions and fossil energy use produced in an integrated sugarcane and algae biorefinery where biodiesel replaces petroleum diesel for all agricultural operations. Carbon dioxide from cane juice fermentation is used as the carbon source for algae cultivation, and sugarcane bagasse is the sole source of energy for the entire facility. Glycerin produced from the biodiesel plant is consumed by algae during the mixotrophic growth phase. We assessed the uncertainties through a detailed Monte-Carlo analysis. We found that this integrated system can improve both the life cycle greenhouse gas emissions and the fossil energy use of sugarcane ethanol by around 10% and 50%, respectively, compared to a traditional Brazilian sugarcane ethanol distillery. - Highlights: • A high diesel consumption is associated to the ethanol sugarcane life-cycle. • Sugarcane industry can provide sources of carbon and energy for the algae growing. • The sugarcane-algae integration can improve the ethanol life-cycle performance. • This integration is a promising pathway for the deployment of algae biodiesel. • There are still significant techno-economic barriers associated with algae biodiesel

  11. Analysis of Piping Systems for Life Extension of Heavy Water Plants in India

    International Nuclear Information System (INIS)

    Mishra, Rajesh K.; Soni, R.S.; Kushwaha, H.S.; Raj, V. Venkat

    2002-01-01

    Heavy water production in India has achieved many milestones in the past. Two of the successfully running heavy water plants are on the verge of completion of their design life in the near future. One of these two plants, situated at Kota, is a hydrogen sulfide based plant and the other one at Tuticorin is an ammonia-based plant. Various exercises have been planned with an aim to assess the fatigue usage for the various components of these plants in order to extend their life. Considering the process parameters and the past history of the plant performance, critical piping systems and equipment are identified. Analyses have been carried out for these critical piping systems for mainly two kinds of loading, viz. sustained loads and the expansion loads. Static analysis has been carried out to find the induced stress levels due to sustained as well as thermal expansion loading as per the design code ANSI B31.3. Due consideration has been given to the design corrosion allowance while evaluating the stresses due to sustained loads. At the locations where the induced stresses (S L ) due to the sustained loads are exceeding the allowable limits (S h ), exercises have been carried out considering the reduced corrosion allowance value. This strategy is adopted in view of the fact that the thickness measurements carried out at site at various critical locations show a very low rate of corrosion. It has been possible to qualify the system with reduced corrosion allowance values however, it is recommended to keep that location under periodic monitoring. The strategy adopted for carrying out analysis for thermal expansion loading is to qualify the system as per the code allowable value (S a ). If the stresses are more than the allowable value, credit of liberal allowable value as suggested in the code i.e., with the addition of the term (S h -S L ) to the term 0.25 S h , has been taken. However, if at any location, it is found that thermal stress is high, fatigue analysis has

  12. Environmental Life Cycle Assessment Model for Soil Bioengineering Measures on Infrastructure Slopes

    Science.gov (United States)

    Hoerbinger, Stephan; Obriejetan, Michael

    2015-04-01

    Soil bioengineering techniques can be a helpful instrument for civil engineers taking into account not only technical but also ecological, socio-economic and sustainability aspects. Environmental Life Cycle Assessment (LCA) models can serve as supplementary evaluation methods to economic analyses, taking into account the resource demand and environmental burdens of engineering structures. The presented LCA model includes the functional grade of structures in addition to environmental aspects. When using vegetation as living construction material, several factors have to be considered. There is the provision of ecosystem services of plants, such as the stabilization of the slope through its root-system, CO2 sequestration through biomass production et cetera. However, it must be noted that vegetation can cause security issues on infrastructure facilities and entail costs through the necessity of maintenance works. For this reason, it is necessary to already define the target systems during the planning phase of a soil bioengineering structure. In this way, necessary measures can be adapted in all life cycles of a structure. The objective of the presented LCA model is to serve as a basis for the definition of target systems. In the designed LCA model the soil bioengineering structures are divided into four life phases; construction phase, operational phase, end of life phase and subsequent use phase. A main objective of the LCA model is the understanding of the "Cumulative Energy Demand" (CED) and "Global Warming Potential" (GWP) of soil bioengineering structures during all life cycle phases. Additionally, the biomass production and the CO2 sequestration potential of the used plants are regarded as well as the functional integrity of the soil bioengineering system. In the life phase of soil bioengineering structures, a major part of the energy input is required during the construction phase. This is mainly due to the cumulative energy demand of the inert materials

  13. Towards Life Cycle Sustainability Assessment

    Directory of Open Access Journals (Sweden)

    Marzia Traverso

    2010-10-01

    Full Text Available Sustainability is nowadays accepted by all stakeholders as a guiding principle for both public policy making and corporate strategies. However, the biggest challenge for most organizations remains in the real and substantial implementation of the sustainability concept. The core of the implementation challenge is the question, how sustainability performance can be measured, especially for products and processes. This paper explores the current status of Life Cycle Sustainability Assessment (LCSA for products and processes. For the environmental dimension well established tools like Life Cycle Assessment are available. For the economic and social dimension, there is still need for consistent and robust indicators and methods. In addition to measuring the individual sustainability dimensions, another challenge is a comprehensive, yet understandable presentation of the results. The “Life Cycle Sustainability Dashboard” and the “Life Cycle Sustainability Triangle” are presented as examples for communication tools for both experts and non expert stakeholders.

  14. Effect of biogenic carbon inventory on the life cycle assessment of bioenergy: challenges to the neutrality assumption

    NARCIS (Netherlands)

    Wiloso, E.I.; Heijungs, R.; Huppes, G.; Fang, K.

    2016-01-01

    Biogenic carbon is defined as carbon contained in biomass that is accumulated during plant growth. In spite of the considerable progress towards the inventory of biogenic carbon in the life cycle assessment (LCA) of bioenergy in policy guidelines, many scientific articles tend to give no

  15. Code boiler and pressure vessel life assessment

    International Nuclear Information System (INIS)

    Farr, J.R.

    1992-01-01

    In the United States of America and in Canada, laws and controls for determining life assessment for continued operation of equipment exist only for those pressure vessels built to Section III and evaluated according to Section XI. In this presentation, some of those considerations which are made in the USA and Canada for deciding on life or condition assessment of boilers and pressure vessels designed and constructed to other sections of the ASME Boiler and Pressure Vessel Code are reviewed. Life assessment or condition assesssment is essential in determining what is necessary for continued operation. With no ASME rules being adopted by laws or regulations, other than OSHA in the USA and similar environmental controls in Canada, to control life assessment for continued operation, the equipment owner must decide if assessment is to be done and how much to do. Some of those considerations are reviewed along with methods and procedures to make an assessment along with a discussion of where the ASME B and PV Code currently stands regarding continued operation. (orig.)

  16. Life cycle evaluation of an intercooled gas turbine plant used in conjunction with renewable energy

    Directory of Open Access Journals (Sweden)

    Thank-God Isaiah

    2016-09-01

    Full Text Available The life cycle estimation of power plants is important for gas turbine operators. With the introduction of wind energy into the grid, gas turbine operators now operate their plants in Load–Following modes as back-ups to the renewable energy sources which include wind, solar, etc. The motive behind this study is to look at how much life is consumed when an intercooled power plant with 100 MW power output is used in conjunction with wind energy. This operation causes fluctuations because the wind energy is unpredictable and overtime causes adverse effects on the life of the plant – The High Pressure Turbine Blades. Such fluctuations give rise to low cycle fatigue and creep failure of the blades depending on the operating regime used. A performance based model that is capable of estimating the life consumed of an intercooled power plant has been developed. The model has the capability of estimating the life consumed based on seasonal power demands and operations. An in-depth comparison was undertaken on the life consumed during the seasons of operation and arrives at the conclusion that during summer, the creep and low cycle life is consumed higher than the rest periods. A comparison was also made to determine the life consumed between Load–Following and stop/start operating scenarios. It was also observed that daily creep life consumption in summer was higher than the winter period in-spite of having lower average daily operating hours in a Start–Stop operating scenario.

  17. Life cycle assessment of waste incineration in Denmark and Italy using two LCA models

    DEFF Research Database (Denmark)

    Turconi, Roberto; Butera, Stefania; Boldrin, Alessio

    2011-01-01

    In Europe, about 20% of municipal solid waste is incinerated. Large differences can be found between northern and southern Europe regarding energy recovery efficiencies, flue gas cleaning technologies and residue management. Life-cycle assessment (LCA) of waste incineration often provides....... The overall environmental performance of the Danish system was better than the Italian, mainly because of higher heat recovery at the Danish plant. Flue gas cleaning at the Italian plant was, however, preferable to the Danish, indicating that efficient flue gas cleaning may provide significant benefits...... contradictory results if these local conditions are not properly accounted for. The importance of regional differences and site-specific data, and choice of LCA model itself, was evaluated by assessment of two waste incinerators representing northern and southern Europe (Denmark and Italy) based on two...

  18. Geothermal life cycle assessment - part 3

    Energy Technology Data Exchange (ETDEWEB)

    Sullivan, J. L. [Argonne National Lab. (ANL), Argonne, IL (United States); Frank, E. D. [Argonne National Lab. (ANL), Argonne, IL (United States); Han, J. [Argonne National Lab. (ANL), Argonne, IL (United States); Elgowainy, A. [Argonne National Lab. (ANL), Argonne, IL (United States); Wang, M. Q. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2013-11-01

    A set of key issues pertaining to the environmental performance of geothermal electric power have been addressed. They include: 1) greenhouse gas emissions (GHG) from geothermal facilities, 2) the use of supercritical carbon dioxide (scCO2) as a geofluid for enhanced geothermal systems (EGS), 3) quantifying the impact of well field exploration on the life cycle of geothermal power, and finally 4) criteria pollutant emissions for geothermal and other electric power generation. A GHG emission rate (g/kWh) distribution as function of cumulative running capacity for California has been developed based on California and U. S. government data. The distribution is similar to a global distribution for compared geothermal technologies. A model has been developed to estimate life cycle energy of and CO2 emissions from a coupled pair of coal and EGS plants, the latter of which is powered by scCO2 captured from coal plant side. Depending on the CO2 capture rate on the coal side and the CO2 consumption rate on the EGS side, significant reductions in GHG emissions were computed when the combined system is compared to its conventional coal counterpart. In effect, EGS CO2 consumption acts as a sequestration mechanism for the coal plant. The effects CO2 emissions from the coupled system, prompt on the coal side and reservoir leakage on the EGS side, were considered as well as the subsequent decline of these emissions after entering the atmosphere over a time frame of 100 years. A model was also developed to provide better estimates of the impact of well field exploration on the life cycle performance of geothermal power production. The new estimates increase the overall life cycle metrics for the geothermal systems over those previously estimated. Finally, the GREET model has been updated to include the most recent criteria pollutant emissions for a range of renewable (including geothermal) and other power

  19. Quantifying progress toward a conservation assessment for all plants.

    Science.gov (United States)

    Bachman, Steven P; Nic Lughadha, Eimear M; Rivers, Malin C

    2018-06-01

    The Global Strategy for Plant Conservation (GSPC) set an ambitious target to achieve a conservation assessment for all known plant species by 2020. We consolidated digitally available plant conservation assessments and reconciled their scientific names and assessment status to predefined standards to provide a quantitative measure of progress toward this target. The 241,919 plant conservation assessments generated represent 111,824 accepted land plant species (vascular plants and bryophytes, not algae). At least 73,081 and up to 90,321 species have been assessed at the global scale, representing 21-26% of known plant species. Of these plant species, at least 27,148 and up to 32,542 are threatened. Eighty plant families, including some of the largest, such as Asteraceae, Orchidaceae, and Rubiaceae, are underassessed and should be the focus of assessment effort if the GSPC target is to be met by 2020. Our data set is accessible online (ThreatSearch) and is a baseline that can be used to directly support other GSPC targets and plant conservation action. Although around one-quarter of a million plant assessments have been compiled, the majority of plants are still unassessed. The challenge now is to build on this progress and redouble efforts to document conservation status of unassessed plants to better inform conservation decisions and conserve the most threatened species. © 2017 The Authors. Conservation Biology published by Wiley Periodicals, Inc. on behalf of Society for Conservation Biology.

  20. Life Cycle Assessment of Greenhouse Gas Emissions

    NARCIS (Netherlands)

    Reijnders, L.; Chen, W.Y.; Suzuki, T.; Lackner, M.

    2015-01-01

    Life cycle assessments of greenhouse gas emissions have been developed for analyzing products "from cradle to grave": from resource extraction to waste disposal. Life cycle assessment methodology has also been applied to economies, trade between countries, aspects of production, and waste

  1. Environmental assessment, Pinellas Plant site, Petersburg, Florida

    International Nuclear Information System (INIS)

    1983-07-01

    The purpose of this environmental assessment is to describe the operations at the Pinellas Plant, discuss the locale in which the plant is situated and assess the actual and possible impacts of plant operation on the surrounding environment. The facility and the local environment are described; impacts on the economy, local community and the environment discussed, and alternatives presented. A comparison of the environmental impact of operating the Pinellas Plant versus the benefits gained by its operation suggests that the plant should continue its function of supplying nuclear weapons components for the US Department of Energy

  2. A Reliability-Based Determination of Economic Life of Marine power plants

    International Nuclear Information System (INIS)

    Atua, K.

    1999-01-01

    The reliability-based life approach is utilized. Selective failure modes of marine power plants are used for illustration. A case study of the Egyptian Commercial Fleet owned by the Public Sector Company was analyzed and used to establish a demonstration of the expected economic life based on local operating and maintenance conditions. The data acquired is analyzed and failure trend is derived for each failure mode. Probabilistic techniques are used to randomly generate numbers and times of occurrence of different failure modes. The reliability analysis is performed on the life span expected by the manufacture to predict the total number of failures, dependent failures, and cost of failures. Total expenditure due to random failure and cost of scheduled maintenance together with the annual income are utilized (using the time value of money) to determine the economic life of the plant. Conclusions are derived and recommendations for the enhancement of this work in the future are made

  3. Defining the baseline in social life cycle assessment

    DEFF Research Database (Denmark)

    Jørgensen, Andreas; Finkbeiner, Matthias; Jørgensen, Michael Søgaard

    2010-01-01

    A relatively broad consensus has formed that the purpose of developing and using the social life cycle assessment (SLCA) is to improve the social conditions for the stakeholders affected by the assessed product's life cycle. To create this effect, the SLCA, among other things, needs to provide...... valid assessments of the consequence of the decision that it is to support. The consequence of a decision to implement a life cycle of a product can be seen as the difference between the decision being implemented and 'non-implemented' product life cycle. This difference can to some extent be found...... using the consequential environmental life cycle assessment (ELCA) methodology to identify the processes that change as a consequence of the decision. However, if social impacts are understood as certain changes in the lives of the stakeholders, then social impacts are not only related to product life...

  4. Transcriptional responses to sucrose mimic the plant-associated life style of the plant growth promoting endophyte Enterobacter sp. 638.

    Science.gov (United States)

    Taghavi, Safiyh; Wu, Xiao; Ouyang, Liming; Zhang, Yian Biao; Stadler, Andrea; McCorkle, Sean; Zhu, Wei; Maslov, Sergei; van der Lelie, Daniel

    2015-01-01

    Growth in sucrose medium was previously found to trigger the expression of functions involved in the plant associated life style of the endophytic bacterium Enterobacter sp. 638. Therefore, comparative transcriptome analysis between cultures grown in sucrose or lactate medium was used to gain insights in the expression levels of bacterial functions involved in the endophytic life style of strain 638. Growth on sucrose as a carbon source resulted in major changes in cell physiology, including a shift from a planktonic life style to the formation of bacterial aggregates. This shift was accompanied by a decrease in transcription of genes involved in motility (e.g., flagella biosynthesis) and an increase in the transcription of genes involved in colonization, adhesion and biofilm formation. The transcription levels of functions previously suggested as being involved in endophytic behavior and functions responsible for plant growth promoting properties, including the synthesis of indole-acetic acid, acetoin and 2,3-butanediol, also increased significantly for cultures grown in sucrose medium. Interestingly, despite an abundance of essential nutrients transcription levels of functions related to uptake and processing of nitrogen and iron became increased for cultures grown on sucrose as sole carbon source. Transcriptome data were also used to analyze putative regulatory relationships. In addition to the small RNA csrABCD regulon, which seems to play a role in the physiological adaptation and possibly the shift between free-living and plant-associated endophytic life style of Enterobacter sp. 638, our results also pointed to the involvement of rcsAB in controlling responses by Enterobacter sp. 638 to a plant-associated life style. Targeted mutagenesis was used to confirm this role and showed that compared to wild-type Enterobacter sp. 638 a ΔrcsB mutant was affected in its plant growth promoting ability.

  5. Transcriptional responses to sucrose mimic the plant-associated life style of the plant growth promoting endophyte Enterobacter sp. 638.

    Directory of Open Access Journals (Sweden)

    Safiyh Taghavi

    Full Text Available Growth in sucrose medium was previously found to trigger the expression of functions involved in the plant associated life style of the endophytic bacterium Enterobacter sp. 638. Therefore, comparative transcriptome analysis between cultures grown in sucrose or lactate medium was used to gain insights in the expression levels of bacterial functions involved in the endophytic life style of strain 638. Growth on sucrose as a carbon source resulted in major changes in cell physiology, including a shift from a planktonic life style to the formation of bacterial aggregates. This shift was accompanied by a decrease in transcription of genes involved in motility (e.g., flagella biosynthesis and an increase in the transcription of genes involved in colonization, adhesion and biofilm formation. The transcription levels of functions previously suggested as being involved in endophytic behavior and functions responsible for plant growth promoting properties, including the synthesis of indole-acetic acid, acetoin and 2,3-butanediol, also increased significantly for cultures grown in sucrose medium. Interestingly, despite an abundance of essential nutrients transcription levels of functions related to uptake and processing of nitrogen and iron became increased for cultures grown on sucrose as sole carbon source. Transcriptome data were also used to analyze putative regulatory relationships. In addition to the small RNA csrABCD regulon, which seems to play a role in the physiological adaptation and possibly the shift between free-living and plant-associated endophytic life style of Enterobacter sp. 638, our results also pointed to the involvement of rcsAB in controlling responses by Enterobacter sp. 638 to a plant-associated life style. Targeted mutagenesis was used to confirm this role and showed that compared to wild-type Enterobacter sp. 638 a ΔrcsB mutant was affected in its plant growth promoting ability.

  6. 76 FR 44891 - Monsanto Co.; Availability of Petition, Plant Pest Risk Assessment, and Environmental Assessment...

    Science.gov (United States)

    2011-07-27

    ...] Monsanto Co.; Availability of Petition, Plant Pest Risk Assessment, and Environmental Assessment for... Monsanto petition, our plant pest risk assessment, and our draft environmental assessment for the proposed...-2817 before coming. The petition, draft environmental assessment, and plant pest risk assessment are...

  7. Life cycle assessment of greenhouse gas emissions

    NARCIS (Netherlands)

    Reijnders, L.; Chen, W.Y.; Seiner, J.; Suzuki, T.; Lackner, M.

    2012-01-01

    Life cycle assessments of greenhouse gas emissions have been developed for analyzing products "from cradle to grave": from resource extraction to waste disposal. Life cycle assessment methodology has also been applied to economies, trade between countries, aspects of production and to waste

  8. Life cycle assessment of greenhouse gas emissions

    NARCIS (Netherlands)

    Reijnders, L.; Chen, W.-Y.; Suzuki, T.; Lackner, M.

    2017-01-01

    Life cycle assessments of greenhouse gas emissions have been developed for analyzing products “from cradle to grave”: from resource extraction to waste disposal. Life cycle assessment methodology has also been applied to economies, trade between countries, aspects of production, and waste

  9. Risk assessment in support of plant health

    DEFF Research Database (Denmark)

    Jeger, Michael; Schans, Jan; Lövei, Gabor L.

    2012-01-01

    environmental risk assessment and the evaluation of risk reducing options. Quantitative approaches have become increasingly important during this time. The Panel has developed such methods in climatic mapping (in association with the Joint Research Councils), application of spatial spread models, re......With the establishment of the Plant Health Panel in 2006, EFSA became the body responsible for risk assessment in the plant health area for the European Union (EU). Since then more than 70 outputs have been produced dealing with the full range of organisms harmful to plant health across all crop...... types and plants in the environment. There has been an increasing trend towards producing scientific opinions which are full pest risk assessments for the whole EU territory. In its work, and as a contribution to the wider development of risk assessment methodology, the Panel has developed a series...

  10. International requirements for life extension of nuclear power plants; Internationale Anforderungen zur Lebensdauerverlaengerung von Kernkraftwerken

    Energy Technology Data Exchange (ETDEWEB)

    Wernicke, Robert [TUeV NORD SysTec GmbH und Co. KG, Abt. Festigkeit und Konstruktion, Hamburg (Germany)

    2009-11-15

    Lifetime extension or long-term operation of nuclear facilities are topics of great international significance against the backdrop of a fleet of nuclear power plants of which many have reached 2/3 of their planned life. The article deals with the conditions for, and the specific requirements of, seeking long-term operation of nuclear power plants as established internationally and on the basis of IAEA collections. Technically, long-term operation is possible for many of the nuclear power plants in the world because, normally, they were built on the basis of conservative rules and regulations and, as a consequence, incorporate significant additional safety. Application of requirements to specific plants implies assessments of technical safety which show that conservative design philosophies created reserves and, as a consequence, there is an adequate level of safety also in long-term plant operation. For this purpose, the technical specifications must be revised, necessary additions made, and (international) operating experience taken into account and management of aging established. Two examples are presented to show how the approach to long-term plant operation is put into practice on a national level. (orig.)

  11. Quality-of-life assessment in advanced cancer.

    LENUS (Irish Health Repository)

    Donnelly, S

    2000-07-01

    In the past 5 years, quality-of-life (QOL) assessment measures such as the McGill, McMaster, Global Visual Analogue Scale, Assessment of QOL at the End of Life, Life Evaluation Questionnaire, and Hospice QOL Index have been devised specifically for patients with advanced cancer. The developers of these instruments have tried to respond to the changing needs of this specific population, taking into account characteristics including poor performance status, difficulty with longitudinal study, rapidly deteriorating physical condition, and change in relevant issues. Emphasis has been placed on patient report, ease and speed of completion, and the existential domain or meaning of life. Novel techniques in QOL measurement have also been adapted for palliative care, such as judgment analysis in the Schedule for the Evaluation of Individual Quality of Life. It is generally agreed that a single tool will not cover all QOL assessment needs.

  12. Developing the Social Life Cycle Assessment

    DEFF Research Database (Denmark)

    Jørgensen, Andreas

    social audits. Through an interview with a social auditor it is suggested that the auditor varies the procedures for carrying out the audit in order to get the most valid result. For example, the auditor has to take into account the various tricks a company in a given context normally uses to cheat......This thesis seeks to add to the development of the Social Life Cycle Assessment (SLCA), which can be defined as an assessment method for assessing the social impacts connected to the life cycle of a product, service or system. In such development it is important to realise that the SLCA is only...... appealing to the extent that it does what it is supposed to do. In this thesis, this goal of SLCA is defined as to support improvements of the social conditions for the stakeholders throughout the life cycle of the assessed product, system or service. This effect should arise through decision makers...

  13. Life cycle assessment of sewage sludge co-incineration in a coal-based power station.

    Science.gov (United States)

    Hong, Jingmin; Xu, Changqing; Hong, Jinglan; Tan, Xianfeng; Chen, Wei

    2013-09-01

    A life cycle assessment was conducted to evaluate the environmental and economic effects of sewage sludge co-incineration in a coal-fired power plant. The general approach employed by a coal-fired power plant was also assessed as control. Sewage sludge co-incineration technology causes greater environmental burden than does coal-based energy production technology because of the additional electricity consumption and wastewater treatment required for the pretreatment of sewage sludge, direct emissions from sludge incineration, and incinerated ash disposal processes. However, sewage sludge co-incineration presents higher economic benefits because of electricity subsidies and the income generating potential of sludge. Environmental assessment results indicate that sewage sludge co-incineration is unsuitable for mitigating the increasing pressure brought on by sewage sludge pollution. Reducing the overall environmental effect of sludge co-incineration power stations necessitates increasing net coal consumption efficiency, incinerated ash reuse rate, dedust system efficiency, and sludge water content rate. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. Nuclear power plant life time improvement and management program in Korea

    International Nuclear Information System (INIS)

    Sung Yull Hong; Ill Seok Jeong; Taek Ho Song

    1995-01-01

    Korea Electric Power Research Institute (KEPRI) of Korea Electric Power Corporation (KEPCO) has performed a lifetime management of nuclear power plant program (LMNPP), ''Nuclear Power Plant Lifetime Management (PLIM) (I)'', since November 1993, which is a feasibility study of the Kori Unit 1 lifetime management including aging evaluation of the thirteen major components. The results of the PLIM(I) will provide information which is necessary for decision making of the Kori Unit 1 lifetime improvement. A plan of the work scope and schedule for the next phase, PLIM(II), will also be provided by this project. This paper introduced KEPRI's basic strategy of LMNPP, PLIM organization, current status, some interim results of the PLIM(I), and other related programs in Korea. So far, we have done field data survey, systems/structures screening, components prioritization, lifetime evaluation methodology study, and fracture mechanics tests of the Kori Unit 1 reactor pressure vessel surveillance coupons. Currently life assessment of the major components and PLIM economic evaluation of Kori Unit 1 are under way. (author)

  15. Life cycle and human health risk assessments as tools for decision making in the design and implementation of nanofiltration in drinking water treatment plants.

    Science.gov (United States)

    Ribera, G; Clarens, F; Martínez-Lladó, X; Jubany, I; V Martí; Rovira, M

    2014-01-01

    A combined methodology using life cycle assessment (LCA) and human health risk assessment (HHR) is proposed in order to select the percentage of water in drinking water treatment plants (DWTP) that should be nanofiltered (NF). The methodological approach presented here takes into account environmental and social benefit criteria evaluating the implementation of new processes into conventional ones. The inclusion of NF process improves drinking water quality, reduces HHR but, in turn, increases environmental impacts as a result of energy and material demand. Results from this study lead to balance the increase of the impact in various environmental categories with the reduction in human health risk as a consequence of the respective drinking water production and consumption. From an environmental point of view, the inclusion of NF and recommended pretreatments to produce 43% of the final drinking water means that the environmental impact is nearly doubled in comparison with conventional plant in impact categories severely related with electricity production, like climate change. On the other hand, the carcinogenic risk (HHR) associated to trihalomethane formation potential (THMFP) decreases with the increase in NF percentage use. Results show a reduction of one order of magnitude for the carcinogenic risk index when 100% of drinking water is produced by NF. © 2013. Published by Elsevier B.V. All rights reserved.

  16. Eu-funded nuclear research on plant life management in the 4. and 5. framework programme

    International Nuclear Information System (INIS)

    Lemaitre, P.; Van Goethem, G.

    2001-01-01

    In this paper an overview will be given of the European Union EURATOM research in the field of plant life management and ageing of structural components. The results obtained so far in the projects executed under the 5. framework programme (FP-5/1999-2002) will be presented and discussed in detail. The objectives of the 5. framework programme, which is end-user driven, are: 1) to develop a common basis for the continued safe operation and prolonging the safe operational life-spans of existing nuclear installations; 2) to develop better methods for their inspection, maintenance and management (both in terms of performance and occupational exposure). The following three sections were proposed under this heading of the work programme: Integrity of equipment and structures, on-line monitoring, inspection and maintenance, and organisation and management of safety. Besides the traditional technological challenges, socio-economic concerns are also taken on board, such as public acceptance and cost of the nuclear option as well as plant simplification and man-technology-organisation interaction. An additional challenge for the EU consists of the enlargements process towards Central and Eastern European Countries in the coming years. Therefore FP5 pays attention also to plant safety assessments of VVER reactors and to the spreading of the new safety culture in these candidate countries in co-operation with similar activities run at the Commission especially under the programmes of Tacis/Phare and of the Joint Research Centre (JRC). In the area of plant life management so far 18 projects have been selected for funding by the European Commission. Most of them are costs shared actions, which means that the European Commission on the one hand and the project partners on the other hand provide each 50 % of the necessary funding. The total contract value of the selected projects is about 18 million euros. (authors)

  17. Eu-funded nuclear research on plant life management in the 4. and 5. framework programme

    Energy Technology Data Exchange (ETDEWEB)

    Lemaitre, P.; Van Goethem, G. [European Commission, Dir. General Research, Bruxelles (Belgium)

    2001-07-01

    In this paper an overview will be given of the European Union EURATOM research in the field of plant life management and ageing of structural components. The results obtained so far in the projects executed under the 5. framework programme (FP-5/1999-2002) will be presented and discussed in detail. The objectives of the 5. framework programme, which is end-user driven, are: 1) to develop a common basis for the continued safe operation and prolonging the safe operational life-spans of existing nuclear installations; 2) to develop better methods for their inspection, maintenance and management (both in terms of performance and occupational exposure). The following three sections were proposed under this heading of the work programme: Integrity of equipment and structures, on-line monitoring, inspection and maintenance, and organisation and management of safety. Besides the traditional technological challenges, socio-economic concerns are also taken on board, such as public acceptance and cost of the nuclear option as well as plant simplification and man-technology-organisation interaction. An additional challenge for the EU consists of the enlargements process towards Central and Eastern European Countries in the coming years. Therefore FP5 pays attention also to plant safety assessments of VVER reactors and to the spreading of the new safety culture in these candidate countries in co-operation with similar activities run at the Commission especially under the programmes of Tacis/Phare and of the Joint Research Centre (JRC). In the area of plant life management so far 18 projects have been selected for funding by the European Commission. Most of them are costs shared actions, which means that the European Commission on the one hand and the project partners on the other hand provide each 50 % of the necessary funding. The total contract value of the selected projects is about 18 million euros. (authors)

  18. Life extension for German nuclear power plants

    International Nuclear Information System (INIS)

    Heller, W.

    2005-01-01

    The Federation of German Industries (BDI) commissioned a study of the ''Economic Effects of Alternative Lifetimes of Nuclear Power Plants in Germany.'' The expert organizations invited as authors were the Power Economy Institute of the University of Cologne (EWI) and Energy Environment Forecast Analysis GmbH (EEFA), Berlin. The reasons for commissioning the Study include the changed framework conditions (deregulation, CO 2 emission certificate trading, worldwide competition for resources), which have altered the energy supply situation in Europe. The findings of the Study were presented to the public by the BDI on October 26, 2005. The study deals with two scenarios of extended lifetimes for German nuclear power plants of 40 and 60 years as against the existing regulations with plant lifetimes limited to approx. 32 years. The longer service lives of plants are reflected in reduced electricity generation costs and thus may have a positive influence on electricity prices. Moreover, there would be additional growth of production together with additional jobs, all of which would add up to nearly 42,000 persons for all sectors of the economy as compared to the basic scenario. Also, CO 2 emissions could be curbed by up to 50 million tons of carbon dioxide. The Study offers ample and valid reasons in favor of extending the lifetimes of nuclear power plants. In the interest of general welfare, politics would be well advised to relax the restrictions on plant life in the course of this legislative term. (orig.)

