WorldWideScience

Sample records for plant cell enlargement

  1. The mitotic inhibitor ccs52 is required for endoreduplication and ploidy-dependent cell enlargement in plants.

    OpenAIRE

    A. Cebolla; J. M. Vinardell; Kiss, E; Oláh, B; Roudier, F; Kondorosi, A; Kondorosi, E

    1999-01-01

    Plant organs develop mostly post-embryonically from persistent or newly formed meristems. After cell division arrest, differentiation frequently involves endoreduplication and cell enlargement. Factors controlling transition from mitotic cycles to differentiation programmes have not been identified yet in plants. Here we describe ccs52, a plant homologue of APC activators involved in mitotic cyclin degradation. The ccs52 cDNA clones were isolated from Medicago sativa root nodules, which exhib...

  2. How do plants enlarge? A balancing act; Final report

    Energy Technology Data Exchange (ETDEWEB)

    Boyer, J.S.

    1996-12-31

    Cells of plants are surrounded by strong walls that prevent rupture from internal pressures that can be two or three times that of an automobile tire. In this way, the walls protect the cytoplasm. However, at the same time, the cells can enlarge as they grow. How this balancing act works and how it enlarges the plant were the subject of a recent conference at the University of Delaware in Lewes. The aim was to identify areas for future research that could explain the enlargement of whole plants. There is a large practical need to predict and modify plant enlargement but the additional processes that overlie the molecular ones need to be integrated with the molecular information before a picture will emerge. How best to accomplish this involved input from cross-disciplinary areas in biomechanics, physics and engineering as well as molecular biology, biochemistry and ultrastructure.

  3. Cell and nuclear enlargement of SW480 cells induced by a plant lignan, arctigenin: evaluation of cellular DNA content using fluorescence microscopy and flow cytometry.

    Science.gov (United States)

    Kang, Kyungsu; Lee, Hee Ju; Yoo, Ji-Hye; Jho, Eun Hye; Kim, Chul Young; Kim, Minkyun; Nho, Chu Won

    2011-08-01

    Arctigenin is a natural plant lignan previously shown to induce G(2)/M arrest in SW480 human colon cancer cells as well as AGS human gastric cancer cells, suggesting its use as a possible cancer chemopreventive agent. Changes in cell and nuclear size often correlate with the functionality of cancer-treating agents. Here, we report that arctigenin induces cell and nuclear enlargement of SW480 cells. Arctigenin clearly induced the formation of giant nuclear shapes in SW480, as demonstrated by fluorescence microscopic observation and quantitative determination of nuclear size. Cell and nuclear size were further assessed by flow cytometric analysis of light scattering and fluorescence pulse width after propidium iodide staining. FSC-H and FL2-W values (parameters referring to cell and nuclear size, respectively) significantly increased after arctigenin treatment; the mean values of FSC-H and FL2-W in arctigenin-treated SW480 cells were 572.6 and 275.1, respectively, whereas those of control cells were 482.0 and 220.7, respectively. Our approach may provide insights into the mechanism behind phytochemical-induced cell and nuclear enlargement as well as functional studies on cancer-treating agents.

  4. How do plants enlarge? A balancing act. Workship on plant growth: Final report

    Energy Technology Data Exchange (ETDEWEB)

    Boyer, J.S.

    1996-12-31

    There are signals that coordinate the development of various plant parts and thus the rates of enlargement of various plant parts and these were explored during the workshop. The participants tried to systematize their knowledge and identify over-arching concepts that need more investigation. It was generally agreed that the cell wall cannot be viewed as a passive plastic material. Synthesis and deposition take place and cause changes in the molecular architecture of the wall. Questions arise from the fact that the wall is not a constant or uniform structure but undergoes highly organized changes during enlargement while bearing a considerable load. Recent advances in signaling, biochemical analysis and ultrastructure visualization are beginning to relate to the molecular load-bearing and enzymatic activities in the wall. The participants agreed that there probably is enough information to begin developing a comprehensive model that would balance wall effects with the limitation of growth by transport, especially for water, and this could help clarify events occurring at different time scales and places. Beyond that, there seems to be a need to resolve problems of solute transport and wall behavior that are poorly understood in growing regions, leaving many promising areas for future experiments. Understanding each balancing act seems to be just the beginning.

  5. A large population of small chloroplasts in tobacco leaf cells allows more effective chloroplast movement than a few enlarged chloroplasts.

    Science.gov (United States)

    Jeong, Won Joong; Park, Youn-Il; Suh, KyeHong; Raven, John A; Yoo, Ook Joon; Liu, Jang Ryol

    2002-05-01

    We generated transgenic tobacco (Nicotiana tabacum cv Xanthi) plants that contained only one to three enlarged chloroplasts per leaf mesophyll cell by introducing NtFtsZ1-2, a cDNA for plastid division. These plants were used to investigate the advantages of having a large population of small chloroplasts rather than a few enlarged chloroplasts in a leaf mesophyll cell. Despite the similarities in photosynthetic components and ultrastructure of photosynthetic machinery between wild-type and transgenic plants, the overall growth of transgenic plants under low- and high-light conditions was retarded. In wild-type plants, the chloroplasts moved toward the face position under low light and toward the profile position under high-light conditions. However, chloroplast rearrangement in transgenic plants in response to light conditions was not evident. In addition, transgenic plant leaves showed greatly diminished changes in leaf transmittance values under both light conditions, indicating that chloroplast rearrangement was severely retarded. Therefore, under low-light conditions the incomplete face position of the enlarged chloroplasts results in decreased absorbance of light energy. This, in turn, reduces plant growth. Under high-light conditions, the amount of absorbed light exceeds the photosynthetic utilization capacity due to the incomplete profile position of the enlarged chloroplasts, resulting in photodamage to the photosynthetic machinery, and decreased growth. The presence of a large number of small and/or rapidly moving chloroplasts in the cells of higher land plants permits more effective chloroplast phototaxis and, hence, allows more efficient utilization of low-incident photon flux densities. The photosynthetic apparatus is, consequently, protected from damage under high-incident photon flux densities.

  6. Wellbore enlargement investigation: Potential analogs to the Waste Isolation Pilot Plant during inadvertent intrusion of the repository

    Energy Technology Data Exchange (ETDEWEB)

    Boak, D.M.; Dotson, L.; Aguilar, R. [and others

    1997-01-01

    This study involved the evaluation and documentation of cases in which petroleum wellbores were enlarged beyond the nominal hole diameter as a consequence of erosion during exploratory drilling, particularly as a function of gas flow into the wellbore during blowout conditions. A primary objective was to identify analogs to potential wellbore enlargement at the Waste Isolation Pilot Plant (WIPP) during inadvertent human intrusion. Secondary objectives were to identify drilling scenarios associated with enlargement, determine the physical extent of enlargement, and establish the physical properties of the formation in which the enlargement occurred. No analogs of sufficient quality to establish quantitative limits on wellbore enlargement at the WIPP disposal system were identified. However, some information was obtained regarding the frequency of petroleum well blowouts and the likelihood that such blowouts would bridge downhole, self-limiting the surface release of disposal-system material. Further work would be necessary, however, to determine the conditions under which bridging could occur and the extent to which the bridging might be applicable to WIPP. In addition, data on casing sizes of petroleum boreholes in the WIPP vicinity support the use of a 12-{1/4} inch borehole size in WIPP performance assessment calculations. Finally, although data are limited, there was no evidence of significant wellbore enlargement in any of three blowouts that occur-red in wellbores in the Delaware Basin (South Culebra Bluff Unit No. 1, Energy Research and Development Administration (ERDA) 6, and WIPP 12).

  7. Cigarette smoke exposure aggravates air space enlargement and alveolar cell apoptosis in Smad3 knockout mice.

    Science.gov (United States)

    Farkas, Laszlo; Farkas, Daniela; Warburton, David; Gauldie, Jack; Shi, Wei; Stampfli, Martin R; Voelkel, Norbert F; Kolb, Martin

    2011-10-01

    The concept of genetic susceptibility factors predisposing cigarette smokers to develop emphysema stems from the clinical observation that only a fraction of smokers develop clinically significant chronic obstructive pulmonary disease. We investigated whether Smad3 knockout mice, which develop spontaneous air space enlargement after birth because of a defect in transforming growth factor-β (TGF-β) signaling, develop enhanced alveolar cell apoptosis and air space enlargement following cigarette smoke exposure. We investigated Smad3(-/-) and Smad3(+/+) mice at different adult ages and determined air space enlargement, alveolar cell proliferation, and apoptosis. Furthermore, laser-capture microdissection and real-time PCR were used to measure compartment-specific gene expression. We then compared the effects of cigarette smoke exposure on Smad3(-/-) and littermate controls. Smad3 knockout resulted in the development of air space enlargement in the adult mouse and was associated with decreased alveolar VEGF levels and activity and increased alveolar cell apoptosis. Cigarette smoke exposure aggravated air space enlargement and alveolar cell apoptosis. We also found increased Smad2 protein expression and phosphorylation, which was enhanced following cigarette smoke exposure, in Smad3-knockout animals. Double immunofluorescence analysis revealed that endothelial apoptosis started before epithelial apoptosis. Our data indicate that balanced TGF-β signaling is not only important for regulation of extracellular matrix turnover, but also for alveolar cell homeostasis. Impaired signaling via the Smad3 pathway results in alveolar cell apoptosis and alveolar destruction, likely via increased Smad2 and reduced VEGF expression and might represent a predisposition for accelerated development of emphysema due to cigarette smoke exposure.

  8. OsNAC5 overexpression enlarges root diameter in rice plants leading to enhanced drought tolerance and increased grain yield in the field.

    Science.gov (United States)

    Jeong, Jin Seo; Kim, Youn Shic; Redillas, Mark C F R; Jang, Geupil; Jung, Harin; Bang, Seung Woon; Choi, Yang Do; Ha, Sun-Hwa; Reuzeau, Christophe; Kim, Ju-Kon

    2013-01-01

    Drought conditions are among the most serious challenges to crop production worldwide. Here, we report the results of field evaluations of transgenic rice plants overexpressing OsNAC5, under the control of either the root-specific (RCc3) or constitutive (GOS2) promoters. Field evaluations over three growing seasons revealed that the grain yield of the RCc3:OsNAC5 and GOS2:OsNAC5 plants were increased by 9%-23% and 9%-26% under normal conditions, respectively. Under drought conditions, however, RCc3:OsNAC5 plants showed a significantly higher grain yield of 22%-63%, whilst the GOS2:OsNAC5 plants showed a reduced or similar yield to the nontransgenic (NT) controls. Both the RCc3:OsNAC5 and GOS2:OsNAC5 plants were found to have larger roots due to an enlarged stele and aerenchyma at flowering stage. Cell numbers per cortex layer and stele of developing roots were higher in both transgenic plants than NT controls, contributing to the increase in root diameter. The root diameter was enlarged to a greater extent in the RCc3:OsNAC5, suggesting the importance of this phenotype for enhanced drought tolerance. Microarray experiments identified 25 up-regulated genes by more than three-fold (P < 0.01) in the roots of both transgenic lines. Also identified were 19 and 18 up-regulated genes that are specific to the RCc3:OsNAC5 and GOS2:OsNAC5 roots, respectively. Of the genes specifically up-regulated in the RCc3:OsNAC5 roots, GLP, PDX, MERI5 and O-methyltransferase were implicated in root growth and development. Our present findings demonstrate that the root-specific overexpression of OsNAC5 enlarges roots significantly and thereby enhances drought tolerance and grain yield under field conditions.

  9. Gingival Enlargement

    Science.gov (United States)

    ... 2) medication-induced gingival enlargement, 3) hereditary gingival fibromatosis, and 4) systemic causes of gingival enlargement. Inflammatory ... hygiene measures will reduce the severity. Hereditary Gingival Fibromatosis This is a rare hereditary condition that usually ...

  10. Overexpression of SlUPA-like induces cell enlargement, aberrant development and low stress tolerance through phytohormonal pathway in tomato.

    Science.gov (United States)

    Cui, Baolu; Hu, Zongli; Hu, Jingtao; Zhang, Yanjie; Yin, Wencheng; Zhu, Zhiguo; Feng, Ye; Chen, Guoping

    2016-03-30

    upa20 induces cell enlargement and hypertrophy development. In our research, overexpression of SlUPA-like, orthologous to upa20, severely affected the growth of vegetative and reproductive tissues. Wilted leaves curled upwardly and sterile flowers were found in transgenic lines. Through anatomical analysis, palisade and spongy tissues showed fluffy and hypertrophic development in transgenic plants. Gene expression analysis showed that GA responsive, biosynthetic and signal transduction genes (e.g. GAST1, SlGA20OXs, SlGA3OXs, SlGID1s, and SlPREs) were significantly upregulated, indicating that GA response is stimulated by overproduction of SlUPA-like. Furthermore, SlUPA-like was strongly induced by exogenous JA and wounding. Decreased expression of PI-I and induced expression of SlJAZs (including SlJAZ2, SlJAZ10 and SlJAZ11) were observed in transgenic plants, suggesting that JA response is repressed. In addition, SlUPA-like overexpressed plant exhibited more opened stoma and higher water loss than the control when treated with dehydration stress, which was related to decreased ABA biosynthesis, signal transduction and response. Particularly, abnormal developments of transgenic plants promote the plant susceptibility to Xanthomonas campestris pv. campestris. Therefore, it is deduced from these results that SlUPA-like plays vital role in regulation of plant development and stress tolerance through GA, JA and ABA pathways.

  11. Optimization of membrane stack configuration in enlarged microbial desalination cells for efficient water desalination

    Science.gov (United States)

    Chen, Xi; Sun, Haotian; Liang, Peng; Zhang, Xiaoyuan; Huang, Xia

    2016-08-01

    Microbial desalination cells are considered a low-energy-consumption, clean technology to simultaneously purify wastewater and desalinate saline water by utilizing the in situ energy source contained in wastewater. To enhance desalination performance and achieve an optimal membrane stack configuration, an enlarged stacked microbial desalination cell (SMDC) has been developed and tested with 6-14 desalination cells. The cross-membrane area of the enlarged SMDC is 100 cm2. The anode and cathode volumes are both 200 mL. To reduce internal resistance, the width of desalination cells is kept as <0.5 mm. The optimal configuration with 10 desalination cells achieves the highest total desalination rate (TDR) of 423 mg/h and the highest charge transfer efficiency (CTE) of 836% when treating the 20 g/L NaCl solution. During this process, the junction potential across membranes increases from 0 to 374 mV, and occupies up to 74% of the total potential loss inside the SMDC. This shows that the SMDC used in this work achieves the highest TDR and CTE among the reported studies, and the junction potential should be effectively controlled to achieve the desired desalination performance in future practical applications.

  12. DISTRIBUTION ANALYSIS OF ENLARGED CELLS DERIVED FROM GROUPER SLEEPY DISEASE IRIDOVIRUS (GSDIV INFECTED HUMPBACK GROUPER Cromileptes altivelis

    Directory of Open Access Journals (Sweden)

    Indah Mastuti

    2012-06-01

    Full Text Available Characteristic of Megalocytivirus infection has been known to produce formation of inclusion body bearing cells (IBCs on internals organs of fish predominantly on spleen and kidney. Megalocytivirus that infected grouper is known as Grouper Sleepy Disease Iridovirus (GSDIV. This study was conducted to answer the effect of entry sites of GSDIV on distribution of enlarged cells formed on the internal organs of humpback grouper Cromileptes altivelis. Enlarged cells were observed histologically under the light microscope on spleen, head kidney, trunk kidney, liver, gill, heart, stomach, intestine, muscle and brain. Entry sites were designated to intramuscularly injection, intraperitoneally injection, dipped gill and inoculum added feed. Enlarged cells were formed on spleen, head kidney, trunk kidney, liver, gill, heart, stomach, muscle, except on intestine and brain. All the entry sites resulted in formation of enlarged cells on spleen, head kidney, trunk kidney, liver, heart. Spleen and head kidney were the most frequent observed organ. These results suggested that distribution of enlarged cells were not affected by the entry site of GSDIV.

  13. QUANTITATIVE HISTOPATHOLOGICAL ANALYSIS OF ENLARGED CELLS DERIVED FROM HUMPBACK GROUPER, Cromileptes altivelis INFECTED WITH GROUPER SLEEPY DISEASE IRIDOVIRUS (GSDIV

    Directory of Open Access Journals (Sweden)

    Indah Mastuti

    2010-12-01

    Full Text Available Pathognomonic sign of grouper sleepy disease iridovirus (GSDIV was proposed to be the formation of enlarged cells and necrotic cells, in which under electron microscope, it is revealed to be the inclusion body bearing cells (IBCs and necrotic cells containing GSDIV viral particles. Spleen and kidney tissues are the major sites for formation of enlarged cells. This paper described the result of histopatological analysis of enlarged cells found in the spleen and kidney of moribund fish after GSDIV challenge. A pathogenicity test was conducted on fish stocked in two tanks for infected groups and the other two tanks for uninfected control groups (15 fish per tank. The infected groups were injected intramuscularly with 0.1 ml of the viral inoculum. The uninfected groups were injected with the same amount of EMEM-2. The GSDIV-infected humpback grouper began to die after 6 days post infection and all died after 7 dpi, excluding one fish which had survived until the end of experimental infection periods (93% to 100% mortality. All of the diseased fish showed massive formation of enlarged cells in their spleen, head kidney and trunk kidney. The largest number of enlarged cells was observed on head kidneys and subsequently followed by spleens, trunk kidney (2.0-200.3/field of view. This result suggested that the number of enlarged cells in the affected organs was not the direct factor that led to the mortality of fish.

