WorldWideScience

Sample records for plant hormone indole-3-acetic

  1. A 9-vinyladenine-based molecularly imprinted polymeric membrane for the efficient recognition of plant hormone 1H-indole-3-acetic acid

    International Nuclear Information System (INIS)

    Chen Changbao; Chen Yanjun; Zhou Jie; Wu Chunhui

    2006-01-01

    9-Vinyladenine was synthesized as a novel functional monomer for molecular imprinting techniques and its structure was established with elemental analysis and 1 H NMR spectroscopy. The binding mechanism between this functional monomer 9-vinyladenine and the plant hormone 1 H-indole-3-acetic acid in acetonitrile was studied with UV-vis spectrophotometry. Based on this study, using 1 H-indole-3-acetic acid as a template molecule, a specific 9-vinyladenine-based molecularly imprinted polymeric membrane was prepared. Then, the resultant polymeric membrane morphologies were visualized with scanning electron microscopy, and the membrane permselectivity for 1 H-indole-3-acetic acid, 1 H-indole-3-butyric acid and kinetin was tested with separate experiments and competitive diffusion experiments. These results showed that the imprinted polymeric membrane prepared with 9-vinyladenine exhibited higher transport selectivity for the template molecule 1 H-indole-3-acetic acid than 1 H-indole-3-butyric acid or kinetin. The membrane prepared with 9-vinyladenine also took on higher permselectivity for 1 H-indole-3-acetic acid in comparison with the imprinted membrane made with methacrylic acid. It is predicted that the 9-vinyladenine-based molecularly imprinted membrane may be applicable to the assay of 1 H-indole-3-acetic acid or for the preparation of a molecularly imprinted polymer sensor for the analysis of 1 H-indole-3-acetic acid in plant samples

  2. Metabolic regulation of the plant hormone indole-3-acetic acid

    Energy Technology Data Exchange (ETDEWEB)

    Jerry D. Cohen

    2009-11-01

    The phytohormone indole-3-acetic acid (IAA, auxin) is important for many aspects of plant growth, development and responses to the environment yet the routes to is biosynthesis and mechanisms for regulation of IAA levels remain important research questions. A critical issue concerning the biosynthesis if IAA in plants is that redundant pathways for IAA biosynthesis exist in plants. We showed that these redundant pathways and their relative contribution to net IAA production are under both developmental and environmental control. We worked on three fundamental problems related to how plants get their IAA: 1) An in vitro biochemical approach was used to define the tryptophan dependent pathway to IAA using maize endosperm, where relatively large amounts of IAA are produced over a short developmental period. Both a stable isotope dilution and a protein MS approach were used to identify intermediates and enzymes in the reactions. 2) We developed an in vitro system for analysis of tryptophan-independent IAA biosynthesis in maize seedlings and we used a metabolite profiling approach to isolate intermediates in this reaction. 3) Arabidopsis contains a small family of genes that encode potential indolepyruvate decarboxylase enzymes. We cloned these genes and studied plants that are mutant in these genes and that over-express each member in the family in terms of the level and route of IAA biosynthesis. Together, these allowed further development of a comprehensive picture of the pathways and regulatory components that are involved in IAA homeostasis in higher plants.

  3. Plant-microbe interactions: Plant hormone production by phylloplane fungi. Research report

    Energy Technology Data Exchange (ETDEWEB)

    Tuomi, T.; Ilvesoksa, J.; Rosenqvist, H.

    1993-06-23

    The molds Botrytis cinerea, Cladosporium cladosporioides and the yeast Aureobasidium pullulans, isolated from the leaves of three short-rotation Salix clones, were found to produce indole-3-acetic acid (a growth promoter of plants). Abscisic acid (a growth inhibitor of plants) production was detected in B. cinerea. The contents of indole-3-acetic acid and abscisic acid in the leaves of the Salix clones and the amounts of fungal propagules in these leaves were also measured, in order to evaluate whether the amounts of plant growth regulators produced by the fungi would make a significant contribution to the hormonal quantities of the leaves. The content of abscisic acid, and to a lesser degree that of indole-3-acetic acid, showed a positive correlation with the frequency of infection by the hormone producing organisms. The amounts of hormone producing fungi on leaves that bore visible colonies were, however, not sufficiently high to support the argument that neither the fungal production of abscisic nor indole-3-acetic acid would to a significant degree contribute to the hormonal contents of the leaves of the Salix clones.

  4. Study on the extraction, purification and quantification of jasmonic acid, abscisic acid and indole-3-acetic acid in plants.

    Science.gov (United States)

    Zhang, Feng Juan; Jin, You Ju; Xu, Xing You; Lu, Rong Chun; Chen, Hua Jun

    2008-01-01

    Jasmonic acid (JA), abscisic acid (ABA) and indole-3-acetic acid (IAA) are important plant hormones. Plant hormones are difficult to analyse because they occur in small concentrations and other substances in the plant interfere with their detection. To develop a new, inexpensive procedure for the rapid extraction and purification of IAA, ABA and JA from various plant species. Samples were prepared by extraction of plant tissues with methanol and ethyl acetate. Then the extracts were further purified and enriched with C(18) cartridges. The final extracts were derivatised with diazomethane and then measured by GC-MS. The results of the new methodology were compared with those of the Creelman and Mullet procedure. Sequential elution of the assimilates from the C(18 )cartridges revealed that IAA and ABA eluted in 40% methanol, while JA subsequently eluted in 60% methanol. The new plant hormone extraction and purification procedure produced results that were comparable to those obtained with the Creelman and Mullet's procedure. This new procedure requires only 0.5 g leaf samples to quantify these compounds with high reliability and can simultaneously determine the concentrations of the three plant hormones. A simple, inexpensive method was developed for determining endogenous IAA, ABA and JA concentrations in plant tissue.

  5. Measurement of the rates of oxindole-3-acetic acid turnover, and indole-3-acetic acid oxidation in Zea mays seedlings

    Science.gov (United States)

    Nonhebel, H. M.; Bandurski, R. S. (Principal Investigator)

    1986-01-01

    Oxindole-3-acetic acid is the principal catabolite of indole-3-acetic acid in Zea mays seedlings. In this paper measurements of the turnover of oxindole-3-acetic acid are presented and used to calculate the rate of indole-3-acetic acid oxidation. [3H]Oxindole-3-acetic acid was applied to the endosperm of Zea mays seedlings and allowed to equilibrate for 24 h before the start of the experiment. The subsequent decrease in its specific activity was used to calculate the turnover rate. The average half-life of oxindole-3-acetic acid in the shoots was found to be 30 h while that in the kernels had an average half-life of 35h. Using previously published values of the pool sizes of oxindole-3-acetic acid in shoots and kernels from seedlings of the same age and variety, and grown under the same conditions, the rate of indole-3-acetic acid oxidation was calculated to be 1.1 pmol plant-1 h-1 in the shoots and 7.1 pmol plant-1 h-1 in the kernels.

  6. Oxidation of indole-3-acetic acid to oxindole-3-acetic acid by an enzyme preparation from Zea mays

    Science.gov (United States)

    Reinecke, D. M.; Bandurski, R. S.

    1988-01-01

    Indole-3-acetic acid is oxidized to oxindole-3-acetic acid by Zea mays tissue extracts. Shoot, root, and endosperm tissues have enzyme activities of 1 to 10 picomoles per hour per milligram protein. The enzyme is heat labile, is soluble, and requires oxygen for activity. Cofactors of mixed function oxygenase, peroxidase, and intermolecular dioxygenase are not stimulatory to enzymic activity. A heat-stable, detergent-extractable component from corn enhances enzyme activity 6- to 10-fold. This is the first demonstration of the in vitro enzymic oxidation of indole-3-acetic acid to oxindole-3-acetic acid in higher plants.

  7. Identification and biochemical characterization of an Arabidopsis indole-3-acetic acid glucosyltransferase.

    Science.gov (United States)

    Jackson, R G; Lim, E K; Li, Y; Kowalczyk, M; Sandberg, G; Hoggett, J; Ashford, D A; Bowles, D J

    2001-02-09

    Biochemical characterization of recombinant gene products following a phylogenetic analysis of the UDP-glucosyltransferase (UGT) multigene family of Arabidopsis has identified one enzyme (UGT84B1) with high activity toward the plant hormone indole-3-acetic acid (IAA) and three related enzymes (UGT84B2, UGT75B1, and UGT75B2) with trace activities. The identity of the IAA conjugate has been confirmed to be 1-O-indole acetyl glucose ester. A sequence annotated as a UDP-glucose:IAA glucosyltransferase (IAA-UGT) in the Arabidopsis genome and expressed sequence tag data bases given its similarity to the maize iaglu gene sequence showed no activity toward IAA. This study describes the first biochemical analysis of a recombinant IAA-UGT and provides the foundation for future genetic approaches to understand the role of 1-O-indole acetyl glucose ester in Arabidopsis.

  8. Translocation of radiolabeled indole-3-acetic acid and indole-3-acetyl-myo-inositol from kernel to shoot of Zea mays L

    Science.gov (United States)

    Chisnell, J. R.; Bandurski, R. S.

    1988-01-01

    Either 5-[3H]indole-3-acetic acid (IAA) or 5-[3H]indole-3-acetyl-myo-inositol was applied to the endosperm of kernels of dark-grown Zea mays seedlings. The distribution of total radioactivity, radiolabeled indole-3-acetic acid, and radiolabeled ester conjugated indole-3-acetic acid, in the shoots was then determined. Differences were found in the distribution and chemical form of the radiolabeled indole-3-acetic acid in the shoot depending upon whether 5-[3H]indole-3-acetic acid or 5-[3H]indole-3-acetyl-myo-inositol was applied to the endosperm. We demonstrated that indole-3-acetyl-myo-inositol applied to the endosperm provides both free and ester conjugated indole-3-acetic acid to the mesocotyl and coleoptile. Free indole-3-acetic acid applied to the endosperm supplies some of the indole-3-acetic acid in the mesocotyl but essentially no indole-3-acetic acid to the coleoptile or primary leaves. It is concluded that free IAA from the endosperm is not a source of IAA for the coleoptile. Neither radioactive indole-3-acetyl-myo-inositol nor IAA accumulates in the tip of the coleoptile or the mesocotyl node and thus these studies do not explain how the coleoptile tip controls the amount of IAA in the shoot.

  9. Immunolocalization of endogenous indole-3-acetic acid and abscisic acid in the shoot internodes of Fargesia yunnanensis bamboo during development

    Science.gov (United States)

    Shuguang Wang; Yongpeng Ma; Chengbin Wan; Chungyun Hse; Todd F. Shupe; Yujun Wang; Changming. Wang

    2016-01-01

    The Bambusoideae subfamily includes the fastest-growing plants worldwide, as a consequence of fast internode elongation. However, few studies have evaluated the temporal and spatial distribution of endogenous hormones during internode elongation. In this paper, endogenous indole-3-acetic acid (IAA) and abscisic acid (ABA) were detected in different developmental...

  10. Decarboxylation of indole-3-acetic acid and inhibition of growth in Avena sativa seedlings by plant-derived photosensitizers

    Energy Technology Data Exchange (ETDEWEB)

    Brennan, T.M. [Dickinson Coll., Carlisle, PA (United States). Dept. of Biology

    1996-12-01

    A number of plant phototoxins, when supplemented with UVA (320-400 nm) radiation, are capable of sensitizing the decomposition of indole-3-acetic acid (IAA), as measured by release of {sup 14}CO{sub 2} from carboxyl-labeled IAA. Alpha-terthienyl ({alpha}T) and harmine caused significant rates of IAA decarboxylation at concentrations as low as 1 nM and were approximately 80% as effective as riboflavin and flavin mononucleotide. Partial inhibition by sodium azide indicates that the {alpha}T-induced decarboxylation of IAA is predominately, but not entirely, a type II reaction mediated by singlet oxygen. Based on changes in UV absorption spectra, it appears that the hormones gibberellic acid, abscisic acid and 6-benzylaminopurine (a cytokinin) are less susceptible to photosensitized decomposition than is IAA. Alpha-terthienyl plus UVA also inhibited elongation growth and reduced endogenous IAA levels in Avena sativa L. coleoptile sections and promoted senescence in intact Avena seedlings. These results confirm the alelopathic potential of plant photosensitizers such as {alpha}T and indicate that the phytohormone IAA may represent an additional target for the action of photosensitizers. (Author).

  11. Development and Validation of a Reversed-Phase Liquid Chromatography Method for the Simultaneous Determination of Indole-3-Acetic Acid, Indole-3-Pyruvic Acid, and Abscisic Acid in Barley (Hordeum vulgare L.).

    Science.gov (United States)

    Nakurte, Ilva; Keisa, Anete; Rostoks, Nils

    2012-01-01

    A simple, sensitive, precise, and specific reverse HPLC method was developed and validated for the determination of plant hormones in barley (Hordeum vulgare L.). The method includes extraction in aqueous organic solvent followed by solid-phase extraction, sample evaporation, and reversed-phase HPLC analysis in a general purpose UV-visible (abscisic acid (ABA)) and fluorescence detection (indole-3-acetic acid (IAA) and indole-3-pyruvic acid (IPA)), high-performance liquid chromatography system. The separation was carried out on Zorbax Eclipse XDB C8 column (150  ×  4.6  mm I.D) with a mobile phase composed of methanol and 1% acetic acid (60 : 40 v/v) in isocratic mode at a flow rate of 1 ml min(-1). The detection was monitored at 270 nm (ABA) and at 282 nm (Ex) and 360 nm (Em) (IAA, IPA). The developed method was validated in terms of accuracy, precision, linearity, limit of detection, limit of quantification, and robustness. The determined validation parameters are in the commonly acceptable ranges for that kind of analysis.

  12. Comparative photocatalytic study of two selected pesticide derivatives, indole-3-acetic acid and indole-3-butyric acid in aqueous suspensions of titanium dioxide

    Energy Technology Data Exchange (ETDEWEB)

    Qamar, M. [Department of Chemistry, Aligarh Muslim University, Aligarh 202002 (India); Muneer, M. [Department of Chemistry, Aligarh Muslim University, Aligarh 202002 (India)]. E-mail: cht12mm@amu.ac.in

    2005-04-11

    Heterogeneous photocatalysed degradation of two selected pesticide derivatives such as indole-3-acetic acid (IAA) and indole-3-butyric acid (IBA) has been investigated in aqueous suspensions of titanium dioxide by monitoring the change in substrate concentration employing UV spectroscopic analysis technique and depletion in total organic carbon (TOC) content as a function of irradiation time. The degradation kinetics was studied under different conditions such as pH, types of TiO{sub 2,} substrate and catalyst concentration, and in the presence of electron acceptor such as hydrogen peroxide (H{sub 2}O{sub 2}) besides molecular oxygen. The degradation rates were found to be strongly influenced by all the above parameters. The photocatalyst Degussa P25 showed comparatively highest photocatalytics. The pesticide derivative, indole-3-acetic acid was found to degrade slightly faster than indole-3-butyric acid.

  13. Enterococcus faecium LKE12 Cell-Free Extract Accelerates Host Plant Growth via Gibberellin and Indole-3-Acetic Acid Secretion.

    Science.gov (United States)

    Lee, Ko-Eun; Radhakrishnan, Ramalingam; Kang, Sang-Mo; You, Young-Hyun; Joo, Gil-Jae; Lee, In-Jung; Ko, Jae-Hwan; Kim, Jin-Ho

    2015-09-01

    The use of microbial extracts containing plant hormones is a promising technique to improve crop growth. Little is known about the effect of bacterial cell-free extracts on plant growth promotion. This study, based on phytohormonal analyses, aimed at exploring the potential mechanisms by which Enterococcus faecium LKE12 enhances plant growth in oriental melon. A bacterial strain, LKE12, was isolated from soil, and further identified as E. faecium by 16S rDNA sequencing and phylogenetic analysis. The plant growth-promoting ability of an LKE12 bacterial culture was tested in a gibberellin (GA)-deficient rice dwarf mutant (waito-C) and a normal GA biosynthesis rice cultivar (Hwayongbyeo). E. faecium LKE12 significantly improved the length and biomass of rice shoots in both normal and dwarf cultivars through the secretion of an array of gibberellins (GA1, GA3, GA7, GA8, GA9, GA12, GA19, GA20, GA24, and GA53), as well as indole-3-acetic acid (IAA). To the best of our knowledge, this is the first study indicating that E. faecium can produce GAs. Increases in shoot and root lengths, plant fresh weight, and chlorophyll content promoted by E. faecium LKE12 and its cell-free extract inoculated in oriental melon plants revealed a favorable interaction of E. faecium LKE12 with plants. Higher plant growth rates and nutrient contents of magnesium, calcium, sodium, iron, manganese, silicon, zinc, and nitrogen were found in cell-free extract-treated plants than in control plants. The results of the current study suggest that E. faecium LKE12 promotes plant growth by producing GAs and IAA; interestingly, the exogenous application of its cell-free culture extract can be a potential strategy to accelerate plant growth.

  14. Controlled indole-3-acetaldoxime production through ethanol-induced expression of CYP79B2

    DEFF Research Database (Denmark)

    Mikkelsen, M.D.; Fuller, V.L.; Hansen, Bjarne Gram

    2009-01-01

    Indole-3-acetaldoxime (IAOx) is a key branching point between primary and secondary metabolism. IAOx serves as an intermediate in the biosynthesis of indole glucosinolates (I-GLSs), camalexin and the plant hormone indole-3-acetic acid (IAA). The cytochrome P450s CYP79B2 and CYP79B3 catalyze......OH)-inducible CYP79B2 construct into double (cyp79b2 cyp79b3) or triple (cyp79b2 cyp79b3 cyp83b1) mutant lines. We show EtOH-dependent induction of camalexin and identify a number of candidate IAA homeostasis- or defense-related genes by clustered microarray analysis. The transgenic mutant lines are thus promising...

  15. Ethylene-enhanced catabolism of [14C]indole-3-acetic acid to indole-3-carboxylic acid in citrus leaf tissues

    International Nuclear Information System (INIS)

    Sagee, O.; Riov, J.; Goren, J.

    1990-01-01

    Exogenous [ 14 C]indole-3-acetic acid (IAA) is conjugated in citrus (Citrus sinensis) leaf tissues to one major substance which has been identified as indole-3-acetylaspartic acid (IAAsp). Ethylene pretreatment enhanced the catabolism of [ 14 C]IAA to indole-3-carboxylic acid (ICA), which accumulated as glucose esters (ICGlu). Increased formation of ICGlu by ethylene was accompanied by a concomitant decrease in IAAsp formation. IAAsp and ICGlu were identified by combined gas chromatography-mass spectrometry. Formation of ICGlu was dependent on the concentration of ethylene and the duration of the ethylene pretreatment. It is suggested that the catabolism of IAA to ICA may be one of the mechanisms by which ethylene endogenous IAA levels

  16. Characterization of indole acetic acid endophyte producers in ...

    African Journals Online (AJOL)

    This work contributes to the knowledge of the phytobacteria diversity in aquatic plants, particularly in Lemnaceae species; here the majority of the isolates have been characterized as higher indole acetic acid producers, recommended as candidates for their use as biofertilizers. Key words: Plant growth-promoting bacteria, ...

  17. Gravity induced, asymmetric unloading of indole-3-acetic acid from the stele of Zea mays into the mesocotyl cortex

    International Nuclear Information System (INIS)

    Schulze, A.; Bandurski, R.S.

    1987-01-01

    Previous studies from this laboratory have demonstrated an increase within 3 min in both free and ester indole-3-acetic acid (IAA) on the lower side of the mesocotyl cortex of a gravity stimulated Zea mays seedling. Since both free and ester IAA are being transported from endosperm to shoot through the stele these results suggest that the gravity stimulus affects movement of IAA and/or its esters from stele to cortex. To test this postulate they injected 5-( 3 H)-IAA into the endosperm and, after a 30 min period with the plants held vertically, severed the kernel from the shoot and placed the plants in a horizontal position. After 60 min the distribution of radioactivity in the mesocotyl cortex was 55 + 3% in the lower half and 45 + 3% in the upper half. These results support the working theory that a target for the gravity stimulus is the gating mechanism for the movement of hormone from stele to cortex

  18. Oxidation of indole-3-acetic acid to oxindole-3-acetic acid by etiolated and green corn tissues

    International Nuclear Information System (INIS)

    Reinecke, D.

    1989-01-01

    Etiolated corn tissues oxidase indole-3-acetic acid (IAA) to oxindole-3-acetic acid (OxIAA). This oxidation results in loss of auxin activity and may plant a role in regulating IAA-stimulated growth. The enzyme has been partially purified and characterized and shown to require O 2 , and a heat-stable lipid-soluble corn factor which can be replaced by linolenic or linoleic acids in the oxidation of IAA. Corn oil was tested as a cofactor in the IAA oxidation reaction. Corn oil stimulated enzyme activity by 30% while trilinolein was inactive. The capacity of green tissue to oxidize IAA was examined by incubating leaf sections from 2 week old light-grown corn seedlings with 14 C-IAA. OxIAA and IAA were separated from other IAA metabolites on a 3 ml anion exchange column. Of the IAA taken up by the sections, 13% was oxidized to OxIAA. This is the first evidence that green tissue of corn may also regulate IAA levels by oxidizing IAA to OxIAA

  19. Gravity-induced asymmetric distribution of a plant growth hormone

    Science.gov (United States)

    Bandurski, R. S.; Schulze, A.; Momonoki, Y.

    1984-01-01

    Dolk (1936) demonstrated that gravistimulation induced an asymmetric distribution of auxin in a horizontally-placed shoot. An attempt is made to determine where and how that asymmetry arises, and to demonstrate that the endogenous auxin, indole-3-acetic acid, becomes asymmetrically distributed in the cortical cells of the Zea mays mesocotyl during 3 min of geostimulation. Further, indole-3-acetic acid derived by hydrolysis of an applied transport form of the hormone, indole-3-acetyl-myo-inositol, becomes asymmetrically distributed within 15 min of geostimulus time. From these and prior data is developed a working theory that the gravitational stimulus induces a selective leakage, or secretion, of the hormone from the vascular tissue to the cortical cells of the mesocotyl.

  20. Effects of microgravity on growth hormone concentration and distribution in plants

    Science.gov (United States)

    Schulze, Aga; Jensen, Philip; Desrosiers, Mark; Bandurski, Robert S.

    1989-01-01

    On earth, gravity affects the distribution of the plant growth hormone, indole-3-acetic acid (IAA), in a manner such that the plant grows into a normal vertical orientation (shoots up, roots down). How the plant controls the amount and distribution of IAA is only partially understood and is currently under investigation in this laboratory. The question to be answered in the flight experiment concerns the effect of gravity on the concentration, turn over, and distribution of the growth hormone. The answer to this question will aid in understanding the mechanism by which plants control the amount and distribution of growth hormone. Such knowledge of a plant's hormonal metabolism may aid in the growth of plants in space and will lead to agronomic advances.

  1. Catabolism of indole-3-acetic acid and 4- and 5-chloroindole-3-acetic acid in Bradyrhizobium japonicum

    DEFF Research Database (Denmark)

    Jensen, J B; Egsgaard, H; Van Onckelen, H

    1995-01-01

    Some strains of Bradyrhizobium japonicum have the ability to catabolize indole-3-acetic acid. Indoleacetic acid (IAA), 4-chloro-IAA (4-Cl-IAA), and 5-Cl-IAA were metabolized to different extents by strains 61A24 and 110. Metabolites were isolated and analyzed by high-performance liquid chromatogr...

  2. Analysis of plant hormones by microemulsion electrokinetic capillary chromatography coupled with on-line large volume sample stacking.

    Science.gov (United States)

    Chen, Zongbao; Lin, Zian; Zhang, Lin; Cai, Yan; Zhang, Lan

    2012-04-07

    A novel method of microemulsion electrokinetic capillary chromatography (MEEKC) coupled with on-line large volume sample stacking was developed for the analysis of six plant hormones including indole-3-acetic acid, indole-3-butyric acid, indole-3-propionic acid, 1-naphthaleneacetic acid, abscisic acid and salicylic acid. Baseline separation of six plant hormones was achieved within 10 min by using the microemulsion background electrolyte containing a 97.2% (w/w) 10 mM borate buffer at pH 9.2, 1.0% (w/w) ethyl acetate as oil droplets, 0.6% (w/w) sodium dodecyl sulphate as surfactant and 1.2% (w/w) 1-butanol as cosurfactant. In addition, an on-line concentration method based on a large volume sample stacking technique and multiple wavelength detection was adopted for improving the detection sensitivity in order to determine trace level hormones in a real sample. The optimal method provided about 50-100 fold increase in detection sensitivity compared with a single MEEKC method, and the detection limits (S/N = 3) were between 0.005 and 0.02 μg mL(-1). The proposed method was simple, rapid and sensitive and could be applied to the determination of six plant hormones in spiked water samples, tobacco leaves and 1-naphthylacetic acid in leaf fertilizer. The recoveries ranged from 76.0% to 119.1%, and good reproducibilities were obtained with relative standard deviations (RSDs) less than 6.6%.

  3. Indole-3-acetic acid biosynthesis in Fusarium delphinoides strain GPK, a causal agent of Wilt in Chickpea.

    Science.gov (United States)

    Kulkarni, Guruprasad B; Sanjeevkumar, S; Kirankumar, B; Santoshkumar, M; Karegoudar, T B

    2013-02-01

    Fusarium delphinoides (Ascomycota; Nectriaceae) is an indole-3-acetic acid (IAA) producing plant pathogen and a causal agent of wilt in chickpea. The IAA biosynthetic pathway in F. delphinoides strain GPK (FDG) was examined by analyzing metabolic intermediates and by feeding experiments. Gas chromatograph (GC) analysis of FDG culture filtrates showed the presence of metabolic intermediates of indole-3-pyruvic acid (IPyA), indole-3-acetamide (IAM), and tryptamine (TRA) pathways. The different IAA biosynthetic pathways were further confirmed by identifying the presence of different enzymes of these pathways. Substrate specificity study of aromatic amino acid aminotransferase revealed that the enzyme is highly specific for tryptophan (Trp) and α-ketoglutarate (α-kg) as amino group donor and acceptor, respectively. Furthermore, the concentration-dependent effect of exogenous IAA on fungal growth was established. Low concentration of exogenous IAA increases the fungal growth and at high concentration it decreases the growth of FDG.

  4. Myo-inositol esters of indole-3-acetic acid are endogenous components of Zea mays L. shoot tissue

    Science.gov (United States)

    Chisnell, J. R.

    1984-01-01

    Indole-3-acetyl-myo-inositol esters have been demonstrated to be endogenous components of etiolated Zea mays shoots tissue. This was accomplished by comparison of the putative compounds with authentic, synthetic esters. The properties compared were liquid and gas-liquid chromatographic retention times and the 70-ev mass spectral fragmentation pattern of the pentaacetyl derivative. The amount of indole-3-acetyl-myo-inositol esters in the shoots was determined to be 74 nanomoles per kilogram fresh weight as measured by isotope dilution, accounting for 19% of the ester indole-3-acetic acid of the shoot. This work is the first characterization of an ester conjugate of indole-3-acetate acid from vegetative shoot tissue using multiple chromatographic properties and mass spectral identification. The kernel and the seedling shoot both contain indole-3-acetyl-myo-inositol esters, and these esters comprise approximately the same percentage of the total ester content of the kernel and of the shoot.

  5. Indole-3-Acetic Acid-Producing Yeasts in the Phyllosphere of the Carnivorous Plant Drosera indica L

    Science.gov (United States)

    Shin, Li-Ying; Wei, Jyuan-Yu; Fu, Shih-Feng; Chou, Jui-Yu

    2014-01-01

    Yeasts are widely distributed in nature and exist in association with other microorganisms as normal inhabitants of soil, vegetation, and aqueous environments. In this study, 12 yeast strains were enriched and isolated from leaf samples of the carnivorous plant Drosera indica L., which is currently threatened because of restricted habitats and use in herbal industries. According to similarities in large subunit and small subunit ribosomal RNA gene sequences, we identified 2 yeast species in 2 genera of the phylum Ascomycota, and 5 yeast species in 5 genera of the phylum Basidiomycota. All of the isolated yeasts produced indole-3-acetic acid (IAA) when cultivated in YPD broth supplemented with 0.1% L-tryptophan. Growth conditions, such as the pH and temperature of the medium, influenced yeast IAA production. Our results also suggested the existence of a tryptophan-independent IAA biosynthetic pathway. We evaluated the effects of various concentrations of exogenous IAA on yeast growth and observed that IAA produced by wild yeasts modifies auxin-inducible gene expression in Arabidopsis. Our data suggest that yeasts can promote plant growth and support ongoing prospecting of yeast strains for inclusion into biofertilizer for sustainable agriculture. PMID:25464336

  6. Transport and metabolism of indole-3-acetyl-myo-inositol-galactoside in seedlings of Zea mays

    Science.gov (United States)

    Komoszynski, M.; Bandurski, R. S.

    1986-01-01

    Indole-3-acetyl-myo-inositol galactoside labeled with 3H in the indole and 14C in the galactose moieties was applied to kernels of 5 day old germinating seedlings of Zea mays. Indole-3-acetyl-myo-inositol galactoside was not transported into either the shoot or root tissue as the intact molecule but was instead hydrolyzed to yield [3H]indole-3-acetyl-myo-inositol and [3H]indole-3-acetic acid which were then transported to the shoot with little radioactivity going to the root. With certain assumption concerning the equilibration of applied [3H]indole-3-acetyl-myo-inositol-[U-14C]galactose with the endogenous pool, it may be concluded that indole-3-acetyl-myo-inositol galactoside in the endosperm supplies about 2 picomoles per plant per hour of indole-3-acetyl-myo-inositol and 1 picomole per plant per hour of indole-3-acetic acid to the shoot and thus is comparable to indole-3-acetyl-myo-inositol as a source of indole-acetic acid for the shoot. Quantitative estimates of the amount of galactose in the kernels suggest that [3H]indole-3-acetyl-myo-inositol-[14C]galactose is hydrolyzed after the compound leaves the endosperm but before it reaches the shoot. In addition, [3H]indole-3-acetyl-myo-inositol-[14C]galactose supplies appreciable amounts of 14C to the shoot and both 14C and 3H to an uncharacterized insoluble fraction of the endosperm.

  7. Comparative Study for the Effect of Gibberellic acid, Kinetin and Indole-3-acetic acid on Seed Germination performance of Dianthus caryophyllus

    Directory of Open Access Journals (Sweden)

    Rajib Roychowdhury

    2012-07-01

    Full Text Available Seed germination is the major limiting factor for large-scale production and cultivation of crop species. Such attribute also positively as well as negatively affected by some potent plant growth regulators and other chemical compounds. For this, present experiment was undertaken with an objective to investigate the comparison of the effect of various concentrations of plant growth regulators like Gibberellic Acid (GA3, Kinetin and Indole-3-acetic acid (IAA on seed germination of Dianthus caryophyllus or Carnation. Dianthus seeds were soaked in different concentrations (0 ppm or control, 10, 20, 30 and 40 ppm of each of GA3, Kinetin and IAA for 24 h at room temperature (25 ± 2°C. Three replicates of each treatment with ten seeds per replicate were arranged for precise physiological analysis. Significant variation was found in all aspects after analysis of variance (ANOVA of each mean value. After two weeks of seed soaking, it was noted that germination percentages were significantly accelerated by lower concentrations (10 and 20 ppm of used hormones. Amongst the three potential growth regulators, 20 ppm was found most effective because it showed highest germination percentage for GA3 (87.46%, Kinetin (78.92% and IAA (75.35%. A great deal of information relating to seed germination practices shows that these plant growth regulators were efficient to overcoming dormancy leading to rapid seed germination. GA3 was selected as best hormone, in this study, which showed highest seed germination. These results could useful to large-scale cultivation of Dianthus caryophyllus plants for improving its floricultural impact worldwide.

  8. Biofilm formation and indole-3-acetic acid production by two rhizospheric unicellular cyanobacteria.

    Science.gov (United States)

    Ahmed, Mehboob; Stal, Lucas J; Hasnain, Shahida

    2014-08-01

    Microorganisms that live in the rhizosphere play a pivotal role in the functioning and maintenance of soil ecosystems. The study of rhizospheric cyanobacteria has been hampered by the difficulty to culture and maintain them in the laboratory. The present work investigated the production of the plant hormone indole-3-acetic acid (IAA) and the potential of biofilm formation on the rhizoplane of pea plants by two cyanobacterial strains, isolated from rice rhizosphere. The unicellular cyanobacteria Chroococcidiopsis sp. MMG-5 and Synechocystis sp. MMG-8 that were isolated from a rice rhizosphere, were investigated. Production of IAA by Chroococcidiopsis sp. MMG-5 and Synechocystis sp. MMG-8 was measured under experimental conditions (pH and light). The bioactivity of the cyanobacterial auxin was demonstrated through the alteration of the rooting pattern of Pisum sativum seedlings. The increase in the concentration of L-tryptophan and the time that this amino acid was present in the medium resulted in a significant enhancement of the synthesis of IAA (r > 0.900 at p = 0.01). There was also a significant correlation between the concentration of IAA in the supernatant of the cyanobacteria cultures and the root length and number of the pea seedlings. Observations made by confocal laser scanning microscopy revealed the presence of cyanobacteria on the surface of the roots and also provided evidence for the penetration of the cyanobacteria in the endorhizosphere. We show that the synthesis of IAA by Chroococcidiopsis sp. MMG-5 and Synechocystis sp. MMG-8 occurs under different environmental conditions and that the auxin is important for the development of the seedling roots and for establishing an intimate symbiosis between cyanobacteria and host plants.

  9. Studies on the growth and indole-3-acetic acid and abscisic acid content of Zea mays seedlings grown in microgravity

    Science.gov (United States)

    Schulze, A.; Jensen, P. J.; Desrosiers, M.; Buta, J. G.; Bandurski, R. S.

    1992-01-01

    Measurements were made of the fresh weight, dry weight, dry weight-fresh weight ratio, free and conjugated indole-3-acetic acid, and free and conjugated abscisic acid in seedlings of Zea mays grown in darkness in microgravity and on earth. Imbibition of the dry kernels was 17 h prior to launch. Growth was for 5 d at ambient orbiter temperature and at a chronic accelerational force of the order of 3 x 10(-5) times earth gravity. Weights and hormone content of the microgravity seedlings were, with minor exceptions, not statistically different from seedlings grown in normal gravity. The tissues of the shuttle-grown plants appeared normal and the seedlings differed only in the lack of orientation of roots and shoots. These findings, based upon 5 d of growth in microgravity, cannot be extrapolated to growth in microgravity for weeks, months, and years, as might occur on a space station. Nonetheless, it is encouraging, for prospects of bioregeneration of the atmosphere and food production in a space station, that no pronounced differences in the parameters measured were apparent during the 5 d of plant seedling growth in microgravity.

  10. Effect of benzyl amino purine and indole-3-acetic acid on propagation of Sterculia foetida in vitro

    Science.gov (United States)

    Yuniastuti, E.; Widodo, C. E.; Samanhudi; Delfianti, M. N. I.

    2018-03-01

    Sterculia foetida is an oval seed plants that can be used as biofuel, which is one of the environmental friendly fuels. This plant is quite hard to find because not many peoples cultivate the plants. An in vitro propagation is one way to preserve the plant. This research aimed to determine optimum concentration of benzyl amino purine (BAP) and indole-3-acetic acid (IAA) to propagate S. foetida in vitro. The results showed that woody plant medium (WPM) added by 4 mg L BAP-1 and 0.5 mg L IAA-1 was able to produce complete plantlet, whereas those added by 4 mg L BAP-1 and 1 mg L IAA-1 generated the best growth of shoot and leaves.

  11. Effects of Growth Hormones on Sprouting and Rooting of Jatropha ...

    African Journals Online (AJOL)

    MICHAEL HORSFALL

    ABSTRACT: This study was conducted to assess the effect of growth hormone on sprouting and rooting ability of Jatropha curcas (L). Stem cuttings from mature plants were treated with two types of growth hormones: Naphthalene Acetic Acid and Indole-3-Butyric Acid while the untreated cuttings were used as control.

  12. Determination of indole-3-acetic acid and indole-3-butyric acid in mung bean sprouts using high performance liquid chromatography with immobilized Ru(bpy)3(2+)-KMnO4 chemiluminescence detection.

    Science.gov (United States)

    Xi, Zhijun; Zhang, Zhujun; Sun, Yonghua; Shi, Zuolong; Tian, Wei

    2009-07-15

    A novel method for determination of indole-3-acetic acid (IAA) and indole-3-butyric acid (IBA) in an extract from mung bean sprouts using high performance liquid chromatography (HPLC) with chemiluminescence (CL) detection is described. The method is based on the CL reaction of auxin (indole-3-acetic acid and indole-3-butyric acid) with acidic potassium permanganate (KMnO(4)) and tris(2,2'-bipyridyl)ruthenium(II), which was immobilized on the cationic ion-exchange resin. The chromatographic separation was performed on a Nucleosil RP-C18 column (i.d.: 250 mm x 4.6 mm, particle size: 5 microm, pore size: 100) with an isocratic mobile phase consisting of methanol-water-acetic acid (45:55:1, v/v/v). At a flow rate of 1.0 mL min(-1), the total run time was 20 min. Under the optimal conditions, the linear ranges were 5.0x10(-8) to 5.0x10(-6)g mL(-1) and 5.0x10(-7) to 1.0x10(-5)g mL(-1) for IAA and IBA, respectively. The detection limits were 2.0x10(-8)g mL(-1) and 2.0x10(-7)g mL(-1) for IAA and IBA, respectively. The relative standard deviation (RSD) of intra-day were 3.1% and 2.3% (n=11) for 2x10(-6)g mL(-1) IAA and 2x10(-6)g mL(-1) IBA; The relative standard deviations of inter-day precision were 6.9% and 4.9% for 2x10(-6)g mL(-1) IAA and 2x10(-6)g mL(-1) IBA. The proposed method had been successfully applied to the determination of auxin in mung bean sprouts.

  13. Endophytes from medicinal plants and their potential for producing indole acetic acid, improving seed germination and mitigating oxidative stress* #

    Science.gov (United States)

    Khan, Abdul Latif; Gilani, Syed Abdullah; Waqas, Muhammad; Al-Hosni, Khadija; Al-Khiziri, Salima; Kim, Yoon-Ha; Ali, Liaqat; Kang, Sang-Mo; Asaf, Sajjad; Shahzad, Raheem; Hussain, Javid; Lee, In-Jung; Al-Harrasi, Ahmed

    2017-01-01

    Medicinal plants have been used by marginal communities to treat various ailments. However, the potential of endophytes within these bio-prospective medicinal plants remains unknown. The present study elucidates the endophytic diversity of medicinal plants (Caralluma acutangula, Rhazya stricta, and Moringa peregrina) and the endophyte role in seed growth and oxidative stress. Various organs of medicinal plants yielded ten endophytes, which were identified as Phoma sp. (6 isolates), Alternaria sp. (2), Bipolaris sp. (1), and Cladosporium sp. (1) based on 18S rDNA sequencing and phylogenetic analysis. The culture filtrates (CFs; 25%, 50%, and 100% concentrations) from these endophytes were tested against the growth of normal and dwarf mutant rice lines. Endophytic CF exhibited dose-dependent growth stimulation and suppression effects. CF (100%) of Phoma sp. significantly increased rice seed germination and growth compared to controls and other endophytes. This growth-promoting effect was due to the presence of indole acetic acid in endophytic CF. The gas chromatography/mass spectrometry (GC/MS) analysis showed the highest indole acetic acid content ((54.31±0.21) µmol/L) in Bipolaris sp. In addition, the isolate of Bipolaris sp. exhibited significantly higher radical scavenging and anti-lipid peroxidation activity than the other isolates. Bipolaris sp. and Phoma sp. also exhibited significantly higher flavonoid and phenolic contents. The medicinal plants exhibited the presence of bio-prospective endophytic strains, which could be used for the improvement of crop growth and the mitigation of oxidative stresses. PMID:28124841

  14. Endophytes from medicinal plants and their potential for producing indole acetic acid, improving seed germination and mitigating oxidative stress.

    Science.gov (United States)

    Khan, Abdul Latif; Gilani, Syed Abdullah; Waqas, Muhammad; Al-Hosni, Khadija; Al-Khiziri, Salima; Kim, Yoon-Ha; Ali, Liaqat; Kang, Sang-Mo; Asaf, Sajjad; Shahzad, Raheem; Hussain, Javid; Lee, In-Jung; Al-Harrasi, Ahmed

    Medicinal plants have been used by marginal communities to treat various ailments. However, the potential of endophytes within these bio-prospective medicinal plants remains unknown. The present study elucidates the endophytic diversity of medicinal plants (Caralluma acutangula, Rhazya stricta, and Moringa peregrina) and the endophyte role in seed growth and oxidative stress. Various organs of medicinal plants yielded ten endophytes, which were identified as Phoma sp. (6 isolates), Alternaria sp. (2), Bipolaris sp. (1), and Cladosporium sp. (1) based on 18S rDNA sequencing and phylogenetic analysis. The culture filtrates (CFs; 25%, 50%, and 100% concentrations) from these endophytes were tested against the growth of normal and dwarf mutant rice lines. Endophytic CF exhibited dose-dependent growth stimulation and suppression effects. CF (100%) of Phoma sp. significantly increased rice seed germination and growth compared to controls and other endophytes. This growth-promoting effect was due to the presence of indole acetic acid in endophytic CF. The gas chromatography/mass spectrometry (GC/MS) analysis showed the highest indole acetic acid content ((54.31±0.21) µmol/L) in Bipolaris sp. In addition, the isolate of Bipolaris sp. exhibited significantly higher radical scavenging and anti-lipid peroxidation activity than the other isolates. Bipolaris sp. and Phoma sp. also exhibited significantly higher flavonoid and phenolic contents. The medicinal plants exhibited the presence of bio-prospective endophytic strains, which could be used for the improvement of crop growth and the mitigation of oxidative stresses.

  15. Graphene oxide-SiO2 nanocomposite as the adsorbent for extraction and preconcentration of plant hormones for HPLC analysis.

    Science.gov (United States)

    Zhang, Xiaona; Niu, Jiahua; Zhang, Xiaoting; Xiao, Rui; Lu, Minghua; Cai, Zongwei

    2017-03-01

    In this research, a modified Quick, Easy, Cheap, Effective, Rugged and Safe (QuEChERS) method based on graphene oxide@SiO 2 (SiO 2 @GO) nanocomposite as adsorbent of dispersive solid-phase extraction (dSPE) combined with high performance liquid chromatography (HPLC) for the analysis of four plant hormones in different plants was established. The as-prepared SiO 2 @GO was characterized by scanning electron microscopy, transmission electron microscopy and infrared spectroscopy. The experimental conditions for dSPE, including the ratio of material to liquid, pH of sample, adsorption and desorption time, desorption temperature as well as desorption solution, were investigated. The detection limits for the analysis of indole-3-acetic acid, indole-3-butyric acid, 1-naphthylacetic acid and abscisic acid were achieved below 0.05μgmL -1 . The established method was applied to the analysis of the plant hormones in fruits, vegetables and other food samples. The obtained results indicated that the method was sensitive, accurate, convenient and quick, which provided an alternative analytical approach for plant hormones in complex matrices. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Transport and metabolism of indole-3-acetyl-myo-inositol-galactoside in seedlings of Zea mays

    International Nuclear Information System (INIS)

    Komoszynski, M.; Bandurski, R.S.

    1986-01-01

    Indole-3-acetyl-myo-inositol galactoside labeled with 3 H in the indole and 14 C in the galactose moieties was applied to kernels of 5 day old germinating seedlings of Zea mays. Indole-3-acetyl-myo-inositol galactoside was not transported into either the shoot or root tissue as the intact molecule but was instead hydrolyzed to yield [ 3 H]indole-3-acetyl-myo-inositol and [ 3 H]indole-3-acetic acid which were then transported to the shoot with little radioactivity going to the root. With certain assumptions concerning the equilibration of applied [ 3 H]indole-3-acetyl-myo-inositol-[U- 14 C]galactose with the endogenous pool, it may be concluded that indole-3-acetyl-myo-inositol galactoside in the endosperm supplies about 2 picomoles per plant per hour of indole-3-acetic acid to the shoot and thus is comparable to indole-3-acetyl-myo-inositol as a source of indoleacetic acid for the shoot. Quantitative estimates of the amount of galactose in the kernels suggest that [ 3 H]indole-3-acetyl-myo-inositol-[ 14 C] galactose is hydrolyzed after the compound leaves the endosperm but before it reaches the shoot. In addition, [ 3 H]indole-3-acetyl-myo-inositol-[ 14 C]galactose supplies appreciable amounts of 14 C to the shoot and both 14 C and 3 H to an uncharacterized insoluble fraction of the endosperm

  17. S-Alkylated/aralkylated 2-(1H-indol-3-yl-methyl)-1,3,4- oxadiazole-5 ...

    African Journals Online (AJOL)

    ylmethyl)-1,3,4- oxadiazole-5-thiol derivatives. Methods: 2-(1H-indol-3-yl)acetic acid (1) was reacted with absolute ethanol and catalytic amount of sulfuric acid to form ethyl 2-(1H-indol-3-yl)acetate (2) which was transformed to 2-(1H-indol-3- ...

  18. Tryptophan, thiamine and indole-3-acetic acid exchange between Chlorella sorokiniana and the plant growth-promoting bacterium Azospirillum brasilense.

    Science.gov (United States)

    Palacios, Oskar A; Gomez-Anduro, Gracia; Bashan, Yoav; de-Bashan, Luz E

    2016-06-01

    During synthetic mutualistic interactions between the microalga Chlorella sorokiniana and the plant growth-promoting bacterium (PGPB) Azospirillum brasilense, mutual exchange of resources involved in producing and releasing the phytohormone indole-3-acetic acid (IAA) by the bacterium, using tryptophan and thiamine released by the microalga, were measured. Although increased activities of tryptophan synthase in C. sorokiniana and indole pyruvate decarboxylase (IPDC) in A. brasilense were observed, we could not detect tryptophan or IAA in the culture medium when both organisms were co-immobilized. This indicates that no extra tryptophan or IAA is produced, apart from the quantities required to sustain the interaction. Over-expression of the ipdC gene occurs at different incubation times: after 48 h, when A. brasilense was immobilized alone and grown in exudates of C. sorokiniana and at 96 h, when A. brasilense was co-immobilized with the microalga. When A. brasilense was cultured in exudates of C. sorokiniana, increased expression of the ipdC gene, corresponding increase in activity of IPDC encoded by the ipdC gene, and increase in IAA production were measured during the first 48 h of incubation. IAA production and release by A. brasilense was found only when tryptophan and thiamine were present in a synthetic growth medium (SGM). The absence of thiamine in SGM yielded no detectable IAA. In summary, this study demonstrates that C. sorokiniana can exude sufficient tryptophan and thiamine to allow IAA production by a PGPB during their interaction. Thiamine is essential for IAA production by A. brasilense and these three metabolites are part of a communication between the two microorganisms. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  19. Low nitrogen stress stimulating the indole-3-acetic acid biosynthesis of Serratia sp. ZM is vital for the survival of the bacterium and its plant growth-promoting characteristic.

    Science.gov (United States)

    Ouyang, Liming; Pei, Haiyan; Xu, Zhaohui

    2017-04-01

    Serratia sp. ZM is a plant growth-promoting (PGP) bacterial strain isolated from the rhizospheric soil of Populus euphratica in northwestern China. In this study, low nitrogen supply significantly stimulated the production of indole-3-acetic acid (IAA) in Serratia sp.ZM. The inoculation of the bacterium to wheat seedlings improved plant growth compared with the uninoculated group, and the stimulating effect was more prominent under low nitrogen stress. Inactivation of the predicted key gene in the IAA biosynthesis pathway impaired IAA production and significantly hampered mutant growth in poor medium. Furthermore, the IAA-deficient mutant lost the PGP effect under either normal or low nitrogen conditions in plant experiments. This study revealed the significant impact of environmental nitrogen levels on IAA production in the PGP strain and the vital effect of IAA on resistance physiology of both the bacterium and host plant. The characteristics of Serratia sp. ZM also indicated its application potential as a biofertilizer for plants, especially those suffering from poor nitrogen soil.

  20. Endohyphal bacterium enhances production of indole-3-acetic acid by a foliar fungal endophyte.

    Directory of Open Access Journals (Sweden)

    Michele T Hoffman

    Full Text Available Numerous plant pathogens, rhizosphere symbionts, and endophytic bacteria and yeasts produce the important phytohormone indole-3-acetic acid (IAA, often with profound effects on host plants. However, to date IAA production has not been documented among foliar endophytes -- the diverse guild of primarily filamentous Ascomycota that live within healthy, above-ground tissues of all plant species studied thus far. Recently bacteria that live within hyphae of endophytes (endohyphal bacteria have been detected, but their effects have not been studied previously. Here we show not only that IAA is produced in vitro by a foliar endophyte (here identified as Pestalotiopsis aff. neglecta, Xylariales, but that IAA production is enhanced significantly when the endophyte hosts an endohyphal bacterium (here identified as Luteibacter sp., Xanthomonadales. Both the endophyte and the endophyte/bacterium complex appear to rely on an L-tryptophan dependent pathway for IAA synthesis. The bacterium can be isolated from the fungus when the symbiotic complex is cultivated at 36°C. In pure culture the bacterium does not produce IAA. Culture filtrate from the endophyte-bacterium complex significantly enhances growth of tomato in vitro relative to controls and to filtrate from the endophyte alone. Together these results speak to a facultative symbiosis between an endophyte and endohyphal bacterium that strongly influences IAA production, providing a new framework in which to explore endophyte-plant interactions.

  1. Plant tissue culture study on two different races of purslane ...

    African Journals Online (AJOL)

    PRECIOUS

    -mail: Safdari_14@yahoo.com. Abbreviations: BAP, 6-Benzylaminopurine; NAA, naphthalene acetic acid; IBA, indole-3 butyric acid. plant is largely deficit. Therefore, we decided to determi- nate the best hormonal treatment for callus induction.

  2. Endophytic actinomycetes from spontaneous plants of Algerian Sahara: indole-3-acetic acid production and tomato plants growth promoting activity.

    Science.gov (United States)

    Goudjal, Yacine; Toumatia, Omrane; Sabaou, Nasserdine; Barakate, Mustapha; Mathieu, Florence; Zitouni, Abdelghani

    2013-10-01

    Twenty-seven endophytic actinomycete strains were isolated from five spontaneous plants well adapted to the poor sandy soil and arid climatic conditions of the Algerian Sahara. Morphological and chemotaxonomical analysis indicated that twenty-two isolates belonged to the Streptomyces genus and the remaining five were non-Streptomyces. All endophytic strains were screened for their ability to produce indole-3-acetic acid (IAA) in vitro on a chemically defined medium. Eighteen strains were able to produce IAA and the maximum production occurred with the Streptomyces sp. PT2 strain. The IAA produced was further extracted, partially purified and confirmed by thin layer chromatography (TLC) analysis. The 16S rDNA sequence analysis and phylogenetic studies indicated that strain PT2 was closely related to Streptomyces enissocaecilis NRRL B 16365(T), Streptomyces rochei NBRC 12908(T) and Streptomyces plicatus NBRC 13071(T), with 99.52 % similarity. The production of IAA was affected by cultural conditions such as temperature, pH, incubation period and L-tryptophan concentration. The highest level of IAA production (127 μg/ml) was obtained by cultivating the Streptomyces sp. PT2 strain in yeast extract-tryptone broth supplemented with 5 mg L-tryptophan/ml at pH 7 and incubated on a rotary shaker (200 rpm) at 30 °C for 5 days. Twenty-four-hour treatment of tomato cv. Marmande seeds with the supernatant culture of Streptomyces sp. PT2 that contained the crude IAA showed the maximum effect in promoting seed germination and root elongation.

  3. Transport of Indole-3-Butyric Acid and Indole-3-Acetic Acid in Arabidopsis Hypocotyls Using Stable Isotope Labeling1[C][W][OA

    Science.gov (United States)

    Liu, Xing; Barkawi, Lana; Gardner, Gary; Cohen, Jerry D.

    2012-01-01

    The polar transport of the natural auxins indole-3-butyric acid (IBA) and indole-3-acetic acid (IAA) has been described in Arabidopsis (Arabidopsis thaliana) hypocotyls using radioactive tracers. Because radioactive assays alone cannot distinguish IBA from its metabolites, the detected transport from applied [3H]IBA may have resulted from the transport of IBA metabolites, including IAA. To test this hypothesis, we used a mass spectrometry-based method to quantify the transport of IBA in Arabidopsis hypocotyls by following the movement of [13C1]IBA and the [13C1]IAA derived from [13C1]IBA. We also assayed [13C6]IAA transport in a parallel control experiment. We found that the amount of transported [13C1]IBA was dramatically lower than [13C6]IAA, and the IBA transport was not reduced by the auxin transport inhibitor N-1-naphthylphthalamic acid. Significant amounts of the applied [13C1]IBA were converted to [13C1]IAA during transport, but [13C1]IBA transport was independent of IBA-to-IAA conversion. We also found that most of the [13C1]IBA was converted to ester-linked [13C1]IBA at the apical end of hypocotyls, and ester-linked [13C1]IBA was also found in the basal end at a level higher than free [13C1]IBA. In contrast, most of the [13C6]IAA was converted to amide-linked [13C6]IAA at the apical end of hypocotyls, but very little conjugated [13C6]IAA was found in the basal end. Our results demonstrate that the polar transport of IBA is much lower than IAA in Arabidopsis hypocotyls, and the transport mechanism is distinct from IAA transport. These experiments also establish a method for quantifying the movement of small molecules in plants using stable isotope labeling. PMID:22323783

  4. Indole-3-acetic acid/diol based pH-sensitive biological macromolecule for antibacterial, antifungal and antioxidant applications.

    Science.gov (United States)

    G, Chitra; D S, Franklin; S, Sudarsan; M, Sakthivel; S, Guhanathan

    2017-02-01

    Indole-3-acetic acid (IAA)/diol based pH-sensitive biopolymeric hydrogels with tunable biological properties (cytotoxicity, anti-oxidant and anti-fungal) have been synthesized via condensation polymerization. The present study focused on the synthesis of heterocyclic hydrogel using citric acid (CA), indole-3-acetic acid (IAA) and diethylene glycol (DEG) by condensation polymerization. The hydrogels revealed a pH-sensitive swelling behaviour, with increased swelling in acidic media, then turns to decreased the swelling in the basic media. The hydrogel samples were tested for antifungal activity against Aspergillus fumigates, Rhizopusoryzae and Candida albicans at different concentrations using ketoconazole as positive control and DMSO as negative control for antifungal activity. Antioxidant activity increasing nature in DPPH than NO radical compared with rutin and confirmed non toxic property using cytotoxicity analysis. The biopolymeric hydrogels were characterized by Fourier transform infrared (FT-IR) spectroscopy, 1 H NMR, 13 C NMR, TGA, DSC followed by scanning electron microscopy (SEM). Such hydrogels with antioxidant properties is recommended for medical applications such as bandages, catheters, drains and tubes to prevent infection. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Stable isotope labeling, in vivo, of D- and L-tryptophan pools in lemna gibba and the low incorporation of label into indole-3-acetic acid

    International Nuclear Information System (INIS)

    Baldi, B.G.; Maher, B.R.; Slovin, J.P.; Cohen, J.D.

    1991-01-01

    The authors present evidence that the role of tryptophan and other potential intermediates in the pathways that could lead to indole derivatives needs to be reexamined. Two lines of Lemna gibba were tested for uptake of [ 15 N-indole]-labeled tryptophan isomers and incorporation of that label into free indole-3-acetic acid (IAA). Both lines required levels of L-[ 15 N]tryptophan 2 to 3 orders of magnitude over endogenous levels in order to obtain measurable incorporation of label into IAA. Labeled L-tryptophan was extractable from plant tissue after feeding and showed no measurable isomerization into D-tryptophan. D-[ 15 N]trytophan supplied to Lemna at rates of approximately 400 times excess of endogenous D-tryptophan levels (to yield an isotopic enrichment equal to that which allowed detection of the incorporation of L-tryptophan into IAA), did not result in measurable incorporation of label into free IAA. These results demonstrate that L-tryptophan is a more direct precursor to IAA than the D isomer and suggest (a) that the availability of tryptophan in vivo is not a limiting factor in the biosynthesis of IAA, thus implying that other regulatory mechanisms are in operation and (b) that L-tryptophan also may not be a primary precursor to IAA in plants

  6. 1H-indol-3-yl-methyl

    African Journals Online (AJOL)

    Methods: 2-(1H-indol-3-yl)acetic acid (1) was reacted with absolute ethanol and catalytic amount of ... dehydration in the same pot with CBr4 and Ph3P. [6]. ... and used after distillation. ... distilled water or by solvent extraction depending.

  7. An in Vitro Assessment of Interaction Between Grape Phylloxera and Indole Acetic Acid Treated Grape Plants Daktulosphaira Vitifolia (FITCH)

    International Nuclear Information System (INIS)

    Makee, H.; Charbaji, T.; Idris, I.; Taher, N.

    2011-01-01

    the Life table of local strain of grape phylloxera was determined to evaluate the relationship between indole acetic acid (IAA) and phylloxera on our local variety Helwani. The study was carried out by applying in vitro dual culture system. The results showed that there was a great variation in mean developmental time, female longevity, number of laid eggs and egg distribution between all IAA concentrations and plant ages. Based on the tested biological parameters of phylloxera, (Helwani) would be unsuitable host for such destructive insect as it became older and when 2mg/1 of IAA was applied to in vitro culture media. (author)

  8. Interactions between indole-3-acetic acid (IAA) with a lectin from Canavalia maritima seeds reveal a new function for lectins in plant physiology.

    Science.gov (United States)

    Delatorre, Plinio; Silva-Filho, José Caetano; Rocha, Bruno Anderson Matias; Santi-Gadelha, Tatiane; da Nóbrega, Raphael Batista; Gadelha, Carlos Alberto Almeida; do Nascimento, Kyria Santiago; Nagano, Celso Shiniti; Sampaio, Alexandre Holanda; Cavada, Benildo Sousa

    2013-09-01

    Indole-3-acetic acid (IAA) bound is considered a storage molecule and is inactive. However, some studies have proposed an additional possible regulatory mechanism based on the ability of lectins to form complexes with IAA. We report the first crystal structure of ConM in complex with IAA at 2.15 Å resolution. Based on a tetrameric model of the complex, we hypothesize how the lectin controls the availability of IAA during the early seedling stages, indicating a possible new physiological role for these proteins. A free indole group is also bound to the protein. The ConM interaction with different forms of IAA is a strategy to render the phytohormone unavailable to the cell. Thus, this new physiological role proposed for legume lectins might be a novel mechanism by which IAA levels are decreased in addition to the destruction and formation of new complexes in the later stages of seed germination. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  9. Synthesis and evaluation of the plant growth regulator property of indolic compounds derived from safrole

    International Nuclear Information System (INIS)

    Marchi, Irineu; Rebelo, Ricardo Andrade; Rosa, Flavia A. Fernandes da; Maiochi, Riceli A.

    2007-01-01

    The present work describes the use of piperonal, a derivative of the secondary metabolite safrole, for the synthesis of new 5,6-methylenedioxy substituted indole carboxylic acids structurally related to the indol-3-yl-acetic acid (AIA, I). The route comprises six steps beginning with piperonal with an overall yield of 19%. Compound IX was tested towards its plant growth regulator properties in bioassays specific for auxine activity. The in vitro assays were performed in a germination chamber and were of two types: root growth in germinated seeds of Lactuca sativa, Cucumbis sativus and Raphanus sativus and peciole biotest using Phaseolus vulgaris. (author)

  10. Asymmetric distribution of glucose and indole-3-acetyl-myo-inositol in geostimulated Zea mays seedlings

    Science.gov (United States)

    Momonoki, Y. S.; Bandurski, R. S. (Principal Investigator)

    1988-01-01

    Indole-3-acetyl-myo-inositol occurs in both the kernel and vegetative shoot of germinating Zea mays seedlings. The effect of a gravitational stimulus on the transport of [3H]-5-indole-3-acetyl-myo-inositol and [U-14C]-D-glucose from the kernel to the seedling shoot was studied. Both labeled glucose and labeled indole-3-acetyl-myo-inositol become asymmetrically distributed in the mesocotyl cortex of the shoot with more radioactivity occurring in the bottom half of a horizontally placed seedling. Asymmetric distribution of [3H]indole-3-acetic acid, derived from the applied [3H]indole-3-acetyl-myo-inositol, occurred more rapidly than distribution of total 3H-radioactivity. These findings demonstrate that the gravitational stimulus can induce an asymmetric distribution of substances being transported from kernel to shoot. They also indicate that, in addition to the transport asymmetry, gravity affects the steady state amount of indole-3-acetic acid derived from indole-3-acetyl-myo-inositol.

  11. [Enhanced phytoextraction of heavy metal contaminated soil by chelating agents and auxin indole-3-acetic acid].

    Science.gov (United States)

    Zhou, Jian-min; Dang, Zhi; Chen, Neng-chang; Xu, Sheng-guang; Xie, Zhi-yi

    2007-09-01

    The environmental risk of chelating agents such as EDTA application to the heavy metals polluted soils and the stress on plant roots due to the abrupt increase metals concentration limit the wide commercial use of chelate-induced phytoextraction. Chelating agent ethylenediaminetetraacetic acid (EDTA) and nitrilotriacetic acid (NTA) and auxin indole-3-acetic acid (IAA) were used for enhancing heavy metals uptake from soils by Zea mays L. (corn) in pot experiments. The metals content in plant tissues was quantified using an inductively coupled plasma mass spectrometer (ICP-MS). The results showed that the combination of IAA and EDTA increased the biomass by about 40.0% and the contents of Cu, Zn, Cd and Pb in corn shoots by 27.0%, 26.8%, 27.5% and 32.8% respectively, as compared to those in EDTA treatment. While NTA&IAA treatment increased the biomass by about 29.9% and the contents of Cu, Zn, Cd and Pb in corn shoots by 31.8%, 27.6%, 17.0% and 26.9% respectively, as compared to those in NTA treatment. These results indicated that corn growth was promoted, and the biomass and the accumulation of heavy metals in plant shoots were increased significantly with the addition of IAA, which probably helps to change the cell membrane properties and the biomass distribution, resulting in the alleviation of the phytotoxicity of metals and the chelating agents.

  12. Effect of Indole-3-Acetic Acid-Producing Bacteria on Phytoremediation of Soil Contaminated with Phenanthrene and Anthracene by Mungbean

    Directory of Open Access Journals (Sweden)

    Waraporn Chouychai

    2016-07-01

    Full Text Available The use of indole-3-acetic acid (IAA-producing bacteria isolated from non-contaminated weed rhizosphere to enhance plant growth and PAH phytoremediation capacity was investigated. IAA-producing bacterial isolates, designated NSRU1, NSRU2, and NSRU3, were isolated from the rhizosphere of Eleusine indica (Poaceae and Chromolaena odorata (Asteraceae. The isolates were able to produce IAA in nutrient broth. However, when grown in the presence of 100 mg/l of either phenanthrene or anthracene, the amount of IAA produced by each isolate was reduced significantly. Mungbean seedlings were planted in 100 mg/kg phenanthrene- or anthracene-contaminated soil without or with inoculation of ≈106 CFU/g dry soil with one of the bacterial isolates. Inoculation with either NSRU1 or NSRU2 was effective at enhancing shoot length of mungbean in phenanthrene-contaminated soil on day 16. Also, inoculation with isolate NSRU1 led to increased root dry weight of mungbean in phenanthrene-contaminated soil on day 30. Phenanthrene and anthracene degradation on day 16 and 30 in planted and inoculated soil ranged between 92 - 93.8% and 92.2 - 94.1%, respectively, which were not significantly different from planted and uninoculated soil (93.9 and 94.9%. These data showed that IAA-producing bacteria could enhance plant growth, but was unable to increase PAH biodegradation under the conditions tested.

  13. Environmental Growth Conditions of Trichoderma spp. Affects Indole Acetic Acid Derivatives, Volatile Organic Compounds, and Plant Growth Promotion

    Science.gov (United States)

    Nieto-Jacobo, Maria F.; Steyaert, Johanna M.; Salazar-Badillo, Fatima B.; Nguyen, Dianne Vi; Rostás, Michael; Braithwaite, Mark; De Souza, Jorge T.; Jimenez-Bremont, Juan F.; Ohkura, Mana; Stewart, Alison

    2017-01-01

    Trichoderma species are soil-borne filamentous fungi widely utilized for their many plant health benefits, such as conferring improved growth, disease resistance and abiotic stress tolerance to their hosts. Many Trichoderma species are able to produce the auxin phytohormone indole-3-acetic acid (IAA), and its production has been suggested to promote root growth. Here we show that the production of IAA is strain dependent and diverse external stimuli are associated with its production. In in vitro assays, Arabidopsis primary root length was negatively affected by the interaction with some Trichoderma strains. In soil experiments, a continuum effect on plant growth was shown and this was also strain dependent. In plate assays, some strains of Trichoderma spp. inhibited the expression of the auxin reporter gene DR5 in Arabidopsis primary roots but not secondary roots. When Trichoderma spp. and A. thaliana were physically separated, enhancement of both shoot and root biomass, increased root production and chlorophyll content were observed, which strongly suggested that volatile production by the fungus influenced the parameters analyzed. Trichoderma strains T. virens Gv29.8, T. atroviride IMI206040, T. sp. “atroviride B” LU132, and T. asperellum LU1370 were demonstrated to promote plant growth through volatile production. However, contrasting differences were observed with LU1370 which had a negative effect on plant growth in soil but a positive effect in plate assays. Altogether our results suggest that the mechanisms and molecules involved in plant growth promotion by Trichoderma spp. are multivariable and are affected by the environmental conditions. PMID:28232840

  14. Degradation of N-heterocyclic indole by a novel endophytic fungus Phomopsis liquidambari.

    Science.gov (United States)

    Chen, Yan; Xie, Xing-Guang; Ren, Cheng-Gang; Dai, Chuan-Chao

    2013-02-01

    A broad-spectrum endophytic Phomopsis liquidambari, was used to degrade environmental pollutant indole. In the condition of using indole as sole carbon and nitrogen source, the optimum concentration of indole supplied was determined to be 100 mg L(-1), with 41.7% ratio of indole degradation within 120 h. Exogenous addition of plant litter significantly increased indole degradation to 99.1% within 60 h. Indole oxidation to oxindole and isatin were the key steps limiting indole degradation. Plant litter addition induced fungus to produce laccase and LiP to non-specific oxidize indole. The results of fungal metabolites pathway through HPLC-MS and NMR analysis showed that indole was firstly oxidized to oxindole and isatin, and deoxidated to indolenie-2-dione, then hydroxylated to 2-dioxindole, which pyridine ring were cleaved through C-N position and changed to 2-aminobenzoic acid. Such metabolic pathway was similar with bacterial degradation of indole-3-acetic acid in plant. Copyright © 2012 Elsevier Ltd. All rights reserved.

  15. Hormonal regulation of floret closure of rice (Oryza sativa.

    Directory of Open Access Journals (Sweden)

    Youming Huang

    Full Text Available Plant hormones play important roles in regulating every aspect of growth, development, and metabolism of plants. We are interested in understanding hormonal regulation of floret opening and closure in plants. This is a particularly important problem for hybrid rice because regulation of flowering time is vitally important in hybrid rice seed production. However, little was known about the effects of plant hormones on rice flowering. We have shown that jasmonate and methyl jasmonate play significant roles in promoting rice floret opening. In this study, we investigated the effects of auxins including indole-3-acidic acid (IAA, indole-3-butyric acid (IBA, 1-naphthalene-acetic acid (NAA, 2,4-dichlorophenoxy acetic acid (2,4-D and 3,6-dichloro-2-methoxybenzoic acid (DIC and abscisic acid (ABA on floret closure of four fertile and three sterile varieties of rice. The results from field studies in three growing seasons in 2013-2015 showed that the percentages of closed florets were significantly lower in plants treated with IAA, IBA, 2,4-D, DIC and NAA and that the durations of floret opening were significantly longer in plants treated with the same auxins. The auxins exhibited time- and concentration-dependant effects on floret closure. ABA displayed opposite effects of auxins because it increased the percentages of floret closure and decreased the length of floret opening of rice varieties. The degree of auxin-inhibiting and ABA-promoting effects on floret closure was varied somewhat but not significantly different among the rice varieties. Endogenous IAA levels were the highest in florets collected shortly before opening followed by a sharp decline in florets with maximal angles of opening and a significant jump of IAA levels shortly after floret closure in both fertile and sterile rice plants. ABA levels showed an opposite trend in the same samples. Our results showed that auxins delayed but ABA promoted the closure of rice floret regardless of

  16. Hormonal regulation of floret closure of rice (Oryza sativa)

    Science.gov (United States)

    Huang, Youming; Zeng, Xiaochun

    2018-01-01

    Plant hormones play important roles in regulating every aspect of growth, development, and metabolism of plants. We are interested in understanding hormonal regulation of floret opening and closure in plants. This is a particularly important problem for hybrid rice because regulation of flowering time is vitally important in hybrid rice seed production. However, little was known about the effects of plant hormones on rice flowering. We have shown that jasmonate and methyl jasmonate play significant roles in promoting rice floret opening. In this study, we investigated the effects of auxins including indole-3-acidic acid (IAA), indole-3-butyric acid (IBA), 1-naphthalene-acetic acid (NAA), 2,4-dichlorophenoxy acetic acid (2,4-D) and 3,6-dichloro-2-methoxybenzoic acid (DIC) and abscisic acid (ABA) on floret closure of four fertile and three sterile varieties of rice. The results from field studies in three growing seasons in 2013–2015 showed that the percentages of closed florets were significantly lower in plants treated with IAA, IBA, 2,4-D, DIC and NAA and that the durations of floret opening were significantly longer in plants treated with the same auxins. The auxins exhibited time- and concentration-dependant effects on floret closure. ABA displayed opposite effects of auxins because it increased the percentages of floret closure and decreased the length of floret opening of rice varieties. The degree of auxin-inhibiting and ABA-promoting effects on floret closure was varied somewhat but not significantly different among the rice varieties. Endogenous IAA levels were the highest in florets collected shortly before opening followed by a sharp decline in florets with maximal angles of opening and a significant jump of IAA levels shortly after floret closure in both fertile and sterile rice plants. ABA levels showed an opposite trend in the same samples. Our results showed that auxins delayed but ABA promoted the closure of rice floret regardless of the varieties

  17. Nanobiotechnology approach using plant rooting hormone synthesized silver nanoparticle as “nanobullets” for the dynamic applications in horticulture – An in vitro and ex vitro study

    Directory of Open Access Journals (Sweden)

    Raja Muthuramalingam Thangavelu

    2018-01-01

    Full Text Available Horticulture is the branch of agriculture that deals with science and technology and business of plant cultivation and it is considered to be the foremost part of the world economy. Even though, one of the major challenges which has seriously influenced the economic loss of horticulture is rooting of cuttings and root growth inhibiting plant pathogens. To address this issue through nanobiotechnology, we ingeniously build a concept of silver nanoparticles (AgNPs as “nano-bullets” can act for a dual mode like root enhancer and pathogen destroyer on the target site. After that, we succeeded in AgNPs synthesis, using two auxin rooting hormones of Indole-3-acetic acid and Indole-3-butyric acid as a reducing cum stabilizing agent. Further, its efficacy of root promoting and pathogen inhibitory action was sufficiently validated through in vitro and ex vitro studies with model plants and plant pathogens. As a result, the action duality of hormone-stabilized AgNPs was manifested to threefold enhanced root growth compared to controls and it increased the rooting capabilities against root growth inhibiting phytopathogens. This feature was also proved by the direct antifungal assay. Moreover, hormone-AgNPs left no toxicity to treated plants which was revealed by RAPD molecular markers. Therefore, with a detailed study and analysis with instruments such as Spectroscopy, TEM, Zetasizer, FTIR, Cyclic Voltammetry, Fluorescence microscopy (nanoparticles uptake, SEM coupled with EDS (bioaccumulation, TGA (grafting density and PCR (RAPD analysis, this study can unravel the relevance, scope and current challenges at horticulture plants root development and plant disease management for the sustainable agricultural crop production.

  18. The chloroindole auxins of pea, strong plant growth hormones or endogenous herbicides

    International Nuclear Information System (INIS)

    Engvild, K.C.

    1994-02-01

    In this work the three theses below are discussed: 1) Identification and quantitative determination of the very strong plant hormone, the auxin 4-chloroindole-3-acetic acid methyl ester, in immature seeds of Pisum, Vicia, Lathyrus, and Lens spp. by incorporation of radioactive 36 Cl, thin layer chromatography, autoradiography, colour reactions, and gas chromatography/mass spectrometry. 2) The strong biological activity of 4-chloroindole-3-acetic acid and its analogues and its ability to induce strong, almost irreversible, ethylene evolution. 3) The possible role of chloroindole auxin in plants, particularly if it might be the hypothetical death hormone, secreted from developing seeds, which induces senescence and kills the mother plant at maturity; if plants generally have several auxin types, growth promoters and endogenous herbicides; and if other chlorine-containing plant hormones occur in developing seeds of other crop species. (au) (7 tabs., 8 ills., 144 refs.)

  19. Circadian changes in endogenous concentrations of indole-3-acetic acid, melatonin, serotonin, abscisic acid and jasmonic acid in Characeae (Chara australis Brown).

    Science.gov (United States)

    Beilby, Mary J; Turi, Christina E; Baker, Teesha C; Tymm, Fiona Jm; Murch, Susan J

    2015-01-01

    Giant-celled Characeae (Chara australis Brown), grown for 4 months on 12/12 hr day/night cycle and summer/autumn temperatures, exhibited distinct concentration maxima in auxin (indole-3-acetic acid; IAA), melatonin and serotonin about 4 hr after subjective daybreak. These concentration peaks persisted after 3 day pretreatment in continuous darkness: confirming a circadian rhythm, rather than a response to "light on." The plants pretreated for 3 d in continuous light exhibited several large IAA concentration maxima throughout the 24 hr. The melatonin and serotonin concentrations decreased and were less synchronized with IAA. Chara plants grown on 9/15 hr day/night cycle for 4 months and winter/spring temperatures contained much smaller concentrations of IAA, melatonin and serotonin. The IAA concentration maxima were observed in subjective dark phase. Serotonin concentration peaks were weakly correlated with those of IAA. Melatonin concentration was low and mostly independent of circadian cycle. The "dark" IAA concentration peaks persisted in plants treated for 3 d in the dark. The plants pretreated for 3 d in the light again developed more IAA concentration peaks. In this case the concentration maxima in melatonin and serotonin became more synchronous with those in IAA. The abscisic acid (ABA) and jasmonic acid (JA) concentrations were also measured in plants on winter regime. The ABA concentration did not exhibit circadian pattern, while JA concentration peaks were out of phase with those of IAA. The data are discussed in terms of crosstalk between metabolic pathways.

  20. First draft genome sequencing of indole acetic acid producing and plant growth promoting fungus Preussia sp. BSL10.

    Science.gov (United States)

    Khan, Abdul Latif; Asaf, Sajjad; Khan, Abdur Rahim; Al-Harrasi, Ahmed; Al-Rawahi, Ahmed; Lee, In-Jung

    2016-05-10

    Preussia sp. BSL10, family Sporormiaceae, was actively producing phytohormone (indole-3-acetic acid) and extra-cellular enzymes (phosphatases and glucosidases). The fungus was also promoting the growth of arid-land tree-Boswellia sacra. Looking at such prospects of this fungus, we sequenced its draft genome for the first time. The Illumina based sequence analysis reveals an approximate genome size of 31.4Mbp for Preussia sp. BSL10. Based on ab initio gene prediction, total 32,312 coding sequences were annotated consisting of 11,967 coding genes, pseudogenes, and 221 tRNA genes. Furthermore, 321 carbohydrate-active enzymes were predicted and classified into many functional families. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Effects of Plant Growth Hormones on Mucor indicus Growth and Chitosan and Ethanol Production.

    Science.gov (United States)

    Safaei, Zahra; Karimi, Keikhosro; Golkar, Poorandokht; Zamani, Akram

    2015-07-22

    The objective of this study was to investigate the effects of indole-3-acetic acid (IAA) and kinetin (KIN) on Mucor indicus growth, cell wall composition, and ethanol production. A semi-synthetic medium, supplemented with 0-5 mg/L hormones, was used for the cultivations (at 32 °C for 48 h). By addition of 1 mg/L of each hormone, the biomass and ethanol yields were increased and decreased, respectively. At higher levels, however, an inverse trend was observed. The glucosamine fraction of the cell wall, as a representative for chitosan, followed similar but sharper changes, compared to the biomass. The highest level was 221% higher than that obtained without hormones. The sum of glucosamine and N-acetyl glucosamine (chitin and chitosan) was noticeably enhanced in the presence of the hormones. Increase of chitosan was accompanied by a decrease in the phosphate content, with the lowest phosphate (0.01 g/g cell wall) being obtained when the chitosan was at the maximum (0.45 g/g cell wall). In conclusion, IAA and KIN significantly enhanced the M. indicus growth and chitosan production, while at the same time decreasing the ethanol yield to some extent. This study shows that plant growth hormones have a high potential for the improvement of fungal chitosan production by M. indicus.

  2. Wounding of Arabidopsis leaves induces indole-3-carbinol-dependent autophagy in roots of Arabidopsis thaliana.

    Science.gov (United States)

    Katz, Ella; Chamovitz, Daniel A

    2017-09-01

    In cruciferous plants insect attack or physical damage induce the synthesis of the glucosinolate breakdown product indole-3-carbinol, which plays a key role in the defense against attackers. Indole-3-carbinol also affects plant growth and development, acting as an auxin antagonist by binding to the TIR1 auxin receptor. Other potential functions of indole-3-carbinol and the underlying mechanisms in plant biology are unknown. Here we show that an indole-3-carbinol-dependent signal induces specific autophagy in root cells. Leaf treatment with exogenous indole-3-carbinol or leaf-wounding induced autophagy and inhibited auxin response in the root. This induction is lost in glucosinolate-defective mutants, indicating that the effect of indole-3-carbinol is transported in the plants. Thus, indole-3-carbinol is not only a defensive metabolite that repels insects, but is also involved in long-distance communication regulating growth and development in plants. © 2017 The Authors The Plant Journal © 2017 John Wiley & Sons Ltd.

  3. Uniconazole effect on endogenous hormones, proteins and proline contents of barley plants (Hordium vulgare under salinity stress (NaCl

    Directory of Open Access Journals (Sweden)

    MOHAMED A. BAKHETA

    2014-05-01

    Full Text Available Bakheta MA, Hussein MM. 2014. Uniconazole effect on endogenous hormones, proteins and proline contents of barley plants (Hordium vulgare under salinity stress (NaCl. Nusantara Bioscience 6: 39-44. Pot experiments were carried out during two growth seasons 2010 / 2011 under greenhouse conditions of the National Research Centre, Dokki, Cairo, Egypt to investigate the response of barley plants (Hordium vulgare L grown under salinity stress (2500 or 5000 ppm to spraying with solutions of uniconazole at 150 or 200 ppm. The obtained results showed that irrigation with saline solutions caused increases in the amounts of abscisic acid (ABA, crude protein, total soluble-protein and proline contents. The results showed that spraying barley plants grown under saline solutions with uniconazole increased endogenous hormone contents of ABA, cytokinins, crude protein, total soluble protein and proline but caused decreases in the amounts of endogenous indole acetic acid (IAA and gibberellic acid (GA3. High protection of abscisic acid in treating plants with uniconazole and under salt stress (interaction effect increases proline, proteins and soluble protein which has been proposed to act as compatible solutes that adjust the osmotic potential in the cytoplasm. Thus, these biochemical characters can be used as a metabolic marker in relation to salinity stress.

