WorldWideScience

Sample records for plant decommissioning project

  1. Decommissioning project of commercial nuclear power plant

    International Nuclear Information System (INIS)

    Karigome, S.

    2008-01-01

    Decommissioning project of commercial nuclear power plant in Japan was outlined. It is expected that the land, after the decommissioning of commercial nuclear power plants, will serve as sites for new plants. Steps will be taken to reduce the amount of wastes generated and to recycle/reuse them. Wastes with a radioactivity concentration below the 'clearance level' need not be dealt with as radioactive material, and may be handled in the same way as conventional wastes. The Tokai-1 power station, a 166 MWe carbon dioxide cooled reactor which closed down in 1998, is being decommissioned and the first ten years as 'safe storage' to allow radioactivity to decay. Non-reactor grade components such as turbines were already removed, heat exchanger dismantling started and the reactor will be dismantled, the buildings demolished and the site left ready for reuse. All radioactive wastes will be classified as low-level wastes in three categories and will be buried under the ground. The total cost will be 88.5 billion yen -34.7 billion for dismantling and 53.8 billion for waste treatment including the graphite moderator. (T. Tanaka)

  2. Evaluation of nuclear facility decommissioning projects. Status report. Humboldt Bay Power Plant Unit 3, SAFSTOR decommissioning

    International Nuclear Information System (INIS)

    Baumann, B.L.; Haffner, D.R.; Miller, R.L.; Scotti, K.S.

    1986-06-01

    This document explains the purpose of the US Nuclear Regulatory Commission's (NRC) Evaluation of Nuclear Facility Decommissioning Projects (ENFDP) program and summarizes information concerning the decommissioning of the Humboldt Bay Power Plant (HBPP) Unit 3 facility. Preparations to put this facility into a custodial safe storage (SAFSTOR) mode are currently scheduled for completion by June 30, 1986. This report gives the status of activities as of June 1985. A final summary report will be issued after completion of this SAFSTOR decommissioning activity. Information included in this status report has been collected from the facility decommissioning plan, environmental report, and other sources made available by the licensee. This data has been placed in a computerized data base system which permits data manipulation and summarization. A description of the computer reports that can be generated by the decommissioning data system (DDS) for Humboldt Bay and samples of those reports are included in this document

  3. Methodology for cost estimate in projects for nuclear power plants decommissioning

    International Nuclear Information System (INIS)

    Salij, L.M.

    2008-01-01

    The conceptual approaches to cost estimating of nuclear power plants units decommissioning projects were determined. The international experience and national legislative and regulatory basis were analyzed. The possible decommissioning project cost classification was given. It was shown the role of project costs of nuclear power plant units decommissioning as the most important criterion for the main project decisions. The technical and economic estimation of deductions to common-branch fund of decommissioning projects financing was substantiated

  4. Decommissioning project management unit started its activities

    International Nuclear Information System (INIS)

    Medeliene, D.

    2002-01-01

    The Decommissioning Project Management Unit team comprises western experts as well as experts from INPP Decommissioning Service who all work as a single team. The DPMU will develop the Final Decommissioning Plan and a more detailed Decommissioning Project, which will describe how the plant will be removed from service and safely decommissioned

  5. Shippingport Station Decommissioning Project

    International Nuclear Information System (INIS)

    McKernan, M.L.

    1989-01-01

    The Shippingport Atomic Power Station was located on the Ohio River in Shippingport Borough (Beaver County), Pennsylvania, USA. The US Atomic Energy Commission (AEC) constructed the plant in the mid-1950s on a seven and half acre parcel of land leased from Duquesne Light Company (DLC). The purposes were to demonstrate and to develop Pressurized Water Recovery technology and to generate electricity. DLC operated the Shippingport plant under supervision of (the successor to AEC) the Department of Energy (DOE)-Naval Reactors (NR) until operations were terminated on October 1, 1982. NR concluded end-of-life testing and defueling in 1984 and transferred the Station's responsibility to DOE Richland Operations Office (RL), Surplus Facility Management Program Office (SFMPO5) on September 5, 1984. SFMPO subsequently established the Shippingport Station Decommissioning Project and selected General Electric (GE) as the Decommissioning Operations Contractor. This report is intended to provide an overview of the Shippingport Station Decommissioning Project

  6. New projects related to decommissioning

    International Nuclear Information System (INIS)

    Benbow, R.

    2008-01-01

    The PMU has been established in support of the KNPP Decommissioning Department. All of the Infrastructure Projects associated with Decommissioning have been identified and are being managed through the EBRD Procurement Process. The status of the following projects is presented: Evaluation of the Radiological Inventory for Units 1 to 4; Supply of Size Reduction and Decontamination Workshops; Dismantling Tools and Equipment; Heat Generation Plant; Environmental Assessment for Decommissioning; Decay Storage Site for Transitional RAW ; Information Centres for Decommissioning; Storage Site for Conventional Waste from Decommissioning; Inventory, Treatment an Conditioning of Contaminated Soil; Concrete Core Sampling Analysis; Asbestos Removal Equipment; Demolition Equipment

  7. Shippingport Station Decommissioning Project

    International Nuclear Information System (INIS)

    1989-01-01

    This Topical Report is a synopsis of the decontamination of plant components and structures at the Shippingport Station Decommissioning Project (SSDP). The information is provided as a part of the Technology Transfer Program to document the preparation activities in support of the shipment of radioactive wastes and the unconditional release of the site and structural materials. 1 ref., 16 figs., 4 tabs

  8. Strategically oriented project management of the decommissioning of nuclear power plants

    International Nuclear Information System (INIS)

    Kemmeter, Sascha; Woempener, Andreas

    2013-01-01

    Due to the politically induced change of the energy sector in Germany, the operators of nuclear power plants had to react and to deal with completely new conditions concerning the decommissioning of their plants on short notice. Therefore the operators have to devise new strategies for controlling their decommissioning and dismantling projects in a short amount of time and most often similarly for several plants. Two fundamental procedures are possible for the successful controlling of these dismantling projects: a centralized or a decentralized management organization. How these project control processes can be realized in an optimal way, is, next to other economic specifications of the dismantling of nuclear power plants, the topic of a new research project of the Chair of Management Accounting at the University Duisburg-Essen. In that process, results and experiences from other research and practical projects concerning general large-scale projects are being used. Selected findings have been compiled and are being discussed in this paper. (orig.)

  9. A study of a decommissioning activities classification structure for decommissioning of the project management of a nuclear power plant

    International Nuclear Information System (INIS)

    Park, Hee Seong; Park, Seung Kook; Jin, Hyung Gon; Song, Chan Ho; Ha, Jei Hyun; Moon, Jei kwon

    2015-01-01

    Decommissioning activities and requirements that was established in the planning stage should be organized systematically in the course of dismantling the NPP. The work breakdown structure is essential to ensuring that all the project scope is identified, estimated and executed. The project manager needs to ensure that a WBS is established early in the project and maintained throughout the project life cycle. A project management system is ongoing under the circumstance of having no experience dismantling the NPP. The system related to the NPP decommissioning should have technical criteria as well as regulatory requirements in the full scale of decommissioning stage. In the dismantling stage, decommissioning plan document should include the results of radiation/radioactivity characterization, evaluation of the amount of dismantled waste, calculation of the expose dose rate, evaluation of decommissioning cost and schedule after shutdown

  10. A study of a decommissioning activities classification structure for decommissioning of the project management of a nuclear power plant

    Energy Technology Data Exchange (ETDEWEB)

    Park, Hee Seong; Park, Seung Kook; Jin, Hyung Gon; Song, Chan Ho; Ha, Jei Hyun; Moon, Jei kwon [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-05-15

    Decommissioning activities and requirements that was established in the planning stage should be organized systematically in the course of dismantling the NPP. The work breakdown structure is essential to ensuring that all the project scope is identified, estimated and executed. The project manager needs to ensure that a WBS is established early in the project and maintained throughout the project life cycle. A project management system is ongoing under the circumstance of having no experience dismantling the NPP. The system related to the NPP decommissioning should have technical criteria as well as regulatory requirements in the full scale of decommissioning stage. In the dismantling stage, decommissioning plan document should include the results of radiation/radioactivity characterization, evaluation of the amount of dismantled waste, calculation of the expose dose rate, evaluation of decommissioning cost and schedule after shutdown.

  11. Trojan Decommissioning Project Cost Performance

    International Nuclear Information System (INIS)

    Michael B. Lackey

    2000-01-01

    The Trojan nuclear plant (Trojan) was an 1160-MW(electric) four-loop pressurized water reactor located in Rainier, Oregon. The plant was permanently shut down in 1993 after ∼17 yr of commercial operation. The early plant closure was an economic decision. The key factors in the closure analysis were escalation of inspection and repair costs associated with steam generator tube cracking and the projected availability of inexpensive replacement power in the Pacific Northwest region of the United States. Since the plant closure, Portland General Electric (PGE) has been actively engaged in decommissioning. The Trojan Decommissioning Project currently has a forecast at completion of $429.7 million (all costs are in millions of 1997 dollars, unless otherwise noted). The cost performance of the Trojan Decommissioning Project to date is addressed, as well as the tools that are in place to provide cost control through completion of decommissioning

  12. Nuclear power plant decommissioning

    International Nuclear Information System (INIS)

    Yaziz Yunus

    1986-01-01

    A number of issues have to be taken into account before the introduction of any nuclear power plant in any country. These issues include reactor safety (site and operational), waste disposal and, lastly, the decommissioning of the reactor inself. Because of the radioactive nature of the components, nuclear power plants require a different approach to decommission compared to other plants. Until recently, issues on reactor safety and waste disposal were the main topics discussed. As for reactor decommissioning, the debates have been academic until now. Although reactors have operated for 25 years, decommissioning of retired reactors has simply not been fully planned. But the Shippingport Atomic Power Plant in Pennysylvania, the first large scale power reactor to be retired, is now being decommissioned. The work has rekindled the debate in the light of reality. Outside the United States, decommissioning is also being confronted on a new plane. (author)

  13. Progress of JPDR decommissioning project

    International Nuclear Information System (INIS)

    Kiyota, M.; Yanagihara, S.

    1995-01-01

    The Japan Power Demonstration Reactor (JPDR) decommissioning project is progressively achieving its final goal; the project will be finished by March 1996 to release the JPDR's site into unrestricted use in a green field condition. The new techniques which developed or improved in R and D, the first phase of this program, have been successfully applied to the actual dismantling activities. Some decommissioning wastes have been managed as the first case of onsite shallow land burial based on the new regulatory frame of radioactive waste management. The experiences and the data obtained from the JPDR dismantling activities are expected to contribute to future decommissioning of commercial nuclear power plants. (author)

  14. Shippingport: A relevant decommissioning project

    International Nuclear Information System (INIS)

    Crimi, F.P.

    1988-01-01

    Because of Shippingport's low electrical power rating (72 MWe), there has been some misunderstanding on the relevancy of the Shippingport Station Decommissioning Project (SSDP) to a modern 1175 MWe commercial pressurized water reactor (PWR) power station. This paper provides a comparison of the major components of the reactor plant of the 72 MWe Shippingport Atomic Power Station and an 1175 MWe nuclear plant and the relevancy of the Shippingport decommissioning as a demonstration project for the nuclear industry. For the purpose of this comparison, Portland General Electric Company's 1175 MWe Trojan Nuclear Plant at Rainier, Oregon, has been used as the reference nuclear power plant. 2 refs., 2 figs., 1 tab

  15. Environmental assessment for Mound Plant decontamination and decommissioning projects, Mound Plant, Miamisburg, Ohio

    International Nuclear Information System (INIS)

    1995-05-01

    The U.S. Department of Energy (DOE) has prepared an Environmental Assessment (EA) for seven decontamination and decommissioning (D ampersand D) projects at the Mound Plant in Miamisburg, Ohio, that have not been previously addressed in the Final Environmental Impact Statement for the Mound Facility (June 1979). Based on the information presented in the EA, the DOE has determined that the proposed action is not a major Federal action significantly affecting the quality of the human environment within the meaning of the National Environmental Policy Act (NEPA) of 1969. Therefore, the preparation of an Environmental Impact Statement (EIS) is not required and the Department is issuing this Finding of No Significant Impact (FONSI)

  16. The decommissioning of WWER type nuclear power plants. Final report on an IAEA regional technical co-operation project

    International Nuclear Information System (INIS)

    2000-01-01

    Numerous WWER-440 nuclear power plants are in operation in central and eastern Europe and a small number have already been shut down. In addition to reactors already shut down, many other reactors will reach the end of their design lifetime in a few years and become candidates for decommissioning. It is unfortunate that little consideration was devoted to decommissioning of WWER-440 reactors at the plant design and construction stage, and little emphasis was placed on planning for decommissioning. It is within this context that the IAEA launched a regional technical co-operation project in 1994 with the aim of providing guidance on planning and management of decommissioning for WWERs. The project, which had a duration of four years (1995-1998), included the organization of workshops and scientific visits to countries having WWERs and other countries where active decommissioning projects were under way. Eventually, participants suggested the consolidation of expert guidance and collective opinions into a TECDOC, which was drafted by both designated participants from project recipient countries and invited experts. The TECDOC has the aim of serving as a stimulus for all concerned parties in central and eastern European countries to initiate concrete decommissioning planning, including assessment of existing and required resources for the eventual implementation of decommissioning plans. In addition, the regional technical co-operation project has managed to bring together in this TECDOC a number of good practices that could be useful in WWER-440 decommissioning

  17. Scheduling for decommissioning projects

    International Nuclear Information System (INIS)

    Podmajersky, O.E.

    1987-01-01

    This paper describes the Project Scheduling system being employed by the Decommissioning Operations Contractor at the Shippingport Station Decommissioning Project (SSDP). Results from the planning system show that the project continues to achieve its cost and schedule goals. An integrated cost and schedule control system (C/SCS) which uses the concept of earned value for measurement of performance was instituted in accordance with DOE orders. The schedule and cost variances generated by the C/SCS system are used to confirm management's assessment of project status. This paper describes the types of schedules and tools used on the SSDP project to plan and monitor the work, and identifies factors that are unique to a decommissioning project that make scheduling critical to the achievement of the project's goals. 1 fig

  18. Shippingport station decommissioning project technology transfer program

    International Nuclear Information System (INIS)

    McKernan, M.L.

    1988-01-01

    US Department of Energy (DOE) Shippingport Station Decommissioning Project (SSDP) decommissioned, decontaminated, and dismantled the world's first, nuclear fueled, commercial size, electric power plant. SSDP programmatic goal direction for technology transfer is documentation of project management and operations experience. Objective is to provide future nuclear facility decommissioning projects with pertinent SSDP performance data for project assessment, planning, and operational implementation. This paper presents a working definition for technology transfer. Direction is provided for access and availability for SSDP technology acquisition

  19. Decommissioning the Belgonucleaire Dessel MOX plant: presentation of the project and situation end august 2013

    Energy Technology Data Exchange (ETDEWEB)

    Cuchet, J.M. [TRACTEBEL ENGINEERING, Avenue Ariane, 7, B1200 Brussels (Belgium); Libon, H.; Verheyen, C. [BELGONUCLEAIRE S.A. / N.V. Europalaan, 20, B2480 Dessel (Belgium); Bily, J. [STUDSVIK GmbH, Karlsruher Strasse, 20, D75179 Pforzheim,(Germany); Boden, S. [SCK-CEN, Boeretang, 200, B2400 Mol (Belgium); Joffroy, F. [TECNUBEL N.V., Zandbergen, 1, B2480 Dessel (Belgium); Walthery, R. [BELGOPROCESS, Gravenstraat, 73, B2480 Dessel (Belgium)

    2013-07-01

    Belgonucleaire has been operating the Dessel MOX plant at an industrial scale between 1986 and 2006. During this period, 40 metric tons of plutonium (HM) have been processed into 90 reloads of MOX fuel for commercial light water reactors. The decision to stop the production in 2006 and to decommission the MOX plant was the result of the shrinkage of the MOX fuel market due to political and commercial factors. As a significant part of the decommissioning project of the Dessel MOX plant, about 170 medium-sized glove-boxes and about 1.200 metric tons of structure and equipment outside the glove-boxes are planned for dismantling. The license for the dismantling of the MOX plant was granted by Royal Decree in 2008 and the dismantling started in March 2009. The dismantling works are carried out by an integrated organization under leadership and responsibility of Belgonucleaire; this organization includes 3 main contractors, namely Tecnubel N.V., the THV ('Tijdelijke HandelsVereniging') Belgoprocess / SCK-CEN and Studsvik GmbH and Tractebel Engineering as project manager. In this paper, after having described the main characteristics of the project, the authors review the different organizational and technical options considered for the decommissioning of the glove-boxes; thereafter the main decision criteria (qualification of personnel and of processes, confinement, cutting techniques and radiation protection, safety aspects, alpha-bearing waste management) are analyzed as well. Finally the progress, the feedback and the lessons learned at the end of August 2013 are presented, giving the principal's and contractors point of view. (authors)

  20. Decommissioning planning of Swedish nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Hedin, Gunnar; Bergh, Niklas [Westinghouse Electric Sweden AB, Vaesteraes (Sweden)

    2013-07-01

    The technologies required for the decommissioning work are for the most part readily proven. Taken into account that there will be many more years before the studied reactor units will undergo decommissioning, the techniques could even be called conventional at that time. This will help bring the decommissioning projects to a successful closure. A national waste fund is already established in Sweden to finance amongst others all dismantling and decommissioning work. This will assure that funding for the decommissioning projects is at hand when needed. All necessary plant data are readily available and this will, combined with a reliable management system, expedite the decommissioning projects considerably. Final repositories for both long- and short-lived LILW respectively is planned and will be constructed and dimensioned to receive the decommissioning waste from the Swedish NPP:s. Since the strategy is set and well thought-through, this will help facilitate a smooth disposal of the radioactive decommissioning waste. (orig.)

  1. Shippingport station decommissioning project technology transfer program

    International Nuclear Information System (INIS)

    Pasquini, L.A.

    1986-01-01

    The purpose of the Shippingport Station Decommissioning Project (SSDP) is to place the Shippingport Atomic Power Station in a long-term radiologically safe condition following defueling of the reactor, to perform decommissioning in such a manner as to demonstrate to the nuclear industry the application of decommissioning procedures to a large scale nuclear power plant, and to provide useful planning data for future decommissioning projects. This paper describes the Technology Transfer Program for collecting and archiving the decommissioning data base and its availability to the nuclear industry

  2. Shippingport Station Decommissioning Project Start of Physical Decommissioning

    International Nuclear Information System (INIS)

    Crimi, F. P.

    1987-01-01

    The Shippingport Atomic Power Station consists of the nuclear steam supply system and associated radioactive waste processing systems, which are owned by the United States Department of Energy, and the turbine-generator and balance of plant, which is owned by the Duquesne Light Company. The station is located at Shippingport, Pennsylvania on seven acres of land leased by DOE from Duquesne Light Company. The Shippingport Station Decommissioning Project is being performed under contract to the DOE by the General Electric Company and its integrated subcontractor, Morrison-Knudsen Company. as the Decommissioning Operations Contractor. This paper describes the current status of the physical decommissioning work, which started September 1985. The preparations required to start a major decommissioning work effort in a safe and cost effective manner are discussed including the development and implementation of a cost/schedule control system. The detailed plan required to ensure that people, property, and procedures are ready in sufficient time to support the start of physical decommissioning is also discussed. The total estimated cost of the Shippingport Station Decommissioning Project should be $98.3 M, with the Project scheduled for completion in April 1990. As the decommissioning of the first commercial-scale nuclear power plant, the Shippingport Project is expected to set the standard for safe, cost-effective demolition of nuclear plants

  3. Strategically oriented project management of the decommissioning of nuclear power plants; Strategieorientiertes Projektmanagement der Stilllegung von Kernkraftwerken

    Energy Technology Data Exchange (ETDEWEB)

    Kemmeter, Sascha [Conscore GmbH, Duesseldorf (Germany); Woempener, Andreas [Duisburg-Essen Univ., Duisburg (Germany). Lehrstuhl fuer ABWL und Controlling

    2013-12-15

    Due to the politically induced change of the energy sector in Germany, the operators of nuclear power plants had to react and to deal with completely new conditions concerning the decommissioning of their plants on short notice. Therefore the operators have to devise new strategies for controlling their decommissioning and dismantling projects in a short amount of time and most often similarly for several plants. Two fundamental procedures are possible for the successful controlling of these dismantling projects: a centralized or a decentralized management organization. How these project control processes can be realized in an optimal way, is, next to other economic specifications of the dismantling of nuclear power plants, the topic of a new research project of the Chair of Management Accounting at the University Duisburg-Essen. In that process, results and experiences from other research and practical projects concerning general large-scale projects are being used. Selected findings have been compiled and are being discussed in this paper. (orig.)

  4. Decommissioning of nuclear power plants

    International Nuclear Information System (INIS)

    Friske, A.; Thiele, D.

    1988-01-01

    The IAEA classification of decommissioning stages is outlined. The international development hitherto observed in decommissioning of nuclear reactors and nuclear power stations is presented. The dismantling, cutting and decontamination methods used in the decommissioning process are mentioned. The radioactive wastes from decommissioning are characterized, the state of the art of their treatment and disposal is given. The radiation burdens and the decommissioning cost in a decommissioning process are estimated. Finally, some evaluation of the trends in the decommissioning process of nuclear power plants is given. 54 refs. (author)

  5. Information management for decommissioning projects

    International Nuclear Information System (INIS)

    LeClair, A.N.; Lemire, D.S.

    2011-01-01

    This paper explores the importance of records and information management for decommissioning projects. Key decommissioning information and elements of a sound information management strategy are identified. Various knowledge management strategies and tools are discussed as opportunities for leveraging decommissioning information. The paper also examines the implementation of Atomic Energy of Canada Limited's (AECL) strategy for the long term preservation of decommissioning information, and its initiatives in leveraging of information with the application of several knowledge management strategies and tools. The implementation of AECL's strategy illustrates common as well as unique information and knowledge management challenges and opportunities for decommissioning projects. (author)

  6. Phenix Power Plant Decommissioning Project. Treatment of the Primary Cold Trap

    International Nuclear Information System (INIS)

    Deluge, M.

    2008-01-01

    Phenix is a sodium-cooled fast neutron reactor located at the CEA's Rhone Valley Center where it was commissioned in 1974. It has an electric power rating of 250 MW and is operated jointly by the CEA and EDF. Its primary role today is to investigate the transmutation of long-lived radioactive waste into shorter-lived wasteform. Its final shutdown is scheduled for the beginning of 2009. In this context the Phenix Power Plant Decommissioning Project was initiated in 2003. It covers the definitive cessation of plant operation and the dismantling (D and D) operations together with the final shutdown preparatory phase. The final shutdown phase includes the operations authorized within the standard operating methodological framework. The dismantling phase also comprises treatment of sodium-bearing waste and dismantling of the nuclear facilities (reactor block, shielded cells, etc.). Treatment of the Phenix primary cold trap is scheduled to begin in 2016. The analysis program includes the following steps: - Accurately determine the contamination in the trap by carrying out gamma spectrometry measurement campaigns from 2007 to 2013 (the remaining difficulty will be to accurately determine the distribution of the contamination). - Validate the safety studies for the ELA facility. This work is currently in progress; ELA will be commissioned following inactive qualification testing. - Proceed with cutting tests on the knit mesh filter, which are scheduled to begin in 2008

  7. Decommissioning of nuclear power plants

    International Nuclear Information System (INIS)

    Vollradt, J.

    1977-01-01

    A survey of the main questions of decommissioning of nuclear power plants will be given in the sight of German utilities (VDEW-Working group 'Stillegung'). The main topics are: 1) Definitions of decommissioning, entombment, removal and combinations of such alternatives; 2) Radioactive inventory (build up and decay); 3) Experience up to now; 4) Possibilities to dismantle are given by possibility to repair nuclear power plants; 5) Estimated costs, waste, occupational radiation dose; 6) German concept of decommissioning. (orig./HK) [de

  8. Nuclear power plant decommissioning costs in perspective

    International Nuclear Information System (INIS)

    Rothwell, Geoffrey; Deffrennes, Marc; Weber, Inge

    2016-01-01

    At the international level, actual experience is limited in the completion of nuclear power plant decommissioning projects. Cost data for decommissioning projects are thus largely unavailable, with few examples of analyses or comparisons between estimates and actual costs at the project level. The Nuclear Energy Agency (NEA) initiated a project to address this knowledge gap and in early 2016 published the outcomes in the report on Costs of Decommissioning Nuclear Power Plants. The study reviews decommissioning costs and funding practices adopted by NEA member countries, based on the collection and analysis of survey data via a questionnaire. The work was carried out in co-operation with the International Atomic Energy Agency (IAEA) and the European Commission (EC). (authors)

  9. Fort St. Vrain decommissioning project

    International Nuclear Information System (INIS)

    Fisher, M.

    1998-01-01

    Public Service Company of Colorado (PSCo), owner of the Fort St. Vrain nuclear generating station, achieved its final decommissioning goal on August 5, 1997 when the Nuclear Regulatory Commission terminated the Part 50 reactor license. PSCo pioneered and completed the world's first successful decommissioning of a commercial nuclear power plant after many years of operation. In August 1989, PSCo decided to permanently shutdown the reactor and proceed with its decommissioning. The decision to proceed with early dismantlement as the appropriate decommissioning method proved wise for all stake holders - present and future - by mitigating potential environmental impacts and reducing financial risks to company shareholders, customers, employees, neighboring communities and regulators. We believe that PSCo's decommissioning process set an exemplary standard for the world's nuclear industry and provided leadership, innovation, advancement and distinguished contributions to other decommissioning efforts throughout the world. (author)

  10. Quality Assurance in the Vandellos 1 Nuclear Power Plant Dismantling and Decommissioning Project

    International Nuclear Information System (INIS)

    Soto Lanuza, A.

    2000-01-01

    General description of the Quality Assurance System established and implemented for the efficient development of the current activities specified in the Dismantling and Decommissioning Plan for Vandellos I Nuclear Power Plant. Aspects related to the Quality organization, scope and applicability on the established Quality Assurance Manual, availability of requirements and recommendations on quality as well as actions to be taken for the correct verification on the quality and practical application of the Manual should be described. (Author)

  11. Shippingport station decommissioning project technology transfer program

    International Nuclear Information System (INIS)

    McKernan, M.L.

    1989-01-01

    The US Department of Energy (DOE) Shippingport Station Decommissioning Project (SSDP) decontaminated and dismantled the world's first nuclear-fueled, commercial-size electric power plant. The SSDP programmatic goal direction for technology transfer is documentation of project management and operations experience. The objective is to provide future nuclear facility decommissioning projects with pertinent SSDP performance data for project assessment, planning, and operational implementation. This paper sets out access and availability directions for SSDP technology acquisition. Discusses are technology transfer definition; technology transfer products including topical and other project reports, professional-technical society presentations, other project liaison and media relations, visual documentation, and technology transfer data base; and retrieving SSDP information

  12. Uranium hexafluoride production plant decommissioning

    International Nuclear Information System (INIS)

    Santos, Ivan

    2008-01-01

    The Institute of Energetic and Nuclear Research - IPEN is a research and development institution, located in a densely populated area, in the city of Sao Paulo. The nuclear fuel cycle was developed from the Yellow Cake to the enrichment and reconversion at IPEN. After this phase, all the technology was transferred to private enterprises and to the Brazilian Navy (CTM/SP). Some plants of the fuel cycle were at semi-industrial level, with a production over 20 kg/h. As a research institute, IPEN accomplished its function of the fuel cycle, developing and transferring technology. With the necessity of space for the implementation of new projects, the uranium hexafluoride (UF 6 ) production plant was chosen, since it had been idle for many years and presented potential leaking risks, which could cause environmental aggression and serious accidents. This plant decommission required accurate planning, as this work had not been carried out in Brazil before, for this type of facility, and there were major risks involving gaseous hydrogen fluoride aqueous solution of hydrofluoric acid (HF) both highly corrosive. Evaluations were performed and special equipment was developed, aiming to prevent leaking and avoid accidents. During the decommissioning work, the CNEN safety standards were obeyed for the whole operation. The environmental impact was calculated, showing to be not relevant.The radiation doses, after the work, were within the limits for the public and the area was released for new projects. (author)

  13. Development of the Decommissioning Project Management System, DECOMMIS

    International Nuclear Information System (INIS)

    Chung, U. S.; Park, J. H.; Lee, K. W.; Hwang, D. S.; Park, S. K.; Hwang, S. T.; Paik, S. T.; Choi, Y. D.; Chung, K. H.; Lee, K. I.; Hong, S. B.

    2007-03-01

    At the Korea Atomic Energy Research Institute(KAERI), two projects for decommissioning of the research reactors and uranium conversion plant are carried out. The management of the projects can be defined as 'the decision of the changes of the decommissioning methodologies for the more efficient achievement of the project at an adequate time and to an improved method'. The correct decision comes from the experiences on the decommissioning project and the systematic experiences can be obtained from the good management of the decommissioning information. For this, a project management tool, DECOMMIS, was developed in the D and D Technology Division, which has the charge of the decommissioning projects at the KAERI, and its purpose was extended to following fields; generation of reports on the dismantling waste for WACID, record keeping for the next decommissioning projects of nuclear facilities, provision of fundamental data for the R and D of the decommissioning technologies

  14. Development of the Decommissioning Project Management System, DECOMMIS

    Energy Technology Data Exchange (ETDEWEB)

    Chung, U. S.; Park, J. H.; Lee, K. W.; Hwang, D. S.; Park, S. K.; Hwang, S. T.; Paik, S. T.; Choi, Y. D.; Chung, K. H.; Lee, K. I.; Hong, S. B

    2007-03-15

    At the Korea Atomic Energy Research Institute(KAERI), two projects for decommissioning of the research reactors and uranium conversion plant are carried out. The management of the projects can be defined as 'the decision of the changes of the decommissioning methodologies for the more efficient achievement of the project at an adequate time and to an improved method'. The correct decision comes from the experiences on the decommissioning project and the systematic experiences can be obtained from the good management of the decommissioning information. For this, a project management tool, DECOMMIS, was developed in the D and D Technology Division, which has the charge of the decommissioning projects at the KAERI, and its purpose was extended to following fields; generation of reports on the dismantling waste for WACID, record keeping for the next decommissioning projects of nuclear facilities, provision of fundamental data for the R and D of the decommissioning technologies.

  15. Decommissioning plan - decommissioning project for KRR 1 and 2 (revised)

    International Nuclear Information System (INIS)

    Jung, K. J.; Paik, S. T.; Chung, U. S.; Jung, K. H.; Park, S. K.; Lee, D. G.; Kim, H. R.; Kim, J. K.; Yang, S. H.; Lee, B. J.

    2000-10-01

    This report is the revised Decommissioning Plan for the license of TRIGA research reactor decommissioning project according to Atomic Energy Act No. 31 and No. 36. The decommissioning plan includes the TRIGA reactor facilities, project management, decommissioning method, decontamination and dismantling activity, treatment, packaging, transportation and disposal of radioactive wastes. the report also explained the radiation protection plan and radiation safety management during the decommissioning period, and expressed the quality assurance system during the period and the site restoration after decommissioning. The first decommissioning plan was made by Hyundai Engineering Co, who is the design service company, was submitted to the Ministry of Science and Technology, and then was reviewed by the Korea Institute of Nuclear Safety. The first decommissioning plan was revised including answers for the questions arising from review process

  16. Decommissioning plan - decommissioning project for KRR 1 and 2 (revised)

    Energy Technology Data Exchange (ETDEWEB)

    Jung, K. J.; Paik, S. T.; Chung, U. S.; Jung, K. H.; Park, S. K.; Lee, D. G.; Kim, H. R.; Kim, J. K.; Yang, S. H.; Lee, B. J

    2000-10-01

    This report is the revised Decommissioning Plan for the license of TRIGA research reactor decommissioning project according to Atomic Energy Act No. 31 and No. 36. The decommissioning plan includes the TRIGA reactor facilities, project management, decommissioning method, decontamination and dismantling activity, treatment, packaging, transportation and disposal of radioactive wastes. the report also explained the radiation protection plan and radiation safety management during the decommissioning period, and expressed the quality assurance system during the period and the site restoration after decommissioning. The first decommissioning plan was made by Hyundai Engineering Co, who is the design service company, was submitted to the Ministry of Science and Technology, and then was reviewed by the Korea Institute of Nuclear Safety. The first decommissioning plan was revised including answers for the questions arising from review process.

  17. Program change management during nuclear power plant decommissioning

    International Nuclear Information System (INIS)

    Bushart, Sean; Kim, Karen; Naughton, Michael

    2011-01-01

    Decommissioning a nuclear power plant is a complex project. The project involves the coordination of several different departments and the management of changing plant conditions, programs, and regulations. As certain project Milestones are met, the evolution of such plant programs and regulations can help optimize project execution and cost. This paper will provide information about these Milestones and the plant departments and programs that change throughout a decommissioning project. The initial challenge in the decommissioning of a nuclear plant is the development of a definitive plan for such a complex project. EPRI has published several reports related to decommissioning planning. These earlier reports provided general guidance in formulating a Decommissioning Plan. This Change Management paper will draw from the experience gained in the last decade in decommissioning of nuclear plants. The paper discusses decommissioning in terms of a sequence of major Milestones. The plant programs, associated plans and actions, and staffing are discussed based upon experiences from the following power reactor facilities: Maine Yankee Atomic Power Plant, Yankee Nuclear Power Station, and the Haddam Neck Plant. Significant lessons learned from other sites are also discussed as appropriate. Planning is a crucial ingredient of successful decommissioning projects. The development of a definitive Decommissioning Plan can result in considerable project savings. The decommissioning plants in the U.S. have planned and executed their projects using different strategies based on their unique plant circumstances. However, experience has shown that similar project milestones and actions applied through all of these projects. This allows each plant to learn from the experiences of the preceding projects. As the plant transitions from an operating plant through decommissioning, the reduction and termination of defunct programs and regulations can help optimize all facets of

  18. Decommissioning and back working of Greifswald nuclear power plant

    International Nuclear Information System (INIS)

    Rittscher, D.; Leushacke, D.F.; Meyer, R.

    1998-01-01

    At Nuclear Power Plant Greifswald, the Energiewerke Nord are carrying out the presently world's largest decommissioning project. This requires the gathering up of experience from the operation of the nuclear power plants at Greifswald, the decommissioning of other nuclear power plants, waste management, project management and licensing procedures for the decommissioning of nuclear power plants. That confirmed that the back working of nuclear plants is not a technical problem but a challenge for project management and logistics. It shows that the dismantling and disposal of nuclear plants is an ordinary process in our economic life. (orig.) [de

  19. Radiation safety for decommissioning projects

    International Nuclear Information System (INIS)

    Ross, A.C.

    1999-01-01

    Decommissioning of redundant nuclear facilities is a growth area in the UK at the present time. NUKEM Nuclear Limited is a leading-edge nuclear decommissioning and waste management contractor (with its own in-house health physics and safety department), working for a variety of clients throughout the UK nuclear industry. NUKEM Nuclear is part of the prestigious, international NUKEM group, a world-class organization specializing in nuclear engineering and utilities technologies. NUKEM Nuclear is involved in a number of large, complex decommissioning projects, both in its own right and as part of consortia. This paper explores the challenges presented by such projects and the interfaces of contractor, client and subcontractors from the point of view of a radiation protection adviser. (author)

  20. Evaluation of Nuclear Facility Decommissioning Projects program

    International Nuclear Information System (INIS)

    Baumann, B.L.

    1983-01-01

    The objective of the Evaluation of Nuclear Facility Decommissioning Projects (ENFDP) program is to provide the NRC licensing staff with data which will allow an assessment of radiation exposure during decommissioning and the implementation of ALARA techniques. The data will also provide information to determine the funding level necessary to ensure timely and safe decommissioning operations. Actual decommissioning costs, methods and radiation exposures are compared with those estimated by the Battelle-PNL and ORNL NUREGs on decommissioning. Exposure reduction techniques applied to decommissioning activities to meet ALARA objectives are described. The lessons learned concerning various decommissioning methods are evaluated

  1. Shippingport station decommissioning project ALARA Program

    Energy Technology Data Exchange (ETDEWEB)

    Crimi, F.P. [Lockheed Environmental Systems and Technology Co., Houston, TX (United States)

    1995-03-01

    Properly planned and implemented ALARA programs help to maintain nuclear worker radiation exposures {open_quotes}As Low As Reasonably Achievable.{close_quotes}. This paper describes the ALARA program developed and implemented for the decontamination and decommissioning (D&D) of the Shippingport Atomic Power Station. The elements required for a successful ALARA program are discussed along with examples of good ALARA practices. The Shippingport Atomic Power Station (SAPS) was the first commercial nuclear power plant to be built in the United States. It was located 35 miles northwest of Pittsburgh, PA on the south bank of the Ohio river. The reactor plant achieved initial criticality in December 1959. During its 25-year life, it produced 7.5 billion kilowatts of electricity. The SAPS was shut down in October 1982 and was the first large-scale U.S. nuclear power plant to be totally decommissioned and the site released for unrestricted use. The Decommission Project was estimated to take 1,007 man-rem of radiation exposure and $.98.3 million to complete. Physical decommissioning commenced in September 1985 and was completed in September 1989. The actual man-rem of exposure was 155. The project was completed 6 months ahead of schedule at a cost of $91.3 million.

  2. Expertise on the project for the decommissioning of the pilot incineration plant at the Paul Scherrer Institute

    International Nuclear Information System (INIS)

    2012-12-01

    This expertise report published by the Swiss Federal Nuclear Safety Inspectorate ENSI takes a look at the proposed decommissioning of the pilot incineration plant at the Paul Scherrer Institute PSI in Switzerland. Details concerning the operator PSI, the installation, the documentation and criteria used in the expertise are presented. Experience in the decommissioning of nuclear installations is reviewed. Decommissioning variants and the concept proposed are described and details concerning radiation sources and problematical materials such as asbestos are reviewed. The views of the Swiss Federal Nuclear Safety Inspectorate ENSI are presented and proposals for the disposal of radioactive wastes are examined. Finally, the costs incurred are reviewed

  3. Project and feedback experience on nuclear facility decommissioning

    Energy Technology Data Exchange (ETDEWEB)

    Santiago, J.L. [ENRESA (Spain); Benest, T.G. [United Kingdom Atomic Energy Authority, Windscale, Cumbria (United Kingdom); Tardy, F.; Lefevre, Ph. [Electricite de France (EDF/CIDEN), 69 - Villeurbanne (France); Willis, A. [VT Nuclear Services (United Kingdom); Gilis, R.; Lewandowski, P.; Ooms, B.; Reusen, N.; Van Laer, W.; Walthery, R. [Belgoprocess (Belgium); Jeanjacques, M. [CEA Saclay, 91 - Gif sur Yvette (France); Bohar, M.P.; Bremond, M.P.; Poyau, C.; Mandard, L.; Boissonneau, J.F.; Fouquereau, A.; Pichereau, E.; Binet, C. [CEA Fontenay aux Roses, 92 (France); Fontana, Ph.; Fraize, G. [CEA Marcoule 30 (France); Seurat, Ph. [AREVA NC, 75 - Paris (France); Chesnokov, A.V.; Fadin, S.Y.; Ivanov, O.P.; Kolyadin, V.I.; Lemus, A.V.; Pavlenko, V.I.; Semenov, S.G.; Shisha, A.D.; Volkov, V.G.; Zverkov, Y.A. [Russian Research Centre Kurchatov Inst., Moscow (Russian Federation)

    2008-11-15

    This series of 6 short articles presents the feedback experience that has been drawn from various nuclear facility dismantling and presents 3 decommissioning projects: first, the WAGR project that is the UK demonstration project for power reactor decommissioning (a review of the tools used to dismantle the reactor core); secondly, the dismantling project of the Bugey-1 UNGG reactor for which the dismantling works of the reactor internals is planned to be done underwater; and thirdly, the decommissioning project of the MR reactor in the Kurchatov Institute. The feedback experience described concerns nuclear facilities in Spain (Vandellos-1 and the CIEMAT research center), in Belgium (the Eurochemic reprocessing plant), and in France (the decommissioning of nuclear premises inside the Fontenay-aux-roses Cea center and the decommissioning of the UP1 spent fuel reprocessing plant at the Marcoule site). (A.C.)

  4. Project and feedback experience on nuclear facility decommissioning

    International Nuclear Information System (INIS)

    Santiago, J.L.; Benest, T.G.; Tardy, F.; Lefevre, Ph.; Willis, A.; Gilis, R.; Lewandowski, P.; Ooms, B.; Reusen, N.; Van Laer, W.; Walthery, R.; Jeanjacques, M.; Bohar, M.P.; Bremond, M.P.; Poyau, C.; Mandard, L.; Boissonneau, J.F.; Fouquereau, A.; Pichereau, E.; Binet, C.; Fontana, Ph.; Fraize, G.; Seurat, Ph.; Chesnokov, A.V.; Fadin, S.Y.; Ivanov, O.P.; Kolyadin, V.I.; Lemus, A.V.; Pavlenko, V.I.; Semenov, S.G.; Shisha, A.D.; Volkov, V.G.; Zverkov, Y.A.

    2008-01-01

    This series of 6 short articles presents the feedback experience that has been drawn from various nuclear facility dismantling and presents 3 decommissioning projects: first, the WAGR project that is the UK demonstration project for power reactor decommissioning (a review of the tools used to dismantle the reactor core); secondly, the dismantling project of the Bugey-1 UNGG reactor for which the dismantling works of the reactor internals is planned to be done underwater; and thirdly, the decommissioning project of the MR reactor in the Kurchatov Institute. The feedback experience described concerns nuclear facilities in Spain (Vandellos-1 and the CIEMAT research center), in Belgium (the Eurochemic reprocessing plant), and in France (the decommissioning of nuclear premises inside the Fontenay-aux-roses Cea center and the decommissioning of the UP1 spent fuel reprocessing plant at the Marcoule site). (A.C.)

  5. Costs of Decommissioning Nuclear Power Plants

    International Nuclear Information System (INIS)

    Neri, Emilio; French, Amanda; Urso, Maria Elena; Deffrennes, Marc; Rothwell, Geoffrey; ); Rehak, Ivan; Weber, Inge; ); Carroll, Simon; Daniska, Vladislav

    2016-01-01

    While refurbishments for the long-term operation of nuclear power plants and for the lifetime extension of such plants have been widely pursued in recent years, the number of plants to be decommissioned is nonetheless expected to increase in future, particularly in the United States and Europe. It is thus important to understand the costs of decommissioning so as to develop coherent and cost-effective strategies, realistic cost estimates based on decommissioning plans from the outset of operations and mechanisms to ensure that future decommissioning expenses can be adequately covered. This study presents the results of an NEA review of the costs of decommissioning nuclear power plants and of overall funding practices adopted across NEA member countries. The study is based on the results of this NEA questionnaire, on actual decommissioning costs or estimates, and on plans for the establishment and management of decommissioning funds. Case studies are included to provide insight into decommissioning practices in a number of countries. (authors)

  6. Y-12 Plant Decontamination and Decommissioning Program

    International Nuclear Information System (INIS)

    1992-01-01

    The Decontamination and Decommissioning (D and D) Program at the Oak Ridge Y-12 Plant is part of the Environmental Restoration (ER) and Waste Management (WM) Programs (ERWM). The objective of the ER Program is to provide Y-12 the capability to meet applicable environmental regulations through facility development activities and site remedial actions. The WM Program supports the ER program. The D and D Program provides collective management of sites within the Plant which are in need of decontamination and decommissioning efforts, prioritizes those areas in terms of health, safety, and environmental concerns, and implements the appropriate level of remedial action. The D and D Program provides support to identifiable facilities which formerly served one or more of the many Plant functions. Program activities include (1) surveillance and maintenance of facilities awaiting decommissioning; (2) planning safe and orderly facility decommissioning; and (3) implementing a program to accomplish facility disposition in a safe, cost effective, and timely manner. In order to achieve the first objective, a formal plan which documents the surveillance and maintenance needs for each facility has been prepared. This report provides this documentation for the Y-12 facilities currently included in the D and D Program, as well as those planned for future inclusion in the Program, and includes projected resource requirements for the planning period of FY 1993 through FY 2000

  7. Nuclear power plant decommissioning: an unresolved problem

    International Nuclear Information System (INIS)

    Pollock, C.

    1987-01-01

    In 1984, the Critical Mass Energy Project asserted that at least 11 US reactors had gone through one-third of their operating lives without collecting any decommissioning funds and that nationwide only $600 million had been collected. This lack of financial planning prompted 10 states to require mandatory periodic deposits into external accounts: California, Colorado, Connecticut, Maine, Massachusetts, Mississippi, New Hampshire, Pennsylvania, Vermont, and Wisconsin. Setting aside decommissioning funds is essential in every country that uses nuclear power. Regardless of a nation's future energy plans, existing plants must eventually be scrapped. Just as today's cities would not be habitable without large fleets of garbage trucks and extensive landfills, the international nuclear industry is not viable without a sound decommissioning strategy. Thirty years after the first nuclear plant started producing electricity, such a strategy has yet to be formulated. More than 500 reactors, including those currently under construction, will have to be decommissioned. Preparing to safely retire these plants requires aggressive, well-funded research and development programs, policy makers willing to tackle unpleasant, long-term problems, and robust retirement accounts funded by today's utility customers

  8. Shippingport Station Decommissioning Project: overview and justification

    International Nuclear Information System (INIS)

    Coffman, F.E.

    1984-01-01

    The purpose of this booklet is to brief the reader on the Shippingport Station Decommissioning Project and to summarize the benefits of funding the project in FY 1984. Background information on the station and the decommissioning project is provided in this section of the booklet; the need for a reactor decommissining demonstration is discussed in the next section; and a summary of how the Shippingport Station Decommissioning Project (SSDP) provides the needed demonstration is provided in the final section

  9. Applicability of EPRI Decommissioning Pre-Planning Manual to International Decommissioning Projects

    International Nuclear Information System (INIS)

    Lessard, Leo; Kay, Jim; Lefrancois, Donald; Furr, Richard; Lucas, Matthieu; Schauer, Konrad

    2016-01-01

    Industry models for planning the efficient decommissioning of a nuclear power plant continue to evolve. Effective planning is a key to cost control, a critical aspect of decommissioning. In 2001, the Electric Power Research Institute (EPRI) published the 'Decommissioning Pre-Planning Manual', referred to as the 'Manual'. The goal of the Manual was to develop a framework for use in pre-planning the decommissioning of a nuclear power plant. The original research was based on information collected during the active decommissioning of power reactors in New England, and the ongoing decommissioning planning of another reactor still in operation. The research team identified thirty-two (32) major Decommissioning Tasks that support the strategic and tactical planning that can be conducted in advance of plant shutdown. The Decommissioning Tasks were organized in a logical sequence of execution, and sorted in common discipline groupings. Owners of U.S. nuclear plants that have shut down prematurely during the past 5 years have found the EPRI Decommissioning Pre-Planning Manual useful in developing their transition plans from an operating to shutdown facility. Concurrently, during the past 15 years, the IAEA has published numerous technical and safety reports on nuclear reactor decommissioning planning and execution. IAEA's goal is to provide its global members with useful and timely guidance for the planning and execution of nuclear decommissioning projects. This information has been used extensively by international nuclear plant operators. One of the key objectives will be to develop a road-map linking the 32 EPRI Decommissioning Tasks with the comparable (or equivalent) topics covered in the IAEA library of decommissioning knowledge. The logical and convenient structure of the Manual will be cross-referenced to the IAEA topics to aid in organizing the development of decommissioning plans. The road-map will serve to provide a basis for improved

  10. Shippingport Station decommissioning project overview

    International Nuclear Information System (INIS)

    Schreiber, J.J.

    1985-01-01

    The U.S. Department of Energy is in the process of decommissioning the Shippingport Atomic Power Station located on the Ohio River, 30 miles northwest of Pittsburgh, Pennsylvania. The Shippingport Station is the first commercial size nuclear power plant to undergo decommissioning in the United Staes. The plant is located on approximately 7 acres of land owned by the Duquesne Light Company (DLC) and leased to the U.S. Government. DLC operates two nuclear power plants, Beaver Valley 1 and 2, located immediately adjacent to the site and the Bruce Mansfield coal-fired power plant is also within the immediate area. The Station was shutdown in October, 1982. Defueling operations began in 1983 and were completed by September, 1984. The Shippingport Station consists of a 275' x 60' fuel handling building containing the reactor containment chamber, the service building, the turbine building, the radioactive waste processing building, the administration building and other smaller support buildings. The Station has four coolant loops and most of the containment structures are located below grade. Structures owned by the U.S. Government including the fuel handling building, service building, contaminated equipment room, the boiler chambers, the radioactive waste processing building and the decontamination and laydown buildings will be dismantled and removed to 3 feet below grade. The area will then be filled with clean soil and graded. The turbine building, testing and training building and the administration building are owned by DLC and will remain

  11. Decommissioning of an uranium hexafluoride pilot plant

    International Nuclear Information System (INIS)

    Santos, Ivan; Abrao, Alcidio; Carvalho, Fatima M.S.; Ayoub, Jamil M.S.

    2009-01-01

    The Institute of Nuclear and Energetic Researches has completed fifty years of operation, belongs to the National Commission for Nuclear Energy, it is situated inside the city of Sao Paulo. The IPEN-CNEN/SP is a Brazilian reference in the nuclear fuel cycle, researches in this field began in 1970, having dominance in the cycle steps from Yellow Cake to Uranium Hexafluoride technology. The plant of Uranium Hexafluoride produced 35 metric tonnes of this gas by year, had been closed in 1992, due to domain and total transference of know-how for industrial scale, demand of new facilities for the improvement of recent researches projects. The Institute initiates decommissioning in 2002. Then, the Uranium Hexafluoride pilot plant, no doubt the most important unit of the fuel cycle installed at IPEN-CNEN/SP, beginning decommissioning and dismantlement (D and D) in 2005. Such D and D strategies, planning, assessment and execution are described, presented and evaluated in this paper. (author)

  12. SGN's Dismantling and Decommissioning engineering, projects experience and capabilities

    International Nuclear Information System (INIS)

    Destrait, L.

    1998-01-01

    Its experience in waste treatment, conditioning, storage and disposal, its cooperation with CEA and COGEMA Group in license agreements give SGN expertise in the decommissioning field. SGN's experience and background in all areas of nuclear facility decommissioning, such as chemical and mechanical cells, nuclear advanced reactors, reprocessing facilities result in fruitful references to the customers. The poster is presenting different achievements and projects with SGN's participation such as: - The decommissioning of Windscale Advanced Gas cooled Reactors (WAGR), in particular providing methodology and equipment to dismantle the Pressure and Insulation Vessel of the reactor. - The decommissioning plan of Ignalina (Lithuania) and Paldiski (Estonia), defining strategies, scenarios, necessary equipments and tools and choosing the best solutions to decommission the site under different influencing parameters such as cost, dose rate exposure, etc... - Th One Site Assistance Team (OSAT) at Chernobyl regarding the preparation works for the waste management and decommissioning of the plant. - The decommissioning of French nuclear facilities such as reprocessing (UP1) and reactor (EL4) plants. The important experience acquired during the facility management and during the first dismantling and decommissioning operations is an important factor for the smooth running of these techniques for the future. The challenge to come is to control all the operations, the choice of strategies, the waste management, the efficiency of tools and equipments, and to provide nuclear operators with a full range of proven techniques to optimise costs and minimize decommissioning personnel exposure. (Author)

  13. Decontamination and decommissioning project for the nuclear facilities

    Energy Technology Data Exchange (ETDEWEB)

    Park, J. H.; Paik, S. T.; Park, S. W. (and others)

    2007-02-15

    The final goal of this project is to complete the decommissioning of the Korean Research Reactor no.1 and no. 2(KRR-1 and 2) and uranium conversion plant safely and successfully. The goal of this project in 2006 is to complete the decontamination of the inside reactor hall of the KRR-2 which will be operating as a temporary storage for the radioactive waste until the construction and operation of the national repository site. Also the decommissioning work of the KRR-1 and auxiliary facilities is being progress. As the compaction of decommissioning project is near at hand, a computer information system was developed for a systematically control and preserve a technical experience and decommissioning data for the future reuse. The nuclear facility decommissioning, which is the first challenge in Korea, is being closed to the final stages. We completed the decommissioning of all the bio-shielding concrete for KRR-2 in 2005 and carried out the decontamination and waste material grouping of the roof, wall and bottom of the reactor hall of the KRR-2. The decommissioning for nuclear facility were demanded the high technology, remote control equipment and radioactivity analysis. So developed equipment and experience will be applied at the decommissioning for new nuclear facility in the future.

  14. EPRI nuclear power plant decommissioning technology program

    International Nuclear Information System (INIS)

    Kim, Karen S.; Bushart, Sean P.; Naughton, Michael; McGrath, Richard

    2011-01-01

    The Electric Power Research Institute (EPRI) is a non-profit research organization that supports the energy industry. The Nuclear Power Plant Decommissioning Technology Program conducts research and develops technology for the safe and efficient decommissioning of nuclear power plants. (author)

  15. Project No. 8 - Final decommissioning plan

    International Nuclear Information System (INIS)

    2000-01-01

    Ignalina NPP should prepare the final Ignalina NPP unit 1 decommissioning plan by march 31, 2002. This plan should include the following : description of Ignalina NPP and the Ignalina NPP boundary that could be influenced by decommissioning process; decommissioning strategy selected and a logical substantiation for this selection; description of the decommissioning actions suggested and a time schedule for the actions to be performed; conceptual safety and environmental impact assessment covering ionizing radiation and other man and environment impact; description of the environmental monitoring program proposed during decommissioning process; description of the waste management proposed; assessment of decommissioning expenses including waste management, accumulated funds and other sources. Estimated project cost - 0.75 M EURO

  16. Decontamination and Decommissioning Experience at a Sellafield Uranium Purification Plant

    International Nuclear Information System (INIS)

    Prosser, J.L.

    2006-01-01

    Built in the 1950's, this plant was originally designed to purify depleted uranyl nitrate solution arising from reprocessing operations at the Primary Separation and Head End Plant (Fig. 1). The facility was used for various purposes throughout its life cycle such as research, development and trial based processes. Test rigs were operated in the building from the 1970's until 1984 to support development of the process and equipment now used at Sellafield's Thermal Oxide Reprocessing Plant (THORP). The extensive decommissioning program for this facility began over 15 years ago. Many challenges have been overcome throughout this program such as decommissioning the four main process cells, which were very highly alpha contaminated. The cells contained vessels and pipeline systems that were contaminated to such levels that workers had to use pressurized suits to enter the cells. Since decommissioning at Sellafield was in its infancy, this project has trialed various decontamination/decommissioning methods and techniques in order to progress the project, and this has provided valuable learning for other decommissioning projects. The project has included characterization, decontamination, dismantling, waste handling, and is now ready for demolition during late 2005, early 2006. This will be the first major facility within the historic Separation Area at Sellafield to be demolished down to base slab level. The lessons learnt from this project will directly benefit numerous decommissioning projects as the cleanup at Sellafield continues. (authors)

  17. Shippingport Station Decommissioning Project (SSDP). A progress report

    International Nuclear Information System (INIS)

    Mullee, G.R.; Usher, J.M.

    1986-01-01

    The Shippingport Atomic Power Station was shutdown in October, 1982 by the Plant Operator, Duquesne Light Company, for decommissioning by the US Department of Energy. The planning for decommissioning was completed in September, 1983. In September, 1984 operational responsibility for the station was transferred to the DOE's Decommissioning Operations Contractor - the General Electric Company (assisted by an integrated subcontractor, MK Ferguson Company). Significant accomplishments to date include the completion of all prerequisites for decommissioning, the removal of asbestos from plant systems, loading of irradiated reactor components into the reactor vessel for shipment, the commencement of electrical deactivations and the commencement of piping/component removal. Decontamination and waste processing are progressing in support of the project schedule. The reactor vessel will be shipped as one piece on a barge for burial at Hanford, Washington. The final release of the site is scheduled for April, 1990. A technology transfer program is being utilized to disseminate information about the project

  18. Lessons learnt from Ignalina NPP decommissioning project

    International Nuclear Information System (INIS)

    NAISSE, Jean-Claude

    2007-01-01

    The Ignalina Nuclear Power Plant (INPP) is located in Lithuania, 130 km north of Vilnius, and consists of two 1500 MWe RBMK type units, commissioned respectively in December 1983 and August 1987. On the 1. of May 2004, the Republic of Lithuania became a member of the European Union. With the protocol on the Ignalina Nuclear Power in Lithuania which is annexed to the Accession Treaty, the Contracting Parties have agreed: - On Lithuanian side, to commit closure of unit 1 of INPP before 2005 and of Unit 2 by 31 December 2009; - On European Union side, to provide adequate additional Community assistance to the efforts of Lithuania to decommission INPP. The paper is divided in two parts. The first part describes how, starting from this agreement, the project was launched and organized, what is its present status and which activities are planned to reach the final ambitious objective of a green field. To give a global picture, the content of the different projects that were defined and the licensing process will also be presented. In the second part, the paper will focus on the lessons learnt. It will explain the difficulties encountered to define the decommissioning strategy, considering both immediate or differed dismantling options and why the first option was finally selected. The paper will mention other challenges and problems that the different actors of the project faced and how they were managed and solved. The paper will be written by representatives of the Ignalina NPP and of the Project Management Unit. (author)

  19. Evaluating decommissioning costs for nuclear power plants

    International Nuclear Information System (INIS)

    MacDonald, R.R.

    1980-01-01

    An overview is presented of the economic aspects of decommissioning of large nuclear power plants in an attempt to put the subject in proper perspective. This is accomplished by first surveying the work that has been done to date in evaluating the requirements for decommissioning. A review is presented of the current concepts of decommissioning and a discussion of a few of the uncertainties involved. This study identifies the key factors to be considered in the econmic evaluation of decommissioning alternatives and highlights areas in which further study appears to be desirable. 12 refs

  20. BN-350 nuclear power plant. Regulatory aspects of decommissioning

    International Nuclear Information System (INIS)

    Shiganakov, S.; Zhantikin, T.; Kim, A.

    2002-01-01

    'General Provisions on Development of the Project on BN-350 Reactor Plant Decommissioning'; 2. Special Technical Conditions 'For Designing of the BN-350 Reactor Facility Decommissioning Project'; 3. Plan of priority measures for BN-350 reactor decommissioning. The documents 1 and 2 were prepared jointly by BN-350, technical institutes, KAEC and various other Kazakhstan Governmental agencies and departments, and they set out: stages in the development of the specifications for the Plan; applicable laws and regulations, and the procedure to follow if the regulations do not cover particular situations or issues; responsibilities of various organizations in the production, agreement and approval process; a recommended detailed list of contents for the Decommissioning Plan (Project); external factors, existing design and planning works which the Plan must take into account; other basic information which needs to be included into the Plan documentation. As the shutdown reactor continues to remain a source of nuclear and radioactive hazard, one have to take measures on putting the reactor to safe status, and thus 'Plan of priority measures for BN-350 reactor decommissioning' was developed. It includes following activities: measures on BN-350 decommissioning Project development; measures on provision of the reactor safety during transition period; measures on sodium drainage and utilization; measures on spent fuel disposal for a long term storage. KAEC was authorized to provide coordination of BN-350 decommissioning work. For example, some duties of KAEC in the Decommissioning Project are as follows: supervision of Project implementation by licensing and engagement of state licensed institutions only for decommissioning works; consideration, approval and authorization of technical documentation of enterprises and institutions implementing the Project within its competency. During the development and implementation of the Project all participants must act according to the laws and

  1. Deactivation, Decontamination and Decommissioning Project Summaries

    Energy Technology Data Exchange (ETDEWEB)

    Peterson, David Shane; Webber, Frank Laverne

    2001-07-01

    This report is a compilation of summary descriptions of Deactivation, Decontamination and Decommissioning, and Surveillance and Maintenance projects planned for inactive facilities and sites at the INEEL from FY-2002 through FY-2010. Deactivations of contaminated facilities will produce safe and stable facilities requiring minimal surveillance and maintenance pending further decontamination and decommissioning. Decontamination and decommissioning actions remove contaminated facilities, thus eliminating long-term surveillance and maintenance. The projects are prioritized based on risk to DOE-ID, the public, and the environment, and the reduction of DOE-ID mortgage costs and liability at the INEEL.

  2. Decommissioning Project Manager's Implementing Instructions (PMII)

    International Nuclear Information System (INIS)

    Mihalic, M.A.

    1998-02-01

    Decommissioning Project personnel are responsible for complying with these PMII. If at any time in the performance of their duties a conflict between these instructions and other written or verbal direction is recognized or perceived, the supervisor or worker shall place his/her work place in a safe condition, stop work, and seek resolution of the conflict from the Decommissioning Project Manager or his designee

  3. Progress in Decommissioning the Humboldt Bay Power Plant - 13604

    Energy Technology Data Exchange (ETDEWEB)

    Rod, Kerry [PG and E Utility, Humboldt Bay Power Plant, 1000 King Salmon Ave. Eureka, CA 95503 (United States); Shelanskey, Steven K. [Anata Management Solutions, 5180 South Commerce Dr,, Suite F Murray, UT 84107 (United States); Kristofzski, John [CH2MHILL, 295 Bradley Blvd. Suite 300, Richland WA 99353 (United States)

    2013-07-01

    Decommissioning of the Pacific Gas and Electric (PG and E) Company Humboldt Bay Power Plant (HBPP) Unit 3 nuclear facility has now, after more than three decades of SAFSTOR and initial decommissioning work, transitioned to full-scale decommissioning. Decommissioning activities to date have been well orchestrated and executed in spite of an extremely small work site with space constricted even more by other concurrent on-site major construction projects including the demolition of four fossil units, construction of a new generating station and 60 KV switchyard upgrade. Full-scale decommissioning activities - now transitioning from Plant Systems Removal (PG and E self-perform) to Civil Works Projects (contractor performed) - are proceeding in a safe, timely, and cost effective manner. As a result of the successful decommissioning work to date (approximately fifty percent completed) and the intense planning and preparations for the remaining work, there is a high level of confidence for completion of all HBPP Unit 3 decommissions activities in 2018. Strategic planning and preparations to transition into full-scale decommissioning was carried out in 2008 by a small, highly focused project team. This planning was conducted concurrent with other critical planning requirements such as the loading of spent nuclear fuel into dry storage at the Independent Spent Fuel Storage Installation (ISFSI) finishing December 2008. Over the past four years, 2009 through 2012, the majority of decommissioning work has been installation of site infrastructure and removal of systems and components, known as the Plant System Removal Phase, where work scope was dynamic with significant uncertainty, and it was self-performed by PG and E. As HBPP Decommissioning transitions from the Plant System Removal Phase to the Civil Works Projects Phase, where work scope is well defined, a contracting plan similar to that used for Fossil Decommissioning will be implemented. Award of five major work scopes

  4. Progress in Decommissioning the Humboldt Bay Power Plant - 13604

    International Nuclear Information System (INIS)

    Rod, Kerry; Shelanskey, Steven K.; Kristofzski, John

    2013-01-01

    Decommissioning of the Pacific Gas and Electric (PG and E) Company Humboldt Bay Power Plant (HBPP) Unit 3 nuclear facility has now, after more than three decades of SAFSTOR and initial decommissioning work, transitioned to full-scale decommissioning. Decommissioning activities to date have been well orchestrated and executed in spite of an extremely small work site with space constricted even more by other concurrent on-site major construction projects including the demolition of four fossil units, construction of a new generating station and 60 KV switchyard upgrade. Full-scale decommissioning activities - now transitioning from Plant Systems Removal (PG and E self-perform) to Civil Works Projects (contractor performed) - are proceeding in a safe, timely, and cost effective manner. As a result of the successful decommissioning work to date (approximately fifty percent completed) and the intense planning and preparations for the remaining work, there is a high level of confidence for completion of all HBPP Unit 3 decommissions activities in 2018. Strategic planning and preparations to transition into full-scale decommissioning was carried out in 2008 by a small, highly focused project team. This planning was conducted concurrent with other critical planning requirements such as the loading of spent nuclear fuel into dry storage at the Independent Spent Fuel Storage Installation (ISFSI) finishing December 2008. Over the past four years, 2009 through 2012, the majority of decommissioning work has been installation of site infrastructure and removal of systems and components, known as the Plant System Removal Phase, where work scope was dynamic with significant uncertainty, and it was self-performed by PG and E. As HBPP Decommissioning transitions from the Plant System Removal Phase to the Civil Works Projects Phase, where work scope is well defined, a contracting plan similar to that used for Fossil Decommissioning will be implemented. Award of five major work scopes

  5. Commercialization of nuclear power plant decommissioning technology

    International Nuclear Information System (INIS)

    Williams, D.H.