  19. Technology-Enhanced Formative Assessment of Plant Identification

    Science.gov (United States)

    Conejo, Ricardo; Garcia-Viñas, Juan Ignacio; Gastón, Aitor; Barros, Beatriz

    2016-04-01

    Developing plant identification skills is an important part of the curriculum of any botany course in higher education. Frequent practice with dried and fresh plants is necessary to recognize the diversity of forms, states, and details that a species can present. We have developed a web-based assessment system for mobile devices that is able to pose appropriate questions according to the location of the student. A student's location can be obtained using the device position or by scanning a QR code attached to a dried plant sheet in a herbarium or to a fresh plant in an arboretum. The assessment questions are complemented with elaborated feedback that, according to the students' responses, provides indications of possible mistakes and correct answers. Three experiments were designed to measure the effectiveness of the formative assessment using dried and fresh plants. Three questionnaires were used to evaluate the system performance from the students' perspective. The results clearly indicate that formative assessment is objectively effective compared to traditional methods and that the students' attitudes towards the system were very positive.

  20. Trend in foreign countries of life extension for nuclear power plants

    International Nuclear Information System (INIS)

    Kusanagi, Hideo

    1992-01-01

    When the nuclear power generation in the world is converted to oil burning thermal power generation, the required quantity of oil is twice as much as the oil production in Saudi Arabia. This represents the size of the role that nuclear power generation plays. More than 30 years have already elapsed since the start of nuclear power generation, and the number of nuclear power plants in operation in the world was 426 as of the end of 1990, and their capacity of about 344 million kW is about 17% of the total generated electric power in the world. Though circumstances are different in respective countries, the construction of new nuclear power plants is not always advancing smoothly, and the possibility of operating existing nuclear power plants as long as possible has been investigated. In USA, the approved term of operation of nuclear power plants is 40 years, and the trend of the research and development of the plant life extension is described. In France, the life of nuclear power plants is not stipulated by the law. In U.K., also it is not stipulated by the law. The trend in these countries is reported. IAEA also has carried out the activities on this problem. (K.I.)

  1. Nuclear power plant life management. An overview of identification of key components in relation with degradation mechanism - IAEA guidelines presentation

    International Nuclear Information System (INIS)

    Bezdikian, Georges

    2005-01-01

    Nuclear Power Plant (NPP) lifetime has a direct bearing on the cost of the electricity generated from it. The annual unit cost of electricity is dependent upon the operational time, and also annual costs and the capital cost assumptions function of Euros/kw. If the actual NPP lifetime has been underestimated then an economic penalty could be incurred. But the ageing degradation, of nuclear power plants is an important aspect that requires to be addressed to ensure: - that necessary safety margins are maintained throughout service life; - the adequate reliability and therefore the economic viability of older plants is maintained; - that unforeseen an uncontrolled degradation of critical plant components does not foreshorten the plant lifetime. Accommodating the inevitable obsolescence of some components has also to be addressed during plant life. Plant lifetime management requires the identification and life assessment of those components which not only limit the lifetime of the plant but also those which cannot be reasonably replaced. The planned replacement of major or 'key' components needs to be considered - where economic considerations will largely dictate replacement or the alternative strategy of power plant decommissioning. The necessary but timely planning for maintenance and replacements is a necessary consideration so that functions and reliability are maintained. The reasons for the current increasing attention in the area of plant life management are diverse and range from the fact that many of the older plants are approaching for the oldest plants more than 30 years in operation, and for important number of NPPs between 20 and 30 years. The impact of plant life management on the economics of generating electricity is the subject of ongoing studies and it can readily be seen that there can be both savings and additional costs associated with these activities. Not all degradation processes will be of significance in eroding safety margins and there is a

  2. Current status of technology for plant life management

    International Nuclear Information System (INIS)

    Roche, B.

    2000-01-01

    In most developed countries of the world, deregulation of electricity markets has been established: competition is fierce, and utilities have to improve the competitiveness of their plants. It is an important challenge for nuclear power plants: a smart way to deal with this problem is life extension of existing units. The financial stakes associated with maintaining or extending the lifetime of nuclear power stations are very high; thus, if their lifetime is shortened by about ten years, dismantling and renewal would be brought forward which would increase their costs by several tens of billions of French francs. Furthermore, every extra year of operation of a 900 MWe unit should save about 500 million French francs per year on financial charges that would be necessary for a new investment, provided that maintenance costs do not become excessive. In order to succeed, utilities must improve their knowledge of ageing mechanisms, demonstrate to safety authorities the feasibility of life extension (especially taking into account critical components), operate existing units in an exemplary way, manage and master the long-term evolution of the safety reference state. (author)

  3. Life-cycle assessment of photovoltaic systems: results of Swiss studies on energy chains

    Energy Technology Data Exchange (ETDEWEB)

    Dones, Roberto [Paul Scherrer Inst., Villigen (Switzerland); Frischknecht, Rolf [Federal Institute of Technology, Zurich (Switzerland)

    1998-04-01

    The methodology used and results obtained for grid-connected photovoltaic (PV) plants in recent Swiss life-cycle assessment (LCA) studies on current and future energy systems are discussed. Mono- and polycrystalline silicon cell technologies utilised in current panels as well as monocrystalline and amorphous cells for future applications were analysed from Swiss conditions. The environmental inventories of slanted-roof solar panels and large plants are presented. Greenhouse gas emissions from present and future electricity systems are compared. The high electricity requirements for manufacturing determine most of the environmental burdens associated with current photovoltaics. However, due to increasing efficiency of production processes and cells, the environmental performance of PV systems is likely to improve substantially in the future. (Author)

  4. Life-cycle assessment of photovoltaic systems: results of Swiss studies on energy chains

    International Nuclear Information System (INIS)

    Dones, Roberto; Frischknecht, Rolf

    1998-01-01

    The methodology used and results obtained for grid-connected photovoltaic (PV) plants in recent Swiss life-cycle assessment (LCA) studies on current and future energy systems are discussed. Mono- and polycrystalline silicon cell technologies utilised in current panels as well as monocrystalline and amorphous cells for future applications were analysed from Swiss conditions. The environmental inventories of slanted-roof solar panels and large plants are presented. Greenhouse gas emissions from present and future electricity systems are compared. The high electricity requirements for manufacturing determine most of the environmental burdens associated with current photovoltaics. However, due to increasing efficiency of production processes and cells, the environmental performance of PV systems is likely to improve substantially in the future. (Author)

  5. Life Style Assessment: So What!

    Science.gov (United States)

    Aubry, William E.

    The construct life style was used by Alfred Adler to describe the characteristic way in which individuals act and think. Followers of his theories are now collecting evidence to support or validate his contentions. The assessment of client life styles serves: (1) to make the client aware of his misconceptions, (2) as a reference point for therapy,…

  6. Regulatory considerations for extending the life of nuclear plants

    International Nuclear Information System (INIS)

    Feinroth, H.; Rowden, M.

    1987-01-01

    This study provides the nuclear industry with its first systematic evaluation of the regulatory implications of nuclear plant life extension. The report recommends courses of action that might be followed by the industry and its regulators to ensure the development of a process that is both reasonable and predictable. The study holds that ''license renewal should be a reaffirmation of the ongoing and continuous process of hardware renewal that is already an integral part of every nuclear power plant's operating program.'' The report's findings can be used by the new AIF Subcommittee on License Renewal, by other industry groups, and by individual licensees in making constructive recommendations to NRC for the development of a workable license renewal policy. No such policy now exists, and the establishment of one is preferable to allowing the consideration of life extension matters on a case-by-case basis

  7. Piping analysis for the life extension of Heavy Water Plant, Kota

    International Nuclear Information System (INIS)

    Mishra, Rajesh; Soni, R.S.; Kushwaha, H.S.; Venkat Raj, V.

    2001-02-01

    Heavy water production in India has achieved many milestones in the past. One of the most successfully running heavy water plant situated at Kota (Rajasthan) is on the verge of completion of its design life in near future. Heavy Water Plant, Kota is hydrogen sulfide based plant. Various exercises have been planned with an aim to assess the fatigue usage for the various components of these plants in order to extend their life. Considering the process parameters and past history of the plant performance, 25 process critical nozzle locations and connected piping systems are identified. Analyses have been carried out for these critical piping systems for mainly two kinds of loading, viz. sustained loads and the expansion loads. The static analysis has been carried out to find the induced stress levels due to sustained as well as thermal expansion loading as per the design code ANSI B31.3. Due consideration is given to the design corrosion allowance while evaluating the stresses due to sustained loads. At the locations where induced stresses (S 1 ) due to the sustained loads are exceeding the allowable limits (S h ), exercises have been carried out considering the reduced corrosion allowance value. This strategy is adopted due to the fact that the corrosion measurements carried out at site at various critical locations show a very low rate of corrosion. Where it is found that system is getting qualified with reduced corrosion allowance values, it is recommended to keep that location under periodic monitoring. The strategy adopted for carrying out the analysis for thermal expansion loading is to qualify the system as per the code allowable value (S a ). Where it is found that the stresses are more than the allowable value, credit of liberal allowable value as suggested in the code i.e., with the addition of the term (S h -S 1 ) to the allowable stress (S a ) value, has been taken. If at any location, it is found that the problem of high thermal stress still persists, the

  8. Brain surgery breathes new life into aging plants

    Energy Technology Data Exchange (ETDEWEB)

    Makansi, J. [Pearl Street Inc. (United States)

    2006-04-15

    Unlike managing the human aging process, extending the life of a power plant often includes brain surgery, modernizing its control and automation system. Lately, such retrofits range from wholesale replacing of existing controls to the addition of specific control elements that help optimize performance. Pending revisions to safety codes and cybersecurity issues also need to be considered. 4 figs.

  9. Nuclear plant life cycle costs

    International Nuclear Information System (INIS)

    Durante, R.W.

    1994-01-01

    Life cycle costs of nuclear power plants in the United States are discussed. The author argues that these costs have been mishandled or neglected. Decommissioning costs have escalated, e.g. from $328 per unit in 1991 to $370 in 1993 for the Sacramento Municipal Utility District, though they still only amount to less than 0.1 cent per kWh. Waste management has been complicated in the U.S. by the decision to abandon civilian reprocessing; by the year 2000, roughly 30 U.S. nuclear power units will have filled their storage pools; dry storage has been delayed, and will be an expense not originally envisaged. Some examples of costs of major component replacement are provided. No single component has caused as much operational disruption and financial penalties as the steam generator. Operation and maintenance costs have increased steadily, and now amount to more than 70% of production costs. A strategic plan by the Nuclear Power Oversight Committee (of U.S. utilities) will ensure that the ability to correctly operate and maintain a nuclear power plant is built into the original design. 6 figs

  10. Herbivore-mediated ecological costs of reproduction shape the life history of an iteroparous plant.

    Science.gov (United States)

    Miller, Tom E X; Tenhumberg, Brigitte; Louda, Svata M

    2008-02-01

    Plant reproduction yields immediate fitness benefits but can be costly in terms of survival, growth, and future fecundity. Life-history theory posits that reproductive strategies are shaped by trade-offs between current and future fitness that result from these direct costs of reproduction. Plant reproduction may also incur indirect ecological costs if it increases susceptibility to herbivores. Yet ecological costs of reproduction have received little empirical attention and remain poorly integrated into life-history theory. Here, we provide evidence for herbivore-mediated ecological costs of reproduction, and we develop theory to examine how these costs influence plant life-history strategies. Field experiments with an iteroparous cactus (Opuntia imbricata) indicated that greater reproductive effort (proportion of meristems allocated to reproduction) led to greater attack by a cactus-feeding insect (Narnia pallidicornis) and that damage by this herbivore reduced reproductive success. A dynamic programming model predicted strongly divergent optimal reproductive strategies when ecological costs were included, compared with when these costs were ignored. Meristem allocation by cacti in the field matched the optimal strategy expected under ecological costs of reproduction. The results indicate that plant reproductive allocation can strongly influence the intensity of interactions with herbivores and that associated ecological costs can play an important selective role in the evolution of plant life histories.

  11. Habitat Fragmentation Drives Plant Community Assembly Processes across Life Stages

    Science.gov (United States)

    Hu, Guang; Feeley, Kenneth J.; Yu, Mingjian

    2016-01-01

    Habitat fragmentation is one of the principal causes of biodiversity loss and hence understanding its impacts on community assembly and disassembly is an important topic in ecology. We studied the relationships between fragmentation and community assembly processes in the land-bridge island system of Thousand Island Lake in East China. We focused on the changes in species diversity and phylogenetic diversity that occurred between life stages of woody plants growing on these islands. The observed diversities were compared with the expected diversities from random null models to characterize assembly processes. Regression tree analysis was used to illustrate the relationships between island attributes and community assembly processes. We found that different assembly processes predominate in the seedlings-to-saplings life-stage transition (SS) vs. the saplings-to-trees transition (ST). Island area was the main attribute driving the assembly process in SS. In ST, island isolation was more important. Within a fragmented landscape, the factors driving community assembly processes were found to differ between life stage transitions. Environmental filtering had a strong effect on the seedlings-to-saplings life-stage transition. Habitat isolation and dispersal limitation influenced all plant life stages, but had a weaker effect on communities than area. These findings add to our understanding of the processes driving community assembly and species coexistence in the context of pervasive and widespread habitat loss and fragmentation. PMID:27427960

  12. Development of a web-based fatigue life evaluation system for primary components in a nuclear power plant

    International Nuclear Information System (INIS)

    Seo, Hyong Won; Lee, Sang Min; Choi, Jae Boong; Kim, Young Jin; Choi, Sung Nam; Jang, Ki Sang; Hong, Sung Yull

    2004-01-01

    A nuclear power plant is composed of a number of primary components. Maintaining the integrity of these components is one of the most critical issues in nuclear industry. In order to maintain the integrity of these primary components, a complicated procedure is required including regular in-service inspection, failure assessment, fracture mechanics analysis, etc. Also, experts in different fields have to co-operate to resolve the integrity issues on the basis of inspection results. This integrity evaluation process usually takes long, and thus, is detrimental for the plant productivity. Therefore, an effective safety evaluation system is essential to manage the integrity issues on a nuclear power plant. In this paper, a web-based fatigue life evaluation system for primary components in nuclear power plant is proposed. This system provides engineering knowledge-based information and concurrent and collaborative working environment through internet, and thus, is expected to raise the efficiency of integrity evaluation procedures on primary components of a nuclear power plant

  13. Steam generator assessment for sustainable power plant operation

    International Nuclear Information System (INIS)

    Drexler, Andreas; Fandrich, Joerg; Ramminger, Ute; Montaner-Garcia, Violeta

    2012-09-01

    Water and steam serve in the water-steam cycle as the energy transport and work media. These fluids shall not affect, through corrosion processes on the construction materials and their consequences, undisturbed plant operation. The main objectives of the steam water cycle chemistry consequently are: - The metal release rates of the structural materials shall be minimal - The probability of selective / localized forms of corrosion shall be minimal. - The deposition of corrosion products on heat transfer surfaces shall be minimized. - The formation of aggressive media, particularly local aggressive environments under deposits, shall be avoided. These objectives are especially important for the steam generators (SGs) because their condition is a key factor for plant performance, high plant availability, life time extension and is important to NPP safety. The major opponent to that is corrosion and fouling of the heating tubes. Effective ways of counteracting all degradation problems and thus of improving the SG performance are to keep SGs in clean conditions or if necessary to plan cleaning measures such as mechanical tube sheet lancing or chemical cleaning. Based on more than 40 years of experience in steam-water cycle water chemistry treatment AREVA developed an overall methodology assessing the steam generator cleanliness condition by evaluating all available operational and inspection data together. In order to gain a complete picture all relevant water chemistry data (e.g. corrosion product mass balances, impurity ingress), inspection data (e.g. visual inspections and tube sheet lancing results) and thermal performance data (e.g. heat transfer calculations) are evaluated, structured and indexed using the AREVA Fouling Index Tool Box. This Fouling Index Tool Box is more than a database or statistical approach for assessment of plant chemistry data. Furthermore the AREVA's approach combines manufacturer's experience with plant data and operates with an

  14. Warm Water Entrainment Impacts and Environmental Life Cycle Assessment of a Proposed Ocean Thermal Energy Conversion Pilot Plant Offshore Oahu, Hawaii

    Science.gov (United States)

    Hauer, Whitney Blanchard

    Ocean thermal energy conversion (OTEC) is a marine renewable energy technology that uses the temperature difference of large volumes of cold deep and warm surface seawater in tropical regions to generate electricity. One anticipated environmental impact of OTEC operations is the entrainment and subsequent mortality of ichthyoplankton (fish eggs and larvae) from the withdrawal of cold and warm seawater. The potential ichthyoplankton loss from the warm water intake was estimated for a proposed 10 MW OTEC pilot plant offshore Oahu, HI based on ambient vertical distribution data. The estimated losses due to entrainment from the warm water intake were 8.418E+02 larvae/1000 m3, 3.26E+06 larvae/day, and 1.19E+09 larvae/year. The potential entrained larvae/year is 1.86 X greater than at the Kahe Generating Station (Kapolei, HI), a 582 MW oil-fired power plant. Extrapolating to age-1 equivalence (9.2E+02 and 2.9E+02 yellowfin and skipjack tuna, respectively), the estimated yearly losses from warm water entrainment of yellowfin and skipjack tuna fish eggs and larvae represent 0.25-0.26 % and 0.09-0.11 % of Hawaii's commercial yellowfin and skipjack tuna industry in 2011 and 2012. An environmental life cycle assessment (LCA) was developed for the proposed OTEC plant operating for 20 and 40 years with availability factors of 0.85, 0.95, and 1.0 to determine the global warming potential (GWP) and cumulative energy demand (CED) impacts. For a 20 year operational OTEC plant, the GWP, CED, energy return on investment (EROI), and energy payback time (EPBT) ranged from 0.047 to 0.055 kg CO2eq/kWh, 0.678 to 0.798 MJ/kWh, 4.51 to 5.31 (unitless), and 3.77 to 4.43 years, respectively. For a 40 year operational OTEC plant, the GWP, CED, EROI, and EBPT ranged from 0.036 to 0.043 kg CO2eq/kWh, 0.527 to 0.620 MJ/kWh, 5.81 to 6.83 (unitless), and 5.85 to 6.89 years, respectively. The GWP impacts are within the range of renewable energy technologies and less than conventional electricity

  15. Plant life management processes and practices for heavy water reactors

    International Nuclear Information System (INIS)

    Kang, K.-S.; Cleveland, J.; Clark, C.R.

    2006-01-01

    In general, heavy water reactor (HWR) nuclear power plant (NPP) owners would like to keep their NPPs in service as long as they can be operated safely and economically. Their decisions are depending on essentially business model. They involve the consideration of a number of factors, such as the material condition of the plant, comparison with current safety standards, the socio-political climate and asset management/ business planning considerations. Continued plant operation, including operation beyond design life, called 'long term operation, depends, among other things, on the material condition of the plant. This is influenced significantly by the effectiveness of ageing management. Key attributes of an effective plant life management program include a focus on important systems, structure and components (SSCs) which are susceptible to ageing degradation, a balance of proactive and reactive ageing management programmes, and a team approach that ensures the co-ordination of and communication between all relevant nuclear power plant and external programmes. Most HWR NPP owners/operators use a mix of maintenance, surveillance and inspection (MSI) programs as the primary means of managing ageing. Often these programs are experienced-based and/or time-based and may not be optimised for detecting and/or managing ageing effects. From time-to-time, operational history has shown that this practice can be too reactive, as it leads to dealing with ageing effects (degradation of SSCs) after they have been detected. In many cases premature and/or undetected ageing cannot be traced back to one specific reason or an explicit error. The root cause is often a lack of communication, documentation and/or co-ordination between design, commissioning, operation or maintenance organizations. This lack of effective communication and interfacing frequently arises because, with the exception of major SSCs, such as the fuel channels or steam generators, there is a lack of explicit

  16. Life Cycle Inventory & Assessment Report: Separation of Digested Fattening Pig Slurry for Optimal P Concentration, Denmark

    DEFF Research Database (Denmark)

    Wesnæs, Marianne; Hamelin, Lorie; Wenzel, Henrik

    management chain” for a combination of techniques: Source-segregation of manure from fattening pigs, using the solid part from the source-segregation for biogas production, utilising the biogas for heat and electricity production, separating the digested pig manure after the biogas plant in order to optimize......The purpose of this Life Cycle Assessment report is to investigate the potential for separating the digested pig manure after the biogas plant in order to optimise the utilisation of the phosphorous content of the manure. By separating, the phosphorous rich solid fraction can be brought to fields...

  17. Fast–slow continuum and reproductive strategies structure plant life-history variation worldwide

    NARCIS (Netherlands)

    Salguero-Gómez, Roberto; Jones, Owen R.; Jongejans, Eelke; Blomberg, Simon; Hodgson, D.; Zuidema, P.A.; Kroon, de Hans; Buckley, Yvonne M.

    2016-01-01

    The identification of patterns in life-history strategies across the tree of life is essential to our prediction of population persistence, extinction, and diversification. Plants exhibit a wide range of patterns of longevity, growth, and reproduction, but the general determinants of this enormous

  18. Improved methods of creep-fatigue life assessment of components

    Energy Technology Data Exchange (ETDEWEB)

    Scholz, Alfred; Berger, Christina [Inst. fuer Werkstoffkunde (IfW), Technische Univ. Darmstadt (Germany)

    2009-07-01

    The improvement of life assessment methods contributes to a reduction of efforts at design and an effective long term operation of high temperature components, reduces technical risk and increases high economical advantages. Creep-fatigue at multi-stage loading, covering cold start, warm start and hot start cycles in typical loading sequences e.g. for medium loaded power plants, was investigated here. At hold times creep and stress relaxation, respectively, lead to an acceleration of crack initiation. Creep fatigue life time can be calculated by a modified damage accumulation rule, which considers the fatigue fraction rule for fatigue damage and the life fraction rule for creep damage. Mean stress effects, internal stress and interaction effects of creep and fatigue are considered. Along with the generation of advanced creep data, fatigue data and creep fatigue data as well scatter band analyses are necessary in order to generate design curves and lower bound properties inclusive. Besides, in order to improve lifing methods the enhancement of modelling activities for deformation and life time are important. For verification purposes, complex experiments at variable creep conditions as well as at creep fatigue interaction under multi-stage loading are of interest. Generally, the development of methods to transfer uniaxial material properties to multiaxial loading situations is a current challenge. For specific design purposes, a constitutive material model is introduced which is implemented as an user subroutine for Finite Element applications due to start-up and shut-down phases of components. Identification of material parameters have been performed by Neural Networks. (orig.)

  19. Plant life extensions for German nuclear power plants? Controversial discussion profit taking of nuclear power plant operators; Laufzeitverlaengerungen fuer die deutschen Kernkaftwerke? Kurzanalyse zu den Gewinnmitnahmen der KKW-Betreiber

    Energy Technology Data Exchange (ETDEWEB)

    Matthes, Felix C.

    2009-10-15

    The discussion on the plant life extensions for German nuclear power plants beyond the residual quantity of electricity particularly focus on three aspects: Effects for the emission of carbon dioxide as a greenhouse gas; Development of the electricity price for which a reduction or attenuation is postulated due to a plant life extension; Skimming of additional profits at operating companies and their use in the safeguarding of the future (development of renewable energies, support of energy efficiency, promotion of the research, consolidation of the public budget, and so on). Under this aspect, the author of the contribution under consideration reports on the profit taking of nuclear power plant operators. The presented analysis considers three aspects: (a) Specification of the quantity structures for the investigated model of plant life extension; (b) The decisive parameter is the revenue situation and thus the price development for electricity at wholesale markets; (c) Determination and evaluation of the course in time of the profit taking.

  20. Can soil microbial diversity influence plant metabolites and life history traits of a rhizophagous insect? A demonstration in oilseed rape.

    Science.gov (United States)

    Lachaise, Tom; Ourry, Morgane; Lebreton, Lionel; Guillerm-Erckelboudt, Anne-Yvonne; Linglin, Juliette; Paty, Chrystelle; Chaminade, Valérie; Marnet, Nathalie; Aubert, Julie; Poinsot, Denis; Cortesero, Anne-Marie; Mougel, Christophe

    2017-12-01

    Interactions between plants and phytophagous insects play an important part in shaping the biochemical composition of plants. Reciprocally plant metabolites can influence major life history traits in these insects and largely contribute to their fitness. Plant rhizospheric microorganisms are an important biotic factor modulating plant metabolites and adaptation to stress. While plant-insects or plant-microorganisms interactions and their consequences on the plant metabolite signature are well-documented, the impact of soil microbial communities on plant defenses against phytophagous insects remains poorly known. In this study, we used oilseed rape (Brassica napus) and the cabbage root fly (Delia radicum) as biological models to tackle this question. Even though D. radicum is a belowground herbivore as a larva, its adult life history traits depend on aboveground signals. We therefore tested whether soil microbial diversity influenced emergence rate and fitness but also fly oviposition behavior, and tried to link possible effects to modifications in leaf and root metabolites. Through a removal-recolonization experiment, 3 soil microbial modalities ("high," "medium," "low") were established and assessed through amplicon sequencing of 16S and 18S ribosomal RNA genes. The "medium" modality in the rhizosphere significantly improved insect development traits. Plant-microorganism interactions were marginally associated to modulations of root metabolites profiles, which could partly explain these results. We highlighted the potential role of plant-microbial interaction in plant defenses against Delia radicum. Rhizospheric microbial communities must be taken into account when analyzing plant defenses against herbivores, being either below or aboveground. © 2017 Institute of Zoology, Chinese Academy of Sciences.

  1. 76 FR 37770 - Monsanto Co.; Availability of Petition, Plant Pest Risk Assessment, and Environmental Assessment...

    Science.gov (United States)

    2011-06-28

    ...] Monsanto Co.; Availability of Petition, Plant Pest Risk Assessment, and Environmental Assessment for... available for public comment the Monsanto petition, our plant pest risk assessment, and our draft... plant pest risk assessment are also available on the APHIS Web site at: http://www.aphis.usda.gov/brs...

  2. Design of comprehensive plant information system considering maintenance indicators in nuclear power plant

    International Nuclear Information System (INIS)

    Takata, Takashi; Yamaguchi, Akira; Yamamoto, Akio

    2013-01-01

    A safety of a nuclear power plant must be ensured and maintained through its entire plant life. For this plant life cycle safety (PLCS), a comprehensive plant information system, in which an each maintenance record of the plant is taken into consideration, is of importance. In this paper, a development of a plant chart, which is a part of the information system, has been developed based on a defense-in-depth concept that is one of the most important concept to ensure the plant safety. In the chart, an updated probability of loss of a component or function is used as a maintenance indicator and a probabilistic risk assessment (PRA) method is applied to quantify the plant status in the chart. (author)

  3. An integrated life cycle inventory for demolition processes in the context of life cycle sustainability assessment

    DEFF Research Database (Denmark)

    Bozhilova-Kisheva, Kossara Petrova; Hu, Mingming; van Roekel, Eric

    2012-01-01

    According to the Life Cycle Assessment in Building and Construction: State-of-the-Art Report (2003), the dismantling and demolition stage of the building life cycle is only sometimes included in the Life Cycle Inventory (LCI) when doing Life Cycle Assessments (LCA). The reason that it is less...... inventoried in a traditional LCA maybe because this stage is expected to have a negligible environmental impact comparing to other stages in the life cycle of the buildings. When doing a life cycle sustainability assessment considering not only environmental but also economic and social impacts, the impacts...

  4. Determination of the remaining operational life of power plant components

    International Nuclear Information System (INIS)

    Eiden, H.; Vorwerk, K.; Graeff, D.; Hoff, E.

    1983-01-01

    The proceedings volume presents, in full wording, eight papers read at a TUEV Rheinland meeting in Johannesburg, South Africa, in August 1982. Subjects: Layout, quality assurance, service life analysis etc. of power plant components. (RW) [de

  5. Evaluation of vibration and vibration fatigue life for small bore pipe in nuclear power plants

    International Nuclear Information System (INIS)

    Wang Zhaoxi; Xue Fei; Gong Mingxiang; Ti Wenxin; Lin Lei; Liu Peng

    2011-01-01

    The assessment method of the steady state vibration and vibration fatigue life of the small bore pipe in the supporting system of the nuclear power plants is proposed according to the ASME-OM3 and EDF evaluation methods. The GGR supporting pipe system vibration is evaluated with this method. The evaluation process includes the filtration of inborn sensitivity, visual inspection, vibration tests, allowable vibration effective velocity calculation and vibration stress calculation. With the allowable vibration effective velocity calculated and the vibration velocity calculated according to the acceleration data tested, the filtrations are performed. The vibration stress at the welding coat is calculated with the spectrum method and compared with the allowable value. The response of the stress is calculated with the transient dynamic method, with which the fatigue life is evaluated with the Miners linear accumulation model. The vibration stress calculated with the spectrum method exceeds the allowable value, while the fatigue life calculated from the transient dynamic method is larger than the designed life with a big safety margin. (authors)

  6. Use of plant specific information in life management

    International Nuclear Information System (INIS)

    Simola, K.; Talja, H.

    2002-01-01

    In plant life management decisions are made on prevention and mitigation measures of ageing phenomena. In these processes, information from several sources has to be combined, and the decisions are based on data and analyses including lots of uncertainties. In order to make good decisions, the uncertainties and limitations related to both analyses and the raw data should be recognised. A schematic presentation of the information used in the decision making with an emphasis on data needs and analyses for the technical life assessment of a component is given. On the way from the raw data to the final decision on ageing management there are several steps where engineering judgement is used or more sophisticated analyses are made. In this paper we present a view upon the decision making process in managing the ageing of components, systems and structures. Further, we propose practices to improve the transparency of ageing analyses and means to improve the availability and usability of plant specific information for ageing management purposes. The availability of plant specific information and easy access to these records are vital for the efficient ageing management. Often, the data collection and record keeping has not been organised in an efficient way and the use of experience data is very laborious. As illustrated, a lot of plant specific information is needed in ageing assessment. It is also very important to ensure that the information is up-to-date, e.g. possible modifications are taken into account in lifetime predictions. As an example of improvement in the data collection practices we shortly summarise the pipeline analysis and monitoring system that VTT is developing together with TVO. The system is meant to contain all up-to-date information necessary to analyse and monitor piping systems of an operating plant. The core of the system contains five databases. Piping database contains information like geometry, material, loading, detected cracks etc. All

  7. Declaration of the rights of animal and plant life

    NARCIS (Netherlands)

    Jacobs, M.