  4. New 3H-Indole Synthesis by Fischer’s Method. Part I.

    Directory of Open Access Journals (Sweden)

    Sami Sajjadifar

    2010-04-01

    Full Text Available Methyl indolenines (4a-c and(5a-c were prepared in high yield by a Fischer indole synthesis reaction of o,m-tolylhydrazine hydrochlorides (1a-b with isopropyl methyl ketone (2 and 2-methylcyclohexanone (3 in acetic acid at room temperature. o,p- Nitrophenylhydrazines (1c-d were reacted with 2-methylcyclohexanone (3 in acetic acid at reflux to give nitroindolenines (5d-e, while the attempted reactions of o,p-nitrohydrazines with isopropyl methyl ketone (2 in acetic acid were not successful. Compounds(1c-d were reacted with isopropyl methyl ketone (2 in acetic acid/HCl to give 2,3,3-trimethyl-5-nitro-indolenine (4e and 2,3,3-trimethyl-7-nitroindolenine (4d.

  5. Efficient plant regeneration of bittersweet (Solanum dulcamara L., a medicinal plant

    Directory of Open Access Journals (Sweden)

    Arzu Ucar Turker

    2011-01-01

    Full Text Available Solanum dulcamara L. (bittersweet is a medicinal plant that has been used to treat skin diseases, warts, tumors, felons, arthritis, rheumatism, bronchial congestion, heart ailments, ulcerative colitis, eye inflammations, jaundice and pneumonia. A reliable in vitro culture protocol for bittersweet was established. Explants (leaf and petiole segments were cultured on Murashige and Skoog minimal organics (MSMO medium with various plant growth regulator combinations. Leaf explants formed more shoots than petiole explants. Plant regeneration was observed through indirect organogenesis with both explants. Best shoot proliferation was obtained from leaf explants with 3 mg/l BA (benzyladenine and 0.5 mg/l IAA (indole-3-acetic acid. Regenerated shoots were transferred to rooting media containing different levels of IAA (indole-3-acetic acid, IBA (indole-3-butyric acid, NAA (naphthalene acetic acid or 2,4-D (2,4 dichlorophenoxyacetic acid. Most shoots developed roots on medium with 0.5 mg/l IBA. Rooted explants were transferred to vermiculate in Magenta containers for acclimatization and after 2 weeks, they were planted in plastic pots containing potting soil and maintained in the plant growth room.

  6. Distribution of indole-3-acetic acid in Petunia hybrida shoot tip cuttings and relationship between auxin transport, carbohydrate metabolism and adventitious root formation.

    OpenAIRE

    Ahkami, Amir H.; Melzer, Michael; Ghaffari, Mohammad R.; Pollmann, Stephan; Ghorbani, Majid; Shahinnia, Fahimeh; Hajirezaei, Mohammad R.; Druege, Uwe

    2013-01-01

    To determine the contribution of polar auxin transport (PAT) to auxin accumulation and to adventitious root (AR) formation in the stem base of Petunia hybrida shoot tip cuttings, the level of indole-3-acetic acid (IAA) was monitored in non-treated cuttings and cuttings treated with the auxin transport blocker naphthylphthalamic acid (NPA) and was complemented with precise anatomical studies. The temporal course of carbohydrates, amino acids and activities of controlling enzymes was also inves...

  7. Production of the Plant Hormone Auxin by Salmonella and Its Role in the Interactions with Plants and Animals.

    Science.gov (United States)

    Cox, Clayton E; Brandl, Maria T; de Moraes, Marcos H; Gunasekera, Sarath; Teplitski, Max

    2017-01-01

    The ability of human enteric pathogens to colonize plants and use them as alternate hosts is now well established. Salmonella , similarly to phytobacteria, appears to be capable of producing the plant hormone auxin via an indole-3-pyruvate decarboxylase (IpdC), a key enzyme of the IPyA pathway. A deletion of the Salmonella ipdC significantly reduced auxin synthesis in laboratory culture. The Salmonella ipdC gene was expressed on root surfaces of Medicago truncatula . M. truncatula auxin-responsive GH3::GUS reporter was activated by the wild type Salmonella , and not but the ipdC mutant, implying that the bacterially produced IAA (Indole Acetic Acid) was detected by the seedlings. Seedling infections with the wild type Salmonella caused an increase in secondary root formation, which was not observed in the ipdC mutant. The wild type Salmonella cells were detected as aggregates at the sites of lateral root emergence, whereas the ipdC mutant cells were evenly distributed in the rhizosphere. However, both strains appeared to colonize seedlings well in growth pouch experiments. The ipdC mutant was also less virulent in a murine model of infection. When mice were infected by oral gavage, the ipdC mutant was as proficient as the wild type strain in colonization of the intestine, but it was defective in the ability to cross the intestinal barrier. Fewer cells of the ipdC mutant, compared with the wild type strain, were detected in Peyer's patches, spleen and in the liver. Orthologs of ipdC are found in all Salmonella genomes and are distributed among many animal pathogens and plant-associated bacteria of the Enterobacteriaceae , suggesting a broad ecological role of the IpdC-catalyzed pathway.

  8. Development of a rapid LC-DAD/FLD method for the simultaneous determination of auxins and abscisic acid in plant extracts.

    Science.gov (United States)

    Bosco, Renato; Caser, Matteo; Vanara, Francesca; Scariot, Valentina

    2013-11-20

    Plant hormones play a crucial role in controlling plant growth and development. These groups of naturally occurring substances trigger physiological processes at very low concentrations, which mandate sensitive techniques for their quantitation. This paper describes a method to quantify endogenous (±)-2-cis-4-trans-abscisic acid, indole-3-acetic acid, indole-3-propionic acid, and indole-3-butyric acid. The method combines high-performance liquid chromatography (HPLC) with diode array and fluorescence detection in a single run. Hybrid tea rose 'Monferrato' matrices (leaves, petals, roots, seeds, androecium, gynoecium, and pollen) were used as references. Rose samples were separated and suspended in extracting methanol, after which (±)-2-cis-4-trans-abscisic acid and auxins were extracted by solvent extraction. Sample solutions were added first to cation solid phase extraction (SPE) cartridges and the eluates to anion SPE cartridges. The acidic hormones were bound to the last column and eluted with 5% phosphoric acid in methanol. Experimental results showed that this approach can be successfully applied to real samples and that sample preparation and total time for routine analysis can be greatly reduced.

  9. Variation in Indole-3-Acetic Acid Production by Wild Saccharomyces cerevisiae and S. paradoxus Strains from Diverse Ecological Sources and Its Effect on Growth.

    Science.gov (United States)

    Liu, Yen-Yu; Chen, Hung-Wei; Chou, Jui-Yu

    2016-01-01

    Phytohormone indole-3-acetic acid (IAA) is the most common naturally occurring and most thoroughly studied plant growth regulator. Microbial synthesis of IAA has long been known. Microbial IAA biosynthesis has been proposed as possibly occurring through multiple pathways, as has been proven in plants. However, the biosynthetic pathways of IAA and the ecological roles of IAA in yeast have not been widely studied. In this study, we investigated the variation in IAA production and its effect on the growth of Saccharomyces cerevisiae and its closest relative Saccharomyces paradoxus yeasts from diverse ecological sources. We found that almost all Saccharomyces yeasts produced IAA when cultured in medium supplemented with the primary precursor of IAA, L-tryptophan (L-Trp). However, when cultured in medium without L-Trp, IAA production was only detected in three strains. Furthermore, exogenous added IAA exerted stimulatory and inhibitory effects on yeast growth. Interestingly, a negative correlation was observed between the amount of IAA production in the yeast cultures and the IAA inhibition ratio of their growth.

  10. A novel tool for studying auxin-metabolism: the inhibition of grapevine indole-3-acetic acid-amido synthetases by a reaction intermediate analogue.

    Directory of Open Access Journals (Sweden)

    Christine Böttcher

    Full Text Available An important process for the regulation of auxin levels in plants is the inactivation of indole-3-acetic acid (IAA by conjugation to amino acids. The conjugation reaction is catalysed by IAA-amido synthetases belonging to the family of GH3 proteins. Genetic approaches to study the biological significance of these enzymes have been hampered by large gene numbers and a high degree of functional redundancy. To overcome these difficulties a chemical approach based on the reaction mechanism of GH3 proteins was employed to design a small molecule inhibitor of IAA-amido synthetase activity. Adenosine-5'-[2-(1H-indol-3-ylethyl]phosphate (AIEP mimics the adenylated intermediate of the IAA-conjugation reaction and was therefore proposed to compete with the binding of MgATP and IAA in the initial stages of catalysis. Two grapevine IAA-amido synthetases with different catalytic properties were chosen to test the inhibitory effects of AIEP in vitro. GH3-1 has previously been implicated in the grape berry ripening process and is restricted to two amino acid substrates, whereas GH3-6 conjugated IAA to 13 amino acids. AIEP is the most potent inhibitor of GH3 enzymes so far described and was shown to be competitive against MgATP and IAA binding to both enzymes with K(i-values 17-68-fold lower than the respective K(m-values. AIEP also exhibited in vivo activity in an ex planta test system using young grape berries. Exposure to 5-20 µM of the inhibitor led to decreased levels of the common conjugate IAA-Asp and reduced the accumulation of the corresponding Asp-conjugate upon treatment with a synthetic auxin. AIEP therefore represents a novel chemical probe with which to study IAA-amido synthetase function.

  11. Separation of plant hormones from biofertilizer by capillary electrophoresis using a capillary coated dynamically with polycationic polymers.

    Science.gov (United States)

    Jiang, Ting-Fu; Lv, Zhi-Hua; Wang, Yuan-Hong; Yue, Mei-E

    2006-06-01

    A new, simple and rapid capillary electrophoresis (CE) method, using hexadimethrine bromide (HDB) as electroosmotic flow (EOF) modifier, was developed for the identification and quantitative determination of four plant hormones, including gibberellin A3 (GA3), indole-3-acetic acid (IAA), alpha-naphthaleneacetic acid (NAA) and 4-chlorophenoxyacetic acid (4-CA). The optimum separation was achieved with 20 mM borate buffer at pH 10.00 containing 0.005% (w/v) of HDB. The applied voltage was -25 kV and the capillary temperature was kept constant at 25 degrees C. Salicylic acid was used as internal standard for quantification. The calibration dependencies exhibited good linearity within the ratios of the concentrations of standard samples and internal standard and the ratios of the peak areas of samples and internal standard. The correlation coefficients were from 0.9952 to 0.9997. The relative standard deviations of migration times and peak areas were biofertilizer were successfully determined within 7 min, with satisfactory repeatability and recovery.

  12. Changes in endogenous hormone contents of pear stock ( Pyrus ...

    African Journals Online (AJOL)

    In this study, changes in endogenous hormone contents of pear stock seeds during cold stratification were investigated. Abscisic acid (ABA) content decreased with increase in the periods of stratification of pear stock seeds. However, gibberellic acid (GA) and indole-3-acetic acid (IAA) contents of Pyrus betulaefolia and ...

  13. Effect of different auxins on the establishment of damask rose cuttings in different media

    International Nuclear Information System (INIS)

    Khan, M.S.; Khan, R.U.K.; Baloach, J.U.D.

    2007-01-01

    Effect of indole-3-acetic acid and naphthalene acetic acid treatments on the establishment of damask rose (Rosa damascena Mill) cuttings indifferent growth media was evaluated and it was revealed that the average number of roots and rooting percentage gradually increased with increase in hormone concentration. The maximum number of roots (15.72), rooting percentage (94.17 %), plant height (134.2 cm), plant spread (46.3 cm), primary shoots (6.3), secondary shoots (25) and survival percentage (94.72%) was recorded for 50 mg/l naphthalene acetic acid application; the results were superior to indole-3-acetic acid, the optimum level being in the range of 50 and 75 mg/l. No such conclusion could be drawn for indole-3-acetic acid. The leaf mold was t.he best growth medium giving the maximum number of roots per cutting (10.78), rooting percentage (87.68%), plant height (125.1 cm), plant spread (37 cm), primary shoots (5.2), secondary shoots (19.48) and survival percentage (85.67%), followed by soil + leaf mold, while soil medium was the least effective. (author)

  14. Effects of indole-3-acetic acid on arsenic uptake and antioxidative enzymes in Pteris cretica var. nervosa and Pteris ensiformis.

    Science.gov (United States)

    He, Shujuan; Hu, Yongjun; Wang, Hongbin; Wang, Haijuan; Li, Qinchun

    2017-03-04

    A hydroponic experiment was conducted to investigate the effects of indole-3-acetic acid (IAA) on arsenic (As) uptake and antioxidative enzymes in fronds of Pteris cretica var. nervosa (As hyperaccumulator) and Pteris ensiformis (non-hyperaccumulator). Plants were exposed to 2 mg L -1 As(III), As(V) or dimethylarsinic acid (DMA) and IAA concentrations for 14 d. The biomass and total As in the plants significantly increased at 30 mg L -1 IAA. Superoxide dismutase (SOD) activities significantly increased with IAA addition. Catalase (CAT) activities showed a significant increase in P. ensiformis exposed to three As species at 30 or 50 mg L -1 IAA but varied in P. cretica var. nervosa. Peroxidase (POD) activities were unchanged in P. ensiformis except for a significant decrease at 50 mg L -1 IAA under As(III) treatment. However, a significant increase was observed in P. cretica var. nervosa at 10 mg L -1 IAA under As(III) or DMA treatment and at 50 mg L -1 IAA under As(V) treatment. Under DMA stress, malondialdehyde contents in fronds of P. cretica var. nervosa showed a significant decrease at 10 mg L -1 IAA but remained unchanged in P. ensiformis. Therefore, IAA enhanced As uptake and frond POD activity in P. cretica var. nervosa under As stress.

  15. Changes in the level of [14C]indole-3-acetic acid and [14C]indoleacetylaspartic acid during root formation in mung bean cuttings

    International Nuclear Information System (INIS)

    Norcini, J.G.; Heuser, C.W.

    1988-01-01

    Changes in the levels of [ 14 C]indole-3-acetic acid (IAA) and [ 14 C]indoleacetylaspartic acid (IAAsp) were examined during adventitious root formation in mung bean (Vigna radiata [L.] R. Wilcz. Berken) stem cuttings. IAAsp was identified by GC-MS as the primary conjugate in IAA-treated cuttings. During root formation in IAA-treated cuttings, the level of [ 14 C]IAAsp increased rapidly the first day and then declined; [ 14 C]IAA was rapidly metabolized and not detected after 12 hours

  16. The ipdC, hisC1 and hisC2 genes involved in indole-3-acetic production used as alternative phylogenetic markers in Azospirillum brasilense.

    Science.gov (United States)

    Jijón-Moreno, Saúl; Marcos-Jiménez, Cynthia; Pedraza, Raúl O; Ramírez-Mata, Alberto; de Salamone, I García; Fernández-Scavino, Ana; Vásquez-Hernández, Claudia A; Soto-Urzúa, Lucia; Baca, Beatriz E

    2015-06-01

    Plant growth-promoting bacteria of the genus Azospirillum are present in the rhizosphere and as endophytes of many crops. In this research we studied 40 Azospirillum strains isolated from different plants and geographic regions. They were first characterized by 16S rDNA restriction analysis, and their phylogenetic position was established by sequencing the genes 16S rDNA, ipdC, hisC1, and hisC2. The latter three genes are involved in the indole-3-pyruvic acid (IPyA) biosynthesis pathway of indole-3-acetic acid (IAA). Furthermore, the suitability of the 16S-23S rDNA intergenic spacer sequence (IGS) for the differentiation of closely related Azospirillum taxa and development of PCR protocols allows for specific detection of strains. The IGS-RFLP analysis enabled intraspecies differentiation, particularly of Azospirillum brasilense and Azospirillum lipoferum strains. Results demonstrated that the ipdC, hisC1, and hisC2 genes are highly conserved in all the assessed A. brasilense isolates, suggesting that these genes can be used as an alternative phylogenetic marker. In addition, IAA production determined by HPLC ranged from 0.17 to 98.2 μg mg(-1) protein. Southern hybridization with the A. brasilense ipdC gene probe did not show, a hybridization signal with A. lipoferum, Azospirillum amazonense, Azospirillum halopreferans and Azospirillum irakense genomic DNA. This suggests that these species produce IAA by other pathways. Because IAA is mainly synthesized via the IPyA pathway in A. brasilense strains, a species that is used worldwide in agriculture, the identification of ipdC, hisC1, and hisC2 genes by PCR may be suitable for selecting exploitable strains.

  17. Indole and 3-indolylacetonitrile inhibit spore maturation in Paenibacillus alvei

    Directory of Open Access Journals (Sweden)

    Cho Moo

    2011-05-01

    Full Text Available Abstract Background Bacteria use diverse signaling molecules to ensure the survival of the species in environmental niches. A variety of both Gram-positive and Gram-negative bacteria produce large quantities of indole that functions as an intercellular signal controlling diverse aspects of bacterial physiology. Results In this study, we sought a novel role of indole in a Gram-positive bacteria Paenibacillus alvei that can produce extracellular indole at a concentration of up to 300 μM in the stationary phase in Luria-Bertani medium. Unlike previous studies, our data show that the production of indole in P. alvei is strictly controlled by catabolite repression since the addition of glucose and glycerol completely turns off the indole production. The addition of exogenous indole markedly inhibits the heat resistance of P. alvei without affecting cell growth. Observation of cell morphology with electron microscopy shows that indole inhibits the development of spore coats and cortex in P. alvei. As a result of the immature spore formation of P. alvei, indole also decreases P. alvei survival when exposed to antibiotics, low pH, and ethanol. Additionally, indole derivatives also influence the heat resistance; for example, a plant auxin, 3-indolylacetonitrile dramatically (2900-fold decreased the heat resistance of P. alvei, while another auxin 3-indoleacetic acid had a less significant influence on the heat resistance of P. alvei. Conclusions Together, our results demonstrate that indole and plant auxin 3-indolylacetonitrile inhibit spore maturation of P. alvei and that 3-indolylacetonitrile presents an opportunity for the control of heat and antimicrobial resistant spores of Gram-positive bacteria.

  18. Oligo-carrageenan kappa-induced reducing redox status and activation of TRR/TRX system increase the level of indole-3-acetic acid, gibberellin A3 and trans-zeatin in Eucalyptus globulus trees.

    Science.gov (United States)

    González, Alberto; Contreras, Rodrigo A; Zúiga, Gustavo; Moenne, Alejandra

    2014-08-20

    Eucalyptus globulus trees treated with oligo-carrageenan (OC) kappa showed an increase in NADPH, ascorbate and glutathione levels and activation of the thioredoxin reductase (TRR)/thioredoxin (TRX) system which enhance photosynthesis, basal metabolism and growth. In order to analyze whether the reducing redox status and the activation of thioredoxin reductase (TRR)/thioredoxin (TRX) increased the level of growth-promoting hormones, trees were treated with water (control), with OC kappa, or with inhibitors of ascorbate synthesis, lycorine, glutathione synthesis, buthionine sulfoximine (BSO), NADPH synthesis, CHS-828, and thioredoxin reductase activity, auranofine, and with OC kappa, and cultivated for four additional months. Eucalyptus trees treated with OC kappa showed an increase in the levels of the auxin indole 3-acetic acid (IAA), gibberellin A3 (GA3) and the cytokinin trans-zeatin (t-Z) as well as a decrease in the level of the brassinosteroid epi-brassinolide (EB). In addition, treatment with lycorine, BSO, CHS-828 and auranofine inhibited the increase in IAA, GA3 and t-Z as well as the decrease in EB levels. Thus, the reducing redox status and the activation of TRR/TRX system induced by OC kappa increased the levels of IAA, GA3 and t-Z levels determining, at least in part, the stimulation of growth in Eucalyptus trees.

  19. The NtAMI1 gene functions in cell division of tobacco BY-2 cells in the presence of indole-3-acetamide.

    Science.gov (United States)

    Nemoto, Keiichirou; Hara, Masamitsu; Suzuki, Masashi; Seki, Hikaru; Muranaka, Toshiya; Mano, Yoshihiro

    2009-01-22

    Tobacco (Nicotiana tabacum) Bright Yellow-2 (BY-2) cells can be grown in medium containing indole-3-acetamide (IAM). Based on this finding, the NtAMI1 gene, whose product is functionally equivalent to the AtAMI1 gene of Arabidopsis thaliana and the aux2 gene of Agrobacterium rhizogenes, was isolated from BY-2 cells. Overexpression of the NtAMI1 gene allowed BY-2 cells to proliferate at lower concentrations of IAM, whereas suppression of the NtAMI1 gene by RNA interference (RNAi) caused severe growth inhibition in the medium containing IAM. These results suggest that IAM is incorporated into plant cells and converted to the auxin, indole-3-acetic acid, by NtAMI1.

  20. Regulation of Auxin Homeostasis and Gradients in Arabidopsis Roots through the Formation of the Indole-3-Acetic Acid Catabolite 2-Oxindole-3-Acetic Acid

    Czech Academy of Sciences Publication Activity Database

    Pěnčík, A.; Simonovik, B.; Petersson, S.V.; Hényková, Eva; Simon, Sibu; Greenham, K.; Zhang, Y.; Kowalczyk, M.; Estelle, M.; Zažímalová, Eva; Novák, Ondřej; Sandberg, G.; Ljung, K.

    2013-01-01

    Roč. 25, č. 10 (2013), s. 3858-3870 ISSN 1040-4651 R&D Projects: GA ČR(CZ) GAP305/11/0797 Institutional research plan: CEZ:AV0Z50380511 Keywords : BOX PROTEIN TIR1 * PLANT DEVELOPMENT * OXINDOLE-3-ACETIC ACID Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 9.575, year: 2013

  1. Endophytic fungal association via gibberellins and indole acetic acid can improve plant growth under abiotic stress: an example of Paecilomyces formosus LHL10

    Directory of Open Access Journals (Sweden)

    Khan Abdul

    2012-01-01

    Full Text Available Abstract Background Endophytic fungi are little known for exogenous secretion of phytohormones and mitigation of salinity stress, which is a major limiting factor for agriculture production worldwide. Current study was designed to isolate phytohormone producing endophytic fungus from the roots of cucumber plant and identify its role in plant growth and stress tolerance under saline conditions. Results We isolated nine endophytic fungi from the roots of cucumber plant and screened their culture filtrates (CF on gibberellins (GAs deficient mutant rice cultivar Waito-C and normal GAs biosynthesis rice cultivar Dongjin-byeo. The CF of a fungal isolate CSH-6H significantly increased the growth of Waito-C and Dongjin-byeo seedlings as compared to control. Analysis of the CF showed presence of GAs (GA1, GA3, GA4, GA8, GA9, GA12, GA20 and GA24 and indole acetic acid. The endophyte CSH-6H was identified as a strain of Paecilomyces formosus LHL10 on the basis of phylogenetic analysis of ITS sequence similarity. Under salinity stress, P. formosus inoculation significantly enhanced cucumber shoot length and allied growth characteristics as compared to non-inoculated control plants. The hypha of P. formosus was also observed in the cortical and pericycle regions of the host-plant roots and was successfully re-isolated using PCR techniques. P. formosus association counteracted the adverse effects of salinity by accumulating proline and antioxidants and maintaining plant water potential. Thus the electrolytic leakage and membrane damage to the cucumber plants was reduced in the association of endophyte. Reduced content of stress responsive abscisic acid suggest lesser stress convened to endophyte-associated plants. On contrary, elevated endogenous GAs (GA3, GA4, GA12 and GA20 contents in endophyte-associated cucumber plants evidenced salinity stress modulation. Conclusion The results reveal that mutualistic interactions of phytohormones secreting endophytic

  2. Determination of Plant Hormone Indole-3-Acetic Acid in Aqueous Solution

    Czech Academy of Sciences Publication Activity Database

    Kocábová, Jana; Sokolová, Romana; Giannarelli, S.; Muscatello, B.

    2013-01-01

    Roč. 12, č. 1 (2013), s. 303-307 ISSN 1040-0397 R&D Projects: GA ČR GA203/09/1607 Institutional support: RVO:61388955 Keywords : phytohormones * differential pulse voltammetry * glassy-carbon electrode Subject RIV: CG - Electrochemistry Impact factor: 2.502, year: 2013

  3. Impact of arbuscular mycorrhizal fungus, Glomus intraradices ...

    African Journals Online (AJOL)

    Aghomotsegin

    leaves were maximum in P. Poae + G.I inoculated plants under water deficit condition. In the presence of ... Plant growth promoting rhizobacteria (PGPR) are usually in contact ... plant hormone indole-3-acetic acid (IAA) and the pathways of its ...

  4. Changes in ABA, IAA and JA levels during calyx, fruit and leaves development in cape gooseberry plants (Physalis peruviana L.).

    Science.gov (United States)

    Álvarez-Flórez, F; López-Cristoffanini, C; Jáuregui, O; Melgarejo, L M; López-Carbonell, M

    2017-06-01

    Changes in abscisic acid (ABA), indole-3-acetic acid (IAA) and jasmonic acid (JA) content in developing calyx, fruits and leaves of Physalis peruviana L. plants were analysed. Plant hormones have been widely studied for their roles in the regulation of various aspects related to plant development and, in particular, into their action during development and ripening of fleshly fruits. The obtained evidences suggest that the functions of these hormones are no restricted to a particular development stage, and more than one hormone is involved in controlling various aspects of plant development. Our results will contribute to understand the role of these hormones during growth and development of calyx, fruits and leaves in cape gooseberry plants. This work offers a good, quickly and efficiently protocol to extract and quantify simultaneously ABA, IAA and JA in different tissues of cape gooseberry plants. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  5. Occurrence and metabolism of 7-hydroxy-2-indolinone-3-acetic acid in Zea mays

    Science.gov (United States)

    Lewer, P.; Bandurski, R. S.

    1987-01-01

    7-Hydroxy-2-indolinone-3-acetic acid was identified as a catabolite of indole-3-acetic acid in germinating kernels of Zea mays and found to be present in amounts of ca 3.1 nmol/kernel. 7-Hydroxy-2-indolinone-3-acetic acid was shown to be a biosynthetic intermediate between 2-indolinone-3-acetic acid and 7-hydroxy-2-indolinone-3-acetic acid-7'-O-glucoside in both kernels and roots of Zea mays. Further metabolism of 7-hydroxy-2-[5-3H]-indolinone-3-acetic acid-7'-O-glucoside occurred to yield tritiated water plus, as yet, uncharacterized products.

  6. [3H]Indole-3-acetyl-myo-inositol hydrolysis by extracts of Zea mays L. vegetative tissue

    Science.gov (United States)

    Hall, P. J.; Bandurski, R. S.

    1986-01-01

    [3H]Indole-3-acetyl-myo-inositol was hydrolyzed by buffered extracts of acetone powders prepared from 4 day shoots of dark grown Zea mays L. seedlings. The hydrolytic activity was proportional to the amount of extract added and was linear for up to 6 hours at 37 degrees C. Boiled or alcohol denatured extracts were inactive. Analysis of reaction mixtures by high performance liquid chromatography demonstrated that not all isomers of indole-3-acetyl-myo-inositol were hydrolyzed at the same rate. Buffered extracts of acetone powders were prepared from coleoptiles and mesocotyls. The rates of hydrolysis observed with coleoptile extracts were greater than those observed with mesocotyl extracts. Active extracts also catalyzed the hydrolysis of esterase substrates such as alpha-naphthyl acetate and the methyl esters of indoleacetic acid and naphthyleneacetic acid. Attempts to purify the indole-3-acetyl-myo-inositol hydrolyzing activity by chromatographic procedures resulted in only slight purification with large losses of activity. Chromatography over hydroxylapatite allowed separation of two enzymically active fractions, one of which catalyzed the hydrolysis of both indole-3-acetyl-myo-inositol and esterase substrates. With the other enzymic hydrolysis of esterase substrates was readily demonstrated, but no hydrolysis of indole-3-acetyl-myo-inositol was ever detected.

  7. [3H]Indole-3-acetyl-myo-inositol hydrolysis by extracts of Zea mays L. vegetative tissue

    International Nuclear Information System (INIS)

    Hall, P.J.; Bandurski, R.S.

    1986-01-01

    [ 3 H]Indole-3-acetyl-myo-inositol was hydrolyzed by buffered extracts of acetone powders prepared from 4 day shoots of dark grown Zea mays L. seedlings. The hydrolytic activity was proportional to the amount of extract added and was linear for up to 6 hours at 37 0 C. Boiled or alcohol denatured extracts were inactive. Analysis of reaction mixtures by high performance liquid chromatography demonstrated that not all isomers of indole-3-acetyl-myo-inositol were hydrolyzed at the same rate. Buffered extracts of acetone powders were prepared from coleoptiles and mesocotyls. The rates of hydrolysis observed with coleoptile extracts were greater than those observed with mesocotyl extracts. Active extracts also catalyzed the hydrolysis of esterase substrates such as α-naphthyl acetate and the methyl esters of indoleacetic acid and naphthyleneacetic acid. Attempts to purify the indole-3-acetyl-myo-inositol hydrolyzing activity by chromatographic procedures resulted in only slight purification with large losses of activity. Chromatography over hydroxylapatite allowed separation of two enzymically active fractions, one of which catalyzed the hydrolysis of both indole-3-acetyl-myo-inositol and esterase substrates. With the other fraction enzymic hydrolysis of esterase substrates was readily demonstrated, but no hydrolysis of indole-3-acetyl-myo-inositol was ever detected

  8. Photomonomerization of pyrimidine dimers by indoles and proteins

    Energy Technology Data Exchange (ETDEWEB)

    Chen, J.; Huang, C.W.; Hinman, L.; Gordon, M.P.; Deranleau, D.A.

    1976-01-01

    Model systems for the study of photoreactivation have been developed that utilize a variety of indole derivatives. These systems can split uracil cis-syn cyclobutadipyrimidine, either free or in RNA, when irradiated at wavelengths absorbed only by the indole moiety. The ability of indole compounds to split dimers is closely related to their electronic properties. Those of high electron-donor capacity such as indole, 3-methylindole, indole-3-acetic acid, 5-hydroxytryptophan and tryptophan are good photosensitizers, with efficacy in that order. Indoles with electron-withdrawing substituents such as indole-3-carboxylic acid, indole-3-aldehyde and oxindole are inactive in the monomerization reaction. These findings support the proposed mechanism that the photosensitized monomerization occurs as a result of electron transfer from the excited indole molecules to the pyrimidine bases. Proteins containing fully exposed tryptophan residues (chicken egg white lysozyme and bovine diisopropylphosphoryltrypsin) also cause the splitting of the /sup 14/C-labeled dimers under the same conditions. In the case of lysozyme the quantum yield of monomerization is similar to that of free tryptophan. Much of the monomerization ability of lysozyme was lost after the solvent-available tryptophan had been oxidized by treatment with N-bromosuccinimide. Bovine pancreatic ribonuclease A, a protein devoid of tryptophan, failed to exhibit photosensitized monomerization of uracil dimers. The biological implication of these reactions involving a protein with an exposed tryptophan residue is discussed. Although indoles are able to split the dimers in RNA, they fail to photoreactivate uv-damaged TMV-RNA. Indole-3-acetic acid, 3-methylindole and 5-hydroxytryptophan rapidly inactive viral RNA when irradiated at 313 nm, possibly because of side reactions.

  9. 3-Substituted 2-phenyl-indoles

    DEFF Research Database (Denmark)

    Johansson, Karl Henrik; Jørgensen, T.B.; Gloriam, D.E.

    2013-01-01

    -indoles with a variety of substituents at the indole 3-position. Herein we describe the development of optimised and efficient synthetic routes to a series of new 2-phenyl-indole building blocks 3 to 9 and show that these can be used to generate a broad variety of 3-substituted 2-phenyl-indoles of interest to medicinal...

  10. A new natural auaternary indole slkaloid isolated from Tabernaemontana laeta Mart. (Apocynaceae

    Directory of Open Access Journals (Sweden)

    Medeiros Walter L. B.

    2001-01-01

    Full Text Available A new natural quaternary alkaloid, Nb-methylvoachalotine (1, was obtained from the root bark of Tabernaemontana laeta together with three dimeric indole alkaloids, conodurine (2, voacamine (3 and tabernamine (4, and the monomeric indole alkaloids 19S-heyneanine (5, coronaridine (6 and voacangine (7. The known triterpenes alpha-amyrin acetate, beta-amyrin acetate, lupeol acetate and taraxasterol acetate and the phytosterol beta-sitosterol and its 3-O-beta-D-glucoside were also identified. The structures of the compounds were elucidated based on spectroscopic studies.

  11. Validation of a multi-analyte HPLC-DAD method for determination of uric acid, creatinine, homovanillic acid, niacinamide, hippuric acid, indole-3-acetic acid and 2-methylhippuric acid in human urine.

    Science.gov (United States)

    Remane, Daniela; Grunwald, Soeren; Hoeke, Henrike; Mueller, Andrea; Roeder, Stefan; von Bergen, Martin; Wissenbach, Dirk K

    2015-08-15

    During the last decades exposure sciences and epidemiological studies attracts more attention to unravel the mechanisms for the development of chronic diseases. According to this an existing HPLC-DAD method for determination of creatinine in urine samples was expended for seven analytes and validated. Creatinine, uric acid, homovanillic acid, niacinamide, hippuric acid, indole-3-acetic acid, and 2-methylhippuric acid were separated by gradient elution (formate buffer/methanol) using an Eclipse Plus C18 Rapid Resolution column (4.6mm×100mm). No interfering signals were detected in mobile phase. After injection of blank urine samples signals for the endogenous compounds but no interferences were detected. All analytes were linear in the selected calibration range and a non weighted calibration model was chosen. Bias, intra-day and inter-day precision for all analytes were below 20% for quality control (QC) low and below 10% for QC medium and high. The limits of quantification in mobile phase were in line with reported reference values but had to be adjusted in urine for homovanillic acid (45mg/L), niacinamide 58.5(mg/L), and indole-3-acetic acid (63mg/L). Comparison of creatinine data obtained by the existing method with those of the developed method showing differences from -120mg/L to +110mg/L with a mean of differences of 29.0mg/L for 50 authentic urine samples. Analyzing 50 authentic urine samples, uric acid, creatinine, hippuric acid, and 2-methylhippuric acid were detected in (nearly) all samples. However, homovanillic acid was detected in 40%, niacinamide in 4% and indole-3-acetic acid was never detected within the selected samples. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Simple syntheses of 3-substituted indoles and their application for high yield 14C-labelling

    International Nuclear Information System (INIS)

    Schallenberg, J.; Meyer, E.

    1983-01-01

    Methods are described which allow the synthesis of several plant indole alkaloids and their metabolites at different scales. Compounds synthesized include gramine (1) (3-dimethylaminomethylindole) which is directly derived from indole, while its biosynthetic precursors 3-aminomethylindole (3) and 3-methylaminomethylindole (2) as well as indole3-carboxylic acid (7) are synthesized via indole-3-aldehyde (6). Slight changes of the experimental conditions allow syntheses with high yields not only at the molar but also at the μmolar level. This is extremely useful when isotope labelled compounds of high specific radioactivity are required for studies of plant metabolism. (orig.)

  13. Morphogenetic Potential of Tomato (Lycopersicon esculentum cv. ‘Arka Ahuti’ to Plant Growth Regulators

    Directory of Open Access Journals (Sweden)

    Kanakapura K. NAMITHA

    2013-05-01

    Full Text Available A highly reproducible in vitro regeneration method for tomato (Lycopersicon esculentum Mill. cultivar ‘Arka Ahuti’ was established by using hypocotyl, leaf and cotyledon explants from in vitro raised seedlings on Murashige and Skoog medium supplemented with different concentrations and combinations of hormones 6-Benzylamino purine (2 to 4 mg/L and Indole-3-acetic acid (0.1 to 1 mg/L. The medium supplemented with 2 mg/L 6-benzylamino purine and 0.1 mg/L indole-3-acetic acid was found to be the best for inducing direct shoot regeneration and multiple shoots per explant from hypocotyl explants. Callus induction was observed in all the explants and regeneration of shoots was also promoted by all these combinations. Shoots were transferred to the elongation medium which also induced 100% rooting. After hardening, plants were transferred to soil. Thus, a tissue culture base line was established for ‘Arka Ahuti’ cultivar of tomato for obtaining direct regeneration using hypocotyl, leaf and cotyledon as explants.

  14. Indole-3-acetic acid (IAA) producing Pseudomonas isolates inhibit seed germination and α-amylase activity in durum wheat (Triticum turgidum L.)

    Energy Technology Data Exchange (ETDEWEB)

    Tabatabaei, S.; Ehsanzadeh, P.; Etesami, H.; Alikhani, H.A.; Glick, B.R.

    2016-11-01

    The role of plant-associated bacteria in plant physiology and metabolism is well documented, but little has been known about the roles played by Pseudomonas in durum wheat (Triticum turgidum L. var durum) growth and development. An in vitroexperiment was conducted to observe the effect of the inoculation of four indole-3-acetic acid (IAA)-producing Pseudomonas isolates and exogenous IAA on seed germination traits and α-amylase activity of durum wheat. The results showed inoculation with all bacterial isolates led to a decrease in the germination percent, although the extent of the depression varied with the isolate. A significant relationship between concentrations of bacterial IAA and the germination inhibition percent in durum wheat seeds by different bacteria strains was observed. The results of this assay showed the effect of bacterial isolates on α-amylase activity after six and 8 days of inoculation was significant, while effect of these isolates on α-amylase activity after two and 4 days of inoculation was not meaningful. In addition, the exogenously applied IAA displayed a concentration-dependent effect on seed germination attributes and α-amylase activity, consistent with the possibility that the inhibitory effect of bacterial inoculation on seed germination was in consequence of bacteria-produced IAA. Therefore, it may suggested that the inhibitory role of IAA in seed germination and α-amylase activity should be taken into account during the screening of IAA-producing Pseudomonas isolates for durum wheat growth promoting agents. (Author)

  15. presence of axillary bud and application of plant growth hormones

    African Journals Online (AJOL)

    D. alata)- were grown in pots in the greenhouse. Half the cuttings bore axillary buds and half had none. The cuttings were sprayed with a factorial combination of indole acetic acid (IAA), benzyladenine (BA) and giberellic acid (GA3). Cuttings ...

  16. Synthesis and evaluation of the plant growth regulator property of indolic compounds derived from safrole; Sintese e avaliacao da propriedade reguladora de crescimento vegetal de compostos indolicos derivados do safrol

    Energy Technology Data Exchange (ETDEWEB)

    Marchi, Irineu [Escola Agrotecnica Federal de Rio do Sul, Rio do Sul, SC (Brazil)]. E-mail: marchi@softhouse.com.br; Rebelo, Ricardo Andrade; Rosa, Flavia A. Fernandes da; Maiochi, Riceli A. [Universidade Regional de Blumenau, SC (Brazil). Dept. de Quimica

    2007-07-15

    The present work describes the use of piperonal, a derivative of the secondary metabolite safrole, for the synthesis of new 5,6-methylenedioxy substituted indole carboxylic acids structurally related to the indol-3-yl-acetic acid (AIA, I). The route comprises six steps beginning with piperonal with an overall yield of 19%. Compound IX was tested towards its plant growth regulator properties in bioassays specific for auxine activity. The in vitro assays were performed in a germination chamber and were of two types: root growth in germinated seeds of Lactuca sativa, Cucumbis sativus and Raphanus sativus and peciole biotest using Phaseolus vulgaris. (author)

  17. Nitric oxide metabolism and indole acetic acid biosynthesis cross-talk in Azospirillum brasilense SM.

    Science.gov (United States)

    Koul, Vatsala; Tripathi, Chandrakant; Adholeya, Alok; Kochar, Mandira

    2015-04-01

    Production of nitric oxide (NO) and the presence of NO metabolism genes, nitrous oxide reductase (nosZ), nitrous oxide reductase regulator (nosR) and nitric oxide reductase (norB) were identified in the plant-associated bacterium (PAB) Azospirillum brasilense SM. NO presence was confirmed in all overexpressing strains, while improvement in the plant growth response of these strains was mediated by increased NO and indole-3-acetic acid (IAA) levels in the strains. Electron microscopy showed random distribution to biofilm, with surface colonization of pleiomorphic Azospirilla. Quantitative IAA estimation highlighted a crucial role of nosR and norBC in regulating IAA biosynthesis. The NO quencher and donor reduced/blocked IAA biosynthesis by all strains, indicating their common regulatory role in IAA biosynthesis. Tryptophan (Trp) and l-Arginine (Arg) showed higher expression of NO genes tested, while in the case of ipdC, only Trp and IAA increased expression, while Arg had no significant effect. The highest nosR expression in SMnosR in the presence of IAA and Trp, along with its 2-fold IAA level, confirmed the relationship of nosR overexpression with Trp in increasing IAA. These results indicate a strong correlation between IAA and NO in A. brasilense SM and suggest the existence of cross-talk or shared signaling mechanisms in these two growth regulators. Copyright © 2015 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

  18. Effects of gamma-irradiation on elongation and indole-3-acetic acid level of maize (Zea mays) coleoptiles

    International Nuclear Information System (INIS)

    Momiyama, M.; Koshiba, T.; Furukawa, K.; Kamiya, Y.; Sato, M.

    1999-01-01

    The effects of gamma-irradiation on elongation and the level of indole-3-acetic acid (IAA) of maize (Zea mays) coleoptiles were investigated. When 3-day-old seedlings of maize were exposed to gamma-radiation lower than 1 kGy, a temporal retardation of coleoptile elongation was induced. This retardation was at least partly ascribed to a temporal decrease in the amount of free IAA in coleoptile tips on the basis of the following facts: (1) the reactivity to IAA of the elongating coleoptile cells was not altered by irradiation; (2) endogenous IAA level in the tip of irradiated coleoptiles was at first unchanged, but then declined before returning to nearly the same level as that of the non-irradiated control; and (3) the amount of IAA that diffused from coleoptile tip sections showed a similar pattern to that of endogenous IAA. The rate of conversion between free and conjugated IAA was not significantly affected by irradiation. These results suggest that a temporal inhibition of maize coleoptile elongation induced by gamma-irradiation can be ascribed to the reduction of endogenous IAA level in the coleoptile tip, and this may originate from the modulation in the rate of IAA biosynthesis or catabolism. (author)

  19. Study on the IAA (Indole acetic acid) Productivity of Soil Yeast Strain Isolats

    International Nuclear Information System (INIS)

    Nwe Nwe Soe Hlaing; Swe Zin Yu; San San Yu

    2011-12-01

    Twelve isolated soil yeast were tested in IAA production in peptone yeast glucose broth (PYG). All strains were screened for the Indole Acetic Acid (IAA) producing activity in PYG broth supplemented with or without L-Tryptophan (L-TRP) as precusor. IAA production was assayed calorimetrically using Salkowski's reagent. The concentration of IAA produced by yeast strains was measured by spectrophotometric method at 530nm. Y6 strain was the highest IAA producer (79ppm) at 9 days incubation period without tryptophan. Y3, Y10 and Y12 strains that were incubated without L-TRP also had the higher ability in the production of IAA than other yeast isolates. The selected yeasts having high IAA production activity were characterized by morphological study and biochemical tests including sugar assimilation and fermentation tests.

  20. Indole-3-butyric acid promotes adventitious rooting in Arabidopsis thaliana thin cell layers by conversion into indole-3-acetic acid and stimulation of anthranilate synthase activity.

    Science.gov (United States)

    Fattorini, L; Veloccia, A; Della Rovere, F; D'Angeli, S; Falasca, G; Altamura, M M

    2017-07-11

    Indole-3-acetic acid (IAA), and its precursor indole-3-butyric acid (IBA), control adventitious root (AR) formation in planta. Adventitious roots are also crucial for propagation via cuttings. However, IBA role(s) is/are still far to be elucidated. In Arabidopsis thaliana stem cuttings, 10 μM IBA is more AR-inductive than 10 μM IAA, and, in thin cell layers (TCLs), IBA induces ARs when combined with 0.1 μM kinetin (Kin). It is unknown whether arabidopsis TCLs produce ARs under IBA alone (10 μM) or IAA alone (10 μM), and whether they contain endogenous IAA/IBA at culture onset, possibly interfering with the exogenous IBA/IAA input. Moreover, it is unknown whether an IBA-to-IAA conversion is active in TCLs, and positively affects AR formation, possibly through the activity of the nitric oxide (NO) deriving from the conversion process. Revealed undetectable levels of both auxins at culture onset, showing that arabidopsis TCLs were optimal for investigating AR-formation under the total control of exogenous auxins. The AR-response of TCLs from various ecotypes, transgenic lines and knockout mutants was analyzed under different treatments. It was shown that ARs are better induced by IBA than IAA and IBA + Kin. IBA induced IAA-efflux (PIN1) and IAA-influx (AUX1/LAX3) genes, IAA-influx carriers activities, and expression of ANTHRANILATE SYNTHASE -alpha1 (ASA1), a gene involved in IAA-biosynthesis. ASA1 and ANTHRANILATE SYNTHASE -beta1 (ASB1), the other subunit of the same enzyme, positively affected AR-formation in the presence of exogenous IBA, because the AR-response in the TCLs of their mutant wei2wei7 was highly reduced. The AR-response of IBA-treated TCLs from ech2ibr10 mutant, blocked into IBA-to-IAA-conversion, was also strongly reduced. Nitric oxide, an IAA downstream signal and a by-product of IBA-to-IAA conversion, was early detected in IAA- and IBA-treated TCLs, but at higher levels in the latter explants. Altogether, results showed that IBA induced

  1. Phenotypic Changes in Transgenic Tobacco Plants Overexpressing Vacuole-Targeted Thermotoga maritima BglB Related to Elevated Levels of Liberated Hormones

    Science.gov (United States)

    Nguyen, Quynh Anh; Lee, Dae-Seok; Jung, Jakyun; Bae, Hyeun-Jong

    2015-01-01

    The hyperthermostable β-glucosidase BglB of Thermotoga maritima was modified by adding a short C-terminal tetrapeptide (AFVY, which transports phaseolin to the vacuole, to its C-terminal sequence). The modified β-glucosidase BglB was transformed into tobacco (Nicotiana tabacum L.) plants. We observed a range of significant phenotypic changes in the transgenic plants compared to the wild-type (WT) plants. The transgenic plants had faster stem growth, earlier flowering, enhanced root systems development, an increased biomass biosynthesis rate, and higher salt stress tolerance in young plants compared to WT. In addition, programed cell death was enhanced in mature plants. Furthermore, the C-terminal AFVY tetrapeptide efficiently sorted T. maritima BglB into the vacuole, which was maintained in an active form and could perform its glycoside hydrolysis function on hormone conjugates, leading to elevated hormone [abscisic acid (ABA), indole 3-acetic acid (IAA), and cytokinin] levels that likely contributed to the phenotypic changes in the transgenic plants. The elevation of cytokinin led to upregulation of the transcription factor WUSCHELL, a homeodomain factor that regulates the development, division, and reproduction of stem cells in the shoot apical meristems. Elevation of IAA led to enhanced root development, and the elevation of ABA contributed to enhanced tolerance to salt stress and programed cell death. These results suggest that overexpressing vacuole-targeted T. maritima BglB may have several advantages for molecular farming technology to improve multiple targets, including enhanced production of the β-glucosidase BglB, increased biomass, and shortened developmental stages, that could play pivotal roles in bioenergy and biofuel production. PMID:26618153

  2. New auxin analogs with growth-promoting effects in intact plants reveal a chemical strategy to improve hormone delivery.

    Science.gov (United States)

    Savaldi-Goldstein, Sigal; Baiga, Thomas J; Pojer, Florence; Dabi, Tsegeye; Butterfield, Cristina; Parry, Geraint; Santner, Aaron; Dharmasiri, Nihal; Tao, Yi; Estelle, Mark; Noel, Joseph P; Chory, Joanne

    2008-09-30

    Plant growth depends on the integration of environmental cues and phytohormone-signaling pathways. During seedling emergence, elongation of the embryonic stem (hypocotyl) serves as a readout for light and hormone-dependent responses. We screened 10,000 chemicals provided exogenously to light-grown seedlings and identified 100 compounds that promote hypocotyl elongation. Notably, one subset of these chemicals shares structural characteristics with the synthetic auxins, 2,4-dichlorophenoxyacetic acid (2,4-D), and 1-naphthaleneacetic acid (1-NAA); however, traditional auxins (e.g., indole-3-acetic acid [IAA], 2,4-D, 1-NAA) have no effect on hypocotyl elongation. We show that the new compounds act as "proauxins" akin to prodrugs. Our data suggest that these compounds diffuse efficiently to the hypocotyls, where they undergo cleavage at varying rates, releasing functional auxins. To investigate this principle, we applied a masking strategy and designed a pro-2,4-D. Unlike 2,4-D alone, this pro-2,4-D enhanced hypocotyl elongation. We further demonstrated the utility of the proauxins by characterizing auxin responses in light-grown hypocotyls of several auxin receptor mutants. These new compounds thus provide experimental access to a tissue previously inaccessible to exogenous application of auxins. Our studies exemplify the combined power of chemical genetics and biochemical analyses for discovering and refining prohormone analogs with selective activity in specific plant tissues. In addition to the utility of these compounds for addressing questions related to auxin and light-signaling interactions, one can envision using these simple principles to study other plant hormone and small molecule responses in temporally and spatially controlled ways.

  3. Endogenous indole-3-acetic acid and ethylene evolution in tilted Metasequoia glyptostroboides stems in relation to compression-wood formation.

    Science.gov (United States)

    Du, Sheng; Sugano, Mami; Tsushima, Miho; Nakamura, Teruko; Yamamoto, Fukuju

    2004-04-01

    Eight-year-old Metasequoia glyptostroboides seedlings were tilted at a 45 degrees angle to induce compression-wood formation on the lower side of the stems. After 2 weeks of treatment, half of the seedlings were sampled and the remaining half were tilted to the opposite orientation to exchange the upper and lower sides and were kept for 2 more weeks until sampled. Cambium-emitted ethylene was analyzed by gas chromatography with flame-ionization detection. Endogenous indole-3-acetic acid (IAA) was measured by gas chromatography-mass spectrometry. Tracheid production and compression-wood formation were determined by light microscopy. Anatomical studies showed that tracheid production was promoted and compression-wood tracheids always developed on the gravitationally lower side of tilted stems in both the original tilting and the subsequent reverse-tilting periods. These were accompanied by an increase in IAA content in and an accelerated ethylene-evolution rate from the cambial region of the same side.

  4. 14-3-3 Proteins in Plant Hormone Signaling: Doing Several Things at Once

    Directory of Open Access Journals (Sweden)

    Lorenzo Camoni

    2018-03-01

    Full Text Available In this review we highlight the advances achieved in the investigation of the role of 14-3-3 proteins in hormone signaling, biosynthesis, and transport. 14-3-3 proteins are a family of conserved molecules that target a number of protein clients through their ability to recognize well-defined phosphorylated motifs. As a result, they regulate several cellular processes, ranging from metabolism to transport, growth, development, and stress response. High-throughput proteomic data and two-hybrid screen demonstrate that 14-3-3 proteins physically interact with many protein clients involved in the biosynthesis or signaling pathways of the main plant hormones, while increasing functional evidence indicates that 14-3-3-target interactions play pivotal regulatory roles. These advances provide a framework of our understanding of plant hormone action, suggesting that 14-3-3 proteins act as hubs of a cellular web encompassing different signaling pathways, transducing and integrating diverse hormone signals in the regulation of physiological processes.

  5. Indoles as therapeutics of interest in medicinal chemistry: Bird's eye view.

    Science.gov (United States)

    Chadha, Navriti; Silakari, Om

    2017-07-07

    Indoles constitute extensively explored heterocyclic ring systems with wide range of applications in pathophysiological conditions that is, cancer, microbial and viral infections, inflammation, depression, migraine, emesis, hypertension, etc. Presence of indole nucleus in amino acid tryptophan makes it prominent in phytoconstituents such as perfumes, neurotransmitters, auxins (plant hormones), indole alkaloids etc. The interesting molecular architecture of indole makes them suitable candidates for the drug development. This review article provides an overview of the chemistry, biology, and toxicology of indoles focusing on their application as drugs. Our effort is to corroborate the information available on the natural indole alkaloids, indole based FDA approved drugs and clinical trial candidates having diverse therapeutic implementations. This compiled information may serve as a benchmark for the alteration of existing ligands to design novel potent molecules with lesser side effects. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  6. Indole-3-Acetic Acid Is Produced by Emiliania huxleyi Coccolith-Bearing Cells and Triggers a Physiological Response in Bald Cells.

    Science.gov (United States)

    Labeeuw, Leen; Khey, Joleen; Bramucci, Anna R; Atwal, Harjot; de la Mata, A Paulina; Harynuk, James; Case, Rebecca J

    2016-01-01

    Indole-3-acetic acid (IAA) is an auxin produced by terrestrial plants which influences development through a variety of cellular mechanisms, such as altering cell orientation, organ development, fertility, and cell elongation. IAA is also produced by bacterial pathogens and symbionts of plants and algae, allowing them to manipulate growth and development of their host. They do so by either producing excess exogenous IAA or hijacking the IAA biosynthesis pathway of their host. The endogenous production of IAA by algae remains contentious. Using Emiliania huxleyi, a globally abundant marine haptophyte, we investigated the presence and potential role of IAA in algae. Homologs of genes involved in several tryptophan-dependent IAA biosynthesis pathways were identified in E. huxleyi. This suggests that this haptophyte can synthesize IAA using various precursors derived from tryptophan. Addition of L-tryptophan to E. huxleyi stimulated IAA production, which could be detected using Salkowski's reagent and GC × GC-TOFMS in the C cell type (coccolith bearing), but not in the N cell type (bald). Various concentrations of IAA were exogenously added to these two cell types to identify a physiological response in E. huxleyi. The N cell type, which did not produce IAA, was more sensitive to it, showing an increased variation in cell size, membrane permeability, and a corresponding increase in the photosynthetic potential quantum yield of Photosystem II (PSII). A roseobacter (bacteria commonly associated with E. huxleyi) Ruegeria sp. R11, previously shown to produce IAA, was co-cultured with E. huxleyi C and N cells. IAA could not be detected from these co-cultures, and even when stimulated by addition of L-tryptophan, they produced less IAA than axenic C type culture similarly induced. This suggests that IAA plays a novel role signaling between different E. huxleyi cell types, rather than between a bacteria and its algal host.

  7. Dynamic Modeling of Indole Glucosinolate Hydrolysis and Its Impact on Auxin Signaling

    Directory of Open Access Journals (Sweden)

    Daniel Vik

    2018-04-01

    Full Text Available Plants release chemicals to deter attackers. Arabidopsis thaliana relies on multiple defense compounds, including indol-3-ylmethyl glucosinolate (I3G, which upon hydrolysis initiated by myrosinase enzymes releases a multitude of bioactive compounds, among others, indole-3-acetonitrile and indole-3-acetoisothiocyanate. The highly unstable isothiocyanate rapidly reacts with other molecules. One of the products, indole-3-carbinol, was reported to inhibit auxin signaling through binding to the TIR1 auxin receptor. On the contrary, the nitrile product of I3G hydrolysis can be converted by nitrilase enzymes to form the primary auxin molecule, indole-3-acetic acid, which activates TIR1. This suggests that auxin signaling is subject to both antagonistic and protagonistic effects of I3G hydrolysis upon attack. We hypothesize that I3G hydrolysis and auxin signaling form an incoherent feedforward loop and we build a mathematical model to examine the regulatory network dynamics. We use molecular docking to investigate the possible antagonistic properties of different I3G hydrolysis products by competitive binding to the TIR1 receptor. Our simulations reveal an uncoupling of auxin concentration and signaling, and we determine that enzyme activity and antagonist binding affinity are key parameters for this uncoupling. The molecular docking predicts that several I3G hydrolysis products strongly antagonize auxin signaling. By comparing a tissue disrupting attack – e.g., by chewing insects or necrotrophic pathogens that causes rapid release of I3G hydrolysis products – to sustained cell-autonomous I3G hydrolysis, e.g., upon infection by biotrophic pathogens, we find that each scenario gives rise to distinct auxin signaling dynamics. This suggests that plants have different defense versus growth strategies depending on the nature of the attack.

  8. Indole-3-thiouronium nitrate

    Directory of Open Access Journals (Sweden)

    Martin Lutz

    2008-01-01

    Full Text Available In the title compound, C9H10N3S+·NO3−, the indole ring system and the thiouronium group are nearly perpendicular, with a dihedral angle of 88.62 (6°. Hydrogen bonding generates two-dimensional networks which are linked to each other via π stacking interactions of the indole groups [average inter-planar ring–ring distance of 3.449 (2 Å].

  9. Relationships between Nutrient Heterogeneity, Root Growth, and Hormones: Evidence for Interspecific Variation

    Directory of Open Access Journals (Sweden)

    Jia Dong

    2018-02-01

    Full Text Available (1 Background: Plant roots respond to nutrients through root architecture that is regulated by hormones. Strong inter-specific variation in root architecture has been well documented, but physiological mechanisms that may control the variation have not. (2 Methods: We examined correlations between root architecture and hormones to seek clues on mechanisms behind root foraging behavior. In the green house at Beijing Normal University, hydroponic culture experiments were used to examine the root responses of four species—Callistephus chinensis, Solidago canadensis, Ailanthus altissima, Oryza sativa—to two nitrogen types (NO3− or NH4+, three nitrogen concentrations (low, medium, and high concentrations of 0.2, 1, and 18 mM, respectively and two ways of nitrogen application (stable vs. variable. The plants were harvested after 36 days to measure root mass, 1st order root length, seminal root length for O. sativa, density of the 1st order laterals, seminal root number for O. sativa, the inter-node length of the 1st order laterals, and root hormone contents of indole-3-acetic acid, abscisic acid, and cytokinins (zeatin + zeatinriboside. (3 Results: Species differed significantly in their root architecture responses to nitrogen treatments. They also differed significantly in hormone responses to the nitrogen treatments. Additionally, the correlations between root architecture and hormone responses were quite variable across the species. Each hormone had highly species-specific relationships with root responses. (4 Conclusions: Our finding implies that a particular root foraging behavior is probably not controlled by the same biochemical pathway in all species.

  10. [Separation and determination of eight plant hormones by reversed-phase high performance liquid chromatography].

    Science.gov (United States)

    Fang, N; Hou, S; Shao, X; He, Y; Zhao, G

    1998-09-01

    In this paper, reversed-phase high performance liquid chromatographic technique was used for the separation and determination of eight plant hormones. Methanol-water-acetic acid system was chosen as the mobile phase. The effects of different separation conditions, such as the methanol and acetic acid concentrations in mobile phase, on the retention behaviours of eight plant hormones in this system were studied. The general trends in retention behaviours could be correlated to the methanol concentration in mobile phase. The experimental results showed that the optimum separation was achieved with following gradient elution condition: 0-3 minutes, 70% (water percentage in mobile phase), 3-13 minutes, 70%-20%, 13-48 minutes, 20%. Benzene was added to be as the internal standard. Under this experimental condition, the eight plant hormones could be separated completely and detected quantitatively at 260 nm within 16 minutes. The calibration curves for the eight compounds gave linearity over a wide range. The correlation coefficients of each components were r(ZT) = 0.9971, r(GAs) = 0.9999, r(K) = 0.9997, r(BA) = 0.9995, r(IAA) = 0.9998, r(IPA) = 0.9982, r(IBA) = 0.9995 and r(NAA) = 0.9995. The method is rapid, simple and efficient. It is a suitable method for the accurate determination of gibberellic acid (GA) and alpha-naphthaleneacetic acid (alpha-NAA) in products for agricultural use.

  11. A facile route towards the synthesis of 2-(1H-indol-3-yl)-acetamides using 1,1-carbonyldiimidazole

    International Nuclear Information System (INIS)

    Kanwal, F.; Khan, K.M.; Fatima, B.; Bano, B.; Salar, U.

    2016-01-01

    A base-catalyzed one pot reaction has been developed for the synthesis of 2-(1H-indol-3-yl)-acetamides via coupling of 1,1-carbonyldiimidazole with 2-(1H-indol-3-yl) acetic acid resulting in the formation of a reactive intermediate which on treatment with different substituted anilines afford 2-(1H-indol-3-yl)-acetamides in good yield. The use of base along with coupling reagent eases the formation of intermediate in minimum time. All the synthetic compounds were obtained in good to moderate yields, the use of various substituted anilines effects the yields of the products. Compounds 4-30 were synthesized and the structures of all the synthetic compounds were determined by using spectroscopic techniques such as 1H-, 13C-NMR, EIMS and HRMS. (author)

  12. Magnetic nanoparticles grafted with β-cyclodextrin for solid-phase extraction of 5-hydroxy-3-indole acetic acid

    International Nuclear Information System (INIS)

    Ahmed, Gaber Hashem Gaber; Laíño, Rosana Badía; Calzón, Josefa Angela García; García, Marta Elena Díaz

    2014-01-01

    We describe the synthesis of β-cyclodextrin modified magnetic nanoparticles (CD-mNPs) as a material for solid-phase extraction of the cancer biomarker 5-hydroxy-indole-3-acetic acid (5-HIAA) from urine. The CD-mNPs were characterized by TEM, FTIR, and XRD, and the kinetics and adsorption isotherms were studied. The strong interaction between the CD-mNPs and 5-HIAA is the main driving force for recognition and extraction, while the magnetic core of the NPs allows their separation from the sample matrix. Recovery of 5-HIAA from the adsorbent using an adequate solvent regenerated the adsorbent for further use. 5-HIAA was then quantified by fluorometry of its complex with β-CD. The method works in the 1 × 10 −7 to 1 × 10 −5 mol L −1 (R 2 0.9982–0.9996) concentration range, and the limits of detection (3σ) and quantification (10 σ) of the method are 1.2 × 10 −8 mol L −1 and 4.01 × 10 −8 mol L −1 5-HIAA, respectively. The recovery of 5-HIAA from urine samples spiked with 5-HIAA in three concentrations (1.4 × 10 −6 , 4.50 × 10 −6 and 1.0 × 10 −5 mol L −1 ) are within 63 ± 3 %. (author)

  13. Relationships between Nutrient Heterogeneity, Root Growth, and Hormones: Evidence for Interspecific Variation.

    Science.gov (United States)

    Dong, Jia; Jones, Robert H; Mou, Pu

    2018-02-28

    (1) Background: Plant roots respond to nutrients through root architecture that is regulated by hormones. Strong inter-specific variation in root architecture has been well documented, but physiological mechanisms that may control the variation have not. (2) Methods: We examined correlations between root architecture and hormones to seek clues on mechanisms behind root foraging behavior. In the green house at Beijing Normal University, hydroponic culture experiments were used to examine the root responses of four species- Callistephus chinensis , Solidago canadensis , Ailanthus altissima , Oryza sativa- to two nitrogen types (NO₃ - or NH₄⁺), three nitrogen concentrations (low, medium, and high concentrations of 0.2, 1, and 18 mM, respectively) and two ways of nitrogen application (stable vs. variable). The plants were harvested after 36 days to measure root mass, 1st order root length, seminal root length for O. sativa , density of the 1st order laterals, seminal root number for O. sativa , the inter-node length of the 1st order laterals, and root hormone contents of indole-3-acetic acid, abscisic acid, and cytokinins (zeatin + zeatinriboside). (3) Results: Species differed significantly in their root architecture responses to nitrogen treatments. They also differed significantly in hormone responses to the nitrogen treatments. Additionally, the correlations between root architecture and hormone responses were quite variable across the species. Each hormone had highly species-specific relationships with root responses. (4) Conclusions: Our finding implies that a particular root foraging behavior is probably not controlled by the same biochemical pathway in all species.

  14. Effect of the pasteurization process on the contents of ascorbigen, indole-3-carbinol, indole-3-acetonitrile, and 3,3'-diindolylmethane in fermented cabbage.

    Science.gov (United States)

    Ciska, Ewa; Honke, Joanna

    2012-04-11

    The aim of the study was to investigate the effect of the pasteurization process on the content of ascorbigen, indole-3-carbinol, indole-3-acetonitrile, and 3,3'-diindolylmethane in fermented cabbage. Pasteurization was run at a temperature of 80 °C for 5-30 min. Significant changes were only observed in contents of ascorbigen and 3,3'-diindolylmethane. The total content of the compounds analyzed in cabbage pasteurized for 10-30 min was found to be decreased by ca. 20%, and the losses were due to thermal degradation of the predominating ascorbigen. Pasteurization was found not to exert any considerable effect on contents of indole-3-acetonitrile and indole-3-carbinol in cabbage nor did it affect contents of the compounds analyzed in juice.

  15. Dynamic regulation of auxin oxidase and conjugating enzymes AtDAO1 and GH3 modulates auxin homeostasis.

    Science.gov (United States)

    Mellor, Nathan; Band, Leah R; Pěnčík, Aleš; Novák, Ondřej; Rashed, Afaf; Holman, Tara; Wilson, Michael H; Voß, Ute; Bishopp, Anthony; King, John R; Ljung, Karin; Bennett, Malcolm J; Owen, Markus R

    2016-09-27

    The hormone auxin is a key regulator of plant growth and development, and great progress has been made understanding auxin transport and signaling. Here, we show that auxin metabolism and homeostasis are also regulated in a complex manner. The principal auxin degradation pathways in Arabidopsis include oxidation by Arabidopsis thaliana gene DIOXYGENASE FOR AUXIN OXIDATION 1/2 (AtDAO1/2) and conjugation by Gretchen Hagen3s (GH3s). Metabolic profiling of dao1-1 root tissues revealed a 50% decrease in the oxidation product 2-oxoindole-3-acetic acid (oxIAA) and increases in the conjugated forms indole-3-acetic acid aspartic acid (IAA-Asp) and indole-3-acetic acid glutamic acid (IAA-Glu) of 438- and 240-fold, respectively, whereas auxin remains close to the WT. By fitting parameter values to a mathematical model of these metabolic pathways, we show that, in addition to reduced oxidation, both auxin biosynthesis and conjugation are increased in dao1-1 Transcripts of AtDAO1 and GH3 genes increase in response to auxin over different timescales and concentration ranges. Including this regulation of AtDAO1 and GH3 in an extended model reveals that auxin oxidation is more important for auxin homoeostasis at lower hormone concentrations, whereas auxin conjugation is most significant at high auxin levels. Finally, embedding our homeostasis model in a multicellular simulation to assess the spatial effect of the dao1-1 mutant shows that auxin increases in outer root tissues in agreement with the dao1-1 mutant root hair phenotype. We conclude that auxin homeostasis is dependent on AtDAO1, acting in concert with GH3, to maintain auxin at optimal levels for plant growth and development.

  16. Auxin synthesis gene tms1 driven by tuber-specific promoter alters hormonal status of transgenic potato plants and their responses to exogenous phytohormones.

    Science.gov (United States)

    Kolachevskaya, Oksana O; Sergeeva, Lidiya I; Floková, Kristyna; Getman, Irina A; Lomin, Sergey N; Alekseeva, Valeriya V; Rukavtsova, Elena B; Buryanov, Yaroslav I; Romanov, Georgy A

    2017-03-01

    Ectopic auxin overproduction in transgenic potato leads to enhanced productivity accompanied with concerted and occasional changes in hormonal status, and causing altered response of transformants to exogenous auxin or cytokinin. Previously, we generated potato transformants expressing Agrobacterium-derived auxin synthesis gene tms1 driven by tuber-specific patatin gene promoter (B33-promoter). Here, we studied the endogenous hormonal status and the response to exogenous phytohormones in tms1 transformants cultured in vitro. Adding indole-3-acetic acid (IAA) or kinetin to culture medium affected differently tuberization of tms1-transformed and control plants, depending also on sucrose content in the medium. Exogenous phytohormones ceased to stimulate the tuber initiation in transformants at high (5-8%) sucrose concentration, while in control plants the stimulation was observed in all experimental settings. Furthermore, exogenous auxin partly inhibited the tuber initiation, and exogenous cytokinin reduced the average tuber weight in most transformants at high sucrose content. The elevated auxin level in tubers of the transformants was accompanied with a decrease in content of cytokinin bases and their ribosides in tubers and most shoots. No concerted changes in contents of abscisic, jasmonic, salicylic acids and gibberellins in tubers were detected. The data on hormonal status indicated that the enhanced productivity of tms1 transformants was due to auxin and not mediated by other phytohormones. In addition, exogenous cytokinin was shown to upregulate the expression of genes encoding orthologs of auxin receptors. Overall, the results showed that tms1 expression and local increase in IAA level in transformants affect both the balance of endogenous cytokinins and the dynamics of tuberization in response to exogenous hormones (auxin, cytokinin), the latter reaction depending also on the carbohydrate supply. We introduce a basic model for the hormonal network

  17. Determination of 4-Chloroindole-3-Acetic Acid Methyl Ester in Lathyrus Vicia and Pisum by Gas Chromatography - Mass Spectrometry

    DEFF Research Database (Denmark)

    Engvild, Kjeld Christensen; Egsgaard, Helge; Larsen, Elfinn

    1980-01-01

    4-Chloroindole-3-acetic acid methyl ester was identified unequivocally in Lathyrus latifolius L., Vicia faba L. and Pisum sativum L. by thin layer chromatography, gas chromatography and mass spectrometry. The gas chromatographic system was able to separate underivatized chloroindole-3-acetic acid...... methyl ester isomers. The quantitative determination of 4-chloroindole-3-acetic acid methyl ester in immature seeds of these three species was performed by gas chromatography – mass spectrometry using deuterium labelled 4-chloro-indole-3-acetic acid methyl ester as an internal standard. P. sativum...

  18. REGENERASIRUMPUT LAUT Kappaphycus alvarezii (Doty MELALUI INDUKSI KALUS DAN EMBRIO DENGAN PENAMBAHAN HORMON PERANGSANG TUMBUH SECARA IN VITRO

    Directory of Open Access Journals (Sweden)

    Emma Suryati

    2009-04-01

    Full Text Available Regenerasi rumput laut Kappaphycus alvarezii dilakukan dalam rangka penyediaan benih yang bermutu dan mempunyai keunggulan melalui induksi kalus dan embrio dengan penambahan hormon pertumbuhan yang diintroduksi ke dalam media kultur yang dapat memacu induksi kalus dan penebalan pigmen rumput laut. Media kultur yang digunakan adalah media Conwy padat dengan penambahan agar 0,8%-1,6%. Hormon perangsang tumbuh yang digunakan untuk memacu pertumbuhan kalus dan filamen embrio yaitu IAA (Indol acetic acid, kinetin, dan auxilin dengan konsentrasi berkisar 0,4-1 mg/L. Embrio yang dihasilkan merupakan anakan yang mempunyai sifat yang sama dengan induknya. Sintasan dan perkembangan embrio yang paling baik yaitu dengan penambahan IAA dengan konsentrasi 0,4 mg/L pada media padat. Pembentukan anakan dilakukan dengan mengiris embrio dan menumbuhkan pada media cair yang diperkaya dengan hormon yang sama. Pemeliharaan anakan pada media kultur dilakukan hingga mencapai ukuran 2-3 cm. Regeneration of seaweed Kappaphycus alvarezii was done to provide high quality seed through callus and embryo induction using plant growth regulator which was introducted to the culture medium. This growth regulator can stimulate the callus induction procces and thickening the seaweed pigment. Applied medium culture was agar medium with 0.8%-1.6% concentration enriched with Conwy and the applied growth regulators were IAA (Indol acetic acid, kinetin dan auxilin with 0.4-1 mg/L concentration range. Resulted embryo has the same characteristics with the stock. The best survival rate and embryo growth was IAA treatment with 0.4 mg/L concentration. Formation of embryo was done by transferring them from solid medium to the liquid one with the same growth regulator treatment. The nursery of the seed in culture medium was carried out until it has reached 2-3 cm in size.

  19. Characterization of acetate-utilizing methanogenic bacteria, depending on varying acetate concentrations, in a biogas plant. Phase 1

    International Nuclear Information System (INIS)

    Ahring, B.K.

    1994-12-01

    The present report contains the results of a project concerning behaviour of acetate-utilizing methanogenic bacteria in mesophilic and thermophilic biogas plants, collected in 1992 - 1994 period. Labelled acetates (2-C 14 -CH 3 COOH) have been used to characterize the types of methane bacteria populations in the Danish biogas plants, the optimum acetate concentration for these bacteria and acetate metabolism in mesophilic and thermophilic biogas reactors with low acetate concentrations. 2 publications are included. (EG)

  20. Relationship between endogenous hormonal content and somatic organogenesis in callus of peach (Prunus persica L. Batsch) cultivars and Prunus persica×Prunus dulcis rootstocks.

    Science.gov (United States)

    Pérez-Jiménez, Margarita; Cantero-Navarro, Elena; Pérez-Alfocea, Francisco; Le-Disquet, Isabel; Guivarc'h, Anne; Cos-Terrer, José

    2014-05-01

    The relationship between endogenous hormones content and the induction of somatic peach plant was studied. To induce multiple shoots from callus derived from the base of stem explants of the scion cultivars 'UFO-3', 'Flariba' and 'Alice Bigi', and the peach×almond rootstocks 'Garnem' and 'GF677', propagated plants were cultured on Murashige and Skoog salts augmented with 0.1mgL(-1) of indolebutyric acid, 1mgL(-1) of 6-benzylaminopurine and 3% sucrose. The highest regeneration rate was obtained with the peach×almond rootstocks. Endogenous levels of abscisic acid (ABA), indole-3-acetic acid (IAA), zeatin (Z), zeatin riboside (ZR), ethylene precursor 1-aminocyclopropane-1-carboxylic acid (ACC), salicylic acid (SA), and jasmonic acid (JA) were analyzed in the organogenic callus. Lower levels of several hormones, namely Z, ZR, ABA, and ACC were found in the peach×almond rootstock compared to peach cultivars, while IAA and SA presented inconclusive returns. These results suggest that the difference in somatic organogenesis capacity observed in peach and peach×almond hybrids is markedly affected by the endogenous hormonal content of the studied genotypes. Copyright © 2014 Elsevier GmbH. All rights reserved.

  1. Rhizovarins A-F, Indole-Diterpenes from the Mangrove-Derived Endophytic Fungus Mucor irregularis QEN-189.

    Science.gov (United States)

    Gao, Shu-Shan; Li, Xiao-Ming; Williams, Katherine; Proksch, Peter; Ji, Nai-Yun; Wang, Bin-Gui

    2016-08-26

    Genome mining of the fungus Mucor irregularis (formerly known as Rhizomucor variabilis) revealed the presence of various gene clusters for secondary metabolite biosynthesis, including several terpene-based clusters. Investigation into the chemical diversity of M. irregularis QEN-189, an endophytic fungus isolated from the fresh inner tissue of the marine mangrove plant Rhizophora stylosa, resulted in the discovery of 20 structurally diverse indole-diterpenes including six new compounds, namely, rhizovarins A-F (1-6). Among them, compounds 1-3 represent the most complex members of the reported indole-diterpenes. The presence of an unusual acetal linked to a hemiketal (1) or a ketal (2 and 3) in an unprecedented 4,6,6,8,5,6,6,6,6-fused indole-diterpene ring system makes them chemically unique. Their structures and absolute configurations were elucidated by spectroscopic analysis, modified Mosher's method, and chemical calculations. Each of the isolated compounds was evaluated for antitumor activity against HL-60 and A-549 cell lines.

  2. 2-tert-Butyl-5,6,7,8,9,10-hexahydrocyclohepta[b]indole

    Directory of Open Access Journals (Sweden)

    Janina Wobbe

    2011-09-01

    Full Text Available 2-tert-Butyl-5,6,7,8,9,10-hexahydrocyclohepta[b]indole was synthesized by reaction of cycloheptanone and (4-tert-butylphenylhydrazine hydrochloride in the presence of sodium acetate and sulfuric acid in glacial acetic acid via Fischer indole synthesis.

  3. Enhancement of broccoli indole glucosinolates by methyl jasmonate treatment and effects on prostate carcinogenesis.

    Science.gov (United States)

    Liu, Ann G; Juvik, John A; Jeffery, Elizabeth H; Berman-Booty, Lisa D; Clinton, Steven K; Erdman, John W

    2014-11-01

    Broccoli is rich in bioactive components, such as sulforaphane and indole-3-carbinol, which may impact cancer risk. The glucosinolate profile of broccoli can be manipulated through treatment with the plant stress hormone methyl jasmonate (MeJA). Our objective was to produce broccoli with enhanced levels of indole glucosinolates and determine its impact on prostate carcinogenesis. Brassica oleracea var. Green Magic was treated with a 250 μM MeJA solution 4 days prior to harvest. MeJA-treated broccoli had significantly increased levels of glucobrassicin, neoglucobrassicin, and gluconasturtiin (P broccoli powder, or 10% MeJA broccoli powder. Diets were fed throughout the study until termination at 20 weeks of age. Hepatic CYP1A was induced with MeJA broccoli powder feeding, indicating biological activity of the indole glucosinolates. Following ∼ 15 weeks on diets, neither of the broccoli treatments significantly altered genitourinary tract weight, pathologic score, or metastasis incidence, indicating that broccoli powder at 10% of the diet was ineffective at reducing prostate carcinogenesis in the TRAMP model. Whereas broccoli powder feeding had no effect in this model of prostate cancer, our work demonstrates the feasibility of employing plant stress hormones exogenously to stimulate changes in phytochemical profiles, an approach that may be useful for optimizing bioactive component patterns in foods for chronic-disease-prevention studies.

  4. Indole-3-acetic acid biosynthetic pathway and aromatic amino acid aminotransferase activities in Pantoea dispersa strain GPK.

    Science.gov (United States)

    Kulkarni, G B; Nayak, A S; Sajjan, S S; Oblesha, A; Karegoudar, T B

    2013-05-01

    This investigation deals with the production of IAA by a bacterial isolate Pantoea dispersa strain GPK (PDG) identified by 16S rRNA gene sequence analysis. HPLC and Mass spectral analysis of metabolites from bacterial spent medium revealed that, IAA production by PDG is Trp-dependent and follows indole-3-pyruvic acid (IPyA) pathway. Substrate specificity study of aromatic amino acid aminotransferase (AAT) showed high activities, only when tryptophan (Trp) and α-ketoglutarate (α-kg) were used as substrates. AAT is highly specific for Trp and α-kg as amino group donor and acceptor, respectively. The effect of exogenous IAA on bacterial growth was established. Low concentration of exogenous IAA induced the growth, whereas high concentration decreased the growth of bacterium. PDG treatment significantly increased the root length, shoot length and dry mass of the chickpea and pigeon pea plants. © 2013 The Society for Applied Microbiology.

  5. 2-(2,3-Dihydro-1H-indol-3-yl)ethanol

    DEFF Research Database (Denmark)

    Frydenvang, Karla Andrea; Sommer, Michael Bech; Heckmann, Dieter

    2004-01-01

    The first direct resolution of racemic 2-(2,3-dihydro-lH-indol-3-yl)ethanol-prepared by catalytic hydrogenation of 2-(lH-indol-3-yl)ethanol-has been accomplished by chiral simulated moving bed (SMB) chromatography. The single enantiomers were isolated as their dihydrogen phosphate salts. Single......-crystal X-ray analyses were successful, revealing that the (+)-enantiomer of 2-(2,3-dihydro-lH-indol-3-yl)ethanol has the (S) configuration. Chirality 16:126-130, 2004....

  6. Effects of N6-benzylaminopurine and Indole Acetic Acid on In Vitro Shoot Multiplication, Nodule-like Meristem Proliferation and Plant Regeneration of Malaysian Bananas (Musa spp.)