    1983-01-01

    The commercialization of nuclear power plant decommissioning is presented as a step in the commercialization of nuclear energy. Opportunities for technology application advances are identified. Utility planning needs are presented

  6. Public attitudes toward nuclear power plant decommissioning

    International Nuclear Information System (INIS)

    Lough, W.T.

    1987-01-01

    A public workshop was conducted with a group of citizens to obtain the concerns and preferences of the group with respect to decommissioning. Seventeen concerns about decommissioning were identified and prioritized. The participants were most concerned about the potential health and safety effects from decommissioning. The potential impacts from the lost tax base and loss of employment were also rated highly. The estimated increase in electric utility rates was not a major concern. The participants were split fairly evenly on preferences about the methods of decommissioning. However, nine of the ten participants preferred power plant life extension over decommissioning by any method. Finally, the participants were given an evaluation questionnaire about the workshop. In general, they concluded that the process was effective, and they felt like they were a part of the Commission's planning process

  7. Shippingport Station Decommissioning Project: FYs 1984-1985 annual progress report, October 1, 1983 through September 30, 1985

    International Nuclear Information System (INIS)

    1987-01-01

    This report presents progress on the Shippingport Station Decommissioning Project for FYs 1984-85. There are three main topics: project management, decommissioning project activities, and issues of concern. The project purpose is demonstration of nuclear plant decommissioning and dismantlement operations in an environment of current industry practices. 8 refs., 8 figs., 2 tabs

  8. SGDes project. Decommissioning management system of Enresa

    International Nuclear Information System (INIS)

    Fernandez Lopez, M.; Julian, A. de

    2013-01-01

    ENRESA, the public company responsible for managing radioactive waste produced in spain and nuclear facilities decommissioning work, has developed a management information system (SGDes) for the decommissioning of nuclear power plants, critical for the company. SGDes system is capable of responding to operational needs for efficient, controlled and secure way. Dismantling activities require a rigorous operations control within highly specialized, process systematization and safety framework, both the human and technological point of view. (Author)

  9. Decontamination and Decommissioning Project for the Nuclear Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Park, J. H.; Paik, S. T.; Park, S. W. and others

    2006-02-15

    The final goal of this project is to complete safely and successfully the decommissioning of the Korean Research Reactor no.1 (KRR-1) and the Korean Research Reactor no.2 (KRR-2), and uranium conversion plant (UCP). The dismantling of the reactor hall of the KRR-2 was planned to complete till the end of 2004, but it was delayed because of a few unexpected factors such as the development of a remotely operated equipment for dismantling of the highly radioactive parts of the beam port tubes. In 2005, the dismantling of the bio-shielding concrete structure of the KRR-2 was finished and the hall can be used as a temporary storage space for the radioactive waste generated during the decommissioning of the KRR-1 and KRR-2. The cutting experience of the shielding concrete by diamond wire saw and the drilling experience by a core boring machine will be applied to another nuclear facility dismantling. An effective management tool of the decommissioning projects, named DECOMIS, was developed and the data from the decommissioning projects were gathered. This system provided many information on the daily D and D works, waste generation, radiation dose, etc., so an effective management of the decommissioning projects is expected from next year. The operation experience of the uranium conversion plant as a nuclear fuel cycle facility was much contributed to the localization of nuclear fuels for both HWR and PWR. It was shut down in 1993 and a program for its decontamination and dismantling was launched in 2001 to remove all the contaminated equipment and to achieve the environment restoration. The decommissioning project is expected to contribute to the development of the D and D technologies for the other domestic fuel cycle facilities and the settlement of the new criteria for decommissioning of the fuel cycle related facilities.

  10. 233S Decommissioning Project Environmental Control Plan

    International Nuclear Information System (INIS)

    Zoric, J.P.

    2000-01-01

    This Environmental Control Plan is for the 233S Decommissioning activities conducted under the removal action report for the 233S Decontamination and Demolition Project. The purpose of this ECP is to identify environmental requirements for the 233S project. The ECP is a compilation of existing environmental permit conditions, regulatory requirements, and environmental requirements applicable to the specific project or functional activity

  11. Design of a requirements system for decommissioning of a nuclear power plant based on systems engineering

    Energy Technology Data Exchange (ETDEWEB)

    Park, Hee Seong; Park, Seung Kook; Jin, Hyung Gon; Song, Chan Ho; Choi, Jong won [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    The nuclear industry has required an advanced system that can manage decommissioning information ever since the Korean government decide to decommission the Gori No.1 nuclear power plant. The D and D division at KAERI has been developing a system that can secure the reliability and sustainability of the decommissioning project based on the engineering system of the KRR-2 (Korean Research Reactor-2). To establish a decommissioning information system, a WBS that needs to be managed for the decommissioning of an NPP has been extracted, and requirements management research composed of system engineering technology has progressed. This paper propose a new type of system based on systems engineering technology. Even though a decommissioning engineering system was developed through the KRR-2, we are now developing an advanced decommissioning information system because it is not easy to apply this system to a commercial nuclear power plant. An NPP decommissioning is a project requiring a high degree of safety and economic feasibility. Therefore, we have to use a systematic project management at the initial phase of the decommissioning. An advanced system can manage the decommissioning information from preparation to remediation by applying a previous system to the systems engineering technology that has been widely used in large-scale government projects. The first phase of the system has progressed the requirements needed for a decommissioning project for a full life cycle. The defined requirements will be used in various types of documents during the decommissioning preparation phase.

  12. Modelling of nuclear power plant decommissioning financing.

    Science.gov (United States)

    Bemš, J; Knápek, J; Králík, T; Hejhal, M; Kubančák, J; Vašíček, J

    2015-06-01

    Costs related to the decommissioning of nuclear power plants create a significant financial burden for nuclear power plant operators. This article discusses the various methodologies employed by selected European countries for financing of the liabilities related to the nuclear power plant decommissioning. The article also presents methodology of allocation of future decommissioning costs to the running costs of nuclear power plant in the form of fee imposed on each megawatt hour generated. The application of the methodology is presented in the form of a case study on a new nuclear power plant with installed capacity 1000 MW. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  13. The Community's research and development programme on decommissioning of nuclear power plants

    International Nuclear Information System (INIS)

    1982-01-01

    The programme, adopted by the Council of the European Communities, seeks to promote a number of research and development projects as well as the identification of guiding principles. The projects concern the following subjects: long-term integrity of buildings and systems; decontaminations for decommissioning purposes; dismantling techniques; treatment of specific waste materials (steel, concrete and graphite); large transport containers for radioactive waste arising from decommissioning of nuclear power plants in the Community; and influence of nuclear power plant design features on decommissioning

  14. The brief introduction to decommissioning of nuclear reactor projects

    International Nuclear Information System (INIS)

    Zhao Shixin

    1991-01-01

    The basic concept and procedure of the decommissioning of nuclear reactor project and the three stages of decommissioning defined by IAEA are introduced. The main work of decommissioning of nuclear reactor are as following: (1) the documentary and technological preparation; (2) the site preparation of decommissioning project; (3) the dismantling of equipment piping system and components; (4) the decontamination of the piping system before and after decomminssioning; (5) the storage and disposal of the operational and decommissioning waste

  15. The brief introduction to decommissioning of nuclear reactor projects

    Energy Technology Data Exchange (ETDEWEB)

    Shixin, Zhao [Beijing Inst. of Nuclear Engineering (China)

    1991-08-01

    The basic concept and procedure of the decommissioning of nuclear reactor project and the three stages of decommissioning defined by IAEA are introduced. The main work of decommissioning of nuclear reactor are as following: (1) the documentary and technological preparation; (2) the site preparation of decommissioning project; (3) the dismantling of equipment piping system and components; (4) the decontamination of the piping system before and after decomminssioning; (5) the storage and disposal of the operational and decommissioning waste.

  16. Decommissioning project feedback experience in the Japan Atomic Energy Research Institut

    International Nuclear Information System (INIS)

    Yanagihara, S.; Tachibana, M.; Miyajima, K.

    2003-01-01

    Since starting the research and development program for peaceful use of nuclear energy in 1950's, various research and demonstration facilities have been constructed in research organizations, universities and commercial sectors in Japan. Some of the nuclear facilities constructed in the early stage of research and development have been retired to be decommissioned because of completion of the initial objectives in the Japan Atomic Energy Research Institute (JAERI). On the other hand, since the first commercial operation of nuclear power plant (1968), the number of nuclear power plants has increased up to 52 plants operating as of August 2003 in Japan. The shear of nuclear energy accounts approximately for 35% of electricity generation in total at present time. However, several nuclear power plants have been operated for more than 25 years and two nuclear power plants are expected to be finally shutdown by 2010 to be eventually decommissioned. The Tokai Power Station, the oldest Japanese nuclear power plant operated by the Japan Atomic Power Company, was permanently shutdown from March 1998 and it is in decommissioning stage at this time. The Fugen, which is advanced thermal reactor operated by the Japan Nuclear Cycle Development Institute (JNC), was finally shutdown on March, 2003 after 25 years operation to be decommissioned. In addition, relating to planned unification between JAERI and JNC in 2005, the studies have been in progress on decommissioning and radioactive waste treatment and disposal; the cost was estimated to be 10 to 30 billion Japanese yens per year during 80 years for decommissioning of nearly 200 nuclear facilities. Decommissioning of nuclear facilities is thus getting to be one of important issues in Japan. Decommissioning of nuclear facilities might be possible using conventional and/or partially improved technology. However, reviewing project feedback experience on decommissioning and decontamination might contribute to solve various issues

  17. Radiological characterization of nuclear plants under decommissioning

    International Nuclear Information System (INIS)

    Mincarini, M.

    1989-01-01

    In the present work a description of major problems encountered in qualitative and quantitative radiological characterization of nuclear plants for decommissioning and decontamination purpose is presented. Referring to several nuclear plant classes activation and contamination processes, direct and indirect radiological analysis and some italian significant experience are descripted

  18. Impact of metals recycling on a Swedish BWR decommissioning project

    International Nuclear Information System (INIS)

    Larsson, Arne; Lidar, Per; Hedin, Gunnar; Bergh, Niklas

    2014-01-01

    Decommissioning of nuclear power plants generates large volumes of radioactive or potentially contaminated metals. By proper management of the waste streams significant amounts can be free released and recycled either directly or after decontamination and melting. A significant part of the required work should be performed early in the process to make the project run smoothly without costly surprises and delays. A large portion of the clearance activities can be performed on-site. This on-site work should focus on the so called low-risk for contamination material. Other material can be decontaminated and released on site if schedule and the available facility areas so allow. It should be noted that the on-site decontamination and clearance activities can be a significant bottle neck for a decommissioning project. The availability of and access to a specialized metals recycling facility is an asset for a decommissioning project. This paper will describe the forecasted positive impact of a well-structured metals characterisation, categorisation and clearance process for a BWR plant decommissioning project. The paper is based on recent studies, performed projects and recent in-house development. (authors)

  19. Cost estimation of the decommissioning of nuclear fuel cycle plants

    International Nuclear Information System (INIS)

    Barbe, A.; Pech, R.

    1991-01-01

    Most studies conducted to date on the cost of decommissioning nuclear facilities pertain to reactors. Few such studies have been performed on the cost of decommissioning nuclear fuel cycle plants, particularly spent fuel reprocessing plants. Present operators of these plants nevertheless need to assess such costs, at least in order to include the related expenses in their short-, medium- or long-term projections. They also need to determine now, for example, suitable production costs that the plant owners will have to propose to their customers. Unlike nuclear reactors for which a series effect is involved (PWRs, BWRs, etc.) and where radioactivity is relatively concentrated, industrial-scale reprocessing plants are large, complex installations for which decommissioning is a long and costly operation that requires a special approach. Faced with this problem, Cogema, the owner and operator of the La Hague and Marcoule reprocessing plants in France, called on SGN to assess the total decommissioning costs for its plants. This assessment led SGN to development by SGN engineers of a novel methodology and a computerized calculation model described below. The resulting methodology and model are applicable to other complex nuclear facilities besides reprocessing plants, such as laboratories and nuclear auxiliaries of reactor cores. (author)

  20. Waste from decommissioning of nuclear power plants

    International Nuclear Information System (INIS)

    Nielsen, P.O.

    1992-05-01

    This report is based on the assumption that all twelve nuclear power plants will be shut down no later than A.D. 2010, as was decided by the parliament after the referendum on the future of nuclear power in Sweden. The recent 'Party agreement on the energy policy' of January 15, 1991 does, indeed, leave the door open for an extension of the operational period for the nuclear reactors. This will, however, not change the recommendations and conclusions drawn in this report. The report consists of two parts. Part 1 discusses classification of waste from decommissioning and makes comparisons with the waste arising from reactor operation. Part 2 discusses the documentation required for decommissioning waste. Also this part of the report draws parallels with the documentation required by the authorities for the radioactive waste arising from operation of the nuclear power plants. To some extent these subjects depend on the future use of the nuclear power plant sites after decommissioning of the plants. The options for future site use are briefly discussed in an appendix to the report. There are many similarities between the waste from reactor operations and the waste arising from dismantling and removal of decommissioned nuclear power plants. Hence it seems natural to apply the same criteria and recommendations to decommissioning waste as those presently applicable to reactor waste. This is certainly true also with respect to documentation, and it is strongly recommended that the documentation requirements on decommissioning waste are made identical, or at least similar, to the documentation requirements for reactor waste in force today. (au)

  1. The decommissioning of the Barnwell nuclear fuel plant

    International Nuclear Information System (INIS)

    McNeil, J.

    1999-01-01

    The decommissioning of the Barnwell Nuclear Fuel Plant is nearing completion. The owner's objective is to terminate the plant radioactive material license associated with natural uranium and transuranic contamination at the plant. The property is being released for commercial-industrial uses, with radiation exposure from residual radioactivity not to exceed 0.15 millisieverts per year. Historical site assessments have been performed and the plant characterized for residual radioactivity. The decommissioning of the uranium hexafluoride building was completed in April, 1999. Most challenging from a radiological control standpoint is the laboratory building that contained sixteen labs with a total of 37 glove boxes, many of which had seen transuranics. Other facilities being decommissioned include the separations building and the 300,000-gallon underground high-level waste tanks. This decommissioning in many ways is the most significant project of this type yet undertaken in South Carolina. Many innovations have been made to reduce the time and costs associated with the project. (author)

  2. Safety problems in decommissioning nuclear power plants

    International Nuclear Information System (INIS)

    Auler, I.; Bardtenschlager, R.; Gasch, A.; Majohr, N.

    1975-12-01

    The safety problems at decommissioning are illustrated by the example of a LWR with 1300 MW electric power after 40 years of specified normal operation. For such a facility the radioactivity in the form of activation and contamination one year after being finally taken out of service is in the order of magnitude of 10 7 Ci, not counting the fuel assemblies. The dose rates occurring during work on the reactor vessel at nozzle level may amount to some 10 4 rem/h. After a rough estimation the accumulated dose for the decommissioning personnel during total dismantling will be about 1200 rem. During performance of the decommissioning activities the problems are mainly caused by direct radiation of the active components and systems and by the release of radioactive particles, aerosols and liquids if these components are crushed. The extent of later dismantling problems may be reduced by selecting appropriate materials as well as considering the requirements for dismantling in design and arrangement of the components already in the design stage of new facilities. Apart from plant design also the concept for the disposal of the radioactive waste from decommissioning will provide important boundary conditions. E.g. the maximum size of the pieces to be stored in the ultimate storage place will very much influence the dose expenditure for handling these parts. For complete dismantling of nuclear power plants an ultimate store must be available where large amounts of bulky decommissioning waste, containing relatively low activity, can be stored. The problems and also the cost for decommissioning may be considerably reduced by delaying complete disposal of the radioactive material >= 40 years and during this period, keeping the radioactivity enclosed within the plant in the form of a safe containment. (orig./HP) [de

  3. MODELLING OF NUCLEAR POWER PLANT DECOMMISSIONING FINANCING

    Czech Academy of Sciences Publication Activity Database

    Bemš, J.; Knápek, J.; Králík, T.; Hejhal, M.; Kubančák, Ján; Vašíček, J.

    2015-01-01

    Roč. 164, č. 4 (2015), s. 519-522 ISSN 0144-8420 Institutional support: RVO:61389005 Keywords : nuclear power plant * methodology * future decommissioning costs Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders Impact factor: 0.894, year: 2015

  4. Environmental impact assessment of decommissioning treatment about radioactive model plant waste ore storage site

    International Nuclear Information System (INIS)

    Bei Xinyu

    2012-01-01

    Aiming at decommissioning treatment project of radioactive model plant waste ore storage site, based on the detailed investigations of source terms and project description, systematic environmental impacts have been identified. The environmental impacts both during decommissioning treatment, radioactive waste transportation and after treatment are assessed. Some specific environmental protection measures are proposed so as to minimize the adverse environmental impacts. (author)

  5. Reactor vessel decommissioning project. Final report

    International Nuclear Information System (INIS)

    Schoonen, D.H.

    1984-09-01

    This report describes a reactor vessel decommissioning project; it documents and explains the project objectives, scope, performance results, and sodium removal process. The project was successfully completed in FY-1983, within budget and without significant problems or adverse impact on the environment. Waste generated by the operation included the reactor vessel, drained sodium, and liquid, solid, and gaseous wastes which were significantly less than project estimates. Personnel radiation exposures were minimized, such that the project total was one-half the predicted exposure level. Except for the sodium removed, the material remaining in the reactor vessel is essentially the same as when the vessel arrived for processing

  6. Discussion on management of decommissioning funds for nuclear power plants

    International Nuclear Information System (INIS)

    Wang Hailiang

    2013-01-01

    Decommissioning funding is one of the major issues with regard to the policy and management of nuclear power. This paper describes current status of decommissioning of nuclear power plants in some foreign countries and narrates the practices in these countries on the estimation of decommissioning cost, the retrieval and management of decommissioning funds, and the guarantee of fund sufficiency. Based on a brief analysis of the status of decommissioning funding management for nuclear power plants in China, suggestions on tasks or activities needed to be carried out at present in the field of decommissioning funding are proposed. (authors)

  7. Jose Cabrera dismantling and decommissioning project

    International Nuclear Information System (INIS)

    Ondaro, Manuel

    2013-01-01

    The Jose Cabrera Nuclear Power Plant (NPP) was the first commercial power reactor (Westinghouse 1 loop PWR 510 MWth, 160 MWe) commissioned in Spain and provided the base for future development and training. The reactor construction started in 1963 and it was officially on-line by 1969. The NPP operated from 1969 until 2006 when it became the first reactor to be shut down after completing its operational period. The containment is reinforced concrete with a stainless steel head. In 2010 responsibility for D and D was transferred to Enresa to achieve IAEA level 3 (a green field site available for unrestricted re-uses) by 2017. Of the total of more than 104,000 tons of materials that will be generated during dismantling, it is estimated that only ∼4,000 tons will be radioactive waste, some of which, 40 t are considered as intermediate level long-lived wastes and the rest (3,960 t) will be categorized as VLLW and ILLW. The Project is divided into five phases: Phase 0 - Removal of fuel and preliminary work.. Phase 1 - Preparatory Activities for D and D. complete. Phase 2 - Dismantling of Major Components. Phase 3 - Removal of Auxiliary Installations, Decontamination and Demolition. Phase 4 - Environmental Restoration. Phase 2, is currently ongoing (50% completed). To manage the diverse aspects of decommissioning operations, Enresa uses an internally developed computerized project management tool. The tool, based on knowledge gathered from other Enresa projects, can process operations management, maintenance operations, materials, waste, storage areas, procedures, work permits, operator dose management and records. Enresa considers that communication is important for both internal and external stakeholder relations and can be used to inform, to neutralize negative opinions and attitudes, to remove false expectations and for training. Enresa has created a new multi-purpose area (exhibition/visitor centre) and encourages visits from the public, local schools, local and

  8. Jose Cabrera dismantling and decommissioning project

    Energy Technology Data Exchange (ETDEWEB)

    Ondaro, Manuel [ENRESA, Madrid (Spain)

    2013-07-01

    The Jose Cabrera Nuclear Power Plant (NPP) was the first commercial power reactor (Westinghouse 1 loop PWR 510 MWth, 160 MWe) commissioned in Spain and provided the base for future development and training. The reactor construction started in 1963 and it was officially on-line by 1969. The NPP operated from 1969 until 2006 when it became the first reactor to be shut down after completing its operational period. The containment is reinforced concrete with a stainless steel head. In 2010 responsibility for D and D was transferred to Enresa to achieve IAEA level 3 (a green field site available for unrestricted re-uses) by 2017. Of the total of more than 104,000 tons of materials that will be generated during dismantling, it is estimated that only ∼4,000 tons will be radioactive waste, some of which, 40 t are considered as intermediate level long-lived wastes and the rest (3,960 t) will be categorized as VLLW and ILLW. The Project is divided into five phases: Phase 0 - Removal of fuel and preliminary work.. Phase 1 - Preparatory Activities for D and D. complete. Phase 2 - Dismantling of Major Components. Phase 3 - Removal of Auxiliary Installations, Decontamination and Demolition. Phase 4 - Environmental Restoration. Phase 2, is currently ongoing (50% completed). To manage the diverse aspects of decommissioning operations, Enresa uses an internally developed computerized project management tool. The tool, based on knowledge gathered from other Enresa projects, can process operations management, maintenance operations, materials, waste, storage areas, procedures, work permits, operator dose management and records. Enresa considers that communication is important for both internal and external stakeholder relations and can be used to inform, to neutralize negative opinions and attitudes, to remove false expectations and for training. Enresa has created a new multi-purpose area (exhibition/visitor centre) and encourages visits from the public, local schools, local and

  9. Worldwide Overview of Lessons Learned from Decommissioning Projects

    International Nuclear Information System (INIS)

    Laraia, Michele

    2008-01-01

    With an increasing number of radioactive facilities and reactors now reaching the end of their useful life and being taken out of service, there is a growing emphasis worldwide on the safe and efficient decommissioning of such plants. There is a wealth of experience already gained in decommissioning projects for all kinds of nuclear facilities. It is now possible to compare and discuss progress and accomplishments worldwide. In particular, rather than on the factual descriptions of projects, technologies and case histories, it is important to focus on lessons learned: in this way, the return of experience is felt to effectively contribute to progress. Key issues - inevitably based on a subjective ranking - are presented in this paper. Through the exchange of lessons learned, it is possible to achieve full awareness of the need for resources for and constraints of safe and cost-effective decommissioning. What remains now is the identification of specific, remaining issues that may hinder or delay the smooth progress of decommissioning. To this end, lessons learned provide the necessary background information; this paper tries to make extensive use of practical experience gained by the international community

  10. The SGHWR decommissioning project-waste strategy

    International Nuclear Information System (INIS)

    Graham, G.; Napper, M.

    1999-01-01

    Every facility must reach a stage in the decommissioning process where low-level waste (LLW) becomes the major factor in the decommissioning costs, therefore a cost-effective strategy for dealing with the waste must be sought. This paper describes the waste management strategy process that was carried out at the steam generating heavy water reactor (SGHWR) at Winfrith in Dorset. Obviously, each facility will have its own specific radiological problems, with its own unique fingerprint, which will have to be addressed, and, therefore, the optimum waste management strategy will differ for each facility. However, from the work done at SGHWR, it can be seen that it is possible to formulate a structured approach for dealing with LLW which meets the requirements of all stake holders, is safe, technically acceptable, cost-effective, and, furthermore, is equally applicable to other plants. (author)

  11. Study on archive management for nuclear facility decommissioning projects

    International Nuclear Information System (INIS)

    Huang Ling; Gong Jing; Luo Ning; Liao Bing; Zhou Hao

    2011-01-01

    This paper introduces the main features and status of the archive management for nuclear facility decommissioning projects, and explores and discusses the countermeasures in its archive management. Taking the practice of the archive management system of a reactor decommissioning project as an example, the paper illustrates the establishment of archive management system for the nuclear facility decommissioning projects. The results show that the development of a systematic archive management principle and system for nuclear decommissioning projects and the construction of project archives for the whole process from the design to the decommissioning by digitalized archive management system are one effective route to improve the complete, accurate and systematic archiving of project documents, to promote the standardization and effectiveness of the archive management and to ensure the traceability of the nuclear facility decommissioning projects. (authors)

  12. Current status of decommissioning projects and their strategies in advanced countries

    International Nuclear Information System (INIS)

    Chung, U. S.; Lee, K. W.; Hwang, D. S.; Park, S. K.; Hwang, S. T.; Paik, S. T.; Park, J. H.; Choi, Y. D.; Chung, K. H.; Lee, K. I.; Hong, S. B.

    2007-06-01

    At the Korea Atomic Energy Research Institute(KAERI), two projects for decommissioning of the research reactors and uranium conversion plant are carried out. The number of nuclear facilities to be dismantled will be much increased in future and the decommissioning industries will be enlarged. Keeping pace with this increasing tendency, each country formulated their own strategies and regulation systems, and applied their own technologies. The international organizations such as the IAEA and the OECD/NEA also prepared standards in technologies and regulation upon decommissioning and recommended to adopt them to the decommissioning projects. These strategies and technologies are very different country by country due to the different site dependent conditions and it will not be reasonable to evaluate their merits and weakness. The world wide status of the decommissioning, highlighted on that of 5 countries of USA, UK, France, Germany and Japan because they are advanced counties in nuclear industries, are summarized and their site specific conditions are evaluated. The scopes of the evaluation are decommissioning strategies, licensing procedures and requirements focused on decommissioning plan, waste management, technology development and so on. The detailed decommissioning progresses of several typical example sites were introduced. The activities on decommissioning field of the international organization, increased according to the enlarged decommissioning industries, are also summarized

  13. Current status of decommissioning projects and their strategies in advanced countries

    Energy Technology Data Exchange (ETDEWEB)

    Chung, U. S.; Lee, K. W.; Hwang, D. S.; Park, S. K.; Hwang, S. T.; Paik, S. T.; Park, J. H.; Choi, Y. D.; Chung, K. H.; Lee, K. I.; Hong, S. B

    2007-06-15

    At the Korea Atomic Energy Research Institute(KAERI), two projects for decommissioning of the research reactors and uranium conversion plant are carried out. The number of nuclear facilities to be dismantled will be much increased in future and the decommissioning industries will be enlarged. Keeping pace with this increasing tendency, each country formulated their own strategies and regulation systems, and applied their own technologies. The international organizations such as the IAEA and the OECD/NEA also prepared standards in technologies and regulation upon decommissioning and recommended to adopt them to the decommissioning projects. These strategies and technologies are very different country by country due to the different site dependent conditions and it will not be reasonable to evaluate their merits and weakness. The world wide status of the decommissioning, highlighted on that of 5 countries of USA, UK, France, Germany and Japan because they are advanced counties in nuclear industries, are summarized and their site specific conditions are evaluated. The scopes of the evaluation are decommissioning strategies, licensing procedures and requirements focused on decommissioning plan, waste management, technology development and so on. The detailed decommissioning progresses of several typical example sites were introduced. The activities on decommissioning field of the international organization, increased according to the enlarged decommissioning industries, are also summarized.

  14. In-house developed methodologies and tools for decommissioning projects

    International Nuclear Information System (INIS)

    Detilleux, Michel; Centner, Baudouin

    2007-01-01

    The paper describes different methodologies and tools developed in-house by Tractebel Engineering to facilitate the engineering works to be carried out especially in the frame of decommissioning projects. Three examples of tools with their corresponding results are presented: - The LLWAA-DECOM code, a software developed for the radiological characterization of contaminated systems and equipment. The code constitutes a specific module of more general software that was originally developed to characterize radioactive waste streams in order to be able to declare the radiological inventory of critical nuclides, in particular difficult-to-measure radionuclides, to the Authorities. In the case of LLWAA-DECOM, deposited activities inside contaminated equipment (piping, tanks, heat exchangers...) and scaling factors between nuclides, at any given time of the decommissioning time schedule, are calculated on the basis of physical characteristics of the systems and of operational parameters of the nuclear power plant. This methodology was applied to assess decommissioning costs of Belgian NPPs, to characterize the primary system of Trino NPP in Italy, to characterize the equipment of miscellaneous circuits of Ignalina NPP and of Kozloduy unit 1 and, to calculate remaining dose rates around equipment in the frame of the preparation of decommissioning activities; - The VISIMODELLER tool, a user friendly CAD interface developed to ease the introduction of lay-out areas in a software named VISIPLAN. VISIPLAN is a 3D dose rate assessment tool for ALARA work planning, developed by the Belgian Nuclear Research Centre SCK.CEN. Both softwares were used for projects such as the steam generators replacements in Belgian NPPs or the preparation of the decommissioning of units 1 and 2 of Kozloduy NPP; - The DBS software, a software developed to manage the different kinds of activities that are part of the general time schedule of a decommissioning project. For each activity, when relevant

  15. The European community's programme of research on the decommissioning of nuclear power plants: objectives, scope and implementation

    International Nuclear Information System (INIS)

    Huber, B.

    1984-01-01

    The European Community's research activities on the decommissioning of nuclear installations are aimed at developing effective techniques and procedures for ensuring the protection of man and his environment against the potential hazards from nuclear installations that have been withdrawn from service. The first five-year (1979-1983) programme of research on the decommissioning of nuclear power plants has comprised seven R and D projects concerning the following areas: maintaining disused plants in safe condition; surface decontamination for decommissioning purposes; dismantling techniques; treatment of the main waste materials arising in decommissioning, i.e. steel, concrete and graphite; large containers for decommissioning waste; arisings and characteristics of decommissioning waste; plant design features facilitating decommissioning. The research work was carried out by organizations and companies in the Member States under 51 research contracts, most of them cost-sharing. The Commission is now launching a new five-year (1984-1988) programme of research on the decommissioning of nuclear installations. (author)

  16. Development of a decommissioning plan for nuclear power plant 'Krsko'

    International Nuclear Information System (INIS)

    Tankosic, Djurica; Fink, Kresimir

    1991-01-01

    Nuclear Power Plant 'Krsko' (NEK), is the only nuclear power plant in Yugoslavia, is a two-loop, Westinghouse-design, pressurized water reactor rated at 632 MWe. When NEK applied for an operating license in 1981, it did not have to explain how the plant would be decommissioned and decommissioning provisions were not part of the licensing process. Faced with mounting opposition to nuclear power and a real threat that the plant would be shut down, the plant management developed a Mission Plan for resolving the decommissioning problem. The Mission Plan calls for a preliminary decommissioning plan to be prepared and submitted to the local regulatory body before the end of 1992

  17. Progress and experiences from the decommissioning of the eurochemic reprocessing plant

    International Nuclear Information System (INIS)

    Gillis, R.; Lewandowski, P.; Ooms, B.; Reusen, N.; Van Laer, W.; Walthery, R.

    2008-01-01

    The Eurochemic reprocessing facility at Dessel in Belgium, was constructed from 1960 to 1966. After shutdown, the plant was decontaminated from 1975 to 1979 to keep safe standby conditions at reasonable cost. When it was decided in 1986 not to resume reprocessing in Belgium, the main Belgoprocess activities changed to processing and storage of radioactive waste and to decontamination and decommissioning of obsolete nuclear facilities. The industrial decommissioning was started in 1990. This document presents the project: overview of decommissioning activities and equipment used, automation in decontamination, ensuring health and safety during the operations, release of decontaminated materials, current situation of the decommissioning activities and quality assurance program. (A.L.B.)

  18. Nuclear power plant decommissioning. The nature of problems

    Energy Technology Data Exchange (ETDEWEB)

    Yunus, Yaziz

    1986-04-01

    A number of issues have to be taken into account before the introduction of any nuclear power plant in any country. These issues include reactor safety (site and operational), waste disposal and, lastly, the decommissioning of the reactor inself. Because of the radioactive nature of the components, nuclear power plants require a different approach to decommission compared to other plants. Until recently, issues on reactor safety and waste disposal were the main topics discussed. As for reactor decommissioning, the debates have been academic until now. Although reactors have operated for 25 years, decommissioning of retired reactors has simply not been fully planned. But the Shippingport Atomic Power Plant in Pennysylvania, the first large-scale power reactor to be retired, is now being decommissioned. The work has rekindled the debate in the light of reality. Outside the United States, decommissioning is also being confronted on a new plane.

  19. Status of the Decommissioning Project Management Information System Development of KAERI in 2015

    International Nuclear Information System (INIS)

    Jin, Hyung Gon; Park, Seungkook; Park, Heeseong; Song, Chanho

    2015-01-01

    Various information systems have been developed and used at decommissioning sites for planning a project, record keeping for a post management and cost estimation. KAERI is the only one expert group which has decommissioning experiences and KAERI is trying to develop computer code to converge all the data which has been accumulated during KRR-1 and 2 and UCP (Uranium Conversion Plant) decommission. KRR-1 and KRR-2 are TRIGA MARK type of research reactor which were constructed worldwide. Hence, there are many chance to use decommissioning experiences and data when other TRIGA MARK type of research reactors start to decommission. KAERI DPMIS stands for Decommissioning Project Management Information System, which is aiming to re-use of data effectively. As a responsible leading group of Korean decommissioning research field, KAERI has been developing DPMIS application program, which is going to be an important mile stone of decommission industry in Korea. User friendly graphical interface and lots of actual data let people well understood on decommission planning. It is expected that continuous effort and funds will be delivered to this research

  20. Status of the Decommissioning Project Management Information System Development of KAERI in 2015

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Hyung Gon; Park, Seungkook; Park, Heeseong; Song, Chanho [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    Various information systems have been developed and used at decommissioning sites for planning a project, record keeping for a post management and cost estimation. KAERI is the only one expert group which has decommissioning experiences and KAERI is trying to develop computer code to converge all the data which has been accumulated during KRR-1 and 2 and UCP (Uranium Conversion Plant) decommission. KRR-1 and KRR-2 are TRIGA MARK type of research reactor which were constructed worldwide. Hence, there are many chance to use decommissioning experiences and data when other TRIGA MARK type of research reactors start to decommission. KAERI DPMIS stands for Decommissioning Project Management Information System, which is aiming to re-use of data effectively. As a responsible leading group of Korean decommissioning research field, KAERI has been developing DPMIS application program, which is going to be an important mile stone of decommission industry in Korea. User friendly graphical interface and lots of actual data let people well understood on decommission planning. It is expected that continuous effort and funds will be delivered to this research.

  1. Health physics program for the Edgemont Uranium Mill decommissioning project

    International Nuclear Information System (INIS)

    Polehn, J.L.; Wallace, R.G.; Reed, R.P.; Wilson, G.T.

    1986-01-01

    The Tennessee Valley Authority (TVA) is actively involved in decommissioning a uranium mill located near the town of Edgemont, South Dakota. The Edgemont Mill Decommissioning Project, which is unique in many respects, will involve dismantlement of the old inactive mill building and excavation and transportation of several million tons of uranium mill tailings to a permanent disposal site. To ensure that workers are adequately protected from radiation exposure during decommissioning operations, a health physics program appropriate for the decommissioning situation was developed. The Edgemont Mill Decommissioning Project Health Physics Manual (HPM) gives the programmatic requirements for worker radiation protection. The requirements of the HPM are implemented by means of detailed onsite operating procedures. The Edgemont project health physics program was developed using currently available regulations and guidance for an operating uranium mill with appropriate modifications for decommissioning. This paper discusses the development, implementation, and documentation of that program

  2. Innovative Nuclear Power Plant Building Arrangement in Consideration of Decommissioning

    OpenAIRE

    Won-Jun Choi; Myung-Sub Roh; Chang-Lak Kim

    2017-01-01

    A new concept termed the Innovative Nuclear Power Plant Building Arrangement (INBA) strategy is a new nuclear power plant building arrangement method which encompasses upfront consideration of more efficient decommissioning. Although existing decommissioning strategies such as immediate dismantling and differed dismantling has the advantage of either early site restoration or radioactive decommissioning waste reduction, the INBA strategy has the advantages of both strategies. In this research...

  3. Idea: an integrated set of tools for sustainable nuclear decommissioning projects

    International Nuclear Information System (INIS)

    Detilleux, M.; Centner, B.; Vanderperre, S.; Wacquier, W.

    2008-01-01

    Decommissioning of nuclear installations constitutes an important challenge and shall prove to the public that the whole nuclear life cycle is fully mastered by the nuclear industry. This could lead to an easier public acceptance of the construction of new nuclear power plants. When ceasing operation, nuclear installations owners and operators are looking for solutions in order to assess and keep decommissioning costs at a reasonable level, to fully characterise waste streams (in particular radiological inventories of difficult-to-measure radionuclides) and to reduce personnel exposure during the decommissioning activities taking into account several project, site and country specific constraints. In response to this need, Tractebel Engineering has developed IDEA (Integrated DEcommissioning Application), an integrated set of computer tools, to support the engineering activities to be carried out in the frame of a decommissioning project. IDEA provides optimized solutions from an economical, environmental, social and safety perspective. (authors)

  4. Shippingport Station Decommissioning Project (SSDP): configuration control system and project activity controls

    International Nuclear Information System (INIS)

    Mullee, G.R.

    1986-01-01

    The SSDP has been using a Configuration Control system as a significant element in the management plan for the safe and effective performance of the project. The objective of the Configuration Control system is to control the physical plant configuration, system status, work schedules, status tracking, and day-to-day problem resolution. Prior to the Decommissioning Operations Contractor (DOC) assuming operational responsibility for the Shippingport Plant, an assessment was made of the status of the configuration of the systems and related documentation. Action was taken as required to match the operating procedures and system documentation with the actual physical condition of the plant. During the first stage of the project, planning was put in place for subsequent decommissioning activities. This planning included defining organizational responsibilities, completing the necessary project instructions and procedures, and doing the planning and scheduling for the subsequent decommissioning phase activities. Detailed instructions for the performance of the various decommissioning tasks were prepared. Prior to the start of any work on a given Activity Package, a Work Authorization is required. The Work Authorization form provides a complete checklist to ensure that all necessary prerequisites are completed. A computerized Communications Configuration Control Information system monitors status including information on system status, tag-outs, radiological work permits, etc. An ongoing effort is being directed toward maintaining operating instructions and system schematics, etc. current as the Plant configuration changes. The experience with the Configuration Control System to date has been favorable

  5. The Communities' research and development programme on decommissioning of nuclear power plants

    International Nuclear Information System (INIS)

    1981-01-01

    This is the first progress report of the European Community's programme (1979-1983) of research on the decommissioning of nuclear power plants. It shows the status of the programme on 31 December 1980. The programme seeks to promote a number of research and development projects as well as the identification of guiding principles. The projects concern the following subjects: long-term integrity of buildings and systems; decontamination for decommissioning purposes; dismantling techniques; treatment of specific waste materials: steel, concrete and graphite; large transport containers for radioactive was produced in the dismantling of nuclear power plants; estimation of the quantities of radioactive wastes arising from decommissioning of nuclear power plants in the Community; influence of nuclear power plant design features on decommissioning

  6. Brazilian nuclear power plants decommissioning plan for a multiple reactor site

    Energy Technology Data Exchange (ETDEWEB)

    Monteiro, Deiglys B.; Moreira, Joao M.L.; Maiorino, Jose R., E-mail: deiglys.monteiro@ufabc.edu.br, E-mail: joao.moreira@ufabc.edu.br, E-mail: joserubens.maiorino@ufabc.edu.br [Universidade Federal do ABC (CECS/UFABC), Santo Andre, SP (Brazil). Centro de Engenharia, Modelagem e Ciencias Aplicadas. Programa de Pos-Graduacao em Energia e Engenharia da Energia

    2015-07-01

    Actually, Brazil has two operating Nuclear Power Plants and a third one under construction, all at Central Nuclear Almirante Alvaro Alberto - CNAAA. To comply with regulatory aspects the power plants operator, Eletronuclear, must present to Brazilian Nuclear Regulatory Agency, CNEN, a decommissioning plan. Brazilian experience with decommissioning is limited because none of any nuclear reactor at the country was decommissioned. In literature, decommissioning process is well described despite few nuclear power reactors have been decommissioned around the world. Some different approach is desirable for multiple reactors sites, case of CNAAA site. During the decommissioning, a great amount of wastes will be produced and have to be properly managed. Particularly, the construction of Auxiliary Services on the site could be a good choice due to the possibility of reducing costs. The present work intends to present to the Eletronuclear some aspects of the decommissioning concept and decommissioning management, storage and disposal de wastes, based on the available literature, regulatory standards of CNEN and international experience as well as to suggest some solutions to be implemented at CNAAA site before starts the decommissioning project in order to maximize the benefits. (author)

  7. Brazilian nuclear power plants decommissioning plan for a multiple reactor site

    International Nuclear Information System (INIS)

    Monteiro, Deiglys B.; Moreira, Joao M.L.; Maiorino, Jose R.

    2015-01-01

    Actually, Brazil has two operating Nuclear Power Plants and a third one under construction, all at Central Nuclear Almirante Alvaro Alberto - CNAAA. To comply with regulatory aspects the power plants operator, Eletronuclear, must present to Brazilian Nuclear Regulatory Agency, CNEN, a decommissioning plan. Brazilian experience with decommissioning is limited because none of any nuclear reactor at the country was decommissioned. In literature, decommissioning process is well described despite few nuclear power reactors have been decommissioned around the world. Some different approach is desirable for multiple reactors sites, case of CNAAA site. During the decommissioning, a great amount of wastes will be produced and have to be properly managed. Particularly, the construction of Auxiliary Services on the site could be a good choice due to the possibility of reducing costs. The present work intends to present to the Eletronuclear some aspects of the decommissioning concept and decommissioning management, storage and disposal de wastes, based on the available literature, regulatory standards of CNEN and international experience as well as to suggest some solutions to be implemented at CNAAA site before starts the decommissioning project in order to maximize the benefits. (author)

  8. Proven approaches to organise a large decommissioning project, including the management of local stakeholder interests

    International Nuclear Information System (INIS)

    Rodriguez, A.

    2005-01-01

    Full text: Spanish experience holds a relatively important position in the field of the decommissioning of nuclear and radioactive facilities. Decommissioning projects of uranium concentrate mill facilities are near completion; some old uranium mine sites have already been restored; several projects for the dismantling of various small research nuclear reactors and a few pilot plants are at various phases of the dismantling process, with some already completed. The most notable Spanish project in this field is undoubtedly the decommissioning of the Vandellos 1 nuclear power plant that is currently ready to enter a safe enclosure, or dormancy, period. The management of radioactive wastes in Spain is undertaken by 'Empresa Nacional de Residuos Radioactivos, S.A.' (ENRESA), the Spanish national radioactive waste company, constituted in 1984. ENRESA operates as a management company, whose role is to develop radioactive waste management programmes in accordance with the policy and strategy approved by the Spanish Government. Its responsibilities include the decommissioning and dismantling of nuclear installations. Decommissioning and dismantling nuclear installations is an increasingly important topic for governments, regulators, industries and civil society. There are many aspects that have to be carefully considered, planned and organised in many cases well in advance of when they really need to be implemented. The goal of this paper is describe proven approaches relevant to organizing and managing large decommissioning projects, in particular in the case of Vandellos-1 NPP decommissioning. (author)

  9. Feedback from the operation of the ISOCS in support to the plutonium facility decommissioning project at the Marcoule UP1 reprocessing plant (France) and possible gain for new projects with new CANBERRA systems

    International Nuclear Information System (INIS)

    Dogny, S.; Toubon, H.

    2009-01-01

    After the decision was taken in 1998 to shut-down the operations of the UP1 reprocessing plant in Marcoule (France), where more than 19,000 metric tons of spent nuclear fuel have been reprocessed, decommissioning projects started in the various buildings, particularly in the Plutonium Facility. In this facility many glove boxes had to be decontaminated before dismantling. To have waste compatible with surface storage, the main objective was to prove that each glove box had on hold up of less than 37 GBq (about 10 g) and to determine the corresponding Pu isotopic composition. Historically the method used for such characterisation was based on smears and dose rate measurements to extrapolate the mass of Pu in the glove boxes with a very high uncertainty. In 1998 AREVA-NC decided to deploy new characterization tools to meet the performance goals of the Plutonium Facility Decommissioning Project. These tools consist on portable Germanium gamma spectrometer coupled with MGA Pu isotopic composition and ISOCS 3D modelling codes. (authors)

  10. Radiation protection in connection with the decommissioning of nuclear plants

    International Nuclear Information System (INIS)

    1997-04-01

    This document presents the SSI preliminary views and position concerning the decommissioning of nuclear plants. To prevent the exposure of the decommissioning personnel and the general public to unacceptable levels of radiation and to protect the environment and future generations, it is SSI's task to formulate and issue the necessary terms and regulations with which the reactor licensees must comply during the decommissioning work. The views and principles presented here are the basis of SSI's continued work on guidelines and regulations for the decommissioning of nuclear plants

  11. Waste management for Shippingport Station Decommissioning Project: Extended summary

    International Nuclear Information System (INIS)

    Mullee, G.R.; Schulmeister, A.R.

    1987-01-01

    The Shippingport Station (SSDP) is demonstrating that the techniques and methodologies of waste management, which are currently employed by the nuclear industry, provide adequate management and control of waste activities for the decommissioning of a large scale nuclear plant. The SSDP has some unique aspects in that as part of the objective to promote technology transfer, multiple subcontractors are being utilized in the project. The interfaces resulting from multiple subcontractors require additional controls. Effective control has been accomplished by the use of a process control and inventory system, coupled with personnel training in waste management activities. This report summarizes the waste management plan and provides a status of waste management activities for SSDP

  12. Decommissioning wind energy projects: An economic and political analysis

    International Nuclear Information System (INIS)

    Ferrell, Shannon L.; DeVuyst, Eric A.

    2013-01-01

    Wind energy is the fastest-growing segment of new electrical power capacity in the United States, with the potential for significant growth in the future. To facilitate such growth, a number of concerns between developers and landowners must be resolved, including assurance of wind turbine decommissioning at the end of their useful lives. Oklahoma legislators enlisted the authors to develop an economically-sound proposal to ensure developers complete their decommissioning obligations. Economic analysis of turbine decommissioning is complicated by a lack of operational experience, as few U.S. projects have been decommissioned. This leads to a lack of data regarding decommissioning costs. Politically, the negotiation leading to the finally-enacted solution juxtaposed economic theory against political pragmatism, leading to a different but hopefully sound solution. This article will provide background for the decommissioning issue, chronicle the development of the decommissioning component of the Oklahoma Wind Energy Act, and frame issues that remain for policymakers in regulating wind power development. - Highlights: ► Wind energy is the fastest-growing component of U.S. power generation. ► Decommissioning wind projects is policy concern for wind development. ► Little public information on wind turbine decommissioning costs exists. ► Oklahoma’s solution attempts to account for both costs and risks. ► Additional research is needed to create a more precise policy solution.

  13. Windscale advanced gas-cooled reactor (WAGR) decommissioning project overview

    International Nuclear Information System (INIS)

    Pattinson, A.

    2003-01-01

    The current BNFL reactor decommissioning projects are presented. The projects concern power reactor sites at Berkely, Trawsfynydd, Hunterstone, Bradwell, Hinkley Point; UKAEA Windscale Pile 1; Research reactors within UK Scottish Universities at East Kilbride and ICI (both complete); WAGR. The BNFL environmental role include contract management; effective dismantling strategy development; implementation and operation; sentencing, encapsulation and transportation of waste. In addition for the own sites it includes strategy development; baseline decommissioning planning; site management and regulator interface. The project objectives for the Windscale Advanced Gas-Cooled Reactor (WAGR) are 1) Safe and efficient decommissioning; 2) Building of good relationships with customer; 3) Completion of reactor decommissioning in 2005. The completed WAGR decommissioning campaigns are: Operational Waste; Hot Box; Loop Tubes; Neutron Shield; Graphite Core and Restrain System; Thermal Shield. The current campaign is Lower Structures and the remaining are: Pressure vessel and Insulation; Thermal Columns and Outer Vault Membrane. An overview of each campaign is presented

  14. Shippingport Station Decommissioning Project: Contaminated concrete removal: Topical report

    International Nuclear Information System (INIS)

    1989-01-01

    This Topical Report is a synopsis of the removal of contaminated concrete from the Shippingport Station Decommissioning Project (SSDP). The information is provided as a part of the Technology Transfer Program to document the decontamination activities in support of site release in the decommissioning of a nuclear power reactor. 4 refs., 8 figs., 2 tabs

  15. Shippingport station decommissioning project irradiated components transfer: Topical report

    International Nuclear Information System (INIS)

    1988-01-01

    This topical report is a synopsis of the transfer of irradiated components into the Shippingport Reactor Pressure Vessel (RPV) performed at the Shippingport Station Decommissioning Project (SSDP). The information is provided as a part of the Technology Transfer Program to document the preparation activities for the decommissioning of a nuclear power reactor to be removed in one piece

  16. When a plant shuts down: The psychology of decommissioning

    International Nuclear Information System (INIS)

    Schulz, J.; Crawford, A.C.

    1993-01-01

    Within the next decade, 10 to 25 nuclear plants in the United States may be taken off line. Many will have reached the end of their 40-year life cycles, but others will be retired because the cost of operating them has begun to outweigh their economic benefit. Such was the case at Fort St. Vrain, the first decommissioning of a US commercial plant under new Nuclear Regulatory Commission (NRC) regulations. Two major problems associated with decommissioning plants have been obvious: (1) the technical challenges and costs of decommissioning, and (2) the cost of maintaining and finally decommissioning a plant after a safe storage (SAFSTOR) period of approximately 60 years. What has received little attention is the challenge that affects not only the people who make a plant work, but the quality of the solutions to these problems: how to maintain effective organizational performance during the process of downsizing and decommissioning and/or SAFSTOR. The quality of technical solutions for closing a plant, as well as how successfully the decommissioning process is held within or below budget, will depend largely on how effectively the nuclear organization functions as a social unit. Technical and people issues are bound together. The difficulty is how to operate a plant effectively when plant personnel have no sense of long-term security. As the nuclear power industry matures and the pace for closing operating plants accelerates, the time has come to prepare for the widespread decommissioning of plants. The industry would be well served by conducting a selective, industry-wide evaluation of plants to assess its overall readiness for the decommissioning process. A decommissioning is not likely to be trouble free, but with a healthy appreciation for the human side of the process, it will undoubtedly go more smoothly than if approached as a matter of dismantling a machine

  17. Waste management for the Shippingport Station Decommissioning Project

    International Nuclear Information System (INIS)

    Mullee, G.R.; Schulmeister, A.R.

    1987-01-01

    The Shippingport Station Decommissioning Project (SSDP) is being performed by the US Department of Energy (DOE) with the objectives of placing the station in a radiologically safe condition, demonstrating safe and cost effective dismantlement and providing useful data for future decommissioning projects. This paper describes the development of the Waste Management Plan which is being used for the accomplishment of the SSDP. Significant aspects of the Plan are described, such as the use of a process control and inventory system. The current status of waste management activities is reported. It is concluded that SSDP has some unique aspects which will provide useful information for future decommissioning projects

  18. License stewardship and other approaches to commercial nuclear power plant decommissioning

    International Nuclear Information System (INIS)

    Daly, P.T.; Moloney, B.P.

    2011-01-01

    This paper addresses the challenge of how our industry could arrange itself to deliver decommissioning of Nuclear Power Plants (NPPs) safely, in good time and affordably. There is a growing wealth of experience across the world in safe decommissioning techniques. Most - arguably all - of the techniques required to perform the full decommissioning of NPPs have been demonstrated on full-scale projects. Waste processing and disposal challenges remain in many countries, where the major issues are societal acceptance and political will. Interim storage possibilities have been identified in most countries. In decommissioning, the outstanding significant issues lie now in the domain of affordability and risk management. This paper will illustrate approaches to decommissioning with examples from the US and UK, to explore how the industry can achieve configurations to deliver lower risk and improved affordability for utilities. Different configurations, or models, will be used to illustrate the approaches taken. (orig.)

  19. Project gnome decontamination and decommissioning plan

    International Nuclear Information System (INIS)

    1979-04-01

    The document presents the operational plan for conducting the final decontamination and decommissioning work at the site of the first U.S. nuclear detonation designed specifically for peaceful purposes and the first underground event on the Plowshare Program to take place outside the Nevada Test Site. The plan includes decontamination and decommissioning procedures, radiological guidelines, and the NV concept of operations

  20. Comparison of Planning, Management and Organizational Aspects of Nuclear Power Plants A1 and V1 Decommissioning

    Energy Technology Data Exchange (ETDEWEB)

    Stubna, M.; Michal, V., E-mail: Marian.Stubna@vuje.sk, E-mail: V.Michal@iaea.org [VUJE, Inc. Trnava (Slovakia); Daniska, V., E-mail: Daniska@decom.sk [DECOM, Inc. Trnava (Slovakia); Sirota, J., E-mail: Sirota.Jan@javys.sk [JAVYS, Inc. Bratislava, (Slovakia)

    2013-08-15

    This contribution deals with planning, management and organizational aspects of decommissioning of NPP shut down due to the accident (prototype NPP A1) and NPP shut down after normal operation (NPP V1). The A1 and V1 NPPs are located very close in Bohunice nuclear site however both plants have very different technology and operational history. The preparation of A1 NPP decommissioning strategy and relevant decommissioning plans was long term process, because the plant was shut down after the accident in 1977 and decommissioning was implemented first time in Slovakia with many specific difficulties. The decommissioning planning of V1 NPP was shorter and easier, because the plant was shut down after normal operation, there were lessons learned from the A1 NPP decommissioning planning, available legislation, available financing etc. Development of decommissioning strategies, preparation and planning for decommissioning, development of legislation for decommissioning, management of decommissioning projects and other aspects are described and compared. Lessons learned are formulated on the basis of analysis of past, ongoing and planned decommissioning activities in Slovakia. (author)

  1. Nuclear power plant decommissioning: state-of-the-art review

    International Nuclear Information System (INIS)

    Williams, D.H.

    1984-01-01

    A brief orientation to the state-of-the-art of nuclear power plant decommissioning discusses the related areas of experience, tools and techniques, and planning. There have been 68 nuclear reactor decommissionings to date, including 9 power plants, some of which were mothballed. The picture suggests that the term art may be misapplied since decommissioning is now more of a mature commercial industrial than a research and development endeavor. It also suggests that the nuclear industry has shown foresight by preparing for it before a crisis situation developed. Some of this has already influenced operators of coal power plants, especially where hazardous materials may be involved. 33 references, 1 table

  2. Decommissioning of building part of nuclear power plant

    International Nuclear Information System (INIS)

    Sochor, R.

    1988-01-01

    The characteristics are discussed using literature data of building work during decommissioning or reconstruction of nuclear power plants. The scope of jobs associated with power plant decommissioning is mainly given by the size of contaminated parts, intensity of radioactivity, the volume of radioactive wastes and the possible building processes. Attention is devoted to the cost of such jobs and the effect of the plant design on cost reduction. (Z.M.). 6 refs

  3. Knowledge management for the decommissioning of nuclear power plants

    International Nuclear Information System (INIS)

    Kirschnick, F.; Engelhardt, S.

    2004-01-01

    This paper describes background, objectives and select conceptual components of knowledge management for the decommissioning of nuclear power plants. The concept focuses on the transfer of personal practice experience within and between nuclear power plants. The conceptual insights embrace aspects of knowledge content, structure, KM processes, organization, cooperation, culture, persuasion, leadership, technology, infrastructure, business impact and resilience. Key challenges are discussed, and related advice is provided for KM practitioners with similar endeavours in the field of nuclear power plant decommissioning. (author)

  4. Guidelines for estimating nuclear power plant decommissioning costs

    International Nuclear Information System (INIS)

    LaGuardia, T.S.; Williams, D.H.

    1989-01-01

    The objectives of the study were: (1) To develop guidelines to facilitate estimating the cost of nuclear power plant decommissioning alternatives on a plant-specific basis and to facilitate comparing estimates made by others. The guidelines are expressed in a form that could be readily adapted by technical specialists from individual utilities or by other uses. (2) To enhance the industry's credibility with decision-makes at the state and federal levels during rate/regulatory processes involving decommissioning costs. This is accomplished by providing a detailed, systematic breakdown of how decommissioning cost estimates are prepared. (3) To increase the validity, realism, and accuracy of site-specific decommissioning cost estimates. This is accomplished by pulling together the experiences and practices of several nuclear utilities and consultants in conducting past decommissioning cost estimates

  5. Decommissioning and equipment replacement of nuclear power plants under uncertainty

    International Nuclear Information System (INIS)

    Takashima, Ryuta; Naito, Yuta; Kimura, Hiroshi; Madarame, Haruki

    2007-01-01

    This study examines the optimal timing for the decommissioning and equipment replacement of nuclear power plants. We consider that the firm has two options of decommissioning and equipment replacement, and determines to exercise these options under electricity price uncertainty. This problem is formulated as two optimal stopping problems. The solution of this model provides the value of the nuclear power plant and the threshold values for decommissioning and replacement. The dependence of decommissioning and replacement strategies on uncertainty and each cost is shown. In order to investigate the probability of events for decommissioning and replacement, Monte Carlo calculations are performed. We also show the probability distribution and the conditional expected time for each event. (author)

  6. Funding nuclear-power-plant decommissioning. Final report

    International Nuclear Information System (INIS)

    Burns, R.E.; Henderson, J.S.; Pollard, W.; Pryor, T.; Chen, Y.M.

    1982-10-01

    The report is organized according to the steps that one might go through when analyzing funding of decommissioning costs. The first step in analyzing decommissioning costs might be to review the present regulatory framework within which decommissioning cost decisions must be made. A description is presented of the present NRC regulations that address the decommissioning of a nuclear power plant. A description is also presented of recent public utility commission activities concerning funding the costs of decommissioning. Possible future trends in NRC regulation are also discussed. The estimation of decommmissioning costs is analyzed. A description of each of the possible decommissoining options is presented. The options of decommissioning include immediate dismantlement, various types of safe storage, and entombment. A discussion is presented of cost estimations for each decommissioning option for nuclear units containing pressurized water reactors and boiling water reactors. A description is included of the various methods of collecting funds for decommissioning as well as a discussion of their possible regulatory treatment. Material is presented which will provide the reader with background information that might assist state utility commissioners or their staffs in choosing or evaluating one of the financial mechanisms for covering decommissioning costs

  7. TA-2 Water Boiler Reactor Decommissioning Project

    International Nuclear Information System (INIS)

    Durbin, M.E.; Montoya, G.M.

    1991-06-01

    This final report addresses the Phase 2 decommissioning of the Water Boiler Reactor, biological shield, other components within the biological shield, and piping pits in the floor of the reactor building. External structures and underground piping associated with the gaseous effluent (stack) line from Technical Area 2 (TA-2) Water Boiler Reactor were removed in 1985--1986 as Phase 1 of reactor decommissioning. The cost of Phase 2 was approximately $623K. The decommissioning operation produced 173 m 3 of low-level solid radioactive waste and 35 m 3 of mixed waste. 15 refs., 25 figs., 3 tabs

  8. Implementation of requirements of environmental management (ISO 14000) for the decommissioning of the heavy water plant

    International Nuclear Information System (INIS)

    Gonzalez, Maria I.; Otero de Eppenstein, Marta; Tosi, Lidia E.; Sabio, Manuel

    2000-01-01

    The National Atomic Energy Commission (CNEA) of Argentina has a project of decommissioning in the heavy water plant (Planta Experimental de Agua Pesada - PEAP). The aim of this project is to get some experience for decommissioning of nuclear plants and to achieve knowledge about the application of the requirements in environmental management. The project is being carried out according to ISO 14001 standards 'Environmental Management Systems'. The objectives were taken from the model without any expectation of achieving the complete implementation or certification of the system. This report is a description of the acts that have been done. (author)

  9. Contaminated concrete scabbling at the Shippingport station decommissioning project

    International Nuclear Information System (INIS)

    Bauer, R.G.

    1989-01-01

    The Shippingport atomic power station was the first commercial nuclear power plant in the United States, joining the Duquesne Light Company (DLC) grid in December 1957. The Shippingport station was shut down in October 1982 and defueled in preparation for dismantling. On September 6, 1984, the Shippingport Station Decommissioning Project (SSDP) office of the US Department of Energy (DOE) assumed responsibility for the site. At turnover, there were several areas in the plant where radioactive contamination was entrained in concrete surfaces. The removal of contaminated concrete at SSDP was an important part of the decontamination to meet site release criteria, which is a major consideration in the decommissioning of nuclear power reactors. The highlights of this activity include: (1) development and application of remote scabbling tools, which effectively removed the contaminated concrete surfaces, and (2) use of scabblers minimized the removal of noncontaminated concrete by removing shallow layers of the surface and contributed to waste control, since the waste form enabled good packaging efficiency

  10. Evaluation of nuclear facility decommissioning projects. Project summary report, Elk River Reactor

    International Nuclear Information System (INIS)

    Miller, R.L.; Adams, J.A.

    1982-12-01

    This report summarizes information concerning the decommissioning of the Elk River Reactor. Decommissioning data from available documents were input into a computerized data-handling system in a manner that permits specific information to be readily retrieved. The information is in a form that assists the Nuclear Regulatory Commission in its assessment of decommissioning alternatives and ALARA methods for future decommissionings projects. Samples of computer reports are included in the report. Decommissioning of other reactors, including NRC reference decommissioning studies, will be described in similar reports

  11. Canadian decommissioning experience from policy to project

    International Nuclear Information System (INIS)

    Pare, F.E.

    1992-01-01

    The Canadian policy on decommissioning of nuclear facilities as defined in the Atomic Energy Control Act and Regulations is administered by the Atomic Energy Control Board (AECB), a Federal Government agency. It requires that these facilities be decommissioned according to approved plans which are to be developed by the owner of the nuclear facility during its early stages of design and to be refined during its operating life. In this regulatory environment, Atomic Energy of Canada Limited (AECL) has developed a decommissioning strategy for power stations which consists of three distinctive phases. After presenting AECL's decommissioning philosophy, this paper explains its foundations and describes how it has and soon will be applied to various facilities. It terminates by providing a brief summary of the experience gained up to date on the implementation of this strategy

  12. Safe decommissioning of mobile nuclear power plant

    International Nuclear Information System (INIS)

    Paliukhovich, V.M.

    2002-01-01

    The paper addresses some issues for ensuring radiation safety during the process of decommissioning the 630 kW 'Pamir-630D' mobile nuclear power plant (MNPP). That nuclear power plant consisted of a gas cooled reactor (weight of 76.5t), gas turbine-driven set (76t), two control units (2'20t), and an auxiliary unit (20t). The reactor and turbine-driven set were supposed to be put on transport platforms and carried by tractors. The control and auxiliary units were set on track beds. The 'Pamir-630D' was constructed and tested in an appropriate building. The set-up time was no greater than six hours after all units of the MNPP had reached the site. The 'Pamir-630D' was ready to be moved to another site in 30 hours after the shut down. Service lifetime of 'Pamir-630D' was 10 years: 7 years of storage and 3 years of operation. Operational lifetime was no less than 10000 hours (non-stop operational period was no longer than 2000 hours). Dose rate at the boundary of the restrictive area was no more than 6.5 mR/h at the time of reactor operation and no greater than 300 mR/h on the side surface and 1000 mR/h on the end surface of the biological shielding of the reactor, 24 hours after shut down. (author)

  13. Decommissioning of nuclear power plants: policies, strategies and costs

    International Nuclear Information System (INIS)

    Lund, I.