  14. Enlarged Adenoids

    Science.gov (United States)

    ... a teen. Symptoms of Enlarged Adenoids Because adenoids trap germs that enter the body, adenoid tissue sometimes ... Nemours Foundation, iStock, Getty Images, Corbis, Veer, Science Photo Library, Science Source Images, Shutterstock, and Clipart.com

  15. Lysosomal enlargement and lysosomal membrane destabilisation in mussel digestive cells measured by an integrative index

    Energy Technology Data Exchange (ETDEWEB)

    Izagirre, Urtzi [Cell Biology in Environmental Toxicology Research Group, Department of Zoology and Cell Biology, School of Sciences and Technology, University of the Basque Country, P.O. box 644, E-48080 Bilbo (Spain); Marigomez, Ionan, E-mail: ionan.marigomez@ehu.e [Cell Biology in Environmental Toxicology Research Group, Department of Zoology and Cell Biology, School of Sciences and Technology, University of the Basque Country, P.O. box 644, E-48080 Bilbo (Spain)

    2009-05-15

    Lysosomal responses (enlargement and membrane destabilisation) in mussel digestive cells are well-known environmental stress biomarkers in pollution effects monitoring in marine ecosystems. Presently, in laboratory and field studies, both responses were measured separately (in terms of lysosomal volume density - Vv - and labilisation period -LP) and combined (lysosomal response index - LRI) in order to contribute to their understanding and to develop an index useful for decisions makers. LRI integrates Vv and LP, which are not necessarily dependent lysosomal responses. It is unbiased and more sensitive than Vv and LP alone and diminishes background due to confounding factors. LRI provides a simple numerical index (consensus reference = 0; critical threshold = 1) directly related to the pollution impact degree. Moreover, LRI can be represented in a way that allows the interpretation of lysosomal responses, which is useful for environmental scientists. - Lysosomal responses to pollutants measured by an integrative index.

  16. Legacy of earthworms' engineering effects enlarges the actual effects of earthworms on plants

    Science.gov (United States)

    Mudrák, Obdřej; Frouz, Jan

    2015-04-01

    Earthworms were recognized as key factor responsible for changes from early to late successional plant communities. They incorporate organic matter into the soil and creates there persistent structures, which improves conditions for plant growth. Earthworm activity might be therefore expected to be more important in early stages of the succession, when earthworm colonization of previously earthworm free soil starts, than in the late stages of the succession, where the soil was previously modified by earthworms. However, earthworms affect plants also via other effects such as increase of nutrient availability. The relative importance of soil structure modification and other earthworm effects on plants is poorly known, despite it is important for both theoretical and applied ecology. To test the effect of earthworms (Lumbricus rubellus and Aporrectodea caliginosa) on plants we performed microcosm laboratory experiment, where earthworms were affecting early successional (Poa compressa, Medicago lupulina, and Daucus carota) and late successional (Arrhenatherum elatius, Lotus corniculatus, and Plantago laceolata) plat species in soil previously unaffected by earthworms and in soil with previous long term effect of earthworms. These soils were taken from the early and late successional monitoring sites of the Sokolov coal mining district with known history. Earthworms increased plant biomass proportionally more in late successional soil. It was mainly because they increased availability of nutrients (nitrate and potassium) and plants get higher advantage out of this in late successional soil. Earthworms increased plant biomass of both early and late successional species, but late successional species suppressed early successional species in competition. This suppression was more intensive in presence of earthworms and in late successional soil. We therefore found multiplicative effect between earthworm soil engineering activity and their other effects, which might be

  17. Loss of caveolin-1 causes blood-retinal barrier breakdown, venous enlargement, and mural cell alteration.

    Science.gov (United States)

    Gu, Xiaowu; Fliesler, Steven J; Zhao, You-Yang; Stallcup, William B; Cohen, Alex W; Elliott, Michael H

    2014-02-01

    Blood-retinal barrier (BRB) breakdown and related vascular changes are implicated in several ocular diseases. The molecules and mechanisms regulating BRB integrity and pathophysiology are not fully elucidated. Caveolin-1 (Cav-1) ablation results in loss of caveolae and microvascular pathologies, but the role of Cav-1 in the retina is largely unknown. We examined BRB integrity and vasculature in Cav-1 knockout mice and found a significant increase in BRB permeability, compared with wild-type controls, with branch veins being frequent sites of breakdown. Vascular hyperpermeability occurred without apparent alteration in junctional proteins. Such hyperpermeability was not rescued by inhibiting eNOS activity. Veins of Cav-1 knockout retinas exhibited additional pathological features, including i) eNOS-independent enlargement, ii) altered expression of mural cell markers (eg, down-regulation of NG2 and up-regulation of αSMA), and iii) dramatic alterations in mural cell phenotype near the optic nerve head. We observed a significant NO-dependent increase in retinal artery diameter in Cav-1 knockout mice, suggesting that Cav-1 plays a role in autoregulation of resistance vessels in the retina. These findings implicate Cav-1 in maintaining BRB integrity in retinal vasculature and suggest a previously undefined role in the retinal venous system and associated mural cells. Our results are relevant to clinically significant retinal disorders with vascular pathologies, including diabetic retinopathy, uveoretinitis, and primary open-angle glaucoma.

  18. Enlarged prostate

    Science.gov (United States)

    ... prostate URL of this page: //medlineplus.gov/ency/article/000381.htm Enlarged prostate To use the sharing ... sperm during ejaculation. The prostate gland surrounds the urethra, the tube ... hyperplasia (BPH). It is not cancer, and it does not raise your risk for ...

  19. MtgA Deletion-Triggered Cell Enlargement of Escherichia coli for Enhanced Intracellular Polyester Accumulation.

    Directory of Open Access Journals (Sweden)

    Ryosuke Kadoya

    Full Text Available Bacterial polyester polyhydroxyalkanoates (PHAs have been produced in engineered Escherichia coli, which turned into an efficient and versatile platform by applying metabolic and enzyme engineering approaches. The present study aimed at drawing out the latent potential of this organism using genome-wide mutagenesis. To meet this goal, a transposon-based mutagenesis was carried out on E. coli, which was transformed to produce poly(lactate-co-3-hydroxybutyrate from glucose. A high-throughput screening of polymer-accumulating cells on Nile red-containing plates isolated one mutant that produced 1.8-fold higher quantity of polymer without severe disadvantages in the cell growth and monomer composition of the polymer. The transposon was inserted into the locus within the gene encoding MtgA that takes part, as a non-lethal component, in the formation of the peptidoglycan backbone. Accordingly, the mtgA-deleted strain E. coli JW3175, which was a derivate of superior PHA-producing strain BW25113, was examined for polymer production, and exhibited an enhanced accumulation of the polymer (7.0 g/l compared to the control (5.2 g/l. Interestingly, an enlargement in cell width associated with polymer accumulation was observed in this strain, resulting in a 1.6-fold greater polymer accumulation per cell compared to the control. This result suggests that the increase in volumetric capacity for accumulating intracellular material contributed to the enhanced polymer production. The mtgA deletion should be combined with conventional engineering approaches, and thus, is a promising strategy for improved production of intracellularly accumulated biopolymers.

  20. Patenting human embryonic stem cells in peril: the decision of the Enlarged Board of Appeal in G 2/06

    NARCIS (Netherlands)

    S.J.R. Bostyn

    2009-01-01

    The Enlarged Board of Appeal has recently decided one of the most sensitive cases it has ever had on its hands, but probably not the last. The referral in the G 2/06 case related to the patentability of human embryonic stem cells (hESC). The main question was whether inventions pertaining to the hES

  1. EU Enlargement

    DEFF Research Database (Denmark)

    Pedersen, Peder J.; Pytlikova, Mariola

    countries chose a transition period in relation to the "new" EU members. We employ a differences-in-differences estimator in our analysis. The results show that the estimated effect of the opening of Swedish labour market in 2004 on migration is insignificantly different from zero. Further, we......We look at migration flows from 8 Central and Eastern European Countries (CEECs) to 5 Nordic countries over the years 1985 - 2005 and we can exploit a natural experiment that arose from the fact that while Sweden opened its labour market from the day one of the 2004 EU enlargement, the other Nordic...

  2. Plant stem cell niches.

    Science.gov (United States)

    Aichinger, Ernst; Kornet, Noortje; Friedrich, Thomas; Laux, Thomas

    2012-01-01

    Multicellular organisms possess pluripotent stem cells to form new organs, replenish the daily loss of cells, or regenerate organs after injury. Stem cells are maintained in specific environments, the stem cell niches, that provide signals to block differentiation. In plants, stem cell niches are situated in the shoot, root, and vascular meristems-self-perpetuating units of organ formation. Plants' lifelong activity-which, as in the case of trees, can extend over more than a thousand years-requires that a robust regulatory network keep the balance between pluripotent stem cells and differentiating descendants. In this review, we focus on current models in plant stem cell research elaborated during the past two decades, mainly in the model plant Arabidopsis thaliana. We address the roles of mobile signals on transcriptional modules involved in balancing cell fates. In addition, we discuss shared features of and differences between the distinct stem cell niches of Arabidopsis.

  3. The Plant Cell Surface

    Institute of Scientific and Technical Information of China (English)

    Anne-Mie C.Emons; Kurt V.Fagerstedt

    2010-01-01

    @@ Multicellular organization and tissue construction has evolved along essentially different lines in plants and animals. Since plants do not run away, but are anchored in the soil, their tissues are more or less firm and stiff. This strength stems from the cell walls, which encase the fragile cytoplasm, and protect it.

  4. Plant Stem Cells

    National Research Council Canada - National Science Library

    Greb, Thomas; Lohmann, Jan U

    2016-01-01

    .... While the promise of organ regeneration and the end of cancer have captured our imagination, it has gone almost unnoticed that plant stem cells represent the ultimate origin of much of the food we...

  5. Acute kidney injury and bilateral symmetrical enlargement of the kidneys as first presentation of B-cell lymphoblastic lymphoma.

    Science.gov (United States)

    Shi, Su-fang; Zhou, Fu-de; Zou, Wan-zhong; Wang, Hai-yan

    2012-12-01

    Lymphoblastic lymphoma is an uncommon subtype of lymphoid neoplasm in adults. Acute kidney injury at initial presentation due to lymphoblastic lymphoma infiltration of the kidneys has rarely been described. We report a 19-year-old woman who presented with acute kidney injury due to massive lymphomatous infiltration of the kidneys. The diagnosis of B-cell lymphoblastic lymphoma was established by immunohistochemical study of the biopsied kidney. The patient had an excellent response to the VDCLP protocol (vincristine, daunomycin, cyclophosphamide, asparaginase, and dexamethasone) with sustained remission. We recommend that lymphomatous infiltration be considered in patients presenting with unexplained acute kidney injury and enlarged kidneys.

  6. Cell enlargement and sugar accumulation in the gynaecium of the glasshouse carnation (Dianthus caryophyllus L.) induced by ethylene.

    Science.gov (United States)

    Nichols, R

    1976-01-01

    Histological examination of the ovary walls from ethylene-treated cut flowering stems of the carnation showed that the cells had enlarged and this appeared to account for the increased growth of the ovary which follows ethylene treatment of this flower. Sugar analyses of the flower parts indicated that growth of the ovary was accompanied by an increase in the ratio of sucrose to reducing sugars in the petals and ovary, and a net increase in sugars in the ovary. A sugar, tentatively identified as xylose, increased in the petals after ethylene treatment. Nitrogen, phosphorus and potassium contents of the ovary also increased after the ethylene treatment. The results, consistent with the hypothesis that sucrose is translocated in response to ethylene, are discussed in relation to previous work relating to the involvement of ethylene in flower senescence.

  7. Human serum activates CIDEB-mediated lipid droplet enlargement in hepatoma cells

    Energy Technology Data Exchange (ETDEWEB)

    Singaravelu, Ragunath [Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario K1N 6N5 (Canada); National Research Council of Canada, Ottawa, Ontario K1A 0R6 (Canada); Lyn, Rodney K. [Department of Chemistry, University of Ottawa, Ottawa, Ontario K1N 6N5 (Canada); National Research Council of Canada, Ottawa, Ontario K1A 0R6 (Canada); Srinivasan, Prashanth [National Research Council of Canada, Ottawa, Ontario K1A 0R6 (Canada); Delcorde, Julie [Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario K1N 6N5 (Canada); National Research Council of Canada, Ottawa, Ontario K1A 0R6 (Canada); Steenbergen, Rineke H.; Tyrrell, D. Lorne [Department of Medical Microbiology and Immunology, University of Alberta (Canada); Li Ka Shing Institute of Virology, Katz Centre for Pharmacy and Health Research, Edmonton, Alberta T6G 2S2 (Canada); Pezacki, John P., E-mail: John.Pezacki@nrc-cnrc.gc.ca [Department of Chemistry, University of Ottawa, Ottawa, Ontario K1N 6N5 (Canada); National Research Council of Canada, Ottawa, Ontario K1A 0R6 (Canada)

    2013-11-15

    Highlights: •Human serum induced differentiation of hepatoma cells increases cellular lipid droplet (LD) size. •The observed increase in LD size correlates with increased PGC-1α and CIDEB expression. •Induction of CIDEB expression correlates with rescue of VLDL secretion and loss of ADRP. •siRNA knockdown of CIDEB impairs the human serum mediated increase in LD size. •This system represents a cost-efficient model to study CIDEB’s role in lipid biology. -- Abstract: Human hepatocytes constitutively express the lipid droplet (LD) associated protein cell death-inducing DFFA-like effector B (CIDEB). CIDEB mediates LD fusion, as well as very-low-density lipoprotein (VLDL) maturation. However, there are limited cell culture models readily available to study CIDEB’s role in these biological processes, as hepatoma cell lines express negligible levels of CIDEB. Recent work has highlighted the ability of human serum to differentiate hepatoma cells. Herein, we demonstrate that culturing Huh7.5 cells in media supplemented with human serum activates CIDEB expression. This activation occurs through the induced expression of PGC-1α, a positive transcriptional regulator of CIDEB. Coherent anti-Stokes Raman scattering (CARS) microscopy revealed a correlation between CIDEB levels and LD size in human serum treated Huh7.5 cells. Human serum treatment also resulted in a rapid decrease in the levels of adipose differentiation-related protein (ADRP). Furthermore, individual overexpression of CIDEB was sufficient to down-regulate ADRP protein levels. siRNA knockdown of CIDEB revealed that the human serum mediated increase in LD size was CIDEB-dependent. Overall, our work highlights CIDEB’s role in LD fusion, and presents a new model system to study the PGC-1α/CIDEB pathway’s role in LD dynamics and the VLDL pathway.

  8. Golgi enlargement in Arf-depleted yeast cells is due to altered dynamics of cisternal maturation

    Science.gov (United States)

    Bhave, Madhura; Papanikou, Effrosyni; Iyer, Prasanna; Pandya, Koushal; Jain, Bhawik Kumar; Ganguly, Abira; Sharma, Chandrakala; Pawar, Ketakee; Austin, Jotham; Day, Kasey J.; Rossanese, Olivia W.; Glick, Benjamin S.; Bhattacharyya, Dibyendu

    2014-01-01

    ABSTRACT Regulation of the size and abundance of membrane compartments is a fundamental cellular activity. In Saccharomyces cerevisiae, disruption of the ADP-ribosylation factor 1 (ARF1) gene yields larger and fewer Golgi cisternae by partially depleting the Arf GTPase. We observed a similar phenotype with a thermosensitive mutation in Nmt1, which myristoylates and activates Arf. Therefore, partial depletion of Arf is a convenient tool for dissecting mechanisms that regulate Golgi structure. We found that in arf1Δ cells, late Golgi structure is particularly abnormal, with the number of late Golgi cisternae being severely reduced. This effect can be explained by selective changes in cisternal maturation kinetics. The arf1Δ mutation causes early Golgi cisternae to mature more slowly and less frequently, but does not alter the maturation of late Golgi cisternae. These changes quantitatively explain why late Golgi cisternae are fewer in number and correspondingly larger. With a stacked Golgi, similar changes in maturation kinetics could be used by the cell to modulate the number of cisternae per stack. Thus, the rates of processes that transform a maturing compartment can determine compartmental size and copy number. PMID:24190882

  9. Breast enlargement in males

    Science.gov (United States)

    ... substances can cause breast enlargement: Alcohol Amphetamines Heroin Marijuana Methadone Men who have enlarged breasts may have an increased risk for breast cancer . Breast cancer in men is rare. Signs that ...

  10. Cytological diagnostic clues in poorly differentiated squamous cell carcinomas of the breast: Streaming arrangement, necrotic background, nucleolar enlargement and cannibalism of cancer cells.

    Science.gov (United States)

    Kinoshita, M; Matsuda, Y; Arai, T; Soejima, Y; Sawabe, M; Honma, N

    2017-09-04

    Squamous cell carcinoma (SCC) is a rare histological type of breast cancer. The cytological diagnosis of non-keratinising, poorly differentiated SCC is often difficult, and distinguishing it from invasive ductal carcinoma or apocrine carcinoma (AC) is especially challenging. We aimed to define the diagnostic cytological features of poorly differentiated SCC of the breast. We studied the cytological findings of poorly differentiated SCC (n=10) and compared them to those of IDC (n=15) and AC (n=14). The following six cytological features were evaluated: streaming arrangement, nucleolar enlargement, dense nuclei, cannibalism, atypical keratinocytes and necrotic background. SCC exhibited significantly higher frequencies of streaming arrangement (70% vs 6.7%, P=.002), nucleolar enlargement (80% vs 27%, P=.02), and necrotic background (80% vs 36%, P=.002) than invasive ductal carcinoma. The detection of two or three of these features yielded a higher sensitivity (80%) and specificity (93%) for the diagnosis of SCC. Streaming arrangement (70% vs 0%, Pstreaming arrangement, a necrotic background, nucleolar enlargement and cannibalism are useful indicators for the diagnosis of SCC of the breast. As such, greater attention should be paid to these morphological features in daily clinical practice. © 2017 John Wiley & Sons Ltd.