    Science.gov (United States)

    Sipen, Philip; Davey, Michael R

    2012-01-01

    Different concentrations of N6-benzylaminopurine (BAP) and indole acetic acid (IAA) in Murashige and Skoog based medium were assessed for their effects on shoot multiplication, nodule-like meristem proliferation and plant regeneration of the Malaysian banana cultivars Pisang Mas, Pisang Nangka, Pisang Berangan and Pisang Awak. BAP at 1–14 mg L−1 with or without 0.2 mg L−1 IAA, or BAP at 7–14 mg L−1 with the same concentration of IAA, was evaluated for shoot multiplication from shoot tips and the proliferation of nodule-like meristems from scalps, respectively. Plant regeneration from scalps was assessed using 1 mg L−1 BAP and 0.2 mg L−1 IAA separately, or a combination of these two growth regulators. Data on shoot multiplication, the proliferation of nodule-like meristems with associated plant regeneration were recorded after 30 days of culture. A maximum of 5 shoots per original shoot tip was achieved on medium supplemented with BAP at 5 mg L−1 (Pisang Nangka), 6 mg L−1 (Pisang Mas and Pisang Berangan), or 7 mg L−1 (Pisang Awak), with 0.2 mg L−1 IAA. BAP at 11 mg L−1 with 0.2 mg L−1 IAA induced the most highly proliferating nodule-like meristems in the four banana cultivars. Plant regeneration from scalps was optimum in all cases on medium containing 1 mg L−1 BAP and 0.2 mg L−1 IAA. This is the first report on the successful induction of highly proliferating nodule-like meristems and plant regeneration from scalps of the Malaysian banana cultivars Pisang Mas, Pisang Nangka, Pisang Berangan and Pisang Awak. PMID:24575235

  7. Synthesis of New Functionalized Indoles Based on Ethyl Indol-2-carboxylate

    Directory of Open Access Journals (Sweden)

    Ahmed T. A. Boraei

    2016-03-01

    Full Text Available Successful alkylations of the nitrogen of ethyl indol-2-carboxylate were carried out using aq. KOH in acetone. The respective N-alkylated acids could be obtained without separating the N-alkylated esters by increasing the amount of KOH and water. The use of NaOMe in methanol led to transesterification instead of the alkylation, while the use of NaOEt led to low yields of the N-alkylated acids. Hydrazinolysis of the ester gave indol-2-carbohydrazide which then was allowed to react with different aromatic aldehydes and ketones in ethanol catalyzed by acetic acid. Indol-2-thiosemicarbazide was used in a heterocyclization reaction to form thiazoles. The new structures were confirmed using NMR, mass spectrometry and X-ray single crystal analysis.

  8. Syntheses of DNA adducts of two heterocyclic amines, 2-amino-3-methyl-9H-pyrido[2,3-b]indole (MeA alpha C) and 2-amino-9H-pyrido[2,3-b]indole (A alpha C) and identification of DNA adducts in organs from rats dosed with MeA alpha C

    DEFF Research Database (Denmark)

    Frederiksen, Hanne; Frandsen, Henrik Lauritz; Pfau, W.

    2004-01-01

    2-Amino-3-methyl-9H-pyrido[2,3-b]indole (MeAalphaC) and 2-amino-3-methyl-9H-pyrido[2,3-b]indole (AalphaC) are mutagenic and carcinogenic heterocyclic amines formed during ordinary cooking. MeAalphaC and AalphaC are activated to mutagenic metabolites by cytochrome P450-mediated N-oxidation...... by reaction of the parent amines with acetylated guanine N3-oxide. N-2-OH-MeAalphaC and N-2-OH-AalphaC reacted with calf thymus DNA after addition of acetic anhydride. P-32-postlabelling analysis of modified DNA showed one major adduct co-migrating with N-2-(3',5'-diphospho-2'-deoxyguanosin-8-yl...

  9. Hormones and Pod Development in Oilseed Rape (Brassica napus) 1

    Science.gov (United States)

    de Bouille, Pierre; Sotta, Bruno; Miginiac, Emile; Merrien, André

    1989-01-01

    The endogenous levels of several plant growth substances (indole acetic acid, IAA; abscisic acid, ABA; zeatin, Z; zeatin riboside, [9R]Z; isopentenyladenine, iP; and isopentenyladenosine, [9R]iP were measured during pod development of field grown oilseed Rape (Brassica napus L. var oleifera cv Bienvenu) with high performance liquid chromatography and immunoenzymic (enzyme-linked immunosorbent assay, ELISA) techniques. Results show that pod development is characterized by high levels of Z and [9R]Z in 3 day old fruits and of IAA on the fourth day. During pod maturation, initially a significant increase of IAA and cytokinins was observed, followed by a progressive rise of ABA levels and a concomitant decline of IAA and cytokinin (except iP) levels. The relationship between hormone levels and development, especially pod number, seed number per pod, and seed weight determination, will be discussed. PMID:16666891

  10. Hormonal and Hydroxycinnamic Acids Profiles in Banana Leaves in Response to Various Periods of Water Stress

    Directory of Open Access Journals (Sweden)

    Jalel Mahouachi

    2014-01-01

    Full Text Available The pattern of change in the endogenous levels of several plant hormones and hydroxycinnamic acids in addition to growth and photosynthetic performance was investigated in banana plants (Musa acuminata cv. “Grand Nain” subjected to various cycles of drought. Water stress was imposed by withholding irrigation for six periods with subsequent rehydration. Data showed an increase in abscisic acid (ABA and indole-3-acetic acid (IAA levels, a transient increase in salicylic acid (SA concentration, and no changes in jasmonic acid (JA after each period of drought. Moreover, the levels of ferulic (FA and cinnamic acids (CA were increased, and plant growth and leaf gas exchange parameters were decreased by drought conditions. Overall, data suggest an involvement of hormones and hydroxycinnamic acids in plant avoidance of tissue dehydration. The increase in IAA concentration might alleviate the senescence of survival leaves and maintained cell elongation, and the accumulation of FA and CA could play a key role as a mechanism of photoprotection through leaf folding, contributing to the effect of ABA on inducing stomatal closure. Data also suggest that the role of SA similarly to JA might be limited to a transient and rapid increase at the onset of the first period of stress.

  11. Hormonal and hydroxycinnamic acids profiles in banana leaves in response to various periods of water stress.

    Science.gov (United States)

    Mahouachi, Jalel; López-Climent, María F; Gómez-Cadenas, Aurelio

    2014-01-01

    The pattern of change in the endogenous levels of several plant hormones and hydroxycinnamic acids in addition to growth and photosynthetic performance was investigated in banana plants (Musa acuminata cv. "Grand Nain") subjected to various cycles of drought. Water stress was imposed by withholding irrigation for six periods with subsequent rehydration. Data showed an increase in abscisic acid (ABA) and indole-3-acetic acid (IAA) levels, a transient increase in salicylic acid (SA) concentration, and no changes in jasmonic acid (JA) after each period of drought. Moreover, the levels of ferulic (FA) and cinnamic acids (CA) were increased, and plant growth and leaf gas exchange parameters were decreased by drought conditions. Overall, data suggest an involvement of hormones and hydroxycinnamic acids in plant avoidance of tissue dehydration. The increase in IAA concentration might alleviate the senescence of survival leaves and maintained cell elongation, and the accumulation of FA and CA could play a key role as a mechanism of photoprotection through leaf folding, contributing to the effect of ABA on inducing stomatal closure. Data also suggest that the role of SA similarly to JA might be limited to a transient and rapid increase at the onset of the first period of stress.

  12. Crystal structure of (Z-ethyl 3-[2-(5-methyl-7-nitro-1H-indole-2-carbonylhydrazinylidene]butanoate

    Directory of Open Access Journals (Sweden)

    Amal Errossafi

    2015-09-01

    Full Text Available The reaction of 5-methyl-7-nitro-1H-indole-2-carbohydrazide with ethyl acetoacetate yielded the title molecule, C16H18N4O5, in which the indole ring is almost planar, with the greatest deviation from the mean plane being 0.006 (2 Å. The nine atoms of the indole ring are almost perpendicular to the mean plane through the ethyl acetate group, as indicated by the dihedral angle of 87.02 (4° between them. In the crystal, centrosymmetric supramolecular dimers are formed via N—H...O hydrogen bonds and eight-membered amide {...HNCO}2 synthons. These are consolidated into a three-dimensional architecture by C—H...O contacts, and by π–π interactions between six-membered rings [inter-centroid distance = 3.499 (2 Å].

  13. Hormone and glucose metabolic effects of compound cyproterone acetate in women with polycystic ovarian syndrome

    International Nuclear Information System (INIS)

    Ba Ya; Zhao Jinping; Halike, A.

    2008-01-01

    To investigate the clinical efficacy of compound cyproterone acetate(CPY) in the treatment of polycystic ovarian syndrome(PCOS) and study hormone and glucose metabolic effects, thirty-five PCOS patients were treated by compound cyproterone acetate for 3 cycles. The serum LH, FSH and T levels, fasting glucose and fasting insulin were determined before and after 3 cycle's treatment. The results showed that 34 patients had regular menses during CPY therapy. The hirsute and acne score decreased significantly(P 0.05). The results indicate that the compound cyproterone acetate had anti-androgenic effects on PCOS patients and improved their endocrine function and clinical syndrome. (authors)

  14. Effects of leuprolide acetate on selected blood and fecal sex hormones in Hispaniolan Amazon parrots (Amazona ventrais).

    Science.gov (United States)

    Klaphake, Eric; Fecteau, Kellie; DeWit, Martine; Greenacre, Cheryl; Grizzle, Judith; Jones, Michael; Zagaya, Nancy; Abney, L Kim; Oliver, Jack

    2009-12-01

    The luteinizing hormone-releasing hormone agonist leuprolide acetate is used commonly to anage reproductive problems in pet birds. To determine the effect of leuprolide acetate on plas a and fecal hormone levels in a psittacine species, a single 800 microg/kg dose of the 30-day depot form of leuprolide acetate was administered IM in 11 healthy, nonbreeding adult Hispaniolan Amazon parrots (Amazona ventralis), and plasma and fecal hormone levels were measured before and after leuprolide administration. At pooled baseline to 21 days postleuprolide acetate administration, sample collection day was significantly associated with plasma 17beta-estradiol and androstenedione levels and fecal 17beta-estradiol levels (evaluated in females only). Both plasma androstenedione and plasma 17beta-estradiol levels decreased significantly from baseline to a nadir at 7 days postleuprolide acetate administration but did not differ significantly 14 days later from that nadir or from pooled baseline samples, suggesting that the effect of leuprolide on hormone levels remained about 2 weeks. Fecal 17beta-estradiol levels increased significantly from the nadir at 7 days postleuprolide to 21 days postleuprolide administration, with trends of the level at 21 days postleuprolide being higher than the pooled baseline level and of decreasing levels from pooled baseline to 7 days postleuprolide administration. Plasma luteinizing hormone and fecal testosterone levels did not change significantly from baseline levels after leuprolide administration over the 2-day period. No significant correlations were found between plasma hormone and fecal hormone levels. These results suggest that measurement of plasma androstenedione, plasma 17beta-estradiol, and fecal 17beta-estradiol levels might be useful in assessing the effects of 30-day depot leuprolide acetate in Hispaniolan Amazon parrots.

  15. Growth, Morphology and Growth Related Hormone Level in Kappaphycus alvarezii Produced by Mass Selection in Gorontalo Waters, Indonesia

    Directory of Open Access Journals (Sweden)

    Siti Fadilah

    2016-01-01

    Full Text Available The use of high quality seed can support the success of the seaweed cultivation. This study was conducted to evaluate the growth performance, morphology and growth related hormone level of brown strain seaweed Kappaphycus alvarezii seed produced by mass selection. Selection was performed in the Tomini Gulf, Gorontalo, based on mass selection of seaweed seed protocol with a slight modification in cut-off 10% of the highest daily growth rate. Selection was carried out for four generations. The selected 4th generation of seed was then used in cultivation performance test in the Celebes Sea, North Gorontalo, for three production cycles. The results showed that the selected K. alvarezii has higher clump weight and daily growth rate, longer thallus, more number of branches, and shorter internodes compared to the unselected control and seaweed from the farmer as external control. Furthermore, total sugar content, levels of kinetin hormone and kinetin:indole-3-acetic acid ratio were higher in selected seaweeds than that of unselected control and external control. Thus, mass selection method could be used to produce high growth of seed, and kinetin and indole-3-acetic acid play an important role in growth of K. alvarezii.

  16. Characterization of an Indole-3-Acetamide Hydrolase from Alcaligenes faecalis subsp. parafaecalis and Its Application in Efficient Preparation of Both Enantiomers of Chiral Building Block 2,3-Dihydro-1,4-Benzodioxin-2-Carboxylic Acid.

    Directory of Open Access Journals (Sweden)

    Pradeep Mishra

    Full Text Available Both the enantiomers of 2,3-dihydro-1,4-benzodioxin-2-carboxylic acid are valuable chiral synthons for enantiospecific synthesis of therapeutic agents such as (S-doxazosin mesylate, WB 4101, MKC 242, 2,3-dihydro-2-hydroxymethyl-1,4-benzodioxin, and N-[2,4-oxo-1,3-thiazolidin-3-yl]-2,3-dihydro-1,4-benzodioxin-2-carboxamide. Pharmaceutical applications require these enantiomers in optically pure form. However, currently available methods suffer from one drawback or other, such as low efficiency, uncommon and not so easily accessible chiral resolving agent and less than optimal enantiomeric purity. Our interest in finding a biocatalyst for efficient production of enantiomerically pure 2,3-dihydro-1,4-benzodioxin-2-carboxylic acid lead us to discover an amidase activity from Alcaligenes faecalis subsp. parafaecalis, which was able to kinetically resolve 2,3-dihydro-1,4-benzodioxin-2-carboxyamide with E value of >200. Thus, at about 50% conversion, (R-2,3-dihydro-1,4-benzodioxin-2-carboxylic acid was produced in >99% e.e. The remaining amide had (S-configuration and 99% e.e. The amide and acid were easily separated by aqueous (alkaline-organic two phase extraction method. The same amidase was able to catalyse, albeit at much lower rate the hydrolysis of (S-amide to (S-acid without loss of e.e. The amidase activity was identified as indole-3-acetamide hydrolase (IaaH. IaaH is known to catalyse conversion of indole-3-acetamide (IAM to indole-3-acetic acid (IAA, which is phytohormone of auxin class and is widespread among plants and bacteria that inhabit plant rhizosphere. IaaH exhibited high activity for 2,3-dihydro-1,4-benzodioxin-2-carboxamide, which was about 65% compared to its natural substrate, indole-3-acetamide. The natural substrate for IaaH indole-3-acetamide shared, at least in part a similar bicyclic structure with 2,3-dihydro-1,4-benzodioxin-2-carboxamide, which may account for high activity of enzyme towards this un-natural substrate. To

  17. Characterization of an Indole-3-Acetamide Hydrolase from Alcaligenes faecalis subsp. parafaecalis and Its Application in Efficient Preparation of Both Enantiomers of Chiral Building Block 2,3-Dihydro-1,4-Benzodioxin-2-Carboxylic Acid.

    Science.gov (United States)

    Mishra, Pradeep; Kaur, Suneet; Sharma, Amar Nath; Jolly, Ravinder S

    2016-01-01

    Both the enantiomers of 2,3-dihydro-1,4-benzodioxin-2-carboxylic acid are valuable chiral synthons for enantiospecific synthesis of therapeutic agents such as (S)-doxazosin mesylate, WB 4101, MKC 242, 2,3-dihydro-2-hydroxymethyl-1,4-benzodioxin, and N-[2,4-oxo-1,3-thiazolidin-3-yl]-2,3-dihydro-1,4-benzodioxin-2-carboxamide. Pharmaceutical applications require these enantiomers in optically pure form. However, currently available methods suffer from one drawback or other, such as low efficiency, uncommon and not so easily accessible chiral resolving agent and less than optimal enantiomeric purity. Our interest in finding a biocatalyst for efficient production of enantiomerically pure 2,3-dihydro-1,4-benzodioxin-2-carboxylic acid lead us to discover an amidase activity from Alcaligenes faecalis subsp. parafaecalis, which was able to kinetically resolve 2,3-dihydro-1,4-benzodioxin-2-carboxyamide with E value of >200. Thus, at about 50% conversion, (R)-2,3-dihydro-1,4-benzodioxin-2-carboxylic acid was produced in >99% e.e. The remaining amide had (S)-configuration and 99% e.e. The amide and acid were easily separated by aqueous (alkaline)-organic two phase extraction method. The same amidase was able to catalyse, albeit at much lower rate the hydrolysis of (S)-amide to (S)-acid without loss of e.e. The amidase activity was identified as indole-3-acetamide hydrolase (IaaH). IaaH is known to catalyse conversion of indole-3-acetamide (IAM) to indole-3-acetic acid (IAA), which is phytohormone of auxin class and is widespread among plants and bacteria that inhabit plant rhizosphere. IaaH exhibited high activity for 2,3-dihydro-1,4-benzodioxin-2-carboxamide, which was about 65% compared to its natural substrate, indole-3-acetamide. The natural substrate for IaaH indole-3-acetamide shared, at least in part a similar bicyclic structure with 2,3-dihydro-1,4-benzodioxin-2-carboxamide, which may account for high activity of enzyme towards this un-natural substrate. To the best of

  18. Spectroscopic study of jet-cooled indole-3-carbinol by thermal evaporation

    International Nuclear Information System (INIS)

    Moon, Cheol Joo; Kim, Eun Bin; Min, Ahreum; Ahn, Ahreum; Seong, Yeon Guk; Choi, Myong Yong

    2016-01-01

    Cruciferous vegetables such as cabbage, kale, broccoli, and cauliflower have relatively high levels of indole-3-carbinol (I3C), which can be used as a possible cancer preventative agent particularly for breast, cervical, colorectal, and other hormone-related cancers. Thus, this naturally occurring substance, I3C, is now being used in dietary supplements. In conclusion, we have succeeded in obtaining the R2PI spectrum of a thermally unstable sample, I3C, by using a thermal buffer (herein, uracil) for the first time. Use of thermal evaporation method for thermally unstable biomolecules using thermal buffers will allow us to explore more gas phase spectroscopic studies for their intrinsic physiological properties in the near future

  19. Spectroscopic study of jet-cooled indole-3-carbinol by thermal evaporation

    Energy Technology Data Exchange (ETDEWEB)

    Moon, Cheol Joo; Kim, Eun Bin; Min, Ahreum; Ahn, Ahreum; Seong, Yeon Guk; Choi, Myong Yong [Gyeongsang National University, Jinju (Korea, Republic of)

    2016-10-15

    Cruciferous vegetables such as cabbage, kale, broccoli, and cauliflower have relatively high levels of indole-3-carbinol (I3C), which can be used as a possible cancer preventative agent particularly for breast, cervical, colorectal, and other hormone-related cancers. Thus, this naturally occurring substance, I3C, is now being used in dietary supplements. In conclusion, we have succeeded in obtaining the R2PI spectrum of a thermally unstable sample, I3C, by using a thermal buffer (herein, uracil) for the first time. Use of thermal evaporation method for thermally unstable biomolecules using thermal buffers will allow us to explore more gas phase spectroscopic studies for their intrinsic physiological properties in the near future.

  20. Enzymic synthesis of indole-3-acetyl-1-O-beta-d-glucose. I. Partial purification and characterization of the enzyme from Zea mays

    Science.gov (United States)

    Leznicki, A. J.; Bandurski, R. S.

    1988-01-01

    The first enzyme-catalyzed reaction leading from indole-3-acetic acid (IAA) to the myo-inositol esters of IAA is the synthesis of indole-3-acetyl-1-O-beta-D-glucose from uridine-5'-diphosphoglucose (UDPG) and IAA. The reaction is catalyzed by the enzyme, UDPG-indol-3-ylacetyl glucosyl transferase (IAA-glucose-synthase). This work reports methods for the assay of the enzyme and for the extraction and partial purification of the enzyme from kernels of Zea mays sweet corn. The enzyme has an apparent molecular weight of 46,500 an isoelectric point of 5.5, and its pH optimum lies between 7.3 and 7.6. The enzyme is stable to storage at zero degrees but loses activity during column chromatographic procedures which can be restored only fractionally by addition of column eluates. The data suggest either multiple unknown cofactors or conformational changes leading to activity loss.

  1. Adventitious rooting declines with the vegetative to reproductive switch and involves a changed auxin homeostasis.

    Science.gov (United States)

    Rasmussen, Amanda; Hosseini, Seyed Abdollah; Hajirezaei, Mohammed-Reza; Druege, Uwe; Geelen, Danny

    2015-03-01

    Adventitious rooting, whereby roots form from non-root tissues, is critical to the forestry and horticultural industries that depend on propagating plants from cuttings. A major problem is that age of the tissue affects the ability of the cutting to form adventitious roots. Here, a model system has been developed using Pisum sativum to differentiate between different interpretations of ageing. It is shown that the decline in adventitious rooting is linked to the ontogenetic switch from vegetative to floral and is mainly attributed to the cutting base. Using rms mutants it is demonstrated that the decline is not a result of increased strigolactones inhibiting adventitious root formation. Monitoring endogenous levels of a range of other hormones including a range of cytokinins in the rooting zone revealed that a peak in jasmonic acid is delayed in cuttings from floral plants. Additionally, there is an early peak in indole-3-acetic acid levels 6h post excision in cuttings from vegetative plants, which is absent in cuttings from floral plants. These results were confirmed using DR5:GUS expression. Exogenous supplementation of young cuttings with either jasmonic acid or indole-3-acetic acid promoted adventitious rooting, but neither of these hormones was able to promote adventitious rooting in mature cuttings. DR5:GUS expression was observed to increase in juvenile cuttings with increasing auxin treatment but not in the mature cuttings. Therefore, it seems the vegetative to floral ontogenetic switch involves an alteration in the tissue's auxin homeostasis that significantly reduces the indole-3-acetic acid pool and ultimately results in a decline in adventitious root formation. © The Author 2014. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  2. Terbium(III) ions as sensitizers of oxidation of indole and its derivatives in Fenton system

    Energy Technology Data Exchange (ETDEWEB)

    Kaczmarek, Małgorzata, E-mail: mkaczmar@amu.edu.pl; Staninski, Krzysztof

    2017-03-15

    Oxidation of indole and its derivatives in the Fenton system as a source of oxidising agents, in the presence of terbium(III) ions was studied by chemiluminescence methods to get the kinetic curves of emission decay and spectral distributions of chemiluminescence. Terbium(III) ions acted as a sensitizer of the mixtures Tb(III)-Fe(II)/Fe(III)-H{sub 2}O{sub 2}-indole or its derivative (tryptophan, tryptamine, indole-3-acetic acid and indole-3-acetyl aspartic acid). For the above indolic compounds, linear dependencies of integrated intensity of chemiluminescence on concentration of indolic compound in water and in water-acetonitrile solution were obtained. The limits of detection (LOD) and quantification (LOQ) of the indolic compounds studied were found to be by one or two orders of magnitude lower in the system with terbium(III) ions than without them. - Highlights: • Chemiluminescence emitted on oxidation of indolic compounds in Fenton system. • Tb (III) ions as sensitizers of indolic compounds oxidation in solutions. • Linear relations between CL intensity and indolic compound concentration.

  3. Synthesis of 8-phenyl-10H-pyrido[1,2-α]indole salts from 2,3,3-trimethyl-3H-indole chlorides with cinnamaldehyde

    International Nuclear Information System (INIS)

    Shachkus, A.A.; Degutis, Yu.A.

    1987-01-01

    Reaction of 2,3,3-trimethyl-3H-indole chloride with cinnamic and 4-dimethylaminocinnamic aldehydes led to salts of 8-phenyl and 8-(4-dimethylaminophenyl)-10,10-dimethyl-10H-pyrido[1,2-α]indole. PMR spectra were recorded on a Tesla BS-487C (80 MHz) instrument (internal standard HMDS) and IR spectra on a UR-20 spectrometer (KBr pellets)

  4. Synergistic Effect of Hormones and Biosolids on Scenedesmus abundans for Eliciting Total Biolipids.

    Science.gov (United States)

    Chellamboli, Chelladurai; Perumalsamy, Muthiah

    2016-12-01

      This study states an integrated approach to grow Scenedesmus abundans in the presence of biostimulants as a robust flourishing organism pertaining to attain the maximum yield of the biodiesel through transesterification. These assessments are especially targeted to achieve the appreciable profit on biodiesel using three biostimulants such as, Indole 3-acetic acid (3 IAA), 6-Benzylaminopurine (6 BAP), and Gibberellic acid (GA) hormones. The proposed schema proved a rise in biomass; as well as lipid content, compared with an alga grown in the absence of hormones. The harvested S. abundans was exposed to many physio-chemical analyses for characterization of formulating microalgae cells. S. abundans cultivated in the 6-BAP hormone exhibit 2.17, 0.95, 1.745, and 15.6 fold increase in biomass, protein, carbohydrate and lipid content. Therefore, S. abundans was emphatically an apt species for the production of biodiesel.

  5. Induced Production of 1-Methoxy-indol-3-ylmethyl Glucosinolate by Jasmonic Acid and Methyl Jasmonate in Sprouts and Leaves of Pak Choi (Brassica rapa ssp. chinensis

    Directory of Open Access Journals (Sweden)

    Hansruedi Glatt

    2013-07-01

    Full Text Available Pak choi plants (Brassica rapa ssp. chinensis were treated with different signaling molecules methyl jasmonate, jasmonic acid, linolenic acid, and methyl salicylate and were analyzed for specific changes in their glucosinolate profile. Glucosinolate levels were quantified using HPLC-DAD-UV, with focus on induction of indole glucosinolates and special emphasis on 1-methoxy-indol-3-ylmethyl glucosinolate. Furthermore, the effects of the different signaling molecules on indole glucosinolate accumulation were analyzed on the level of gene expression using semi-quantitative realtime RT-PCR of selected genes. The treatments with signaling molecules were performed on sprouts and mature leaves to determine ontogenetic differences in glucosinolate accumulation and related gene expression. The highest increase of indole glucosinolate levels, with considerable enhancement of the 1-methoxy-indol-3-ylmethyl glucosinolate content, was achieved with treatments of sprouts and mature leaves with methyl jasmonate and jasmonic acid. This increase was accompanied by increased expression of genes putatively involved in the indole glucosinolate biosynthetic pathway. The high levels of indole glucosinolates enabled the plant to preferentially produce the respective breakdown products after tissue damage. Thus, pak choi plants treated with methyl jasmonate or jasmonic acid, are a valuable tool to analyze the specific protection functions of 1-methoxy-indole-3-carbinole in the plants defense strategy in the future.

  6. Analysis of iridoids content and expression studies of genes encoding early enzymes in the indol terpenoid biosynthesis pathway in Catharanthus roseus Análisis de iridoides y expresión de genes que codifican enzimas tempranas en la síntesis de alcaloides indol terpenoicos en Catharanthus roseus

    OpenAIRE

    Leech Mark; Palacios-Rojas Natalia

    2004-01-01

    Terpenoid indole alkaloids (TIA) are of pharmaceutical importance, however the industrial use of these compouds is very limited because its accumulation is very low in plant tissues. TIA are derived f rom the shikimate and terpenoid pathways, which supply secologanin and tryptamine, the indole and iridoid moieties, respectively. Secololganin is a terpenoid which is belived to be synthesised the MEP pathway rather than by the acetate/mevalonic acid pathway. Secologanin is thought to be a limit...

  7. Involvement of indole-3-acetic acid produced by Azospirillum brasilense in accumulating intracellular ammonium in Chlorella vulgaris.

    Science.gov (United States)

    Meza, Beatriz; de-Bashan, Luz E; Bashan, Yoav

    2015-01-01

    Accumulation of intracellular ammonium and activities of the enzymes glutamine synthetase (GS) and glutamate dehydrogenase (GDH) were measured when the microalgae Chlorella vulgaris was immobilized in alginate with either of two wild type strains of Azospirillum brasilense or their corresponding indole-3-acetic acid (IAA)-attenuated mutants. After 48 h of immobilization, both wild types induced higher levels of intracellular ammonium in the microalgae than their respective mutants; the more IAA produced, the higher the intracellular ammonium accumulated. Accumulation of intracellular ammonium in the cells of C. vulgaris followed application of four levels of exogenous IAA reported for A. brasilense and its IAA-attenuated mutants, which had a similar pattern for the first 24 h. This effect was transient and disappeared after 48 h of incubation. Immobilization of C. vulgaris with any bacteria strain induced higher GS activity. The bacterial strains also had GS activity, comparable to the activity detected in C. vulgaris, but weaker than when immobilized with the bacteria. When net activity was calculated, the wild type always induced higher GS activity than IAA-attenuated mutants. GDH activity in most microalgae/bacteria interactions resembled GS activity. When complementing IAA-attenuated mutants with exogenous IAA, GS activity in co-immobilized cultures matched those of the wild type A. brasilense immobilized with the microalga. Similarity occurred when the net GS activity was measured, and was higher with greater quantities of exogenous IAA. It is proposed that IAA produced by A. brasilense is involved in ammonium uptake and later assimilation by C. vulgaris. Copyright © 2014 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

  8. Novel indole-based inhibitors of IMPDH: introduction of hydrogen bond acceptors at indole C-3.

    Science.gov (United States)

    Watterson, Scott H; Dhar, T G Murali; Ballentine, Shelley K; Shen, Zhongqi; Barrish, Joel C; Cheney, Daniel; Fleener, Catherine A; Rouleau, Katherine A; Townsend, Robert; Hollenbaugh, Diane L; Iwanowicz, Edwin J

    2003-04-07

    The development of a series of novel indole-based inhibitors of 5'-inosine monophosphate dehydrogenase (IMPDH) is described. Various hydrogen bond acceptors at C-3 of the indole were explored. The synthesis and the structure-activity relationships (SARs) derived from in vitro studies are outlined.

  9. [Auxin synthesis by the higher fungus Lentinus edodes (Berk.) Sing in the presence of low concentrations of indole compounds].

    Science.gov (United States)

    Tsivileva, O M; Loshchinina, E A; Makarov, O E; Nikitina, V E

    2012-01-01

    The auxin formation in a submerged culture of the xylotrophic basidiomycete Lentinus edodes (Berk.) Sing (Lentinula edodes (Berk.) Pegler) (shiitake) is studied. Biologically active substances of an indole nature are identified, "the effect of small doses" of which lies in not only the stimulation of growth of the mycelium (indole-3-acetic acid, 2 x 10(-7)-2 x 10(-4) g/l), but also in the induction of tryptophan-independent paths of auxin biosynthesis. The above-mentioned path is realized in the presence of exogenous indole (1 x 10(-3)-1 x 10(-4) g/l), as well as while inducing the biosynthesis of indole-3-acetic acid by its microadditives (1 x 10(-5)-1 x 10(-8) g/l), and is accompanied by the formation of anthranilic acid (up to 1.5 mg/l). Induction of the generative development stage ofshiitake by indole derivatives is revealed. It was found that among the studied compounds only indoleacetamide at a concentration of an order of x 10(-4) g/l in the culture fluid of L. edodes had a pronounced stimulatory effect on the formation of shiitake's brown mycelial film.

  10. Structural Basis for Prereceptor Modulation of Plant Hormones by GH3 Proteins

    Energy Technology Data Exchange (ETDEWEB)

    Westfall, Corey S.; Zubieta, Chloe; Herrmann, Jonathan; Kapp, Ulrike; Nanao, Max H.; Jez, Joseph M. (WU); (EMBL); (ESRF)

    2013-04-08

    Acyl acid amido synthetases of the GH3 family act as critical prereceptor modulators of plant hormone action; however, the molecular basis for their hormone selectivity is unclear. Here, we report the crystal structures of benzoate-specific Arabidopsis thaliana AtGH3.12/PBS3 and jasmonic acid-specific AtGH3.11/JAR1. These structures, combined with biochemical analysis, define features for the conjugation of amino acids to diverse acyl acid substrates and highlight the importance of conformational changes in the carboxyl-terminal domain for catalysis. We also identify residues forming the acyl acid binding site across the GH3 family and residues critical for amino acid recognition. Our results demonstrate how a highly adaptable three-dimensional scaffold is used for the evolution of promiscuous activity across an enzyme family for modulation of plant signaling molecules.

  11. Overexpressing Exogenous 5-Enolpyruvylshikimate-3-Phosphate Synthase (EPSPS Genes Increases Fecundity and Auxin Content of Transgenic Arabidopsis Plants

    Directory of Open Access Journals (Sweden)

    Jia Fang

    2018-02-01

    Full Text Available Transgenic glyphosate-tolerant plants overproducing EPSPS (5-enolpyruvylshikimate-3-phosphate synthase may exhibit enhanced fitness in glyphosate-free environments. If so, introgression of transgenes overexpressing EPSPS into wild relative species may lead to increased competitiveness of crop-wild hybrids, resulting in unpredicted environmental impact. Assessing fitness effects of transgenes overexpressing EPSPS in a model plant species can help address this question, while elucidating how overproducing EPSPS affects the fitness-related traits of plants. We produced segregating T2 and T3Arabidopsis thaliana lineages with or without a transgene overexpressing EPSPS isolated from rice or Agrobacterium (CP4. For each of the three transgenes, we compared glyphosate tolerance, some fitness-related traits, and auxin (indole-3-acetic acid content in transgene-present, transgene-absent, empty vector (EV, and parental lineages in a common-garden experiment. We detected substantially increased glyphosate tolerance in T2 plants of transgene-present lineages that overproduced EPSPS. We also documented significant increases in fecundity, which was associated with increased auxin content in T3 transgene-present lineages containing rice EPSPS genes, compared with their segregating transgene-absent lineages, EV, and parental controls. Our results from Arabidopsis with nine transgenic events provide a strong support to the hypothesis that transgenic plants overproducing EPSPS can benefit from a fecundity advantage in glyphosate-free environments. Stimulated biosynthesis of auxin, an important plant growth hormone, by overproducing EPSPS may play a role in enhanced fecundity of the transgenic Arabidopsis plants. The obtained knowledge is useful for assessing environmental impact caused by introgression of transgenes overproducing EPSPS from any GE crop into populations of its wild relatives.

  12. Overexpressing Exogenous 5-Enolpyruvylshikimate-3-Phosphate Synthase (EPSPS) Genes Increases Fecundity and Auxin Content of Transgenic Arabidopsis Plants.

    Science.gov (United States)

    Fang, Jia; Nan, Peng; Gu, Zongying; Ge, Xiaochun; Feng, Yu-Qi; Lu, Bao-Rong

    2018-01-01

    Transgenic glyphosate-tolerant plants overproducing EPSPS (5-enolpyruvylshikimate-3-phosphate synthase) may exhibit enhanced fitness in glyphosate-free environments. If so, introgression of transgenes overexpressing EPSPS into wild relative species may lead to increased competitiveness of crop-wild hybrids, resulting in unpredicted environmental impact. Assessing fitness effects of transgenes overexpressing EPSPS in a model plant species can help address this question, while elucidating how overproducing EPSPS affects the fitness-related traits of plants. We produced segregating T 2 and T 3 Arabidopsis thaliana lineages with or without a transgene overexpressing EPSPS isolated from rice or Agrobacterium ( CP4 ). For each of the three transgenes, we compared glyphosate tolerance, some fitness-related traits, and auxin (indole-3-acetic acid) content in transgene-present, transgene-absent, empty vector (EV), and parental lineages in a common-garden experiment. We detected substantially increased glyphosate tolerance in T 2 plants of transgene-present lineages that overproduced EPSPS. We also documented significant increases in fecundity, which was associated with increased auxin content in T 3 transgene-present lineages containing rice EPSPS genes, compared with their segregating transgene-absent lineages, EV, and parental controls. Our results from Arabidopsis with nine transgenic events provide a strong support to the hypothesis that transgenic plants overproducing EPSPS can benefit from a fecundity advantage in glyphosate-free environments. Stimulated biosynthesis of auxin, an important plant growth hormone, by overproducing EPSPS may play a role in enhanced fecundity of the transgenic Arabidopsis plants. The obtained knowledge is useful for assessing environmental impact caused by introgression of transgenes overproducing EPSPS from any GE crop into populations of its wild relatives.

  13. Auxin as a player in the biocontrol of Fusarium head blight disease of barley and its potential as a disease control agent

    OpenAIRE

    Petti, Carloalberto; Reiber, Kathrin; Ali, Shahin S; Berney, Margaret; Doohan, Fiona M

    2012-01-01

    Abstract Background Mechanisms involved in the biological control of plant diseases are varied and complex. Hormones, including the auxin indole acetic acid (IAA) and abscisic acid (ABA), are essential regulators of a multitude of biological functions, including plant responses to biotic and abiotic stressors. This study set out to determine what hormones might play a role in Pseudomonas fluorescens –mediated control of Fusarium head blight (FHB) disease of barley and to determine if biocontr...

  14. Effect of diazotrophic bacteria as phosphate solubilizing and indolic compound producers on maize plants

    Directory of Open Access Journals (Sweden)

    Mónica Del Pilar López Ortega

    2013-07-01

    Full Text Available Phosphorus is limiting for growth of maize plants, and because of that use of fertilizers like Rock Phosphate has been proposed. However, direct use of Rock Phosphate is not recommended because of its low availability, so it is necessary to improve it. In this study, a group of diazotrophic bacteria were evaluated as phosphate-solubilizing bacteria, for their production of indolic compounds and for their effects on growth of maize plants. Strains of the genera Azosporillum, Azotobacter, Rhizobium and Klebsiella, were quantitatively evaluated for solubilization of Ca3(PO42 and rock phosphate as a single source of phosphorous in SRS culture media. Additionally, the phosphatase enzyme activity was quantified at pH 5.0, 7.0 and 8.0 using p-nitrophenyl phosphate, and production of indolic compound was determined by colorimetric quantification. The effect of inoculation of bacteria on maize was determined in a completely randomized greenhouse experiment where root and shoot dry weights and phosphorus content were assessed. Results showed that strain C50 produced 107.2 mg .L-1 of available-P after 12 days of fermentation, and AC10 strain had the highest phosphatase activity at pH 8 with 12.7 mg of p-nitrophenol mL .h-1. All strains synthetized indolic compounds, and strain AV5 strain produced the most at 63.03 µg .mL-1. These diazotrophic bacteria increased plant biomass up to 39 % and accumulation of phosphorus by 10%. Hence, use of diazotrphic phosphate-solubilizing bacteria may represent an alternative technology for fertilization systems in maize plants.

  15. Phytohormone profile in Lactuca sativa and Brassica oleracea plants grown under Zn deficiency.

    Science.gov (United States)

    Navarro-León, Eloy; Albacete, Alfonso; Torre-González, Alejandro de la; Ruiz, Juan M; Blasco, Begoña

    2016-10-01

    Phytohormones, structurally diverse compounds, are involved in multiple processes within plants, such as controlling plant growth and stress response. Zn is an essential micronutrient for plants and its deficiency causes large economic losses in crops. Therefore, the purpose of this study was to analyse the role of phytohormones in the Zn-deficiency response of two economically important species, i.e. Lactuca sativa and Brassica oleracea. For this, these two species were grown hydroponically with different Zn-application rates: 10 μM Zn as control and 0.1 μM Zn as deficiency treatment and phytohormone concentration was determined by U-HPLC-MS. Zn deficiency resulted in a substantial loss of biomass in L. sativa plants that was correlated with a decline in growth-promoting hormones such as indole-3-acetic acid (IAA), cytokinins (CKs), and gibberellins (GAs). However these hormones increased or stabilized their concentrations in B. oleracea and could help to maintain the biomass in this species. A lower concentration of stress-signaling hormones such as ethylene precursor aminocyclopropane-1-carboxylic acid (ACC), abscisic acid (ABA), salicylic acid (SA) and jasmonic acid (JA) and also CKs might be involved in Zn uptake in L. sativa while a rise in GA4, isopentenyl adenine (iP), and ACC and a fall in JA and SA might contribute to a better Zn-utilization efficiency (ZnUtE), as observed in B. oleracea plants. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. In Vitro and In Vivo Plant Growth Promoting Activities and DNA Fingerprinting of Antagonistic Endophytic Actinomycetes Associates with Medicinal Plants.

    Science.gov (United States)

    Passari, Ajit Kumar; Mishra, Vineet Kumar; Gupta, Vijai Kumar; Yadav, Mukesh Kumar; Saikia, Ratul; Singh, Bhim Pratap

    2015-01-01

    Endophytic actinomycetes have shown unique plant growth promoting as well as antagonistic activity against fungal phytopathogens. In the present study forty-two endophytic actinomycetes recovered from medicinal plants were evaluated for their antagonistic potential and plant growth-promoting abilities. Twenty-two isolates which showed the inhibitory activity against at least one pathogen were subsequently tested for their plant-growth promoting activities and were compared genotypically using DNA based fingerprinting, including enterobacterial repetitive intergenic consensus (ERIC) and BOX repetitive elements. Genetic relatedness based on both ERIC and BOX-PCR generates specific patterns corresponding to particular genotypes. Exponentially grown antagonistic isolates were used to evaluate phosphate solubilization, siderophores, HCN, ammonia, chitinase, indole-3-acetic acid production, as well as antifungal activities. Out of 22 isolates, the amount of indole-3-acetic acid (IAA) ranging between 10-32 μg/ml was produced by 20 isolates and all isolates were positive for ammonia production ranging between 5.2 to 54 mg/ml. Among 22 isolates tested, the amount of hydroxamate-type siderophores were produced by 16 isolates ranging between 5.2 to 36.4 μg/ml, while catechols-type siderophores produced by 5 isolates ranging from 3.2 to 5.4 μg/ml. Fourteen isolates showed the solubilisation of inorganic phosphorous ranging from 3.2 to 32.6 mg/100ml. Chitinase and HCN production was shown by 19 and 15 different isolates, respectively. In addition, genes of indole acetic acid (iaaM) and chitinase (chiC) were successively amplified from 20 and 19 isolates respectively. The two potential strains Streptomyces sp. (BPSAC34) and Leifsonia xyli (BPSAC24) were tested in vivo and improved a range of growth parameters in chilli (Capsicum annuum L.) under greenhouse conditions. This study is the first published report that actinomycetes can be isolated as endophytes from within these

  17. Low irradiances affect abscisic acid, indole-3-acidic acid, and cytokinin levels of wheat (Triticum aestivum L.) tissues

    Science.gov (United States)

    Nan, R.; Carman, J. G.; Salisbury, F. B.

    1999-01-01

    Wheat (Triticum aestivum L.) plants were grown under four irradiance levels: 1,400, 400, 200, and 100 micromol m-2 s-1. Leaves and roots were sampled before, during, and after the boot stage, and levels of abscisic acid (ABA), indole-3-acetic acid (IAA), zeatin, zeatin riboside, dihydrozeatin, dihydrozeatin riboside, isopentenyl adenine, and isopentenyl adenosine were quantified using noncompetitive indirect ELISA systems. Levels of IAA in leaves and roots of plants exposed to 100 micromol m-2 s-1 of irradiance were 0.7 and 2.9 micromol kg-1 dry mass (DM), respectively. These levels were 0.2 and 1.0 micromol kg-1 DM, respectively, when plants were exposed to 1,400 micromol m-2 s-1. Levels of ABA in leaves and roots of plants exposed to 100 micromol m-2 s-1 were 0.65 and 0.55 micromol kg-1 DM, respectively. They were 0.24 micromol kg-1 DM (both leaves and roots) when plants were exposed to 1,400 micromol m-2 s-1. Levels of isopentenyl adenosine in leaves (24.3 nmol kg-1 DM) and roots (29.9 nmol kg-1 DM) were not affected by differences in the irradiance regime. Similar values were obtained in a second experiment. Other cytokinins could not be detected (<10 nmol kg 1 DM) in either experiment with the sample sizes used (150-600 mg DM for roots and shoots, respectively).

  18. Indole alkaloids and terpenoids from Tabernaemontana markgrafiana

    DEFF Research Database (Denmark)

    Nielsen, H.B.; Hazell, A.; Hazell, R.

    1994-01-01

    The bark of Tabernaemontana markgrafiana yielded five acetylated pentacyclic triterpenes and 24 monoterpene indole alkaloids. The major triterpene was baurenyl acetate, which constituted ca 6% of the crude petrol extract. An X-ray study of iso-ursenyl acetate was carried out for the first time...

  19. Effects of potentially acidic air pollutants on the intracellular distribution and transport of plant growth regulators in mesophyll cells of leaves. Consequences on stress- and developmental physiology

    Energy Technology Data Exchange (ETDEWEB)

    Kremer, H.; Pfanz, H.; Hartung, W.

    1987-07-11

    The influence of SO/sub 2/ on the intracellular distribution of abscisic acid (ABA) and indole-acetic acid (IAA) in mesophyll cells of Picea abies, Tsuga americana and Hordeum vulgare was investigated. The compartmentation of ABA and IAA depends on intracellular pH-gradients. The hydrophilic anions ABA and IAA are accumulated in the alkaline cell compartments cytosol and chloroplasts, which act as anion traps for weak acids. Uptake of sulfur dioxide into leaves leads to an acidification of alkaline cell compartments, thus decreasing intracellular pH-gradients. Consequently this results in an increased release of plant growth regulators from the cell interior into the apoplast. Therefore the target cells of plant hormones i.e. meristems and stomates are exposed to altered hormone concentrations. Obviously this influences the regulation of cellular metabolism plant development and growth.

  20. Release of hormones from conjugates: chloroplast expression of β-glucosidase results in elevated phytohormone levels associated with significant increase in biomass and protection from aphids or whiteflies conferred by sucrose esters.

    Science.gov (United States)

    Jin, Shuangxia; Kanagaraj, Anderson; Verma, Dheeraj; Lange, Theo; Daniell, Henry

    2011-01-01

    Transplastomic tobacco (Nicotiana tabacum) plants expressing β-glucosidase (Bgl-1) show modified development. They flower 1 month earlier with an increase in biomass (1.9-fold), height (1.5-fold), and leaf area (1.6-fold) than untransformed plants. Trichome density on the upper and lower leaf surfaces of BGL-1 plants increase by 10- and 7-fold, respectively, harboring 5-fold more glandular trichomes (as determined by rhodamine B staining), suggesting that BGL-1 lines produce more sugar esters than control plants. Gibberellin (GA) levels were investigated because it is a known regulator of flowering time, plant height, and trichome development. Both GA(1) and GA(4) levels are 2-fold higher in BGL-1 leaves than in untransformed plants but do not increase in other organs. In addition, elevated levels of other plant hormones, including zeatin and indole-3-acetic acid, are observed in BGL-1 lines. Protoplasts from BGL-1 lines divide and form calli without exogenous hormones. Cell division in protoplasts is enhanced 7-fold in the presence of exogenously applied zeatin-O-glucoside conjugate, indicating the release of active hormones from their conjugates. Whitefly (Bemisia tabaci) and aphid (Myzus persicae) populations in control plants are 18 and 15 times higher than in transplastomic lines, respectively. Lethal dose to kill 50% of the test population values of 26.3 and 39.2 μg per whitefly and 23.1 and 35.2 μg per aphid for BGL-1 and untransformed control exudates, respectively, confirm the enhanced toxicity of transplastomic exudates. These data indicate that increase in sugar ester levels in BGL-1 lines might function as an effective biopesticide. This study provides a novel strategy for designing plants for enhanced biomass production and insect control by releasing plant hormones or sugar esters from their conjugates stored within their chloroplasts.

  1. The Relationship between Polyamines and Hormones in the Regulation of Wheat Grain Filling

    Science.gov (United States)

    Liu, Yang; Gu, Dandan; Wu, Wei; Wen, Xiaoxia; Liao, Yuncheng

    2013-01-01

    The grain weight of wheat is strongly influenced by filling. Polyamines (PA) are involved in regulating plant growth. However, the effects of PA on wheat grain filling and its mechanism of action are unclear. The objective of the present study was to investigate the relationship between PAs and hormones in the regulation of wheat grain filling. Three PAs, spermidine (Spd), spermine (Spm), and putrescine (Put), were exogenously applied, and the grain filling characteristics and changes in endogenous PA and hormones, i.e., indole-3-acetic acid (IAA), zeatin (Z) + zeatin riboside (ZR), abscisic acid (ABA), ethylene (ETH) and gibberellin 1+4 (GAs), were quantified during wheat grain filling. Exogenous applications of Spd and Spm significantly increased the grain filling rate and weight, but exogenous Put had no significant effects on these measures. Exogenous Spd and Spm significantly increased the endogenous Spd, Spm, Z+ZR, ABA, and IAA contents and significantly decreased ETH evolution in grains. The endogenous Spd, Spm and Z+ZR contents were positively and significantly correlated with the grain filling rate and weight of wheat, and the endogenous ETH evolution was negatively and significantly correlated with the wheat grain filling rate and weight. Based upon these results, we concluded that PAs were involved in the balance of hormones that regulated the grain filling of wheat. PMID:24205154

  2. The relationship between polyamines and hormones in the regulation of wheat grain filling.

    Directory of Open Access Journals (Sweden)

    Yang Liu

    Full Text Available The grain weight of wheat is strongly influenced by filling. Polyamines (PA are involved in regulating plant growth. However, the effects of PA on wheat grain filling and its mechanism of action are unclear. The objective of the present study was to investigate the relationship between PAs and hormones in the regulation of wheat grain filling. Three PAs, spermidine (Spd, spermine (Spm, and putrescine (Put, were exogenously applied, and the grain filling characteristics and changes in endogenous PA and hormones, i.e., indole-3-acetic acid (IAA, zeatin (Z + zeatin riboside (ZR, abscisic acid (ABA, ethylene (ETH and gibberellin 1+4 (GAs, were quantified during wheat grain filling. Exogenous applications of Spd and Spm significantly increased the grain filling rate and weight, but exogenous Put had no significant effects on these measures. Exogenous Spd and Spm significantly increased the endogenous Spd, Spm, Z+ZR, ABA, and IAA contents and significantly decreased ETH evolution in grains. The endogenous Spd, Spm and Z+ZR contents were positively and significantly correlated with the grain filling rate and weight of wheat, and the endogenous ETH evolution was negatively and significantly correlated with the wheat grain filling rate and weight. Based upon these results, we concluded that PAs were involved in the balance of hormones that regulated the grain filling of wheat.

  3. Ultrastructure of sheep primordial follicles cultured in the presence of indol acetic acid, EGF, and FSH

    DEFF Research Database (Denmark)

    Andrade, Evelyn Rabelo; Hyttel, Poul; Landim-Alvarenga, Fernanda Da Cruz

    2011-01-01

    The aim of this study was to investigate the ultrastructural characteristics of primordial follicles after culturing of sheep ovarian cortical slices in the presence of indol acetic acid (IAA), Epidermal Growth Factor (EGF), and FSH. To evaluate ultrastructure of primordial follicles cultured...... in MEM (control) or in MEM containing IAA, EGF, and FSH, fragments of cultured tissue were processes for transmission electron microscopy. Except in the control, primordial follicles cultured in supplemented media for 6¿d were ultrastructurally normal. They had oocyte with intact nucleus...... and the cytoplasm contained heterogeneous-sized lipid droplets and numerous round or elongated mitochondria with intact parallel cristae were observed. Rough endoplasmic reticulum (RER) was rarely found. The granulosa cells cytoplasm contained a great number of mitochondria and abundant RER. In conclusion...

  4. Influence of hydration on ion-biomolecule interactions: M(+)(indole)(H2O)(n) (M = Na, K; n = 3-6).

    Science.gov (United States)

    Ke, Haochen; Lisy, James M

    2015-10-14

    The indole functional group can be found in many biologically relevant molecules, such as neurotransmitters, pineal hormones and medicines. Indole has been used as a tractable model to study the hydration structures of biomolecules as well as the interplay of non-covalent interactions within ion-biomolecule-water complexes, which largely determine their structure and dynamics. With three potential binding sites: above the six- or five-member ring, and the N-H group, the competition between π and hydrogen bond interactions involves multiple locations. Electrostatic interactions from monovalent cations are in direct competition with hydrogen bonding interactions, as structural configurations involving both direct cation-indole interactions and cation-water-indole bridging interactions were observed. The different charge densities of Na(+) and K(+) give rise to different structural conformers at the same level of hydration. Infrared spectra with parallel hybrid functional-based calculations and Gibbs free energy calculations revealed rich structural insights into the Na(+)/K(+)(indole)(H2O)3-6 cluster ion complexes. Isotopic (H/D) analyses were applied to decouple the spectral features originating from the OH and NH stretches. Results showed no evidence of direct interaction between water and the NH group of indole (via a σ-hydrogen bond) at current levels of hydration with the incorporation of cations. Hydrogen bonding to a π-system, however, was ubiquitous at hydration levels between two and five.

  5. Alteration of Hormonal Levels in a Rootless Epiphytic Bromeliad in Different Phenological Phases.

    Science.gov (United States)

    Mercier; Endres

    1999-11-01

    Major changes in indole-3-acetic acid (IAA) and cytokinin (CK) levels occur at different phenological phases of Tillandsia recurvata shoots. This epiphytic rootless bromeliad was chosen as suitable material for hormonal analysis because CK synthesis is restricted to the shoots, thus avoiding problems in the interpretation of results caused by translocation and interconversion of CK forms between roots and leaves encountered in plants with both organs. Young plants of T. recurvata have weak apical dominance because side shoots appeared early in development, and branch growth was correlated with a strong increase in the level of zeatin. The flowering phase was characterized by a significant increase in free base CKs, zeatin, and isopentenyladenine compared with the levels found in adult vegetative shoots. In contrast, both free-base CKs declined in the fruiting phenological phase, and the IAA level increased dramatically. It was concluded that in phases characterized by intense organ formation, such as in the juvenile and flowering stages, there was an enhancement of CK content, mainly caused by zeatin, leading to a lower IAA/CK ratio. Higher ratios were correlated with phases that showed no organogenesis, such as adult and fruiting phenologies.

  6. Possible Interactions between the Biosynthetic Pathways of Indole Glucosinolate and Auxin

    Directory of Open Access Journals (Sweden)

    Siva K. Malka

    2017-12-01

    Full Text Available Glucosinolates (GLS are a group of plant secondary metabolites mainly found in Cruciferous plants, share a core structure consisting of a β-thioglucose moiety and a sulfonated oxime, but differ by a variable side chain derived from one of the several amino acids. These compounds are hydrolyzed upon cell damage by thioglucosidase (myrosinase, and the resulting degradation products are toxic to many pathogens and herbivores. Human beings use these compounds as flavor compounds, anti-carcinogens, and bio-pesticides. GLS metabolism is complexly linked to auxin homeostasis. Indole GLS contributes to auxin biosynthesis via metabolic intermediates indole-3-acetaldoxime (IAOx and indole-3-acetonitrile (IAN. IAOx is proposed to be a metabolic branch point for biosynthesis of indole GLS, IAA, and camalexin. Interruption of metabolic channeling of IAOx into indole GLS leads to high-auxin production in GLS mutants. IAN is also produced as a hydrolyzed product of indole GLS and metabolized to IAA by nitrilases. In this review, we will discuss current knowledge on involvement of GLS in auxin homeostasis.

  7. Auxin-cytokinin interaction and variations in their metabolic products in the regulation of organogenesis in two Eucomis species

    Czech Academy of Sciences Publication Activity Database

    Aremu, A. O.; Plačková, Lenka; Pěnčík, Aleš; Novák, Ondřej; Doležal, Karel; Van Staden, J.

    2016-01-01

    Roč. 33, č. 6 (2016), s. 883-890 ISSN 1871-6784 R&D Projects: GA MŠk(CZ) LO1204; GA MŠk LK21306; GA ČR GA14-34792S Institutional support: RVO:61389030 Keywords : in-vitro propagation * plant-growth regulators * arabidopsis-thaliana * quantitative-analysis * mass-spectrometry * isotope-dilution * biosynthesis * gradients * cultures * hormones * Asparagaceae * Indole-3-acetic acid * Phytohormones * meta-Topolin * Ornamentals * Rooting Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 3.813, year: 2016

  8. Release of Hormones from Conjugates: Chloroplast Expression of β-Glucosidase Results in Elevated Phytohormone Levels Associated with Significant Increase in Biomass and Protection from Aphids or Whiteflies Conferred by Sucrose Esters1[C][OA

    Science.gov (United States)

    Jin, Shuangxia; Kanagaraj, Anderson; Verma, Dheeraj; Lange, Theo; Daniell, Henry

    2011-01-01

    Transplastomic tobacco (Nicotiana tabacum) plants expressing β-glucosidase (Bgl-1) show modified development. They flower 1 month earlier with an increase in biomass (1.9-fold), height (1.5-fold), and leaf area (1.6-fold) than untransformed plants. Trichome density on the upper and lower leaf surfaces of BGL-1 plants increase by 10- and 7-fold, respectively, harboring 5-fold more glandular trichomes (as determined by rhodamine B staining), suggesting that BGL-1 lines produce more sugar esters than control plants. Gibberellin (GA) levels were investigated because it is a known regulator of flowering time, plant height, and trichome development. Both GA1 and GA4 levels are 2-fold higher in BGL-1 leaves than in untransformed plants but do not increase in other organs. In addition, elevated levels of other plant hormones, including zeatin and indole-3-acetic acid, are observed in BGL-1 lines. Protoplasts from BGL-1 lines divide and form calli without exogenous hormones. Cell division in protoplasts is enhanced 7-fold in the presence of exogenously applied zeatin-O-glucoside conjugate, indicating the release of active hormones from their conjugates. Whitefly (Bemisia tabaci) and aphid (Myzus persicae) populations in control plants are 18 and 15 times higher than in transplastomic lines, respectively. Lethal dose to kill 50% of the test population values of 26.3 and 39.2 μg per whitefly and 23.1 and 35.2 μg per aphid for BGL-1 and untransformed control exudates, respectively, confirm the enhanced toxicity of transplastomic exudates. These data indicate that increase in sugar ester levels in BGL-1 lines might function as an effective biopesticide. This study provides a novel strategy for designing plants for enhanced biomass production and insect control by releasing plant hormones or sugar esters from their conjugates stored within their chloroplasts. PMID:21068365

  9. Water stress, CO2 and photoperiod influence hormone levels in wheat

    Science.gov (United States)

    Nan, Rubin; Carman, John G.; Salisbury, Frank B.; Campbell, W. F. (Principal Investigator)

    2002-01-01

    'Super Dwarf' wheat (Triticum aestivum L.) plants have been grown from seed to maturity in the Mir space station where they were periodically exposed, because of microgravity and other constraints, to water deficit, waterlogging, high CO2 levels, and low light intensities. The plants produced many tillers, but none of them produced viable seed. Studies have been initiated to determine why the plants responded in these ways. In the present study, effects of the listed stresses on abscisic acid (ABA), indole-3-acetic acid (IAA) and isopentenyl adenosine ([9R]iP) levels in roots and leaves of plants grown under otherwise near optimal conditions on earth were measured. Hormones were extracted, purified by HPLC, and quantified by noncompetitive indirect ELISA. In response to water deficit, ABA levels increased in roots and leaves, IAA levels decreased in roots and leaves, and [9R]iP levels increased in leaves but decreased in roots. In response to waterlogging, ABA, IAA and [9R]iP levels briefly increased in roots and leaves and then decreased. When portions of the root system were exposed to waterlogging and/or water deficit, ABA levels in leaves increased while [9R]iP and IAA levels decreased. These responses were correlated with the percentage of the root system stressed. At a low photosynthetic photon flux (100 micromoles m-2 s-1), plants grown in continuous light had higher leaf ABA levels than plants grown using an 18 or 21 h photoperiod.

  10. RIA for indol alkaloids

    International Nuclear Information System (INIS)

    Arens, H.

    1979-01-01

    The technique of RIAs for indol alkaloids (ajmaline, ergotamine, ergocristine, ergometrine, and lysergic acid) is described, and applications for this RIA and the RIA for raubasine and serpentine are mentioned. The indol alkaloide RIAs are shown to be suitable both for alkaloid distribution measurements in Catharantus and Rauwolfia plants and C. purpurea sclerotia as well as for the selection of high-efficiency strains and the optimisation of cultures of plant tissues and saprophytic fungi. (orig./MG) [de

  11. Investigations of the metabolism of the hormones ethylen, abscisic acid and indol-3-acetic acid in coniferous trees in forest die-back areas of south western Germany; Untersuchungen zum Haushalt der Hormone Ethylen, Abscisinsaeure und Indol-3-essigsaeure in Nadelbaeumen aus Waldschadensgebieten Suedwestdeutschlands

    Energy Technology Data Exchange (ETDEWEB)

    Christmann, A.

    1993-12-31

    The author investigated changes in the hormone metabolism of affected trees; he intended to analyze as many hormones as possible. The investigations were carried out on needles, owing to the fact that the symptoms observed suggested specific disturbances of the needle hormone metabolism. Further, needles are the main point of attack of airborne pollutants. In physiologically healthy trees, the seasonal changes in hormone levels were investigated as a function of different parameters such as forest site, needle age, tree age, and position of sample branches in the tree crown. On this basis, hormone changes resulting from tree disease were characterized for the sample trees. SO{sub 2} and ozone were taken into account in the investigations. It was found that although the development with time of physiological and structural characteristics suggests premature aging of the needles of affected trees, the changes in the hormone metabolism do not correspond to the hormonal control patterns of natural needle aging. SO-2 exposure or a lack of minerals at the forest site are excluded as causes of the observed damage. No conclusive information could be obtained on the effects of ozone. (orig./MG) [Deutsch] Es war ein Ziel dieser Arbeit, nachzuweisen, welche Veraenderungen im Hormonhaushalt erkrankter Baeume vorliegen und dabei moeglichst viele Hormone zu bearbeiten. Die Untersuchungen wurden an Nadeln durchgefuehrt, da die beobachtbaren Symptome fuer eine Stoerung des Hormonhaushaltes vor allem dieser Organe sprachen und sie zudem Hauptangriffsort fuer Luftschadstoffe sind. An physiologisch gesunden Baeumen wurde das Verhalten der einzelnen Hormone im Jahresverlauf in Abhaengigkeit von verschiedenen Einflussgroessen wie Standort, Nadelalter, Baumalter und Position von Probenaesten innerhalb der Baumkrone erarbeitet. Danach wurden die krankheitsbedingten Veraenderungen im Hormonhaushalt der entsprechenden Versuchsbaeume charakterisiert. Die Schadgase SO{sub 2} und Ozon wurden

  12. Studies on Hormonal Effects on Rooting of Marcotting and Stem-Cuttings of Akee Apple (Blighia sapida K. D. Koenig

    Directory of Open Access Journals (Sweden)

    Ehoniyotan Olayemi IBUKUN

    2016-12-01

    Full Text Available The effect of hormone on the rooting of stem-cuttings and marcotting of akee apple was studied using a combination between Indole -3- Butyric Acid (IBA and 1- Naphthalene Acetic Acid (NAA. Stem-cuttings from mature akee trees from Challenge, Jalala and Ganmo in Ilorin, were treated with different dilutions of the liquid hormone in the combination of 1.0% Indole-3- butyric acid + 0.5% 1-Naphthaleneacetic acid before propagating them in a non-mist propagator. Marcotting was also carried-out on trees, using the hormonal combination of different dilutions. Observations and the results obtained revealed that the hormonal combination had significant effect on the rooting of stem-cuttings and marcotting. Both marcotting and stem cuttings did not produce at the end of the experiment roots in the absence of the hormonal treatment; a particular aspect was marcotting that initials produced roots. On the other hand, both marcotting and stem cuttings produced roots with the hormonal treatments; more roots were produced using the combination of 2,000 ppm of IBA and 1,000 ppm of NAA, compared with lower concentrations of the hormone mixtures. After callus formation, 2,000 ppm of IBA and 1,000 ppm of NAA combination gave the best results within stem-cuttings. Based on the results obtained, it was concluded that the combination of IBA and NAA in appropriate concentration promoted rooting in Akee apple and therefore are highly valuable for the vegetative propagation of this species through stem cutting and marcotting.

  13. Decreased panicle-derived indole-3-acetic acid reduces gibberellin A1 level in the uppermost internode, causing panicle enclosure in male sterile rice Zhenshan 97A.

    Science.gov (United States)

    Yin, Changxi; Gan, Lijun; Ng, Denny; Zhou, Xie; Xia, Kai

    2007-01-01

    Cytoplasmic male sterile (CMS) rice Zhenshan 97A (ZS97A) has been widely used in hybrid rice production in China. However, ZS97A suffers from serious panicle enclosure, which blocks normal pollination and greatly reduces seed production of hybrid rice. Little is known about the cause of panicle closure in ZS97A. In this study, it was found that the occurrence of cytoplasmic male sterility caused a deficiency of indole-3-acetic acid (IAA) in ZS97A panicles, and less IAA was provided to the uppermost internode (UI). Further, it was found that the decreased panicle-derived IAA caused a gibberellin A(1) (GA(1)) deficiency in the UI by the down-regulation of OsGA3ox2 transcript level. Reduced GA(1) level in the UI led to decreases of both cell number and cell elongation, resulting in a shortened UI. The shortened UI was unable to push the panicle out of the flag leaf sheath that remained normal, which resulted in panicle enclosure in ZS97A. These findings suggest that decreased panicle-derived IAA reduces the GA(1) level in the UI, causing panicle enclosure in CMS rice ZS97A.

  14. Ruthenium(II)-Catalyzed C-H Activation of Imidamides and Divergent Couplings with Diazo Compounds: Substrate-Controlled Synthesis of Indoles and 3H-Indoles.

    Science.gov (United States)

    Li, Yunyun; Qi, Zisong; Wang, He; Yang, Xifa; Li, Xingwei

    2016-09-19

    Indoles are an important structural motif that is commonly found in biologically active molecules. In this work, conditions for divergent couplings between imidamides and acceptor-acceptor diazo compounds were developed that afforded NH indoles and 3H-indoles under ruthenium catalysis. The coupling of α-diazoketoesters afforded NH indoles by cleavage of the C(N2 )-C(acyl) bond whereas α-diazomalonates gave 3H-indoles by C-N bond cleavage. This reaction constitutes the first intermolecular coupling of diazo substrates with arenes by ruthenium-catalyzed C-H activation. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Effect of CPPU on Carbohydrate and Endogenous Hormone Levels in Young Macadamia Fruit.

    Directory of Open Access Journals (Sweden)

    Hui Zeng

    Full Text Available N-(2-Chloro-4-pyridyl-N'-phenylurea (CPPU is a highly active cytokinin-like plant growth regulator that promotes chlorophyll biosynthesis, cell division, and cell expansion. It also increases fruit set and accelerates fruit enlargement. However, there has been no report about the effect of CPPU on fruit development and its physiological mechanism in macadamia. In this study, we investigated the effect of CPPU treatment at early fruit development via foliar spray or raceme soaking at 20 mg·L-1 on fruit set and related physiology in macadamia. Changes in carbohydrate contents and endogenous hormones in leaves, bearing shoots and fruit were also examined. Results showed that CPPU significantly reduced young fruit drop and delayed the wave of fruit drop by 1-2 weeks. The treatment significantly decreased the contents of total soluble sugars and starch in the leaves, but increased them in the bearing shoots and total soluble sugars in the husk (pericarp and seeds. These findings suggested that CPPU promoted carbohydrate mobilization from the leaves to the fruit. In addition, CPPU increased the contents of indole-3-acetic acid (IAA, gibberellin acid (GA3, and zeatin riboside (ZR and decreased the abscisic acid (ABA in the husk. Therefore, CPPU treatment reduced the early fruit drop by increasing carbohydrate availability and by modifying the balance among endogenous hormones.

  16. Radiobiology effects of radiation-induced horseradish peroxidase/indole-3-acetic suicide gene expression in lung cancer cells

    International Nuclear Information System (INIS)

    Xiong Jie; Zhou Yunfeng; Wang Weifeng; Sun Wenjie; Liao Zhengkai; Zhou Fuxiang; Xie Conghua

    2010-01-01

    Objective: To detect specific cell killing effect of radiation combined with horseradish peroxidase (HRP)/indole-3-acetic (IAA) suicide gene therapy controlled by a novel radio-inducible and cancer-specific chimeric gene promoter in lung cancer. Methods: We constructed a plasmid expressing HRP enzyme under the control of chimeric human telomerase reverse transcriptase (hTERT) promoter carrying 6 CArG elements, a plasmid expressing HRP enzyme under the control of hTERT promoter carrying single CArG element, and two control plasmids, which named pE6-hTERT-HRP, phTERT-HRP, pControl-HRP, and pControlluc, respectively. After radiation, the proliferation inhibition and apoptosis induction effect of each type of plasmid in lung cancer cells (A549, SPC-A1) and normal lung cells (hEL) was detected by cell counting and Annexin V-FITC staining. The change of radiosensitivity of lung cancer cells with plasmid system was also detected by clonogenic assays. Results: After a single dose radiation of 6 Gy,the average proliferation inhibition rates of pE6-hTERT-HRP, phTERT-HRP, pControl-HRP, and pControlluc systems were 72.92% ,40.60% , 51.00% and 25.19% (F= 67.31, P< 0.01) in A549 cells, 64.63%, 30.02%, 48.23% and 23.16% (F=64.94, P< 0.01) in SPC-A1 cells, and 20.81%, 18.05%, 44.20% and 18.32% (F=52.19, P<0.01) in normal hEL cells, respectively. The average early apoptosis rates of these four plasmid systems were 36.63%, 22.30%, 24.33% and 12.53% (F =50.99, P <0.01) in A549 cells, 33.73%, 17.37%, 22.43% and 11.20% (F = 20. 76, P < 0.01) in SPC-A1 cells, and 13.53 %, 12.5%, 21.93% and 12.16% (F = 15.08, P < 0.01) in normal hEL cells,respectively. The sensitizing enhancement ratios of the four plasmid systems were 3.45, 2.29, 3.05 and 1.21 in A549 cells, while 2.68, 2.15, 3.05 and 1.21 in SPC-A1 cells, respectively. Conclusions: The new suicide gene system controlled by chimeric promoter may provide a novel therapeutic modality for lung cancer. (authors)

  17. Some aspects of hormone-directed transport of mineral elements (P,S,Ca,Cl) in plants studied by means of radioactive tracers

    International Nuclear Information System (INIS)

    Penot, M.

    1979-01-01

    Hormone-directed long-distance transport was studied on a simplified model - a detached leaf of Pelargonium zonale. The special interest of this model is that it is the only system on which it is possible to determine, simultaneously on the same specimen, the effects of hormone dose, competitivity and synergy. It is shown that various hormones (auxins, gibberellins, cytokinins) have a positive effect on the migration of S, P and Rb; on the other hand, no effect is detected in the case of Ca, Cl or Mo. The orientated migration and subsequent accumulation are functions of the locally applied hormone dose. GA 3 (gibberellic acid) seems to be the most efficient (action threshold: 0.025 mg.1 -1 ). A simultaneous study on the same specimen showed that the mixture AIA (β-indole acetic acid)+BAP (benzylaminopurine)+GA 3 has a greater effect on transport than GA 3 alone, while GA 3 alone has a more pronounced antisenescent effect; this indicates that the two processes are not connected. Likewise, a parallel study showed that there is no direct connection with the transpiratory flows; fusicoccin, which stimulates stomata opening, has no attractant effect for 35 S while GA 3 , which has a very strong effect on migration, does not modify the transpiratory losses. Investigation of the response times shows that the ionic displacements through the phloem may be very fast (abundant accumulation in the petiole in less than 10 minutes) but that the attractant effect cannot be detected below thresholds of 5 hours or 90 minutes respectively for the pre-treatment and transport phases. This simplified system would appear to be an excellent model for studying other parameters involved in transport (effect of the root system and the relative importance of the processes of loading or unloading of metabolites in the phloem). (author)

  18. Ultrastructure of Sheep Primordial Follicles Cultured in the Presence of Indol Acetic Acid, EGF, and FSH

    Directory of Open Access Journals (Sweden)

    Evelyn Rabelo Andrade

    2011-01-01

    Full Text Available The aim of this study was to investigate the ultrastructural characteristics of primordial follicles after culturing of sheep ovarian cortical slices in the presence of indol acetic acid (IAA, Epidermal Growth Factor (EGF, and FSH. To evaluate ultrastructure of primordial follicles cultured in MEM (control or in MEM containing IAA, EGF, and FSH, fragments of cultured tissue were processes for transmission electron microscopy. Except in the control, primordial follicles cultured in supplemented media for 6 d were ultrastructurally normal. They had oocyte with intact nucleus and the cytoplasm contained heterogeneous-sized lipid droplets and numerous round or elongated mitochondria with intact parallel cristae were observed. Rough endoplasmic reticulum (RER was rarely found. The granulosa cells cytoplasm contained a great number of mitochondria and abundant RER. In conclusion, the presence of IAA, EGF, and FSH helped to maintain ultrastructural integrity of sheep primordial follicles cultured in vitro.

  19. The synthesis of [3H]-indole-3-carbinol, a natural anti-carcinogen from cruciferous vegetables

    International Nuclear Information System (INIS)

    Dashwood, R.H.; Uyetake, Lyle; Fong, A.T.; Hendricks, J.D.; Bailey, G.S.

    1989-01-01

    Indole-3-carbinol is a natural anti-carcinogen found as a glucosinolate in cruciferous vegetables such as cabbage, cauliflower and broccoli. A complete understanding of the mechanisms of anti-carcinogenesis by this dietary inhibitor requires improved insight into the disposition and metabolic fate of indole-3-carbinol in vivo. Such metabolic studies have been hampered by the lack of a commercial source of radiolabelled compound. This provided the main impetus for the work reported here, the synthesis of 5-[ 3 H]-indole-3-carbinol from 5-bromoindole. (author)

  20. Crystal structure of rac-3-[2,3-bis(phenylsulfanyl-3H-indol-3-yl]propanoic acid

    Directory of Open Access Journals (Sweden)

    Wayland E. Noland

    2015-11-01

    Full Text Available The title compound, C23H19NO2S2, was obtained as an unexpected regioisomer from an attempted synthesis of an intermediate for a substituent-effect study on ergot alkaloids. This is the first report of a 1H-indole monothioating at the 2- and 3-positions to give a 3H-indole. In the crystal, the acid H atom is twisted roughly 180° from the typical carboxy conformation and forms centrosymmetric O—H...N hydrogen-bonded dimers with the indole N atom of an inversion-related molecule. Together with a weak C—H...O hydrogen bond involving the carbonyl O atom, chains are formed along [100].

  1. Role of indole-3-butyric acid or/and putrescine in improving productivity of chickpea (Cicer arientinum L.) plants.

    Science.gov (United States)

    Amin, A A; Gharib, F A; Abouziena, H F; Dawood, Mona G

    2013-12-15

    The response of chickpea (Cicer arientinum L. cv. Giza 3) to treatment with two plant growth regulators putrescine (Put) and Indole-3-butyric acid (IBA) at 25, 50 and 100 mg L(-1) applied either alone or in combinations was studied. Spraying of Put and IBA either individually or in combination significantly increased the plant height, number and dry weight of branches, leaves and pods/plant and leaf area/plant at the two growth stages. Total photosynthetic pigments in fresh leaves were significantly promoted as a result of application of Put or IBA. Generally, application of Put and/or IBA at 100 mg L(-1) produced the highest numbers of pods which resulted in substantially the highest seed yield. Put and IBA increased the seed yield by 21.3 and 19.2%, respectively, while the combination of Put at 100 mgL(-1) and IBA at 50 mgL(-1) increased it by 27.4%. Greatest increases in straw and biological yield/fed (38.3 and 30.4%, respectively) were noted with the combination treatment of IBA 100 mg L(-1) plus Put at 100 mg L(-1). Put and IBA significantly increased the nitrogen, phosphorus, potassium, total soluble sugars and total free amino acids in chickpea seeds over control, but the effects were less marked than those of their combination. This response was greater following treatment with IBA than with Put. It could be conclude that spraying Put or/and IBA on chickpea plants have promotion effects on the seeds yield criteria which have promising potential as sources of low-cost protein and minerals for possible use as food/feed supplements.

  2. Biotransformation of (-)-dihydromyrcenyl acetate using the plant parasitic fungus Glomerella cingulata as a biocatalyst.

    Science.gov (United States)

    Miyazawa, M; Akazawa, S i; Sakai, H; Nankai, H

    2000-10-01

    The microbial transformation of (-)-dihydromyrcenyl acetate was investigated using the plant parasitic fungus Glomerella cingulata. As a result, (-)-dihydromyrcenyl acetate was converted to dihydromyrcenol, 3,7-dihydroxy-3,7-dimethyl-1-octene-7-carboxylate, 3,7-dihydroxy-3,7-dimethyl-1-octene, 3,7-dimethyloctane-1,2, 7-triol-7-carboxylate, and 3,7-dimethyloctane-1,2,7-triol. In addition, microbial transformation of dihydromyrcenol by G. cingulata was carried out. The metabolic pathway of (-)-dihydromyrcenyl acetate is discussed.

  3. Aniline is an inducer, and not a precursor, for indole derivatives in Rubrivivax benzoatilyticus JA2.

    Directory of Open Access Journals (Sweden)

    Mohammed Mujahid

    Full Text Available Rubrivivax benzoatilyticus JA2 and other anoxygenic photosynthetic bacteria produce indole derivatives when exposed to aniline, a xenobiotic compound. Though this phenomenon has been reported previously, the role of aniline in the production of indoles is still a biochemical riddle. The present study aims at understanding the specific role of aniline (as precursor or stimulator in the production of indoles and elucidating the biochemical pathway of indoles in aniline-exposed cells by using stable isotope approaches. Metabolic profiling revealed tryptophan accumulation only in aniline exposed cells along with indole 3-acetic acid (IAA and indole 3-aldehyde (IAld, the two major catabolites of tryptophan. Deuterium labelled aniline feeding studies revealed that aniline is not a precursor of indoles in strain JA2. Further, production of indoles only in aniline-exposed cells suggests that aniline is an indoles stimulator. In addition, production of indoles depended on the presence of a carbon source, and production enhanced when carbon sources were added to the culture. Isotope labelled fumarate feeding identified, fumarate as the precursor of indole, indicating de novo synthesis of indoles. Glyphosate (shikimate pathway inhibitor inhibited the indoles production, accumulation of tryptophan, IAA and IAld indicating that indoles synthesis in strain JA2 occurs via the de novo shikimate pathway. The up-regulation of anthranilate synthase gene and induction of anthranilate synthase activity correlated well with tryptophan production in strain JA2. Induction of tryptophan aminotransferase and tryptophan 2-monooxygenase activities corroborated well with IAA levels, suggesting that tryptophan catabolism occurs simultaneously in aniline exposed cells. Our study demonstrates that aniline (stress stimulates tryptophan/indoles synthesis via the shikimate pathway by possibly modulating the metabolic pathway.

  4. Sequestration of auxin by the indole-3-acetic acid-amido synthetase GH3-1 in grape berry (Vitis vinifera L.) and the proposed role of auxin conjugation during ripening.

    Science.gov (United States)

    Böttcher, Christine; Keyzers, Robert A; Boss, Paul K; Davies, Christopher

    2010-08-01

    In fleshy fruit, levels of indole-3-acetic acid (IAA), the most abundant auxin, decline towards the onset of ripening. The application of auxins to immature fruit can delay the ripening processes. However, the mechanisms by which the decrease in endogenous IAA concentrations and the maintenance of low auxin levels in maturing fruit are achieved remain elusive. The transcript of a GH3 gene (GH3-1), encoding for an IAA-amido synthetase which conjugates IAA to amino acids, was detected in grape berries (Vitis vinifera L.). GH3-1 expression increased at the onset of ripening (veraison), suggesting that it might be involved in the establishment and maintenance of low IAA concentrations in ripening berries. Furthermore, this grapevine GH3 gene, responded positively to the combined application of abscisic acid and sucrose and to ethylene, linking it to the control of ripening processes. Levels of IAA-aspartic acid (IAA-Asp), an in vitro product of recombinant GH3-1, rose after veraison and remained high during the following weeks of the ripening phase when levels of free IAA were low. A similar pattern of changes in free IAA and IAA-Asp levels was detected in developing tomatoes (Solanum lycopersicum Mill.), where low concentrations of IAA and an increase in IAA-Asp concentrations coincided with the onset of ripening in this climacteric fruit. Since IAA-Asp might be involved in IAA degradation, the GH3 catalysed formation of this conjugate at, and after, the onset of ripening could represent a common IAA inactivation mechanism in climacteric and non-climacteric fruit which enables ripening.