    2004-01-01

    As many nuclear power plants will reach the end of their lifetime during the next 20 years or so, decommissioning is an increasingly important topic for governments, regulators and industries. From a governmental viewpoint, particularly in a deregulated market, one essential aspect is to ensure that money for the decommissioning of nuclear installations will be available at the time it is needed, and that no 'stranded' liabilities will be left to be financed by the taxpayers rather than by the electricity consumers. For this reason, there is governmental interest in understanding decommissioning costs, and in periodically reviewing decommissioning cost estimates from nuclear installation owners. Robust cost estimates are key elements in designing and implementing a coherent and comprehensive national decommissioning policy including the legal and regulatory bases for the collection, saving and use of decommissioning funds. From the industry viewpoint, it is essential to assess and monitor decommissioning costs in order to develop a coherent decommissioning strategy that reflects national policy and assures worker and public safety, whilst also being cost effective. For these reasons, nuclear power plant owners are interested in understanding decommissioning costs as best as possible and in identifying major cost drivers, whether they be policy, strategy or 'physical' in nature. National policy considerations will guide the development of national regulations that are relevant for decommissioning activities. Following these policies and regulations, industrial managers responsible for decommissioning activities will develop strategies which best suit their needs, while appropriately meeting all government requirements. Decommissioning costs will be determined by technical and economic conditions, as well as by the strategy adopted. Against this backdrop, the study analyses the relationships among decommissioning policy as developed by governments, decommissioning

  14. A study on the optimization of plant life extension and decommissioning for the improvement of economy in nuclear power plant

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Jae In; Jung, K. J.; Chung, U. S.; Baik, S. T.; Park, S. K.; Lee, D. G.; Kim, H. R.; Park, B. Y

    2001-01-01

    Fundamental concepts on the life extension of the nuclear power plant and decommissioning optimization were established from the domestic abroad information and case analyses. Concerning the decommissioning of the nuclear power plant, the management according to decommissioning stages was analyzed by the investigation of the standard of the decommissioning(decontamination dismantling) regulation. Moreover, basics were set for the decommissioning of domestic nuclear power plants and research reactors from the analyses on the decommissioning technology and precedence.

  15. Cost effective decommissioning and dismantling of nuclear power plants

    International Nuclear Information System (INIS)

    Wasinger, Karl

    2012-01-01

    As for any large and complex project, the basis for cost effective decommissioning and dismantling of nuclear power plants is established with the development of the project. Just as its construction, dismantling of a nuclear power plant is similarly demanding. Daily changing situations due to the progress of construction - in the present case progress of dismantling - result in significant logistical challenges for project managers and site supervisors. This will be aggravated by the fact that a considerable amount of the removed parts are contaminated or even activated. Hence, not only occupational health, safety and environmental protection is to be assured, employees, public and environment are to be adequately protected against the adverse effect of radioactive radiation as well. Work progress and not least expenses involved with the undertaking depend on adherence to the planned course of actions. Probably the most frequent cause of deviation from originally planned durations and costs of a project are disruptions in the flow of work. For being enabled to counteract in a timely and efficient manner, all required activities are to be comprehensively captured with the initial planning. The effect initial activities may have on subsequent works until completion must particularly be investigated. This is the more important the larger and more complex the project actually are. Comprehensive knowledge of all the matters which may affect the progress of the works is required in order to set up a suitable work break-down structure; such work break-down structure being indispensable for successful control and monitoring of the project. In building the related organizational structure of the project, all such stakeholders not being direct part of the project team but which may potentially affect the progress of the project are to be considered as well. Cost effective and lost time injury free dismantling of decommissioned nuclear power plants is based on implementing

  16. Construction times and the decommissioning of nuclear power plants

    International Nuclear Information System (INIS)

    Erramuspe, H.J.

    1988-01-01

    The construction and the decommissioning periods of nuclear power plants (NPP), are studied, due to their importance in the generation costs. With reference to the construction periods of these plants, a review is made of the situation and technical improvements made in different countries, with the purpose of shortening them. In regard to the decommissioning of NPP, the present and future situations are reviewed in connection with different stages of decommissioning and their related problems, as the residual radioactivity of different components, and the size of the final wastes to be disposed of. The possibilities of plant life extensions are also revised in connection with these problems. Finally, the expected decommissioning costs are analyzed. (Author) [es

  17. Aspects related to the decommissioning of the nuclear power plants

    International Nuclear Information System (INIS)

    Goicea, Andrei; Andrei, Veronica

    2003-01-01

    All power plants, either coal, gas or nuclear, at the end of their life needs to be decommissioned and demolished and thus, to made the site available for other uses. The first generation nuclear power plants were designed for a life of about 30 years and some of them proved capable of continuing well beyond this term. Newer plants have been designed for a 40 to 60 years operating life. To date, other 90 commercial power reactors have been retired from operation. For nuclear power plants and nuclear facilities in general the decommissioning process consists of some or all of the following activities: the safe management of nuclear materials held in the facility, cleaning-up of radioactivity (decontamination), plant dismantling, progressive demolition of the plant and site remediation. Following the decommissioning, the regulatory controls covering facility end, partially or totally, and the safe site is released for appropriate alternative use. Cernavoda NPP is a young plant and it can benefit from the continuously developing experience of the decommissioning process at the international level. The current experience allows the most metallic parts of a nuclear power to be decontaminated and recycled and makes available proven techniques and equipment to dismantle nuclear facilities safely. As experience is gained, decommissioning costs for nuclear power plants, including disposal of associated wastes, are reducing and thus, contribute in a smaller fraction to the total cost of electricity generation. The new specific Romanian regulations establish a funding system for decommissioning and provisions for long-term radioactive waste management. In the near future a decommissioning plan will be made available for Cernavoda NPP. Since the plant has only 7 years operation, that plan can be improved in order to benefit from international experience that is growing. (authors)

  18. Status of the RA research reactor decommissioning project

    International Nuclear Information System (INIS)

    Ljubenov, V.; Nikolic, D.; Pesic, M.; Milosevic, M.; Kostic, Lj.; Steljic, M.; Sotic, O.; Antic, D. . E-mail address of corresponding author: vladan@vin.bg.ac.yu; Ljubenov, V.)

    2005-01-01

    The 6.5 MW heavy water RA research reactor at the VINCA Institute of Nuclear Sciences operated from 1959 to 1984. After 18 years of extended shutdown in 2002 it was decided that the reactor shutdown should be final. Preliminary decommissioning activities have been initiated by the end of 2002 under the Technical Co-operation Programme of the International Atomic Energy Agency. The objective of the project is to implement safe, timely and cost-effective decommissioning of the RA reactor up to unrestricted use of the site. Decommissioning project is closely related to two other projects: Safe Removal of the RA Reactor Spent Nuclear Fuel and Radioactive Waste Management in VINCA Institute. The main phases of the project include preparation of the detailed decommissioning plan, radiological characterization of the reactor site, dismantling and removal of the reactor components and structures, decontamination, final radiological site survey and the documentation of all the activities in order to obtain the approval for unrestricted use of the facility site. In this paper a review of the activities related to the preparation and realization of the RA reactor decommissioning project is given. Status of the project's organizational and technical aspects as for July 2004 are presented and plans for the forthcoming phases of the project realization are outlined. (author)

  19. Establishment and Evaluation of Decommissioning Plant Inventory DB and Waste Quantity

    International Nuclear Information System (INIS)

    Oh, Jae Yong; Moon, Sang-Rae; Yun, Taesik; Kim, Hee-Geun; Sung, Nak-Hoon; Jung, Seung Hyuk

    2016-01-01

    Korea Hydro and Nuclear Power (KHNP) made a decision for permanent shutdown of Kori-1 and has progressed the strategy determination and R and D for the decommissioning of Kori-1. Decommissioning waste, Structure, System and Components (SSCs) is one of the most important elements. Decommissioning waste quantity is calculated based on Plant Inventory Database (PI DB) with activation and contamination data. Due to the largest portion of waste management and disposal in decommissioning, it is necessary to exactly evaluate waste quantity (applying the regulation, guideline and site-specific characterization) for economic feasibility. In this paper, construction of PI DB and evaluation of waste quantity for Optimized Pressurized Reactor (OPR-1000) are mainly described. Decommissioning waste quantities evaluated are going to be applied to calculation of the project cost. In fact, Ministry of Trade, Industry and Energy (MOTIE) in Korea expected the decommissioning waste quantity in a range of 14,500-18,850 drums, and predicted appropriate liability for decommissioning fund by using waste quantity. The result of this study is also computed by the range of 14,500-18,850 drums. Since there is no site-specific data for the NPP site, this evaluation is the preliminary analysis

  20. Establishment and Evaluation of Decommissioning Plant Inventory DB and Waste Quantity

    Energy Technology Data Exchange (ETDEWEB)

    Oh, Jae Yong; Moon, Sang-Rae; Yun, Taesik; Kim, Hee-Geun [KHNP CRI, Daejeon (Korea, Republic of); Sung, Nak-Hoon; Jung, Seung Hyuk [KONES Corp., Seoul (Korea, Republic of)

    2016-10-15

    Korea Hydro and Nuclear Power (KHNP) made a decision for permanent shutdown of Kori-1 and has progressed the strategy determination and R and D for the decommissioning of Kori-1. Decommissioning waste, Structure, System and Components (SSCs) is one of the most important elements. Decommissioning waste quantity is calculated based on Plant Inventory Database (PI DB) with activation and contamination data. Due to the largest portion of waste management and disposal in decommissioning, it is necessary to exactly evaluate waste quantity (applying the regulation, guideline and site-specific characterization) for economic feasibility. In this paper, construction of PI DB and evaluation of waste quantity for Optimized Pressurized Reactor (OPR-1000) are mainly described. Decommissioning waste quantities evaluated are going to be applied to calculation of the project cost. In fact, Ministry of Trade, Industry and Energy (MOTIE) in Korea expected the decommissioning waste quantity in a range of 14,500-18,850 drums, and predicted appropriate liability for decommissioning fund by using waste quantity. The result of this study is also computed by the range of 14,500-18,850 drums. Since there is no site-specific data for the NPP site, this evaluation is the preliminary analysis.

  1. Planning and progress of the WAGR decommissioning project

    International Nuclear Information System (INIS)

    Boorman, T.

    1988-01-01

    In the United Kingdom, the earliest production reactors, which will be decommissioned first, are of the Magnox type. The Windscale Advanced Gas-cooled Reactor, is however, sufficiently similar to make it a suitable prototype decommissioning project. The planning and progress so far is described. Special decommissioning equipment, including a remote dismantling machine, has been developed and a waste packaging building built on site. Its function is to enable all intermediate-level and low-level radioactive waste removed from the reactor vault by remote equipment to be packaged remotely into suitable containers. The work done on the WAGR decommissioning has shown that the dismantling of a power-producing reactor is feasible and can be accomplished using existing engineering techniques. (U.K.)

  2. Factors influencing the decommissioning of large-scale nuclear plants

    International Nuclear Information System (INIS)

    Large, J.H.

    1988-01-01

    The decision-making process involving the decommissioning of the UK graphite moderated, gas-cooled nuclear power stations is complex. There are timing, engineering, waste disposal, cost and lost generation capacity factors to consider and the overall decision of when and how to proceed with decommissioning may include political and public tolerance dimensions. For the final stage of decommissioning the nuclear industry could either completely dismantle the reactor island leaving a green-field site or, alternatively, the reactor island could be maintained indefinitely with additional super- and substructure containment. At this time the first of these options, or deferred decommissioning, prevails and with this the nuclear industry has expressed considerable confidence that the technology required will become available with passing time, that acceptable radioactive waste disposal methods and facilities will be available and that the eventual costs of decommissioning will not escalate without restraint. If the deferred decommissioning strategy is wrong and it is not possible to completely dismantle the reactor islands a century into the future, then it may be too late to effect sufficient longer term containment to maintain the reactor hulks in a reliable condition. With respect to the final decommissioning of large-scale nuclear plant, it is concluded that the nuclear industry does not know quite how to do it, when it will be attempted and when it will be completed, and they do not know how much it will eventually cost. (author)

  3. Vandellos 1 decommissioning project. Safety before, during and after

    International Nuclear Information System (INIS)

    Rodriguez, A.

    2002-01-01

    The Nuclear Power Plant of Vandellos 1, a gas-graphite reactor (GCR), started operation in the 70's after 17 years running the decommissioning process began in 1998, and is expected to finish at the end of 2002 with the level 2 of decommissioning with a practically total scope reached, except the concrete reactor vessel and its internals that will remain for another 25 years in surveillance state (dormancy) until their total dismantling. During the last four years the activities related to decontamination and disassembly of the power plant system as well as the management of all this material have been carried out. One of the last phases of the project that will be performed this year, without doubt, one of the most representative of the operative difficulty of the task is the disassembly of some buildings which are more than 80 meters high and with some structures weighing more than 3.000 t, an operation, which is spectacular in terms of volume and mass involved. However one has to keep in mind that it has been preceded by the of clearance process of all these structures to be disassembled this summer. Hundred of thousands of radiological measures will confirm with guarantee that the destination of the dismantled materials is the correct one, assuring the protection of people and the environment. This is a process which has to integrate the principles of radiological safety and industrial safety. First, it has to be guaranteed that structures and components are below the values authorised by authorities for their free release, and, secondly, that the planned sequence of the process and manoeuvres in the disassembly of these colossal structures assures safety. (author)

  4. Decommissioning a nuclear power plant: the tax effects

    International Nuclear Information System (INIS)

    Foyt, W.W.

    1982-01-01

    The tax treatment of decommissioning costs is as important a consideration as construction costs. The principles also apply to offshore operations and pipeline systems having a negative salvage value. Estimates place the cost at somewhere between 15 and 100% of construction costs, depending on how the decommissioning is done. It is essential to find an accurate way to project decommissioning costs and to decide how they should be reported for tax purposes. The Internal Revenue Service (IRS) does not plan to apply Section 167, which deals with negative net salvage. Utility customers will ultimately provide the funds, but current IRS rulings count these funds as ordinary income and do not allow matching the additional revenue with decommissioning expenses

  5. ADVANTAGES, DISADVANTAGES, AND LESSONS LEARNED FROM MULTI-REACTOR DECOMMISSIONING PROJECTS

    International Nuclear Information System (INIS)

    Morton, M.R.; Nielson, R.R.; Trevino, R.A.

    2003-01-01

    This paper discusses the Reactor Interim Safe Storage (ISS) Project within the decommissioning projects at the Hanford Site and reviews the lessons learned from performing four large reactor decommissioning projects sequentially. The advantages and disadvantages of this multi-reactor decommissioning project are highlighted

  6. Innovative nuclear power plant building arragement in consideration of decommissioning

    International Nuclear Information System (INIS)

    Choi, Won Jun; Roh, Myung Sub; Kim, Chang Lak

    2017-01-01

    A new concept termed the Innovative Nuclear Power Plant Building Arrangement (INBA) strategy is a new nuclear power plant building arrangement method which encompasses upfront consideration of more efficient decommissioning. Although existing decommissioning strategies such as immediate dismantling and differed dismantling has the advantage of either early site restoration or radioactive decommissioning waste reduction, the INBA strategy has the advantages of both strategies. In this research paper, the concept and the implementation method of the INBA strategy will be described. Two primary benefits will be further described: (1) early site restoration; and (2) radioactive waste reduction. Several other potential benefits will also be identified. For the estimation of economic benefit, the INBA strategy, with two primary benefits, will be compared with the immediate dismantling strategy. The effect of a short life cycle nuclear power plant in combination with the INBA strategy will be reviewed. Finally, some of the major impediments to the realization of this strategy will be discussed

  7. Innovative nuclear power plant building arragement in consideration of decommissioning

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Won Jun; Roh, Myung Sub; Kim, Chang Lak [Dept. of Nuclear Power Plant Engineering, KEPCO International Nuclear Graduate School, Ulsan (Korea, Republic of)

    2017-04-15

    A new concept termed the Innovative Nuclear Power Plant Building Arrangement (INBA) strategy is a new nuclear power plant building arrangement method which encompasses upfront consideration of more efficient decommissioning. Although existing decommissioning strategies such as immediate dismantling and differed dismantling has the advantage of either early site restoration or radioactive decommissioning waste reduction, the INBA strategy has the advantages of both strategies. In this research paper, the concept and the implementation method of the INBA strategy will be described. Two primary benefits will be further described: (1) early site restoration; and (2) radioactive waste reduction. Several other potential benefits will also be identified. For the estimation of economic benefit, the INBA strategy, with two primary benefits, will be compared with the immediate dismantling strategy. The effect of a short life cycle nuclear power plant in combination with the INBA strategy will be reviewed. Finally, some of the major impediments to the realization of this strategy will be discussed.

  8. Innovative Nuclear Power Plant Building Arrangement in Consideration of Decommissioning

    Directory of Open Access Journals (Sweden)

    Won-Jun Choi

    2017-04-01

    Full Text Available A new concept termed the Innovative Nuclear Power Plant Building Arrangement (INBA strategy is a new nuclear power plant building arrangement method which encompasses upfront consideration of more efficient decommissioning. Although existing decommissioning strategies such as immediate dismantling and differed dismantling has the advantage of either early site restoration or radioactive decommissioning waste reduction, the INBA strategy has the advantages of both strategies. In this research paper, the concept and the implementation method of the INBA strategy will be described. Two primary benefits will be further described: (1 early site restoration; and (2 radioactive waste reduction. Several other potential benefits will also be identified. For the estimation of economic benefit, the INBA strategy, with two primary benefits, will be compared with the immediate dismantling strategy. The effect of a short life cycle nuclear power plant in combination with the INBA strategy will be reviewed. Finally, some of the major impediments to the realization of this strategy will be discussed.

  9. Decommissioning of nuclear power stations in community countries carried out and projected

    International Nuclear Information System (INIS)

    Cregut, A.; Gregory, A.R.

    1984-01-01

    The decommissioning of large plants such as nuclear power stations merits an approach requiring the introduction of measures and procedures allowing them to be dealt with efficiently; this efficiency would imply concern for optimum economy of operations while respecting the safety and protection rules inherent in nuclear energy. Consequently, plant owners require: the tactical and policy elements to guide them in their decisions and choices; efficient tools, equipment and processes which meet their needs; information gained from experience of decommissioning already carried out which would provide them with a verified background knowledge when dealing with problems. Since decommissioning experience to date has not made it possible to draw up codes and guidelines, it is important to review the work carried out by Community countries in particular on the decommissioning of nuclear power plants. The following paper does not claim to be exhaustive or to make value judgements. Its aim is to list the nuclear power stations shut down in Community countries, to outline the decommissioning levels selected in each case and to underline some interesting aspects of the technical options. In conclusion it will review what appeared to be the difficulties common to the various projects. (author)

  10. Safety problems in decommissioning of nuclear power plants

    International Nuclear Information System (INIS)

    1975-12-01

    The safety problems in decommissioning are presented by the example of light water reactors with an electric power of 1300 MW and 40 years of preceding specified operation. In such a plant the radioactivity in the form of activation and contamination is of the order of 10 7 Ci one year after final shut-down. The fuel elements are not taken into account. During the work at the reactor vessel dose rates of some 10 4 rem/h may occur at the flange level. According to a rough estimation the dose accumulated by the decommissioning personnel during dismantling of the radioactive components amounts to 1200 rem. During the decommissioning work the problems are caused predominantly by the direct radiation from the radioactive components and systems as well as from the release of radioactive particles, aerosols and liquids on cutting them up. In designing new plants the extent of later decommissioning problems can be reduced above all by selection of suitable materials and by decommissioning-minded design and arrangement of the components and parts of the plant. (orig./RW) [de

  11. Technical and economic aspects of nuclear power plant decommissioning

    International Nuclear Information System (INIS)

    Glauberman, H.; Manion, W.J.

    1977-01-01

    Nuclear power plants may be decommissioned by one of three primary methods - mothballing, entombing, or dismantling, or by using combinations such as mothballing or entombing for a period of time followed by dismantling. Mothballing or entombing both result in an end-product which requires surveillance and maintenance for a significant period to ensure protection of public health and safety. This paper discusses costs for each of the decommissioning methods, including factors that will influence the method selected as well as the total costs. Decommissioning costs have been estimated for an 1100-MW(e) light-water reactor within one year after shutdown following forty years of operation. The basic economic parameters for each decommissioning method were developed using unit cost factors based on known costs of previously decommissioned reactors. Decommissioning cost estimates range from less than four million dollars for mothballing to about forty million dollars for complete dismantling. Estimated cost of entombment is about ten million dollars. Subsequent annual cost of surveillance and maintenance for a reactor facility using the mothballing or entombment method could be as high as US $200,000. Although some tooling development will be needed for removing highly activated reactor vessel segments and internals, technology is currently available and has been demonstrated on prior decommissionings, e.g. the BONUS and HALLUM reactor entombments and the Elk River Reactor complete dismantling. Costs associated with decommissioning are significant; however, allowance for them either as a one-time construction period sinking fund, or annual depreciation type operating allowance, will have little effect on construction or on operating costs. (author)

  12. Technical and economic aspects of nuclear power plant decommissioning

    International Nuclear Information System (INIS)

    Glauberman, H.; Manion, W.J.

    1977-01-01

    Nuclear power plants may be decommissioned by one of three primary methods, namely, mothballing, entombing, or dismantling or by using combinations such as mothballing or entombing for a period of time followed by dismantling. Mothballing or entombing both result in an end-product which require surveillance and maintenance for a significant period of time to ensure protection of public health and safety. This paper discusses costs for each of the decommissioning methods, including factors that will influence the method selected as well as the total costs. Decommissioning costs have been estimated for a 1100 MW(e) light water reactor within one year after shutdown following forty years of operation. The basic economic parameters for each decommissioning method were developed using unit cost factors based on known costs of previously decommissioned reactors. Decommissioning cost estimates range from less than four million dollars for mothballing to about forty million dollars for complete dismantling. Estimated cost of entombment is about ten million dollars. Subsequent annual cost of surveillance and maintenance for a reactor facility using the mothballing or entombment method could be as high as $200,000. Although some tooling development will be needed for the removal of the highly activated reactor vessel segments and internals, technology is currently available and has been demonstrated on prior decommissionings, e.g., the BONUS and HALLUM reactor entombments and the Elk River Reactor complete dismantling. Costs associated with decommissioning are significant; however, allowance for them either as a one-time construction period sinking fund or annual depreciation type operating allowance will have little impact on either construction or operating costs

  13. Waste Management Strategy for Dismantling Waste to Reduce Costs for Power Plant Decommissioning - 13543

    Energy Technology Data Exchange (ETDEWEB)

    Larsson, Arne; Lidar, Per [Studsvik Nuclear AB, SE-611 82 Nykoeping (Sweden); Bergh, Niklas; Hedin, Gunnar [Westinghouse Electric Sweden AB, Fredholmsgatan 2, SE-721 63, Vaesteraas (Sweden)

    2013-07-01

    interruptions. Bottle-necks in the process causes increased space requirements and will have negative impact on the project schedule, which increases not only the cost but also the dose exposure to personnel. For these reasons it is critical to create a process that transfers material into conditioned waste ready for disposal as quickly as possible. To a certain extent the decommissioning program should be led by the waste management process. With the objective to reduce time for handling of dismantled material at site and to efficiently and environmental-friendly use waste management methods (clearance for re-use followed by clearance for recycling), the costs for the plant decommissioning could be reduced as well as time needed for performing the decommissioning project. Also, risks for delays would be reduced with a well-defined handling scheme which limits surprises. Delays are a major cost driver for decommissioning projects. (authors)

  14. Waste Management Strategy for Dismantling Waste to Reduce Costs for Power Plant Decommissioning - 13543

    International Nuclear Information System (INIS)

    Larsson, Arne; Lidar, Per; Bergh, Niklas; Hedin, Gunnar

    2013-01-01

    -necks in the process causes increased space requirements and will have negative impact on the project schedule, which increases not only the cost but also the dose exposure to personnel. For these reasons it is critical to create a process that transfers material into conditioned waste ready for disposal as quickly as possible. To a certain extent the decommissioning program should be led by the waste management process. With the objective to reduce time for handling of dismantled material at site and to efficiently and environmental-friendly use waste management methods (clearance for re-use followed by clearance for recycling), the costs for the plant decommissioning could be reduced as well as time needed for performing the decommissioning project. Also, risks for delays would be reduced with a well-defined handling scheme which limits surprises. Delays are a major cost driver for decommissioning projects. (authors)

  15. A large decommissioning project with added value

    International Nuclear Information System (INIS)

    Clements, D.W.

    1998-01-01

    The East Tennessee Technology Park (ETTP) in Oak Ridge, Tennessee, is a centerpiece for the Department of Energy's Reindustrialization program, which seeks to convert formerly used facilities for broad, industrial purposes. BNFL and its partners have been charged with the decommissioning and decontamination of three large gaseous diffusion buildings. BNFL's prior experience with a similar site, Capenhurst, in the United Kingdom was successful in reducing the quantities and costs of low level wastes for disposal. In that program, over 99% of 160,000 tonnes of surface-contaminated materials were safely and cost-effectively treated. Resulting materials could thus be recycled for complete unrestricted re-use within the UK. Decommissioning and decontamination at the ETTP site will be informed by the prior experience and lessons learned. Specialized technologies and approaches developed at Capenhurst will find expression at ETTP. The result will be safe, cost-effective techniques that permit maximum recycle and further use of presently contaminated buildings for industrial purposes. (author)

  16. Decommissioning of the gaseous diffusion plant at BNF plc Capenhurst in the UK

    International Nuclear Information System (INIS)

    Clements, D.W.; Cross, J.R.

    1993-01-01

    Since 1982, a gaseous diffusion plant located at the British Nuclear Fuels plc (BNFL) site at Capenhurst in the United Kingdom, has been undergoing decontamination, decommissioning, and dismantling. By March 1994, the decontamination and decommissioning activities will be complete with 99% of the materials used to construct the plant recycled to the environment as clean material. This paper describes the history of the decontamination, decommissioning, dismantling, and disposal program. Reference is made to the scale of the project and to the special techniques developed, particularly in the areas of size reduction, decontamination, and protection of personnel and the environment. The quantities of material involved that require decontamination and release levels for recycling materials in the U.K. metals market are discussed

  17. Decommissioning nuclear power plants. Policies, strategies and costs

    International Nuclear Information System (INIS)

    2003-01-01

    The decommissioning of nuclear power plants is a topic of increasing interest to governments and the industry as many nuclear units approach retirement. It is important in this context to assess decommissioning costs and to ensure that adequate funds are set aside to meet future financial liabilities arising after nuclear power plants are shut down. Furthermore, understanding how national policies and industrial strategies affect those costs is essential for ensuring the overall economic effectiveness of the nuclear energy sector. This report, based upon data provided by 26 countries and analysed by government and industry experts, covers a variety of reactor types and sizes. The findings on decommissioning cost elements and driving factors in their variance will be of interest to analysts and policy makers in the nuclear energy field. (author)

  18. [Shippingport Station Decommissioning Project]: FY 1987 annual progress report, October 1, 1986-September 30, 1987

    International Nuclear Information System (INIS)

    1988-01-01

    This report presents progress on the Shippingport Station Decommissioning Project for FY 1987. There are two main topics: Project Management and Decommissioning Project Activities. Changes from technical and managerial concepts developed in the original Decommissioning Plan are presented with the related technical, economic, or schedule considerations. 3 refs., 9 figs., 4 tabs

  19. Shippingport Station Decommissioning Project: FY 1986 annual progress report, October 1, 1985 through September 30, 1986

    International Nuclear Information System (INIS)

    1987-01-01

    This report presents progress on the Shippingport Station Decommissioning Project for FY 1986. There are two main topics: Project Management and Decommissioning Project Activities. Changes from technical and managerial concepts developed in the original Decommissioning Plan are presented with the related technical, economic, or schedule considerations. 9 refs., 4 figs., 3 tabs

  20. Shippingport Station Decommissioning Project: FY 1988 annual progress report, October 1, 1987--September 30, 1988

    International Nuclear Information System (INIS)

    1989-01-01

    This report presents progress on the Shippingport Station Decommissioning Project for FY 1988. There are two main topics: Project Management and Decommissioning Project Activities. Changes from technical and managerial concepts developed in the original Decommissioning Plan are presented with the related technical, economic, or schedular considerations. 4 refs., 17 figs., 2 tabs

  1. Nuclear decommissioning

    Energy Technology Data Exchange (ETDEWEB)

    Lawton, H.

    1987-02-01

    Sufficient work has now been done, on a world-wide basis, to justify confidence that full decommissioning of nuclear installations, both plant and reactors, can be carried out safely and efficiently. Projects in several countries should confirm this in the next few years. In the UK, good progress has been made with the WAGR and supporting development work is finding solutions to resolve uncertainties. Estimates from several sources suggest that decommissioning costs can be kept to an acceptable level.

  2. Nuclear decommissioning

    International Nuclear Information System (INIS)

    Lawton, H.

    1987-01-01

    Sufficient work has now been done, on a world-wide basis, to justify confidence that full decommissioning of nuclear installations, both plant and reactors, can be carried out safely and efficiently. Projects in several countries should confirm this in the next few years. In the UK, good progress has been made with the WAGR and supporting development work is finding solutions to resolve uncertainties. Estimates from several sources suggest that decommissioning costs can be kept to an acceptable level. (author)

  3. Decommissioning nuclear power plants: a case for external funding

    International Nuclear Information System (INIS)

    Hendren, C.B.

    1987-01-01

    In deciding how to finance the decommissioning of nuclear power plants, there are five basic criteria for choosing between internal and external funding methods: (1) the desire for financial assurance, (2) the cost of the assurance, (3) the degree of equity in the recovery program, (4) the program's ability to respond to changes, and (5) the program's adaptability to different utilities. To fulfill its obligations to protect long-term public interests, the Missouri Public Service Commission decided it had to assure, to the maximum extent possible, that sufficient decommissioning funds were available when needed. For this reason, it chose the external funding method. In an external fund, the money currently collected from ratepayers to cover decommissioning costs is placed in an independent trust fund comprised of low-risk investments. The funds and the interest they accrue are available to the utility only at the time of decommissioning (and only for that purpose), thus assuring a certain amount of money will be on-hand to cover decommissioning costs as they arise. Such a fund may prove critical to the financial well-being of the utility, particularly if one considers that the utility would need additional generating facilities to replace the capacity lost through the retirement of its nuclear plant. 3 references

  4. Regulatory Framework for Controlling the Research Reactor Decommissioning Project

    International Nuclear Information System (INIS)

    Melani, Ai; Chang, Soon Heung

    2009-01-01

    Decommissioning is one of important stages in construction and operation of research reactors. Currently, there are three research reactors operating in Indonesia. These reactors are operated by the National Nuclear Energy Agency (BATAN). The age of the three research reactors varies from 22 to 45 years since the reactors reached their first criticality. Regulatory control of the three reactors is conducted by the Nuclear Energy Regulatory Agency (BAPETEN). Controlling the reactors is carried out based on the Act No. 10/1997 on Nuclear Energy, Government Regulations and BAPETEN Chairman Decrees concerning the nuclear safety, security and safeguards. Nevertheless, BAPETEN still lack of the regulation, especially for controlling the decommissioning project. Therefore, in the near future BAPETEN has to prepare the regulations for decommissioning, particularly to anticipate the decommissioning of the oldest research reactors, which probably will be done in the next ten years. In this papers author give a list of regulations should be prepared by BAPETEN for the decommissioning stage of research reactor in Indonesia based on the international regulatory practice

  5. Technology and costs for decommissioning of Swedish nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-06-01

    The decommissioning study for the Swedish nuclear power plants has been carried out during 1992 to 1994 and the work has been led by a steering group consisting of people from the nuclear utilities and SKB. The study has been focused on two reference plants, Oskarshamn 3 and Ringhals 2. Oskarshamn 3 is a boiling water reactor (BWR) and Ringhals 2 is a pressurized water reactor (PWR). Subsequently, the result from these plants have been translated to the other Swedish plants. The study gives an account of the procedures, costs, waste quantities and occupational doses associated with decommissioning of the Swedish nuclear power plants. Dismantling is assumed to start immediately after removal of the spent fuel. No attempts at optimization, in terms of technology or costs, have been made. The nuclear power plant site is restored after decommissioning so that it can be released for use without restriction for other industrial activities. The study shows that a reactor can be dismantled in about five years, with an average labour force of about 150 persons. The maximum labour force required for Oskarshamn 3 has been estimated to about 300 persons. This peak load occurred the first years but is reduced to about 50 persons during the demolishing of the buildings. The cost of decommissioning Oskarshamn 3 has been estimated to be about MSEK 940 in January 1994 prices. The decommissioning of Ringhals 2 has been estimated to be MSEK 640. The costs for the other Swedish nuclear power plants lie in the range MSEK 590-960. 17 refs, 21 figs, 15 tabs.

  6. Technology and costs for decommissioning of Swedish nuclear power plants

    International Nuclear Information System (INIS)

    1994-06-01

    The decommissioning study for the Swedish nuclear power plants has been carried out during 1992 to 1994 and the work has been led by a steering group consisting of people from the nuclear utilities and SKB. The study has been focused on two reference plants, Oskarshamn 3 and Ringhals 2. Oskarshamn 3 is a boiling water reactor (BWR) and Ringhals 2 is a pressurized water reactor (PWR). Subsequently, the result from these plants have been translated to the other Swedish plants. The study gives an account of the procedures, costs, waste quantities and occupational doses associated with decommissioning of the Swedish nuclear power plants. Dismantling is assumed to start immediately after removal of the spent fuel. No attempts at optimization, in terms of technology or costs, have been made. The nuclear power plant site is restored after decommissioning so that it can be released for use without restriction for other industrial activities. The study shows that a reactor can be dismantled in about five years, with an average labour force of about 150 persons. The maximum labour force required for Oskarshamn 3 has been estimated to about 300 persons. This peak load occurred the first years but is reduced to about 50 persons during the demolishing of the buildings. The cost of decommissioning Oskarshamn 3 has been estimated to be about MSEK 940 in January 1994 prices. The decommissioning of Ringhals 2 has been estimated to be MSEK 640. The costs for the other Swedish nuclear power plants lie in the range MSEK 590-960. 17 refs, 21 figs, 15 tabs

  7. Solid Waste from the Operation and Decommissioning of Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Marilyn Ann [Georgia Inst. of Technology, Atlanta, GA (United States); D' Arcy, Daniel [Georgia Inst. of Technology, Atlanta, GA (United States); Lapsa, Melissa Voss [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Sharma, Isha [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Li, Yufei [Georgia Inst. of Technology, Atlanta, GA (United States)

    2017-01-05

    This baseline report examines the solid waste generated by the U.S. electric power industry, including both waste streams resulting from electricity generation and wastes resulting from the decommissioning of power plants. Coal and nuclear plants produce large volumes of waste during electricity generation, and this report describes the policies and procedures for handling these materials. Natural gas and oil-fired power plants face similar waste challenges. Renewables considered in this baseline report include hydropower, wind and solar.

  8. Project management system for the decommissioning of research reactors

    International Nuclear Information System (INIS)

    Park, J. H.

    2006-01-01

    KAERI has developed a computer information system, named DECOMMIS, for the project management with the increased effectiveness of the decommissioning projects and the record keeping for a next decommissioning project. The management system consists of three parts, code management system, data input system (DDIS) and data processing and output system (DDPS). Through the DDIS, the data can be directly inputted at sites and the system can play roles of daily work reports to minimize the time gap between the dismantling activities and the evaluation of the data for project management. The DDPS provides useful information to the staff for more effective project management and this information include several fields, such as project progress management, man power management, waste management, radiation dose of workers and so on. It is expected that the system would enable to maintain the decommissioning data, to prepare the source data for the R and D for development of planning tools and to give information to the staff for the decision on the progress of the projects. In this paper, the overall system will be briefly explained and several examples of the utilization, focused on the waste and manpower control, for the project management will be introduced

  9. Decontamination and decommissioning of the West Valley Reprocessing Plant

    International Nuclear Information System (INIS)

    Daugherty, H.F.; Keel, R.

    1986-11-01

    This report presents the decontamination and decommissioning (D and D) activities at the West Valley Nuclear Fuel Reprocessing Plant through September 1, 1986. The topics addressed are: D and D of areas for reuse by the Liquid Waste Treatment System (LWTS); D and D of areas for reuse as High Level Waste (HLW) canister storage; and technologies developed in D and D work

  10. Decommissioning process of nuclear power plants and legislative base

    International Nuclear Information System (INIS)

    Bachovsky, J.

    2003-01-01

    The present paper contains some considerations about applicability and completeness of existing Regulation No. 10 in the field of decommissioning of nuclear power plants. No pretence exists for comprehensiveness, representativeness, or even applicability of these considerations. This paper presents personal views of the author and not official position of Risk Engineering Ltd

  11. Utility planning for decommissioning

    International Nuclear Information System (INIS)

    Williams, D.H.

    1982-01-01

    Though the biggest impact on a utility of nuclear power plant decommissioning may occur many years from now, procrastination of efforts to be prepared for that time is unwarranted. Foresight put into action through planning can significantly affect that impact. Financial planning can assure the recovery of decommissioning costs in a manner equitable to customers. Decision-making planning can minimize adverse affects of current decisions on later decommissioning impacts and prepare a utility to be equipped to make later decommissioning decisions. Technological knowledge base planning can support all other planning aspects for decommissioning and prepare a utility for decommissioning decisions. Informed project planning can ward off potentially significant pitfalls during decommissioning and optimize the effectiveness of the actual decommissioning efforts

  12. Methods of control of inaccuracy in calculation of nuclear power plant decommissioning parameters - 16383

    International Nuclear Information System (INIS)

    Ondra, Frantisek; Daniska, Vladimir; Rehak, Ivan; Necas, Vladimir

    2009-01-01

    The aim of the article is a development of analytical methodology for evaluation of input data inaccuracies impact on calculation of cost and other output decommissioning parameters. This methodology is based on analytical model calculations using the OMEGA code and taking into account the probability of input data inaccuracies occurrence also. To achieve about mentioned aim, the article identifies possible sources of input data inaccuracies and analyzes their level of impact on output parameters. Then the methodology for calculation of input parameters inaccuracies impact is developed, based on analytical model calculation. The model calculation takes into consideration output parameters impact on cost and other decommissioning output parameters in analytical way. The methodology used in model calculations is original, more over it implements the international standardized structure (IAEA, OECD/NEA, EC) [6] of decommissioning cost for the first time. A probabilistic occurrence of input data inaccuracies is taken into consideration and implemented in the methodology developed. A correction factors matrix for evaluation of input data inaccuracies impact on decommissioning output parameters is set up. The matrix contains parameters based on model calculations using the proposed methodology. Finally the methodology for application of correction factor matrix is proposed and tested; the methodology is used for calculation of contingency in the standardized structure which reflected the level of input data inaccuracies. The cost for individual decommissioning projects for common nuclear power plants are in the range 300 - 500 mil. EUR. Contingencies are from 10% to 30%, depending on the level of detailed during preparation of decommissioning projects. A implementation about mentioned methodology in the OMEGA code improves the accuracy of contingency. Consequently it makes calculated contingency more trustworthy and makes calculated decommissioning cost closer to reality

  13. Barsebaeck NPP in Sweden - Decommissioning Project

    International Nuclear Information System (INIS)

    Hakan, Lorentz

    2009-01-01

    Barsebaeck 1 and 2, type BWR (Boiling Water Reactor) with a capacity of 615 MWe was closed down permanently on 30 November 1999 respective 31 May 2005 due to political decision. Both units together have been in Service operation (Care and maintenance) since 1 December 2006. Barsebaeck NPP will stay in Service operation until beginning of 2018 when Dismantling operation begins with the aim of a free-realized site in the beginning of 2025. That means that the remaining buildings, including equipment should be declared free-released or dismantled. It would then be up to the owner, E.ON Kaernkraft Sverige AB (EKS) to decide what is to be done with the site in the future. There was a re-organisation at Barsebaeck Kraft AB (BKAB) in 1 January 2007 and the company is organised in the following areas of function: site service operation, decommissioning planning, new business and BO replacement. The Organisation at BKAB has gone down from 450 during operation of Barsebaeck 1 and 2 to 50 employees (2009-01-01) involved in Service operation of both units. But still there are in total 250 persons placed at Barsebaeck NPP with different kinds of job assignments. A lot of activities have been carried out since 2000 and up to now for example: - All nuclear fuel has been transported away to interim storage at CLAB in Oskarshamn. - BKAB have built up contact nets and competence by taking part in different kinds of national and international organisations (SKB, IAEA, OECD/NEA TAG, WNA, ENISS, WANO, EPRI etc) commissions. - The Electrical and operational systems have been rebuilt for the actual demands and requirements for the Service operation. - The central control room is unattended since 17 December 2007 and the supervision of the Service operation is handled by a system of VDI (duty engineers) and LOP (alarm operators). - Full system decontamination on unit 1 and 2. Barsebaeck's approach today and for the future dismantling are: - Safer; - Faster; - Cost effective. BKAB

  14. The decommissioning of the Latina nuclear power plant

    International Nuclear Information System (INIS)

    Bolla, G.; Macci, E.; Craik, J.F.D.; Walkden, P.

    2001-01-01

    Over the past year, a revised decommissioning programme, drawing upon the combined experience of the two companies, has been developed for the Latina NPP. This has been achieved despite a very demanding time-scale. Theoretical and practical experiences from both Sogin and BNFL's operations in North America and Europe have been used to quantify liabilities and progress the planning process to the point where Sogin have been able to define their funding requirements for Latina with their stakeholders. The project has demonstrated, based on real experience and data, that the Latina NPP can be decommissioned economically for a known cost within the timescale set by the Italian Government. (author)

  15. Decommissioning of the vitrification cell of the Piver plant

    International Nuclear Information System (INIS)

    Jouan, A.; Deschaud, C.; Scelo, G.

    1993-02-01

    This report may be considered as a testament following the decommissioning of the PIVER cell. After a brief historical review, it describes the organization and logistics set up to complete the dismantling work. The conditioning methods in packages, drums, shells or ANDRA waste containers are also described together with the problems that arose during the operation. The final decontamination status of the cell is then specified. The report also describes some Research and Development work conducted using more sophisticated decontamination processes. The cost of the project is discussed, together with a critical review of the overall PIVER decommissioning program

  16. Nuclear power plants life extension and decommissioning its economic aspects

    International Nuclear Information System (INIS)

    Watanabe, Yoshiaki

    1994-06-01

    In USA where the development of nuclear power was started early, the life of nuclear power plants expires successively around the turn of century, and the serious hindrance to electric power supply is feared. Therefore, the research for extending 40 year approved period of operation is in progress. By the extension of life of nuclear power plants, huge cost reduction is estimated as compared with the construction of new plants. However, due to the rise of the cost for the life extension, there were the cases of forced decommissioning. In this book, the present state of the life extension of nuclear power stations, the economical assessment and analysis of the life extension by DOE, the economical assessment by MIDAS method of Electric Power Research Institute, the economical assessment by cost-benefit method of Northern States Power Co., the assessment of the long term operation possibility of nuclear power stations, the economical assessment system for the life extension in Japan, the present state of the decommissioning of nuclear power stations and that in USA, Canada and Europe, the assessment of the decommissioning cost by OECD/NEA, and the decommissioning cost for thermal power stations are described. (K.I.)

  17. Recent Trends in the Adequacy of Nuclear Plant Decommissioning Funding

    International Nuclear Information System (INIS)

    Williams, D. G.

    2002-01-01

    Concerned about the potential cost and sufficiency of funds to decommission the nation's nuclear power plants, the Congress asked the U.S. General Accounting Office (GAO) to assess the adequacy, as of December 31, 1997, of electric utilities'; funds to eventually decommission their plants. GAO's report (GAO/RCED-99-75) on this issue addressed three alternative assumption scenarios--baseline (most likely), optimistic, and pessimistic; and was issued in May 1999. This paper updates GAO's baseline assessment of fund adequacy in 1997, and extends the analysis through 2000. In 2000, we estimate that the present value cost to decommission the nation's nuclear plants is about $35 billion; utility fund balances are about $29 billion. Both our two measures of funding adequacy for utilities are on average not only much above ideal levels, but also overall have greatly improved since 1997. However, certain utilities still show less than ideal fund balances and annual contributions. We suggest that the range of these results among the individual utilities is a more important policy measure to assess the adequacy of decommissioning funding than is the funding adequacy for the industry as a whole

  18. Current status of the KNPP units 1 to 4 decommissioning projects

    International Nuclear Information System (INIS)

    Benbow, R.

    2010-01-01

    The PMU has been established in support of the KNPP Decommissioning Division. All of the Infrastructure Projects associated with Decommissioning have been identified. All the major projects are either in Contract or have the Tender Packages prepared and are being managed/implemented through the EBRD Procurement Process. KNPP Decommissioning is being supported with the necessary documentation, tools and equipment

  19. Development of an integrated cost model for nuclear plant decommissioning

    International Nuclear Information System (INIS)

    Amos, G.; Roy, R.

    2003-01-01

    A need for an integrated cost estimating tool for nuclear decommissioning and associated waste processing and storage facilities for Intermediate Level Waste (ILW) was defined during the authors recent MSc studies. In order to close the defined gap a prototype tool was developed using logically derived CER's and cost driver variables. The challenge in developing this was to be able to produce a model that could produce realistic cost estimates from the limited levels of historic cost data that was available for analysis. The model is an excel based tool supported by 3 point risk estimating output and is suitable for producing estimates for strategic or optional cost estimates (±30%) early in the conceptual stage of a decommissioning project. The model was validated using minimal numbers of case studies supported by expert opinion discussion. The model provides an enhanced approach for integrated decommissioning estimates which will be produced concurrently with strategic options analysis on a nuclear site

  20. Analysis of the Possibility of Required Resources Estimation for Nuclear Power Plant Decommissioning Applying BIM

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Insu [Korea Institute of construction Technology, Goyang (Korea, Republic of); Kim, Woojung [KHNP-Central Research Institute, Daejeon (Korea, Republic of)

    2014-05-15

    Estimation of decommissioning cost, decommissioning strategy, and decommissioning quantity at the time when entering into any decommissioning plans are some elements whose inputs are mandatory for nuclear power plant decommissioning. Ways to estimate decommissioning of required resources in the past have imposed great uncertainty since they analyze required resources at the construction stage, analyzing and consulting decommissioning required resources of overseas nuclear power plants. This study aims at analyzing whether required resources for decommissioning nuclear power plants can be estimated, applying BIM. To achieve this goal, this study analyzed the status quo of BIM such as definition, characteristics, and areas applied, and made use of them when drawing out study results by examining types and features of the tools realizing BIM. In order to review how BIM could be used for decommissioning nuclear power plants, the definition, characteristics and applied areas of BIM were discussed. BIM designs objects of the structures (walls, slabs, pillars, stairs, windows and doors, etc.) by 3D technology and endows attribute (function, structure and usage) information for each object, thereby providing visualized information of structures for participants in construction projects. Major characteristics of BIM attribute information are as follows: - Geometry: The information of objects is represented by measurable geometric information - Extensible object attributes: Objects include pre-defined attributes, and allow extension of other attributes. Any model that includes these attributes forms relationships with other various attributes in order to perform analysis and simulation. - All information including the attributes are integrated to ensure continuity, accuracy and accessibility, and all information used during the life cycle of structures are supported. This means that when information of required resources is added as another attributes other than geometric

  1. Basic Research about Calculation of the Decommissioning Unit Cost based on The KRR-2 Decommissioning Project

    International Nuclear Information System (INIS)

    Song, Chan-Ho; Park, Hee-Seong; Ha, Jea-Hyun; Jin, Hyung-Gon; Park, Seung-Kook

    2015-01-01

    The KAERI be used to calculate the decommissioning cost and manage the data of decommissioning activity experience through systems such as the decommissioning information management system (DECOMMIS), Decommissioning Facility Characterization DB System (DEFACS), decommissioning work-unit productivity calculation system (DEWOCS). Some country such as Japan and The United States have the information for decommissioning experience of the NPP and publish reports on decommissioning cost analysis. These reports as valuable data be used to compare with the decommissioning unit cost. In particular, need a method to estimate the decommissioning cost of the NPP because there is no decommissioning experience of NPP in case of Korea. makes possible to predict the more precise prediction about the decommissioning unit cost. But still, there are many differences on calculation for the decommissioning unit cost in domestic and foreign country. Typically, it is difficult to compare with data because published not detailed reports. Therefore, field of estimation for decommissioning cost have to use a unified framework in order to the decommissioning cost be provided to exact of the decommissioning cost

  2. Basic Research about Calculation of the Decommissioning Unit Cost based on The KRR-2 Decommissioning Project

    Energy Technology Data Exchange (ETDEWEB)

    Song, Chan-Ho; Park, Hee-Seong; Ha, Jea-Hyun; Jin, Hyung-Gon; Park, Seung-Kook [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-05-15

    The KAERI be used to calculate the decommissioning cost and manage the data of decommissioning activity experience through systems such as the decommissioning information management system (DECOMMIS), Decommissioning Facility Characterization DB System (DEFACS), decommissioning work-unit productivity calculation system (DEWOCS). Some country such as Japan and The United States have the information for decommissioning experience of the NPP and publish reports on decommissioning cost analysis. These reports as valuable data be used to compare with the decommissioning unit cost. In particular, need a method to estimate the decommissioning cost of the NPP because there is no decommissioning experience of NPP in case of Korea. makes possible to predict the more precise prediction about the decommissioning unit cost. But still, there are many differences on calculation for the decommissioning unit cost in domestic and foreign country. Typically, it is difficult to compare with data because published not detailed reports. Therefore, field of estimation for decommissioning cost have to use a unified framework in order to the decommissioning cost be provided to exact of the decommissioning cost.

  3. Status of the decommissioning program of the Eurochemic reprocessing plant

    International Nuclear Information System (INIS)

    Detilleux, E.J.

    1976-01-01

    Reprocessing operations at the Eurochemic demonstration plant stopped in December 1974, after 8 years of operation. Immediately thereafter, cleaning and decontamination were begun as the first phase of the decommissioning program. The facility and reprocessing program are described to indicate the magnitude of the problem, and the requirements of the local authorities are reviewed. The technical decommissioning program consists of several phases: (1) plant cleaning and rinsing, (2) establishment of the final fissile-material balance, (3) plant decontamination for access to process equipment, (4) equipment dismantling, and (5) conditioning and storage of newly generated wastes. The two first phases have been completed, and the third one is nearing completion. Some dismantling has been performed, including the plutonium dioxide production unit. Waste-conditioning and surface-storage facilities have been built to meet the dismantling requirements. Since reprocessing may be resumed in the future, decontamination has been performed with ''smooth'' reagents to limit corrosion and dismantling has been limited to subfacilities

  4. Portsmouth Gaseous Diffusion Plant Decontamination and Decommissioning Program surveillance and maintenance plan, FY 1993--2002

    International Nuclear Information System (INIS)

    Schloesslin, W.

    1992-11-01

    The Decontamination and Decommissioning (D ampersand D) Program at the Portsmouth Gaseous Diffusion Plant (PORTS) is part of the Environmental Restoration (ER) and Waste Management (WM) Programs (ERWM). The objective of the ER Program is to provide PORTS the capability to meet applicable environmental regulations through facility development activities and site remedial actions. The WM Program supports the ER Program. The D ampersand D Program provides collective management of the sites within the plant which require decontamination and decommissioning, prioritizes those areas in terms of health, safety and environmental concerns, and implements the appropriate level of remedial action. The D ampersand D Program provides support to facilities which formerly served one or more of the many Plant functions. Program activities include (1) surveillance and maintenance of facilities awaiting decommissioning; (2) planning safe and orderly facility decommissioning; and (3) implementing a program to accomplish facility disposition in a safe, cost effective, and timely manner. In order to achieve the first objective, a formal plan which documents the surveillance and maintenance needs for each inactive facility has been prepared. This report provides this documentation for the PORTS facilities currently included in the D ampersand D Program and includes projected resource requirements for the planning period of FY 1993 through FY 2002

  5. Technology and costs for decommissioning the Swedish nuclear power plants

    International Nuclear Information System (INIS)

    1986-05-01

    The study shows that, from the viewpoint of radiological safety, a nuclear power plant can be dismantled immediately after it has been shut down and the fuel has been removed, which is estimated to take about one year. Most of the equipment that will be used in decommissioning is already available and is used routinely in maintenance and rebuilding work at the nuclear power plants. Special equipment need only be developed for dismantlement of the reactor vessel and for demolishing of heavy concrete structures. The dismantling of a nuclear power plant can be accomplished in about five years, with an average labour force of about 200 men. The maximum labour force required for Ringhals 1 has been estimated at about 500 men during the first years, when active systems are being dismantled in a number of fronts in the plant. During the last years when the buildings are being demolished, approximately 50 men are required. In order to limit the labour requirement and the dose burden to the personnel, the material is taken out in as large pieces as possible. The cost of decommissioning a boiling water reactor (BWR) of the size of Ringhals 1 has been estimated to be about MSEK 540 in January 1986 prices, and for a pressurized water reactor (PWR, Ringhals 2) about MSEK 460. The cost for the other Swedish nuclear power plants lie in the range of MSEK 410-760. These are the direct cost for the decommissioning work, to which must be added the costs of transportation and disposal of the decommissioning waste, about 100 000 m/sup3/. These costs have been estimated to be about MSEK 600 for the 12 Swedish reactors. (author)

  6. Constructing Predictive Estimates for Worker Exposure to Radioactivity During Decommissioning: Analysis of Completed Decommissioning Projects - Master Thesis

    Energy Technology Data Exchange (ETDEWEB)

    Dettmers, Dana Lee; Eide, Steven Arvid

    2002-10-01

    An analysis of completed decommissioning projects is used to construct predictive estimates for worker exposure to radioactivity during decommissioning activities. The preferred organizational method for the completed decommissioning project data is to divide the data by type of facility, whether decommissioning was performed on part of the facility or the complete facility, and the level of radiation within the facility prior to decommissioning (low, medium, or high). Additional data analysis shows that there is not a downward trend in worker exposure data over time. Also, the use of a standard estimate for worker exposure to radioactivity may be a best estimate for low complete storage, high partial storage, and medium reactor facilities; a conservative estimate for some low level of facility radiation facilities (reactor complete, research complete, pits/ponds, other), medium partial process facilities, and high complete research facilities; and an underestimate for the remaining facilities. Limited data are available to compare different decommissioning alternatives, so the available data are reported and no conclusions can been drawn. It is recommended that all DOE sites and the NRC use a similar method to document worker hours, worker exposure to radiation (person-rem), and standard industrial accidents, injuries, and deaths for all completed decommissioning activities.

  7. Planning for decommissioning of Ignalina Nuclear Power Plant Unit-1

    International Nuclear Information System (INIS)

    Poskas, P.; Poskas, R.; Zujus, R.

    2002-01-01

    In accordance to Ignalina NPP Unit 1 Closure Law, the Government of Lithuania approved the Ignalina NPP Unit 1 Decommissioning Program until 2005. For enforcement of this program, the plan of measures for implementation of the program was prepared and approved by the Minister of Economy. The plan consists of two parts, namely technical- environmental and social-economic. Technical-environmental measures are mostly oriented to the safe management of spent nuclear fuel and operational radioactive waste stored at the plant and preparation of licensing documents for Unit 1 decommissioning. Social-economic measures are oriented to mitigate the negative social and economic impact on Lithuania, inhabitants of the region, and, particularly, on the staff of Ignalina NPP by means of creating favorable conditions for a balanced social and economic development of the region. In this paper analysis of planned radioactive waste management technologies, licensing documents for decommissioning, other technical-environmental and also social-economic measures is presented. Specific conditions in Lithuania important for defining the decommissioning strategy are highlighted. (author)

  8. Basic Research on Selecting ISDC Activity for Decommissioning Costing in KRR-2 Decommissioning Project Experience Data

    Energy Technology Data Exchange (ETDEWEB)

    Song, Chan-Ho; Park, Hee-Seong; Jin, Hyung-Gon; Park, Seung-Kook [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    KAERI is performing research for calculation of expected time of a decommissioning work and evaluation of decommissioning cost and this research calculate a decommissioning work unit productivity based on the experience data of decommissioning activity for KRR-2. The KAERI be used to calculate the decommissioning cost and manage the experience data from the decommissioning activity through the Decommissioning Information Management System (DECOMMIS), Decommissioning Facility Characterization DB System (DEFACS), and Decommissioning Work-unit Productivity Calculation System (DEWOCS). In this paper, the methodology was presented how select the ISDC activities in dismantling work procedures of a 'removal of radioactive concrete'. The reason to select the 'removal of radioactive concrete' is main key activity and generates the amount of radioactive waste. This data will take advantage of the cost estimation after the code for the selected items derived ISDC. There are various efforts for decommissioning costing in each country. In particular, OECD/NEA recommends decommissioning cost estimation using the ISDC and IAEA provides for Cost Estimation for Research Reactors in Excel (CERREX) program that anyone is easy to use the cost evaluation from a limited decommissioning experience in domestic. In the future, for the decommissioning cost evaluation, the ISDC will be used more widely in a strong position. This paper has described a method for selecting the ISDC item from the actual dismantling work procedures.

  9. Project No. 7 - Decommissioning unit at Ignalina NPP. (Engineering and project management)

    International Nuclear Information System (INIS)

    2000-01-01

    In order to manage decommissioning process at Ignalina NPP, a new unit should be established in the framework of the Ignalina NPP organizational structure. The on-site Engineering Project Management Unit (PMU) will adopt an integrated approach to project management , engineering design, planning, procurement, safety and licensing activities at Ignalina NPP site. The PMU will assist the Ignalina NPP management in the development of an integrated decommissioning and waste management strategy

  10. Die Energiewerke Nord GmbH. From operator of a decommissioned Russian nuclear power plant to one of Europe's leading decommissioning companies

    International Nuclear Information System (INIS)

    Philipp, Marlies

    2011-01-01

    EWN GmbH is a state-owned company with these duties: - decommissioning and demolition of the Greifswald and Rheinsberg nuclear power stations; - safe operation of the Zwischenlager Nord interim store; - development of the 'Lubminer Heide' industrial and commercial estate. Other projects for which EWN GmbH uses its know-how: - disposal of 120 decommissioned Russian nuclear submarines in Murmansk; - decommissioning and dismantling of the Juelich, NRW, AVR experimental reactor; - demolition of nuclear plants; running the Central Decontamination Operations Department at Karlsruhe, BW. Since 2008, EWN GmbH has held 25% of the shares of Deutsche Gesellschaft zum Bau- und Betrieb von Endlagern fuer Abfallstoffe mbH (DBE), a firm building and operating nuclear repositories. (orig.)

  11. Development of a harmonized approach to safety assessment of decommissioning: Lessons learned from international experience (DeSa project)

    International Nuclear Information System (INIS)

    Percival, K.; Nokhamzon, J.-G.; Ferch, R.; Batandjieva, B.

    2006-01-01

    The number of nuclear facilities being or planned to be shutdown as they reach the end of their design life, due to accidents or other political and social factors has been increasing worldwide. This has led to an increase in the awareness of regulators and operators of the importance of development and implementation of adequate safety requirements and criteria for decommissioning of these facilities. A general requirement at international and national levels, even for new facilities to be commissioned, is the development of a decommissioning plan, which includes evaluation of potential radiological consequences to public and workers during planned and accidental decommissioning activities. Experience has been gained in the safety assessment of decommissioning at various sites with different complexities and hazard potentials. This experience shows that various approaches have been used in conducting safety assessments and that there is a need for harmonisation of these approaches and for transferring the good practice and lessons learned to other countries, in particular developing countries with limited financial and human resources. The IAEA launched an international project on Evaluation and Demonstration of Safety during Decommissioning (DeSa) in 2004 to provide a forum for exchange of lessons learned between site operators, regulators, safety assessors and other specialists in safety assessment of decommissioning of nuclear power plants, research reactors, laboratories, nuclear fuel cycle facilities, etc. This paper presents the lessons learned through the project up to date, i.e.; (i) a common approach to safety assessment is being applied worldwide with the following steps - establishment of assessment framework; description of the facility; definition of decommissioning activities; hazard identification and analysis; calculation of consequences; and analysis of results; (ii) a deterministic approach to safety assessment is most commonly applied; (iii) a

  12. 3D based integrated support concept for improving safety and cost-efficiency of nuclear decommissioning projects

    International Nuclear Information System (INIS)

    Szoeke, Istvan

    2016-01-01

    New concepts enabled by emerging computing technologies based on 3D simulation, virtual (VR) and augmented reality (AR), advanced user interfaces (UI), mobile and wearable computing devices, and geographical information systems have great potential for improving nuclear decommissioning strategies. Such techniques offer very effective new opportunities for improving early characterisation and strategical decision making, knowledge management, on-site management of radiological waste, and regulatory compliance. In addition, such methods allow for an effective training of foreseen decommissioning workers to begin during operation and transition phase without disturbance to normal operation of the plant. Improved plant information systems enabled by 3D simulation, advanced user interface, and mobile computing technologies, offer better ways for acquiring and managing the radiological and other plant information that are required for informed decision making in the early planning phase of decommissioning activities. User friendly, realistic management and visualisation of available radiological information, and results of radiological data analyses, allows decision makers to have a better understanding of the radiological conditions expected when decontamination and dismantling work starts, without high need for physical presence in the environment. Such functionalities, combined with capabilities for easy evaluation of possible decommissioning (decontamination, dismantling) options allow decision makers to make informed decisions, and enable a seamless communication (common language) within a multidisciplinary decommissioning planning team. Support systems, enabled by modern information technologies are expected to improve information and knowledge management in decommissioning projects, especially during transition from the operation phase. Traditionally, inefficient transfer of knowledge from the design and operation phase, results in suboptimal work strategies and

  13. A study on the optimization of plant life extension and decommissioning for the improvement of economy in nuclear power plant

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Jae In; Jung, K. J.; Chung, U. S.; Baik, S. T.; Park, S. K.; Lee, D. G.; Kim, H. R.; Park, B. Y

    2000-01-01

    Fundamentals on the plan, the national policy, the safety securities for the life extension of the nuclear power plant was established from the domestic/abroad documents and case studies in relation with the life extension and decommissioning of the nuclear power plant. Concerning the decommissioning of the nuclear power plant, the management according to decommissioning stages was analyzed by the investigation of the domestic/abroad standard of the decommissioning (decontamination. dismantling) technology and regulation. Moreover, the study on the cost estimation method has been carried out for the decommissioning of the nuclear power plant. (author)

  14. Impact of a decommissioning project on the site area, the federal state, and their economic development

    International Nuclear Information System (INIS)

    Spies, B.G.; Butt, G.M.

    1996-01-01

    Greifswald-Lubmin is a site situated in a border region of Germany, but in the center of eastern Europe and the Baltic countries. The chances of the area are a high vocational qualification of the population and the economic potential opened up by the planned decommissioning of the Greifswald nuclear power plant. A decisive factor for the region's future is to interlace the decommissioning and dismantling activities on site with suitable action taken in support of improvement of the infrastructure and the economic life of the region, as a joint effort of local decision-taking bodies and authorities as well as the Land government. Commitment of private firms from Germany and abroad in the project management and performance of project tasks can contribute valuable stimulation and support. (orig.)