  11. Suppressor screen and phenotype analyses revealed an emerging role of the Monofunctional peroxisomal enoyl-CoA hydratase 2 in compensated cell enlargement

    Directory of Open Access Journals (Sweden)

    Mana eKatano

    2016-02-01

    Full Text Available Efficient use of seed nutrient reserves is crucial for germination and establishment of plant seedlings. Mobilizing seed oil reserves in Arabidopsis involves β-oxidation, the glyoxylate cycle, and gluconeogenesis, which provide essential energy and the carbon skeletons needed to sustain seedling growth until photoautotrophy is acquired. We demonstrated that H+-PPase activity is required for gluconeogenesis. Lack of H+-PPase in fugu5 mutants increases cytosolic pyrophosphate (PPi levels, which partially reduces sucrose synthesis de novo and inhibits cell division. In contrast, post-mitotic cell expansion in cotyledons was unusually enhanced, a phenotype called compensation. Therefore, it appears that PPi inhibits several cellular functions, including cell cycling, to trigger compensated cell enlargement (CCE. Here, we mutagenized fugu5-1 seeds with 12C6+ heavy-ion irradiation and screened mutations that restrain CCE to gain insight into the genetic pathway(s involved in CCE. We isolated A#3-1, in which cell size was severely reduced, but cell number remained similar to that of original fugu5-1. Moreover, cell number decreased in A#3-1 single mutant (A#3-1sm, similar to that of fugu5-1, but cell size was almost equal to that of the wild type. Surprisingly, A#3-1 mutation did not affect CCE in other compensation exhibiting mutant backgrounds, such as an3-4 and fugu2-1/fas1-6. Subsequent map-based cloning combined with genome sequencing and HRM curve analysis identified enoyl-CoA hydratase 2 (ECH2 as the causal gene of A#3-1. The above phenotypes were consistently observed in the ech2-1 allele and supplying sucrose restored the morphological and cellular phenotypes in fugu5-1, ech2-1, A#3-1sm, fugu5-1 ech2-1 and A#3-1;fugu5-1. Taken together, these results suggest that defects in either H+-PPase or ECH2 compromise cell proliferation due to defects in mobilizing stored lipids. In contrast, ECH2 alone likely promotes CCE during the post-mitotic cell

  12. Calcium in plant cells

    Directory of Open Access Journals (Sweden)

    V. V. Schwartau

    2014-04-01

    Full Text Available The paper gives the review on the role of calcium in many physiological processes of plant organisms, including growth and development, protection from pathogenic influences, response to changing environmental factors, and many other aspects of plant physiology. Initial intake of calcium ions is carried out by Ca2+-channels of plasma membrane and they are further transported by the xylem owing to auxins’ attractive ability. The level of intake and selectivity of calcium transport to ove-ground parts of the plant is controlled by a symplast. Ca2+enters to the cytoplasm of endoderm cells through calcium channels on the cortical side of Kaspary bands, and is redistributed inside the stele by the symplast, with the use of Ca2+-АТPases and Ca2+/Н+-antiports. Owing to regulated expression and activity of these calcium transporters, calclum can be selectively delivered to the xylem. Important role in supporting calcium homeostasis is given to the vacuole which is the largest depo of calcium. Regulated quantity of calcium movement through the tonoplast is provided by a number of potential-, ligand-gated active transporters and channels, like Ca2+-ATPase and Ca2+/H+ exchanger. They are actively involved in the inactivation of the calcium signal by pumping Ca2+ to the depo of cells. Calcium ATPases are high affinity pumps that efficiently transfer calcium ions against the concentration gradient in their presence in the solution in nanomolar concentrations. Calcium exchangers are low affinity, high capacity Ca2+ transporters that are effectively transporting calcium after raising its concentration in the cell cytosol through the use of protons gradients. Maintaining constant concentration and participation in the response to stimuli of different types also involves EPR, plastids, mitochondria, and cell wall. Calcium binding proteins contain several conserved sequences that provide sensitivity to changes in the concentration of Ca2+ and when you

  13. Adipose tissue dysregulation and reduced insulin sensitivity in non-obese individuals with enlarged abdominal adipose cells.

    Science.gov (United States)

    Hammarstedt, Ann; Graham, Timothy E; Kahn, Barbara B

    2012-09-19

    Obesity contributes to Type 2 diabetes by promoting systemic insulin resistance. Obesity causes features of metabolic dysfunction in the adipose tissue that may contribute to later impairments of insulin action in skeletal muscle and liver; these include reduced insulin-stimulated glucose transport, reduced expression of GLUT4, altered expression of adipokines, and adipocyte hypertrophy. Animal studies have shown that expansion of adipose tissue alone is not sufficient to cause systemic insulin resistance in the absence of adipose tissue metabolic dysfunction. To determine if this holds true for humans, we studied the relationship between insulin resistance and markers of adipose tissue dysfunction in non-obese individuals. 32 non-obese first-degree relatives of Type 2 diabetic patients were recruited. Glucose tolerance was determined by an oral glucose tolerance test and insulin sensitivity was measured with the hyperinsulinaemic-euglycaemic clamp. Blood samples were collected and subcutaneous abdominal adipose tissue biopsies obtained for gene/protein expression and adipocyte cell size measurements. Our findings show that also in non-obese individuals low insulin sensitivity is associated with signs of adipose tissue metabolic dysfunction characterized by low expression of GLUT4, altered adipokine profile and enlarged adipocyte cell size. In this group, insulin sensitivity is positively correlated to GLUT4 mRNA (R = 0.49, p = 0.011) and protein (R = 0.51, p = 0.004) expression, as well as with circulating adiponectin levels (R = 0.46, 0 = 0.009). In addition, insulin sensitivity is inversely correlated to circulating RBP4 (R = -0.61, 0 = 0.003) and adipocyte cell size (R = -0.40, p = 0.022). Furthermore, these features are inter-correlated and also associated with other clinical features of the metabolic syndrome in the absence of obesity. No association could be found between the hypertrophy-associated adipocyte

  14. Adipose tissue dysregulation and reduced insulin sensitivity in non-obese individuals with enlarged abdominal adipose cells

    Directory of Open Access Journals (Sweden)

    Hammarstedt Ann

    2012-09-01

    Full Text Available Abstract Background Obesity contributes to Type 2 diabetes by promoting systemic insulin resistance. Obesity causes features of metabolic dysfunction in the adipose tissue that may contribute to later impairments of insulin action in skeletal muscle and liver; these include reduced insulin-stimulated glucose transport, reduced expression of GLUT4, altered expression of adipokines, and adipocyte hypertrophy. Animal studies have shown that expansion of adipose tissue alone is not sufficient to cause systemic insulin resistance in the absence of adipose tissue metabolic dysfunction. To determine if this holds true for humans, we studied the relationship between insulin resistance and markers of adipose tissue dysfunction in non-obese individuals. Method 32 non-obese first-degree relatives of Type 2 diabetic patients were recruited. Glucose tolerance was determined by an oral glucose tolerance test and insulin sensitivity was measured with the hyperinsulinaemic-euglycaemic clamp. Blood samples were collected and subcutaneous abdominal adipose tissue biopsies obtained for gene/protein expression and adipocyte cell size measurements. Results Our findings show that also in non-obese individuals low insulin sensitivity is associated with signs of adipose tissue metabolic dysfunction characterized by low expression of GLUT4, altered adipokine profile and enlarged adipocyte cell size. In this group, insulin sensitivity is positively correlated to GLUT4 mRNA (R = 0.49, p = 0.011 and protein (R = 0.51, p = 0.004 expression, as well as with circulating adiponectin levels (R = 0.46, 0 = 0.009. In addition, insulin sensitivity is inversely correlated to circulating RBP4 (R = −0.61, 0 = 0.003 and adipocyte cell size (R = −0.40, p = 0.022. Furthermore, these features are inter-correlated and also associated with other clinical features of the metabolic syndrome in the absence of obesity. No association could be found

  15. Gingival enlargement in myelodysplastic syndrome

    Directory of Open Access Journals (Sweden)

    Navia George

    2015-01-01

    Full Text Available The myelodysplastic syndrome (MDS is characterized by peripheral blood cytopenias and increased risk of transformation to acute myeloid leukemia. This syndrome affects blood cell production and behavior. MDS is difficult to diagnose because of the absence of symptoms in the early stage of the disease. Often it is accidentally discovered during a routine physical exam/blood test. Till date, only a few cases of gingival enlargement associated with MDS are reported in the literature. Here is a remarkable case of gingival enlargement heralding the presence of MDS.

  16. Organelle Extensions in Plant Cells

    Institute of Scientific and Technical Information of China (English)

    Jaideep Mathur; Alena Mammone; Kiah A.Barton

    2012-01-01

    Cell walls lock each cell in a specific position within the supraorganization of a plant.Despite its fixed location,each cell must be able to sense alterations in its immediate environment and respond rapidly to ensure the optimal functioning,continued growth and development,and eventual long-term survival of the plant.The ultra-structural detail that underlies our present understanding of the plant cell has largely been acquired from fixed and processed material that does not allow an appreciation of the dynamic nature of sub-cellular events in the cell.In recent years,fluorescent proteinaided imaging of living plant cells has added to our understanding of the dynamic nature of the plant cell.One of the major outcomes of live imaging of plant cells is the growing appreciation that organelle shapes are not fixed,and many organelles extend their surface transiently in rapid response to environmental stimuli.In many cases,the extensions appear as tubules extending from the main organelle.Specific terms such as stromules from plastids,matrixules from mitochondria,and peroxules from peroxisomes have been coined to describe the extensions.Here,we review our present understanding of organelle extensions and discuss how they may play potential roles in maintaining cellular homeostasis in plant cells.

  17. Celebrating Plant Cells: A Special Issue on Plant Cell Biology

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    @@ A special issue on plant cell biology is long overdue for JIPB! In the last two decades or so, the plant biology community has been thrilled by explosive discoveries regarding the molecular and genetic basis of plant growth, development, and responses to the environment, largely owing to recent maturation of model systems like Arabidopsis thaliana and the rice Oryza sativa, as well as the rapid development of high throughput technologies associated with genomics and proteomics.

  18. AtPGL3 is an Arabidopsis BURP domain protein that is localized to the cell wall and promotes cell enlargement

    Directory of Open Access Journals (Sweden)

    Jiyoung ePark

    2015-06-01

    Full Text Available The BURP domain is a plant-specific protein domain that has been identified in secretory proteins, and some of these are involved in cell wall remodeling. Among Arabidopsis BURP domain proteins, three proteins exhibit strong amino acid similarities with the tomato polygalacturonase 1 beta (PG1β protein that interacts with a pectin-digesting enzyme. To investigate biological roles of the Arabidopsis PG1β-like proteins (AtPGLs, we generated Arabidopsis lines in which expression of AtPGLs is altered. Among the three AtPGLs, AtPGL3 exhibited highest transcriptional activity throughout all developmental stages. When tissue-specific expression pattern of AtPGL3 was examined, the gene was observed to be active in epidermal cell layers of rosette leaves and in the trichomes. AtPGL triple mutant plants were smaller than wild type plants because cells were smaller in the mutant plants. Interestingly, when we overexpressed AtPGL3 using a 35S promoter, cells in transgenic plants grew larger than those of the wild type, suggesting that AtPGL3 plays a role in cell expansion. A C-terminal GFP fusion protein of AtPGL3 complemented phenotypes of the triple mutant plants and localized to the cell wall. A truncated AtPGL3-GFP fusion protein that lacks the BURP domain failed to rescue the mutant phenotypes even though the GFP protein was targeted to the cell wall, indicating that the BURP domain is required for its effect on cell expansion. Quantitative RT-PCR and immunoblot analyses indicated that 2 α-expansin genes are down-regulated and up-regulated in the triple mutant and overexpressor lines, respectively. Taken together, AtPGL3 is a cell wall protein required for normal cell expansion and the coexpression results suggest that AtPGLs regulate cell wall loosening, in conjunction with α-expansins, to promote cell growth.

  19. Enlarging the scope of cell penetrating prenylated peptides to include farnesylated “CAAX” box sequences and diverse cell types

    Science.gov (United States)

    Ochocki, Joshua D.; Igbavboa, Urule; Wood, W. Gibson; Wattenberg, Elizabeth V.; Distefano, Mark D.

    2010-01-01

    Protein prenylation is a post-translational modification that is present in a large number of proteins; it has been proposed to be responsible for membrane association and protein-protein interactions which contribute to its role in signal transduction pathways. Research has been aimed at inhibiting prenylation with farnesyltransferase inhibitors (FTIs) based on the finding that the farnesylated protein Ras is implicated in 30% of human cancers. Despite numerous studies on the enzymology of prenylation in vitro, many questions remain about the process of prenylation as it occurs in living cells. Here we describe the preparation of a series of farnesylated peptides that contain sequences recognized by protein farnesyltransferase. Using a combination of flow cytometry and confocal microscopy, we show that these peptides enter a variety of different cell types. A related peptide where the farnesyl group has been replaced by a disulfide-linked decyl group is also shown to be able to efficiently enter cells. These results highlight the applicability of these peptides as a platform for further study of protein prenylation and subsequent processing in live cells. PMID:20584014

  20. Enlargements of positive sets

    CERN Document Server

    Bot, Radu Ioan

    2008-01-01

    In this paper we introduce the notion of enlargement of a positive set in SSD spaces. To a maximally positive set $A$ we associate a family of enlargements $\\E(A)$ and characterize the smallest and biggest element in this family with respect to the inclusion relation. We also emphasize the existence of a bijection between the subfamily of closed enlargements of $\\E(A)$ and the family of so-called representative functions of $A$. We show that the extremal elements of the latter family are two functions recently introduced and studied by Stephen Simons. In this way we extend to SSD spaces some former results given for monotone and maximally monotone sets in Banach spaces.

  1. Nuclear lamina in plant cells

    Institute of Scientific and Technical Information of China (English)

    汪健; 杨澄; 翟中和

    1996-01-01

    By using selective extraction and diethylene glycol distearate (DGD) embedment and embedment-free electron microscopy, the nuclear lamina was demonstrated in carrot and Ginkgo male generative cells. Western blotting revealed that the nuclear lamina was composed of A-type and B-type lamins which contained at least 66-ku and 84-ku or 66-ku and 86-ku polypeptides, respectively. These lamin proteins were localized at the nudear periphery as shown by immunogold-labelling. In situ hybridization for light microscope and electron microscope showed that plant cells have the homologous sequences of animal lamin cDNA. The sorting site of lamin mRNA is mainly distributed in the cytoplasm near the nudear envelope. The data have verified that there indeed exists nudear lamina in plant cells.

  2. Amlodipine induced gingival enlargement

    Directory of Open Access Journals (Sweden)

    Shankar Gittaboyina

    2016-01-01

    Full Text Available Drug-induced gingival overgrowth or enlargement is an abnormal growth of the gingiva due to an adverse drug reaction in patients treated with anticonvulsants, immunosuppressants, and calcium channel blockers (CCBs. CCBs are considered as one of the etiologic factors among patients seeking dental care for drug-induced gingival enlargement or overgrowth. This enlargement can be localized or generalized and can range from mild to extremely severe, affecting patient's appearance, and function. CCBs are one of the most commonly used drugs for the management of cardiovascular disorders and are known for causing gingival over growth. Amlodipine is a new CCB and has been used with increasing frequency in the management of hypertension and angina. Although amlodipine is considered as a safe drug, very rarely it may induce gingival overgrowth. A rare case of amlodipine-induced gingival overgrowth has been reported herein a 45-year-old female patient. The treatment aspect included scaling and root planing, substitution of the drug, the surgical excision, and the maintenance and supportive therapy resulting in an excellent clinical outcome.

  3. Enlargements of filtrations and applications

    CERN Document Server

    Corcuera, J M

    2012-01-01

    In this paper we review some old and new results about the enlargement of filtrations problem, as well as their applications to credit risk and insider trading problems. The enlargement of filtrations problem consists in the study of conditions under which a semimartingale remains a semimartingale when the filtration is enlarged, and, in such a case, how to find the Doob-Meyer decomposition. Filtrations may be enlarged in different ways. In this paper we consider initial and progressive filtration enlargements made by random variables and processes. Keywords: Credit Risk, Insider Trading, Enlargement of Filtrations

  4. Coupling cell proliferation and development in plants.

    Science.gov (United States)

    Gutierrez, Crisanto

    2005-06-01

    Plant genome projects have revealed that both the cell-cycle components and the overall cell-cycle architecture are highly evolutionarily conserved. In addition to the temporal and spatial regulation of cell-cycle progression in individual cells, multicellularity has imposed extra layers of complexity that impinge on the balance of cell proliferation and growth, differentiation and organogenesis. In contrast to animals, organogenesis in plants is a postembryonic and continuous process. Differentiated plant cells can revert to a pluripotent state, proliferate and transdifferentiate. This unique potential is strikingly illustrated by the ability of certain cells to produce a mass of undifferentiated cells or a fully totipotent embryo, which can regenerate mature plants. Conversely, plant cells are highly resistant to oncogenic transformation. This review discusses the role that cell-cycle regulators may have at the interface between cell division and differentiation, and in the context of the high plasticity of plant cells.

  5. Stem cells: a plant biology perspective

    NARCIS (Netherlands)

    Scheres, B.J.G.|info:eu-repo/dai/nl/07493662X

    2005-01-01

    A recent meeting at the Juan March Foundation in Madrid, Spain brought together plant biologists to discuss the characteristics of plant stem cells that are unique and those that are shared by stem cells from the animal kingdom

  6. Stem cells: a plant biology perspective

    NARCIS (Netherlands)

    Scheres, B.J.G.