  5. Effect of auxins and associated biochemical changes during clonal propagation of the biofuel plant - Jatropha curcas

    Energy Technology Data Exchange (ETDEWEB)

    Kochhar, Sunita; Singh, S.P.; Kochhar, V.K. [National Botanical Research Institute, Lucknow 226001 (India)

    2008-12-15

    Rooting and sprouting behaviour of stem cuttings of biofuel plant Jatropha curcas and their performance under field conditions have been studied in relation to auxin application. Pretreatment with indole-3-butyric acid (IBA) and 1-naphthalene acetic acid (NAA) increased both the rooting and sprouting. Sprouting of buds on the cuttings preceded rooting. The rooting and sprouting in J. curcas was more with IBA than NAA. The endogenous auxin contents were found to increase almost 15 days prior to rooting, indicating that mobilization of auxin rather than the absolute contents of auxin may be involved in root initiation. Indole acetic acid oxidase (IAA-oxidase) seems to be involved for triggering and initiating the roots/root primordia, whereas peroxidase is involved in both root initiation and the elongation processes as supported by the peroxidase and IAA-oxidase isoenzyme analysis in the cuttings. The clonally propagated plants (cutting-raised plants) performed better in the field as compared to those raised from the seeds. The plants produced from auxin-treated cuttings produced fruits and seeds in the same year as compared to the plants raised from seeds or from untreated or control cuttings that did not produce any seeds in 1 year of this study. Jatropha plants in general produce seeds after 2-3 years. (author)

  6. Effects of glucocorticoid hormones on radiation induced and 12-O-tetradecanoylphorbol-13-acetate enhanced radiation transformation in vitro

    International Nuclear Information System (INIS)

    Kennedy, A.R.; Umans, R.S.

    1988-01-01

    We have studied the interactions of glucocorticoid hormones with radiation in the induction of transformation in vitro in C3AH10T1/2 cells. We have observed that cortisone has its primary enhancing effect on radiation transformation when present after the radiation exposure during the ''expression period'', or the time after carcinogen exposure during which promoting agents have been shown to enhance radiation transformation in vitro, and that two different glucocorticoid hormones, dexamethasone and cortisone, have a suppressive effect on the 12-O-tetradecanoylphorbol-13-acetate (TPA) enhancement of radiation transformation in vitro

  7. Excited state electric dipole moment of 5-hydroxy indole and 5-hydroxy indole 3-acetic acid through solvatochromic shifts

    International Nuclear Information System (INIS)

    Rani, G. Neeraja; Ayachit, Narasimha H.

    2010-01-01

    The determination of excited state electric dipole moment through solvatochromic shifts is one of the easiest approaches to understand the molecular structure in the excited state. These studies have gained importance due to their application in photo science, especially if they are of biological importance. In view of this the excited state electric dipole moments of two substituted indoles which are of biological importance are determined and reported here. The fluorescence shifts have been used and the results found seem to be more consistent in comparison with the one calculated through absorption shifts. The results presented are also discussed. A qualitative estimate of the orientation of the dipole moments in ground and excited state are also presented and discussed. The method proposed by Ayachit and Neeraja Rani is used in view of the several advantages it has.

  8. The synthesis of ( sup 3 H)-indole-3-carbinol, a natural anti-carcinogen from cruciferous vegetables

    Energy Technology Data Exchange (ETDEWEB)

    Dashwood, R H; Uyetake, Lyle; Fong, A T; Hendricks, J D; Bailey, G S [Oregon State Univ., Corvallis, OR (USA). Dept. of Food Science and Technology

    1989-08-01

    Indole-3-carbinol is a natural anti-carcinogen found as a glucosinolate in cruciferous vegetables such as cabbage, cauliflower and broccoli. A complete understanding of the mechanisms of anti-carcinogenesis by this dietary inhibitor requires improved insight into the disposition and metabolic fate of indole-3-carbinol in vivo. Such metabolic studies have been hampered by the lack of a commercial source of radiolabelled compound. This provided the main impetus for the work reported here, the synthesis of 5-({sup 3}H)-indole-3-carbinol from 5-bromoindole. (author).

  9. The TosMIC approach to 3-(oxazol-5-yl) indoles: application to the synthesis of indole-based IMPDH inhibitors.

    Science.gov (United States)

    Dhar, T G Murali; Shen, Zhongqi; Fleener, Catherine A; Rouleau, Katherine A; Barrish, Joel C; Hollenbaugh, Diane L; Iwanowicz, Edwin J

    2002-11-18

    A modified approach to the synthesis of 3-(oxazolyl-5-yl) indoles is reported. This method was applied to the synthesis of series of novel indole based inhibitors of inosine monophosphate dehydrogenase (IMPDH). The synthesis and the structure-activity relationships (SARs), derived from in vitro studies, for this new series of inhibitors is given.

  10. Endophytic Fungi from Frankincense Tree Improves Host Growth and Produces Extracellular Enzymes and Indole Acetic Acid.

    Directory of Open Access Journals (Sweden)

    Abdul Latif Khan

    Full Text Available Boswellia sacra, an economically important frankincense-producing tree found in the desert woodlands of Oman, is least known for its endophytic fungal diversity and the potential of these fungi to produce extracellular enzymes and auxins. We isolated various fungal endophytes belonging to Eurotiales (11.8%, Chaetomiaceae (17.6%, Incertae sadis (29.5%, Aureobasidiaceae (17.6%, Nectriaceae (5.9% and Sporomiaceae (17.6% from the phylloplane (leaf and caulosphere (stem of the tree. Endophytes were identified using genomic DNA extraction, PCR amplification and sequencing the internal transcribed spacer regions, whereas a detailed phylogenetic analysis of the same gene fragment was made with homologous sequences. The endophytic colonization rate was significantly higher in the leaf (5.33% than the stem (0.262%. The Shannon-Weiner diversity index was H' 0.8729, while Simpson index was higher in the leaf (0.583 than in the stem (0.416. Regarding the endophytic fungi's potential for extracellular enzyme production, fluorogenic 4-methylumbelliferone standards and substrates were used to determine the presence of cellulases, phosphatases and glucosidases in the pure culture. Among fungal strains, Penicillum citrinum BSL17 showed significantly higher amounts of glucosidases (62.15±1.8 μM-1min-1mL and cellulases (62.11±1.6 μM-1min-1mL, whereas Preussia sp. BSL10 showed significantly higher secretion of glucosidases (69.4±0.79 μM-1min-1mL and phosphatases (3.46±0.31μM-1min-1mL compared to other strains. Aureobasidium sp. BSS6 and Preussia sp. BSL10 showed significantly higher potential for indole acetic acid production (tryptophan-dependent and independent pathways. Preussia sp. BSL10 was applied to the host B. sacra tree saplings, which exhibited significant improvements in plant growth parameters and accumulation of photosynthetic pigments. The current study concluded that endophytic microbial resources producing extracellular enzymes and auxin

  11. Endophytic Fungi from Frankincense Tree Improves Host Growth and Produces Extracellular Enzymes and Indole Acetic Acid.

    Science.gov (United States)

    Khan, Abdul Latif; Al-Harrasi, Ahmed; Al-Rawahi, Ahmed; Al-Farsi, Zainab; Al-Mamari, Aza; Waqas, Muhammad; Asaf, Sajjad; Elyassi, Ali; Mabood, Fazal; Shin, Jae-Ho; Lee, In-Jung

    2016-01-01

    Boswellia sacra, an economically important frankincense-producing tree found in the desert woodlands of Oman, is least known for its endophytic fungal diversity and the potential of these fungi to produce extracellular enzymes and auxins. We isolated various fungal endophytes belonging to Eurotiales (11.8%), Chaetomiaceae (17.6%), Incertae sadis (29.5%), Aureobasidiaceae (17.6%), Nectriaceae (5.9%) and Sporomiaceae (17.6%) from the phylloplane (leaf) and caulosphere (stem) of the tree. Endophytes were identified using genomic DNA extraction, PCR amplification and sequencing the internal transcribed spacer regions, whereas a detailed phylogenetic analysis of the same gene fragment was made with homologous sequences. The endophytic colonization rate was significantly higher in the leaf (5.33%) than the stem (0.262%). The Shannon-Weiner diversity index was H' 0.8729, while Simpson index was higher in the leaf (0.583) than in the stem (0.416). Regarding the endophytic fungi's potential for extracellular enzyme production, fluorogenic 4-methylumbelliferone standards and substrates were used to determine the presence of cellulases, phosphatases and glucosidases in the pure culture. Among fungal strains, Penicillum citrinum BSL17 showed significantly higher amounts of glucosidases (62.15±1.8 μM-1min-1mL) and cellulases (62.11±1.6 μM-1min-1mL), whereas Preussia sp. BSL10 showed significantly higher secretion of glucosidases (69.4±0.79 μM-1min-1mL) and phosphatases (3.46±0.31μM-1min-1mL) compared to other strains. Aureobasidium sp. BSS6 and Preussia sp. BSL10 showed significantly higher potential for indole acetic acid production (tryptophan-dependent and independent pathways). Preussia sp. BSL10 was applied to the host B. sacra tree saplings, which exhibited significant improvements in plant growth parameters and accumulation of photosynthetic pigments. The current study concluded that endophytic microbial resources producing extracellular enzymes and auxin could

  12. Quo vadis plant hormone analysis?

    Czech Academy of Sciences Publication Activity Database

    Tarkowská, Danuše; Novák, Ondřej; Floková, Kristýna; Tarkowski, P.; Turečková, Veronika; Grúz, Jiří; Rolčík, Jakub; Strnad, Miroslav

    2014-01-01

    Roč. 240, č. 1 (2014), s. 55-76 ISSN 0032-0935 R&D Projects: GA MŠk(CZ) LO1204 Institutional support: RVO:61389030 Keywords : Plant hormones * Extraction * Mass spectrometr Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 3.263, year: 2014

  13. Natural indoles, indole-3-carbinol and 3,3′-diindolymethane, inhibit T cell activation by staphylococcal enterotoxin B through epigenetic regulation involving HDAC expression

    International Nuclear Information System (INIS)

    Busbee, Philip B.; Nagarkatti, Mitzi; Nagarkatti, Prakash S.

    2014-01-01

    Staphylococcal enterotoxin B (SEB) is a potent exotoxin produced by the Staphylococcus aureus. This toxin is classified as a superantigen because of its ability to directly bind with MHC-II class molecules followed by activation of a large proportion of T cells bearing specific Vβ-T cell receptors. Commonly associated with classic food poisoning, SEB has also been shown to induce toxic shock syndrome, and is also considered to be a potential biological warfare agent because it is easily aerosolized. In the present study, we assessed the ability of indole-3-carbinol (I3C) and one of its byproducts, 3,3′-diindolylmethane (DIM), found in cruciferous vegetables, to counteract the effects of SEB-induced activation of T cells in mice. Both I3C and DIM were found to decrease the activation, proliferation, and cytokine production by SEB-activated Vβ8 + T cells in vitro and in vivo. Interestingly, inhibitors of histone deacetylase class I (HDAC-I), but not class II (HDAC-II), showed significant decrease in SEB-induced T cell activation and cytokine production, thereby suggesting that epigenetic modulation plays a critical role in the regulation of SEB-induced inflammation. In addition, I3C and DIM caused a decrease in HDAC-I but not HDAC-II in SEB-activated T cells, thereby suggesting that I3C and DIM may inhibit SEB-mediated T cell activation by acting as HDAC-I inhibitors. These studies not only suggest for the first time that plant-derived indoles are potent suppressors of SEB-induced T cell activation and cytokine storm but also that they may mediate these effects by acting as HDAC inhibitors. - Highlights: • I3C and DIM reduce SEB-induced T cell activation and inflammatory cytokines. • Inhibiting class I HDACs reduces T cell activation and inflammatory cytokines. • Inhibiting class II HDACs increases T cell activation and inflammatory cytokines. • I3C and DIM selectively reduce mRNA expression of class I HDACs. • Novel use and mechanism to counteract SEB

  14. Ruthenium-catalyzed direct C3 alkylation of indoles with α,β-unsaturated ketones.

    Science.gov (United States)

    Li, Shuai-Shuai; Lin, Hui; Zhang, Xiao-Mei; Dong, Lin

    2015-01-28

    In this paper, a simple and highly efficient ruthenium-catalyzed direct C3 alkylation of indoles with various α,β-unsaturated ketones without chelation assistance has been developed. This novel C-H activation methodology exhibits a broad substrate scope such as different substituted indoles, pyrroles, and other azoles. Further synthetic applications of the alkylation products can lead to more attractive 3,4-fused tricyclic indoles.

  15. Effects of source and sink manipulation on distribution of 14C-assimilate and endogenous hormone contents of high-yield cotton in Xinjiang

    International Nuclear Information System (INIS)

    Luo Honghai; Zhao Ruihai; Li Junhua; Zhang Yali; Zhang Wangfeng

    2011-01-01

    Effects of leaf-cutting and bud-thinning treatment on partitioning of 14 C-assimilate and endogenous hormone contents of source leaf (respective axial leaf and sympodian leaf) during flowering and boll-setting stage in high-yield cotton were studied by using Gossipium hirsutum L. cv. Xinluzao 132 as plant material. Results showed that bud-thinning reduced the peak value of indole-3-acetic acid (IAA) delayed the accumulation of isopenteny ladenime and its riboside (iP + iPA), and decreased the contents of abscisic acid (ABA) zeatin and its riboside (Z + ZR) of source leaf. Thus, the export and partitioning of percentage of 14 C-assimilate in boll was significantly decreased at full bolling and boll opening stages. As a result, both of boll weight and yield in bud-thinning were significantly lower than control. Leaf-cutting significantly improved the content of cytokinins (CTKs) and the distributive percentage of 14 C-assimilates in boll. Furthermore, when leaves were cut 1/4 at anthesis, no differences were found in number of bolls per plant, boll weight and yield compared with control. These results suggested that regulating source-sink relation with key practices of cultivation would be of great importance to super-high and stable yield of cotton, as it would affect the changes of endogenous hormone levels and regulate the distribution of 14 C-assimilate between source and sink. (authors)

  16. Follicular development in a 7-day versus 4-day hormone-free interval with an oral contraceptive containing 20 mcg ethinyl estradiol and 1 mg norethindrone acetate.

    Science.gov (United States)

    Rible, Radhika D; Taylor, DeShawn; Wilson, Melissa L; Stanczyk, Frank Z; Mishell, Daniel R

    2009-03-01

    Combined oral contraceptive (COC) formulations with 20 mcg ethinyl estradiol (EE) have a greater incidence of ovarian hormone production and follicular development, which can be managed by shortening the number of hormone-free days per COC cycle. This study evaluates differences in follicular development during a 7-day versus 4-day hormone-free interval in a COC regimen with 20 mcg EE and 1 mg norethindrone acetate. Forty-one healthy women were randomized in an open-label fashion to this formulation in either a 24/4 or a 21/7 day regimen for three cycles. Estradiol, progesterone, follicle-stimulating hormone, luteinizing hormone and inhibin B were measured daily from Cycle 2, Day 21 to Cycle 3, Day 3 and on Day 7 of Cycle 3. Follicular diameter and Hoogland score were calculated on Cycle 2, Days 21, 24 and 28 and Cycle 3, Days 3 and 7. Sixty-six percent of subjects in the 21/7 group and 70% of the subjects in the 24/4 group developed a follicle greater than 10 mm diameter. Ovarian steroid hormone levels, Hoogland scores and bleeding patterns were not statistically significant between the groups. In contrast to prior studies, this analysis suggests no difference in follicle development or bleeding patterns among women receiving a 21/7 or 24/4 regimen of a 20-mcg EE/1-mg norethindrone acetate COC.

  17. Abscisic Acid–Responsive Guard Cell Metabolomes of Arabidopsis Wild-Type and gpa1 G-Protein Mutants[C][W

    Science.gov (United States)

    Jin, Xiaofen; Wang, Rui-Sheng; Zhu, Mengmeng; Jeon, Byeong Wook; Albert, Reka; Chen, Sixue; Assmann, Sarah M.

    2013-01-01

    Individual metabolites have been implicated in abscisic acid (ABA) signaling in guard cells, but a metabolite profile of this specialized cell type is lacking. We used liquid chromatography–multiple reaction monitoring mass spectrometry for targeted analysis of 85 signaling-related metabolites in Arabidopsis thaliana guard cell protoplasts over a time course of ABA treatment. The analysis utilized ∼350 million guard cell protoplasts from ∼30,000 plants of the Arabidopsis Columbia accession (Col) wild type and the heterotrimeric G-protein α subunit mutant, gpa1, which has ABA-hyposensitive stomata. These metabolomes revealed coordinated regulation of signaling metabolites in unrelated biochemical pathways. Metabolites clustered into different temporal modules in Col versus gpa1, with fewer metabolites showing ABA-altered profiles in gpa1. Ca2+-mobilizing agents sphingosine-1-phosphate and cyclic adenosine diphosphate ribose exhibited weaker ABA-stimulated increases in gpa1. Hormone metabolites were responsive to ABA, with generally greater responsiveness in Col than in gpa1. Most hormones also showed different ABA responses in guard cell versus mesophyll cell metabolomes. These findings suggest that ABA functions upstream to regulate other hormones, and are also consistent with G proteins modulating multiple hormonal signaling pathways. In particular, indole-3-acetic acid levels declined after ABA treatment in Col but not gpa1 guard cells. Consistent with this observation, the auxin antagonist α-(phenyl ethyl-2-one)-indole-3-acetic acid enhanced ABA-regulated stomatal movement and restored partial ABA sensitivity to gpa1. PMID:24368793

  18. Serum glutathione transferase does not respond to indole-3-carbinol: A pilot study

    Directory of Open Access Journals (Sweden)

    Daniel R McGrath

    2010-05-01

    Full Text Available Daniel R McGrath1, Hamid Frydoonfar2, Joshua J Hunt3, Chris J Dunkley3, Allan D Spigelman41Ipswich Hospital, Ipswich, UK; 2Hunter Pathology Service, New South Wales; 3Royal Newcastle Centre, Newcastle; 4St Vincent’s Clinical School, Sydney, AustraliaBackground: Despite the well recognized protective effect of cruciferous vegetables against various cancers, including human colorectal cancers, little is known about how this effect is conferred. It is thought that some phytochemicals found only in these vegetables confer the protection. These compounds include the glucosinolates, of which indole-3-carbinol is one. They are known to induce carcinogen-metabolizing (phase II enzymes, including the glutathione S-transferase (GST family. Other effects in humans are not well documented. We wished to assess the effect of indole-3-carbinol on GST enzymes.Methods: We carried out a placebo-controlled human volunteer study. All patients were given 400 mg daily of indole-3-carbinol for three months, followed by placebo. Serum samples were tested for the GSTM1 genotype by polymerase chain reaction. Serum GST levels were assessed using enzyme-linked immunosorbent assay and Western Blot methodologies.Results: Forty-nine volunteers completed the study. GSTM1 genotypes were obtained for all but two volunteers. A slightly greater proportion of volunteers were GSTM1-positive, in keeping with the general population. GST was detected in all patients. Total GST level was not affected by indole-3-carbinol dosing compared with placebo. Although not statistically significant, the GSTM1 genotype affected the serum GST level response to indole-3-carbinol.Conclusion: Indole-3-carbinol does not alter total serum GST levels during prolonged dosing.Keywords: pilot study, colorectal cancer, glutathione transferase, human, indole-3-carbinol

  19. Influence of tryptophan and indole-3-acetic acid on starch accumulation in the synthetic mutualistic Chlorella sorokiniana-Azospirillum brasilense system under heterotrophic conditions.

    Science.gov (United States)

    Palacios, Oskar A; Choix, Francisco J; Bashan, Yoav; de-Bashan, Luz E

    2016-06-01

    This study measured the relations between tryptophan production, the phytohormone indole-3-acetic acid (IAA) and the metabolism and accumulation of starch during synthetic mutualism between the microalgae Chlorella sorokiniana and the microalgae growth-promoting bacteria Azospirillum brasilense, created by co-immobilization in alginate beads. Experiments used two wild-type A. brasilense strains (Cd and Sp6) and an IAA-attenuated mutant (SpM7918) grown under nitrogen-replete and nitrogen-starved conditions tested under dark, heterotrophic and aerobic growth conditions. Under all incubating conditions, C. sorokiniana, but not A. brasilense, produced tryptophan. A significant correlation between IAA-production by A. brasilense and starch accumulation in C. sorokiniana was found, since the IAA-attenuated mutant was not producing increased starch levels. The highest ADP-glucose pyrophosphorylase (AGPase) activity, starch content and glucose uptake were found during the interaction of A. brasilense wild type strains with the microalgae. When the microalgae were grown alone, they produced only small amounts of starch. Supplementation with synthetic IAA to C. sorokiniana grown alone enhanced the above parameters, but only transiently. Activity of α-amylase decreased under nitrogen-replete conditions, but increased under nitrogen-starved conditions. In summary, this study demonstrated that, during synthetic mutualism, the exchange of tryptophan and IAA between the partners is a mechanism that governs several changes in starch metabolism of C. sorokiniana, yielding an increase in starch content. Copyright © 2016 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

  20. 3-oxo-rhazinilam: a new indole alkaloid from Rauvolfia serpentina x Rhazya stricta hybrid plant cell cultures.

    Science.gov (United States)

    Gerasimenko, I; Sheludko, Y; Stöckigt, J

    2001-01-01

    A new monoterpenoid indole alkaloid, 3-oxo-rhazinilam (1), was isolated from intergeneric somatic hybrid cell cultures of Rauvolfia serpentina and Rhazya stricta, and the structure was determined by detailed 1D and 2D NMR analysis. It was also proved that 3-oxo-rhazinilam (1) is a natural constituent of the hybrid cells.

  1. Antifungal activity of plant growth-promoting rhizobacteria isolates ...

    African Journals Online (AJOL)

    Seven plant growth-promoting rhizobacterial (PGPR) strains were isolated from the rhizoplane and rhizosphere of wheat from four different sites of Pakistan. These strains were analyzed for production of indole acetic acid (IAA), phosphorous solublization capability and inhibition of Rhizoctonia solani on rye agar medium.

  2. Thidiazuron: A potent cytokinin for efficient plant regeneration in Himalayan poplar (Populus ciliata Wall. using leaf explants

    Directory of Open Access Journals (Sweden)

    Gaurav Aggarwal

    2012-11-01

    Full Text Available Populus species are important resource for certain branches of industry and have special roles for scientific study on biological and agricultural systems. The present investigation was undertaken with an objective of enhancing the frequency of plant regeneration in Himalayan poplar (Populus ciliata Wall.. The effect of Thiadizuron (TDZ alone and in combination with adenine and α-Naphthalene acetic acid (NAA were studied on the regeneration potential of leaf explants. A high efficiency of shoot regeneration was observed in leaf (80.00% explants on MS basal medium supplemented with 0.024 mg/l TDZ and 79.7 mg/l adenine. Elongation and multiplication of shoots were obtained on Murashige and Skoog (MS basal medium, containing 0.5 mg/l 6. Benzyl aminopurine (BAP + 0.2mg/l Indole 3-acetic acid (IAA + 0.3 mg/l Gibberellic acid (GA3. High frequency root regeneration from in vitro developed shoots was observed on MS basal medium supplemented with 0.10 mg/l Indole 3-butyric acid(IBA. Maximum of the in vitro rooted plantlets were well accomplished to the mixture of sand: soil (1:1 and exhibited similar morphology with the field plants. A high efficiency plant regeneration protocol has been developedfrom leaf explants in Himalayan poplar (Populus ciliata Wall..

  3. Endogenous hormones response to cytokinins with regard to organogenesis in explants of peach (Prunus persica L. Batsch) cultivars and rootstocks (P. persica × Prunus dulcis).

    Science.gov (United States)

    Pérez-Jiménez, Margarita; Cantero-Navarro, Elena; Pérez-Alfocea, Francisco; Cos-Terrer, José

    2014-11-01

    Organogenesis in peach (Prunus persica L. Batsch) and peach rootstocks (P. persica × Prunus dulcis) has been achieved and the action of the regeneration medium on 7 phytohormones, zeatin (Z), zeatin riboside (ZR), indole-3-acetic acid (IAA), abscisic acid (ABA), ethylene precursor 1-aminocyclopropane-1-carboxylic acid (ACC), salicylic acid (SA), and jasmonic acid (JA), has been studied using High performance liquid chromatography - mass spectrometry (HPLC-MS/MS). Three scion peach cultivars, 'UFO-3', 'Flariba' and 'Alice Bigi', and the peach × almond rootstocks 'Garnem' and 'GF677' were cultured in two different media, Murashige and Skoog supplemented with plant growth regulators (PGRs) (regeneration medium) and without PGRs (control medium), in order to study the effects of the media and/or genotypes in the endogenous hormones content and their role in organogenesis. The highest regeneration rate was obtained with the peach × almond rootstocks and showed a lower content of Z, IAA, ABA, ACC and JA. Only Z, ZR and IAA were affected by the action of the culture media. This study shows which hormones are external PGRs-dependent and what is the weight of the genotype and hormones in peach organogenesis that provide an avenue to manipulate in vitro organogenesis in peach. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  4. Rapid in vitro production of cloned plants of Uraria picta (Jacq.) DC-A rare medicinal herb in long-term culture.

    Science.gov (United States)

    Rai, Santosh Kumar; Sharma, Meena; Jain, Madhu; Awasthi, Abhishek; Purshottam, Dharmendra Kumar; Nair, Narayanan Kuttanpillai; Sharma, Ashok Kumar

    2010-11-01

    An efficient in vitro process for rapid production of cloned plants of Uraria picta has been developed employing nodal stem segments taken from field-grown plants. Explants showed bud-break followed by regeneration of shoots with restricted growth within 12 days on modified Murashige and Skoog's medium supplemented with 0.25 mg l(-1) each of 6-benzylaminopurine and indole-3-acetic acid and 25 mg l(-1) adenine sulfate. Normal growth of shoots with good proliferation rate was achieved by reducing the concentrations of 6-benzylaminopurine and indole-3-acetic acid to 0.1 mg l(-1) each and incorporating 0.5 mg l(-1) gibberellic acid in the medium in which, on an average, 19.6 shoots per explant were produced. Further, during successive subcultures, increased concentrations of adenine sulfate (50 mg l(-l)) and gibberellic acid (2 mg l(-l)) along with the addition of 20 mg l(-l)  DL: -tryptophan were found conducive to control the problem of necrosis of shoots. In this treatment, several "crops" of shoots were obtained from single culture by repeated subculturing of basal portion of stalk in long-term. Isolated shoots rooted 100% in 0.25 mg l(-1) indole-3-butyric acid. In vitro-raised plants after hardening in inorganic salt solution grew normally in soil and came to flowering. Genetic fidelity of in vitro-raised plants was ascertained by rapid amplified polymorphic DNA (RAPD) markers. Also, quantitative estimation of two isoflavonones in their root extracts further confirmed true-to-type nature of plantlets.

  5. Evidence That Chlorinated Auxin Is Restricted to the Fabaceae But Not to the Fabeae.

    Science.gov (United States)

    Lam, Hong Kiat; McAdam, Scott A M; McAdam, Erin L; Ross, John J

    2015-07-01

    Auxin is a pivotal plant hormone, usually occurring in the form of indole-3-acetic acid (IAA). However, in maturing pea (Pisum sativum) seeds, the level of the chlorinated auxin, 4-chloroindole-3-acetic acid (4-Cl-IAA), greatly exceeds that of IAA. A key issue is how plants produce halogenated compounds such as 4-Cl-IAA. To better understand this topic, we investigated the distribution of the chlorinated auxin. We show for the first time, to our knowledge, that 4-Cl-IAA is found in the seeds of Medicago truncatula, Melilotus indicus, and three species of Trifolium. Furthermore, we found no evidence that Pinus spp. synthesize 4-Cl-IAA in seeds, contrary to a previous report. The evidence indicates a single evolutionary origin of 4-Cl-IAA synthesis in the Fabaceae, which may provide an ideal model system to further investigate the action and activity of halogenating enzymes in plants. © 2015 American Society of Plant Biologists. All Rights Reserved.

  6. Peat soil composition as indicator of plants growth environment

    Science.gov (United States)

    Noormets, M.; Tonutare, T.; Kauer, K.; Szajdak, L.; Kolli, R.

    2009-04-01

    chosen by following criteria: (1) plantcover age; (2) cultivated plant species; (3) utilized agrotechnology; (4) comparisons between different factors were created by using natural growth areas of Vaccinaceae (natural bog area, Vaccinaceae growth area on mineral soil). For the investigation is important to choose areas with different age of plant covers, because according to plants age the surface of exhausted peat land will be covered in relation to the width of plants. The purpose of current article is to investigate the biological and chemical parameters co-influences in peat soil. Thus, the major interest is on the plant growth hormone indole-3-acetic acid distribution and dynamics in peat soil and dependence of plant cover, also its influence to the plants growth. Moreover, its contribution to yield and new growth area invasion will be discussed.

  7. Active auxin uptake by zucchini membrane vesicles: quantitation using ESR volume and delta pH determinations

    International Nuclear Information System (INIS)

    Lomax, T.L.; Mehlhorn, R.J.; Briggs, W.R.

    1985-01-01

    Closed and pH-tight membrane vesicles prepared from hypocotyls of 5-day-old dark-grown seedlings of Cucurbita pepo accumulate the plant growth hormone indole-3-acetic acid along an imposed proton gradient (pH low outside, high inside). The use of electron paramagnetic spin probes permitted quantitation both of apparent vesicle volume and magnitude of the pH gradient. Under the experimental conditions used, hormone accumulation was at minimum 20-fold, a value 4 times larger than what one would predict if accumulation reflected only diffusional equilibrium at the measured pH gradient. It is concluded that hormone uptake is an active process, with each protonated molecule of hormone accompanied by an additional proton. Experiments with ionophores confirm that it is the pH gradient itself which drives the uptake

  8. High resolution mass spectrometry studies of sulforaphane and indole-3-carbinol in broccoli.

    Science.gov (United States)

    Kokotou, Maroula G; Revelou, Panagiota-Kyriaki; Pappas, Christos; Constantinou-Kokotou, Violetta

    2017-12-15

    Broccoli is a rich source of bioactive compounds. Among them, sulforaphane and indole-3-carbinol have attracted a lot of attention, since their consumption is associated with reduced risk of cancer. In this work, the development of an efficient and direct method for the simultaneous determination of sulforaphane and indole-3-carbinol in broccoli using UPLC-HRMS/MS is described. The correlation coefficient, and limits of detection (LOD) and quantification (LOQ) were 0.993, 0.77mg/L and 2.35mg/L for sulforaphane and 0.997, 0.42mg/L, 1.29mg/L for indole-3-carbinol, respectively. The content of sulforaphane and indole-3-carbinol varied between 72±9-304±2mg and 77±1-117±3mg per 100g of fresh florets, respectively. Taking into consideration the differences in cultivar, geography, season and environmental factors, the results agreed with values published in the literature using other techniques. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Study of Cytokinin and Auxin Hormones and Planting Pattern Effects on Yield and Yield Components of Grain Maize (Zea mays L. under Saline Conditions

    Directory of Open Access Journals (Sweden)

    D Davani

    2016-07-01

    Full Text Available Introduction Maize (Zea mays L. which belongs to the Poaceae family is the third important cereal crop of the world after wheat and rice. Salinity is one of the major environmental factors limiting plant growth and productivity. Maize is sensitive to salinity. Planting method is a crucial factor for improving crop yield. Planting methods in saline and non-saline conditions are different. Kinetin is one of the cytokinins known to significantly improve the growth of crop plants grown under salinity. Indole acetic acid (IAA is also known to play a significant role in plant tolerance to salt stress. However, little information appears to be available on the relationship between salinity tolerance and auxin or cytokinins levels in plants. In this respect, the objective of this study was to study the effects of foliar applications of cytokinin and auxin hormones on yield and yield components of grain maize under different planting patterns in saline conditions. Materials and Methods The experiment was carried out at Bushehr Agricultural and Natural Resources Research Center, Dashtestan station with 29° 16´ E latitude and 51° 31´ N, longitude and 70 m above the see surface during the 2013 growing season. Dashtestan region is a warm-arid region with 250 mm precipitation per year. The field plowed by April 2013 and then prepared and sowed by August 2013. There were five rows with 75 cm distance. The experiment was conducted as a split-plot factorial design based on complete randomized blocks with three replications. Planting pattern (ridge planting, double rows of planting on a ridge in zigzag form and furrow planting as the main factor and time of cytokinin (0 as a control, V5- V6 stage and V8- V10 stage and auxin (0 as a control, silking stage, two weeks after silking stage foliar-applied was considered in a factorial. Cytokinin (Benzyl Adenine, Merck and Auxin (Indole-3-Butiric Acid, Merck were sprayed on the entire plant in the evening with

  10. Studies on 2-Arylhydrazononitriles: Synthesis of 3-Aryl-2-arylhydrazopropanenitriles and Their Utility as Precursors to 2-Substituted Indoles, 2-Substituted-1,2,3-Triazoles, and 1-Substituted Pyrazolo[4,3-d]pyrimidines

    Directory of Open Access Journals (Sweden)

    Khaled D. Khalil

    2012-10-01

    Full Text Available Coupling of 2-benzylmalononitrile with aromatic diazonium salts afforded 3-phenyl-2-arylhydrazonopropanenitriles 4a,b, which were rearranged into 2-cyanoindoles 5a,b upon heating with ZnCl2 in the presence of glacial acetic acid. The produced indole derivatives 5a,b can be successfully used as valuable precursors to synthesize 1,2,4-oxadiazolylindoles 8a,b. The reaction of arylhydrazononitriles 4a,b with hydroxylamine afforded an amidoximes 9a,b that could be cyclized into 1,2,3-triazole-4-amines 10a,b. In addition, 4a,b could be converted into 4-aminopyrazoles 12a,b via condensation with chloroacetonitrile in the presence of triethylamine as a basic catalyst. Finally, compounds 12a,b were refluxed with dimethylformamide dimethylacetal (DMFDMA to afford amidines 13a,b that were readily cyclized to the corresponding pyrazolo[4,3-d]pyrimidines 14a,b when refluxed with ammonium acetate.

  11. Effects of Indole-3-Acetic Acid on Germination in Lead Polluted Petri Dish of Citrullus lanatus (Thunberg Matsumura and Nakai, Cucurbitaceae

    Directory of Open Access Journals (Sweden)

    Matthew Chidozie Ogwu

    2015-12-01

    Full Text Available Watermelon, Citrullus lanatus (Thunberg Matsumura and Nakai is a tropical fruit vegetable. Indole-3-acetic acid (IAA is a popular phytohormone while lead (Pb is a common environmental pollutant in urban and sub-urban centers. C. lanatus were obtained from Benin City with a view to study the effects of IAA on their germination in Pb polluted environment.  Germination percentage without IAA and Pb treatment in petri dish was significant after ten days. Hastened germination was observed when IAA and lead were used. About 100 % germination was recorded after seven days. This suggests that water melon seeds can initiate growth even in lead polluted environment. Optimum level of 5 ppm IAA with the different levels of lead treatments may be recommended. Most important was that higher concentrations of Pb in the control (without IAA did not inhibit seedling shoot nor root growth. Longest seedling shoot length (cm was 10.33 ± 1.24 and 12.13 ± 2.06 on the seventh and eighth day respectively with the combined treatment levels of 1 ppm IAA and 15 ppm Pb. On the ninth day, 15.27 ± 0.96 was obtained from 1 ppm IAA and 20 ppm Pb. Longest seedling root length (cm values were recorded from the combined treatment levels of 0 ppm IAA and 10 ppm Pb for the seventh (9.10 ± 0.47 and ninth (10.37 ± 1.81 day respectively and 0 ppm and 15 ppm Pb on the eighth (9.37 ± 0.84 day. Significant means were also obtained with the treatment level of 0 and 20 ppm IAA. This present study suggest the germination of C. lanatus under Pb polluted environment may be rescued with optimum IAA.

  12. Natural indoles, indole-3-carbinol and 3,3′-diindolymethane, inhibit T cell activation by staphylococcal enterotoxin B through epigenetic regulation involving HDAC expression

    Energy Technology Data Exchange (ETDEWEB)

    Busbee, Philip B.; Nagarkatti, Mitzi; Nagarkatti, Prakash S., E-mail: prakash@mailbox.sc.edu

    2014-01-01

    Staphylococcal enterotoxin B (SEB) is a potent exotoxin produced by the Staphylococcus aureus. This toxin is classified as a superantigen because of its ability to directly bind with MHC-II class molecules followed by activation of a large proportion of T cells bearing specific Vβ-T cell receptors. Commonly associated with classic food poisoning, SEB has also been shown to induce toxic shock syndrome, and is also considered to be a potential biological warfare agent because it is easily aerosolized. In the present study, we assessed the ability of indole-3-carbinol (I3C) and one of its byproducts, 3,3′-diindolylmethane (DIM), found in cruciferous vegetables, to counteract the effects of SEB-induced activation of T cells in mice. Both I3C and DIM were found to decrease the activation, proliferation, and cytokine production by SEB-activated Vβ8{sup +} T cells in vitro and in vivo. Interestingly, inhibitors of histone deacetylase class I (HDAC-I), but not class II (HDAC-II), showed significant decrease in SEB-induced T cell activation and cytokine production, thereby suggesting that epigenetic modulation plays a critical role in the regulation of SEB-induced inflammation. In addition, I3C and DIM caused a decrease in HDAC-I but not HDAC-II in SEB-activated T cells, thereby suggesting that I3C and DIM may inhibit SEB-mediated T cell activation by acting as HDAC-I inhibitors. These studies not only suggest for the first time that plant-derived indoles are potent suppressors of SEB-induced T cell activation and cytokine storm but also that they may mediate these effects by acting as HDAC inhibitors. - Highlights: • I3C and DIM reduce SEB-induced T cell activation and inflammatory cytokines. • Inhibiting class I HDACs reduces T cell activation and inflammatory cytokines. • Inhibiting class II HDACs increases T cell activation and inflammatory cytokines. • I3C and DIM selectively reduce mRNA expression of class I HDACs. • Novel use and mechanism to counteract

  13. Indole alkaloids from the Marquesan plant Rauvolfia nukuhivensis and their effects on ion channels.

    Science.gov (United States)

    Martin, Nicolas J; Ferreiro, Sara F; Barbault, Florent; Nicolas, Mael; Lecellier, Gaël; Paetz, Christian; Gaysinski, Marc; Alonso, Eva; Thomas, Olivier P; Botana, Luis M; Raharivelomanana, Phila

    2015-01-01

    In addition to the already reported nukuhivensiums 1 and 2, 11 indole alkaloids were isolated from the bark of the plant Rauvolfia nukuhivensis, growing in the Marquesas archipelago. The known sandwicine (3), isosandwicine (4), spegatrine (8), lochneram (9), flavopereirine (13) have been found in this plant together with the norsandwicine (5), isonorsandwicine (6), Nb-methylisosandwicine (7), 10-methoxypanarine (10), nortueiaoine (11), tueiaoine (12). The structure elucidation was performed on the basis of a deep exploration of the NMR and HRESIMS data as well as comparison with literature data for similar compounds. Norsandwicine, 10-methoxypanarine, tueiaoine, and more importantly nukuhivensiums, were shown to significantly induce a reduction of IKr amplitude (HERG current). Molecular modelling through docking was performed in order to illustrate this result. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Regeneration of Stevia Plant Through Callus Culture

    Science.gov (United States)

    Patel, R. M.; Shah, R. R.

    2009-01-01

    Stevia rebaudiana Bertoni that conventionally propagated by seed or by cuttings or clump division which has a limitation of quality and quantity seed material. In present study, callus culture technique was tried to achieve rapid plant multiplication for quality seed material. Callus induction and multiplication medium was standardized from nodal as well as leaf sagments. It is possible to maintain callus on Murashige and Skoog medium supplemented with 6-benzyl amino purine and naphthalene acetic acid. Maximum callus induction was obtained on Murashige and Skoog medium incorporated with 6-benzyl amino purine (2.0-3.0 mg/l) and naphthalene acetic acid (2.0 mg/l) treatments. However, Murashige and Skoog medium containing 2.0 mg/l 6-benzyl amino purine+2.0 mg/l naphthalene acetic acid was found to be the best for callus induction. Higher regeneration frequency was noticed with Murashige and Skoog medium supplemented with 2.0 mg/l 6-benzyl amino purine+0.2 mg/l naphthalene acetic acid. Regenerated plants were rooted better on ¼ Murashige and Skoog strength supplemented with 0.1 mg/l indole-3-butyric acid. The rooted plantlets were hardened successfully in tera care medium with 63 per cent survival rate. The developed protocol can be utilized for mass production of true to type planting material on large scale independent of season, i.e. external environmental conditions. PMID:20177455

  15. Plants altering hormonal milieu: A review

    Directory of Open Access Journals (Sweden)

    Prashant Tiwari

    2017-02-01

    Full Text Available The aim of the present review article is to investigate the herbs which can alter the levels of hormones like Follicle stimulating hormone, Prolactin, Growth hormone, Insulin, Thyroxine, Estrogen, Progesterone, Testosterone, and Relaxin etc. Hormones are chemical signal agents produced by different endocrine glands for regulating our biological functions. The glands like pituitary, thyroid, adrenal, ovaries in women and testes in men all secrete a number of hormones with different actions. However, when these hormones are perfectly balanced then people become healthy and fit. But several factors like pathophysiological as well as biochemical changes, disease conditions, changes in the atmosphere, changes in the body, diet changes etc. may result in imbalance of various hormones that produce undesirable symptoms and disorders. As medicinal plants have their importance since ancient time, people have been using it in various ways as a source of medicine for regulation of hormonal imbalance. Moreover, it is observed that certain herbs have a balancing effect on hormones and have great impact on well-being of the people. So, considering these facts we expect that the article provides an overview on medicinal plants with potential of altering hormone level.

  16. Plants altering hormonal milieu: A review

    Directory of Open Access Journals (Sweden)

    Prashant Tiwari

    2017-01-01

    Full Text Available The aim of the present review article is to investigate the herbs which can alter the levels of hormones like Follicle stimulating hormone, Prolactin, Growth hormone, Insulin, Thyroxine, Estrogen, Progesterone, Testosterone, and Relaxin etc. Hormones are chemical signal agents produced by different endocrine glands for regulating our biological functions. The glands like pituitary, thyroid, adrenal, ovaries in women and testes in men all secrete a number of hormones with different actions. However, when these hormones are perfectly balanced then people become healthy and fit. But several factors like pathophysiological as well as biochemical changes, disease conditions, changes in the atmosphere, changes in the body, diet changes etc. may result in imbalance of various hormones that produce undesirable symptoms and disorders. As medicinal plants have their importance since ancient time, people have been using it in various ways as a source of medicine for regulation of hormonal imbalance. Moreover, it is observed that certain herbs have a balancing effect on hormones and have great impact on well-being of the people. So, considering these facts we expect that the article provides an overview on medicinal plants with potential of altering hormone level.

  17. Bacterial endophytes enhance competition by invasive plants.

    Science.gov (United States)

    Rout, Marnie E; Chrzanowski, Thomas H; Westlie, Tara K; DeLuca, Thomas H; Callaway, Ragan M; Holben, William E

    2013-09-01

    Invasive plants can alter soil microbial communities and profoundly alter ecosystem processes. In the invasive grass Sorghum halepense, these disruptions are consequences of rhizome-associated bacterial endophytes. We describe the effects of N2-fixing bacterial strains from S. halepense (Rout and Chrzanowski, 2009) on plant growth and show that bacteria interact with the plant to alter soil nutrient cycles, enabling persistence of the invasive. • We assessed fluxes in soil nutrients for ∼4 yr across a site invaded by S. halepense. We assayed the N2-fixing bacteria in vitro for phosphate solubilization, iron chelation, and production of the plant-growth hormone indole-3-acetic acid (IAA). We assessed the plant's ability to recruit bacterial partners from substrates and vertically transmit endophytes to seeds and used an antibiotic approach to inhibit bacterial activity in planta and assess microbial contributions to plant growth. • We found persistent alterations to eight biogeochemical cycles (including nitrogen, phosphorus, and iron) in soils invaded by S. halepense. In this context, three bacterial isolates solubilized phosphate, and all produced iron siderophores and IAA in vitro. In growth chamber experiments, bacteria were transmitted vertically, and molecular analysis of bacterial community fingerprints from rhizomes indicated that endophytes are also horizontally recruited. Inhibiting bacterial activity with antibiotics resulted in significant declines in plant growth rate and biomass, with pronounced rhizome reductions. • This work suggests a major role of endophytes on growth and resource allocation of an invasive plant. Indeed, bacterial isolate physiology is correlated with invader effects on biogeochemical cycles of nitrogen, phosphate, and iron.

  18. Evidence That Chlorinated Auxin Is Restricted to the Fabaceae But Not to the Fabeae1[OPEN

    Science.gov (United States)

    McAdam, Scott A.M.; McAdam, Erin L.

    2015-01-01

    Auxin is a pivotal plant hormone, usually occurring in the form of indole-3-acetic acid (IAA). However, in maturing pea (Pisum sativum) seeds, the level of the chlorinated auxin, 4-chloroindole-3-acetic acid (4-Cl-IAA), greatly exceeds that of IAA. A key issue is how plants produce halogenated compounds such as 4-Cl-IAA. To better understand this topic, we investigated the distribution of the chlorinated auxin. We show for the first time, to our knowledge, that 4-Cl-IAA is found in the seeds of Medicago truncatula, Melilotus indicus, and three species of Trifolium. Furthermore, we found no evidence that Pinus spp. synthesize 4-Cl-IAA in seeds, contrary to a previous report. The evidence indicates a single evolutionary origin of 4-Cl-IAA synthesis in the Fabaceae, which may provide an ideal model system to further investigate the action and activity of halogenating enzymes in plants. PMID:25971549

  19. Salt and alkali stresses reduction in wheat by plant growth promoting haloalkaliphilic bacteria

    OpenAIRE

    Torbaghan, Mehrnoush Eskandari; Lakzian, Amir; Astaraei, Ali Reza; Fotovat, Amir; Besharati, Hossein

    2017-01-01

    Haloalkaliphilic bacteria have plant growth promoting characteristics that can be used to deal with different environmental stresses. To study the effect of haloalkaliphilic bacteria to reduce salinity and alkalinity stress in wheat, 48 isolates were isolated and grouped into halophiles, alkaliphiles and haloalkaliphiles based on growth characteristics. The ammonia, 3-indole acetic acid and ACC (1-aminocyclopropane-1-carboxylate) deaminase production were studied. Wheat yield was evaluated in...

  20. Identification of a novel ga-related bush mutant in pumpkin (cucurbita moschata duchesne)

    International Nuclear Information System (INIS)

    Wu, T.; Cao, J.

    2015-01-01

    Pumpkin (Cucurbita moschata Duchesne) bush mutant plants were characterized by short stems. The sensitivity of pumpkin bush mutant plants to exogenous hormones was identified in this study. Results revealed that internode elongation of bush mutant plants could respond to gibberellins (GA4+7 and GA3), but not to indole acetic acid (IAA) and brassinosteroids (BR); by contrast, the mutant phenotype of bush mutant plants could not be fully rescued by GA4+7 and GA3. The internode of bush mutant plants yielded a lower KS expression level than that of vine plants. Therefore, pumpkin bush mutant plants were designated as GA-related mutant plants eliciting a partial response to GAs; the action of IAA and BR might not be involved in the internode growth of pumpkin bush mutant plants, specifically Cucurbita moschata Duch. (author)

  1. Functional Characterization of PaLAX1, a Putative Auxin Permease, in Heterologous Plant Systems1[W][OA

    Science.gov (United States)

    Hoyerová, Klára; Perry, Lucie; Hand, Paul; Laňková, Martina; Kocábek, Tomáš; May, Sean; Kottová, Jana; Pačes, Jan; Napier, Richard; Zažímalová, Eva

    2008-01-01

    We have isolated the cDNA of the gene PaLAX1 from a wild cherry tree (Prunus avium). The gene and its product are highly similar in sequences to both the cDNAs and the corresponding protein products of AUX/LAX-type genes, coding for putative auxin influx carriers. We have prepared and characterized transformed Nicotiana tabacum and Arabidopsis thaliana plants carrying the gene PaLAX1. We have proved that constitutive overexpression of PaLAX1 is accompanied by changes in the content and distribution of free indole-3-acetic acid, the major endogenous auxin. The increase in free indole-3-acetic acid content in transgenic plants resulted in various phenotype changes, typical for the auxin-overproducing plants. The uptake of synthetic auxin, 2,4-dichlorophenoxyacetic acid, was 3 times higher in transgenic lines compared to the wild-type lines and the treatment with the auxin uptake inhibitor 1-naphthoxyacetic acid reverted the changes caused by the expression of PaLAX1. Moreover, the agravitropic response could be restored by expression of PaLAX1 in the mutant aux1 plants, which are deficient in auxin influx carrier activity. Based on our data, we have concluded that the product of the gene PaLAX1 promotes the uptake of auxin into cells, and, as a putative auxin influx carrier, it affects the content and distribution of free endogenous auxin in transgenic plants. PMID:18184737

  2. The effects of exogenous hormones on rooting process and the activities of key enzymes of Malus hupehensis stem cuttings.

    Science.gov (United States)

    Zhang, Wangxiang; Fan, Junjun; Tan, Qianqian; Zhao, Mingming; Zhou, Ting; Cao, Fuliang

    2017-01-01

    Malus hupehensis is an excellent Malus rootstock species, known for its strong adverse-resistance and apomixes. In the present study, stem cuttings of M. hupehensis were treated with three types of exogenous hormones, including indole acetic acid (IAA), naphthalene acetic acid (NAA), or green growth regulator (GGR). The effects and mechanisms of exogenous hormone treatment and antioxidant enzyme activity on adventitious root formation were investigated. The results showed that the apparent morphology of the adventitious root had four stages, including root pre-emergence stage (S0), early stage of root formation (S1), massive root formation stage (S2), and later stage of root formation (S3). The suitable concentrations of the three exogenous hormones, IAA, NAA and GGR, were 100 mg·L-1, 300 mg·L-1, and 300 mg·L-1, respectively. They shortened the rooting time by 25-47.4% and increased the rooting percentages of cuttings by 0.9-1.3 times, compared with that in the control. The dispersion in S0 stage was 3.6 times of that in the S1 stage after exogenous hormone application. The earlier the third critical point (P3) appeared, the shorter the rooting time and the greater the rooting percentage of the cuttings. During rhizogenesis, the activities of three antioxidant enzymes (POD, SOD, and PPO) showed an A-shaped trend. However, peak values of enzyme activity appeared at different points, which were 9 d before the P3, P3, and the fourth critical point (P4), respectively. Exogenous hormone treatment reduced the time to reach the peak value by 18 days, although the peak values of the enzymatic activities did not significantly changed. Our results suggested that exogenous hormone treatment mainly acted during the root pre-emergence stage, accelerated the synthesis of antioxidant enzymes, reduced the rooting time, and consequently promoted root formation. The three kinds of antioxidant enzymes acted on different stages of rooting.

  3. Endogenous Quantification of Abscisic Acid and Indole-3-Acetic Acid in Somatic and Zigotic Embryos of Nothofagus alpina (Poepp. & Endl. Oerst Cuantificación Endógena de Ácido Abscísico y Ácido Indol-3 Acético en Embriones Somáticos y Cigóticos de Nothofagus alpina (Poepp. & Endl. Oerst

    Directory of Open Access Journals (Sweden)

    Pricila Cartes Riquelme

    2011-12-01

    Full Text Available Abscisic acid (ABA and indole-3-acetic acid (IAA participate in the propagation of plants by somatic embryogenesis, causing polar structural differentiation of the embryo. The goal of the assay was to compare endogenous levels of ABA and IAA between somatic embryos (SE and zygotic embryos (ZE of Nothofagus alpina (Poepp. & Endl. Oerst. In this study, a somatic embryo maturation assay involving the addition of varying concentrations of exogenous ABA was performed on cotyledonary-stage of N. alpina. Furthermore, the endogenous levels of ABA and IAA were quantified in the immature ZE, the mature ZE, and the embryonic axis of a mature embryo of N. alpina. The current study utilized high performance liquid chromatography (HPLC for quantification. The maturation treatments performed did not present significant differences in the endogenous ABA levels in SE. However, significant differences did exist in levels of ABA and IAA between SE submitted to the different maturation treatments and mature ZE of N. alpina. The application of exogenous ABA to the culture medium increased endogenous ABA levels, therefore, increasing the number of germinated somatic embryos. Thus, the plant conversion process was also successfully completed in somatic embryos of N. alpina.El ácido abscísico (ABA y el ácido indol 3 acético (IAA participan en el proceso de propagación de plantas mediante embriogénesis somática, ya que permiten la diferenciación de la estructura polar del embrión, órganos y regiones meristemáticas de éste. En este estudio se llevó a cabo un ensayo de maduración de embriones somáticos en estado cotiledonar con la adición de diferentes concentraciones de ABA exógeno, además se determinaron niveles endógenos entre ZE inmaduro, ZE maduro, y eje embrionario aislado desde el embrión maduro para luego comparar niveles endógenos de ABA e IAA en embriones somáticos (SE y cigóticos (ZE de raulí, Nothofagus alpina (Poepp. & Endl. Oerst. La

  4. Synthesis of quinolino[2 ,3 :8,7]cyclooct[ b]indole

    Indian Academy of Sciences (India)

    Among the nitrogen heterocycles, indole is an impor- tant structural components in alkaloids and many phar- maceutical agents. Indole exhibits a high degree of biological activities including antifungal, antibacterial, antitumour, anti-HIV and DNA interactions. Substi- tuted indoles have been referred to as 'privileged struc-.

  5. Heterologous expression, purification, crystallization and preliminary X-ray analysis of raucaffricine glucosidase, a plant enzyme specifically involved in Rauvolfia alkaloid biosynthesis

    Energy Technology Data Exchange (ETDEWEB)

    Ruppert, Martin [Department of Pharmaceutical Biology, Institute of Pharmacy, Johannes Gutenberg-University Mainz, Staudinger Weg 5, D-55099 Mainz (Germany); Panjikar, Santosh [European Molecular Biology Laboratory Hamburg, Outstation Deutsches Elektronen-Synchrotron, Notkestrasse 85, D-22603 Hamburg (Germany); Barleben, Leif [Department of Pharmaceutical Biology, Institute of Pharmacy, Johannes Gutenberg-University Mainz, Staudinger Weg 5, D-55099 Mainz (Germany); Stöckigt, Joachim [Department of Pharmaceutical Biology, Institute of Pharmacy, Johannes Gutenberg-University Mainz, Staudinger Weg 5, D-55099 Mainz (Germany); College of Pharmaceutical Sciences, Zhejiang University, 353 Yan An Road, 310031 Hangzhou (China)

    2006-03-01

    Raucaffricine glucosidase, an enzyme involved in the biosynthesis of monoterpenoid indole alkaloids in the plant Rauvolfia serpentina, was crystallized by the hanging-drop vapour-diffusion method using PEG4000 as precipitant. The crystals diffract to 2.3 Å resolution and belong to space group I222. Raucaffricine glucosidase (RG) is an enzyme that is specifically involved in the biosynthesis of indole alkaloids from the plant Rauvolfia serpentina. After heterologous expression in Escherichia coli cells, crystals of RG were obtained by the hanging-drop vapour-diffusion technique at 293 K with 0.3 M ammonium sulfate, 0.1 M sodium acetate pH 4.6 buffer and 11% PEG 4000 as precipitant. Crystals belong to space group I222 and diffract to 2.30 Å, with unit-cell parameters a = 102.8, b = 127.3, c = 215.8 Å.

  6. Heterologous expression, purification, crystallization and preliminary X-ray analysis of raucaffricine glucosidase, a plant enzyme specifically involved in Rauvolfia alkaloid biosynthesis

    International Nuclear Information System (INIS)

    Ruppert, Martin; Panjikar, Santosh; Barleben, Leif; Stöckigt, Joachim

    2006-01-01

    Raucaffricine glucosidase, an enzyme involved in the biosynthesis of monoterpenoid indole alkaloids in the plant Rauvolfia serpentina, was crystallized by the hanging-drop vapour-diffusion method using PEG4000 as precipitant. The crystals diffract to 2.3 Å resolution and belong to space group I222. Raucaffricine glucosidase (RG) is an enzyme that is specifically involved in the biosynthesis of indole alkaloids from the plant Rauvolfia serpentina. After heterologous expression in Escherichia coli cells, crystals of RG were obtained by the hanging-drop vapour-diffusion technique at 293 K with 0.3 M ammonium sulfate, 0.1 M sodium acetate pH 4.6 buffer and 11% PEG 4000 as precipitant. Crystals belong to space group I222 and diffract to 2.30 Å, with unit-cell parameters a = 102.8, b = 127.3, c = 215.8 Å

  7. Metabolism of [14C]indole-3-acetic acid by the cortical and stelar tissues of Zea mays L. roots

    International Nuclear Information System (INIS)

    Nonhebel, H.M.; Hillman, J.R.; Crozier, A.; Wilkins, M.B.

    1985-01-01

    Reverse-phase high-performance liquid chromatography was used to analyse 14 C-labelled metabolites of idole-3-acetic acid (IAA) formed in the cortical and stelar tissues of Zea mays roots. After a 2-h incubation in [ 14 C]IAA, stelar segments had metabolised between 1-6% of the methanol-extractable radioactivity compared with 91-92% by the cortical segments. The pattern of metabolites produced by cortical segments was similar to that produced by intact segments bathed in aqueous solutions of [ 14 C]IAA. In contrast, when IAA was supplied in agar blocks to stelar tissue protruding from the basal ends of segments, negligible metabolism was evident. On the basis of its retention characteristics both before and after methylation, the major metabolite of [ 14 C]IAA in Zea mays root segments was tentatively identified by high-performance liquid chromatography as oxindole-3-acetic acid. (orig.)

  8. 药用植物内生菌对作物生长及氧化应激的作用%Endophytes from medicinal plants and their potential for producing indole acetic acid, improving seed germination and mitigating oxidative stress

    Institute of Scientific and Technical Information of China (English)

    Abdul Latif KHAN; Syed Abdullah GILANI; Muhammad WAQAS; Khadija AL-HOSNI; Salima AL-KHIZIRI; Yoon-Ha KIM; Liaqat ALI

    2017-01-01

    growth-promoting effect was due to the presence of indole acetic acid in endophytic CF. The gas chromatography/mass spectrometry (GC/MS) analysis showed the highest indole acetic acid content ((54.31±0.21) μmol/L) inBipolarissp.In addition, the isolate ofBipolaris sp. exhibited significantly higher radical scavenging and anti-lipid peroxidation activity than the other isolates.Bipolaris sp.andPhomasp. also exhibited significantly higher flavonoid and phenolic contents. The medicinal plants exhibited the presence of bio-prospective endophytic strains, which could be used for the improvement of crop growth and the mitigation of oxidative stresses.

  9. Chemical ionization mass spectrometry of indol-3yl-acetic acid and cis-abscisic acid: evaluation of negative ion detection and quantification of cis-abscisic acid in growing maize roots

    International Nuclear Information System (INIS)

    Rivier, L.; Saugy, M.

    1986-01-01

    Mass spectra of the derivatives of indol-3yl-acetic acid and cis-abscisic acid were obtained in electron impact and chemical ionization positive ion and negative ion modes. The respective merits of methane, isobutane, and ammonia as reagent gases for structure determination and sensitive detection were compared using the methyl esters. From one to 10 fluorine atoms were attached to IAA to improve the electron-capturing properties of the molecule. The best qualitative information was obtained when using positive ion chemical ionization with methane. However, the most sensitive detection, with at least two ions per molecule, was achieved by electron impact on the IAA-HFB-ME derivative and by negative ion chemical ionization with NH 3 on the ABA-methyl ester derivative. p ]Quantitative analyses of ABA in different parts of maize (Zea mays cv. LG 11) root tips were performed by the latter technique. It was found that the cap and apex contained less ABA than the physiologically older parts of the root such as the elongation zone and the more differentiated tissues. This technique was also used to show a relation between maize root growth and the endogenous ABA level of the elongation zone and root tip: there is more ABA in the slowly growing roots than in the rapidly growing ones. (author)

  10. Tea green leafhopper, Empoasca vitis, chooses suitable host plants by detecting the emission level of (3Z)-hexenyl acetate.

    Science.gov (United States)

    Xin, Z-J; Li, X-W; Bian, L; Sun, X-L

    2017-02-01

    Green leaf volatiles (GLVs) have been reported to play an important role in the host-locating behavior of several folivores that feed on angiosperms. However, next to nothing is known about how the green leafhopper, Empoasca vitis, chooses suitable host plants and whether it detects differing emission levels of GLV components among genetically different tea varieties. Here we found that the constitutive transcript level of the tea hydroperoxide lyase (HPL) gene CsiHPL1, and the amounts of (Z)-3-hexenyl acetate and of total GLV components are significantly higher in tea varieties that are susceptible to E. vitis (Enbiao (EB) and Banzhuyuan (BZY)) than in varieties that are resistant to E. vitis (Changxingzisun (CX) and Juyan (JY)). Moreover, the results of a Y-tube olfactometer bioassay and an oviposition preference assay suggest that (Z)-3-hexenyl acetate and (Z)-3-hexenol offer host and oviposition cues for E. vitis female adults. Taken together, the two GLV components, (Z)-3-hexenol and especially (Z)-3-hexenyl acetate, provide a plausible mechanism by which tea green leafhoppers distinguish among resistant and susceptible varieties. Future research should be carried out to obtain the threshold of the above indices and then assess their reasonableness. The development of practical detection indices would greatly improve our ability to screen and develop tea varieties that are resistant to E. vitis.

  11. Identification of a 23 kDa protein from maize photoaffinity-labelled with 5-azido-[7-3H]indol-3-ylacetic acid.

    OpenAIRE

    Feldwisch, J; Zettl, R; Campos, N; Palme, K

    1995-01-01

    A 23 kDa protein (p23) was identified in microsomal extracts from maize coleoptiles by photoaffinity labelling with 5-azido-[7-3H]indol-3-ylacetic acid ([3H]N3IAA). Labelling of p23 was blocked by unlabelled IAA, N3IAA, indol-3-ylbutyric acid and indol-3-yl-lactate. In addition, labelling was efficiently decreased by tryptophan, as well as by the scavenger p-aminobenzoic acid. Labelling was, however, not affected by synthetic auxins such as 1-naphthylacetic acid or 2,4-dichlorophenoxyacetic a...

  12. Regulation of abiotic and biotic stress responses by plant hormones

    DEFF Research Database (Denmark)

    Grosskinsky, Dominik Kilian; van der Graaff, Eric; Roitsch, Thomas Georg

    2016-01-01

    Plant hormones (phytohormones) are signal molecules produced within the plant, and occur in very low concentrations. In the present chapter, the current knowledge on the regulation of biotic and biotic stress responses by plant hormones is summarized with special focus on the novel insights...... into the complex hormonal crosstalk of classical growth stimulating plant hormones within the naturally occurring biotic and abiotic multistress environment of higher plants. The MAPK- and phytohormone-cascades which comprise a multitude of single molecules on different signalling levels, as well as interactions...

  13. Phenotypic and genomic characterization of the antimicrobial producer Rheinheimera sp. EpRS3 isolated from the medicinal plant Echinacea purpurea: insights into its biotechnological relevance.

    Science.gov (United States)

    Presta, Luana; Bosi, Emanuele; Fondi, Marco; Maida, Isabel; Perrin, Elena; Miceli, Elisangela; Maggini, Valentina; Bogani, Patrizia; Firenzuoli, Fabio; Di Pilato, Vincenzo; Rossolini, Gian Maria; Mengoni, Alessio; Fani, Renato

    2017-04-01

    In recent years, there has been increasing interest in plant microbiota; however, despite medicinal plant relevance, very little is known about their highly complex endophytic communities. In this work, we report on the genomic and phenotypic characterization of the antimicrobial compound producer Rheinheimera sp. EpRS3, a bacterial strain isolated from the rhizospheric soil of the medicinal plant Echinacea purpurea. In particular, EpRS3 is able to inhibit growth of different bacterial pathogens (Bcc, Acinetobacter baumannii, and Klebsiella pneumoniae) which might be related to the presence of gene clusters involved in the biosynthesis of different types of secondary metabolites. The outcomes presented in this work highlight the fact that the strain possesses huge biotechnological potential; indeed, it also shows antimicrobial effects upon well-described multidrug-resistant (MDR) human pathogens, and it affects plant root elongation and morphology, mimicking indole acetic acid (IAA) action. Copyright © 2016 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

  14. Mammary tumors and serum hormones in the bitch treated with medroxyprogesterone acetate or progesterone for four years

    Energy Technology Data Exchange (ETDEWEB)

    Frank, D.W.; Kirton, K.T.; Murchison, T.E.; Quinlan, W.J.; Coleman, M.E.; Gilbertson, T.J.; Feenstra, E.S.; Kimball, F.A.

    1978-01-01

    After four years of a long term contraceptive steroid safety study, the incidence and the histologic type of mammary dysplasia produced is similar in beagles treated with medroxyprogesterone acetate (medroxyprogesterone) or progesterone. Serum insulin, thyroid stimulating hormone (TSH), triiodothyronine, growth hormone, prolactin, 17..beta..-estradiol, progesterone, and cortisol were determined by radioimmunoassay on samples collected after 45 months of treatment. Serum growth hormone and insulin concentrations were elevated in a dose related manner in both treatment groups. Triiodothyronine, cortisol, and estradiol-17..beta.. (medroxyprogesterone only) were lowered. TSH and prolactin concentrations were not changed. Pituitary--gonadal hormone interaction in the pathogenesis of mammary neoplasia of the dog is discussed. Prolonged treatment of the beagle with massive doses of progesterone or medroxyprogesterone results in a dose related incidence of mammary modules.

  15. Developmental and hormonal regulation of fiber quality in two natural-colored cotton cultivars

    Institute of Scientific and Technical Information of China (English)

    ZHANG Xiang; HU Da-peng; LI Yuan; CHEN Yuan; Eltayib H.M.A.Abidallha; DONG Zhao-di; CHEN De-hua; ZHANG Lei

    2017-01-01

    Cotton cultivars with brown (Xiangcaimian 2),green (Wanmian 39) and white (Sumian 9) fiber were investigated to study fiber developmental characteristics of natural-colored cotton and the effect of hormones on fiber quality at different stages after anthesis.Fiber lengths of both natural-colored cottons were lower than the white-fibered control,with brown-flbered cotton longer than green.Fiber strength,micronaire and maturation of natural-colored cotton were also lower than the control.The shorter fiber of the green cultivar was due to slower growth during 10 to 30 days post-anthesis (DPA).Likewise,the lower fiber strength,micronaire and maturation of natured-colored cotton were also due to slower growth during this pivotal stage.Indole-3-acetic acid (IAA) content at 10 DPA,and abscisic acid (ABA) content at 30 to 40 DPA were lower in the fibers of the natural-colored than that of the white-flbered cotton.After applying 20 mg L-1 gibberellic acid (GA3),the IAA content at 20 DPA in the brown and green-fibered cottons increased by 51.07 and 64.33%,fiber ABA content increased by 38.96 and 24.40%,and fiber length increased by 8.13 and 13.96%,respectively.Fiber strength,micronaire and maturation were also enhanced at boll opening stage.Those results suggest that the level of endogenous hormones affect fiber quality.Application of external hormones can increase hormone content in natural-colored cotton fiber,improving its quality.

  16. 3-Aminomethyl derivatives of 4,11-dihydroxynaphtho[2,3-f]indole-5,10-dione for circumvention of anticancer drug resistance.

    Science.gov (United States)

    Shchekotikhin, Andrey E; Shtil, Alexander A; Luzikov, Yuri N; Bobrysheva, Tatyana V; Buyanov, Vladimir N; Preobrazhenskaya, Maria N

    2005-03-15

    A series of 3-aminomethyl derivatives of 4,11-dihydroxynaphtho[2,3-f]indole-5,10-dione was synthesized by Mannich reaction or by the transamination of 3-dimethylaminomethyl 4,11-dihydroxy- or 4,11-dimethoxynaphtho[2,3-f]indole-5,10-dione. The potency of novel derivatives was tested on a National Cancer Institute panel of 60 human tumor cell lines as well as in cells with genetically defined determinants of cytotoxic drug resistance, P-glycoprotein (Pgp) expression, and p53 inactivation. Mannich derivatives of 4,11-dihydroxynaphtho[2,3-f]indole-5,10-dione with an additional amino function in their side chain, demonstrated equal cytotoxicity against the parental K562 leukemia cells and their Pgp-positive subline, whereas the latter showed approximately 7-fold resistance to adriamycin, a Pgp transported drug. 3-(1-Piperazinyl)methyl and 3-(quinuclidin-3-yl)aminomethyl derivatives of 4,11-dihydroxynaphtho[2,3-f]indole-5,10-dione killed HCT116 colon carcinoma cells (carrying wild type p53) and their p53-null variant within the similar range of concentrations. We conclude that Mannich modification of 4,11-dihydroxynaphtho[2,3-f]indole-5,10-dione, especially when cyclic diamine (e.g., piperazine, quinuclidine) is used, confers an important feature to the resulting compounds, namely, the potency for tumor cells otherwise resistant to a variety of anticancer drugs.

  17. 1-(1H-indol-3-yl)ethanamine derivatives as potent Staphylococcus aureus NorA efflux pump inhibitors.

    Science.gov (United States)

    Hequet, Arnaud; Burchak, Olga N; Jeanty, Matthieu; Guinchard, Xavier; Le Pihive, Emmanuelle; Maigre, Laure; Bouhours, Pascale; Schneider, Dominique; Maurin, Max; Paris, Jean-Marc; Denis, Jean-Noël; Jolivalt, Claude

    2014-07-01

    The synthesis of 37 1-(1H-indol-3-yl)ethanamine derivatives, including 12 new compounds, was achieved through a series of simple and efficient chemical modifications. These indole derivatives displayed modest or no intrinsic anti-staphylococcal activity. By contrast, several of the compounds restored, in a concentration-dependent manner, the antibacterial activity of ciprofloxacin against Staphylococcus aureus strains that were resistant to fluoroquinolones due to overexpression of the NorA efflux pump. Structure-activity relationships studies revealed that the indolic aldonitrones halogenated at position 5 of the indole core were the most efficient inhibitors of the S. aureus NorA efflux pump. Among the compounds, (Z)-N-benzylidene-2-(tert-butoxycarbonylamino)-1-(5-iodo-1H-indol-3-yl)ethanamine oxide led to a fourfold decrease of the ciprofloxacin minimum inhibitory concentration against the SA-1199B strain when used at a concentration of 0.5 mg L(-1) . To the best of our knowledge, this activity is the highest reported to date for an indolic NorA inhibitor. In addition, a new antibacterial compound, tert-butyl (2-(3-hydroxyureido)-2-(1H-indol-3-yl)ethyl)carbamate, which is not toxic for human cells, was also found. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Efficient one-pot synthesis of indol-3-yl-glycines via uncatalyzed Friedel-Crafts reaction in water.

    Science.gov (United States)

    Ghandi, Mehdi; Taheri, Abuzar

    2009-03-05

    The three component reaction of primary aliphatic amines, glyoxalic acid and indole or N-methylindole in water at ambient temperature affords indol-3-yl or N-methylindol-3-yl-glycine in almost quantitative yields.

  19. Kemampuan Beberapa Jamur Tanah Dalam Menguraikan Pestisida Deltametrin Dan Senyawa Lignoselulosa [the Ability of Some Soil Fungi on Degradation of Deltamethrin and Lignocelluloses

    OpenAIRE

    Subowo, YB

    2013-01-01

    Some of soil fungi capable in degrading pesticide deltamethrin, therefore they can be used as fertilizer in organic farming. As a biofertilizer ,fungus also must be able to provide nutrients for plants. The purpose of the study was to obtain fungal isolates that have the ability to decompose pesticides deltamethrin and lignocellulose compounds, dissolved inorganic phosphate compounds and produce growth hormone IAA (Indole Acetic Acid) . The fungal isolates will then be used in the manufacture...

  20. Cloning and characterization of indole synthase (INS) and a putative tryptophan synthase α-subunit (TSA) genes from Polygonum tinctorium.

    Science.gov (United States)

    Jin, Zhehao; Kim, Jin-Hee; Park, Sang Un; Kim, Soo-Un

    2016-12-01

    Two cDNAs for indole-3-glycerol phosphate lyase homolog were cloned from Polygonum tinctorium. One encoded cytosolic indole synthase possibly in indigoid synthesis, whereas the other encoded a putative tryptophan synthase α-subunit. Indigo is an old natural blue dye produced by plants such as Polygonum tinctorium. Key step in plant indigoid biosynthesis is production of indole by indole-3-glycerol phosphate lyase (IGL). Two tryptophan synthase α-subunit (TSA) homologs, PtIGL-short and -long, were isolated by RACE PCR from P. tinctorium. The genome of the plant contained two genes coding for IGL. The short and the long forms, respectively, encoded 273 and 316 amino acid residue-long proteins. The short form complemented E. coli ΔtnaA ΔtrpA mutant on tryptophan-depleted agar plate signifying production of free indole, and thus was named indole synthase gene (PtINS). The long form, either intact or without the transit peptide sequence, did not complement the mutant and was tentatively named PtTSA. PtTSA was delivered into chloroplast as predicted by 42-residue-long targeting sequence, whereas PtINS was localized in cytosol. Genomic structure analysis suggested that a TSA duplicate acquired splicing sites during the course of evolution toward PtINS so that the targeting sequence-containing pre-mRNA segment was deleted as an intron. PtINS had about two to fivefolds higher transcript level than that of PtTSA, and treatment of 2,1,3-benzothiadiazole caused the relative transcript level of PtINS over PtTSA was significantly enhanced in the plant. The results indicate participation of PtINS in indigoid production.

  1. Uso del 3-(2-isotiocianatoetil)-5-metoxi-1H-indol para el tratamiento de enfermedades neurodegenerativas

    OpenAIRE

    León Martínez, Rafael; Egea Maiquez, Javier; Buendía Abaitua, Izaskun; Parada, Esther; Navarro, Elisa

    2013-01-01

    La presente invención se refiere al uso del 3-(2- isotiocianatoetil)-5-metoxi-1H-indol o de una composición que comprende el 3-(2-isotiocianatoetil)- 5-metoxi-1H-indol para el tratamiento de enfermedades que cursan con declive de la capacidad cognitiva o motoras secundarias a degeneración neuronal. La presente invención también se refiere al uso del 3-(2-isotiocianatoetil)-5- metoxi-1H-indol para el tratamiento de otras enfermedades neurodegenerativas que c...

  2. Efficient One-Pot Synthesis of Indol-3-yl-Glycines via Uncatalyzed Friedel-Crafts Reaction in Water

    Directory of Open Access Journals (Sweden)

    Mehdi Ghandi

    2009-03-01

    Full Text Available The three component reaction of primary aliphatic amines, glyoxalic acid and indole or N-methylindole in water at ambient temperature affords indol-3-yl or N-methylindol-3-yl-glycine in almost quantitative yields.

  3. Selection of rhizosphere local microbial as bioactive inoculant based on irradiated compost

    International Nuclear Information System (INIS)

    Dadang Sudrajat; Nana Mulyana; Arief Adhari

    2014-01-01

    One of the main components of carrier based on irradiation compost for bio organic fertilizer is a potential microbial isolates role in nutrient supply and growth hormone. This research was conducted to obtain microbial isolates from plant root zone (rhizosphere), further isolation and selection in order to obtain potential isolates capable of nitrogen fixation (N 2 ), resulting in growth hormone (Indole Acetic Acid), and phosphate solubilizing. Selected potential isolates used as bioactive microbial inoculants formulation in irradiation compost based. Forty eight (48) rhizosphere samples were collected from different areas of West and Central Java. One hundred sixteen (116) isolates have been characterized for their morphological, cultural, staining and biochemical characteristics. Isolates have been selected for further screening of PGPR traits. Parameters assessed were Indole Acetic Acid (IAA) content analysis with colorimetric methods, dinitrogen fixation using gas chromatography, phosphate solubility test qualitatively (in the media pikovskaya) and quantitative assay of dissolved phosphate (spectrophotometry). Evaluation of the ability of selected isolates on the growth of corn plants were done in pots. The isolates will be used as inoculant consortium base on compost irradiation. The selection obtained eight (8) bacterial isolates identified as Bacillus circulans (3 isolates), Bacillus stearothermophilus (1 isolate), Azotobacter sp (3 isolates), Pseudomonas diminuta (1 isolate). The highest phosphate released (91,21 mg/l) was by BD2 isolate (Bacillus circulan) with a holo zone size (1.32 cm) on Pikovskaya agar medium. Isolate of Pseudomonas diminuta (KACI) was capable to produce the highest IAA hormone (74.34 μg/ml). The highest nitrogen (N 2 ) fixation activity was shown by Azotobacter sp isolates (KDB2) at a rate of 235.05 nmol/hour. The viability test showed that all selected isolates in compost irradiation carrier slightly decreased after 3 months of

  4. Hormonal control of root development on epiphyllous plantlets of Bryophyllum (Kalanchoe) marnierianum: role of auxin and ethylene.

    Science.gov (United States)

    Kulka, Richard G

    2008-01-01

    Epiphyllous plantlets develop on leaves of Bryophyllum marnierianum when they are excised from the plant. Shortly after leaf excision, plantlet shoots develop from primordia located near the leaf margin. After the shoots have enlarged for several days, roots appear at their base. In this investigation, factors regulating plantlet root development were studied. The auxin transport inhibitor 2,3,5-triiodobenzoic acid (TIBA) abolished root formation without markedly affecting shoot growth. This suggested that auxin transport from the plantlet shoot induces root development. Excision of plantlet apical buds inhibits root development. Application of indole-3-acetic acid (IAA) in lanolin at the site of the apical buds restores root outgrowth. Naphthalene acetic acid (NAA), a synthetic auxin, reverses TIBA inhibition of plantlet root emergence on leaf explants. Both of these observations support the hypothesis that auxin, produced by the plantlet, induces root development. Exogenous ethylene causes precocious root development several days before that of a control without hormone. Ethylene treatment cannot bypass the TIBA block of root formation. Therefore, ethylene does not act downstream of auxin in root induction. However, ethylene amplifies the effects of low concentrations of NAA, which in the absence of ethylene do not induce roots. Ag(2)S(2)O(3), an ethylene blocker, and CoCl(2), an ethylene synthesis inhibitor, do not abolish plantlet root development. It is therefore unlikely that ethylene is essential for root formation. Taken together, the experiments suggest that roots develop when auxin transport from the shoot reaches a certain threshold. Ethylene may augment this effect by lowering the threshold and may come into play when the parent leaf senesces.

  5. Hormonal signaling in plant immunity

    NARCIS (Netherlands)

    Caarls, L.

    2016-01-01

    Insect hervivores and pathogens are a major problem in agriculture and therefore, control of these pests and diseases is essential. For this, understanding the plant immune response can be instrumental. The plant hormones salicylic acid (SA) and jasmonic acid (JA) play an essential role in defense

  6. Identification and expression pattern analysis of BoMYB51 involved in indolic glucosinolate biosynthesis from broccoli (Brassica oleracea var. italica).