    1977-01-01

    i Each living creature on earth has the right to exist, independent of its usefulness to humans. ii Every effort should be made to preserve all species of animal and plant life from premature extinction. Special protection should be afforded to those species whose survival is already threatened.

  8. Life Cycle Thinking in Impact Assessment

    DEFF Research Database (Denmark)

    Bidstrup, Morten

    2015-01-01

    It has been advocated that life cycle thinking (LCT) should be applied in impact assessment (IA) to a greater extent, since some development proposals pose a risk of significant impacts throughout the interconnected activities of product systems. Multiple authors have proposed the usage of life...

  9. Aging assessment of essential HVAC chillers used in nuclear power plants

    International Nuclear Information System (INIS)

    Blahnik, D.E.; Camp, T.W.

    1996-09-01

    The Pacific Northwest Laboratory conducted a comprehensive aging assessment of chillers used in the essential safety air-conditioning systems in nuclear power plants (NPPs). The chillers used, and air-conditioning systems served, vary in design from plant to plant. The review of operating experience indicated that chillers experience aging degradation and failures. The primary aging factors of concern for chillers include vibration, excessive temperatures and pressures, thermal cycling, chemical attack, and poor quality cooling water. The evaluation of Licensee Event Reports (LERs) indicated that about 38% of the failures were primarily related to aging, 55% were partially aging related, and 7% of the failures were unassignable. About 25% of the failures were primarily caused by human, design, procedure, and other errors. The large number of errors is probably directly related to the complexity of chillers and their interfacing systems. Nearly all of the LERs were the result of entering plant Technical Specification Limiting Condition for Operation (LCO) that initiated remedial actions like plant shutdown procedures. The trend for chiller-related LERs has stabilized at about 0.13 LERs per plant year since 1988. Carefully following the vendor procedures and monitoring the equipment can help to minimize and/or eliminate most of the premature failures. Recording equipment performance can be useful for trending analysis. Periodic operation for a few hours on a weekly or monthly basis is useful to remove moisture and non-condensable gases that gradually build up inside the chiller. Chiller pressurization kits are available that will help minimize the amount of moisture and air ingress to low-pressure chillers during standby periods. The assessment of service life condition monitoring of chillers indicated there are many simple to sophisticated methods available that can help in chiller surveillance and monitoring

  10. Aging assessment of essential HVAC chillers used in nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Blahnik, D.E.; Camp, T.W.

    1996-09-01

    The Pacific Northwest Laboratory conducted a comprehensive aging assessment of chillers used in the essential safety air-conditioning systems in nuclear power plants (NPPs). The chillers used, and air-conditioning systems served, vary in design from plant to plant. The review of operating experience indicated that chillers experience aging degradation and failures. The primary aging factors of concern for chillers include vibration, excessive temperatures and pressures, thermal cycling, chemical attack, and poor quality cooling water. The evaluation of Licensee Event Reports (LERs) indicated that about 38% of the failures were primarily related to aging, 55% were partially aging related, and 7% of the failures were unassignable. About 25% of the failures were primarily caused by human, design, procedure, and other errors. The large number of errors is probably directly related to the complexity of chillers and their interfacing systems. Nearly all of the LERs were the result of entering plant Technical Specification Limiting Condition for Operation (LCO) that initiated remedial actions like plant shutdown procedures. The trend for chiller-related LERs has stabilized at about 0.13 LERs per plant year since 1988. Carefully following the vendor procedures and monitoring the equipment can help to minimize and/or eliminate most of the premature failures. Recording equipment performance can be useful for trending analysis. Periodic operation for a few hours on a weekly or monthly basis is useful to remove moisture and non-condensable gases that gradually build up inside the chiller. Chiller pressurization kits are available that will help minimize the amount of moisture and air ingress to low-pressure chillers during standby periods. The assessment of service life condition monitoring of chillers indicated there are many simple to sophisticated methods available that can help in chiller surveillance and monitoring.

  11. South African Regulatory Framework for Nuclear Power Plant Life Management

    International Nuclear Information System (INIS)

    Mbebe, B.Z.

    2012-01-01

    The paper presents the regulatory approach to plant life management (PLiM) adopted by the National Nuclear Regulator (NNR) in South Africa, the licensing basis and regulatory requirements for Koeberg Nuclear Power Station (KNPS),operational programmes ensuring continued safe operation, issues related to the ageing of the plant, and the requirements for spent fuel as well as radioactive waste management. The paper will further present insights from the Periodic Safety Review (PSR) and Long Term Asset Management. (author)

  12. Assessing biosafety of GM plants containing lectins

    DEFF Research Database (Denmark)

    Poulsen, Morten; Pedersen, Jan W.

    2010-01-01

    insects. However, since the cry genes are not active against all insects, e.g. sap-sucking insects, other genes coding for proteins such as lectins show promise of complementing the cry genes for insect resistance. As with other novel plants, lectin-expressing plants will need to be assessed...... for their potential risks to human and animal health and the environment. The expressed lectin protein should be assessed on its own for potential toxicity and allergenicity as for any other new protein. Although not many lectins have been thoroughly tested for their toxicity, our evaluation suggests that most...... of the lectins that are potentially useful for insect resistance will pose no health risk in genetically modified (GM) plants. Since some lectins are known for their toxicity to humans, the insertion of lectin genes in food crop plants will have to be assessed carefully. It is expected that in some cases...

  13. International symposium on nuclear power plant life management. Book of extended synopses

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2002-07-01

    A number of nuclear power plants in operation are meeting the problems of aging. Besides maintaining safety and reliability many NPP owners are concerned with service life extension, life management policy, and reactor maintenance procedures. The topics covered in this report are devoted to: NPP life management, economics and technical aspects of service life extension, reactor licensing procedures; aging of reactor components; physical radiation effects on reactor materials; corrosion; mechanical properties of reactor materials; reactor control systems; reactor safety systems.

  14. International symposium on nuclear power plant life management. Book of extended synopses

    International Nuclear Information System (INIS)

    2002-01-01

    A number of nuclear power plants in operation are meeting the problems of aging. Besides maintaining safety and reliability many NPP owners are concerned with service life extension, life management policy, and reactor maintenance procedures. The topics covered in this report are devoted to: NPP life management, economics and technical aspects of service life extension, reactor licensing procedures; aging of reactor components; physical radiation effects on reactor materials; corrosion; mechanical properties of reactor materials; reactor control systems; reactor safety systems

  15. EPRI research on component aging and nuclear plant life extension

    International Nuclear Information System (INIS)

    Sliter, G.E.; Carey, J.J.

    1985-01-01

    This paper first describes several research efforts sponsored by the Electric Power Research Institute (EPRI) that examine the aging degradation of organic materials and the nuclear plant equipment in which they appear. This research includes a compendium of material properties characterizing the effects of thermal and radiation aging, shake table testing to evaluate the effects of aging on the seismic performance of electrical components, and a review of condition monitoring techniques applicable to electrical equipment. Also described is a long-term investigation of natural versus artificial aging using reactor buildings as test beds. The paper then describes how the equipment aging research fits into a broad-scoped EPRI program on nuclear plant life extension. The objective of this program is to provide required information, technology, and guidelines to enable utilities to significantly extend operating life beyond the current 40-year licensed term

  16. Assessment of decisions in the context of life attitudes

    Directory of Open Access Journals (Sweden)

    Klamut Ryszard

    2012-01-01

    Full Text Available Presented article attempts to show sense of life perspective as a determinant of decision making. It is assumed that the sense of life perspective described as life attitudes is significant in assessment of decision problem defined in the predecision phase of the decision making process. The predicted dependence was analysed in three categories of decision: self-development, financial and voting. The research was conducted on two groups of 186 and 86 participants. Two methods were used in the research: the Life Attitude Profile -Revised (LAP-R and the Decision Assessment Questionnaire. In statistical analysis, the canonical correlation analysis was used. The scores show that the life attitudes (especially: Purpose, Coherence, Life Control and Existential Vacuum are correlated with the assessment factor (especially: Cognitive Analysis and Affective Assessment of each tested category of decision. However, the most significant relationship is found in the self-development decision.

  17. Assessment of life interference in anxious children

    DEFF Research Database (Denmark)

    Rapee, Ronald; Thastum, Mikael; Chavira, Denise

    associated with mental disorders arguably the key issue of relevance to both sufferers and therapists. Yet among both childhood and adult disorders the primary focus in terms of assessment and treatment is on symptoms, with far less attention paid to the impact of these symptoms on the sufferer's life....... This imbalance has particularly characterised research on child anxiety where few studies have examined either the impact of anxiety disorders on children's lives or the effects of treatments on life interference. To some extent this lack of attention has come from a lack of well developed measures to assess...... life interference derived from symptoms of anxiety. Broader and more general life interference measures tend to have minimal relevance for children with anxiety disorders. The current paper will describe two measures of life interference that have been developed at the Centre for Emotional Health...

  18. Overview of German R and D activities relevant to life management of nuclear power plants

    International Nuclear Information System (INIS)

    Gillot, R.

    1998-01-01

    Life management issues of German NPPs include measures for qualifying continuous operation of NPPs and research activities related to materials behaviour under operating conditions. Plant management for life extension demand use of on-line monitoring systems for load (mechanical and thermal); vibration; leakage; water chemistry; neutron irradiation as well as replacement of systems, structures and components. The main goals to be achieved under international cooperation are increased safety, increased plant availability, extension of operating lifetime and improvement of plant economics

  19. Ground assessment methods for nuclear power plant

    International Nuclear Information System (INIS)

    1985-01-01

    It is needless to say that nuclear power plant must be constructed on the most stable and safe ground. Reliable assessment method is required for the purpose. The Ground Integrity Sub-committee of the Committee of Civil Engineering of Nuclear Power Plant started five working groups, the purpose of which is to systematize the assessment procedures including geological survey, ground examination and construction design. The works of working groups are to establishing assessment method of activities of faults, standardizing the rock classification method, standardizing assessment and indication method of ground properties, standardizing test methods and establishing the application standard for design and construction. Flow diagrams for the procedures of geological survey, for the investigation on fault activities and ground properties of area where nuclear reactor and important outdoor equipments are scheduled to construct, were established. And further, flow diagrams for applying investigated results to design and construction of plant, and for determining procedure of liquidification nature of ground etc. were also established. These systematized and standardized methods of investigation are expected to yield reliable data for assessment of construction site of nuclear power plant and lead to the safety of construction and operation in the future. In addition, the execution of these systematized and detailed preliminary investigation for determining the construction site of nuclear power plant will make much contribution for obtaining nation-wide understanding and faith for the project. (Ishimitsu, A.)

  20. Controlled ecological life support systems: Development of a plant growth module

    Science.gov (United States)

    Averner, Mel M.; Macelroy, Robert D.; Smernoff, David T.

    1987-01-01

    An effort was made to begin defining the scientific and technical requirements for the design and construction of a ground-based plant growth facility. In particular, science design criteria for the Plant Growth Module (PGM) of the Controlled Ecological Life Support System (CELSS) were determined in the following areas: (1) irradiation parameters and associated equipment affecting plant growth; (2) air flow; (3) planting, culture, and harvest techniques; (4) carbon dioxide; (5) temperature and relative humidity; (6) oxygen; (7) construction materials and access; (8) volatile compounds; (9) bacteria, sterilization, and filtration; (10) nutrient application systems; (11) nutrient monitoring; and (12) nutrient pH and conductivity.

  1. Plant life (PLIM) and ageing management (AM) in German NPPs. Prerequisite for long term operation (LTO)

    International Nuclear Information System (INIS)

    Schuler, X.

    2010-01-01

    dependant) or based on monitoring of relevant parameters (predictive). The results of these procedures are assessed for each SSC, specifically. For both groups of SSC, in addition to the control of (known) damage mechanisms, all significant plant data (e.g. reports of failures, work orders) and the reports from other plants (incl. exchange of knowledge) are assessed regularly in order to be prepared for new damage mechanisms (and to prevent / control them consequently). This is performed by an appropriate software approach. Within this SSC-specific assessment the entity of measures to control degradation effects is reviewed and modified / extended, if necessary. On the basis of good experiences with the AM procedure and driven by the latest political development (nuclear power is an option in energy supply again) the utilities are re-structuring their plant life management (PLIM), actually. PLIM addresses both safety and economical aspects. Consequently, all SSC of a plant and every possible degradation mechanism have to be considered within PLIM - besides other more not-technical aspects. AM is part of the plant life management. Regarding technical equipment, the PLIM procedure is similar to that established in AM. Depending on the requirements it is necessary to - establish quality during design and manufacture - safeguard this quality in operation by appropriate measures - assess procedure / measures and existing quality, regularly. Living an effective PLIM procedure the utilities are kept on the state of the art; on this basis energy production can be safe and economic at any time. This is an essential prerequisite for long term operation (LTO). (orig.)

  2. Near-term benefits of the plant life extension program

    International Nuclear Information System (INIS)

    Kaushansky, M.M.

    1987-01-01

    The aging process can be expected to reduce the availability and increase the production costs of nuclear power plants over time. To mitigate this process and recover or enhance plant availability, capacity, thermal efficiency, and maintenance expenditures, the utility must dedicate increased attention and commitment to a comprehensive plant life extension (PLEX) program. Improvements must be justified by balancing the cost of the recommended modifications with the economic value of benefits obtained from its implementation. It is often extremely difficult for utility management to make an optimal selection from among hundreds of proposed projects, most of which are cost-effective. A properly structured PLEX program with an emphasis on near-term benefits should provide the utility with a means of evaluating proposed projects, thus determining the optimum combination for authorization and implementation

  3. Butterfly Larval Host Plant use in a Tropical Urban Context: Life History Associations, Herbivory, and Landscape Factors

    Science.gov (United States)

    Tiple, Ashish D.; Khurad, Arun M.; Dennis, Roger L. H.

    2011-01-01

    This study examines butterfly larval host plants, herbivory and related life history attributes within Nagpur City, India. The larval host plants of 120 butterfly species are identified and their host specificity, life form, biotope, abundance and perennation recorded; of the 126 larval host plants, most are trees (49), with fewer herbs (43), shrubs (22), climbers (7) and stem parasites (2). They include 89 wild, 23 cultivated, 11 wild/cultivated and 3 exotic plant species; 78 are perennials, 43 annuals and 5 biannuals. Plants belonging to Poaceae and Fabaceae are most widely used by butterfly larvae. In addition to distinctions in host plant family affiliation, a number of significant differences between butterfly families have been identified in host use patterns: for life forms, biotopes, landforms, perennation, host specificity, egg batch size and ant associations. These differences arising from the development of a butterfly resource database have important implications for conserving butterfly species within the city area. Differences in overall butterfly population sizes within the city relate mainly to the number of host plants used, but other influences, including egg batch size and host specificity are identified. Much of the variation in population size is unaccounted for and points to the need to investigate larval host plant life history and strategies as population size is not simply dependent on host plant abundance. PMID:21864159

  4. Towards a Life Cycle Based Chemical Alternative Assessment (LCAA)

    DEFF Research Database (Denmark)

    Jolliet, O.; Huang, L.; Overcash, Michael

    2017-01-01

    approach combines the following elements: a) The manufacturing phase chemical inventory is based on the environmental genome of industrial products database, ensuring mass and energy balance, b) near-field exposure to consumer products during the use phase is determined based on the mass of chemical......There is a need for an operational quantitative screening-level assessment of alternatives, that is life-cycle based and able to serve both Life cycle Assessment (LCA and chemical alternatives assessment (CAA). This presentation therefore aims to develop and illustrate a new approach called “Life...... Cycle Based Chemical Alternative Assessment (LCAA)” that will quantify exposure and life cycle impacts consistently and efficiently over the main life cycle stages. The new LCAA approach is illustrated though a proof-of-concept case study of alternative plasticizers in vinyl flooring. The proposed LCAA...

  5. Methodologies for Social Life Cycle Assessment

    DEFF Research Database (Denmark)

    Jørgensen, Andreas; Le Bocq, Agathe; Nazakina, Liudmila

    2008-01-01

    Goal, Scope and Background. In recent years several different approaches towards Social Life Cycle Assessment (SLCA) have been developed. The purpose of this review is to compare these approaches in order to highlight methodological differences and general shortcomings. SLCA has several similarit......Goal, Scope and Background. In recent years several different approaches towards Social Life Cycle Assessment (SLCA) have been developed. The purpose of this review is to compare these approaches in order to highlight methodological differences and general shortcomings. SLCA has several...... similarities with other social assessment tools, but in order to limit the review, only claims to address social impacts from an LCA-like framework is considered. Main Features. The review is to a large extent based on conference proceedings and reports of which some are not easily accessible, since very...... stage in the product life cycle. Another very important difference among the proposals is their position towards the use of generic data. Several of the proposals argue that social impacts are connected to the conduct of the company leading to the conclusion that each individual company in the product...

  6. Life cycle assessment of post-consumer plastics production from waste electrical and electronic equipment (WEEE) treatment residues in a Central European plastics recycling plant.

    Science.gov (United States)

    Wäger, Patrick A; Hischier, Roland

    2015-10-01

    Plastics play an increasingly important role in reaching the recovery and recycling rates defined in the European WEEE Directive. In a recent study we have determined the life cycle environmental impacts of post-consumer plastics production from mixed, plastics-rich WEEE treatment residues in the Central European plant of a market-leading plastics recycler, both from the perspective of the customers delivering the residues and the customers buying the obtained post-consumer recycled plastics. The results of our life cycle assessments, which were extensively tested with sensitivity analyses, show that from both perspectives plastics recycling is clearly superior to the alternatives considered in this study (i.e. municipal solid waste incineration (MSWI) and virgin plastics production). For the three ReCiPe endpoint damage categories, incineration in an MSWI plant results in an impact exceeding that of the examined plastics recycling facility each by about a factor of 4, and the production of virgin plastics has an impact exceeding that of the post-consumer recycled (PCR) plastics production each by a factor of 6-10. On a midpoint indicator level the picture is more differentiated, showing that the environmental impacts of the recycling options are lower by 50% and more for almost all impact factors. While this provides the necessary evidence for the environmental benefits of plastics recycling compared to existing alternatives, it can, however, not be taken as conclusive evidence. To be conclusive, future research will have to address the fate of hazardous substances in the outputs of such recycling systems in more detail. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Plant life management and modernisation: Research challenges in the EU

    International Nuclear Information System (INIS)

    Rintamaa, R.; Aho-Mantila, I.

    2010-01-01

    The NULIFE (Nuclear plant life prediction) European network of excellence is described in detail. The following topics are highlighted: Vision; Consortium; Organization and working methods; Research and development planning; Research project portfolio (pilot projects, umbrella projects); Strategic research planning; and Conclusions. (P.A.)

  8. Life extension for fossil power plants: The EPRI [Electric Power Research Institute] strategy

    International Nuclear Information System (INIS)

    Byron, J.; Dooley, B.

    1988-01-01

    Fossil fuel-fired generating plants have traditionally been built under the assumption of an economic life of 20-30 years. Due to low load growth, escalating interest rates and costs of construction, and increasing regulation, great interest is expressed in retaining these units in service for 50-60 years or longer. Life extension activities are part of an ongoing process that continues throughout the extended lives of a utility's units. The process begins with an initial evaluation of life extension as a generation alternative, resulting in a ranking of units for life extension and a prioritization of components for evaluation. As the process continues, more detailed inspection data are created by a three-level approach, as well as a means for collecting, organizing and scheduling the information. This is implemented through the Integrated Life Extension Management (ILEM) model. This model provides information needed for management decision making such as component performance on unit power rating, availability of components on unit availability, component performance on unit availability and overall costs of the life extension tasks. Risks involved in life extension include the initial unavailability of capacity credits, uncertainty as to the level of availability that can be achieved by the life-extended plant, and uncertainties in environmental compliance. 8 refs., 1 fig., 2 tabs

  9. Social Life Cycle Assessment: An Introduction

    DEFF Research Database (Denmark)

    Moltesen, Andreas; Bonou, Alexandra; Wangel, Arne

    2018-01-01

    An expansion of the LCA framework has been going on through the development of ‘social life cycle assessment’—S-LCA. The methodology, still in its infancy, has the goal of assessing social impacts related to a product’s life cycle. This chapter introduces S-LCA framework area and the related...

  10. Impact of structural aging on seismic risk assessment of reinforced concrete structures in nuclear power plants

    International Nuclear Information System (INIS)

    Ellingwood, B.; Song, J.

    1996-03-01

    The Structural Aging Program is addressing the potential for degradation of concrete structural components and systems in nuclear power plants over time due to aging and aggressive environmental stressors. Structures are passive under normal operating conditions but play a key role in mitigating design-basis events, particularly those arising from external challenges such as earthquakes, extreme winds, fires and floods. Structures are plant-specific and unique, often are difficult to inspect, and are virtually impossible to replace. The importance of structural failures in accident mitigation is amplified because such failures may lead to common-cause failures of other components. Structural condition assessment and service life prediction must focus on a few critical components and systems within the plant. Components and systems that are dominant contributors to risk and that require particular attention can be identified through the mathematical formalism of a probabilistic risk assessment, or PRA. To illustrate, the role of structural degradation due to aging on plant risk is examined through the framework of a Level 1 seismic PRA of a nuclear power plant. Plausible mechanisms of structural degradation are found to increase the core damage probability by approximately a factor of two

  11. Preliminary results of Physiological plant growth modelling for human life support in space

    Science.gov (United States)

    Sasidharan L, Swathy; Dussap, Claude-Gilles; Hezard, Pauline

    2012-07-01

    Human life support is fundamental and crucial in any kind of space explorations. MELiSSA project of European Space Agency aims at developing a closed, artificial ecological life support system involving human, plants and micro organisms. Consuming carbon dioxide and water from the life support system, plants grow in one of the chambers and convert it into food and oxygen along with potable water. The environmental conditions, nutrient availability and its consumption of plants should be studied and necessarily modeled to predict the amount of food, oxygen and water with respect to the environmental changes and limitations. The reliability of a completely closed system mainly depends on the control laws and strategies used. An efficient control can occur, only if the system to control is itself well known, described and ideally if the responses of the system to environmental changes are predictable. In this aspect, the general structure of plant growth model has been designed together with physiological modelling.The physiological model consists of metabolic models of leaves, stem and roots, of which concern specific metabolisms of the associated plant parts. On the basis of the carbon source transport (eg. sucrose) through stem, the metabolic models (leaf and root) can be interconnected to each other and finally coupled to obtain the entire plant model. For the first step, leaf metabolic model network was built using stoichiometric, mass and energy balanced metabolic equations under steady state approach considering all necessary plant pathways for growth and maintenance of leaves. As the experimental data for lettuce plants grown in closed and controlled environmental chambers were available, the leaf metabolic model has been established for lettuce leaves. The constructed metabolic network is analyzed using known stoichiometric metabolic technique called metabolic flux analysis (MFA). Though, the leaf metabolic model alone is not sufficient to achieve the

  12. Life form succession in plant communities on colliery waste tips

    Energy Technology Data Exchange (ETDEWEB)

    Down, C G

    1973-01-01

    Five disused colliery waste tips in the Somerset Coalfield, 12, 15, 21, 55 and 98 years old, respectively, were examined to determine the life forms of the naturally-occurring vascular plant species. Hemicryptophytes comprised between 68 and 79% of the number of species on each tip. Rosette hemicryptophytes comprised 31.8% of the species on the 12-year tip, declining to 11.8% on the 98-year tip. It is suggested that artificial planting of rosette hemicryptophytes may be beneficial in reclamation schemes. 3 tables.

  13. Aging management review for license renewal and plant life management

    International Nuclear Information System (INIS)

    Rinckel, M.A.; Young, G.G.

    2002-01-01

    license renewal for 25 nuclear units by 2005. It is anticipated that over 90% of the 103 operating nuclear plants in the United States will pursue license renewal and seek an additional 20 years of operation. Some plants may pursue operation to 80 years or longer since the license renewal rule does not limit the operating life of a nuclear power plant. The estimated cost to prepare and process a license renewal application is approximately $10M to $15M, which includes NRC review fees. The NRC review for license renewal is strictly a safety review and plant economics is not a consideration. However, economics will drive the decision to pursue license renewal for U.S. nuclear power plants. For nuclear units with strong performance records, license renewal is a good business decision when compared to the cost of building new generating capacity. The license renewal rule focuses on ageing of passive long-lived components and ageing management programs that manage those structures and components. Ninety to ninety-five percent of the ageing management programs credited in a plant license renewal application are existing programs (e.g., ASME Section XI, Chemistry Control Program, and Steam Generator Integrity). Typical examples of new programs required to manage ageing include reactor vessel internals, small bore Class 1 piping, Alloy 600, buried piping, and buried high voltage cable exposed to wetted environments. At present, there have been no commitments by any utility to replace components as a result of license renewal. After the NRC has approved a license renewal application, the credited ageing management programs (i.e., existing and new) become commitments for the remaining plant life. These commitments typically form the bases for a comprehensive plant life management program (PLIM). PLIM differs from license renewal in that it considers active and passive components as well as economics of plant operation and maintenance. Plants that have recently received renewed

  14. Ageing effects modelling in probabilistic safety assessment of nuclear power plants

    International Nuclear Information System (INIS)

    Nitoi, M.; Turcu, I.; Florescu, G.; Apostol, M.; Farcasiu, M.; Pavelescu, M.

    2005-01-01

    Ageing management has become a major concern for many responsible organizations during the last years, because as the operating power plants have got older, they may have the tendency to become less safe. The effects of age-related degradation of plant components, systems and structures are necessary to be assessed in order to assure a continuous safe operation of nuclear power plants. The Probabilistic Safety Analysis (PSA) is an efficient system analysis method which is used to assess the risk of operation of nuclear power plants. In the assessment of risk level for a plant, most of the PSA studies generally didn't take into account the ageing effects, and uses a time averaged unavailability. By incorporation of ageing effects, the results enable an identification of the components that have the greatest effect on risk if their failure rates increase due to ageing effects modelling. In this paper, it was assessed the impact on Class IV Electrical Power System unavailability of the assumed increase in components failure probability caused by components ageing. The electrical system was chosen for the study because there are a lot of cables and for these types of equipment there is no planned preventive or corrective maintenance, and they are originally designed to reach the end of plant life with an adequate safety margin. To quantify the effects of age-related degradation on components, the linear ageing model was used. In this model, the failure rate of a component λ (t) is expressed as a sum of two independent failure rates, one associated with random failure, λ 0 , and the other associated with failures due to aging α, so: λ(t) = λ 0 + αt. The basic events were coded using a computer code similar to CAFTA, developed in INR Pitesti. For the reliability data allocation for basic events a intern data base was used. This data base contains data from the following generic data bases: IAEA Component Reliability Data for use in PSA, Point Lepreau Component

  15. Does It Have a Life Cycle?

    Science.gov (United States)

    Keeley, Page

    2010-01-01

    If life continues from generation to generation, then all plants and animals must go through a life cycle, even though it may be different from organism to organism. Is this what students have "learned," or do they have their own private conceptions about life cycles? The formative assessment probe "Does It Have a Life Cycle?" reveals some…

  16. Antifreeze life cycle assessment (LCA

    Directory of Open Access Journals (Sweden)

    Kesić Jelena

    2005-01-01

    Full Text Available Antifreeze based on ethylene glycol is a commonly used commercial product The classification of ethylene glycol as a toxic material increased the disposal costs for used antifreeze and life cycle assessment became a necessity. Life Cycle Assessment (LCA considers the identification and quantification of raw materials and energy inputs and waste outputs during the whole life cycle of the analyzed product. The objectives of LCA are the evaluation of impacts on the environment and improvements of processes in order to reduce and/or eliminate waste. LCA is conducted through a mathematical model derived from mass and energy balances of all the processes included in the life cycle. In all energy processes the part of energy that can be transformed into some other kind of energy is called exergy. The concept of exergy considers the quality of different types of energy and the quality of different materials. It is also a connection between energy and mass transformations. The whole life cycle can be described by the value of the total loss of exergy. The physical meaning of this value is the loss of material and energy that can be used. The results of LCA are very useful for the analyzed products and processes and for the determined conditions under which the analysis was conducted. The results of this study indicate that recycling is the most satisfactory solution for the treatment of used antifreeze regarding material and energy consumption but the re-use of antifreeze should not be neglected as a solution.

  17. Tiger Team assessment of the Pinellas Plant

    Energy Technology Data Exchange (ETDEWEB)

    1990-05-01

    This Document contains findings identified during the Tiger Team Compliance Assessment of the Department of Energy's (DOE's) Pinellas Plant, Pinellas County, Florida. The assessment wa directed by the Department's Office of Environment, Safety, and Health (ES H) from January 15 to February 2, 1990. The Pinellas Tiger Team Compliance Assessment is comprehensive in scope. It covers the Environment Safety and Health, and Management areas and determines the plant's compliance with applicable Federal (including DOE), State, and local regulations and requirements.

  18. Life extension and life cycle management

    International Nuclear Information System (INIS)

    Hoang, H.

    2010-10-01

    To continue the effort of nuclear energy as the clean energy offsetting the increase in greenhouse gas emission that contributes to the increased global warming effect, the nuclear industry is focused on the optimization of their current nuclear generation assets. Plant life extension (Plex) and Plant life management (Plim), together with power up rate, are the key strategies for the optimization effort. Plex begins with the process to obtain the regulatory approval for an additional 20 years of operation, beyond the current 40-year limit. This highly standardized process consists of the following steps: 1) Scoping: identify the systems, structures and components for inclusion in the license renewal scope of work. 2) Screening: narrow down the selection of the in-scope systems, structures and components based on passive and long-lived characteristics. 3) Aging management review: demonstrate that aging effects will continue to be managed during the additional 20 years of operation. 4) Time limiting aging analyses: confirm the acceptability of design bases analyses that assume the 40-year plant life as a key input assumptions. To provide a consistent approach for the preparation of the license renewal application, the following are the key guidance documents: NUREG-1800: Standard review plan; NUREG-1801: Generic aging lessons learned; Nuclear Energy Institute NEI 95-10. The objectives of Plim are to focus on improving plant reliability/availability, and to plan for equipment upgrades for efficiency improvement as well as technological obsolescence. Plim is a technical evaluation combined with a risk assessment to produce a long-range business plant with a time horizon of 10 years or longer. Due to its long view nature, this plan will be reviewed on a yearly basis for any required adjustments. The technical evaluation consists of the following major steps: 1) Select systems, structures and components with performance deficiencies experience. 2) Collect operating data

  19. Field dodder life cycle and interaction with host plants

    Directory of Open Access Journals (Sweden)

    Sarić-Krsmanović Marija

    2017-01-01

    Full Text Available Field dodder is a parasitic plant that attaches to stems and leaves of broadleaf plants, including weeds, field crops, vegetables and ornamentals, across most agricultural regions of the world. Effective field dodder control is extremely difficult to achieve due to the nature of attachment and close association between the host and the parasite, which require a highly effective and selective herbicide to destroy the parasite without damaging its host. To establish a strategy for controlling parasite growth and restricting the spread of field dodder in crop fields, it is important to learn more about this weed, its life cycle and development.