    2005-01-01

    A recent meeting at the Juan March Foundation in Madrid, Spain brought together plant biologists to discuss the characteristics of plant stem cells that are unique and those that are shared by stem cells from the animal kingdom

  7. Surviving mossy cells enlarge and receive more excitatory synaptic input in a mouse model of temporal lobe epilepsy.

    Science.gov (United States)

    Zhang, Wei; Thamattoor, Ajoy K; LeRoy, Christopher; Buckmaster, Paul S

    2015-05-01

    Numerous hypotheses of temporal lobe epileptogenesis have been proposed, and several involve hippocampal mossy cells. Building on previous hypotheses we sought to test the possibility that after epileptogenic injuries surviving mossy cells develop into super-connected seizure-generating hub cells. If so, they might require more cellular machinery and consequently have larger somata, elongate their dendrites to receive more synaptic input, and display higher frequencies of miniature excitatory synaptic currents (mEPSCs). To test these possibilities pilocarpine-treated mice were evaluated using GluR2-immunocytochemistry, whole-cell recording, and biocytin-labeling. Epileptic pilocarpine-treated mice displayed substantial loss of GluR2-positive hilar neurons. Somata of surviving neurons were 1.4-times larger than in controls. Biocytin-labeled mossy cells also were larger in epileptic mice, but dendritic length per cell was not significantly different. The average frequency of mEPSCs of mossy cells recorded in the presence of tetrodotoxin and bicuculline was 3.2-times higher in epileptic pilocarpine-treated mice as compared to controls. Other parameters of mEPSCs were similar in both groups. Average input resistance of mossy cells in epileptic mice was reduced to 63% of controls, which is consistent with larger somata and would tend to make surviving mossy cells less excitable. Other intrinsic physiological characteristics examined were similar in both groups. Increased excitatory synaptic input is consistent with the hypothesis that surviving mossy cells develop into aberrantly super-connected seizure-generating hub cells, and soma hypertrophy is indirectly consistent with the possibility of axon sprouting. However, no obvious evidence of hyperexcitable intrinsic physiology was found. Furthermore, similar hypertrophy and hyper-connectivity has been reported for other neuron types in the dentate gyrus, suggesting mossy cells are not unique in this regard. Thus

  8. Regio- and stereoselectivities in plant cell biotransformation

    Energy Technology Data Exchange (ETDEWEB)

    Hamada, H. [Okayama Univ. of Science (Japan)

    1995-12-01

    The ability of plant cultured cells to convert foreign substrates into more useful substances is of considerable interest. Therefore I have studied biotransformation of foreign substrate by plant cell suspension cultures. In this presentation, I report regio- and stereoselectivities in biotransformation of steroids and indole alkaloids and taxol by plant (tobacco, periwinkle, moss, orchid) cell suspension cultures.

  9. Regulation of Water in Plant Cells

    Science.gov (United States)

    Kowles, Richard V.

    2010-01-01

    Cell water relationships are important topics to be included in cell biology courses. Differences exist in the control of water relationships in plant cells relative to control in animal cells. One important reason for these differences is that turgor pressure is a consideration in plant cells. Diffusion and osmosis are the underlying factors…

  10. Reformation and Summarization for Capacity Enlargement of Gasification Plant with Wet Gas Flow Bed%湿法气流床气化装置扩能改造小结

    Institute of Scientific and Technical Information of China (English)

    朱春鹏; 张光瑞; 任军哲; 徐宏伟; 罗进成; 马浚杰

    2014-01-01

    针对湿法气流床气化装置因工艺配置和关键设备的设计缺陷而长期低负荷运行的问题,提出了制浆系统、气化系统和灰水系统的扩能改造措施。结果表明,扩能改造完成后,装置整体运行平稳,产能提高了20%以上。%In allusion to problem that the gasification plant with wet gas flow bed was operated in the long term under low load due to the design de-fects of process configuration and key equipment, measures for enlarging capacity and reformation were proposed for slurry preparation system, gasification system and grey water system. Result indicates that after capacity enlargement and reformation finished, plant runs placidly as a whole, production capaci-ty is increased by more than 20%.

  11. Plant caspase-like proteases in plant programmed cell death

    OpenAIRE

    Xu, Qixian; Zhang, Lingrui

    2009-01-01

    Programmed cell death (PCD) is a genetically-controlled disassembly of the cell. In animal systems, the central core execution switch for apoptotic PCD is the activation of caspases (Cysteine-containing Aspartate-specific proteases). Accumulating evidence in recent years suggests the existence of caspase-like activity in plants and its functional involvement in various types of plant PCD, although no functional homologs of animal caspases were identified in plant genome. In this mini-review, ...

  12. Two endogenous proteins that induce cell wall extension in plants

    Science.gov (United States)

    McQueen-Mason, S.; Durachko, D. M.; Cosgrove, D. J.

    1992-01-01

    Plant cell enlargement is regulated by wall relaxation and yielding, which is thought to be catalyzed by elusive "wall-loosening" enzymes. By employing a reconstitution approach, we found that a crude protein extract from the cell walls of growing cucumber seedlings possessed the ability to induce the extension of isolated cell walls. This activity was restricted to the growing region of the stem and could induce the extension of isolated cell walls from various dicot stems and the leaves of amaryllidaceous monocots, but was less effective on grass coleoptile walls. Endogenous and reconstituted wall extension activities showed similar sensitivities to pH, metal ions, thiol reducing agents, proteases, and boiling in methanol or water. Sequential HPLC fractionation of the active wall extract revealed two proteins with molecular masses of 29 and 30 kD associated with the activity. Each protein, by itself, could induce wall extension without detectable hydrolytic breakdown of the wall. These proteins appear to mediate "acid growth" responses of isolated walls and may catalyze plant cell wall extension by a novel biochemical mechanism.

  13. Thymoquinone causes multiple effects, including cell death, on dividing plant cells.

    Science.gov (United States)

    Hassanien, Sameh E; Ramadan, Ahmed M; Azeiz, Ahmed Z Abdel; Mohammed, Rasha A; Hassan, Sabah M; Shokry, Ahmed M; Atef, Ahmed; Kamal, Khalid B H; Rabah, Samar; Sabir, Jamal S M; Abuzinadah, Osama A; El-Domyati, Fotouh M; Martin, Gregory B; Bahieldin, Ahmed

    2013-01-01

    Thymoquinone (TQ) is a major constituent of Nigella sativa oil with reported anti-oxidative activity and anti-inflammatory activity in animal cells. It also inhibits proliferation and induces programmed cell death (apoptosis) in human skin cancer cells. The present study sought to detect the influence of TQ on dividing cells of three plant systems and on expression of Bcl2-associated athanogene-like (BAG-like) genes that might be involved during the process of cell death. BAG genes are known for the regulation of diverse physiological processes in animals, including apoptosis, tumorigenesis, stress responses, and cell division. Synthetic TQ at 0.1mg/mL greatly reduced wheat seed germination rate, whereas 0.2mg/mL completely inhibited germination. An Evans blue assay revealed moderate cell death in the meristematic zone of Glycine max roots after 1h of TQ treatment (0.2mg/mL), with severe cell death occurring in this zone after 2h of treatment. Light microscopy of TQ-treated (0.2mg/mL) onion hairy root tips for 1h revealed anti-mitotic activity and also cell death-associated changes, including nuclear membrane disruption and nuclear fragmentation. Transmission electron microscopy of TQ-treated cells (0.2mg/mL) for 1h revealed shrinkage of the plasma membrane, leakage of cell lysate, degradation of cell walls, enlargement of vacuoles and condensation of nuclei. Expression of one BAG-like gene, previously associated with cell death, was induced 20 min after TQ treatment in Glycine max root tip cells. Thus, TQ has multiple effects, including cell death, on dividing plant cells and plants may serve as a useful system to further investigate the mechanisms underlying the response of eukaryotic cells to TQ.

  14. Microfluidic platforms for plant cells studies.

    Science.gov (United States)

    Sanati Nezhad, A

    2014-09-07

    Conventional methods of plant cell analysis rely on growing plant cells in soil pots or agarose plates, followed by screening the plant phenotypes in traditional greenhouses and growth chambers. These methods are usually costly, need a large number of experiments, suffer from low spatial resolution and disorderly growth behavior of plant cells, with lack of ability to locally and accurately manipulate the plant cells. Microfluidic platforms take advantage of miniaturization for handling small volume of liquids and providing a closed environment, with the purpose of in vitro single cell analysis and characterizing cell response to external cues. These platforms have shown their ability for high-throughput cellular analysis with increased accuracy of experiments, reduced cost and experimental times, versatility in design, ability for large-scale and combinatorial screening, and integration with other miniaturized sensors. Despite extensive research on animal cells within microfluidic environments for high-throughput sorting, manipulation and phenotyping studies, the application of microfluidics for plant cells studies has not been accomplished yet. Novel devices such as RootChip, RootArray, TipChip, and PlantChip developed for plant cells analysis, with high spatial resolution on a micrometer scale mimicking the internal microenvironment of plant cells, offering preliminary results on the capability of microfluidics to conquer the constraints of conventional methods. These devices have been used to study different aspects of plant cell biology such as gene expression, cell biomechanics, cellular mechanism of growth, cell division, and cells fusion. This review emphasizes the advantages of current microfluidic systems for plant science studies, and discusses future prospects of microfluidic platforms for characterizing plant cells response to diverse external cues.

  15. Chronic Fluoxetine Induces the Enlargement of Perforant Path-Granule Cell Synapses in the Mouse Dentate Gyrus.

    Science.gov (United States)

    Kitahara, Yosuke; Ohta, Keisuke; Hasuo, Hiroshi; Shuto, Takahide; Kuroiwa, Mahomi; Sotogaku, Naoki; Togo, Akinobu; Nakamura, Kei-ichiro; Nishi, Akinori

    2016-01-01

    A selective serotonin reuptake inhibitor is the most commonly prescribed antidepressant for the treatment of major depression. However, the mechanisms underlying the actions of selective serotonin reuptake inhibitors are not fully understood. In the dentate gyrus, chronic fluoxetine treatment induces increased excitability of mature granule cells (GCs) as well as neurogenesis. The major input to the dentate gyrus is the perforant path axons (boutons) from the entorhinal cortex (layer II). Through voltage-sensitive dye imaging, we found that the excitatory neurotransmission of the perforant path synapse onto the GCs in the middle molecular layer of the mouse dentate gyrus (perforant path-GC synapse) is enhanced after chronic fluoxetine treatment (15 mg/kg/day, 14 days). Therefore, we further examined whether chronic fluoxetine treatment affects the morphology of the perforant path-GC synapse, using FIB/SEM (focused ion beam/scanning electron microscopy). A three-dimensional reconstruction of dendritic spines revealed the appearance of extremely large-sized spines after chronic fluoxetine treatment. The large-sized spines had a postsynaptic density with a large volume. However, chronic fluoxetine treatment did not affect spine density. The presynaptic boutons that were in contact with the large-sized spines were large in volume, and the volumes of the mitochondria and synaptic vesicles inside the boutons were correlated with the size of the boutons. Thus, the large-sized perforant path-GC synapse induced by chronic fluoxetine treatment contains synaptic components that correlate with the synapse size and that may be involved in enhanced glutamatergic neurotransmission.

  16. Wall extensibility: its nature, measurement and relationship to plant cell growth

    Science.gov (United States)

    Cosgrove, D. J.

    1993-01-01

    Expansive growth of plant cells is controlled principally by processes that loosen the wall and enable it to expand irreversibly. The central role of wall relaxation for cell expansion is reviewed. The most common methods for assessing the extension properties of plant cell walls ( wall extensibility') are described, categorized and assessed critically. What emerges are three fundamentally different approaches which test growing cells for their ability (a) to enlarge at different values of turgor, (b) to induce wall relaxation, and (c) to deform elastically or plastically in response to an applied tensile force. Analogous methods with isolated walls are similarly reviewed. The results of these different assays are related to the nature of plant cell growth and pertinent biophysical theory. I argue that the extensibilities' measured by these assays are fundamentally different from one another and that some are more pertinent to growth than others.

  17. Cell cycle activation by plant parasitic nematodes

    NARCIS (Netherlands)

    Goverse, A.; Almeida Engler, de J.; Verhees, J.; Krol, van der S.; Helder, J.; Gheysen, G.

    2000-01-01

    Sedentary nematodes are important pests of crop plants. They are biotrophic parasites that can induce the (re)differentiation of either differentiated or undifferentiated plant cells into specialized feeding cells. This (re)differentiation includes the reactivation of the cell cycle in specific

  18. Cell cycle activation by plant parasitic nematodes

    NARCIS (Netherlands)

    Goverse, A.; Almeida Engler, de J.; Verhees, J.; Krol, van der S.; Helder, J.; Gheysen, G.

    2000-01-01

    Sedentary nematodes are important pests of crop plants. They are biotrophic parasites that can induce the (re)differentiation of either differentiated or undifferentiated plant cells into specialized feeding cells. This (re)differentiation includes the reactivation of the cell cycle in specific plan

  19. Physiological functions of plant cell coverings.

    Science.gov (United States)

    Hoson, Takayuki

    2002-08-01

    The cell coverings of plants have two important functions in plant life. Plant cell coverings are deeply involved in the regulation of the life cycle of plants: each stage of the life cycle, such as germination, vegetative growth, reproductive growth, and senescence, is strongly influenced by the nature of the cell coverings. Also, the apoplast, which consists of the cell coverings, is the field where plant cells first encounter the outer environment, and so becomes the major site of plant responses to the environment. In the regulation of each stage of the life cycle and the response to each environmental signal, some specific constituents of the cell coverings, such as xyloglucans in dicotyledons and 1,3,1,4-beta-glucans in Gramineae, act as the key component. The physiological functions of plant cell coverings are sustained by the metabolic turnover of these components. The components of the cell coverings are supplied from the symplast, but then they are modified or degraded in the apoplast. Thus, the metabolism of the cell coverings is regulated through the cross-talk between the symplast and the apoplast. The understanding of physiological functions of plant cell coverings will be greatly advanced by the use of genomic approaches. At the same time, we need to introduce nanobiological techniques for clarifying the minute changes in the cell coverings that occur in a small part within each cell.

  20. Zinc-dependent lysosomal enlargement in TRPML1-deficient cells involves MTF-1 transcription factor and ZnT4 (Slc30a4) transporter.

    Science.gov (United States)

    Kukic, Ira; Lee, Jeffrey K; Coblentz, Jessica; Kelleher, Shannon L; Kiselyov, Kirill

    2013-04-15

    Zinc is critical for a multitude of cellular processes, including gene expression, secretion and enzymatic activities. Cellular zinc is controlled by zinc-chelating proteins and by zinc transporters. The recent identification of zinc permeability of the lysosomal ion channel TRPML1 (transient receptor potential mucolipin 1), and the evidence of abnormal zinc levels in cells deficient in TRPML1, suggested a role for TRPML1 in zinc transport. In the present study we provide new evidence for such a role and identify additional cellular components responsible for it. In agreement with the previously published data, an acute siRNA (small interfering RNA)-driven TRPML1 KD (knockdown) leads to the build-up of large cytoplasmic vesicles positive for LysoTracker™ and zinc staining, when cells are exposed to high concentrations of zinc. We now show that lysosomal enlargement and zinc build-up in TRPML1-KD cells exposed to zinc are ameliorated by KD of the zinc-sensitive transcription factor MTF-1 (metal-regulatory-element-binding transcription factor-1) or the zinc transporter ZnT4. TRPML1 KD is associated with a build-up of cytoplasmic zinc and with enhanced transcriptional response of mRNA for MT2a (metallothionein 2a). TRPML1 KD did not suppress lysosomal secretion, but it did delay zinc leak from the lysosomes into the cytoplasm. These results underscore a role for TRPML1 in zinc metabolism. Furthermore, they suggest that TRPML1 works in concert with ZnT4 to regulate zinc translocation between the cytoplasm and lysosomes.

  1. Cell-penetrating peptides: From mammalian to plant cells

    OpenAIRE

    Eudes, François; Chugh, Archana

    2008-01-01

    Internalization of cell-penetrating peptides, well described in mammalian cell system, has recently been reported in a range of plant cells by three independent groups. Despite fundamental differences between animal cell and plant cell composition, the CPP uptake pattern between the mammalian system and the plant system is very similar. Tat, Tat-2 pVEC and transportan internalisation is concentration dependent and non saturable, enhanced at low temperature (4°C), and receptor independent. The...

  2. Plant stem cells as innovation in cosmetics.

    Science.gov (United States)

    Moruś, Martyna; Baran, Monika; Rost-Roszkowska, Magdalena; Skotnicka-Graca, Urszula

    2014-01-01

    The stem cells thanks to their ability of unlimited division number or transformation into different cell types creating organs, are responsible for regeneration processes. Depending on the organism in which the stem cells exists, they divide to the plant or animal ones. The later group includes the stem cells existing in both embryo's and adult human's organs. It includes, among others, epidermal stem cells, located in the hair follicle relieves and also in its basal layers, and responsible for permanent regeneration of the epidermis. Temporary science looks for method suitable for stimulation of the epidermis stem cells, amongst the other by delivery of e.g., growth factors for proliferation that decrease with the age. One of the methods is the use of the plant cell culture technology, including a number of methods that should ensure growth of plant cells, issues or organs in the environment with the microorganism-free medium. It uses abilities of the different plant cells to dedifferentiation into stem cells and coming back to the pluripotent status. The extracts obtained this way from the plant stem cells are currently used for production of both common or professional care cosmetics. This work describes exactly impact of the plant stem cell extract, coming from one type of the common apple tree (Uttwiler Spätlauber) to human skin as one of the first plant sorts, which are used in cosmetology and esthetic dermatology.

  3. Methods of Enlarging English Vocabulary

    Institute of Scientific and Technical Information of China (English)

    丁小航

    2012-01-01

      In order to enlarge English vocabulary , we need to have some methods. I’d like to share my experience with begin⁃ners how I enlarge English vocabulary when when I am learning English. It is a long process and needs hard work and patience.

  4. [On plant stem cells and animal stem cells].

    Science.gov (United States)

    You, Yun; Jiang, Chao; Huang, Lu-Qi

    2014-01-01

    A comparison of plant and animal stem cells can highlight core aspects of stem-cell biology. In both kingdoms, stem cells are defined by their clonogenic properties and are maintained by intercellular signals. The signaling molecules are different in plants and animals stem cell niches, but the roles of argonaute and polycomb group proteins suggest that there are some molecular similarities.

  5. Morphological classification of plant cell deaths

    DEFF Research Database (Denmark)

    van Doorn, W.G.; Beers, E.P.; Dangl, J.L.

    2011-01-01

    Programmed cell death (PCD) is an integral part of plant development and of responses to abiotic stress or pathogens. Although the morphology of plant PCD is, in some cases, well characterised and molecular mechanisms controlling plant PCD are beginning to emerge, there is still confusion about...... the classification of PCD in plants. Here we suggest a classification based on morphological criteria. According to this classification, the use of the term 'apoptosis' is not justified in plants, but at least two classes of PCD can be distinguished: vacuolar cell death and necrosis. During vacuolar cell death......, the cell contents are removed by a combination of autophagy-like process and release of hydrolases from collapsed lytic vacuoles. Necrosis is characterised by early rupture of the plasma membrane, shrinkage of the protoplast and absence of vacuolar cell death features. Vacuolar cell death is common during...

  6. [Genetic regulation of plant shoot stem cells].