    Science.gov (United States)

    Yu, Qingyue; Hao, Guodong; Zhou, Jianxin; Wang, Jingying; Evivie, Ejiroghene Ruona; Li, Jing

    2018-06-22

    Glucosinolates are a class of amino acid-derived specialized metabolites characteristic of the Brassicales order. Trp derived indolic glucosinolates are essential for the effective plant defense responses to a wide range of pathogens and herbivores. In Arabidopsis, MYB51 is the key transcription factor positively regulates indolic glucosinolate production by activating certain biosynthetic genes. In this study, we report the isolation and identification of a MYB51 from broccoli designated as BoMYB51. Overexpression of BoMYB51 in Arabidopsis increased indolic glucosinolate production by upregulating biosynthetic genes and resulted in enhanced flagellin22 (Flg22) induced callose deposition. The spatial expression pattern and responsive expression of BoMYB51 to several hormones and stress treatments were investigated by expressing the β-glucuronidase (GUS) reporter gene driven by BoMYB51 promotor in Arabidopsis and quantitative real-time PCR analysis in broccoli. Our study provides information on molecular characteristics of BoMYB51 and possible physiological process BoMYB51 may involve. Copyright © 2018 Elsevier Inc. All rights reserved.

  7. Oligomerization of Indole Derivatives with Incorporation of Thiols

    Directory of Open Access Journals (Sweden)

    Jarl E.S. Wikberg

    2008-08-01

    Full Text Available Abstract: Two molecules of indole derivative, e.g. indole-5-carboxylic acid, reacted with one molecule of thiol, e.g. 1,2-ethanedithiol, in the presence of trifluoroacetic acid to yield adducts such as 3-[2-(2-amino-5-carboxyphenyl-1-(2-mercaptoethylthioethyl]-1Hindole-5-carboxylic acid. Parallel formation of dimers, such as 2,3-dihydro-1H,1'H-2,3'-biindole-5,5'-dicarboxylic acid and trimers, such as 3,3'-[2-(2-amino-5-carboxyphenyl ethane-1,1-diyl]bis(1H-indole-5-carboxylic acid of the indole derivatives was also observed. Reaction of a mixture of indole and indole-5-carboxylic acid with 2-phenylethanethiol proceeded in a regioselective way, affording 3-[2-(2-aminophenyl-1-(phenethylthioethyl]-1H-indole-5-carboxylic acid. An additional product of this reaction was 3-[2-(2-aminophenyl-1-(phenethylthioethyl]-2,3-dihydro-1H,1'H-2,3'-biindole-5'-carboxylic acid, which upon standing in DMSO-d6 solution gave 3-[2-(2-aminophenyl-1-(phenethylthioethyl]-1H,1'H-2,3'-biindole-5'-carboxylic acid. Structures of all compounds were elucidated by NMR, and a mechanism for their formation was suggested.

  8. The diageotropica mutant of tomato lacks high specific activity auxin sites

    International Nuclear Information System (INIS)

    Hicks, G.R.; Lomax, T.L.; Rayle, D.L.

    1989-01-01

    Tomato (Lycopersicum esculentum, Mill) plants homozygous for the single gene diageotropica (dgt) mutation have reduced shoot growth, abnormal vascular tissue, altered leaf morphology, and lack of lateral root branching. These and other morphological and physiological abnormalities suggest that dgt plants are unable to respond to the plant growth hormone auxin (indole-3-acetic acid, IAA). The photoaffinity auxin analogue 3 H-5N 3 -IAA specifically labels a polypeptide doublet of 40 ad 42 kD in membrane preparations from stems of the parental variety VFN8, but not from stems of dgt. In elongation tests, excised dgt roots respond in the same manner to IAA an VFN8 roots. These data suggest that the two polypeptides are part of a physiologically important auxin receptor system which is altered in a tissue-specific manner in the mutant

  9. Natural indoles, indole-3-carbinol (I3C and 3,3'-diindolylmethane (DIM, attenuate staphylococcal enterotoxin B-mediated liver injury by downregulating miR-31 expression and promoting caspase-2-mediated apoptosis.

    Directory of Open Access Journals (Sweden)

    Philip B Busbee

    Full Text Available Staphylococcal enterotoxin B (SEB is a potent superantigen capable of inducing inflammation characterized by robust immune cell activation and proinflammatory cytokine release. Exposure to SEB can result in food poisoning as well as fatal conditions such as toxic shock syndrome. In the current study, we investigated the effect of natural indoles including indole-3-carbinol (I3C and 3,3'-diindolylmethane (DIM on SEB-mediated liver injury. Injection of SEB into D-galactosamine-sensitized female C57BL/6 mice resulted in liver injury as indicated by an increase in enzyme aspartate transaminase (AST levels, induction of inflammatory cytokines, and massive infiltration of immune cells into the liver. Administration of I3C and DIM (40 mg/kg, by intraperitonal injection, attenuated SEB-induced acute liver injury, as evidenced by decrease in AST levels, inflammatory cytokines and cellular infiltration in the liver. I3C and DIM triggered apoptosis in SEB-activated T cells primarily through activation of the intrinsic mitochondrial pathway. In addition, inhibitor studies involving caspases revealed that I3C and DIM-mediated apoptosis in these activated cells was dependent on caspase-2 but independent of caspase-8, 9 and 3. In addition, I3C and DIM caused a decrease in Bcl-2 expression. Both compounds also down-regulated miR-31, which directly targets caspase-2 and influences apoptosis in SEB-activated cells. Our data demonstrate for the first time that indoles can effectively suppress acute hepatic inflammation caused by SEB and that this may be mediated by decreased expression of miR-31 and consequent caspase-2-dependent apoptosis in T cells.

  10. Analyses of Indole Compounds in Sugar Cane (Saccharum officinarum L. Juice by High Performance Liquid Chromatography and Liquid Chromatography-Mass Spectrometry after Solid-Phase Extraction

    Directory of Open Access Journals (Sweden)

    Jean Wan Hong Yong

    2017-03-01

    Full Text Available Simultaneous quantitative analysis of 10 indole compounds, including indole-3-acetic acid (IAA, one of the most important naturally occurring auxins and some of its metabolites, by high performance liquid chromatography (HPLC and liquid chromatography-mass spectrometry (LC-MS after solid-phase extraction (SPE was reported for the first time. The analysis was carried out using a reverse phase HPLC gradient elution, with an aqueous mobile phase (containing 0.1% formic acid modified by methanol. Furthermore, a novel SPE procedure was developed for the pre-concentration and purification of indole compounds using C18 SPE cartridges. The combination of SPE, HPLC, and LC-MS was applied to screen for the indole compounds present in sugar cane (Saccharum officinarum L. juice, a refreshing beverage with various health benefits. Finally, four indole compounds were successfully detected and quantified in sugar cane juice by HPLC, which were further unequivocally confirmed by LC-MS/MS experiments operating in the multiple reaction monitoring (MRM mode.

  11. Isolation of phytohormones producing plant growth promoting ...

    African Journals Online (AJOL)

    PRECIOUS

    2009-11-02

    Nov 2, 2009 ... phytohormones indole-3-acetic acid (IAA), gibberellic acid (GA3), trans-zeatin riboside (t-zr) and abscisic acid ... soil of Pakistan and their growth promoting effects have .... adapt themselves to salty environment of Khewra salt.

  12. Azospirillum spp. from native forage grasses in Brazilian Pantanal floodplain: biodiversity and plant growth promotion potential.

    Science.gov (United States)

    Souza, Mayara S T; de Baura, Valter A; Santos, Sandra A; Fernandes-Júnior, Paulo Ivan; Reis Junior, Fábio B; Marques, Maria Rita; Paggi, Gecele Matos; da Silva Brasil, Marivaine

    2017-04-01

    A sustainable alternative to improve yield and the nutritive value of forage is the use of plant growth-promoting bacteria (PGPB) that release nutrients, synthesize plant hormones and protect against phytopathogens (among other mechanisms). Azospirillum genus is considered an important PGPB, due to the beneficial effects observed when inoculated in several plants. The aim of this study was to evaluate the diversity of new Azospirillum isolates and select bacteria according to the plant growth promotion ability in three forage species from the Brazilian Pantanal floodplain: Axonopus purpusii, Hymenachne amplexicaulis and Mesosetum chaseae. The identification of bacterial isolates was performed using specific primers for Azospirillum in PCR reactions and partial sequencing of the 16S rRNA and nifH genes. The isolates were evaluated in vitro considering biological nitrogen fixation (BNF) and indole-3-acetic acid (IAA) production. Based on the results of BNF and IAA, selected isolates and two reference strains were tested by inoculation. At 31 days after planting the plant height, shoot dry matter, shoot protein content and root volume were evaluated. All isolates were able to fix nitrogen and produce IAA, with values ranging from 25.86 to 51.26 mg N mL -1 and 107-1038 µmol L -1 , respectively. The inoculation of H. amplexicaulis and A. purpusii increased root volume and shoot dry matter. There were positive effects of Azospirillum inoculation on Mesosetum chaseae regarding plant height, shoot dry matter and root volume. Isolates MAY1, MAY3 and MAY12 were considered promising for subsequent inoculation studies in field conditions.

  13. The interaction between strigolactones and other plant hormones in the regulation of plant development

    Directory of Open Access Journals (Sweden)

    Xi eCheng

    2013-06-01

    Full Text Available Plant hormones are small molecules derived from various metabolic pathways and are important regulators of plant development. The most recently discovered phytohormone class comprises the carotenoid-derived strigolactones (SLs. For a long time these compounds were only known to be secreted into the rhizosphere where they act as signalling compounds, but now we know they are also active as endogenous plant hormones and they have been in the spotlight ever since. The initial discovery that SLs are involved in the inhibition of axillary bud outgrowth, initiated a multitude of other studies showing that SLs also play a role in defining root architecture, secondary growth, hypocotyl elongation and seed germination, mostly in interaction with other hormones. Their coordinated action enables the plant to respond in an appropriate manner to environmental factors such as temperature, shading, day length and nutrient availability. Here, we will review the current knowledge on the crosstalk between SLs and other plant hormones – such as auxin, cytokinin, abscisic acid, ethylene and gibberellins - during different physiological processes. We will furthermore take a bird’s eye view of how this hormonal crosstalk enables plants to respond to their ever changing environments.

  14. 2-(4-Methoxy-1H-indol-3-ylacetonitrile

    Directory of Open Access Journals (Sweden)

    Yong-Hong Lu

    2012-01-01

    Full Text Available In the title compound, C11H10N2O, the cyanide group is twisted away from the indole-ring plane [Ccy—Cme—Car—Car = 70.7 (2°; cy = cyanide, me = methylene, ar = aromatic], whereas the methoxy C atom is almost coplanar with the ring system [displacement = 0.014 (5 Å]. In the crystal, N—H...N hydrogen bonds link the molecules into C(7 chains propagating in [100].

  15. Genome-wide analysis of the GH3 family in apple (Malus × domestica).

    Science.gov (United States)

    Yuan, Huazhao; Zhao, Kai; Lei, Hengjiu; Shen, Xinjie; Liu, Yun; Liao, Xiong; Li, Tianhong

    2013-05-02

    Auxin plays important roles in hormone crosstalk and the plant's stress response. The auxin-responsive Gretchen Hagen3 (GH3) gene family maintains hormonal homeostasis by conjugating excess indole-3-acetic acid (IAA), salicylic acid (SA), and jasmonic acids (JAs) to amino acids during hormone- and stress-related signaling pathways. With the sequencing of the apple (Malus × domestica) genome completed, it is possible to carry out genomic studies on GH3 genes to indentify candidates with roles in abiotic/biotic stress responses. Malus sieversii Roem., an apple rootstock with strong drought tolerance and the ancestral species of cultivated apple species, was used as the experimental material. Following genome-wide computational and experimental identification of MdGH3 genes, we showed that MdGH3s were differentially expressed in the leaves and roots of M. sieversii and that some of these genes were significantly induced after various phytohormone and abiotic stress treatments. Given the role of GH3 in the negative feedback regulation of free IAA concentration, we examined whether phytohormones and abiotic stresses could alter the endogenous auxin level. By analyzing the GUS activity of DR5::GUS-transformed Arabidopsis seedlings, we showed that ABA, SA, salt, and cold treatments suppressed the auxin response. These findings suggest that other phytohormones and abiotic stress factors might alter endogenous auxin levels. Previous studies showed that GH3 genes regulate hormonal homeostasis. Our study indicated that some GH3 genes were significantly induced in M. sieversii after various phytohormone and abiotic stress treatments, and that ABA, SA, salt, and cold treatments reduce the endogenous level of axuin. Taken together, this study provides evidence that GH3 genes play important roles in the crosstalk between auxin, other phytohormones, and the abiotic stress response by maintaining auxin homeostasis.

  16. Gonadotropin-releasing hormone analogues inhibit leiomyoma extracellular matrix despite presence of gonadal hormones.

    Science.gov (United States)

    Malik, Minnie; Britten, Joy; Cox, Jeris; Patel, Amrita; Catherino, William H

    2016-01-01

    To determine the effect of GnRH analogues (GnRH-a) leuprolide acetate (LA) and cetrorelix acetate on gonadal hormone-regulated expression of extracellular matrix in uterine leiomyoma three-dimensional (3D) cultures. Laboratory study. University research laboratory. Women undergoing hysterectomy for symptomatic leiomyomas. The 3D cell cultures, protein analysis, Western blot, immunohistochemistry. Expression of extracellular matrix proteins, collagen 1, fibronectin, and versican in leiomyoma cells 3D cultures exposed to E2, P, LA, cetrorelix acetate, and combinations for 24- and 72-hour time points. The 3D leiomyoma cultures exposed to E2 for 24 hours demonstrated an increased expression of collagen-1 and fibronectin, which was maintained for up to 72 hours, a time point at which versican was up-regulated significantly. Although P up-regulated collagen-1 protein (1.29 ± 0.04) within 24 hours of exposure, significant increase in all extracellular matrix (ECM) proteins was observed when the gonadal hormones were used concomitantly. Significant decrease in the amount of ECM proteins was observed on use of GnRH-a, LA and cetrorelix, with 24-hour exposure. Both the compounds also significantly decreased ECM protein concentration despite the presence of E2 or both gonadal hormones. This study demonstrates that GnRH-a directly affect the gonadal hormone-regulated collagen-1, fibronectin, and versican production in their presence. These findings suggest that localized therapy with GnRH-a may inhibit leiomyoma growth even in the presence of endogenous gonadal hormone exposure, thereby providing a mechanism to eliminate the hypoestrogenic side effects associated with GnRH-a therapy. Published by Elsevier Inc.

  17. A Scalable Method for Regioselective 3-Acylation of 2-Substituted Indoles under Basic Conditions

    DEFF Research Database (Denmark)

    Johansson, Karl Henrik; Urruticoechea, Andoni; Larsen, Inna

    2015-01-01

    Privileged structures such as 2-arylindoles are recurrent molecular scaffolds in bioactive molecules. We here present an operationally simple, high yielding and scalable method for regioselective 3-acylation of 2-substituted indoles under basic conditions using functionalized acid chlorides. The ....... The method shows good tolerance to both electron-withdrawing and donating substituents on the indole scaffold and gives ready access to a variety of functionalized 3-acylindole building blocks suited for further derivatization....

  18. Generation of poly-β-hydroxybutyrate from acetate in higher plants: Detection of acetoacetyl CoA reductase- and PHB synthase- activities in rice.

    Science.gov (United States)

    Tsuda, Hirohisa; Shiraki, Mari; Inoue, Eri; Saito, Terumi

    2016-08-20

    It has been reported that Poly-β-hydroxybutyrate (PHB) is generated from acetate in the rice root. However, no information is available about the biosynthetic pathway of PHB from acetate in plant cells. In the bacterium Ralstonia eutropha H16 (R. eutropha), PHB is synthesized from acetyl CoA by the consecutive reaction of three enzymes: β-ketothiolase (EC: 2.3.1.9), acetoacetyl CoA reductase (EC: 1.1.1.36) and PHB synthase (EC: 2.3.1.-). Thus, in this study, we examined whether the above three enzymatic activities were also detected in rice seedlings. The results clearly showed that the activities of the above three enzymes were all detected in rice. In particular, the PHB synthase activity was detected specifically in the sonicated particulate fractions (2000g 10min precipitate (ppt) and the 8000g 30min ppt) of rice roots and leaves. In addition to these enzyme activities, several new experimental results were obtained on PHB synthesis in higher plants: (a) (14)C-PHB generated from 2-(14)C-acetate was mainly localized in the 2000g 10min ppt and the 8000g 30min ppt of rice root. (b) Addition of acetate (0.1-10mM) to culture medium of rice seedlings did not increase the content of PHB in the rice root or leaf. (c) In addition to C3 plants, PHB was generated from acetate in a C4 plant (corn) and in a CAM plant (Bryophyllum pinnatum). d) Washing with ethylenediaminetetraacetic acid (EDTA) strongly suggested that the PHB synthesized from acetate was of plant origin and was not bacterial contamination. Copyright © 2016 Elsevier GmbH. All rights reserved.

  19. Clonal propagation and cryogenic storage of the medicinal plant Stevia rebaudiana

    Energy Technology Data Exchange (ETDEWEB)

    Shatnawi, M. A.; Shibli, R. A.; Abu-Romman, S. M.; Al-Mazra awi, M. S.; Al Ajlouni, Z. I.; Shatanawi, W. A.; Odeh, W. H.

    2011-07-01

    Successful clonal propagation of Stevia rebaudiana was achieved using micro shoots as a primary step for in vitro conservation. Maximum proliferation was obtained on Murashige and Skoog (MS) medium supplemented with 1.5 mg L{sup -}1 benzyl amino purine and 0.2 mg L{sup -}1 indole-3-butyric-acid (IBA). Auxin increased rooting percentage of shoots at concentration of 0.4 mg L{sup -}1 IBA, indole-3-acetic-acid or naphthalene acetic acid and no rooting occurred without plant growth regulator. A survival of 90% was achieved when rooted explants were acclimatized in vivo in 1 soil: 1 perlite: 1 peat. In vitro S. rebaudiana shoots were successfully stored for up to 32 weeks on MS medium supplemented with an appropriate concentration of sucrose, sorbitol or mannitol, at 24 {+-} 2 degree centigrade. After 32 weeks, 93.6% of the shoots were able to survive. Moreover, 89.3% of them were able to regrow when stored under light conditions. Cryo preservation by vitrification was successfully achieved (65.6% regrowth) when shoot tips were pre cultured on a medium supplemented with 0.4 M sorbitol for 2 d, followed by loading shoot tips with 80% concentrated plant vitrification solution 2 (PVS2) for 20 min; then dehydrated with 100% PVS2 for 60 min at 0 degree centigrade prior to storage in liquid nitrogen. This procedure is easy to handle and produced a high levels of shoot formation. This protocol could be useful for long term storage of S. rebaudiana germplasm. (Author) 30 refs.

  20. An improved micropropagation of Arnebia hispidissima (Lehm.) DC. and assessment of genetic fidelity of micropropagated plants using DNA-based molecular markers.

    Science.gov (United States)

    Phulwaria, Mahendra; Rai, Manoj K; Shekhawat, N S

    2013-07-01

    An efficient and improved in vitro propagation method has been developed for Arnebia hispidissima, a medicinally and pharmaceutically important plant species of arid and semiarid regions. Nodal segments (3-4 cm) with two to three nodes obtained from field grown plants were used as explants for shoot proliferation. Murashige and Skoog's (MS) medium supplemented with cytokinins with or without indole-3-acetic acid (IAA) or naphthalene acetic acid was used for shoot multiplication. Out of different PGRs combinations, MS medium containing 0.5 mg l(-1) 6-benzylaminopurine and 0.1 mg l(-1) IAA was optimal for shoot multiplication. On this medium, explants produced the highest number of shoots (47.50 ± 0.38). About 90 % of shoots rooted ex vitro on sterile soilrite under the greenhouse condition when the base (2-4 mm) of shoots was treated with 300 mg l(-1) of indole-3-butyric acid for 5 min. The plantlets were hardened successfully in the greenhouse with 85-90 % survival rate. Random amplified polymorphic DNA (RAPD) and inter-simple sequence repeat (ISSR) markers were employed to assess the genetic stability of in vitro-regenerated plants of A. hispidissima. Out of 40 (25 RAPD and 15 ISSR) primers screened, 15 RAPD and 7 ISSR primers produced a total number of 111 (77 RAPD and 34 ISSR) reproducible amplicons. The amplified products were monomorphic across all the micropropagated plants and were similar to the mother plant. To the best of our knowledge, it is the first report on the assessment of the genetic fidelity in micropropagated plants of A. hispidissima.

  1. Plant hormone interaction and phenolic metabolism in the regulation of russet spotting in iceberg lettuce.

    Science.gov (United States)

    Ke, D; Saltveit, M E

    1988-12-01

    Russet spotting (RS) is a physiological disorder induced in iceberg lettuce (Lactuca sativa L.) by exposure to parts per million levels of ethylene at 5 +/- 2 degrees C. Ethylene induced phenylalanine ammonia-lyase and ionically bound peroxidase activities that correlated with development of RS symptoms. The ethylene-treated tissue had significantly higher lignin content than air control tissue with lignification localized in walls of RS-affected cells. Ethylene also caused the accumulation of the flavonoids (+)catechin and (-)epicatechin and the chlorogenic acid derivatives 3-caffeoyl-quinic acid, 3,5-dicaffeoylquinic acid, and 4,5-dicaffeoylquinic acid. These soluble phenolic compounds were readily oxidized to brown substances by polyphenol oxidase isolated from RS tissue. Ethylene substantially increased ionically bound indole-3-acetic acid (IAA) oxidase activity, while IAA application greatly reduced ethylene-induced phenylalanine ammonia-lyase, peroxidase, and IAA oxidase activities, soluble phenolic content, and RS development.

  2. Isolation of Pantoea ananatis from sugarcane and characterization of its potential for plant growth promotion.

    Science.gov (United States)

    da Silva, J F; Barbosa, R R; de Souza, A N; da Motta, O V; Teixeira, G N; Carvalho, V S; de Souza, A L S R; de Souza Filho, G A

    2015-11-30

    Each year, approximately 170 million metric tons of chemical fertilizer are consumed by global agriculture. Furthermore, some chemical fertilizers contain toxic by-products and their long-term use may contaminate groundwater, lakes, and rivers. The use of plant growth-promoting bacteria may be a cost-effective strategy for partially replacing conventional chemical fertilizers, and may become an integrated plant nutrient solution for sustainable crop production. The main direct bacteria-activated mechanisms of plant growth promotion are based on improvement of nutrient acquisition, siderophore biosynthesis, nitrogen fixation, and hormonal stimulation. The aim of this study was to isolate and identify bacteria with growth-promoting activities from sugarcane. We extracted the bacterial isolate SCB4789F-1 from sugarcane leaves and characterized it with regard to its profile of growth-promoting activities, including its ability to colonize Arabidopsis thaliana. Based on its biochemical characteristics and 16S rDNA sequence analysis, this isolate was identified as Pantoea ananatis. The bacteria were efficient at phosphate and zinc solubilization, and production of siderophores and indole-3-acetic acid in vitro. The isolate was characterized by Gram staining, resistance to antibiotics, and use of carbon sources. This is the first report on zinc solubilization in vitro by this bacterium, and on plant growth promotion following its inoculation into A. thaliana. The beneficial effects to plants of this bacterium justify future analysis of inoculation of economically relevant crops.

  3. Plant morphogenesis, auxin, and the signal-trafficking network incompleteness theorem

    Directory of Open Access Journals (Sweden)

    Karl J. Niklas

    2012-03-01

    Full Text Available Plant morphogenesis (the development of form and function requires signal-trafficking and cross-talking among all levels of organization to coordinate the operation of metabolic and genomic networked systems. Many if not all of these biological features can be rendered as logic circuits supervising the operation of one or more signal-activated metabolic or genome networks. This approach simplifies complex morphogenetic phenomena and allows for their aggregation into diagrams of larger, more "global" networked systems. This conceptualization is illustrated for morphogenesis in model plants such as maize (Zea mays and Thale cress (Arabidopsis thaliana from an evolutionary perspective. The phytohormone indole-acetic acid (IAA is used as an example for a well-known signaling chemical and discussed in terms of the logic circuits and signal-activated sub-systems for hormone-mediated wall loosening and cell expansion as well as polar/lateral intercellular IAA transport. For each of these phenomena, a circuit/sub-system diagram highlights missing components, either in the logic circuit or in the sub-system it supervises, that must be identified experimentally if each of these basic phenomena is to be fully understood within a phylogen

  4. Plant ecdysteroids: plant sterols with intriguing distributions, biological effects and relations to plant hormones.

    Science.gov (United States)

    Tarkowská, Danuše; Strnad, Miroslav

    2016-09-01

    The present review summarises current knowledge of phytoecdysteroids' biosynthesis, distribution within plants, biological importance and relations to plant hormones. Plant ecdysteroids (phytoecdysteroids) are natural polyhydroxylated compounds that have a four-ringed skeleton, usually composed of either 27 carbon atoms or 28-29 carbon atoms (biosynthetically derived from cholesterol or other plant sterols, respectively). Their physiological roles in plants have not yet been confirmed and their occurrence is not universal. Nevertheless, they are present at high concentrations in various plant species, including commonly consumed vegetables, and have a broad spectrum of pharmacological and medicinal properties in mammals, including hepatoprotective and hypoglycaemic effects, and anabolic effects on skeletal muscle, without androgenic side-effects. Furthermore, phytoecdysteroids can enhance stress resistance by promoting vitality and enhancing physical performance; thus, they are considered adaptogens. This review summarises current knowledge of phytoecdysteroids' biosynthesis, distribution within plants, biological importance and relations to plant hormones.

  5. 1-Propyl-1H-indole-2,3-dione

    Directory of Open Access Journals (Sweden)

    Fatima Zahrae Qachchachi

    2016-04-01

    Full Text Available In the title compound, C11H11NO2, the 1H-indole-2,3-dione unit is essentially planar, with an r.m.s. deviation of 0.0387 (13 Å. This plane makes a dihedral angle of 72.19 (17° with the plane of the propyl substituent. In the crystal, chains propagating along the b axis are formed through C—H...O hydrogen bonds.

  6. Simple synthesis of pyrrolo[3,2-e]indole-1-carbonitriles

    Directory of Open Access Journals (Sweden)

    Adam Trawczyński

    2013-05-01

    Full Text Available Alkylation of 5-nitroindol-4-ylacetonitriles with ethyl chloroacetate, α-halomethyl ketones, and chloroacetonitrile followed by a treatment of the products with chlorotrimethylsilane in the presence of DBU gives 1-cyanopyrrolo[3,2-e]indoles substituted in position 2 with electron-withdrawing groups.

  7. Complete genome of Pseudomonas sp. strain L10.10, a psychrotolerant biofertilizer that could promote plant growth.

    Science.gov (United States)

    See-Too, Wah Seng; Lim, Yan-Lue; Ee, Robson; Convey, Peter; Pearce, David A; Yin, Wai-Fong; Chan, Kok Gan

    2016-03-20

    Pseudomonas sp. strain L10.10 (=DSM 101070) is a psychrotolerant bacterium which was isolated from Lagoon Island, Antarctica. Analysis of its complete genome sequence indicates its possible role as a plant-growth promoting bacterium, including nitrogen-fixing ability and indole acetic acid (IAA)-producing trait, with additional suggestion of plant disease prevention attributes via hydrogen cyanide production. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Synthesis and Antidepressant Activity of Some New 5-(1H-Indol-3-yl-3-(substituted aryl-4,5-dihydroisoxazoline Derivatives

    Directory of Open Access Journals (Sweden)

    Pravin O. Patil

    2013-01-01

    Full Text Available The present study refers to the synthesis of new antidepressant candidates using the indole scaffold. In an attempt to identify potential lead antidepressant agents, a number of indole molecules, incorporating isoxazoline, were synthesized by microwave-assisted synthesis. The antidepressant activity of the synthesized compounds (3a–3n was evaluated by forced swim test in mice and their locomotor activity was assessed using actophotometry. The present paper showed significant antidepressant activity for all compounds of the series and no significant change in locomotor activity of mice. Compounds 3d and 3j were found to be potent molecules of this series, when compared with the reference drugs imipramine and fluoxetine. It clearly demonstrated that replacement of aromatic core by appropriate heterocycles such as pyridine and pyrrole on the 5-(1H-Indol-3-yl-3-(Phenyl-4,5-dihydroisoxazoline (3a would generate more potent derivatives. Thus, these compounds can serve as potential leads for further antidepressant studies.

  9. Chemical regulators of plant hormones and their applications in basic research and agriculture.

    Science.gov (United States)

    Jiang, Kai; Asami, Tadao

    2018-04-20

    Plant hormones are small molecules that play versatile roles in regulating plant growth, development, and responses to the environment. Classic methodologies, including genetics, analytic chemistry, biochemistry, and molecular biology, have contributed to the progress in plant hormone studies. In addition, chemical regulators of plant hormone functions have been important in such studies. Today, synthetic chemicals, including plant growth regulators, are used to study and manipulate biological systems, collectively referred to as chemical biology. Here, we summarize the available chemical regulators and their contributions to plant hormone studies. We also pose questions that remain to be addressed in plant hormone studies and that might be solved with the help of chemical regulators.

  10. An auxin responsive CLE gene regulates shoot apical meristem development in Arabidopsis

    Directory of Open Access Journals (Sweden)

    Hongyan eGuo

    2015-05-01

    Full Text Available Plant hormone auxin regulates most, if not all aspects of plant growth and development, including lateral root formation, organ pattering, apical dominance and tropisms. Peptide hormones are peptides with hormone activities. Some of the functions of peptide hormones in regulating plant growth and development are similar to that of auxin, however, the relationship between auxin and peptide hormones remains largely unknown. Here we report the identification of OsCLE48, a rice (Oryza sativa CLE (CLAVATA3/ENDOSPERM SURROUNDING REGION gene, as an auxin response gene, and the functional characterization of OsCLE48 in Arabidopsis and rice. OsCLE48 encodes a CLE peptide hormone that is similar to Arabidopsis CLEs. RT-PCR analysis showed that OsCLE48 was induced by exogenously application of IAA (indole-3-acetic acid, a naturally occurred auxin. Expression of integrated OsCLE48p:GUS reporter gene in transgenic Arabidopsis plants was also induced by exogenously IAA treatment. These results indicate that OsCLE48 is an auxin responsive gene. Histochemical staining showed that GUS activity was detected in all the tissue and organs of the OsCLE48p:GUS transgenic Arabidopsis plants. Expression of OsCLE48 under the control of the 35S promoter in Arabidopsis inhibited shoot apical meristem development. Expression of OsCLE48 under the control of the CLV3 native regulatory elements almost completely complemented clv3-2 mutant phenotypes, suggesting that OsCLE48 is functionally similar to CLV3. On the other hand, expression of OsCLE48 under the control of the 35S promoter in Arabidopsis has little, if any effects on root apical meristem development, and transgenic rice plants overexpressing OsCLE48 are morphologically indistinguishable from wild type plants, suggesting that the functions of some CLE peptides may not be fully conserved in Arabidopsis and rice.

  11. Abilities of some higher plants to hydrolyze the acetates of phenols and aromatic-aliphatic alcohols

    Directory of Open Access Journals (Sweden)

    Agnieszka Mironowicz

    2014-01-01

    Full Text Available In the biotransformations carried out under the same conditions, the whole intact plants of Spirodela punctata, Nephrolepis exaltata, Cyrtomium falcatum, Nephrolepis cordifolia and the suspension cultures of Helianthus tuberosus, Daucus carota and Petunia hybrida hydrolyze (partially or totally the ester bonds of the acetates of phenols and aromatic-aliphatic alcohols and also the menthyl acetate. Nevertheless, the methyl esters of aromatic acids, structurally similar to the former substrates, do not undergo hydrolysis. At the same time, the viability of first four plants was observed for different levels of acetate concentration. The method of continuous preparative hydrolysis of the same acetates was worked out in Cyrtomium falcatum culture.

  12. Plant Growth-Promoting Endophyte Serratia marcescens AL2-16 Enhances the Growth of Achyranthes aspera L., a Medicinal Plant

    Directory of Open Access Journals (Sweden)

    Khaidem Aruna Devi

    2016-10-01

    Full Text Available An endophytic bacterium, AL2-16, was isolated from Achyranthes aspera L. It was characterized and identified as Serratia sp. AL2-16 and was experimented for the presence of plant growth-promoting properties. AL2-16 produced siderophore in iron-deficient conditions. The quantitative estimation of siderophore production unit of AL2-16 was maximum after 48 hours of incubation (83.488% in the presence of 1 μM of ferric chloride. The fructose followed by glucose and sucrose were proved to be the best carbon sources resulting in appreciable amount of siderophore production, i.e. 77.223%, 73.584%, and 65.363% respectively. AL2-16 also has the ability to produce indole acetic acid in medium supplemented with l-tryptophan. The highest amount of indole acetic acid, in the presence of 1.0% l-tryptophan, was 123.2 μg/mL after 144 hours. This isolate solubilized inorganic phosphate and also gave positive result for ammonia production. Colonization and pot trial experiments were conducted on A. aspera L. plant. The population of AL2-16 increased from 16.2 × 106 to 11.2 × 108 colony forming unit/g between 3rd and 5th days after inoculation. It significantly (p ≤ 0.05 increased shoot length by 95.52%, fresh shoot weight by 602.38%, fresh root weight by 438%, and area of leaves by 127.2% when inoculated with AL2-16, as compared with uninoculated control.

  13. Iridium- and ruthenium-catalysed synthesis of 2,3-disubstituted indoles from anilines and vicinal diols

    DEFF Research Database (Denmark)

    Tursky, Matyas; Lorentz-Petersen, Linda Luise Reeh; Olsen, L. B.

    2010-01-01

    A straightforward and atom-economical method is described for the synthesis of 2,3-disubstituted indoles. Anilines and 1,2-diols are condensed under neat conditions with catalytic amounts of either [Cp*IrCl2](2)/MsOH or RuCl3 center dot xH(2)O/phosphine (phosphine = PPh3 or xantphos). The reactio...... the alpha-hydroxyimine which rearranges to the corresponding alpha-aminoketone. Acid-or metal-catalysed electrophilic ring-closure with the release of water then furnishes the indole product....

  14. Plant hormones as signals in arbuscular mycorrhizal symbiosis.

    Science.gov (United States)

    Miransari, Mohammad; Abrishamchi, A; Khoshbakht, K; Niknam, V

    2014-06-01

    Arbuscular mycorrhizal (AM) fungi are non-specific symbionts developing mutual and beneficial symbiosis with most terrestrial plants. Because of the obligatory nature of the symbiosis, the presence of the host plant during the onset and proceeding of symbiosis is necessary. However, AM fungal spores are able to germinate in the absence of the host plant. The fungi detect the presence of the host plant through some signal communications. Among the signal molecules, which can affect mycorrhizal symbiosis are plant hormones, which may positively or adversely affect the symbiosis. In this review article, some of the most recent findings regarding the signaling effects of plant hormones, on mycorrhizal fungal symbiosis are reviewed. This may be useful for the production of plants, which are more responsive to mycorrhizal symbiosis under stress.

  15. Exploring plant growth-promotion actinomycetes from vermicompost and rhizosphere soil for yield enhancement in chickpea

    Science.gov (United States)

    Sreevidya, M.; Gopalakrishnan, S.; Kudapa, H.; Varshney, R.K.

    2016-01-01

    The main objective of the present study was to isolate and characterize actinomycetes for their plant growth-promotion in chickpea. A total of 89 actinomycetes were screened for their antagonism against fungal pathogens of chickpea by dual culture and metabolite production assays. Four most promising actinomycetes were evaluated for their physiological and plant growth-promotion properties under in vitro and in vivo conditions. All the isolates exhibited good growth at temperatures from 20 °C to 40 °C, pH range of 7–11 and NaCl concentrations up to 8%. These were also found highly tolerant to Bavistin, slightly tolerant to Thiram and Captan (except VAI-7 and VAI-40) but susceptible to Benlate and Ridomil at field application levels and were found to produce siderophore, cellulase, lipase, protease, chitinase (except VAI-40), hydrocyanic acid (except VAI-7 and VAI-40), indole acetic acid and β-1,3-glucanase. When the four actinomycetes were evaluated for their plant growth-promotion properties under field conditions on chickpea, all exhibited increase in nodule number, shoot weight and yield. The actinomycetes treated plots enhanced total N, available P and organic C over the un-inoculated control. The scanning electron microscope studies exhibited extensive colonization by actinomycetes on the root surface of chickpea. The expression profiles for indole acetic acid, siderophore and β-1,3-glucanase genes exhibited up-regulation for all three traits and in all four isolates. The actinomycetes were identified as Streptomyces but different species in the 16S rDNA analysis. It was concluded that the selected actinomycetes have good plant growth-promotion and biocontrol potentials on chickpea. PMID:26887230

  16. Exploring plant growth-promotion actinomycetes from vermicompost and rhizosphere soil for yield enhancement in chickpea

    Directory of Open Access Journals (Sweden)

    M. Sreevidya

    2016-03-01

    Full Text Available Abstract The main objective of the present study was to isolate and characterize actinomycetes for their plant growth-promotion in chickpea. A total of 89 actinomycetes were screened for their antagonism against fungal pathogens of chickpea by dual culture and metabolite production assays. Four most promising actinomycetes were evaluated for their physiological and plant growth-promotion properties under in vitro and in vivo conditions. All the isolates exhibited good growth at temperatures from 20 °C to 40 °C, pH range of 7–11 and NaCl concentrations up to 8%. These were also found highly tolerant to Bavistin, slightly tolerant to Thiram and Captan (except VAI-7 and VAI-40 but susceptible to Benlate and Ridomil at field application levels and were found to produce siderophore, cellulase, lipase, protease, chitinase (except VAI-40, hydrocyanic acid (except VAI-7 and VAI-40, indole acetic acid and β-1,3-glucanase. When the four actinomycetes were evaluated for their plant growth-promotion properties under field conditions on chickpea, all exhibited increase in nodule number, shoot weight and yield. The actinomycetes treated plots enhanced total N, available P and organic C over the un-inoculated control. The scanning electron microscope studies exhibited extensive colonization by actinomycetes on the root surface of chickpea. The expression profiles for indole acetic acid, siderophore and β-1,3-glucanase genes exhibited up-regulation for all three traits and in all four isolates. The actinomycetes were identified as Streptomyces but different species in the 16S rDNA analysis. It was concluded that the selected actinomycetes have good plant growth-promotion and biocontrol potentials on chickpea.

  17. Strigolactones, a novel carotenoid-derived plant hormone

    KAUST Repository

    Al-Babili, Salim; Bouwmeester, Harro J.

    2015-01-01

    Strigolactones (SLs) are carotenoid-derived plant hormones and signaling molecules. When released into the soil, SLs indicate the presence of a host to symbiotic fungi and root parasitic plants. In planta, they regulate several developmental

  18. Mass Spectrometric Characteristics of Prenylated Indole Derivatives from Marine-Derived Penicillium sp. NH-SL.

    Science.gov (United States)

    Ding, Hui; Ding, Wanjing; Ma, Zhongjun

    2017-03-22

    Two prenylated indole alkaloids were isolated from the ethyl acetate extracts of a marine-derived fungus Penicillium sp. NH-SL and one of them exhibited potent cytotoxic activity against mouse hepa 1c1c7 cells. In order to detect other bioactive analogs, we used liquid chromatogram tandem mass spectrometry (LC-MS/MS) to analyze the mass spectrometric characteristics of the isolated compounds as well as the crude extracts. As a result, three other analogs were detected, and their structures were deduced according to the similar fragmentation patterns. This is the first systematic report on the mass spectrometric characteristics of prenylated indole derivatives.

  19. Metabolites and hormones are involved in the intraspecific variability of drought hardening in radiata pine.

    Science.gov (United States)

    De Diego, N; Saiz-Fernández, I; Rodríguez, J L; Pérez-Alfocea, P; Sampedro, M C; Barrio, R J; Lacuesta, M; Moncaleán, P

    2015-09-01

    Studies of metabolic and physiological bases of plant tolerance and hardening against drought are essential to improve genetic breeding programs, especially in productive species such as Pinus radiata. The exposure to different drought cycles is a highly effective tool that improves plant conditioning, but limited information is available about the mechanisms that modulate this process. To clarify this issue, six P. radiata breeds with well-known differences in drought tolerance were analyzed after two consecutive drought cycles. Survival rate, concentration of several metabolites such as free soluble amino acids and polyamines, and main plant hormones varied between them after drought hardening, while relative growth ratio and water potential at both predawn and dawn did not. Hardening induced a strong increase in total soluble amino acids in all breeds, accumulating mainly those implicated in the glutamate metabolism (GM), especially L-proline, in the most tolerant breeds. Other amino acids from GM such as γ-aminobutyric acid (GABA) and L-arginine (Arg) were also strongly increased. GABA pathway could improve the response against drought, whereas Arg acts as precursor for the synthesis of spermidine. This polyamine showed a positive relationship with the survival capacity, probably due to its role as antioxidant under stress conditions. Finally, drought hardening also induced changes in phytohormone content, showing each breed a different profile. Although all of them accumulated indole-3-acetic acid and jasmonic acid and reduced zeatin content in needles, significant differences were observed regarding abscisic acid, salicylic acid and mainly zeatin riboside. These results confirm that hardening is not only species-dependent but also an intraspecific processes controlled through metabolite changes. Copyright © 2015 Elsevier GmbH. All rights reserved.

  20. Plant Growth Promoting Bacteria Associated with Langsdorffia hypogaea-Rhizosphere-Host Biological Interface: A Neglected Model of Bacterial Prospection

    Science.gov (United States)

    Felestrino, Érica B.; Santiago, Iara F.; Freitas, Luana da Silva; Rosa, Luiz H.; Ribeiro, Sérvio P.; Moreira, Leandro M.

    2017-01-01

    Soil is a habitat where plant roots and microorganisms interact. In the region of the Brazilian Iron Quadrangle (IQ), studies involving the interaction between microbiota and plants have been neglected. Even more neglected are the studies involving the holoparasite plant Langsdorffia hypogaea Mart. (Balanophoraceae). The geomorphological peculiarities of IQ soil, rich in iron ore, as well as the model of interaction between L. hypogaea, its hosts and the soil provide a unique niche that acts as selective pressure to the evolution of plant growth-promoting bacteria (PGPB). The aim of this study was to prospect the bacterial microbiota of holoparasitic plant L. hypogaea, its plant host and corresponding rhizosphere of IQ soil, and to analyze the potential of these isolates as PGPB. We obtained samples of 11 individuals of L. hypogaea containing fragments of host and rhizosphere remnants, resulting in 81 isolates associated with Firmicutes and Proteobacteria phyla. The ability to produce siderophores, hydrocyanic acid (HCN), indole-3-acetic acid (IAA), nitrogen (N2) fixation, hydrolytic enzymes secretion and inhibition of enteropathogens, and phytopathogens were evaluated. Of the total isolates, 62, 86, and 93% produced, respectively, siderophores, IAA, and were able to fix N2. In addition, 27 and 20% of isolates inhibited the growth of enteropathogens and phytopathogens, respectively, and 58% were able to produce at least one hydrolytic activity investigated. The high number of isolates that produce siderophores and indole-3-acetic acid suggests that this microbiota may be important for adaptation of plants to IQ. The results demonstrate for the first time the biological importance of Brazilian IQ species as reservoirs of specific microbiotas that might be used as PGPB on agricultural land or antropized soils that needs to be reforested. PMID:28239369

  1. Rooting of Mugo pine (Pinus mugo) cuttings as affected by IBA, NAA and planting substrate

    Energy Technology Data Exchange (ETDEWEB)

    Sedaghathoor, S.; Kayghobadi, S.; Tajva, Y.

    2016-07-01

    Aim of the study. The effect of planting substrate and concentrations of indole-3-butyric acid (Ia) and naphthaleneacetic acid (Naca) hormones was studied on the rooting of mugo pine cuttings. Area of study: The research was carried out in Rasht city, Guilan province, Iran. Material and Methods: Both hormones (IBA and NAA) were applied at four concentrations of 0, 1000, 2000 and 4000 mg/l. Planting substrates included sand, perlite, cocopeat, sand + perlite, and sand + cocopeat (1:1). Main results: The highest rooting percentage (55%) was obtained under the trilateral treatment a2b4c1 (sand × 4000 mg/l NAA × 1000 mg/l IBA). Sand + cocopeat was found to be the best rooting substrate. Research highlights: It is recommended to apply sand with 4000 mg/l and 1000mg/l concentration of experimental hormones (NAA and IBA, respectively). (Author)

  2. Possible role of vitamins A and/or α-tocopheryl acetate in modulating -radiation-induced disorders on the pituitary-gonadal-adrenal axis hormones and some related minerals in female rats

    International Nuclear Information System (INIS)

    Abou-Safi, H.M.; Hussien, A.H.; El-Sayed, N.M.

    2006-01-01

    The present study aimed to evaluate the role of vitamins A (15000 IU/kg body wt) and α -tocopheryl acetate (100 mg/kg body wt) on repairing the disorders induced by γ -radiation on the pituitary-gonadal adrenal axis hormones in female rats during the estrus phase of estrus cycle. The investigation included the determination of follicle-stimulating hormone (FSH) estradiol (E2) progesterone (P) aldosterone (Ald), Na + , K + and Ca 2+ , levels in serum. Animals were divided into 5 groups: control, whole body -irradiated (6 Gy), injected with vitamin A 2 h before irradiation, subjected to γ -radiation then injected with α-tocopheryl acetate 1 h later and injected with vitamin A pre-irradiation, then injected with α -tocopheryl acetate post-irradiation. Animals were treated at the pro-estrus stage then, serum samples were taken at the estrus stage. Results showed that irradiation induced significant decreases in serum levels of FSH, E2, aldosterone and potassium, whereas, it elevated significantly the serum levels of P4 and sodium but there was in serum calcium levels. Both vitamins A and / orα-tocopheryl acetate succeeded to confront γ -radiation disorders on the estimated hormones and related minerals. The combination of vitamins A and α -tocopheryl acetate was more effective than either one alone

  3. S-Alkylated/aralkylated 2-(1H-indol-3-yl-methyl)-1,3,4- oxadiazole-5 ...

    African Journals Online (AJOL)

    Purpose: To evaluate the antibacterial, enzyme-inhibitory and hemolytic activities of Salkylated/aralkylated 2-(1H-indol-3-ylmethyl)-1,3,4-oxadiazole-5-thiol derivatives. Methods: Antibacterial activities of the compounds were evaluated using broth dilution method in 96 well plates. Enzyme inhibitory activities assays were ...

  4. Strategies for engineering plant natural products: the iridoid-derived monoterpene indole alkaloids of Catharanthus roseus.

    Science.gov (United States)

    O'Connor, Sarah E

    2012-01-01

    The manipulation of pathways to make unnatural variants of natural compounds, a process often termed combinatorial biosynthesis, has been robustly successful in prokaryotic systems. The development of approaches to generate new-to-nature compounds from plant-based pathways is, in comparison, much less advanced. Success will depend on the specific chemistry of the pathway, as well as on the suitability of the plant system for transformation and genetic manipulation. As plant pathways are elucidated, and can be heterologously expressed in hosts that are more amenable to genetic manipulation, biosynthetic production of new-to-nature compounds from plant pathways will become more widespread. In this chapter, some of the key strategies that have been developed for metabolic engineering of plant pathways, namely directed biosynthesis, mutasynthesis, and pathway incorporation of engineered enzymes are highlighted. The iridoid-derived monoterpene indole alkaloids from C. roseus, which are the focus of this chapter, provide an excellent system for developing these strategies. Copyright © 2012 Elsevier Inc. All rights reserved.

  5. Rooting of healthy and CVC-affected 'Valência' sweet orange stem cuttings, through the use of plant regulators

    Directory of Open Access Journals (Sweden)

    Gustavo Habermann

    2006-01-01

    Full Text Available Citrus variegated chlorosis (CVC is a disease caused by Xylella fastidiosa. Using different concentrations of plant regulators, such as auxins (indole-3-butyric acid and gibberellic acid biosynthesis-inhibitor (paclobutrazol, physiological rooting capacity of healthy and CVC-affected stem cuttings were evaluated in order to investigate the importance of plant hormone imbalance and xylem occlusion in plants with CVC. The percentages of dead, alive and rooted cuttings, cuttings with callus and mean number of roots per cuttings did not show statistical differences in response to the distinct concentrations of synthetic plant regulators. There were differences only between healthy and CVC-affected cuttings. This showed the importance of xylem occlusion and diffusive disturbances in diseased plants, in relation to root initiation capacity and hormonal translocation in the plant tissue.Clorose variegada dos citros (CVC é uma doença causada por Xylella fastidiosa, podendo determinar oclusão do xilema e desbalanço hormonal, o que por fim está relacionado ao processo de iniciação radicial em estacas. Usando diferentes concentrações de fitorreguladores, como auxinas (ácido 3-indol butírico e inibidores da biossíntese de ácido giberélico (paclobutrazol, que são promotores do enraizamento de estacas, verificou-se a capacidade fisiológica de enraizamento de estacas sadias e com CVC, a fim de investigar a importância do desbalanço hormonal e oclusão do xilema em plantas doentes. As porcentagens de estacas mortas, vivas, enraizadas e com calo e o número médio de raízes por estaca não mostraram diferenças estatísticas em resposta às diferentes concentrações dos reguladores vegetais sintéticos. Houve diferenças apenas entre estacas sadias e doentes. Isto aponta a importância da oclusão do xilema e distúrbios difusivos em plantas doentes, em relação à capacidade de iniciação radicial e à translocação hormonal no tecido

  6. Leuprorelin Acetate in Prostate Cancer: a European Update

    Directory of Open Access Journals (Sweden)

    Persad R

    2002-01-01

    Full Text Available This review provides an update on leuprorelin acetate, the world's most widely prescribed depot luteinising hormone-releasing hormone analogue. Leuprorelin acetate has been in clinical use in the palliative treatment of prostate cancer for more than 20 years, but advances continue to be made in terms of convenience and flexibility of administration, and in the incorporation of leuprorelin acetate into novel treatment regimens. The drug is administered in the form of a depot injection containing leuprorelin acetate microspheres, and is at least as effective in suppressing testosterone secretion as orchiectomy. In patients with prostate cancer, serum testosterone levels are reduced to castrate levels (= 50 ng/dl within 2-3 weeks of the first one-month depot injection of 3.75 mg or three-month depot injection of 11.25 mg. Both the one-month and three-month formulations are effective in delaying tumour progression and alleviating symptoms of locally advanced and metastatic prostate cancer. Tolerability is generally good, with side-effects reflecting effective testosterone suppression. Recent studies have investigated the place of leuprorelin acetate as part of continuous or intermittent maximal androgen blockade (MAB and in neoadjuvant therapy (ie, to reduce the size of the prostate and downsize the tumour before radiotherapy. Additional formulations and presentations are in development, including a six-month injection, with the aim of adding to the clinical flexibility and patient acceptability of this important palliative treatment for prostate cancer.

  7. Vilsmeier-Haack reagent: A facile synthesis of 2-(4-chloro-3,3-dimethyl-7-phenoxyindolin-2-ylidenemalonaldehyde and transformation into different heterocyclic compounds

    Directory of Open Access Journals (Sweden)

    Laya Roohi

    2013-10-01

    Full Text Available 2-(5-Chloro-2-phenoxyphenylhydrazine was converted to corresponding 3H-indole by Fischer method utilizing the isopropyl methyl ketone in acetic acid. The reaction of 3H-indole with Vilsmeier-Haack reagent furnished aminomethylene malonaldehyde in excellent yield while the reactions of malonaldehyde with hydrazine, arylhydrazines, amines, cyanoacetamide and hydroxylamine hydrochloride, led to the corresponding pyrazole derivatives, enamines, cyanopyridone, and cyanoacetamide derivatives respectively.

  8. Circadian regulation of hormone signaling and plant physiology.

    Science.gov (United States)

    Atamian, Hagop S; Harmer, Stacey L

    2016-08-01

    The survival and reproduction of plants depend on their ability to cope with a wide range of daily and seasonal environmental fluctuations during their life cycle. Phytohormones are plant growth regulators that are involved in almost every aspect of growth and development as well as plant adaptation to myriad abiotic and biotic conditions. The circadian clock, an endogenous and cell-autonomous biological timekeeper that produces rhythmic outputs with close to 24-h rhythms, provides an adaptive advantage by synchronizing plant physiological and metabolic processes to the external environment. The circadian clock regulates phytohormone biosynthesis and signaling pathways to generate daily rhythms in hormone activity that fine-tune a range of plant processes, enhancing adaptation to local conditions. This review explores our current understanding of the interplay between the circadian clock and hormone signaling pathways.

  9. Effects of soil drought stress on plant regeneration efficiency and endogenous hormone levels of immature embryos in wheat (Triticum aestivum L.)

    International Nuclear Information System (INIS)

    Bie, X.; Wang, K.; Liu, C.; Du, L.

    2017-01-01

    In this study, the water supply in soil for wheat mother donor plants was controlled, leading to drought stress conditions, and the relative soil water content (RSWC) was measured in different soil depths. The immature embryos of common wheat (Triticum aestivum L.) 13 days post anthesis (DPA) were used to test regeneration capacity. The accumulation of the plant growth regulators (PGRs) including abscisic acid (ABA), indole-3-acetic acid (IAA), and hydrogen peroxide (H2O2) in the wheat embryos grown under the two conditions was measured. The results indicated that RSWC difference between the drought treatment and the irrigated control was more than 13% at the various soil depths, with the maximum difference was observed at 40 cm depth. Tissue culture evaluation showed that the plant regeneration efficiency of the immature embryos grown under drought stress treatment was significantly higher than that of the tissues grown under the control condition. Assay for PGR found that the drought stress caused obviously increased concentration of endogenous ABA and H2O2, and slightly decreased level of IAA in the target tissues. Therefore, it seems that the concentration of endogenous ABA, IAA, and H2O2 in immature wheat embryos is very important in regeneration capacity. Drought stress can improve the regeneration capacity by changing the levels of ABA, IAA, and H2O2. Our results would be helpful to efficient development of genetically modified wheat plants through improvement of regeneration via manipulating the endogenous PGRs. (author)

  10. Synthesis of 2-Amino-3-hydroxy-3H-indoles via Palladium-Catalyzed One-Pot Reaction of Isonitriles, Oxygen, and N-Tosylhydrazones Derived from 2-Acylanilines.

    Science.gov (United States)

    Chu, Haoke; Dai, Qiang; Jiang, Yan; Cheng, Jiang

    2017-08-04

    A cyanide-free one-pot procedure was developed to access 2-amino-3-hydroxy-3H-indoles, which involved: (1) in situ formation of ketenimines by the reaction of N'-(1-(2-aminophenyl)ethylidene)-p-tosylhydrazones with isonitriles; (2) the intramolecular nucleophilic attack of ketenimines by the amino in phenyl furnishing the ring closure leading to 2-aminoindoles; (3) the oxidation of 2-aminoindoles by O 2 leading to 2-amino-3-hydroxy-3H-indoles. This strategy represents not only a key compliment to the sporadic synthetic methods toward 2-amino-3-hydroxy-3H-indoles but also progress in N-tosylhydrazone, isonitrile, and ketenimine chemistry.

  11. An NPF transporter exports a central monoterpene indole alkaloid intermediate from the vacuole

    DEFF Research Database (Denmark)

    Payne, Richard; Xu, Deyang; Foureau, Emilien

    2017-01-01

    Plants sequester intermediates of metabolic pathways into different cellular compartments, but the mechanisms by which these molecules are transported remain poorly understood. Monoterpene indole alkaloids, a class of specialized metabolites that includes the anticancer agent vincristine, antimal......Plants sequester intermediates of metabolic pathways into different cellular compartments, but the mechanisms by which these molecules are transported remain poorly understood. Monoterpene indole alkaloids, a class of specialized metabolites that includes the anticancer agent vincristine...

  12. The Effect of Plant Growth Regulators on Callus Induction and Regeneration of Amygdalus communis

    Directory of Open Access Journals (Sweden)

    Naimeh SHARIFMOGHADAM

    2011-08-01

    Full Text Available The Almond (Amygdalus communis is one of the most important and oldest commercial nut crops, belonging to the Rosaceae family. Almond has been used as base material in pharmaceutical, cosmetic, hygienically and food industry. Propagation by tissue culture technique is the most important one in woody plants. In the current research, in vitro optimization of tissue culture and mass production of almond was investigated. In this idea, explants of actively growing shoots were collected and sterilized, then transferred to MS medium with different concentrations and combinations of plant growth regulators. The experiment was done in completely randomized blocks design, with 7 treatment and 30 replications. After 4 weeks, calli induction, proliferation, shoot length and number of shoot per explants were measured. Results showed that the best medium for shoot initiation and proliferation was MS + 0.5 mg/l IAA (Indol-3-Acetic Acid + 1 mg/l BA (Benzyl Adenine. Autumn was the best season for collecting explants. The shoots were transferred to root induction medium with different concentrations of plant growth regulators. The best root induction medium was MS + 0.5 mg/l IBA (Indol Butyric Acid.

  13. Endogenous hormone concentrations correlate with fructan metabolism throughout the phenological cycle in Chrysolaena obovata.

    Science.gov (United States)

    Rigui, Athos Poli; Gaspar, Marília; Oliveira, Vanessa F; Purgatto, Eduardo; Carvalho, Maria Angela Machado de

    2015-06-01

    Chrysolaena obovata, an Asteraceae of the Brazilian Cerrado, presents seasonal growth, marked by senescence of aerial organs in winter and subsequent regrowth at the end of this season. The underground reserve organs, the rhizophores, accumulate inulin-type fructans, which are known to confer tolerance to drought and low temperature. Fructans and fructan-metabolizing enzymes show a characteristic spatial and temporal distribution in the rhizophores during the developmental cycle. Previous studies have shown correlations between abscisic acid (ABA) or indole acetic acid (IAA), fructans, dormancy and tolerance to drought and cold, but the signalling mechanism for the beginning of dormancy and sprouting in this species is still unknown. Adult plants were sampled from the field across phenological phases including dormancy, sprouting and vegetative growth. Endogenous concentrations of ABA and IAA were determined by GC-MS-SIM (gas chromatography-mass spectrometry-selected ion monitoring), and measurements were made of fructan content and composition, and enzyme activities. The relative expression of corresponding genes during dormancy and sprouting were also determined. Plants showed a high fructan 1-exohydrolase (EC 3.2.1.153) activity and expression during sprouting in proximal segments of the rhizophores, indicating mobilization of fructan reserves, when ABA concentrations were relatively low and precipitation and temperature were at their minimum values. Concomitantly, higher IAA concentrations were consistent with the role of this regulator in promoting cell elongation and plant growth. With high rates of precipitation and high temperatures in summer, the fructan-synthesizing enzyme sucrose:sucrose 1-fructosyltransferase (EC 2.4.1.99) showed higher activity and expression in distal segments of the rhizophores, which decreased over the course of the vegetative stage when ABA concentrations were higher, possibly signalling the entry into dormancy. The results show

  14. Heterologous expression, purification, crystallization and preliminary X-ray analysis of raucaffricine glucosidase, a plant enzyme specifically involved in Rauvolfia alkaloid biosynthesis.

    Science.gov (United States)

    Ruppert, Martin; Panjikar, Santosh; Barleben, Leif; Stöckigt, Joachim

    2006-03-01

    Raucaffricine glucosidase (RG) is an enzyme that is specifically involved in the biosynthesis of indole alkaloids from the plant Rauvolfia serpentina. After heterologous expression in Escherichia coli cells, crystals of RG were obtained by the hanging-drop vapour-diffusion technique at 293 K with 0.3 M ammonium sulfate, 0.1 M sodium acetate pH 4.6 buffer and 11% PEG 4000 as precipitant. Crystals belong to space group I222 and diffract to 2.30 A, with unit-cell parameters a = 102.8, b = 127.3, c = 215.8 A.

  15. Strigolactones, a novel carotenoid-derived plant hormone

    KAUST Repository

    Al-Babili, Salim

    2015-04-29

    Strigolactones (SLs) are carotenoid-derived plant hormones and signaling molecules. When released into the soil, SLs indicate the presence of a host to symbiotic fungi and root parasitic plants. In planta, they regulate several developmental processes that adapt plant architecture to nutrient availability. Highly branched/tillered mutants in Arabidopsis, pea, and rice have enabled the identification of four SL biosynthetic enzymes: a cis/trans-carotene isomerase, two carotenoid cleavage dioxygenases, and a cytochrome P450 (MAX1). In vitro and in vivo enzyme assays and analysis of mutants have shown that the pathway involves a combination of new reactions leading to carlactone, which is converted by a rice MAX1 homolog into an SL parent molecule with a tricyclic lactone moiety. In this review, we focus on SL biosynthesis, describe the hormonal and environmental factors that determine this process, and discuss SL transport and downstream signaling as well as the role of SLs in regulating plant development. ©2015 by Annual Reviews. All rights reserved.

  16. A simple, effective, green method for regioselective 3-acylation of unprotected indoles

    DEFF Research Database (Denmark)

    Tran, Phuong Huong; Tran, Hai N.; Hansen, Poul Erik

    2015-01-01

    A fast and green method is developed for regioselective acylation of indoles in the 3-position without the need for protection of the NH position. The method is based on Friedel-Crafts acylation using acid anhydrides. The method has been optimized, and Y(OTf)3 in catalytic amounts is found...

  17. The promising effect of linagliptin and/or indole-3-carbinol on experimentally-induced polycystic ovarian syndrome.

    Science.gov (United States)

    Kabel, Ahmed M; Al-Shehri, Aisha H; Al-Talhi, Rehab A; Abd Elmaaboud, Maaly A

    2017-08-01

    Polycystic ovarian syndrome (PCOS) is one of the most common medical conditions that lead to female infertility worldwide. The aim of this study was to assess the effect of linagliptin and/or indole-3-carbinol (I3C) on PCOS in female rats. Fifty female Wistar rats were randomly allocated into five equal groups: Control group; Letrozole-induced PCOS group; Letrozole + Linagliptin group; Letrozole + I3C group and Letrozole + Linagliptin + I3C group. Body weight, body mass index, Lee index and ovarian indices were determined. Plasma levels of luteinizing hormone (LH), free testosterone, estradiol, progesterone, prolactin, fasting blood glucose (FBG) and fasting plasma insulin were measured. Quantitative Insulin Sensitivity Check Index (QUICKI) was calculated. Tissue antioxidant status, transforming growth factor beta 1 (TGF-β1), tumor necrosis factor alpha (TNF-α), interleukin 10 (IL-10) and Nrf2/HO-1 content were assessed. Histopathological and immunohistochemical examination of the ovaries were done. Linagliptin and/or I3C induced significant decrease in tissue TGF-β1, TNF-α, IL-10, plasma free testosterone, luteinizing hormone, progesterone, estradiol, FBG and insulin levels associated with significant improvement of insulin resistance whereas tissue Nrf2/HO-1 content and antioxidant enzymes were significantly increased compared to PCOS group. In addition, final body weight, final body mass and Lee indices were significantly decreased compared to PCOS group. Also, there was significant improvement of the ovarian morphology compared to PCOS group. This improvement was significant with linagliptin/I3C combination compared to the use of each of these drugs alone. In conclusion, linagliptin/I3C combination might represent a beneficial therapeutic modality for amelioration of PCOS. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. AMT (3-(2-aminopropyl)indole) and 5-IT (5-(2-aminopropyl)indole): an analytical challenge and implications for forensic analysis.

    Science.gov (United States)

    Elliott, Simon P; Brandt, Simon D; Freeman, Sally; Archer, Roland P

    2013-03-01

    5-(2-Aminopropyl)indole (5-IT) and 3-(2-aminopropyl)indole (α-methyltryptamine, AMT) are isomeric substances and their differentiation can be a challenge under routine analytical conditions, especially when reference material is unavailable. 5-IT represents a very recent addition to the battery of new psychoactive substances that are commercially available from online retailers. This report illustrates how subtle differences observed under mass spectral and UV conditions can help to facilitate the differentiation between the two isomers. Analyses included (1)  H and (13) C NMR, GC-EI/CI ion trap MS, applications of several U/HPLC-DAD and HPLC-MS methods. Investigations currently underway also highlight the confirmation that AMT was detected in a number of fatal intoxications. These findings also demonstrate that there is a potential risk of misidentification when dealing with both substances. Copyright © 2012 John Wiley & Sons, Ltd.

  19. Leuprolide Acetate 1-Month Depot for Central Precocious Puberty: Hormonal Suppression and Recovery

    Directory of Open Access Journals (Sweden)

    Neely EKirk

    2011-01-01

    Full Text Available Methods. This prospective US multicenter trial of leuprolide acetate 1-month depot (7.5–15 mg for central precocious puberty utilized an open-label treatment period, long-term follow-up, and adult callback. Forty-nine females Results. Subjects were treated for years. Mean peak GnRH-stimulated LH and FSH were prepubertal after the first dose and remained suppressed throughout treatment. During treatment, mean estradiol decreased to the limit of detection and mean testosterone decreased but remained above prepubertal norms. During posttreatment follow-up ( years, all patients achieved a pubertal hormonal response within 1 year and menses were reported in all females ≥12 years old. No impairment of reproductive function was observed at adulthood (mean age: 24.8 years.

  20. 21 CFR 184.1005 - Acetic acid.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Acetic acid. 184.1005 Section 184.1005 Food and... Substances Affirmed as GRAS § 184.1005 Acetic acid. (a) Acetic acid (C2H4O2, CAS Reg. No. 64-19-7) is known as ethanoic acid. It occurs naturally in plant and animal tissues. It is produced by fermentation of...

  1. Physiological and biochemical perspectives of non-salt tolerant plants during bacterial interaction against soil salinity.

    Science.gov (United States)

    Radhakrishnan, Ramalingam; Baek, Kwang Hyun

    2017-07-01

    Climatic changes on earth affect the soil quality of agricultural lands, especially by increasing salt deposition in soil, which results in soil salinity. Soil salinity is a major challenge to growth and reproduction among glycophytes (including all crop plants). Soil bacteria present in the rhizosphere and/or roots naturally protect plants from the adverse effects of soil salinity by reprogramming the stress-induced physiological changes in plants. Bacteria can enrich the soil with major nutrients (nitrogen, phosphorus, and potassium) in a form easily available to plants and prevent the transport of excess sodium to roots (exopolysaccharides secreted by bacteria bind with sodium ions) for maintaining ionic balance and water potential in cells. Salinity also affects plant growth regulators and suppresses seed germination and root and shoot growth. Bacterial secretion of indole-3-acetic acid and gibberellins compensates for the salt-induced hormonal decrease in plants, and bacterial 1-aminocyclopropane-1-carboxylate (ACC) deaminase synthesis decreases ethylene production to stimulate plant growth. Furthermore, bacteria modulate the redox state of salinity-affected plants by enhancing antioxidants and polyamines, which leads to increased photosynthetic efficiency. Bacteria-induced accumulation of compatible solutes in stressed plants regulates plant cellular activities and prevents salt stress damage. Plant-bacterial interaction reprograms the expression of salt stress-responsive genes and proteins in salinity-affected plants, resulting in a precise stress mitigation metabolism as a defense mechanism. Soil bacteria increase the fertility of soil and regulate the plant functions to prevent the salinity effects in glycophytes. This review explains the current understanding about the physiological changes induced in glycophytes during bacterial interaction to alleviate the adverse effects of soil salinity stress. Copyright © 2017 Elsevier Masson SAS. All rights

  2. Evolution Analysis of the Aux/IAA Gene Family in Plants Shows Dual Origins and Variable Nuclear Localization Signals

    Directory of Open Access Journals (Sweden)

    Wentao Wu

    2017-10-01

    Full Text Available The plant hormone auxin plays pivotal roles in many aspects of plant growth and development. The auxin/indole-3-acetic acid (Aux/IAA gene family encodes short-lived nuclear proteins acting on auxin perception and signaling, but the evolutionary history of this gene family remains to be elucidated. In this study, the Aux/IAA gene family in 17 plant species covering all major lineages of plants is identified and analyzed by using multiple bioinformatics methods. A total of 434 Aux/IAA genes was found among these plant species, and the gene copy number ranges from three (Physcomitrella patens to 63 (Glycine max. The phylogenetic analysis shows that the canonical Aux/IAA proteins can be generally divided into five major clades, and the origin of Aux/IAA proteins could be traced back to the common ancestor of land plants and green algae. Many truncated Aux/IAA proteins were found, and some of these truncated Aux/IAA proteins may be generated from the C-terminal truncation of auxin response factor (ARF proteins. Our results indicate that tandem and segmental duplications play dominant roles for the expansion of the Aux/IAA gene family mainly under purifying selection. The putative nuclear localization signals (NLSs in Aux/IAA proteins are conservative, and two kinds of new primordial bipartite NLSs in P. patens and Selaginella moellendorffii were discovered. Our findings not only give insights into the origin and expansion of the Aux/IAA gene family, but also provide a basis for understanding their functions during the course of evolution.

  3. Evolution Analysis of the Aux/IAA Gene Family in Plants Shows Dual Origins and Variable Nuclear Localization Signals.

    Science.gov (United States)

    Wu, Wentao; Liu, Yaxue; Wang, Yuqian; Li, Huimin; Liu, Jiaxi; Tan, Jiaxin; He, Jiadai; Bai, Jingwen; Ma, Haoli

    2017-10-08

    The plant hormone auxin plays pivotal roles in many aspects of plant growth and development. The auxin/indole-3-acetic acid (Aux/IAA) gene family encodes short-lived nuclear proteins acting on auxin perception and signaling, but the evolutionary history of this gene family remains to be elucidated. In this study, the Aux/IAA gene family in 17 plant species covering all major lineages of plants is identified and analyzed by using multiple bioinformatics methods. A total of 434 Aux/IAA genes was found among these plant species, and the gene copy number ranges from three ( Physcomitrella patens ) to 63 ( Glycine max ). The phylogenetic analysis shows that the canonical Aux/IAA proteins can be generally divided into five major clades, and the origin of Aux/IAA proteins could be traced back to the common ancestor of land plants and green algae. Many truncated Aux/IAA proteins were found, and some of these truncated Aux/IAA proteins may be generated from the C-terminal truncation of auxin response factor (ARF) proteins. Our results indicate that tandem and segmental duplications play dominant roles for the expansion of the Aux/IAA gene family mainly under purifying selection. The putative nuclear localization signals (NLSs) in Aux/IAA proteins are conservative, and two kinds of new primordial bipartite NLSs in P. patens and Selaginella moellendorffii were discovered. Our findings not only give insights into the origin and expansion of the Aux/IAA gene family, but also provide a basis for understanding their functions during the course of evolution.

  4. Multifarious plant growth promotion by an entomopathogenic fungus Lecanicillium psalliotae.

    Science.gov (United States)

    Senthil Kumar, C M; Jacob, T K; Devasahayam, S; Thomas, Stephy; Geethu, C

    2018-03-01

    An entomopathogenic fungus, Lecanicillium psalliotae strain IISR-EPF-02 previously found infectious to cardamom thrips, Sciothrips cardamomi promoted plant growth in cardamom, Elettaria cardamomum. The isolate exhibited direct plant growth promoting traits by production of indole-3-acetic acid and ammonia and by solubilizing inorganic phosphate and zinc. It also showed indirect plant growth promoting traits by producing siderophores and cell wall-degrading enzymes like, α-amylases, cellulases and proteases. In pot culture experiments, application of the fungus at the root zone of cardamom seedlings significantly increased shoot and root length, shoot and root biomass, number of secondary roots and leaves and leaf chlorophyll content compared to untreated plants. This is the first report on the plant growth promoting traits of this fungus. The entomopathogenic and multifarious growth promoting traits of L. psalliotae strain IISR-EPF-02 suggest that it has great potential for exploitation in sustainable agriculture. Copyright © 2017 Elsevier GmbH. All rights reserved.

  5. Essential Role of Growth Hormone and IGF-1 in Therapeutic Effect of Ghrelin in the Course of Acetic Acid-Induced Colitis.

    Science.gov (United States)

    Ceranowicz, Piotr; Warzecha, Zygmunt; Cieszkowski, Jakub; Ceranowicz, Dagmara; Kuśnierz-Cabala, Beata; Bonior, Joanna; Jaworek, Jolanta; Ambroży, Tadeusz; Gil, Krzysztof; Olszanecki, Rafał; Pihut, Małgorzata; Dembiński, Artur

    2017-05-24

    Previous studies have shown that ghrelin exhibits a protective and therapeutic effect in the gut. The aim of the present study was to examine whether administration of ghrelin affects the course of acetic acid-induced colitis and to determine what is the role of growth hormone (GH) and insulin-like growth factor-1 (IGF-1) in this effect. In sham-operated or hypophysectomized male Wistar rats, colitis was induced by enema with 1 mL of 3% solution of acetic acid. Saline or ghrelin (given at the dose of 8 nmol/kg/dose) was administered intraperitoneally twice a day. Seven days after colitis induction, rats were anesthetized and the severity of the colitis was assessed. Treatment with ghrelin reduced the area of colonic mucosa damage in pituitary-intact rat. This effect was associated with increase in serum levels of GH and IGF-1. Moreover, administration of ghrelin improved blood flow in colonic mucosa and mucosal cell proliferation, as well as reduced mucosal concentration of proinflammatory interleukin-1β (IL-1β) and activity of myeloperoxidase. Hypophysectomy reduced serum levels of GH and IGF-1 and increased the area of colonic damage in rats with colitis. These effects were associated with additional reduction in mucosal blood follow and DNA synthesis when compared to pituitary-intact rats. Mucosal concentration of IL-1β and mucosal activity of myeloperoxidase were maximally increased. Moreover, in hypophysectomized rats, administration of ghrelin failed to affect serum levels of GH or IGF-1, as well as the healing rate of colitis, mucosal cell proliferation, and mucosal concentration of IL-1β, or activity of myeloperoxidase. We conclude that administration of ghrelin accelerates the healing of the acetic acid-induced colitis. Therapeutic effect of ghrelin in experimental colitis is mainly mediated by the release of endogenous growth hormone and IGF-1.

  6. Hormonal changes in the grains of rice subjected to water stress during grain filling.

    Science.gov (United States)

    Yang, J; Zhang, J; Wang, Z; Zhu, Q; Wang, W

    2001-09-01

    Lodging-resistant rice (Oryza sativa) cultivars usually show slow grain filling when nitrogen is applied in large amounts. This study investigated the possibility that a hormonal change may mediate the effect of water deficit that enhances whole plant senescence and speeds up grain filling. Two rice cultivars showing high lodging resistance and slow grain filling were field grown and applied with either normal or high amount nitrogen (HN) at heading. Well-watered and water-stressed (WS) treatments were imposed 9 days post anthesis to maturity. Results showed that WS increased partitioning of fixed (14)CO(2) into grains, accelerated the grain filling rate but shortened the grain filling period, whereas the HN did the opposite way. Cytokinin (zeatin + zeatin riboside) and indole-3-acetic acid contents in the grains transiently increased at early filling stage and WS treatments hastened their declines at the late grain filling stage. Gibberellins (GAs; GA(1) + GA(4)) in the grains were also high at early grain filling but HN enhanced, whereas WS substantially reduced, its accumulation. Opposite to GAs, abscisic acid (ABA) in the grains was low at early grain filling but WS remarkably enhanced its accumulation. The peak values of ABA were significantly correlated with the maximum grain filling rates (r = 0.92**, P water stress during grain filling, especially a decrease in GAs and an increase in ABA, enhances the remobilization of prestored carbon to the grains and accelerates the grain filling rate.

  7. Effects of interactions of auxin-producing bacteria and bacterial-feeding nematodes on regulation of peanut growths.

    Science.gov (United States)

    Xu, Li; Xu, Wensi; Jiang, Ying; Hu, Feng; Li, Huixin

    2015-01-01

    The influences of an IAA (indole-3-acetic acid)-producing bacterium (Bacillus megaterium) and two bacterial-feeding nematodes (Cephalobus sp. or Mesorhabditis sp.) on the growth of peanut (Arachis hypogaea L. cv. Haihua 1) after various durations of time were investigated in natural soils. The addition of bacteria and nematodes and incubation time all significantly affected plant growth, plant root growth, plant nutrient concentrations, soil nutrient concentrations, soil microorganisms and soil auxin concentration. The addition of nematodes caused greater increases in these indices than those of bacteria, while the addition of the combination of bacteria and nematodes caused further increases. After 42-day growth, the increases in soil respiration differed between the additions of two kinds of nematodes because of differences in their life strategies. The effects of the bacteria and nematodes on the nutrient and hormone concentrations were responsible for the increases in plant growth. These results indicate the potential for promoting plant growth via the addition of nematodes and bacteria to soil.

  8. Interactions between plant hormones and heavy metals responses.

    Science.gov (United States)

    Bücker-Neto, Lauro; Paiva, Ana Luiza Sobral; Machado, Ronei Dorneles; Arenhart, Rafael Augusto; Margis-Pinheiro, Marcia

    2017-01-01

    Heavy metals are natural non-biodegradable constituents of the Earth's crust that accumulate and persist indefinitely in the ecosystem as a result of human activities. Since the industrial revolution, the concentration of cadmium, arsenic, lead, mercury and zinc, amongst others, have increasingly contaminated soil and water resources, leading to significant yield losses in plants. These issues have become an important concern of scientific interest. Understanding the molecular and physiological responses of plants to heavy metal stress is critical in order to maximize their productivity. Recent research has extended our view of how plant hormones can regulate and integrate growth responses to various environmental cues in order to sustain life. In the present review we discuss current knowledge about the role of the plant growth hormones abscisic acid, auxin, brassinosteroid and ethylene in signaling pathways, defense mechanisms and alleviation of heavy metal toxicity.

  9. A simple and efficient Agrobacterium-mediated procedure for ...

    Indian Academy of Sciences (India)

    Prakash

    production of insect- and disease-resistant plants, herbicide ... indole-3-acetic acid; MS, Murashige and Skoog; OD, optical density; PCR, polymerase chain reaction; SDS, sodium .... soil for hardening. ..... be adapted for other tomato cultivars.

  10. CuI-catalyzed photochemical or thermal reactions of 3-(2-azidobenzylidene)lactams. Application to the synthesis of fused indoles.

    Science.gov (United States)

    Shi, Zongjun; Ren, Yuwei; Li, Bing; Lu, Shenci; Zhang, Wei

    2010-06-14

    Photochemical or thermal reactions of 3-(2-azidobenzylidene)-lactams afforded fused indoles such as indolo[3,2-c]quinolin-6-ones, pyrido[4,3-b]indol-1-ones and other similar compounds in moderate to high yields via cyclization-ring expansion reactions. The photolytic process was much more facile than the thermal process and could be further improved by addition of CuI.

  11. Physiological Responses and Fruit Retention of Carambola Fruit (Averrhoa carambola L.) Induced by 2,4-D and GA3

    OpenAIRE

    KURNLAWATI, BEKTI; HAMIM,

    2009-01-01

    One of the problems in cultivation of carambola fruit is the high of flower and fruit drop during fruit development. To understand these problems and to improve fruit retention, the content of indole-3-acetic acid (IAA) and total sugar in carambola fruit and leaves were analysed in response to application of gibberellic acid (GA3) and 2,4-dichlorophenoxyacetic acid (2,4-D). The experiments used 1,5 year old of carambola plants (Averrhoa carambola L. var Dewi) grown in polybag of 40 x 50 cm. ...