  20. Life Cycle Assessment of electricity generation: overview and methodological issues

    DEFF Research Database (Denmark)

    Turconi, Roberto; Boldrin, Alessio; Astrup, Thomas Fruergaard

    study focuses on the comparability between different technologies, identifying and quantifying the possible mistakes that can occur when comparing two technologies whose environmental assessments have been performed with conflicting assumptions. Nine different power generation technologies were examined......: hard coal, lignite, natural gas, oil, nuclear, biomass, hydroelectric, solar photovoltaic and wind. More than 150 published studies were selected and analyzed to investigate whether "typical" GHG, NOx and SO2 emission factors for each technology could be identified. For a better overview of the sources...... of emissions, those were divided among three life cycle phases: fuel provision, operation of the plant and infrastructure. It was possible to estimate typical emission factors for all technologies except for biomass, where methodological and technical aspects result in very variable outcomes. Within...

  1. Preliminary regulatory assessment of nuclear power plants vulnerabilities

    International Nuclear Information System (INIS)

    Kostadinov, V.; Petelin, S.

    2004-01-01

    Preliminary attempts to develop models for nuclear regulatory vulnerability assessment of nuclear power plants are presented. Development of the philosophy and computer tools could be new and important insight for management of nuclear operators and nuclear regulatory bodies who face difficult questions about how to assess the vulnerability of nuclear power plants and other nuclear facilities to external and internal threats. In the situation where different and hidden threat sources are dispersed throughout the world, the assessment of security and safe operation of nuclear power plants is very important. Capability to evaluate plant vulnerability to different kinds of threats, like human and natural occurrences and terrorist attacks and preparation of emergency response plans and estimation of costs are of vital importance for assurance of national security. On the basis of such vital insights, nuclear operators and nuclear regulatory bodies could plan and optimise changes in oversight procedures, organisations, equipment, hardware and software to reduce risks taking into account security and safety of nuclear power plants operation, budget, manpower, and other limitations. Initial qualitative estimations of adapted assessments for nuclear applications are shortly presented. (author)

  2. It is never too early to start planning for plant life extension

    International Nuclear Information System (INIS)

    Neils, G.H.

    1987-01-01

    This paper outlines some of the reasons why the subject of plant life extension (PLEX) deserves the attention it is receiving and describes some of the work that is currently being conducted in order to make PLEX a reality for U.S. nuclear power plants. One such major effort is a pilot program at the Monticello Nuclear Generating plant. This program, as well as other programs, have already produced some valuable lessons from which other plant owners can benefit. The Monticelle pilot program and the lessons learned thereof are described in some detail in this paper. (Liu)

  3. Quality of life assessment of children with thalassemia

    OpenAIRE

    Masyitah Sri Wahyuni; Muhammad Ali; Nelly Rosdiana; Bidasari Lubis

    2011-01-01

    Background Thalassemia is a chronic disease that is becoming a major health problem in the world, including the Mediterranean, as well as Malaysia, Thailand and Indonesia. This condition clearly affects the patient's quality of life, because of the condition itself and the effects of treatment. Assessment is needed to detennine actions to be taken to improve the quality of life in thalassemic children. Objective To assess the differences in quality of life of thalassemic children comp...

  4. Regulatory issues for nuclear power plant life management

    International Nuclear Information System (INIS)

    Roe, J.

    2000-01-01

    The workshop of 26-27 june 2000, on nuclear power Plant LIfe Management (PLIM), also included working groups in which major issues facing PLIM activities for nuclear power plants were identified and discussed. The second group was on Regulation. The Regulatory Working Group will attempt to identify some of the more pertinent issues affecting nuclear plant regulation in a changing PLIM environment, to identify some possible actions to be taken to address these issues, and to identify some of the parties responsible for taking these actions. Some preliminary regulatory issues are noted below. This is not intended to be a comprehensive list of such issues but rather is intended to stimulate discussion among the experts attending this Workshop. One of the concerns in the regulatory arena is how the structural integrity of the plants can be assured for an extended lifetime. Technological advances directed toward the following are likely to be important factors in the regulatory process of life extension. - Preventive and corrective maintenance (e.g., water chemistry control, pressure vessel annealing, and replacement of core internals). - Ageing and degradation mechanisms and evaluation (e.g., embrittlement, wear, corrosion/erosion, fatigue, and stress corrosion). - Monitoring, surveillance, and inspection (e.g., fatigue monitoring and non-destructive testing). - Optimisation of maintenance (e.g., using risk-based analysis). On the business side, there is concern about technical support by manufacturers, fuel companies, and construction companies. Maintaining a strong technical base and skilled workers in a potentially declining environment is another concern in the regulatory community. Waste management and decommissioning remain significant issue regarding PLIM. These issues affect all three areas of concern - technology, business, and regulation. It is against this background, that the issues put forth in this paper are presented. The objective of presenting these

  5. Application of Life Cycle Assessment on Electronic Waste Management: A Review

    Science.gov (United States)

    Xue, Mianqiang; Xu, Zhenming

    2017-04-01

    Electronic waste is a rich source of both valuable materials and toxic substances. Management of electronic waste is one of the biggest challenges of current worldwide concern. As an effective and prevailing environmental management tool, life cycle assessment can evaluate the environmental performance of electronic waste management activities. Quite a few scientific literatures reporting life cycle assessment of electronic waste management with significant outcomes have been recently published. This paper reviewed the trends, characteristics, research gaps, and challenges of these studies providing detailed information for practitioners involved in electronic waste management. The results showed that life cycle assessment studies were most carried out in Europe, followed by Asia and North America. The research subject of the studies mainly includes monitors, waste printed circuit boards, mobile phones, computers, printers, batteries, toys, dishwashers, and light-emitting diodes. CML was the most widely used life cycle impact assessment method in life cycle assessment studies on electronic waste management, followed by EI99. Furthermore, 40% of the reviewed studies combined with other environmental tools, including life cycle cost, material flow analysis, multi-criteria decision analysis, emergy analysis, and hazard assessment which came to more comprehensive conclusions from different aspects. The research gaps and challenges including uneven distribution of life cycle assessment studies, life cycle impact assessment methods selection, comparison of the results, and uncertainty of the life cycle assessment studies were examined. Although life cycle assessment of electronic waste management facing challenges, their results will play more and more important role in electronic waste management practices.

  6. Ecological Risk Assessment of Genetically Modified Higher Plants (GMHP)

    DEFF Research Database (Denmark)

    Kjær, C.; Damgaard, C.; Kjellsson, G.

    Preface This publication is a first version of a manual identifying the data needs for ecological risk assessment of genetically modified higher plants (GMHP). It is the intention of the authors to stimulate further discussion of what data are needed in order to conduct a proper ecological risk...... of the project Biotechnology: elements in environmental risk assessment of genetically modified plants. December 1999 Christian Kjær Introduction In ecological risk assessment of transgenic plants, information on a wide range of subjects is needed for an effective and reliable assessment procedure...... in the amendment to the directive. This report suggests a structured way to identify the type of data needed to perform a sound ecological risk assessment for genetically modified higher plants (GMHP). The identified data types are intended to support the evaluation of the following risks: risk of invasion...

  7. Psychometric Analysis of the Work/Life Balance Self-Assessment Scale.

    Science.gov (United States)

    Smeltzer, Suzanne C; Cantrell, Mary Ann; Sharts-Hopko, Nancy C; Heverly, Mary Ann; Jenkinson, Amanda; Nthenge, Serah

    2016-01-01

    This study investigated the psychometric properties of the Work/Life Balance Self-Assessment scale among nurse faculty involved in doctoral education. A national random sample of 554 respondents completed the Work/Life Balance Self-Assessment scale, which addresses 3 factors: work interference with personal life (WIPL), personal life interference with work (PLIW), and work/personal life enhancement (WPLE). A principal components analysis with varimax rotation revealed 3 internally consistent aspects of work-life balance, explaining 40.5% of the variance. The Cronbach's alpha coefficients for reliability of the scale were .88 for the total scale and for the subscales, .93 (WIPL), .85 (PLIW), and .69 (WPLE). The Work/Life Balance Self-Assessment scale appears to be a reliable and valid instrument to examine work-life balance among nurse faculty.

  8. Nuclear power plant life management: flow accelerated corrosion and chemical control. Application to Embalse Nuclear power plant

    International Nuclear Information System (INIS)

    Chocron, Mauricio; Saucedo, Ramona E.; Sainz, Ricardo A.; Ovando, Luis E.

    2006-01-01

    The chemistry of a water-steam cycle is one of the main aspects of the Plant Life Management of a Nuclear Power Plant and it is important for the preservation, efficiency and availability of the whole system. In that sense this aspect has to be prioritized in any study whose aim is the life extension of the plant. In particular, the flow-assisted -corrosion or FAC is a problem that worldwide has been considered important due to the piping wall thinning that in some occasions has led to severe accidents. The FAC phenomena is not easy to be interpreted and addressed although nowadays there are some accepted models to understand and predict sensitive areas of the cycle. The objectives of the present paper have been: a) The construction of an integrated code that involves all the aspects that have influence on FAC, i.e., materials, composition, geometry, temperature and flow rate, quality, chemistry, etc.; b) Establish or adapting current models to the circuit of Embalse PHWR NPP; c) Identify new locations for inspection and wall thickness measurement in order to predict residual life; d) Compare different chemistries and e) handle large sets of inspection data. Among the results, new lines have been incorporated to the inspection schedule of the 2005' programmed outage. Also, the evaluation is part of the PLIM-PLEX programme at Embalse-N.A.S.A. in collaboration with C.N.E.A. is being carried out. (author)

  9. Long-term capital planning considering nuclear plant life-cycle management

    International Nuclear Information System (INIS)

    Negin, C.A.; Simpson, J.M.; Hostetler, D.R.

    1992-09-01

    The creation of a Life Cycle Management (LCM) group at utilities to evaluate the long term capital refurbishment needs is gaining favor. Among the functions of such groups can be the responsibility for recommending long term capital planning projects based on results of evaluations of systems, structures, and components that are not only essential to achieving the full current license term of operation, but also to extend the service life of the plant. Making such recommendations, in content and timing, requires the ability to view all recommendations in the context of an overall capital budget and long range outage impacts. This report illustrates an approach for creating a Long-Term Capital Plan with methods for deciding on, compiling, integrating, and presenting projects from the perspective of an LCM program for a nuclear power plant. It also addresses a rationale for capitalization of LCM program activities that would not be allowed under current accounting treatment

  10. Reliability-based service life assessment of concrete structures in nuclear power plants: optimum inspection and repair

    International Nuclear Information System (INIS)

    Ellingwood, B.R.; Mori, Y.

    1995-01-01

    Research is being conducted to address aging management of safety-related reinforced concrete structures in nuclear power plants (NPPs). Documentation is being prepared to identify potential structural safety issues and to recommend criteria for use in evaluating reinforced concrete structures for continued service. Time-dependent reliability analysis provides the framework and quantitative tools for the condition assessment. The role of in-service inspection and repair in ensuring continued reliability in-service is examined. (author). 19 refs., 4 figs

  11. The iPlant collaborative: cyberinfrastructure for enabling data to discovery for the life sciences

    Science.gov (United States)

    The iPlant Collaborative provides life science research communities access to comprehensive, scalable, and cohesive computational infrastructure for data management; identify management; collaboration tools; and cloud, high-performance, high-throughput computing. iPlant provides training, learning m...

  12. Cyber security assessment of a power plant

    Energy Technology Data Exchange (ETDEWEB)

    Nai Fovino, Igor; Masera, Marcelo; Stefanini, Alberto [Joint Research Centre, Institute for the Protection and Security of the Citizen, Ispra (Italy); Guidi, Luca [Enel Ingegneria e Innovazione, Pisa (Italy)

    2011-02-15

    Critical infrastructures and systems are today exposed not only to traditional safety and availability problems, but also to new kinds of security threats. These are mainly due to the large number of new vulnerabilities and architectural weaknesses introduced by the extensive use of information and communication technologies (ICT) into such complex systems. In this paper we present the outcomes of an exhaustive ICT security assessment, targeting an operational power plant, which consisted also of the simulation of potential cyber attacks. The assessment shows that the plant is considerably vulnerable to malicious attacks. This situation cannot be ignored, because the potential outcomes of an induced plant malfunction can be severe. (author)

  13. Reactor coolant pump service life evaluation for current life cycle optimization and license renewal

    International Nuclear Information System (INIS)

    Doroshuk, B.W.; Berto, D.S.; Robles, M.

    1990-01-01

    This paper reports that as part of the plant life cycle management and license renewal program, Baltimore Gas and Electric Company (BG and E) has completed a service life evaluation of their reactor coolant pumps, funded jointly by EPRI and performed by ABB Combustion Engineering Nuclear Power. Two of the goals of the BG and E plant life cycle management and license renewal program, and of this current evaluation, are to identify actions which would optimize current plant operation, and ensure that license renewal remains a viable option. The reactor coolant pumps (RCPs) at BG and E's Calvert Cliffs Units 1 and 2 are Byron Jackson pumps with a diffuser and a single suction. This pump design is also used in many other nuclear plants. The RCP service life evaluation assessed the effect of all plausible age-related degradation mechanisms (ARDMs) on the RCP components. Cyclic fatigue and thermal embrittlement were two ARDMs identified as having a high potential to limit the service life of the pump case. The pump case is a primary pressure boundary component. Hence, ensuring its continued structural integrity is important

  14. Corrosion Assessment by Using Risk-Based Inspection Method for Petrochemical Plant - Practical Experience

    International Nuclear Information System (INIS)

    Choi, Song Chun; Song, Ki Hun

    2009-01-01

    Corrosion assessment has a number of uses but the use considered here is as a precursor to Risk-Based Inspection (RBI) planning. Systematic methods consisting of technical modules of RBI program were used to assess the effect of specific corrosion mechanism on the probability of failure in equipment of petrochemical plants. Especially in part of the damage and corrosion assessment, screening step involved evaluating the combinations of process conditions and construction materials for each equipment item in order to determine which damage mechanisms are potentially active. For general internal corrosion, either API 510 or API 570 was applied as the damage rate in the calculation to determine the remaining life and inspection frequency. In some cases, a measured rate of corrosion may not be available. The technical modules of RBI program employ default values for corrosion, typically derived from published data or from experience with similar processes, for use until inspection results are available. This paper describes the case study of corrosion and damage assessment by using RBI methodology in petrochemical plant. Specifically, this paper reports the methodology and the results of its application to the petrochemical units using the KGS-RBI TM program, developed by the Korea Gas Safety Corporation to suit Korean situation in conformity with API 581 Codes

  15. Reactor pressure vessel life cycle management at the Calvert Cliffs Nuclear Power Plant

    International Nuclear Information System (INIS)

    Doroshuk, B.W.; Bowman, M.E.; Henry, S.A.; Pavinich, W.A.; Lapides, M.E.

    1993-01-01

    Life Cycle Management (LCM) seeks to manage the aging process of important systems, structures, and components during licensed operation. The goal of Baltimore Gas and Electric Company's (BG and E) Life Cycle Management Program is to assure attainment of 40 years of operation and to preserve the option of an additional 20 years of operation for the Calvert Cliffs Nuclear Power Plant (CCNPP). Since the reactor pressure vessel (RPV) has been identified as one of the most critical components with regard to long-term operation of a nuclear power plant, BG and E initiated actions to manage life limiting or aging issues for the CCNPP RPVs. To achieve long-term operation, technical RPV issues must be effectively managed. This paper describes methods BG and E uses for managing RPV age-related degradation. (author)

  16. Life extension of nuclear power plants: world situation and the Usa case

    International Nuclear Information System (INIS)

    Leon, P.T.; Cuesta, L.; Serra, E.; Yague, L.

    2010-01-01

    Life extension of nuclear power plants above 40 years of operation is an important issue in many countries. The Kyoto limits for CO 2 emissions, the security of supply, the costs of renewable energies and the economic crisis have pushed governments to continue operation of nuclear plants over the 40 years design life. In the Usa 59 units have obtained the extension of operation license from 40 to 60 years, and currently 19 units are in the reviewing process. The situation in the rest of the world is different. A list of countries, where nuclear units with a service life over 30 years, are still operating has been drawn up. A few countries like Belgium, Germany, Spain and Sweden are opposed to life extension. Some countries like Finland, the Netherlands, Switzerland, India, Japan and Usa, have adopted a life extension policy for their nuclear fleet. Other countries like France, Russia, United-Kingdom, Pakistan, South-Korea and Argentina have not yet taken any final decision. United-Kingdom and France have a case by case policy. In some countries like Japan, Indian or Pakistan, the legislation makes no reference to a maximum operating time but the reactors are allowed to continue operating as long as they comply with established safety conditions. (A.C.)

  17. Plant life extension and ageing mechanisms: an ANSALDO proposal for the application to Kozloduy NPPs

    International Nuclear Information System (INIS)

    Orlandi, S.; Macco, A.; Zanaboni, P.

    1999-01-01

    In the frame of extension of NPP's installations lifetime, ageing management has become a topical subject to obtain the items: - Evaluation of residual life of the plant through the investigation of the residual life of well identified Safety Related Equipment in the as built configuration; - Organization of identified representative equipment per typological Classes (as Piping Systems, Tanks, Valves, Pumps, Electrical Equipment, Pressurized Components) in order to define for each High Level Class a set of elementary families capable to have, within each family, a common ageing mechanism and methodological investigation and potential common on-line monitoring; Application of a consistent methodology for residual life evaluation at each High Level Class (and subsequent elementary family and group if any) in order to assess an integral approach to backfitting and ageing management, taking also into account the economical investment effort required to the utility. In this report, a technical proposal for the application of the ANSALDO standard methodology approach, applied to the re-evaluation of the Kozloduy NPP's (Unit 1 - to 4) is presented. (authors)

  18. Comparative Life Cycle Assessment of Lignocellulosic Ethanol Production: Biochemical Versus Thermochemical Conversion

    Science.gov (United States)

    Mu, Dongyan; Seager, Thomas; Rao, P. Suresh; Zhao, Fu

    2010-10-01

    Lignocellulosic biomass can be converted into ethanol through either biochemical or thermochemical conversion processes. Biochemical conversion involves hydrolysis and fermentation while thermochemical conversion involves gasification and catalytic synthesis. Even though these routes produce comparable amounts of ethanol and have similar energy efficiency at the plant level, little is known about their relative environmental performance from a life cycle perspective. Especially, the indirect impacts, i.e. emissions and resource consumption associated with the production of various process inputs, are largely neglected in previous studies. This article compiles material and energy flow data from process simulation models to develop life cycle inventory and compares the fossil fuel consumption, greenhouse gas emissions, and water consumption of both biomass-to-ethanol production processes. The results are presented in terms of contributions from feedstock, direct, indirect, and co-product credits for four representative biomass feedstocks i.e., wood chips, corn stover, waste paper, and wheat straw. To explore the potentials of the two conversion pathways, different technological scenarios are modeled, including current, 2012 and 2020 technology targets, as well as different production/co-production configurations. The modeling results suggest that biochemical conversion has slightly better performance on greenhouse gas emission and fossil fuel consumption, but that thermochemical conversion has significantly less direct, indirect, and life cycle water consumption. Also, if the thermochemical plant operates as a biorefinery with mixed alcohol co-products separated for chemicals, it has the potential to achieve better performance than biochemical pathway across all environmental impact categories considered due to higher co-product credits associated with chemicals being displaced. The results from this work serve as a starting point for developing full life cycle

  19. Modeling Net Land Occupation of Hydropower Reservoirs in Norway for Use in Life Cycle Assessment.

    Science.gov (United States)

    Dorber, Martin; May, Roel; Verones, Francesca

    2018-02-20

    Increasing hydropower electricity production constitutes a unique opportunity to mitigate climate change impacts. However, hydropower electricity production also impacts aquatic and terrestrial biodiversity through freshwater habitat alteration, water quality degradation, and land use and land use change (LULUC). Today, no operational model exists that covers any of these cause-effect pathways within life cycle assessment (LCA). This paper contributes to the assessment of LULUC impacts of hydropower electricity production in Norway in LCA. We quantified the inundated land area associated with 107 hydropower reservoirs with remote sensing data and related it to yearly electricity production. Therewith, we calculated an average net land occupation of 0.027 m 2 ·yr/kWh of Norwegian storage hydropower plants for the life cycle inventory. Further, we calculated an adjusted average land occupation of 0.007 m 2 ·yr/kWh, accounting for an underestimation of water area in the performed maximum likelihood classification. The calculated land occupation values are the basis to support the development of methods for assessing the land occupation impacts of hydropower on biodiversity in LCA at a damage level.

  20. Plant-Wide Energy Efficiency Assessment at the Arizona Portland Cement Plant in Rillito, Arizona

    Energy Technology Data Exchange (ETDEWEB)

    Stephen J. Coppinger, P.E.; Bruce Colburn, Ph.D., P.E., CEM

    2007-05-17

    A Department of Energy Plant-wide Assessment was undertaken by Arizona Portland Cement (APC) beginning in May 2005. The assessment was performed at APC’s cement production facility in Rillito, Arizona. The assessment included a compressed air evaluation along with a detailed process audit of plant operations and equipment. The purpose of this Energy Survey was to identify a series of energy cost savings opportunities at the Plant, and provide preliminary cost and savings estimates for the work. The assessment was successful in identifying projects that could provide annual savings of over $2.7 million at an estimated capital cost of $4.3 million. If implemented, these projects could amount to a savings of over 4.9 million kWh/yr and 384,420 MMBtu/year.

  1. Life cycle assessment of agricultural biogas production systems

    Energy Technology Data Exchange (ETDEWEB)

    Lansche, J.; Muller, J. [Hohenheim Univ., Stuttgart (Germany). Inst. of Agricultural Engineering, Tropical and Subtropical Group

    2010-07-01

    Agricultural activities are large contributors to anthropogenic greenhouse gas emissions. This paper discussed the effectiveness of reducing agricultural emissions by using liquid manure to produce biogas. When using this technique, greenhouse gas emissions from manure storage are avoided and renewable energy is generated as heat and electricity in combined heat and power plants. The purpose of this study was to evaluate the environmental impacts of biogas production systems based on the methods of life cycle assessment. The traditional use of agricultural manures was compared with conventional energy production. The Gabi 4.3 software was used to create a model to evaluate the biogas production systems according to their environmental impact. In addition to the global warming potential, other impact categories were also used to evaluate the effects of the systems in eutrophication and acidification. It was concluded that environmental benefits can be obtained in terms of greenhouse gas emissions compared to electricity production from biogas with the typical German marginal electricity mix.

  2. 78 FR 47272 - Monsanto Co.; Availability of Plant Pest Risk Assessment and Environmental Assessment for...

    Science.gov (United States)

    2013-08-05

    ..., DC, this 31st day of July 2013. Kevin Shea, Administrator, Animal and Plant Health Inspection Service... DEPARTMENT OF AGRICULTURE Animal and Plant Health Inspection Service [Docket No. APHIS-2012-0020] Monsanto Co.; Availability of Plant Pest Risk Assessment and Environmental Assessment for Determination of...

  3. Life-cycle assessment for power generation from wood fuels and wood wastes; Oekobilanz fuer die Stromerzeugung aus Holzbrennstoffen und Altholz

    Energy Technology Data Exchange (ETDEWEB)

    Jungbluth, N.; Frischknecht, R.; Faist, M.

    2002-07-01

    This reworked final report for the Swiss Federal Office of Energy (SFOE) presents the results of life-cycle assessments made of four wood-fired systems with the goal of analysing the possibilities of labelling such plants with the Swiss eco-label 'Naturemade Star'. In addition to these case studies, three standard technologies were modelled, whereby in two of the models different waste gas filtering methods were considered. In the third model, electricity is produced from waste wood and features an advanced waste gas treatment system. The report describes the various plants and draws up eco-balances for them. Pollution emissions, such as dust, oxides of nitrogen and sulphur dioxide, are discussed and plant operation and assessment are looked at. Certification to 'Naturemade Star' standards is checked out for the case-study plant examples and for the standard plant proposed. A further eco-balance is drawn up for wood-fired power generation with impact allocated to heat and power generation based on exergy content. An appendix provides details on the physical parameters of wood and on the methods used for impact assessment.

  4. Nutritional and cultural aspects of plant species selection for a controlled ecological life support system

    Science.gov (United States)

    Hoff, J. E.; Howe, J. M.; Mitchell, C. A.

    1982-01-01

    The feasibility of using higher plants in a controlled ecological life support system is discussed. Aspects of this system considered important in the use of higher plants include: limited energy, space, and mass, and problems relating to cultivation and management of plants, food processing, the psychological impact of vegetarian diets, and plant propagation. A total of 115 higher plant species are compared based on 21 selection criteria.

  5. Shelf-life Assessment of Food Undergoing Oxidation-A Review.

    Science.gov (United States)

    Calligaris, Sonia; Manzocco, Lara; Anese, Monica; Nicoli, Maria Cristina

    2016-08-17

    Oxidation is the most common event leading to the end of shelf life of microbiologically stable foods. Thus, a reliable shelf-life assessment is crucial to verify how long the product will last before it becomes oxidized to an unacceptable level to the consumers. Shelf-life assessment strategies of foods and beverages suffering oxidation are critically discussed focusing on definition of the acceptability limit, as well as the choice of the proper oxidative indicators, and methodologies for shelf-life testing. Testing methodologies for shelf-life determination under actual and accelerated storage conditions are considered, highlighting possible uncertainties, pitfalls, and future research needs.

  6. Probabilistic safety assessment in nuclear power plant management

    International Nuclear Information System (INIS)

    Holloway, N.J.

    1989-06-01

    Probabilistic Safety Assessment (PSA) techniques have been widely used over the past few years to assist in understanding how engineered systems respond to abnormal conditions, particularly during a severe accident. The use of PSAs in the design and operation of such systems thus contributes to the safety of nuclear power plants. Probabilistic safety assessments can be maintained to provide a continuous up-to-date assessment (Living PSA), supporting the management of plant operations and modifications

  7. Life cycle assessment of post-consumer plastics production from waste electrical and electronic equipment (WEEE) treatment residues in a Central European plastics recycling plant

    International Nuclear Information System (INIS)

    Wäger, Patrick A.; Hischier, Roland

    2015-01-01

    Plastics play an increasingly important role in reaching the recovery and recycling rates defined in the European WEEE Directive. In a recent study we have determined the life cycle environmental impacts of post-consumer plastics production from mixed, plastics-rich WEEE treatment residues in the Central European plant of a market-leading plastics recycler, both from the perspective of the customers delivering the residues and the customers buying the obtained post-consumer recycled plastics. The results of our life cycle assessments, which were extensively tested with sensitivity analyses, show that from both perspectives plastics recycling is clearly superior to the alternatives considered in this study (i.e. municipal solid waste incineration (MSWI) and virgin plastics production). For the three ReCiPe endpoint damage categories, incineration in an MSWI plant results in an impact exceeding that of the examined plastics recycling facility each by about a factor of 4, and the production of virgin plastics has an impact exceeding that of the post-consumer recycled (PCR) plastics production each by a factor of 6–10. On a midpoint indicator level the picture is more differentiated, showing that the environmental impacts of the recycling options are lower by 50% and more for almost all impact factors. While this provides the necessary evidence for the environmental benefits of plastics recycling compared to existing alternatives, it can, however, not be taken as conclusive evidence. To be conclusive, future research will have to address the fate of hazardous substances in the outputs of such recycling systems in more detail. - Highlights: • LCA of plastics production from plastics-rich WEEE treatment residues • Multiple stakeholder perspectives addressed via different research questions • Plastics production from WEEE treatment residues clearly superior to alternatives • Robust results as demonstrated by extensive sensitivity analyses

  8. Life cycle assessment of post-consumer plastics production from waste electrical and electronic equipment (WEEE) treatment residues in a Central European plastics recycling plant

    Energy Technology Data Exchange (ETDEWEB)

    Wäger, Patrick A., E-mail: patrick.waeger@empa.ch; Hischier, Roland

    2015-10-01

    Plastics play an increasingly important role in reaching the recovery and recycling rates defined in the European WEEE Directive. In a recent study we have determined the life cycle environmental impacts of post-consumer plastics production from mixed, plastics-rich WEEE treatment residues in the Central European plant of a market-leading plastics recycler, both from the perspective of the customers delivering the residues and the customers buying the obtained post-consumer recycled plastics. The results of our life cycle assessments, which were extensively tested with sensitivity analyses, show that from both perspectives plastics recycling is clearly superior to the alternatives considered in this study (i.e. municipal solid waste incineration (MSWI) and virgin plastics production). For the three ReCiPe endpoint damage categories, incineration in an MSWI plant results in an impact exceeding that of the examined plastics recycling facility each by about a factor of 4, and the production of virgin plastics has an impact exceeding that of the post-consumer recycled (PCR) plastics production each by a factor of 6–10. On a midpoint indicator level the picture is more differentiated, showing that the environmental impacts of the recycling options are lower by 50% and more for almost all impact factors. While this provides the necessary evidence for the environmental benefits of plastics recycling compared to existing alternatives, it can, however, not be taken as conclusive evidence. To be conclusive, future research will have to address the fate of hazardous substances in the outputs of such recycling systems in more detail. - Highlights: • LCA of plastics production from plastics-rich WEEE treatment residues • Multiple stakeholder perspectives addressed via different research questions • Plastics production from WEEE treatment residues clearly superior to alternatives • Robust results as demonstrated by extensive sensitivity analyses.