  15. Alternatives and costs for the decommissioning of Angra Nuclear Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Carajilescov, Pedro; Moreira, Joao Manoel Losada; Maiorino, Jose Rubens, E-mail: pedro.carajilescov@ufabc.edu.br [Universidade Federal do ABC (UFABC), Santo Andre, SP (Brazil)

    2013-07-01

    The decommissioning of a nuclear reactor requires several actions involving legal basis, decommissioning strategies, planning, dismantling, packing, transport and storage of a large volume of radioactive materials, qualified personnel and financial resources. The paper discusses the several aspects of these actions for the decommissioning of Angra nuclear Power Plants, based on the international experiences. The main phases of the decommissioning process, the Brazilian regulation and cost estimations are also presented. Finally, two alternatives for the decommissioning of the plants, based on logistic aspects, are discussed. (author)

  16. Alternatives and costs for the decommissioning of Angra Nuclear Power Plants

    International Nuclear Information System (INIS)

    Carajilescov, Pedro; Moreira, Joao Manoel Losada; Maiorino, Jose Rubens

    2013-01-01

    The decommissioning of a nuclear reactor requires several actions involving legal basis, decommissioning strategies, planning, dismantling, packing, transport and storage of a large volume of radioactive materials, qualified personnel and financial resources. The paper discusses the several aspects of these actions for the decommissioning of Angra nuclear Power Plants, based on the international experiences. The main phases of the decommissioning process, the Brazilian regulation and cost estimations are also presented. Finally, two alternatives for the decommissioning of the plants, based on logistic aspects, are discussed. (author)

  17. Development of recycling techniques for nuclear power plant decommissioning waste

    International Nuclear Information System (INIS)

    Ishikura, Takeshi; Oguri, Daiichiro; Abe, Seiji; Ohnishi, Kazuhiko

    2003-01-01

    Recycling of concrete and metal waste will provide solution to reduce waste volume, contributing to save the natural resources and to protect the environment. Nuclear Power Engineering Corporation has developed techniques of concrete and metal recycling for decommissioning waste of commercial nuclear power plants. A process of radioactive concrete usage for mortar solidification was seen to reduce concrete waste volume by 2/3. A concrete reclamation process for high quality aggregate was confirmed that the reclaimed aggregate concrete is equivalent to ordinary concrete. Its byproduct powder was seen to be utilized various usage. A process of waste metal casting to use radioactive metal as filler could substantially decrease the waste metal volume when thinner containers are applied. A pyro-metallurgical separation process was seen to decrease cobalt concentration by 1/100. Some of these techniques are finished of demonstration tests for future decommissioning activity. (author)

  18. Economic Evaluation of Decommissioning Cost of Nuclear Power Plant in the National Electricity Plan in Korea

    International Nuclear Information System (INIS)

    Lee, Man Ki; Nam, Ji Hee

    2008-01-01

    Decommissioning cost of a nuclear power plant includes the costs related with dismantling a nuclear power plant, disposal of a spent fuel and of a low/medium radioactive waste. The decommissioning cost is different from the other expenditures in that it is occurred after the reactor finishes its commercial operation. In this respect, the electricity act was enforced to secure provisions for decommissioning a nuclear power plant during its commercial operation. The purpose of this study is to provide economic evaluation and economic cost for a decommissioning when the cost of a decommissioning is provided as one of input to the national electricity plan. Therefore, this study does not deal with whether the estimated amount of a decommissioning cost is just or not. This study focuses how to transfer the estimated decommissioning cost given in the electricity act to the economic cost, which can be used in the national electricity plan

  19. Spanish regulatory experience in the decommissioning program of Vandellos 1 Nuclear Power Plant

    International Nuclear Information System (INIS)

    Revilla, J.L.

    2003-01-01

    Nuclear facilities are subject to a system of prior authorization by the competent authorities before they come into service and to subsequent regulation and control during their operating life. All the facilities that stop operating, for technical or financial reasons or because they are compelled to, remain subject to this regulatory control system as long as the competent authorities consider that their residual radioactivity represents a potential source of radiological hazard to the individuals affected or entails an unacceptable environmental risk. The decommissioning of nuclear facilities is the final stage of their life cycle. This stage is part of a general strategy of environmental restoration, which must necessarily be followed after the suspension of certain industrial activities that have to some extent affected the environment. In Spain the decommissioning of facilities is considered a further step or stage of their life cycle in which, in principle, the whole regulatory framework in force during the previous stages of their life - siting, construction, operation, etc. - remains applicable. The law setting up the Spanish Nuclear Safety Council (CSN) states that one of its functions is to issue reports to the Ministry of Economy in advance of the resolutions adopted by that Ministry on the granting of licences for the decommissioning of nuclear and radioactive facilities. However, the old regulations on nuclear and radioactive facilities, in force up to the end of 1999, included no specific references that might serve as a regulatory framework for licensing the decommissioning process of such facilities. All facility decommissioning projects initiated in Spain up to that date, including Vandellos 1 Nuclear Power Plant Decommissioning Plan, were licensed according to an approach worked out specifically for each one. (authors)

  20. Progress and experiences from the decommissioning of the Eurochemic reprocessing plant

    International Nuclear Information System (INIS)

    Gills, R.; Lewandowski, P.; Ooms, B.; Reusen, N.; Van Laer, W.; Walthery, R.

    2007-01-01

    Belgoprocess started the industrial decommissioning of the main process building of the former EUROCHEMIC reprocessing plant in 1990, after completion of a pilot project in which two buildings were emptied and decontaminated to background levels. The remaining structures were demolished and the concrete debris was disposed of as industrial waste and green field conditions restored. The Eurochemic reprocessing plant operated from 1966 to 1974 to process fuel from power reactors and research reactors. The main building is a large concrete structure, comprising a surface area of 55,000 m 2 , concrete volume 12,500 m 3 , and 1,500 Mg of metal components. The building is divided into multiple cells. About 106 individual cell structures have to be dismantled, involving the removal and decontamination of equipment from each cell, the decontamination of the cell walls, ceilings and floors, the dismantling of the ventilation system. Most of the work involves hands-on operations under protective clothing tailored to each specific task. Tool automation and automatic positioning systems are successfully applied. In view of the final demolition of the main process building, the main process building is divided into three parts - each part is isolated from the others. In the middle of 2008, after the removal of the NDA-IPAN/GEA installation, the eastern part will be demolished. The paper presents a status overview of the decommissioning and decontamination activities at the main process building of the former Eurochemic reprocessing plant on the nuclear site of Dessel in Belgium. The specific BELGOPROCESS approach will be highlighted, in which the decommissioning activities are carried out on an industrial scale with special emphasis on cost minimisation, the use of technology on an industrial representative scale and the specific alpha contamination of equipment and building surfaces, requiring that the decommissioning work is done with adequate protective clothing. Also

  1. Progress and experiences from the decommissioning of the Eurochemic reprocessing plant - 16022

    International Nuclear Information System (INIS)

    Walthery, Robert; Lewandowski, Patrick; Ooms, Bart; Reusen, Nancy; Van Laer, Wim

    2009-01-01

    Belgoprocess started the industrial decommissioning of the main process building of the former EUROCHEMIC reprocessing plant in 1990, after completion of a pilot project in which two buildings were emptied and decontaminated to background levels. The remaining structures were demolished and the concrete debris was disposed of as industrial waste and green field conditions restored. The Eurochemic reprocessing plant operated from 1966 to 1974 to process fuel from power reactors and research reactors. The main building is a large concrete structure, comprising a surface area of 55,000 m 2 , concrete volume 12,500 m 3 , and 1,500 Mg of metal components. The building is divided into multiple cells. About 106 individual cell structures have to be dismantled, involving the removal and decontamination of equipment from each cell, the decontamination of the cell walls, ceilings and floors, the dismantling of the ventilation system. Most of the work involves hands-on operations under protective clothing tailored to each specific task. Tool automation and automatic positioning systems are successfully applied. In view of the final demolition of the main process building, the main process building has been divided into three parts - each part is isolated from the others. In September 2008 the eastern part of the building has been demolished. The paper presents a status overview of the decommissioning and decontamination activities at the main process building of the former Eurochemic reprocessing plant on the nuclear site of Dessel in Belgium. The specific BELGOPROCESS strategy will be highlighted, in which the decommissioning activities are carried out on an industrial scale with special emphasis on cost minimisation, the use of technology on an industrial representative scale and the specific alpha contamination of equipment and building surfaces, requiring that the decommissioning work is done with adequate protective clothing. Also specific breathing and cooling air

  2. Joint US/Russian study on the development of a decommissioning strategy plan for RBMK-1000 unit No. 1 at the Leningrad Nuclear Power Plant

    International Nuclear Information System (INIS)

    1997-12-01

    The objective of this joint U.S./Russian study was to develop a safe, technically feasible, economically acceptable strategy for decommissioning Leningrad Nuclear Power Plant (LNPP) Unit No. 1 as a representative first-generation RBMK-1000 reactor. The ultimate goal in developing the decommissioning strategy was to select the most suitable decommissioning alternative and end state, taking into account the socioeconomic conditions, the regulatory environment, and decommissioning experience in Russia. This study was performed by a group of Russian and American experts led by Kurchatov Institute for the Russian efforts and by the Pacific Northwest National Laboratory for the U.S. efforts and for the overall project

  3. Final project report: TA-35 Los Alamos Power Reactor Experiment No. II (LAPRE II) decommissioning project

    International Nuclear Information System (INIS)

    Montoya, G.M.

    1993-02-01

    This final report addresses the decommissioning of the LAPRE II Reactor, safety enclosure, fuel reservoir tanks, emergency fuel recovery system, primary pump pit, secondary loop, associated piping, and the post-remediation activities. Post-remedial action measurements are also included. The cost of the project including, Phase I assessment and Phase II remediation was approximately $496K. The decommissioning operation produced 533 M 3 of mixed waste

  4. Final project report, TA-35 Los Alamos Power Reactor Experiment No. II (LAPRE II) decommissioning project

    International Nuclear Information System (INIS)

    Montoya, G.M.

    1992-01-01

    This final report addresses the decommissioning of the LAPRE II Reactor, safety enclosure, fuel reservoir tanks, emergency fuel recovery system, primary pump pit, secondary loop, associated piping, and the post-remediation activities. Post-remedial action measurements are also included. The cost of the project, including Phase I assessment and Phase II remediation was approximately $496K. The decommissioning operation produced 533 m 3 of low-level solid radioactive waste and 5 m 3 of mixed waste

  5. Decommissioning costs of WWER-440 nuclear power plants. Interim report: Data collection and preliminary evaluations

    International Nuclear Information System (INIS)

    2002-11-01

    Based on the interest in decommissioning costs within Member States, especially in WWER- 440 operating countries that face the complex decision about continued operation vs. decommissioning in the near future, the IAEA launched the task to prepare a technical document on decommissioning costs of WWER-440 nuclear power plants. The main objectives of this publication were to present the decommissioning costs of WWER-440 NPPs in a uniform manner, i.e. using the cost item and cost group system of the Interim Technical Document on Nuclear Decommissioning 'A Proposed Standardised List of Items for Costing Purposes' developed jointly by the EC, the IAEA and the OECD Nuclear Energy Agency (NEA), and providing, as such, a basis for understanding decommissioning costs differences. Member States operating WWER-440 NPPs or having such units under shutdown or even under decommissioning conditions have been requested to provide cost estimates and other input data in order to facilitate understanding of their cost figures. Both decommissioning options, i.e. immediate decommissioning and safe enclosure, have been considered. In the aforementioned joint Interim Technical Document, cost items related to activities that are carried out with a similar emphasis, whether or not tied to a similar time schedule for decommissioning, or that are based on overall activities that cannot be categorised in a specific time period, are grouped as follows: pre-decommissioning actions; facility shutdown activities; procurement of general equipment and material; dismantling activities; waste processing, storage and disposal; site security, surveillance and maintenance; site restoration, cleanup and landscaping; project management, engineering and site support; research and development; fuel and nuclear material; other costs. Before starting implementation of the study, agreement was obtained on general financial, technical and social boundary conditions that should be used in order to facilitate

  6. Selected problems of minimization and management of radioactive wastes from nuclear power plant decommissioning. Part 2

    International Nuclear Information System (INIS)

    Kyrs, M.; Moravec, A.

    1988-06-01

    The processing prior to storage of radioactive wastes produced in nuclear power plant decommissioning is described as are the types of containers employed for waste transport and/or disposal. Data are summarized on exposure of personnel to radioactivity resulting from nuclear power plant decommissioning activities, and accessible data are collected on the costs of nuclear power plant decommissioning and of waste management. Potential directions of research in this field under Czechoslovak conditions are specified. (author)

  7. Investigations on the decommissioning of nuclear facilities

    International Nuclear Information System (INIS)

    Goertz, R.; Bastek, H.; Doerge, W.; Kruschel, K.P.

    1985-01-01

    The study discusses and evaluates safety and licensing related aspects associated with the decommissioning of nuclear power plants. Important decommissioning projects and experiences with relevance to decommissioning are analyzed. Recent developments in the field of decommissioning techniques with the potential of reducing the occupational dose to decommissioning workers are described and their range of application is discussed. The radiological consequences of the recycling of scrap metal arising during decommissioning are assessed. The results may be used to evaluate present licensing practices and may be useful for future licensing procedures. Finally the environmental impact of radionuclide release via air and water pathways associated with decommissioning activities is estimated. (orig.) [de

  8. Decommissioning of the Plutonium Purification and Residues Recovery Plant

    International Nuclear Information System (INIS)

    Hunt, J. G.

    2006-01-01

    British Nuclear Group is continuing to build on BNFL's successful record of decommissioning redundant nuclear facilities. Challenging radiological conditions and complex technical problems have been overcome to reduce the hazard associated with the UK's nuclear legacy. The former Plutonium Purification and Residues Recovery Plant at Sellafield operated from 1954 through to 1987. This is the only plant to have experienced an uncontrolled criticality incident in the UK, in August 1970 during operations. The plant comprised of two mirror image cells approximately 6.5 m x 13.5 m x 16 m, constructed of bare brick. The cell structure provided secondary containment, the process vessels and pipes within the cell providing primary containment. The plant utilized a solvent extraction process to purify the plutonium stream. Surrounding the two process cells to the north, east and south is an annulus area that housed the operational control panels, feed and sample glove-boxes, and ancillary equipment. The building was ventilated by an unfiltered extract on the process cells and a filtered extract from the vessels and glove-boxes. During the long operational lifetime of the plant, the primary containment deteriorated to such an extent that the process cells eventually became the main containment, with levels of radioactive contamination in excess of 14,256 pCi alpha. This led to significant aerial effluent discharges towards the end of the plant's operational life and onerous working conditions during decommissioning. Implementation of a phased decommissioning strategy from 1991 has led to: - A reduction of approximately 60% in the Sellafield site's aerial alpha discharges following installation of a new ventilation system, - Removal of 12 plutonium contaminated glove-boxes and sample cabinets from the building, - Disposal of the approximately 500 m 2 of asbestos building cladding, - Removal of over 90% of the active pipes and vessels from the highly contaminated process cells

  9. On Decommissioning Cost for Nuclear Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Varley, Geoff (NAC International (United Kingdom)); Rush, Chris (NAC International (United States))

    2011-01-15

    The two biggest changes in NPP DandD over the last 15 years that are applicable across all countries are: a. Equipment and tools used in NPP DandD have evolved to be available on a more industrial basis, although concerning DandD of the main NPP components, such activity typically is very individual and requires one-of equipment to be developed. b. Regulation of DandD has increased. Earlier regulations were adapting to what emerged from evolving DandD projects. Today regulatory requirements have caught up and have been framed based on the feedback of experience over the last 15 years. In general they impose prescriptive requirements on DandD approaches and execution. In the U.S. access to LLW disposal has been opened up to a majority of states, which will ease the development and timely execution of DandD projects. A newly emerging trend in the U.S. is that segregation of some categories of waste, to facilitate the disposal of some volumes in general landfill rather than in radioactive waste disposal facilities, is being sacrificed, on cost grounds, in favour of mixing waste volumes with the consequence of having to dispose of a larger volume of waste in a LLW facility. Regarding access to information that can be meaningful and sufficiently detailed to support an international benchmarking inter-comparison of NPP DandD cost information: - NAC has established good access to detailed information on actual DandD projects at one U.S. PWR (Trojan) and one U.S. BWR (Rancho Seco). Additional information sources probably can be accessed with additional investigation. - Germany has highly relevant cost estimate and actual NPP DandD experience. Accessibility of the information is not yet fully determined. This will need more extensive, face-to-face interaction with the relevant stakeholders. Utilities and cost estimate service providers offer the opportunity to access relevant information. Specific terms and conditions that would apply and the extent of detail that would be

  10. On Decommissioning Cost for Nuclear Power Plants

    International Nuclear Information System (INIS)

    Varley, Geoff; Rush, Chris

    2011-01-01

    The two biggest changes in NPP DandD over the last 15 years that are applicable across all countries are: a. Equipment and tools used in NPP DandD have evolved to be available on a more industrial basis, although concerning DandD of the main NPP components, such activity typically is very individual and requires one-of equipment to be developed. b. Regulation of DandD has increased. Earlier regulations were adapting to what emerged from evolving DandD projects. Today regulatory requirements have caught up and have been framed based on the feedback of experience over the last 15 years. In general they impose prescriptive requirements on DandD approaches and execution. In the U.S. access to LLW disposal has been opened up to a majority of states, which will ease the development and timely execution of DandD projects. A newly emerging trend in the U.S. is that segregation of some categories of waste, to facilitate the disposal of some volumes in general landfill rather than in radioactive waste disposal facilities, is being sacrificed, on cost grounds, in favour of mixing waste volumes with the consequence of having to dispose of a larger volume of waste in a LLW facility. Regarding access to information that can be meaningful and sufficiently detailed to support an international benchmarking inter-comparison of NPP DandD cost information: - NAC has established good access to detailed information on actual DandD projects at one U.S. PWR (Trojan) and one U.S. BWR (Rancho Seco). Additional information sources probably can be accessed with additional investigation. - Germany has highly relevant cost estimate and actual NPP DandD experience. Accessibility of the information is not yet fully determined. This will need more extensive, face-to-face interaction with the relevant stakeholders. Utilities and cost estimate service providers offer the opportunity to access relevant information. Specific terms and conditions that would apply and the extent of detail that would be

  11. A summary of lessons learned at the Shippingport Station Decommissioning Project (SSDP)

    International Nuclear Information System (INIS)

    Crimi, F.P.; Mullee, G.R.

    1987-10-01

    This paper describes the lessons learned from a management perspective during decommissioning. The lessons learned are presented in a chronological sequence during the life of the project up to the present time. The careful analysis of the lessons learned and the implementation of corresponding actions have contributed toward improving the effectiveness of decommissioning as time progresses. The lessons learned should be helpful in planning future decommissioning projects

  12. Quality Assurance in the Vandellos 1 Nuclear Power Plant Dismantling and Decommissioning Project; La garantia de calidad en el proyecto de desmantelamiento y clausura de la Central Nuclear de Vandellos I

    Energy Technology Data Exchange (ETDEWEB)

    Soto Lanuza, A

    2000-07-01

    General description of the Quality Assurance System established and implemented for the efficient development of the current activities specified in the Dismantling and Decommissioning Plan for Vandellos I Nuclear Power Plant. Aspects related to the Quality organization, scope and applicability on the established Quality Assurance Manual, availability of requirements and recommendations on quality as well as actions to be taken for the correct verification on the quality and practical application of the Manual should be described. (Author)

  13. Radiation environmental monitoring and assessment of plant-221 site ten years after decommissioning

    International Nuclear Information System (INIS)

    Li Yang; Gu Zhijie; Pan Wei; Ren Xiaona; Hu Xiaolin; She Haiqiang

    2011-01-01

    More than 10 years have passed since nuclear facility decommissioning practice for Plant-221 finished. Environmental radiation monitoring and post assessment of the decommissioning site of Plant-221 was carried out during 2003-2006, which was organized by Department of Environmental Protection and executed by China Institute for Radiation Protection, Environmental Radiation Monitoring station of Qinghai Province, etc. It shows that the decommissioning practice for Plant-221 complied with relevant limits for decommissioning, and its environmental radiation situation has not had significant change in general after 10 years, and the potential impact to the public and the environmental is acceptable. (authors)

  14. Nuclear decommissioning

    International Nuclear Information System (INIS)

    Lawton, H.

    1987-01-01

    Sufficient work has now been done, on a world-wide basis, to justify confidence that full decommissioning of nuclear installations, both plant and reactors, can be carried out safely and efficiently. Projects in several countries should confirm this in the next few years. In the United Kingdom, good progress has been made with the Windscale Advanced Gas-cooled Reactor and supporting development work is finding solutions to resolve uncertainties. Estimates from several sources suggest that decommissioning costs can be kept to an acceptable level. (author)

  15. Money Related Decommissioning and Funding Decision Making

    International Nuclear Information System (INIS)

    Goodman, Lynne S.

    2008-01-01

    'Money makes the world go round', as the song says. It definitely influences decommissioning decision-making and financial assurance for future decommissioning. This paper will address two money-related decommissioning topics. The first is the evaluation of whether to continue or to halt decommissioning activities at Fermi 1. The second is maintaining adequacy of financial assurance for future decommissioning of operating plants. Decommissioning costs considerable money and costs are often higher than originally estimated. If costs increase significantly and decommissioning is not well funded, decommissioning activities may be deferred. Several decommissioning projects have been deferred when decision-makers determined future spending is preferable than current spending, or when costs have risen significantly. Decommissioning activity timing is being reevaluated for the Fermi 1 project. Assumptions for waste cost-escalation significantly impact the decision being made this year on the Fermi 1 decommissioning project. They also have a major impact on the estimated costs for decommissioning currently operating plants. Adequately funding full decommissioning during plant operation will ensure that the users who receive the benefit pay the full price of the nuclear-generated electricity. Funding throughout operation also will better ensure that money is available following shutdown to allow decommissioning to be conducted without need for additional funds

  16. Final Status Survey for the Largest Decommissioning Project on Earth

    International Nuclear Information System (INIS)

    Dubiel, R.W.; Miller, J.; Quayle, D.

    2006-01-01

    To assist the United States Department of Energy's (US DOE's) re-industrialization efforts at its gaseous diffusion site in Oak Ridge, Tennessee, known as the East Tennessee Technology Park (ETTP), the US DOE awarded a 6-year Decontamination and Decommissioning (D and D) contract to BNG America (formerly BNFL Inc.) in 1997. The ETTP 3-Building D and D Project included the removal and disposition of the materials and equipment from the K-33, K-31, and K-29 Gaseous Diffusion Plant buildings. The three buildings comprise more than 4.8 million square feet (446,000 square meters) of floor surface area and more than 350 million pounds (148 million kilograms) of hazardous and radioactively contaminated material, making it the largest nuclear D and D project in progress anywhere in the world. The logistical hurdles involved in a project of this scope and magnitude required an extensive amount of Engineering and Health Physics professionals. In order to accomplish the Final Status Survey (FSS) for a project of this scope, the speed and efficiency of automated survey equipment was essential. Surveys of floors, structural steel and ceilings up to 60 feet (18 meters) were required. The FSS had to be expanded to include additional remediation and surveys due to characterization surveys and assumptions regarding the nature and extent of contamination provided by the US DOE. Survey design and technical bases had to consider highly variable constituents; including uranium from depleted to low enrichment, variable levels of Technetium-99 and transuranic nuclides, which were introduced into the cascade during the 1960's when recycled uranium (RU) from Savannah River was re-enriched at the facility. The RU was transported to unexpected locations from leaks in the cascade by complex building ventilation patterns. The primary survey tool used for the post remediation and FSS was the Surface Contamination Monitor (SCM) and the associated Survey Information Management System (SIMS

  17. Decommissioning techniques for research reactors. Final report of a co-ordinated research project 1997-2001

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2002-02-01

    In its international role, the IAEA is faced with a wide variety of national situations and different availability of technical, human and financial resources. While it is recognised that nuclear decommissioning is a mature industry in some developed countries, and may soon become a routine activity, the situation is by no means so clear in other countries. In addition, transfer of technologies and know-how from developed to developing countries is not a spontaneous, straightforward process, and will take time and considerable effort. As mandated by its own statute and Member States' requests, the IAEA continues to respond to its Member States by monitoring technological progress, ensuring development of safer and more efficient strategies and fostering international information exchange. Previous co-ordinated research projects (CRP) conducted respectively from 1984 to 1987, and from 1989 to 1993, investigated the overall domain of decommissioning. In those CRPs no distinction was made between decommissioning activities carried out at nuclear power plants, research reactors or nuclear fuel cycle facilities. With technological progress and experience gained, it became clear that decommissioning of research reactors had certain specific characteristics which needed a dedicated approach. In addition, a large number of research reactors reached a state of permanent shutdown in the 1990s and were candidates for prompt decommissioning. With the progressive ageing of research reactors, many more of these units will soon become redundant worldwide and require decommissioning. Within this context, a CRP on Decommissioning Techniques for Research Reactors was launched and conducted by the IAEA from 1997 to 2001 in order to prepare for eventual decommissioning. Concluding reports that summarized the work undertaken under the aegis of the CRP were presented at the third and final Research Co-ordination Meeting held in Kendal, United Kingdom, 14-18 May 2001, and are collected

  18. Decommissioning techniques for research reactors. Final report of a co-ordinated research project 1997-2001

    International Nuclear Information System (INIS)

    2002-02-01

    In its international role, the IAEA is faced with a wide variety of national situations and different availability of technical, human and financial resources. While it is recognised that nuclear decommissioning is a mature industry in some developed countries, and may soon become a routine activity, the situation is by no means so clear in other countries. In addition, transfer of technologies and know-how from developed to developing countries is not a spontaneous, straightforward process, and will take time and considerable effort. As mandated by its own statute and Member States' requests, the IAEA continues to respond to its Member States by monitoring technological progress, ensuring development of safer and more efficient strategies and fostering international information exchange. Previous co-ordinated research projects (CRP) conducted respectively from 1984 to 1987, and from 1989 to 1993, investigated the overall domain of decommissioning. In those CRPs no distinction was made between decommissioning activities carried out at nuclear power plants, research reactors or nuclear fuel cycle facilities. With technological progress and experience gained, it became clear that decommissioning of research reactors had certain specific characteristics which needed a dedicated approach. In addition, a large number of research reactors reached a state of permanent shutdown in the 1990s and were candidates for prompt decommissioning. With the progressive ageing of research reactors, many more of these units will soon become redundant worldwide and require decommissioning. Within this context, a CRP on Decommissioning Techniques for Research Reactors was launched and conducted by the IAEA from 1997 to 2001 in order to prepare for eventual decommissioning. Concluding reports that summarized the work undertaken under the aegis of the CRP were presented at the third and final Research Co-ordination Meeting held in Kendal, United Kingdom, 14-18 May 2001, and are collected

  19. Decommissioning in British Nuclear Fuels plc

    International Nuclear Information System (INIS)

    Colquhoun, A.

    1988-01-01

    Decommissioning projects at the BNFL Sellafield site have been selected taking the following into account; the need to gain experience in preparation for the decommissioning of the Magnox reactors and for the post Magnox stage; the need to develop larger scale projects; the need to be cost effective and to foster long term safety. The balance between prompt or delayed decommissioning has to consider operator dose uptake and radioactive waste management. The ten year plan for decommissioning at Sellafield is described briefly. Currently decommissioning is of the fuel pond and decanning plant, the Windscale Pile Chimneys, the coprecipitation plant and the uranium recovery plant. (author)

  20. The regulatory framework for safe decommissioning of nuclear power plants in Korea

    International Nuclear Information System (INIS)

    Sangmyeon Ahn; Jungjoon Lee; Chanwoo Jeong; Kyungwoo Choi

    2013-01-01

    We are having 23 units of nuclear power plants in operation and 5 units of nuclear power plants under construction in Korea as of September 2012. However, we don't have any experience on shutdown permanently and decommissioning of nuclear power plants. There are only two research reactors being decommissioned since 1997. It is realized that improvement of the regulatory framework for decommissioning of nuclear facilities has been emphasized constantly from the point of view of IAEA's safety standards. It is also known that IAEA will prepare the safety requirement on decommissioning of facilities; its title is the Safe Decommissioning of Facilities, General Safety Requirement Part 6. According to the result of IAEA's Integrated Regulatory Review Service (IRRS) mission to Korea in 2011, it was recommended that the regulatory framework should require decommissioning plans for nuclear installations to be constructed and operated and these plans should be updated periodically. In addition, after the Fukushima nuclear disaster in Japan in March of 2011, preparedness for early decommissioning caused by an unexpected severe accident became important issues and concerns. In this respect, it is acknowledged that the regulatory framework for decommissioning of nuclear facilities in Korea need to be improved. First of all, we focus on identifying the current status and relevant issues of regulatory framework for decommissioning of nuclear power plants compared to the IAEA's safety standards in order to achieve our goal. And then the plan is established for improvement of regulatory framework for decommissioning of nuclear power plants in Korea. It is expected that if the things will go forward as planned, the revised regulatory framework for decommissioning could enhance the safety regime on the decommissioning of nuclear power plants in Korea in light of international standards. (authors)

  1. Research and development towards decommissioning of Fukushima Daiichi Nuclear Power Plants

    International Nuclear Information System (INIS)

    Minato, Kazuo

    2013-01-01

    Towards the decommissioning of Fukushima Daiichi Nuclear Power Plants, science-based research and development is important and useful, as well as technology and engineering development. Research and development activities based on radiation chemistry, radiochemistry, thermodynamics, etc., have contributed to safe and efficient decommissioning of the plants. (author)

  2. The decommissioning of nuclear facilities

    International Nuclear Information System (INIS)

    Niel, J.Ch.; Rieu, J.; Lareynie, O.; Delrive, L.; Vallet, J.; Girard, A.; Duthe, M.; Lecomte, C.; Rozain, J.P.; Nokhamzon, J.G.; Davoust, M.; Eyraud, J.L.; Bernet, Ph.; Velon, M.; Gay, A.; Charles, Th.; Leschaeva, M.; Dutzer, M.; Maocec, Ch.; Gillet, G.; Brut, F.; Dieulot, M.; Thuillier, D.; Tournebize, F.; Fontaine, V.; Goursaud, V.; Birot, M.; Le Bourdonnec, Th.; Batandjieva, B.; Theis, St.; Walker, St.; Rosett, M.; Cameron, C.; Boyd, A.; Aguilar, M.; Brownell, H.; Manson, P.; Walthery, R.; Wan Laer, W.; Lewandowski, P.; Dorms, B.; Reusen, N.; Bardelay, J.; Damette, G.; Francois, P.; Eimer, M.; Tadjeddine, A.; Sene, M.; Sene, R.

    2008-01-01

    This file includes five parts: the first part is devoted to the strategies of the different operators and includes the following files: the decommissioning of nuclear facilities Asn point of view, decommissioning of secret nuclear facilities, decommissioning at the civil Cea strategy and programs, EDF de-construction strategy, Areva strategy for decommissioning of nuclear facilities; the second one concerns the stakes of dismantling and includes the articles as follow: complete cleanup of buildings structures in nuclear facilities, decommissioning of nuclear facilities and safety assessment, decommissioning wastes management issues, securing the financing of long-term decommissioning and waste management costs, organizational and human factors in decommissioning projects, training for the decommissioning professions: the example of the Grenoble University master degree; the third part is devoted to the management of dismantling work sites and includes the different articles as follow: decommissioning progress at S.I.C.N. plant, example of decommissioning work site in Cea Grenoble: Siloette reactor decommissioning, matters related to decommissioning sites, decommissioning of french nuclear installations: the viewpoint of a specialist company, specificities of inspections during decommissioning: the Asn inspector point of view; the fourth part is in relation with the international approach and includes as follow: IAEA role in establishing a global safety regime on decommissioning, towards harmonization of nuclear safety practices in Europe: W.E.N.R.A. and the decommissioning of nuclear facilities, EPA superfund program policy for decontamination and decommissioning, progress with remediation at Sellafield, progress and experiences from the decommissioning of the Eurochemic reprocessing plant in Belgium, activities of I.R.S.N. and its daughter company Risk-audit I.r.s.n./G.r.s. international in the field of decommissioning of nuclear facilities in eastern countries

  3. Cutting techniques for facilities dismantling in decommissioning projects

    International Nuclear Information System (INIS)

    Lainetti, Paulo E.O.

    2011-01-01

    Fuel cycle related activities were accomplished in IPEN-CNEN/SP in laboratory and pilot plant scale and most facilities were built in the 70-80 years. Nevertheless, radical changes of the Brazilian nuclear policy in the beginning of 90's determined the interruption of several fuel cycle activities and facilities shutdown. Some laboratory and pilot plant decommissioning activities have been performed in IPEN in the last years. During the operational activities in the decommissioning of old nuclear fuel cycle facilities, the personnel involved in the task had to face several problems. In old facilities, the need of large components dismantling and material removal use to present some difficulties, such as lack of available and near electricity supply. Besides this, the spread out of the superficial contamination in the form of dust or aerosols and the exposure of workers should be as much as possible avoided. Then, the selection and availability of suitable tools for the task, mainly those employed for cutting and segmentation of different materials is of significant importance. Slight hand tools, mainly those powered by rechargeable batteries, facilitate the work, especially in areas where the access is difficult. Based on the experience in the dismantling of some old nuclear facilities of IPEN-CNEN/SP, some tools that would have facilitated the operations were identified and their availability could have improved the quality and efficiency of different individual tasks. In this paper different cutting problems and techniques, as well as some available commercial hand tools, are presented as suggestion for future activities. (author)

  4. Eurochemic reprocessing plant decommissioning. Decontamination of contaminated metal

    International Nuclear Information System (INIS)

    Walthery, R.; Teunckens, L.; Lewandowski, P.

    1998-01-01

    When decommissioning nuclear installations, large quantifies of metal components are produced as well as significant amounts of other radioactive materials, which mostly show low surface contamination. Having been used or having been brought for a while in a controlled area, marks them as 'suspected material'. In view of the very high costs for radioactive waste processing and disposal, alternatives have been considered, and much effort has been spent in recycling through decontamination, melting and unconditional release of metals. In a broader context, recycling of materials can be considered as a first order ecological priority to limit the quantities of radioactive wastes to be disposed of, to reduce the technical and economic problems involved with the management of radioactive wastes, and to make economic use of primary material and conserve natural resources of basic material for future generations. Other evaluations as the environmental impact of recycling compared to non recycling (mining or production of new material) and waste treatment, with the associated risks involved, can also be considered, as well as social and political impacts of recycling. This document gives an overview of the current practices in recycling of materials at the decommissioning of the Eurochemic reprocessing plant in Dessel, Belgium. It deals with the decontamination and measurement techniques in use, and considers related technical and economic aspects and constraints. (author)

  5. Decommissioning of nuclear power plants and research reactors. Safety guide

    International Nuclear Information System (INIS)

    1999-01-01

    Radioactive waste is produced in the generation of nuclear power and the use of radioactive materials in industry, research and medicine. The importance of the safe management of radioactive waste for the protection of human health and the environment has long been recognized, and considerable experience has been gained in this field. The IAEA's Radioactive Waste Safety Standards Programme aimed at establishing a coherent and comprehensive set of principles and requirements for the safe management of waste and formulating the guidelines necessary for their application. This is accomplished within the IAEA Safety Standards Series in an internally consistent set of publications that reflect an international consensus. The publications will provide Member States with a comprehensive series of internationally agreed publications to assist in the derivation of, and to complement, national criteria, standards and practices. The Safety Standards Series consists of three categories of publications: Safety Fundamentals, Safety Requirements and Safety Guides. With respect to the Radioactive Waste Safety Standards Programme, the set of publications is currently undergoing review to ensure a harmonized approach throughout the Safety Standards Series. This Safety Guide addresses the subject of decommissioning of nuclear power plants and research reactors. It is intended to provide guidance to national authorities and operating organizations for the planning and safe management of the decommissioning of such installations. This Safety Guide has been prepared through a series of Consultants and Technical Committee meetings. It supersedes former Safety Series publications Nos 52, 74 and 105

  6. Decommissioning of nuclear power plants and research reactors. Safety guide

    International Nuclear Information System (INIS)

    2004-01-01

    Radioactive waste is produced in the generation of nuclear power and the use of radioactive materials in industry, research and medicine. The importance of the safe management of radioactive waste for the protection of human health and the environment has long been recognized, and considerable experience has been gained in this field. The IAEA's Radioactive Waste Safety Standards Programme aimed at establishing a coherent and comprehensive set of principles and requirements for the safe management of waste and formulating the guidelines necessary for their application. This is accomplished within the IAEA Safety Standards Series in an internally consistent set of publications that reflect an international consensus. The publications will provide Member States with a comprehensive series of internationally agreed publications to assist in the derivation of, and to complement, national criteria, standards and practices. The Safety Standards Series consists of three categories of publications: Safety Fundamentals, Safety Requirements and Safety Guides. With respect to the Radioactive Waste Safety Standards Programme, the set of publications is currently undergoing review to ensure a harmonized approach throughout the Safety Standards Series. This Safety Guide addresses the subject of decommissioning of nuclear power plants and research reactors. It is intended to provide guidance to national authorities and operating organizations for the planning and safe management of the decommissioning of such installations. This Safety Guide has been prepared through a series of Consultants and Technical Committee meetings. It supersedes former Safety Series publications Nos 52, 74 and 105

  7. Decommissioning of nuclear power plants and research reactors. Safety guide

    International Nuclear Information System (INIS)

    2001-01-01

    Radioactive waste is produced in the generation of nuclear power and the use of radioactive materials in industry, research and medicine. The importance of the safe management of radioactive waste for the protection of human health and the environment has long been recognized, and considerable experience has been gained in this field. The IAEA's Radioactive Waste Safety Standards Programme aimed at establishing a coherent and comprehensive set of principles and requirements for the safe management of waste and formulating the guidelines necessary for their application. This is accomplished within the IAEA Safety Standards Series in an internally consistent set of publications that reflect an international consensus. The publications will provide Member States with a comprehensive series of internationally agreed publications to assist in the derivation of, and to complement, national criteria, standards and practices. The Safety Standards Series consists of three categories of publications: Safety Fundamentals, Safety Requirements and Safety Guides. With respect to the Radioactive Waste Safety Standards Programme, the set of publications is currently undergoing review to ensure a harmonized approach throughout the Safety Standards Series. This Safety Guide addresses the subject of decommissioning of nuclear power plants and research reactors. It is intended to provide guidance to national authorities and operating organizations for the planning and safe management of the decommissioning of such installations. This Safety Guide has been prepared through a series of Consultants and Technical Committee meetings. It supersedes former Safety Series publications Nos 52, 74 and 105

  8. Decommissioning strategy and schedule for a multiple reactor nuclear power plant site

    Energy Technology Data Exchange (ETDEWEB)

    Monteiro, Deiglys Borges; Moreira, Joao M.L.; Maiorino, Jose Rubens, E-mail: deiglys.monteiro@ufabc.edu.br, E-mail: joao.moreira@ufabc.edu.br, E-mail: joserubens.maiorino@ufabc.edu.br [Universidade Federal do ABC (CECS/UFABC), Santo Andre, SP (Brazil). Centro de Engenharia, Modelagem e Ciencias Aplicadas

    2015-07-01

    The decommissioning is an important part of every Nuclear Power Plant life cycle gaining importance when there are more than one plant at the same site due to interactions that can arise from the operational ones and a decommissioning plant. In order to prevent undesirable problems, a suitable strategy and a very rigorous schedule should implemented and carried. In this way, decommissioning tasks such as fully decontamination and dismantling of activated and contaminated systems, rooms and structures could be delayed, posing as an interesting option to multiple reactor sites. The present work aims to purpose a strategy and a schedule for the decommissioning of a multiple reactor site highlighting the benefits of delay operational tasks and constructs some auxiliary services in the site during the stand by period of the shutdown plants. As a case study, will be presented a three-reactor site which the decommissioning process actually is in planning stage and that should start in the next decade. (author)

  9. Decommissioning strategy and schedule for a multiple reactor nuclear power plant site

    International Nuclear Information System (INIS)

    Monteiro, Deiglys Borges; Moreira, Joao M.L.; Maiorino, Jose Rubens

    2015-01-01

    The decommissioning is an important part of every Nuclear Power Plant life cycle gaining importance when there are more than one plant at the same site due to interactions that can arise from the operational ones and a decommissioning plant. In order to prevent undesirable problems, a suitable strategy and a very rigorous schedule should implemented and carried. In this way, decommissioning tasks such as fully decontamination and dismantling of activated and contaminated systems, rooms and structures could be delayed, posing as an interesting option to multiple reactor sites. The present work aims to purpose a strategy and a schedule for the decommissioning of a multiple reactor site highlighting the benefits of delay operational tasks and constructs some auxiliary services in the site during the stand by period of the shutdown plants. As a case study, will be presented a three-reactor site which the decommissioning process actually is in planning stage and that should start in the next decade. (author)

  10. Summary of case studies presented at the WPDD topical session on stakeholder involvement in decommissioning projects - november 14, 2005

    International Nuclear Information System (INIS)

    Metcalfe, Doug

    2006-01-01

    Full text of publication follows: Two case studies were presented on experiences with stakeholder involvement in decommissioning projects. The first paper described the development of the United Kingdom Atomic Energy Authority's (UKAEA) stakeholder involvement activities for the Dounreay Nuclear Reactor Test Establishment. The second paper presented the US Nuclear Regulatory Commission regulatory process for decommissioning that includes opportunities for public involvement. The presentation contrasted the stakeholder involvement for two commercial US nuclear power plants (NPPs) that completed decommissioning in 2005, the Trojan NPP and the Maine Yankee NPP. The two case studies highlighted the importance of involving stakeholders in decommissioning projects, and provide important lessons learned. The Dounreay case study demonstrated the UKAEA's determination and commitment to continuously improve its stakeholder engagement program. In 2002, the UKAEA set out to broaden its stakeholder program by improving both public understanding and participation. With regard to public understanding, the UKAEA committed to keep the public informed on decommissioning developments, and ensure that communication was in an understandable form. To improve participation, the UKAEA actively worked to identify and engage stakeholders. The UKAEA then made efforts to involve stakeholders in decision-making activities, including the use of stakeholder panels to discuss and consider options for specific aspects of the Dounreay decommissioning and site restoration plan. In 2004, the UKAEA commissioned an independent review of its stakeholder involvement program to assess the program's effectiveness and benchmark it against best practices. The program was found to be useful, and positive feedback was provided on the use of stakeholder panels and the UKAEA's determination to deliver a broad based and effective stakeholder strategy. Recommendations to UKAEA included involving stakeholders

  11. DEACTIVATION AND DECOMMISSIONING ENVIRONMENTAL STRATEGY FOR THE PLUTONIUM FINISHING PLANT COMPLEX, HANFORD NUCLEAR RESERVATION

    International Nuclear Information System (INIS)

    Hopkins, A.M.; Heineman, R.; Norton, S.; Miller, M.; Oates, L.

    2003-01-01

    Maintaining compliance with environmental regulatory requirements is a significant priority in successful completion of the Plutonium Finishing Plant (PFP) Nuclear Material Stabilization (NMS) Project. To ensure regulatory compliance throughout the deactivation and decommissioning of the PFP complex, an environmental regulatory strategy was developed. The overall goal of this strategy is to comply with all applicable environmental laws and regulations and/or compliance agreements during PFP stabilization, deactivation, and eventual dismantlement. Significant environmental drivers for the PFP Nuclear Material Stabilization Project include the Tri-Party Agreement; the Resource Conservation and Recovery Act of 1976 (RCRA); the Comprehensive Environmental Response, Compensation and Liability Act of 1980 (CERCLA); the National Environmental Policy Act of 1969 (NEPA); the National Historic Preservation Act (NHPA); the Clean Air Act (CAA), and the Clean Water Act (CWA). Recent TPA negotiation s with Ecology and EPA have resulted in milestones that support the use of CERCLA as the primary statutory framework for decommissioning PFP. Milestones have been negotiated to support the preparation of Engineering Evaluations/Cost Analyses for decommissioning major PFP buildings. Specifically, CERCLA EE/CA(s) are anticipated for the following scopes of work: Settling Tank 241-Z-361, the 232-Z Incinerator, , the process facilities (eg, 234-5Z, 242, 236) and the process facility support buildings. These CERCLA EE/CA(s) are for the purpose of analyzing the appropriateness of the slab-on-grade endpoint Additionally, agreement was reached on performing an evaluation of actions necessary to address below-grade structures or other structures remaining after completion of the decommissioning of PFP. Remaining CERCLA actions will be integrated with other Central Plateau activities at the Hanford site

  12. Guidelines of Decommissioning Schedule Establishment

    Energy Technology Data Exchange (ETDEWEB)

    Oh, Jae Yong; Yun, Taesik; Kim, Younggook; Kim, Hee-Geun [KHNP CRI, Daejeon (Korea, Republic of)

    2016-10-15

    Decommissioning has recently become an issue highlighted in Korea due to the Permanent Shutdown (PS) of Kori-1 plant. Since Korea Hydro and Nuclear Power (KHNP) Company decided the PS of Kori-1 instead of further continued operation, Kori-1 will be the first decommissioning plant of the commercial reactors in Korea. Korean regulatory authority demands Initial Decommissioning Plan (IDP) for all the plants in operation and under construction. In addition, decommissioning should be considered for the completion of the life cycle of NPPs. To date, Korea has no experience regarding decommissioning of the commercial reactor and a lot of uncertainties will be expected due to its site-specific factors. However, optimized decommissioning process schedule must be indispensable in the safety and economic efficiency of the project. Differed from USA, Korea has no experience and know-hows of the operation and site management for decommissioning. Hence, in Korea, establishment of decommissioning schedule has to give more weight to safety than precedent cases. More economical and rational schedule will be composed by collecting and analyzing the experience data and site-specific data and information as the decommissioning progresses. In a long-range outlook, KHNP having capability of NPP decommissioning will try to decommissioning business in Korea and foreign countries.

  13. Shippingport Station Decommissioning Project: Removal of piping and equipment and removal of primary system components

    International Nuclear Information System (INIS)

    1989-01-01

    This report is a technical synopsis of the removal of contaminated and non-contaminated piping and equipment from the Shippingport Station Decommissioning Project (SSDP). The information is provided as a part of the Technology Transfer Program to document dismantling activities in support of reactor decommissioning. 5 refs., 29 figs., 4 tabs

  14. Conceptual basic and status of nuclear power plant decommissioning effort in the Russian Federation

    International Nuclear Information System (INIS)

    Glazounov, V.; Khamyanov, L.

    1998-01-01

    Decommissioning of nuclear power plants, although a usual phase in nuclear facility life cycle still has significant peculiarities due to radioactive contamination of NPP equipment and structural elements. This paper deals with the phases in decommissioning process, as follows: NPP shutdown, meaning end of commercial operation; NPP unit mothballing, radiation review of the unit to justify particular concept of decommissioning; extended hold-up, which means maintaining of contaminated equipment in the isolated zone under radiologically safe conditions; unit dismantling and burial. Status of NPP decommissioning effort in Russia is described

  15. A Human Factors Study on an Information Visualization System for Nuclear Power Plants Decommissioning Engineering

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Chih Wei; Yang, Li Chen [Institute of Nuclear Energy Research, Atomic Energy Council, Longtan (China)

    2014-08-15

    Most nuclear power plants (NPPs) in the world have an operating life of up to 40 years. The utility should prepare a comprehensive decommissioning plan with purpose to document and to display how decommissioning activities can be safely performed. In the past, most studies related to NPPs decommissioning planning put emphasis on technical issues, little attention have been given to human factors in decommissioning activities. In fact, human factors are a critical factor to successful NPPs decommissioning. NPPs decommissioning will face potential risks. These risks include not only dismantling and moving large equipment but also treating with the radioactive materials. Using information visualization system, such as virtual reality (VR) technology, for staff training can improve decommissioning work safety and economy. Therefore, this study presents a study using VR to solve real world problems in the nuclear plant decommissioning. Then appropriate cases for introducing VR systems are summarized and future prospects are given. This study assesses availability and performance of the work training system by using heuristic evaluation and actual experiment. In the result, block type of radiation visibility was found relatively better both in performance and person's preference than other types. The results presented in this paper illustrate the VR applications a NPP decommissioning perspective.

  16. A Human Factors Study on an Information Visualization System for Nuclear Power Plants Decommissioning Engineering

    International Nuclear Information System (INIS)

    Yang, Chih Wei; Yang, Li Chen

    2014-01-01

    Most nuclear power plants (NPPs) in the world have an operating life of up to 40 years. The utility should prepare a comprehensive decommissioning plan with purpose to document and to display how decommissioning activities can be safely performed. In the past, most studies related to NPPs decommissioning planning put emphasis on technical issues, little attention have been given to human factors in decommissioning activities. In fact, human factors are a critical factor to successful NPPs decommissioning. NPPs decommissioning will face potential risks. These risks include not only dismantling and moving large equipment but also treating with the radioactive materials. Using information visualization system, such as virtual reality (VR) technology, for staff training can improve decommissioning work safety and economy. Therefore, this study presents a study using VR to solve real world problems in the nuclear plant decommissioning. Then appropriate cases for introducing VR systems are summarized and future prospects are given. This study assesses availability and performance of the work training system by using heuristic evaluation and actual experiment. In the result, block type of radiation visibility was found relatively better both in performance and person's preference than other types. The results presented in this paper illustrate the VR applications a NPP decommissioning perspective

  17. Lessons learned from decommissioning projects at Los Alamos National Laboratory

    International Nuclear Information System (INIS)

    Salazar, M.

    1995-01-01

    This paper describes lessons learned over the last 20 years from 12 decommissioning projects at Los Alamos National Laboratory. These lessons relate both to overall program management and to management of specific projects during the planning and operations phases. The issues include waste management; the National Environmental Policy Act (NEPA); the Resource Conservation and Recovery Act (RCRA); the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA); contracting; public involvement; client/customer interface; and funding. Key elements of our approach are to be proactive; follow the observation method; perform field activities concurrently; develop strategies to keep reportable incidents from delaying work; seek and use programs, methods, etc., in existence to shorten learning curves; network to help develop solutions; and avoid overstudying and overcharacterizing. This approach results in preliminary plans that require very little revision before implementation, reasonable costs and schedules, early acquisition of permits and NEPA documents, preliminary characterization reports, and contracting documents. Our track record is good -- the last four projects (uranium and plutonium-processing facility and three research reactors) have been on budget and on schedule

  18. The Windscale Advanced Gas Cooled Reactor (WAGR) Decommissioning Project A Close Out Report for WAGR Decommissioning Campaigns 1 to 10 - 12474

    Energy Technology Data Exchange (ETDEWEB)

    Halliwell, Chris [Sellafield Ltd, Sellafield (United Kingdom)

    2012-07-01

    The reactor core of the Windscale Advanced Gas-Cooled Reactor (WAGR) has been dismantled as part of an ongoing decommissioning project. The WAGR operated until 1981 as a development reactor for the British Commercial Advanced Gas cooled Reactor (CAGR) power programme. Decommissioning began in 1982 with the removal of fuel from the reactor core which was completed in 1983. Subsequently, a significant amount of engineering work was carried out, including removal of equipment external to the reactor and initial manual dismantling operations at the top of the reactor, in preparation for the removal of the reactor core itself. Modification of the facility structure and construction of the waste packaging plant served to provide a waste route for the reactor components. The reactor core was dismantled on a 'top-down' basis in a series of 'campaigns' related to discrete reactor components. This report describes the facility, the modifications undertaken to facilitate its decommissioning and the strategies employed to recognise the successful decommissioning of the reactor. Early decommissioning tasks at the top of the reactor were undertaken manually but the main of the decommissioning tasks were carried remotely, with deployment systems comprising of little more than crane like devices, intelligently interfaced into the existing structure. The tooling deployed from the 3 tonne capacity (3te) hoist consisted either purely mechanical devices or those being electrically controlled from a 'push-button' panel positioned at the operator control stations, there was no degree of autonomy in the 3te hoist or any of the tools deployed from it. Whilst the ATC was able to provide some tele-robotic capabilities these were very limited and required a good degree of driver input which due to the operating philosophy at WAGR was not utilised. The WAGR box proved a successful waste package, adaptable through the use of waste box furniture specific to the

  19. Ethical guidance in connection with decommissioning of nuclear power plants

    International Nuclear Information System (INIS)

    Braakenhielm, Carl Reinhold

    2006-01-01

    Decommissioning of nuclear plants is guided by three different moral obligations. There is, first, the obligation to collect and to preserve the financial, technical and scientific resources necessary for the future decommissioning of nuclear power plants. There is, secondly, the obligation of the responsible authorities in charge later in the present century to protect dismantling personnel, the general public and the environment from excessive risks and, particularly, harmful levels of radiation. And, thirdly, we in the present generation and the next one implementing different decommissioning programmes are morally responsible for doing it in such a way that future generations of human beings are protected. The main purpose of this paper is to discuss some ethical questions in connection with the third type of obligation. The author suggests some of the ethical principles involved. These principles are indirectly relevant for the other two obligations. Needless to say, one of the reasons for the collection and preservation of resources for D and D programmes in the first place is our obligation to protect future generations. How these resources are collected and preserved is primarily an entangled web of financial, technical and political issues - albeit that usual legal and ethical considerations apply. The main point of departure will be a paper delivered by Kenneth Arrow at the IEA World Congress in 1995, 'Inter-generational equity and the rate of discount in long-term social investment'. In this article Arrow discusses the ethical arguments for and against so-called 'pure time preference'. He concludes that the present generation has an obligation to protect future generations, but the present generation also has certain obligation towards itself. But how do we strike a proper balance between the obligation to ourselves and the obligations to future generations? This paper is designed to provide a tentative answer to this question. The argument of the author

  20. Guideline to Estimate Decommissioning Costs

    Energy Technology Data Exchange (ETDEWEB)

    Yun, Taesik; Kim, Younggook; Oh, Jaeyoung [KHNP CRI, Daejeon (Korea, Republic of)

    2016-10-15

    The primary objective of this work is to provide guidelines to estimate the decommissioning cost as well as the stakeholders with plausible information to understand the decommissioning activities in a reasonable manner, which eventually contribute to acquiring the public acceptance for the nuclear power industry. Although several cases of the decommissioning cost estimate have been made for a few commercial nuclear power plants, the different technical, site-specific and economic assumptions used make it difficult to interpret those cost estimates and compare them with that of a relevant plant. Trustworthy cost estimates are crucial to plan a safe and economic decommissioning project. The typical approach is to break down the decommissioning project into a series of discrete and measurable work activities. Although plant specific differences derived from the economic and technical assumptions make a licensee difficult to estimate reliable decommissioning costs, estimating decommissioning costs is the most crucial processes since it encompasses all the spectrum of activities from the planning to the final evaluation on whether a decommissioning project has successfully been preceded from the perspective of safety and economic points. Hence, it is clear that tenacious efforts should be needed to successfully perform the decommissioning project.

  1. Apollo decommissioning project, Apollo, Pennsylvania. Final technical report

    International Nuclear Information System (INIS)

    1997-01-01

    In November, 1991 Babcock and Wilcox (B and W) received a grant to partially fund the decommissioning of the former Apollo Nuclear Fuel Facility. The decommissioning was performed in accordance with a Nuclear Regulatory Commission (NRC) approved decommissioning plan. This report summarizes the decommissioning of the Apollo Nuclear Fuel Facility and the radiological surveying of the site to demonstrate that these decommissioning activities were effective in reducing residual activity well below NRC's criteria for release for unrestricted use. The Apollo Nuclear Fuel Facility was utilized by the Nuclear Materials and Equipment Corporation (NUMEC) and B and W for nuclear research and production under Atomic Energy Commission and Department of Energy (DOE) contracts during 20 plus years of nuclear fuel manufacturing operations

  2. Project plan for the decontamination and decommissioning of the Argonne National Laboratory Experimental Boiling Water Reactor

    International Nuclear Information System (INIS)

    Boing, L.E.

    1989-12-01

    In 1956, the Experimental Boiling Water Reactor (EBWR) Facility was first operated at Argonne National Laboratory (ANL) as a test reactor to demonstrate the feasibility of operating an integrated power plant using a direct cycle boiling water reactor as a heat source. In 1967, ANL permanently shut down the EBWR and placed it in dry lay-up. This project plan presents the schedule and organization for the decontamination and decommissioning of the EBWR Facility which will allow it to be reused by other ANL scientific research programs. The project total estimated cost is $14.3M and is projected to generate 22,000 cubic feet of low-level radioactive waste which will be disposed of at an approved DOE burial ground. 18 figs., 3 tabs

  3. Project plan for the decontamination and decommissioning of the Argonne National Laboratory Experimental Boiling Water Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Boing, L.E.

    1989-12-01

    In 1956, the Experimental Boiling Water Reactor (EBWR) Facility was first operated at Argonne National Laboratory (ANL) as a test reactor to demonstrate the feasibility of operating an integrated power plant using a direct cycle boiling water reactor as a heat source. In 1967, ANL permanently shut down the EBWR and placed it in dry lay-up. This project plan presents the schedule and organization for the decontamination and decommissioning of the EBWR Facility which will allow it to be reused by other ANL scientific research programs. The project total estimated cost is $14.3M and is projected to generate 22,000 cubic feet of low-level radioactive waste which will be disposed of at an approved DOE burial ground. 18 figs., 3 tabs.

  4. Radiation protection aspects in decommissioning of a fuel reprocessing plant

    International Nuclear Information System (INIS)

    Kotrappa, P.; Joshi, P.P.; Theyyunni, T.K.; Sidhwa, B.M.; Nadkarni, M.N.

    1980-01-01

    The decontamination of a fuel reprocessing plant which underwent partial decommissioning is described. The following radiation protection aspects of the work are discussed: dismantling and removal of process vessels, columns and process off-gas filters; decontamination of various process areas; and management of liquid and solid wastes. The work was completed safely by using personnel protective equipment such as plastic suits and respirators (gas, particulate and fresh air). Total dose commitment for this work was around 3000 man-rems, including dose received by staff for certain jobs related to the operation of a section of the plant. The external dose was kept below the annual limit of 5000 mrems for any individual. No internal contamination incident occurred which caused a dose commitment in excess of 10% of the annual limit. The fact that all the work was completed by the staff normally associated with the operation of the plant contributed significantly to the management and control of personnel exposures. (H.K.)

  5. Decommissioning and decontamination of licensed reactor facilities and demonstration nuclear power plants

    International Nuclear Information System (INIS)

    Lear, G.; Erickson, P.B.

    1975-01-01

    Decommissioning of licensed reactors and demonstration nuclear power plants has been accomplished by mothballing (protective storage), entombment, and dismantling or a combination of these three. The alternative selected by a licensee seems to be primarily based on cost. A licensee must, however, show that the decommissioning process provides adequate protection of the health and safety of the public and no adverse impact on the environment. To date the NRC has approved each of the alternatives in the decommissioning of different facilities. The decommissioning of small research reactors has been accomplished primarily by dismantling. Licensed nuclear power plants, however, have been decommissioned primarily by being placed in a mothballed state in which they continue to retain a reactor license and the associated licensee responsibilities

  6. Decommissioning Work Modeling System for Nuclear Facility Decommissioning Design

    International Nuclear Information System (INIS)

    Park, S. K.; Cho, W. H.; Choi, Y. D.; Moon, J. K.

    2012-01-01

    During the decommissioning activities of the KRR-1 and 2 (Korea Research Reactor 1 and 2) and UCP (Uranium Conversion Plant), all information and data, which generated from the decommissioning project, were record, input and managed at the DECOMMIS (DECOMMissioning Information management System). This system was developed for the inputting and management of the data and information of the man-power consumption, operation time of the dismantling equipment, the activities of the radiation control, dismantled waste management and Q/A activities. When a decommissioning is planed for a nuclear facility, an investigation into the characterization of the nuclear facility is first required. The results of such an investigation are used for calculating the quantities of dismantled waste volume and estimating the cost of the decommissioning project. That is why, the DEFACS (DEcommissioning FAcility Characterization DB System) was established for the management of the facility characterization data. The DEWOCS (DEcommissioning WOrk-unit productivity Calculation System) was developed for the calculation of the workability on the decommissioning activities. The work-unit productivities are calculated through this system using the data from the two systems, DECOMMIS and DEFACS. This result, the factors of the decommissioning work-unit productivities, will be useful for the other nuclear facility decommissioning planning and engineering. For this, to set up the items and plan for the decommissioning of the new objective facility, the DEMOS (DEcommissioning work Modeling System) was developed. This system is for the evaluation the cost, man-power consumption of workers and project staffs and technology application time. The factor of the work-unit productivities from the DEWOCS and governmental labor cost DB and equipment rental fee DB were used for the calculation the result of the DEMOS. And also, for the total system, DES (Decommissioning Engineering System), which is now

  7. Meeting the challenge of BNFL's decommissioning programme

    International Nuclear Information System (INIS)

    Sheil, A.E.

    1997-01-01

    The paper reviews the co-ordinated and integrated programme, adopted by BNFL, in the decommissioning of its radioactive plants. It examines BNFL's approach to the challenges posed by the eventual decommissioning of its 120 plants, its overall strategies, the constraints and the progress achieved to date, drawing on real experience from the 22 completed projects and the 24 projects currently underway. (author)

  8. The application of modern project management principles and processes in major nuclear decommissioning programmes

    International Nuclear Information System (INIS)

    Bayliss, C. R.

    2003-01-01

    The UKAEA has embarked upon an accelerated programme of decommissioning works. This has resulted in a review of its project management systems and processes. This paper describes these processes and their application to nuclear decommissioning and associated new build construction projects. Efficiencies from these processes are necessary. In addition this paper describes how UKAEA, where appropriate, utilizes modern forms of alliance contract so as to work in partnership with its contractors. (author)

  9. An Intuitive Robot Teleoperation System for Nuclear Power Plant Decommissioning

    International Nuclear Information System (INIS)

    Lee, Chang-hyuk; Gu, Taehyeong; Lee, Kyung-min; Ye, Sung-Joon; Bang, Young-bong

    2017-01-01

    A robot teleoperation system consists of a master device and a slave robot. The master device senses human intention and delivers it to the salve robot. A haptic device and an exoskeletal robot are widely used as the master device. The slave robot carries out operations delivered by the master device. It should guarantee enough degree of freedom (DOF) to perform the instructed operation and mobility in the environment inside the nuclear plant, such as flat surfaces and stairs. A 7-DOF robotic arm is commonly used as the slave device. This paper proposed a robot teleoperation system for nuclear power plant decommissioning. It discussed an experiment that was performed to validate the system's usability. The operator wearing the exoskeletal master device at the master site controlled the slave robot enabling it to move on a flat surface, climb/descend stairs, and move obstacles. The proposed robot teleoperation system can also be used in hazardous working environments where the use of such robots would be beneficial to human health and safety. In the future, research studies on the protection against radiation that damages the slave robot should be conducted.

  10. Lessons-learned from ongoing decommissioning project of Fugen NPS

    International Nuclear Information System (INIS)

    Tezuka, M.; Koda, Y.; Iguchi, Y.; Kato, Y.; Yanagihara, S.

    2017-01-01

    Advanced Thermal Reactor (ATR) Fugen is a 557 MWt, 165 MWe, heavy water moderated, light-water cooled, pressure-tube type reactor. In 2003, Fugen was shut down after ca 25 years operation, and started decommissioning activity from 2008. In the initial period of decommissioning, we have been dismantling from turbine systems because of their little contamination. In general, most difficult process of dismantling of nuclear power plant is the dismantlement of the reactor core because the radiation rate of the reactor core is very high, e.g., it is over 200 Sv/hr in the Fugen's case. Our plan of dismantlement of the core is from about 2022. The core area has some features that the structure is narrow and complicated by tube-cluster structure that contains 224 fuel channels with both the pressure and the calandria tubes coaxially in each channel. The radiation shielding area is laminated structure composed of up to 150 mm thickness of carbon steel. And the structure of the reactor, which is made of various materials such as stainless steel, carbon steel, zirconium alloy and aluminum. In particular, the core area is planning to be dismantled under water by remote controlled machines in order to shield the radiation around the core and prevent airborne dust generated by the cutting considering the usage of Zr alloy which is likely to be oxidized. In consideration of above, the cutting methods were selected for dismantling the reactor core in order to shorten the dismantling term and reduce the secondary waste. The candidate cutting method options were decreased based on the results of the researches on achievement of the cutting methods domestically and internationally. Finally, the laser cutting method was selected for dismantling the core area and shielding area, and diamond wire saw was also selected for dismantling the shielding area applicable to concrete with metal liner, based on the results of some cutting tests. The laser cutting method has many advantages, e

  11. Cursory radiological assessment: Battelle Columbus Laboratory Decommissioning and Decontamination Project

    International Nuclear Information System (INIS)

    Smith, W.H.; Munyon, W.J.; Mosho, G.D.; Robinet, M.J.; Wynveen, R.A.