    Science.gov (United States)

    Al'bert, E V; Ezhova, T A

    2013-02-01

    This article describes the main features of plant stem cells and summarizes the results of studies of the genetic control of stem cell maintenance in the apical meristem of the shoot. It is demonstrated that the WUS-CLV gene system plays a key role in the maintenance of shoot apical stem cells and the formation of adventitious buds and somatic embryos. Unconventional concepts of plant stem cells are considered.

  7. Catalysts of plant cell wall loosening

    OpenAIRE

    Cosgrove, Daniel J.

    2016-01-01

    The growing cell wall in plants has conflicting requirements to be strong enough to withstand the high tensile forces generated by cell turgor pressure while selectively yielding to those forces to induce wall stress relaxation, leading to water uptake and polymer movements underlying cell wall expansion. In this article, I review emerging concepts of plant primary cell wall structure, the nature of wall extensibility and the action of expansins, family-9 and -12 endoglucanases, family-16 xyl...

  8. Stem cell function during plant vascular development.

    Science.gov (United States)

    Miyashima, Shunsuke; Sebastian, Jose; Lee, Ji-Young; Helariutta, Yka

    2013-01-23

    The plant vascular system, composed of xylem and phloem, evolved to connect plant organs and transport various molecules between them. During the post-embryonic growth, these conductive tissues constitutively form from cells that are derived from a lateral meristem, commonly called procambium and cambium. Procambium/cambium contains pluripotent stem cells and provides a microenvironment that maintains the stem cell population. Because vascular plants continue to form new tissues and organs throughout their life cycle, the formation and maintenance of stem cells are crucial for plant growth and development. In this decade, there has been considerable progress in understanding the molecular control of the organization and maintenance of stem cells in vascular plants. Noticeable advance has been made in elucidating the role of transcription factors and major plant hormones in stem cell maintenance and vascular tissue differentiation. These studies suggest the shared regulatory mechanisms among various types of plant stem cell pools. In this review, we focus on two aspects of stem cell function in the vascular cambium, cell proliferation and cell differentiation.

  9. Pathological modifications of plant stem cell destiny

    Science.gov (United States)

    In higher plants, the shoot apex contains undifferentiated stem cells that give rise to various tissues and organs. The fate of these stem cells determines the pattern of plant growth as well as reproduction; and such fate is genetically preprogrammed. We found that a bacterial infection can derai...

  10. Plant cells: immobilization and oxygen transfer.

    NARCIS (Netherlands)

    Hulst, A.C.

    1987-01-01

    The study described in this thesis is part of the integrated project 'Biotechnological production of non-persistent bioinsecticides by means of plant cells invitro ' and was done in close cooperation with the research Institute Ital within the framework of NOVAPLANT. The plant cells us

  11. Cell fusion and nuclear fusion in plants.

    Science.gov (United States)

    Maruyama, Daisuke; Ohtsu, Mina; Higashiyama, Tetsuya

    2016-12-01

    Eukaryotic cells are surrounded by a plasma membrane and have a large nucleus containing the genomic DNA, which is enclosed by a nuclear envelope consisting of the outer and inner nuclear membranes. Although these membranes maintain the identity of cells, they sometimes fuse to each other, such as to produce a zygote during sexual reproduction or to give rise to other characteristically polyploid tissues. Recent studies have demonstrated that the mechanisms of plasma membrane or nuclear membrane fusion in plants are shared to some extent with those of yeasts and animals, despite the unique features of plant cells including thick cell walls and intercellular connections. Here, we summarize the key factors in the fusion of these membranes during plant reproduction, and also focus on "non-gametic cell fusion," which was thought to be rare in plant tissue, in which each cell is separated by a cell wall.

  12. Transport vesicle formation in plant cells.

    Science.gov (United States)

    Hwang, Inhwan; Robinson, David G

    2009-12-01

    In protein trafficking, transport vesicles bud from donor compartments and carry cargo proteins to target compartments with which they fuse. Thus, vesicle formation is an essential step in protein trafficking. As for mammals, plant cells contain the three major types of vesicles: COPI, COPII, and CCV and the major molecular players in vesicle-mediated protein transport are also present. However, plant cells generally contain more isoforms of the coat proteins, ARF GTPases and their regulatory proteins, as well as SNAREs. In addition, plants have established some unique subfamilies, which may reflect plant cell-specific conditions such as the absence of an ER-Golgi intermediate compartment and the combined activities of the TGN and early endosome. Thus, even though we are still at an early stage in understanding the physiological function of these proteins, it is already clear that vesicle-mediated protein transport in plant cells displays both similarities as well as differences in animal cells.

  13. Microtubule networks for plant cell division

    NARCIS (Netherlands)

    Keijzer, de Jeroen; Mulder, B.M.; Janson, M.E.

    2014-01-01

    During cytokinesis the cytoplasm of a cell is divided to form two daughter cells. In animal cells, the existing plasma membrane is first constricted and then abscised to generate two individual plasma membranes. Plant cells on the other hand divide by forming an interior dividing wall, the so-called

  14. Enzymatic Modification of Plant Cell Wall Polysaccharides

    DEFF Research Database (Denmark)

    Øbro, Jens; Hayashi, Takahisa; Mikkelsen, Jørn Dalgaard

    2011-01-01

    for sustainable processes that replace chemical treatments with white biotechnology. Plants can contribute significantly to this sustainable process by producing plant or microbialenzymes in planta that are necessary for plant cell wall modification or total degradation. This will give rise to superior food......Plant cell walls are intricate structures with remarkable properties, widely used in almost every aspect of our life. Cell walls consist largely of complex polysaccharides and there is often a need for chemical and biochemical processing before industrial use. There is an increasing demand...... fibres, hydrocolloids, paper,textile, animal feeds or biofuels. Classical microbial-based fermentation systems could in the future face serious competition from plant-based expression systems for enzyme production. Plant expressed enzymes can either be targeted to specific cellular compartments...

  15. Enzymatic Modification of Plant Cell Wall Polysaccharides

    DEFF Research Database (Denmark)

    Øbro, Jens; Hayashi, Takahisa; Mikkelsen, Jørn Dalgaard

    2011-01-01

    fibres, hydrocolloids, paper,textile, animal feeds or biofuels. Classical microbial-based fermentation systems could in the future face serious competition from plant-based expression systems for enzyme production. Plant expressed enzymes can either be targeted to specific cellular compartments......Plant cell walls are intricate structures with remarkable properties, widely used in almost every aspect of our life. Cell walls consist largely of complex polysaccharides and there is often a need for chemical and biochemical processing before industrial use. There is an increasing demand...... for sustainable processes that replace chemical treatments with white biotechnology. Plants can contribute significantly to this sustainable process by producing plant or microbialenzymes in planta that are necessary for plant cell wall modification or total degradation. This will give rise to superior food...

  16. Plant cell proliferation inside an inorganic host.

    Science.gov (United States)

    Perullini, Mercedes; Rivero, María Mercedes; Jobbágy, Matías; Mentaberry, Alejandro; Bilmes, Sara A

    2007-01-10

    In recent years, much attention has been paid to plant cell culture as a tool for the production of secondary metabolites and the expression of recombinant proteins. Plant cell immobilization offers many advantages for biotechnological processes. However, the most extended matrices employed, such as calcium-alginate, cannot fully protect entrapped cells. Sol-gel chemistry of silicates has emerged as an outstanding strategy to obtain biomaterials in which living cells are truly protected. This field of research is rapidly developing and a large number of bacteria and yeast-entrapping ceramics have already been designed for different applications. But even mild thermal and chemical conditions employed in sol-gel synthesis may result harmful to cells of higher organisms. Here we present a method for the immobilization of plant cells that allows cell growth at cavities created inside a silica matrix. Plant cell proliferation was monitored for a 6-month period, at the end of which plant calli of more than 1 mm in diameter were observed inside the inorganic host. The resulting hybrid device had good mechanical stability and proved to be an effective barrier against biological contamination, suggesting that it could be employed for long-term plant cell entrapment applications.

  17. Plant Cell Wall Proteins: A Large Body of Data, but What about Runaways?

    Science.gov (United States)

    Albenne, Cécile; Canut, Hervé; Hoffmann, Laurent; Jamet, Elisabeth

    2014-04-17

    Plant cell wall proteomics has been a very dynamic field of research for about fifteen years. A full range of strategies has been proposed to increase the number of identified proteins and to characterize their post-translational modifications. The protocols are still improving to enlarge the coverage of cell wall proteomes. Comparisons between these proteomes have been done based on various working strategies or different physiological stages. In this review, two points are highlighted. The first point is related to data analysis with an overview of the cell wall proteomes already described. A large body of data is now available with the description of cell wall proteomes of seventeen plant species. CWP contents exhibit particularities in relation to the major differences in cell wall composition and structure between these plants and between plant organs. The second point is related to methodology and concerns the present limitations of the coverage of cell wall proteomes. Because of the variety of cell wall structures and of the diversity of protein/polysaccharide and protein/protein interactions in cell walls, some CWPs can be missing either because they are washed out during the purification of cell walls or because they are covalently linked to cell wall components.

  18. Plant Cell Wall Proteins: A Large Body of Data, but What about Runaways?

    Directory of Open Access Journals (Sweden)

    Cécile Albenne

    2014-04-01

    Full Text Available Plant cell wall proteomics has been a very dynamic field of research for about fifteen years. A full range of strategies has been proposed to increase the number of identified proteins and to characterize their post-translational modifications. The protocols are still improving to enlarge the coverage of cell wall proteomes. Comparisons between these proteomes have been done based on various working strategies or different physiological stages. In this review, two points are highlighted. The first point is related to data analysis with an overview of the cell wall proteomes already described. A large body of data is now available with the description of cell wall proteomes of seventeen plant species. CWP contents exhibit particularities in relation to the major differences in cell wall composition and structure between these plants and between plant organs. The second point is related to methodology and concerns the present limitations of the coverage of cell wall proteomes. Because of the variety of cell wall structures and of the diversity of protein/polysaccharide and protein/protein interactions in cell walls, some CWPs can be missing either because they are washed out during the purification of cell walls or because they are covalently linked to cell wall components.

  19. Electron Tomography in Plant Cell Biology

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    This review focuses on the contribution of electron tomography-based techniques to our understanding of cellular processes in plant cells. Electron microscopy techniques have evolved to provide better three-dimensional resolution and improved preservation of the subcellular components. In particular, the combination of cryofixation/freeze substitution and electron tomography have allowed plant cell biologists to image organelles and macromolecular complexes in their native cellular context with unprecedented three-dimensional resolution (4-7 nm). Until now, electron tomography has been applied in plant cell biology for the study of cytokinesis, Golgi structure and trafficking, formation of plant endosome/prevacuolar compartments, and organization of photosynthetic membranes. We discuss in this review the new insights that these tomographic studies have brought to the plant biology field.

  20. DIRECT FUEL/CELL/TURBINE POWER PLANT

    Energy Technology Data Exchange (ETDEWEB)

    Hossein Ghezel-Ayagh

    2004-05-01

    This report includes the progress in development of Direct FuelCell/Turbine{reg_sign} (DFC/T{reg_sign}) power plants for generation of clean power at very high efficiencies. The DFC/T power system is based on an indirectly heated gas turbine to supplement fuel cell generated power. The DFC/T power generation concept extends the high efficiency of the fuel cell by utilizing the fuel cell's byproduct heat in a Brayton cycle. Features of the DFC/T system include: electrical efficiencies of up to 75% on natural gas, 60% on coal gas, minimal emissions, simplicity in design, direct reforming internal to the fuel cell, reduced carbon dioxide release to the environment, and potential cost competitiveness with existing combined cycle power plants. FCE successfully completed testing of the pre-alpha DFC/T hybrid power plant. This power plant was constructed by integration of a 250kW fuel cell stack and a microturbine. The tests of the cascaded fuel cell concept for achieving high fuel utilizations were completed. The tests demonstrated that the concept results in higher power plant efficiency. Also, the preliminary design of a 40 MW power plant including the key equipment layout and the site plan was completed.

  1. Enlarged colitogenic T cell population paradoxically supports colitis prevention through the B-lymphocyte-dependent peripheral generation of CD4(+)Foxp3(+) Treg cells.

    Science.gov (United States)

    do Canto, Fábio Barrozo; Campos, Sylvia Maria Nicolau; Granato, Alessandra; da Silva, Rafael F; de Paiva, Luciana Souza; Nóbrega, Alberto; Bellio, Maria; Fucs, Rita

    2016-06-29

    Intestinal inflammation can be induced by the reconstitution of T/B cell-deficient mice with low numbers of CD4(+) T lymphocytes depleted of CD25(+)Foxp3(+) regulatory T cells (Treg). Using RAG-knockout mice as recipients of either splenocytes exclusively depleted of CD25(+) cells or FACS-purified CD4(+)CD25(-)Foxp3(-) T cells, we found that the augmentation of potentially colitogenic naïve T cell numbers in the inoculum was unexpectedly beneficial for the suppression of colon disease and maintenance of immune homeostasis. Protection against T cell-mediated colitis correlated with a significant increment in the frequency of peripherally-induced CD4(+)CD25(+)Foxp3(+) T (pTreg) cells, especially in the mesenteric lymph nodes, an effect that required the presence of B cells and CD4(+)CD25(-)Foxp3(+) cells in physiological proportions. Our findings support a model whereby the interplay between B lymphocytes and a diversified naïve T cell repertoire is critical for the generation of CD4(+)CD25(+)Foxp3(+) pTreg cells and colitis suppression.

  2. Quantification of fluorescent reporters in plant cells.

    Science.gov (United States)

    Pound, Michael; French, Andrew P; Wells, Darren M

    2015-01-01

    Fluorescent reporters are powerful tools for plant research. Many studies require accurate determination of fluorescence intensity and localization. Here, we describe protocols for the quantification of fluorescence intensity in plant cells from confocal laser scanning microscope images using semiautomated software and image analysis techniques.

  3. Disposable Bioreactors for Plant Micropropagation and Mass Plant Cell Culture

    Science.gov (United States)

    Ducos, Jean-Paul; Terrier, Bénédicte; Courtois, Didier

    Different types of bioreactors are used at Nestlé R&D Centre - Tours for mass propagation of selected plant varieties by somatic embryogenesis and for large scale culture of plants cells to produce metabolites or recombinant proteins. Recent studies have been directed to cut down the production costs of these two processes by developing disposable cell culture systems. Vegetative propagation of elite plant varieties is achieved through somatic embryogenesis in liquid medium. A pilot scale process has recently been set up for the industrial propagation of Coffea canephora (Robusta coffee). The current production capacity is 3.0 million embryos per year. The pre-germination of the embryos was previously conducted by temporary immersion in liquid medium in 10-L glass bioreactors. An improved process has been developed using a 10-L disposable bioreactor consisting of a bag containing a rigid plastic box ('Box-in-Bag' bioreactor), insuring, amongst other advantages, a higher light transmittance to the biomass due to its horizontal design. For large scale cell culture, two novel flexible plastic-based disposable bioreactors have been developed from 10 to 100 L working volumes, validated with several plant species ('Wave and Undertow' and 'Slug Bubble' bioreactors). The advantages and the limits of these new types of bioreactor are discussed, based mainly on our own experience on coffee somatic embryogenesis and mass cell culture of soya and tobacco.

  4. Plant cells in vitro under altered gravity.

    Science.gov (United States)

    Klymchuk, D O

    1998-07-01

    Establishing the role of gravity in plant requires information about how gravity regulates the metabolism of individual cells. Plant cells and tissues in vitro are valuable models for such purpose. Disrupted intercellular relations in such models have allowed to elucidate both the gravity role in non-specialised to gravity plant cells and the correlative relation role of an intact plant organism. The data obtained from non-numerous space and clinostat experiments with plant cells in vitro have demonstrated that their metabolism is sensitive to g-environment. The most experiments have shown a decrease in the biomass production and cell proliferation of spaceflight samples compared with ground controls, although there is study reporting of increased biomass production in an anise suspension culture and D. carota crown gall tissue culture. At the same time, results of experiments with single carrot cells and tomato callus culture demonstrated similarities in differentiation process in microgravity and in ground controls. Noted ultrastructural arrangement in cells, especially mitochondria and plastids, have been related to altered energy load and functions of organelles in microgravity, as well as changes in the lipid peroxidation and the content of malonic dyaldehyde in a haplopappus tissue culture under altered gravity supposed with modification of membrane structural-functional state. This article focuses on growth aspects of the cultured cells in microgravity and under clinostat conditions and considers those aspects that require further analysis.

  5. Isolation of plant cell wall proteins

    OpenAIRE

    Jamet, Elisabeth; Boudart, Georges; Borderies, Gisèle; Charmont, Stéphane; Lafitte, Claude; Rossignol, Michel; Canut, Hervé; Pont-Lezica, Rafael F

    2007-01-01

    The quality of a proteomic analysis of a cell compartment strongly depends on the reliability of the isolation procedure for the cell compartment of interest. Plant cell walls possess specific drawbacks: (i) the lack of a surrounding membrane may result in the loss of cell wall proteins (CWP) during the isolation procedure; (ii) polysaccharide networks of cellulose, hemicelluloses and pectins form potential traps for contaminants such as intracellular proteins; (iii) the presence of proteins ...

  6. Quantification of plant cell coupling with live-cell microscopy

    DEFF Research Database (Denmark)

    Liesche, Johannes; Schulz, Alexander

    2015-01-01

    cell wall interface. Transport through plasmodesmata, the cell wall channels that directly connect plant cells, is regulated not only by a fixed size exclusion limit, but also by physiological and pathological adaptation. The noninvasive approach described here offers the possibility of precisely......Movement of nutrients and signaling compounds from cell to cell is an essential process for plant growth and development. To understand processes such as carbon allocation, cell communication, and reaction to pathogen attack it is important to know a specific molecule’s capacity to pass a specific...

  7. Quantitative Aspects of Cyclosis in Plant Cells.

    Science.gov (United States)

    Howells, K. F.; Fell, D. A.