  9. Life cycle assessment of electronic waste treatment

    International Nuclear Information System (INIS)

    Hong, Jinglan; Shi, Wenxiao; Wang, Yutao; Chen, Wei; Li, Xiangzhi

    2015-01-01

    Highlights: • Life cycle assessment of electronic waste recycling is quantified. • Key factors for reducing the overall environmental impact are indentified. • End-life disposal processes provide significant environmental benefits. • Efficiently reduce the improper disposal amount of e-waste is highly needed. • E-waste incineration can generate significant environmental burden. - Abstract: Life cycle assessment was conducted to estimate the environmental impact of electronic waste (e-waste) treatment. E-waste recycling with an end-life disposal scenario is environmentally beneficial because of the low environmental burden generated from human toxicity, terrestrial ecotoxicity, freshwater ecotoxicity, and marine ecotoxicity categories. Landfill and incineration technologies have a lower and higher environmental burden than the e-waste recycling with an end-life disposal scenario, respectively. The key factors in reducing the overall environmental impact of e-waste recycling are optimizing energy consumption efficiency, reducing wastewater and solid waste effluent, increasing proper e-waste treatment amount, avoiding e-waste disposal to landfill and incineration sites, and clearly defining the duties of all stakeholders (e.g., manufacturers, retailers, recycling companies, and consumers)

  10. Life cycle assessment of electronic waste treatment

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Jinglan, E-mail: hongjing@sdu.edu.cn [Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Jinan 250100 (China); Shandong University Climate Change and Health Center, Public Health School, Shandong University, Jinan 250012 (China); Shi, Wenxiao [Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Jinan 250100 (China); Wang, Yutao [School of Life Science, Shandong University, Shanda South Road 27, Jinan 250100 (China); Chen, Wei [Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Jinan 250100 (China); Li, Xiangzhi, E-mail: xiangzhi@sdu.edu.cn [School of Medicine, Shandong University, Jinan 250012 (China)

    2015-04-15

    Highlights: • Life cycle assessment of electronic waste recycling is quantified. • Key factors for reducing the overall environmental impact are indentified. • End-life disposal processes provide significant environmental benefits. • Efficiently reduce the improper disposal amount of e-waste is highly needed. • E-waste incineration can generate significant environmental burden. - Abstract: Life cycle assessment was conducted to estimate the environmental impact of electronic waste (e-waste) treatment. E-waste recycling with an end-life disposal scenario is environmentally beneficial because of the low environmental burden generated from human toxicity, terrestrial ecotoxicity, freshwater ecotoxicity, and marine ecotoxicity categories. Landfill and incineration technologies have a lower and higher environmental burden than the e-waste recycling with an end-life disposal scenario, respectively. The key factors in reducing the overall environmental impact of e-waste recycling are optimizing energy consumption efficiency, reducing wastewater and solid waste effluent, increasing proper e-waste treatment amount, avoiding e-waste disposal to landfill and incineration sites, and clearly defining the duties of all stakeholders (e.g., manufacturers, retailers, recycling companies, and consumers)

  11. LIFE CYCLE ASSESSMENT FOR PC BLEND 2 AIRCRAFT RADOME DEPAINTER

    Science.gov (United States)

    This report describes the life cycle assessment on a potential replacement solvent blend for aircraft radome depainting at the Oklahoma City Air Logistics Center at Tinker Air Force Base. The life cycle assessment is composed of three separate but interrelated components: life cy...

  12. Assessment and management of ageing of major nuclear power plant components important to safety: PWR vessel internals

    International Nuclear Information System (INIS)

    1999-10-01

    At present, there are over four hundred operational nuclear power plants (NPPs) in IAEA Member States. Operating experience has shown that ineffective control of the ageing degradation of the major NPP components (e.g. caused by unanticipated phenomena and by operating, maintenance or manufacturing errors) can jeopardize plant safety and also plant life. Ageing in these NPPs must be therefore effectively managed to ensure the availability of design functions throughout the plant service life. From the safety perspective, this means controlling within acceptable limits the ageing degradation and wear-out of plant components important to safety so that adequate safety margins remain, i.e. integrity and functional capability in excess of normal operating requirements. This TECDOC is one in a series of reports on the assessment and management of ageing of the major NPP components important to safety. The reports are based on experience and practices of NPP operators, regulators, designers, manufacturers, and technical support organizations and a widely accepted Methodology for the Management of Ageing of NPP Components Important to Safety, which was issued by the IAEA in 1992. The current practices for the assessment of safety margins (fitness-for-service) and the inspection, monitoring and mitigation of ageing degradation of selected components of Canada deuterium-uranium (CANDU) reactors, boiling water reactors (BWRs), pressurized water reactors (PWRs), and water moderated, water cooled energy reactors (WWERs) are documented in the reports. These practices are intended to help all involved directly and indirectly in ensuring the safe operation of NPPs, and to provide a common technical basis for dialogue between plant operators and regulators when dealing with age related licensing issues. The guidance reports are directed at technical experts from NPPs and from regulatory, plant design, manufacturing and technical support organizations dealing with specific plant

  13. A method of risk assessment for a multi-plant site

    International Nuclear Information System (INIS)

    White, R.F.

    1983-06-01

    A model is presented which can be used in conjunction with probabilistic risk assessment to estimate whether a site on which there are several plants (reactors or chemical plants containing radioactive materials) meets whatever risk acceptance criteria or numerical risk guidelines are applied at the time of the assessment in relation to various groups of people and for various sources of risk. The application of the multi-plant site model to the direct and inverse methods of risk assessment is described. A method is proposed by which the potential hazard rating associated with a given plant can be quantified so that an appropriate allocation can be made when assessing the risks associated with each of the plants on a site. (author)

  14. Assessing power plant impacts on fish populations at Northeast Utilities sites: winter flounder studies at Millstone Nuclear Power Station

    International Nuclear Information System (INIS)

    Lorda, E.; Danila, D.J.; Miller, J.D.; Bireley, L.E.; Jacobsen, P.M.

    1987-01-01

    An historical view is presented of the various impact assessment approaches used to study the winter flounder, including efforts to identify and quantify compensation and to model its population dynamics. This review illustrates the need for unbiased estimates of basic life history parameters and power plant related mortalities if compensatory mechanisms are to be understood and if impact assessments are to be meaningful. 67 references, 19 figures, 10 tables

  15. How to quantify uncertainty and variability in life cycle assessment: the case of greenhouse gas emissions of gas power generation in the US

    Science.gov (United States)

    Hauck, M.; Steinmann, Z. J. N.; Laurenzi, I. J.; Karuppiah, R.; Huijbregts, M. A. J.

    2014-07-01

    This study quantified the contributions of uncertainty and variability to the range of life-cycle greenhouse gas (LCGHG) emissions associated with conventional gas-fired electricity generation in the US. Whereas uncertainty is defined as lack of knowledge and can potentially be reduced by additional research, variability is an inherent characteristic of supply chains and cannot be reduced without physically modifying the system. The life-cycle included four stages: production, processing, transmission and power generation, and utilized a functional unit of 1 kWh of electricity generated at plant. Technological variability requires analyses of life cycles of individual power plants, e.g. combined cycle plants or boilers. Parameter uncertainty was modeled via Monte Carlo simulation. Our approach reveals that technological differences are the predominant cause for the range of LCGHG emissions associated with gas power, primarily due to variability in plant efficiencies. Uncertainties in model parameters played a minor role for 100 year time horizon. Variability in LCGHG emissions was a factor of 1.4 for combined cycle plants, and a factor of 1.3 for simple cycle plants (95% CI, 100 year horizon). The results can be used to assist decision-makers in assessing factors that contribute to LCGHG emissions despite uncertainties in parameters employed to estimate those emissions.

  16. How to quantify uncertainty and variability in life cycle assessment: the case of greenhouse gas emissions of gas power generation in the US

    International Nuclear Information System (INIS)

    Hauck, M; Steinmann, Z J N; Huijbregts, M A J; Laurenzi, I J; Karuppiah, R

    2014-01-01

    This study quantified the contributions of uncertainty and variability to the range of life-cycle greenhouse gas (LCGHG) emissions associated with conventional gas-fired electricity generation in the US. Whereas uncertainty is defined as lack of knowledge and can potentially be reduced by additional research, variability is an inherent characteristic of supply chains and cannot be reduced without physically modifying the system. The life-cycle included four stages: production, processing, transmission and power generation, and utilized a functional unit of 1 kWh of electricity generated at plant. Technological variability requires analyses of life cycles of individual power plants, e.g. combined cycle plants or boilers. Parameter uncertainty was modeled via Monte Carlo simulation. Our approach reveals that technological differences are the predominant cause for the range of LCGHG emissions associated with gas power, primarily due to variability in plant efficiencies. Uncertainties in model parameters played a minor role for 100 year time horizon. Variability in LCGHG emissions was a factor of 1.4 for combined cycle plants, and a factor of 1.3 for simple cycle plants (95% CI, 100 year horizon). The results can be used to assist decision-makers in assessing factors that contribute to LCGHG emissions despite uncertainties in parameters employed to estimate those emissions. (letter)

  17. Life cycle assessment of a biomass gasification combined-cycle power system

    Energy Technology Data Exchange (ETDEWEB)

    Mann, M.K.; Spath, P.L.

    1997-12-01

    The potential environmental benefits from biomass power are numerous. However, biomass power may also have some negative effects on the environment. Although the environmental benefits and drawbacks of biomass power have been debated for some time, the total significance has not been assessed. This study serves to answer some of the questions most often raised in regard to biomass power: What are the net CO{sub 2} emissions? What is the energy balance of the integrated system? Which substances are emitted at the highest rates? What parts of the system are responsible for these emissions? To provide answers to these questions, a life cycle assessment (LCA) of a hypothetical biomass power plant located in the Midwest United States was performed. LCA is an analytical tool for quantifying the emissions, resource consumption, and energy use, collectively known as environmental stressors, that are associated with converting a raw material to a final product. Performed in conjunction with a technoeconomic feasibility study, the total economic and environmental benefits and drawbacks of a process can be quantified. This study complements a technoeconomic analysis of the same process, reported in Craig and Mann (1996) and updated here. The process studied is based on the concept of power Generation in a biomass integrated gasification combined cycle (BIGCC) plant. Broadly speaking, the overall system consists of biomass production, its transportation to the power plant, electricity generation, and any upstream processes required for system operation. The biomass is assumed to be supplied to the plant as wood chips from a biomass plantation, which would produce energy crops in a manner similar to the way food and fiber crops are produced today. Transportation of the biomass and other materials is by both rail and truck. The IGCC plant is sized at 113 MW, and integrates an indirectly-heated gasifier with an industrial gas turbine and steam cycle. 63 refs., 34 figs., 32 tabs.

  18. Life cycle assessment of a biomass gasification combined-cycle power system

    Energy Technology Data Exchange (ETDEWEB)

    Mann, M.K.; Spath, P.L.

    1997-12-01

    The potential environmental benefits from biomass power are numerous. However, biomass power may also have some negative effects on the environment. Although the environmental benefits and drawbacks of biomass power have been debated for some time, the total significance has not been assessed. This study serves to answer some of the questions most often raised in regard to biomass power: What are the net CO{sub 2} emissions? What is the energy balance of the integrated system? Which substances are emitted at the highest rates? What parts of the system are responsible for these emissions? To provide answers to these questions, a life cycle assessment (LCA) of a hypothetical biomass power plant located in the Midwest United States was performed. LCA is an analytical tool for quantifying the emissions, resource consumption, and energy use, collectively known as environmental stressors, that are associated with converting a raw material to a final product. Performed in conjunction with a t echnoeconomic feasibility study, the total economic and environmental benefits and drawbacks of a process can be quantified. This study complements a technoeconomic analysis of the same process, reported in Craig and Mann (1996) and updated here. The process studied is based on the concept of power Generation in a biomass integrated gasification combined cycle (BIGCC) plant. Broadly speaking, the overall system consists of biomass production, its transportation to the power plant, electricity generation, and any upstream processes required for system operation. The biomass is assumed to be supplied to the plant as wood chips from a biomass plantation, which would produce energy crops in a manner similar to the way food and fiber crops are produced today. Transportation of the biomass and other materials is by both rail and truck. The IGCC plant is sized at 113 MW, and integrates an indirectly-heated gasifier with an industrial gas turbine and steam cycle. 63 refs., 34 figs., 32 tabs.

  19. Life cycle assessment of bagasse waste management options

    International Nuclear Information System (INIS)

    Kiatkittipong, Worapon; Wongsuchoto, Porntip; Pavasant, Prasert

    2009-01-01

    Bagasse is mostly utilized for steam and power production for domestic sugar mills. There have been a number of alternatives that could well be applied to manage bagasse, such as pulp production, conversion to biogas and electricity production. The selection of proper alternatives depends significantly on the appropriateness of the technology both from the technical and the environmental points of view. This work proposes a simple model based on the application of life cycle assessment (LCA) to evaluate the environmental impacts of various alternatives for dealing with bagasse waste. The environmental aspects of concern included global warming potential, acidification potential, eutrophication potential and photochemical oxidant creation. Four waste management scenarios for bagasse were evaluated: landfilling with utilization of landfill gas, anaerobic digestion with biogas production, incineration for power generation, and pulp production. In landfills, environmental impacts depended significantly on the biogas collection efficiency, whereas incineration of bagasse to electricity in the power plant showed better environmental performance than that of conventional low biogas collection efficiency landfills. Anaerobic digestion of bagasse in a control biogas reactor was superior to the other two energy generation options in all environmental aspects. Although the use of bagasse in pulp mills created relatively high environmental burdens, the results from the LCA revealed that other stages of the life cycle produced relatively small impacts and that this option might be the most environmentally benign alternative

  20. Plutonium Finishing Plant (PFP) hazards assessment

    International Nuclear Information System (INIS)

    Campbell, L.R.

    1998-01-01

    This report documents the hazards assessment for the Plutonium Finishing Plant (PFP) located on the US Department of Energy (DOE) Hanford Site. This hazards assessment was conducted to provide the emergency planning technical basis for the PFP. DOE Orders require an emergency planning hazards assessment for each facility that has the potential to reach or exceed the lowest level emergency classification

  1. Condition Based Prognostics of Passive Components - A New Era for Nuclear Power Plant Life Management

    International Nuclear Information System (INIS)

    Bakhtiari, S.; Mohanty, S.; Prokofiev, I.; Tregoning, R.

    2012-01-01

    As part of a research project sponsored by the U.S. NRC, Argonne National Laboratory (ANL) conducted scoping studies to identify viable and promising sensors and techniques for in-situ inspection and real-time monitoring of degradation in nuclear power plant (NPP) systems, structures, and components (SSC). Significant advances have been made over the past two decades toward development of online monitoring (OLM) techniques for detection, diagnostics, and prognostics of degradation in active nuclear power plant (NPP) components (e.g., pumps, valves). However, early detection of damage and degradation in safety-critical passive components, (e.g. piping, tubing pressure vessel), is challenging, and will likely remain so for the foreseeable future. Ensuring the structural integrity of the reactor pressure vessel (RPV) and piping systems in particular is a prerequisite to long term safe operation of NPPs. The current practice is to implement inservice inspection (ISI) and preventive maintenance programs. While these programs have generally been successful, they are limited in that information is only obtained during plant outages. Additionally, these inspections, often the critical path in the outage schedule, are costly, time consuming, and involve potentially high dose to nondestructive examination/evaluation (NDE) personnel. A viable plant-wide on-line structural health monitoring program for continuous and automatic monitoring of critical SSCs could be a more effective approach for guarding against unexpected failures. Specifically, OLM information about the current condition of the SSCs could be input to an online prognostics (OLP) system to forecast their remaining useful life in real time. This paper provides an overview of scoping studies performed at ANL on assessing the viability of OLM and OLP systems for real time and automated monitoring and remaining of condition and the remaining useful life of passive components in NPPs. (author)

  2. Life cycle assessment of renewable energy sources

    CERN Document Server

    Singh, Anoop; Olsen, Stig Irving

    2013-01-01

    Governments are setting challenging targets to increase the production of energy and transport fuel from sustainable sources. The emphasis is increasingly on renewable sources including wind, solar, geothermal, biomass based biofuel, photovoltaics or energy recovery from waste. What are the environmental consequences of adopting these other sources? How do these various sources compare to each other? Life Cycle Assessment of Renewable Energy Sources tries to answer these questions based on the universally adopted method of Life Cycle Assessment (LCA). This book introduces the concept and impor

  3. Soil ecotoxicity assessment using cadmium sensitive plants

    Energy Technology Data Exchange (ETDEWEB)

    An, Youn-Joo

    2004-01-01

    The crop plants, sorghum and cucumber, can be used as indicator species to assess ecotoxicity of soils contaminated by cadmium. - Four crop plant species (sweet corn, Zea may; wheat, Triticum aestivum; cucumber, Cucumis sativus; and sorghum, Sorghum bicolor) were tested to assess an ecotoxicity in cadmium-amended soils. The measurement endpoints used were seed germination and seedling growth (shoot and root). The presence of cadmium decreased the seedling growth. The medium effective concentration values (EC50) for shoot or root growth were calculated by the Trimmed Spearman-Karber method. Due to the greater accumulation of Cd to the roots, root growth was a more sensitive endpoint than shoot growth. Bioavailability and transport of Cd within plant were related to concentration and species. The ratio of bioaccumulation factor (BAF) in the shoots to the roots indicated high immobilization of Cd in the roots. Seed germination was insensitive to Cd toxicity, and is not recommended for a suitable assay. Among the test plants and test endpoints, root growth of sorghum and cucumber appears to be a good protocol to assess ecotoxicity of soils contaminated by Cd.

  4. Soil ecotoxicity assessment using cadmium sensitive plants

    International Nuclear Information System (INIS)

    An, Youn-Joo

    2004-01-01

    The crop plants, sorghum and cucumber, can be used as indicator species to assess ecotoxicity of soils contaminated by cadmium. - Four crop plant species (sweet corn, Zea may; wheat, Triticum aestivum; cucumber, Cucumis sativus; and sorghum, Sorghum bicolor) were tested to assess an ecotoxicity in cadmium-amended soils. The measurement endpoints used were seed germination and seedling growth (shoot and root). The presence of cadmium decreased the seedling growth. The medium effective concentration values (EC50) for shoot or root growth were calculated by the Trimmed Spearman-Karber method. Due to the greater accumulation of Cd to the roots, root growth was a more sensitive endpoint than shoot growth. Bioavailability and transport of Cd within plant were related to concentration and species. The ratio of bioaccumulation factor (BAF) in the shoots to the roots indicated high immobilization of Cd in the roots. Seed germination was insensitive to Cd toxicity, and is not recommended for a suitable assay. Among the test plants and test endpoints, root growth of sorghum and cucumber appears to be a good protocol to assess ecotoxicity of soils contaminated by Cd

  5. Life cycle assessment of biomass-to-liquid fuels - Final report

    Energy Technology Data Exchange (ETDEWEB)

    Jungbluth, N.; Buesser, S.; Frischknecht, R.; Tuchschmid, M.

    2008-02-15

    This study elaborates a life cycle assessment of using of BTL-fuels (biomass-to-liquid). This type of fuel is produced in synthesis process from e.g. wood, straw or other biomass. The life cycle inventory data of the fuel provision with different types of conversion concepts are based on the detailed life cycle assessment compiled and published within a European research project. The inventory of the fuel use emissions is based on information published by automobile manufacturers on reductions due to the use of BTL-fuels. Passenger cars fulfilling the EURO3 emission standards are the basis for the comparison. The life cycle inventories of the use of BTL-fuels for driving in passenger cars are investigated from cradle to grave. The full life cycle is investigated with the transportation of one person over one kilometre (pkm) as a functional unit. This includes all stages of the life cycle of a fuel (biomass and fuel production, distribution, combustion) and the necessary infrastructure (e.g. tractors, conversion plant, cars and streets). The use of biofuels is mainly promoted for the reason of reducing the climate change impact and the use of scarce non-renewable resources e.g. crude oil. The possible implementation of BTL-fuel production processes would potentially help to achieve this goal. The emissions of greenhouse gases due to transport services could be reduced by 28% to 69% with the BTL-processes using straw, forest wood or short-rotation wood as a biomass input. The reduction potential concerning non-renewable energy resources varies between 37% und 61%. A previous study showed that many biofuels cause higher environmental impacts than fossil fuels if several types of ecological problems are considered. The study uses two single score impact assessment methods for the evaluation of the overall environmental impacts, namely the Eco-indicator 99 (H,A) and the Swiss ecological scarcity 2006 method. The transportation with the best BTL-fuel from short

  6. Science assessment of fusion power plant

    International Nuclear Information System (INIS)

    Nagai, Toru; Shimazu, Yasuo

    1984-01-01

    A concept of SCIENCE ASSESSMENT (SA) is proposed to support a research program of the so-called big science. The SA System should be established before the demonstration reactor is realized, and the system is classified into four categories: (1) Resource Economy Assessment (REA) (cost evaluation and availability of rare resource materials), (2) Risk Assessment (RA) (structural safety during operation and accident), (3) Environmental Assessment (EA) (adaptability to environments), and (4) Socio-Political Assessment (SPA) (from local public acceptance to national policy acceptance). Here, REA to the published conceptual designs of commercial fusion power plants (most of them are TOKAMAK) is carried out as the first step. The energy analysis method is imployed because the final goal of fusion plant is to supply energy. The evaluation index is the energy ratio (= output/input). Computer code for energy analysis was developed, to which the material inventory table from the conceptual design and the database for the energy intensity (= energy required to obtain a unit amount of materials) were prepared. (Nogami, K.)

  7. Addressing the effect of social life cycle assessments

    DEFF Research Database (Denmark)

    Jørgensen, Andreas; Dreyer, Louise Camilla; Wangel, Arne

    2012-01-01

    the validity of these hypotheses. Results: Three in some cases potentially overlapping SLCA approaches are presented, assumed to create a beneficial effect in the life cycle in different ways. However, empirical and theoretical findings show that the beneficial effects proposed to arise from the use of each......Purpose: In the recently published ‘Guidelines for social life cycle assessment of products’, it is stated that the ultimate objective of developing the social life cycle assessment (SLCA) is to promote improvements of social conditions for the stakeholders in the life cycle. This article addresses...... how the SLCA should be developed so that its use promotes these improvements. Methods: Hypotheses of how the use of SLCA can promote improvement of social conditions in the life cycle are formulated, after which theories and empirical findings from relevant fields of research are used to address...

  8. A framework for social life cycle impact assessment

    DEFF Research Database (Denmark)

    Dreyer, Louise Camilla; Hauschild, Michael Zwicky; Schierbeck, Jens

    2006-01-01

    Goal, Scope and Background. To enhance the use of life cycle assessment (LCA) as a tool in business decision-making, a methodology for Social life cycle impact assessment (LCIA) is being developed. Social LCA aims at facilitating companies to conduct business in a socially responsible manner...... by providing information about the potential social impacts on people caused by the activities in the life cycle of their product. The development of the methodology has been guided by a business perspective accepting that companies, on the one hand, have responsibility for the people affected...... in the life cycle rather than to the individual industrial processes, as is the case in Environmental LCA. Inventory analysis is therefore focused on the conduct of the companies engaged in the life cycle. A consequence of this view is that a key must be determined for relating the social profiles...

  9. A study on the optimization of plant life extension and decommissioning for the improvement of economy in nuclear power plant

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Jae In; Jung, K. J.; Chung, U. S.; Baik, S. T.; Park, S. K.; Lee, D. G.; Kim, H. R.; Park, B. Y

    2001-01-01

    Fundamental concepts on the life extension of the nuclear power plant and decommissioning optimization were established from the domestic abroad information and case analyses. Concerning the decommissioning of the nuclear power plant, the management according to decommissioning stages was analyzed by the investigation of the standard of the decommissioning(decontamination dismantling) regulation. Moreover, basics were set for the decommissioning of domestic nuclear power plants and research reactors from the analyses on the decommissioning technology and precedence.

  10. Three technical issues in fatigue damage assessment of nuclear power plant components

    International Nuclear Information System (INIS)

    Ware, A.G.; Shah, V.N.

    1991-01-01

    This paper addresses three technical issues that affect the fatigue damage assessment of nuclear power plant components: the effect of the environment on the fatigue life, the importance of the loading sequence in calculating the fatigue crack-initiation damage, and the adequacy of current inservice inspection requirements and methods to characterize fatigue cracks. The environmental parameters that affect the fatigue life of carbon and low alloy steel components are the sulphur content in the steel, the temperature, the amount of dissolved oxygen in the coolant, and the presence of oxidizing agents such as copper oxide. The occurrence of large-amplitude stress cycles early in a component's life followed by low-amplitude stress cycles may cause crack initiation at a cumulative usage factor less than 1.0. The current inservice inspection requirements include volumetric inspections of welds but not of some susceptible sites in the base metal. In addition, the conventional ultrasonic testing techniques need to be improved for reliable detection and accurate sizing of fatigue cracks. 28 refs., 4 figs., 1 tab

  11. A cyber security risk assessment for the design of I and C system in nuclear power plants

    International Nuclear Information System (INIS)

    Song, Jae Gu; Lee, Jung Woon; Lee, Cheal Kwon; Kwon, Kee Choon; Lee, Dong Young

    2012-01-01

    The applications of computers and communication system and network technologies in nuclear power plants have expanded recently. This application of digital technologies to the instrumentation and control systems of nuclear power plants brings with it the cyber security concerns similar to other critical infrastructures. Cyber security risk assessments for digital instrumentation and control systems have become more crucial in the development of new systems and in the operation of existing systems. Although the instrumentation and control systems of nuclear power plants are similar to industrial control systems, the former have specifications that differ from the latter in terms of architecture and function, in order to satisfy nuclear safety requirements, which need different methods for the application of cyber security risk assessment. In this paper, the characteristics of nuclear power plant instrumentation and control systems are described, and the considerations needed when conducting cyber security risk assessments in accordance with the life cycle process of instrumentation and control systems are discussed. For cyber security risk assessments of instrumentation and control systems, the activities and considerations necessary for assessments during the system design phase or component design and equipment supply phase are presented in the following 6 steps: 1) System Identification and Cyber Security Modeling, 2) Asset and Impact Analysis, 3) Threat Analysis, 4) Vulnerability Analysis, 5) Security Control Design, and 6) Penetration test. The results from an application of the method to a digital reactor protection system are described.

  12. A cyber security risk assessment for the design of I and C system in nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Song, Jae Gu; Lee, Jung Woon; Lee, Cheal Kwon; Kwon, Kee Choon; Lee, Dong Young [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2012-12-15

    The applications of computers and communication system and network technologies in nuclear power plants have expanded recently. This application of digital technologies to the instrumentation and control systems of nuclear power plants brings with it the cyber security concerns similar to other critical infrastructures. Cyber security risk assessments for digital instrumentation and control systems have become more crucial in the development of new systems and in the operation of existing systems. Although the instrumentation and control systems of nuclear power plants are similar to industrial control systems, the former have specifications that differ from the latter in terms of architecture and function, in order to satisfy nuclear safety requirements, which need different methods for the application of cyber security risk assessment. In this paper, the characteristics of nuclear power plant instrumentation and control systems are described, and the considerations needed when conducting cyber security risk assessments in accordance with the life cycle process of instrumentation and control systems are discussed. For cyber security risk assessments of instrumentation and control systems, the activities and considerations necessary for assessments during the system design phase or component design and equipment supply phase are presented in the following 6 steps: 1) System Identification and Cyber Security Modeling, 2) Asset and Impact Analysis, 3) Threat Analysis, 4) Vulnerability Analysis, 5) Security Control Design, and 6) Penetration test. The results from an application of the method to a digital reactor protection system are described.

  13. Assessing Smart Phones for Generating Life-space Indicators.

    Science.gov (United States)

    Wan, Neng; Qu, Wenyu; Whittington, Jackie; Witbrodt, Bradley C; Henderson, Mary Pearl; Goulding, Evan H; Schenk, A Katrin; Bonasera, Stephen J; Lin, Ge

    2013-04-01

    Life-space is a promising method for estimating older adults' functional status. However, traditional life-space measures are costly and time consuming because they often rely on active subject participation. This study assesses the feasibility of using the global positioning system (GPS) function of smart phones to generate life-space indicators. We first evaluated the location accuracy of smart phone collected GPS points versus those acquired by a commercial GPS unit. We then assessed the specificity of the smart phone processed life-space information against the traditional diary method. Our results suggested comparable location accuracy between the smart phone and the standard GPS unit in most outdoor situations. In addition, the smart phone method revealed more comprehensive life-space information than the diary method, which leads to higher and more consistent life-space scores. We conclude that the smart phone method is more reliable than traditional methods for measuring life-space. Further improvements will be required to develop a robust application of this method that is suitable for health-related practices.

  14. Environmental burdens over the entire life cycle of a biomass CHP plant

    International Nuclear Information System (INIS)

    Jungmeier, G.; Spitzer, J.; Resch, G.

    1998-01-01

    To increase the use of biomass for energy production it is important to know the possible and significant environmental effects. A life cycle inventory (LCI) was made on a 1.3 MW el biomass CHP plant located in Reuthe/Vorarlberg/Austria with the purpose of analysing the different environmental burdens over the entire life cycle. The plant is fired with coarse and small fuelwood (10,000 t/yr) from industrial waste and forest residues. The boiler for the steam process has a moving grate burner and a muffle burner. The annual production is 4700 MWh of electricity and 29,000 MWh of district heat. The methodology of the analysis is orientated on the ISO Committee Draft of the Series 13,600. The analysis was carried out for the different sections of the biomass plant over their entire life cycle-construction (1 yr), operation (20 yrs) and dismantling (1 yr). The plant in Reuthe, which is the first cogeneration system of this kind in Austria, is a model for other similar projects. The results are shown as environmental burdens of one year and of the entire life cycle. Some results of the life cycle inventory, like the mass and energy balances, selected emissions to air, allocation results and effects on carbon storage pools are given. The results demonstrate that depending on the stage and the period of life, different environmental burdens become significant, i.e. CO 2 emissions of fossil fuels during construction. NO x emission during operation, emissions to soil during dismantling. The different options for allocation the environmental burdens to electricity and heat show a wide range of possible results, depending on the choice of allocation parameters (energy, exergy, credits for heat or electricity, price) i.e. for the particles emissions: 161 mg/kWh el to minus 566 mg/kWh el , 0 mg/kWh th to 118 mg/kWh th . With the results of the analysis it is thus possible for future similar projects to know when and where significant environmental burdens might be further

  15. Spatial differentiated effect assessment for aquatic eutrophication in Life Cycle Assessment.

    NARCIS (Netherlands)

    Penailillo, Reinaldo

    2005-01-01

    The conventional evaluation of aquatic eutrophication in Life Cycle Assessment (LCA) expresses the contribution of nitrogen and/or phosphorus emissions to biomass production in terms of the equivalent emission of a reference substance. This assessment doe

  16. Safety/security interface assessments at commercial nuclear power plants

    International Nuclear Information System (INIS)

    Byers, K.R.; Brown, P.J.; Norderhaug, L.R.