    1988-10-01

    This document reports on the results obtained from a cursory radiological assessment of various properties at the Battelle Columbus Laboratory, Columbia, Ohio. The cursory radiological assessment is part of a preliminary investigation for the Battelle Columbus Laboratory Decommissioning and Decontamination Project. The radiological assessment of Battelle Columbus Laboratory's two sites included conducting interior and exterior building surveys and collecting and analyzing air, sewer system, and soil samples. Direct radiological surveys were made of floor, wall, and overhead areas. Smear surveys were made on various interior building surfaces as well as the exterior building vents. Air samples were collected in select areas to determine concentrations of Rn-222, Rn-220, and Rn-219 daughters, in addition to any long-lived radioactive particulates. Radon-222 concentrations were continuously monitored over a 24-hr period at several building locations using a radon gas monitoring system. The sanitary sewer systems at King Avenue, West Jefferson-North, and West Jefferson-South were each sampled at select locations. All samples were submitted to the Argonne Analytical Chemistry Laboratory for various radiological and chemical analyses. Environmental soil corings were taken at both the King Avenue and West Jefferson sites to investigate the potential for soil contamination within the first 12-inches below grade. Further subsurface investigations at the West Jefferson-North and West Jefferson-South areas were conducted using soil boring techniques. 4 refs., 10 figs., 10 tabs

  12. Experimental Boiling Water Reactor decontamination and decommissioning project

    International Nuclear Information System (INIS)

    Fellhauer, C.

    1995-01-01

    The author begins by discussing the problems encountered during decontamination and decommissioning. Next, he discusses waste packaging and recycling. His last topic of lessons learned is subdivided into prevention and early detection, recovery issues, management issues, and noteworthy practices

  13. Treatment of organic radioactive waste in decommissioning project

    International Nuclear Information System (INIS)

    Dimovic, S.; Plecas, I.

    2003-01-01

    This paper describes methods of treatment of organic radioactive waste in the aspect of its integral part of radioactive waste which will arise during decommissioning process of nuclear power reactor RA (author)

  14. Virtual reality in decommissioning projects: experiences, lessons learned and future plans

    International Nuclear Information System (INIS)

    Rindahl, G.; Mark, N.K.F.; Meyer, G.

    2006-01-01

    The work on Virtual Reality (VR) tools for decommissioning planning, dose estimation and work management started at the Norwegian Institute for Energy Technology (IFE) in 1999 in the VR dose project with Japan Nuclear Cycle development institute (JNC), now JAEA. The main aim of this effort has been to help minimize workers' radiation exposure, as well as help to achieve more efficient use of human resources. VR dose is now used in the decommissioning of one of JNC's reactors, the Fugen Nuclear Power Station. This VR decommissioning project has later resulted in a series of projects and applications. In addition to decommissioning, IFE also put great focus on two other branches of VR tools, namely tools for knowledge management, training and education in operating facilities and tools for control room design. During the last years, this work, beginning at different ends, has been converging more and more towards VR technology for use through out the life cycle of a facility. A VR training simulator for a refuelling machine of the Leningrad NPP (LNPP) developed in cooperation with the Russian Research Centre Kurchatov Institute (RRC KI) is now planned to be used in connection with the decommissioning of the three intact reactors at Chernobyl in Ukraine. In this paper we describe experiences from use of VR in decommissioning processes, as well as results from bringing the VR technology initially developed for planned or productive facilities into the decommissioning toolbox. (author)

  15. Decommissioning of the gaseous diffusion plant at BNFL Capenhurst

    International Nuclear Information System (INIS)

    Baxter, S.G.; Bradbury, P.

    1992-01-01

    The history of the on-going dismantling and disposal program for the Capenhurst Diffusion Plant is described. Reference is made to the scale of the project and to the special techniques developed, particularly in the areas of size reduction, decontamination and protection of personnel and the environment. When the project is successfully concluded by the end of 1993 over 99% of the materials of construction of the plant will have been recycled to the environment as clean material. (author)

  16. Cost effective decommissioning and dismantling of nuclear power plants; Kosteneffizienz bei Stilllegung und Rueckbau von Kernkraftwerken

    Energy Technology Data Exchange (ETDEWEB)

    Wasinger, Karl [AREVA NP GmbH, Offenbach (Germany)

    2012-10-15

    As for any large and complex project, the basis for cost effective decommissioning and dismantling of nuclear power plants is established with the development of the project. Just as its construction, dismantling of a nuclear power plant is similarly demanding. Daily changing situations due to the progress of construction - in the present case progress of dismantling - result in significant logistical challenges for project managers and site supervisors. This will be aggravated by the fact that a considerable amount of the removed parts are contaminated or even activated. Hence, not only occupational health, safety and environmental protection is to be assured, employees, public and environment are to be adequately protected against the adverse effect of radioactive radiation as well. Work progress and not least expenses involved with the undertaking depend on adherence to the planned course of actions. Probably the most frequent cause of deviation from originally planned durations and costs of a project are disruptions in the flow of work. For being enabled to counteract in a timely and efficient manner, all required activities are to be comprehensively captured with the initial planning. The effect initial activities may have on subsequent works until completion must particularly be investigated. This is the more important the larger and more complex the project actually are. Comprehensive knowledge of all the matters which may affect the progress of the works is required in order to set up a suitable work break-down structure; such work break-down structure being indispensable for successful control and monitoring of the project. In building the related organizational structure of the project, all such stakeholders not being direct part of the project team but which may potentially affect the progress of the project are to be considered as well. Cost effective and lost time injury free dismantling of decommissioned nuclear power plants is based on implementing

  17. Safety culture and organisational issues specific to the transitional phase from operation to decommissioning of the Ignalina Nuclear Power Plant

    International Nuclear Information System (INIS)

    Medeliene, D.

    2005-01-01

    The PHARE project Support to State Nuclear Power Safety Inspectorate for safety culture and organisational issues specific to the pre-shutdown phase of Ignalina Nuclear Power Plant was aimed at providing assistance to VATESI in their task to oversee that the Ignalina Nuclear Power Plant's management and staff are able to provide an acceptable level of reactor safety taking into account possible safety culture related problems that may occur due to the decision of an early closure of both units. Safety culture is used as a concept to characterise the attitudes, behaviour and perceptions of people that are important in ensuring the safety of nuclear power facility. Since the Chernobyl accident, the International Atomic Energy Agency (IAEA) has been active in creating guidance for ensuring that an adequate safety culture can be created and maintained. The transition from operation to decommissioning introduces uncertainty for both the organisation and individuals. This creates new challenges that need to be dealt with. Although safety culture and organisational issues have to be addressed during the entire life cycle of a nuclear power plant, owing to these special challenges, it should be especially highlighted during the transitional period from operation to decommissioning. Nuclear safety experts from Sweden, Finland, Italy, the UK and Germany, as well as Lithuanian specialists, participated in the project, and it proved to be a most effective way to share experience. The aim of this brochure is to provide information about: the importance of safety culture issues during the transitional phase from operation to decommissioning of Ignalina Nuclear Power Plant; the purpose, activities and results of this PHARE project; recommendations that are provided by western experts concerning the management of safety culture issues specific to the pre-decommissioning phase of Ignalina Nuclear Power Plant. (author)

  18. Decommissioning nuclear facilities

    International Nuclear Information System (INIS)

    Buck, S.

    1996-01-01

    Nuclear facilities present a number of problems at the end of their working lives. They require dismantling and removal but public and environmental protection remain a priority. The principles and strategies are outlined. Experience of decommissioning in France and the U.K. had touched every major stage of the fuel cycle by the early 1990's. Decommissioning projects attempt to restrict waste production and proliferation as waste treatment and disposal are costly. It is concluded that technical means exist to deal with present civil plant and costs are now predictable. Strategies for decommissioning and future financial provisions are important. (UK)

  19. Implementation of the international structure for decommissioning costing; examples and related IAEA projects - 59313

    International Nuclear Information System (INIS)

    Daniska, Vladimir; Laraia, Michele; O'Sullivan, Patrick

    2012-01-01

    In 1999, IAEA, the OECD Nuclear Energy Agency and the European Commission jointly proposed the standardised listing of decommissioning activities [1] to serve as a general basis for presentation of decommissioning costs and for promoting the harmonisation in decommissioning costing. The standardised listing of activities [1] was developed in three hierarchical levels based on analysis of typical decommissioning activities identified in various decommissioning projects. The structure [1] has been currently updated by the same organisations as the International Structure for Decommissioning Costing (ISDC) based on the experience gained over ten years of use of the original standardised listing [2]. First part of the paper presents the revised ISDC. The principle of the three-level original hierarchical structure has been preserved. Re-definition of the content and re-structuring was done to avoid ambiguity and to ensure comprehensiveness. Paper presents two basic approaches for implementation of the ISDC structure in costing - converting the cost data available in specific cost structures, mostly according the work breakdown structures of decommissioning projects into ISDC and implementation of the ISDC as the cost calculation structure. Examples of the second approach are given to show that this approach is feasible and may have several advantages. An ORACLE based costing model with implemented of the extended ISDC for detailed costing and an Excel based costing model for preliminary costing at IAEA for research reactors are given. (authors)

  20. Situation and perspective of the decommissioning of nuclear power plants in Germany

    International Nuclear Information System (INIS)

    Kuroda, Yuji

    2012-01-01

    After the Fukushima Daiichi nuclear power plant accident that occurred in 2011, Germany has decided to go back to the phasing out of nuclear energy, with eight reactors shut down. In accordance with this, the number of operating nuclear plants has reduced to 9 from 17. On the other hand, the number of closed reactors is now 27, and the country has become the world's third largest country after the United Kingdom and the United States in the decommissioning field. In this paper, it is described the current situation and perspectives of the decommissioning in Germany, with the history of phasing out of nuclear energy. At first, the basic framework of regulatory regime and funding system are introduced. Then, experience of operations at decommissioning plants and status of radiation waste management are explained. Although the work on decommissioning is steadily proceeding in the country, establishing of final repository of high level waste is still remaining as the most important issue. (author)

  1. Stakeholder involvement in the decommissioning of Trojan and Maine Yankee nuclear power plants

    International Nuclear Information System (INIS)

    Watson, Bruce A.; Orlando, Dominick A.

    2006-01-01

    Trojan Nuclear Plant (Trojan) and Maine Yankee Nuclear Plant (Maine Yankee) were the first two power reactors to complete decommissioning under the U. S. Nuclear Regulatory Commission's (NRC's) License Termination Rule (LTR), 10 CFR Part 20, Subpart E. The respective owners' decisions to decommission the sites resulted in different approaches to both the physical aspects of the decommissioning, and the approach for obtaining approval for completing the decommissioning in accordance with regulations. Being in different States, the two single-unit pressurized water reactor sites had different State requirements and levels of public interest that impacted the decommissioning approaches. This resulted in significant differences in the decommissioning planning, the conduct of decommissioning operations, the volume of low-level radioactive waste, and the final status survey (FSS) program. While both licensees have Independent Spent Fuel Storage Installations (ISFSIs), Trojan obtained a separate license for the ISFSI in accordance with the requirements of 10 CFR Part 72 and terminated its 10 CFR Part 50 license. Maine Yankee elected to reduce the 10 CFR Part 50 license to only the requirements for the ISFSI. While the NRC regulations are flexible and allow different approaches to ISFSI licensing, there are separate licensing requirements that must be addressed. In 10 CFR 50.82, the NRC mandates public participation in the decommissioning process. For Maine Yankee, stakeholder and public input resulted in the licensee entering into an agreement with a citizen group and resulted in State legislation that lowered the dose limit below the NRC radiological criteria of 0.25 milli-Sievert/year (mSv/yr) (25 mrem/yr) in 10 CFR 20.1402 for unrestricted use. The lowering of the radiological criteria resulted in a significant dose modeling effort using site-specific Derived Concentrations Guideline Levels (DCGLs) that were well below the NRC DCGL screening values. This contributed to

  2. SGDes project. Decommissioning management system of Enresa; Proyecto SGDes. Sistema de Gestion de Desmantelamiento de Enresa

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez Lopez, M.; Julian, A. de

    2013-03-01

    ENRESA, the public company responsible for managing radioactive waste produced in spain and nuclear facilities decommissioning work, has developed a management information system (SGDes) for the decommissioning of nuclear power plants, critical for the company. SGDes system is capable of responding to operational needs for efficient, controlled and secure way. Dismantling activities require a rigorous operations control within highly specialized, process systematization and safety framework, both the human and technological point of view. (Author)

  3. Waste minimization value engineering workshop for the Los Alamos National Laboratory Omega West Reactor Decommissioning Project

    International Nuclear Information System (INIS)

    Hartnett, S.; Seguin, N.; Burns, M.

    1995-01-01

    The Los Alamos National Laboratory Pollution Prevention Program Office sponsored a Value Engineering (VE) Workshop to evaluate recycling options and other pollution prevention and waste minimization (PP/WMin) practices to incorporate into the decommissioning of the Omega West Reactor (OWR) at the laboratory. The VE process is an organized, systematic approach for evaluating a process or design to identify cost saving opportunities, or in this application, waste reduction opportunities. This VE Workshop was a facilitated process that included a team of specialists in the areas of decontamination, decommissioning, PP/WMin, cost estimating, construction, waste management, recycling, Department of Energy representatives, and others. The uniqueness of this VE Workshop was that it used an interdisciplinary approach to focus on PP/WMin practices that could be included in the OWR Decommissioning Project Plans and specifications to provide waste reduction. This report discusses the VE workshop objectives, summarizes the OWR decommissioning project, and describes the VE workshop activities, results, and lessons learned

  4. Collection and sharing of data and experience from EC-funded decommissioning projects

    International Nuclear Information System (INIS)

    Pflugrad, K.; Colquhoun, A.P.; Schreck, G.; Huske, M.; Petrasch, P.; Tuenckens, L.R.J.

    1999-01-01

    The European Commission's Fourth Framework Programme (1994-1998) on Nuclear Fission Safety includes the funding of projects relevant to the decommissioning of nuclear installations. The objectives of the programme for decommissioning are to continue the development of technology (a) to collect and analyse relevant data (b) to test and evaluate strategies and techniques and to stimulate the exchange of information and experience. Objective (b) involves related projects aimed at collecting and analysing data from past, current and future EC programmes and making them understandable and readily available in databases as well as studying how these and other databases might be integrated in a decommissioning strategic planning tool (SPT). This aims to assist EU organizations in making strategic choices for optimizing decommissioning programmes. This paper gives an update on database work, a progress report on the development of an EU access network and work on the standardization of cost item definitions. Progress on the SPT study is reviewed. (author)

  5. Waste minimization value engineering workshop for the Los Alamos National Laboratory Omega West Reactor Decommissioning Project

    Energy Technology Data Exchange (ETDEWEB)

    Hartnett, S.; Seguin, N. [Benchmark Environmental Corp., Albuquerque, NM (United States); Burns, M. [Los Alamos National Lab., NM (United States)

    1995-12-31

    The Los Alamos National Laboratory Pollution Prevention Program Office sponsored a Value Engineering (VE) Workshop to evaluate recycling options and other pollution prevention and waste minimization (PP/WMin) practices to incorporate into the decommissioning of the Omega West Reactor (OWR) at the laboratory. The VE process is an organized, systematic approach for evaluating a process or design to identify cost saving opportunities, or in this application, waste reduction opportunities. This VE Workshop was a facilitated process that included a team of specialists in the areas of decontamination, decommissioning, PP/WMin, cost estimating, construction, waste management, recycling, Department of Energy representatives, and others. The uniqueness of this VE Workshop was that it used an interdisciplinary approach to focus on PP/WMin practices that could be included in the OWR Decommissioning Project Plans and specifications to provide waste reduction. This report discusses the VE workshop objectives, summarizes the OWR decommissioning project, and describes the VE workshop activities, results, and lessons learned.

  6. Technology, safety, and costs of decommissioning a reference nuclear fuel reprocessing plant

    International Nuclear Information System (INIS)

    Schneider, K.J.; Jenkins, C.E.; Rhoads, R.E.

    1977-09-01

    Safety and cost information were developed for the conceptual decommissioning of a fuel reprocessing plant with characteristics similar to the Barnwell Nuclear Fuel Plant. The main process building, spent fuel receiving and storage station, liquid radioactive waste storage tank system, and a conceptual high-level waste-solidification facility were postulated to be decommissioned. The plant was conceptually decommissioned to three decommissioning states or modes; layaway, protective storage, and dismantlement. Assuming favorable work performance, the elapsed time required to perform the decommissioning work in each mode following plant shutdown was estimated to be 2.4 years for layaway, 2.7 years for protective storage, and 5.2 years for dismantlement. In addition to these times, approximately 2 years of planning and preparation are required before plant shutdown. Costs, in constant 1975 dollars, for decommissioning were estimated to be $18 million for layaway, $19 million for protective storage and $58 million for dismantlement. Maintenance and surveillance costs were estimated to be $680,000 per year after layaway and $140,000 per year after protective storage. The combination mode of protective storage followed by dismantlement deferred for 10, 30, and 100 years was estimated to cost $64 million, $67 million and $77 million, respectively, in nondiscounted total 1975 dollars. Present values of these costs give reduced costs as dismantlement is deferred. Safety analyses indicate that radiological and nonradiological safety impacts from decommissioning activities should be small. The 50-year radiation dose commitment to the members of the public from airborne releases from normal decommissioning activities were estimated to be less than 11 man-rem

  7. Technology, safety, and costs of decommissioning a reference nuclear fuel reprocessing plant

    Energy Technology Data Exchange (ETDEWEB)

    Schneider, K.J.; Jenkins, C.E.; Rhoads, R.E.

    1977-09-01

    Safety and cost information were developed for the conceptual decommissioning of a fuel reprocessing plant with characteristics similar to the Barnwell Nuclear Fuel Plant. The main process building, spent fuel receiving and storage station, liquid radioactive waste storage tank system, and a conceptual high-level waste-solidification facility were postulated to be decommissioned. The plant was conceptually decommissioned to three decommissioning states or modes; layaway, protective storage, and dismantlement. Assuming favorable work performance, the elapsed time required to perform the decommissioning work in each mode following plant shutdown was estimated to be 2.4 years for layaway, 2.7 years for protective storage, and 5.2 years for dismantlement. In addition to these times, approximately 2 years of planning and preparation are required before plant shutdown. Costs, in constant 1975 dollars, for decommissioning were estimated to be $18 million for layaway, $19 million for protective storage and $58 million for dismantlement. Maintenance and surveillance costs were estimated to be $680,000 per year after layaway and $140,000 per year after protective storage. The combination mode of protective storage followed by dismantlement deferred for 10, 30, and 100 years was estimated to cost $64 million, $67 million and $77 million, respectively, in nondiscounted total 1975 dollars. Present values of these costs give reduced costs as dismantlement is deferred. Safety analyses indicate that radiological and nonradiological safety impacts from decommissioning activities should be small. The 50-year radiation dose commitment to the members of the public from airborne releases from normal decommissioning activities were estimated to be less than 11 man-rem.

  8. Decommissioning of the research nuclear reactor WWR-S Magurele - Bucharest. General presentation of the project

    International Nuclear Information System (INIS)

    Dragulescu, Emilian; Dragusin, Mitica; Popa, Victor; Boicu, Alin; Tuca, Carmen; Iorga, Ioan; Vrabie, Ionut; Mustata, Carmen

    2003-01-01

    A decommissioning project was worked out concerning the nuclear facility research reactor WWR-S Magurele-Bucharest to remove the radioactive and hazardous materials and so to exclude any risk for human health and environment. The project involves the four phases named assessment, development, operations and closeout. There are two major parts to the assesment phase: preliminary characterisation and the review and decision-making process. Characterisation is needed to develop project baseline data, which should include sufficient chemical, physical, and radiological characterisation to meet planning needs. Based on the conclusions of these studies, possible decommissioning alternative will be analyzed and: the best alternative chosen, final goal identified, risk assessments are evaluated. Also, taken into account are: regulations supporting assessment, land use considerations, financial concerns, disposal availability, public involvement, technology developments. After a decommissioning alternative was chosen, detailed engineering will begin following appropriate regulatory guidance. The plan will include characterisation information, namely: review of decommissioning alternatives; justification for the selected alternative; provision for regulatory compliance; predictions of personnel exposure, radioactive waste volume, and cost. Other activities are: scheduling, preparation for decommissioning operations; coordination, documentation, characterization report, feasibility studies, Decommissioning Plan, project daily report, radiological survey, airborne sampling records, termination survey of the site. The operations imply: identification and sequencing the operations on contaminated materials, storing on site the wastes, awaiting processing or disposal, and packaging of materials for transport to processing or disposal facilities.The key operations are: worker protection, health and safety program, review of planing work, work area assessment, work area controls

  9. Safety analysis for the 233-S decontamination and decommissioning project

    International Nuclear Information System (INIS)

    Thoren, S.

    1996-08-01

    Decommissioning of the 233-S Plutonium Concentration Facility (REDOX) is a proposed expedited response action that is regulated by the Comprehensive Environmental Response Compensation and Liability Act of 1980 and the Hanford Federal Facility Agreement and Consent Order. Due to progressive physical deterioration of this facility, a decontamination and decommissioning plan is being considered for the immediate future. This safety analysis describes the proposed actions involved in this D ampersand D effort; identifies the radioactive material inventories involved; reviews site specific environmental characteristics and postulates an accident scenario that is evaluated to identify resultant effects

  10. Project Management Unit for decommissioning of NPP Bohunice VI (2003-2014)

    International Nuclear Information System (INIS)

    Gonzalez Fernandez-conde, A.; Brochet, I.; Ferreira, A.

    2015-01-01

    From October 2003 until december 2014 the Consortium consisting of Iberdrola Engineering and Construction (leader). Empresarios Agrupados Internacional, and Indra Sistemas has carried out the project Project Management Unit ((PMU) for the decommissioning of Bohunice V1 NPP (units 1 and 2), type VVER-440/V-230 in Slovakia. during the first phase (2003-2007) EdF was also part of the Consortium. The project is funded by the Bohunice International Decommissioning Support Fund (BIDSF) administered by the RBRD. The main objective of the project is to provide the necessary engineering and resources of project management for planning, execution, management, coordination and monitoring of all tasks in support of the decommissioning. (Author)

  11. Decommissioning, mothballing and revamping

    International Nuclear Information System (INIS)

    Briggs, M.; Buck, S.; Smith, M.

    1997-01-01

    This guide, written to assist those concerned with the decommissioning of redundant facilities, is applicable to nuclear, chemical and power plants. Legal aspects and risk management is covered in the pre-project stage. Preparation for and execution of renovation, modification or mothballing of various plants is also covered. Dismantling operations and the necessary follow-up conclude the book. (UK)

  12. Decommissioning Handbook

    International Nuclear Information System (INIS)

    Cusack, J.G.; Dalfonso, P.H.; Lenyk, R.G.

    1994-01-01

    The Decommissioning Handbook provides technical guidance on conducting decommissioning projects. Information presented ranges from planning logic, regulations affecting decommissioning, technology discussion, health and safety requirements, an developing a cost estimate. The major focus of the handbook are the technologies -- decontamination technologies, waste treatment, dismantling/segmenting/demolition, and remote operations. Over 90 technologies are discussed in the handbook providing descriptions, applications, and advantages/disadvantages. The handbook was prepared to provide a compendium of available or potentially available technologies in order to aid the planner in meeting the specific needs of each decommissioning project. Other subjects presented in the Decommissioning Handbook include the decommissioning plan, characterization, final project configuration based planning, environmental protection, and packaging/transportation. These discussions are presented to complement the technologies presented in the handbook

  13. Electricite de France Strategy for its nuclear power plants' decommissioning programme

    International Nuclear Information System (INIS)

    Knockaert, J.M.; Gatineau, J.P.

    1992-01-01

    Although final shutdown of the first large PWR Power Stations should not occur before 2015, Electricity of France is nevertheless directly concerned by the decommissioning of its nuclear plants. The shutdown programme of the gas-graphite units is in progress and the medium-power PWR plant (300 MWe) installed at Chooz in the Ardennes will be finally shutdown at the end of 1991. This solution requires EDF to have a policy available which enables it to simultaneously run the double operation 'Plant shutdown-decommissioning' and 'New constructions-increasing available power' from both the technical and financial viewpoints. (author)

  14. Project management for the decommissioning and dismantling of nuclear facilities; Projektmanagement fuer Stilllegung und Rueckbau kerntechnischer Anlagen

    Energy Technology Data Exchange (ETDEWEB)

    Klasen, Joerg; Wilhelm, Oliver [ENBW Kernkraft GmbH, Neckarwestheim (Germany); Seizer, Burkhard; Schuetz, Tobias [Drees und Sommer, Stuttgart (Germany)

    2015-12-15

    The decommissioning of nuclear power plants is executed in a classic project manner as it is known from other construction projects. It is obvious to use the known portfolio of project management tools. The complexity that is created by the large size of the project in combination with safety requirements of the nuclear industry has to be handled. Complexity can only be managed addressing two main drivers: Prioritization and speed (agility) in project execution. Prioritization can be realized by applying tools like Earned Value Management. A high speed of project execution is established by applying Agile Management like SCRUM-methods. This method is adopted in the context of the cooperation ''Complex Projects'' to the needs of nuclear industry.

  15. Decommissioning of units 1 - 4 at Kozloduy nuclear power plant in Bulgaria

    International Nuclear Information System (INIS)

    Dishkova, Denitsa

    2014-01-01

    Nuclear safety and security are absolute priorities for the European Union countries and this applies not only to nuclear power plants in operation but also to decommissioning. In terms of my technical background and my working experience in the field of licensing and environmental impact assessment during the decommissioning of Units 1 to 4 at Kozloduy Nuclear Power Plant (KNPP) in Bulgaria, I decided to present the strategy for decommissioning of Units 1 to 4 at KNPP which was selected and followed to achieve safe and effective decommissioning process. The selected strategy in each case must meet the legislative framework, to ensure safe management of spent fuel and radioactive waste, to provide adequate funding and to lead to positive socio-economic impact. The activities during the decommissioning generate large volume of waste. In order to minimize their costs and environmental impact it should be given a serious consideration to the choice, the development and the implementation of the most adequate process for treatment and the most appropriate measurement techniques. The licensing process of the decommissioning activities is extremely important and need to cope with all safety concerns and ensure optimal waste management. (authors)

  16. Technical and cost aspects of radioactive wastes from decommissioning

    International Nuclear Information System (INIS)

    Claes, J.; Menon, S.

    2001-01-01

    The OECD Nuclear Energy Agency's Co-operative Programme on Decommissioning was established in 1985 to share the experience and information emerging from on-going decommissioning projects within member countries. The main aim of the programme is to gather and collate such data, which can then provide the basis for planning the future industrial phase of decommissioning of commercial nuclear plants. Starting with 10 decommissioning projects in 1985, today the programme has 35 participating projects from 12 countries. Apart from exchanging valuable information, task groups have been set up for in-depth analysis and studies of areas of common interest, among which are the recycling of material from decommissioning projects and decommissioning costs. This paper will describe the structure and mode of operation of the programme. Some of the results of the work in the task groups will be presented, with particular emphasis on the management of materials from decommissioning and on decommissioning costs. (author)

  17. Criticality evaluation for the 233-S decontamination and decommissioning project

    International Nuclear Information System (INIS)

    1996-08-01

    This criticality evaluation document analyzes the potential of a criticality event as a result of decontaminating and decommissioning the 233-S Plutonium Concentration Facility. These calculations supplement the previous set of calculations performed under this same contract, which were performed on March 13, 1996. These calculations were performed using the same MCNP computer code as for the previous set; the validation calculations performed then are valid for this set as well. Hand calculations, using the method of Solid Angle, were also developed

  18. A state-of-the art on decommissioning of nuclear facilities in Japan

    International Nuclear Information System (INIS)

    Park, Seung Kook; Kim, Hee Reyoung; Chung, Un Soo; Jung, Ki Jung

    2002-05-01

    While proceeding the KRR-1 and 2 decommissioning project, we are carried out study for the state of the art on decommissioning of nuclear facilities in Japan. Also, we are studied for the research reactors and commercial power plant that has the object of decommissioning, and for the government and the organization related on decommissioning operation. We are investigated for decommissioning activities of nuclear facilities achieved by JAERI, and collected the information and data for decommissioning techniques and computational system through the JPDR(Japan Power Demonstration Reactor) decommissioning activities. Such techniques are applying for Tokai Power Station began the decommissioning project from last year, and for Fugen Nuclear Power Station to be planned the decommissioning from 2003. Recent techniques for decommissioning was acquired by direct contact. The status of the treatment for decommissioning waste and the disposal facility for the very low-level radioactive concrete wastes was grasped

  19. Engineering and planning for decommissioning of nuclear power plants

    International Nuclear Information System (INIS)

    Gans, G.M. Jr.

    1982-01-01

    With the publication of NUREG-0586, ''Draft Generic Environmental Impact Statement on Decommissioning of Nuclear Facilities'' in January, 1981 the Nuclear Regulatory Commission staff has put the industry on notice that the termination of operating licenses and the final disposal of physical facilities will require the early consideration of several options and approaches and the preparation of comprehensive engineering and planning documents for the selected option at the end of useful life. This paper opens with a discussion of the options available and the principal aspects of decommissioning. The major emphasis of the composition is the nature of documents, the general approach to be followed, and special considerations to be taken into account when performing the detailed engineering and planning for decommissioning, as the end of life approaches and actual physical disposal is imminent. The author's main point of reference is on-going work by Burns and Roe, with Nuclear Energy Services, under contract to the Department of Energy's Richland Office, to perform the engineering and planning for the decommissioning of the Shippingport Atomic Power Station in Pennsylvania

  20. Decommissioning of NPP A-1

    International Nuclear Information System (INIS)

    Anon

    2009-01-01

    In this presentation the Operation history of A1 NPP, Project 'Decommissioning of A1 NPP' - I stage, Project 'Decommissioning of A1 NPP ' - II stage and Next stages of Project 'Decommissioning of A1 NPP ' are discussed.

  1. Safety analysis of disposal of decommissioning waste from the Olkiluoto nuclear power plant - PURKU-93

    International Nuclear Information System (INIS)

    Vieno, T.; Meszaros, F.; Nordman, H.; Taivassalo, V.

    1993-12-01

    Decommissioning waste from the Olkiluoto nuclear power plant will be disposed of at the depth between 60 and 100 meters in the bedrock at the power plant site. The existing VLJ repository for low and medium level operating waste will be extended with three new silos for the decommissioning waste of the TVO I and II reactors and the spent fuel interim store at the Olkiluoto site. Besides dismantling waste also used fuel boxes, control rods and other activated metal components accumulated during the operation of the reactors will be disposed of in the repository. The safety analysis is based on the detailed decommissioning plan of the Olkiluoto power plants and the comprehensive safety analysis carried out for the Final Safety Analysis Report of the VLJ repository. (58 refs., 31 figs., 38 tabs.)

  2. Plant Biology Science Projects.

    Science.gov (United States)

    Hershey, David R.

    This book contains science projects about seed plants that deal with plant physiology, plant ecology, and plant agriculture. Each of the projects includes a step-by-step experiment followed by suggestions for further investigations. Chapters include: (1) "Bean Seed Imbibition"; (2) "Germination Percentages of Different Types of Seeds"; (3)…

  3. The decommissioning information management system

    International Nuclear Information System (INIS)

    Park, Seung-Kook; Moon, Jei-Kwon

    2015-01-01

    At the Korea Atomic Energy Research Institute (KAERI), the Korea Research Reactor (KRR-2) and one uranium conversion plant (UCP) were decommissioned. A project was launched in 1997, for the decommissioning of KRR-2 reactor with the goal of completion by 2008. Another project for the decommissioning of the UCP was launched in 2001. The physical dismantling works were started in August 2003 and the entire project was completed by the end of 2010. KAERI has developed a computer information system, named DECOMMIS, for an information management with an increased effectiveness for decommissioning projects and for record keeping for the future decommissioning projects. This decommissioning information system consists of three sub-systems; code management system, data input system (DDIS) and data processing and output system (DDPS). Through the DDIS, the data can be directly inputted at sites to minimize the time gap between the dismantling activities and the evaluation of the data by the project staff. The DDPS provides useful information to the staff for more effective project management and this information includes several fields, such as project progress management, man power management, waste management, and radiation dose control of workers and so on. The DECOMMIS was applied to the decommissioning projects of the KRR-2 and the UCP, and was utilized to give information to the staff for making decisions regarding the progress of projects. It is also to prepare the reference data for the R and D program which is for the development of the decommissioning engineering system tools and to maintain the decommissioning data for the next projects. In this paper, the overall system will be explained and the several examples of its utilization, focused on waste management and manpower control, will be introduced. (author)

  4. Study on the Operating Strategy of HVAC Systems for Nuclear Decommissioning Plant

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sung-hwan; Han, Sung-heum; Lee, Jae-gon [KHNP CRI, Daejeon (Korea, Republic of)

    2016-10-15

    According as Kori nuclear power plant unit 1 was determined to be defueled in 2017, various studies on nuclear plant decommissioning have been performed. In nuclear decommissioning plant, HVAC systems with large fan and electric coil have to be operated for long periods of time to support various types of work from defueled phase to final dismantling phase. So, in view of safety and utility costs, their overall operating strategy need to be established prior to defueled phase. This study presents HVAC system operating strategy at each decommissioning phase, that is, defueled plant operating phase, SSCs(systems, structures, components) decontamination and dismantling phases. In defueled plant operating phase, all fuel assemblies in reactor vessel are transferred to spent fuel pool(SFP) permanently. In defueled plant operation phase, reduction of the operating system trains is more practicable than the introduction of new HVAC components with reduced capacity. And, based on the result of the accident analyses for this phase, HVAC design bases such as MCR habitability requirement can be mitigated. According to these results, associated SSCs also can be downgraded. In similar approach, at each phase of plant decommissioning, proper inside design conditions and operating strategies should be re-established.

  5. United States nuclear regulatory commission program for inspection of decommissioning nuclear power plants

    International Nuclear Information System (INIS)

    Harris, P.W.

    2001-01-01

    The United States Nuclear Regulatory Commission (USNRC or Commission) has been inspecting decommissioning commercial nuclear power plants in the United States (U.S.) since the first such facility permanently shutdown in September 1967. Decommissioning inspections have principally focused on the safe storage and maintenance of spent reactor fuel; occupational radiation exposure; environmental radiological releases; the dismantlement and decontamination of structures, systems, and components identified to contain or potentially contain licensed radioactive material; and the performance of final radiological survey of the site and remaining structures to support termination of the USNRC-issued operating license. Over the last 5 years, USNRC inspection effort in these areas has been assessed and found to provide reasonable confidence that decommissioning can be conducted safely and in accordance with Commission rules and regulations. Recently, the staff has achieved a better understanding of the risks associated with particular decommissioning accidents 1 and plans to apply these insights to amendments proposed to enhance decommissioning rules and regulations. The probabilities, scenarios, and conclusions resulting from this effort are being assessed as to their applicability to the inspection of decommissioning commercial power reactors. (author)

  6. United States nuclear regulatory commission program for inspection of decommissioning nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Harris, P.W. [U.S. Nuclear Regulatory Commission, Washington, DC (United States)

    2001-07-01

    The United States Nuclear Regulatory Commission (USNRC or Commission) has been inspecting decommissioning commercial nuclear power plants in the United States (U.S.) since the first such facility permanently shutdown in September 1967. Decommissioning inspections have principally focused on the safe storage and maintenance of spent reactor fuel; occupational radiation exposure; environmental radiological releases; the dismantlement and decontamination of structures, systems, and components identified to contain or potentially contain licensed radioactive material; and the performance of final radiological survey of the site and remaining structures to support termination of the USNRC-issued operating license. Over the last 5 years, USNRC inspection effort in these areas has been assessed and found to provide reasonable confidence that decommissioning can be conducted safely and in accordance with Commission rules and regulations. Recently, the staff has achieved a better understanding of the risks associated with particular decommissioning accidents 1 and plans to apply these insights to amendments proposed to enhance decommissioning rules and regulations. The probabilities, scenarios, and conclusions resulting from this effort are being assessed as to their applicability to the inspection of decommissioning commercial power reactors. (author)

  7. Strategy for decommissioning of the glove-boxes in the Belgonucleaire Dessel MOX fuel fabrication plant

    International Nuclear Information System (INIS)

    Vandergheynst, Alain; Cuchet, Jean-Marie

    2007-01-01

    Available in abstract form only. Full text of publication follows: BELGONUCLEAIRE has been operating the Dessel plant from the mid-80's at industrial scale. In this period, over 35 metric tons of plutonium (HM) was processed into almost 100 reloads of MOX fuel for commercial West-European Light Water Reactors. In late 2005, the decision was made to stop the production because of the shortage of MOX fuel market remaining accessible to BELGONUCLEAIRE after the successive capacity increases of the MELOX plant (France) and the commissioning of the SMP plant (UK). As a significant part of the decommissioning project of this Dessel plant, about 170 medium-sized glove-boxes are planned for dismantling. In this paper, after having reviewed the different specifications of ±-contaminated waste in Belgium, the authors introduce the different options considered for cleaning, size reduction and packaging of the glove-boxes, and the main decision criteria (process, α-containment, mechanization and radiation protection, safety aspects, generation of secondary waste, etc) are analyzed. The selected strategy consists in using cold cutting techniques and manual operation in shielded disposable glove-tents, and packaging α-waste in 200-liter drums for off-site conditioning and intermediate disposal. (authors)

  8. Development of Soil Derived Concentration Guidance Levels for Decommissioning at Overseas Nuclear Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Sohn, Wook; Yoon, Suk Bon; Kim, Jeongju [KHNP CRI, Daejeon (Korea, Republic of)

    2016-10-15

    In Korea, the criteria are expected to be given in terms of dose as in US and Spain. However, since dose cannot be measured, corresponding measurable concentration limits, so-called Derived Concentration Guidance Levels (DCGLs), should be developed for each radionuclide which is expected to be present in the site. Also, as they serve as a goal of decommissioning and direct dismantling and decontamination methods applicable to the site, DCGLs should be developed in the early phase of decommissioning. This paper describes how each overseas nuclear power plant developed its site-specific Soil DCGLs: what kind of post closure use of the site (scenario) was assumed and how the site-specific Soil DCGLs were calculated based on the scenario assumed for each plant. Through this, it is intended to derive lessons learned which will be instructive for future decommissioning of domestic nuclear power plants including Kori Unit 1. It is very important to have as good under-standing as possible of characteristics of the site by collection of relevant information and data in order to apply a scenario which is most foreseeable and plausible for a site to be decommissioned and to provide site-specific inputs to the calculation of the Soil DCGLs. These efforts will help to have not-overly conservative values for the Soil DCGLs, thus thereby reducing the costs and time needed for performing the decommissioning.

  9. Estimation and characterization of decontamination and decommissioning solid waste expected from the Plutonium Finishing Plant

    International Nuclear Information System (INIS)

    Millar, J.S.; Pottmeyer, J.A.; Stratton, T.J.

    1995-01-01

    Purpose of the study was to estimate the amounts of equipment and other materials that are candidates for removal and subsequent processing in a solid waste facility when the Hanford Plutonium Finishing Plant is decontaminated and decommissioned. (Building structure and soil are not covered.) Results indicate that ∼5,500 m 3 of solid waste is expected to result from the decontamination and decommissioning of the Pu Finishing Plant. The breakdown of the volumes and percentages of waste by category is 1% dangerous solid waste, 71% low-level waste, 21% transuranic waste, 7% transuranic mixed waste

  10. Use of project management approach for planning of decommissioning activities of a uranium mining site

    International Nuclear Information System (INIS)

    Ribeiro, Saulo F.Q.; Lage, Ricardo F.; Gomes, Danielle E.; Ogawa, Iukio

    2017-01-01

    The decommissioning of nuclear facilities in the fuel cycle is an extremely important factor for the continuity of nuclear program in any country, especially in that countries such as Brazil, where there are some facilities are in process of being dismantled or must be decommissioned in the medium and long term. Since the decommissioning is a process quite complex and expensive and for this reason, it must be handle with modern management practices for so that the chances of success are increased. This work aims to describe the management plan and the strategy adopted for the execution of the decommissioning and environmental remediation (D and ER) activities for the first uranium mine in Brazil, located in the Minas Gerais State and known as Unidade de Tratamento de Minério (UTM). This facility was operated between 1982 and 1995. All the economically recoverable uranium was extracted and nowadays there is no mining activity is underway and there are only research and laboratory activities are running in the site. The conceptual plans for decommissioning and remediation for this unit have been prepared and emergency activities were recommended. These activities are related to studies about drainage acid, ensure safety of dams, adequacy of CAKE II storage conditions and request for operating licenses for the decommissioning from IBAMA and the authorization from CNEN. The majority of the critical factors for decommissioning had their origin due the characteristics of the project have been implemented and has remained due to uncertainties in the decision-making process over time. This project has a set of variables that need to be analyzed considering different aspects as licensing and regulatory framework, radiological, technical and engineering issues, beyond costs, schedule, risks and human resources. In this sense, it was decided to adopt the good practices of project management, published by the Project Management Institute - PMI and to give a differentiated

  11. Use of project management approach for planning of decommissioning activities of a uranium mining site

    Energy Technology Data Exchange (ETDEWEB)

    Ribeiro, Saulo F.Q.; Lage, Ricardo F.; Gomes, Danielle E.; Ogawa, Iukio, E-mail: quintao.saulo@gmail.com, E-mail: rflage@gmail.com, E-mail: danielle@inb.gov.br, E-mail: iukio@inb.gov.br [Indústrias Nucleares do Brasil (INB), Rio de Janeiro, RJ (Brazil)

    2017-07-01

    The decommissioning of nuclear facilities in the fuel cycle is an extremely important factor for the continuity of nuclear program in any country, especially in that countries such as Brazil, where there are some facilities are in process of being dismantled or must be decommissioned in the medium and long term. Since the decommissioning is a process quite complex and expensive and for this reason, it must be handle with modern management practices for so that the chances of success are increased. This work aims to describe the management plan and the strategy adopted for the execution of the decommissioning and environmental remediation (D and ER) activities for the first uranium mine in Brazil, located in the Minas Gerais State and known as Unidade de Tratamento de Minério (UTM). This facility was operated between 1982 and 1995. All the economically recoverable uranium was extracted and nowadays there is no mining activity is underway and there are only research and laboratory activities are running in the site. The conceptual plans for decommissioning and remediation for this unit have been prepared and emergency activities were recommended. These activities are related to studies about drainage acid, ensure safety of dams, adequacy of CAKE II storage conditions and request for operating licenses for the decommissioning from IBAMA and the authorization from CNEN. The majority of the critical factors for decommissioning had their origin due the characteristics of the project have been implemented and has remained due to uncertainties in the decision-making process over time. This project has a set of variables that need to be analyzed considering different aspects as licensing and regulatory framework, radiological, technical and engineering issues, beyond costs, schedule, risks and human resources. In this sense, it was decided to adopt the good practices of project management, published by the Project Management Institute - PMI and to give a differentiated

  12. Ecological aspects of decommissioning of the Chornobyl Nuclear Power Plant

    International Nuclear Information System (INIS)

    Oskolkov, B.Ya.; Nosovskij, A.V.

    2001-01-01

    During the development of Design of ChNPP Decommissioning, it is necessary to consider all the real ecological conditions of its existence and, taking into account the economic potential, to define the achievable and expedient final result, i.e. the final ecological goal. The final goal of ChNPP decommissioning from the point of view of ecology is the termination of the unfavorable influence of the object on the ecosystem of the location area and renovation of the natural conditions of the environment up to the starting level, i.e. like it was prior to the NPP construction or to the level of accepted for the society at present considering the minimization of the problems for the future generations. For the Chornobyl NPP this result is practically unachievable

  13. Decommissioning and dismantling of the reprocessing plant Karlsruhe

    International Nuclear Information System (INIS)

    Eiben, K.; Fritz, P.

    1995-01-01

    Reprocessing activities were discontinued in late 1990. The facility was drained and rinsed, and 80 m3 of HLWC have since been stored in special tanks, awaiting vitrification. Decommissioning work is scheduled to proceed in six phases. The reprocessing areas of the facility will be prepared for release from radiological control and dismantled in the first phase. The remaining facilities can be deregulated, and storage tanks dismantled, only after termination of phase 1. The goal of the following phase is clearance from radiological control of all controlled areas, and the last phase is to cover dismantling of all buildings and restoration of a green field site. The overall costs of these activities are estimated to amount to DM 1.657 million. The article explains the contents of the first permits for decommissioning as well as the documents prepared for planning of work and licence application. (orig./HP) [de

  14. UP1 decommissioning project: initial review of lessons learned

    International Nuclear Information System (INIS)

    Fontana, Ph.; Fraize, G.; Seurat, Ph.

    2008-01-01

    The very first French electricity-generating nuclear reactors (3 gas-graphite reactors operated between 1956 and 1984) and spent fuel reprocessing plant (UP1 and ancillary facilities operated from 1958 to 1997) were located at Marcoule, in southern France. These historic facilities, together with the research labs that contributed to the development and commissioning of the processes implemented, are being decontaminated and dismantled. Other facilities near these nuclear plants will also be shut down in the next few years: the Phenix fast breeder reactor, the Celestin reactors and other ancillary units. Because the UP1 reprocessing plant and its related facilities were used for both commercial and defense activities, a dedicated group comprising three state-owned or private companies (CEA, EdF and COGEMA) was set up as the contracting authority from 1996 to 2004. Today the CEA is the contracting authority at Marcoule and has replaced AREVA NC as the site nuclear operator. AREVA acts as prime contractor for both operation of the main facilities and engineering of the dismantling projects. (authors)

  15. UP1 decommissioning project: initial review of lessons learned

    Energy Technology Data Exchange (ETDEWEB)

    Fontana, Ph.; Fraize, G. [CEA Valrho, Dir. de l' Energie Nucleaire (DEN/DPAD), 30 - Marcoule (France); Seurat, Ph. [AREVA NC, 75 - Paris (France)

    2008-07-01

    The very first French electricity-generating nuclear reactors (3 gas-graphite reactors operated between 1956 and 1984) and spent fuel reprocessing plant (UP1 and ancillary facilities operated from 1958 to 1997) were located at Marcoule, in southern France. These historic facilities, together with the research labs that contributed to the development and commissioning of the processes implemented, are being decontaminated and dismantled. Other facilities near these nuclear plants will also be shut down in the next few years: the Phenix fast breeder reactor, the Celestin reactors and other ancillary units. Because the UP1 reprocessing plant and its related facilities were used for both commercial and defense activities, a dedicated group comprising three state-owned or private companies (CEA, EdF and COGEMA) was set up as the contracting authority from 1996 to 2004. Today the CEA is the contracting authority at Marcoule and has replaced AREVA NC as the site nuclear operator. AREVA acts as prime contractor for both operation of the main facilities and engineering of the dismantling projects. (authors)

  16. Decommissioning Handbook

    Energy Technology Data Exchange (ETDEWEB)

    1994-03-01

    The Decommissioning Handbook is a technical guide for the decommissioning of nuclear facilities. The decommissioning of a nuclear facility involves the removal of the radioactive and, for practical reasons, hazardous materials to enable the facility to be released and not represent a further risk to human health and the environment. This handbook identifies and technologies and techniques that will accomplish these objectives. The emphasis in this handbook is on characterization; waste treatment; decontamination; dismantling, segmenting, demolition; and remote technologies. Other aspects that are discussed in some detail include the regulations governing decommissioning, worker and environmental protection, and packaging and transportation of the waste materials. The handbook describes in general terms the overall decommissioning project, including planning, cost estimating, and operating practices that would ease preparation of the Decommissioning Plan and the decommissioning itself. The reader is referred to other documents for more detailed information. This Decommissioning Handbook has been prepared by Enserch Environmental Corporation for the US Department of Energy and is a complete restructuring of the original handbook developed in 1980 by Nuclear Energy Services. The significant changes between the two documents are the addition of current and the deletion of obsolete technologies and the addition of chapters on project planning and the Decommissioning Plan, regulatory requirements, characterization, remote technology, and packaging and transportation of the waste materials.

  17. Environmental Audit. A vital part of decommissioning nuclear plants

    International Nuclear Information System (INIS)

    Perry, T.E.; Dutton, L.M.

    1998-01-01

    NNC has undertaken an environmental audit of the Hunterston A nuclear power station in Scotland. The station has closed and is now in the process of being decommissioned. The purpose of the environmental audit was to ensure that the environmental risks and potential liabilities, particularly those related to non-radioactive issues, were adequately identified and managed. The background, methodology and principal findings of the audit are described. (author)

  18. Decontamination and decommissioning project status of the TRIGA mark-2±3 research reactors

    International Nuclear Information System (INIS)

    Jung, K. J.; Baek, S. T.; Jung, W. S.; Park, S. K.; Jung, K. H.

    1999-01-01

    TRIGA Mark-II, the first research reactor in Korea, has operated since 1962, and the second one, TRIGA Mark-III since 1972. Both of them had their operation phased out in 1995 due to their lives and operation of the new research reactor, HANARO at the Korea Atomic Energy Research Institute (KAERI) in Taejeon. Decontamination and decommissioning (D and D) project of the TRIGA Mark-II and Mark-III was started in January 1997 and will be completed in December 2002. In the first year of the project, work was performed in preparation of the decommissioning plan, start of the environmental impact assessment and setup licensing procedure and documentation for the project with cooperation of Korea Institute of Nuclear Safety (KINS). In 1998, Hyundai Engineering Company (HEC) is the main contractor to do design and licensing documentation for the D and D of both reactors. British Nuclear Fuels plc (BNFL) is technical assisting partner of HEC. The decommissioning plan document was submitted to the Ministry of Science and Technology (MOST) for the decommissioning license in December 1998, and it expecting to be issued a license at the end of September 1999. The goal of this project is to release the reactor site and buildings as an unrestricted area. This paper summarizes current status and future plan for the D and D project

  19. Decontamination and decommissioning project status of the TRIGA Mark II and III in Korea

    International Nuclear Information System (INIS)

    Paik, S.T.; Park, S.K.; Chung, K.W.; Chung, U.S.; Jung, K.J.

    1999-01-01

    TRIGA Mark-II, the first research reactor in Korea, has operated since 1962, and the second one, TRIGA Mark-III since 1972. Both of them had their operation phased out in 1995 due to their lives and operation of the new research reactor, HANARO (High-flux Advanced Neutron Application Reactor) at the Korea Atomic Energy Institute (KAERI) in Taejon. Decontamination and decommissioning (D and D) project of TRIGA Mark-II and Mark-III was started in January 1997 and will be completed in December 2002. The first year of the project, work was performed in preparation of the decommissioning plan, start of the environmental impact assessment and setup licensing procedure and documentation for the project with cooperation of Korea Institute of Nuclear Safety (KINS). Hyundai Engineering Company (HEC) is the main contractor to do design and licensing documentation for the D and D of both reactors. British Nuclear Fuels plc (BNFL) is the technical assisting partner of HEC. The decommissioning plan document was submitted to the Ministry of Since and Technology (MOST) for the decommissioning license in December 1998, and it expecting to be issued a license in mid 1999. The goal of this project is to release the reactor site and buildings as an unrestricted area. This paper summarizes current status and future plan for the D and D project. (author)

  20. Stade. Decommissioning and dismantling of the nuclear power plant - from the nuclear power plant to the green lawn. 3. ed.

    International Nuclear Information System (INIS)

    2008-01-01

    The nuclear power plant Stade (KKS) was shutdown in 2003 and is being dismantled since 2005. The contribution covers the following issues: What means decommissioning and dismantling? What was the reason for decommissioning? What experiences on the dismantling of nuclear power plants are available? What is the dismantling procedure? What challenges for the power plant personal result from dismantling? What happens with the deconstruction material? What happens with the resulting free area (the ''green lawn'')? What is the legal frame work for dismantling?

  1. Nuclear decommissioning

    International Nuclear Information System (INIS)

    Anon.

    1987-01-01

    The paper on nuclear decommissioning was presented by Dr H. Lawton to a meeting of the British Nuclear Energy Society and Institution of Nuclear Engineers, 1986. The decommissioning work currently being undertaken on the Windscale advanced gas cooled reactor (WAGR) is briefly described, along with projects in other countries, development work associated with the WAGR operation and costs. (U.K.)

  2. Technology, Safety and Costs of Decommissioning a Reference Uranium Hexafluoride Conversion Plant

    Energy Technology Data Exchange (ETDEWEB)

    Elder, H. K.

    1981-10-01

    Safety and cost information is developed for the conceptual decommissioning of a commercial uranium hexafluoride conversion (UF{sub 6}) plant. Two basic decommissioning alternatives are studied to obtain comparisons between cost and safety impacts: DECON, and passive SAFSTOR. A third alternative, DECON of the plant and equipment with stabilization and long-term care of lagoon wastes. is also examined. DECON includes the immediate removal (following plant shutdown) of all radioactivity in excess of unrestricted release levels, with subsequent release of the site for public use. Passive SAFSTOR requires decontamination, preparation, maintenance, and surveillance for a period of time after shutdown, followed by deferred decontamination and unrestricted release. DECON with stabilization and long-term care of lagoon wastes (process wastes generated at the reference plant and stored onsite during plant operation} is also considered as a decommissioning method, although its acceptability has not yet been determined by the NRC. The decommissioning methods assumed for use in each decommissioning alternative are based on state-of-the-art technology. The elapsed time following plant shutdown required to perform the decommissioning work in each alternative is estimated to be: for DECON, 8 months; for passive SAFSTOR, 3 months to prepare the plant for safe storage and 8 months to accomplish deferred decontamination. Planning and preparation for decommissioning prior to plant shutdown is estimated to require about 6 months for either DECON or passive SAFSTOR. Planning and preparation prior to starting deferred decontamination is estimated to require an additional 6 months. OECON with lagoon waste stabilization is estimated to take 6 months for planning and about 8 months to perform the decommissioning work. Decommissioning cost, in 1981 dollars, is estimated to be $5.91 million for OECON. For passive SAFSTOR, preparing the facility for safe storage is estimated to cost $0

  3. Dismantling and decommissioning of Jose Cabrera nuclear power plant

    International Nuclear Information System (INIS)

    Rodriguez, A.

    2009-01-01

    With the start of the dismantling works at the Jose Cabrera nuclear power plant now in sight, this is an appropriate moment to look back and consider recent history. The first time that the issue of nuclear power plant dismantling was dealt with was in 1975, at a conference in Paris entitled Nuclear Energy Maturity. Up until then the entire question had been one of design, construction and operation, but since that moment and it has been quite a while since that conference dismantling has begun to be seen as just another activity in the nuclear cycle, a final activity that will sooner or later affect all the facilities, an activity different from its predecessors and with the ultimate objective of restoring the sites for whatever use might be determined. During the 1960s and 1970s, the construction of nuclear power plants was widespread across the entire world. It was the baby boom of nuclear energy and now, forty or fifty years later, we are seeing the arrival of the end of the service lifetime of these plants and are faced with the corresponding general process of dismantling these installations. The dismantling of nuclear power plants has ceased to be an emerging issue and is now consolidated as a regular activity in the nuclear industry, albeit an activity that lacks adequate financing or specific regulation in certain countries. Fortunately this is not the case in Spain, since economic provisions have been planned and the regulatory framework developed. In view of the above, the dismantling of the nuclear power plants is an industrial activity involving specific technologies that implies new professional and business opportunities that should be absorbed and seized by society. In Spain the path followed in this direction has been a long one, as is underlined by the experiences of dismantling the Argos (Barcelona, 1998- 2004) and Arbi (Bilbao, 2002-2005) research reactors, the Andujar Uranium Mill (Jaen, 1991-1995), the Vandellos I nuclear power plant

  4. Safe and effective nuclear power plant life cycle management towards decommissioning

    International Nuclear Information System (INIS)

    2002-08-01

    The objective of this publication is to promote and communicate the need for a longer-term perspective among senior managers and policy or strategy makers for decisions that have the potential to affect the life cycle management of a nuclear power plant including decommissioning. The following sections provide practical guidance in the subject areas that might have the potential to have such an impact. The publication should be used as an aid to help strategic planning take place in an informed way through the proper consideration of any longer-term decisions to enforce recognition of the point that decommissioning is a part of the whole life cycle of a nuclear power plant. The guidance contained in this publication is relevant to all life cycle stages of a nuclear power plant, with particular emphasis on how these decisions have the potential to impact effective decommissioning. The intended users of this publication are: Strategic decision makers within a Utility through all the various life cycle stages; The senior representatives of the owners of a nuclear power plant. This publication is divided into two basic sections. Section 2 provides guidance on the topics considered generic inputs to plant life cycle management and Section 3 provides guidance on the topics that contribute to effective decommissioning

  5. Action Memorandum for Decommissioning the Engineering Test Reactor Complex under the Idaho Cleanup Project

    International Nuclear Information System (INIS)

    A. B. Culp

    2007-01-01

    This Action Memorandum documents the selected alternative for decommissioning of the Engineering Test Reactor at the Idaho National Laboratory under the Idaho Cleanup Project. Since the missions of the Engineering Test Reactor Complex have been completed, an engineering evaluation/cost analysis that evaluated alternatives to accomplish the decommissioning of the Engineering Test Reactor Complex was prepared and released for public comment. The scope of this Action Memorandum is to encompass the final end state of the Complex and disposal of the Engineering Test Reactor vessel. The selected removal action includes removing and disposing of the vessel at the Idaho CERCLA Disposal Facility and demolishing the reactor building to ground surface

  6. Large-scale decontamination and decommissioning technology demonstration project at a former uranium metal production facility

    International Nuclear Information System (INIS)

    Martineit, R.A.; Borgman, T.D.; Peters, M.S.; Stebbins, L.L.

    1997-01-01

    The Department of Energy's (DOE) Office of Science and Technology Decontamination and Decommissioning (D ampersand D) Focus Area, led by the Federal Energy Technology Center, has been charged with improving upon baseline D ampersand D technologies with the goal of demonstrating and validating more cost-effective and safer technologies to characterize, deactivate, survey, decontaminate, dismantle, and dispose of surplus structures, buildings, and their contents at DOE sites. The D ampersand D Focus Area's approach to verifying the benefits of the improved D ampersand D technologies is to use them in large-scale technology demonstration (LSTD) projects at several DOE sites. The Fernald Environmental Management Project (FEMP) was selected to host one of the first three LSTD's awarded by the D ampersand D Focus Area. The FEMP is a DOE facility near Cincinnati, Ohio, that was formerly engaged in the production of high quality uranium metal. The FEMP is a Superfund site which has completed its RUFS process and is currently undergoing environmental restoration. With the FEMP's selection to host an LSTD, the FEMP was immediately faced with some challenges. The primary challenge was that this LSTD was to be integrated into the FEMP's Plant 1 D ampersand D Project which was an ongoing D ampersand D Project for which a firm fixed price contract had been issued to the D ampersand D Contractor. Thus, interferences with the baseline D ampersand D project could have significant financial implications. Other challenges include defining and selecting meaningful technology demonstrations, finding/selecting technology providers, and integrating the technology into the baseline D ampersand D project. To date, twelve technologies have been selected, and six have been demonstrated. The technology demonstrations have yielded a high proportion of open-quotes winners.close quotes All demonstrated, technologies will be evaluated for incorporation into the FEMP's baseline D ampersand D

  7. Human resource development for management of decommissioning

    International Nuclear Information System (INIS)

    Tanaka, Kenichi

    2017-01-01

    This paper described the contents of 'Human resource development for the planning and implementation of safe and reasonable nuclear power plant decommissioning' as the nuclear human resource development project by the Ministry of Education, Culture, Sports, Science and Technology. The decommissioning of a nuclear power plant takes 30 to 40 years for its implementation, costing tens of billions of yen. As the period of decommissioning is almost the same as the operation period, it is necessary to provide a systematic and continuous supply of engineers who understand the essence of the decommissioning project. The engineers required here should have project management ability to take charge of preparation, implementation, and termination of decommissioning, and have the ability to perform not only technology, but also factor management, cost management, and the like. As the preconditions of these abilities, it is important to develop human resources who possess qualities that can oversee decommissioning in the future. The contents of human resource education are as follows; (1) desk training (teaching materials: facilities of nuclear power plants, management of nuclear fuels, related laws, decommissioning work, decontamination, dismantling, disposal of waste, etc.), (2) field training (simulators, inspection of power station under decommissioning, etc.), (3) practical training (radiation inventory evaluation, and safety assessment), and (4) inspection of overseas decommissioning, etc. (A.O.)

  8. Standard for design criteria for decommissioning of nuclear fuel reprocessing plants

    International Nuclear Information System (INIS)

    Graham, H.B.

    1976-01-01

    This paper was developed by the ANSI Standards Committee N46. Deactivation or shutdown followed by continued operation on the same site does not constitute decommissioning. It is felt that abandonment with entombment of the highly radioactive parts of the plant is the only economically feasible alternative

  9. Nuclear power plant decommissioning and radioactive waste management in the U.K.. A regulatory perspective

    International Nuclear Information System (INIS)

    Ross, W.M.

    1993-01-01

    Effective control of the decommissioning and radioactive waste management of nuclear power plant in United Kingdom are introduced. The Government established the legislative framework and national strategy, operators provided the necessary skills and equipment for implementation, and the regulators used the legislative controls to ensure a safe system of work is achieved and maintained

  10. Financing strategies for nuclear power plant decommissioning. Report for July 1979-July 1980

    International Nuclear Information System (INIS)

    1980-07-01

    The report analyzes several alternatives for financing the decommissioning of nuclear power plants from the point of view of assurance, cost, equity, and other criteria. Sensitivity analyses are performed on several important variables and possible impacts on representative companies' rates are discussed and illustrated

  11. Financial and accounting alternatives for the recovery of nuclear plant decommissioning costs

    International Nuclear Information System (INIS)

    Collins, P.A.

    1980-01-01

    Compared are 12 different methods of financing the decommissioning of nuclear power plants. The basic financing alternatives are presented first in their simple version where income taxes are zero. Then the effects of the present income tax laws are added and their effect determined

  12. A special information campaign on decommissioning of unit 1 at the Ignalina Nuclear Power Plant started in Lithuania

    International Nuclear Information System (INIS)

    Vitkiene, E.

    2000-01-01

    A lack of understanding is felt in Lithuania of the importance of informing the public about nuclear energy, its safety and decisions related with nuclear energy in general. our swedish colleagues have noticed this flaw in our work and a joined decision has been taken to start a series of publicity projects. It was decided to work along three lines: a series of programmes on the national TV, support to the media of the town of Visaginas and creating an Internet page on the Ignalina Nuclear Power Plant decommissioning

  13. Topical Session on Funding Issues in Connection with Decommissioning of Nuclear Power Plants - 9 November 2004

    International Nuclear Information System (INIS)

    2006-01-01

    Set up by the Radioactive Waste Management Committee (RWMC), the WPDD brings together senior representatives of national organisations who have a broad overview of Decommissioning and Dismantling (D and D) issues through their work as regulators, implementers, R and D experts or policy makers. These include representatives from regulatory authorities, industrial decommissioners from the NEA Co-operative Programme on Exchange of Scientific and Technical Information on Nuclear Installation Decommissioning Projects (CPD), and cross-representation from the other NEA Committees. The EC is a member of the WPDD and the IAEA is participating as an observer. This broad participation provides good possibilities for the co-ordination efforts amongst activities in the international programmes. At its fifth meeting, in Paris, 8-10 November 2004, the WPDD held a topical session on the 'Funding Issues in Connection with Decommissioning of Nuclear Power Plants'. This report documents the topical session on Funding. An agenda of the Topical session can be found in Appendix 1. The topical session was meant to provide an exchange of information and experience on the following issues: Ethical Values; Actual Experiences of Fund Setting and Management; Uncertainties in Funding. At the end of each session time was allotted for a plenary discussion. The Rapporteur reviewed the main points and the lessons learnt at the end of the whole Topical Session. The Topical Session is documented as follows. A summary of the presentations, the country reports, the discussions and the key issues and lessons learnt is given in the main part of this report. The agenda of the Topical session can be found in Appendix 1 and the full papers supporting each presentation are given in Appendix 2. The national presentations on 'Actual experiences of Fund Setting and Management' in session 2 can be found in Appendix 3 and the national presentations on 'Uncertainties in Funding' in session 3 can be found in

  14. Operation results and investigations on decommissioning of the molybdenum-99 production plant Rossendorf - AMOR-I

    International Nuclear Information System (INIS)

    Bernhard, G.; Friedrich, H.; Boessert, W.; Eckardt, A.