    1979-01-01

    Describes an exercise which is currently used in a course in cell physiology at Oxford Polytechnic in England. This exercise can give students some idea of the molecular events involved in bringing about movement of chloroplasts (and other organelles) in plant cells. (HM)

  8. Ricin Trafficking in Plant and Mammalian Cells

    Directory of Open Access Journals (Sweden)

    Robert A. Spooner

    2011-06-01

    Full Text Available Ricin is a heterodimeric plant protein that is potently toxic to mammalian and many other eukaryotic cells. It is synthesized and stored in the endosperm cells of maturing Ricinus communis seeds (castor beans. The ricin family has two major members, both, lectins, collectively known as Ricinus communis agglutinin ll (ricin and Ricinus communis agglutinin l (RCA. These proteins are stored in vacuoles within the endosperm cells of mature Ricinus seeds and they are rapidly broken down by hydrolysis during the early stages of post-germinative growth. Both ricin and RCA traffic within the plant cell from their site of synthesis to the storage vacuoles, and when they intoxicate mammalian cells they traffic from outside the cell to their site of action. In this review we will consider both of these trafficking routes.

  9. EU ENLARGEMENT AT A CROSSROADS

    Directory of Open Access Journals (Sweden)

    Andreea Cătălina Paul

    2012-06-01

    Full Text Available The present article aims to explore the general theme of the EU enlargement strategy in the new 2012 European context. Until now, the EU’s enlargement strategy has yielded impressive results. It succeeded in transforming ten central and eastern European countries from post-communism confusion into open-market, mature and effective systems of democratic governments, and even on the economic front, they have also made astonishing progress. It is no doubt that people in the new EU countries live better then before. In this context, the EU must continue the enlargement process to help stabilize the Balkan region that lie beyond its expanded eastern border. No one can deny that major issues concerning western Balkan countries’ accession are still on the table, and they even exert a geopolitical influence of sorts. This makes it all the more important to see stability and regional co-operation there are strategically vital. An all-out effort must now be made to complete the enlargement process and ensure there is no strategic vacuum. This article provides the framework of analyses for the EU problems and the challenges for the Balkans governments as for Brussels.

  10. Laser-mediated perforation of plant cells

    Science.gov (United States)

    Wehner, Martin; Jacobs, Philipp; Esser, Dominik; Schinkel, Helga; Schillberg, Stefan

    2007-07-01

    The functional analysis of plant cells at the cellular and subcellular levels requires novel technologies for the directed manipulation of individual cells. Lasers are increasingly exploited for the manipulation of plant cells, enabling the study of biological processes on a subcellular scale including transformation to generate genetically modified plants. In our setup either a picosecond laser operating at 1064 nm wavelength or a continuous wave laser diode emitting at 405 nm are coupled into an inverse microscope. The beams are focused to a spot size of about 1.5 μm and the tobacco cell protoplasts are irradiated. Optoporation is achieved when targeting the laser focal spot at the outermost edge of the plasma membrane. In case of the picosecond laser a single pulse with energy of about 0.4 μJ was sufficient to perforate the plasma membrane enabling the uptake of dye or DNA from the surrounding medium into the cytosol. When the ultraviolet laser diode at a power level of 17 mW is employed an irradiation time of 200 - 500 milliseconds is necessary to enable the uptake of macromolecules. In the presence of an EYFP encoding plasmid with a C-terminal peroxisomal signal sequence in the surrounding medium transient transformation of tobacco protoplasts could be achieved in up to 2% of the optoporated cells. Single cell perforation using this novel optoporation method shows that isolated plant cells can be permeabilized without direct manipulation. This is a valuable procedure for cell-specific applications, particularly where the import of specific molecules into plant cells is required for functional analysis.

  11. UV-Induced cell death in plants.

    Science.gov (United States)

    Nawkar, Ganesh M; Maibam, Punyakishore; Park, Jung Hoon; Sahi, Vaidurya Pratap; Lee, Sang Yeol; Kang, Chang Ho

    2013-01-14

    Plants are photosynthetic organisms that depend on sunlight for energy. Plants respond to light through different photoreceptors and show photomorphogenic development. Apart from Photosynthetically Active Radiation (PAR; 400-700 nm), plants are exposed to UV light, which is comprised of UV-C (below 280 nm), UV-B (280-320 nm) and UV-A (320-390 nm). The atmospheric ozone layer protects UV-C radiation from reaching earth while the UVR8 protein acts as a receptor for UV-B radiation. Low levels of UV-B exposure initiate signaling through UVR8 and induce secondary metabolite genes involved in protection against UV while higher dosages are very detrimental to plants. It has also been reported that genes involved in MAPK cascade help the plant in providing tolerance against UV radiation. The important targets of UV radiation in plant cells are DNA, lipids and proteins and also vital processes such as photosynthesis. Recent studies showed that, in response to UV radiation, mitochondria and chloroplasts produce a reactive oxygen species (ROS). Arabidopsis metacaspase-8 (AtMC8) is induced in response to oxidative stress caused by ROS, which acts downstream of the radical induced cell death (AtRCD1) gene making plants vulnerable to cell death. The studies on salicylic and jasmonic acid signaling mutants revealed that SA and JA regulate the ROS level and antagonize ROS mediated cell death. Recently, molecular studies have revealed genes involved in response to UV exposure, with respect to programmed cell death (PCD).

  12. UV-Induced Cell Death in Plants

    Directory of Open Access Journals (Sweden)

    Chang Ho Kang

    2013-01-01

    Full Text Available Plants are photosynthetic organisms that depend on sunlight for energy. Plants respond to light through different photoreceptors and show photomorphogenic development. Apart from Photosynthetically Active Radiation (PAR; 400–700 nm, plants are exposed to UV light, which is comprised of UV-C (below 280 nm, UV-B (280–320 nm and UV-A (320–390 nm. The atmospheric ozone layer protects UV-C radiation from reaching earth while the UVR8 protein acts as a receptor for UV-B radiation. Low levels of UV-B exposure initiate signaling through UVR8 and induce secondary metabolite genes involved in protection against UV while higher dosages are very detrimental to plants. It has also been reported that genes involved in MAPK cascade help the plant in providing tolerance against UV radiation. The important targets of UV radiation in plant cells are DNA, lipids and proteins and also vital processes such as photosynthesis. Recent studies showed that, in response to UV radiation, mitochondria and chloroplasts produce a reactive oxygen species (ROS. Arabidopsis metacaspase-8 (AtMC8 is induced in response to oxidative stress caused by ROS, which acts downstream of the radical induced cell death (AtRCD1 gene making plants vulnerable to cell death. The studies on salicylic and jasmonic acid signaling mutants revealed that SA and JA regulate the ROS level and antagonize ROS mediated cell death. Recently, molecular studies have revealed genes involved in response to UV exposure, with respect to programmed cell death (PCD.

  13. Quantification of plant cell coupling with live-cell microscopy

    DEFF Research Database (Denmark)

    Liesche, Johannes; Schulz, Alexander

    2015-01-01

    cell wall interface. Transport through plasmodesmata, the cell wall channels that directly connect plant cells, is regulated not only by a fixed size exclusion limit, but also by physiological and pathological adaptation. The noninvasive approach described here offers the possibility of precisely......Movement of nutrients and signaling compounds from cell to cell is an essential process for plant growth and development. To understand processes such as carbon allocation, cell communication, and reaction to pathogen attack it is important to know a specific molecule’s capacity to pass a specific...... determining the plasmodesmata-mediated cell wall permeability for small molecules in living cells. The method is based on photoactivation of the fluorescent tracer caged fluorescein. Non-fluorescent caged fluorescein is applied to a target tissue, where it is taken up passively into all cells. Imaged...

  14. Osmosis in Poisoned Plant Cells.

    Science.gov (United States)

    Tatina, Robert

    1998-01-01

    Describes two simple laboratory exercises that allow students to test hypotheses concerning the requirement of cell energy for osmosis. The first exercise involves osmotically-caused changes in the length of potato tubers and requires detailed quantitative observations. The second exercise involves osmotically-caused changes in turgor of Elodea…

  15. Control of the actin cytoskeleton in plant cell growth

    NARCIS (Netherlands)

    Hussey, P.J.; Ketelaar, M.J.; Deeks, M.J.

    2006-01-01

    Plant cells grow through increases in volume and cell wall surface area. The mature morphology of a plant cell is a product of the differential rates of expansion between neighboring zones of the cell wall during this process. Filamentous actin arrays are associated with plant cell growth, and the a

  16. Recent advances in plant cell wall proteomics.

    Science.gov (United States)

    Jamet, Elisabeth; Albenne, Cécile; Boudart, Georges; Irshad, Muhammad; Canut, Hervé; Pont-Lezica, Rafael

    2008-02-01

    The plant extracellular matrix contains typical polysaccharides such as cellulose, hemicelluloses, and pectins that interact to form dense interwoven networks. Plant cell walls play crucial roles during development and constitute the first barrier of defense against invading pathogens. Cell wall proteomics has greatly contributed to the description of the protein content of a compartment specific to plants. Around 400 cell wall proteins (CWPs) of Arabidopsis, representing about one fourth of its estimated cell wall proteome, have been described. The main points to note are that: (i) the diversity of enzymes acting on polysaccharides suggests a great plasticity of cell walls; (ii) CWPs such as proteases, polysaccharide hydrolytic enzymes, and lipases may contribute to the generation of signals; (iii) proteins of unknown functions were identified, suggesting new roles for cell walls. Recently, the characterization of PTMs such as N- and O-glycosylations improved our knowledge of CWP structure. The presence of many glycoside hydrolases and proteases suggests a complex regulation of CWPs involving various types of post-translational events. The first 3-D structures to be resolved gave clues about the interactions between CWPs, or between CWPs and polysaccharides. Future work should include: extracting and identifying CWPs still recalcitrant to proteomics, describing the cell wall interactome, improving quantification, and unraveling the roles of each of the CWPs.

  17. Spectro-Microscopy of Living Plant Cells

    Institute of Scientific and Technical Information of China (English)

    Klaus Harter; Alfred J. Meixner; Frank Schleifenbaum

    2012-01-01

    Spectro-microscopy,a combination of fluorescence microscopy with spatially resolved spectroscopic techniques,provides new and exciting tools for functional cell biology in living organisms.This review focuses on recent developments in spectro-microscopic applications for the investigation of living plant cells in their native tissue context.The application of spectro-microscopic methods led to the recent discovery of a fast signal response pathway for the brassinosteroide receptor BRI1 in the plasma membrane of living plant cells.Moreover,the competence of different plant cell types to respond to environmental or endogenous stimuli was determined in vivo by correlation analysis of different optical and spectroscopic readouts such as fluorescence lifetime (FLT).Furthermore,a new spectro-microscopic technique,fluorescence intensity decay shape analysis microscopy (FIDSAM),has been developed.FIDSAM is capable of imaging lowexpressed fluorophore-tagged proteins at high spatial resolution and precludes the misinterpretation of autofluorescence artifacts.In addition,FIDSAM provides a very effective and sensitive tool on the basis of F(o)rster resonance energy transfer (FRET) for the qualitative and quantitative determination of protein-protein interaction.Finally,we report on the quantitative analysis of the photosystem Ⅰ and Ⅱ (PSⅠ/PSⅡ) ratio in the chloroplasts of living Arabidopsis plants at room temperature,using high-resolution,spatially resolved fluorescence spectroscopy.With this technique,it was not only possible to measure PSⅠ/PSⅡ ratios,but also to demonstrate the differential competence of wild-type and carbohydrate-deficient plants to adapt the PSⅠ/PSⅡ ratio to different light conditions.In summary,the information content of standard microscopic images is extended by several dimensions by the use of spectro-microscopic approaches.Therefore,novel cell physiological and molecular topics can be addressed and valuable insights into molecular and

  18. Direct FuelCell/Turbine Power Plant

    Energy Technology Data Exchange (ETDEWEB)

    Hossein Ghezel-Ayagh

    2008-09-30

    This report summarizes the progress made in development of Direct FuelCell/Turbine (DFC/T{reg_sign}) power plants for generation of clean power at very high efficiencies. The DFC/T system employs an indirectly heated Turbine Generator to supplement fuel cell generated power. The concept extends the high efficiency of the fuel cell by utilizing the fuel cell's byproduct heat in a Brayton cycle. Features of the DFC/T system include: electrical efficiencies of up to 75% on natural gas, minimal emissions, reduced carbon dioxide release to the environment, simplicity in design, direct reforming internal to the fuel cell, and potential cost competitiveness with existing combined cycle power plants. Proof-of-concept tests using a sub-MW-class DFC/T power plant at FuelCell Energy's (FCE) Danbury facility were conducted to validate the feasibility of the concept and to measure its potential for electric power production. A 400 kW-class power plant test facility was designed and retrofitted to conduct the tests. The initial series of tests involved integration of a full-size (250 kW) Direct FuelCell stack with a 30 kW Capstone microturbine. The operational aspects of the hybrid system in relation to the integration of the microturbine with the fuel cell, process flow and thermal balances, and control strategies for power cycling of the system, were investigated. A subsequent series of tests included operation of the sub-MW Direct FuelCell/Turbine power plant with a Capstone C60 microturbine. The C60 microturbine extended the range of operation of the hybrid power plant to higher current densities (higher power) than achieved in initial tests using the 30kW microturbine. The proof-of-concept test results confirmed the stability and controllability of operating a fullsize (250 kW) fuel cell stack in combination with a microturbine. Thermal management of the system was confirmed and power plant operation, using the microturbine as the only source of fresh air supply

  19. Plant microbial fuel cell applied in wetlands

    NARCIS (Netherlands)

    Wetser, Koen; Liu, Jia; Buisman, Cees; Strik, David

    2015-01-01

    The plant microbial fuel cell (PMFC) has to be applied in wetlands to be able to generate electricity on a large scale. The objective of this PMFC application research is to clarify the differences in electricity generation between a Spartina anglica salt marsh and Phragmites australis peat soil

  20. Plant cells : immobilization and oxygen transfer

    NARCIS (Netherlands)

    Hulst, A.C.

    1987-01-01

    The study described in this thesis is part of the integrated project 'Biotechnological production of non-persistent bioinsecticides by means of plant cells invitro ' and was done in close cooperation with the research Institute Ital within the framework

  1. Inducible cell death in plant immunity

    DEFF Research Database (Denmark)

    Hofius, Daniel; Tsitsigiannis, Dimitrios I; Jones, Jonathan D G

    2006-01-01

    Programmed cell death (PCD) occurs during vegetative and reproductive plant growth, as typified by autumnal leaf senescence and the terminal differentiation of the endosperm of cereals which provide our major source of food. PCD also occurs in response to environmental stress and pathogen attack,...

  2. Intracellular Transport of Plant Viruses: Finding the Door out of the Cell

    Institute of Scientific and Technical Information of China (English)

    James E. Schoelz; Phillip A. Harries; Richard S. Nelson

    2011-01-01

    Plant viruses are a class of plant pathogens that specialize in movement from cell to cell.As part of their arsenal for infection of plants,every virus encodes a movement protein (MP),a protein dedicated to enlarging the pore size of plasmodesmata (PD) and actively transporting the viral nucleic acid into the adjacent cell.As our knowledge of intercellular transport has increased,it has become apparent that viruses must also use an active mechanism to target the virus from their site of replication within the cell to the PD.Just as viruses are too large to fit through an unmodified plasmodesma,they are also too large to be freely diffused through the cytoplasm of the cell.Evidence has accumulated now for the involvement of other categories of viral proteins in intracellular movement in addition to the MP,including viral proteins originally associated with replication or gene expression.In this review,we will discuss the strategies that viruses use for intracellular movement from the replication site to the PD,in particular focusing on the role of host membranes for intracellular transport and the coordinated interactions between virus proteins within cells that are necessary for successful virus spread.

  3. Fluorescence activated cell sorting of plant protoplasts.

    Science.gov (United States)

    Bargmann, Bastiaan O R; Birnbaum, Kenneth D

    2010-02-18

    High-resolution, cell type-specific analysis of gene expression greatly enhances understanding of developmental regulation and responses to environmental stimuli in any multicellular organism. In situ hybridization and reporter gene visualization can to a limited extent be used to this end but for high resolution quantitative RT-PCR or high-throughput transcriptome-wide analysis the isolation of RNA from particular cell types is requisite. Cellular dissociation of tissue expressing a fluorescent protein marker in a specific cell type and subsequent Fluorescence Activated Cell Sorting (FACS) makes it possible to collect sufficient amounts of material for RNA extraction, cDNA synthesis/amplification and microarray analysis. An extensive set of cell type-specific fluorescent reporter lines is available to the plant research community. In this case, two marker lines of the Arabidopsis thaliana root are used: P(SCR;)::GFP (endodermis and quiescent center) and P(WOX5;)::GFP (quiescent center). Large numbers (thousands) of seedlings are grown hydroponically or on agar plates and harvested to obtain enough root material for further analysis. Cellular dissociation of plant material is achieved by enzymatic digestion of the cell wall. This procedure makes use of high osmolarity-induced plasmolysis and commercially available cellulases, pectinases and hemicellulases to release protoplasts into solution. FACS of GFP-positive cells makes use of the visualization of the green versus the red emission spectra of protoplasts excited by a 488 nm laser. GFP-positive protoplasts can be distinguished by their increased ratio of green to red emission. Protoplasts are typically sorted directly into RNA extraction buffer and stored for further processing at a later time. This technique is revealed to be straightforward and practicable. Furthermore, it is shown that it can be used without difficulty to isolate sufficient numbers of cells for transcriptome analysis, even for very scarce

  4. Microanalysis of Plant Cell Wall Polysaccharides

    Institute of Scientific and Technical Information of China (English)

    Nicolai Obel; Veronika Erben; Tatjana Schwarz; Stefan Kühne; Andrea Fodor; Markus Pauly

    2009-01-01

    Oligosaccharide Mass Profiling (OLIMP) allows a fast and sensitive assessment of cell wall polymer structure when coupled with Matrix Assisted Laser Desorption Ionisation Time Of Flight Mass Spectrometry (MALDI-TOF MS). The short time required for sample preparation and analysis makes possible the study of a wide range of plant organs, revealing a high degree of heterogeneity in the substitution pattern of wall polymers such as the cross-linking glycan xyloglucan and the pectic polysaccharide homogalacturonan. The high sensitivity of MALDI-TOF allows the use of small amounts of samples, thus making it possible to investigate the wall structure of single cell types when material is collected by such methods as laser micro-dissection. As an example, the analysis of the xyloglucan structure in the leaf cell types outer epidermis layer, entire epidermis cell layer, palisade mesophyll cells, and vascular bundles were investigated. OLIMP is amenable to in situ wall analysis, where wall polymers are analyzed on unprepared plant tissue itself without first iso-lating cell walls. In addition, OLIMP enables analysis of wall polymers in Golgi-enriched fractions, the location of nascent matrix polysaccharide biosynthesis, enabling separation of the processes of wall biosynthesis versus post-deposition apo-plastic metabolism. These new tools will make possible a semi-quantitative analysis of the cell wall at an unprecedented level.