  12. Control of cytokinin and auxin homeostasis in cyanobacteria and algae

    Czech Academy of Sciences Publication Activity Database

    Žižková, Eva; Kubeš, Martin; Dobrev, Petre; Přibyl, Pavel; Šimura, J.; Zahajská, Lenka; Záveská Drábková, Lenka; Novák, Ondřej; Motyka, Václav

    2017-01-01

    Roč. 119, č. 1 (2017), s. 151-166 ISSN 0305-7364 R&D Projects: GA ČR(CZ) GA16-14649S; GA ČR GA15-22322S; GA MŠk(CZ) LO1204 Institutional support: RVO:61389030 ; RVO:67985939 Keywords : solid-phase extraction * performance liquid-chromatography * yucca flavin monooxygenases * tandem mass-spectrometry * abscisic-acid * arabidopsis-thaliana * indole-3-acetic-acid iaa * endogenous cytokinins * chlorella-vulgaris * phenylacetic acid * Cytokinin * auxin * cyanobacteria * algae * metabolism * cytokinin oxidase/dehydrogenase * cytokinin 2-methylthioderivatives * trans-zeatin * indole-3-acetic acid * tRNA Subject RIV: EF - Botanics OBOR OECD: Plant sciences, botany Impact factor: 4.041, year: 2016

  13. 3-(1H-Indol-3-yl-2-(2-nitrobenzenesulfonamidopropanoic acid including an unknown solvate

    Directory of Open Access Journals (Sweden)

    Islam Ullah Khan

    2012-07-01

    Full Text Available In the title compound, C17H15N3O6S, which crystallized with highly disordered methanol and/or water solvent molecules, the dihedral angle between the the indole and benzene ring systems is 5.3 (2°, which allows for the formation of intramolecular π–π stacking interactions [centroid–centroid separations = 3.641 (3 and 3.694 (3 Å] and an approximate overall U-shape for the molecule. In the crystal, dimers linked by pairs of Ns—H...Oc (s = sulfonamide and c = carboxylate hydrogen bonds generate R22(10 loops, whereas Ni—H...π (i = indole interactions lead to chains propagating in [100] or [010]. Together, these lead to a three-dimensional network in which the solvent voids are present as intersecting (two-dimensional systems of [100] and [010] channels. The title compound was found to contain a heavily disordered solvent molecule, which could be methanol or water or a mixture of the two. Due to its uncertain nature and the unresolvable disorder, the data were processed with the SQUEEZE option in PLATON [Spek (2009. Acta Cryst. D65, 148–155], which revealed 877.8 Å3 of solvent-accessible volume per unit cell and 126 electron-units of scattering density or 109.7 Å3 (16 electron units per organic molecule.. This was not included in the calculations of overall formula weight, density and absorption coefficient.

  14. New pathway for the biodegradation of indole in Aspergillus niger

    Energy Technology Data Exchange (ETDEWEB)

    Kamath, A.; Vaidyanathan, C.S. (Indiana Institute of Science, Bangalore (India))

    1990-01-01

    Indole and its derivatives form a class of toxic recalcitrant environmental pollutants. The growth of Aspergillus niger was inhibited by very low concentrations (0.005 to 0.02%) of indole, even when 125- to 500-fold excess glucose was present in the medium. When 0.02% indole was added, the fungus showed a lag phase for about 30 h and the uptake of glucose was inhibited. Indole was metabolized by a new pathway via indoxyl (3-hydroxyindole), N-formylanthranilic acid, anthranilic acid, 2,3-dihydroxybenzoic acid, and catechol, which was further degraded by an ortho cleavage. The enzymes N-formylanthranilate deformylase, anthranilate hydroxylase, 2,3-dihydroxybenzoate decarboxylase, and catechol dioxygenase were induced by indole as early as after 5 h of growth, and their activities were demonstrated in a cell-free system.

  15. Understanding the role of H(2)O(2) during pea seed germination: a combined proteomic and hormone profiling approach.

    Science.gov (United States)

    Barba-Espín, Gregorio; Diaz-Vivancos, Pedro; Job, Dominique; Belghazi, Maya; Job, Claudette; Hernández, José Antonio

    2011-11-01

    In a previous publication, we showed that the treatment of pea seeds in the presence of hydrogen peroxide (H(2)O(2)) increased germination performance as well as seedling growth. To gain insight into the mechanisms responsible for this behaviour, we have analysed the effect of treating mature pea seeds in the presence of 20 mm H(2)O(2) on several oxidative features such as protein carbonylation, endogenous H(2)O(2) and lipid peroxidation levels. We report that H(2)O(2) treatment of the pea seeds increased their endogenous H(2)O(2) content and caused carbonylation of storage proteins and of several metabolic enzymes. Under the same conditions, we also monitored the expression of two MAPK genes known to be activated by H(2)O(2) in adult pea plants. The expression of one of them, PsMAPK2, largely increased upon pea seed imbibition in H(2)O(2) , whereas no change could be observed in expression of the other, PsMAPK3. The levels of several phytohormones such as 1-aminocyclopropane carboxylic acid, indole-3-acetic acid and zeatin appeared to correlate with the measured oxidative indicators and with the expression of PsMAPK2. Globally, our results suggest a key role of H(2)O(2) in the coordination of pea seed germination, acting as a priming factor that involves specific changes at the proteome, transcriptome and hormonal levels. © 2011 Blackwell Publishing Ltd.

  16. Interactions between plant hormones and heavy metals responses

    Directory of Open Access Journals (Sweden)

    Lauro Bücker-Neto

    2017-04-01

    Full Text Available Abstract Heavy metals are natural non-biodegradable constituents of the Earth's crust that accumulate and persist indefinitely in the ecosystem as a result of human activities. Since the industrial revolution, the concentration of cadmium, arsenic, lead, mercury and zinc, amongst others, have increasingly contaminated soil and water resources, leading to significant yield losses in plants. These issues have become an important concern of scientific interest. Understanding the molecular and physiological responses of plants to heavy metal stress is critical in order to maximize their productivity. Recent research has extended our view of how plant hormones can regulate and integrate growth responses to various environmental cues in order to sustain life. In the present review we discuss current knowledge about the role of the plant growth hormones abscisic acid, auxin, brassinosteroid and ethylene in signaling pathways, defense mechanisms and alleviation of heavy metal toxicity.

  17. Indole Compounds Related to Auxins and Goitrogens of Woad (Isatis tinctoria L.).

    Science.gov (United States)

    Elliott, M C; Stowe, B B

    1971-03-01

    Five conspicuous indole derivatives are present in leaves and other tissues of woad (Isatis tinctoria L.). They were identified as tryptophan, isatan B, glucobrassicin, neoglucobrassicin, and glucobrassicin-1-sulfonate. The latter three indole glucosinolates are present at levels of at least 260, 69, and 200 milligrams per kilogram fresh weight and were isolated as crystalline salts. Comparison of physical and chemical properties, particularly NMR spectral analysis, confirms that the 1-methoxyglucobrassicin structure suggested for neoglucobrassicin is correct, whereas further evidence for the even more unusual sulfonation of the ring nitrogen in glucobrassicin-1-sulfonate was obtained. Glucobrassicin-1-sulfonate has an enzymic degradation pattern identical to that of glucobrassicin. As it too releases thiocyanate, it must be added to the list of known plant goitrogens. These studies and the techniques described establish woad as exceptionally suitable higher plant material for metabolic studies of indoles related to goitrogens and auxins.

  18. Shoot Organogenesis and Plant Regeneration from Leaf Explants of Lysionotus serratus D. Don

    Directory of Open Access Journals (Sweden)

    Qiansheng Li

    2013-01-01

    Full Text Available The gesneriaceous perennial plant, Lysionotus serratus, has been used in traditional Chinese medicine. It also has a great development potential as an ornamental plant with its attractive foliage and beautiful flowers. An efficient propagation and regeneration system via direct shoot organogenesis from leaf explant was established in this study. High active cytokinin (6-benzyladenine (BA or thidiazuron (TDZ was effective for direct organogenesis of initial induction. Murashige and Skoog (MS growth media containing 0.5 mg L−1 BA alone or with combination of 0.1 mg L−1  α-Naphthaleneacetic acid (NAA were the most effective for shoot proliferation. High BA concentration (1.0 mg L−1 in the media caused high percentage of vitrified shoots though they introduced high shoot proliferation rate. Histological observation indicated that adventitious shoot regeneration on the medium containing 0.5 mg L−1 BA alone occurred directly from leaf epidermal cells without callus formation. Regenerated shoots rooted well on medium containing half-strength MS medium with 0.5 mg L−1 indole-3-butyric acid (IBA and indole-3-acetic acid (IAA, and the plantlets successfully acclimatized and grew vigorously in the greenhouse with a 94.2% and 92.1% survival rate.

  19. Mangrove endophyte promotes reforestation tree (Acacia polyphylla growth

    Directory of Open Access Journals (Sweden)

    Renata Assis Castro

    Full Text Available ABSTRACT Mangroves are ecosystems located in the transition zone between land and sea that serve as a potential source of biotechnological resources. Brazil's extensive coast contains one of the largest mangrove forests in the world (encompassing an area of 25,000 km2 along all the coast. Endophytic bacteria were isolated from the following three plant species: Rhizophora mangle, Laguncularia racemosa and Avicennia nitida. A large number of these isolates, 115 in total, were evaluated for their ability to fix nitrogen and solubilize phosphorous. Bacteria that tested positive for both of these tests were examined further to determine their level of indole acetic acid production. Two strains with high indole acetic acid production were selected for use as inoculants for reforestation trees, and then the growth of the plants was evaluated under field conditions. The bacterium Pseudomonas fluorescens (strain MCR1.10 had a low phosphorus solubilization index, while this index was higher in the other strain used, Enterobacter sp. (strain MCR1.48. We used the reforestation tree Acacia polyphylla. The results indicate that inoculation with the MCR1.48 endophyte increases Acacia polyphylla shoot dry mass, demonstrating that this strain effectively promotes the plant's growth and fitness, which can be used in the seedling production of this tree. Therefore, we successfully screened the biotechnological potential of endophyte isolates from mangrove, with a focus on plant growth promotion, and selected a strain able to provide limited nutrients and hormones for in plant growth.

  20. Simple and efficient Knoevenagel synthesis of (E)-2-((1H-indol-3-yl ...

    Indian Academy of Sciences (India)

    Simple and efficient Knoevenagel synthesis of (E)-2-((1H-indol-3-yl) ... there has been a growing interest in Knoevenagel prod- ucts because many of them have ..... providing financial support and to the authorities of. Jawaharlal Nehru ...

  1. Heterologous expression, purification, crystallization and preliminary X-ray analysis of raucaffricine glucosidase, a plant enzyme specifically involved in Rauvolfia alkaloid biosynthesis

    Science.gov (United States)

    Ruppert, Martin; Panjikar, Santosh; Barleben, Leif; Stöckigt, Joachim

    2006-01-01

    Raucaffricine glucosidase (RG) is an enzyme that is specifically involved in the biosynthesis of indole alkaloids from the plant Rauvolfia serpentina. After heterologous expression in Escherichia coli cells, crystals of RG were obtained by the hanging-drop vapour-diffusion technique at 293 K with 0.3 M ammonium sulfate, 0.1 M sodium acetate pH 4.6 buffer and 11% PEG 4000 as precipitant. Crystals belong to space group I222 and diffract to 2.30 Å, with unit-cell parameters a = 102.8, b = 127.3, c = 215.8 Å. PMID:16511316

  2. Uptake of radiocarbon from plant rhizosphere based on geological disposal of TRU waste. Root-uptake of radiocarbon carbon derived from acetic acid

    International Nuclear Information System (INIS)

    Ogiyama, Shinichi; Takeda, Hiroshi; Uchida, Shigeo; Suzuki, Hiroyuki; Inubushi, Kazuyuki

    2008-01-01

    Hydroponic experiments were conducted to examine root-uptake of 14 C in the form of acetic acid by 3 kinds of plants (marigold, tall fescue, and paddy rice) based on buried transuranic (TRU) waste disposal. Also, chamber experiment was conducted to examine loss of 14 C as vaporized carbon dioxide (CO 2 ) from the experimental tessera (spatially heterogeneous environment). The distribution of radioactivity in the plant, mediums, and carbon dioxide ( 14 CO 2 ) in the chamber were determined, and the distribution of 14 C in the plant was visualized by the autoradiography. The plants absorbed and assimilated 14 C through the roots. The amount of 14 C in marigold and tall fescue were higher than that of paddy rice. However, the amounts of 14 C-acetic acid absorbed by all the plants through their roots were considered to be very small. More so, 14 CO 2 gas was released from the culture solution to the atmosphere; however, it was not enough for the plant to perform photosynthesis. Assimilation of 14 C in the plant shoots would be because of 14 C movement of inorganic forms such as CO 2 and HCO 3 - via the roots. Thus, the results indicated that the plants absorbed 14 C through the roots and assimilated it into the shoots or edible parts not because of uptake of 14 C-acetic acid but because of uptake of 14 C in inorganic forms. (author)

  3. HORMONAL REGULATION OF SELENIUM ACCUMULATION BY PLANTS

    Directory of Open Access Journals (Sweden)

    N. A. Golubkina

    2015-01-01

    Full Text Available Hormonal regulation is considered to be a unique mechanism controlling growth and development of living organism. The review discusses the correlations between pant hormonal status of non-accumulators and hyper-accumulators of Se with the accumulation levels of this microelement. The phenomenon of stimulation and redistribution of selenium as a result of phytohormone treatment, the peculiarities of phytohormones effect among different species and cultivars, and influence of plant sexualization on selenium accumulation are described in article. Data of hormonal regulation of selenium level for spinach, garlic, perennial onion, Brassica chinenesis and Valeriana officialis are presented in the review.

  4. Salt tolerance of Glycine max.L induced by endophytic fungus Aspergillus flavus CSH1, via regulating its endogenous hormones and antioxidative system.

    Science.gov (United States)

    Lubna; Asaf, Sajjad; Hamayun, Muhammad; Khan, Abdul Latif; Waqas, Muhammad; Khan, Muhammad Aaqil; Jan, Rahmatullah; Lee, In-Jung; Hussain, Anwar

    2018-07-01

    Abiotic stress resistance strategies are powerful approaches to sustainable agriculture because they reduce chemical input and enhance plant productivity. In current study, an endophytic fungus, Aspergillus flavus CHS1 was isolated from Chenopodium album Roots. CHS1 was initially screened for growth promoting activities like siderphore, phosphate solubilization, and the production of indole acetic acid and gibberellins and were further assayed for its ability to promote the growth of mutant Waito-C rice. The results revealed that different plant growth characteristic such as chlorophyll content, root-shoot length, and biomass production were significantly promoted during CHS1 treatment. This growth promotion action was due to the presence of various types of GAs and IAA in the endophyte culture filtrate. Significant up regulation with respect to levels in the control was observed in all endogenous plant GAs, after treatment with CHS1. Furthermore, to evaluate the potential of CHS1 against NaCl stress up to 400 mM, it was tested for its ability to improve soybean plant growth under NaCl stress. In endophyte-soybean interaction, CHS1 association significantly increased plant growth and attenuated the NaCl stress by down regulating ABA and JA synthesis. Similarly, it significantly elevated antioxidant activities of enzymes catalase, polyphenoloxidase, superoxide dismutase and peroxidase as compared to non-inoculated salt stress plants. Thus, CHS1 ameliorated the adverse effect of high NaCl stress and rescued soybean plant growth by regulating the endogenous plant hormones and antioxidative system. We conclude that CHS1 isolate could be exploited to increase salt resistant and yield in crop plants. Copyright © 2018. Published by Elsevier Masson SAS.

  5. Changes of plant hormone levels in conifers subjected to immissions. Hormongehaltsaenderungen in Nadelbaeumen unter Immissionsbelastung

    Energy Technology Data Exchange (ETDEWEB)

    Frenzel, B.; Christmann, A. (Hohenheim Univ., Stuttgart (Germany, F.R.). Inst. fuer Botanik)

    1990-04-01

    The investigation of effects evoked by reduction of immissions on the phytohormone balance in needles of conifers (ethylene, measured as ACC and MACC, abscisic acid and indole-3-acetic acid) is continued on the sites 'Edelmannshof' in the Welzheimer Wald (open-top chambers) and 'Stoeckerkopf' in the Northern Black Forest (under strong SO{sub 2}-impact until autumn 1987). On the site 'Edelmannshof', reduced immissions seem to exert positive effects on the phytohormone balance of the examined trees. Due to differences between individual tress subjected to the same treatment, it is not yet possible to decide, if there are really true effects on the phytohormone balance, which at 'Edelmannshof' is investigated over the period of only one year. On the site 'Stoeckerkopf' the obtained results point to a different behaviour of IAA-contents in needles of trees formerly subjected to SO{sub 2}-immissions and trees subjected to influences causing forest decline. (orig.).

  6. The new species .i.Enterobacter oryziphilus./i. sp. nov. and .i.Enterobacter oryzendophyticus./i. sp. nov. are key inhabitants of the endosphere of rice

    Czech Academy of Sciences Publication Activity Database

    Hardoim, P.R.; Nazir, R.; Sessitsch, A.; Elhottová, Dana; Korenblum, E.; van Overbeek, L.S.; van Elsas, J.D.

    2013-01-01

    Roč. 13, July 2013 (2013), s. 164 ISSN 1471-2180 Institutional support: RVO:60077344 Keywords : plant growth-promoting bacteria * Endophytes * production of indole-3-acetic acid Subject RIV: EE - Microbiology, Virology Impact factor: 2.976, year: 2013

  7. Effect of ionizing radiation and indole butyric acid on rooting of olive cuttings

    International Nuclear Information System (INIS)

    Al-Bachir, Mahfouz

    1993-12-01

    This study was performed to investigate the effects of indole butyric acid (IBA) (2000 and 4000 ppm), low doses of gamma irradiation (2,4, and 6 Gy), combined treatment of IBA followed by irradiation, and irradiation followed by IBA on olive cuttings (Variety Khodairi). Rooting percentage, callus formation, vegetative growth root number, and the length of the roots were measured after 100 days of planting. The results indicated that IBA treatments in both concentrations increased the callus formation, rooting, vegetative growth, and the number and length of the roots. Low doses of gamma irradiation had no effects on rooting percentage in comparison with the hormonal treatments. Callus formation, rooting, vegetative growth, and length of the root of cuttings produced in 1990 were better than those produced in 1991, and cuttings produced in January were better than those produced in March and October. (author). 16 refs., 15 tabs

  8. Phytoextraction of contaminated urban soils by Panicum virgatum L. enhanced with application of a plant growth regulator (BAP) and citric acid.

    Science.gov (United States)

    Aderholt, Matthew; Vogelien, Dale L; Koether, Marina; Greipsson, Sigurdur

    2017-05-01

    Lead (Pb) contamination in soil represents a threat to human health. Phytoextraction has gained attention as a potential alternative to traditional remediation methods because of lower cost and minimal soil disruption. The North American native switchgrass (Panicum virgatum L.) was targeted due to its ability to produce high biomass and grow across a variety of ecozones. In this study switchgrass was chemically enhanced with applications of the soil-fungicide benomyl, chelates (EDTA and citric acid), and PGR to optimize phytoextraction of Pb and zinc (Zn) from contaminated urban soils in Atlanta, GA. Exogenous application of two plant hormones was compared in multiple concentrations to determine effects on switchgrass growth: indole-3-acetic acid (IAA), and Gibberellic Acid (GA 3 ), and one PGR benzylaminopurine (BAP), The PGR BAP (1.0 μM) was found to generate a 48% increase in biomass compared to Control plants. Chemical application of citric acid, EDTA, benomyl, and BAP were tested separately and in combination in a pot experiment in an environmentally controlled greenhouse to determine the efficacy of phtyoextraction by switchgrass. Soil acidification by citric acid application resulted in highest level of aluminum (Al) and iron (Fe) in plants foliage resulting in severe phytotoxic effects. Total Pb phytoextraction was significantly highest in plants treated with combined chemical application of B + C and B + C + H. Suppression of AMF activities by benomyl application significantly increased concentrations of Al and Fe in roots. Application of benomyl reduced AMF colonization but was also shown to dramatically increase levels of septa fungi infection as compared to Control plants. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. N,N',N"-Tris[(5-methoxy-1H-indol-3-ylethyl]benzene-1,3,5-tricarboxamide

    Directory of Open Access Journals (Sweden)

    Ute Schmidt

    2015-03-01

    Full Text Available The title indole-based compound that enforces tripodal topology and is potential applicable for the use as artificial receptor, was prepared by a simple reaction of 1,3,5-benzenetricarbonyl trichloride with 5-methoxytryptamine. The compound was characterized by elemental analysis, 1H-NMR, 13C-NMR and mass spectrometry.

  10. Transcriptome Profiling Reveals the Negative Regulation of Multiple Plant Hormone Signaling Pathways Elicited by Overexpression of C-Repeat Binding Factors

    Directory of Open Access Journals (Sweden)

    Aixin Li

    2017-09-01

    Full Text Available C-repeat binding factors (CBF are a subfamily of AP2 transcription factors that play critical roles in the regulation of plant cold tolerance and growth in low temperature. In the present work, we sought to perform a detailed investigation into global transcriptional regulation of plant hormone signaling associated genes in transgenic plants engineered with CBF genes. RNA samples from Arabidopsis thaliana plants overexpressing two CBF genes, CBF2 and CBF3, were subjected to Illumina HiSeq 2000 RNA sequencing (RNA-Seq. Our results showed that more than half of the hormone associated genes that were differentially expressed in CBF2 or CBF3 transgenic plants were related to auxin signal transduction and metabolism. Most of these alterations in gene expression could lead to repression of auxin signaling. Accordingly, the IAA content was significantly decreased in young tissues of plants overexpressing CBF2 and CBF3 compared with wild type. In addition, genes associated with the biosynthesis of Jasmonate (JA and Salicylic acid (SA, as well as the signal sensing of Brassinolide (BR and SA, were down-regulated, while genes associated with Gibberellin (GA deactivation were up-regulated. In general, overexpression of CBF2 and CBF3 negatively affects multiple plant hormone signaling pathways in Arabidopsis. The transcriptome analysis using CBF2 and CBF3 transgenic plants provides novel and integrated insights into the interaction between CBFs and plant hormones, particularly the modulation of auxin signaling, which may contribute to the improvement of crop yields under abiotic stress via molecular engineering using CBF genes.

  11. Indole Compounds Related to Auxins and Goitrogens of Woad (Isatis tinctoria L.) 1

    Science.gov (United States)

    Elliott, Malcolm C.; Stowe, Bruce B.

    1971-01-01

    Five conspicuous indole derivatives are present in leaves and other tissues of woad (Isatis tinctoria L.). They were identified as tryptophan, isatan B, glucobrassicin, neoglucobrassicin, and glucobrassicin-1-sulfonate. The latter three indole glucosinolates are present at levels of at least 260, 69, and 200 milligrams per kilogram fresh weight and were isolated as crystalline salts. Comparison of physical and chemical properties, particularly NMR spectral analysis, confirms that the 1-methoxyglucobrassicin structure suggested for neoglucobrassicin is correct, whereas further evidence for the even more unusual sulfonation of the ring nitrogen in glucobrassicin-1-sulfonate was obtained. Glucobrassicin-1-sulfonate has an enzymic degradation pattern identical to that of glucobrassicin. As it too releases thiocyanate, it must be added to the list of known plant goitrogens. These studies and the techniques described establish woad as exceptionally suitable higher plant material for metabolic studies of indoles related to goitrogens and auxins. PMID:16657624

  12. A review on indole alkaloids isolated from Uncaria rhynchophylla and their pharmacological studies.

    Science.gov (United States)

    Ndagijimana, Andre; Wang, Xiaoming; Pan, Guixiang; Zhang, Fan; Feng, Hong; Olaleye, Olajide

    2013-04-01

    Uncaria rhynchophylla (Miq.) Jacks, Rubiaceae, is one of the original plants of the important Chinese crude drug, Gou-teng, mainly used for the treatment of convulsion, hypertension, epilepsy, eclampsia, and cerebral diseases. The pharmacological activities of this plant are related to the presence of active compounds predominantly indole alkaloids. In this article, we have reviewed some reports about the pharmacological activities of the main indole alkaloids isolated from U. rhynchophylla. This review paper will contribute to the studies on the chemistry, safety and quality control of medicinal preparations containing Uncaria species. Copyright © 2013 Elsevier B.V. All rights reserved.

  13. 14-3-3 proteins in plant physiology.

    Science.gov (United States)

    Denison, Fiona C; Paul, Anna-Lisa; Zupanska, Agata K; Ferl, Robert J

    2011-09-01

    Plant 14-3-3 isoforms, like their highly conserved homologues in mammals, function by binding to phosphorylated client proteins to modulate their function. Through the regulation of a diverse range of proteins including kinases, transcription factors, structural proteins, ion channels and pathogen defense-related proteins, they are being implicated in an expanding catalogue of physiological functions in plants. 14-3-3s themselves are affected, both transcriptionally and functionally, by the extracellular and intracellular environment of the plant. They can modulate signaling pathways that transduce inputs from the environment and also the downstream proteins that elicit the physiological response. This review covers some of the key emerging roles for plant 14-3-3s including their role in the response to the plant extracellular environment, particularly environmental stress, pathogens and light conditions. We also address potential key roles in primary metabolism, hormone signaling, growth and cell division. Copyright © 2011 Elsevier Ltd. All rights reserved.

  14. Novel synthesis of biologically active indolo [3,2-C] isoquinoline derivatives

    Directory of Open Access Journals (Sweden)

    Prabhuodeyara M. Veeresha Sharma

    2017-07-01

    Full Text Available Indole-2-carboxylates are refluxed with hydrazine hydrate to form 5-substituted-3-phenylindole-2-carboxyhydrazides. These are again converted to corresponding indole-2-carboxyazides. Azides are further converted into carbamates and finally these carbamates are cyclized to form the respective substituted 6H, 11H-indolo [3,2-C] isoquinolin-2-ones (1a–c. These (1a–c were reacted with phosphorus pentasulfide in refluxing pyridine to yield the respective thiones (2a–c. These thiones (2a–c on reaction with chloroacetic acid and sodium acetate in acetic acid under refluxing temperature for 5 h yielded isoquinoline-thioacetic acids (3a–c. Compounds (3a–c on reaction with orthopheneylene diamine dihydrochloride in ethylene glycol at refluxing temperature yielded substituted indolo [3,2-C] isoquinolin-2′-yl sulfanyl methylene benzimidazoles (4a–c.

  15. Organocatalytic asymmetric selenofunctionalization of tryptamine for the synthesis of hexahydropyrrolo[2,3-b]indole derivatives

    Directory of Open Access Journals (Sweden)

    Qiang Wei

    2013-08-01

    Full Text Available A chiral phosphoric acid-catalyzed selenofunctionalization of tryptamine derivatives provides access to 3a-(phenylselenyl-1,2,3,3a,8,8a-hexahydropyrrolo[2,3-b]indole derivatives in high yields and with synthetically useful levels of enantioselectivity (up to 89% ee.

  16. AtPep3 is a hormone-like peptide that plays a role in the salinity stress tolerance of plants.

    Science.gov (United States)

    Nakaminami, Kentaro; Okamoto, Masanori; Higuchi-Takeuchi, Mieko; Yoshizumi, Takeshi; Yamaguchi, Yube; Fukao, Yoichiro; Shimizu, Minami; Ohashi, Chihiro; Tanaka, Maho; Matsui, Minami; Shinozaki, Kazuo; Seki, Motoaki; Hanada, Kousuke

    2018-05-29

    Peptides encoded by small coding genes play an important role in plant development, acting in a similar manner as phytohormones. Few hormone-like peptides, however, have been shown to play a role in abiotic stress tolerance. In the current study, 17 Arabidopsis genes coding for small peptides were found to be up-regulated in response to salinity stress. To identify peptides leading salinity stress tolerance, we generated transgenic Arabidopsis plants overexpressing these small coding genes and assessed survivability and root growth under salinity stress conditions. Results indicated that 4 of the 17 overexpressed genes increased salinity stress tolerance. Further studies focused on AtPROPEP3 , which was the most highly up-regulated gene under salinity stress. Treatment of plants with synthetic peptides encoded by AtPROPEP3 revealed that a C-terminal peptide fragment (AtPep3) inhibited the salt-induced bleaching of chlorophyll in seedlings. Conversely, knockdown AtPROPEP3 transgenic plants exhibited a hypersensitive phenotype under salinity stress, which was complemented by the AtPep3 peptide. This functional AtPep3 peptide region overlaps with an AtPep3 elicitor peptide that is related to the immune response of plants. Functional analyses with a receptor mutant of AtPep3 revealed that AtPep3 was recognized by the PEPR1 receptor and that it functions to increase salinity stress tolerance in plants. Collectively, these data indicate that AtPep3 plays a significant role in both salinity stress tolerance and immune response in Arabidopsis .

  17. cis- and trans-2,3,3a,4,5,9b-Hexahydro-1H-benz[e]indoles: synthesis and evaluation of dopamine D2, and D3 receptor binding affinity

    DEFF Research Database (Denmark)

    Song, Xiaodong; Crider, Michael A.; Cruse, Sharon F.

    1999-01-01

    cis- and trans-2,3,3a,4,5,9b-hexahydro-1H-benz [e]indoles were synthesized as conformationally rigid analogues of 3-phenylpyrrolidine and evaluated for dopamine (DA) D2S and D3 receptor binding affinity. The tricyclic benz[e]indole nucleus was constructed by a previously reported reductive...... configuration. These novel ligands may be useful tools for gaining additional information about the DA D3 receptor. Copyright Elsevier, Paris.dopamine / D2S receptor / D3 receptor / cis- and trans-2,3,3a,4,5,9b-hexahydro-1H-benz[e]indoles / receptor binding affinity....... receptors was shown by compounds substituted with N-n-propyl or N-allyl groups. The cis-(+-)-N-allyl derivative 21e demonstrated a D2S/D3 selectivity of 290. Resolution of cis-(+-)-5 and trans-(+-)- 21c into individual enantiomers showed that in both series the more active isomer had 3aR absolute...

  18. The synthesis and physiological activity of 2,3,4,5-tetrahydro-1H-pyrido[4,3-b]indoles

    International Nuclear Information System (INIS)

    Ivashchenko, A V; Mitkin, O D; Kadieva, M G; Tkachenko, S E

    2010-01-01

    Data on the methods of 2,3,4,5-tetrahydro-1H-pyrido[4,3-b]indoles synthesis has been surveyed. The synthetic accessibility of various derivatives of these heterocycles has been demonstrated. It has been shown that such compounds exhibit a broad spectrum of pharmacological activity and hold interest for medicinal chemistry.

  19. Attenuation of Carcinogenesis and the Mechanism Underlying by the Influence of Indole-3-carbinol and Its Metabolite 3,3'-Diindolylmethane: A Therapeutic Marvel.

    Science.gov (United States)

    Maruthanila, V L; Poornima, J; Mirunalini, S

    2014-01-01

    Rising evidence provides credible support towards the potential role of bioactive products derived from cruciferous vegetables such as broccoli, cauliflower, kale, cabbage, brussels sprouts, turnips, kohlrabi, bok choy, and radishes. Many epidemiological studies point out that Brassica vegetable protects humans against cancer since they are rich sources of glucosinolates in addition to possessing a high content of flavonoids, vitamins, and mineral nutrients. Indole-3-carbinol (I3C) belongs to the class of compounds called indole glucosinolate, obtained from cruciferous vegetables, and is well-known for tits anticancer properties. In particular, I3C and its dimeric product, 3,3'-diindolylmethane (DIM), have been generally investigated for their value against a number of human cancers in vitro as well as in vivo. This paper reviews an in-depth study of the anticancer activity and the miscellaneous mechanisms underlying the anticarcinogenicity thereby broadening its therapeutic marvel.

  20. Plant growth-promoting traits of yeasts isolated from the phyllosphere and rhizosphere of Drosera spatulata Lab.

    Science.gov (United States)

    Fu, Shih-Feng; Sun, Pei-Feng; Lu, Hsueh-Yu; Wei, Jyuan-Yu; Xiao, Hong-Su; Fang, Wei-Ta; Cheng, Bai-You; Chou, Jui-Yu

    2016-03-01

    Microorganisms can promote plant growth through direct and indirect mechanisms. Compared with the use of bacteria and mycorrhizal fungi, the use of yeasts as plant growth-promoting (PGP) agents has not been extensively investigated. In this study, yeast isolates from the phyllosphere and rhizosphere of the medicinally important plant Drosera spatulata Lab. were assessed for their PGP traits. All isolates were tested for indole-3-acetic acid-, ammonia-, and polyamine-producing abilities, calcium phosphate and zinc oxide solubilizing ability, and catalase activity. Furthermore, the activities of siderophore, 1-aminocyclopropane-1-carboxylate deaminase, and fungal cell wall-degrading enzymes were assessed. The antagonistic action of yeasts against pathogenic Glomerella cingulata was evaluated. The cocultivation of Nicotiana benthamiana with yeast isolates enhanced plant growth, indicating a potential yeast-plant interaction. Our study results highlight the potential use of yeasts as plant biofertilizers under controlled and field conditions. Copyright © 2016 The British Mycological Society. Published by Elsevier Ltd. All rights reserved.

  1. Inhibitors of plant hormone transport

    Czech Academy of Sciences Publication Activity Database

    Klíma, Petr; Laňková, Martina; Zažímalová, Eva

    2016-01-01

    Roč. 253, č. 6 (2016), s. 1391-1404 ISSN 0033-183X R&D Projects: GA MŠk(CZ) LD15088 Institutional support: RVO:61389030 Keywords : polar auxin transport * acid-binding protein * gnom arf-gef * equilibrative nucleoside transporter * efflux carrier polarity * plasma-membrane-protein * cultured tobacco cells * arabidopsis-thaliana * gravitropic response * brefeldin-a * Plant hormones * Transport * Inhibitors * Auxin * Cytokinins * Strigolactones * Abscisic acid * Cell biology Subject RIV: ED - Physiology Impact factor: 2.870, year: 2016

  2. Indole Alkaloids from the Sea Anemone Heteractis aurora and Homarine from Octopus cyanea.

    Science.gov (United States)

    Shaker, Kamel H; Göhl, Matthias; Müller, Tobias; Seifert, Karlheinz

    2015-11-01

    The two new indole alkaloids 2-amino-1,5-dihydro-5-(1H-indol-3-ylmethyl)-4H-imidazol-4-one (1), 2-amino-5-[(6-bromo-1H-indol-3-yl)methyl]-3,5-dihydro-3-methyl-4H-imidazol-4-one (2), and auramine (3) have been isolated from the sea anemone Heteractis aurora. Both indole alkaloids were synthesized for the confirmation of the structures. Homarine (4), along with uracil (5), hypoxanthine (6), and inosine (7) have been obtained from Octopus cyanea. Copyright © 2015 Verlag Helvetica Chimica Acta AG, Zürich.

  3. Facile synthetic approach for 5-aryl-9-hydroxypyrano [3,2-f] indole-2(8H-one

    Directory of Open Access Journals (Sweden)

    Cheng Wang

    2016-11-01

    Full Text Available An appropriate method for the synthesis of 5-aryl-9-hydroxypyrano[3,2-f]indole-2(8H-one was described. The targeted compounds were obtained starting from vanillin via nine steps. Interestingly, in the final cyclization step, the intermediate 4-(2-halogeno phenyl-7-methoxy-1H-indole-6-yl propiolate could convert directly into the final product in one step reaction using PtCl4 or Pd(PPh34/trifluoroacetic acid as catalysts. The possible catalytic mechanism for PtCl4 and Pd(PPh34/trifluoroacetic acid was discussed.

  4. Survival Strategies of the Plant-Associated Bacterium Enterobacter sp. Strain EG16 under Cadmium Stress.

    Science.gov (United States)

    Chen, Yanmei; Chao, Yuanqing; Li, Yaying; Lin, Qingqi; Bai, Jun; Tang, Lu; Wang, Shizhong; Ying, Rongrong; Qiu, Rongliang

    2016-01-04

    Plant-associated bacteria are of great interest because of their potential use in phytoremediation. However, their ability to survive and promote plant growth in metal-polluted soils remains unclear. In this study, a soilborne Cd-resistant bacterium was isolated and identified as Enterobacter sp. strain EG16. It tolerates high external Cd concentrations (Cd(2+) MIC, >250 mg liter(-1)) and is able to produce siderophores and the plant hormone indole-3-acetic acid (IAA), both of which contribute to plant growth promotion. Surface biosorption in this strain accounted for 31% of the total Cd accumulated. The potential presence of cadmium sulfide, shown by energy-dispersive X-ray (EDX) analysis, suggested intracellular Cd binding as a Cd response mechanism of the isolate. Cd exposure resulted in global regulation at the transcriptomic level, with the bacterium switching to an energy-conserving mode by inhibiting energy-consuming processes while increasing the production of stress-related proteins. The stress response system included increased import of sulfur and iron, which become deficient under Cd stress, and the redirection of sulfur metabolism to the maintenance of intracellular glutathione levels in response to Cd toxicity. Increased production of siderophores, responding to Cd-induced Fe deficiency, not only is involved in the Cd stress response systems of EG16 but may also play an important role in promoting plant growth as well as alleviating the Cd-induced inhibition of IAA production. The newly isolated strain EG16 may be a suitable candidate for microbially assisted phytoremediation due to its high resistance to Cd and its Cd-induced siderophore production, which is likely to contribute to plant growth promotion. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  5. Development of a solid-phase extraction method with simple MEKC-UV analysis for simultaneous detection of indole metabolites in human urine after administration of indole dietary supplement.

    Science.gov (United States)

    Phonchai, Apichai; Wilairat, Prapin; Chantiwas, Rattikan

    2017-11-01

    This work presents the development of a solid phase extraction method with simple MEKC-UV analysis for the simultaneous determination of indole-3-carbinol (I3C) and its metabolites (3, 3'-diindolylmethane (DIM), indole-3-carboxaldehyde (I3CAL), indole-3-acetonitrile (I3A)) in human urine after oral administration of an indole dietary supplement. Solid phase extraction (SPE) method was applied for the first time for simultaneous analysis of these indole metabolites. The MEKC separation method was developed in a previous work. Three commercial SPE cartridges, each with different sorbent materials, were investigated: Sep-Pak ® C18, Oasis ® HLB and Oasis ® WCX. The Sep-Pak ® C18 material provided the highest extraction recovery of 88-113% (n = 9), for the four target indole metabolites (I3C, DIM, I3CAL and I3A). The optimal washing and elution solutions were 40% methanol/water (v/v) and 100% methanol, respectively, and optimal elution volume was 2.0mL. The specificity of the proposed SPE method was evaluated with negative control urine samples (n = 10) from healthy volunteers who had not taken the dietary supplement or vegetables known to contain indole compounds. Linear calibration curves were in the range of 0.2-25μgmL -1 (r 2 > 0.998) using diphenylamine (DPA) as the internal standard. Intra-day and inter-day precisions were 3.5-12.3%RSD and 2.7-14.1%RSD, respectively. Limits of detection and quantification were 0.05-0.10μgmL -1 and 0.10-0.50μgmL -1 , respectively. The four target indole compounds were separated within only 5min by MEKC-UV analysis. Urine from 5 subjects who had taken a dietary supplement containing I3C and DIM were found to contain only the DIM metabolite at concentrations ranging from 0.10 to 0.35µgmL -1 . Accuracy of the proposed method based on the percentage recovery of spiked urine samples were 70-108%, 82-116%, 82-132% and 80-100% for I3C, I3CAL, I3A and DIM, respectively. The Sep-Pak ® C18 cartridge was highly effective in

  6. Plant growth regulators induced urease activity in Cucurbita pepo L. cotyledons.

    Science.gov (United States)

    El Shora, Hamed M; Ali, Awatif S

    2016-03-01

    This study is aimed to investigate the activity of urease (EC 3.5.1.5, urea amidohydrolase) that catalyzes the hydrolysis of urea in 5-day-old Cucurbita pepo cotyledons subjected to various concentrations of different growth regulators. The treatment of C. pepo cotyledons with different concentrations (100-600 μmol) of different auxins [indole-3-acetic acid (IAA), indole butyric acid (IBA), indole propionic acid (IPA) and naphthalene acetic acid (NAA)]; or with different concentrations (100-300 μmol) of different cytokinins [kinetin, zeatin and benzyladenine (6-BA)] resulted in a significant increase of urease activity, compared to control. The optimal effects were recorded for each of 500 μmol of IAA and 300 μmol of zeatin treatments. A gradual increase in urease activity was detected in cotyledons treated with various concentrations (0.2-1.0 mM) of 28-homobrassinolide (HBL), in relative to control. A substantial increase in urease activity was observed in cotyledons subjected to different concentrations of triazole (10-60 mg L(-1)), containing either triadimefon (TDM) or hexaconazole (HEX), compared to control. The combination of 300 μmol zeatin with any of protein inhibitors, namely 5-fluorouridine (FUrd), cordycepin and α-amanitin, resulted in the alleviation of their inhibitory effect on the urease activity.

  7. 2-Benzyl-6-chloro-1-(4-methylphenyl-1H-indole-3-carbonitrile

    Directory of Open Access Journals (Sweden)

    Qiao Yan

    2011-12-01

    Full Text Available In the title compound, C23H17ClN2, the dihedral angle between the indole ring and the attached tolyl ring is 86.97 (8°. Weak C—H...N(nitrile hydrogen bonding, and C—H...π(aromatic and short Cl...π(aromatic [3.628 (1 Å] interactions consolidate the crystal packing.

  8. Distribution and Variation of Indole Glucosinolates in Woad (Isatis tinctoria L.).

    Science.gov (United States)

    Elliott, M C; Stowe, B B

    1971-10-01

    The exceptionally high levels in woad (Isatis tinctoria L.) of three indolic goitrogens, namely glucobrassicin, neoglucobrassicin, and glucobrassicin-1-sulfonate, permit the facile study of their distribution in the plant and their changes during its development. Woad seeds contain as much as 0.23% fresh weight of glucobrassicin but no other indole glucosinolate, while 1-week-old seedlings also contain substantial amounts of neoglucobrassicin and glucobrassicin-1-sulfonate in their shoots whether grown in the light or dark. The sulfonate is not found in roots, and light depresses neoglucobrassicin levels in shoots. Sterile root cultures synthesize glucobrassicin and neoglucobrassicin, and significant quantities of these were even found to be excreted by the roots of intact sterile seedlings in culture. This may explain the long known deleterious effect of woad and other cruciferous crops on subsequent plantings and the observation could be of ecological importance. Long term changes in levels of all three substances in the plant are similar and are compatible with earlier suggestions that the compounds could be auxin precursors at the time of flower stem elongation. Since sterile seedlings readily incorporate (35)SO(4) (2-) into indole glucosinolates and relative specific radioactivities suggest that glucobrassicin is the precursor of the other two compounds, pathways of goitrogen biosynthesis should be relatively easily determined in this material.

  9. A valued Indian medicinal plant – Begonia malabarica Lam. : Successful plant regeneration through various explants and field performance

    Directory of Open Access Journals (Sweden)

    Sevanan Rajeshkumar

    2009-05-01

    Full Text Available A cost-effective and efficient protocol has been described in the present work for large-scale and rapid in vitro propagation of a valuable medicinal herb Begonia malabarica Lam. (Begoniaceae by shoot auxillary-bud proliferation and organogenesis on MS medium supplemented with 6-benzylaminopurine (BA; 0.0-8.8 mg/l and indole-3-acetic acid (IAA; 0.0-2.88 mg/l at different concentrations, either alone or in combinations. Initiation of callus formation from the base of the leaf lamina was observed on MS supplemented with BA, IAA and adenine sulphate. Root induction on shoots was achieved on full strength MS with IAA/ indole-3-butyric acid (IBA at different concentrations. MS medium with 4.4 mg/l BA and 1.4 mg/l IAA elicited the maximum number of shoots (10 multiple shoots from nodal explants. Leaf-based callus differentiated into more than 28 shoots on MS with 150 mg/l adenine sulphate. The regenerated shoots were rooted on MS with 1.2 mg/l IBA within ten days. Almost 95% of the rooted shoots survived hardening when transferred to the field. The regenerated plants did not show any morphological change and variation in levels of secondary metabolites when compared with the mother stock. Thus, a reproduction of B. malabarica was established through nodal and leaf explants. This protocol can be exploited for conservation and commercial propagation of this medical plant in the Indian subcontinent and might be useful for genetic improvement programs.

  10. ROTUNDA3 function in plant development by phosphatase 2A-mediated regulation of auxin transporter recycling.

    Science.gov (United States)

    Karampelias, Michael; Neyt, Pia; De Groeve, Steven; Aesaert, Stijn; Coussens, Griet; Rolčík, Jakub; Bruno, Leonardo; De Winne, Nancy; Van Minnebruggen, Annemie; Van Montagu, Marc; Ponce, María Rosa; Micol, José Luis; Friml, Jiří; De Jaeger, Geert; Van Lijsebettens, Mieke

    2016-03-08

    The shaping of organs in plants depends on the intercellular flow of the phytohormone auxin, of which the directional signaling is determined by the polar subcellular localization of PIN-FORMED (PIN) auxin transport proteins. Phosphorylation dynamics of PIN proteins are affected by the protein phosphatase 2A (PP2A) and the PINOID kinase, which act antagonistically to mediate their apical-basal polar delivery. Here, we identified the ROTUNDA3 (RON3) protein as a regulator of the PP2A phosphatase activity in Arabidopsis thaliana. The RON3 gene was map-based cloned starting from the ron3-1 leaf mutant and found to be a unique, plant-specific gene coding for a protein with high and dispersed proline content. The ron3-1 and ron3-2 mutant phenotypes [i.e., reduced apical dominance, primary root length, lateral root emergence, and growth; increased ectopic stages II, IV, and V lateral root primordia; decreased auxin maxima in indole-3-acetic acid (IAA)-treated root apical meristems; hypergravitropic root growth and response; increased IAA levels in shoot apices; and reduced auxin accumulation in root meristems] support a role for RON3 in auxin biology. The affinity-purified PP2A complex with RON3 as bait suggested that RON3 might act in PIN transporter trafficking. Indeed, pharmacological interference with vesicle trafficking processes revealed that single ron3-2 and double ron3-2 rcn1 mutants have altered PIN polarity and endocytosis in specific cells. Our data indicate that RON3 contributes to auxin-mediated development by playing a role in PIN recycling and polarity establishment through regulation of the PP2A complex activity.

  11. The Effect Of Some Plant Growth Regulators And Their Combination With Methyl Jasmonate On Anthocyanin Formation In Roots Of Kalanchoe Blossfeldiana

    Directory of Open Access Journals (Sweden)

    Góraj Justyna

    2014-12-01

    Full Text Available In this study, we investigated the effect of plant growth regulators (PGRs - auxins, gibberellin, cytokinin, abscisic acid, brassinosteroid, ethylene and their interaction with methyl jasmonate (JA-Me applied to roots of the whole plants Kalanchoe blossfeldiana on the accumulation of anthocyanins in roots. The highest stimulation of anthocyanins synthesis was stated with application of JA-Me alone. In response to treatments with the other tested PGRs, the content of anthocyanins in roots of a whole plant was different depending on the concentration of the PGR when being applied alone or together with JA-Me. Auxin, indole-3-acetic acid (IAA at a concentration of 50 mg·L-1, indole-3-butyric acid (IBA at 5 mg·L-1 and abscisic acid (ABA at 10 mg·L-1 induced anthocyanin accumulation with approximately 60-115% compared to the control while 24-epibrassinolid (epiBL, gibberellic acid (GA3 and 6-benzylaminopurine (BAP had no effect on the anthocyanin accumulation. The simultaneous administration of the PGRs with JA-Me usually resulted in the accumulation of anthocyanins in roots in a manner similar to that caused by JA-Me. PGRs applied to isolated roots did not stimulate anthocyanin accumulation, except for the combination of JA-Me with 50 mg·L-1 IAA.

  12. A turn-on indole-based sensor for hydrogen sulfate ion.

    Science.gov (United States)

    Wan, Chin-Feng; Yang, Shih-Tse; Lin, Hsiang-Yi; Chang, Ya-Ju; Wu, An-Tai

    2014-08-01

    A simple indole-based receptor 1 was prepared by a simple Schiff-base reaction of 1H-indole-3-carbaldehyde with ethane 1,2-diamine and its fluoroionophoric properties toward anions were investigated. Indole-based receptor 1 acts as a selective turn-on fluorescent sensor for HSO4(-) in methanol among a series of tested anions. Fluorescence spectroscopy, ultraviolet and nuclear magnetic resonance imaging support that the HSO4(-) indeed interacted with imine nitrogen and the proton of nitrogen in indole ring. Copyright © 2013 John Wiley & Sons, Ltd.

  13. Biofilm Formation and Indole-3-Acetic Acid Production by Two Rhizospheric Unicellular Cyanobacteria

    NARCIS (Netherlands)

    Ahmed, M.; Stal, L.J.; Hasnain, S.

    2014-01-01

    Microorganisms that live in the rhizosphere play a pivotal role in the functioning and maintenance of soil ecosystems. The study of rhizospheric cyanobacteria has been hampered by the difficulty to culture and maintain them in the laboratory. The present work investigated the production of the plant

  14. Biofilm formation and indole-3-acetic acid production by two rhizospheric unicellular cyanobacteria

    NARCIS (Netherlands)

    Ahmed, M.; Stal, L.J.; Hasnain, S.

    2014-01-01

    Microorganisms that live in the rhizosphere play a pivotal role in the functioning and maintenance of soil ecosystems. The study of rhizospheric cyanobacteria has been hampered by the difficulty to culture and maintain them in the laboratory. The present work investigated the production of the plant

  15. Biooxidation of indole and characteristics of the responsible enzymes

    African Journals Online (AJOL)

    Indole, an electron-rich N-aromatic heterocyclic organic compound, functions as a popular component of fragrances, indicator of some diseases and signal molecule in plant, animal and microorganism, respectively. It also serves as the precursor, core building block and functional group of many important biochemical ...

  16. Adventive plants from ovules and nucelli in Citrus.

    Science.gov (United States)

    Kochba, J; Spiegel-Roy, P; Safran, H

    1972-09-01

    1- to 8-week-old ovules and nucelli from three Citrus cultivars-Shamouti and Valencia (Citrus sinensis) oranges and Marsh Seedless (C. paradisi) grapefruit-were cultured in vitro. No embryo differentiation was observed in the explants prior to culture. The Shamouti ovules had degenerated and were apparently unfertilized. Embryoids formed on Murashige and Tucker nutrient medium supplemented with 500 mg/l malt extract. Whole plants developed on the same basal medium supplemented with kinetin and indole-3-acetic acid (IAA), coconut milk or gibberellic acid (GA3). A higher kinetin/IAA ratio or the addition of coconut milk favoured stem elongation more than root formation while a lower kinetin/IAA ratio favoured root formation and inhibited stem elongation. The addition of GA3 to the basal medium stimulated rooting and stem elongation. These results can be of aid in mutation research, allowing irradiation at stages prior to embryonic development.

  17. Investigation of plant hormone level changes in shoot tips of longan (Dimocarpus longan Lour.) treated with potassium chlorate by liquid chromatography-electrospray ionization mass spectrometry.

    Science.gov (United States)

    Susawaengsup, Chanthana; Rayanakorn, Mongkon; Wongpornchai, Sugunya; Wangkarn, Sunanta

    2011-08-15

    The endogenous levels of indole-3-acetic acid (IAA), gibberellins (GAs), abscisic acid (ABA) and cytokinins (CKs) and their changes were investigated in shoot tips of ten longan (Dimocarpus longan Lour.) trees for off-season flowering until 60 days after potassium chlorate treatment in comparison with those of ten control (untreated) longan trees. These analytes were extracted and interfering matrices removed with a single mixed-mode solid phase extraction under optimum conditions. The recoveries at three levels of concentration were in the range of 72-112%. The endogenous plant hormones were separated and quantified by liquid chromatography-electrospray ionization-mass spectrometry (LC-ESI-MS). Detection limits based on the signal-to-noise ratio ranged from 10 ng mL(-1) for gibberellin A4 (GA4) to 200 ng mL(-1) for IAA. Within the first week after potassium chlorate treatment, dry weight (DW) amounts in the treated longan shoot tips of four gibberellins, namely: gibberellin A1(GA1), gibberellic acid (GA3), gibberellin A19 (GA19) and gibberellin A20 (GA20), were found to increase to approximately 25, 50, 20 and 60 ng g(-1) respectively, all of which were significantly higher than those of the controls. In contrast, gibberellin A8 (GA8) obtained from the treated longan was found to decrease to approximately 20 ng g(-1)DW while that of the control increased to around 80 ng g(-1)DW. Certain CKs which play a role in leaf bud induction, particularly isopentenyl adenine (iP), isopentenyl adenosine (iPR) and dihydrozeatin riboside (DHZR), were found to be present in amounts of approximately 20, 50 and 60 ng g(-1)DW in the shoot tips of the control longan. The analytical results obtained from the two-month off-season longan flowering period indicate that high GA1, GA3, GA19 and GA20 levels in the longan shoot tips contribute to flower bud induction while high levels of CKs, IAA and ABA in the control longan contribute more to the vegetative development. Copyright © 2011

  18. Ruthenium-catalyzed alkylation of indoles with tertiary amines by oxidation of a sp3 C-H bond and Lewis acid catalysis.

    Science.gov (United States)

    Wang, Ming-Zhong; Zhou, Cong-Ying; Wong, Man-Kin; Che, Chi-Ming

    2010-05-17

    Ruthenium porphyrins (particularly [Ru(2,6-Cl(2)tpp)CO]; tpp=tetraphenylporphinato) and RuCl(3) can act as oxidation and/or Lewis acid catalysts for direct C-3 alkylation of indoles, giving the desired products in high yields (up to 82% based on 60-95% substrate conversions). These ruthenium compounds catalyze oxidative coupling reactions of a wide variety of anilines and indoles bearing electron-withdrawing or electron-donating substituents with high regioselectivity when using tBuOOH as an oxidant, resulting in the alkylation of N-arylindoles to 3-{[(N-aryl-N-alkyl)amino]methyl}indoles (yield: up to 82%, conversion: up to 95%) and the alkylation of N-alkyl or N-H indoles to 3-[p-(dialkylamino)benzyl]indoles (yield: up to 73%, conversion: up to 92%). A tentative reaction mechanism involving two pathways is proposed: an iminium ion intermediate may be generated by oxidation of an sp(3) C-H bond of the alkylated aniline by an oxoruthenium species; this iminium ion could then either be trapped by an N-arylindole (pathway A) or converted to formaldehyde, allowing a subsequent three-component coupling reaction of the in situ generated formaldehyde with an N-alkylindole and an aniline in the presence of a Lewis acid catalyst (pathway B). The results of deuterium-labeling experiments are consistent with the alkylation of N-alkylindoles via pathway B. The relative reaction rates of [Ru(2,6-Cl(2)tpp)CO]-catalyzed oxidative coupling reactions of 4-X-substituted N,N-dimethylanilines with N-phenylindole (using tBuOOH as oxidant), determined through competition experiments, correlate linearly with the substituent constants sigma (R(2)=0.989), giving a rho value of -1.09. This rho value and the magnitudes of the intra- and intermolecular deuterium isotope effects (k(H)/k(D)) suggest that electron transfer most likely occurs during the initial stage of the oxidation of 4-X-substituted N,N-dimethylanilines. Ruthenium-catalyzed three-component reaction of N-alkyl/N-H indoles

  19. Parameters Affecting the Synthesis of (Z)-3-hexen-1-yl acetate by Transesterifacation in Organic Solvent

    International Nuclear Information System (INIS)

    Liaquat, M.; Mehmood, T.; Khan, S. U.; Ahmed, Z.; Saeed, M.; Aslam, S.; Khan, J.; Ali, N.; Jahangir, M.; Nawaz, M.

    2015-01-01

    (Z)-3-hexen-1-yl esters are important green top-note components of food flavors and fragrances. Crude acetone powders extracted lipases from five plant seedlings of rapeseed, wheat, barley, linseed and maize were investigated for their use in the synthesis of flavor esters with vinyl acetate by transesterification in organic solvents. Rape seedlings showed the highest degree of (Z)-3-hexen-1-yl acetate synthesis with a yield of 76 percentage in 72 h. Rape seedling was chosen as promising biocatalyst to evaluate the effects of some of reaction parameters on (Z)-3-hexen-1-yl acetate synthesis using vinyl acetate and (Z)-3-hexen-1-ol at 40 Degree C in n-hexane with 50 g/L enzyme as catalyst. Acetonitrile proved distinctly superior solvent. The percent remaining activity relative to fresh seedlings powders was highest in wheat and barley. Highest ester yield of 80 percentage was obtained with 0.8 M of substrate concentrations within 48 h. Crude rapeseed lipase afforded a conversion 93 percentage of ethyl alcohol. Higher ester yield was achieved within first 24 h with added molecular. The crude rape seedlings lipase is low cost yet effective, showed potential for the production of green note esters industrially. (author)

  20. Synthesis of 14C- and 2H-labeled 1,3 dihydro-3, 3-dimethyl-5-(1,4,5,6,- tetrahydro-6-oxo-3-pyridazinyl)-2H-indol-2-one (LY195115), an orally effective positive inotrope

    International Nuclear Information System (INIS)

    Robertson, D.W.; Krushinski, J.H.; Kau, D.

    1986-01-01

    The synthesis of 14 C- and 2 H-labeled 1,3-dihydro-3,3-dimethyl-5-(1,4,5,6-tetrahydro-6-oxo-3-pyridazinyl)-2H-indol -2-one (LY195115), an extremely potent, orally-effective cardiotonic with inotropic and vasodilator activities is described. The 14 C-label was introduced in the antepenultimate step by reaction of a β-chloroketone precursor with Na 14 CN; acid-catalyzed hydrolysis and cyclization with hydrazine provided the tetrahydropyridazinone bearing the 14 C-label in the oxo-carbon. 1,3-Dihydro-3,3-di(methyl-d 3 ) -2H-indol-2-one was prepared by exhaustive methylation of 1-acetyl-1,3-dihydro-2H-indol-2-one with sodium hydride and iodomethane-d 3 , followed by removal of the nitrogen protecting group. This labeled material was converted in two steps to [ 2 H 6 ]-LY195115. (author)

  1. 2-(7-Methyl-1H-indol-3-ylacetonitrile

    Directory of Open Access Journals (Sweden)

    Yu-Hua Ge

    2012-01-01

    Full Text Available In the title compound, C11H10N2, the carbonitrile group is twisted away from the indole plane [Ccy—Cme—Car—Car = 66.6 (2°; cy = cyanide, me = methylene and ar = aromatic]. In the crystal, N—H...N hydrogen bonds link the molecules into C(7 chains propagating in the [001] direction.

  2. Mangrove endophyte promotes reforestation tree (Acacia polyphylla) growth.

    Science.gov (United States)

    Castro, Renata Assis; Dourado, Manuella Nóbrega; Almeida, Jaqueline Raquel de; Lacava, Paulo Teixeira; Nave, André; Melo, Itamar Soares de; Azevedo, João Lucio de; Quecine, Maria Carolina

    Mangroves are ecosystems located in the transition zone between land and sea that serve as a potential source of biotechnological resources. Brazil's extensive coast contains one of the largest mangrove forests in the world (encompassing an area of 25,000km 2 along all the coast). Endophytic bacteria were isolated from the following three plant species: Rhizophora mangle, Laguncularia racemosa and Avicennia nitida. A large number of these isolates, 115 in total, were evaluated for their ability to fix nitrogen and solubilize phosphorous. Bacteria that tested positive for both of these tests were examined further to determine their level of indole acetic acid production. Two strains with high indole acetic acid production were selected for use as inoculants for reforestation trees, and then the growth of the plants was evaluated under field conditions. The bacterium Pseudomonas fluorescens (strain MCR1.10) had a low phosphorus solubilization index, while this index was higher in the other strain used, Enterobacter sp. (strain MCR1.48). We used the reforestation tree Acacia polyphylla. The results indicate that inoculation with the MCR1.48 endophyte increases Acacia polyphylla shoot dry mass, demonstrating that this strain effectively promotes the plant's growth and fitness, which can be used in the seedling production of this tree. Therefore, we successfully screened the biotechnological potential of endophyte isolates from mangrove, with a focus on plant growth promotion, and selected a strain able to provide limited nutrients and hormones for in plant growth. Copyright © 2017 Sociedade Brasileira de Microbiologia. Published by Elsevier Editora Ltda. All rights reserved.

  3. Attenuation of Carcinogenesis and the Mechanism Underlying by the Influence of Indole-3-carbinol and Its Metabolite 3,3′-Diindolylmethane: A Therapeutic Marvel

    Directory of Open Access Journals (Sweden)

    V. L. Maruthanila

    2014-01-01

    Full Text Available Rising evidence provides credible support towards the potential role of bioactive products derived from cruciferous vegetables such as broccoli, cauliflower, kale, cabbage, brussels sprouts, turnips, kohlrabi, bok choy, and radishes. Many epidemiological studies point out that Brassica vegetable protects humans against cancer since they are rich sources of glucosinolates in addition to possessing a high content of flavonoids, vitamins, and mineral nutrients. Indole-3-carbinol (I3C belongs to the class of compounds called indole glucosinolate, obtained from cruciferous vegetables, and is well-known for tits anticancer properties. In particular, I3C and its dimeric product, 3,3′-diindolylmethane (DIM, have been generally investigated for their value against a number of human cancers in vitro as well as in vivo. This paper reviews an in-depth study of the anticancer activity and the miscellaneous mechanisms underlying the anticarcinogenicity thereby broadening its therapeutic marvel.

  4. Moessbauer studies of iron(III)-(indole-3-alkanoic acids) systems in frozen aqueous solutions

    International Nuclear Information System (INIS)

    Kovacs, K.; Kuzmann, E.; Homonnay, Z.; Szilagyi, P.A.; Vertes, A.; Kamnev, A.A.; Sharma, V.K.

    2005-01-01

    Moessbauer investigations of iron(III) salts in aqueous solutions in the presence of indole-3-alkanoic acid ligands are described. The measurements showed two parallel reactions between the ligands and ferric ions: a complex formation and a redox process. The oxidation process takes place in the ligands, and a part of Fe 3+ is reduced to Fe 2+ . (author)

  5. 3,3'-Diindolylmethane downregulates pro-survival pathway in hormone independent prostate cancer

    International Nuclear Information System (INIS)

    Garikapaty, Venkata P.S.; Ashok, Badithe T.; Tadi, Kiranmayi; Mittelman, Abraham; Tiwari, Raj K.

    2006-01-01

    Epidemiological evidences suggest that the progression and promotion of prostate cancer (CaP) can be modulated by diet. Since all men die with prostate cancer rather than of the disease, it is of particular interest to prevent or delay the progression of the disease by chemopreventive strategies. We have been studying the anticancer properties of compounds present in cruciferous vegetables such as indole-3-carbinol (I3C). Diindolylmethane (DIM) is a dimer of I3C that is formed under acidic conditions and unlike I3C is more stable with higher anti-cancer effects. In the present report, we demonstrate that DIM is a potent anti-proliferative agent compared to I3C in the hormone independent DU 145 CaP cells. The anti-prostate cancer effect is mediated by the inhibition of the Akt signal transduction pathway as DIM, in sharp contrast to I3C, induces the downregulation of Akt, p-Akt, and PI3 kinase. DIM also induced a G1 arrest in DU 145 cells by flow cytometry and downstream concurrent inhibition of cell cycle parameters such as cyclin D1, cdk4, and cdk6. Our data suggest a need for further development of DIM, as a chemopreventive agent for CaP, which justifies epidemiological evidences and molecular targets that are determinants for CaP dissemination/progression. The ingestion of DIM may benefit CaP patients and reduce disease recurrence by eliminating micro-metastases that may be present in patients who undergo radical prostatectomy

  6. Multicenter clinical trial of leuprolide acetate depot (Luphere depot 3.75 mg for efficacy and safety in girls with central precocious puberty

    Directory of Open Access Journals (Sweden)

    You Jin Kim

    2013-12-01

    Full Text Available PurposeWe evaluated the efficacy, safety and psychological aspect of monthly administrations of the gonadotropin-releasing hormone agonists (GnRHa, leuprolide acetate depot (Luphere depot 3.75 mg, in patients with precocious puberty.MethodsA total of 54 girls with central precocious puberty were administered with leuprolide acetate (Luphere depot 3.75 mg every four weeks over 24 weeks. We evaluated the percentage of children exhibiting a suppressed luteinizing hormone (LH response to GnRH (LH peak≤3 IU/L, peak LH/follicle stimulating hormone (FSH ratio of GnRH stimulation test less than 1, change in bone age/chronologic age ratio, change in the Tanner stage and change in eating habit and psychological aspect.Results(1 The percentage of children exhibiting a suppressed LH response to GnRH, defined as an LH peak≤3 IU/L at 24 weeks was 96.3 % (52/54. (2 The percentage of children exhibiting peak LH/FSH ratio<1 at 24 weeks of the study was 94.4 % (51/54. (3 The ratio of bone age and chronological age significantly declined from 1.27±0.07 to 1.24±0.01 after the 6 months of the study. (4 The mean Tanner stage manifested a significant change 2.3±0.48 at baseline, down to 1.70±0.61 at 24 weeks. (5 Based on the questionnaires, the score for eating habits showed a significant change from the baseline 34.0±6.8 to 31.3±6.8. (6 The psychological assessment did not exhibit a significant difference except with scores for sociability, problem behavior total score and other problems.ConclusionThe leuprolide 3.75 mg (Luphere depot is useful and safety for treating children with central precocious puberty.

  7. Isolation of acetic, propionic and butyric acid-forming bacteria from biogas plants.

    Science.gov (United States)

    Cibis, Katharina Gabriela; Gneipel, Armin; König, Helmut

    2016-02-20

    In this study, acetic, propionic and butyric acid-forming bacteria were isolated from thermophilic and mesophilic biogas plants (BGP) located in Germany. The fermenters were fed with maize silage and cattle or swine manure. Furthermore, pressurized laboratory fermenters digesting maize silage were sampled. Enrichment cultures for the isolation of acid-forming bacteria were grown in minimal medium supplemented with one of the following carbon sources: Na(+)-dl-lactate, succinate, ethanol, glycerol, glucose or a mixture of amino acids. These substrates could be converted by the isolates to acetic, propionic or butyric acid. In total, 49 isolates were obtained, which belonged to the phyla Firmicutes, Tenericutes or Thermotogae. According to 16S rRNA gene sequences, most isolates were related to Clostridium sporosphaeroides, Defluviitoga tunisiensis and Dendrosporobacter quercicolus. Acetic, propionic or butyric acid were produced in cultures of isolates affiliated to Bacillus thermoamylovorans, Clostridium aminovalericum, Clostridium cochlearium/Clostridium tetani, C. sporosphaeroides, D. quercicolus, Proteiniborus ethanoligenes, Selenomonas bovis and Tepidanaerobacter sp. Isolates related to Thermoanaerobacterium thermosaccharolyticum produced acetic, butyric and lactic acid, and isolates related to D. tunisiensis formed acetic acid. Specific primer sets targeting 16S rRNA gene sequences were designed and used for real-time quantitative PCR (qPCR). The isolates were physiologically characterized and their role in BGP discussed. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Effect of some natural products on the level of thyroid related hormones in rats

    International Nuclear Information System (INIS)

    Sheikh Idris, A. S. A.

    2011-03-01

    This study was designed based on the basis of interesting information derived from traditional medicine about the uses of three plants i.e (moringa Oleifera, citrus aurantifolia and coriandrum sativum). These plants are used in Sudanese folkloric medicine to treat many diseases such as thyroid, cancer, diabetics and inflammations. This study was designed to evaluate biological activity of these previously mentioned plants and investigate the effect of different concentrations of their extracts on the level of thyroid hormones of male and females swiss wistar rats. Further studies were performed to investigate the potentiality of moringa as a useful agent for the regulation of hyperthyroidism. The three plant sample were collected purchased from different locations in Sudan and identified and authenticated by Mr. Yahia Suleiman technical herbarium at medicinal and Aromatic Plant Research Institute (MAPRA) at National Center of Research, Khartoum, Sudan. A voucher specimen was deposited at herbarium of MAPRI. The plants under investigation were successively extracted at room temperature with petroleum ether, ethy 1 acetate and ethanol using shaker apparatus. Fifty seven adult swiss wister rats of 3-4 months of age, weighing 70-150g were used in this research study. Animals were divided into groups has received dose of extract, equivalent to 200 mg/kg/day for 10 days. In the pilot studies, 30 rats were divided into nine groups to estimate the effect of the extracts (moringa oleifera, citrus aurantifolia and coriandrum) on T3 and T4 and TSH hormones level in the normal and treated rats. The extracts of coriandrum sativum seeds was the most active as it has reduced the level of thyroid hormones than the other extract by decreasing T3 and T4 hormones while TSH level undetectable values this could be due to the absence of the TSH level in rats serum or could be attributed to the method used since the method is specific for human samples not rats. Consequently the 80

  9. Effect of some natural products on the level of thyroid related hormones in rats

    Energy Technology Data Exchange (ETDEWEB)

    Sheikh Idris, A. S. A. [Sudan Academy of Sciences, Atomic Energy Council, Khartoum (Sudan)

    2011-03-15

    This study was designed based on the basis of interesting information derived from traditional medicine about the uses of three plants i.e (moringa Oleifera, citrus aurantifolia and coriandrum sativum). These plants are used in Sudanese folkloric medicine to treat many diseases such as thyroid, cancer, diabetics and inflammations. This study was designed to evaluate biological activity of these previously mentioned plants and investigate the effect of different concentrations of their extracts on the level of thyroid hormones of male and females swiss wistar rats. Further studies were performed to investigate the potentiality of moringa as a useful agent for the regulation of hyperthyroidism. The three plant sample were collected purchased from different locations in Sudan and identified and authenticated by Mr. Yahia Suleiman technical herbarium at medicinal and Aromatic Plant Research Institute (MAPRA) at National Center of Research, Khartoum, Sudan. A voucher specimen was deposited at herbarium of MAPRI. The plants under investigation were successively extracted at room temperature with petroleum ether, ethy 1 acetate and ethanol using shaker apparatus. Fifty seven adult swiss wister rats of 3-4 months of age, weighing 70-150g were used in this research study. Animals were divided into groups has received dose of extract, equivalent to 200 mg/kg/day for 10 days. In the pilot studies, 30 rats were divided into nine groups to estimate the effect of the extracts (moringa oleifera, citrus aurantifolia and coriandrum) on T3 and T4 and TSH hormones level in the normal and treated rats. The extracts of coriandrum sativum seeds was the most active as it has reduced the level of thyroid hormones than the other extract by decreasing T3 and T4 hormones while TSH level undetectable values this could be due to the absence of the TSH level in rats serum or could be attributed to the method used since the method is specific for human samples not rats. Consequently the 80

  10. 1-[(2E-3-Phenylprop-2-en-1-yl]-1H-indole-2,3-dione

    Directory of Open Access Journals (Sweden)

    Fatima Zahrae Qachchachi

    2016-04-01

    Full Text Available In the title compound, C17H13NO2, the indole ring is essentially planar (r.m.s. deviation = 0.027 Å and is oriented at an angle of 69.33 (7° with respect to the phenyl ring. In the crystal, C—H...O hydrogen bonds link the molecules, forming zigzag chains propagating along the a-axis direction. Within the chains there are π–π stacking interactions [centroid–centroid distances = 3.7163 (8 and 3.7162 (8 Å] involving isatin groups of neighbouring molecules.

  11. Auxin-cytokinin synergism in vitro for producing genetically stable plants of Ruta graveolens using shoot tip meristems

    Directory of Open Access Journals (Sweden)

    Mohammad Faisal

    2018-02-01

    Full Text Available An efficient micropropagation protocol was developed for Ruta graveolens Linn. using shoot tip meristems derived from a 4-month-old field grown plant. In vitro shoot regeneration and proliferation was accomplished on Murashige and Skoogs (MS semi-solid medium in addition to different doses of cytokinins viz.6- benzyl adenine (BA, Kinetin (Kn or 2-isopetynyl adenine (2iP, singly or in combination with auxins viz. indole-3-acetic acid (IAA, indole-3-butyric acid (IBA or α-naphthalene acetic acid (NAA. Highest regeneration frequency (27.6% was obtained on (MS medium composed of BA (10 µM with maximum number (9.4 of shoots and 4.3 cm shoot length after 4 weeks of incubation. Among various combinations tried best regeneration frequency (71% of multiple shoot formation with highest number (12.6 of shoots per shoot tip explants were achieved in MS medium augmented with a combination BA (10.0 µM and NAA (2.5 µM after 4 weeks of incubation. The optimum frequency (97% of rhizogenesis was achieved on half-strength MS medium having 0.5 µM IBA after 4 weeks of incubation. Tissue culture raised plantlets with 5–7 fully opened leaves with healthy root system were successfully acclimatized off in Soilrite™ with 80% survival rate followed by transportation to normal soil under natural light. Genetic stability among in vitro raised progeny was evaluated by ISSR and RAPD markers. The entire banding pattern revealed from in vitro regenerated plants was monomorphic to the donor. The present protocol provides an alternative option for commercial propagation and fruitful setting up of genetically uniform progeny for sustainable utilization and germplasm preservation.

  12. Effect of indole-3-butyric acid (IBA) on in vitro root induction in ...

    African Journals Online (AJOL)

    Root induction pre-developed in vitro plantlets of orchid was carried out using indole-3-butyric acid (IBA) (0, 0.5, 1.0, 1.5, 2.0, 2.5 and 3 mM) on basal Murashige and Skoog (MS) medium. Among the concentrations of IBA, the number of roots per plantlet with 1 mM IBA was found to be the highest (2.25 roots per plantlet) ...

  13. Ulipristal acetate versus leuprolide acetate for uterine fibroids.

    Science.gov (United States)

    Donnez, Jacques; Tomaszewski, Janusz; Vázquez, Francisco; Bouchard, Philippe; Lemieszczuk, Boguslav; Baró, Francesco; Nouri, Kazem; Selvaggi, Luigi; Sodowski, Krzysztof; Bestel, Elke; Terrill, Paul; Osterloh, Ian; Loumaye, Ernest

    2012-02-02

    The efficacy and side-effect profile of ulipristal acetate as compared with those of leuprolide acetate for the treatment of symptomatic uterine fibroids before surgery are unclear. In this double-blind noninferiority trial, we randomly assigned 307 patients with symptomatic fibroids and excessive uterine bleeding to receive 3 months of daily therapy with oral ulipristal acetate (at a dose of either 5 mg or 10 mg) or once-monthly intramuscular injections of leuprolide acetate (at a dose of 3.75 mg). The primary outcome was the proportion of patients with controlled bleeding at week 13, with a prespecified noninferiority margin of -20%. Uterine bleeding was controlled in 90% of patients receiving 5 mg of ulipristal acetate, in 98% of those receiving 10 mg of ulipristal acetate, and in 89% of those receiving leuprolide acetate, for differences (as compared with leuprolide acetate) of 1.2 percentage points (95% confidence interval [CI], -9.3 to 11.8) for 5 mg of ulipristal acetate and 8.8 percentage points (95% CI, 0.4 to 18.3) for 10 mg of ulipristal acetate. Median times to amenorrhea were 7 days for patients receiving 5 mg of ulipristal acetate, 5 days for those receiving 10 mg of ulipristal acetate, and 21 days for those receiving leuprolide acetate. Moderate-to-severe hot flashes were reported for 11% of patients receiving 5 mg of ulipristal acetate, for 10% of those receiving 10 mg of ulipristal acetate, and for 40% of those receiving leuprolide acetate (P<0.001 for each dose of ulipristal acetate vs. leuprolide acetate). Both the 5-mg and 10-mg daily doses of ulipristal acetate were noninferior to once-monthly leuprolide acetate in controlling uterine bleeding and were significantly less likely to cause hot flashes. (Funded by PregLem; ClinicalTrials.gov number, NCT00740831.).

  14. Thermodynamic properties of alkyl 1H-indole carboxylate derivatives: A combined experimental and computational study

    International Nuclear Information System (INIS)

    Carvalho, Tânia M.T.; Amaral, Luísa M.P.F.; Morais, Victor M.F.; Ribeiro da Silva, Maria D.M.C.

    2016-01-01

    Highlights: • Combustion of methyl 1H-indole-3-carboxylate and ethyl 1H-indole-2-carboxylate by static bomb calorimetry. • The Knudsen mass-loss effusion technique was used to measure the vapour pressures of compounds at different temperatures. • Enthalpies of sublimation of methyl 1H-indole-3-carboxylate and ethyl 1H-indole-2-carboxylate. • Gas-phase enthalpies of formation of methyl 1H-indole-3-carboxylate and ethyl 1H-indole-2-carboxylate have been derived. • Gas-phase enthalpies of formation estimated from G3(MP2) calculations. - Abstract: The standard (p"o = 0.1 MPa) molar enthalpies of formation, in the crystalline phase, of methyl 1H-indole-3-carboxylate and ethyl 1H-indole-2-carboxylate, at T = 298.15 K, were derived from measurements of the standard massic energies of combustion using a static bomb combustion calorimeter. The Knudsen effusion technique was used to measure the vapour pressures as a function of the temperature, which allowed determining the standard molar enthalpies of sublimation of these compounds. The standard (p"o = 0.1 MPa) molar enthalpies of formation, in the gaseous phase, at T = 298.15 K, were calculated by combining, for each compound, the standard molar enthalpy of formation, in the crystalline phase, and the standard molar enthalpy of sublimation, yielding −(207.6 ± 3.6) kJ·mol"−"1 and −(234.4 ± 2.4) kJ·mol"−"1, for methyl 1H-indole-3-carboxylate and ethyl 1H-indole-2-carboxylate, respectively. Quantum chemical studies were also conducted, in order to complement the experimental study. The gas-phase enthalpies of formation were estimated from high level ab initio molecular orbital calculations, at the G3(MP2) level, for the compounds studied experimentally, extending the study to the methyl 1H-indole-2-carboxylate and ethyl 1H-indole-3-carboxylate. The results obtained were compared with the experimental data and were also analysed in terms of structural enthalpic group contributions.

  15. Chloroindolyl-3-acetic Acid and its Methyl Ester Incorporation of 36Cl in Immature Seeds of Pea and Barley

    DEFF Research Database (Denmark)

    Engvild, Kjeld Christensen

    1974-01-01

    Immature seeds of pea and barley were harvested on plants grown in solutions containing 36Cl−, but no other chlorides. Autoradiography of two-dimensional thin layer chromatograms (silicagel) of butanol extracts of freeze-dried seeds showed the presence in both species of several radioactive...... compounds besides Cl−. One compound, present in pea and probably in barley, cochromatographed with a mixture of 4- and 6-chloroindolyl-3-acetic acid methyl esters. Another, detected in pea, but probably not in barley, cochromatographed with a mixture of 4-and 6-chloroindolyl-3-acetic acids....

  16. Determinación espectrofluorimétrica de fitohormonas derivadas del indol y del naftaleno

    OpenAIRE

    Blanc García, María del Rosario

    2014-01-01

    Se realiza el estudio de las propiedades fluorescentes y la puesta a punto de metodología espectrofluorimétrica en disolución y en fase sólida para la determinación en aguas, suelos y formulaciones comerciales de las fitohormonas derivadas del indol: acido indol-3-acetico. acido indol-3-butirico, acido indol-3-propinoico y acido 5-hidroxiindol-3-acetico; y del naftaleno: acido 1-naftilacetico y 1-naftilacetamida. se lleva a cabo la determinación individual de cada una de las fitohormonas as...

  17. Response of pine hypocotyl sections to growth regulators and related substances

    Directory of Open Access Journals (Sweden)

    J. Zakrzewski

    2015-01-01

    Full Text Available Growth response of Pinus silvestris hypocotyl sections to some synthetic growth regulators and related substances was studied. Elongation of hypocotyl sections was stimulated by naphtaleneacetic acid, indole-3-acetic acid, in-dole-3-propionic acid, indole-3-butyric acid, 2,4-dichlorophenoxyacetic acid, indoleaoetic amide, indoleacetic nitrile and coumarin. Indole-3-acetic acid and naphtaleneacetic acid extended period of growth up to 16 and 24 hours, respectively. Growth was inhibited by kinetin, trans-cinnamic acid and 2,3,5-tri-iodobenzoic acid. No effect of gibberellic acid, tryptophan and biotin was observed.

  18. Effect of metal tolerant plant growth promoting bacteria on growth and metal accumulation in Zea mays plants grown in fly ash amended soil.