    1985-01-01

    The findings of the Haynes Task Force Committee (NUREG-0992) are used as the basis for defining safety/security assessment team activities at commercial nuclear power plants in NRC Region V. A safety/security interface assessment outline and the approach used for making the assessments are presented along with the composition of team members. As a result of observing simulated plant emergency conditions during scheduled emergency preparedness exercises, examining security and operational response procedures, and interviewing plant personnel, the team has identified instances where safety/security conflicts can occur

  17. Safety/security interface assessments at commercial nuclear power plants

    International Nuclear Information System (INIS)

    Byers, K.R.; Brown, P.J.; Norderhaug, L.R.

    1985-07-01

    The findings of the Haynes Task Force Committee (NUREG-0992) are used as the basis for defining safety/security assessment team activities at commercial nuclear power plants in NRC Region V. A safety/security interface assessment outline and the approach used for making the assessments are presented along with the composition of team members. As a result of observing simulated plant emergency conditions during scheduled emergency preparedness exercises, examining security and operational response procedures, and interviewing plant personnel, the team has identified instances where safety/security conflicts can occur. 2 refs

  18. Technical, hygiene, economic, and life cycle assessment of full-scale moving bed biofilm reactors for wastewater treatment in India.

    Science.gov (United States)

    Singh, Anju; Kamble, Sheetal Jaisingh; Sawant, Megha; Chakravarthy, Yogita; Kazmi, Absar; Aymerich, Enrique; Starkl, Markus; Ghangrekar, Makarand; Philip, Ligy

    2018-01-01

    Moving bed biofilm reactor (MBBR) is a highly effective biological treatment process applied to treat both urban and industrial wastewaters in developing countries. The present study investigated the technical performance of ten full-scale MBBR systems located across India. The biochemical oxygen demand, chemical oxygen demand, total suspended solid, pathogens, and nutrient removal efficiencies were low as compared to the values claimed in literature. Plant 1 was considered for evaluation of environmental impacts using life cycle assessment approach. CML 2 baseline 2000 methodology was adopted, in which 11 impact categories were considered. The life cycle impact assessment results revealed that the main environmental hot spot of this system was energy consumption. Additionally, two scenarios were compared: scenario 1 (direct discharge of treated effluent, i.e., no reuse) and scenario 2 (effluent reuse and tap water replacement). The results showed that scenario 2 significantly reduce the environmental impact in all the categories ultimately decreasing the environmental burden. Moreover, significant economic and environmental benefits can be obtained in scenario 2 by replacing the freshwater demand for non-potable uses. To enhance the performance of wastewater treatment plant (WWTP), there is a need to optimize energy consumption and increase wastewater collection efficiency to maximize the operating capacity of plant and minimize overall environmental footprint. It was concluded that MBBR can be a good alternative for upgrading and optimizing existing municipal wastewater treatment plants with appropriate tertiary treatment. Graphical abstract ᅟ.

  19. Knowledge based system for fouling assessment of power plant boiler

    International Nuclear Information System (INIS)

    Afgan, N.H.; He, X.; Carvalho, M.G.; Azevedo, J.L.T.

    1999-01-01

    The paper presents the design of an expert system for fouling assessment in power plant boilers. It is an on-line expert system based on selected criteria for the fouling assessment. Using criteria for fouling assessment based on 'clean' and 'not-clean' radiation heat flux measurements, the diagnostic variable are defined for the boiler heat transfer surface. The development of the prototype knowledge-based system for fouling assessment in power plants boiler comprise the integrations of the elements including knowledge base, inference procedure and prototype configuration. Demonstration of the prototype knowledge-based system for fouling assessment was performed on the Sines power plant. It is a 300 MW coal fired power plant. 12 fields are used with 3 on each side of boiler

  20. Life cycle assessment (LCA) and exergetic life cycle assessment (ELCA) of the production of biodiesel from used cooking oil (UCO)

    International Nuclear Information System (INIS)

    Talens Peiro, L.; Lombardi, L.; Villalba Mendez, G.; Gabarrell i Durany, X.

    2010-01-01

    The paper assesses the life cycle of biodiesel from used cooking oil (UCO). Such life cycle involves 4 stages: 1) collection, 2) pre-treatment, 3) delivery and 4) transesterification of UCO. Generally, UCO is collected from restaurants, food industries and recycling centres by authorised companies. Then, UCO is pre-treated to remove solid particles and water to increase its quality. After that, it is charged in cistern trucks and delivered to the biodiesel facility to be then transesterified with methanol to biodiesel. The production of 1 ton of biodiesel is evaluated by a Life Cycle Assessment (LCA) to assess the environmental impact and by an Exergetic Life Cycle Assessment (ELCA) to account for the exergy input to the system. A detailed list of material and energy inputs is done using data from local companies and completed using Ecoinvent 1.2 database. The results show that the transesterification stage causes 68% of the total environmental impact. The major exergy inputs are uranium and natural gas. If targets set by the Spanish Renewable Energy Plan are achieved, the exergy input for producing biodiesel would be reduced by 8% in the present system and consequently environmental impacts and exergy input reduced up to 36% in 2010.

  1. Comparative life cycle assessment of biogas plant configurations for a demand oriented biogas supply for flexible power generation.

    Science.gov (United States)

    Hahn, Henning; Hartmann, Kilian; Bühle, Lutz; Wachendorf, Michael

    2015-03-01

    The environmental performance of biogas plant configurations for a demand - oriented biogas supply for flexible power generation is comparatively assessed in this study. Those configurations indicate an increased energy demand to operate the operational enhancements compared to conventional biogas plants supplying biogas for baseload power generation. However, findings show that in contrast to an alternative supply of power generators with natural gas, biogas supplied on demand by adapted biogas plant configurations saves greenhouse gas emissions by 54-65 g CO(2-eq) MJ(-1) and primary energy by about 1.17 MJ MJ(-1). In this regard, configurations with flexible biogas production profit from reduced biogas storage requirements and achieve higher savings compared to configurations with continuous biogas production. Using thicker biogas storage sheeting material reduces the methane permeability of up to 6m(3) d(-1) which equals a reduction of 8% of the configuration's total methane emissions. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Environmental life cycle assessment of a large-scale grid-connected PV power plant. Case study Moura 62 MW PV power plant

    Energy Technology Data Exchange (ETDEWEB)

    Suomalainen, Kiti

    2006-01-15

    An environmental life cycle assessment has been conducted for a 62 MW grid-connected photovoltaic installation to study the role of BOS components in the total environmental load. Also the influence of the current electricity supply has been investigated. For an alternative approach a net output approach has been used, where all electricity requirements are supplied by the photovoltaic installation itself. The components taken into account are monocrystalline silicon cells in frameless modules, steel support structures in concrete foundations, inverters, transformers, cables, transports and construction of roads and buildings. For stationary inert products without intrinsic energy requirements, such as cables, inverters, support structures etc., only raw material acquisition and processing are taken into account, since they are considered the most dominant stages in the life cycle. The results confirm a minor environmental load from BOS components compared to the module life cycle, showing approximately ten to twenty percent impact of the total. Uncertainties lie in the approximations for electronic devices as well as in the emissions from silicon processing. Concerning the electricity supply, the results differ considerably depending on which system perspective is used. In the net output approach the impacts decrease with approximately ninety percent from the traditional approach. Some increases are also shown in toxicity categories due to the increased module production needed for the enlargement of the installation.

  3. Life-cycle assessment in the renewable energy sector

    International Nuclear Information System (INIS)

    Goralczyk, M.

    2003-01-01

    The Polish energy industry is facing challenges regarding energetic safety, competitiveness, improvement of domestic companies and environmental protection. Ecological guidelines concern the elimination of detrimental solutions, and effective energy management, which will form the basis for sustainable development. The Polish power industry is required to systematically increase the share of energy taken from renewable sources in the total energy sold to customers. Besides the economic issues, particular importance is assigned to environmental factors associated with the choice of energy source. That is where life-cycle assessment (LCA) is important. The main purpose of LCA is to identify the environmental impacts of goods and services during the whole life cycle of the product or service. Therefore LCA can be applied to assess the impact on the environment of electricity generation and will allow producers to make better decisions pertaining to environmental protection. The renewable energy sources analysed in this paper include the energy from photovoltaics, wind turbines and hydroelectric power. The goal and scope of the analysis comprise the assessment of environmental impacts of production of 1 GJ of energy from the sources mentioned above. The study will cover the construction, operation and waste disposal at each power plant. Analysis will cover the impact categories, where the environmental influence is the most significant, i.e. resource depletion, global warmth potential, acidification and eutrophication. The LCA results will be shown on the basis of European and Australian research. This analysis will be extended with a comparison between environmental impacts of energy from renewable and conventional sources. This report will conclude with an analysis of possibilities of application of the existing research results and LCA rules in the Polish energy industry with a focus on Poland's future accession to the European Union. Definitions of LCA fundamental

  4. Overview of plant life extension technology development in Japan

    International Nuclear Information System (INIS)

    Takahashi, T.; Arai, H.; Akiyama, M.; Mishima, Y.; Okubo, T.

    1993-01-01

    In Japan, it is expected that the nuclear power will continue to play an important role in electric power supply. Since it is expected that the fast breeder reactor (FBR) will be introduced sometime during the first half of the 21st century, light water reactors (LWRs) will continue to play a key role some 30 to 40 years to come. For this reason, technology development projects are being implemented to further enhance light water reactor technology and thereby improve the reliability of LWRs. From this point, the Plant Life Extension (PLEX) technology development program [1-4] is entrusted by the Ministry of International Trade and Industry to the Japan Power Engineering and Inspection Corporation (JAPEIC). This program is an 11-year plan which started in 1985. The objectives are to extend the service lives of existing LWRs to increase the energy generated by these plants during their lifetime, and to reduce the lifetime generating costs. In this report, we will present our project overview and recent activities with respect to extensive verification tests on component material behavior. The JAPEIC PLEX project is divided into 3 phases. Phase I is the feasibility study. Phase 2 involves the verification tests and the evaluation of life extension technologies. The overall evaluation of the project will be conducted in Phase 3. The feasibility study of Phase I has been completed in fiscal year 1985 and 1986. In Phase I, the important components (the components and structures that are likely to govern the lives of nuclear power plants) have been selected. (author)

  5. Evaluation and measures of the life extension of TVO I and TVO II power plant

    International Nuclear Information System (INIS)

    Hakala, J.

    1994-01-01

    A continuous and wide preventive maintenance and renovation is chosen to the life extension strategy at TVO I and II units. This requires extensive concentration on all ageing phenomena on theoretical level as well as on following their development at the power plant. The work related to ageing is partly performed by persons who are responsible for systems and components in the power plant organization, partly by the working groups, which are organized for those purposes. The evaluation of the ageing phenomenon of the power plant systems, of large components and of different technical fields has revealed several needs for measures. Partly those are already performed. However the evaluation has not revealed any such ageing phenomena, which would limit the power plant life time to originally planned 40 years. (orig.)

  6. Discussion on life extension of nuclear power plant around the world

    International Nuclear Information System (INIS)

    Chen Ming; Zhang Yuansi

    2010-01-01

    The very Paper introduces the concept, basic working flow and fundamental elements of the life extension of nuclear power plant (NPP) around the world; and it generally collects and summarizes the status datum of life extension of NPPs. Afterwards, the Paper analyses the present status of life extension of NPP in various countries with strong nuclear power industry, i.e. the United States, France, Germany, Russia Federation, Japan, South Korea and Canada. At the end, the Paper make a conclusion that whether an operating NPP will adopt life extension at the end of its design life, this issue depends on the factor of economy, safety and technical feasibility of life extension on the NPP. According to latest datum collected in 2009, the nuclear power units around the world, which have exceeded the design lives or are close to design life ends, most of them (about 64%) have selected to extend their service lives; based on this statistical data, we concludes that when an operating nuclear unit is facing with the issue of to extend life or to retire itself, it will be apt to make life extension. (authors)

  7. Environmental impacts of future low-carbon electricity systems: Detailed life cycle assessment of a Danish case study

    DEFF Research Database (Denmark)

    Turconi, Roberto; Tonini, Davide; Nielsen, Christian F.B.

    2014-01-01

    by the modeling approach regarding the import of electricity, biomass provision, and the allocation between heat and power in cogeneration plants. As the importance of all three aspects is likely to increase in the future, transparency in LCA modeling is critical. Characterized impacts for Danish power plants......The need to reduce dependency on fossil resources and to decrease greenhouse gas (GHG) emissions is driving many countries towards the implementation of low-carbon electricity systems. In this study the environmental impact of a future (2030) possible low-carbon electricity system in Denmark...... was assessed and compared with the current situation (2010) and an alternative 2030 scenario using life cycle assessment (LCA). The influence on the final results of the modeling approach used for (i) electricity import, (ii) biomass resources, and (iii) the cogeneration of heat and power was discussed...

  8. A study on the environmental impact analysis with life cycle assessment of O and M in NPP

    International Nuclear Information System (INIS)

    Jeong, H. S.; Kim, S. S.; Yoon, S. W.; Yang, M. H.; Kim, H. Z.

    2002-01-01

    In the modern times, characterized by mass-consumption, technologies have to evaluated not only in terms of usefulness but also in the aspects of resources exhaustion and environmental destruction. This study quantified environmental burdens from the stage of operation and maintenance in selected nuclear power plants. Four factors are evaluated, such as green house gas, hydrosphere, atmosphere and resources exhaustion for the selected PWR and PHWR with life cycle assessment(LCA)

  9. Distance matters. Assessing socioeconomic impacts of the Dukovany nuclear power plant in the Czech Republic: Local perceptions and statistical evidence

    Directory of Open Access Journals (Sweden)

    Frantál Bohumil

    2016-03-01

    Full Text Available The effect of geographical distance on the extent of socioeconomic impacts of the Dukovany nuclear power plant in the Czech Republic is assessed by combining two different research approaches. First, we survey how people living in municipalities in the vicinity of the power plant perceive impacts on their personal quality of life. Second, we explore the effects of the power plant on regional development by analysing long-term statistical data about the unemployment rate, the share of workers in the energy sector and overall job opportunities in the respective municipalities. The results indicate that the power plant has had significant positive impacts on surrounding communities both as perceived by residents and as evidenced by the statistical data. The level of impacts is, however, significantly influenced by the spatial and social distances of communities and individuals from the power plant. The perception of positive impacts correlates with geographical proximity to the power plant, while the hypothetical distance where positive effects on the quality of life are no longer perceived was estimated at about 15 km. Positive effects are also more likely to be reported by highly educated, young and middle-aged and economically active persons, whose work is connected to the power plant.

  10. Life cycle assessment and economic analysis of a low concentrating photovoltaic system.

    Science.gov (United States)

    De Feo, G; Forni, M; Petito, F; Renno, C

    2016-10-01

    Many new photovoltaic (PV) applications, such as the concentrating PV (CPV) systems, are appearing on the market. The main characteristic of CPV systems is to concentrate sunlight on a receiver by means of optical devices and to decrease the solar cells area required. A low CPV (LCPV) system allows optimizing the PV effect with high increase of generated electric power as well as decrease of active surface area. In this paper, an economic analysis and a life cycle assessment (LCA) study of a particular LCPV scheme is presented and its environmental impacts are compared with those of a PV traditional system. The LCA study was performed with the software tool SimaPro 8.0.2, using the Econinvent 3.1 database. A functional unit of 1 kWh of electricity produced was chosen. Carbon Footprint, Ecological Footprint and ReCiPe 2008 were the methods used to assess the environmental impacts of the LCPV plant compared with a corresponding traditional system. All the methods demonstrated the environmental convenience of the LCPV system. The innovative system allowed saving 16.9% of CO2 equivalent in comparison with the traditional PV plant. The environmental impacts saving was 17% in terms of Ecological Footprint, and, finally, 15.8% with the ReCiPe method.

  11. Life cycle cost of biomass power plant: Monte Carlo simulation of investment

    Directory of Open Access Journals (Sweden)

    Odavić Petrana

    2017-01-01

    Full Text Available Assessment of life cycle cost is considered as an important instrument for designing and evaluating success of every project. The aim of this work is to determine the precise impact of the investment costs and future operating and maintenance costs of CHP biomass plant. By using the Monte Carlo simulation are determined variations in the settings and the possible impact on the investment risk. The results show that the investment is justified, thanks to the positive outcome of the net present value (NPV, internal rate of return (IRR and the payback period. The greatest impact on the variability of annual profits have operating costs, which have the highest coefficient of variation of 6.44% and the largest share. Variability of net present value of 4% is acceptable, and the investment is considered as stable.

  12. The Susquehanna plant lifetime excellence program

    International Nuclear Information System (INIS)

    McNamara, R.W.

    1988-01-01

    This paper discusses how the Susquehanna plant lifetime excellence program (SPLEX) blends many of the objectives of a new managing for excellence program with plant life extension objectives to achieve excellence in the lifetime operation and availability of the two-unit Susquehanna steam electric station. Investments in lifetime excellence improvements will provide near-term, as well as plant life extension, benefits. A high-quality lifetime experience record, together with extensive, periodic technical assessments and cost-benefit analyses, will provide conclusive justification for future extensions of the unit operating licenses

  13. 7 CFR 319.40-11 - Plant pest risk assessment standards.

    Science.gov (United States)

    2010-01-01

    ... analysis to determine the plant pest risks associated with each requested importation in order to determine... 7 Agriculture 5 2010-01-01 2010-01-01 false Plant pest risk assessment standards. 319.40-11... Unmanufactured Wood Articles § 319.40-11 Plant pest risk assessment standards. When evaluating a request to...

  14. Advanced condition monitoring techniques and plant life extension studies at EBR-2

    International Nuclear Information System (INIS)

    Singer, R.M.; Gross, K.C.; Perry, W.H.; King, R.W.

    1991-01-01

    Numerous advanced techniques have been evaluated and tested at EBR-2 as part of a plant-life extension program for detection of degradation and other abnormalities in plant systems. Two techniques have been determined to be of considerable assistance in planning for the extended-life operation of EBR-2. The first, a computer-based pattern-recognition system (System State Analyzer or SSA) is used for surveillance of the primary system instrumentation, primary sodium pumps and plant heat balances. This surveillance has indicated that the SSA can detect instrumentation degradation and system performance degradation over varying time intervals and can be used to provide derived signal values to replace signals from failed sensors. The second technique, also a computer-based pattern-recognition system (Sequential Probability Ratio Test or SPRT) is used to validate signals and to detect incipient failures in sensors and components or systems. It is being used on the failed fuel detection system and is experimentally used on the primary coolant pumps. Both techniques are described and experience with their operation presented

  15. Life cycle management of french operating nuclear power plants

    International Nuclear Information System (INIS)

    Valibus, L.; Loriette, Ph.

    1998-01-01

    The PWR units of the EDF generation capacity in operation are young. They represent a technical and financial asset with a strategic significance both for the company and for France. According to regulations, even if the safety reports take into account a 40-year lifetime for the NSSS, the French regulations do not specify a time limit for the operation of the facilities according to the plant authorization decree. The Safety Authorities may, at any time require another safety re-examination. In fact, it was decided to carry out unit safety periodic reviews according to types of series. A program was set up in order to achieve regular assessments on the aging of the facilities. This program, combining all the skills within EDF and the manufacturers, is a guarantee for the coherence and the exhaustivity of the consideration as it relies on a great number of evaluation areas. It seems to day that under operational conditions, an appropriate surveillance and maintenance of components the 900 and 1300 MWe units should be able to fulfill the expected duty for a 40-year design life and very likely even longer. (author)

  16. Modular life cycle assessment of municipal solid waste management.

    Science.gov (United States)

    Haupt, M; Kägi, T; Hellweg, S

    2018-05-31

    Life cycle assessment (LCA) is commonly applied to examine the environmental performance of waste management systems. The system boundaries are, however, often limited to either one tonne of material or to specific waste treatments and are, therefore, lacking a systems perspective. Here, a framework is proposed to assess complete waste management systems based on actual waste flows, assessed with a detailed material flow analysis (MFA) in a modular MFA/LCA approach. The transformation of the MFA into a product-process-matrix facilitates a direct link between MFA and LCA, therefore allowing for the assessment of variations in flows. To allow for an up-to-date and geographically specific assessment, 190 LCA modules were set up based on primary industrial data and the ecoinvent database. The LCA modules show where there have been improvements in different recycling processes over the past years (e.g. for paper recycling) and highlight that, from an environmental perspective, closed-loop recycling is not always preferable to open-loop recycling. In a case study, the Swiss municipal solid waste management system, of which there is already a detailed MFA, was modeled using the new LCA modules and applying the modular MFA/LCA approach. Five different mass flow distribution scenarios for the Swiss municipal solid waste management system were assessed to show the environmental impact of political measures and to test the sensitivity of the results to key parameters. The results of the case study highlight the importance of the dominant fractions in the overall environmental impacts assessment; while the metal fraction has the highest impact on a per kilogram basis, paper, cardboard, glass and mixed municipal solid waste were found to dominate the environmental impacts of the Swiss waste management system due to their mass. The scenarios also highlight the importance of the energy efficiency of municipal solid waste incineration plants and the credits from material

  17. On economic efficiency of nuclear power unit life extension using steam-gas topping plant

    International Nuclear Information System (INIS)

    Kuznetsov, Y.N.; Lisitsa, F.D.; Smirnov, V.G.

    2001-01-01

    The different options for life extension of the operating nuclear power units have been analyzed in the report with regard for their economic efficiency. A particular attention is given to the option envisaging the reduction of reactor power output and its subsequent compensation with a steam-gas topping plant. Steam generated at its heat-recovery boilers is proposed to be used for the additional loading of the nuclear plant turbine so as to reach its nominal output. It would be demonstrated that the implementation of this option allows to reduce total costs in the period of power plant life extension by 24-29% as compared with the alternative use of the replacing steam-gas unit and the saved resources could be directed, for instance, for decommissioning of a reactor facility. (authors)

  18. The life prediction study of Rokkasho reprocessing plant materials

    International Nuclear Information System (INIS)

    Kiuchi, K.; Yano, M.; Takizawa, M.; Shibata, S.

    1998-01-01

    The life prediction study of major equipment materials used in heavily corrosive nitric acid solutions of the RRP was carried out. The nitric acid recovery made of type 304ULC austenitic steel and the dissolver made of type 705 metallic zirconium are selected on the present study. This study is composed of major three programs, namely, the mock-up tests by small-sized equipments simulated to the practical design, laboratory tests for examining corrosion controlling factors by small specimens and to establish the data base system for the life prediction. Important parameters on this study was extracted with analyzing the past data of the life prediction on the Tokai reprocessing equipments. The mock-ups design was made by considering the quantitative evaluation of the most important parts on objective equipments, namely, heat conducting tubes in an acid recovery evaporator and a thermal jacket in a dissolver. From pre-examinations, the effects of radioactive species, nitric acid solution chemistry, the corrosion mechanisms were elucidated. Mock-up testing conditions corrosion monitoring methods and a data base concept for the the life prediction were selected from pre-examination data by referencing the plant operation planning. (author)

  19. Life-cycle assessment of biodiesel versus petroleum diesel fuel

    International Nuclear Information System (INIS)

    Coulon, R.; Camobreco, V.; Sheehan, J.; Duffield, J.

    1995-01-01

    The US Department of Energy's Office of Transportation Technologies, DOE's National Renewable Energy Laboratory, the US Department of Agriculture's Office of Energy, and Ecobalance are carrying out a comprehensive Life-Cycle Assessment of soy-based diesel fuel (biodiesel) to quantify the environmental aspects of the cradle-to-grave production and use of biodiesel. The purpose of the project is to produce an analytical tool and database for use by industry and government decision makers involved in alternative fuel use and production. The study also includes a parallel effort to develop a life-cycle model for petroleum diesel fuel. The two models are used to compare the life-cycle energy and environmental implications of petroleum diesel and biodiesel derived from soybean. Several scenarios are studied, analyzing the influence of transportation distances, agricultural practice and allocation rules used. The project also includes effort to integrate spatial data into the inventory analysis and probabilistic uncertainty considerations into the impact assessment stage. Traditional life-cycle inventory analysis includes an aggregation process that eliminates spatial, temporal, and threshold information. This project will demonstrate an approach to life-cycle inventory analysis that retains spatial data for use in impact assessment. Explicit probabilistic treatment of uncertainty in impact assessment will take account of scientific uncertainties, and will attempt to identify the level of spatial detail that most efficiently reduces impact assessment uncertainties

  20. Hazard Identification and Risk Assessment in Water Treatment Plant considering Environmental Health and Safety Practice

    Directory of Open Access Journals (Sweden)

    Falakh Fajrul

    2018-01-01

    Full Text Available Water Treatment Plant (WTP is an important infrastructure to ensure human health and the environment. In its development, aspects of environmental safety and health are of concern. This paper case study was conducted at the Water Treatment Plant Company in Semarang, Central Java, Indonesia. Hazard identification and risk assessment is one part of the occupational safety and health program at the risk management stage. The purpose of this study was to identify potential hazards using hazard identification methods and risk assessment methods. Risk assessment is done using criteria of severity and probability of accident. The results obtained from this risk assessment are 22 potential hazards present in the water purification process. Extreme categories that exist in the risk assessment are leakage of chlorine and industrial fires. Chlorine and fire leakage gets the highest value because its impact threatens many things, such as industrial disasters that could endanger human life and the environment. Control measures undertaken to avoid potential hazards are to apply the use of personal protective equipment, but management will also be better managed in accordance with hazard control hazards, occupational safety and health programs such as issuing work permits, emergency response training is required, Very useful in overcoming potential hazards that have been determined.

  1. Hazard Identification and Risk Assessment in Water Treatment Plant considering Environmental Health and Safety Practice

    Science.gov (United States)

    Falakh, Fajrul; Setiani, Onny

    2018-02-01

    Water Treatment Plant (WTP) is an important infrastructure to ensure human health and the environment. In its development, aspects of environmental safety and health are of concern. This paper case study was conducted at the Water Treatment Plant Company in Semarang, Central Java, Indonesia. Hazard identification and risk assessment is one part of the occupational safety and health program at the risk management stage. The purpose of this study was to identify potential hazards using hazard identification methods and risk assessment methods. Risk assessment is done using criteria of severity and probability of accident. The results obtained from this risk assessment are 22 potential hazards present in the water purification process. Extreme categories that exist in the risk assessment are leakage of chlorine and industrial fires. Chlorine and fire leakage gets the highest value because its impact threatens many things, such as industrial disasters that could endanger human life and the environment. Control measures undertaken to avoid potential hazards are to apply the use of personal protective equipment, but management will also be better managed in accordance with hazard control hazards, occupational safety and health programs such as issuing work permits, emergency response training is required, Very useful in overcoming potential hazards that have been determined.

  2. Life cycle energy use and GHG emission assessment of coal-based SNG and power cogeneration technology in China

    International Nuclear Information System (INIS)

    Li, Sheng; Gao, Lin; Jin, Hongguang

    2016-01-01

    Highlights: • Life cycle energy use and GHG emissions are assessed for SNG and power cogeneration. • A model based on a Chinese domestic database is developed for evaluation. • Cogeneration shows lower GHG emissions than coal-power pathway. • Cogeneration has lower life cycle energy use than supercritical coal-power pathway. • Cogeneration is a good option to implement China’s clean coal technologies. - Abstract: Life cycle energy use and GHG emissions are assessed for coal-based synthetic natural gas (SNG) and power cogeneration/polygenereation (PG) technology and its competitive alternatives. Four main SNG applications are considered, including electricity generation, steam production, SNG vehicle and battery electric vehicle (BEV). Analyses show that if SNG is produced from a single product plant, the lower limits of its life cycle energy use and GHG emissions can be comparable to the average levels of coal-power and coal-BEV pathways, but are still higher than supercritical and ultra supercritical (USC) coal-power and coal-BEV pathways. If SNG is coproduced from a PG plant, when it is used for power generation, steam production, and driving BEV car, the life cycle energy uses for PG based pathways are typically lower than supercritical coal-power pathways, but are still 1.6–2.4% higher than USC coal-power pathways, and the average life cycle GHG emissions are lower than those of all coal-power pathways including USC units. If SNG is used to drive vehicle car, the life cycle energy use and GHG emissions of PG-SNGV-power pathway are both much higher than all combined coal-BEV and coal-power pathways, due to much higher energy consumption in a SNG driven car than in a BEV car. The coal-based SNG and power cogeneration technology shows comparable or better energy and environmental performances when compared to other coal-based alternatives, and is a good option to implement China’s clean coal technologies.

  3. Development of assessment methodology for plant configuration control

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Chang Hyun; You, Young Woo; Kim, Yoon Ik; Yang, Hui Chang; Huh, Byeong Gill; Lee, Dong Won; Ahn, Gwan Won [Seoul National Univ., Seoul (Korea, Republic of)

    2001-03-15

    The purpose of this study IS the development of effective and overall assessment methodology which reflects the characteristics of plants for the surveillance, maintenance, repair and operation of nuclear power plants. In this study, recent researches are surveyed and concept definition, procedures, current PSA methodologies, implementation of various models are evaluated. Through this survey, systematic assessment methodology is suggested. Configuration control assessment methodology suggested in this study for the purpose of the development of configuration control methodology reflecting the characteristics of Korean NPPs, can be utilized as the supplement of current PSA methodologies.

  4. Failure analysis and success analysis: roles in plant aging assessments

    International Nuclear Information System (INIS)

    Johnson, A.B. Jr.

    1985-06-01

    Component aging investigations are an important element in NRC's Nuclear Plant Aging Research (NPAR) strategy. Potential sources of components include plants in decommissioning and commercial plant, both for in situ tests and for examination of equipment removed from service. Nuclear utilities currently have voluntary programs addressing aspects of equipment reliability, such as root cause analysis for safety-related equipment that malfunctions, and trending analysis to follow the course of both successful and abnormal equipment performance. Properly coordinated, the NPAR and utility programs offer an important approach to establish the data base necessary for life extension of nuclear electrical generating plants

  5. LIFE Cost of Electricity, Capital and Operating Costs

    International Nuclear Information System (INIS)

    Anklam, T.