  5. Gingival enlargement in partial hemifacial hyperplasia

    OpenAIRE

    Jagtap, Rasika Ravindra; Deshpande, Gaurav Shekhar

    2014-01-01

    Hemifacial hypertrophy is a rare developmental disorder, characterized by unilateral enlargement of facial tissues. The hemifacial hyperplasia is classified as true hemifacial hypertrophy and partial hemifacial hypertrophy. It is unilateral enlargement of viscerocranial condition in which not all structures are enlarged. We present a rare case of gingival enlargement in partial hemifacial hyperplasia highlighting the clinical and radiological findings with the corrective treatment offered for...

  6. Direct FuelCell/Turbine Power Plant

    Energy Technology Data Exchange (ETDEWEB)

    Hossein Ghezel-Ayagh

    2008-09-30

    This report summarizes the progress made in development of Direct FuelCell/Turbine (DFC/T{reg_sign}) power plants for generation of clean power at very high efficiencies. The DFC/T system employs an indirectly heated Turbine Generator to supplement fuel cell generated power. The concept extends the high efficiency of the fuel cell by utilizing the fuel cell's byproduct heat in a Brayton cycle. Features of the DFC/T system include: electrical efficiencies of up to 75% on natural gas, minimal emissions, reduced carbon dioxide release to the environment, simplicity in design, direct reforming internal to the fuel cell, and potential cost competitiveness with existing combined cycle power plants. Proof-of-concept tests using a sub-MW-class DFC/T power plant at FuelCell Energy's (FCE) Danbury facility were conducted to validate the feasibility of the concept and to measure its potential for electric power production. A 400 kW-class power plant test facility was designed and retrofitted to conduct the tests. The initial series of tests involved integration of a full-size (250 kW) Direct FuelCell stack with a 30 kW Capstone microturbine. The operational aspects of the hybrid system in relation to the integration of the microturbine with the fuel cell, process flow and thermal balances, and control strategies for power cycling of the system, were investigated. A subsequent series of tests included operation of the sub-MW Direct FuelCell/Turbine power plant with a Capstone C60 microturbine. The C60 microturbine extended the range of operation of the hybrid power plant to higher current densities (higher power) than achieved in initial tests using the 30kW microturbine. The proof-of-concept test results confirmed the stability and controllability of operating a fullsize (250 kW) fuel cell stack in combination with a microturbine. Thermal management of the system was confirmed and power plant operation, using the microturbine as the only source of fresh air supply

  7. Redox regulation in plant programmed cell death.

    Science.gov (United States)

    De Pinto, M C; Locato, V; De Gara, L

    2012-02-01

    Programmed cell death (PCD) is a genetically controlled process described both in eukaryotic and prokaryotic organisms. Even if it is clear that PCD occurs in plants, in response to various developmental and environmental stimuli, the signalling pathways involved in the triggering of this cell suicide remain to be characterized. In this review, the main similarities and differences in the players involved in plant and animal PCD are outlined. Particular attention is paid to the role of reactive oxygen species (ROS) as key inducers of PCD in plants. The involvement of different kinds of ROS, different sites of ROS production, as well as their interaction with other molecules, is crucial in activating PCD in response to specific stimuli. Moreover, the importance is stressed on the balance between ROS production and scavenging, in various cell compartments, for the activation of specific steps in the signalling pathways triggering this cell suicide process. The review focuses on the complexity of the interplay between ROS and antioxidant molecules and enzymes in determining the most suitable redox environment required for the occurrence of different forms of PCD. © 2011 Blackwell Publishing Ltd.

  8. Characterization of Plant Functions Using Cultured Plant Cells, and Biotechnological Applications

    National Research Council Canada - National Science Library

    SATO, Fumihiko

    2013-01-01

    .... On the other hand, the use of plant cell cultures for the more basic characterization of plant functions is rather limited due to the difficulties associated with functional differentiation in cell cultures...

  9. Plant thin cell layers: update and perspectives

    Directory of Open Access Journals (Sweden)

    Teixeira da Silva Jaime A.

    2015-12-01

    Full Text Available Thin cell layers (TCLs are small and versatile explants for the in vitro culture of plants. At face value, their morphogenic productivity may appear to be less than conventional explants, but once the plant growth correction factor and geometric factor have been applied, the true (potential productivity exceeds that of a conventional explant. It is for this reason that for almost 45 years, TCLs have been applied to the in vitro culture of almost 90 species or hybrids, mainly ornamentals and orchids, but also to field and vegetable crops and medicinal plants. Focusing on 12 new studies that have emerged in the recent past (2013-2015, this paper brings promise to other horticultural species that could benefit from the use of TCLs.

  10. Characterization of Cellulose Synthesis in Plant Cells

    Directory of Open Access Journals (Sweden)

    Samaneh Sadat Maleki

    2016-01-01

    Full Text Available Cellulose is the most significant structural component of plant cell wall. Cellulose, polysaccharide containing repeated unbranched β (1-4 D-glucose units, is synthesized at the plasma membrane by the cellulose synthase complex (CSC from bacteria to plants. The CSC is involved in biosynthesis of cellulose microfibrils containing 18 cellulose synthase (CesA proteins. Macrofibrils can be formed with side by side arrangement of microfibrils. In addition, beside CesA, various proteins like the KORRIGAN, sucrose synthase, cytoskeletal components, and COBRA-like proteins have been involved in cellulose biosynthesis. Understanding the mechanisms of cellulose biosynthesis is of great importance not only for improving wood production in economically important forest trees to mankind but also for plant development. This review article covers the current knowledge about the cellulose biosynthesis-related gene family.

  11. Plant single-cell and single-cell-type metabolomics.

    Science.gov (United States)

    Misra, Biswapriya B; Assmann, Sarah M; Chen, Sixue

    2014-10-01

    In conjunction with genomics, transcriptomics, and proteomics, plant metabolomics is providing large data sets that are paving the way towards a comprehensive and holistic understanding of plant growth, development, defense, and productivity. However, dilution effects from organ- and tissue-based sampling of metabolomes have limited our understanding of the intricate regulation of metabolic pathways and networks at the cellular level. Recent advances in metabolomics methodologies, along with the post-genomic expansion of bioinformatics knowledge and functional genomics tools, have allowed the gathering of enriched information on individual cells and single cell types. Here we review progress, current status, opportunities, and challenges presented by single cell-based metabolomics research in plants. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Isolation of plant cell wall proteins.

    Science.gov (United States)

    Jamet, Elisabeth; Boudart, Georges; Borderies, Giséle; Charmont, Stephane; Lafitte, Claude; Rossignol, Michel; Canut, Herve; Pont-Lezica, Rafael

    2008-01-01

    The quality of a proteomic analysis of a cell compartment strongly depends on the reliability of the isolation procedure for the cell compartment of interest. Plant cell walls possess specific drawbacks: (1) the lack of a surrounding membrane may result in the loss of cell wall proteins (CWP) during the isolation procedure; (2) polysaccharide networks of cellulose, hemicelluloses, and pectins form potential traps for contaminants such as intracellular proteins; (3) the presence of proteins interacting in many different ways with the polysaccharide matrix require different procedures to elute them from the cell wall. Three categories of CWP are distinguished: labile proteins that have little or no interactions with cell wall components, weakly bound proteins extractable with salts, and strongly bound proteins. Two alternative protocols are decribed for cell wall proteomics: (1) nondestructive techniques allowing the extraction of labile or weakly bound CWP without damaging the plasma membrane; (2) destructive techniques to isolate cell walls from which weakly or strongly bound CWP can be extracted. These protocols give very low levels of contamination by intracellular proteins. Their application should lead to a realistic view of the cell wall proteome at least for labile and weakly bound CWP extractable by salts.

  13. MRI manifestations of enlarged superior ophthalmic vein

    Institute of Scientific and Technical Information of China (English)

    WEI Rui-li; MA Xiao-ye; CAI Ji-ping; ZHU Huang

    2002-01-01

    Objective:To assess MRI in the evaluation of enlarged superior ophthalmic vein (SOV). Methods: MRI manifestations and etiology of forty-six patients with enlarged SOV were analyzed. Results: SOV enlargement was noted to occur in carotid-cavernous fistula, ophthalmic Graves'disease, Tolosa-Hunt syndrome, inflammation at the apex of the orbit, orbital pseudotumor and thrombosis of cavernous sinus. The dilated vein appeared as signal void tubular shadows on both T1 and T2 weighted images. The diameter of the enlarged vein was 3.5-6.0 mm. Extraocular muscle enlargement, orbital pathologies, enlarged carotid cavernous sinus etc were also revealed by MRI. Conclusion: The dilated SOV may be well demonstrated by MRI. The etiological diagnosis of enlarged SOV can be made in combination with the associated findings.

  14. Plant Cell Adaptive Responses to Microgravity

    Science.gov (United States)

    Kordyum, Elizabeth; Kozeko, Liudmyla; Talalaev, Alexandr

    Microgravity is an abnormal environmental condition that plays no role in the functioning of biosphere. Nevertheless, the chronic effect of microgravity in space flight as an unfamiliar factor does not prevent the development of adaptive reactions at the cellular level. In real microgravity in space flight under the more or less optimal conditions for plant growing, namely temperature, humidity, CO2, light intensity and directivity in the hardware angiosperm plants perform an “reproductive imperative”, i.e. they flower, fruit and yield viable seeds. It is known that cells of a multicellular organism not only take part on reactions of the organism but also carry out processes that maintain their integrity. In light of these principles, the problem of the identification of biochemical, physiological and structural patterns that can have adaptive significance at the cellular and subcellular level in real and simulated microgravity is considered. Cytological studies of plants developing in real and simulated microgravity made it possible to establish that the processes of mitosis, cytokinesis, and tissue differentiation of vegetative and generative organs are largely normal. At the same time, under microgravity, essential reconstruction in the structural and functional organization of cell organelles and cytoskeleton, as well as changes in cell metabolism and homeostasis have been described. In addition, new interesting data concerning the influence of altered gravity on lipid peroxidation intensity, the level of reactive oxygen species, and antioxidant system activity, just like on the level of gene expression and synthesis of low-molecular and high-molecular heat shock proteins were recently obtained. So, altered gravity caused time-dependent increasing of the HSP70 and HSP90 levels in cells, that may indicate temporary strengthening of their functional loads that is necessary for re-establish a new cellular homeostasis. Relative qPCR results showed that

  15. The potential of single-cell profiling in plants.

    Science.gov (United States)

    Efroni, Idan; Birnbaum, Kenneth D

    2016-04-05

    Single-cell transcriptomics has been employed in a growing number of animal studies, but the technique has yet to be widely used in plants. Nonetheless, early studies indicate that single-cell RNA-seq protocols developed for animal cells produce informative datasets in plants. We argue that single-cell transcriptomics has the potential to provide a new perspective on plant problems, such as the nature of the stem cells or initials, the plasticity of plant cells, and the extent of localized cellular responses to environmental inputs. Single-cell experimental outputs require different analytical approaches compared with pooled cell profiles and new tools tailored to single-cell assays are being developed. Here, we highlight promising new single-cell profiling approaches, their limitations as applied to plants, and their potential to address fundamental questions in plant biology.

  16. The Fungal Defensin Family Enlarged

    Directory of Open Access Journals (Sweden)

    Jiajia Wu

    2014-08-01

    Full Text Available Fungi are an emerging source of peptide antibiotics. With the availability of a large number of model fungal genome sequences, we can expect that more and more fungal defensin-like peptides (fDLPs will be discovered by sequence similarity search. Here, we report a total of 69 new fDLPs encoded by 63 genes, in which a group of fDLPs derived from dermatophytes are defined as a new family (fDEF8 according to sequence and phylogenetic analyses. In the oleaginous fungus Mortierella alpine, fDLPs have undergone extensive gene expansion. Our work further enlarges the fungal defensin family and will help characterize new peptide antibiotics with therapeutic potential.

  17. 2003 Plant Cell Walls Gordon Conference

    Energy Technology Data Exchange (ETDEWEB)

    Daniel J. Cosgrove

    2004-09-21

    This conference will address recent progress in many aspects of cell wall biology. Molecular, genetic, and genomic approaches are yielding major advances in our understanding of the composition, synthesis, and architecture of plant cell walls and their dynamics during growth, and are identifying the genes that encode the machinery needed to make their biogenesis possible. This meeting will bring together international scientists from academia, industry and government labs to share the latest breakthroughs and perspectives on polysaccharide biosynthesis, wood formation, wall modification, expansion and interaction with other organisms, and genomic & evolutionary analyses of wall-related genes, as well as to discuss recent ''nanotechnological'' advances that take wall analysis to the level of a single cell.

  18. Molecular regulation of plant cell wall extensibility

    Science.gov (United States)

    Cosgrove, D. J.

    1998-01-01

    Gravity responses in plants often involve spatial and temporal changes in cell growth, which is regulated primarily by controlling the ability of the cell wall to extend. The wall is thought to be a cellulose-hemicellulose network embedded in a hydrated matrix of complex polysaccharides and a small amount of structural protein. The wall extends by a form of polymer creep, which is mediated by expansins, a novel group of wall-loosening proteins. Expansins were discovered during a molecular dissection of the "acid growth" behavior of cell walls. Expansin alters the rheology of plant walls in profound ways, yet its molecular mechanism of action is still uncertain. It lacks detectable hydrolytic activity against the major components of the wall, but it is able to disrupt noncovalent adhesion between wall polysaccharides. The discovery of a second family of expansins (beta-expansins) sheds light on the biological role of a major group of pollen allergens and implies that expansins have evolved for diverse developmental functions. Finally, the contribution of other processes to wall extensibility is briefly summarized.

  19. Plant and animal stem cells: similar yet different

    NARCIS (Netherlands)

    Heidstra, R.; Sabatini, S.

    2014-01-01

    The astonishingly long lives of plants and their regeneration capacity depend on the activity of plant stem cells. As in animals, stem cells reside in stem cell niches, which produce signals that regulate the balance between self-renewal and the generation of daughter cells that differentiate into

  20. Plant and animal stem cells: similar yet different

    NARCIS (Netherlands)

    Heidstra, R.; Sabatini, S.

    2014-01-01

    The astonishingly long lives of plants and their regeneration capacity depend on the activity of plant stem cells. As in animals, stem cells reside in stem cell niches, which produce signals that regulate the balance between self-renewal and the generation of daughter cells that differentiate into n

  1. Idiopathic gingival enlargement and its management

    Directory of Open Access Journals (Sweden)

    Pawan Kumar

    2015-01-01

    Full Text Available Increase in the size of gingiva referred to as "gingival enlargement," usually overfills the interproximal spaces, ballooning out over the teeth and sometimes even protruding into the oral cavity. It may occur as localized enlargement in relation to a single tooth, a group of teeth, or may be generalized involving the entire dentition. It is multifactorial in origin having the influence of bacterial plaque, systemic factors or conditions, genetic predisposition (hereditary or familial, and various medications. Sometimes, it may appear as diffuse enlargement of gingiva without any specific etiologic factor. It is then considered as idiopathic enlargement. In this case report, an idiopathic gingival enlargement was successfully treated using gingivectomy by ledge and wedge procedure. The surgical technique performed yielded functionally as well as esthetically satisfying results. Gingivectomy provides a viable option to manage diffuse enlargement cases. This procedure provides the functional as well as esthetic demands and at the same time, it maintains the integrity of periodontium.

  2. The potential of single-cell profiling in plants

    OpenAIRE

    Efroni, Idan; Birnbaum, Kenneth D

    2016-01-01

    Single-cell transcriptomics has been employed in a growing number of animal studies, but the technique has yet to be widely used in plants. Nonetheless, early studies indicate that single-cell RNA-seq protocols developed for animal cells produce informative datasets in plants. We argue that single-cell transcriptomics has the potential to provide a new perspective on plant problems, such as the nature of the stem cells or initials, the plasticity of plant cells, and the extent of localized ce...

  3. Possible dual regulatory circuits involving AtS6K1 in the regulation of plant cell cycle and growth.

    Science.gov (United States)

    Shin, Yun-jeong; Kim, Sunghan; Du, Hui; Choi, Soonyoung; Verma, Desh Pal S; Cheon, Choong-Ill

    2012-05-01

    The role of Arabidopsis S6 Kinase 1 (AtS6K1), a downstream target of TOR kinase, in controlling plant growth and ribosome biogenesis was characterized after generating transgenic plants expressing AtS6K1 under auxin-inducible promoter. Down regulation of selected cell cycle regulatory genes upon auxin treatment was observed in the transgenic plants, confirming the negative regulatory role of AtS6K1 in the plant cell cycle progression reported earlier. Callus tissues established from these transgenic plants grew to larger cell masses with more number of enlarged cells than untransformed control, demonstrating functional implication of AtS6K1 in the control of plant cell size. The observed negative correlation between the expression of AtS6K1 and the cell cycle regulatory genes, however, was completely reversed in protoplasts generated from the transgenic plants expressing AtS6K1, suggesting a possible existence of dual regulatory mechanism of the plant cell cycle regulation mediated by AtS6K1. An alternative method of kinase assay, termed "substrate-mediated kinase pull down", was employed to examine the additional phosphorylation on other domains of AtS6K1 and verified the phosphorylation of both amino- and carboxy-terminal domains, which is a novel finding regarding the phosphorylation target sites on plant S6Ks by upstream regulatory kinases. In addition, this kinase assay under the stress conditions revealed the salt- and sugar-dependencies of AtS6K1 phosphorylations.