    Science.gov (United States)

    Kumar, Kalpna V; Patra, D D

    2013-01-01

    The present study was undertaken to examine the effect of the application of fly ash (FA) into Garden soil (GS), with and without inoculation of plant growth promoting bacteria (PGPB), on the growth and metal uptake by Zea mays plants. Three FA tolerant PGPB strains, Pseudomonas sp. PS5, PS14, and Bacillus sp. BC29 were isolated from FA contaminated soils and assessed for their plant growth promoting features on the Z. mays plants. All three strains were also examined for their ability to solubilize phosphate and to produce Indole Acetic Acid (IAA), siderophores, and hydrogencynide acid (HCN) production. Although inoculation of all strains significantly enhanced the growth of plants at both the concentration of FA but maximum growth was observed in plants inoculated with BC29 and PS14 at low level (25%) of FA concentration. The experimental results explored the plant growth promoting features of selected strains which not only enhanced growth and biomass of plants but also protected them from toxicity of FA.

  19. Distribution and Variation of Indole Glucosinolates in Woad (Isatis tinctoria L.) 1

    Science.gov (United States)

    Elliott, Malcolm C.; Stowe, Bruce B.

    1971-01-01

    The exceptionally high levels in woad (Isatis tinctoria L.) of three indolic goitrogens, namely glucobrassicin, neoglucobrassicin, and glucobrassicin-1-sulfonate, permit the facile study of their distribution in the plant and their changes during its development. Woad seeds contain as much as 0.23% fresh weight of glucobrassicin but no other indole glucosinolate, while 1-week-old seedlings also contain substantial amounts of neoglucobrassicin and glucobrassicin-1-sulfonate in their shoots whether grown in the light or dark. The sulfonate is not found in roots, and light depresses neoglucobrassicin levels in shoots. Sterile root cultures synthesize glucobrassicin and neoglucobrassicin, and significant quantities of these were even found to be excreted by the roots of intact sterile seedlings in culture. This may explain the long known deleterious effect of woad and other cruciferous crops on subsequent plantings and the observation could be of ecological importance. Long term changes in levels of all three substances in the plant are similar and are compatible with earlier suggestions that the compounds could be auxin precursors at the time of flower stem elongation. Since sterile seedlings readily incorporate 35SO42− into indole glucosinolates and relative specific radioactivities suggest that glucobrassicin is the precursor of the other two compounds, pathways of goitrogen biosynthesis should be relatively easily determined in this material. PMID:16657825

  20. Disease resistance or growth: the role of plant hormones in balancing immune responses and fitness costs

    NARCIS (Netherlands)

    Denance, N.; Sanchez Vallet, A.; Goffner, D.; Molina, A.

    2013-01-01

    Plant growth and response to environmental cues are largely governed by phytohormones. The plant hormones ethylene, jasmonic acid, and salicylic acid (SA) play a central role in the regulation of plant immune responses. In addition, other plant hormones, such as auxins, abscisic acid (ABA),

  1. Shoot regeneration from cotyledonary leaf explants of jatropha curcas: A biodiesel plant

    KAUST Repository

    Kumar, Nitish Chandramohana

    2010-03-07

    A simple, high frequency, and reproducible method for plant regeneration through direct organogenesis from cotyledonary leaf explants of Jatropha curcas was developed using Murashige and Skoog (MS) medium supplemented with different concentrations of thidiazuron (TDZ) or 6-benzyl aminopurine (BAP). Medium containing TDZ has greater influence on regeneration as compared to BAP. The induced shoot buds were transferred to MS medium containing 10 lM kinetin (Kn), 4.5 lM BAP, and 5.5 lM a-naphthaleneacetic acid (NAA) for shoot proliferation. The proliferated shoots could be elongated on MS medium supplemented with different concentrations and combinations of BAP, indole-3-acetic acid (IAA), NAA, and indole-3-butyric acid (IBA). MS medium with 2.25 lM BAP and 8.5 lM IAA was found to be the best combination for shoot elongation. However, significant differences in plant regeneration and shoot elongation were observed among the genotypes studied. Rooting was achieved when the basal cut end of elongated shoots were dipped in half strength MS liquid medium containing dif- ferent concentrations and combinations of IBA, IAA, and NAA for 4 days, followed by transfer to growth regulators free half strength MS medium supplemented 0.25 mg l-1 activated charcoal. Elongated shoot treated with 15 lM IBA, 5.7 lM IAA, and 11 lM NAA resulted in highest percent rooting. The rooted plants could be established in soil with more than 90% survival rate. The method developed may be useful in improvement of J. curcas through genetic modification. © Franciszek Górski Institute of Plant Physiology, Polish Academy of Sciences, Kraków 2010.

  2. Shoot regeneration from cotyledonary leaf explants of jatropha curcas: A biodiesel plant

    KAUST Repository

    Kumar, Nitish Chandramohana; Vijay Anand, K. G.; Reddy, Muppala P.

    2010-01-01

    A simple, high frequency, and reproducible method for plant regeneration through direct organogenesis from cotyledonary leaf explants of Jatropha curcas was developed using Murashige and Skoog (MS) medium supplemented with different concentrations of thidiazuron (TDZ) or 6-benzyl aminopurine (BAP). Medium containing TDZ has greater influence on regeneration as compared to BAP. The induced shoot buds were transferred to MS medium containing 10 lM kinetin (Kn), 4.5 lM BAP, and 5.5 lM a-naphthaleneacetic acid (NAA) for shoot proliferation. The proliferated shoots could be elongated on MS medium supplemented with different concentrations and combinations of BAP, indole-3-acetic acid (IAA), NAA, and indole-3-butyric acid (IBA). MS medium with 2.25 lM BAP and 8.5 lM IAA was found to be the best combination for shoot elongation. However, significant differences in plant regeneration and shoot elongation were observed among the genotypes studied. Rooting was achieved when the basal cut end of elongated shoots were dipped in half strength MS liquid medium containing dif- ferent concentrations and combinations of IBA, IAA, and NAA for 4 days, followed by transfer to growth regulators free half strength MS medium supplemented 0.25 mg l-1 activated charcoal. Elongated shoot treated with 15 lM IBA, 5.7 lM IAA, and 11 lM NAA resulted in highest percent rooting. The rooted plants could be established in soil with more than 90% survival rate. The method developed may be useful in improvement of J. curcas through genetic modification. © Franciszek Górski Institute of Plant Physiology, Polish Academy of Sciences, Kraków 2010.

  3. The Cost-Effectiveness of Emergency Hormonal Contraception with Ulipristal Acetate versus Levonorgestrel for Minors in France.

    Directory of Open Access Journals (Sweden)

    Ramona Schmid

    Full Text Available To evaluate the cost-effectiveness of ulipristal acetate and levonorgestrel in minors in France, and analyze whether it is worthwhile to provide ulipristal acetate to minors free of charge.The cost-effectiveness of two emergency contraceptive methods was compared based on a decision-analytical model. Pregnancy rates, outcomes of unintended pregnancies, and resource utilization were derived from the literature. Resources and their costs were considered until termination or a few days after delivery. Deterministic and probabilistic sensitivity analyses were performed.The cost of an unintended pregnancy in a French minor is estimated to be 1,630 € (range 1,330 € - 1,803 €. Almost 4 million € (3.1 € - 13.7 € million in unintended pregnancy spending in 2010 could have been saved by the use of ulipristal acetate instead of levonorgestrel. The incremental cost of ulipristal acetate compared to levonorgestrel is 3.30 € per intake, or 418 € per pregnancy avoided (intake within 72 hours. In the intake within 24 hours subgroup, ulipristal acetate was found to be more efficacious at a lower cost compared to levonorgestrel.Ulipristal acetate dominates levonorgestrel when taken within 24 hours after unprotected intercourse, i.e., it is more effective at a lower cost. When taken within 72 hours, ulipristal acetate is a cost- effective alternative to levonorgestrel, given that the cost of avoiding an additional pregnancy with ulipristal acetate is less than the average cost of these pregnancies. In the light of these findings, it is worthwhile to provide free access to minors.

  4. Regulation of wheat seed dormancy by after-ripening is mediated by specific transcriptional switches that induce changes in seed hormone metabolism and signaling.

    Directory of Open Access Journals (Sweden)

    Aihua Liu

    Full Text Available Treatments that promote dormancy release are often correlated with changes in seed hormone content and/or sensitivity. To understand the molecular mechanisms underlying the role of after-ripening (seed dry storage in triggering hormone related changes and dormancy decay in wheat (Triticum aestivum, temporal expression patterns of genes related to abscisic acid (ABA, gibberellin (GA, jasmonate and indole acetic acid (IAA metabolism and signaling, and levels of the respective hormones were examined in dormant and after-ripened seeds in both dry and imbibed states. After-ripening mediated developmental switch from dormancy to germination appears to be associated with declines in seed sensitivity to ABA and IAA, which are mediated by transcriptional repressions of PROTEIN PHOSPHATASE 2C, SNF1-RELATED PROTEIN KINASE2, ABA INSENSITIVE5 and LIPID PHOSPHATE PHOSPHTASE2, and AUXIN RESPONSE FACTOR and RELATED TO UBIQUITIN1 genes. Transcriptomic analysis of wheat seed responsiveness to ABA suggests that ABA inhibits the germination of wheat seeds partly by repressing the transcription of genes related to chromatin assembly and cell wall modification, and activating that of GA catabolic genes. After-ripening induced seed dormancy decay in wheat is also associated with the modulation of seed IAA and jasmonate contents. Transcriptional control of members of the ALLENE OXIDE SYNTHASE, 3-KETOACYL COENZYME A THIOLASE, LIPOXYGENASE and 12-OXOPHYTODIENOATE REDUCTASE gene families appears to regulate seed jasmonate levels. Changes in the expression of GA biosynthesis genes, GA 20-OXIDASE and GA 3-OXIDASE, in response to after-ripening implicate this hormone in enhancing dormancy release and germination. These findings have important implications in the dissection of molecular mechanisms underlying regulation of seed dormancy in cereals.

  5. Plant-Microbe Communication Enhances Auxin Biosynthesis by a Root-Associated Bacterium, Bacillus amyloliquefaciens SQR9.

    Science.gov (United States)

    Liu, Yunpeng; Chen, Lin; Zhang, Nan; Li, Zunfeng; Zhang, Guishan; Xu, Yu; Shen, Qirong; Zhang, Ruifu

    2016-04-01

    Mechanisms by which beneficial rhizobacteria promote plant growth include tryptophan-dependent indole-3-acetic acid (IAA) synthesis. The abundance of tryptophan in the rhizosphere, however, may influence the level of benefit provided by IAA-producing rhizobacteria. This study examined the cucumber-Bacillus amyloliquefaciens SQR9 system and found that SQR9, a bacterium previously shown to enhance the growth of cucumber, increased root secretion of tryptophan by three- to fourfold. Using a split-root system, SQR9 colonization of roots in one chamber not only increased tryptophan secretion from the noninoculated roots but also increased the expression of the cucumber tryptophan transport gene but not the anthranilate synthesis gene in those roots. The increased tryptophan in isolated rhizosphere exudates was sufficient to support increased IAA production by SQR9. Moreover, SQR9 colonization of roots in one chamber in the split-root system resulted in sufficient tryptophan production by the other roots to upregulate SQR9 IAA biosynthesis genes, including a 27-fold increase in the indole-3-acetonitrilase gene yhcX during subsequent colonization of those roots. Deletion of yhcX eliminated SQR9-mediated increases in root surface area, likely by reducing IAA-stimulated lateral root growth. This study demonstrates a chemical dialogue between B. amyloliquefaciens and cucumber in which this communication contributes to bacteria-mediated plant-growth enhancement.

  6. Effect of a longitudinally applied voltage upon the growth of Zea mays seedlings

    Science.gov (United States)

    Desrosiers, M. F.; Bandurski, R. S.

    1988-01-01

    The electrical parameters that affect young seedling growth were investigated. Voltages ranging from 5 to 40 volts were applied longitudinally along the mesocotyl region of 4-day old Zea mays L. (cv Silver Queen) seedlings for periods of 3 or 4 hours. It was determined that: (a) making the tips of the seedlings electrically positive relative to the base strongly inhibited shoot growth at 5 volts, whereas the reverse polarity had no effect; (b) at higher voltages, making the tip of the seedlings negative caused less growth inhibition than the reverse polarity at each voltage level; (c) the higher the applied voltage the greater the degree of inhibition; and, (d) the more growth inhibition experienced by the plants the poorer, and slower, their recovery. Previous observations of a relationship between the amount of free indole-3-acetic acid in the mesocotyl cortex and the growth rate of the mesocotyl and of gravitropism-induced movement of labeled indole-3-acetic acid from the seed to the shoot lead to the prediction of a voltage-dependent gating of the movement of indole-3-acetic acid from the stele to the cortex. This provided the basis for attempting to alter the growth rate of seedlings by means of an applied voltage.

  7. Methyl transfer in glucosinolate biosynthesis mediated by indole glucosinolate O-Methyltransferase 5

    DEFF Research Database (Denmark)

    Pfalz, Marina; Mukhaimar, Maisara; Perreau, François

    2016-01-01

    in position 1 (1-IG modification) or 4 (4-IG modification). Products of the 4-IG modification pathway mediate plant-enemy interactions and are particularly important for Arabidopsis innate immunity. While CYP81Fs encoding cytochrome P450 monooxygenases and IGMTs encoding indole glucosinolate O...... with moderate similarity to previously characterized IGMTs, encodes the methyltransferase that is responsible for the conversion of 1OHI3M to 1MOI3M. Disruption of IGMT5 function increases resistance against the root-knot nematode Meloidogyne javanica and suggests a potential role for the 1-IG modification...

  8. Strigolactones: a new musician in the orchestra of plant hormones

    NARCIS (Netherlands)

    Kohlen, W.; Ruyter-Spira, C.P.; Bouwmeester, H.J.

    2011-01-01

    Strigolactones are known as germination stimulants for seeds of root parasitic plants of the Orobanchaceae and as the presymbiotic branching factor for arbuscular mycorrhizal fungi. They were also recently identified as a new class of plant hormones and have been the subject of many studies, leading

  9. Effect of plant growth hormones and abiotic stresses on germination ...

    African Journals Online (AJOL)

    Phosphatases are widely found in plants having intracellular and extracellular activities. Phosphatases are believed to be important for phosphorous scavenging and remobilization in plants, but its role in adaptation to abiotic stresses and growth hormones at germination level has not been critically evaluated. To address ...

  10. Arbuscular mycorrhizal symbiosis and methyl jasmonate avoid the inhibition of root hydraulic conductivity caused by drought.

    Science.gov (United States)

    Sánchez-Romera, Beatriz; Ruiz-Lozano, Juan Manuel; Zamarreño, Ángel María; García-Mina, José María; Aroca, Ricardo

    2016-02-01

    Hormonal regulation and symbiotic relationships provide benefits for plants to overcome stress conditions. The aim of this study was to elucidate the effects of exogenous methyl jasmonate (MeJA) application on root hydraulic conductivity (L) of Phaseolus vulgaris plants which established arbuscular mycorrhizal (AM) symbiosis under two water regimes (well-watered and drought conditions). The variation in endogenous contents of several hormones (MeJA, JA, abscisic acid (ABA), indol-3-acetic acid (IAA), salicylic acid (SA)) and the changes in aquaporin gene expression, protein abundance and phosphorylation state were analyzed. AM symbiosis decreased L under well-watered conditions, which was partially reverted by the MeJA treatment, apparently by a drop in root IAA contents. Also, AM symbiosis and MeJA prevented inhibition of L under drought conditions, most probably by a reduction in root SA contents. Additionally, the gene expression of two fungal aquaporins was upregulated under drought conditions, independently of the MeJA treatment. Plant aquaporin gene expression could not explain the behaviour of L. Conversely, evidence was found for the control of L by phosphorylation of aquaporins. Hence, MeJA addition modified the response of L to both AM symbiosis and drought, presumably by regulating the root contents of IAA and SA and the phosphorylation state of aquaporins.

  11. Cyanobacteria-mediated phenylpropanoids and phytohormones in rice (Oryza sativa) enhance plant growth and stress tolerance.

    Science.gov (United States)

    Singh, Dhananjaya P; Prabha, Ratna; Yandigeri, Mahesh S; Arora, Dilip K

    2011-11-01

    Phenylpropanoids, flavonoids and plant growth regulators in rice (Oryza sativa) variety (UPR 1823) inoculated with different cyanobacterial strains namely Anabaena oryzae, Anabaena doliolum, Phormidium fragile, Calothrix geitonos, Hapalosiphon intricatus, Aulosira fertilissima, Tolypothrix tenuis, Oscillatoria acuta and Plectonema boryanum were quantified using HPLC in pot conditions after 15 and 30 days. Qualitative analysis of the induced compounds using reverse phase HPLC and further confirmation with LC-MS/MS showed consistent accumulation of phenolic acids (gallic, gentisic, caffeic, chlorogenic and ferulic acids), flavonoids (rutin and quercetin) and phytohormones (indole acetic acid and indole butyric acid) in rice leaves. Plant growth promotion (shoot, root length and biomass) was positively correlated with total protein and chlorophyll content of leaves. Enzyme activity of peroxidase and phenylalanine ammonia lyase and total phenolic content was fairly high in rice leaves inoculated with O. acuta and P. boryanum after 30 days. Differential systemic accumulation of phenylpropanoids in plant leaves led us to conclude that cyanobacterial inoculation correlates positively with plant growth promotion and stress tolerance in rice. Furthermore, the study helped in deciphering possible mechanisms underlying plant growth promotion and stress tolerance in rice following cyanobacterial inoculation and indicated the less explored avenue of cyanobacterial colonization in stress tolerance against abiotic stress.

  12. INDOL-3-CARBINOL IN THE TREATMENT OF BENIGN BREAST DISORDERS

    Directory of Open Access Journals (Sweden)

    E. T. Zulkarnayeva

    2008-01-01

    Full Text Available 123 patients with various forms of fibrocystic mastopathy (n=114 and fibroadenoma of mammry gland (n=9 were enrolled into the study. Indol-3-carbinol (indinol, Close corporation «Mirax-Pharma» was administered in the dose of 300—400 mg per day for 3—6 months. Disappearance of complaints to pain was observed in 35% of patients after 3 months of therapy and in 63% — after 6 months of therapy. Objective signs of fibrocystic mastopathy completely regressed in 9% of patients after 3 months of therapy and in 16% — after 6 month of therapy. Overall considerable improvement of condition or complete cure was seen in 55% of patients after 3 month of treatment and in 92% — after 6 months of therapy. Thus, indinol is highly effective and safe agent for treatment of different types of mastopathy.

  13. Secretion of biologically active glycoforms of bovine follicle stimulating hormone in plants

    NARCIS (Netherlands)

    Dirnberger, D.; Steinkellner, H.; Abdennebi, L.; Remy, J.J.; Wiel, van de D.

    2001-01-01

    We chose the follicle stimulating hormone (FSH), a pituitary heterodimeric glycoprotein hormone, as a model to assess the ability of the plant cell to express a recombinant protein that requires extensive N-glycosylation for subunit folding and assembly, intracellular trafficking, signal

  14. Germination response of coconut (Cocos nucifera L.) zygotic embryo ...

    African Journals Online (AJOL)

    ADOWIE PERE

    ABSTRACT: The study investigated the effects of liquid and solid media in the propagation of coconut (Cocos nucifera) zygotic embryos at initiation stage. Eeuwen's medium supplemented with growth hormones naphthalene acetic acid ( NAA) and indole butyric acid (IBA) at different concentrations (0.5, 1.0, 1.5, 2.0 and ...

  15. Journal of Genetics | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    ... 4-epibrassinolide in internode tissues derived from three-month-old rooted cuttings. All three EtCesA transcripts were upregulated by indole acetic acid and gibberellic acid. This study demonstrates that the increased cellulose deposition in the secondary wood induced by hormones can be attributed to the upregulation of ...

  16. Effect of the application of AIA and sucrose in the in vitro rooting of Sonate and Lambada varieties of Anthurium andraeanum Lind.

    Directory of Open Access Journals (Sweden)

    Nydia del Rivero Bautista

    2005-04-01

    Full Text Available The effect of different concentrations of indole-3-acetic acid (AIA and sucrose Anthurium andraeanum in the varieties ‘Lambada’ and ‘Sonate’ in the enraizamiento phase during the micropropagation of this specieswas determined in this study. Nodal explants, coming from plantlets obtained in vitro, were cultivated in a liquid culture mediumMS modified, supplemented with 2.89 and 5.71 μM AIA and 30 and 40 g.l-1 (w/v of sucrose. The length of the buds (cm, the number of roots and the length of the roots (cmwere the evaluated variables . In the rooting phase the best sucrose concentration in the cultivation medium was of 40 g.l-1, being observed that the increment in its concentration improved the length of the plants, as well as the number and length of the roots for the two varieties. There were differences in the requirement of AIA in the evaluated variables in both varieties. Key words: Araceae, in vitro culture, micropropagation Abbreviations: IAA (Indole-3-acetic acid, NAA (naphthalenacetic acid, IBA (Indole-3-butyric acid, Kin (6-furfurylaminopurine

  17. Development and Validation of a Reversed-Phase Liquid Chromatography Method for the Simultaneous Determination of Indole-3-Acetic Acid, Indole-3-Pyruvic Acid, and Abscisic Acid in Barley (Hordeum vulgare L.

    Directory of Open Access Journals (Sweden)

    Ilva Nakurte

    2012-01-01

     mm I.D with a mobile phase composed of methanol and 1% acetic acid (60 : 40 v/v in isocratic mode at a flow rate of 1 ml min-1. The detection was monitored at 270 nm (ABA and at 282 nm (Ex and 360 nm (Em (IAA, IPA. The developed method was validated in terms of accuracy, precision, linearity, limit of detection, limit of quantification, and robustness. The determined validation parameters are in the commonly acceptable ranges for that kind of analysis.

  18. Mechanisms and Therapeutic Implications of Cell Death Induction by Indole Compounds

    International Nuclear Information System (INIS)

    Ahmad, Aamir; Sakr, Wael A.; Rahman, KM Wahidur

    2011-01-01

    Indole compounds, obtained from cruciferous vegetables, are well-known for their anti-cancer properties. In particular, indole-3-carbinol (I3C) and its dimeric product, 3,3′-diindolylmethane (DIM), have been widely investigated for their effectiveness against a number of human cancers in vitro as well as in vivo. These compounds are effective inducers of apoptosis and the accumulating evidence documenting their ability to modulate multiple cellular signaling pathways is a testimony to their pleiotropic behavior. Here we attempt to update current understanding on the various mechanisms that are responsible for the apoptosis-inducing effects by these compounds. The significance of apoptosis-induction as a desirable attribute of anti-cancer agents such as indole compounds cannot be overstated. However, an equally intriguing property of these compounds is their ability to sensitize cancer cells to standard chemotherapeutic agents. Such chemosensitizing effects of indole compounds can potentially have major clinical implications because these non-toxic compounds can reduce the toxicity and drug-resistance associated with available chemotherapies. Combinational therapy is increasingly being realized to be better than single agent therapy and, through this review article, we aim to provide a rationale behind combination of natural compounds such as indoles with conventional therapeutics

  19. Synthesis and Antiviral Activity of 3-Aminoindole Nucleosides of 2-Acetamido-2-deoxy-D-glucose

    Energy Technology Data Exchange (ETDEWEB)

    Abdelrahman, Adel A. H.; Elessawy, Farag A.; Barakat, Yousif A. [Menoufia Univ., Shebin El-Koam (Egypt); Ellatif, Mona M. Abd [The British Univ. in Egypt, Cairo (Egypt)

    2012-10-15

    A new method for the construction of 3-aminoindole nucleosides of 2-acetamido-2-deoxy-D-glucose based is presented. Nitration and acetylation of the indole nucleosides by acetic anhydride-nitric acid mixture followed by reduction using silver catalyst (SNSM) impregnated on silica gel, afforded the corresponding amino indole nucleosides. The nucleosides were tested for antiviral activity against hepatitis B virus (HBV) to show different degrees of antiviral activities or inhibitory actions.

  20. Biodegradation of indole at high concentration by persolvent fermentation with Pseudomonas sp. ST-200.

    Science.gov (United States)

    Doukyu, N; Aono, R

    1997-05-01

    Pseudomonas sp. strain ST-200 grew on indole as a sole carbon source. The minimal inhibitory concentration of indole was 0.3 mg/ml for ST-200. However, ST-200 grew in a persolvent fermentation system containing a large amount of indole (a medium containing 20% by vol. diphenylmethane and 4 mg/ml indole), because most of the indole was partitioned in the organic solvent layer. When the organism was grown in the medium containing indole at 1 mg/ml in the presence of diphenylmethane, more than 98% of the indole was consumed after 48h. Isatic acid (0.4 mg/ml) and isatin (0.03 mg/ml) were produced as the metabolites in the aqueous medium layer.

  1. Aux/IAA Gene Family in Plants: Molecular Structure, Regulation, and Function

    Directory of Open Access Journals (Sweden)

    Jie Luo

    2018-01-01

    Full Text Available Auxin plays a crucial role in the diverse cellular and developmental responses of plants across their lifespan. Plants can quickly sense and respond to changes in auxin levels, and these responses involve several major classes of auxin-responsive genes, including the Auxin/Indole-3-Acetic Acid (Aux/IAA family, the auxin response factor (ARF family, small auxin upregulated RNA (SAUR, and the auxin-responsive Gretchen Hagen3 (GH3 family. Aux/IAA proteins are short-lived nuclear proteins comprising several highly conserved domains that are encoded by the auxin early response gene family. These proteins have specific domains that interact with ARFs and inhibit the transcription of genes activated by ARFs. Molecular studies have revealed that Aux/IAA family members can form diverse dimers with ARFs to regulate genes in various ways. Functional analyses of Aux/IAA family members have indicated that they have various roles in plant development, such as root development, shoot growth, and fruit ripening. In this review, recently discovered details regarding the molecular characteristics, regulation, and protein–protein interactions of the Aux/IAA proteins are discussed. These details provide new insights into the molecular basis of the Aux/IAA protein functions in plant developmental processes.

  2. Micropropagation of Cyclopia genistoides, an endemic South African plant of economic importance.

    Science.gov (United States)

    Kokotkiewicz, Adam; Luczkiewicz, Maria; Hering, Anna; Ochocka, Renata; Gorynski, Krzysztof; Bucinski, Adam; Sowinski, Pawel

    2012-01-01

    An efficient micropropagation protocol of Cyclopia genistoides (L.) Vent., an indigenous South African shrub of economic importance, was established. In vitro shoot cultures were obtained from shoot tip fragments of sterile seedlings cultured on solid Schenk and Hildebrandt (SH) medium supplemented with 9.84 microM 6-(gamma,gamma-dimethylallylamino)purine (2iP) and 1.0 microM thidiazuron (TDZ). Maximum shoot multiplication rate [(8.2 +/- 1.3) microshoots/explant)] was observed on this medium composition. Prior to rooting, the multiplied shoots were elongated for 60 days (two 30-days passages) on SH medium with one-half sucrose concentration, supplemented with 4.92 microM indole-3-butyric acid (IBA). The rooting of explants was only possible in the case of the elongated shoots. The highest root induction rate (54.8%) was achieved on solid SH medium with one-half sucrose and one-half potassium nitrate and ammonium nitrate concentration, respectively, supplemented with 28.54 microM indole-3-acetic acid (IAA) and 260.25 microM citric acid. The plantlets were acclimatized for 30 days in the glasshouse, with the use of peat/gravel/perlite substrate (1:1:1). The highest acclimatization rate (80%) was obtained for explants rooted with the use of IAA-supplemented medium. The phytochemical profile of the regenerated plants was similar to that of the reference intact plant material. HPLC analyses showed that C. genistoides plantlets obtained by the micropropagation procedure kept the ability to produce xanthones (mangiferin and isomangiferin) and the flavanone hesperidin, characteristic of wild-growing shrubs.

  3. The effect of calcium on auxin depletion-induced tomato ...

    African Journals Online (AJOL)

    Indole-3-acetic acid (IAA) and calcium are the most important factors that instigate plant organ abscission. This study aimed to elucidate the mechanisms that underlie the effects of IAA and calcium on delayed abscission in tomato. The results showed a clear trend towards reduced abscission rates with increased ...

  4. Facile Iodine-Catalyzed Michael Addition of Indoles to α,α′-Bis(arylmethylene)cyclopentanones: An Efficient Synthesis of E-2-(3-Indolylphenylmethyl)-5-phenylmethylenecyclopentanones

    Science.gov (United States)

    Pal, Rammohan; Das Gupta, Arpita; Mallik, Asok K.

    2012-01-01

    Iodine-catalyzed reaction of indoles with α,α′-bis(arylmethylene)cyclopentanones afforded one diastereomer of the corresponding Michael adducts, namely, E-2-(3-indolylphenylmethyl)-5-phenylmethylenecyclopentanones, in a good yield. The products form a new group of indole derivatives. PMID:24052849

  5. Changes of plant hormone levels in conifers subjected to immissions. Hormongehaltsaenderungen in Nadelbaeumen unter Immissionsbelastung

    Energy Technology Data Exchange (ETDEWEB)

    Christmann, A.; Frenzel, B. (Hohenheim Univ., Stuttgart (Germany, F.R.). Inst. fuer Botanik)

    1991-01-01

    Effects caused by a reduction of immissions on the phytohormone balance in needles of conifers (ethylene, measured as ACC and MACC, abscisic acid and indole-3-acetic acid) were investigated at the sites 'Edelmannshof' in the Welzheimer Wald, some thirty kilometers to the east of Stuttgart (open-top chambers) and 'Stoeckerkopf' in the Northern Black Forest (under strong SO{sub 2}-impact until autumm 1987). At the 'Edelmannshof', the consequences of the reduced impact of immissions on the phytohormone balance of young spruce trees cannot be differentiated reliably from individual differences between the trees investigated, due to the fact that there the phytohormones mentioned were investigated during one year only. At the site 'Stoeckerkopf' the results point to a different behaviour of IAA-contents in needles of trees formerly subjected to SO{sub 2}-immissions and trees subjected to influences causing forest decline. This corroborates former results of AbA investigations. A method for determining of IAA-contents in needles from fir (Abies alba Mill.) and spruce (Picea abies Karst.) is presented. (orig.) With 13 figs., 22 refs.

  6. Safety Extension Study Of Leuprolide Acetate (Lupron Depot) In The Treatment Of Central Precocious Puberty

    Science.gov (United States)

    2014-01-08

    Precocious; Leuprolide Acetate; Luteinizing Hormone (LH); Gonadotrophin-releasing Hormone Agonist (GnRHa); Tanner Staging; Depot Formulation; Suppression of LH; Central Precocious Puberty (CPP); Gonadotrophin-releasing Hormone (GnRH); Lupron; GnRH Analog; Pediatrics Central Precocious Puberty

  7. In vitro plant regeneration of Albizia lebbeck (L. from seed explants

    Directory of Open Access Journals (Sweden)

    S. Perveen

    2013-07-01

    Full Text Available Objectives: An efficient and reproducible regeneration protocol for rapid multiplication of Albizia lebbeck (L. was developed by using intact seed explants.Methods: Murashige and Skoog's (MS medium supplemented with different hormones (BA, Kn, GA3 and TDZ was used for the induction of multiple shoots from the seed explants. Ex-vitro rooting was performed by using pulse treatment method in auxins (IBA and NAA and the complete plantlets were transferred to the field.Results: High frequency direct shoot induction was found in aseptic seed cultures of A. lebbeck on Murashige and Skoog medium supplemented with 5.0 µM TDZ (Thiadiazuron. Seeds were germinated after 7 days of culture and induced maximum 8 shoots from the region adjacent to the apex of the primary shoot of the seedling upto 25 days of incubation. Proliferating shoot cultures with increased shoot length was established by sub-culture of excised sprouting epicotyls on MS medium supplied with reduced concentrations of TDZ. Maximum shoot regeneration frequency (76 % with  highest number of shoots (21 and shoot length (5.1 cm per sprouting epicotyl was observed in the MS medium supplemented with 0.5 µM TDZ after 8 weeks of culture. Different concentrations of Indole-3-butyric acid (IBA and α-naphthalene acetic acid (NAA were tested to determine the optimal conditions for ex-vitro rooting of the microshoots. The best treatment for maximum ex-vitro root induction frequency (81 % was accomplished with IBA (250 µM pulse treatment given to the basal end of the microshoots for 30 min followed by their transfer in plastic cups containing soilrite and eventually established in normal garden soil + soilrite (1:1 with 78 % survival rate. In addition, histological study was undertaken to gain a better understanding of the regenerated shoots from the epicotyl region.Conclusion: The findings will be fruitful in getting a time saving and cost effective protocol for the in vitro propagation of Albizia

  8. Characterization of indole acetic acid endophyte producers in ...

    African Journals Online (AJOL)

    Valued Acer Customer

    2015-02-18

    Feb 18, 2015 ... the number and identity of the isolated endophyte phytobacteria in L. gibba plants .... mL was taken from each sample and placed on plates containing ... databases using Basic Logical Alignment Search Tool analysis ...

  9. Agrobacterium tumefaciens responses to plant-derived signaling molecules

    Science.gov (United States)

    Subramoni, Sujatha; Nathoo, Naeem; Klimov, Eugene; Yuan, Ze-Chun

    2014-01-01

    As a special phytopathogen, Agrobacterium tumefaciens infects a wide range of plant hosts and causes plant tumors also known as crown galls. The complexity of Agrobacterium–plant interaction has been studied for several decades. Agrobacterium pathogenicity is largely attributed to its evolved capabilities of precise recognition and response to plant-derived chemical signals. Agrobacterium perceives plant-derived signals to activate its virulence genes, which are responsible for transferring and integrating its Transferred DNA (T-DNA) from its Tumor-inducing (Ti) plasmid into the plant nucleus. The expression of T-DNA in plant hosts leads to the production of a large amount of indole-3-acetic acid (IAA), cytokinin (CK), and opines. IAA and CK stimulate plant growth, resulting in tumor formation. Agrobacterium utilizes opines as nutrient sources as well as signals in order to activate its quorum sensing (QS) to further promote virulence and opine metabolism. Intriguingly, Agrobacterium also recognizes plant-derived signals including γ-amino butyric acid and salicylic acid (SA) to activate quorum quenching that reduces the level of QS signals, thereby avoiding the elicitation of plant defense and preserving energy. In addition, Agrobacterium hijacks plant-derived signals including SA, IAA, and ethylene to down-regulate its virulence genes located on the Ti plasmid. Moreover, certain metabolites from corn (Zea mays) also inhibit the expression of Agrobacterium virulence genes. Here we outline the responses of Agrobacterium to major plant-derived signals that impact Agrobacterium–plant interactions. PMID:25071805

  10. Agrobacterium tumefaciens responses to plant-derived signaling molecules

    Directory of Open Access Journals (Sweden)

    Sujatha eSubramoni

    2014-07-01

    Full Text Available As a special phytopathogen, Agrobacterium tumefaciens infects a wide range of plant hosts and causes plant tumors also known as crown galls. The complexity of Agrobacterium-plant interaction has been studied for several decades. Agrobacterium pathogenicity is largely attributed to its evolved capabilities of precise recognition and response to plant-derived chemical signals. Agrobacterium perceives plant-derived signals to activate its virulence genes, which are responsible for transferring and integrating its T-DNA (Transferred DNA from its Tumour-inducing (Ti plasmid into the plant nucleus. The expression of T-DNA in plant hosts leads to the production of a large amount of indole-3-acetic acid (IAA, cytokinin (CK and opines. IAA and CK stimulate plant growth, resulting in tumor formation. Agrobacterium utilizes opines as nutrient sources as well as signals in order to activate its quorum sensing (QS to further promote virulence and opine metabolism. Intriguingly, Agrobacterium also recognizes plant-derived signals including -amino butyric acid (GABA and salicylic acid (SA to activate quorum quenching that reduces the level of QS signals, thereby avoiding the elicitation of plant defense and preserving energy. In addition, Agrobacterium hijacks plant-derived signals including SA, IAA, and ethylene (ET to down-regulate its virulence genes located on the Ti plasmid. Moreover, certain metabolites from corn (Zea mays also inhibit the expression of Agrobacterium virulence genes. Here we outline the responses of Agrobacterium to major plant-derived signals that impact Agrobacterium-plant interactions.

  11. In silico identification of BIM-1 (2-methyl-1H-indol-3-yl) as a potential ...

    African Journals Online (AJOL)

    In silico identification of BIM-1 (2-methyl-1H-indol-3-yl) as a potential therapeutic agent against elevated protein kinase C beta associated diseases. U Saeed, N Nawaz, Y Waheed, N Chaudry, HT Bhatti, S Urooj, H Waheed, M Ashraf, UHK Naizi ...

  12. Tulongicin, an Antibacterial Tri-Indole Alkaloid from a Deep-Water Topsentia sp. Sponge.

    Science.gov (United States)

    Liu, Hong-Bing; Lauro, Gianluigi; O'Connor, Robert D; Lohith, Katheryn; Kelly, Michelle; Colin, Patrick; Bifulco, Giuseppe; Bewley, Carole A

    2017-09-22

    Antibacterial-guided fractionation of an extract of a deep-water Topsentia sp. marine sponge led to the isolation of two new indole alkaloids, tulongicin A (1) and dihydrospongotine C (2), along with two known analogues, spongotine C (3) and dibromodeoxytopsentin (4). Their planar structures were determined by NMR spectroscopy. Their absolute configurations were determined through a combination of experimental and computational analyses. Tulongicin (1) is the first natural product to contain a di(6-Br-1H-indol-3-yl)methyl group linked to an imidazole core. The coexistence of tri-indole 1 and bis-indole alcohol 2 suggests a possible route to 1. All of the compounds showed strong antimicrobial activity against Staphylococcus aureus.

  13. Germination response of coconut ( Cocos nucifera L.) zygotic embryo

    African Journals Online (AJOL)

    The study investigated the effects of liquid and solid media in the propagation of coconut (Cocos nucifera) zygotic embryos at initiation stage. Eeuwen's medium supplemented with growth hormones naphthalene acetic acid ( NAA) and indole butyric acid (IBA) at different concentrations (0.5, 1.0, 1.5, 2.0 and 2.5mg/l) were ...

  14. Fungal Production and Manipulation of Plant Hormones.

    Science.gov (United States)

    Fonseca, Sandra; Radhakrishnan, Dhanya; Prasad, Kalika; Chini, Andrea

    2018-01-01

    Living organisms are part of a highly interconnected web of interactions, characterised by species nurturing, competing, parasitizing and preying on one another. Plants have evolved cooperative as well as defensive strategies to interact with neighbour organisms. Among these, the plant-fungus associations are very diverse, ranging from pathogenic to mutualistic. Our current knowledge of plant-fungus interactions suggests a sophisticated coevolution to ensure dynamic plant responses to evolving fungal mutualistic/pathogenic strategies. The plant-fungus communication relies on a rich chemical language. To manipulate the plant defence mechanisms, fungi produce and secrete several classes of biomolecules, whose modeof- action is largely unknown. Upon perception of the fungi, plants produce phytohormones and a battery of secondary metabolites that serve as defence mechanism against invaders or to promote mutualistic associations. These mutualistic chemical signals can be co-opted by pathogenic fungi for their own benefit. Among the plant molecules regulating plant-fungus interaction, phytohormones play a critical role since they modulate various aspects of plant development, defences and stress responses. Intriguingly, fungi can also produce phytohormones, although the actual role of fungalproduced phytohormones in plant-fungus interactions is poorly understood. Here, we discuss the recent advances in fungal production of phytohormone, their putative role as endogenous fungal signals and how fungi manipulate plant hormone balance to their benefits. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  15. Highly Sensitive and High-Throughput Analysis of Plant Hormones Using MS-Probe Modification and Liquid Chromatography–Tandem Mass Spectrometry: An Application for Hormone Profiling in Oryza sativa

    Science.gov (United States)

    Kojima, Mikiko; Kamada-Nobusada, Tomoe; Komatsu, Hirokazu; Takei, Kentaro; Kuroha, Takeshi; Mizutani, Masaharu; Ashikari, Motoyuki; Ueguchi-Tanaka, Miyako; Matsuoka, Makoto; Suzuki, Koji; Sakakibara, Hitoshi

    2009-01-01

    We have developed a highly sensitive and high-throughput method for the simultaneous analysis of 43 molecular species of cytokinins, auxins, ABA and gibberellins. This method consists of an automatic liquid handling system for solid phase extraction and ultra-performance liquid chromatography (UPLC) coupled with a tandem quadrupole mass spectrometer (qMS/MS) equipped with an electrospray interface (ESI; UPLC-ESI-qMS/MS). In order to improve the detection limit of negatively charged compounds, such as gibberellins, we chemically derivatized fractions containing auxin, ABA and gibberellins with bromocholine that has a quaternary ammonium functional group. This modification, that we call ‘MS-probe’, makes these hormone derivatives have a positive ion charge and permits all compounds to be measured in the positive ion mode with UPLC-ESI-qMS/MS in a single run. Consequently, quantification limits of gibberellins increased up to 50-fold. Our current method needs 180 plant samples simultaneously. Application of this method to plant hormone profiling enabled us to draw organ distribution maps of hormone species in rice and also to identify interactions among the four major hormones in the rice gibberellin signaling mutants, gid1-3, gid2-1 and slr1. Combining the results of hormone profiling data with transcriptome data in the gibberellin signaling mutants allows us to analyze relationships between changes in gene expression and hormone metabolism. PMID:19369275

  16. Salicylic acid, a plant defense hormone, is specifically secreted by a molluscan herbivore.

    Science.gov (United States)

    Kästner, Julia; von Knorre, Dietrich; Himanshu, Himanshu; Erb, Matthias; Baldwin, Ian T; Meldau, Stefan

    2014-01-01

    Slugs and snails are important herbivores in many ecosystems. They differ from other herbivores by their characteristic mucus trail. As the mucus is secreted at the interface between the plants and the herbivores, its chemical composition may play an essential role in plant responses to slug and snail attack. Based on our current knowledge about host-manipulation strategies employed by pathogens and insects, we hypothesized that mollusks may excrete phytohormone-like substances into their mucus. We therefore screened locomotion mucus from thirteen molluscan herbivores for the presence of the plant defense hormones jasmonic acid (JA), salicylic acid (SA) and abscisic acid (ABA). We found that the locomotion mucus of one slug, Deroceras reticulatum, contained significant amounts of SA, a plant hormone that is known to induce resistance to pathogens and to suppress plant immunity against herbivores. None of the other slugs and snails contained SA or any other hormone in their locomotion mucus. When the mucus of D. reticulatum was applied to wounded leaves of A. thaliana, the promotor of the SA-responsive gene pathogenesis related 1 (PR1) was activated, demonstrating the potential of the mucus to regulate plant defenses. We discuss the potential ecological, agricultural and medical implications of this finding.

  17. Salicylic acid, a plant defense hormone, is specifically secreted by a molluscan herbivore.

    Directory of Open Access Journals (Sweden)

    Julia Kästner

    Full Text Available Slugs and snails are important herbivores in many ecosystems. They differ from other herbivores by their characteristic mucus trail. As the mucus is secreted at the interface between the plants and the herbivores, its chemical composition may play an essential role in plant responses to slug and snail attack. Based on our current knowledge about host-manipulation strategies employed by pathogens and insects, we hypothesized that mollusks may excrete phytohormone-like substances into their mucus. We therefore screened locomotion mucus from thirteen molluscan herbivores for the presence of the plant defense hormones jasmonic acid (JA, salicylic acid (SA and abscisic acid (ABA. We found that the locomotion mucus of one slug, Deroceras reticulatum, contained significant amounts of SA, a plant hormone that is known to induce resistance to pathogens and to suppress plant immunity against herbivores. None of the other slugs and snails contained SA or any other hormone in their locomotion mucus. When the mucus of D. reticulatum was applied to wounded leaves of A. thaliana, the promotor of the SA-responsive gene pathogenesis related 1 (PR1 was activated, demonstrating the potential of the mucus to regulate plant defenses. We discuss the potential ecological, agricultural and medical implications of this finding.

  18. Glucosinolates from Host Plants Influence Growth of the Parasitic Plant Cuscuta gronovii and Its Susceptibility to Aphid Feeding.

    Science.gov (United States)

    Smith, Jason D; Woldemariam, Melkamu G; Mescher, Mark C; Jander, Georg; De Moraes, Consuelo M

    2016-09-01

    Parasitic plants acquire diverse secondary metabolites from their hosts, including defense compounds that target insect herbivores. However, the ecological implications of this phenomenon, including the potential enhancement of parasite defenses, remain largely unexplored. We studied the translocation of glucosinolates from the brassicaceous host plant Arabidopsis (Arabidopsis thaliana) into parasitic dodder vines (Convolvulaceae; Cuscuta gronovii) and its effects on the parasite itself and on dodder-aphid interactions. Aliphatic and indole glucosinolates reached concentrations in parasite tissues higher than those observed in corresponding host tissues. Dodder growth was enhanced on cyp79B2 cyp79B3 hosts (without indole glucosinolates) but inhibited on atr1D hosts (with elevated indole glucosinolates) relative to wild-type hosts, which responded to parasitism with localized elevation of indole and aliphatic glucosinolates. These findings implicate indole glucosinolates in defense against parasitic plants. Rates of settling and survival on dodder vines by pea aphids (Acyrthosiphon pisum) were reduced significantly when dodder parasitized glucosinolate-producing hosts (wild type and atr1D) compared with glucosinolate-free hosts (cyp79B2 cyp79B3 myb28 myb29). However, settling and survival of green peach aphids (Myzus persicae) were not affected. M. persicae population growth was actually reduced on dodder parasitizing glucosinolate-free hosts compared with wild-type or atr1D hosts, even though stems of the former contain less glucosinolates and more amino acids. Strikingly, this effect was reversed when the aphids fed directly upon Arabidopsis, which indicates an interactive effect of parasite and host genotype on M. persicae that stems from host effects on dodder. Thus, our findings indicate that glucosinolates may have both direct and indirect effects on dodder-feeding herbivores. © 2016 American Society of Plant Biologists. All rights reserved.

  19. Responses of membrane lipid peroxidation and endogenous hormones of soybean seedlings to UV-B radiation and rare earth

    International Nuclear Information System (INIS)

    Yan Shengrong; Yang Chunhe; Zhang Yuequn

    2009-01-01

    [Objective] The aim was to provide strategies for development of rare earth and control of environmental pollution. [Method] Responses of membrane lipid peroxidation and endogenous hormones of soybean seedlings to UV-B radiation and rare earth were studied through hydroponics in laboratory. [Result] The results showed that under irradiation of UV-B(T1-0.15 W/m2 and T2-0.45 W/m2), chlorophyll and indole-3-acetic acid(IAA) contents firstly decreased during the stress phase (1-5d) and then increased during the restoration phase (6-9d) while contents of malonadialdehyde(MDA) and abscisic acid(ABA) gradually increased during the imposition of UV-B radiation (1-5d) and subsequently decreased during recovery from UV-B stress (6-9d) . With adding of La (Ⅲ) with the concentration of 20mg•L-1, the decline/rise trend of chlorophyll, IAA, MDA and ABA contents was slowed down during the stress period while the rise/decline speed was accelerated during the recovery period. [Conclusion] It suggests that the regulation of La (Ⅲ) on membrane lipid peroxidation and endogenous hormones could increase chlorophyll and IAA contents, improve the metabolism of reactive oxygen species (ROS), inhibit membrane lipid peroxidation, decrease the accumulation amount of ABA and alleviate injury of UV-B radiation to soybean seedlings. Further, the protective potential of La (Ⅲ) was better under low UV-B radiation than under high one

  20. Nitric oxide mediates the indole acetic acid induction activation of a mitogen-activated protein kinase cascade involved in adventitious root development.

    Science.gov (United States)

    Pagnussat, Gabriela Carolina; Lanteri, María Luciana; Lombardo, María Cristina; Lamattina, Lorenzo

    2004-05-01

    Recently, it was demonstrated that nitric oxide (NO) and cGMP are involved in the auxin response during the adventitious rooting process in cucumber (Cucumis sativus; Pagnussat et al., 2002, 2003). However, not much is known about the complex molecular network operating during the cell proliferation and morphogenesis triggered by auxins and NO in that process. Anatomical studies showed that formation of adventitious root primordia was clearly detected in indole acetic acid (IAA)- and NO-treated cucumber explants, while neither cell proliferation nor differentiation into root primordia could be observed in control explants 3 d after primary root was removed. In order to go further with signal transduction mechanisms that operate during IAA- and NO-induced adventitious root formation, experiments were designed to test the involvement of a mitogen-activated protein kinase (MAPK) cascade in that process. Cucumber explants were treated with the NO-donor sodium nitroprusside (SNP) or with SNP plus the specific NO-scavenger cPTIO. Protein extracts from those explants were assayed for protein kinase (PK) activity by using myelin basic protein (MBP) as substrate in both in vitro and in-gel assays. The activation of a PK of approximately 48 kD could be detected 1 d after NO treatment with a maximal activation after 3 d of treatment. In control explants, a PK activity was detected only after 4 d of treatment. The MBP-kinase activity was also detected in extracts from IAA-treated explants, while no signal was observed in IAA + cPTIO treatments. The PK activity could be inhibited by the cell-permeable MAPK kinase inhibitor PD098059, suggesting that the NO-dependent MBP-kinase activity is a MAPK. Furthermore, when PD098059 was administered to explants treated with SNP or IAA, it produced a delay in root emergence and a dose-dependent reduction in root number. Altogether, our results suggest that a MAPK signaling cascade is activated during the adventitious rooting process

  1. Complete genome analysis of Serratia marcescens RSC-14: A plant growth-promoting bacterium that alleviates cadmium stress in host plants

    Science.gov (United States)

    Khan, Abdur Rahim; Park, Gun-Seok; Asaf, Sajjad; Hong, Sung-Jun; Jung, Byung Kwon

    2017-01-01

    Serratia marcescens RSC-14 is a Gram-negative bacterium that was previously isolated from the surface-sterilized roots of the Cd-hyperaccumulator Solanum nigrum. The strain stimulates plant growth and alleviates Cd stress in host plants. To investigate the genetic basis for these traits, the complete genome of RSC-14 was obtained by single-molecule real-time sequencing. The genome of S. marcescens RSC-14 comprised a 5.12-Mbp-long circular chromosome containing 4,593 predicted protein-coding genes, 22 rRNA genes, 88 tRNA genes, and 41 pseudogenes. It contained genes with potential functions in plant growth promotion, including genes involved in indole-3-acetic acid (IAA) biosynthesis, acetoin synthesis, and phosphate solubilization. Moreover, annotation using NCBI and Rapid Annotation using Subsystem Technology identified several genes that encode antioxidant enzymes as well as genes involved in antioxidant production, supporting the observed resistance towards heavy metals, such as Cd. The presence of IAA pathway-related genes and oxidative stress-responsive enzyme genes may explain the plant growth-promoting potential and Cd tolerance, respectively. This is the first report of a complete genome sequence of Cd-tolerant S. marcescens and its plant growth promotion pathway. The whole-genome analysis of this strain clarified the genetic basis underlying its phenotypic and biochemical characteristics, underpinning the beneficial interactions between RSC-14 and plants. PMID:28187139

  2. Alleviation of salt stress by halotolerant and halophilic plant growth-promoting bacteria in wheat (Triticum aestivum

    Directory of Open Access Journals (Sweden)

    Furkan Orhan

    Full Text Available ABSTRACT In the current study, 18 halotolerant and halophilic bacteria have been investigated for their plant growth promoting abilities in vitro and in a hydroponic culture. The bacterial strains have been investigated for ammonia, indole-3-acetic acid and 1-aminocyclopropane-1-carboxylate-deaminase production, phosphate solubilisation and nitrogen fixation activities. Of the tested bacteria, eight were inoculated with Triticum aestivum in a hydroponic culture. The investigated bacterial strains were found to have different plant-growth promoting activities in vitro. Under salt stress (200 mM NaCl, the investigated bacterial strains significantly increased the root and shoot length and total fresh weight of the plants. The growth rates of the plants inoculated with bacterial strains ranged from 62.2% to 78.1%.Identifying of novel halophilic and halotolerant bacteria that promote plant growth can be used as alternatives for salt sensitive plants. Extensive research has been conducted on several halophilic and halotolerant bacterial strains to investigate their plant growth promoting activities. However, to the best of my knowledge, this is the first study to inoculate these bacterial strains with wheat.

  3. Alleviation of salt stress by halotolerant and halophilic plant growth-promoting bacteria in wheat (Triticum aestivum).

    Science.gov (United States)

    Orhan, Furkan

    2016-01-01

    In the current study, 18 halotolerant and halophilic bacteria have been investigated for their plant growth promoting abilities in vitro and in a hydroponic culture. The bacterial strains have been investigated for ammonia, indole-3-acetic acid and 1-aminocyclopropane-1-carboxylate-deaminase production, phosphate solubilisation and nitrogen fixation activities. Of the tested bacteria, eight were inoculated with Triticum aestivum in a hydroponic culture. The investigated bacterial strains were found to have different plant-growth promoting activities in vitro. Under salt stress (200mM NaCl), the investigated bacterial strains significantly increased the root and shoot length and total fresh weight of the plants. The growth rates of the plants inoculated with bacterial strains ranged from 62.2% to 78.1%. Identifying of novel halophilic and halotolerant bacteria that promote plant growth can be used as alternatives for salt sensitive plants. Extensive research has been conducted on several halophilic and halotolerant bacterial strains to investigate their plant growth promoting activities. However, to the best of my knowledge, this is the first study to inoculate these bacterial strains with wheat. Copyright © 2016 Sociedade Brasileira de Microbiologia. Published by Elsevier Editora Ltda. All rights reserved.

  4. Effect of plant growth-promoting bacteria on the growth and fructan production of Agave americana L.

    Directory of Open Access Journals (Sweden)

    Neyser De La Torre-Ruiz

    Full Text Available ABSTRACT The effect of plant growth-promoting bacteria inoculation on plant growth and the sugar content in Agave americana was assessed. The bacterial strains ACO-34A, ACO-40, and ACO-140, isolated from the A. americana rhizosphere, were selected for this study to evaluate their phenotypic and genotypic characteristics. The three bacterial strains were evaluated via plant inoculation assays, and Azospirillum brasilense Cd served as a control strain. Phylogenetic analysis based on the 16S rRNA gene showed that strains ACO-34A, ACO-40 and ACO-140 were Rhizobium daejeonense, Acinetobacter calcoaceticus and Pseudomonas mosselii, respectively. All of the strains were able to synthesize indole-3-acetic acid (IAA, solubilize phosphate, and had nitrogenase activity. Inoculation using the plant growth-promoting bacteria strains had a significant effect (p < 0.05 on plant growth and the sugar content of A. americana, showing that these native plant growth-promoting bacteria are a practical, simple, and efficient alternative to promote the growth of agave plants with proper biological characteristics for agroindustrial and biotechnological use and to increase the sugar content in this agave species.

  5. Hormonal regulation of the growth of leaves and inflorescence stalk in Muscari armeniacum Leichtl.

    Directory of Open Access Journals (Sweden)

    Marian Saniewski

    2016-04-01

    Full Text Available It is known that chilling of Muscari bulbs is necessary for the growth of the inflorescence stalk and flowering, but not for the growth of leaves. Gibberellic acid (GA accelerated stem growth and flowering in chilled Muscari bulbs. In the present experiment it was shown that in unchilled derooted Muscari bulbs the growth of leaves, but not the growth of the inflorescence stalk, was observed when bulbs were stored in water, GA at a concentration of 50 and 100 mg/L, benzyladenine (BA at a concentration of 25 and 50 mg/L, or a mixture of GA+BA (50+25 mg/L, but abscisic acid (ABA at a concentration of 10 mg/L greatly inhibited the growth of leaves. In chilled derooted Muscari bulbs the growth of leaves and inflorescence stalk was observed when bulbs were stored in water or GA, but BA and GA+BA treatments totally inhibited the growth of the inflorescence stalk without an effect on the growth of leaves. These results clearly showed that the growth of leaves and inflorescence stalk in Muscari bulbs are controlled by plant growth regulators in different ways. ABA totally inhibited the growth of leaves and inflorescence stalk in chilled derooted Muscari bulbs. It was shown that after the excision of the inflorescence bud in cultivated chilled Muscari bulbs, the inflorescence stalk died, but application of indole-3-acetic acid (IAA 0.5% in the place of the removed inflorescence bud induced the growth of the inflorescence stalk. IAA applied under the inflorescence bud inhibited the development of flowers (flower-bud blasting and induced the growth of the inflorescence stalk below the treatment site. These results are discussed with reference to hormonal regulation of stem (stalk growth in tulip, narcissus, hyacinth, and Hippeastrum.

  6. Phytohormone supplementation significantly increases growth of Chlamydomonas reinhardtii cultivated for biodiesel production.

    Science.gov (United States)

    Park, Won-Kun; Yoo, Gursong; Moon, Myounghoon; Kim, Chul Woong; Choi, Yoon-E; Yang, Ji-Won

    2013-11-01

    Cultivation is the most expensive step in the production of biodiesel from microalgae, and substantial research has been devoted to developing more cost-effective cultivation methods. Plant hormones (phytohormones) are chemical messengers that regulate various aspects of growth and development and are typically active at very low concentrations. In this study, we investigated the effect of different phytohormones on microalgal growth and biodiesel production in Chlamydomonas reinhardtii and their potential to lower the overall cost of commercial biofuel production. The results indicated that all five of the tested phytohormones (indole-3-acetic acid, gibberellic acid, kinetin, 1-triacontanol, and abscisic acid) promoted microalgal growth. In particular, hormone treatment increased biomass production by 54 to 69 % relative to the control growth medium (Tris-acetate-phosphate, TAP). Phytohormone treatments also affected microalgal cell morphology but had no effect on the yields of fatty acid methyl esters (FAMEs) as a percent of biomass. We also tested the effect of these phytohormones on microalgal growth in nitrogen-limited media by supplementation in the early stationary phase. Maximum cell densities after addition of phytohormones were higher than in TAP medium, even when the nitrogen source was reduced to 40 % of that in TAP medium. Taken together, our results indicate that phytohormones significantly increased microalgal growth, particularly in nitrogen-limited media, and have potential for use in the development of efficient microalgal cultivation for biofuel production.

  7. Development of a method for comprehensive and quantitative analysis of plant hormones by highly sensitive nanoflow liquid chromatography-electrospray ionization-ion trap mass spectrometry

    International Nuclear Information System (INIS)

    Izumi, Yoshihiro; Okazawa, Atsushi; Bamba, Takeshi; Kobayashi, Akio; Fukusaki, Eiichiro

    2009-01-01

    In recent plant hormone research, there is an increased demand for a highly sensitive and comprehensive analytical approach to elucidate the hormonal signaling networks, functions, and dynamics. We have demonstrated the high sensitivity of a comprehensive and quantitative analytical method developed with nanoflow liquid chromatography-electrospray ionization-ion trap mass spectrometry (LC-ESI-IT-MS/MS) under multiple-reaction monitoring (MRM) in plant hormone profiling. Unlabeled and deuterium-labeled isotopomers of four classes of plant hormones and their derivatives, auxins, cytokinins (CK), abscisic acid (ABA), and gibberellins (GA), were analyzed by this method. The optimized nanoflow-LC-ESI-IT-MS/MS method showed ca. 5-10-fold greater sensitivity than capillary-LC-ESI-IT-MS/MS, and the detection limits (S/N = 3) of several plant hormones were in the sub-fmol range. The results showed excellent linearity (R 2 values of 0.9937-1.0000) and reproducibility of elution times (relative standard deviations, RSDs, <1.1%) and peak areas (RSDs, <10.7%) for all target compounds. Further, sample purification using Oasis HLB and Oasis MCX cartridges significantly decreased the ion-suppressing effects of biological matrix as compared to the purification using only Oasis HLB cartridge. The optimized nanoflow-LC-ESI-IT-MS/MS method was successfully used to analyze endogenous plant hormones in Arabidopsis and tobacco samples. The samples used in this analysis were extracted from only 17 tobacco dry seeds (1 mg DW), indicating that the efficiency of analysis of endogenous plant hormones strongly depends on the detection sensitivity of the method. Our analytical approach will be useful for in-depth studies on complex plant hormonal metabolism.

  8. Development of a method for comprehensive and quantitative analysis of plant hormones by highly sensitive nanoflow liquid chromatography-electrospray ionization-ion trap mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Izumi, Yoshihiro; Okazawa, Atsushi; Bamba, Takeshi; Kobayashi, Akio [Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871 (Japan); Fukusaki, Eiichiro, E-mail: fukusaki@bio.eng.osaka-u.ac.jp [Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871 (Japan)

    2009-08-26

    In recent plant hormone research, there is an increased demand for a highly sensitive and comprehensive analytical approach to elucidate the hormonal signaling networks, functions, and dynamics. We have demonstrated the high sensitivity of a comprehensive and quantitative analytical method developed with nanoflow liquid chromatography-electrospray ionization-ion trap mass spectrometry (LC-ESI-IT-MS/MS) under multiple-reaction monitoring (MRM) in plant hormone profiling. Unlabeled and deuterium-labeled isotopomers of four classes of plant hormones and their derivatives, auxins, cytokinins (CK), abscisic acid (ABA), and gibberellins (GA), were analyzed by this method. The optimized nanoflow-LC-ESI-IT-MS/MS method showed ca. 5-10-fold greater sensitivity than capillary-LC-ESI-IT-MS/MS, and the detection limits (S/N = 3) of several plant hormones were in the sub-fmol range. The results showed excellent linearity (R{sup 2} values of 0.9937-1.0000) and reproducibility of elution times (relative standard deviations, RSDs, <1.1%) and peak areas (RSDs, <10.7%) for all target compounds. Further, sample purification using Oasis HLB and Oasis MCX cartridges significantly decreased the ion-suppressing effects of biological matrix as compared to the purification using only Oasis HLB cartridge. The optimized nanoflow-LC-ESI-IT-MS/MS method was successfully used to analyze endogenous plant hormones in Arabidopsis and tobacco samples. The samples used in this analysis were extracted from only 17 tobacco dry seeds (1 mg DW), indicating that the efficiency of analysis of endogenous plant hormones strongly depends on the detection sensitivity of the method. Our analytical approach will be useful for in-depth studies on complex plant hormonal metabolism.

  9. FORMULASI AUKSIN (INDOLE ACETIC ACID DAN SITOKININ (KINETIN, ZEATIN UNTUK MORFOGENESIS SERTA PENGARUHNYA TERHADAP PERTUMBUHAN, SINTASAN DAN LAJU REGENERASI KALUS RUMPUT LAUT, Kappaphycus alvarezii

    Directory of Open Access Journals (Sweden)

    Sri Redjeki Hesti Mulyaningrum

    2013-03-01

    Full Text Available Interaksi auksin dan sitokinin dianggap penting untuk mengatur pertumbuhan dan perkembangan dalam kultur jaringan tanaman. Penelitian ini bertujuan untuk menentukan komposisi auksin dan sitokinin yang optimum untuk morfogenesis kalus rumput laut K. alvarezii, dan mengevaluasi pengaruhnya terhadap pertumbuhan, sintasan, dan laju regenerasi kalus. Kultur kalus dilakukan pada media cair dengan formulasi zat pengatur tumbuh (ZPT indole acetic acid (IAA : kinetin : zeatin, dengan komposisi konsentrasi sebagai berikut: A 0,4:0:1 mg/L; B 0,4:0,25:0,75 mg/L; C 0,4:0,5:0,5 mg/L; D 0,4:0,75: 0,25 mg/L; E 0,4:1:0 mg/L; kontrol (tanpa ZPT. Desain penelitian adalah rancangan acak lengkap dengan pengulangan tiga kali untuk masing-masing perlakuan. Parameter yang diamati adalah laju pertumbuhan harian, sintasan, laju regenerasi, panjang tunas, dan morfologi tunas. Analisis data dilakukan dengan uji keragaman (ANOVA dan hasil yang diperoleh disajikan dalam bentuk grafik. Hasil penelitian menunjukkan bahwa formula optimum untuk morfogenesis rumput laut K. alvarezii adalah formula A dengan komposisi IAA : zeatin = 0,4:1 mg/L. Penggunaan formula zat pengatur tumbuh yang berbeda berpengaruh nyata (P0,05 terhadap sintasan kalus. Tunas rumput laut K. alvarezii mulai terbentuk pada hari ke-15 masa kultur.

  10. Phytohormones as Important Biologically Active Molecules – Their Simple Simultaneous Detection

    Directory of Open Access Journals (Sweden)

    Ladislav Havel

    2009-05-01

    Full Text Available Phytohormones, their functions, synthesis and effects, are of great interest. To study them in plant tissues accurate and sensitive methods are required. In the present study we aimed at optimizing experimental conditions to separate and determine not only plant hormones but also their metabolites, by liquid chromatography coupled with a UV-VIS detector. The mixture we analyzed was composed of benzyladenine, kinetin, trans-zeatin, cis-zeatin, dihydrozeatin, meta-topolin, ortho-topolin, α-naphthalene acetic acid, indole-3-acetic acid, trans-zeatin-7-glucoside, trans-zeatin-O-glucoside, trans-zeatin-9-riboside, meta-topolin-9-riboside and ortho-topolin-9-riboside. We measured the calibration dependences and estimated limits of detection and quantification under the optimal chromatographic conditions (column: Polaris C18; mobile phase: gradient starting at 2:98 (methanol:0.001% TFA and was increasing to 55:45 during twenty minutes, and then decreasing for 10 min to 35:65, flow rate: 200 µL·min-1, temperature: 50 °C, wavelength: 210 nm. The detection limits for the target molecules were estimated as tens of ng per mL. We also studied the effect of flax extracts on the phytohormones’ signals. Recovery of aliphatic and aromatic cytokinins, metabolites of cytokinins and auxinswere within the range from 87 to 105 %. The experimental conditions were tested on a mass selective detector. In addition we analysed a commercial product used for stimulation of roots formation in cuttings of poorly rooting plants. The determined content of α-naphthalene acetic acid was in good agreement with that declared by the manufacturer.

  11. Enraizamento de estacas de Pau-Brasil (Caesalpinia echinata Lam. tratadas com ácido indol butírico e ácido naftaleno acético Rooting cuttings of Pau-Brasil (Caesalpinia echinata Lam. treated with indole butyric acid and naphthalene acetic acid

    Directory of Open Access Journals (Sweden)

    Laurício Endres

    2007-06-01

    Full Text Available O pau-brasil (Caesalpinia echinata Lam. tem grande valor cultural no Brasil e a sua propagação por sementes é dificultada pela rápida perda do poder germinativo delas. A estaquia pode ser usada para a produção de mudas de espécies florestais, principalmente quando existem algumas dificuldades de propagação por sementes. Este trabalho teve como objetivo caracterizar o efeito de concentrações e fontes de auxinas sobre o enraizamento de estacas de pau-brasil. Estacas com cerca de 12cm de comprimento e de um a dois pares de folhas foram tratadas na base com ácido indol butírico (AIB, ácido naftaleno acético (ANA na forma líquida ou na forma de pó nas concentrações de 0, 1.250, 2.500, 5.000, 10.000mg L-1 ou mg Kg-1, respectivamente. As estacas foram transferidas para substrato contendo areia e mantidas sob nebulização (90-95% UR. Aos 120 dias de estaquia, foram avaliados a mortalidade, a retenção foliar, a formação de calo e a percentagem de estacas enraizadas. As estacas apresentaram índices de sobrevivência de até 70%. A formação de calos não foi relacionada com a concentração de auxinas utilizadas. O maior índice de enraizamento de estacas de pau-brasil, em torno de 16%, foi resgistrada com a utilização do ácido indolbutírico (AIB e do ácido naftalenoacético (ANA na concentração 2.500mg L-1. Os altos índices de sobrevivência e os baixos índices de enraizamento sugerem que as estacas devem permanecer por mais tempo sob nebulização, a fim de induzir o seu processo de enraizamento.The 'pau-brasil' tree (Caesalpinia echinata Lam. have a high cultural value in Brazil and its seed propagation is very difficult because of its rapid losses of germination potential. Cuttings propagation has been considered as alternative method to propagate forest species that seed propagation is poor. The objectives of this study were to determine the effects of indole-3-butyric acid (IBA and naphthalene acetic (NAA acid on

  12. Silencing the Transcriptional Repressor, ZCT1, Illustrates the Tight Regulation of Terpenoid Indole Alkaloid Biosynthesis in Catharanthus roseus Hairy Roots.

    Directory of Open Access Journals (Sweden)

    Noreen F Rizvi

    Full Text Available The Catharanthus roseus plant is the source of many valuable terpenoid indole alkaloids (TIAs, including the anticancer compounds vinblastine and vincristine. Transcription factors (TFs are promising metabolic engineering targets due to their ability to regulate multiple biosynthetic pathway genes. To increase TIA biosynthesis, we elicited the TIA transcriptional activators (ORCAs and other unidentified TFs with the plant hormone, methyl jasmonate (MJ, while simultaneously silencing the expression of the transcriptional repressor ZCT1. To silence ZCT1, we developed transgenic hairy root cultures of C. roseus that expressed an estrogen-inducible Zct1 hairpin for activating RNA interference. The presence of 17β-estradiol (5μM effectively depleted Zct1 in hairy root cultures elicited with MJ dosages that either optimize or inhibit TIA production (250 or 1000μM. However, silencing Zct1 was not sufficient to increase TIA production or the expression of the TIA biosynthetic genes (G10h, Tdc, and Str, illustrating the tight regulation of TIA biosynthesis. The repression of the TIA biosynthetic genes at the inhibitory MJ dosage does not appear to be solely regulated by ZCT1. For instance, while Zct1 and Zct2 levels decreased through activating the Zct1 hairpin, Zct3 levels remained elevated. Since ZCT repressors have redundant yet distinct functions, silencing all three ZCTs may be necessary to relieve their repression of alkaloid biosynthesis.

  13. Increased Growth of the Microalga Chlorella vulgaris when Coimmobilized and Cocultured in Alginate Beads with the Plant-Growth-Promoting Bacterium Azospirillum brasilense†

    Science.gov (United States)

    Gonzalez, Luz E.; Bashan, Yoav

    2000-01-01

    Coimmobilization of the freshwater microalga Chlorella vulgaris and the plant-growth-promoting bacterium Azospirillum brasilense in small alginate beads resulted in a significantly increased growth of the microalga. Dry and fresh weight, total number of cells, size of the microalgal clusters (colonies) within the bead, number of microalgal cells per cluster, and the levels of microalgal pigments significantly increased. Light microscopy revealed that both microorganisms colonized the same cavities inside the beads, though the microalgae tended to concentrate in the more aerated periphery while the bacteria colonized the entire bead. The effect of indole-3-acetic acid addition to microalgal culture prior to immobilization of microorganisms in alginate beads partially imitated the effect of A. brasilense. We propose that coimmobilization of microalgae and plant-growth-promoting bacteria is an effective means of increasing microalgal populations within confined environments. PMID:10742237

  14. Design and synthesis of an indol derivative as antibacterial agent against Staphylococcus aureus.

    Science.gov (United States)

    Lenin, Hau-Heredia; Lauro, Figueroa-Valverde; Marcela, Rosas-Nexticapa; Socorro, Herrera-Meza; Maria, López-Ramos; Francisco, Díaz-Cedillo; Elodia, García-Cervera; Eduardo, Pool-Gómez; Josefa, Paat-Estrella; Regina, Cauich-Carrillo; Saidy, Euan-Hau

    2017-10-01

    Several indole derivatives with antibacterial activity have been prepared using different protocols; however, some require special reagents and conditions. The aim of this study involved the synthesis of some indole derivatives using estrone and OTBS-estrone as chemical tools. The synthesis of the indole derivatives involves reactions such as follows: (1) synthesis of two indol derivatives ( 4 or 5 ) by reaction of estrone or OTBS-estrone with phenylhydrazine in medium acid; (2) reaction of 4 or 5 with 6-cloro-1-hexyne in medium basic to form two hexynyl-indol ( 7 or 8 ); (3) preparation of indol-propargylic alcohol derivatives ( 10 or 11 ) by reaction of benzaldehyde with 7 or 8 in medium basic; (4) synthesis of indol-aldehydes ( 12 or 13 ) via oxidation of 10 or 11 with DMSO; (5) synthesis of indeno-indol-carbaldehyde ( 15 or 16 ) via alkynylation/cyclization of 12 or 13 with hexyne in presence of copper(II); (6) preparation indeno-indol-carbaldehyde complex ( 19 or 20 ) via alkynylation/cyclization of 12 or 13 with 1-(hex-5-yn-1-yl)-2-phenyl-1 H -imidazole. The antibacterial effect exerted by the indol-steroid derivatives against Streptococcus pneumoniae and Staphylococcus aureus bacteria was evaluated using dilution method and the minimum inhibitory concentration (MIC). The results showed that only the compound 19 inhibit the growth bacterial of S. aureus . In conclusion, these data indicate that antibacterial activity of 19 can be due mainly to functional groups involved in the chemical structure in comparison with the compounds studied.

  15. Simple preparation of new N-aryl-N-(3-indolmethyl acetamides and their spectroscopic analysis

    Directory of Open Access Journals (Sweden)

    José A. Henao

    2009-12-01

    Full Text Available To prepare new indolic molecules and characterize them by spectroscopic methods. Materials and methods: All reagentswere purchased from Aldrich, commercial grade. The purity of the products and the composition of the reaction mixtures were monitoredby thin layer chromatography over Silufol UV254 0.25 mm-thick chromatoplates. Product isolation and purification were performed bycolumn chromatography (SiO2, using ethyl acetate-petroleum ether mixtures as eluents. Results. The synthesis of new N-aryl-N-(3-indolmethyl acetamides based on first step iminization reaction of indol-3-carbaldehyde is accomplished. The structures of the C-3substituted indoles were confirmed by 1H-NMR and 13C-NMR studies supported by inverse-detected 2D NMR experiments and alsothrough monocrystal X-ray diffraction. Conclusions. An efficient, economic, and fast synthetic route was designed to the construction ofthe N-aryl-N-(3-indolmethyl acetamides, structural analogues of some alkaloids.

  16. Progestins used in hormonal replacement therapy display different effects in coronary arteries from New Zealand white rabbits

    DEFF Research Database (Denmark)

    Pedersen, Nina G; Pedersen, Susan H; Dalsgaard, Tórur

    2004-01-01

    ) medroxyprogesterone acetate (MPA), (2) norethisterone acetate (NETA), (3) conjugated equine estrogens (CEE), (4) 17-beta-estradiol (E2), (5) MPA+CEE , (6) NETA+E2 , (7) or placebo (n=8) and given hormonal treatment through the diet for 4 weeks. Ring segments from the left proximal coronary artery and from the distal...

  17. Identification of metabolites in urine and feces from rats dosed with the heterocyclic amine, 2-amino-3-methyl-9H-pyrido[2,3-b]indole (MeA alpha C)

    DEFF Research Database (Denmark)

    Frederiksen, H; Frandsen, H

    2004-01-01

    2-Amino-3-methyl-9H-pyrido[2,3-b]indole (MeA alpha C) is a proximate mutagenic and carcinogenic heterocyclic amine formed during ordinary cooking. In model systems, MeA alpha C can be formed by pyrolyses of either tryptophan or proteins of animal or vegetable origin. In the present study, the in ......2-Amino-3-methyl-9H-pyrido[2,3-b]indole (MeA alpha C) is a proximate mutagenic and carcinogenic heterocyclic amine formed during ordinary cooking. In model systems, MeA alpha C can be formed by pyrolyses of either tryptophan or proteins of animal or vegetable origin. In the present study...

  18. Soil bacteria showing a potential of chlorpyrifos degradation and plant growth enhancement

    Directory of Open Access Journals (Sweden)

    Shamsa Akbar

    Full Text Available ABSTRACT Background: Since 1960s, the organophosphate pesticide chlorpyrifos has been widely used for the purpose of pest control. However, given its persistence and toxicity towards life forms, the elimination of chlorpyrifos from contaminated sites has become an urgent issue. For this process bioremediation is the method of choice. Results: Two bacterial strains, JCp4 and FCp1, exhibiting chlorpyrifos-degradation potential were isolated from pesticide contaminated agricultural fields. These isolates were able to degrade 84.4% and 78.6% of the initial concentration of chlorpyrifos (100 mg L-1 within a period of only 10 days. Based on 16S rRNA sequence analysis, these strains were identified as Achromobacter xylosoxidans (JCp4 and Ochrobactrum sp. (FCp1. These strains exhibited the ability to degrade chlorpyrifos in sterilized as well as non-sterilized soils, and were able to degrade 93-100% of the input concentration (200 mg kg-1 within 42 days. The rate of degradation in inoculated soils ranged from 4.40 to 4.76 mg-1 kg-1 d-1 with rate constants varying between 0.047 and 0.069 d-1. These strains also displayed substantial plant growth promoting traits such as phosphate solubilization, indole acetic acid production and ammonia production both in absence as well as in the presence of chlorpyrifos. However, presence of chlorpyrifos (100 and 200 mg L-1 was found to have a negative effect on indole acetic acid production and phosphate solubilization with percentage reduction values ranging between 2.65-10.6% and 4.5-17.6%, respectively. Plant growth experiment demonstrated that chlorpyrifos has a negative effect on plant growth and causes a decrease in parameters such as percentage germination, plant height and biomass. Inoculation of soil with chlorpyrifos-degrading strains was found to enhance plant growth significantly in terms of plant length and weight. Moreover, it was noted that these strains degraded chlorpyrifos at an increased rate (5

  19. Soil bacteria showing a potential of chlorpyrifos degradation and plant growth enhancement.

    Science.gov (United States)

    Akbar, Shamsa; Sultan, Sikander

    2016-01-01

    Since 1960s, the organophosphate pesticide chlorpyrifos has been widely used for the purpose of pest control. However, given its persistence and toxicity towards life forms, the elimination of chlorpyrifos from contaminated sites has become an urgent issue. For this process bioremediation is the method of choice. Two bacterial strains, JCp4 and FCp1, exhibiting chlorpyrifos-degradation potential were isolated from pesticide contaminated agricultural fields. These isolates were able to degrade 84.4% and 78.6% of the initial concentration of chlorpyrifos (100mgL(-1)) within a period of only 10 days. Based on 16S rRNA sequence analysis, these strains were identified as Achromobacter xylosoxidans (JCp4) and Ochrobactrum sp. (FCp1). These strains exhibited the ability to degrade chlorpyrifos in sterilized as well as non-sterilized soils, and were able to degrade 93-100% of the input concentration (200mgkg(-1)) within 42 days. The rate of degradation in inoculated soils ranged from 4.40 to 4.76mg(-1)kg(-1)d(-1) with rate constants varying between 0.047 and 0.069d(-1). These strains also displayed substantial plant growth promoting traits such as phosphate solubilization, indole acetic acid production and ammonia production both in absence as well as in the presence of chlorpyrifos. However, presence of chlorpyrifos (100 and 200mgL(-1)) was found to have a negative effect on indole acetic acid production and phosphate solubilization with percentage reduction values ranging between 2.65-10.6% and 4.5-17.6%, respectively. Plant growth experiment demonstrated that chlorpyrifos has a negative effect on plant growth and causes a decrease in parameters such as percentage germination, plant height and biomass. Inoculation of soil with chlorpyrifos-degrading strains was found to enhance plant growth significantly in terms of plant length and weight. Moreover, it was noted that these strains degraded chlorpyrifos at an increased rate (5.69mg(-1)kg(-1)d(-1)) in planted soil. The

  20. Aeração e adição de sais na produção de ácido indol acético por bactérias diazotróficas Aeration and salt effects on indol acetic production by diazotrophic bacteria

    Directory of Open Access Journals (Sweden)

    Tharwat El-Sayed El-Desouk Radwan

    2005-10-01

    Full Text Available Foi analisada a produção de compostos indólicos por Azospirillum brasilense Cd, A. lipoferum Br 17, Herbaspirillum seropedicae Z 67, H. rubrisubalbicans M4 e a estirpe 34 isolada de arroz, que não se enquadra em nenhuma das espécies de Herbaspirillum já descritas, em relação a diferentes condições de aeração e concentrações de sais. A maior aeração do meio propiciou aumento na produção de compostos indólicos pelas bactérias testadas. Foi verificado aumento desses compostos, em culturas estáticas, em meio sem nitrogênio no caso de Azospirillum, e na presença de N para as estirpes de Herbaspirillum. O aumento da concentração de sais no meio de cultivo inibiu a produção de compostos indólicos, embora tenha sido observado um pequeno aumento quando a concentração de CaCl2 foi de 1 g L-1. O efeito mais deletério da salinidade foi observado com a presença de NaHCO3, seguido de NaCl e Na2SO4. Azospirillum produziu mais compostos indólicos em meio semi-sólido e Herbaspirillum em meio líquido, mas em menor nível.The production of indolic compounds by Azospirillum brasilense Cd, A. lipoferum Br 17, Herbaspirillum seropedicae Z 67, H. rubrisubalbicans M4, and strain 34 isolated from rice, which does not fit into the described Herbaspirillum species, was measured under aeration ratio and salt concentrations. Aeration of the medium increased growth and production of indole compounds by these bacteria. Under static condition, the production was higher both in nitrogen-free medium for Azospirillum, and in amended N medium for the Herbaspirillum strains. Increasing salt concentration into the medium inhibited the production of indole compounds, although a small increase in production was observed, when CaCl2 concentration was raised above 1 g L-1. Deleterious effect of salinity was more pronounced in the presence of NaHCO3, followed by NaCl and Na2SO4. Azospirillum produced more indolic compounds in semi-solid cultures, and

  1. Biochemical changes in barberries during adventitious root formation: the role of indole-3-butyric acid and hydrogen peroxide

    Directory of Open Access Journals (Sweden)

    Ali Tehranifar

    2014-03-01

    Full Text Available Peroxidase, polyphenol oxidase (PPO, phenolic compounds and total sugars (TS were investigated during root formation in cuttings of Berberis vulgaris var. asperma (BVA and Berberis thunbergii var. atropurpurea (BTA treated with indole-3-butyric acid (IBA and IBA+H2O2. Rooting was observed on BTA cuttings but not on BVA cuttings. The BTA cuttings treated with IBA and IBA+H2O2 showed higher rooting percentages, number of roots, and root length over the control. Those treated with IBA+H2O2 recorded the lowest peroxidase activity after planting. BTA cuttings treated with IBA+H2O2 showed the highest peroxidase activity at 50 d after planting; BVA cuttings under different treatments showed no significant difference for peroxidase activity at planting time or up to 80 d after planting. PPO activity for the BTA cuttings in the control treatment was lower than for other treatments during root formation. The cuttings in the IBA and IBA+H2O2 treatments showed increased PPO activity from 0 to 50 d after planting and a slight decrease in PPO activity from 60 to 80 d after planting. PPO activity for the BVA cuttings was significantly lower than for BTA during root formation. The BTA cuttings treated with IBA and IBA+H2O2 showed the highest phenolic compound content during root formation. The BVA cuttings displayed higher TS than BTA during the initial stage of root formation. A comparison of the anatomical structure of easy-to-root and difficult-to-root cuttings indicated that physical inhibitors did not affect the rooting capacity of BVA.