    1993-01-01

    Original fuel elements of a research reactor were reprocessed for fission molybdenum production in the facility AMOR-I. In a 10 years operation 8.5*10 15 Bq Mo-99 were produced in more than 400 runs. The production results and many experiences were described in this report. Further a view is given on the strategy of decommissioning. There are shown results of fission product adsorption on and desorption from material surfaces. Possibilities of decontamination are described. The simultaneous effect of corrosion and radioactive radiation on different materials is discussed. This paper is a basis of the licence procedure for decommissioning of the AMOR-I-plant. (orig./HP) [de

  15. Plant security during decommissioning; challenges and lessons learned from German phase out decision

    International Nuclear Information System (INIS)

    Renner, Andrea; Esch, Markus

    2013-01-01

    Purpose of this paper is to point out the security challenges that may occur during the decommissioning, based on the issues and lessons learned from the German phase out decision. Though national regulations may be different in other countries the basic problems and issues will be the same. Therefore presented solutions will be applicable in other countries as well. The radioactive material remaining at the NPP during decommissioning has the most influence on how the security measures have to be designed. The radioactive material defines the risk potential of the plant and this determines the needed security level. The following aspects have been challenging in Germany: - Scenarios varying from those, used for plants in operation, due to changed operating conditions - Spent fuel will stay in the spent fuel pool for a quite long period before it can be removed from the plant. Risk potential of the plant stays high and requires a high level of security measures - Security measures according to the existing operating license have to stay in place as they are, unless the first license for decommissioning is given respective the spent fuel is removed from the plant site. This even led to the question if improvements of security measures, planned and announced with focus on a plant remaining in operation for another couple of years, need to be done although they will not be required after removing the spent fuel from the plant. A further important aspect for the security design is the fact that a plant under decommissioning has completely different and strongly varying operating procedures, compared to the stable ones of an operating plant. This leads to different needs concerning workspace, infrastructure on plant site, access to buildings etc. An optimized and highly flexible security concept is needed to ensure an adequate level of security as well as an efficient decommissioning. A deep analysis of the vital plant functions, depending on the different

  16. Remote handling techniques in decommissioning - A report of the NEA Co-operative Programme on Decommissioning (CPD) project

    International Nuclear Information System (INIS)

    Borchardt, Ralf; Denissen, Luc; Desbats, Philippe; Jeanjacques, Michel; Nokhamzon, Jean-Guy; Valentin, Pierre; Slater, Steve; Valencia, Luis; Wittenauer, Stephan; Yamauchi, Toyoaki; Burton, Bob

    2011-01-01

    The NEA Co-operative Programme for the Exchange of Scientific and Technical Information Concerning Nuclear Installation Decommissioning Projects (CPD) is a joint undertaking of a limited number of organisations actively executing on planning the decommissioning of nuclear facilities. The objective of the CPD is to acquire information from operational experience in decommissioning nuclear installations that is useful for future projects. Although part of the information exchanged within CPD is confidential in nature and is restricted to programme participants, experience of general interest gained under the programme's auspices is released for broader use. Such information is brought to the attention of all NEA members through regular reports to the NEA Radioactive Waste Management Committee (RWMC), as well as through published studies. This report describes generic results obtained by a CPD Task Group analysing the needs for remote technologies. The existing technologies able to meet these needs, the lessons learned and showing where improvements or further developments should be made in this domain. During the D and D process, the handling of highly radioactive materials, the deployment of tools and sensors and the dismantling of components built from many different materials can be a long, labor-intensive process that has the potential for high exposure rates, heat stress and injury to personnel. Mobile robotics systems provide solutions to these hazards. Such remote handling systems are required to perform tasks within budget and on schedule while justifying the expense by a saving in cumulative doses received by project personnel. To reach this goal, the following are additional factors that need to be evaluated when preparing a project: - System and peripherals must be operator-friendly. Ideally, the system must be designed to allow personnel currently available for the D and D project to become trained as operators within a reasonable time frame. - The

  17. Preparation for decommissioning of the Kozloduy Nuclear Power Plant units 1 and 2

    International Nuclear Information System (INIS)

    Delcheva, T.; Ribarski, V.; Demireva, E.

    2006-01-01

    The first decommissioning strategy of units 1 and 2 of Kozloduy NPP (KNPP) stipulated 3 phases: a 5 year phase including the post operation activities and preparation of the safe enclosure (SE); a 35 years SE period, followed by deferred dismantling. 'Updated Decommissioning Strategy for Units 1-4 of Kozloduy NPP' was issued in June 2006. The Updated Strategy is based on the so called 'Continuous Dismantling' Concept. The updated Strategy starts preparatory work earlier and then moves into dismantling work without a significant gap. The aim is to achieve a more optimal distribution of the dismantling activities along the time, saving jobs and the existing knowledge of the plant personnel during the decommissioning, and ensuring smooth and more effective use of financial and human resources and of the available infrastructure for waste treatment. This paper gives general information about the updated strategy and activities required for its implementation. (author)

  18. Technology, safety and costs of decommissioning a reference small mixed oxide fuel fabrication plant. Volume 1. Main report

    Energy Technology Data Exchange (ETDEWEB)

    Jenkins, C. E.; Murphy, E. S.; Schneider, K J

    1979-01-01

    Detailed technology, safety and cost information are presented for the conceptual decommissioning of a reference small mixed oxide fuel fabrication plant. Alternate methods of decommissioning are described including immediate dismantlement, safe storage for a period of time followed by dismantlement and entombment. Safety analyses, both occupational and public, and cost evaluations were conducted for each mode.

  19. Law on the Decommissioning of unit 1 at the state enterprise of the Republic of Lithuania Ignalina Nuclear Power Plant

    International Nuclear Information System (INIS)

    2000-01-01

    This law regulates the legal principles for the decommissioning of unit 1 at the Ignalina Nuclear Power Plant. The main deadlines for the government in the preparation for the decommissioning are set in the law. All preparatory works should be finished before the year 2005

  20. History of radiological characterisation in Studsvik - History of radiological characterisation in decommissioning projects in Studsvik

    International Nuclear Information System (INIS)

    Hedvall, Robert

    2012-01-01

    AB SVAFO is a nuclear waste technology and decommissioning company based in Sweden in the scenic surroundings of Studsvik on the Baltic coast. SVAFO is owned by the Swedish nuclear power industry. The company was created in 1992 by Sydsvenska Vaermekraft AB, Vattenfall AB, Forsmarks Kraftgrupp AB and Oskarshamns Kraftgrupp AB as a consequence of the Act on the Financing of the Management of Certain Radioactive Waste etc, from 1988. AB SVAFO's main business is to take care of formerly state-owned spent nuclear waste at the site, including small amounts of nuclear fuel. Buildings are also included, mainly nuclear waste storage buildings and a research reactor. Some buildings have already been decommissioned and all the fuel is treated. In the past 30 years, various decommissioning projects have been carried out, encompassing areas such as an underground research reactor, a Van de Graaff accelerator, 15,000 m 2 of nuclear laboratories, two 150 m 3 underground concrete sludge silos and several waste-storage buildings. Up till now only one or two persons did a simple characterisation before the project started to get the level of contamination. With the start of the decommissioning of the former uranium mine in Ranstad and the R2-reactor, more efforts have been put for the characterisation. The change in methods will be described. (author)

  1. Reactor decommissioning

    International Nuclear Information System (INIS)

    Lawton, H.

    1984-01-01

    A pioneering project on the decommissioning of the Windscale Advanced Gas-cooled Reactor, by the UKAEA, is described. Reactor data; policy; waste management; remote handling equipment; development; and recording and timescales, are all briefly discussed. (U.K.)

  2. Decommissioning of the ASTRA research reactor - planning, executing and summarizing the project

    International Nuclear Information System (INIS)

    Meyer, F.

    2010-01-01

    The decommissioning of the ASTRA research reactor at the Austrian Research Centres Seibersdorf was described within three technical papers already released in Nuclear Technology and Radiation Protection throughout the years 2003, 2006, and 2008. Following a suggestion from IAEA the project was investigated well after the files were closed regarding rather administrative than technical matters starting with the project mission, explaining the project structure and identifying the key factors and the key performance indicators. The continuous documentary and reporting system as implemented to fulfil the informational needs of stakeholders, management, and project staff alike is described. Finally the project is summarized in relationship to the performance indicators. (author)

  3. Health physics experience on the decommissioning of Thorium plant of IRE Ltd. at Trombay

    International Nuclear Information System (INIS)

    Savant, P.B.; Venkata Rao, D.V.; Rangarajan, R.; Pushparaja

    2003-01-01

    Thorium plant which was in operation for the last 45 years at Trombay, was decommissioned during the period 1999-2001. The decommissioning operation was spread over a period of 18 months. Over the years of operations, considerable activity was build-up was on the plant equipment and supporting structures. A new plant is erected at OSCOM to meet the thorium nitrate requirement. In view of the aging of the process equipment and resulting increase in the Person-Sv expenditure, it was decided to decommission the plant at Trombay. Decommissioning work is a voluminous job and hence required a careful planning of manpower, budgeting of personnel exposures and safe transfer of radioactive wastes. A considerable reduction in the budgeted man- days was achieved by using appropriate machinery and modern gadgets. A total of 3465 man-days were utilised for the work. 40 contract labourers were engaged in two phases. The total dose received was 123.32 Person-mSv as against the budgeted 189.29 Person-mSv for the entire operation. The maximum individual whole body dose received was 4.5 mSv. Around 2000 m 3 of low level radioactive solid waste was disposed off. Chipping of walls and floor has resulted in reduction of the volume of low level waste by as much as 766 m 3 as compared-to estimated volume of 4000 m 3 . This paper discusses briefly the experience gained by the RHC Unit in providing RHC surveillance for the decommissioning work. (author)

  4. Analysis of soil samples from OMRE decommissioning project

    International Nuclear Information System (INIS)

    Simpson, O.D.; Chapin, J.A.; Hine, R.E.; Mandler, J.W.; Orme, M.P.; Soli, G.A.

    1979-01-01

    In order to establish that the present Organic Moderated Reactor Experiment (OMRE) site does not exceed the criteria for radioactive contamination, samples obtained from the remainder of the facility that was not removed such as soil, concrete pads, various structural materials, and the leach pond area were analyzed to determine their radioactive content. The results of the analyses performed on soil samples are presented. Results of this study indicate that the activity at the OMRE decommissioned area is confined to localized areas (i.e., the leach pond area and reactor area). Comparisons of radionuclide concentrations measured in soil taken from the lip of the leach pond with concentrations in soil obtained outside the Idaho National Engineering Laboratory (INEL) site boundaries indicate that the concentration in the soil at the edge of the leach pond is at background levels. The vertical augering technique was determined to be the best approach for obtaining shallow soil samples at the INEL. Selection of this technique was based on ease of operation and analytical results. Less area is disturbed per sample than with the horizontal trenching and coring techniques. The radionuclide analysis of the samples shows the existence of a few regions in the reactor and leach pond areas that were still above INEL release criteria. These regions have been or are being further decontaminated

  5. Y-12 Plant Decontamination and Decommissioning Technology Logic Diagram for Building 9201-4. Volume 1: Technology evaluation

    International Nuclear Information System (INIS)

    1994-09-01

    During World War 11, the Oak Ridge Y-12 Plant was built as part of the Manhattan Project to supply enriched uranium for weapons production. In 1945, Building 9201-4 (Alpha-4) was originally used to house a uranium isotope separation process based on electromagnetic separation technology. With the startup of the Oak Ridge K-25 Site gaseous diffusion plant In 1947, Alpha-4 was placed on standby. In 1953, the uranium enrichment process was removed, and installation of equipment for the Colex process began. The Colex process--which uses a mercury solvent and lithium hydroxide as the lithium feed material-was shut down in 1962 and drained of process materials. Residual Quantities of mercury and lithium hydroxide have remained in the process equipment. Alpha-4 contains more than one-half million ft 2 of floor area; 15,000 tons of process and electrical equipment; and 23,000 tons of insulation, mortar, brick, flooring, handrails, ducts, utilities, burnables, and sludge. Because much of this equipment and construction material is contaminated with elemental mercury, cleanup is necessary. The goal of the Y-12 Plant Decontamination and Decommissioning Technology Logic Diagram for Building 9201-4 is to provide a planning document that relates decontamination and decommissioning and waste management problems at the Alpha-4 building to the technologies that can be used to remediate these problems. The Y-12 Plant Decontamination and Decommissioning Technology Logic Diagram for Building 9201-4 builds on the methodology transferred by the U.S. Air Force to the Environmental Management organization with DOE and draws from previous technology logic diagram-efforts: logic diagrams for Hanford, the K-25 Site, and ORNL

  6. Y-12 Plant Decontamination and Decommissioning Technology Logic Diagram for Building 9201-4. Volume 1: Technology evaluation

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-09-01

    During World War 11, the Oak Ridge Y-12 Plant was built as part of the Manhattan Project to supply enriched uranium for weapons production. In 1945, Building 9201-4 (Alpha-4) was originally used to house a uranium isotope separation process based on electromagnetic separation technology. With the startup of the Oak Ridge K-25 Site gaseous diffusion plant In 1947, Alpha-4 was placed on standby. In 1953, the uranium enrichment process was removed, and installation of equipment for the Colex process began. The Colex process--which uses a mercury solvent and lithium hydroxide as the lithium feed material-was shut down in 1962 and drained of process materials. Residual Quantities of mercury and lithium hydroxide have remained in the process equipment. Alpha-4 contains more than one-half million ft{sup 2} of floor area; 15,000 tons of process and electrical equipment; and 23,000 tons of insulation, mortar, brick, flooring, handrails, ducts, utilities, burnables, and sludge. Because much of this equipment and construction material is contaminated with elemental mercury, cleanup is necessary. The goal of the Y-12 Plant Decontamination and Decommissioning Technology Logic Diagram for Building 9201-4 is to provide a planning document that relates decontamination and decommissioning and waste management problems at the Alpha-4 building to the technologies that can be used to remediate these problems. The Y-12 Plant Decontamination and Decommissioning Technology Logic Diagram for Building 9201-4 builds on the methodology transferred by the U.S. Air Force to the Environmental Management organization with DOE and draws from previous technology logic diagram-efforts: logic diagrams for Hanford, the K-25 Site, and ORNL.

  7. Innovative and adaptive technologies in decommissioning of nuclear facilities. Final report of a coordinated research project 2004-2008

    International Nuclear Information System (INIS)

    2008-10-01

    There are dozens of old reactors and other nuclear facilities worldwide that are either being actively dismantled or are candidates for decommissioning in the near term. A significant proportion of these facilities are situated in Member States or institutions that do not have adequate expertise and technologies for planning and implementing state of the art decommissioning projects. The technology selection process is critical in that regard. The main objective of the IAEA technical activities on decommissioning is to promote the exchange of lessons learned in order to improve the technologies, thereby contributing to successful planning and implementation of decommissioning. This should be achieved through a better understanding of the decision making process in technology comparison and selection and relevant issues affecting the entire decommissioning process. The specific objectives of the Coordinated Research Project (CRP) on Innovative and Adaptive Technologies in Decommissioning of Nuclear Facilities include the following general aspects: (a) To establish methodologies and data needs for developing concepts and approaches relevant to technology comparison and selection in decommissioning; (b) To improve and expand the database on applications and performance of various types of decommissioning technologies; (c) To address specific issues for individual decommissioning technologies and generate data relevant to their comparison and selection. It is also expected that this project, and in particular the papers collected in this TECDOC, will draw Member States' attention to the practicality and achievability of timely planning and implementation of decommissioning, especially for many smaller projects. Concluding reports that summarized the work undertaken under the aegis of the CRP were presented at the third and final research coordination meeting held in Rez, Czech Republic, 3-7 December 2007, and collected in this technical publication. Operating

  8. Costs of decommissioning nuclear power plants as reported to the public to date

    International Nuclear Information System (INIS)

    Strasma, J.D.

    1982-01-01

    This paper attempts to determine what information has been available to the public, in the United States, concerning the cost of decommissioning nuclear power plants. The search was conducted in the Television News Index and Abstracts, in the annual indexes to The Reader's Digest, and in two computer-based bibliographic retrieval systems, Lockheed's DIALOG Magazine Index and the New York Times Information Bank. Fewer than ten articles appeared in widely read places, with none at all in the Reader's Digest and none on the evening TV news, from 1974 to date. The cost of decommissioning nuclear power plants was reported in various ways, with a wide range of estimates and relatively little actual experience. Costs were given in dollars of different years, in percentages of construction costs, in cost per KWH as per month to the consumer, etc., making the range of reported costs seem even wider than it really was. It is not surprising that the public fears that decommissioning costs will be alarmingly high. The public debate on energy policy might be more rational with better information on decommissioning costs. 16 references

  9. ASSESSING CHEMICAL HAZARDS AT THE PLUTONIUM FINISHING PLANT FOR PLANNING FUTURE DECONTAMINATION AND DECOMMISSIONING

    International Nuclear Information System (INIS)

    HOPKINS, A.M.; KLOS, D.B.; MINETT, M.J.

    2007-01-01

    This paper documents the fiscal year (FY) 2006 assessment to evaluate potential chemical and radiological hazards associated with vessels and piping in the former plutonium process areas at Hanford's Plutonium Finishing Plant (PFP). Evaluations by PFP engineers as design authorities for specific systems and other subject-matter experts were conducted to identify the chemical hazards associated with transitioning the process areas for the long-term layup of PFP before its eventual final decontamination and decommissioning (D and D). D and D activities in the main process facilities were suspended in September 2005 for a period of between 5 and 10 years. A previous assessment conducted in FY 2003 found that certain activities to mitigate chemical hazards could be deferred safely until the D and D of PFP, which had been scheduled to result in a slab-on-grade condition by 2009. As a result of necessary planning changes, however, D and D activities at PFP will be delayed until after the 2009 time frame. Given the extended project and plant life, it was determined that a review of the plant chemical hazards should be conducted. This review to determine the extended life impact of chemicals is called the ''Plutonium Finishing Plant Chemical Hazards Assessment, FY 2006''. This FY 2006 assessment addresses potential chemical and radiological hazard areas identified by facility personnel and subject-matter experts who reevaluated all the chemical systems (items) from the FY 2003 assessment. This paper provides the results of the FY 2006 chemical hazards assessment and describes the methodology used to assign a hazard ranking to the items reviewed

  10. Financial aspects of decommissioning (key aspects of decommissioning costing)

    International Nuclear Information System (INIS)

    Danska, V.

    2009-01-01

    In this presentation the following aspects of NPPs decommissioning are discussed: Requirements and purpose of decommissioning costing; Decommissioning costing methodologies; Standardised decommissioning cost structure; Input data for cost estimate process; Waste management in cost estimate process; Grading aspects in cost estimating; Cost control in decommissioning projects; Summary of the cost estimation process; Conclusions and recommendations.

  11. Decommissioning project readiness reviews at the Department of Energy's Hanford, Washington, Site

    International Nuclear Information System (INIS)

    Speer, D.R.; Holmes, P.A.

    1987-01-01

    Two Hanford Site contractors independently formulated readiness review methods to prepare for decontamination and decommissioning (D and D) projects. One readiness review method provided an independent management review process. The other method provided a review by personnel directly involved in the project and concise documentation procedures. A unified system is now used at Hanford which combines the best aspects of both readiness review methods. The unified method assigns category levels based on certain job characteristics. The category assigned to the project then indicates the required level of management review prior to proceeding with the D and D project. In addition, the concise documentation procedures are now used for all category levels

  12. A Radiological Survey Approach to Use Prior to Decommissioning: Results from a Technology Scanning and Assessment Project Focused on the Chornobyl NPP

    Energy Technology Data Exchange (ETDEWEB)

    Milchikov, A.; Hund, G.; Davidko, M.

    1999-10-20

    The primary objectives of this project are to learn how to plan and execute the Technology Scanning and Assessment (TSA) approach by conducting a project and to be able to provide the approach as a capability to the Chernobyl Nuclear Power Plant (ChNPP) and potentially elsewhere. A secondary objective is to learn specifics about decommissioning and in particular about radiological surveying to be performed prior to decommissioning to help ChNPP decision makers. TSA is a multi-faceted capability that monitors and analyzes scientific, technical, regulatory, and business factors and trends for decision makers and company leaders. It is a management tool where information is systematically gathered, analyzed, and used in business planning and decision making. It helps managers by organizing the flow of critical information and provides managers with information they can act upon. The focus of this TSA project is on radiological surveying with the target being ChNPP's Unit 1. This reactor was stopped on November 30, 1996. At this time, Ukraine failed to have a regulatory basis to provide guidelines for nuclear site decommissioning. This situation has not changed as of today. A number of documents have been prepared to become a basis for a combined study of the ChNPP Unit 1 from the engineering and radiological perspectives. The results of such a study are expected to be used when a detailed decommissioning plan is created.

  13. A Radiological Survey Approach to Use Prior to Decommissioning: Results from a Technology Scanning and Assessment Project Focused on the Chernobyl NPP

    International Nuclear Information System (INIS)

    Milchikov, A.; Hund, G.; Davidko, M.

    1999-01-01

    The primary objectives of this project are to learn how to plan and execute the Technology Scanning and Assessment (TSA) approach by conducting a project and to be able to provide the approach as a capability to the Chernobyl Nuclear Power Plant (ChNPP) and potentially elsewhere. A secondary objective is to learn specifics about decommissioning and in particular about radiological surveying to be performed prior to decommissioning to help ChNPP decision makers. TSA is a multi-faceted capability that monitors and analyzes scientific, technical, regulatory, and business factors and trends for decision makers and company leaders. It is a management tool where information is systematically gathered, analyzed, and used in business planning and decision making. It helps managers by organizing the flow of critical information and provides managers with information they can act upon. The focus of this TSA project is on radiological surveying with the target being ChNPP's Unit 1. This reactor was stopped on November 30, 1996. At this time, Ukraine failed to have a regulatory basis to provide guidelines for nuclear site decommissioning. This situation has not changed as of today. A number of documents have been prepared to become a basis for a combined study of the ChNPP Unit 1 from the engineering and radiological perspectives. The results of such a study are expected to be used when a detailed decommissioning plan is created

  14. Getting the most D and D ''know how'' before starting to plan your decommissioning project

    International Nuclear Information System (INIS)

    Boing, L. E.

    1999-01-01

    Over the last 20 years, the Decommissioning Program of the ANL-East Site has successfully decommissioned numerous facilities including: three research reactors (a 100 MW BWR, a smaller 250 kW biological irradiation reactor and a 10 kW research reactor), a critical assembly, a suite of 61 plutonium gloveboxes in 9 laboratories, a fuels fabrication facility and several non-reactor (waste management and operations) facilities. In addition, extensive decontamination work was performed on 5 hot cells formerly used in a joint ANL/US Navy R and D program. Currently the D and D of the CP-5 research reactor is underway as is planning for several other future D and D projects. The CP-5 facility was also used as a test bed for the evaluation of select evolving D and D technologies to ascertain their value for use in future D and D projects

  15. The Community's research and development programme on decommissioning of nuclear power plants. Fourth annual progress report (year 1983)

    International Nuclear Information System (INIS)

    Anon.

    1985-01-01

    This is the fourth progress report of the European Community's program. (1979-83) of research on decommissioning of nuclear power plants. It covers the year 1983 and follows the 1980, 1981 and 1982 reports (EUR 7440, EUR 8343, EUR 8962). The present report describes the further progress of research and contains a large amount of results. For a majority of the 51 research contracts composing the 1979-83 programme, work was completed by the end of 1983; the conclusions drawn from this work are in this report. The European Community's program deals with the following fields: long-term integrity of buildings and systems; decontamination for decommissioning purposes; dismantling techniques; treatment of specific wastes materials (steel, concrete and graphite); large transport containers for radioactive waste produced in the dismantling of nuclear power plants; estimation of the quantities of radioactive waste arising from the decommissioning of nuclear power plants in the Community; influence of nuclear power plant design features on decommissioning

  16. Study into the applicabilities of lasers for the dismantling of decommissioned nuclear power plant

    International Nuclear Information System (INIS)

    Haferkamp, H.; Bach, F.W.; Vinke, T.; Kinzel, A.; Mack, N.; Kuboschek, M.; Grobe, K.

    1989-01-01

    The project was intended to screen current laser technology for potential applications of laser beams in the dismantling of decommissioned nuclear power plant. As with CO 2 , Nd-YAG, or excimer lasers, developments clearly proceed towards higher output power. The market survey shows the CO 2 -laser to be the most efficient at present, with a great number of laser units available on the market in the range up to 5 kW, and some in the range up to 15 kW. The CO 2 -laser has exclusively been used so far for cutting work in steel plates thicker than 10 mm. Characteristic conditions of application include the high output power of more than 2 kW, long beam lengths, oxygen supply at strongly increased working pressure, sometimes from external sources. The maximum cutting work achieved in the laboratory was 110 mm in structural steel, 90 mm in austenitic steel, and 160 mm in concrete, all under conditions of easy access to the material. It remains to be examined whether steel cutting work at constrained positions will allow separation of wall thicknesses of more than 10 mm. Laser beam cutting under water is feasible in principle but has not been much studied yet. There also are only few sampling results of measurements of dust and aerosol quantities resulting from laser beam cutting work. (orig.) [de

  17. The use of modern engineered polymer coatings and products in decommissioning of nuclear facilities and plant

    International Nuclear Information System (INIS)

    Christie, K.; Harris, C.W.; Morris, O.P.; Atkinson, P.

    2014-01-01

    During decommissioning of nuclear plant, problems can arise whereby leaks and cracks appear which may require repair or remediation. Following clean-up processes radionuclides may be exposed in concrete or structures such ponds which require sealing to prevent atmospheric release and to obtain a reduction in operator dose. There are a number of polymer based products on the market which with care and skillful selection can be utilised to aid decommissioning and to add reassurance to regulators that radionuclide release cannot occur. Choosing between them is difficult due to the fact that the standard coating tests cannot reliably distinguish between the various products since these modern polymers are all significantly tougher than previous generations of coating technologies. There is therefore a need to develop new bespoke tests which replicate the likely failure modes of the plant and which demonstrate which products are likely to perform well in real life situations. (authors)

  18. Cost update technology, safety, and costs of decommissioning a reference uranium hexafluoride conversion plant

    International Nuclear Information System (INIS)

    Miles, T.L.; Liu, Y.

    1995-08-01

    The purpose of this study is to update the cost estimates developed in a previous report, NUREG/CR-1757 (Elder 1980) for decommissioning a reference uranium hexafluoride conversion plant from the original mid-1981 dollars to values representative of January 1993. The cost updates were performed by using escalation factors derived from cost index trends over the past 11.5 years. Contemporary price quotes wee used for costs that have increased drastically or for which is is difficult to find a cost trend. No changes were made in the decommissioning procedures or cost element requirements assumed in NUREG/CR-1757. This report includes only information that was changed from NUREG/CR-1757. Thus, for those interested in detailed descriptions and associated information for the reference uranium hexafluoride conversion plant, a copy of NUREG/CR-1757 will be needed

  19. Decommissioning alternatives for the West Valley, New York, Fuel Reprocessing Plant

    Energy Technology Data Exchange (ETDEWEB)

    Munson, L F; Nemec, J F; Koochi, A K

    1978-06-01

    The methodology and numerical values of NUREG-0278 were applied to four decommissioning alternatives for the West Valley Fuel Reprocessing Plant. The cost and impacts of the following four alternatives for the process building, fuel receiving and storage, waste tank farm, and auxiliary facilities were assessed: (1) layaway, (2) protective storage, (3) preparation for alternate nuclear use, and (4) dismantlement. The estimated costs are 5.7, 11, 19, and 31 million dollars, respectively. (DLC)

  20. VGH Mannheim: legitimacy of the decommissioning license for a nuclear power plant

    International Nuclear Information System (INIS)

    Anon.

    2015-01-01

    The contribution describes the details of the court (VGH) decision on the legitimacy of the decommissioning license for the NPP Obrigheim. Inhabitants of the neighborhood (3 to 4.5 km distance from the NPP) are suspect hazards for life, health and property due to the dismantling of the nuclear power plant in case of an accident during the licensed measures or a terroristic attack with radioactive matter release.

  1. Evaluation of the electric power production cost growth due to decommissioning of nuclear power plants

    International Nuclear Information System (INIS)

    Basso, G.

    1982-01-01

    The increase of production cost for electric power generated by nuclear plants, due to their decommissioning and the end of operating life, is analysed in respect to (a) waiting time from indefinite shut-down date to the start of dismantlement, (b) financing method, (c) interest and inflation rates. The analysis shows that the additional cost is always small for those solutions which have higher probability to be adopted

  2. Decommissioning alternatives for the West Valley, New York, Fuel Reprocessing Plant

    International Nuclear Information System (INIS)

    Munson, L.F.; Nemec, J.F.; Koochi, A.K.

    1978-06-01

    The methodology and numerical values of NUREG-0278 were applied to four decommissioning alternatives for the West Valley Fuel Reprocessing Plant. The cost and impacts of the following four alternatives for the process building, fuel receiving and storage, waste tank farm, and auxiliary facilities were assessed: (1) layaway, (2) protective storage, (3) preparation for alternate nuclear use, and (4) dismantlement. The estimated costs are 5.7, 11, 19, and 31 million dollars, respectively

  3. Decommissioning and dismantling of 305-M test pile at the Savannah River Plant

    International Nuclear Information System (INIS)

    Horton, H.L.

    1985-01-01

    The 305-M Test Pile was started up at the Savannah River Plant in 1952 and operated until 1981. The pile was used to measure the uranium content of reactor fuel. In 1984 work began to decommission and dismantle the pile. Extensive procedures were used that included a detailed description of the radiological controls and safety measures. These controls allowed the job to be completed with radiation doses as low as reasonably achievable

  4. Investigation Study on Gamma Ray Imaging Technology for Nuclear Power Plant Decommissioning

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Sang Guk; Jeong, Woo Tae [Machinery and Materials Laboratory, Korea Hydro and Nuclear Power Co., Daejeon (Korea, Republic of)

    2014-10-15

    The gamma ray imaging system provides an estimated dose-rate of the source at 30 cm above. The gamma detector is a terbium activated glass scintillator. The system is capable of producing a color two dimensional image of a radiation field superimposed on a black and white visual image. The system used in US power plants consists of a portable sensor head that contains both gamma ray and visual imaging systems and a portable control computer. The gamma ray imaging system has been successfully used as an ALARA tool for identifying source terms and determining the adequacy of existing shielding. Because the control system can be positioned away from the camera, the radiation exposure to personnel can be reduced without extensive shielding requirements. The gamma ray imaging system has been used to date in the decommissioning of Maine Yankee, Big Rock point,Trojan, San Onofre1, and Millstone 1. The equipment has also been used at normal refueling outages at a number of commercial nuclear power plants and at several Department of Energy Decommissioning sites. This paper is intended to review the applicability of gamma ray imaging system as decommissioning tool. In order to review the actual applicability, we are going to introduce applications for US power plants.

  5. Decommissioning challenges - an industrial reality

    International Nuclear Information System (INIS)

    Moore, H.; Mort, P.; Hutton, E.

    2008-01-01

    Sellafield Limited has undergone many transformations in previous years. The Nuclear Decommissioning Authority (NDA) has managed the site from April 2005, and a new Parent Body Organisation (PBO) is soon to be announced. In addition, it is an exciting time for the nuclear industry following the announcement of the UK government support new reactor builds. Should the site be selected for new build, the impact on Sellafield, its decommissioning program and economic impact on the local area can only be speculated at the current time. Every past, present and future decommissioning project at the Sellafield Limited site offers complex challenges, as each facility is unique. Specialist skills and experience must be engaged at pre-planned phases to result in a safe, efficient and successful decommissioning project. This paper provides an overview of a small selection of decommissioning projects, including examples of stakeholder engagement, plant and equipment dismantling using remote handling equipment and the application of innovative techniques and technologies. In addition, the final section provides a summary upon how future technologies required by the decommissioning projects are being assessed and developed. (authors)

  6. Methodology for environmental radiological assessment applied to the decommissioning of the Italian Nuclear Power Plants

    International Nuclear Information System (INIS)

    Petraglia, A.; Sabbarese, C.; Terrasi, F.; D'Onofrio, A.; Visciano, L.; Alfieri, S.; Esposito, A.M.; Migliore, G.; Mancini, F.; Napier, B.

    2006-01-01

    The present study is the second part of a program of characterization of the sites surrounding the Italian Nuclear Power Plants (NPPs) which are currently involved in decommissioning activities. In the first phase of the project an analysis of the Garigliano NPP was carried out and the reference groups of the population were established on the basis of a socio-economical survey of the site. A field campaign was carried out aiming to assess the 'zero level' due to the natural and past anthropogenic radioactivity [1, 2]. In the second part the study was extended to the other three Italian NPPs, namely Latina, Trino and Caorso. The radiological doses due to the planned and accidental releases during the decommissioning phases were calculated on the basis of environmental parameters related to the area of interest. These parameters include climatological, hydrological, geo morphological data. The implementation of transport and diffusion specific models of radionuclides in the environment was another step for the dose calculation using specific evaluation software. The current software (V.A.D.O.S.C.A.) specially built and used in the past for Italian NPPs has been replaced by the framework F.R.A.M.E.S.-GenII 2.0 which is a calculation code updated in the transport model and in the reference laws, and running under new computer operating systems. This code has been used to design the possible scenarios for each site by using conceptual calculation models which contain local input data and adequate dispersion models. The input data consist of (a) way and amount of radionuclide release in planned and accidental cases, (b) reference groups of population and their food habits, (c) climatic data of the area understudy. The dispersion models are implemented by considering releases in water (canal, river, sea) and in atmosphere. In order to allow a simplified, efficient and friendly utilisation of the Frames-GenII code, it has been enriched with a routine, D.S.A.-Reader, which

  7. Financial aspects of decommissioning

    International Nuclear Information System (INIS)

    Chirica, T.; Havris, A.

    2003-01-01

    European Commission adopted recently two proposals of Directives designed to pave the way for a Community approach to the safety of nuclear power plants and the processing of radioactive waste. Nuclear safety cannot be guaranteed without making available adequate financial resources. With regard, in particular, to the decommissioning of nuclear facilities, the Directive defines the Community rules for the establishment, management and use of decommissioning funds allocated to a body with legal personality separate from that of the nuclear operator. In order to comply with the acquis communautaire, Romanian Government issued the Emergency Ordinance no. 11/2003 which set up the National Agency for Radioactive Waste (ANDRAD) and soon will be established the financial mechanism for raising the necessary funds. Societatea Nationala 'Nuclearelectrica' S.A. operates, through one of its branches, Cernavoda NPP Unit 1 and has to prepare its decommissioning strategy and to analyze the options to assure the financing for covering the future costs. The purpose of this paper is to clarify the financial systems' mechanisms to the satisfaction of the nuclear operator obligations, according to the disbursement schedule foreseen by decommissioning projects . The availability of cash to pay for all the decommissioning expenditure must be foreseen by setting up assets and establishing a suitable financing plan. The different practices of assets management shall be presented in this paper on the basis of the international experience. Some calculation samples shall be given as an illustration. (author)

  8. Development of computer program for estimating decommissioning cost - 59037

    International Nuclear Information System (INIS)

    Kim, Hak-Soo; Park, Jong-Kil

    2012-01-01

    The programs for estimating the decommissioning cost have been developed for many different purposes and applications. The estimation of decommissioning cost is required a large amount of data such as unit cost factors, plant area and its inventory, waste treatment, etc. These make it difficult to use manual calculation or typical spreadsheet software such as Microsoft Excel. The cost estimation for eventual decommissioning of nuclear power plants is a prerequisite for safe, timely and cost-effective decommissioning. To estimate the decommissioning cost more accurately and systematically, KHNP, Korea Hydro and Nuclear Power Co. Ltd, developed a decommissioning cost estimating computer program called 'DeCAT-Pro', which is Decommission-ing Cost Assessment Tool - Professional. (Hereinafter called 'DeCAT') This program allows users to easily assess the decommissioning cost with various decommissioning options. Also, this program provides detailed reporting for decommissioning funding requirements as well as providing detail project schedules, cash-flow, staffing plan and levels, and waste volumes by waste classifications and types. KHNP is planning to implement functions for estimating the plant inventory using 3-D technology and for classifying the conditions of radwaste disposal and transportation automatically. (authors)

  9. About the burial of nuclear power plants, damaged or in the process of decommissioning

    International Nuclear Information System (INIS)

    Elbrond, J.

    1994-01-01

    Some underground mining methods leave deep empty holes in the earth's surface behind them. In this paper it is described how to use such mining methods for the burial of damaged nuclear power plants and for the decommissioning by burial of nuclear reactors. The design of a new power plant should be integrated with that of an escapeway - an underground arrangement for burial. The described mining methods are block caving for catastrophy burial, and various stoping methods for planned burial and decommissioning. Blind shaft sinking by full face boring machines for burial and decommissioning of the reactor vessel is also described. All the described activities of mining and shaft sinking are well known. The total costs of burial by these methods are estimated using standard mining industry cost data. These include the costs for normal mine ventilation and groundwater control. However, the estimates of the cost and duration do not include the capital and operational costs of the pre- and post burial activities of ventilation and groundwater control related to the radioactivity. (author)

  10. Environmental Problems Associated With Decommissioning The Chernobyl Nuclear Power Plant Cooling Pond

    International Nuclear Information System (INIS)

    Farfan, E. B.; Jannik, G. T.; Marra, J. C.; Oskolkov, B. Ya.; Bondarkov, M. D.; Gaschak, S. P.; Maksymenko, A. M.; Maksymenko, V. M.; Martynenko, V. I.

    2009-01-01

    Decommissioning of nuclear power plants and other nuclear fuel cycle facilities has been an imperative issue lately. There exist significant experience and generally accepted recommendations on remediation of lands with residual radioactive contamination; however, there are hardly any such recommendations on remediation of cooling ponds that, in most cases, are fairly large water reservoirs. The literature only describes remediation of minor reservoirs containing radioactive silt (a complete closure followed by preservation) or small water reservoirs resulting in reestablishing natural water flows. Problems associated with remediation of river reservoirs resulting in flooding of vast agricultural areas also have been described. In addition, the severity of environmental and economic problems related to the remedial activities is shown to exceed any potential benefits of these activities. One of the large, highly contaminated water reservoirs that require either remediation or closure is Karachay Lake near the MAYAK Production Association in the Chelyabinsk Region of Russia where liquid radioactive waste had been deep well injected for a long period of time. Backfilling of Karachay Lake is currently in progress. It should be noted that secondary environmental problems associated with its closure are considered to be of less importance since sustaining Karachay Lake would have presented a much higher radiological risk. Another well-known highly contaminated water reservoir is the Chernobyl Nuclear Power Plant (ChNPP) Cooling Pond, decommissioning of which is planned for the near future. This study summarizes the environmental problems associated with the ChNPP Cooling Pond decommissioning

  11. Quality assurance program application during the decommissioning phase of the Shoreham Nuclear Plant

    International Nuclear Information System (INIS)

    Patch, R.L.

    1993-01-01

    The application of Quality Assurance (QA) requirements for operating nuclear power plants has evolved over the last 30 years. QA programs started as good management practices and evolved to a process that is implemented integral to very detailed Probabilistic Risk Assessments (PRAs). QA programs for controlling activities during decommissioning of nuclear power plants are still in their infancy. Regulatory guidance is currently being developed, and much of what exists is in the form of draft guidance documents. In determining where to apply QA controls during decommissioning, a series of questions must be asked: Is there an existing regulatory commitment? (Safety related or safety significant activity); Are there any postulated accidents which need to be prevented or mitigated; What are the unacceptable risks; Are there other key factors, such as human performance issues and Industrial Safety Programs, to be considered? Which QA controls are needed and to what extent they should be applied must be evaluated on a case by case basis. How much QA to apply is usually a risk evaluation in itself. Can you afford not to apply a specific control? Can you afford to apply costly and rigorous quality control programs? These questions had to be answered at the Shoreham Nuclear Power Station (SNPS) in order to develop and implement an acceptable and effective Quality Assurance program. Exploring the SNPS open-quotes lessons learnedclose quotes on how to apply a quality assurance program during decommissioning is what the following discussion is about

  12. Environmental Problems Associated With Decommissioning The Chernobyl Nuclear Power Plant Cooling Pond

    Energy Technology Data Exchange (ETDEWEB)

    Farfan, E. B.; Jannik, G. T.; Marra, J. C.; Oskolkov, B. Ya.; Bondarkov, M. D.; Gaschak, S. P.; Maksymenko, A. M.; Maksymenko, V. M.; Martynenko, V. I.

    2009-11-09

    Decommissioning of nuclear power plants and other nuclear fuel cycle facilities has been an imperative issue lately. There exist significant experience and generally accepted recommendations on remediation of lands with residual radioactive contamination; however, there are hardly any such recommendations on remediation of cooling ponds that, in most cases, are fairly large water reservoirs. The literature only describes remediation of minor reservoirs containing radioactive silt (a complete closure followed by preservation) or small water reservoirs resulting in reestablishing natural water flows. Problems associated with remediation of river reservoirs resulting in flooding of vast agricultural areas also have been described. In addition, the severity of environmental and economic problems related to the remedial activities is shown to exceed any potential benefits of these activities. One of the large, highly contaminated water reservoirs that require either remediation or closure is Karachay Lake near the MAYAK Production Association in the Chelyabinsk Region of Russia where liquid radioactive waste had been deep well injected for a long period of time. Backfilling of Karachay Lake is currently in progress. It should be noted that secondary environmental problems associated with its closure are considered to be of less importance since sustaining Karachay Lake would have presented a much higher radiological risk. Another well-known highly contaminated water reservoir is the Chernobyl Nuclear Power Plant (ChNPP) Cooling Pond, decommissioning of which is planned for the near future. This study summarizes the environmental problems associated with the ChNPP Cooling Pond decommissioning.

  13. ENVIRONMENTAL PROBLEMS ASSOCIATED WITH DECOMMISSIONING THE CHERNOBYL NUCLEAR POWER PLANT COOLING POND

    Energy Technology Data Exchange (ETDEWEB)

    Farfan, E.

    2009-09-30

    Decommissioning of nuclear power plants and other nuclear fuel cycle facilities has been an imperative issue lately. There exist significant experience and generally accepted recommendations on remediation of lands with residual radioactive contamination; however, there are hardly any such recommendations on remediation of cooling ponds that, in most cases, are fairly large water reservoirs. The literature only describes remediation of minor reservoirs containing radioactive silt (a complete closure followed by preservation) or small water reservoirs resulting in reestablishing natural water flows. Problems associated with remediation of river reservoirs resulting in flooding of vast agricultural areas also have been described. In addition, the severity of environmental and economic problems related to the remedial activities is shown to exceed any potential benefits of these activities. One of the large, highly contaminated water reservoirs that require either remediation or closure is Karachay Lake near the MAYAK Production Association in the Chelyabinsk Region of Russia where liquid radioactive waste had been deep well injected for a long period of time. Backfilling of Karachay Lake is currently in progress. It should be noted that secondary environmental problems associated with its closure are considered to be of less importance since sustaining Karachay Lake would have presented a much higher radiological risk. Another well-known highly contaminated water reservoir is the Chernobyl Nuclear Power Plant (ChNPP) Cooling Pond, decommissioning of which is planned for the near future. This study summarizes the environmental problems associated with the ChNPP Cooling Pond decommissioning.

  14. Decommissioning of nuclear reprocessing plants French past experience and approach to future large scale operations

    International Nuclear Information System (INIS)

    Jean Jacques, M.; Maurel, J.J.; Maillet, J.

    1994-01-01

    Over the years, France has built up significant experience in dismantling nuclear fuel reprocessing facilities or various types of units representative of a modern reprocessing plant. However, only small or medium scale operations have been carried out so far. To prepare the future decommissioning of large size industrial facilities such as UP1 (Marcoule) and UP2 (La Hague), new technologies must be developed to maximize waste recycling and optimize direct operations by operators, taking the integrated dose and cost aspects into account. The decommissioning and dismantling methodology comprises: a preparation phase for inventory, choice and installation of tools and arrangement of working areas, a dismantling phase with decontamination, and a final contamination control phase. Detailed description of dismantling operations of the MA Pu finishing facility (La Hague) and of the RM2 radio metallurgical laboratory (CEA-Fontenay-aux-Roses) are given as examples. (J.S.). 3 tabs

  15. Investigation of the responsibility for decommissioning of the Ranstad plant; Utredning av ansvaret foer Ranstadsverkets avveckling

    Energy Technology Data Exchange (ETDEWEB)

    Svensson, Haakan; Grundfelt, Bertil [Kemakta Konsult AB, Stockholm (Sweden); Froeberg, Magnus [Froeberg och Lundholm Advokatbyraa AB, Stockholm (Sweden)

    2010-11-15

    The issue of decommissioning, including demolition, of the nuclear facility at the Ranstad plant was raised gradually during 2006-2008. It was then found that it was unclear which company or companies that could be responsible for this decommissioning, economically as well as for the implementation. During this time and until the end of 2009, the concerned authorities, notably Swedish Nuclear Power Inspectorate and SSM, collected a large amount of facts as a basis for assessing liability. This material now needed to be systematized and compiled in order to effectively be utilized in such an assessment. SSM also thought that it would be helpful if an independent party with experience in similar issues could contribute to the interpretation of the legal situation. These were the given conditions of the mission which Kemakta Konsult AB, with the assistance of lawyer Magnus Froeberg, were given by SSM in the autumn of 2009. The results are presented in this final report.

  16. Recommended values for the distribution coefficient (Kd) to be used in dose assessments for decommissioning the Zion Nuclear Power Plant

    Energy Technology Data Exchange (ETDEWEB)

    Sullivan, T. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2014-09-24

    ZionSolutions is in the process of decommissioning the Zion Nuclear Power Plant. The site contains two reactor Containment Buildings, a Fuel Building, an Auxiliary Building, and a Turbine Building that may be contaminated. The current decommissioning plan involves removing all above grade structures to a depth of 3 feet below grade. The remaining underground structures will be backfilled. The remaining underground structures will contain low amounts of residual licensed radioactive material. An important component of the decommissioning process is the demonstration that any remaining activity will not cause a hypothetical individual to receive a dose in excess of 25 mrem/y as specified in 10CFR20 SubpartE.

  17. Recommended values for the distribution coefficient (Kd) to be used in dose assessments for decommissioning the Zion Nuclear Power Plant

    Energy Technology Data Exchange (ETDEWEB)

    Sullivan T.

    2014-06-09

    ZionSolutions is in the process of decommissioning the Zion Nuclear Power Plant. The site contains two reactor Containment Buildings, a Fuel Building, an Auxiliary Building, and a Turbine Building that may be contaminated. The current decommissioning plan involves removing all above grade structures to a depth of 3 feet below grade. The remaining underground structures will be backfilled. The remaining underground structures will contain low amounts of residual licensed radioactive material. An important component of the decommissioning process is the demonstration that any remaining activity will not cause a hypothetical individual to receive a dose in excess of 25 mrem/y as specified in 10CFR20 SubpartE.

  18. Sellafield Decommissioning Programme - Update and Lessons Learned

    International Nuclear Information System (INIS)

    Lutwyche, P. R.; Challinor, S. F.

    2003-01-01

    The Sellafield site in North West England has over 240 active facilities covering the full nuclear cycle from fuel manufacture through generation, reprocessing and waste treatment. The Sellafield decommissioning programme was formally initiated in the mid 1980s though several plants had been decommissioned prior to this primarily to create space for other plants. Since the initiation of the programme 7 plants have been completely decommissioned, significant progress has been made in a further 16 and a total of 56 major project phases have been completed. This programme update will explain the decommissioning arrangements and strategies and illustrate the progress made on a number of the plants including the Windscale Pile Chimneys, the first reprocessing plan and plutonium plants. These present a range of different challenges and requiring approaches from fully hands on to fully remote. Some of the key lessons learned will be highlighted

  19. Decommissioning of four small nuclear waste storage buildings and an evaporation plant

    International Nuclear Information System (INIS)

    Hedvall, R.H.; Ellmark, C.; Stocker, P.

    2008-01-01

    A small-scale decommissioning concept was applied with staff from an earlier project wish strong knowledge of radiation protection, minimized radiation doses and environmental pollution. The project was therefore initiated with less than 10 people involved using standard hand held equipment. The aim of the decommissioning project was to set free as much material as possible, i.e. remove waste from the regulatory control regime and also free the remaining structures and buildings for conventional demolition and subsequent reuse of the property. Complete decommissioning will be concluded at the end of 2008 when all waste is taken case of. This is the fourth in a series of important decommissioning projects in Studsvik since the 1980s. Some of the conclusions are: 1) Obtain a group with well-known personnel that have been working together before for the entire project For a project larger than this, project management assistant would have made follow-up more efficient. Experts in instrumentation and statistics are also important. Also important is knowledge about practical decisions that would make the project more efficient in terms of time. Interviews and historical facts are important when choosing which nuclides are of most interest for measurements (but be critic). 2) Be sure all authoritative requirements are followed, like setting up a work environment plan at the entrance to the site and placing a fence around the work site. 3) Check all individual radiation exposures before project start and do whole body measurements both before and after the project. Urine samples should be taken if alpha contamination is a risk. 4) Calculate for unwanted and 'not what you expected' situations in the time schedule. 5) Be aware of contaminations and radiation sources outside the actual area. They might have to be moved. 6) Calculate and order bins and containers for waste storage well in advance. Stay informed of the updated amount of waste and keep it in locked storage. 7

  20. Decommissioning in western Europe

    International Nuclear Information System (INIS)

    Lundqvist, K.

    1999-12-01

    time (sometimes hundred years or more), prior to final demolition. Among the reasons for deferring the dismantling are lack of waste repositories and decreasing dose-rates for the workers. Of Europe's 218 commercial reactors in operation, the majority, 151, are located i the Western part. The biggest producers are France, United Kingdom and Germany, with 58, 35 and 20 reactors respectively. Until now mostly research- and pilot reactors have been shut-down. There are yet few experiences from decommissioning of large-scale commercial reactors. The following commercial reactors are undergoing decommissioning. (There are also a great amount of nuclear facilities of other types being decommissioned.) The three gas-cooled twin reactor plants of Berkeley, Trawsfynydd and Hunterston in UK. In Germany Gundremmingen, Lingen, Kahl and Wuergassen are being decommissioned. All of them are located in the Western part of the country. The biggest project is however the dismantling of the gigantic Greifswald facility situated on the coast of the Baltic see in former Eastern Germany. The plant has eight Russian built reactors of VVER-type. Like the rest of the former GDR-plants Greifswald was shutdown after the reunification in 1990. The strategy chosen is immediate dismantling. France is decommissioning seven reactors (Chooz A1, Chinon A1, A2, A3, St Laurent A1, A2 and Bugey 1.) The oldest, Chinon A1, closed down in 1973 and the youngest, Bugey 1, in 1994. Italy closed down all NPPs (altogether four) in 1987 after a referendum. The first reactor of the Netherlands was shutdown in 1997 mainly for economical reasons. The development of a free European electricity market will make it less profitable to run certain facilities. Vandelos 1 in Spain is undergoing decommissioning after a fire in the turbines in 1989. IAEA, OECD/NEA and EU are co-operating in the field of decommissioning. Much work is spent on harmonizing rules and preparing international guidelines. The international agencies

  1. A Decommissioning Information Management System

    Energy Technology Data Exchange (ETDEWEB)

    Park, S. K.; Hong, S. B.; Chung, U. S.; Park, J. H. [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2007-07-01

    In 1996, it was determined that research reactors, the KRR-1 and the KRR-2, would be shut down and dismantled. A project for the decommissioning of these reactors was launched in January 1997 with the goal of a completion by 2008. The total budget of the project was 19.4 million US dollars, including the cost for the waste disposal and for the technology development. The work scopes during the decommissioning project were the dismantling of all the facilities and the removal of all the radioactive materials from the reactor site. After the removal of the entire radioactivity, the site and buildings will be released for an unconditional use. A separate project for the decommissioning of the uranium conversion plant was initiated in 2001. The plant was constructed for the development of the fuel manufacturing technologies and the localization of nuclear fuels in Korea. It was shut downed in 1993 and finally it was concluded in 2000 that the plant would be decommissioned. The project will be completed by 2008 and the total budget was 9.2 million US dollars. During this project, all vessels and equipment will be dismantled and the building surface will be decontaminated to be utilized as general laboratories.

  2. Y-12 Plant decontamination and decommissioning technology logic diagram for Building 9201-4. Volume 2: Technology logic diagram

    International Nuclear Information System (INIS)

    1994-09-01

    The Y-12 Plant Decontamination and Decommissioning Technology Logic Diagram for Building 9201-4 (TLD) was developed to provide a decision-support tool that relates decontamination and decommissioning (D and D) problems at Bldg. 9201-4 to potential technologies that can remediate these problems. This TLD identifies the research, development, demonstration, testing, and evaluation needed for sufficient development of these technologies to allow for technology transfer and application to D and D and waste management (WM) activities. It is essential that follow-on engineering studies be conducted to build on the output of this project. These studies will begin by selecting the most promising technologies identified in the TLD and by finding an optimum mix of technologies that will provide a socially acceptable balance between cost and risk. The TLD consists of three fundamentally separate volumes: Vol. 1 (Technology Evaluation), Vol. 2 (Technology Logic Diagram), and Vol. 3 (Technology Evaluation Data Sheets). Volume 2 contains the logic linkages among environmental management goals, environmental problems, and the various technologies that have the potential to solve these problems. Volume 2 has been divided into five sections: Characterization, Decontamination, Dismantlement, Robotics/Automation, and Waste Management. Each section contains logical breakdowns of the Y-12 D and D problems by subject area and identifies technologies that can be reasonably applied to each D and D challenge

  3. Y-12 Plant decontamination and decommissioning technology logic diagram for Building 9201-4. Volume 2: Technology logic diagram

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-09-01

    The Y-12 Plant Decontamination and Decommissioning Technology Logic Diagram for Building 9201-4 (TLD) was developed to provide a decision-support tool that relates decontamination and decommissioning (D and D) problems at Bldg. 9201-4 to potential technologies that can remediate these problems. This TLD identifies the research, development, demonstration, testing, and evaluation needed for sufficient development of these technologies to allow for technology transfer and application to D and D and waste management (WM) activities. It is essential that follow-on engineering studies be conducted to build on the output of this project. These studies will begin by selecting the most promising technologies identified in the TLD and by finding an optimum mix of technologies that will provide a socially acceptable balance between cost and risk. The TLD consists of three fundamentally separate volumes: Vol. 1 (Technology Evaluation), Vol. 2 (Technology Logic Diagram), and Vol. 3 (Technology Evaluation Data Sheets). Volume 2 contains the logic linkages among environmental management goals, environmental problems, and the various technologies that have the potential to solve these problems. Volume 2 has been divided into five sections: Characterization, Decontamination, Dismantlement, Robotics/Automation, and Waste Management. Each section contains logical breakdowns of the Y-12 D and D problems by subject area and identifies technologies that can be reasonably applied to each D and D challenge.

  4. Comparing the costs of decommissioning nuclear power plants in USA and in Germany

    International Nuclear Information System (INIS)

    Vollradt, J.; Essmann, J.; Paul, R.; Petrasch, P.

    1991-01-01

    Decommissioning and, in particular, disposing of nuclear power plants is still a subject of controversial debate, increasingly so also under economic aspects. This article contains a discussion of the allegation that new findings had caused the costs of decommissioning in the US to rise sharply in the past few years and, as a consequence, it had to be expected that also the present cost estimates made in the Federal Republic of Germany would have to be corrected upward drastically in the very near future and that nuclear power might well become economically non-viable as a result of this development. These allegations cannot be assessed in detail on scientific grounds, as they obviously constitute biased reports with extrapolations and conversions whose parameters cannot be verified. However, a comparison of unbiased American and German studies shows that the costs of decommissioning have risen in the US over the past twelve years, while their absolute level is still clearly below the high cost level in Germany. Upon examination of the causes it is seen that stricter criteria were applied and different boundary conditions assumed in Germany from the outset. Consequently, no major corrections were or are necessary. In view of the different boundary conditions existing in the two countries, the studies conducted there are meaningful and correct. (orig.) [de

  5. Decommissioning costs of light water nuclear power plants in Germany from 1977 to date

    International Nuclear Information System (INIS)

    Adler, J.; Petrasch, P.

    1993-01-01

    This study presents decommissioning costs of NPP's in Germany. In 1977, a similar study had been carried out by NIS Ingenieurgesellschaft for the Commission of the European Communities. The experience gained during the last 15 years from the decommissioning of nuclear installations, as well as the developments made in calculating costs were the reasons to update the 1977 study. The cost estimates were carried out for the German LWRs, Biblis A (PWR) and Brunsbuettel (BWR) taken as reference plants. For the calculations, the software programme STILLKO 2 (owned by the German VDEW) was used. Not only have cost calculations been carried out, but also data have been obtained relating to manpower, occupational radiation exposure, masses of material to be dismantled and radioactive waste generated. The results enable a direct comparison with those of the 1977 study and show the most important differences. In a separate chapter, costs for single items are presented so that comparison with decommissioning costs from other EC countries may be possible. (authors). 24 refs., 14 figs., 17 tabs., 3 appendices

  6. Preliminary study of the environmental radiological assessment for the Garigliano nuclear power plant decommissioning

    International Nuclear Information System (INIS)

    Esposito, A.M.; Sabbarese, C.; Sirignano, C.; Visciano, L.; D'Onofrio, A.D.; Lubritto, C.; Terrasi, F.

    2002-01-01

    In the last few years many nuclear installations in the world have been stopped either because they reached the end of production lifetime, or for operation problems or, like in Italy, for political decisions. This stop started the decommissioning procedure. It consists in the dismantling of the nuclear installation with appropriate controls and limitations of environmental and radiological impact which arises from these operations. The evaluation of risk and the actions needed for the population safeguard are generally inspired to the recommendations of the International Commission on Radiological Protection (ICRP), but each country faces the problem with different evaluation methodologies and calculations. That is due to different laws and environmental, social and economical context where nuclear installations are located. For this, the decommissioning operations must be separately evaluated for each nuclear installation. In this paper, we present the work carried out so far about the decommissioning of the Nuclear Power Plant of Garigliano (Caserta, Italy), which is managed by SoGIN (Societa di Gestione degli Impianti Nucleari). This Nuclear Power Plant began its activity in 1964 by using a boiling water reactor with a production of 160 MW electric power. In 1979 this nuclear installation was stopped for maintenance and operation has not been resumed until the referendum in 1986, after which all Italian nuclear plants were stopped. Now, the Nuclear Power Plant of Garigliano has the reactor isolated respect to the remaining part and all components and pipes have been drained and sealed. The underground tanks of radioactive wastes have been evacuated and decontaminated. The radioactive wastes have been completely conditioned with cementification in drums suitable to prevent outside release

  7. Decommissioning Technology Development for Nuclear Research Facilities

    International Nuclear Information System (INIS)

    Lee, K. W.; Kang, Y. A.; Kim, G. H.

    2007-06-01

    It is predicted that the decommissioning of a nuclear power plant would happen in Korea since 2020 but the need of partial decommissioning and decontamination for periodic inspection and life extension still has been on an increasing trend and its domestic market has gradually been extended. Therefore, in this project we developed following several essential technologies as a decommissioning R and D. The measurement technology for in-pipe radioactive contamination was developed for measuring alpha/beta/gamma emitting nuclides simultaneously inside a in-pipe and it was tested into the liquid waste transfer pipe in KRR-2. And the digital mock-up system for KRR-1 and 2 was developed for choosing the best scenarios among several scenarios on the basis of various decommissioning information(schedule, waste volume, cost, etc.) that are from the DMU and the methodology of decommissioning cost estimation was also developed for estimating a research reactor's decommissioning cost and the DMU and the decommissioning cost estimation system were incorporated into the decommissioning information integrated management system. Finally the treatment and management technology of the irradiated graphites that happened after decommissioning KRR-2 was developed in order to treat and manage the irradiated graphites safely

  8. Decommissioning Technology Development for Nuclear Research Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Lee, K. W.; Kang, Y. A.; Kim, G. H. (and others)

    2007-06-15

    It is predicted that the decommissioning of a nuclear power plant would happen in Korea since 2020 but the need of partial decommissioning and decontamination for periodic inspection and life extension still has been on an increasing trend and its domestic market has gradually been extended. Therefore, in this project we developed following several essential technologies as a decommissioning R and D. The measurement technology for in-pipe radioactive contamination was developed for measuring alpha/beta/gamma emitting nuclides simultaneously inside a in-pipe and it was tested into the liquid waste transfer pipe in KRR-2. And the digital mock-up system for KRR-1 and 2 was developed for choosing the best scenarios among several scenarios on the basis of various decommissioning information(schedule, waste volume, cost, etc.) that are from the DMU and the methodology of decommissioning cost estimation was also developed for estimating a research reactor's decommissioning cost and the DMU and the decommissioning cost estimation system were incorporated into the decommissioning information integrated management system. Finally the treatment and management technology of the irradiated graphites that happened after decommissioning KRR-2 was developed in order to treat and manage the irradiated graphites safely.

  9. Decontamination and decommissioning of Plant 7 at the Fernald Facility

    International Nuclear Information System (INIS)

    Motl, G.P.; Borgman, T.

    1994-01-01

    The Fernald Environmental Management Project (FEMP), formerly the Feed Materials Production Center (FMPC), is a Department of Energy (DOE) site which produced high-quality uranium for military defense beginning in 1951. Production at the FEMP was halted in July 1989. Later that year, the facility was placed on the National Priorities List (NPL). The DOE is currently conducting a Remedial Investigation/Feasibility Study (RI/FS) and other response actions under the Amended Consent Agreement between the US Environmental Protection Agency (USEPA) and the DOE

  10. Progress report on decommissioning activities at the Fernald Environmental Management Project (FEMP) site

    International Nuclear Information System (INIS)

    1998-01-01

    The Fernald Environmental Management Project (FEMP), is located about 18 miles northwest of Cincinnati, Ohio. Between 1953 and 1989, the facility, then called the Feed Material Production Center or FMPC, produced uranium metal products used in the eventual production of weapons grade material for use by other US Department of Energy (DOE) sites. In 1989, FMPC's production was suspended by the federal government in order to focus resources on environmental restoration versus defense production. In 1992, Fluor Daniel Fernald assumed responsibility for managing all cleanup activities at the FEMP under contract to the DOE. In 1990, as part of the remediation effort, the site was divided into five operable units based on physical proximity of contaminated areas, similar amounts of types of contamination, or the potential for a similar technology to be used in cleanup activities. This report continues the outline of the decontamination and decommissioning (D and D) activities at the FEMP site Operable Unit 3 (OU3) and provides an update on the status of the decommissioning activities. OU3, the Facilities Closure and Demolition Project, involves the remediation of more than 200 uranium processing facilities. The mission of the project is to remove nuclear materials stored in these buildings, then perform the clean out of the buildings and equipment, and decontaminate and dismantle the facilities

  11. Decommissioning and decontamination

    International Nuclear Information System (INIS)

    Dadoumont, J.; Cantrel, E.; Valenduc, P.; Noynaert, L.

    2009-01-01

    The SCK-CEN has built a large know-how in decommissioning and decontamination, thanks to its BR3 decommissioning project. In 2007, the decommissioning activities at BR3 have been continued according to the strategy. This article discusses main realisations the following domains: decommissioning of the neutron shield tank and installation of new ventilation for the controlled area, dismantling of the former one and characterization of the stack

  12. Innovative Decontamination Technology for Use in Gaseous Diffusion Plant Decommissioning

    International Nuclear Information System (INIS)

    Peters, M.J.; Norton, C.J.; Fraikor, G.B.; Potter, G.L.; Chang, K.C.