    2011-01-01

    Successful commercialization of fusion energy requires economic viability as well as technical and scientific feasibility. To assess economic viability, we have conducted a pre-conceptual level evaluation of LIFE economics. Unit costs are estimated from a combination of bottom-up costs estimates, working with representative vendors, and scaled results from previous studies of fission and fusion plants. An integrated process model of a LIFE power plant was developed to integrate and optimize unit costs and calculate top level metrics such as cost of electricity and power plant capital cost. The scope of this activity was the entire power plant site. Separately, a development program to deliver the required specialized equipment has been assembled. Results show that LIFE power plant cost of electricity and plant capital cost compare favorably to estimates for new-build LWR's, coal and gas - particularly if indicative costs of carbon capture and sequestration are accounted for.

  6. Life-assessment technique for nuclear power plant cables

    International Nuclear Information System (INIS)

    Bartonicek, B.; Hnat, V.; Placek, V.

    1998-01-01

    The condition of polymer-based cable material can be best characterized by measuring elongation at break of its insulating materials. However, it is not often possible to take sufficiently large samples for measurement with the tensile testing machine. The problem has been conveniently solved by utilizing differential scanning calorimetry technique. From the tested cable, several microsamples are taken and the oxidation induction time (OIT) is determined. For each cable which is subject to the assessment of the lifetime, the correlation of OIT with elongation at break and the correlation of elongation at break with the cable service time has to be performed. A reliable assessment of the cable lifetime depends on accuracy of these correlations. Consequently, synergistic effects well known at this time - dose rate effects and effects resulting from the different sequence of applying radiation and elevated temperature must be taken into account

  7. Life cycle assessment of innovative technology for energy production from automotive shredder residue.

    Science.gov (United States)

    Rinaldi, Caterina; Masoni, Paolo; Salvati, Fabio; Tolve, Pietro

    2015-07-01

    Automotive Shredder Residue (ASR) is a problematic waste material remaining after shredding and recovery processes of end-of-life vehicles (ELVs). Its heterogeneous grain size and composition make difficult its recovery or disposal. Although ASR accounts for approximately 20% to 25% of the weight of an ELV, the European Union (EU)'s ELV Directive (2000/53/EC) requires that by 2015 a minimum 95% of the weight of an ELV must be reused or recovered, including a 10% weight energy recovery. The quantity of ASR is relevant: Approximately 2.4 million tons are generated in the EU each year and most of it is sent to landfills. This article describes a life cycle model of the "TEKNE-Fluff" process designed to make beneficial use of ASR that is based on the results of an experimental pilot plant for pyro-gasification, combustion, cogeneration, and emissions treatment of ASR. The goal of the research was the application of life cycle assessment (LCA) methodology to identify the environmental hot spots of the "TEKNE system" and use scenario analysis to check solutions to improve its environmental profile, supporting the design and industrialization process. The LCA was conducted based on data modeled from the experimental campaign. Moreover, different scenarios on shares of electricity and thermal energy produced by the cogeneration system and alternative treatment processes for the waste produced by the technology were compared. Despite the limitation of the research (results based on scaling up experimental data by modeling), impact assessment results are promising and sufficiently robust, as shown by Monte Carlo analysis. The TEKNE technology may become an interesting solution for the problem of ASR management: Besides representing an alternative to landfill disposal, the energy produced could avoid significant impacts on fossil resources depletion (a plant of 40,000 tons/y capacity could produce ∼ 147,000 GJ/yr, covering the annual need of ∼ 13,500 households). © 2015

  8. Life cycle assessment of mobile phone housing.

    Science.gov (United States)

    Yang, Jian-xin; Wang, Ru-song; Fu, Hao; Liu, Jing-ru

    2004-01-01

    The life cycle assessment of the mobile phone housing in Motorola(China) Electronics Ltd. was carried out, in which materials flows and environmental emissions based on a basic production scheme were analyzed and assessed. In the manufacturing stage, such primary processes as polycarbonate molding and surface painting are included, whereas different surface finishing technologies like normal painting, electroplate, IMD and VDM etc. were assessed. The results showed that housing decoration plays a significant role within the housing life cycle. The most significant environmental impact from housing production is the photochemical ozone formation potential. Environmental impacts of different decoration techniques varied widely, for example, the electroplating technique is more environmentally friendly than VDM. VDM consumes much more energy and raw material. In addition, the results of two alternative scenarios of dematerialization showed that material flow analysis and assessment is very important and valuable in selecting an environmentally friendly process.

  9. Russian conceptions of plant life management and decommissioning of nuclear facilities

    International Nuclear Information System (INIS)

    Bugaenko, S.E.; Butorin, S.L.

    2000-01-01

    Plant life management (PLIM) of nuclear power plant is the concept and practice to provide profitability of safe operation of nuclear electricity-generating installations. Therefore, application of the PLIM technology is a unique possibility for the nuclear power not only to preserve its presence at the generated electricity market but also to enlarge it there at the first quarter of the third millennium. PLIM is considered as the concept and procedure covering the whole life cycle of NPP, consisting of three main phases: pre-operation, operation, post-operation. When considering the list of the main standard works for PLIM, one can notice that the structure of a full volume of works can be presented as the sum of two constituents: specific for a particular power unit and universal one. A specific constituent implies realising the PLIM process at a particular power unit, and universal one implies development scientific-methodological, technological and normative basis supporting PLIM process. The concept of decommissioning NPP power units was developed and adopted in 1991, and nowadays is renewed. Its main principles and provisions correspond to a general approach to decommissioning nuclear power plants which was adopted in international practice and recommended in the IAEA documents. Elimination of NPP power unit is adopted in it as the basic option

  10. Mathematical Safety Assessment Approaches for Thermal Power Plants

    Directory of Open Access Journals (Sweden)

    Zong-Xiao Yang

    2014-01-01

    Full Text Available How to use system analysis methods to identify the hazards in the industrialized process, working environment, and production management for complex industrial processes, such as thermal power plants, is one of the challenges in the systems engineering. A mathematical system safety assessment model is proposed for thermal power plants in this paper by integrating fuzzy analytical hierarchy process, set pair analysis, and system functionality analysis. In the basis of those, the key factors influencing the thermal power plant safety are analyzed. The influence factors are determined based on fuzzy analytical hierarchy process. The connection degree among the factors is obtained by set pair analysis. The system safety preponderant function is constructed through system functionality analysis for inherence properties and nonlinear influence. The decision analysis system is developed by using active server page technology, web resource integration, and cross-platform capabilities for applications to the industrialized process. The availability of proposed safety assessment approach is verified by using an actual thermal power plant, which has improved the enforceability and predictability in enterprise safety assessment.

  11. Life Cycle Impact Assessment Research Developments and Needs

    Science.gov (United States)

    Life Cycle Impact Assessment (LCIA) developments are explained along with key publications which record discussions which comprised ISO 14042 and SETAC document development, UNEP SETAC Life Cycle Initiative research, and research from public and private research institutions. It ...

  12. Report: environmental assessment of Darmstadt (Germany) municipal waste incineration plant.

    Science.gov (United States)

    Rimaityte, Ingrida; Denafas, Gintaras; Jager, Johannes

    2007-04-01

    The focus of this study was the emissions from waste incineration plants using Darmstadt (Germany) waste incineration plant as an example. In the study the emissions generated by incineration of the waste were considered using three different approaches. Initially the emissions from the waste incineration plant were assessed as part of the impact of waste management systems on the environment by using a Municipal Solid Waste Management System (MSWMS) assessment tool (also called: LCA-IWM assessment tool). This was followed by a comparison between the optimal waste incineration process and the real situation. Finally a comparison was made between the emissions from the incineration plant and the emissions from a vehicle.

  13. Handbook for nuclear power plant self-assessment programs. Final report, July 1991

    International Nuclear Information System (INIS)

    1991-07-01

    EPRI has prepared this handbook to help utilities with their Self-Assessment Programs at nuclear power plants. Self-assessments are independent reviews performed by nuclear plant utilities to identify trends in operational activities that are important to safety, and to assess the impact of these trends on plant safety. Activities performed as self-assessments include reviews and evaluations of plant performance and abnormal events, technical evaluations of plant activities to identify potential problem areas, and reviews of other sources of plant design and operating experience for applicability to safety. This handbook is based on information obtained from utilities and includes examples of activities and methods that have proven effective. The handbook includes a summary of NRC requirements, guidelines for self-assessment program planning, descriptions and examples of investigative techniques, and key references that can be consulted for additional information. It can serve as a training guide for plant staff members who are assigned to self-assessment activities. (author)

  14. Microalgae Production from Power Plant Flue Gas: Environmental Implications on a Life Cycle Basis

    Energy Technology Data Exchange (ETDEWEB)

    Kadam, K. L.

    2001-06-22

    Power-plant flue gas can serve as a source of CO{sub 2} for microalgae cultivation, and the algae can be cofired with coal. This life cycle assessment (LCA) compared the environmental impacts of electricity production via coal firing versus coal/algae cofiring. The LCA results demonstrated lower net values for the algae cofiring scenario for the following using the direct injection process (in which the flue gas is directly transported to the algae ponds): SOx, NOx, particulates, carbon dioxide, methane, and fossil energy consumption. Carbon monoxide, hydrocarbons emissions were statistically unchanged. Lower values for the algae cofiring scenario, when compared to the burning scenario, were observed for greenhouse potential and air acidification potential. However, impact assessment for depletion of natural resources and eutrophication potential showed much higher values. This LCA gives us an overall picture of impacts across different environmental boundaries, and hence, can help in the decision-making process for implementation of the algae scenario.

  15. Social Life Cycle Assessment Revisited

    Directory of Open Access Journals (Sweden)

    Ruqun Wu

    2014-07-01

    Full Text Available To promote the development of Social Life Cycle Assessment (SLCA, we conducted a comprehensive review of recently developed frameworks, methods, and characterization models for impact assessment for future method developers and SLCA practitioners. Two previous reviews served as our foundations for this review. We updated the review by including a comprehensive list of recently-developed SLCA frameworks, methods and characterization models. While a brief discussion from goal, data, and indicator perspectives is provided in Sections 2 to 4 for different frameworks/methods, the focus of this review is Section 5 where discussion on characterization models for impact assessment of different methods is provided. The characterization models are categorized into two types following the UNEP/SETAC guidelines: type I models without impact pathways and type II models with impact pathways. Different from methods incorporating type I/II characterization models, another LCA modeling approach, Life Cycle Attribute Assessment (LCAA, is also discussed in this review. We concluded that methods incorporating either type I or type II models have limitations. For type I models, the challenge lies in the systematic identification of relevant stakeholders and materiality issues; while for type II models, identification of impact pathways that most closely and accurately represent the real-world causal relationships is the key. LCAA may avoid these problems, but the ultimate questions differ from those asked by the methods using type I and II models.

  16. Production of engineered long-life and male sterile Pelargonium plants

    Directory of Open Access Journals (Sweden)

    García-Sogo Begoña

    2012-08-01

    Full Text Available Abstract Background Pelargonium is one of the most popular garden plants in the world. Moreover, it has a considerable economic importance in the ornamental plant market. Conventional cross-breeding strategies have generated a range of cultivars with excellent traits. However, gene transfer via Agrobacterium tumefaciens could be a helpful tool to further improve Pelargonium by enabling the introduction of new genes/traits. We report a simple and reliable protocol for the genetic transformation of Pelargonium spp. and the production of engineered long-life and male sterile Pelargonium zonale plants, using the pSAG12::ipt and PsEND1::barnase chimaeric genes respectively. Results The pSAG12::ipt transgenic plants showed delayed leaf senescence, increased branching and reduced internodal length, as compared to control plants. Leaves and flowers of the pSAG12::ipt plants were reduced in size and displayed a more intense coloration. In the transgenic lines carrying the PsEND1::barnase construct no pollen grains were observed in the modified anther structures, which developed instead of normal anthers. The locules of sterile anthers collapsed 3–4 days prior to floral anthesis and, in most cases, the undeveloped anther tissues underwent necrosis. Conclusion The chimaeric construct pSAG12::ipt can be useful in Pelargonium spp. to delay the senescence process and to modify plant architecture. In addition, the use of engineered male sterile plants would be especially useful to produce environmentally friendly transgenic plants carrying new traits by preventing gene flow between the genetically modified ornamentals and related plant species. These characteristics could be of interest, from a commercial point of view, both for pelargonium producers and consumers.

  17. Life-cycle assessment of Nebraska bridges.

    Science.gov (United States)

    2013-05-01

    Life-cycle cost analysis (LCCA) is a necessary component in bridge management systems (BMSs) for : assessing investment decisions and identifying the most cost-effective improvement alternatives. The : LCCA helps to identify the lowest cost alternati...

  18. Risk assessment approach for Rokkasho reprocessing plant

    International Nuclear Information System (INIS)

    Ootou, Y.; Tamauchi, Y.; Hayashi, Y.; Takebe, K.; Miyata, T.

    2006-01-01

    Full text: It is desirable that the operation and maintenance of Rokkasho Reprocessing Plant (RRP) be established and conducted with maximum effectiveness and efficiency, making the best use of risk information to help the plant achieve further enhanced safety. Risk assessment is applied for RRP, and upgraded risk information is established. In the basic design phase, the potential incidents and accidents that might occur in the plant were identified systematically and exhaustively adopting the HAZOP method. After screening the potential for occurrence, the design basis accidents (DBAs) were identified and it was confirmed that the plant would not put the general public at risk of significant radiation exposure in the case of such accidents, even when assuming the single failure of dynamic apparatus in the prevention and mitigation systems. To support the deterministic safety assessment mentioned above, the risk assessment was conducted during the basic design phase. Of the DBAs and out-of-design basis accidents excluded from DBAs because of extremely rare occurrence possibilities, the risk assessment was conducted for such accidents which might cause relatively high consequence for the general public. The risk assessment was conducted using the PSA method generally used for nuclear power plants. After that, a review of the occurrence frequency assessment for some of the accidents was made, taking into account information relating to detailed design and operation procedures. Typical examples are a loss of the hydrogen scavenging function in the plutonium solution tank and a loss of cooling capability in the high-active liquid waste storage tank. The occurrence frequency for a loss of the hydrogen scavenging function was less than 10 -5 /year. The occurrence frequency for a loss of cooling capability was less than 10 -7 /year. In addition, an importance assessment (FV index, Risk Achievement Worth) was conducted, such as a contribution to the occurrence frequency

  19. Design and fabrication of stainless steel components for long life of spent fuel reprocessing plants

    International Nuclear Information System (INIS)

    Natarajan, R.; Ramkumar, P.; Sundararaman, V.; Kamachi Mudali, U.; Baldev Raj; Shanmugam, K.

    2010-01-01

    Reprocessing of spent nuclear fuels based on the PUREX process is the proven process with many commercial plants operating satisfactorily worldwide. The process medium being nitric acid, austenitic stainless steel is the material of construction as it is the best commercially available material for meeting the conditions in the reprocessing plants. Because of the high radiation fields, contact maintenance of equipment and systems of these plants are very time consuming and costly unlike other chemical process plants. Though the plants constructed in the early years required extensive shut downs for replacement of equipment and systems within the first fifteen years of operation itself, development in the field of stainless steel metallurgy and fabrication techniques have made it possible to design the present day plants for an operating life period of forty years. A review of the operational experience of the PUREX process based aqueous reprocessing plants has been made in this paper and reveals that life limiting failures of equipment and systems are mainly due to corrosion while a few are due to stresses. Presently there are no standards for design specification of materials and fabrication of reprocessing plants like the nuclear power plants, where well laid down ASTM and ASME codes and standards are available which are based on the large scale operational feedbacks on pressure vessels for conventional and nuclear industries. (author)

  20. [Development of "assessment guideline of family power for healthy life"].

    Science.gov (United States)

    Fukushima, M; Shimanouchi, S; Kamei, T; Takagai, E; Hoshino, Y; Sugiyama, I

    1997-12-01

    The purpose of this study is to develop "assessment guideline of family power for healthy life" aiming at expanding self-care power of family in community nursing practice. The subjects of this study covered those families in one hundred and fifty six instances that we had seized as subject for nursing care and study. The method of this study had constructed assessment guideline inductively out of each case, and modified it by applying to cases of families with health problems and others. As a result, we had formed nine items of "family power for healthy life" and three items of "conditions influencing family power for healthy life" for "assessment guideline of family power for healthy life".

  1. Assessing soil and plant parameters affecting uranium availability and plant uptake

    International Nuclear Information System (INIS)

    Vandenhove, H.

    2009-01-01

    In the assessment of the potential impact of contaminants in soils and the requirement for the implementation of corrective actions, it is important to determine the contaminant's mobility and bioavailability and to identify the processes and parameters ruling it. Mobility and bioavailability of contaminants are among others affected by the physicochemical characteristics of the environment itself and plant properties. This is also the case for uranium (U), reported to be the most frequent radionuclide contaminant in ground and surface water and soils. The actual failure of the available transfer factor (TF) data and their broad relation to soil type to be an appropriate measure for food chain transfer in assessment models, calls for a more mechanistic understanding of the individual processes affecting bioavailability. The objectives of this study were (1) to test if Diffusive Gradient in Thin film (DGT) measured concentrations adequately assess U bioavailability and (2) to evaluate if differences in U uptake by plants can be explained by variation in root-mediated changes in selected soil properties and assess the role of organic acids in this process

  2. Development of assessment methodology for plant configuration control

    Energy Technology Data Exchange (ETDEWEB)

    Cheong, Chang Hyeon; Yu, Yeong Woo; Cho, Jae Seon; Kim, Ju Yeol; Kim, Yun Ik; Yang, Hui Chang; Park, Gang Min; Hur, Byeong Gil [Seoul National Univ., Seoul (Korea, Republic of)

    1999-03-15

    The purpose of this study is the development of effective and overall assessment methodology which reflects the characteristics of plants for the surveillance, maintenance, repair and operation of Nuclear Power Plant. The development of this methodology can contribute to enhance safety. In the first year of this study, recent researches are surveyed and concept definition, procedures, current PSA methodologies, implementation of various models are evaluated. Through this survey, systematic assessment methodology is suggested.

  3. Life cycle assessment of a wind farm and related externalities

    DEFF Research Database (Denmark)

    Schleisner, Liselotte

    2000-01-01

    This paper concentrates on the assessment of energy and emissions related to the production and manufacture of materials for an offshore wind farm as well as a wind farm on land based on a life cycle analysis (LCA) model. In Denmark a model has been developed for life cycle assessments of different...... materials. The model is able to assess the energy use related to the production, transportation and manufacture of 1 kg of material. The energy use is divided into fuels used in order to estimate the emissions through the life cycle. In the paper the model and the attached assumptions are described......, and the model is demonstrated for two wind farms. The externalities for the wind farms are reported, showing the importance of life cycle assessment for renewable energy technologies. (C) 2000 Elsevier Science Ltd. All rights reserved....

  4. Assessment of EPRI water chemistry guidelines for new nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Kim, K.; Fruzzetti, K.; Garcia, S. [Electric Power Research Inst., Palo Alto, California (United States); Eaker, R. [Richard W. Eaker, LLC, Matthews, North Carolina (United States); Giannelli, J.; Tangen, J. [Finetech, Inc., Parsippany, New Jersey (United States); Gorman, J.; Marks, C. [Dominion Engineering, Inc., Reston, Virginia (United States); Sawochka, S. [NWT Corp., San Jose, California (United States)

    2010-07-01

    Water chemistry control technologies for nuclear power plants have been significantly enhanced over the past few decades to improve material and equipment reliability and fuel performance, and to minimize radionuclide production and transport. Chemistry Guidelines have been developed by the Electric Power Research Institute (EPRI) for current operating plants and have been intermittently revised over the past twenty-five years for the protection of systems and components and for radiation management. As new plants are being designed for improved safety and increased power production, it is important to ensure that the designs consider implementation of industry approved water chemistry controls. In parallel, the industry will need to consider and develop updated water chemistry guidelines as well as plant startup and operational strategies based on the advanced plant designs. In 2010, EPRI began to assess chemistry control strategies at advanced plants, based on the Design Control Documents (DCDs), Combined Construction and Operating License Applications (COLA), and operating experiences (where they exist) against current Water Chemistry Guidelines. Based on this assessment, differences between planned chemistry operations at new plants and the current Guidelines will be identified. This assessment will form the basis of future activities to address these differences. The project will also assess and provide, as feasible, water chemistry guidance for startup and hot functional testing of the new plants. EPRI will initially assess the GE-Hitachi/Toshiba ABWR and the Westinghouse AP1000 designs. EPRI subsequently plans to assess other plant designs such as the AREVA U.S. EPR, Mitsubishi Heavy Industries (MHI) U.S. APWR, and GE-Hitachi (GE-H) ESBWR. This paper discusses the 2010 assessments of the ABWR and AP1000. (author)

  5. Assessment of EPRI water chemistry guidelines for new nuclear power plants

    International Nuclear Information System (INIS)

    Kim, K.; Fruzzetti, K.; Garcia, S.; Eaker, R.; Giannelli, J.; Tangen, J.; Gorman, J.; Marks, C.; Sawochka, S.

    2010-01-01

    Water chemistry control technologies for nuclear power plants have been significantly enhanced over the past few decades to improve material and equipment reliability and fuel performance, and to minimize radionuclide production and transport. Chemistry Guidelines have been developed by the Electric Power Research Institute (EPRI) for current operating plants and have been intermittently revised over the past twenty-five years for the protection of systems and components and for radiation management. As new plants are being designed for improved safety and increased power production, it is important to ensure that the designs consider implementation of industry approved water chemistry controls. In parallel, the industry will need to consider and develop updated water chemistry guidelines as well as plant startup and operational strategies based on the advanced plant designs. In 2010, EPRI began to assess chemistry control strategies at advanced plants, based on the Design Control Documents (DCDs), Combined Construction and Operating License Applications (COLA), and operating experiences (where they exist) against current Water Chemistry Guidelines. Based on this assessment, differences between planned chemistry operations at new plants and the current Guidelines will be identified. This assessment will form the basis of future activities to address these differences. The project will also assess and provide, as feasible, water chemistry guidance for startup and hot functional testing of the new plants. EPRI will initially assess the GE-Hitachi/Toshiba ABWR and the Westinghouse AP1000 designs. EPRI subsequently plans to assess other plant designs such as the AREVA U.S. EPR, Mitsubishi Heavy Industries (MHI) U.S. APWR, and GE-Hitachi (GE-H) ESBWR. This paper discusses the 2010 assessments of the ABWR and AP1000. (author)

  6. Techno-Economics & Life Cycle Assessment (Presentation)

    Energy Technology Data Exchange (ETDEWEB)

    Dutta, A.; Davis, R.

    2011-12-01

    This presentation provides an overview of the techno-economic analysis (TEA) and life cycle assessment (LCA) capabilities at the National Renewable Energy Laboratory (NREL) and describes the value of working with NREL on TEA and LCA.

  7. Implementing Life Cycle Assessment in systems development

    DEFF Research Database (Denmark)

    Bhander, Gurbakhash Singh; Hauschild, Michael Zwicky; McAloone, Timothy Charles

    2003-01-01

    and the rapid changes in markets for many products. The overall aim of the paper is to provide an understanding of the environmental issues involved in the early stages of product development and the capacity of life cycle assessment techniques to address these issues. The paper aims to outline the problems...... for the designer in evaluating the environmental benignity of the product from the outset and to provide the designer with a framework for decision support based on the performance evaluation at different stages of the design process. The overall aim of this paper is to produce an in-depth understanding...... of possibilities which can be introduced in the design stage compared to the other life cycle stages of the product system. The paper collects experiences and ideas around the state-of-the-art in eco-design, from literature and personal experience and further provides eco-design life cycle assessment strategies...

  8. The factor of time in the life cycle assessment of housing

    NARCIS (Netherlands)

    Klunder, G.; van Nunen, H.

    2003-01-01

    Conducting life cycle assessments, or LCAs, involves many uncertainties, including those related to the factor of time. Time is very important in the environmental assessment of housing, because of the relatively long service life of houses. During a house's service life many changes occur, which

  9. A comprehensive plant-wide assessment of Amcor PET Packaging at Fairfield, California

    Energy Technology Data Exchange (ETDEWEB)

    Kevin Losh; Hui Choi; Yin Yin Wu; Bryan W. Hackett; Ahmad R. Ganji

    2008-02-29

    This report includes the results of the plant-wide assessment of AMCOR PET plants in Fairfield, City of Commerce, and Lathrop California. The project (except the assessment of Lathrop plant) was a cost shared effort between US Department of Energy through Golden Field Office, Golden CO and AMCOR PET Packaging Co. The DOE share of the plant-wide assessment cost was awarded to AMCOR PET in response to the RFP DE-PS36-05GO95009, the 2005 round of funding for “Plant-Wide Energy Efficiency Opportunity Assessments.” The plant-wide assessment included the processes, electrical and gas equipment. Current production practices have been evaluated against best practice standards, as well as utilization of modern technology to improve energy efficiency, reduce the wastes, and improve productivity.

  10. Waste-to-energy: A review of life cycle assessment and its extension methods.

    Science.gov (United States)

    Zhou, Zhaozhi; Tang, Yuanjun; Chi, Yong; Ni, Mingjiang; Buekens, Alfons

    2018-01-01

    This article proposes a comprehensive review of evaluation tools based on life cycle thinking, as applied to waste-to-energy. Habitually, life cycle assessment is adopted to assess environmental burdens associated with waste-to-energy initiatives. Based on this framework, several extension methods have been developed to focus on specific aspects: Exergetic life cycle assessment for reducing resource depletion, life cycle costing for evaluating its economic burden, and social life cycle assessment for recording its social impacts. Additionally, the environment-energy-economy model integrates both life cycle assessment and life cycle costing methods and judges simultaneously these three features for sustainable waste-to-energy conversion. Life cycle assessment is sufficiently developed on waste-to-energy with concrete data inventory and sensitivity analysis, although the data and model uncertainty are unavoidable. Compared with life cycle assessment, only a few evaluations are conducted to waste-to-energy techniques by using extension methods and its methodology and application need to be further developed. Finally, this article succinctly summarises some recommendations for further research.

  11. How much life is left in your olefin unit

    International Nuclear Information System (INIS)

    Baas, J.; Warner, R.

    1992-01-01

    Highly attractive economics in the olefin industry has justified increasing capacity via plant expansion and using aging olefin units beyond expected limitations. If these existing units are to operate well beyond their design life, what type of analysis and information is necessary to make this decision? What technologies or methods should be used for continued safe and controlled operation of these not so new units. This paper reports that the plant's mechanical integrity is the focal point of this analysis and decision-making method. Plant life expectancy study (PLES) looks at an operating plant's mechanical integrity from several vantage points. Four basic principles, such as plant history, process upsets and operating records, assessment of plant fires, and how to conduct records, assessment of plant fires, and how to conduct inspection and testing, provide the basis of how well a plant has been operated and maintained. Furthermore, the analysis includes a critical component inventory. These items address additional potential-failure causes, such as creep, fatigue, toughness, corrosion, erosion and carburization/oxidation

  12. Conceptual Framework To Extend Life Cycle Assessment ...

    Science.gov (United States)

    Life Cycle Assessment (LCA) is a decision-making tool that accounts for multiple impacts across the life cycle of a product or service. This paper presents a conceptual framework to integrate human health impact assessment with risk screening approaches to extend LCA to include near-field chemical sources (e.g., those originating from consumer products and building materials) that have traditionally been excluded from LCA. A new generation of rapid human exposure modeling and high-throughput toxicity testing is transforming chemical risk prioritization and provides an opportunity for integration of screening-level risk assessment (RA) with LCA. The combined LCA and RA approach considers environmental impacts of products alongside risks to human health, which is consistent with regulatory frameworks addressing RA within a sustainability mindset. A case study is presented to juxtapose LCA and risk screening approaches for a chemical used in a consumer product. The case study demonstrates how these new risk screening tools can be used to inform toxicity impact estimates in LCA and highlights needs for future research. The framework provides a basis for developing tools and methods to support decision making on the use of chemicals in products. This paper presents a conceptual framework for including near-field exposures into Life Cycle Assessment using advanced human exposure modeling and high-throughput tools

  13. Multi-modal sensor system for plant water stress assessment

    Science.gov (United States)

    Plant stress critically affects plant growth and causes significant loss of productivity and quality. When the plant is under water stress, it impedes photosynthesis and transpiration, resulting in changes in leaf color and temperature. Leaf discoloration in photosynthesis can be assessed by measu...

  14. Plants with stacked genetically modified events: to assess or not to assess?

    Science.gov (United States)

    Kok, Esther J; Pedersen, Jan; Onori, Roberta; Sowa, Slawomir; Schauzu, Marianna; De Schrijver, Adinda; Teeri, Teemu H

    2014-02-01

    The principles for the safety assessment of genetically modified (GM) organisms (GMOs) are harmonised worldwide to a large extent. There are, however, still differences between the European GMO regulations and the GMO regulations as they have been formulated in other parts of the world. One of these differences relates to the so-called 'stacked GM events', that is, GMOs, plants so far, where new traits are combined by conventional crossing of different GM plants. This paper advocates rethinking the current food/feed safety assessment of stacked GM events in Europe based on an analysis of different aspects that currently form the rationale for the safety assessment of stacked GM events. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. Estimating pesticide emissions for life cycle assessment of agricultural products

    DEFF Research Database (Denmark)

    Hauschild, Michael Zwicky; Røpke, Inge

    2004-01-01

    As the first country in Europe Denmark almost 2 years ago established an official center for Life Cycle Assessments and life cycle approaches as an element of the national IPP (Integrated Product Policy). The Danish EPA lends financial support to this important initiative, the aim of which is to: 1....... promote the use of Life Cycle Assessment and other product-oriented environmental tools in companies, 2. support companies and other in using environmental assessment of products and services, 3. ensure that the effort in the LCA area is based on a solid and scientific basis, and 4. maintain the well...... evaluation finished in September 2004. Important learnings for all who are engaged in dissemination of life cycle thinking in industry will be presented....

  16. Implementing Life Cycle Assessment in Product development

    DEFF Research Database (Denmark)

    Bhander, Gurbakhash Singh

    2003-01-01

    The overall aim of the paper is to provide an understanding of the environmental issues involved in the early stages of product development and the capacity of life cycle assessment techniques to address these issues. The paper aims to outline the problems for the designer in evaluating the envir......The overall aim of the paper is to provide an understanding of the environmental issues involved in the early stages of product development and the capacity of life cycle assessment techniques to address these issues. The paper aims to outline the problems for the designer in evaluating......, and of the opportunities for introducing environmental criteria in the design process through meeting the information requirements of the designer on the different life cycle stages, producing an in-depth understanding of the attitudes of practitioners among product developers to the subject area, and an understanding...... of possible future directions for product development. An Environmentally Conscious Design method is introduced and trade-offs are presented between design degrees of freedom and environmental solutions. Life cycle design frameworks and strategies are addressed. The paper collects experiences and ideas around...