  2. An electrochemical sensor for indole in plasma based on MWCNTs-chitosan modified screen-printed carbon electrode.

    Science.gov (United States)

    Jin, Mingchao; Zhang, Xiaoqing; Zhen, Qianna; He, Yifan; Chen, Xiao; Lyu, Wenjing; Han, Runchuan; Ding, Min

    2017-12-15

    Indole is an essential metabolite in intestinal tract. The dysregulation of plasma indole concentration occurred in various diseases. In this study, the indole in plasma was determined directly using electrochemical sensor with multiwall carbon nanotubes-chitosan (MWCNTs-CS) modified screen-printed carbon electrode (SPCE). The electrochemical behavior of indole was elucidated by cyclic voltammetry (CV) and differential pulse voltammetry (DPV) on the MWCNTs-CS composites modified SPCE (MWCNTs-CS/SPCE). The results showed that the current responses of indole improved greatly due to the high catalytic activity and electron transfer reaction of nano-composites. Under the optimized conditions, the linear range of indole was from 5 to 100μgL -1 with the detection limit of 0.5μgL -1 (S/N = 3). This novel electrochemical sensor exhibited acceptable accuracies and precisions with the variations less than 7.3% and 9.0%, respectively. Furthermore, high performance liquid chromatography (HPLC) method was utilized to compare with the established electrochemical method for the determination of indole in plasma. The results showed a high correlation between the two methods. At last, the electrochemical sensor was successfully applied to detect the level of indole in plasma samples with satisfactory selectivity and sensitivity. The concentrations of plasma indole in healthy pregnant women and gestational diabetes mellitus (GDM) patients were 5.3 (4.1-7.0)μgL -1 and 7.2 (4.5-9.4)μgL -1 , respectively. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. HMI design of MIRROR PLANT for Safe Operation and Application to Vinyl Acetate Monomer Process

    International Nuclear Information System (INIS)

    Hatsugai, Emiko; Nakaya, Makoto

    2014-01-01

    Dynamic plant simulators have always been used off-line for operator training and control loop design prior to the plant construction phase. Here, we propose on-line use of a dynamic simulator for the development of new plant operation. The developed MIRROR PLANT is an on-line dynamic plant simulator that can perfectly simulate dynamic plant behavior, and can also be used to forecast future plant behavior by making the computer run the simulation faster than real-time. Using the estimated and forecast data, the plant operator can detect abnormal situations in the plant. Before activating an alarm from the conventional control system, the operator will be able to perform proactive operation to maintain safety. In this paper, we propose a new human-machine interface (HMI) design to realize proactive operation and discuss application of the HMI to the vinyl acetate monomer process as an example of MIRROR PLANT

  4. Hormonal changes in spring barley after triazine herbicide treatment and its mixtures of regulators of polyamine biosynthesis

    Directory of Open Access Journals (Sweden)

    Pavol Trebichalský

    2017-01-01

    Full Text Available Plants adapt to abiotic stress by undergoing diverse biochemical and physiological changes that involve hormone-dependent signalling pathways. The effects of regulators of polyamine biosynthesis can be mimicked by exogenous chemical regulators such as herbicide safeners, which not only enhance stress tolerance but also confer hormetic benefits such as increased vigor and yield. The phytohormones, abscisic acid (ABA and auxin (IAA play key roles in regulating stress responses in plants. Two years pot trials at Slovak University of agriculture Nitra were carried out with analyses of contents of plant hormones in spring barley grain of variety Kompakt: indolyl-acetic acid (IAA and abscisic acid (ABA, after exposing of tested plants to herbicide stress, as well as the possible decrease of these stress factors with application of regulators of polyamine synthesis was evaluated. At 1st year in spring barley grain after application of solo triazine herbicide treatment in dose 0,5 L.ha-1 an increase of all analyzed plant hormones was observed and contrary, at 2nd year there was the decrease of their contents. From our work there is an obvious influence of herbicide stress induced by application of certain dose of triazine herbicide at 1st year. Expect of the variant with mixture of triazine herbicide (in amount of 0,5 L.ha-1 and 29,6 g.ha-1 DAB, at this year all by us applied regulators of polyamine synthesis reduced the level of both plant hormones. Higher affect of stress caused by enhanced content of soluble macroelements in soil where the plants of barley were grown was observed next year. Soil with increased contents of macronutrients (mg.kg-1: N30.7 + P108.3 + K261.5 + Mg604.2 had reducing effect on contents of plant hormones in barley grain at variant treated with solo triazine herbicide (in dose at 0,5 L.ha-1 in comparison to control variant. The mixtures of regulators of polyamine synthesis reduced the contents of IAA only in comparison to

  5. Cu(3)(BTC)(2) as a viable heterogeneous solid catalyst for Friedel-Crafts alkylation of indoles with nitroalkenes.

    Science.gov (United States)

    Nagaraj, Anbu; Amarajothi, Dhakshinamoorthy

    2017-05-15

    In the present work, Friedel-Crafts alkylation reaction of indole with β-nitrostyrene is examined using a readily available copper based metal-organic frameworks (MOFs) namely, Cu 3 (BTC) 2 (BTC: 1,3,5-benzenetricarboxylic acid) as solid catalyst under mild reaction conditions. Among the various catalysts screened for this reaction, Cu 3 (BTC) 2 exhibits higher activity under the optimized reaction conditions. Besides the absence of leaching of active sites, it is also observed that the catalyst can be reused for four cycles with a minimal decrease in its activity. Cu 3 (BTC) 2 is used as a catalyst to synthesise a series of heterocyclic compounds with different indole and β-nitrostyrene derivatives in moderate to high yields. The present catalytic system shows comparable activity against to recent reports but the advantage of Cu 3 (BTC) 2 is that it does not require any post-functionalization and above all it can be readily synthesised, thus contributing to the synthesis of heterocyclic compounds with high biological interest. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Isolation and selection of plant growth-promoting bacteria associated with sugarcane

    Directory of Open Access Journals (Sweden)

    Ariana Alves Rodrigues

    2016-06-01

    Full Text Available Microorganisms play a vital role in maintaining soil fertility and plant health. They can act as biofertilizers and increase the resistance to biotic and abiotic stress. This study aimed at isolating and characterizing plant growth-promoting bacteria associated with sugarcane, as well as assessing their ability to promote plant growth. Endophytic bacteria from leaf, stem, root and rhizosphere were isolated from the RB 867515 commercial sugarcane variety and screened for indole acetic acid (IAA production, ability to solubilize phosphate, fix nitrogen and produce hydrogen cyanide (HCN, ammonia and the enzymes pectinase, cellulase and chitinase. A total of 136 bacteria were isolated, with 83 of them presenting some plant growth mechanism: 47 % phosphate solubilizers, 26 % nitrogen fixers and 57 % producing IAA, 0.7 % HCN and chitinase, 45 % ammonia, 30 % cellulose and 8 % pectinase. The seven best isolates were tested for their ability to promote plant growth in maize. The isolates tested for plant growth promotion belong to the Enterobacteriaceae family and the Klebsiella, Enterobacter and Pantoea genera. Five isolates promoted plant growth in greenhouse experiments, showing potential as biofertilizers.

  7. Interactions among endophytic bacteria and fungi: effects and ...

    Indian Academy of Sciences (India)

    Madhu

    The colonization of plants by putative endophytes has been visualized by using laser scanning confocal microscope (Coombs and Franco 2003). Endophytes promote the growth of plants in various ways, for example through secretion of plant growth regulators;. e.g. indole-acetic acid (Lee et al 2004), via phosphate-.

  8. Electrochemical Behavior of Biologically Important Indole Derivatives

    Directory of Open Access Journals (Sweden)

    Cigdem Karaaslan

    2011-01-01

    Full Text Available Voltammetric techniques are most suitable to investigate the redox properties of a new drug. Use of electrochemistry is an important approach in drug discovery and research as well as quality control, drug stability, and determination of physiological activity. The indole nucleus is an essential element of a number of natural and synthetic products with significant biological activity. Indole derivatives are the well-known electroactive compounds that are readily oxidized at carbon-based electrodes, and thus analytical procedures, such as electrochemical detection and voltammetry, have been developed for the determination of biologically important indoles. This paper explains some of the relevant and recent achievements in the electrochemistry processes and parameters mainly related to biologically important indole derivatives in view of drug discovery and analysis.

  9. EFFICIENT MICROPROPAGATION FROM COTYLEDONARY NODE CULTURES OF COMMIPHORA WIGHTII (ARN. BHANDARI, AN ENDANGERED MEDICINALLY IMPORTANT DESERT PLANT

    Directory of Open Access Journals (Sweden)

    TARUN KANT

    2010-12-01

    Full Text Available Commiphora wightii (Arn. Bhandari, is a medicinal important desert species of the family Burseraceae. It is a well known for its valuable active principle found in its oleo-gum-resin (guggulsterone E and Z, which are used in drugs preparation for lowering the cholesterol level in human body. Due to its overexploitation, poor natural regeneration this valuable plant is on the verge of extinction and thus a IUCN Red listed species. In the present study we report development of an efficient micropropagation protocol from cotyledonary node of Commiphora wightii. Cotyledonary nodes were used as an explants and multiple microshoots were obtained on Murashige & Skoog (MS medium supplemented with 2.68 µM a-Naphthalene acetic acid (NAA and 4.44 µM 6-Benzylamino purine (BAP and on 2.68 µM NAA; 4.44 µM BAP with additives (glutamine 684.2 µM; thiamine 29.65 µM; activated charcoal 0.3% and various other hormonal combinations. Elongation of microshoot was significantly observed on the 2.46 µM Indole-3-butyric acid (IBA and 2.22 µM BAP supplemented MS medium. Efficient rooting was obtained on pretreated microshoot (4.92 µM IBA for 24 hours and followed by transfer to White’s medium without Plant Growth Regulators (PGR and high concentration of activated charcoal (AC. Rooted micro-shoots were transferred to vermiculite and wetted with Hoagland’s solution for primary hardening for 4-5 weeks and then finally transferred to plastic cups containing vermiculite, placed in mist chamber. Plantlets were transferred to soil: FYM 1:1 containing poly-bags, then to green shade house for complete acclimatization and finally transplanted to the experimental field.

  10. Analysis of several irdoid and indole precursors of terpenoid indole alkaloids with a single HPLC run

    DEFF Research Database (Denmark)

    Dagnino, Denise; Schripsema, Jan; Verpoorte, Robert

    1996-01-01

    An isocratic HPLC system is described which allows the separation of the iridoid and indole precursors of terpenoid indole alkaloids, which are present in a single crude extract. The system consists of a column of LiChrospher 60 RP select B 5 my, 250x4 mm (Merck) with an eluent of 1 % formic acid...

  11. A facile synthesis of 1,2,3-triazolyl indole hybrids via SbCl3 ...

    Indian Academy of Sciences (India)

    Ponnuswamy A and Jagatheesan R 2011 Acta Cryst. E67 o2707. 27. Fun H K, Hemamalini M, Shanmugavelan P,. Ponnuswamy A and Jagatheesan R 2011 Acta Cryst. E67 o2776. 28. Sundberg R J 1996 The Chemistry of Indoles, New York: Academic Press 113. 29. (a) Saxton J E 1997 Nat. Prod. Rep. 14 559; (b) Toyota.

  12. The Effects of Lead Acetate on Sexual Behavior and the Level of Testosterone in Adult Male Rats

    Directory of Open Access Journals (Sweden)

    Mokhtar Mokhtari

    2011-01-01

    Full Text Available Background: In the present study, the oral effect of lead acetate on the parameters related to sexualbehavior as well as changes in the level of testosterone hormone in adult male rats have beeninvestigated.Materials and Methods: Forty adult male Wistar rats were allocated into five equal groups. Thecontrol group received nothing, the sham group received distilled water and the experimentalgroups received 25, 50 and 100mg/kg lead acetate orally, respectively for 28 days. The changesin testosterone hormone level and following sexual behavior parameters were investigated: mountlatency (ML, intromission latency (IL, post ejaculatory interval (PEI, mount frequency (MF,ejaculatory latency (EL, intromission frequency (IF, copulatory efficacy (CE and intercopulatoryinterval (ICI.Results: The levels of testosterone hormone in the groups that received 50 and 100 mg/kg leadacetate showed significant decreases in compared to the control group. Additionally, the same dosesof lead acetate caused significant increases in ML, IL, PEI and EL compared to the control group.No significant change was observed in MF, but a significant decrease was detected in IF and CEin the experimental group that received 100 mg/kg lead acetate when compared with the controlgroup. ICI showed significant decreases in the experimental groups that received 50 and 100 mg/kglead acetate compared to the control group.Conclusion: It can be concluded that ingestion of lead acetate affects some behavioral activitiesand the testosterone level of male rats. These effects might be conducted via the alteration of leydigcells following lead acetate poisoning.

  13. New Indole Alkaloids from the Bark of Rauvolfia Reflexa and their Cholinesterase Inhibitory Activity

    Directory of Open Access Journals (Sweden)

    Mehran Fadaeinasab

    2015-11-01

    Full Text Available Background/Aims: Rauvolfia reflexa is a member of the Apocynaceae family. Plants from the Apocynaceae family have been traditionally used in the treatment of age-related brain disorders Methods and Results: Two new indole alkaloids, rauvolfine C (1 and 3-methyl-10,11-dimethoxy-6-methoxycarbonyl-β-carboline (2, along with five known, macusine B (3, vinorine (4, undulifoline (5, isoresrpiline (6 and rescinnamine (7 were isolated from the bark of Rauvolfia reflexa. Cholinesterase inhibitory assay and molecular docking were performed to get insight of the inhibitory activity and molecular interactions of the compounds. The compounds showed good to moderate cholinesterase inhibitory activity with IC50 values in the range of 8.06 to 73.23 µM. Compound 7 was found to be the most potent inhibitor of both acetylcholinesterase (AChE and butyrylcholinesterase (BChE. Compounds 1, 2, 5 and 6 were found to be selective towards BChE, while compounds 3, 4 and 7 were dual inhibitors, having almost equal inhibitory activity on both AChE and BChE. Molecular docking revealed that compounds 6 and 7 interacted differently on AChE and BChE, by means of hydrophobic interactions and hydrogen bonding. In AChE, the indole moiety of both compounds interacted with the residues lining the peripheral anionic site, whereas in BChE, their methoxy groups are primarily responsible for the strong inhibitory activity via interactions with residues at the active site of the enzyme. Conclusion: Two new and five known indole alkaloids were isolated from R. reflexa. Among the compounds, 7 and 6 showed the most potent and promising cholinesterase inhibitory activity, worthy for further investigations.

  14. New Indole Alkaloids from the Bark of Rauvolfia Reflexa and their Cholinesterase Inhibitory Activity.

    Science.gov (United States)

    Fadaeinasab, Mehran; Basiri, Alireza; Kia, Yalda; Karimian, Hamed; Ali, Hapipah Mohd; Murugaiyah, Vikneswaran

    2015-01-01

    Rauvolfia reflexa is a member of the Apocynaceae family. Plants from the Apocynaceae family have been traditionally used in the treatment of age-related brain disorders Methods and Results: Two new indole alkaloids, rauvolfine C (1) and 3-methyl-10,11-dimethoxy-6-methoxycarbonyl-β-carboline (2), along with five known, macusine B (3), vinorine (4), undulifoline (5), isoresrpiline (6) and rescinnamine (7) were isolated from the bark of Rauvolfia reflexa. Cholinesterase inhibitory assay and molecular docking were performed to get insight of the inhibitory activity and molecular interactions of the compounds. The compounds showed good to moderate cholinesterase inhibitory activity with IC50 values in the range of 8.06 to 73.23 µM. Compound 7 was found to be the most potent inhibitor of both acetylcholinesterase (AChE) and butyrylcholinesterase (BChE). Compounds 1, 2, 5 and 6 were found to be selective towards BChE, while compounds 3, 4 and 7 were dual inhibitors, having almost equal inhibitory activity on both AChE and BChE. Molecular docking revealed that compounds 6 and 7 interacted differently on AChE and BChE, by means of hydrophobic interactions and hydrogen bonding. In AChE, the indole moiety of both compounds interacted with the residues lining the peripheral anionic site, whereas in BChE, their methoxy groups are primarily responsible for the strong inhibitory activity via interactions with residues at the active site of the enzyme. Two new and five known indole alkaloids were isolated from R. reflexa. Among the compounds, 7 and 6 showed the most potent and promising cholinesterase inhibitory activity, worthy for further investigations. © 2015 S. Karger AG, Basel.

  15. Streptomyces rhizobacteria modulate the secondary metabolism of Eucalyptus plants.

    Science.gov (United States)

    Salla, Tamiris Daros; da Silva, Ramos; Astarita, Leandro Vieira; Santarém, Eliane Romanato

    2014-12-01

    The genus Eucalyptus comprises economically important species, such as Eucalyptus grandis and Eucalyptus globulus, used especially as a raw material in many industrial sectors. Species of Eucalyptus are very susceptible to pathogens, mainly fungi, which leads to mortality of plant cuttings in rooting phase. One alternative to promote plant health and development is the potential use of microorganisms that act as agents for biological control, such as plant growth-promoting rhizobacteria (PGPR). Rhizobacteria Streptomyces spp have been considered as PGPR. This study aimed at selecting strains of Streptomyces with ability to promote plant growth and modulate secondary metabolism of E. grandis and E. globulus in vitro plants. The experiments assessed the development of plants (root number and length), changes in key enzymes in plant defense (polyphenol oxidase and peroxidase) and induction of secondary compounds(total phenolic and quercetinic flavonoid fraction). The isolate Streptomyces PM9 showed highest production of indol-3-acetic acid and the best potential for root induction. Treatment of Eucalyptus roots with Streptomyces PM9 caused alterations in enzymes activities during the period of co-cultivation (1-15 days), as well as in the levels of phenolic compounds and flavonoids. Shoots also showed alteration in the secondary metabolism, suggesting induced systemic response. The ability of Streptomyces sp. PM9 on promoting root growth, through production of IAA, and possible role on modulation of secondary metabolism of Eucalyptus plants characterizes this isolate as PGPR and indicates its potential use as a biological control in forestry.

  16. Isolation and characterization of an atypical LEA protein coding cDNA and its promoter from drought-tolerant plant Prosopis juliflora.

    Science.gov (United States)

    George, Suja; Usha, B; Parida, Ajay

    2009-05-01

    Plant growth and productivity are adversely affected by various abiotic and biotic stress factors. Despite the wealth of information on abiotic stress and stress tolerance in plants, many aspects still remain unclear. Prosopis juliflora is a hardy plant reported to be tolerant to drought, salinity, extremes of soil pH, and heavy metal stress. In this paper, we report the isolation and characterization of the complementary DNA clone for an atypical late embryogenesis abundant (LEA) protein (Pj LEA3) and its putative promoter sequence from P. juliflora. Unlike typical LEA proteins, rich in glycine, Pj LEA3 has alanine as the most abundant amino acid followed by serine and shows an average negative hydropathy. Pj LEA3 is significantly different from other LEA proteins in the NCBI database and shows high similarity to indole-3 acetic-acid-induced protein ARG2 from Vigna radiata. Northern analysis for Pj LEA3 in P. juliflora leaves under 90 mM H2O2 stress revealed up-regulation of transcript at 24 and 48 h. A 1.5-kb fragment upstream the 5' UTR of this gene (putative promoter) was isolated and analyzed in silico. The possible reasons for changes in gene expression during stress in relation to the host plant's stress tolerance mechanisms are discussed.

  17. Simultaneous Intercalation of 1-Naphthylacetic Acid and Indole-3-butyric Acid into Layered Double Hydroxides and Controlled Release Properties

    Directory of Open Access Journals (Sweden)

    Shifeng Li

    2014-01-01

    Full Text Available Controlled release formulations have been shown to have potential in overcoming the drawbacks of conventional plant growth regulators formulations. A controlled-release formulation of 1-naphthylacetic acid (NAA and indole-3-butyric acid (IBA simultaneous intercalated MgAl-layered double hydroxides (LDHs was prepared. The synthetic nanohybrid material was characterized by various techniques, and release kinetics was studied. NAA and IBA anions located in the gallery of MgAl-LDHs with bilayer arrangement, and the nanohybrids particles were of typical plate-like shape with the lateral size of 50–100 nm. The results revealed that NAA and IBA have been intercalated into the interlayer spaces of MgAl-LDHs. The release of NAA and IBA fits pseudo-second-order model and is dependent on temperature, pH value, and release medium. The nanohybrids of NAA and IBA simultaneously intercalated in LDHs possessed good controlled release properties.

  18. Selective Hydrogenolysis of Furfural Derivative 2-Methyltetrahydrofuran into Pentanediol Acetate and Pentanol Acetate over Pd/C and Sc(OTf)3 Cocatalytic System.

    Science.gov (United States)

    Zhang, Kun; Li, Xing-Long; Chen, Shi-Yan; Xu, Hua-Jian; Deng, Jin; Fu, Yao

    2018-02-22

    It is of great significance to convert platform molecules and their derivatives into high value-added alcohols, which have multitudinous applications. This study concerns systematic conversion of 2-methyltetrahydrofuran (MTHF), which is obtained from furfural, into 1-pentanol acetate (PA) and 1,4-pentanediol acetate (PDA). Reaction parameters, such as the Lewis acid species, reaction temperature, and hydrogen pressure, were investigated in detail. 1 H NMR spectroscopy and reaction dynamics study were also conducted to help clarify the reaction mechanism. Results suggested that cleavage of the primary alcohol acetate was less facile than that of the secondary alcohol acetate, with the main product being PA. A PA yield of 91.8 % (150 °C, 3 MPa H 2 , 30 min) was achieved by using Pd/C and Sc(OTf) 3 as a cocatalytic system and an 82 % yield of PDA was achieved (150 °C, 30 min) by using Sc(OTf) 3 catalyst. Simultaneously, the efficient conversion of acetic esters into alcohols by simple saponification was carried out and led to a good yield. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Grain Filling Characteristics and Their Relations with Endogenous Hormones in Large- and Small-Grain Mutants of Rice.

    Science.gov (United States)

    Zhang, Weiyang; Cao, Zhuanqin; Zhou, Qun; Chen, Jing; Xu, Gengwen; Gu, Junfei; Liu, Lijun; Wang, Zhiqin; Yang, Jianchang; Zhang, Hao

    2016-01-01

    This study determined if the variation in grain filling parameters between two different spikelet types of rice (Oryza sativa L.) is regulated by the hormonal levels in the grains. Two rice mutants, namely, a large-grain mutant (AZU-M) and a small-grain mutant (ZF802-M), and their respective wild types (AZU-WT and ZF802-WT) were grown in the field. The endosperm cell division rate, filling rate, and hormonal levels: zeatin + zeatin riboside (Z+ZR), indo-3-acetic acid (IAA), polyamines (PAs), and abscisic acid (ABA) were determined. The results showed that there was no significant difference between the filling and endosperm cell division rates. These rates were synchronous between the superior and inferior spikelets for both mutants. However, the abovementioned parameters were significantly different between the two spikelet types for the two wild types. The superior spikelets filled faster and their filling rate was higher compared to the inferior ones. Changes in the concentrations of plant hormones were consistent with the observed endosperm cell division rate and the filling rate for both types of spikelets of mutant and wild type plants. Regression analysis showed a significant positive correlation between cell division and filling rates with the concentrations of the investigated hormones. Exogenous chemical application verified the role of ABA, IAA, and PAs in grain filling. The results indicate that poor filling of inferior spikelets in rice occurs primarily due to the reduced hormone concentrations therein, leading to lower division rate of endosperm cells, fewer endosperm cells, slower filling rate, and smaller grain weight.

  20. Grain Filling Characteristics and Their Relations with Endogenous Hormones in Large- and Small-Grain Mutants of Rice.

    Directory of Open Access Journals (Sweden)

    Weiyang Zhang

    Full Text Available This study determined if the variation in grain filling parameters between two different spikelet types of rice (Oryza sativa L. is regulated by the hormonal levels in the grains. Two rice mutants, namely, a large-grain mutant (AZU-M and a small-grain mutant (ZF802-M, and their respective wild types (AZU-WT and ZF802-WT were grown in the field. The endosperm cell division rate, filling rate, and hormonal levels: zeatin + zeatin riboside (Z+ZR, indo-3-acetic acid (IAA, polyamines (PAs, and abscisic acid (ABA were determined. The results showed that there was no significant difference between the filling and endosperm cell division rates. These rates were synchronous between the superior and inferior spikelets for both mutants. However, the abovementioned parameters were significantly different between the two spikelet types for the two wild types. The superior spikelets filled faster and their filling rate was higher compared to the inferior ones. Changes in the concentrations of plant hormones were consistent with the observed endosperm cell division rate and the filling rate for both types of spikelets of mutant and wild type plants. Regression analysis showed a significant positive correlation between cell division and filling rates with the concentrations of the investigated hormones. Exogenous chemical application verified the role of ABA, IAA, and PAs in grain filling. The results indicate that poor filling of inferior spikelets in rice occurs primarily due to the reduced hormone concentrations therein, leading to lower division rate of endosperm cells, fewer endosperm cells, slower filling rate, and smaller grain weight.

  1. In vitro ROOTING OF TENERA HYBRID OIL PALM (Elaeis guineensis Jacq. PLANTS1

    Directory of Open Access Journals (Sweden)

    Marlúcia Souza Souza Pádua

    2018-04-01

    Full Text Available ABSTRACT Oil palm is a woody monocot of economic importance due to high oil production from its fruits. Currently, the conventional method most used to propagate oil palm is seed germination, but success is limited by long time requirements and low germination percentage. An alternative for large-scale propagation of oil palm is the biotechnological technique of somatic embryogenesis. The rooting of plants germinated from somatic embryos is a difficult step, yet it is of great importance for later acclimatization and success in propagation. The aim of this study was to evaluate the effect of the auxins indole acetic acid (IAA and indole butyric acid (IBA on the rooting of somatic embryos of Tenera hybrid oil palm. Plants obtained by somatic embryogenesis were inoculated in modified MS medium with 10% sucrose and 0.6% agar and supplemented with IAA or IBA at concentrations of 5 µM, 10 µM, and 15 µM, and the absence of growth regulators. After 120 days, the presence of roots, root type, length of the longest root, number of roots, number of leaves, and shoot length were analyzed. Growth regulators were favorable to rooting; plants cultivated with IBA growth regulator at 15 µM showed higher rooting percentage (87% and better results for the parameters of number of roots (1.33 and shoot length (9.83.

  2. A combined experimental and theoretical study on vibrational and electronic properties of (5-methoxy-1H-indol-1-yl(5-methoxy-1H-indol-2-ylmethanone

    Directory of Open Access Journals (Sweden)

    Al-Wabli Reem I.

    2017-11-01

    Full Text Available (5-Methoxy-1H-indol-1-yl(5-methoxy-1H-indol-2-ylmethanone (MIMIM is a bis-indolic derivative that can be used as a precursor to a variety of melatonin receptor ligands. In this work, the energetic and spectroscopic profiles of MIMIM were studied by a combined DFT and experimental approach. The IR, Raman, UV-Vis, 1H NMR and 13C NMR spectra were calculated by PBEPBE and B3LYP methods, and compared with experimental ones. Results showed good agreement between theoretical and experimental values. Mulliken population and natural bond orbital analysis were also performed by time-dependent DFT approach to evaluate the electronic properties of the title molecule.

  3. Twenty Years of Brassinosteroids : Steroidal Plant Hormones Warrant Better Crops for the XXI Century

    NARCIS (Netherlands)

    Khripach, V.; Zhabinskii, V.; Groot, de C.P.G.M.

    2000-01-01

    The discovery of brassinosteroids (BS) just over 20 years ago opened a new era in studies of bio-regulation in living organisms. Previously, the only known role of steroids as hormones was in animals and fungi; now a steroidal hormone in plants had been added. Progress in brassinosteroid research

  4. Marine Inspired 2-(5-Halo-1H-indol-3-yl)-N,N-dimethylethanamines as Modulators of Serotonin Receptors: An Example Illustrating the Power of Bromine as Part of the Uniquely Marine Chemical Space.

    Science.gov (United States)

    Ibrahim, Mohamed A; El-Alfy, Abir T; Ezel, Kelly; Radwan, Mohamed O; Shilabin, Abbas G; Kochanowska-Karamyan, Anna J; Abd-Alla, Howaida I; Otsuka, Masami; Hamann, Mark T

    2017-08-09

    In previous studies, we have isolated several marine indole alkaloids and evaluated them in the forced swim test (FST) and locomotor activity test, revealing their potential as antidepressant and sedative drug leads. Amongst the reported metabolites to display such activities was 5-bromo- N , N -dimethyltryptamine. Owing to the importance of the judicious introduction of halogens into drug candidates, we synthesized two series built on a 2-(1 H -indol-3-yl)- N , N -dimethylethanamine scaffold with different halogen substitutions. The synthesized compounds were evaluated for their in vitro and in vivo antidepressant and sedative activities using the mouse forced swim and locomotor activity tests. Receptor binding studies of these compounds to serotonin (5-HT) receptors were conducted. Amongst the prepared compounds, 2-(1 H -indol-3-yl)- N , N -dimethyl-2-oxoacetamide ( 1a ), 2-(5-bromo-1 H -indol-3-yl)- N , N -dimethyl-2-oxoacetamide ( 1d ), 2-(1 H -indol-3-yl)- N , N -dimethylethanamine ( 2a ), 2-(5-chloro-1 H -indol-3-yl)- N , N -dimethylethanamine ( 2c ), 2-(5-bromo-1 H -indol-3-yl)- N , N -dimethylethanamine ( 2d ), and 2-(5-iodo-1 H -indol-3-yl)- N , N -dimethylethanamine ( 2e ) have been shown to possess significant antidepressant-like action, while compounds 2c , 2d , and 2e exhibited potent sedative activity. Compounds 2a , 2c , 2d , and 2e showed nanomolar affinities to serotonin receptors 5-HT 1A and 5-HT₇. The in vitro data indicates that the antidepressant action exerted by these compounds in vivo is mediated, at least in part, via interaction with serotonin receptors. The data presented here shows the valuable role that bromine plays in providing novel chemical space and electrostatic interactions. Bromine is ubiquitous in the marine environment and a common element of marine natural products.

  5. Micropropagation to Rescue Endangered Plant Moringa Concanensis Nimmo (Moringaceae)

    International Nuclear Information System (INIS)

    Fatima, H.

    2016-01-01

    Efficient micropropagation was developed for an endangered plant; Moringa concanensis Nimmo. The plant has many medicinal properties. It is an antioxidant, anti-diabetic and a powerful tonic alternative. A high frequency and maximum number of shoots were produced in MS supplemented with the combination of Benzyl aminopurine (BAP) and Alpha-Naphthalene Acetic Acid (NAA) (0.10mg/l + 0.05mg/l). Rooting was achieved by the inoculation of regenerated shoots on half strength MS without addition of hormone. (author)

  6. Application of multiple parallel perfused microbioreactors: Synthesis, characterization and cytotoxicity testing of the novel rare earth complexes with indole acid as a ligand.

    Science.gov (United States)

    Guan, Qing-Lin; Xing, Yong-Heng; Liu, Jing; Wei, Wen-Juan; Zhang, Rui; Wang, Xuan; Bai, Feng-Ying

    2013-11-01

    Three novel complexes, [La(phen)2(IAA)2]·NO3 (1), [Sm(phen)2(IAA)2]·NO3 (2) and [Sm(IBA)3(phen)]·phen·HNO3·H2O (3) (phen: 1,10-phenanthroline, IAA: indole-3-acetic acid, IBA: indole-3-butyric acid), were synthesized and characterized with spectroscopy (infrared and UV-visible), X-ray crystal diffraction and elemental analysis. Structural analysis revealed that each lanthanide atom in complexes 1-3 held a distorted tricapped trigonal prism geometry in a nine-coordinate mode. There were two types of coordination modes of the IAA ligand in complexes 1 and 2: a μ2-η(1):η(2) bridging mode linking two lanthanide atoms and a μ2-η(1):η(1) double monodentate bridging mode. There were three types of coordination modes of the IBA ligand: a μ2-η(1):η(1) double monodentate bridging mode, a μ1-η(2) bridging mode and a μ2-η(1):η(2) bridging mode linking two lanthanide atoms. Adjacent Sm atoms were linked via the μ2-bridging carboxylate groups of the IBA ligands to generate a binuclear building unit. The biological activity of the complexes was evaluated in human adipose tissue-derived stem cells (hADSCs) and Chang liver cells using a multiple parallel perfused microbioreactor. The results showed that cytotoxicity increased as the concentrations of complexes 1-3 increased. © 2013.

  7. Influence of Acidification on the Partitioning of Steroid Hormones among Filtrate, Filter Media, and Retained Particulate Matter.

    Science.gov (United States)

    Havens, Sonya M; Hedman, Curtis J; Hemming, Jocelyn D C; Mieritz, Mark G; Shafer, Martin M; Schauer, James J

    2016-09-01

    Hormone contamination of aquatic systems has been shown to have deleterious effects on aquatic biota. However, the assessment of hormone contamination of aquatic environments requires a quantitative evaluation of the potential effects of sample preservation on hormone concentrations. This study investigated the influence of acidification (pH 2) of surface water samples on the partitioning of hormones among filtrate, filter media, and filter-retained particulate matter. Hormones were spiked into unpreserved and sulfuric acid-preserved ultrapure water and surface water runoff samples. The samples were filtered, and hormones were extracted from the filter and filtrate and analyzed by high-performance liquid chromatography. Acidification did not influence the partitioning of hormones onto the filter media. For the majority of the hormones investigated in this study, the partitioning of hormones to the filter-retained particulate matter was not influenced by acidification. Acidification increased the partitioning of progesterone and melengestrol acetate onto the retained particulate matter (about 25% for both analytes). Incorporation of an isotopically labeled internal standard (ISTD) for progesterone accounted for the loss of progesterone to the filter-retained particulates and resulted in accurate concentrations of progesterone in the filtrate. The incorporation of an ISTD for melengestrol acetate, however, was unable to account for the loss of melengestrol acetate to the retained particulates and resulted in underestimations of melengestrol acetate in the filtrate. Our results indicate that the analysis of melengestrol acetate in acid preserved surface runoff samples should be conducted on the filter-retained particulates as well as the filtrate. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  8. Key physiological properties contributing to rhizosphere adaptation and plant growth promotion abilities of Azospirillum brasilense.

    Science.gov (United States)

    Fibach-Paldi, Sharon; Burdman, Saul; Okon, Yaacov

    2012-01-01

    Azospirillum brasilense is a plant growth promoting rhizobacterium (PGPR) that is being increasingly used in agriculture in a commercial scale. Recent research has elucidated key properties of A. brasilense that contribute to its ability to adapt to the rhizosphere habitat and to promote plant growth. They include synthesis of the auxin indole-3-acetic acid, nitric oxide, carotenoids, and a range of cell surface components as well as the ability to undergo phenotypic variation. Storage and utilization of polybetahydroxyalkanoate polymers are important for the shelf life of the bacteria in production of inoculants, products containing bacterial cells in a suitable carrier for agricultural use. Azospirillum brasilense is able to fix nitrogen, but despite some controversy, as judging from most systems evaluated so far, contribution of fixed nitrogen by this bacterium does not seem to play a major role in plant growth promotion. In this review, we focus on recent advances in the understanding of physiological properties of A. brasilense that are important for rhizosphere performance and successful interactions with plant roots. © 2011 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  9. Unveiling the biotransformation mechanism of indole in a Cupriavidus sp. strain.

    Science.gov (United States)

    Qu, Yuanyuan; Ma, Qiao; Liu, Ziyan; Wang, Weiwei; Tang, Hongzhi; Zhou, Jiti; Xu, Ping

    2017-12-01

    Indole, an important signaling molecule as well as a typical N-heterocyclic aromatic pollutant, is widespread in nature. However, the biotransformation mechanisms of indole are still poorly studied. Here, we sought to unlock the genetic determinants of indole biotransformation in strain Cupriavidus sp. SHE based on genomics, proteomics and functional studies. A total of 177 proteins were notably altered (118 up- and 59 downregulated) in cells grown in indole mineral salt medium when compared with that in sodium citrate medium. RT-qPCR and gene knockout assays demonstrated that an indole oxygenase gene cluster was responsible for the indole upstream metabolism. A functional indole oxygenase, termed IndA, was identified in the cluster, and its catalytic efficiency was higher than those of previously reported indole oxidation enzymes. Furthermore, the indole downstream metabolism was found to proceed via the atypical CoA-thioester pathway rather than conventional gentisate and salicylate pathways. This unusual pathway was catalyzed by a conserved 2-aminobenzoyl-CoA gene cluster, among which the 2-aminobenzoyl-CoA ligase initiated anthranilate transformation. This study unveils the genetic determinants of indole biotransformation and will provide new insights into our understanding of indole biodegradation in natural environments and its functional studies. © 2017 John Wiley & Sons Ltd.

  10. Characterization of plant growth-promoting traits of free-living diazotrophic bacteria and their inoculation effects on growth and nitrogen uptake of crop plants.

    Science.gov (United States)

    Islam, Md Rashedul; Madhaiyan, M; Deka Boruah, Hari P; Yim, Woojong; Lee, Gillseung; Saravanan, V S; Fu, Qingling; Hu, Hongqing; Sa, Tongmin

    2009-10-01

    The search for diverse plant growth-promoting (PGP) diazotrophic bacteria is gaining momentum as efforts are made to exploit them as biofertilizers for various economically important crops. In the present study, 17 diazotrophic strains belonging to eight different genera isolated from rice paddy fields were screened for multiple PGP traits and evaluated for their inoculation effects on canola and rice plants. All of the strains tested positive for 1- aminocyclopropane-1-carboxylate (ACC) deaminase activity and production of indole 3-acetic acid (IAA) and ammonia (NH3). Additionally, four of the strains were able to solubilize phosphorus (P), five tested positive for zinc (Zn) solubilization and sulfur (S) oxidation, and eight strains produced siderophores. Based on the presence of multiple PGP traits, 10 strains were selected for inoculation studies. Treatment with Herbaspirillum sp. RFNB26 resulted in maximum root length (54.3%), seedling vigor, and dry biomass in canola, whereas Paenibacillus sp. RFNB4 exhibited the lowest activity under gnotobiotic conditions. However, under pot culture conditions, Paenibacillus sp. RFNB4 significantly increased plant height and dry biomass production by 42.3% and 29.5%, respectively. Canola plants and rhizosphere soils inoculated with Bacillus sp. RFNB6 exhibited significantly higher nitrogenase activity. In greenhouse experiments, Serratia sp. RFNB18 increased rice plant height by 35.1%, Xanthomonas sp. RFNB24 enhanced biomass production by 84.6%, and rice rhizosphere soils inoculated with Herbaspirillum sp. RFNB26 exhibited the highest nitrogenase activity. Our findings indicate that most of the selected strains possess multiple PGP properties that significantly improve the growth parameters of the two plants when tested under controlled conditions.

  11. Uptake of C-14 tagged acetate by rice in a paddy soil-to-rice plant system

    Energy Technology Data Exchange (ETDEWEB)

    Ishii, Nobuyoshi; Tagami, Keiko; Uchida, Shigeo [Research Center for Radiation Protection, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage, Chiba 263-8555 (Japan)

    2014-07-01

    Geological disposal of Transuranic (TRU) waste is planned to avoid radiation exposure to the public. One of the dominant nuclides contributing to the dose from TRU waste is C-14, which is long-lived and has very poor sorption properties on natural geological media. Therefore, there are some concerns regarding possible migration of C-14 to the living environments. For the public health safety, it is necessary to clarify pathways of C-14 to human beings in the environment. Intake of C-14 from food source is one of important pathways. In the present study, we examined transfer of C-14 to various parts of rice plant in a paddy soil-to-rice plant system. Rice seedlings in Wagner pots (n=12) were grown for about two months from 7 May 2012 under natural light. The grown plants were moved to a closed chamber on 5 July 2012. The rice plants were grown without water supply from 5 July 2012, and then one liter of C-14 tagged acetate (1.85 MBq) was supplied to the rice plants in the spiked group (n=8) just once on 9 July 2012. For the rice plants in the control group (n=4), uncontaminated water was supplied. These rice plants were air-dried after a harvest on 23 August 2012 and divided into four parts: white rice, bran, rice husk, and the stem and leaf part. The activities of C-14 in the divided parts and air-dried soil samples were determined with a liquid scintillation counting system. Radiocarbon was detected even in the rice plants of the control group. However, the C-14 activity in the soil of the control group was less than the detection limit (1.0 Bq/g). The C-14 activities for the control group decreased in the order of rice husk, bran, white rice, and the stem and leaf part. The detection of C-14 in the control group may be caused by the release of C-14 tagged carbon dioxide from the spiked group. That is, C-14 tagged acetate was converted to carbon dioxide by microbial activity in the spiked group, and then some of the released carbon dioxide was assimilated into

  12. Hydrogenation of ethyl acetate on Re/γ-A12O3 catalyst

    International Nuclear Information System (INIS)

    Minachev, K.M.; Avaev, V.I.; Ryashentseva, M.A.

    1986-01-01

    This paper presents a study of the catalytic properties of 5% Re/gamma-A1 2 O 3 contact in the hydrogenation reaction of ethyl acetate (EA). To clarify the paths of formation of the by products, experiments were also carried out with ethanol under the conditions of hydrogenation of EA. It is shown that the main product of the hydrogenation of EA is ethanol. In addition, Et 2 O, water, and traces of acetaldehyde were found in the catalyzate. In the range of conditions studied, the maximal conversion of ethyl acetate into ethanol is 49%. Increase in the temperature and molar ratio, and also decrease in pressure leads to a decrease in the selectivity of hydrogenation of ethyl acetate into ethanol. Byproducts of the hydrogenation of ethyl acetate - diethyl ether and hydrocarbons - are formed not only as a result of dehydration of ethanol on gamma-A1 2 O 3 , but also directly from ethyl acetate (diethyl ether) and also by the hydrogenolysis of the C-O bond in ethanol on rhenium (hydrocarbons)

  13. Role of ethylene and related gene expression in the interaction between strawberry plants and the plant growth-promoting bacterium Azospirillum brasilense.

    Science.gov (United States)

    Elías, J M; Guerrero-Molina, M F; Martínez-Zamora, M G; Díaz-Ricci, J C; Pedraza, R O

    2018-05-01

    Induced systemic resistance (ISR) is one of the indirect mechanisms of growth promotion exerted by plant growth-promoting bacteria, and can be mediated by ethylene (ET). We assessed ET production and the expression of related genes in the Azospirillum-strawberry plant interaction. Ethylene production was evaluated by gas chromatography in plants inoculated or not with A. brasilense REC3. Also, plants were treated with AgNO 3 , an inhibitor of ET biosynthesis; with 1-aminocyclopropane-1-carboxylic acid (ACC), a precursor of ET biosynthesis; and with indole acetic acid (IAA). Plant dry biomass and the growth index were determined to assess the growth-promoting effect of A. brasilense REC3 in strawberry plants. Quantitative real time PCR (qRT-PCR) was performed to analyse relative expression of the genes Faetr1, Faers1 and Faein4, which encode ET receptors; Factr1 and Faein2, involved in the ET signalling pathway; Faacs1 encoding ACC synthase; Faaco1 encoding ACC oxidase; and Faaux1 and Faami1 for IAA synthesis enzymes. Results showed that ET acts as a rapid and transient signal in the first 12 h post-treatment. A. brasilense REC3-inoculated plants had a significantly higher growth index compared to control plants. Modulation of the genes Faetr1, Faers1, Faein4, Factr1, Faein2 and Faaco1 indicated activation of ET synthesis and signalling pathways. The up-regulation of Faaux1 and Faami1 involved in IAA synthesis suggested that inoculation with A. brasilense REC3 induces production of this auxin, modulating ET signalling. Ethylene production and up-regulation of genes associated with ET signalling in strawberry plants inoculated with A. brasilense REC3 support the priming activation characteristic of ISR. This type of resistance and the activation of systemic acquired resistance previously observed in this interaction indicate that both are present in strawberry plants, could act synergistically and increase protection against pathogens. © 2018 German Society

  14. Inoculation of Brassica oxyrrhina with plant growth promoting bacteria for the improvement of heavy metal phytoremediation under drought conditions.

    Science.gov (United States)

    Ma, Ying; Rajkumar, Mani; Zhang, Chang; Freitas, Helena

    2016-12-15

    The aim of this study was to investigate the effects of drought resistant serpentine rhizobacteria on plant growth and metal uptake by Brassica oxyrrhina under drought stress (DS) condition. Two drought resistant serpentine rhizobacterial strains namely Pseudomonas libanensis TR1 and Pseudomonas reactans Ph3R3 were selected based on their ability to stimulate seedling growth in roll towel assay. Further assessment on plant growth promoting (PGP) parameters revealed their ability to produce indole-3-acetic acid, siderophore and 1-aminocyclopropane-1-carboxylate deaminase. Moreover, both strains exhibited high resistance to various heavy metals, antibiotics, salinity and extreme temperature. Inoculation of TR1 and Ph3R3 significantly increased plant growth, leaf relative water and pigment content of B. oxyrrhina, whereas decreased concentrations of proline and malondialdehyde in leaves under metal stress in the absence and presence of DS. Regardless of soil water conditions, TR1 and Ph3R3 greatly improved organ metal concentrations, translocation and bioconcentration factors of Cu and Zn. The successful colonization and metabolic activities of P. libanensis TR1 and P. reactans Ph3R3 represented positive effects on plant development and metal phytoremediation under DS. These results indicate that these strains could be used as bio-inoculants for the improvement of phytoremediation of metal polluted soils under semiarid conditions. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Indole: An evolutionarily conserved influencer of behavior across kingdoms.

    Science.gov (United States)

    Tomberlin, Jeffery K; Crippen, Tawni L; Wu, Guoyao; Griffin, Ashleigh S; Wood, Thomas K; Kilner, Rebecca M

    2017-02-01

    Indole is a key environmental cue that is used by many organisms. Based on its biochemistry, we suggest indole is used so universally, and by such different organisms, because it derives from the metabolism of tryptophan, a resource essential for many species yet rare in nature. These properties make it a valuable, environmental cue for resources almost universally important for promoting fitness. We then describe how indole is used to coordinate actions within organisms, to influence the behavior of conspecifics and can even be used to change the behavior of species that belong to other kingdoms. Drawing on the evolutionary framework that has been developed for understanding animal communication, we show how this is diversely achieved by indole acting as a cue, a manipulative signal, and an honest signal, as well as how indole can be used synergistically to amplify information conveyed by other molecules. Clarifying these distinct functions of indole identifies patterns that transcend different kingdoms of organisms. © 2016 WILEY Periodicals, Inc.

  16. Antioxidant action of 3-mercapto-5H-1,2,4-triazino[5,6-b]indole-5-acetic acid, an efficient aldose reductase inhibitor, in a 1,1'-diphenyl-2-picrylhydrazyl assay and in the cellular system of isolated erythrocytes exposed to tert-butyl hydroperoxide.

    Science.gov (United States)

    Prnova, Marta Soltesova; Ballekova, Jana; Majekova, Magdalena; Stefek, Milan

    2015-01-01

    The subject of this study was 3-mercapto-5H-1,2,4-triazino[5,6-b]indole-5-acetic acid (compound 1), an efficient aldose reductase inhibitor of high selectivity. The antioxidant action of 1 was investigated in greater detail by employing a 1,1'-diphenyl-2-picrylhydrazyl (DPPH) test and in the system of isolated rat erythrocytes. First, the compound was subjected to the DPPH test. Second, the overall antioxidant action of the compound was studied in the cellular system of isolated rat erythrocytes oxidatively stressed by free radicals derived from the lipophilic tert-butyl hydroperoxide. The uptake kinetics of 1 was studied and osmotic fragility of the erythrocytes was evaluated. The DPPH test revealed significant antiradical activity of 1. One molecule of 1 was found to quench 1.48 ± 0.06 DPPH radicals. In the system of isolated erythrocytes, the compound was readily taken up by the cells followed by their protection against free radical-initiated hemolysis. Osmotic fragility of the erythrocytes was not affected by 1. The results demonstrated the ability of 1 to scavenge DPPH and to protect intact erythrocytes against oxidative damage induced by peroxyl radicals. By affecting both the polyol pathway and oxidative stress, the compound represents an example of a promising agent for multi-target pharmacology of diabetic complications.

  17. Plant Growth Enhancement, Disease Resistance, and Elemental Modulatory Effects of Plant Probiotic Endophytic Bacillus sp. Fcl1.

    Science.gov (United States)

    Jayakumar, Aswathy; Krishna, Arathy; Mohan, Mahesh; Nair, Indu C; Radhakrishnan, E K

    2018-04-13

    Endophytic bacteria have already been studied for their beneficial support to plants to manage both biotic and abiotic stress through an array of well-established mechanisms. They have either direct or indirect impact on mobilizing diverse nutrients and elements from soil to plants. However, detailed insight into the fine-tuning of plant elemental composition by associated microorganism is very limited. In this study, endophytic Bacillus Fcl1 characterized from the rhizome of Curcuma longa was found to have broad range of plant growth-promoting and biocontrol mechanisms. The organism was found to have indole acetic acid and 1-aminocyclopropane-1-carboxylate deaminase production properties along with nitrogen fixation. The Bacillus Fcl1 could also inhibit diverse phytopathogens as confirmed by dual culture and well diffusion. By LC-MS/MS analysis, chemical basis of its antifungal activity has been proved to be due to the production of iturin A and a blend of surfactin compounds. Moreover, the organism was found to induce both plant growth and disease resistance in vivo in model plant system. Because of these experimentally demonstrated multiple plant probiotic features, Bacillus Fcl1 was selected as a candidate organism to study its role in modulation of plant elemental composition. ICP-MS analysis of Bacillus Fcl1-treated plants provided insight into relation of bacterial interaction with elemental composition of plants.

  18. Plant Hormone Homeostasis, Signaling, and Function during Adventitious Root Formation in Cuttings

    OpenAIRE

    Druege, Uwe; Franken, Philipp; Hajirezaei, Mohammad R.

    2016-01-01

    Adventitious root (AR) formation in cuttings is a multiphase developmental process, resulting from wounding at the cutting site and isolation from the resource and signal network of the whole plant. Though, promotive effects of auxins are widely used for clonal plant propagation, the regulation and function of plant hormones and their intricate signaling networks during AR formation in cuttings are poorly understood. In this focused review, we discuss our recent publications on the involvemen...

  19. A regulator of G Protein signaling, RGS3, inhibits gonadotropin-releasing hormone (GnRH-stimulated luteinizing hormone (LH secretion

    Directory of Open Access Journals (Sweden)

    Musgrove Lois C

    2001-11-01

    Full Text Available Abstract Background Luteinizing hormone secreted by the anterior pituitary gland regulates gonadal function. Luteinizing hormone secretion is regulated both by alterations in gonadotrope responsiveness to hypothalamic gonadotropin releasing hormone and by alterations in gonadotropin releasing hormone secretion. The mechanisms that determine gonadotrope responsiveness are unknown but may involve regulators of G protein signaling (RGSs. These proteins act by antagonizing or abbreviating interaction of Gα proteins with effectors such as phospholipase Cβ. Previously, we reported that gonadotropin releasing hormone-stimulated second messenger inositol trisphosphate production was inhibited when RGS3 and gonadotropin releasing hormone receptor cDNAs were co-transfected into the COS cell line. Here, we present evidence for RGS3 inhibition of gonadotropin releasing hormone-induced luteinizing hormone secretion from cultured rat pituitary cells. Results A truncated version of RGS3 (RGS3T = RGS3 314–519 inhibited gonadotropin releasing hormone-stimulated inositol trisphosphate production more potently than did RSG3 in gonadotropin releasing hormone receptor-bearing COS cells. An RSG3/glutathione-S-transferase fusion protein bound more 35S-Gqα than any other member of the G protein family tested. Adenoviral-mediated RGS3 gene transfer in pituitary gonadotropes inhibited gonadotropin releasing hormone-stimulated luteinizing hormone secretion in a dose-related fashion. Adeno-RGS3 also inhibited gonadotropin releasing hormone stimulated 3H-inositol phosphate accumulation, consistent with a molecular site of action at the Gqα protein. Conclusions RGS3 inhibits gonadotropin releasing hormone-stimulated second messenger production (inositol trisphosphate as well as luteinizing hormone secretion from rat pituitary gonadotropes apparently by binding and suppressing the transduction properties of Gqα protein function. A version of RGS3 that is amino

  20. Glucosinolates from Host Plants Influence Growth of the Parasitic Plant Cuscuta gronovii and Its Susceptibility to Aphid Feeding1[OPEN

    Science.gov (United States)

    2016-01-01

    Parasitic plants acquire diverse secondary metabolites from their hosts, including defense compounds that target insect herbivores. However, the ecological implications of this phenomenon, including the potential enhancement of parasite defenses, remain largely unexplored. We studied the translocation of glucosinolates from the brassicaceous host plant Arabidopsis (Arabidopsis thaliana) into parasitic dodder vines (Convolvulaceae; Cuscuta gronovii) and its effects on the parasite itself and on dodder-aphid interactions. Aliphatic and indole glucosinolates reached concentrations in parasite tissues higher than those observed in corresponding host tissues. Dodder growth was enhanced on cyp79B2 cyp79B3 hosts (without indole glucosinolates) but inhibited on atr1D hosts (with elevated indole glucosinolates) relative to wild-type hosts, which responded to parasitism with localized elevation of indole and aliphatic glucosinolates. These findings implicate indole glucosinolates in defense against parasitic plants. Rates of settling and survival on dodder vines by pea aphids (Acyrthosiphon pisum) were reduced significantly when dodder parasitized glucosinolate-producing hosts (wild type and atr1D) compared with glucosinolate-free hosts (cyp79B2 cyp79B3 myb28 myb29). However, settling and survival of green peach aphids (Myzus persicae) were not affected. M. persicae population growth was actually reduced on dodder parasitizing glucosinolate-free hosts compared with wild-type or atr1D hosts, even though stems of the former contain less glucosinolates and more amino acids. Strikingly, this effect was reversed when the aphids fed directly upon Arabidopsis, which indicates an interactive effect of parasite and host genotype on M. persicae that stems from host effects on dodder. Thus, our findings indicate that glucosinolates may have both direct and indirect effects on dodder-feeding herbivores. PMID:27482077

  1. Response difference of transgenic and conventional rice (Oryza sativa) to nanoparticles (γFe₂O₃).

    Science.gov (United States)

    Gui, Xin; Deng, Yingqing; Rui, Yukui; Gao, Binbin; Luo, Wenhe; Chen, Shili; Nhan, Le Van; Li, Xuguang; Liu, Shutong; Han, Yaning; Liu, Liming; Xing, Baoshan

    2015-11-01

    Nanoparticles (NPs) are an increasingly common contaminant in agro-environments, and their potential effect on genetically modified (GM) crops has been largely unexplored. GM crop exposure to NPs is likely to increase as both technologies develop. To better understand the implications of nanoparticles on GM plants in agriculture, we performed a glasshouse study to quantify the uptake of Fe2O3 NPs on transgenic and non-transgenic rice plants. We measured nutrient concentrations, biomass, enzyme activity, and the concentration of two phytohormones, abscisic acid (ABA) and indole-3-acetic acid (IAA), and malondialdehyde (MDA). Root phytohormone inhibition was positively correlated with Fe2O3 NP concentrations, indicating that Fe2O3 had a significant influence on the production of these hormones. The activities of antioxidant enzymes were significantly higher as a factor of low Fe2O3 NP treatment concentration and significantly lower at high NP concentrations, but only among transgenic plants. There was also a positive correlation between the treatment concentration of Fe2O3 and iron accumulation, and the magnitude of this effect was greatest among non-transgenic plants. The differences in root phytohormone production and antioxidant enzyme activity between transgenic and non-transgenic rice plants in vivo suggests that GM crops may react to NP exposure differently than conventional crops. It is the first study of NPs that may have an impact on GM crops, and a realistic significance for food security and food safety.

  2. Crystal structure of 4-(1H-indol-3-yl-2-(4-methoxyphenyl-6-phenylpyridine-3-carbonitrile

    Directory of Open Access Journals (Sweden)

    R. Vishnupriya

    2014-10-01

    Full Text Available In the title compound, C27H19N3O, the dihedral angles between the plane of the pyridine ring and those of the indole (r.m.s. deviation = 0.018 Å, phenyl and methoxybenzene substituents are 33.60 (6, 25.28 (7 and 49.31 (7°, respectively. The N atom of the carbonitrile group is significantly displaced [0.288 (2 Å] from the plane of the pyridine ring, perhaps due to steric crowding. In the crystal, inversion dimers linked by pairs of N—H...Nn (n = nitrile hydrogen bonds generate R22(16 loops. Aromatic π–π stacking [centroid–centroid separation = 3.6906 (7 Å] and very weak C—H...π interactions are also observed".

  3. Isolation, identification and characterization of Paenibacillus polymyxa CR1 with potentials for biopesticide, biofertilization, biomass degradation and biofuel production.

    Science.gov (United States)

    Weselowski, Brian; Nathoo, Naeem; Eastman, Alexander William; MacDonald, Jacqueline; Yuan, Ze-Chun

    2016-10-18

    Paenibacillus polymyxa is a plant-growth promoting rhizobacterium that could be exploited as an environmentally friendlier alternative to chemical fertilizers and pesticides. Various strains have been isolated that can benefit agriculture through antimicrobial activity, nitrogen fixation, phosphate solubilization, plant hormone production, or lignocellulose degradation. However, no single strain has yet been identified in which all of these advantageous traits have been confirmed. P. polymyxa CR1 was isolated from degrading corn roots from southern Ontario, Canada. It was shown to possess in vitro antagonistic activities against the common plant pathogens Phytophthora sojae P6497 (oomycete), Rhizoctonia solani 1809 (basidiomycete fungus), Cylindrocarpon destructans 2062 (ascomycete fungus), Pseudomonas syringae DC3000 (bacterium), and Xanthomonas campestris 93-1 (bacterium), as well as Bacillus cereus (bacterium), an agent of food-borne illness. P. polymyxa CR1 enhanced growth of maize, potato, cucumber, Arabidopsis, and tomato plants; utilized atmospheric nitrogen and insoluble phosphorus; produced the phytohormone indole-3-acetic acid (IAA); and degraded and utilized the major components of lignocellulose (lignin, cellulose, and hemicellulose). P. polymyxa CR1 has multiple beneficial traits that are relevant to sustainable agriculture and the bio-economy. This strain could be developed for field application in order to control pathogens, promote plant growth, and degrade crop residues after harvest.

  4. Copolymers Based on Indole-6-Carboxylic Acid and 3,4-Ethylenedioxythiophene as Platinum Catalyst Support for Methanol Oxidation

    Directory of Open Access Journals (Sweden)

    Tzi-Yi Wu

    2015-10-01

    Full Text Available Indole-6-carboxylic acid (ICA and 3,4-ethylenedioxythiophene (EDOT are copolymerized electrochemically on a stainless steel (SS electrode to obtain poly(indole-6-carboxylic acid-co-3,4-ethylenedioxythiophenes (P(ICA-co-EDOTs. The morphology of P(ICA-co-EDOTs is checked using scanning electron microscopy (SEM, and the SEM images reveal that these films are composed of highly porous fibers when the feed molar ratio of ICA/EDOT is greater than 3/2. Platinum particles can be electrochemically deposited into the P(ICA-co-EDOTs and PICA films to obtain P(ICA-co-EDOTs-Pt and PICA-Pt composite electrodes, respectively. These composite electrodes are further characterized using X-ray photoelectron spectroscopy (XPS, SEM, X-ray diffraction analysis (XRD, and cyclic voltammetry (CV. The SEM result indicates that Pt particles disperse more uniformly into the highly porous P(ICA3-co-EDOT2 fibers (feed molar ratio of ICA/EDOT = 3/2. The P(ICA3-co-EDOT2-Pt nanocomposite electrode exhibited excellent catalytic activity for the electrooxidation of methanol in these electrodes, which reveals that P(ICA3-co-EDOT2-Pt nanocomposite electrodes are more promising for application in an electrocatalyst as a support material.

  5. Water promoted allylic nucleophilic substitution reactions of (E)-1,3 diphenylallyl acetate

    KAUST Repository

    Ghorpade, Seema Arun; Sawant, Dinesh N; Makki, Arwa; Sekar, N; Eppinger, Jö rg

    2017-01-01

    Transition metal free, water based, greener protocol for allylic alkylation, allylic amination, O-allylation of (E)-1,3-diphenylallyl acetate is described. The developed methodology is applicable for a wide range of nucleophiles furnishing excellent yields of corresponding products up to 87% under mild reaction conditions. A Distinct effect of water and base is explored for allylic nucleophilic substitution reactions of (E)-1,3-diphenylallyl acetate.

  6. Water promoted allylic nucleophilic substitution reactions of (E)-1,3 diphenylallyl acetate

    KAUST Repository

    Ghorpade, Seema Arun

    2017-11-30

    Transition metal free, water based, greener protocol for allylic alkylation, allylic amination, O-allylation of (E)-1,3-diphenylallyl acetate is described. The developed methodology is applicable for a wide range of nucleophiles furnishing excellent yields of corresponding products up to 87% under mild reaction conditions. A Distinct effect of water and base is explored for allylic nucleophilic substitution reactions of (E)-1,3-diphenylallyl acetate.

  7. Effect of multiple metal resistant bacteria from contaminated lake sediments on metal accumulation and plant growth

    International Nuclear Information System (INIS)

    Li, Kefeng; Ramakrishna, Wusirika

    2011-01-01

    Naturally occurring bacteria play an important role in bioremediation of heavy metal pollutants in soil and wastewater. This study identified high levels of resistance to zinc, cesium, lead, arsenate and mercury in eight copper resistant Pseudomonas strains previously isolated from Torch Lake sediment. These strains showed variable susceptibility to different antibiotics. Furthermore, these metal resistant strains were capable of bioaccumulation of multiple metals and solubilization of copper. Bacterial strains TLC 3-3.5-1 and TLC 6-6.5-1 showed high bioaccumulation ability of Zn (up to 15.9 mg/g dry cell) and Pb (80.7 mg/g dry cell), respectively. All the strains produced plant growth promoting indole-3-acetic acid (IAA), iron chelating siderophore and solubilized mineral phosphate and metals. The effect of bacterial inoculation on plant growth and copper uptake by maize (Zea mays) and sunflower (Helianthus annuus) was investigated using one of the isolates (Pseudomonas sp. TLC 6-6.5-4) with higher IAA production and phosphate and metal soubilization, which resulted in a significant increase in copper accumulation in maize and sunflower, and an increase in the total biomass of maize. The multiple metal-resistant bacterial isolates characterized in our study have potential applications for remediation of metal contaminated soils in combination with plants and metal contaminated water.

  8. Effect of multiple metal resistant bacteria from contaminated lake sediments on metal accumulation and plant growth

    Energy Technology Data Exchange (ETDEWEB)

    Li, Kefeng [Department of Biological Sciences, Michigan Technological University, 1400 Townsend Drive, Houghton, MI 49931 (United States); Ramakrishna, Wusirika, E-mail: wusirika@mtu.edu [Department of Biological Sciences, Michigan Technological University, 1400 Townsend Drive, Houghton, MI 49931 (United States)

    2011-05-15

    Naturally occurring bacteria play an important role in bioremediation of heavy metal pollutants in soil and wastewater. This study identified high levels of resistance to zinc, cesium, lead, arsenate and mercury in eight copper resistant Pseudomonas strains previously isolated from Torch Lake sediment. These strains showed variable susceptibility to different antibiotics. Furthermore, these metal resistant strains were capable of bioaccumulation of multiple metals and solubilization of copper. Bacterial strains TLC 3-3.5-1 and TLC 6-6.5-1 showed high bioaccumulation ability of Zn (up to 15.9 mg/g dry cell) and Pb (80.7 mg/g dry cell), respectively. All the strains produced plant growth promoting indole-3-acetic acid (IAA), iron chelating siderophore and solubilized mineral phosphate and metals. The effect of bacterial inoculation on plant growth and copper uptake by maize (Zea mays) and sunflower (Helianthus annuus) was investigated using one of the isolates (Pseudomonas sp. TLC 6-6.5-4) with higher IAA production and phosphate and metal soubilization, which resulted in a significant increase in copper accumulation in maize and sunflower, and an increase in the total biomass of maize. The multiple metal-resistant bacterial isolates characterized in our study have potential applications for remediation of metal contaminated soils in combination with plants and metal contaminated water.

  9. Phytohormones and induction of plant-stress tolerance and defense genes by seed and foliar inoculation with Azospirillum brasilense cells and metabolites promote maize growth.

    Science.gov (United States)

    Fukami, Josiane; Ollero, Francisco Javier; Megías, Manuel; Hungria, Mariangela

    2017-12-01

    Azospirillum spp. are plant-growth-promoting bacteria used worldwide as inoculants for a variety of crops. Among the beneficial mechanisms associated with Azospirillum inoculation, emphasis has been given to the biological nitrogen fixation process and to the synthesis of phytohormones. In Brazil, the application of inoculants containing A. brasilense strains Ab-V5 and Ab-V6 to cereals is exponentially growing and in this study we investigated the effects of maize inoculation with these two strains applied on seeds or by leaf spray at the V2.5 stage growth-a strategy to relieve incompatibility with pesticides used for seed treatment. We also investigate the effects of spraying the metabolites of these two strains at V2.5. Maize growth was promoted by the inoculation of bacteria and their metabolites. When applied via foliar spray, although A. brasilense survival on leaves was confirmed by confocal microscopy and cell recovery, few cells were detected after 24 h, indicating that the effects of bacterial leaf spray might also be related to their metabolites. The major molecules detected in the supernatants of both strains were indole-3-acetic acid, indole-3-ethanol, indole-3-lactic acid and salicylic acid. RT-PCR of genes related to oxidative stress (APX1, APX2, CAT1, SOD2, SOD4) and plant defense (pathogenesis-related PR1, prp2 and prp4) was evaluated on maize leaves and roots. Differences were observed according to the gene, plant tissue, strain and method of application, but, in general, inoculation with Azospirillum resulted in up-regulation of oxidative stress genes in leaves and down-regulation in roots; contrarily, in general, PR genes were down-regulated in leaves and up-regulated in roots. Emphasis should be given to the application of metabolites, especially of Ab-V5 + Ab-V6 that in general resulted in the highest up-regulation of oxidative-stress and PR genes both in leaves and in roots. We hypothesize that the benefits of inoculation of Azospirillum on

  10. Isolation and identification of plant growth promoting rhizobacteria from maize (Zea mays L. rhizosphere and their plant growth promoting effect on rice (Oryza sativa L.

    Directory of Open Access Journals (Sweden)

    Karnwal Arun

    2017-06-01

    Full Text Available The use of plant growth promoting rhizobacteria is increasing in agriculture and gives an appealing manner to replace chemical fertilizers, pesticides, and dietary supplements. The objective of our research was to access the plant growth promotion traits of Pseudomonas aeruginosa, P. fluorescens and Bacillus subtilis isolated from the maize (Zea mays L. rhizosphere. In vitro studies showed that isolates have the potential to produce indole acetic acid (IAA, hydrogen cyanide, phosphate solubilisation, and siderophore. RNA analysis revealed that two isolates were 97% identical to P. aeruginosa strain DSM 50071 and P. aeruginosa strain NBRC 12689 (AK20 and AK31, while two others were 98% identical to P. fluorescens strain ATCC 13525, P. fluorescens strain IAM 12022 (AK18 and AK45 and one other was 99% identical to B. subtilis strain NCDO 1769 (AK38. Our gnotobiotic study showed significant differences in plant growth variables under control and inoculated conditions. In the present research, it was observed that the isolated strains had good plant growth promoting effects on rice.

  11. Detection of metabolites in Flor de Mayo common beans (Phaseolus ...

    African Journals Online (AJOL)

    katia

    2012-07-10

    Jul 10, 2012 ... beans involves beneficial effects of inoculation on plant growth and development parameters and can be taken ..... deficit as a driver of the mutualistic relationship between the fungus ... Utilization of the plant hormone indole-.

  12. Aleuria aurantia - indole metabolites of fruit bodies, mycelial culture and culture medium

    Directory of Open Access Journals (Sweden)

    Janina Węgiel

    2014-08-01

    Full Text Available The aim of present study was to investigate and compare indole metabolites of fruit bodies, mycelium cultivated in vitro and culture medium of the fungus Aleuria aurantia (Fr. Fuck. By use of a number of chromatographic and spectroscopic methods several indole metabolites have been detected and identified among other the 3-indolebutyric acid was produced and extracted to the culture medium. Furthermore 3-indoleatonitrile and tryptophane degradative products have been found both in fruit bodies and mycelium.

  13. 5α,6α-Epoxy-7-norcholestan-3β-yl acetate

    Directory of Open Access Journals (Sweden)

    L. C. R. Andrade

    2012-01-01

    Full Text Available The title cholestan, C28H46O3, was prepared by epoxidation of 7-norcholest-5-en-3β-yl acetate and crystallized by slow evaporation from an ethanolic solution. All rings are trans fused. The 3β-acetate and the 17β-cholestane side chain are in equatorial positions. The molecule is highly twisted due to its B-nor characteristic. A quantum chemical ab-initio Roothaan Hartree–Fock calculation of the equilibrium geometry of the isolated molecule gives values for bond lengths and valency angles in close agreement with the experimental ones.

  14. Process for the preparation of protected 3-amino-1,2-dihydroxypropane acetal and derivatives thereof

    Energy Technology Data Exchange (ETDEWEB)

    Hollingsworth, R.I.; Wang, G.

    2000-03-21

    This application describes a process for producing protected 3-amino-1,2-dihydroxypropane acetal, particularly in chiral forms, for use as an intermediate in the preparation of various 3-carbon compounds which are chiral. In particular, the present invention relates to the process for preparation of 3-amino-1,2-dihydroxypropane isopropylidene acetal. The protected 3-amino-1,2-dihydroxypropane acetal is a key intermediate to the preparation of chiral 3-carbon compounds which in turn are intermediates to various pharmaceuticals.

  15. Neurochemical binding profiles of novel indole and benzofuran MDMA analogues.

    OpenAIRE

    Shimshoni, JA; Winkler, I; Golan, E; Nutt, D

    2016-01-01

    3,4-Methylenedioxy-N-methylamphetamine (MDMA) has been shown to be effective in the treatment of post-traumatic stress disorder (PTSD) in numerous clinical trials. In the present study, we have characterized the neurochemical binding profiles of three MDMA-benzofuran analogues (1-(benzofuran-5-yl)-propan-2-amine, 5-APB; 1-(benzofuran-6-yl)-N-methylpropan-2-amine, 6-MAPB; 1-(benzofuran-5-yl)-N-methylpropan-2-amine, 5-MAPB) and one MDMA-indole analogue (1-(1H-indol-5-yl)-2-methylamino-propan-1-...

  16. Effects of cations on hormone transport in primary roots of Zea mays

    Science.gov (United States)

    Hasenstein, K. H.; Evans, M. L.

    1988-01-01

    We examined the influence of aluminum and calcium (and certain other cations) on hormone transport in corn roots. When aluminum was applied unilaterally to the caps of 15 mm apical root sections the roots curved strongly away from the aluminum. When aluminum was applied unilaterally to the cap and 3H-indole-3-acetic acid was applied to the basal cut surface twice as much radioactivity (assumed to be IAA) accumulated on the concave side of the curved root as on the convex side. Auxin transport in the apical region of intact roots was preferentially basipetal, with a polarity (basipetal transport divided by acropetal transport) of 6.3. In decapped 5 mm apical root segments, auxin transport was acropetally polar (polarity = 0.63). Application of aluminum to the root cap strongly promoted acropetal transport of auxin reducing polarity from 6.3 to 2.1. Application of calcium to the root cap enhanced basipetal movement of auxin, increasing polarity from 6.3 to 7.6. Application of the calcium chelator, ethylene-glycol-bis-(beta-aminoethylether)-N,N,N',N'-tetraacetic acid, greatly decreased basipetal auxin movement, reducing polarity from 6.3 to 3.7. Transport of label after application of tritiated abscisic acid showed no polarity and was not affected by calcium or aluminum. The results indicate that the root cap is particularly important in maintaining basipetal polarity of auxin transport in primary roots of corn. The induction of root curvature by unilateral application of aluminum or calcium to root caps is likely to result from localized effects of these ions on auxin transport. The findings are discussed relative to the possible role of calcium redistribution in the gravitropic curvature of roots and the possibility of calmodulin involvement in the action of calcium and aluminum on auxin transport.

  17. Isolation of ethyl acetic based AGF bio-nutrient and its application on the growth of Capsicum annum L. plants

    Science.gov (United States)

    Hendrawan, Sonjaya, Yaya; Khoerunnisa, Fitri; Musthapa, Iqbal; Nurmala, Astri Rizki

    2015-12-01

    The study aimed to obtain the bionutrient derived from extraction of AGF leafs in ethyl acetic solvents and to explore its application on the plant growth of capsicum annum L. (curly red chili). Particularly, the fraction of secondary metabolites groups composed bionutrient was intensively elucidated by liquid vacuum chromatography technique. The characterization of secondary metabolites groups was conducted through several methods, i.e. thin layer chromatography, phytochemical screening, and FTIR spectroscopy. The AGF extracts based bionutrient then was applied on capsicum annum L. plants with dosage of 2 and 10 mL/L. The ethyl acetic solvent and commercial nutrient of Phonska and pesticide of curacron (EC 500) were selected as a blank and a positive control to evaluate the growth pattern of capsicum annum L., respectively. The result showed that the CF 1 dan CF2 of AGF extract contained alkaloid and terpenoid of secondary metabolite group, the CF 3, and CF 4 of AGF extracts were dominated by alkaloid, flavonoid, and terpenoid, while the CF 5 of AGF extract contained alkaloid, tannin and terpenoid groups. The CF 2 of AGF extract has the highest growth rate constant of 0.1702 week-1 with the number and heaviest mass of the yield of 82 pieces and 186.60, respectively. It was also showed the significant bio-pesticide activity that should be useful to support plant growth, indicating that AGF extract can be applied as both bio-nutrient and bio-pesticide.

  18. Gold-catalyzed Bicyclization of Diaryl Alkynes: Synthesis of Polycyclic Fused Indole and Spirooxindole Derivatives.

    Science.gov (United States)

    Cai, Ju; Wu, Bing; Rong, Guangwei; Zhang, Cheng; Qiu, Lihua; Xu, Xinfang

    2018-04-13

    An unprecedented gold-catalyzed bicyclization reaction of diaryl alkynes has been developed for the synthesis of indoles in good to high yields. Mechanistically, this alkyne bifunctionalization transformation was terminated by a stepwise formal X-H insertion reaction to furnish the corresponding polycyclic-frameworks with structural diversity, and the key intermediate 3 H-indole was isolated and characterized for the first time. In addition, further transformation of these generated tetracyclic-indoles with PCC as the oxidant provided straightforward access to the spirooxindoles in high yields.

  19. Revisión bibliográfica. BIOSÍNTESIS DE ÁCIDO INDOL-3-ACÉTICO Y PROMOCIÓN DEL CRECIMIENTO DE PLANTAS POR BACTERIAS

    OpenAIRE

    Paulina Vega-Celedón; Hayron Canchignia Martínez; Myriam González; Michael Seeger

    2016-01-01

    La hormona vegetal ácido indol-3-acético (AIA) es la principal auxina en las plantas. El AIA controla diversos procesos fisiológicos como la elongación y división celular, la diferenciación de tejidos y las respuestas a la luz y la gravedad. La concentración de AIA se encuentra regulada en las plantas. Se ha descrito que las bacterias pueden modular los niveles de AIA. Las rutas biosintéticas de AIA más importantes y ampliamente distribuidas en bacterias son las vías anabólicas de indol-3-pir...

  20. In vitro micropropagation of Stevia rebaudiana Bertoni in Malaysia

    Directory of Open Access Journals (Sweden)

    Ummi Nur Ain Abdul Razak

    2014-02-01

    Full Text Available Stevia rebaudiana Bertoni is a medicinal plants and commercially use as non-caloric sweetener for diabetic patient. In the present study, a protocol was developed for in vitro micropropagation using 6-benzylamino purine (BAP and Kinetin (Kn for the formation of multiple shoot proliferation and Indole-3-acetic acid (IAA, Indole-3-butyric acid (IBA and 1-Naphthaleneacetic acid (NAA for the induction of roots. Maximum shoot formation (7.82 ± 0.7 shoots per explants was observed on a Murashige and Skoog (MS medium supplemented with 0.5 mg L-1 BAP and 0.25 mg L-1 Kn. The maximum number of roots (30.12 ± 2.1 roots per explants was obtained on a MS medium containing 1.0 mg L-1 IBA. The well rooted plantlets were successfully weaned and acclimatized in plant soil with survival rate of 83.3 %.