    2006-01-01

    The results of bench scale tests demonstrated that TechXtract R RadPro TM technology (hereinafter referred to as RadPro R ) can provide 100% coverage of complex mockup gaseous diffusion plant (GDP) equipment and can decontaminate uranium (U) deposits with 98% to 99.99% efficiency. Deployment tests demonstrated RadPro R can be applied as foam, mist/fog, or steam, and fully cover the internal surfaces of complex mockup equipment, including large piping. Decontamination tests demonstrated that two formulations of RadPro R , one with neutron attenuators and one without neutron attenuators, could remove up to 99.99% of uranyl fluoride deposits, one of the most difficult to remove deposits in GDP equipment. These results were supplemented by results from previous tests conducted in 1994 that showed RadPro R could remove >97% of U and Tc-99 contamination from actual GDP components. Operational use of RadPro R at other DOE and commercial facilities also support these data. (authors)

  13. Decommissioning of a mixed oxide fuel fabrication facility

    International Nuclear Information System (INIS)

    Buck, S.; Colquhoun, A.

    1990-01-01

    Decommissioning of the coprecipitation plant, which made plutonium/uranium oxide fuel, is a lead project in the BNFL Sellafield decommissioning programme. The overall programme has the objectives of gaining data and experience in a wide range of decommissioning operations and hence in this specific project to pilot the decommissioning of plant heavily contaminated with plutonium and other actinides. Consequently the operations have been used to test improvements in temporary containment, contamination control and decontamination methods and also to develop in situ plutonium assay, plutonium recovery and size-reduction methods. Finally the project is also yielding data on manpower requirements, personnel radiation uptake and waste arisings to help in the planning of future decommissioning projects

  14. Proceedings of the topical session on stakeholder involvement in decommissioning projects

    International Nuclear Information System (INIS)

    Santiago, Juan Luis; Chandler, Steve; Metcalfe, Doug; Le Bars, Yves

    2006-01-01

    Set up by the Radioactive Waste Management Committee (RWMC), the WPDD brings together senior representatives of national organisations who have a broad overview of Decommissioning and Dismantling (D and D) issues through their work as regulators, implementers, R and D experts or policy makers. These include representatives from regulatory authorities, industrial decommissioners from the NEA Co-operative Programme on Exchange of Scientific and Technical Information on Nuclear Installation Decommissioning Projects (CPD), and cross-representation from the other NEA Committees. The EC is a member of the WPDD and the IAEA is participating as an observer. This broad participation provides good possibilities for the co-ordination efforts amongst activities in the international programmes. At its sixth meeting, in Paris, 14-16 November 2005, the WPDD held a topical session on the 'Stakeholder Involvement in Decommissioning Projects'. The topical session was jointly planned and run with members of the NEA Forum on Stakeholder Confidence (FSC). This report documents the topical session. The main text summarises the lessons learnt and includes the rapporteurs reports. Appendix 1 and 2 provide the agenda of the topical session and all contributed papers respectively. The Topical session also provided a stimuli to review all the contributions in the area of stakeholder involvement that the WPDD has received since its inception. A list of references is provided in Appendix 3. The topical session was meant to provide an exchange of information and experience on the following issues: - Views from Stakeholders Regarding Stakeholder Involvement and Their Own Role. - Case Studies on Stakeholders Confidence. At the end of each session time was allotted for a plenary discussion. The Rapporteur reviewed the main points and the lessons learnt at the end of the whole Topical Session. (authors)

  15. NPP A-1 decommissioning - Phase I

    International Nuclear Information System (INIS)

    Krstenik, A.; Blazek, J.

    2000-01-01

    Nuclear power plant A-1 with output 150 MW e , with metallic natural uranium fuelled, CO 2 cooled and heavy water moderated reactor had been prematurely finally shut down in 1977. It is necessary to mention that neither operator nor regulatory and other authorities have been prepared for the solution of such situation. During next two consecutive years after shutdown main effort of operator focused on technical and administrative activities which are described in the previous paper together with approach, condition and constraints for NPP A-1 decommissioning as well as the work and research carried out up to the development and approval of the Project for NPP A-1 decommissioning - I. phase. Subject of this paper is description of: (1) An approach to NPP A -1 decommissioning; (2) An approach to development of the project for NPP A-1 decommissioning; (3) Project - tasks, scope, objectives; (4) Mode of the Project realisation; (5) Progress achieved up to the 1999 year. (authors)

  16. Chemical mode control in nuclear power plant decommissioning during operation of technologies in individual radioactive waste processing plants

    International Nuclear Information System (INIS)

    Horvath, J.; Dugovic, L.

    1999-01-01

    Sewage treatment of nuclear power plant decommissioning is performed by system of sewage concentration in evaporator with formation of condensed rest, it means radioactive waste concentrate and breeding steam. During sewage treatment plant operation department of chemical mode performs chemical and radiochemical analysis of sewage set for treatment, chemical and radiochemical analysis of breeding steam condensate which is after final cleaning on ionization filter and fulfilling the limiting conditions released to environment; chemical and radiochemical analysis of heating steam condensate which is also after fulfilling the limiting conditions released to environment. Condensed radioactive concentrate is stored in stainless tanks and later converted into easy transportable and chemically stable matrix from the long term storage point of view in republic storage Mochovce. The article also refer to bituminous plant, vitrification plant, swimming pool decontamination plant of long term storage and operation of waste processing plant Bohunice

  17. Cutting Technology for Decommissioning of the Reactor Pressure Vessels in Nuclear Power Plants

    International Nuclear Information System (INIS)

    Jeong, Kwan Seong; Kim, Geun Ho; Moon, Jei Kwon; Choi, Byung Seon

    2012-01-01

    Lots of nuclear power plants have been decommissioned during the last 2 decades. An essential part of this work is the dismantling of the Reactor Pressure Vessel and its Internals. For this purpose a wide variety of different cutting technologies have been developed, adapted and applied. A detailed introduction to Plasma Arc cutting, Contact Arc Metal cutting and Abrasive Water Suspension Jet cutting is given, as it turned out that these cutting technologies are particularly suitable for these type of segmentation work. A comparison of these technologies including gaseous emissions, cutting power, manipulator requirements as well as selected design approaches are given. Process limits as well as actual limits of application are presented

  18. Decommissioning of nuclear facilities: Feasibility, needs and costs

    International Nuclear Information System (INIS)

    DeLaney, E.G.; Mickelson, J.R.

    1985-01-01

    The Nuclear Energy Agency's Working Group on Decommissioning is preparing a study entitled ''Decommissioning of Nuclear Facilities: Feasibility, Needs and Costs.'' The study addresses the economics, technical feasibility and waste management aspects of decommissioning larger commercial reactors and nuclear support facilities. Experience on decommissioning small reactors and fuel cycle facilities shows that current technology is generally adequate. Several major projects that are either underway or planned will demonstrate decommissioning of the larger and more complex facilities. This experience will provide a framework for planning and engineering the decommissioning of the larger commercial reactors and fuel cycle facilities. Several areas of technology development are desired for worker productivity improvement, occupational exposure reduction, and waste volume reduction. In order to assess and plan for the decommissioning of large commercial nuclear facilities, projections have been made of the capacity of these facilities that may be decommissioned in the future and the radioactive waste that would be produced from the decommissioning of these facilities. These projections through the year 2025 are based on current data and the OECD reactor capacity forecast through the year 2000. A 25-year operating lifetime for electrical power generation was assumed. The possibilities of plant lifetime extension and the deferral of plant dismantlement make this projection very conservative

  19. Cost update: Technology, safety, and costs of decommissioning a reference uranium fuel fabrication plant

    International Nuclear Information System (INIS)

    Miles, T.L.; Liu, Y.

    1994-06-01

    The cost estimates originally developed in NUREG/CR-1266 for commissioning a reference low-enrichment uranium fuel fabrication plant are updated from 1978 to early 1993 dollars. During this time, the costs for labor and materials increased approximately at the rate of inflation, the cost of energy increased more slowly than the rate of inflation, and the cost of low-level radioactive waste disposal increased much more rapidly than the rate of inflation. The results of the analysis indicate that the estimated costs for the immediate dismantlement and decontamination for unrestricted facility release (DECON) of the reference plant have increased from the mid-1978 value of $3.57 million to $8.08 million in 1993 with in-compact low-level radioactive waste disposal at the US Ecoloay facility near Richland, Washington. The cost estimate rises to $19.62 million with out-of-compact radioactive waste disposal at the Chem-Nuclear facility near Barnwell, South Carolina. A methodology and a formula are presented for estimating the cost of decommissioning the reference uranium fuel fabrication plant at some future time, based on these early 1993 cost estimates. The formula contains essentially the same elements as the formula given in 10 CFR 50.75 for escalating the decommissioning costs for nuclear power reactors to some future time

  20. Russian conceptions of plant life management and decommissioning of nuclear facilities

    International Nuclear Information System (INIS)

    Bugaenko, S.E.; Butorin, S.L.

    2000-01-01

    Plant life management (PLIM) of nuclear power plant is the concept and practice to provide profitability of safe operation of nuclear electricity-generating installations. Therefore, application of the PLIM technology is a unique possibility for the nuclear power not only to preserve its presence at the generated electricity market but also to enlarge it there at the first quarter of the third millennium. PLIM is considered as the concept and procedure covering the whole life cycle of NPP, consisting of three main phases: pre-operation, operation, post-operation. When considering the list of the main standard works for PLIM, one can notice that the structure of a full volume of works can be presented as the sum of two constituents: specific for a particular power unit and universal one. A specific constituent implies realising the PLIM process at a particular power unit, and universal one implies development scientific-methodological, technological and normative basis supporting PLIM process. The concept of decommissioning NPP power units was developed and adopted in 1991, and nowadays is renewed. Its main principles and provisions correspond to a general approach to decommissioning nuclear power plants which was adopted in international practice and recommended in the IAEA documents. Elimination of NPP power unit is adopted in it as the basic option

  1. Decommissioning Planning during the Operation of the Loviisa NPP. Planning, Management and Organizational Aspects

    Energy Technology Data Exchange (ETDEWEB)

    Tuunanen, J. P.; Eurajoki, T. E.E., [Fortum Power and Heat Ltd, Nuclear Waste Espoo (Finland)

    2013-08-15

    The first decommissioning plan for Loviisa nuclear power plant was written already in 1980's, when the plant had just started operation. The plan has been updated in 5-6 years intervals and this work still continues towards the final decommissioning plan. The decommissioning plan is based on immediate dismantling option and final disposal of decommissioning waste to the extension of the on site final disposal facility for low and intermediate level waste. The decommissioning planning has been organized as an independent project, which is realised in close cooperation with Fortum's research programme on radioactive waste management. The plant personnel are involved in the planning work through providing operating experience on contamination and activation of systems, structures and components. Later in the decommissioning phase the plant personnel will form the main part of the decommissioning organization. (author)

  2. The decision on the application to carry out a decommissioning project at Hinkley Point A Power Station under the Nuclear Reactors (Environmental Impact Assessment for Decommissioning) Regulations 1999

    International Nuclear Information System (INIS)

    2003-01-01

    European Council Directive 85/337/EEC, as amended by Council Directive 97/1 I/EC, sets out a framework on the assessment of the effects of certain public and private projects on the environment. The Directive is implemented in Great Britain for decommissioning nuclear reactor projects by the Nuclear Reactors (Environmental Impact Assessment for Decommissioning) Regulations 1999. The intention of the Directive and Regulations is to involve the public through consultation in considering the potential environmental impacts of a decommissioning project, and to make the decision-making process on granting consent open and transparent. The Regulations require the licensee to undertake an environmental impact assessment, prepare an environmental statement that summarises the environmental effects of the project, and apply to the Health and Safety Executive (HSE) for consent to carry out a decommissioning project. There is an optional stage where the licensee may request from HSE an opinion on what the environmental statement should contain (called a pre-application opinion). The licensee of Hinkley Point A Power Station, Magnox Electric pie, requested a pre-application opinion and provided information in a scoping report in December 2000. HSE undertook a public consultation on the scoping report and provided its pre- application opinion in April 2001. The licensee applied to HSE for consent to carry out a decommissioning project and provided an environmental statement in December 2001. Following a public consultation on the environmental statement, HSE requested further information that was subsequently provided by the licensee. A further public consultation was undertaken on the further information that ended in March 2003. All these public consultations involved around 60 organisations. HSE granted consent to carry out a decommissioning project at Hinkley Point A Power Station under the Regulations in July 2003, and attached conditions to the Consent. HSE took relevant

  3. Evaluation of disposal, recycling and clearance scenarios for managing ARIES radwaste after plant decommissioning

    International Nuclear Information System (INIS)

    El-Guebaly, L.

    2007-01-01

    The wealth of experience accumulated over the past 30-40 years of fusion power plant studies must be forged into a new strategy to reshape all aspects of handling the continual stream of radioactive materials during operation and after power plant decommissioning. With tighter environmental controls and the political difficulty of building new repositories worldwide, the disposal option could be replaced with more environmentally attractive scenarios, such as recycling and clearance. We applied the three scenarios to the most recent ARIES compact stellarator power plant. All ARIES-CS components qualify as Class A or C low-level waste, according to the US guidelines, and can potentially be recycled using conventional and advanced remote handling equipment. Approximately 80% of the total waste can be cleared for reuse within the nuclear industry or, preferably, released to the commercial market. This paper documents the recent developments in radwaste management of nuclear facilities and highlights the benefits and challenges of disposal, recycling and clearance

  4. Nuclear Rocket Facility Decommissioning Project: Controlled Explosive Demolition of Neutron-Activated Shield Wall

    International Nuclear Information System (INIS)

    Michael R. Kruzic

    2007-01-01

    Located in Area 25 of the Nevada Test Site (NTS), the Test Cell A (TCA) Facility was used in the early to mid-1960s for the testing of nuclear rocket engines, as part of the Nuclear Rocket Development Program, to further space travel. Nuclear rocket testing resulted in the activation of materials around the reactors and the release of fission products and fuel particles in the immediate area. Identified as Corrective Action Unit 115, the TCA facility was decontaminated and decommissioned (D and D) from December 2004 to July 2005 using the Streamlined Approach for Environmental Restoration (SAFER) process, under the ''Federal Facility Agreement and Consent Order''. The SAFER process allows environmental remediation and facility closure activities (i.e., decommissioning) to occur simultaneously provided technical decisions are made by an experienced decision maker within the site conceptual site model, identified in the Data Quality Objective process. Facility closure involved a seven-step decommissioning strategy. Key lessons learned from the project included: (1) Targeted preliminary investigation activities provided a more solid technical approach, reduced surprises and scope creep, and made the working environment safer for the D and D worker. (2) Early identification of risks and uncertainties provided opportunities for risk management and mitigation planning to address challenges and unanticipated conditions. (3) Team reviews provided an excellent mechanism to consider all aspects of the task, integrated safety into activity performance, increase team unity and ''buy-in'' and promoted innovative and time saving ideas. (4) Development of CED protocols ensured safety and control. (5) The same proven D and D strategy is now being employed on the larger ''sister'' facility, Test Cell C

  5. Collection and characterization of emissions from metal cutting in Caorso nuclear power plant decommissioning

    International Nuclear Information System (INIS)

    Cesari, F.G.; Terzi, L.A.; Giostri, A.; Bernini, C.; Sirito, E.; Sirito, M.

    2005-01-01

    The Caorso's Nuclear Power Plant (BWR, 870 MWe) has just started the decommissioning process, with the intent to reach, by almost ten years, the 'green field' conditions for the site. The plant has fully worked for a very short period of time, by 1981 to 1986, being shut down after 1987 Italy's poll that abrogated nuclear power use. The dismantling of the components and of the structural materials has already begun in the Turbine Building. The University of Bologna, on indication of the NPP's management, has started an experimental campaign to test the cutting processes and its filtering plant. The starting phase is the qualification of the cutting methods chosen by Caorso's management, oxyfuel and plasma cuttings. This campaign is set over no contaminated material, or, better, material with a contamination under the level of free release, and is now running in the University Labs. Next phase are filtering tests. This part of the qualifying campaign is set to highlight the kind of trouble that can emerge in the cutting processes, not yet taking into account radioactivity. Caorso's BWR is a plant designed and built in the 70s. Possible decommissioning problems weren't considered during the design phase so the cutting processes will be quite difficult, even on the conventional side. The final phase is settled in the plant. Cutting tests, following indications made by previous campaigns, will be conducted in the Turbine Building, where tests can be conducted on a low level of radioactivity (only some little part of it has a contamination level over the free release limit of 1 Bq/cm 2 ). The intent is to develop an extensive cutting procedure, with the obvious option of remote control, able to face difficulties connected with cutting processes in a nuclear plant like Caorso. This means handling with radioactivity and with not airy narrow rooms, fulfilled with pipes. (authors)

  6. Direction for the Estimation of Required Resources for Nuclear Power Plant Decommissioning based on BIM via Case Study

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Insu [Korea Institute of Construction Technology, Goyang (Korea, Republic of); Kim, Woojung [KHNP-Central Research Institute, Daejeon (Korea, Republic of)

    2014-05-15

    Ways to estimate decommissioning of required resources in the past have imposed great uncertainty since they analyze required resources at the construction stage, analyzing and consulting decommissioning required resources of overseas nuclear power plants. As demands on efficient management and use of complicated construction information increased these days, demands on the introduction of Building Information Modeling (herein after referred to as BIM) technology has increased. In the area of quotation, considerable effects are expected as to the accuracy and reliability predicting construction costs through the characteristics that can automatically estimate quantities by using attribute information of BIM model. BIM-based estimation and quotation of required resources is more accurate than the existing 2D-based quotations and have many advantages such as reviews over constructability and interference. It can be desirable to estimate decommissioning required resources in nuclear power plants using BIM as well as using tools that are compatible with usual international/industrial standards. As we looked into the cases where required resources were estimated, using BIM in Korea and abroad, they dealt with estimation of required resources, estimation of construction cost and process management at large. In each area, methodologies, classification systems, BIM, and realization tests have been used variably. Nonetheless, several problems have been reported, and among them, it is noticeable that although BIM standard classification system exists, no case was found that has used standard classification system. This means that no interlink among OBS (Object Breakdown Structure), WBS (Work Breakdown Structure) and CBS (Cost Breakdown Structure) was possible. Thus, for nuclear power plant decommissioning, decommissioning method and process, etc. shall be defined clearly in the stage of decommissioning strategy establishment, so that classification systems must be set up

  7. Direction for the Estimation of Required Resources for Nuclear Power Plant Decommissioning based on BIM via Case Study

    International Nuclear Information System (INIS)

    Jung, Insu; Kim, Woojung

    2014-01-01

    Ways to estimate decommissioning of required resources in the past have imposed great uncertainty since they analyze required resources at the construction stage, analyzing and consulting decommissioning required resources of overseas nuclear power plants. As demands on efficient management and use of complicated construction information increased these days, demands on the introduction of Building Information Modeling (herein after referred to as BIM) technology has increased. In the area of quotation, considerable effects are expected as to the accuracy and reliability predicting construction costs through the characteristics that can automatically estimate quantities by using attribute information of BIM model. BIM-based estimation and quotation of required resources is more accurate than the existing 2D-based quotations and have many advantages such as reviews over constructability and interference. It can be desirable to estimate decommissioning required resources in nuclear power plants using BIM as well as using tools that are compatible with usual international/industrial standards. As we looked into the cases where required resources were estimated, using BIM in Korea and abroad, they dealt with estimation of required resources, estimation of construction cost and process management at large. In each area, methodologies, classification systems, BIM, and realization tests have been used variably. Nonetheless, several problems have been reported, and among them, it is noticeable that although BIM standard classification system exists, no case was found that has used standard classification system. This means that no interlink among OBS (Object Breakdown Structure), WBS (Work Breakdown Structure) and CBS (Cost Breakdown Structure) was possible. Thus, for nuclear power plant decommissioning, decommissioning method and process, etc. shall be defined clearly in the stage of decommissioning strategy establishment, so that classification systems must be set up

  8. Human resource development for decommissioning

    International Nuclear Information System (INIS)

    Yanagihara, Satoshi

    2016-01-01

    This paper summarized the features of decommissioning work and the methods how to develop human resources. The general flow of decommissioning includes the following steps: (1) evaluation of facility characteristics, (2) planning, (3) decontamination and disassembly of equipment and structures contaminated with radioactivity, (4) radioactivity measurement, (5) treatment and disposal of radioactive waste, and (6) release from legal restrictions (termination of decommissioning). For this purpose, techniques in various fields are required. In the evaluation of facility characteristics, radiation measurement and calculation of activation amount in the core part are required. In decontamination and dismantling, cutting technology (mechanical cutting, thermal cutting, etc.), decontamination technology, and remote control technology are required. In the nuclear power education in the past, the fields related to design, construction, operation, and maintenance among the plant life cycle were the main parts. Much attention was not payed to decommissioning and the treatment/disposal of radioactive waste in the second half of life cycle. As university education, Hokkaido University and Fukui University have lectures on decommissioning. Furthermore, the education and research for students are proceeding at seven universities, with a focus on common reactors including those of Fukushima Daiichi Power Station. It is a key for promoting decommissioning, to incorporate project management, risk analysis, cost evaluation, and decision making into education, and to foster human resources heading toward challenging problems including social problems. (A.O.)

  9. Decommissioning of Active Ventilation Systems in a Nuclear R and D Facility to Prepare for Building Demolition (Whiteshell Laboratories Decommissioning Project, Canada) - 13073

    International Nuclear Information System (INIS)

    Wilcox, Brian; May, Doug; Howlett, Don; Bilinsky, Dennis

    2013-01-01

    Whiteshell Laboratories (WL) is a nuclear research establishment owned by the Canadian government and operated by Atomic Energy of Canada Limited (AECL) since the early 1960's. WL is currently under a decommissioning license and the mandate is to remediate the nuclear legacy liabilities in a safe and cost effective manner. The WL Project is the first major nuclear decommissioning project in Canada. A major initiative underway is to decommission and demolish the main R and D Laboratory complex. The Building 300 R and D complex was constructed to accommodate laboratories and offices which were mainly used for research and development associated with organic-cooled reactors, nuclear fuel waste management, reactor safety, advanced fuel cycles and other applications of nuclear energy. Building 300 is a three storey structure of approximately 16,000 m 2 . In order to proceed with building demolition, the contaminated systems inside the building have to be characterized, removed, and the waste managed. There is a significant focus on volume reduction of radioactive waste for the WL project. The active ventilation system is one of the significant contaminated systems in Building 300 that requires decommissioning and removal. The active ventilation system was designed to manage hazardous fumes and radioactivity from ventilation devices (e.g., fume hoods, snorkels and glove boxes) and to prevent the escape of airborne hazardous material outside of the laboratory boundary in the event of an upset condition. The system includes over 200 ventilation devices and 32 active exhaust fan units and high efficiency particulate air (HEPA) filters. The strategy to remove the ventilation system was to work from the laboratory end back to the fan/filter system. Each ventilation duct was radiologically characterized. Fogging was used to minimize loose contamination. Sections of the duct were removed by various cutting methods and bagged for temporary storage prior to disposition

  10. Surface radiological free release program for the Battelle Columbus Laboratory Decommissioning Project

    International Nuclear Information System (INIS)

    Horton, C.N.

    1995-01-01

    This paper was prepared for the Second Residual Radioactivity and Recycling Criteria Workshop and discusses decommissioning and decontamination activities at the Battelle Columbus Laboratories Decommissioning Project (BCLDP). The BCLDP is a joint effort between the Department of Energy (DOE) and Battelle Columbus Operations to decontaminate fifteen Battelle-owned buildings contaminated with DOE radioactive materials. The privately owned buildings located across the street from The Ohio State University campus became contaminated with natural uranium and thorium during nuclear research activities. BCLDP waste management is supported by an extensive radiological free-release program. Miscellaneous materials and building surfaces have been free-released from the BCLDP. The free-release program has substantially reduced radioactive waste volumes and supported waste minimization. Free release for unrestricted use has challenged regulators and NRC licensees since the development of early surface-release criteria. This paper discusses the surface radiological free-release program incorporated by the BCLDP and the historical development of the surface radiological free-release criteria. Concerns regarding radiological free-release criteria are also presented. (author)

  11. Lessons learned from the decommissioning of NORM facility in Malaysia

    International Nuclear Information System (INIS)

    Kontol, Khairuddin M.; Omar, Muhamat; Ahmad, Syed H.S.S.

    2008-01-01

    Full text: Malaysia Decommissioning of Naturally Occurring Radioactive Materials (NORM) facility in Malaysia will run into unforeseeable complications and difficulties if there is no proper planning. The Atomic Energy Licensing Board (AELB) plays important role in guiding and assisting the operator/contractor in this NORM decommissioning project. A local Naturally Occurring Radioactive Materials (NORM) processing plant located in the northern region of peninsular Malaysia had ceased its operations and decided to decommission and remediate its site for the final release of the site. The remediated site is earmarked as an industrial site. During its operations, monazites are processed for rare earth elements such as cerium and lanthanum. It's plant capable of processing monazite to produce rare earth chloride and rare earth carbonate. The main by-product of monazite processing is the radioactive cake containing primarily thorium hydroxide. Operation of the monazite processing plant started in early eighties and terminated in early nineties. The decommissioning of the plant site started in late 2003 and completed its decommissioning and remediation works in early 2006. This paper described the lesson learned by Malaysian Nuclear Agency (Nuclear Malaysia) in conducting third party independent audit for the decommissioning of the NORM contaminated facility. By continuously reviewing the lessons learned, mistakes and/or inefficiencies in this plant decommissioning project, hopefully will result in a smoother, less costly and more productive future decommissioning works on NORM facilities in Malaysia. (author)

  12. Technology, safety, and costs of decommissioning a reference nuclear fuel reprocessing plant

    International Nuclear Information System (INIS)

    Schneider, K.J.; Jenkins, C.E.; Rhoads, R.E.

    1977-09-01

    Volume 2 comprises six appendices on: facility description; residual radioactivity inventory estimates; description and contamination levels of reference site; derivation of residual contamination levels; decommissioning mode detail; and decommissioning safety assessment details

  13. Feedback experience from the decommissioning of Spanish nuclear facilities

    International Nuclear Information System (INIS)

    Santiago, J.L.

    2008-01-01

    The Spain has accumulated significant experience in the field of decommissioning of nuclear and radioactive facilities. Relevant projects include the remediation of uranium mills and mines, the decommissioning of research reactors and nuclear research facilities and the decommissioning of gas-graphite nuclear power plants. The decommissioning of nuclear facilities in Spain is undertaken by ENRESA, who is also responsible for the management of radioactive wastes. The two most notable projects are the decommissioning of the Vandellos I nuclear power plant and the decommissioning of the CIEMAT nuclear research centre. The Vandellos I power plant was decommissioned in about five years to what is known as level 2. During this period, the reactor vessel was confined, most plant systems and components were dismantled, the facility was prepared for a period of latency and a large part of the site was restored for subsequent release. In 2005 the facility entered into the phase of dormancy, with minimum operating requirements. Only surveillance and maintenance activities are performed, among which special mention should be made to the five-year check of the leak tightness of the reactor vessel. After the dormancy period (25 - 30 years), level 3 of decommissioning will be initiated including the total dismantling of the remaining parts of the plant and the release of the whole site for subsequent uses. The decommissioning of the CIEMAT Research Centre includes the dismantling of obsolete facilities such as the research reactor JEN-1, a pilot reprocessing plant, a fuel fabrication facility, a conditioning plant for liquid and a liquid waste storage facility which were shutdown in the early eighties. Dismantling works have started in 2006 and will be completed by 2009. On the basis of the experience gained in the above mentioned sites, this paper describes the approaches adopted by ENRESA for large decommissioning projects. (author)

  14. Review of Impact Factors on Decommissioning Strategies

    Energy Technology Data Exchange (ETDEWEB)

    Yun, Taesik; Jung, Hyejin; Kim, Younggook [KHNP CRI, Daejeon (Korea, Republic of)

    2016-10-15

    This article is prepared to factor out decommissioning strategies mostly appropriate to the decommissioning Kori-1 nuclear power plant. Terms used to delineate the lifetime of an authorized facility and of the associated licensing process consists of six core stages such as siting, design, construction, commissioning, operation and decommissioning. The term decommissioning implies the administrative and technical actions taken to allow the removal of some or all of the regulatory controls from a facility except for the part of a disposal facility in which the radioactive waste is emplaced. Whole range of each process of decommissioning should be considered throughout the other five stages. The decommissioning process is typically composed of its planning, conducting actions and terminating the authorization. In order to achieve the successful decommissioning, the impact factor on the strategy should be analyzed and evaluated to optimally apply to Kori-1 project. From my perspective, among eight factor, stakeholder’s consideration and spent fuel management are considered the key elements we have to concentrate on to smoothly go ahead for successful decommissioning of Kori-1.

  15. Safety in nuclear power plant operation, including commissioning and decommissioning. A code of practice

    International Nuclear Information System (INIS)

    1978-01-01

    Safe operation of a nuclear power plant postulates satisfactory siting, design, construction and commissioning, together with proper management and operation of the plant. This Code of Practice deals with the safety aspects of management, commissioning, operation and decommissioning of the plant. It forms part of the Agency's programme, referred to as the NUSS programme, for establishing Codes of Practice and Safety Guides relating to land-based stationary thermal neutron power plants. It has been prepared for the use of those responsible for the operation of stationary nuclear power plants, the main function of which is the generation of electrical and/or thermal power, and for the use of those responsible for regulating the operation of such plants. It is not intended for application to reactors used solely for experimental or research purposes. The provisions in the Code are designed to provide assurance that operational activities are carried out without undue radiological hazard to the general public and to persons on the site. It should be understood that the provisions in the Code set forth minimum requirements which shall be met in order to achieve safe operation of a nuclear power plant

  16. Establishment the code for prediction of waste volume on NPP decommissioning

    International Nuclear Information System (INIS)

    Cho, W. H.; Park, S. K.; Choi, Y. D.; Kim, I. S.; Moon, J. K.

    2013-01-01

    In practice, decommissioning waste volume can be estimated appropriately by finding the differences between prediction and actual operation and considering the operational problem or supplementary matters. So in the nuclear developed countries such as U.S. or Japan, the decommissioning waste volume is predicted on the basis of the experience in their own decommissioning projects. Because of the contamination caused by radioactive material, decontamination activity and management of radio-active waste should be considered in decommissioning of nuclear facility unlike the usual plant or facility. As the decommissioning activity is performed repeatedly, data for similar activities are accumulated, and optimal strategy can be achieved by comparison with the predicted strategy. Therefore, a variety of decommissioning experiences are the most important. In Korea, there is no data on the decommissioning of commercial nuclear power plants yet. However, KAERI has accumulated the basis decommissioning data of nuclear facility through decommissioning of research reactor (KRR-2) and uranium conversion plant (UCP). And DECOMMIS(DECOMMissioning Information Management System) was developed to provide and manage the whole data of decommissioning project. Two codes, FAC code and WBS code, were established in this process. FAC code is the one which is classified by decommissioning target of nuclear facility, and WBS code is classified by each decommissioning activity. The reason why two codes where created is that the codes used in DEFACS (Decommissioning Facility Characterization management System) and DEWOCS (Decommissioning Work-unit productivity Calculation System) are different from each other, and they were classified each purpose. DEFACS which manages the facility needs the code that categorizes facility characteristics, and DEWOCS which calculates unit productivity needs the code that categorizes decommissioning waste volume. KAERI has accumulated decommissioning data of KRR

  17. Long-term safety of the maintenance and decommissioning waste of the encapsulation plant

    International Nuclear Information System (INIS)

    Nummi, O.; Kylloenen, J.; Eurajoki, T.

    2012-12-01

    This report, Long-term safety of the maintenance and decommissioning waste of the encapsulation plant, presents the disposal concept for the low and intermediate level waste (L/ILW) that is generated during the operation and decommissioning of the encapsulation plant, and assesses the long-term safety of the disposal of the waste. Radioactive waste originates from the spent nuclear fuel transferred and dried in the encapsulation plant. Radioactive waste accumulates also in the maintenance of the components and systems of the encapsulation plant. The waste is collected, exempted from control if possible and treated for final disposal if necessary. The waste is disposed of in the L/ILW hall which is currently planned to be located at a depth of -180 meters along the access tunnel to the repository for spent fuel. The main engineered barrier in the L/ILW hall is a concrete basin that encases the dried liquid waste. The safety concept of L/ILW disposal is based on the slow release of radioactivity from the L/ILW hall and its limited transport through the bedrock into biosphere. The release and transport of the radioactivity is described by the assessment scenarios, which include expected evolution and unlikely events affecting the long-term safety. The scenarios act as guidelines according to which the conceptual and mathematical models are formed. The long-term safety of the L/ILW hall is assessed using deterministic and probabilistic modeling. Special issues such as human intrusion and radiation effects on other biota are also assessed. The most significant contributor to the dose rates is the short-lived radionuclide 90 Sr followed by long-lived nuclides 129 I and 108 mAg. The annual doses to the public, and release rates of radioactive substances stay below the regulatory constraints in all analyzed scenarios. (orig.)

  18. Decontamination and decommissioning of the Experimental Boiling Water Reactor (EBWR): Project final report, Argonne National Laboratory

    International Nuclear Information System (INIS)

    Fellhauer, C.R.; Boing, L.E.; Aldana, J.

    1997-03-01

    The Final Report for the Decontamination and Decommissioning (D ampersand D) of the Argonne National Laboratory - East (ANL-E) Experimental Boiling Water Reactor (EBWR) facility contains the descriptions and evaluations of the activities and the results of the EBWR D ampersand D project. It provides the following information: (1) An overall description of the ANL-E site and EBWR facility. (2) The history of the EBWR facility. (3) A description of the D ampersand D activities conducted during the EBWR project. (4) A summary of the final status of the facility, including the final and confirmation surveys. (5) A summary of the final cost, schedule, and personnel exposure associated with the project, including a summary of the total waste generated. This project report covers the entire EBWR D ampersand D project, from the initiation of Phase I activities to final project closeout. After the confirmation survey, the EBWR facility was released as a open-quotes Radiologically Controlled Area,close quotes noting residual elevated activity remains in inaccessible areas. However, exposure levels in accessible areas are at background levels. Personnel working in accessible areas do not need Radiation Work Permits, radiation monitors, or other radiological controls. Planned use for the containment structure is as an interim transuranic waste storage facility (after conversion)

  19. Hungarian Experience in Decommissioning Planning for the Paks Nuclear Power Plant

    Energy Technology Data Exchange (ETDEWEB)

    Danko, G.; Takats, F. [Golder Associates, Budapest (Hungary)

    2013-08-15

    Preparations for the decommissioning planning, and the legal background are described in the first part, followed by a review of possible decommissioning strategies and the present reference scenario. Specific issues of financing the future decommissioning and the anticipated radioactive wastes and their activities are described in the latter part of the report. (author)

  20. Decommissioning a nuclear reactor

    International Nuclear Information System (INIS)

    Montoya, G.M.

    1991-01-01

    The process of decommissioning a facility such as a nuclear reactor or reprocessing plant presents many waste management options and concerns. Waste minimization is a primary consideration, along with protecting a personnel and the environment. Waste management is complicated in that both radioactive and chemical hazardous wastes must be dealt with. This paper presents the general decommissioning approach of a recent project at Los Alamos. Included are the following technical objectives: site characterization work that provided a thorough physical, chemical, and radiological assessment of the contamination at the site; demonstration of the safe and cost-effective dismantlement of a highly contaminated and activated nuclear-fuelded reactor; and techniques used in minimizing radioactive and hazardous waste. 12 figs

  1. Project WAGR: The UK demonstration project for power reactor decommissioning - removing the core and looking to completion

    International Nuclear Information System (INIS)

    Benest, T. G.

    2003-01-01

    delivered the required performance. In such cases, simple tooling and manual intervention have been adopted to maintain the project ahead of programme and below the dose budget. For campaigns where manual intervention was precluded by high dose rates, the contractor has undertaken a risk assessment of each task and elected to develop a number of different tools to cover the most likely risks. Although this strategy incurs costs for tools that may never be utilised, these costs are dwarfed by the project costs of potential delays. Excellent progress has been maintained throughout the remote dismantling with the reliability of the equipment and the experience of the workforce being major contributors to the success. Management arrangements have also contributed to the current excellent programme position. The close working relationship between UKAEA and their prime contractor, and management of the interfaces with the regulators, has enabled problems to be identified early and then dealt with quickly and effectively. The current phase of operations is now planned for completion in early 2005 over 18 months ahead of programme. Currently the WAGR project has operated for over 6 years without a lost time accident to either UKAEA staff or any of the contractor's operatives. In the last 12 months, the maximum radiation dose to an individual was <1.0 mSv. To date, 270 tonnes of graphite and 206 tonnes of steel have been encapsulated. 38 boxes of low level waste have been sent, or are awaiting transport, to BNFL's Drigg site for disposal, and a further 102 boxes of ILW are now stored on-site pending the availability of a national facility. Thus far the UKAEA WAGR project is well ahead of programme, achieving all its objectives and demonstrating to a world-wide audience that a power reactor can be decommissioned safely and efficiently shortly after shutdown

  2. Disposal of Steam Generators from Decommissioning of PWR Nuclear Power Plants

    International Nuclear Information System (INIS)

    Walberg, Mirko; Viermann, Joerg; Beverungen, Martin; Kemp, Lutz; Lindstroem, Anders

    2008-01-01

    Amongst other materials remarkable amounts of radioactively contaminated or activated scrap are generated from the dismantling of Nuclear Power Plants. These scrap materials include contaminated pipework, fittings, pumps, the reactor pressure vessel and other large components, most of them are heat exchangers. Taking into account all commercial and technical aspects an external processing and subsequent recycling of the material might be an advantageous option for many of these components. The disposal of steam generators makes up an especially challenging task because of their measures, their weight and compared to other heat exchangers high radioactive inventory. Based on its experiences from many years of disposal of smaller components of NPP still in operation or under decommissioning GNS and Studsvik Nuclear developed a concept for disposal of steam generators, also involving experiences made in Sweden. The concept comprises transport preparations and necessary supporting documents, the complete logistics chain, steam generator treatment and the processing of arising residues and materials not suitable for recycling. The first components to be prepared, shipped and treated according to this concept were four steam generators from the decommissioning of the German NPP Stade which were removed from the plant and shipped to the processing facility during the third quarter of 2007. Although the plant had undergone a full system decontamination, due to the remaining contamination in a number of plugged tubes the steam generators had to be qualified as industrial packages, type 2 (IP-2 packages), and according to a special requirement of the German Federal Office for Radiation Protection a license for a shipment under special arrangement had to be applied for. The presentation gives an overview of the calculations and evidences required within the course of the IP-2 qualification, additional requirements of the competent authorities during the licensing procedure as

  3. Management of very low level waste from decommissioning of the A-1 Jaslovske Bohunice nuclear power plant in Slovakia

    International Nuclear Information System (INIS)

    Burclova, J.; Konecny, L.; Mrskova, A.

    2000-01-01

    Efforts were made to accelerate decommissioning, particularly of the nuclear power plant A1 of the HWGCR type. Progress made and current developments in this subject area are reviewed. Radioactive waste categories are described along with release criteria. An overview is provided on contaminated scrap and the sorting of contaminated soil and concrete. (author)

  4. Nuclear power plant decommissioning. January 1972-September 1988 (Citations from the NTIS data base). Report for January 1972-September 1988

    International Nuclear Information System (INIS)

    1988-10-01

    This bibliography contains citations concerning nuclear power plant phase-out and decommissioning. Included are case histories of the dismantling process, hazardous-waste management, site monitoring, and economic aspects of the phase-out. (Contains 178 citations fully indexed and including a title list.)

  5. Development of Heavy-Duty and High-Precision Hydraulic Manipulator for Inspection, Maintenance and Decommission of Nuclear Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Sung Uk; Seo, Yong-chil; Jung, Kyung Min; Kim, Chang-hoi; Choi, Byung-seon; Moon, Jei-kwon [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-10-15

    Robotic manipulators have been used for inspection, maintenance and decommission of nuclear power plants because nuclear power plants have high radiation and human workers cannot easily access the plants. And also, to inspecting, maintaining and decommissioning nuclear power plants require various manipulators. Only one manipulator cannot response to many required tasks. The existing manipulators that was used at nuclear power plants can only operate only focused specific task and cannot be used at several tasks. The actuators used at manipulators are varied and many companies sell actuators depending on power, torque and speed. However, the commercial product is not standardized. Therefore, the development of manipulator is time consuming and expensive. The essential item of a manipulator is an actuator module. If actuator module is standardized, it’s easier to develop a manipulator and also maintain a manipulator. Recently, manipulator having high-radiation, high-duty and high-precision is necessary to inspection, maintain and decommissioning of nuclear power plants. Hydraulic actuator has been used to development high-duty manipulator. But control performance of a hydraulic actuator is not better than that of an electric actuator so that hydraulic manipulator cannot easily satisfy the required precision. In this paper, we developed high-duty and high-precision actuator modules and hydraulic manipulator using the developed actuator modules. The developed hydraulic manipulator have a payload of 250kg and a precision of ±1mm. Four modularized hydraulic actuator modules were developed for inspection, maintenance and decommission. Using the developed actuator modules, the manipulator for decommissioning is easily developed. And also, various manipulators having different kinematic structure for specific tasks will be easily developed by using hydraulic modules.

  6. Development of Heavy-Duty and High-Precision Hydraulic Manipulator for Inspection, Maintenance and Decommission of Nuclear Power Plants

    International Nuclear Information System (INIS)

    Lee, Sung Uk; Seo, Yong-chil; Jung, Kyung Min; Kim, Chang-hoi; Choi, Byung-seon; Moon, Jei-kwon

    2016-01-01

    Robotic manipulators have been used for inspection, maintenance and decommission of nuclear power plants because nuclear power plants have high radiation and human workers cannot easily access the plants. And also, to inspecting, maintaining and decommissioning nuclear power plants require various manipulators. Only one manipulator cannot response to many required tasks. The existing manipulators that was used at nuclear power plants can only operate only focused specific task and cannot be used at several tasks. The actuators used at manipulators are varied and many companies sell actuators depending on power, torque and speed. However, the commercial product is not standardized. Therefore, the development of manipulator is time consuming and expensive. The essential item of a manipulator is an actuator module. If actuator module is standardized, it’s easier to develop a manipulator and also maintain a manipulator. Recently, manipulator having high-radiation, high-duty and high-precision is necessary to inspection, maintain and decommissioning of nuclear power plants. Hydraulic actuator has been used to development high-duty manipulator. But control performance of a hydraulic actuator is not better than that of an electric actuator so that hydraulic manipulator cannot easily satisfy the required precision. In this paper, we developed high-duty and high-precision actuator modules and hydraulic manipulator using the developed actuator modules. The developed hydraulic manipulator have a payload of 250kg and a precision of ±1mm. Four modularized hydraulic actuator modules were developed for inspection, maintenance and decommission. Using the developed actuator modules, the manipulator for decommissioning is easily developed. And also, various manipulators having different kinematic structure for specific tasks will be easily developed by using hydraulic modules

  7. Current status of a decommissioning project in the Enrichment Engineering Facility. Results in the second-half of the fiscal year of 2014

    International Nuclear Information System (INIS)

    Matsumoto, Takashi; Hayashibara, Kenichi; Ishimori, Yuu; Mita, Yutaka; Kakiya, Hideyoshi; Takahashi, Nobuo

    2016-11-01

    The Enrichment Engineering Facility of the Ningyo-toge Environmental Engineering Center was constructed in order to establish the technological basis of plant engineering for uranium enrichment in Japan. Uranium enrichment tests, using natural and reprocessed uranium, were carried out from 1979 to 1989 with two operation units in the facility. According to the decommissioning plan of the facility, UF 6 handling equipment and supplemental equipment in these plants are intended to be dismantled by 2019 in order to make vacant spaces for future projects use, for example, inventory investigation, precipitation treatment, etc. This report shows the current state of the decommissioning project in the second-half of the fiscal year of 2014, with indicating its schedule, procedure, situation, results, and so on. The dismantled materials generated amounted to 69 mesh containers and 191 drums, and the secondary waste generated amounted to 1,585.7 kg during the half year. In the fiscal year of 2014, the project was carried out according to the plan. The dismantled materials generated amounted to 153,938.1 kg as the whole of this period, and 36,343 kg from among them was treated as non-radioactive materials. (author)

  8. Final environmental statement for decommissioning Humboldt Bay Power Plant, Unit No. 3 (Docket No. 50-133)

    International Nuclear Information System (INIS)

    1987-04-01

    The Final Environmental Statement contains the assessment of the environmental impact associated with decommissioning the Humboldt Bay Power Plant Unit 3 pursuant to the National Environmental Policy Act of 1969 (NEPA) and Title 10 of the Code of Federal Regulations, Part 51, as amended, of the Nuclear Regulatory Commission regulations. The proposed decommissioning would involve safe storage of the facility for about 30 years, after which the residual radioactivity would be removed so that the facility would be at levels of radioactivity acceptable for release of the facility to unrestricted access

  9. Draft Environmental Statement for decommissioning Humboldt Bay Power Plant, Unit No. 3 (Docket No. 50-133)

    International Nuclear Information System (INIS)

    1986-04-01

    This Draft Environmental Statement (DES) contains th assessment of the environmental impact associated with decommissioning the Humboldt Bay Power Plant Unit 3 located 4 miles southwest of the city of Eureka, Humboldt County, California. This DES is prepared pursuant to the National Environmental Policy Act of 1969 (NEPA) and Title 10 of the Code of Federal Regulations, Part 51, as amended, of the Nuclear Regulatory Commission regulations. The proposed decommissioning would involve safe storage of the facility for about 30 years, after which the residual radioactivity would be removed so that the facility would be at levels of radioactivity acceptable for release of the facility to unrestricted access. 26 refs

  10. The decommissioning of nuclear facilities; Le demantelement des installations nucleaires de base

    Energy Technology Data Exchange (ETDEWEB)

    Niel, J.Ch.; Rieu, J.; Lareynie, O.; Delrive, L.; Vallet, J.; Girard, A.; Duthe, M.; Lecomte, C.; Rozain, J.P.; Nokhamzon, J.G.; Davoust, M.; Eyraud, J.L.; Bernet, Ph.; Velon, M.; Gay, A.; Charles, Th.; Leschaeva, M.; Dutzer, M.; Maocec, Ch.; Gillet, G.; Brut, F.; Dieulot, M.; Thuillier, D.; Tournebize, F.; Fontaine, V.; Goursaud, V.; Birot, M.; Le Bourdonnec, Th.; Batandjieva, B.; Theis, St.; Walker, St.; Rosett, M.; Cameron, C.; Boyd, A.; Aguilar, M.; Brownell, H.; Manson, P.; Walthery, R.; Wan Laer, W.; Lewandowski, P.; Dorms, B.; Reusen, N.; Bardelay, J.; Damette, G.; Francois, P.; Eimer, M.; Tadjeddine, A.; Sene, M.; Sene, R

    2008-11-15

    This file includes five parts: the first part is devoted to the strategies of the different operators and includes the following files: the decommissioning of nuclear facilities Asn point of view, decommissioning of secret nuclear facilities, decommissioning at the civil Cea strategy and programs, EDF de-construction strategy, Areva strategy for decommissioning of nuclear facilities; the second one concerns the stakes of dismantling and includes the articles as follow: complete cleanup of buildings structures in nuclear facilities, decommissioning of nuclear facilities and safety assessment, decommissioning wastes management issues, securing the financing of long-term decommissioning and waste management costs, organizational and human factors in decommissioning projects, training for the decommissioning professions: the example of the Grenoble University master degree; the third part is devoted to the management of dismantling work sites and includes the different articles as follow: decommissioning progress at S.I.C.N. plant, example of decommissioning work site in Cea Grenoble: Siloette reactor decommissioning, matters related to decommissioning sites, decommissioning of french nuclear installations: the viewpoint of a specialist company, specificities of inspections during decommissioning: the Asn inspector point of view; the fourth part is in relation with the international approach and includes as follow: IAEA role in establishing a global safety regime on decommissioning, towards harmonization of nuclear safety practices in Europe: W.E.N.R.A. and the decommissioning of nuclear facilities, EPA superfund program policy for decontamination and decommissioning, progress with remediation at Sellafield, progress and experiences from the decommissioning of the Eurochemic reprocessing plant in Belgium, activities of I.R.S.N. and its daughter company Risk-audit I.r.s.n./G.r.s. international in the field of decommissioning of nuclear facilities in eastern countries

  11. Cost/risk/benefit analysis report on the decontamination and decommissioning of Z-plant

    International Nuclear Information System (INIS)

    Melvin, J.P.; Sexton, R.A.; Fort, M.L.; Nunn, S.E.

    1979-01-01

    This study was performed to estimate the cost of decontaminating and decommissioning Z-Plant. All of the buildings in the Z-Plant exclusion area except Building 2736-Z, the plutonium storage vault, are included in the study. The study also excludes all underground facilities within the exclusion area which are not contained within a building and all Z-Plant related facilities outside the perimeter fence. The contamination in Z-Plant is primarily 239 Pu which has a half-life of 24,360 years. Because of the long half-life of 239 Pu, it is not practical to consider the isolation of the facility to await reduction of the contamination level by natural decay. Therefore, this study analyzes the costs, risk and benefit of decontaminating Z-Plant to four different levels of residual contamination. The three principle criteria used in the analysis are cost, the risk of offsite dose to the public, and the occupational exposure to onsite personnel

  12. Cost/risk/benefit analysis report on the decontamination and decommissioning of Z-plant

    Energy Technology Data Exchange (ETDEWEB)

    Melvin, J. P.; Sexton, R. A.; Fort, M. L.; Nunn, S. E.

    1979-09-28

    This study was performed to estimate the cost of decontaminating and decommissioning Z-Plant. All of the buildings in the Z-Plant exclusion area except Building 2736-Z, the plutonium storage vault, are included in the study. The study also excludes all underground facilities within the exclusion area which are not contained within a building and all Z-Plant related facilities outside the perimeter fence. The contamination in Z-Plant is primarily /sup 239/Pu which has a half-life of 24,360 years. Because of the long half-life of /sup 239/Pu, it is not practical to consider the isolation of the facility to await reduction of the contamination level by natural decay. Therefore, this study analyzes the costs, risk and benefit of decontaminating Z-Plant to four different levels of residual contamination. The three principle criteria used in the analysis are cost, the risk of offsite dose to the public, and the occupational exposure to onsite personnel.

  13. Joint U.S./Russian Study on the Development of a Preliminary Cost Estimate of the SAFSTOR Decommissioning Alternative for the Leningrad Nuclear Power Plant Unit #1

    Energy Technology Data Exchange (ETDEWEB)

    SM Garrett

    1998-09-28

    The objectives of the two joint Russian/U.S. Leningrad Nuclear Power Plant (NPP) Unit #1 studies were the development of a safe, technically feasible, economically acceptable decom missioning strategy, and the preliminary cost evaluation of the developed strategy. The first study, resulting in the decommissioning strategy, was performed in 1996 and 1997. The preliminary cost estimation study, described in this report, was performed in 1997 and 1998. The decommissioning strategy study included the analyses of three basic RBM.K decommission- ing alternatives, refined for the Leningrad NPP Unit #1. The analyses included analysis of the requirements for the planning and preparation as well as the decommissioning phases.

  14. Manipulator and materials handling systems for reactor decommissioning -Cooperation between the university and the plant operator

    International Nuclear Information System (INIS)

    Schreck, G.; Bach, F. W.; Haferkamp, H.

    1995-01-01

    Nuclear reactor dismantling requires suitable handling systems for tools and disassembled components, as well as qualified and reliable disassembly and cutting techniques. From the angle of radiation protection, remote-controlled handling techniques and underwater techniques are the methods of choice, the latter particularly in continuation of plant operating conditions, and this all the more the more disassembly work proceeds towards the reactor core. With the experience accumulated for 20 years now by the Institut fuer Werkstoffkunde (materials science) of Hannover University by basic research and application-oriented development work in the field of thermal cutting technology, especially plasma arc cutting techniques, as well as development work in the field of remote-controlled materials handling systems, the institute is the cut-out partner for disassembly tasks in reactor decommissioning. (Orig./DG) [de

  15. An overview of the U.S. Department of Energy Experimental Boiling Water Reactor Decontamination and Decommissioning Project

    International Nuclear Information System (INIS)

    Murphie, W.E.; Mckernan, M.L.

    1991-01-01

    This paper provides an overview of the U.S. Department of Energy's (DOE) Experimental Boiling Water Reactor (EBWR) Decontamination and Decommissioning (D and D) Project. Physical decommissioning work started in 1986 and is scheduled for completion in 1994. The project total estimated cost is 14.3 million (1990, U.S.) dollars. The reactor pressure vessel will be removed by segmentation. Another notable project feature is that D and D operations were planned for and carried out with a small work force comprised of four to six D and D laborers, one or two health physics technicians, an engineer, and a project manager. When the D and D work is completed the facility will be recycled for other productive uses. (author)

  16. Decommissioning nuclear facilities

    International Nuclear Information System (INIS)

    Harmon, K.M.; Jenkins, C.E.; Waite, D.A.; Brooksbank, R.E.; Lunis, B.C.; Nemec, J.F.

    1976-01-01

    This paper describes the currently accepted alternatives for decommissioning retired light water reactor fuel cycle facilities and the current state of decommissioning technology. Three alternatives are recognized: Protective Storage; Entombment; and Dismantling. Application of these alternatives to the following types of facilities is briefly described: light water reactors; fuel reprocessing plants, and mixed oxide fuel fabrication plants. Brief descriptions are given of decommissioning operations and results at a number of sites, and recent studies of the future decommissioning of prototype fuel cycle facilities are reviewed. An overview is provided of the types of operations performed and tools used in common decontamination and decommissioning techniques and needs for improved technology are suggested. Planning for decommissioning a nuclear facility is dependent upon the maximum permitted levels of residual radioactive contamination. Proposed guides and recently developed methodology for development of site release criteria are reviewed. 21 fig, 32 references

  17. A study on people's awareness about the restarting and decommissioning of nuclear power plants

    International Nuclear Information System (INIS)

    Goto, Manabu; Sakai, Yukimi

    2015-01-01

    In this study, we conducted two questionnaire surveys targeting a total of 918 respondents living in the cities of Kyoto, Osaka and Kobe, in order to elucidate people's awareness of three things: 1) restart of nuclear power plants; 2) extension of the operation period of aging plants; and 3) decommissioning. The results are as follows: 1) People who think that electrical power companies voluntarily take higher safety measures trust the power companies and do not oppose the restart of the nuclear power plants, as compared to people who think that power companies only meet the requirements set by the nuclear regulatory agency. 2) When people were given information about aging measures and conforming to new regulatory standards, their anxiety toward the operation of aging plants was reduced. 3) People thought that decommissioning work was important for society. However, a small number of people thought it was a job worthwhile doing. (author)

  18. International measures for supporting the Ukraine in decommissioning Chernobyl nuclear power plant

    International Nuclear Information System (INIS)

    Wolf, J.

    2006-01-01

    The destruction of Block 4 of the Ukranian nuclear power plant in Chernobyl on 26 April 1986 was the largest and most momentous accident in the civil use of nuclear energy. Its far-reaching and lasting ecological, heath-related and economic effects confronted the then Soviet and later the Ukraine with grave problems. Particularly after the dissolution of the Eastern Bloc and the emergence of information about the safety shortcomings of RBMK-type (Chernobyl-type) reactors the Western states pressed for the decommissioning of these reactors. At the G7 summit in Naples in 1994 the Ukraine was offered an action plan of support if it were willing to close down Chernobyl nuclear power plant. This initiative led to the signing on 20 December 1995 of a Memorandum of Understanding on the Closure of Chernobyl Nuclear Power Plant between the G7 states, the European Commission and the Ukraine. It contained an assurance by President Kuchma that Chernobyl nuclear power plant would be closed by the year 2000

  19. Integrated program management for major nuclear decommissioning and environmental remediation projects - 59068

    International Nuclear Information System (INIS)

    Lehew, John

    2012-01-01

    Document available in abstract form only. Full text of publication follows: CH2M HILL Plateau Remediation Company (CH2M HILL) is the U.S. Department of Energy's (DOE) contractor responsible for the safe, environmental cleanup of the Hanford Sites Central Plateau, sections of the Columbia River Corridor and the Hanford Reach National Monument. The 586-square-mile Hanford Site is located along the Columbia River in southeastern Washington, U.S.A. A plutonium production complex, housing the largest volume of radioactive and contaminated waste in the nation, with nine nuclear reactors and associated processing facilities, Hanford played a pivotal role in the nation's defense for more than 40 years, beginning in the 1940's with the Manhattan Project. Today, under the direction of the DOE, Hanford is engaged in one of the world's largest environmental cleanup project. The Plateau Remediation Contract is a 10-year project paving the way for closure of the Hanford Site. The site through its location, climate, geology and proximity to the Columbia River in combination with the results of past nuclear operations presents a highly complex environmental remediation challenge. The complexity is not only due to the technical issues associated with decommissioning nuclear facilities, remediating soil contamination sites, dispositioning legacy waste and fuel materials and integrating these with the deep vadose zone and groundwater remediation

  20. Status report on the Experimental Boiling Water Reactor (EBWR) Decontamination and Decommissioning (D ampersand D) Project

    International Nuclear Information System (INIS)

    Sears, L.; Garlock, G.; Mencarelli, R.; Fellhauer, C.

    1994-01-01

    ALARON Corporation is under contract, to Argonne National Laboratory - East (ANL-E), to complete the decontamination and decommissioning of the Experimental Boiling Water Reactor (EBWR). The project, begun, in 1986 by ANL-E personnel, is projected to be completed by the end of 1994. The final phase of work was awarded to ALARON in December 1993 with the scope of work including the disassembly and removal of all remaining reactor internals, the reactor vessel, the lead bio-shield, the core liner, and the activated portion of the concrete bio-shield. This paper discusses the work undertaken beginning in January 1994 and continuing through July 1994. During this period the required pre-mobilization documentation was prepared and approved, mobilization was completed, and the reactor internals, reactor vessel, lead bio-shield and core liner were removed. The paper will compare the planned schedule to the actual schedule, discuss problems encountered, review volume reduction techniques and health and safety issues including radiological aspects of the project

  1. Application of wire sawing method to decommissioning of nuclear power plant. Cutting test with turbine pedestal of thermal power plant

    International Nuclear Information System (INIS)

    Hasegawa, Hideki; Uchiyama, Noriyuki; Sugiyama, Kazuya; Yamashita, Yoshitaka; Watanabe, Morishige

    1995-01-01

    It is very important to reduce radioactive waste volume, and to reduce radiation dose to workers and to the public during dismantling of the activated concrete in the decommissioning stage of a nuclear power plant. For the above, we studied a dismantling method which can separate activated concrete from non-activated concrete safely and effectively. Considering the state of legal regulation about radioactive waste disposal, and the state of developing of decommissioning technologies, we come to a conclusion that wire sawing method is feasible as a concrete cutting method. This study was carried out to evaluate the availability of the wire sawing method to dismantling of concrete structures of nuclear power plants. This study consists of concrete cutting rate test and concrete block cutting test. The former is to obtain data about cutting rate with various steel ratios while the latter is to obtain data about working time and man hour of the whole work with wire sawing. Thirty-six year old turbine pedestal of a thermal power plant was selected as a test piece to simulate actual decommissioning work of nuclear power plant, taking its massive concrete volume and age. Taking account of the handling in the building, the wire sawing machine with motor driven was used in this study considering that it did not produce exhaust gas. The concrete cutting rate test was performed with parameter of steel ratio in the concrete, wire tension and cutting direction. In the concrete block cutting test, imaging the actual cutting situation, cubic blocks which side was approximately 1 meter were taken out, and a large block to be cut and to be taken out is a section of 1m x 1.5m x 10m. Test results are shown below. The difference of cutting rate was mainly caused by the difference of reinforcement steel ratio. Working time data of installation, removal of machines and cutting were obtained. Data on secondary waste (dust, drainage and sludge) and environmental effect (noise and

  2. Shippingport Atomic Power Station decommissioning program and applied technology

    Energy Technology Data Exchange (ETDEWEB)

    Crimi, F P; Skavdahl, R E

    1985-01-01

    The Shippingport Station decommissioning project is the first decommissioning of a large scale nuclear power plant, and also the first nuclear power plant to be decommissioned which has continued the power operation as long as 25 years. The nuclear facilities which have been decommissioned so far have operated for shorter period and were small as compared with commercial power reactors, but the experience gained by those decommissionings as well as that gained by nuclear plant maintenance and modification has helped to establish the technology and cost basis for Shippingport and future decommissioning projects. In this paper, the current status of the preparation being made by the General Electric Co., its subcontractor and the US Department of Energy for starting the decommissioning phase of the Shippingport Atomic Power Station is described. Also remote metal cutting, decontamination, concrete removal, the volume reduction of liquids and solids and robotics which will be applied to the project are discussed. The Shippingport Station is a 72 MWe PWR plant having started operation in 1957, and permanently shut down in 1982, after having generated over 7.4 billion kWh of electricity.

  3. Accelerating the Whiteshell Laboratories Decommissioning Through the Implementation of a Projectized and Delivery-Focused Organization - 13074

    Energy Technology Data Exchange (ETDEWEB)

    Wilcox, Brian; Mellor, Russ; Michaluk, Craig [Atomic Energy of Canada Limited, Whiteshell Laboratories, Pinawa, Manitoba (Canada)

    2013-07-01

    Whiteshell Laboratories (WL) is a nuclear research site in Canada that was commissioned in 1964 by Atomic Energy of Canada Limited. It covers a total area of approximately 4,375 hectares (10,800 acres) and includes the main campus site, the Waste Management Area (WMA) and outer areas of land identified as not used for or impacted by nuclear development or operations. The WL site employed up to 1100 staff. Site activities included the successful operation of a 60 MW organic liquid-cooled research reactor from 1965 to 1985, and various research programs including reactor safety research, small reactor development, fuel development, biophysics and radiation applications, as well as work under the Canadian Nuclear Fuel Waste Management Program. In 1997, AECL made a business decision to discontinue research programs and operations at WL, and obtained government concurrence in 1998. The Nuclear Legacy Liabilities Program (NLLP) was established in 2006 by the Canadian Government to remediate nuclear legacy liabilities in a safe and cost effective manner, including the WL site. The NLLP is being implemented by AECL under the governance of a Natural Resources Canada (NRCan)/AECL Joint Oversight Committee (JOC). Significant progress has since been made, and the WL site currently holds the only Canadian Nuclear Safety Commission (CNSC) nuclear research site decommissioning license in Canada. The current decommissioning license is in place until the end of 2018. The present schedule planned for main campus decommissioning is 30 years (to 2037), followed by institutional control of the WMA until a National plan is implemented for the long-term management of nuclear waste. There is an impetus to advance work and complete decommissioning sooner. To accomplish this, AECL has added significant resources, reorganized and moved to a projectized environment. This presentation outlines changes made to the organization, the tools implemented to foster projectization, and the benefits

  4. A Lifecycle Knowledge Management Approach to Support Decommissioning and Environmental Remediation Projects

    International Nuclear Information System (INIS)

    Borrmann, F.; Booth, P.

    2016-01-01

    Full text: KM is a discipline that has a long tradition in nuclear. Nevertheless, the necessity for and the specifics of KM in decommissioning and environmental remediation have come into focus but quite recently. On one hand driven by major decommissioning programs like the NDA approach in UK or the phase-out decision in Germany, on the other hand as a request from decommissioning practitioners. In this paper we would like to emphasize the necessity to develop lifecycle wide KM approaches and specific tools for KM in decommissioning and environmental remediation. Additionally, KM approaches must be adapted to the phases of the facilities lifecycle. Especially decommissioning and environmental remediation require different KM systems to cope with a quickly changing environment. (author

  5. Establishing the quality assurance programme for a nuclear power plant project

    International Nuclear Information System (INIS)

    1984-01-01

    This Safety Guide provides requirements, recommendations and illustrative examples for establishing the overall quality assurance programme, and its constituent programmes, for a nuclear power plant project. It also provides guidance on the planning and documenting of programme plans and actions that are intended to ensure the achievement of the appropriate quality throughout the design, procurement, manufacture, construction, commissioning, operation and decommissioning of the nuclear power plant. The provisions of this Safety Guide are applicable to all organizations performing activities affecting the quality of items important to safety, such as designing, purchasing, fabricating, manufacturing, handling, shipping, storing, cleaning, erecting, installing, testing, commissioning, operating, inspecting, maintaining, repairing, refuelling, modifying and decommissioning

  6. Decontamination and decommissioning of Extraction Cell 3 at the West Valley Demonstration Project. Topical report, January 1982-April 1985

    International Nuclear Information System (INIS)

    Jones, E.D.