  17. Experiences with the technical cooperation project TC MEX 04/53. Evaluation of the integrity and extension of life of the Laguna Verde nuclear power plant. Management program of the plant life (PLIM)

    International Nuclear Information System (INIS)

    Arganis J, C.R.; Aguilar T, J.A.; Guevara M, A.; Garcia M, C.; Martinez G, R.R.; Griz C, M.M.; Sanchez M, M.A.; Diaz O, R.C.

    2006-01-01

    In the biennium 2005-2006 the project of technical cooperation with the International Atomic Energy Agency OIEA TC MEX 04/53 'Evaluation of the integrity and extension of life of the Laguna Verde nuclear power plant Plant life handling program (PLIM)' was approved, which has as objective the one to begin the actions to apply the methodology of Handling of life of Plant (PLIM) in the Unit I (Ul) of the Laguna Verde Nucleo electric Central (CNLV), in order to obtain the Renovation of License (LR), in a long term (2020). To apply this methodology 5 systems they were selected, structures or components (SEC) to carry out the handling programs of the one aging (AMP), and PLIM which are: The encircling of the reactor core (Core Shroud), the pressure vessel of the reactor (Reactor Pressure Vessel), the one primary container (Primary Containment), the system of feeding water (Reactor Feed Water) and cables, which were not in this work to be of another nature. The report presents the more important aspects considered in these systems for their programs of AMP and PLIM, as like a revision of those selection processes and evaluation (screening and scoping) for the application of PLIM in the systems of the Ul of the CNLV. (Author)

  18. Towards a life cycle sustainability assessment: making informed choices on products

    Energy Technology Data Exchange (ETDEWEB)

    Ciroth, Andreas [GreenDeltaTC, Berlin (Germany); Finkbeiner, Matthias; Traverso, Marzia [TU Berlin (Germany); Hildenbrand, Jutta [Chalmers University (United States); Kloepffer, Walter [Editor-in-Chief of the International Journal of Life Cycle Assessment (Germany); Mazijn, Bernard [Ghent University (Belgium); Prakash, Siddharth [Oeko-Institut (Germany); Sonnemann, Guido; Valdivia, Sonia [UNEP (France); Ugaya, Cassia Maria Lie [Technological Federal University of Parana, ACV (Brazil); Vickery-Niederman, Gina [University of Arkansas (United States)

    2011-07-01

    In this introduction to the concept of life cycle sustainability assessment (LCSA), we acknowledge the foundations laid by previous works and initiatives. One such initiative has been the ISO 14040 series (Environmental management -- Life cycle assessment -- Principles and framework), which in addition to the ISO 26000: Social Responsibility Guidance Standard, and the contribution of a number of international initiatives (Appendix A) have been essential for the development of this publication. The life cycle of a product involves flows of material, energy and money. Nonetheless, the picture is not complete unless we look also at the production and consumption impacts on all actors along the 'value chain' -- workers, local communities, consumers and society itself. Different life cycle assessment techniques allow individuals and enterprises to assess the impact of their purchasing decisions and production methods along different aspects of this value chain. An (Environmental) life cycle assessment (LCA) looks at potential impacts to the environment as a result of the extraction of resources, transportation, production, use, recycling and discarding of products; life cycle costing (LCC) is used to assess the cost implications of this life cycle; and social life cycle assessment (S-LCA) examines the social consequences. However, in order to get the 'whole picture', it is vital to extend current life cycle thinking to encompass all three pillars of sustainability: (i) environmental, (ii) economic and (iii) social. This means carrying out an assessment based on environmental, economic and social issues -- by conducting an overarching life cycle sustainability assessment (LCSA). This publication shows how all three techniques -- which all share similar methodological frameworks and aims -- can be combined to make the move towards an overarching LCSA possible. Because it is holistic, systemic and rigorous, (environmental) LCA is the preferred technique

  19. Towards a life cycle sustainability assessment: making informed choices on products

    Energy Technology Data Exchange (ETDEWEB)

    Ciroth, Andreas [GreenDeltaTC, Berlin (Germany); Finkbeiner, Matthias; Traverso, Marzia [TU Berlin (Germany); Hildenbrand, Jutta [Chalmers University (United States); Kloepffer, Walter [Editor-in-Chief of the International Journal of Life Cycle Assessment (Germany); Mazijn, Bernard [Ghent University (Belgium); Prakash, Siddharth [Oeko-Institut (Germany); Sonnemann, Guido; Valdivia, Sonia [UNEP (France); Ugaya, Cassia Maria Lie [Technological Federal University of Parana, ACV (Brazil); Vickery-Niederman, Gina [University of Arkansas (United States)

    2011-07-01

    In this introduction to the concept of life cycle sustainability assessment (LCSA), we acknowledge the foundations laid by previous works and initiatives. One such initiative has been the ISO 14040 series (Environmental management -- Life cycle assessment -- Principles and framework), which in addition to the ISO 26000: Social Responsibility Guidance Standard, and the contribution of a number of international initiatives (Appendix A) have been essential for the development of this publication. The life cycle of a product involves flows of material, energy and money. Nonetheless, the picture is not complete unless we look also at the production and consumption impacts on all actors along the 'value chain' -- workers, local communities, consumers and society itself. Different life cycle assessment techniques allow individuals and enterprises to assess the impact of their purchasing decisions and production methods along different aspects of this value chain. An (Environmental) life cycle assessment (LCA) looks at potential impacts to the environment as a result of the extraction of resources, transportation, production, use, recycling and discarding of products; life cycle costing (LCC) is used to assess the cost implications of this life cycle; and social life cycle assessment (S-LCA) examines the social consequences. However, in order to get the 'whole picture', it is vital to extend current life cycle thinking to encompass all three pillars of sustainability: (i) environmental, (ii) economic and (iii) social. This means carrying out an assessment based on environmental, economic and social issues -- by conducting an overarching life cycle sustainability assessment (LCSA). This publication shows how all three techniques -- which all share similar methodological frameworks and aims -- can be combined to make the move towards an overarching LCSA possible. Because it is holistic, systemic and rigorous, (environmental) LCA is the preferred technique when it comes to

  20. Life cycle reliability assessment of new products—A Bayesian model updating approach

    International Nuclear Information System (INIS)

    Peng, Weiwen; Huang, Hong-Zhong; Li, Yanfeng; Zuo, Ming J.; Xie, Min

    2013-01-01

    The rapidly increasing pace and continuously evolving reliability requirements of new products have made life cycle reliability assessment of new products an imperative yet difficult work. While much work has been done to separately estimate reliability of new products in specific stages, a gap exists in carrying out life cycle reliability assessment throughout all life cycle stages. We present a Bayesian model updating approach (BMUA) for life cycle reliability assessment of new products. Novel features of this approach are the development of Bayesian information toolkits by separately including “reliability improvement factor” and “information fusion factor”, which allow the integration of subjective information in a specific life cycle stage and the transition of integrated information between adjacent life cycle stages. They lead to the unique characteristics of the BMUA in which information generated throughout life cycle stages are integrated coherently. To illustrate the approach, an application to the life cycle reliability assessment of a newly developed Gantry Machining Center is shown

  1. Life cycle assessment of village electrification based on straight jatropha oil in Chhattisgarh, India

    Energy Technology Data Exchange (ETDEWEB)

    Gmuender, Simon Michael; Zah, Rainer; Widmer, Rolf [Technology and Society Lab, Swiss Federal Laboratories for Materials Testing and Research (EMPA), Ueberlandstr. 129, 8600 Duebendorf (Switzerland); Bhatacharjee, Somnath [Winrock India International, New Delhi (India); Classen, Mischa [First Climate AG, Zuerich (Switzerland); Mukherjee, Prodyut [Sir Dorabji Tata Trust and Allied Trusts, New Delhi (India)

    2010-03-15

    A decentralized power generation plant fuelled by straight jatropha oil was implemented in 2006 in Ranidhera, Chhattisgarh, India. The goal of this study was to assess the environmental sustainability of that electrification project in order to provide a scientific basis for policy decisions on electrifying remote villages. A full Life Cycle Assessment (LCA) was conducted on jatropha-based rural electrification and then compared with other electrification approaches such as photovoltaic (PV), grid connection and a diesel-fuelled power generator. In summary, the jatropha-based electrification in Ranidhera reduces greenhouse gas emissions over the full life cycle by a factor of 7 compared to a diesel generator or grid connection. The environmental performance is only slightly improved, mainly due to the high air pollution from pre-heating the jatropha seeds. With additional measures oil extraction and overall efficiency could be further improved. However, environmental benefits can only be achieved if jatropha is cultivated on marginal land and land use competition can be excluded. Under these conditions, jatropha-based electricity generation might be a useful alternative to other renewable electrification options, as the technology is very sturdy and can be maintained even in remote and highly under-developed regions. (author)

  2. Safety assessment and verification for nuclear power plants. Safety guide

    International Nuclear Information System (INIS)

    2001-01-01

    This publication supports the Safety Requirements on the Safety of Nuclear Power Plants: Design. This Safety Guide was prepared on the basis of a systematic review of all the relevant publications including the Safety Fundamentals, Safety of Nuclear Power Plants: Design, current and ongoing revisions of other Safety Guides, INSAG reports and other publications that have addressed the safety of nuclear power plants. This Safety Guide also provides guidance for Contracting Parties to the Convention on Nuclear Safety in meeting their obligations under Article 14 on Assessment and Verification of Safety. The Safety Requirements publication entitled Safety of Nuclear Power Plants: Design states that a comprehensive safety assessment and an independent verification of the safety assessment shall be carried out before the design is submitted to the regulatory body. This publication provides guidance on how this requirement should be met. This Safety Guide provides recommendations to designers for carrying out a safety assessment during the initial design process and design modifications, as well as to the operating organization in carrying out independent verification of the safety assessment of new nuclear power plants with a new or already existing design. The recommendations for performing a safety assessment are suitable also as guidance for the safety review of an existing plant. The objective of reviewing existing plants against current standards and practices is to determine whether there are any deviations which would have an impact on plant safety. The methods and the recommendations of this Safety Guide can also be used by regulatory bodies for the conduct of the regulatory review and assessment. Although most recommendations of this Safety Guide are general and applicable to all types of nuclear reactors, some specific recommendations and examples apply mostly to water cooled reactors. Terms such as 'safety assessment', 'safety analysis' and 'independent

  3. Combined cycle power plants: A comparison between two different dynamic models to evaluate transient behaviour and residual life

    International Nuclear Information System (INIS)

    Benato, Alberto; Stoppato, Anna; Bracco, Stefano

    2014-01-01

    Highlights: • Two procedures aimed at simulating the dynamic behaviour of power plants are compared. • They both are aimed at predicting the residual life of plant devices. • A single pressure gas-steam combined plant has been modelled. • A good correspondence has been found despite the different approaches used. - Abstract: The deregulated energy market and the increasing quota of electrical capacity covered by non-predictable renewable sources require strongly irregular and discontinuous operation of thermoelectric plants to satisfy users demand and compensate the variability of renewable sources. As a consequence, due to thermo-mechanical fatigue, creep and corrosion, a lifetime reduction of the most critical components occurs. The availability of a procedure able to predict the residual life of plant devices is necessary to assist the management decisions about power plants’ operation and maintenance scheduling. The first step of this procedure is the capability of simulating the plant behaviour versus time by evaluating the trends of the main thermodynamic parameters that describe the plant operation during different transient periods. In this context, the main contribution of the present paper is to propose a complete procedure able to simulate the plant dynamic behaviour and estimate the residual life reduction of some components. Indeed, two different models, developed by two different research groups, of the same single pressure heat recovery steam generator unit are presented and utilized to characterize the dynamic behaviour of the above mentioned power plant. The main thermodynamic variables during different transient operation conditions are predicted and good correspondence between the two methods is obtained. It can be also noted that, when the geometry and size of the devices are considered, the thermal inertia related to heat exchangers tubes, pipes and other physical masses causes a delay in the system response. Moreover, a residual life

  4. Microgravity effects on different stages of higher plant life cycle and completion of the seed-to-seed cycle.

    Science.gov (United States)

    De Micco, V; De Pascale, S; Paradiso, R; Aronne, G

    2014-01-01

    Human inhabitation of Space requires the efficient realisation of crop cultivation in bioregenerative life-support systems (BLSS). It is well known that plants can grow under Space conditions; however, perturbations of many biological phenomena have been highlighted due to the effect of altered gravity and its possible interactions with other factors. The mechanisms priming plant responses to Space factors, as well as the consequences of such alterations on crop productivity, have not been completely elucidated. These perturbations can occur at different stages of plant life and are potentially responsible for failure of the completion of the seed-to-seed cycle. After brief consideration of the main constraints found in the most recent experiments aiming to produce seeds in Space, we focus on two developmental phases in which the plant life cycle can be interrupted more easily than in others also on Earth. The first regards seedling development and establishment; we discuss reasons for slow development at the seedling stage that often occurs under microgravity conditions and can reduce successful establishment. The second stage comprises gametogenesis and pollination; we focus on male gamete formation, also identifying potential constraints to subsequent fertilisation. We finally highlight how similar alterations at cytological level can not only be common to different processes occurring at different life stages, but can be primed by different stress factors; such alterations can be interpreted within the model of 'stress-induced morphogenic response' (SIMR). We conclude by suggesting that a systematic analysis of all growth and reproductive phases during the plant life cycle is needed to optimise resource use in plant-based BLSS. © 2013 German Botanical Society and The Royal Botanical Society of the Netherlands.

  5. Environmental Impact of End-of-Life Tires: Life Cycle Assessment Comparison of Three Scenarios from a Case Study in Valle Del Cauca, Colombia

    Directory of Open Access Journals (Sweden)

    Oscar O. Ortíz-Rodríguez

    2017-12-01

    Full Text Available Life Cycle Assessment methodology has been applied to estimate diverse environmental impacts of different usage alternatives for worn-out tires at the end of their useful life in a case study at the Department of Valle del Cauca, Colombia. Different real scenarios were compared, which allowed for the assessment of the best environmental option for the management of worn-out tires. A method developed in the Institute of Environmental Sciences at University of Leiden, better known as CML-2001, was used to calculate the environmental impact indicators. The results show that the incineration of whole tires in cement plants, and the activities of grinding and floor manufacturing from granulated rubber, exhibited the best indicators, especially in terms of environmental load avoidance through the recovery of materials. Finally, the categories of depletion of the ozone layer, acidification, global warming potential, depletion of abiotic resources, and photochemical ozone formation revealed that the strongest environmental impacts are associated with retreading and the production of multipart asphalt. This is due to the use of synthetic rubber in the former alternative, and of liquid asphalt, gravel, and diesel consumption in the latter.

  6. Using a plant health system framework to assess plant clinic performance in Uganda

    DEFF Research Database (Denmark)

    Danielsen, Solveig; Matsiko, Frank B.

    2016-01-01

    and expand, new analytical frameworks and tools are needed to identify factors influencing performance of services and systems in specific contexts, and to guide interventions. In this paper we apply a plant health system framework to assess plant clinic performance, using Uganda as a case study...... factors, influenced by basic operational and financial concerns, inter-institutional relations and public sector policies. Overall, there was a fairly close match between the plant health system attributes and plant clinic performance, suggesting that the framework can help explain system functioning....... A comparative study of plant clinics was carried out between July 2010 and September 2011 in the 12 districts where plant clinics were operating at that time. The framework enabled us to organise multiple issues and identify key features that affected the plant clinics. Clinic performance was, among other...

  7. Assessment of quality of life of parents of children with osteogenesis imperfecta.

    Science.gov (United States)

    Szczepaniak-Kubat, Anna; Kurnatowska, Olga; Jakubowska-Pietkiewicz, Elzbieta; Chlebna-Sokół, Danuta

    2012-01-01

    The aim of the work was an objective assessment of the quality of life of parents of children with osteogenesis imperfecta (OI) and of its determinant factors. The survey answers of 25 parents were analyzed and contained demographic parameters, socioeconomic status information, quality of life of responses and type of support they have been receiving. In order to assess the effects of this children's disease on the quality of life of the parents, families were divided into two groups depending on the OI severity: group M--mild (type I and IV OI), group S--severe (type III OI). The objective of the work was carried out based on the WHOQOL-BREF quality of life questionnaire and measures of family status: education degree based on the International Standard Classification of Education (ISCED), a subjective assessment of the family's wealth (Perceived Family Wealth, PFW), and the family's financial resources (Family Affluence Scale, FAS). 56% of respondents assessed their global quality of life (Quality of Life, QL) as good, whereas 8% answered poor. Perception of general health status was similar. Life domains assessed in the WHOQOL-BREF questionnaire received the following mean values on a scale from 4 to 20 points: physical--12.2 +/- 1.2, psychological--15.04 +/- 2.2, environmental--13.32 +/- 2, social relationships--14.28 +/- 1.5. In the severe OI group, the environmental domain was assessed as worse than in the mild OI group and this assessment was statistically significant, despite the fact that the group of families with severe cases of OI received more support from the appropriate institutions. Indicators of socioeconomic status did not affect the respondents' assessment of their global quality of life. In the tested group of families, the child's disease did not affect either the global quality of life assessment or health of the respondents or their quality of life in terms of physical and mental status and social relationships. The parents of children with

  8. Life assessment of gas turbine blades after long term service

    Energy Technology Data Exchange (ETDEWEB)

    Auerkari, Pertti; Salonen, Jorma [VTT, Espoo (Finland); Maekinen, Sari [Helsingin Energia, Helsinki (Finland); Karvonen, Ikka; Tanttari, Heikki [Lappeenrannan Laempoevoima, Lappeenranta (Finland); Kangas, Pekka [Neste Oil, Kilpilahti (Finland); Scholz, Alfred [Technische Univ. Darmstadt (Germany); Vacchieri, Erica [Ansaldo Richerche, Genoa (Italy)

    2010-07-01

    Turbine blade samples from three land based gas turbines have been subjected to systematic condition and life assessment after long term service (88000 - 109000 equivalent operating hours, eoh), when approaching the nominal or suggested life limits. The blades represent different machine types, materials and design generations, and uncooled blading outside the hottest front end of the turbine, i.e. blades with relatively large size and considerable expected life. For a reasonable assessment, a range of damage mechanisms need to be addressed and evaluated for the impact in the residual life. The results suggested significant additional safe life for all three blade sets. In some cases this could warrant yet another life cycle comparable to that of new blades, even after approaching the nominal end of life in terms of recommended equivalent operating hours. This is thought to be partly because of base load combined cycle operation and natural gas fuel, or modest operational loading if the design also accounted for more intensive cycling operation and more corrosive oil firing. In any case, long term life extension is only appropriate if not intervened by events of overloading, overheating or other sudden events such as foreign object damage (FOD), and if supported by the regular inspection and maintenance program to control in-service damage. Condition based assessment therefore remains an important part of the blade life management after the decision of accepted life extension. (orig.)

  9. From beans to bar: A life cycle assessment towards sustainable chocolate supply chain.

    Science.gov (United States)

    Recanati, Francesca; Marveggio, Davide; Dotelli, Giovanni

    2018-02-01

    The environmental sustainability has emerged as a crucial aspect in the agri-food sector, nevertheless environmental assessments and certifications of cocoa and chocolate are still missing. Given this gap and the increasing global demand for cocoa derivatives, this study aims to evaluate the environmental impacts of an Italian dark chocolate through a holistic cradle-to-grave Life Cycle Assessment (LCA). The impact categories assessed are acidification potential (AC), eutrophication potential (EU), global warming potential (GW), photochemical ozone creation potential (POC), ozone layer depletion potential (OD), abiotic depletion (AD) and cumulative energy demand (CED). The obtained results highlight the relevant contributions of upstream phase (63% for the ODP, 92% for EU and 99% for the AD) and core processes (39% for the GW and 49% for the CED) on the overall impacts. Specifically, cocoa provisioning and energy supply at the manufacturing plant emerged as environmental hotspots and have been deeper investigated through a sensitivity analysis. Obtained outcomes show the significant variability of the environmental impacts due to the agricultural phase (i.e., depending on agroecosystems and practices) and environmental benefits guaranteed by an efficient trigeneration system implemented in the manufacturing plant. The quantification of the environmental impacts of chocolate through LCA, the identification of the main hotspots along the supply chain and the sensitivity analysis performed in this study could effectively support chocolate companies in their pathway towards environmentally sustainable productions. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Use of environmental qualification data and techniques for life extension purposes

    International Nuclear Information System (INIS)

    Sinnappan, J.

    1991-01-01

    As several nuclear power plants in the United States now reach or exceed the midpoint of their original 40-year design life, efforts are underway to identify techniques and methods to demonstrate that the actual useful life of these plants exceeds the original design life. Some surveillance and monitoring programs for safety-related components are being developed to determine the actual consumed life and predict the remaining life. These data are useful for showing that plant components actually have a longer qualified life, which is the basis for the license renewal of nuclear power plants. This paper summarizes a proposed methodology using existing environmental qualification (EQ) data for safety-related Class 1E equipment and the results of surveillance and monitoring techniques to assess the actual consumed life and, consequently, predict the remaining life. It also discusses several techniques that can be used to address various aging degradation mechanisms to demonstrate longer qualified life of safety-related components. Examples of how these techniques can be used on components are shown

  11. Comparative life cycle assessment and life cycle costing of lodging in the Himalaya

    NARCIS (Netherlands)

    Bhochhibhoya, Silu; Pizzol, Massimo; Achten, Wouter M.J.; Maskey, Ramesh Kumar; Zanetti, Michela; Cavalli, Raffaele

    2017-01-01

    Purpose: The main aim of the study is to assess the environmental and economic impacts of the lodging sector located in the Himalayan region of Nepal, from a life cycle perspective. The assessment should support decision making in technology and material selection for minimal environmental and

  12. Concept design of overall evaluation system for nuclear plant life extension, (1)

    International Nuclear Information System (INIS)

    Takao, Takeshi

    1989-01-01

    In this report the frameworks of the plans for the Overall Evaluation System and the 8 systems concerning the plant Life extension are discussed. Main results are as follows. 1) The extension period decision subsystem supported by the AI techniques and Fuzzy theory will be added to the Overall Evaluation System. By using this subsystem the plant lives will be overall evaluated. 2) The range of the data collection for constructing the plant operation and maintenance data base is covered by, i) Operation data in the typical plant start/stop cycling, ii) Operation data at the representative point of the period, iii) All data of the repair and replacement. 3) The degradation monitoring and diagnosing system will be constructed for the expert system based on the knowledge base using the elastic wave theorem. (author) 74 refs

  13. Only in dying, life: programmed cell death during plant development.

    Science.gov (United States)

    Van Hautegem, Tom; Waters, Andrew J; Goodrich, Justin; Nowack, Moritz K

    2015-02-01

    Programmed cell death (PCD) is a fundamental process of life. During the evolution of multicellular organisms, the actively controlled demise of cells has been recruited to fulfil a multitude of functions in development, differentiation, tissue homeostasis, and immune systems. In this review we discuss some of the multiple cases of PCD that occur as integral parts of plant development in a remarkable variety of cell types, tissues, and organs. Although research in the last decade has discovered a number of PCD regulators, mediators, and executers, we are still only beginning to understand the mechanistic complexity that tightly controls preparation, initiation, and execution of PCD as a process that is indispensable for successful vegetative and reproductive development of plants. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Life cycle assessment for spray coatings applied to the heating tubes of PFBC boiler; Kaatsu ryudoso boiler sonai kan e tekiyosareru yosha coating no life cycle assessment (LCA hyoka)

    Energy Technology Data Exchange (ETDEWEB)

    Sonoya, K; Kihara, S [Ishikawajima-Harima Heavy Industries, Co. Ltd., Tokyo (Japan)

    1996-12-25

    LCA (Life cycle assessment) is a systematic process used to calculate and evaluate the environmental impacts of products. Because boiler components are now exposed a more severe erosion/corrosion environment by, improving efficiency of thermal power plant, it is expected that the use of thermal spray coatings will increase. The LCA method was attempted to apply to various thermal spray coatings for PFBC (Pressurized Fluidized Bed Combustion) and evaluate the eco-friendly, coatings. The result was gained that all the alumina coatings have good characteristics. In fact the Al2O3-40%ZrO2 coating by APS has the lowest environmental impact and the best erosion resistance, it may be considered the most effective coating. 4 refs., 12 figs., 1 tab.

  15. The value of the exergetic life cycle assessment besides the LCA

    NARCIS (Netherlands)

    Cornelissen, Rene; Hirs, Gerard

    2002-01-01

    In this paper the value of the exergetic life cycle assessment (ELCA) has been analysed. The ELCA uses the framework of the life cycle assessment (LCA) and can be seen as the exergy analysis of a complete life cycle. The value of the ELCA besides the LCA has been discussed. It is shown that the ELCA

  16. Including Life Cycle Assessment for decision-making in controlling wastewater nutrient removal systems

    DEFF Research Database (Denmark)

    Corominas, Lluís; Larsen, Henrik Fred; Flores-Alsina, Xavier

    2013-01-01

    This paper focuses on the use of Life Cycle Assessment (LCA) to evaluate the performance of seventeen control strategies in wastewater treatment plants (WWTPs). It tackles the importance of using site-specific factors for nutrient enrichment when decision-makers have to select best operating....../or energy savings present an environmental benefit for N&P and P-deficient systems. This is not the case when addressing N-deficient systems for which the use of chemicals (even for improving N removal efficiencies) is not always beneficial for the environment. A sensitivity analysis on using weighting...... of the impact categories is conducted to assess how value choices (policy decisions) may affect the management of WWTPs. For the scenarios with only N-limitation, the LCA-based ranking of the control strategies is sensitive to the choice of weighting factors, whereas this is not the case for N&P or P...

  17. Assessment and management of ageing of major nuclear power plant components important to safety: Metal components of BWR containment systems

    International Nuclear Information System (INIS)

    2000-10-01

    At present, there are over four hundred operational nuclear power plants (NPPs) in IAEA Member States. Operating experience has shown that ineffective control of the ageing degradation of the major NPP components (e.g. caused by unanticipated phenomena and by operating, maintenance or manufacturing errors) can jeopardize plant safety and also plant life. Ageing in these NPPs must therefore be effectively managed to ensure the availability of design functions throughout the plant service life. From the safety perspective, this means controlling within acceptable limits the ageing degradation and wear-out of plant components important to safety so that adequate safety margins remain, i.e. integrity and functional capability in excess of normal operating requirements. This TECDOC is one in a series of reports on the assessment and management of ageing of the major NPP components important to safety. The reports are based on experience and practices of NPP operators, regulators, designers, manufacturers, and technical support organizations and a widely accepted Methodology for the Management of Ageing of NPP Components Important to Safety, which was issued by the IAEA in 1992. The current practices for the assessment of safety margins (fitness for service) and the inspection, monitoring and mitigation of ageing degradation of selected components of Canada deuterium-uranium (CANDU) reactors, boiling water reactors (BWRs), pressurized water reactors (PWRs), and water moderated, water cooled energy reactors (WWERs) are documented in the reports. These practices are intended to help all involved directly and indirectly in ensuring the safe operation of NPPs, and to provide a common technical basis for dialogue between plant operators and regulators when dealing with age related licensing issues. The guidance reports are directed toward technical experts from NPPs and from regulatory, plant design, manufacturing and technical support organizations dealing with specific

  18. Probabilistic approaches to life prediction of nuclear plant structural components

    International Nuclear Information System (INIS)

    Villain, B.; Pitner, P.; Procaccia, H.

    1996-01-01

    In the last decade there has been an increasing interest at EDF in developing and applying probabilistic methods for a variety of purposes. In the field of structural integrity and reliability they are used to evaluate the effect of deterioration due to aging mechanisms, mainly on major passive structural components such as steam generators, pressure vessels and piping in nuclear plants. Because there can be numerous uncertainties involved in a assessment of the performance of these structural components, probabilistic methods. The benefits of a probabilistic approach are the clear treatment of uncertainly and the possibility to perform sensitivity studies from which it is possible to identify and quantify the effect of key factors and mitigative actions. They thus provide information to support effective decisions to optimize In-Service Inspection planning and maintenance strategies and for realistic lifetime prediction or reassessment. The purpose of the paper is to discuss and illustrate the methods available at EDF for probabilistic component life prediction. This includes a presentation of software tools in classical, Bayesian and structural reliability, and an application on two case studies (steam generator tube bundle, reactor pressure vessel). (authors)

  19. Probabilistic approaches to life prediction of nuclear plant structural components

    International Nuclear Information System (INIS)

    Villain, B.; Pitner, P.; Procaccia, H.

    1996-01-01

    In the last decade there has been an increasing interest at EDF in developing and applying probabilistic methods for a variety of purposes. In the field of structural integrity and reliability they are used to evaluate the effect of deterioration due to aging mechanisms, mainly on major passive structural components such as steam generators, pressure vessels and piping in nuclear plants. Because there can be numerous uncertainties involved in an assessment of the performance of these structural components, probabilistic methods provide an attractive alternative or supplement to more conventional deterministic methods. The benefits of a probabilistic approach are the clear treatment of uncertainty and the possibility to perform sensitivity studies from which it is possible to identify and quantify the effect of key factors and mitigative actions. They thus provide information to support effective decisions to optimize In-Service Inspection planning and maintenance strategies and for realistic lifetime prediction or reassessment. The purpose of the paper is to discuss and illustrate the methods available at EDF for probabilistic component life prediction. This includes a presentation of software tools in classical, Bayesian and structural reliability, and an application on two case studies (steam generator tube bundle, reactor pressure vessel)

  20. AVLIS Production Plant Preliminary Quality Assurance Plan and Assessment

    International Nuclear Information System (INIS)

    1984-01-01

    This preliminary Quality Assurance Plan and Assessment establishes the Quality Assurance requirements for the AVLIS Production Plant Project. The Quality Assurance Plan defines the management approach, organization, interfaces, and controls that will be used in order to provide adequate confidence that the AVLIS Production Plant design, procurement, construction, fabrication, installation, start-up, and operation are accomplished within established goals and objectives. The Quality Assurance Program defined in this document includes a system for assessing those elements of the project whose failure would have a significant impact on safety, environment, schedule, cost, or overall plant objectives. As elements of the project are assessed, classifications are provided to establish and assure that special actions are defined which will eliminate or reduce the probability of occurrence or control the consequences of failure. 8 figures, 18 tables