    1985-12-01

    This report describes the decontamination and decommissioning (D and D) of Extraction Cell 3 (XC-3) at the West Valley Demonstration Project. XC-3 is one of several cells in the former reprocessing plant required for use in support of the solidification of high-level waste. It became radioactively contaminated during nuclear fuel reprocessing from 1966 to 1972. XC-3 contained systems used in the final uranium extraction cycle. Several pump niche and sample box drains were routed into the cell. The report describes the work performed to accomplish the D and D objectives of removing existing piping and equipment from XC-3 and to reducing radiation and contamination levels, to allow installation of equipment for the Liquid-Waste Treatment System (LWTS). Contaminated debris and equipment inside the cell were removed, packaged and stored for future disposition. Interior surfaces (walls, floor, and ceiling) of the cell were then decontaminated to a radiation level that allowed entry without the use of protective clothing or respiratory protection

  7. Report on the CSNI workshop on nuclear power plant transition from operation into decommissioning: human factors and organisation considerations

    International Nuclear Information System (INIS)

    2000-01-01

    decommissioning. This information could be obtained through comparisons of different plant strategies (e.g. alternative incentive systems). Develop methods for enhanced preservation and transfer of information about plant status to workers carrying out decommissioning. - Organisational functions and management skills during transition from operations to decommissioning: Identify what organisational processes used at operating plants can transfer successfully to decommissioning plants and what processes do not transfer successfully or are not appropriate under decommissioning. Compare plants using operating plant management for transition with plants using separate decommissioning team to determine effective practices. (While both approaches can be effective, it is useful to identify different advantages and problems associated with each strategy.) Identify and evaluate different approaches to using contractors compared to retaining permanent workers. - Safety culture and morale: Study measures that have been used by plants to sustain safety culture to identify both effective and ineffective approaches. Compare measures plants use to sustain safety culture across transition periods during decommissioning. Identify periods of greater vulnerability to lowered safety culture and morale. - Contractor reliance: Identify generic experience transferable across sites and site-specific issues that require plant staff participation based on the experiences of contractor organisations that specialise in decommissioning and plants that have used these types of contractors. Compare plants relying primarily on plant staff to plants relying primarily on contractors. This study could identify both effective methods and types of difficulties encountered under these alternative strategies. - Multi-unit sites: Identify effective methods and specify problems and mitigation strategies used by multi-unit sites that have decommissioned one unit while another is operating. Compare the advantages and

  8. Decontamination and decommissioning of the fission product pilot plant at the Oak Ridge National Laboratory

    International Nuclear Information System (INIS)

    Mandry, G.J.; Snedaker, W.

    1994-11-01

    The Fission Product Pilot Plant (FPPP) at the Oak Ridge National Laboratory (ORNL) was one of the first facilities used to extract radioactive isotopes from liquid radioactive wastes. During operations, the FPPP was extensively contaminated, resulting in high radiation levels even 30 years after the conclusion of operations. The facility has been abandoned for over 20 years and is now a candidate for decontamination and decommissioning (D ampersand D). In fact, the ORNL management has begun activities toward the D ampersand D of the FPPP. Two of these activities were completed in 1993 and 1994. The first 2030 activity was a facility characterization designed to assess the condition of the interior of the FPPP and to quantify, if possible, the amounts and identities of any radioactive contaminants and hazardous materials as defined by the U.S. Environmental Protection Agency. The facility characterization was intended to determine the condition of the interior, the complement of equipment left in the facility at the time of its closure, and the radiation environment that would be encountered during its D ampersand D. The second activity was an alternatives assessment designed to determine the best approach to the D ampersand D of the FPPP. The alternatives assessment examined five alternatives to decontaminate and decommission the FPPP and recommended the best alternative for its disposition. The first section of the paper describes the FPPP and its history. It includes the various conjectures on what exactly was done when the FPPP was entombed with the shield wall visible in today's pictures. The next section discusses the characterization that was performed concurrently with the alternatives evaluation. The next two sections detail the D ampersand D plan for the complete dismantelment of the FPPP and its estimated cost and schedule

  9. Decontamination and Decommissioning Project of the TRIGA Mark - 2 and 3 research reactors

    Energy Technology Data Exchange (ETDEWEB)

    Jung, K. J.; Baik, S. T.; Chung, U. S.; Park, S. K.; Moon, J. S.; Jung, K. H.; Lee, B. J.; Kim, J. K.; Kim, K. H

    1999-02-01

    Design work for the D and D began in 1998, and expected to be finished at the end of February 1999. Base on the D and D design, the decommissioning plan and the environmental impact assessment report have been completed and submitted to the MOST for licensing at the end of 1998. These documents are being reviewing at the KINS. It is expected that the licensing from authority will be come out at the end of September 1999. Then D and D practical work will be started in the latter half of the year 1999 and completed by 2002. The first practical work of the D and D will be the KRR-2 reactor hall to transform the hall as a temporary storage of radioactive waste produced during the D and D work. Meanwhile, all the spent fuel from KRR-1 and 2 were safely transported to us at the middle of 1998. The D and D project was originally planned, to be finished by the end of the year 1999. This project were lately modified and extended until the end of the year 2002 because of the interim storage of radioactive wastes arising from the D and D work. These radioactive wastes will be stored at the KRR-2 reactor hall until a disposal facility is operational. (author)

  10. Gnome site decontamination and decommissioning project radiation contamination clearance report, March 28, 1979-September 23, 1979

    International Nuclear Information System (INIS)

    Berry, H.A.

    1981-08-01

    This report describes the operations and radiological activities conducted during Phase II and Phase III of the Gnome site decontamination and decommissioning (D/D) project in Carlsbad, New Mexico. The onsite radiological monitoring and documentation activities were performed for the Department of Energy, Nevada Operations (DOE/NV) by Reynolds Electrical and Engineering Co., Inc. (REECo) and EG and G, Inc., from March 28, 1979 to September 23, 1979. The monitoring program included soil sampling and analyses, portable instrument area surveys, thermoluminescent dosimeter (TLD) measurements and a post-operational aerial survey to document the final site status and to insure public and occupational health and safety. Although the analysis of data gathered during the final stages of the D/D project will provide the information necessary for DOE to return the Gnome site to the Department of the Interior, Bureau of Land Management (BLM) for unrestricted use of the land surface, there are permanent restrictions on excavation and/or drilling on the site at any depth between the surface and 1500 feet

  11. Treatment of Decommissioning Combustible Wastes with Incineration Technology

    Energy Technology Data Exchange (ETDEWEB)

    Min, B. Y. Min; Yang, D. S.; Yun, G. S.; Lee, K. W.; Moon, J. K. [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-05-15

    The aim of the paper is current status of management for the decommissioning radioactive combustible and metal waste in KAERI. In Korea, two decommissioning projects were carried out for nuclear research facilities (KRR-1 and KRR-2) and a uranium conversion plant (UCP). Through the two decommissioning projects, lots of decommissioning wastes were generated. Decommissioning waste can be divided into radioactive waste and releasable waste. The negative pressure of the incineration chamber remained constant within the specified range. Off-gas flow and temperature were maintained constant or within the desired range. The measures gases and particulate materials in the stack were considerably below the regulatory limits. The achieved average volume reduction ratio during facility operation is about 1/65.

  12. Training for decommissioning

    International Nuclear Information System (INIS)

    Dietzold, A.

    2009-01-01

    Plants entering decommissioning face many challenges One of the most important is the challenge of training for decommissioning This is important because: The facility operators and management have spent many years successfully operating the facility; The facility management arrangements are geared to operation; Decommissioning will include non-nuclear specialists and other stakeholders; Other skills are needed to decommission successfully. UKAEA has decommissioned many facilities at its sites in Dounreay, Windscale, Harwell and Winfrith in the UK. We have faced all of the challenges previously described and have developed many training methods for ensuring the challenges are met safely and effectively. We have developed courses for specialised skills such as safety cases which can be deployed to support any decommissioning. (author)

  13. Cost Estimating for Decommissioning of a Plutonium Facility--Lessons Learned From The Rocky Flats Building 771 Project

    International Nuclear Information System (INIS)

    Stevens, J. L.; Titus, R.; Sanford, P. C.

    2002-01-01

    The Rocky Flats Closure Site is implementing an aggressive approach in an attempt to complete Site closure by 2006. The replanning effort to meet this goal required that the life-cycle decommissioning effort for the Site and for the major individual facilities be reexamined in detail. As part of the overall effort, the cost estimate for the Building 771 decommissioning project was revised to incorporate both actual cost data from a recently-completed similar project and detailed planning for all activities. This paper provides a brief overview of the replanning process and the original estimate, and then discusses the modifications to that estimate to reflect new data, methods, and planning rigor. It provides the new work breakdown structure and discusses the reasons for the final arrangement chosen. It follows with the process used to assign scope, cost, and schedule elements within the new structure, and development of the new code of accounts. Finally, it describes the project control methodology used to track the project, and provides lessons learned on cost tracking in the decommissioning environment

  14. Safety analysis of disposal of decommissioning wastes from Loviisa nuclear power plant

    International Nuclear Information System (INIS)

    Vieno, T.; Nordman, H.; Rasilainen, K.; Suolanen, V.

    1987-12-01

    The repository for decommissioning wastes from the Loviisa nuclear power plant consisting of two 445 MWe PWR units is planned to be excavated at the depth of 90-130 meters in the bedrock of the power plant site. The reactor vessels weighing each about 215 tons will be transferred each in one piece into the repository. They are emplaced in an upright position in big holes excavated in the bottom of repository caverns. The reactor vessel internals are then emplaced inside the vessels. Finally, the vessels will be filled with concrete and the lids will be emplaced and sealed. Steam generators and pressurizers will also be disposed of uncutted. Other decommissioning wastes will be cut into smaller pieces and emplaced in concrete or wooden containers. The repository will be situated on the small island on which the power plant is located. The groundwater on the island contains two zones of different salinity: an upper zone of fresh, flowing groundwater and a lower zone of saline, stagnant groundwater where the repository will be situated. Three groundwater scenarios have been considered in the safety analysis: a scenario based on the present site conditions, an altered scenario where the repository is assumed to be situated in a zone of fresh, flowing groundwater and a distruptive event scenario with an intensive groundwater flow through the repository. The obtained results of the analysis show clear safety margins. In the basic scenario the maximum annul dose rate is 6x10 -14 Sv/a via the local sea pathways, 6x10 -11 Sv/a via the lake pathways and 4x10 -8 Sv/a via a well bored in the vicinity of the repository. In the altered groundwater scenario the maximum annual dose rate is 4x10 -10 Sv/a via the sea pathways, 3x10 -7 Sv/a via the lake pathways and 1x10 -5 Sv/a via the well pathway. In the unlikely disruptive event scenario the corresponding dose rates are 8x10 -10 Sv/a (sea), 7x10 -7 Sv/a (lake) and 2x10 -4 Sv/a (well)

  15. Fiscal year 1996 decontamination and decommissioning activities photobriefing book for the Argonne National Laboratory-East Site, Technology Development Division, Waste Management Program, Decontamination and Decommissioning Projects Department

    International Nuclear Information System (INIS)

    1996-01-01

    The Photobriefing Book describes the Decontamination and Decommissioning (D and D) Program at the Argonne National Laboratory-East Site (ANL-E) near Lemont, Illinois. This book summarizes current D and D projects, reviews fiscal year (FY) 1996 accomplishments, and outlines FY 1997 goals. A section on D and D Technology Development provides insight on new technologies for D and D developed or demonstrated at ANL-E. Past projects are recapped and upcoming projects are described as Argonne works to accomplish its commitment to, ''Close the Circle on the Splitting of the Atom.'' Finally, a comprehensive review of the status and goals of the D and D Program is provided to give a snap-shot view of the program and the direction it's taking as it moves into FY 1997. The D and D projects completed to date include: Plutonium Fuel Fabrication Facility; East Area Surplus Facilities; Experimental Boiling Water Reactor; M-Wing Hot Cell Facilities; Plutonium Gloveboxes; and Fast Neutron Generator

  16. Decommissioning of nuclear facilities in Europe and the experience of TUV SUD

    International Nuclear Information System (INIS)

    Hummel, Lothar; Kim, Duill; Ha, Taegun; Yang, Kyunghwa

    2012-01-01

    Many commercial nuclear facilities of the first generation will be taken out of operation in the near future. As of January 2012, total 19 prototype and commercial nuclear reactors have been decommissioned or are under dismantling in Germany. Most of decommissioning projects were successfully performed and a great deal of experience has been accumulated. Selecting a decommissioning strategy is a very important step at the beginning of the decision making process. According to IAEA requirements immediate dismantling is chosen as a preferred option in many countries today. It is associated with less uncertainty, positive political and social effect, and it can make use of existing operational experience and know-how. The availability of funds and final repository is of high importance for a decommissioning strategy selection. The time frame for the dismantling of nuclear facilities depends on the type, size and complexity of the individual project. TUV SUD, which is supervising most of nuclear power plants in Germany, has accumulated lots of experience by taking parts in decommissioning projects. It direct dismantling is chosen, actual light water reactor in Germany decommissioned to green field in approx. 10 years. The activities of TUV SUD cover from establishing the decommissioning concept to the clearance of the sites. This provides an overview of decommissioning projects of nuclear facilities in Europe, including a detail illustration of the German situation. Finally, some recommendations are suggested for the first decommissioning project based on the lessons and experiences derived from many decommissioning works in Europe

  17. An overview of reactor vessel internals segmentation for nuclear plant decommissioning

    International Nuclear Information System (INIS)

    Litka, T.J.

    1994-01-01

    Several nuclear plants have undergone reactor vessel (RV) internals segmentation as part of or in preparation for decommissioning the plant. In addition, several other nuclear facilities are planning for similar work efforts. The primary technology used for segmentation of RV internals, whether in-air or underwater is Plasma Arc Cutting (PAC). Metal Disintegration Machining (MDM) is also used for difficult to make cuts. PAC and MDM are deployed by various means including Long Handled Tools (LHTs), fixtures, tracks, and multi-axis manipulators. These enable remote cutting due to the radiation and/or underwater environment. A Boiling Water Reactor (BWR), a Pressurized Water Reactor (PWR), and a High Temperature Gas Reactor (HTGR) have had their internals removed and segmented using PAC and MDM. The cutting technology used for each component, location of cut, cut geometry and environment had to be determined well before the actual cutting operations. This allowed for the design, fabrication, and testing of the delivery systems. The technologies, selection process, and methodology for RV internals segmentation will be discussed in this paper

  18. Decommissioning of offshore installations

    Energy Technology Data Exchange (ETDEWEB)

    Oeen, Sigrun; Iversen, Per Erik; Stokke, Reidunn; Nielsen, Frantz; Henriksen, Thor; Natvig, Henning; Dretvik, Oeystein; Martinsen, Finn; Bakke, Gunnstein

    2010-07-01

    New legislation on the handling and storage of radioactive substances came into force 1 January 2011. This version of the report is updated to reflect this new regulation and will therefore in some chapters differ from the Norwegian version (see NEI-NO--1660). The Ministry of the Environment commissioned the Climate and Pollution Agency to examine the environmental impacts associated with the decommissioning of offshore installations (demolition and recycling). This has involved an assessment of the volumes and types of waste material and of decommissioning capacity in Norway now and in the future. This report also presents proposals for measures and instruments to address environmental and other concerns that arise in connection with the decommissioning of offshore installations. At present, Norway has four decommissioning facilities for offshore installations, three of which are currently involved in decommissioning projects. Waste treatment plants of this kind are required to hold permits under the Pollution Control Act. The permit system allows the pollution control authority to tailor the requirements in a specific permit by evaluating conditions and limits for releases of pollutants on a case-to-case basis, and the Act also provides for requirements to be tightened up in line with the development of best available techniques (BAT). The environmental risks posed by decommissioning facilities are much the same as those from process industries and other waste treatment plants that are regulated by means of individual permits. Strict requirements are intended to ensure that environmental and health concerns are taken into account. The review of the four Norwegian decommissioning facilities in connection with this report shows that the degree to which requirements need to be tightened up varies from one facility to another. The permit for the Vats yard is newest and contains the strictest conditions. The Climate and Pollution Agency recommends a number of measures

  19. Nuclear and non-nuclear safety aspects in nuclear facilities dismantling. The example of a PWR pilot decommissioning project

    International Nuclear Information System (INIS)

    Massaut, V.; Deboodt, P.; Dadoumont, J.; Valenduc, P.; Denissen, L.

    2002-01-01

    The dismantling of nuclear facilities, and in particular of nuclear power plants, involves new challenges for the nuclear industry. Although the dismantling of various activated and contaminated components is nowadays considered as almost industrial practice, the safety aspects of decommissioning bring some specific features which are not always taken into account in the operation of the plants. Moreover, most of the plants and facilities currently decommissioned are rather old and were never foreseen to be decommissioned. The operations involved in dismantling and decontamination, often imply new or unforeseen situations. On the nuclear, or radiological side, the radioprotection optimisation of the operations involved often requires to model the environment and to analyse different scenarios to tackle the operation. Recent 3-D software (like the Visiplan software) allowing representation of the actual environment and the influence of the various sources present, is really needed to be able to minimise the radiological impact on the operators. The risk of contamination spread, by opening loops and components or by the dismantling process itself, is also an important aspect of the radiological protection study. Nevertheless, the radiological aspects of the safety approach are not the only ones to be dealt with when decommissioning nuclear facilities. Indeed, classical industrial safety aspects are also important: the dismantling can bring handling and transporting risk (heavy loads, difficult ways, uneasy access, etc.) but also the handling of toxic or hazardous materials. For instance, the removal of asbestos in contaminated areas can lead to additional hazard; the presence of alkali metals (like Na or NaK), of toxic metals (like e.g. Beryllium) or of corrosive fluids (acid,...) have to be tackled often in unstructured environment, and sometimes with limited knowledge of the actual situation. This leads to approach the operations following the ASARA principle (As

  20. Determination of the nuclide vector for decommissioning projects at PSI (Paul Scherrer Institute, Switzerland)

    Energy Technology Data Exchange (ETDEWEB)

    Jaeggi, Maya; Eikenberg, J. [Paul Scherrer Inst. (PSI), Villigen (Switzerland). Labor fuer Radioanalytik; Ehrlicher, U. [Paul Scherrer Inst. (PSI), Villigen (Switzerland). Sektion Rueckbau und Entsorgung

    2012-06-15

    In the context of two reactor decommissioning projects, radioactive slurry from concrete cutting was collected in the retention pond (RHB) at the Paul Scherrer Institute, along with radioactive drain outlets. Additionally, there are active residues from former operations. The task was to determine the nuclide vector of the radioactive slurry before final disposal. Due to the slurry from neutron-activated concrete, activation products, like {sup 55}Fe, {sup 60}Co, {sup 63}Ni, {sup 133}Ba, {sup 152}Eu, {sup 154}Eu and {sup 155}Eu can be expected. Accumulated drain outlets from laboratories, where work with radioactive substances is being done, were expected to contain {sup 22}Na, {sup 60}Co, {sup 134}Cs, {sup 137}Cs, {sup 133}Ba, {sup 152}Eu, {sup 154}Eu, {sup 155}Eu, {sup 241}Am, {sup 239/240}Pu, {sup 241}Pu, {sup 244}Cm, {sup 234}U, {sup 235}U, {sup 238}U, {sup 230}Th, {sup 232}Th and {sup 90}Sr. For further clarification, {sup 3}H and {sup 14}C in the water and in the organic phase had to be measured as well. This work gives an overview about the slurry dissolution techniques, the radiochemical separation methods and activity concentrations of the nuclide vector. Further processing of the slurry is also discussed. (orig.)

  1. Evolution of radiation protection of overall decommissioning and Dismantling of a Nuclear Power Plants

    International Nuclear Information System (INIS)

    Ortiz, M. T.; Ondaro, M.; Irun, I.; Just, J.

    2000-01-01

    From the point of view of Radiological Protection, the overall Decommissioning and Dismantling (D and D) Plan of a Nuclear Power Plant cannot be considered in isolation without considering the evolution of the radiological characteristics of the installation and the site itself from previous, during and final states. This experience of D and D is the first in Spain and in other European countries due to several aspects: 1) the reference reactor technology, 2) total grass power, and 3) management of a great amount of materials to be released. Three decommissioning alternatives were studied: Indefinite maintenance in shutdown state, Stage 1. Stage 2 for the defuelled reactor vessel and contents, with decontamination of most of the rest of the site. Immediate dismantling to Stage 3. Stage 2 was the alternative selected with the release of 80% of the site, keeping the remaining 20% of the site as a regulated area, housing the reactor vessel in a new structure and removing the radioactive waste. The above, along with the fact that this is a specific type of natural uranium-graphite-gas plant (NUGG) and that ownership of the facility has been transferred for dismantling (from HIFRENSA to ENRESA), implies a series of preliminary considerations that, for the purposes of this article, are compiled in the following aspects: a) Preliminary phase prior to transfer, b) Preparatory phase, and c) Dismantling phase. This paper describes aspects under the D and D experiences at CN-V1 NPP, now in progress, from the point of view of the radiological aspects in relation with the continuous updating of the source term. Operative Radiological nuclide vectors, applicable in the Radiation Protection tasks, are also commented to prevent and evaluate several risks during the execution of the works. Finally, there is a description of the results obtained from the work performed to decay the three actual nuclide vectors, to evaluate and obtain activity calculations for the release of the

  2. The Importance of Experience Based Decommissioning Planning

    International Nuclear Information System (INIS)

    Larsson, Arne; Lidar, Per; Hedin, Gunnar; Bergh, Niklas

    2016-01-01

    Decommissioning of a nuclear facility is an extensive and multidisciplinary task, which involves the management and technical actions associated with ceasing operation and thereafter the step-by-step transfer of the facility from an operating plant to an object under decommissioning. The decommissioning phase includes dismantling of systems and components, decontamination and clearance, demolition of buildings, remediation of any contaminated ground and finally a survey of the site. Several of these activities generate radioactive or potentially radioactive waste, which has to be managed properly prior to clearance or disposal. What makes decommissioning of nuclear installations unique is to large extent the radioactive waste management. No other industries have that complex regulatory framework for the waste management. If decommissioning project in the nuclear industry does not consider the waste aspects to the extent required, there is a large risk of failure causing a reduced trust by the regulators and other stakeholders as well as cost and schedule overruns. This paper will give an overview of important aspects and findings gathered during decades of planning and conducting decommissioning and nuclear facility modernization projects. (authors)

  3. VGH Mannheim: legitimacy of the decommissioning license for a nuclear power plant; VGH Mannheim: Rechtmaessigkeit der Stilllegungsgenehmigung fuer ein Kernkraftwerk

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    2015-03-16

    The contribution describes the details of the court (VGH) decision on the legitimacy of the decommissioning license for the NPP Obrigheim. Inhabitants of the neighborhood (3 to 4.5 km distance from the NPP) are suspect hazards for life, health and property due to the dismantling of the nuclear power plant in case of an accident during the licensed measures or a terroristic attack with radioactive matter release.

  4. The community's research and development programme on decommissioning of nuclear power plants. Third annual progress report (year 1982)

    International Nuclear Information System (INIS)

    1984-01-01

    This is the third progress report of the European Community's programme (1979-83) of research on the decommissioning of nuclear power plants. It covers the year 1982 and follows the 1980 and 1981 reports (EUR 7440, EUR 8343). Since 1982 was a very active year of research under the programme, this report contains a large amount of results. Besides, the work programmes of some additional research contracts, awarded through 1982, are described

  5. Environmental Problems Associated with Decommissioning of Chernobyl Power Plant Cooling Pond

    Science.gov (United States)

    Foley, T. Q.; Oskolkov, B. Y.; Bondarkov, M. D.; Gashchak, S. P.; Maksymenko, A. M.; Maksymenko, V. M.; Martynenko, V. I.; Jannik, G. T.; Farfan, E. B.; Marra, J. C.

    2009-12-01

    Decommissioning of nuclear power plants and other nuclear fuel cycle facilities associated with residual radioactive contamination is a fairly pressing issue. Significant problems may result from decommissioning of cooling ponds. The Chernobyl Nuclear Power Plant (ChNPP) Cooling Pond is one of the largest self-contained bodies of water in the Chernobyl Region and Ukrainian Polesye with a water surface area of 22.9 km2. The major hydrological feature of the ChNPP Cooling Pond is that its water level is 6-7 m higher than the water level in the Pripyat River and water losses due to seepage and evaporation are replenished by pumping water from the Pripyat River. In 1986, the accident at the ChNPP #4 Reactor Unit significantly contaminated the ChNPP Cooling Pond. According to the 2001 data, the total radionuclide inventory in the ChNPP Cooling Pond bottom deposits was as follows: 16.28 ± 2.59 TBq for 137Cs; 2.4 ± 0.48 TBq for 90Sr, and 0.00518 ± 0.00148 TBq for 239+240Pu. Since ChNPP is being decommissioned, the ChNPP Cooling Pond of such a large size will no longer be needed and cost effective to maintain. However, shutdown of the water feed to the Pond would expose the contaminated bottom deposits and change the hydrological features of the area, destabilizing the radiological and environmental situation in the entire region in 2007 - 2008, in order to assess potential consequences of draining the ChNPP Cooling Pond, the authors conducted preliminary radio-ecological studies of its shoreline ecosystems. The radioactive contamination of the ChNPP Cooling Pond shoreline is fairly variable and ranges from 75 to 7,500 kBq/m2. Three areas with different contamination levels were selected to sample soils, vegetation, small mammals, birds, amphibians, and reptilians in order to measure their 137Cs and 90Sr content. Using the ERICA software, their dose exposures were estimated. For the 2008 conditions, the estimated dose rates were found to be as follows: amphibians - 11

  6. Options for Steam Generator Decommissioning

    International Nuclear Information System (INIS)

    Krause, Gregor; Amcoff, Bjoern; Robinson, Joe

    2016-01-01

    Selecting the best option for decommissioning steam generators is a key consideration in preparing for decommissioning PWR nuclear power plants. Steam Generators represent a discrete waste stream of large, complex items that can lend themselves to a variety of options for handling, treatment, recycling and disposal. Studsvik has significant experience in processing full size Steam Generators at its metal recycling facility in Sweden, and this paper will introduce the Studsvik steam generator treatment concept and the results achieved to date across a number of projects. The paper will outline the important parameters needed at an early stage to assess options and to help consider the balance between off-site and on-site treatment solutions, and the role of prior decontamination techniques. The paper also outlines the use of feasibility studies and demonstration projects that have been used to help customers prepare for decommissioning. The paper discusses physical, radiological and operational history data, Pro and Contra factors for on- and off-site treatment, the role of chemical decontamination prior to treatment, planning for off-site shipments as well as Studsvik experience This paper has an original focus upon the coming challenges of steam generator decommissioning and potential external treatment capacity constraints in the medium term. It also focuses on the potential during operations or initial shut-down to develop robust plans for steam generator management. (authors)

  7. NPP Krsko decommissioning concept

    International Nuclear Information System (INIS)

    Novsak, M.; Fink, K.; Spiler, J.

    1996-01-01

    At the end of the operational lifetime of a nuclear power plant (NPP) it is necessary to take measures for the decommissioning as stated in different international regulations and also in the national Slovenian law. Based on these requirements Slovenian authorities requested the development of a site specific decommissioning plan for the NPP KRSKO. In September 1995, the Nuklearna Elektrarna Krsko (NEK) developed a site specific scope and content for decommissioning plan including the assumptions for determination of the decommissioning costs. The NEK Decommissioning Plan contains sufficient information to fulfill decommissioning requirements identified by NRC, IAEA and OECD - NEA regulations. In this paper the activities and the results of development of NEK Decommissioning Plan consisting of the development of three decommissioning strategies for the NPP Krsko and selection of the most suitable strategy based on site specific, social, technical, radiological and economical aspects, cost estimates for the strategies including the costs for construction of final disposal facilities for fuel/high level waste (fuel/HLW) and low/intermediate level waste (LLW/ILW) and scheduling all activities necessary for the decommissioning of the NPP KRSKO are presented. (author)

  8. NPP Krsko decommissioning concept

    International Nuclear Information System (INIS)

    Novsak, M.; Fink, K.; Spiler, J.

    1996-01-01

    At the end of the operational lifetime of a nuclear power plant (NPP) it is necessary to take measures for the decommissioning as stated in different international regulations and also in the national Slovenian law. Based on these requirements Slovenian authorities requested the development of a site specific decommissioning plan for the NPP Krsko. In September 1995, the Nuklearna Elektrarna Krsko (NEK) developed a site specific scope and content for a decommissioning plan including the assumptions for determination of the decommissioning costs. The NEK Decommissioning Plan contains sufficient information to fulfill the decommissioning requirements identified by NRC, IAEA and OECD - NEA regulations. In this paper the activities and results of development of NEK Decommissioning Plan consisting of the development of three decommissioning strategies for the NPP Krsko and selection of the most suitable strategy based on site specific, social, technical, radiological and economic aspects, cost estimates for the strategies including the costs for construction of final disposal facilities for fuel/high level waste (fuel/HLW) and low/intermediate level waste (LLW/ILW) and scheduling of all activities necessary for the decommissioning of the NPP Krsko are presented. (author)

  9. Virtual Reality: a way to prepare and optimize operations in decommissioning projects

    International Nuclear Information System (INIS)

    Chabal, Caroline; Soulabaille, Yves

    2016-01-01

    The CEA has operated numerous nuclear facilities to carry out R and D and define nuclear fuel life cycle processes since the 1950's. It must now manage the clean-up and dismantling of those which have reached the end of their lifetime. These high priority actions have led to the creation of a dismantling R and D division which provides innovative tools, including in-situ radiological characterization, remote handling and cutting, and intervention scenario simulation. The latter involves running defined scenarios and verifying their suitability for the environment. Simulation is an ideal means of visualizing and therefore better knowing highly radioactive environments where humans cannot enter, of testing different technical alternatives, and of training workers prior to interventions. This paper describes Virtual Reality (VR) uses on dismantling projects. A VR simulation can be defined as an interactive and immersive simulation that enables the user to interact with a computer-simulated environment. VR environments, mostly based on visual immersion displayed through stereoscopic devices, can also include additional sensory information, such as sound or touch. Our application, based on audio, tactile and visual immersion, provides a useful support to verify pre-defined scenarios and to design alternative solutions if necessary. Thanks to a stereoscopic visualization, users are immersed in a virtual world, where they can hear virtual sounds when there is a collision, and can manipulate virtual objects and touch them via a haptic interface. This article first describes the PRESAGE immersive room in Marcoule. Then, the data preparation is explained, especially the 3D model reconstruction and the simulation configuration (remote handling and radiological). Next, different VR uses on decommissioning projects are shown and illustrated by examples. The advantages of such technologies include their speed in testing, user-friendliness, reactivity and usefulness in the

  10. A technology-assessment methodology for electric utility planning: With application to nuclear power plant decommissioning

    International Nuclear Information System (INIS)

    Lough, W.T.

    1987-01-01

    Electric utilities and public service commissions have not taken full advantage of the many proven methodologies and techniques available for evaluating complex technological issues. In addition, evaluations performed are deficient in their use of (1) methods for evaluating public attitudes and (2) formal methods of analysis for decision making. These oversight are substantiated through an examination of the literature relevant to electric utility planning. The assessment process known as technology assessment or TA is proposed, and a TA model is developed for route in use in utility planning by electric utilities and state regulatory commissions. Techniques to facilitate public participation and techniques to aid decision making are integral to the proposed model and are described in detail. Criteria are provided for selecting an appropriate technique on a case-by-case basis. The TA model proved to be an effective methodology for evaluating technological issues associated with electric utility planning such as decommissioning nuclear power plants. Through the use of the nominal group technique, the attitudes of a group of residential ratepayers were successfully identified and included in the decision-making process

  11. Decommissioning Unit Cost Data

    International Nuclear Information System (INIS)

    Sanford, P. C.; Stevens, J. L.; Brandt, R.

    2002-01-01

    The Rocky Flats Closure Site (Site) is in the process of stabilizing residual nuclear materials, decommissioning nuclear facilities, and remediating environmental media. A number of contaminated facilities have been decommissioned, including one building, Building 779, that contained gloveboxes used for plutonium process development but did little actual plutonium processing. The actual costs incurred to decommission this facility formed much of the basis or standards used to estimate the decommissioning of the remaining plutonium-processing buildings. Recent decommissioning activities in the first actual production facility, Building 771, implemented a number of process and procedural improvements. These include methods for handling plutonium contaminated equipment, including size reduction, decontamination, and waste packaging, as well as management improvements to streamline planning and work control. These improvements resulted in a safer working environment and reduced project cost, as demonstrated in the overall project efficiency. The topic of this paper is the analysis of how this improved efficiency is reflected in recent unit costs for activities specific to the decommissioning of plutonium facilities. This analysis will allow the Site to quantify the impacts on future Rocky Flats decommissioning activities, and to develop data for planning and cost estimating the decommissioning of future facilities. The paper discusses the methods used to collect and arrange the project data from the individual work areas within Building 771. Regression and data correlation techniques were used to quantify values for different types of decommissioning activities. The discussion includes the approach to identify and allocate overall project support, waste management, and Site support costs based on the overall Site and project costs to provide a ''burdened'' unit cost. The paper ultimately provides a unit cost basis that can be used to support cost estimates for

  12. Enforcement management system for decommissioning project in Ningyo-toge Environmental Engineering Center. Results of activities in fiscal year 2014

    International Nuclear Information System (INIS)

    Ema, Akira; Miyagawa, Hiroshi; Ishimori, Yuu

    2016-03-01

    The Ningyo-toge Environmental Engineering Center of the Japan Atomic Energy Agency had managed the decommissioning project based on the Quality Management System and the Environmental Management System, but found that these systems were unsuitable for project management from several viewpoints. In order to solve these problems, the Task Team for Enforcement Backend Project temporarily managed the decommissioning project in 2013. To enforce the project management systematically, the Research and Development Promotion Section was organized newly in the Environmental Research and Development Department in April 2014, and started the project management. On the other hand, to establish the primary and secondary documents related to the new system, until April 2015 the section has been developing the Enforcement Management System (EMS) to separate from the Quality Management System or the Environmental Management System. This report summarizes the state of these activities in the FY 2014. Section 1 presents the introduction. Section 2 explains the procedure of the project management and its achievements. Section 3 discusses how to develop the primary and secondary documents. Section 4 concludes the new management system and further views. (author)

  13. The French decommissioning program: a stakeholder point of view

    International Nuclear Information System (INIS)

    Chatry, Jean-Paul; Grenouillet, Jean-Jacques

    2006-01-01

    In January 2001, EDF owner of 56 plants in operation and 9 plants in decommissioning stage decided to accelerate the decommissioning of its first nine nuclear generation units in order to achieve final decommissioning in 25 years' time. An engineering center dedicated to decommissioning, radwaste management and environment was set up to implement this strategy. Four years after its creation, the first lessons learned in the fields of organization, project and program management can now be described. During the 4 years that have elapsed since the creation of CIDEN in 2001 to implement EDF's new decommissioning strategy, its organization has constantly improved to ensure success of its decommissioning projects. The aim has been to build an efficient organization with clearly defined roles for the key players. Simultaneously, the Program Management activities have received increasing consideration and specific mechanisms have been implemented to bring financing and licensing flexibility to the program. The continuous improvement of its organization and the development of new project or program management methodologies is a constant preoccupation of EDF. Its aim is to successfully implement its decommissioning strategy, one of the key issues for guaranteeing the future of a safe economic and environment friendly nuclear energy in France

  14. Preliminary study on recycling of metallic waste from decommissioning of nuclear power plant for cask

    International Nuclear Information System (INIS)

    Ohe, Koichiro; Kato, Osamu; Saegusa, Toshiari

    1999-01-01

    Preliminary study was made on technology required to recycle of metallic waste from decommissioning for spent fuel storage cask and on quantity of the cask which can be produced by the metallic waste. The technical and institutional issues for the recycling were studied. The metallic waste from decommissioning may be technically used to a certain degree for manufacturing the casks. However, there were some technical issues to be solved. For example, the manufacturing factories should be established. The radioactive waste from the factories with radiation control should be handled and treated carefully. Quality of the cask should be properly controlled. The 'Clearance Levels' which allows to recycle decommissioning waste have been hardly enacted in Japan. Technical and economic evaluation on recycling of metallic waste from decommissioning for spent fuel storage cask should be conducted again after progress in recycling of radioactive waste of which radioactivity is below the 'Clearance Levels' in Japan. (author)

  15. Technical and economical problems of decommissioning nuclear power plants (NPP) in Russia

    International Nuclear Information System (INIS)

    Vaneev, M.

    2001-01-01

    The introduction per new century has brought to atomic Engineering many new problems. One of them, which has got a serious urgency, we now shall consider. It is a problem of decommissioning NPP in Russia. By 2014 all maintained nowadays NPP in Russian Federation will develop the regular service life. And all of them on idea should be removed from operation. But, as we understand, in today's difficult economic conditions, to it NPP the procedure of prolongation of service life will be applied, and where it is impossible by virtue of the various reasons, the procedure of translation NPP in nuclear - safe condition and in a mode of a long storage under supervision, before acceptance of the decision about a method and way of financing of a decommissioning will be applied. Possible the following variants will be: use platforms of the old NPP for construction new NPP, or using as burial place NPP. The variant of a decommissioning up to a condition 'green grass' is represented unprofitable because of its dearness. The similar decommissioning was carried out in Japan. Was removed from operation research reactor of a type WWR. The expenses for this method of a decommissioning considerably surpass expenses for a method of a burial place NPP basically because of high cost of dismantle and transportation in long-term storehouses of the 1 contour equipment. The most urgent problem of decommissioning NPP, which developed their regular service life - is financing this final stage of a exploitation cycle of the block. I shall remind, that the financing is carried out from uniform fund of decommissioning. The formation of this fund occurs by deduction 1.3 % of cost of the put electric power to the consumers by all maintained NPP of Russia. The expenditure of this fund is carried on time on some tens years. They are spent for 3 basic stages: preparation to decommissioning NPP, long endurance under supervision, dismantle and burial the NPP equipment. Nowadays on faculty NPP MPEI

  16. THE DEACTIVATION, DECONTAMINATION AND DECOMMISSIONING OF THE PLUTONIUM FINISHING PLANT, A FORMER PLUTONIUM PROCESSING FACILITY AT DOE'S HANFORD SITE

    International Nuclear Information System (INIS)

    CHARBONEAU, S.L.

    2006-01-01

    The Plutonium Finishing Plant (PFP) was constructed as part of the Manhattan Project during World War II. The Manhattan Project was developed to usher in the use of nuclear weapons to end the war. The primary mission of the PFP was to provide plutonium used as special nuclear material (SNM) for fabrication of nuclear devices for the war effort. Subsequent to the end of World War II, the PFP's mission expanded to support the Cold War effort through plutonium production during the nuclear arms race and later the processing of fuel grade mixed plutonium-uranium oxide to support DOE's breeder reactor program. In October 1990, at the close of the production mission for PFP, a shutdown order was prepared by the Department of Energy (DOE) in Washington,; DC--and issued to the Richland DOE field office. Subsequent to the shutdown order, a team from the Defense Nuclear Facilities Safety Board (DNFSB) analyzed the hazards at PFP associated with the continued storage of certain forms of plutonium solutions and solids. The assessment identified many discrete actions that were required to stabilize the different plutonium forms into stable form and repackage the material in high integrity containers. These actions were technically complicated and completed as part of the PFP nuclear material stabilization project between 1995 and early 2005. The completion of the stabilization project was a necessary first step in deactivating PFP. During stabilization, DOE entered into negotiations with the U.S. Environmental Protection Agency (EPA) and the State of Washington and established milestones for the Deactivation and Decommissioning (DandD) of the PFP. The DOE and its contractor, Fluor Hanford (Fluor), have made great progress in deactivating, decontaminating and decommissioning the PFP at the Hanford Site as detailed in this paper. Background information covering the PFP DandD effort includes descriptions of negotiations with the State of Washington concerning consent

  17. Decommissioning in the United States - Past, present and future - 16318

    International Nuclear Information System (INIS)

    Devgun, Jas S.

    2009-01-01

    The experience related to decommissioning of nuclear facilities in the United States is very substantial and covers power reactors, research reactors, and many facilities in the Department of Energy complex. The focus of this paper however is on the commercial power plants. With 104 operating reactors, the U.S. fleet of civilian reactors is still the largest in the world. Nuclear power industry in the United States has undergone a dramatic upturn after decades of stalemate. One effect of this nuclear renaissance has been that the plans have changed for several reactors that were initially destined for decommissioning. Instead, the focus now is on re-licensing of the reactors and on power up-rates. In fact, after the peak period between 1987 and 1998, no additional power reactors have been shutdown. On the contrary, power up-rates in the past twenty years have added a cumulative capacity equivalent to five new reactors. Almost all the operating reactors plan to have license extensions, thus postponing the eventual decommissioning. Nevertheless, in addition to the 9 reactors where licenses have been terminated following decommissioning, 12 power and early demonstration reactors and 14 test and research reactors are permanently shutdown and are in decommissioning phase. Substantial experience and lessons learned are available from the U.S. projects that are of value to the international decommissioning projects, especially where such projects are in early stages. These lessons cover a wide array of areas from decommissioning plans, technology applications, large component removal, regulatory and public interface, decommissioning funding and costs, clean up criteria, surveys of the decommissioned site, and license termination. Additionally, because of the unavailability of a national spent fuel disposition facility, most decommissioning sites are constructing above ground interim storage facilities for the spent nuclear fuel. The U.S. nuclear power projects are also

  18. Overview of decommissioning research and development activities in the European Community

    International Nuclear Information System (INIS)

    Huber, B.

    1982-01-01

    The European Community's research program on the decommissioning of nuclear power plants is managed by the Commission of the European Communities and carried out by national laboratories and private firms under cost-sharing contracts. Starting in 1980, about fifty research contracts covering a large variety of topics have been let so far. The paper outlines the content, progress and selected results of the seven projects composing the program. These projects concern the following subjects: maintaining disused plants in a safe condition; decontamination for decommissioning purposes; dismantling techniques; treatment of waste materials; large waste containers; estimation of waste arisings; and plant design features facilitating decommissioning. 4 references

  19. Study on decommissioning

    International Nuclear Information System (INIS)

    2012-01-01

    This project consists of researches on (1) establishment of review plan on application of decommissioning, (2) establishment of specific method to confirm decommissioning completion, of decommissioning and (3) establishment of radioactive waste management guideline during dismantling and (4) development of the regulatory system on decommissioning in response to Fukushima Daiichi NPP accident. About researches on establishment of review plan on application of decommissioning. 'Planning of the Commercial Power Reactor Decommissioning:2001' which was published by Atomic Energy Society of Japan, was evaluated whether it suited the requirement for the decommissioning stipulated in the law, and the draft evaluation report was prepared. About researches on establishment of specific method to confirm decommissioning completion, technical information of practical procedures on the confirmation in U.S.A. were organized based on MARSSIM (Multi-Agency Radiation Survey and Site Investigation Manual, NUREG-1575) and applicability of MARSSIM on the confirmation in Japan was examined. Exposed doses for public during decommissioning period were estimated to study dose criterion of the confirmation. Radioactive concentrations in the soil of Tokai and Hamaoka NPP caused by the Fukushima Daiichi NPP accident were also investigated. About researches on establishment of radioactive waste management guideline during dismantling, one concrete core was sampled in biological shield of the Tokai NPP and radioactive concentrations were investigated. About researches on development of the regulatory system on decommissioning in response to Fukushima Daiichi NPP accident, present status of Three Mile Island Unit 2 and Chernobyl NPP Unit 4 were investigated. Present status of regulatory systems for decommissioning in foreign countries taken in consideration of the accident was also researched. (author)

  20. Bid Preparation and Evaluation for Nuclear Power Plant Project Management

    International Nuclear Information System (INIS)

    Mohd Idris Taib, Mohd Khairulezwan Abdul Manan and Nur Farizan Amadzun

    2011-01-01

    Bid preparation and evaluation is one of the main activities in Nuclear Power Plant Project management. International Atomic Energy Agency guide and Korean experience was studied for Malaysian requirement in realization of first Nuclear Power Plant. Several aspects shall be taken into consideration such as political scenario, financial capabilities, sitting, human resource, technologies, fuel supplies and decommissioning for long term exceeded hundred years. Bidding process and activities is proposed for our country requirement. The main activities included but unlimited to Bid Invitation Specification, Bid Evaluation Process, Technical Evaluation, Economic Bid Evaluation and Contracting. On the end of day, Malaysia need safe and reliable Nuclear Power Plant. Malaysian Economic Transformation Programme also get benefit from spin-off localization products and services as well as Technology Transfer Programme. (author)

  1. US Department of Energy Grand Junction Projects Office Remedial Action Project, final report of the decontamination and decommissioning of Building 36 at the Grand Junction Projects Office Facility

    International Nuclear Information System (INIS)

    Widdop, M.R.

    1996-08-01

    The U.S. Department of Energy (DOE) Grand Junction Projects Office (GJPO) occupies a 61.7-acre facility along the Gunnison River near Grand Junction, Colorado. This site was contaminated with uranium ore and mill tailings during uranium refining activities of the Manhattan Engineer District and during pilot milling experiments conducted for the U.S. Atomic Energy Commission's domestic uranium procurement program. The DOE Defense Decontamination and Decommissioning Program established the GJPO Remedial Action Project to clean up and restore the facility lands, improvements, and the underlying aquifer. The site contractor for the facility, Rust Geotech, also is the remedial action contractor. Building 36 was found to be radiologically contaminated and was demolished in 1996. The soil beneath the building was remediated in accordance with identified standards and can be released for unlimited exposure and unrestricted use. This document was prepared in response to a DOE request for an individual final report for each contaminated GJPO building

  2. Y-12 Plant decontamination and decommissioning technology logic diagram for Building 9201-4. Volume 3: Technology evaluation data sheets; Part B: Decontamination, robotics/automation, waste management

    International Nuclear Information System (INIS)

    1994-09-01

    The Y-12 Plant Decontamination and Decommissioning Technology Logic Diagram for Building 9201-4 (TLD) was developed to provide a decision-support tool that relates decontamination and decommissioning (D and D) problems at Bldg. 9201-4 to potential technologies that can remediate these problems. The TLD uses information from the Strategic Roadmap for the Oak Ridge Reservation, the Oak Ridge K-25 Site Technology Logic Diagram, the Oak Ridge National Laboratory Technology Logic Diagram, and a previous Hanford logic diagram. This TLD identifies the research, development, demonstration, testing, and evaluation needed for sufficient development of these technologies to allow for technology transfer and application to D and D and waste management (WM) activities. It is essential that follow-on engineering studies be conducted to build on the output of this project. These studies will begin by selecting the most promising technologies identified in the TLD and by finding an optimum mix of technologies that will provide a socially acceptable balance between cost and risk. This report consists of the decontamination, robotics/automation, and WM data sheets

  3. Y-12 Plant decontamination and decommissioning technology logic diagram for Building 9201-4. Volume 3: Technology evaluation data sheets; Part A: Characterization, dismantlement

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-09-01

    The Y-12 Plant Decontamination and Decommissioning Technology Logic Diagram for Building 9201-4 (TLD) was developed to provide a decision-support tool that relates decontamination and decommissioning (D and D) problems at Bldg. 9201-4 to potential technologies that can remediate these problems. The TLD uses information from the Strategic Roadmap for the Oak Ridge Reservation, the Oak Ridge K-25 Site Technology Logic Diagram, the Oak Ridge National Laboratory Technology Logic Diagram, and a previous Hanford logic diagram. This TLD identifies the research, development, demonstration, testing, and evaluation needed for sufficient development of these technologies to allow for technology transfer and application to D and D and waste management (WM) activities. It is essential that follow-on engineering studies be conducted to build on the output of this project. These studies will begin by selecting the most promising technologies identified in the TLD and by finding an optimum mix of technologies that will provide a socially acceptable balance between cost and risk. This report consists of the characterization and dismantlement data sheets.

  4. Y-12 Plant decontamination and decommissioning technology logic diagram for Building 9201-4. Volume 3: Technology evaluation data sheets; Part A: Characterization, dismantlement

    International Nuclear Information System (INIS)

    1994-09-01

    The Y-12 Plant Decontamination and Decommissioning Technology Logic Diagram for Building 9201-4 (TLD) was developed to provide a decision-support tool that relates decontamination and decommissioning (D and D) problems at Bldg. 9201-4 to potential technologies that can remediate these problems. The TLD uses information from the Strategic Roadmap for the Oak Ridge Reservation, the Oak Ridge K-25 Site Technology Logic Diagram, the Oak Ridge National Laboratory Technology Logic Diagram, and a previous Hanford logic diagram. This TLD identifies the research, development, demonstration, testing, and evaluation needed for sufficient development of these technologies to allow for technology transfer and application to D and D and waste management (WM) activities. It is essential that follow-on engineering studies be conducted to build on the output of this project. These studies will begin by selecting the most promising technologies identified in the TLD and by finding an optimum mix of technologies that will provide a socially acceptable balance between cost and risk. This report consists of the characterization and dismantlement data sheets

  5. Annex I.D. Social aspects of the decommissioning and reuse of the Greifswald nuclear power plant, Germany

    International Nuclear Information System (INIS)

    2006-01-01

    The German reunification caused enormous economic and social impacts in the regions previously part of the German Democratic Republic. The Greifswald nuclear power plant complex and the surrounding region were not exceptions in this respect. The entity Energiewerke Nord GmbH (EWN) is the legal successor of the former operator of the Greifswald complex, the Kombinat Bruno Leuschner, and accepted responsibility for the nuclear power plant sites at Greifswald and Rheinsberg after Germany's reunification in 1989. Shortly after the reunification, the operation of the units already completed, as well as all construction work, were completely stopped. Serious efforts were undertaken to restart the more modern units in Greifswald or to use the site for new nuclear and/or conventional power plants. However, the decision was firm to decommission all of the operation and construction activities, mainly because of a lack of political acceptance of the safety margin for the operation of these types of reactor design and the lack of a secured financial basis. Therefore EWN was faced with a formidable task: to safely and efficiently shut down and decommission both nuclear sites with all six nuclear power plants under the above mentioned boundary conditions. Initially difficulties were encountered with the massive personnel reductions that were required, from a total of over 13 600 persons (5600 operational staff and 8000 construction staff) to only about 1400 employees - a staffing reduction of about 90%. In addition, this occurred in combination with the introduction of a market based economy and the imposition of the laws and procedures of the Federal Republic of Germany on the reunified country. This had almost shocking social impacts for this region of Germany. EWN has now achieved successful restructuring of the company and has reached the optimal staffing for its execution of the decommissioning task

  6. Development of decommissioning technologies in Sumitomo Mitsui Construction Co., Ltd

    International Nuclear Information System (INIS)

    Maruyama, Shinichiro; Suzuki, Toru; Ogane, Daisuke

    2011-01-01

    The decommissioning program of nuclear reactors in Japan first started in December 2001 on the Japan's first commercial nuclear power station Tokai Power Plant. In February 2008, the decommissioning of 'Fugen' was first approved as the program on a large-scale water reactor in Japan, and was started. From now on, decommissioning programs of LWRs constructed in the early stage of nuclear development will gradually increase. Decommissioning projects are required more than 20 years for completing the entire processes, because of its characteristics to placing the utmost priority to safety. Diverse types of element technologies are fully utilized in decommissioning projects, such as technology of evaluating remaining radioactivity, decontamination, dismantling/remote control, and treatment/disposal/recycling. Also there are a lot of civil engineering or building technologies and its applied technologies in these element technologies. Sumitomo Mitsui Construction Co., Ltd. has been committed to contributing to the promotion of decommissioning projects in Japan, and has carried out investigation/evaluation of applicability of the existing dismantling technologies to dismantling of reactors, seismic evaluation of the buildings for dismantling the reactor zone, development of recycling of concrete, and discussion of rational waste treatment/disposal methods. In this thesis, we present our decommissioning technologies focusing on the element technologies that our company has investigated and developed so far. (author)

  7. A Quality Assurance Program for decommissioning

    International Nuclear Information System (INIS)

    Briggs, P.M.

    1986-01-01

    Defining the Quality Assurance Program for the US Department of Energy Shippingport Station Decommissioning Project (SSDP) was a unique opportunity because this is the first full-sized commercial nuclear power plant to be decommissioned. General Electric Company defined a Quality Assurance Program that provided adequate control, yet was stripped down to the essentials. The Program is designed to provide a flexible degree of monitoring of subcontractor work, built around a core of radiation safety monitoring, detailed planning, inspection and auditing, and operated with a minimum of dedicated personnel. This paper will concentrate on the traditional quality assurance activities, leaving radiation and environmental monitoring for other presentations

  8. Demonstration of safety of decommissioning of facilities using radioactive material

    International Nuclear Information System (INIS)

    Batandjieva, Borislava; O'Donnell, Patricio

    2008-01-01

    Full text:The development of nuclear industry worldwide in the recent years has particular impact on the approach of operators, regulators and interested parties to the implementation of the final phases (decommissioning) of all facilities that use radioactive material (from nuclear power plants, fuel fabrication facilities, research reactors to small research or medical laboratories). Decommissioning is becoming an increasingly important activity for two main reasons - termination of the practice in a safe manner with the view to use the facility or the site for other purposes, or termination of the practice and reuse the facility or site for new built nuclear facilities. The latter is of special relevance to multi-facility sites where for example new nuclear power plants and envisaged. However, limited countries have the adequate legal and regulatory framework, and experience necessary for decommissioning. In order to respond to this challenge of the nuclear industry and assist Member States in the adequate planning, conduct and termination of decommissioning of wide range of facilities, over the last decade the IAEA has implemented and initiated several projects in this field. One of the main focuses of this assistance to operators, regulators and specialists involved in decommissioning is the evaluation and demonstration of safety of decommissioning. This importance of these Agency activities was also highlighted in the International Action Plan on Decommissioning, during the second Joint Convention meeting in 2006 and the International Conference on Lessons Learned from Decommissioning in Athens in 2006. The IAEA has been providing technical support to its Member States in this field through several mechanisms: (1) the establishment of a framework of safety standards on decommissioning and development of a supporting technical documents; (2) the establishment of an international peer review mechanism for decommissioning; (3) the technical cooperation projects

  9. Factors relevant to the decommissioning of land-based nuclear reactor plants

    International Nuclear Information System (INIS)

    1980-01-01

    This document applies to all classes of land-based nuclear fission reactors, including those reactors used for the production of electricity or heat, for testing, for research, and for the production of radionuclides. The document covers the technical and administrative aspects related to the conduct of decommissioning, and to the associated radiation protection of man and his environment both during and after decommissioning. The document is intended to provide assistance to those responsible for planning or implementing the decommissioning of a land-based nuclear reactor. The user of this report is further encouraged to review past experience gained with nuclear facilities and the published technical data cited in the section entitled Bibliography

  10. Scenarios for dealing with large components in the process of decommissioning nuclear power plants and the possibility of their implementation in the Slovak Republic

    International Nuclear Information System (INIS)

    Hornacek, M.; Necas, V.

    2014-01-01

    The subject of this presentation is a general assessment of the strategies of dismantling of large components in view of the experience gained from projects implemented as well as the identification of the factors determining the choice of the appropriate disassembly procedure. The paper also deals with the possibilities of removing the steam generator used in nuclear power plant Bohunice V1, which is currently in the process of decommissioning. Different scenarios for dismantling, storage respectively storing into the repository are analyzed. The is also studied the impact of declining of the activity of natural decay and application of decontamination technologies (before or dismantling decontamination) on quantities of materials releasable into the environment respectively leviable in the corresponding storage system. (authors)

  11. Dispatchable Solar Power Plant Project

    Energy Technology Data Exchange (ETDEWEB)

    Price, Henry [Solar Dynamics LLC, Broomfield, CO (United States)

    2018-01-31

    As penetration of intermittent renewable power increases, grid operators must manage greater variability in the supply and demand on the grid. One result is that utilities are planning to build many new natural gas peaking power plants that provide added flexibility needed for grid management. This report discusses the development of a dispatchable solar power (DSP) plant that can be used in place of natural gas peakers. Specifically, a new molten-salt tower (MST) plant has been developed that is designed to allow much more flexible operation than typically considered in concentrating solar power plants. As a result, this plant can provide most of the capacity and ancillary benefits of a conventional natural gas peaker plant but without the carbon emissions. The DSP system presented was designed to meet the specific needs of the Arizona Public Service (APS) utility 2017 peaking capacity request for proposals (RFP). The goal of the effort was to design a MST peaker plant that had the operational capabilities required to meet the peaking requirements of the utility and be cost competitive with the natural gas alternative. The effort also addresses many perceived barriers facing the commercial deployment of MST technology in the US today. These include MST project development issues such as permitting, avian impacts, visual impacts of tower CSP projects, project schedule, and water consumption. The DSP plant design is based on considerable analyses using sophisticated solar system design tools and in-depth preliminary engineering design. The resulting DSP plant design uses a 250 MW steam power cycle, with solar field designed to fit on a square mile plot of land that has a design point thermal rating of 400 MWt. The DSP plant has an annual capacity factor of about 16% tailored to deliver greater than 90% capacity during the critical Arizona summer afternoon peak. The table below compares the All-In energy cost and capacity payment of conventional combustion turbines

  12. Development of decontamination technology for the decommissioned Bohunice A-1 nuclear power plant

    International Nuclear Information System (INIS)

    Krejci, F.; Majersky, D.; Solcanyi, M.; Sekely, S.; Kucharik, D.

    1991-01-01

    The main results of investigation into the decontamination technology for the equipment and buildings of the decommissioned A-1 nuclear power plant, achieved by the Nuclear Power Plants Research Institute in Trnava over the 1988-1990 period, are summarized. Mobile decontamination and recirculation equipment has been developed for pre-disassembling decontamination. A solution containing formic acid (19 g/l), EDTA-Na 4 (6 g/l) and thiourea (0.5 g/l) was used for decontamination of low-alloy steels; for materials from the steam generators and turbo-compressors, the decontamination factor (DF) of this solution was 30 to 150 per decontamination cycle. For high-alloy steels, a two-stage process comprising the use of an oxidation solution and a reduction solution appeared suitable. The oxidation solution contained potassium permanganate (0.6 g/l) and nitric acid (0.4 g/l), whereas the reduction solution, viz. Citrox 21, contained citric acid (0.5 g/l), oxalic acid (1.0 g/l) and EDTA-NA 4 (2.5 g/l). The DF is 10 to 50 in one oxidation-reduction cycle and 50-100 in two cycles. For the post-disassembling chemical decontamination, the contaminated material was cut into pieces 70 to 80 cm long, freed from grease and decontaminated chemically by submerging in the solution while applying treatment by ultrasound. A technology of electrochemical decontamination has also been developed. It appeared particularly suitable for structural materials of the primary coolant circuit comprising austenitic stainless steels and low-alloy steels after pre-disassembling chemical decontamination with remainders of the corrosion layer, and for structural materials of the secondary coolant circuit after chemical post-disassembling decontamination. Research in the field of decontamination of the building parts and of the outer surfaces of the structural materials concentrated mainly on the use of decontamination foams. Foaming solutions have been developed for the decontamination of PESL floors and

  13. Systematic Approach for Decommissioning Planning and Estimating

    International Nuclear Information System (INIS)

    Dam, A. S.

    2002-01-01

    Nuclear facility decommissioning, satisfactorily completed at the lowest cost, relies on a systematic approach to the planning, estimating, and documenting the work. High quality information is needed to properly perform the planning and estimating. A systematic approach to collecting and maintaining the needed information is recommended using a knowledgebase system for information management. A systematic approach is also recommended to develop the decommissioning plan, cost estimate and schedule. A probabilistic project cost and schedule risk analysis is included as part of the planning process. The entire effort is performed by a experienced team of decommissioning planners, cost estimators, schedulers, and facility knowledgeable owner representatives. The plant data, work plans, cost and schedule are entered into a knowledgebase. This systematic approach has been used successfully for decommissioning planning and cost estimating for a commercial nuclear power plant. Elements of this approach have been used for numerous cost estimates and estimate reviews. The plan and estimate in the knowledgebase should be a living document, updated periodically, to support decommissioning fund provisioning, with the plan ready for use when the need arises

  14. Nuclear decommissioning and society

    International Nuclear Information System (INIS)

    Pasqualetti, M.J.

    1990-01-01

    Links between decommissioning in general, reactor decommissioning in particular, and the public are indexed. The established links are recognised and others, such as jobs, are discussed. Finally the links with policy, such as political geography, and wider issues of the environment and public concern over waste disposal are considered. Decommissioning is a relatively new field where public opinion must now be considered but it has implications both for existing nuclear power plants and those planned for the future, especially in their siting. This book looks especially at the situation in the United Kingdom. There are twelve papers, all indexed separately. (UK)

  15. Germany: Management of decommissioning waste in Germany

    International Nuclear Information System (INIS)

    Borrmann, F.; Brennecke, P.; Koch, W.; Kugel, K.; Steyer, S.

    2007-01-01

    Over the past two decades, Germany has gained a substantial amount of experience in the decommissioning of nuclear facilities of different types and sizes. Many research reactors and all prototype nuclear power plants, as well as a few larger nuclear power plants and fuel cycle facilities, are currently at varying stages of decommissioning. Several facilities have been fully dismantled and the sites have been cleared for reuse. The decommissioning projects comprise 18 power and prototype reactors, 33 research reactors and 11 fuel cycle facilities which are being or have been decommissioned. In the future, further nuclear power plants will be shut down and decommissioned in accordance with Germany?s energy policy to phase out the use of nuclear power for commercial electricity generation as given in the April 2002 amendment of the Atomic Energy Act. Radioactive waste, from operations as well as from decommissioning activities, is to be conditioned in such a way as to comply with the waste acceptance requirements of a repository. In Germany, all types of radioactive waste (i.e., short-lived and long-lived) are to be disposed of in deep geological formations. A distinction is being made for heat generating waste (i.e., high level waste) and waste with negligible heat generation (i.e., low level and intermediate level waste). Radioactive decommissioning waste is waste with negligible heat generation. Waste acceptance requirements of a repository are of particular importance for the conditioning of radioactive waste, including decommissioning waste. The waste acceptance requirements, as they resulted from the Konrad licensing procedure, are being applied by the waste generators for the conditioning of decommissioning waste. Compliance with these requirements must be demonstrated through the waste package quality control, even if the waste will be disposed of in the future. In 2002 the Konrad repository was licensed for the disposal of all types of waste with negligible

  16. The preliminary planning for decommissioning nuclear facilities in Taiwan

    International Nuclear Information System (INIS)

    Li, K.K.

    1993-01-01

    During the congressional hearing in 1992 for a $7 billion project for approval of the fourth nuclear power plant, the public was concerned about the decommissioning of the operating plants. In order to facilitate the public acceptance of nuclear energy and to secure the local capability for appropriate nuclear backend management, both technologically and financially, it is important to have preliminary planning for decommissioning the nuclear facilities. This paper attempted to investigate the possible scope of decommissioning activities and addressed the important regulatory, financial, and technological aspects. More research and development works regarding the issue of decommissioning are needed to carry out the government's will of decent management of nuclear energy from the cradle to the grave

  17. Challenges of Ignalina NPP Decommissioning - View of Lithuanian Operator

    International Nuclear Information System (INIS)

    Aksionov, P.

    2017-01-01

    The state enterprise Ignalina Nuclear Power Plant (INPP) operates 2 similar design units of RBMK-1500 water-cooled graphite-moderated channel-type power reactors (1500 MW electrical power). INPP is carrying out the decommissioning project of the 2 reactors which includes: -) the retrieval of the spent nuclear fuel from the power units and its transportation into the Interim Spent Fuel Storage Facility; -) equipment and building decontamination and dismantling; -) radioactive waste treatment and storage; and -) the operation of key systems to ensure nuclear, radiation and fire protection. Ignalina NPP decommissioning project is planned to be completed by 2038. The presentation will be focused on the ongoing decommissioning activities at Ignalina NPP. The overview of main aspects and challenges of INPP decommissioning will be provided