  4. Unusual Gingival Enlargement: A Rare Case Report

    Directory of Open Access Journals (Sweden)

    Ashutosh Dixit

    2014-01-01

    Full Text Available This is an atypical case report of a 20-year-old male patient who suffered from unusual unilateral, gingival enlargement together with rapidly progressive alveolar bone loss. The enlarged gingiva completely covered his left posterior teeth in both arches. The patient was diagnosed with gingival fibromatosis and aggressive periodontitis based on the clinical, histological, and radiographic findings. The gingival enlargement was treated by conventional gingivectomy under local anaesthesia. The postoperative result was uneventful.

  5. Intratumoral interleukin-21 increases antitumor immunity, tumor-infiltrating CD8+ T-cell density and activity, and enlarges draining lymph nodes

    DEFF Research Database (Denmark)

    Søndergaard, Henrik; Galsgaard, Elisabeth D; Bartholomaeussen, Monica

    2010-01-01

    Interleukin (IL)-21 is a novel cytokine in clinical development for the treatment of cancer. In this study, we have compared the efficacy of subcutaneous and intratumoral (IT) administration of IL-21 protein in two syngeneic mouse tumor models, RenCa renal cell carcinoma and B16 melanoma, and inv......Interleukin (IL)-21 is a novel cytokine in clinical development for the treatment of cancer. In this study, we have compared the efficacy of subcutaneous and intratumoral (IT) administration of IL-21 protein in two syngeneic mouse tumor models, RenCa renal cell carcinoma and B16 melanoma......, and investigated the mechanisms by which IL-21 enhances CD8 T-cell-mediated antitumor immunity. We found that in comparison to subcutaneous administration, IT administration of IL-21 more potently inhibited tumor growth and increased survival. This correlated with increased densities of tumor-infiltrating CD8...... microenvironment and activates tumor-draining LNs. Overall, our data suggest that IL-21 augments CD8 T-cell-mediated antitumor immunity through increased proliferation and effector function and acts both on tumor-infiltrating CD8 T cells as well as on the draining LNs. IT administration led to superior CD8 T...

  6. Prenatal Exposure to Autism-Specific Maternal Autoantibodies Alters Proliferation of Cortical Neural Precursor Cells, Enlarges Brain, and Increases Neuronal Size in Adult Animals.

    Science.gov (United States)

    Martínez-Cerdeño, Verónica; Camacho, Jasmin; Fox, Elizabeth; Miller, Elaine; Ariza, Jeanelle; Kienzle, Devon; Plank, Kaela; Noctor, Stephen C; Van de Water, Judy

    2016-01-01

    Autism spectrum disorders (ASDs) affect up to 1 in 68 children. Autism-specific autoantibodies directed against fetal brain proteins have been found exclusively in a subpopulation of mothers whose children were diagnosed with ASD or maternal autoantibody-related autism. We tested the impact of autoantibodies on brain development in mice by transferring human antigen-specific IgG directly into the cerebral ventricles of embryonic mice during cortical neurogenesis. We show that autoantibodies recognize radial glial cells during development. We also show that prenatal exposure to autism-specific maternal autoantibodies increased stem cell proliferation in the subventricular zone (SVZ) of the embryonic neocortex, increased adult brain size and weight, and increased the size of adult cortical neurons. We propose that prenatal exposure to autism-specific maternal autoantibodies directly affects radial glial cell development and presents a viable pathologic mechanism for the maternal autoantibody-related prenatal ASD risk factor.

  7. Dynamic simulation of a direct carbonate fuel cell power plant

    Energy Technology Data Exchange (ETDEWEB)

    Ernest, J.B. [Fluor Daniel, Inc., Irvine, CA (United States); Ghezel-Ayagh, H.; Kush, A.K. [Fuel Cell Engineering, Danbury, CT (United States)

    1996-12-31

    Fuel Cell Engineering Corporation (FCE) is commercializing a 2.85 MW Direct carbonate Fuel Cell (DFC) power plant. The commercialization sequence has already progressed through construction and operation of the first commercial-scale DFC power plant on a U.S. electric utility, the 2 MW Santa Clara Demonstration Project (SCDP), and the completion of the early phases of a Commercial Plant design. A 400 kW fuel cell stack Test Facility is being built at Energy Research Corporation (ERC), FCE`s parent company, which will be capable of testing commercial-sized fuel cell stacks in an integrated plant configuration. Fluor Daniel, Inc. provided engineering, procurement, and construction services for SCDP and has jointly developed the Commercial Plant design with FCE, focusing on the balance-of-plant (BOP) equipment outside of the fuel cell modules. This paper provides a brief orientation to the dynamic simulation of a fuel cell power plant and the benefits offered.

  8. The European Union's Eastward Enlargement

    Directory of Open Access Journals (Sweden)

    Hanns-D. Jacobsen

    1997-08-01

    Full Text Available In July 1997 the Commission of the European Union presented its Agenda 2000. This document not only suggested to start accession talks with some East and Central European countries (CEEC in early 1998 but it also provided proposals for a restructuring of EU expenditures. On this background this contribution discusses the state of readiness of the Central and East European countries to become EU members over the next few years and the Union's capacity to absorb up to ten CEEC over the next decade or so. This study concludes that the European Union has become an anchor of stability to the CEEC that guarantees both democracy and economic security--much more than could be expected only a couple of years ago. The Union's readiness to accept the membership of CEEC has, in a decisive way, contributed to their societal, political and economic stabilization. There is almost a contest among the CEEC on which one is going to meet the accession criteria first and best. The enlargement process, however, is connected to problems the resolution of which realistically postpone its successful conclusion at least into the year 2005. The main reasons are (1 the welfare gap between the EU area and the CEEC, (2 the need for more institutional and economic changes in the CEEC to make them ready for acces-sion, and, most importantly, (3 the necessity for the European Union to prepare herself for accession by a comprehensive financial reform and fundamental institutional changes.

  9. Treatment of the Enlarged Clitoris

    Science.gov (United States)

    Kaefer, Martin; Rink, Richard C.

    2017-01-01

    Management of the enlarged clitoris, because of its import for sexual function, has been and remains one of the most controversial topics in pediatric urology. Early controversy surrounding clitoroplasty resulted from many factors including an incomplete understanding of clitoral anatomy and incorrect assumptions of the role of the clitoris in sexual function. With a better understanding of anatomy and function, procedures have evolved to preserve clitoral tissue, especially with respect to the neurovascular bundles. These changes have been made in an effort to preserve clitoral sensation and preserve orgasmic potential. It is the goal of this manuscript to describe the different procedures that have been developed for the surgical management of clitoromegally, with emphasis on the risks and benefits of each. Equally important to any discussion of such a sensitive topic is an understanding of long-term patient outcomes. As we will see, despite its importance, there has been a dearth of data in this regard. Future work in the arena of patient satisfaction will undoubtedly play a major role in directing our surgical approach. PMID:28894728

  10. Treatment of the Enlarged Clitoris

    Directory of Open Access Journals (Sweden)

    Martin Kaefer

    2017-08-01

    Full Text Available Management of the enlarged clitoris, because of its import for sexual function, has been and remains one of the most controversial topics in pediatric urology. Early controversy surrounding clitoroplasty resulted from many factors including an incomplete understanding of clitoral anatomy and incorrect assumptions of the role of the clitoris in sexual function. With a better understanding of anatomy and function, procedures have evolved to preserve clitoral tissue, especially with respect to the neurovascular bundles. These changes have been made in an effort to preserve clitoral sensation and preserve orgasmic potential. It is the goal of this manuscript to describe the different procedures that have been developed for the surgical management of clitoromegally, with emphasis on the risks and benefits of each. Equally important to any discussion of such a sensitive topic is an understanding of long-term patient outcomes. As we will see, despite its importance, there has been a dearth of data in this regard. Future work in the arena of patient satisfaction will undoubtedly play a major role in directing our surgical approach.

  11. The European Union's Eastward Enlargement

    Directory of Open Access Journals (Sweden)

    Hanns-D. Jacobsen

    1997-08-01

    Full Text Available In July 1997 the Commission of the European Union presented its Agenda 2000. This document not only suggested to start accession talks with some East and Central European countries (CEEC in early 1998 but it also provided proposals for a restructuring of EU expenditures. On this background this contribution discusses the state of readiness of the Central and East European countries to become EU members over the next few years and the Union's capacity to absorb up to ten CEEC over the next decade or so. This study concludes that the European Union has become an anchor of stability to the CEEC that guarantees both democracy and economic security--much more than could be expected only a couple of years ago. The Union's readiness to accept the membership of CEEC has, in a decisive way, contributed to their societal, political and economic stabilization. There is almost a contest among the CEEC on which one is going to meet the accession criteria first and best. The enlargement process, however, is connected to problems the resolution of which realistically postpone its successful conclusion at least into the year 2005. The main reasons are (1 the welfare gap between the EU area and the CEEC, (2 the need for more institutional and economic changes in the CEEC to make them ready for acces-sion, and, most importantly, (3 the necessity for the European Union to prepare herself for accession by a comprehensive financial reform and fundamental institutional changes.

  12. Intratumoral Interleukin-21 Increases Antitumor Immunity, Tumor-infiltrating CD8(+) T-cell Density and Activity, and Enlarges Draining Lymph Nodes

    DEFF Research Database (Denmark)

    Sondergaard, H.; Galsgaard, E.D.; Bartholomaeussen, M.

    2010-01-01

    Interleukin (IL)-21 is a novel cytokine in clinical development for the treatment of cancer. In this study, we have compared the efficacy of subcutaneous and intratumoral (IT) administration of IL-21 protein in two syngeneic mouse tumor models, RenCa renal cell carcinoma and B16 melanoma, and inv...

  13. Zinc-Dependent Lysosomal Enlargement in TRPML1-Deficient Cells Involves MTF-1 Transcription Factor and ZnT4 (Slc30a4) Transporter

    OpenAIRE

    2013-01-01

    Zn is critical for a multitude of cellular processes, including gene expression, secretion and enzymatic activities. Cellular Zn is controlled by Zn-chelating proteins and by Zn transporters. The recent identification of Zn permeability of the lysosomal ion channel TRPML1, and the evidence of abnormal Zn levels in cells deficient in TRPML1, suggested a role for TRPML1 in Zn transport. Here we provide new evidence for such a role and identify additional cellular components responsible for it. ...

  14. Evolution and diversity of green plant cell walls.

    Science.gov (United States)

    Popper, Zoë A

    2008-06-01

    Plant cells are surrounded by a dynamic cell wall that performs many essential biological roles, including regulation of cell expansion, the control of tissue cohesion, ion-exchange and defence against microbes. Recent evidence shows that the suite of polysaccharides and wall proteins from which the plant cell wall is composed shows variation between monophyletic plant taxa. This is likely to have been generated during the evolution of plant groups in response to environmental stress. Understanding the natural variation and diversity that exists between cell walls from different taxa is key to facilitating their future exploitation and manipulation, for example by increasing lignocellulosic content or reducing its recalcitrance for use in biofuel generation.

  15. Plant Cell Wall Matrix Polysaccharide Biosynthesis

    Institute of Scientific and Technical Information of China (English)

    Ajay Pal S. Sandhu; Gursharn S. Randhawa; Kanwarpal S. Dhugga

    2009-01-01

    The wall of an expanding plant cell consists primarily of cellulose microfibrils embedded in a matrix of hemi-cellulosic and pectic polysaccharides along with small amounts of structural and enzymatic proteins. Matrix polysacchar-ides are synthesized in the Golgi and exported to the cell wall by exocytosis, where they intercalate among cellulose microfibrUs, which are made at the plasma membrane and directly deposited into the cell wall. Involvement of Golgi glucan synthesis in auxin-induced cell expansion has long been recognized; however, only recently have the genes corresponding to glucan synthases been identified. Biochemical purification was unsuccessful because of the labile nature and very low abundance of these enzymes. Mutational genetics also proved fruitless. Expression of candidate genes identified through gene expression profiling or comparative genomics in heterologous systems followed by functional characterization has been relatively successful. Several genes from the cellulose synthase-like (Cs/) family have been found to be involved in the synthesis of various hemicellulosic glycans. The usefulness of this approach, however, is limited to those enzymes that probably do not form complexes consisting of unrelated proteins. Nonconventional approaches will continue to incre-mentally unravel the mechanisms of Golgi polysaccharide biosynthesis.

  16. The "New Politics" of EU's Eastern Enlargement

    DEFF Research Database (Denmark)

    Zank, Wolfgang

    The paper gives an overview of EU's eastern enlargement and draws some theoretical conclusions. In particular, it stresses the point that the EU member states in the process of enlargement have entered a phase of "new politics", characterised by multilateralism, conditionality, help and binding a...

  17. Cell wall integrity signaling and innate immunity in plants.

    Science.gov (United States)

    Nühse, Thomas S

    2012-01-01

    All plant pathogens and parasites have had to develop strategies to overcome cell walls in order to access the host's cytoplasm. As a mechanically strong, multi-layered composite exoskeleton, the cell wall not only enables plants to grow tall but also protects them from such attacks. Many plant pathogens employ an arsenal of cell wall degrading enzymes, and it has long been thought that the detection of breaches in wall integrity contributes to the induction of defense. Cell wall fragments are danger-associated molecular patterns or DAMPs that can trigger defense signaling pathways comparable to microbial signals, but the picture is likely to be more complicated. A wide range of defects in cell wall biosynthesis leads to enhanced pathogen resistance. We are beginning to understand the essential role of cell wall integrity surveillance for plant growth, and the connection of processes like cell expansion, plasma membrane-cell wall contact and secondary wall biosynthesis with plant immunity is emerging.

  18. Plant cortical microtubule dynamics and cell division plane orientation

    NARCIS (Netherlands)

    Chakrabortty, Bandan

    2017-01-01

    This thesis work aimed at a better understanding of the molecular basis of oriented cell division in plant cell. As, the efficiency of plant morphogenesis depends on oriented cell division, this work should contribute  towards a fundamental understanding of the  molecular basis of

  19. Pectin, a versatile polysaccharide present in plant cell walls

    NARCIS (Netherlands)

    Voragen, A.G.J.; Coenen, G.J.; Verhoef, R.P.; Schols, H.A.

    2009-01-01

    Pectin or pectic substances are collective names for a group of closely associated polysaccharides present in plant cell walls where they contribute to complex physiological processes like cell growth and cell differentiation and so determine the integrity and rigidity of plant tissue. They also pla

  20. Ultrastructure of autophagy in plant cells: a review.

    Science.gov (United States)

    van Doorn, Wouter G; Papini, Alessio

    2013-12-01

    Just as with yeasts and animal cells, plant cells show several types of autophagy. Microautophagy is the uptake of cellular constituents by the vacuolar membrane. Although microautophagy seems frequent in plants it is not yet fully proven to occur. Macroautophagy occurs farther away from the vacuole. In plants it is performed by autolysosomes, which are considerably different from the autophagosomes found in yeasts and animal cells, as in plants these organelles contain hydrolases from the onset of their formation. Another type of autophagy in plant cells (called mega-autophagy or mega-autolysis) is the massive degradation of the cell at the end of one type of programmed cell death (PCD). Furthermore, evidence has been found for autophagy during degradation of specific proteins, and during the internal degeneration of chloroplasts. This paper gives a brief overview of the present knowledge on the ultrastructure of autophagic processes in plants.

  1. Pseudoangiomatous stromal hyperplasia causing massive breast enlargement.

    Science.gov (United States)

    Bourke, Anita Geraldine; Tiang, Stephen; Harvey, Nathan; McClure, Robert

    2015-10-16

    Pseudoangiomatous stromal hyperplasia (PASH) of the breast is a benign mesenchymal proliferative process, initially described by Vuitch et al. We report an unusual case of a 46-year-old woman who presented with a 6-week history of bilateral massive, asymmetrical, painful enlargement of her breasts, without a history of trauma. On clinical examination, both breasts were markedly enlarged and oedematous, but there were no discrete palpable masses. Preoperative image-guided core biopsies and surgery showed PASH. PASH is increasingly recognised as an incidental finding on image-guided core biopsy performed for screen detected lesions. There are a few reported cases of PASH presenting as rapid breast enlargement. In our case, the patient presented with painful, asymmetrical, massive breast enlargement. Awareness needs to be raised of this entity as a differential diagnosis in massive, painful breast enlargement.

  2. Bizonoplast, a unique chloroplast in the epidermal cells of microphylls in the shade plant Selaginella erythropus (Selaginellaceae).

    Science.gov (United States)

    Sheue, Chiou-Rong; Sarafis, Vassilios; Kiew, Ruth; Liu, Ho-Yih; Salino, Alexandre; Kuo-Huang, Ling-Long; Yang, Yuen-Po; Tsai, Chi-Chu; Lin, Chun-Hung; Yong, Jean W H; Ku, Maurice S B

    2007-12-01

    Study of the unique leaf anatomy and chloroplast structure in shade-adapted plants will aid our understanding of how plants use light efficiently in low light environments. Unusual chloroplasts in terms of size and thylakoid membrane stacking have been described previously in several deep-shade plants. In this study, a single giant cup-shaped chloroplast, termed a bizonoplast, was found in the abaxial epidermal cells of the dorsal microphylls and the adaxial epidermal cells of the ventral microphylls in the deep-shade spike moss Selaginella erythropus. Bizonoplasts are dimorphic in ultrastructure: the upper zone is occupied by numerous layers of 2-4 stacked thylakoid membranes while the lower zone contains both unstacked stromal thylakoids and thylakoid lamellae stacked in normal grana structure oriented in different directions. In contrast, other cell types in the microphylls contain chloroplasts with typical structure. This unique chloroplast has not been reported from any other species. The enlargement of epidermal cells into funnel-shaped, photosynthetic cells coupled with specific localization of a large bizonoplast in the lower part of the cells and differential modification in ultrastructure within the chloroplast may allow the plant to better adapt to low light. Further experiments are required to determine whether this shade-adapted organism derives any evolutionary or ecophysiological fitness from these unique chloroplasts.

  3. Auxin regulation of cell polarity in plants.

    Science.gov (United States)

    Pan, Xue; Chen, Jisheng; Yang, Zhenbiao

    2015-12-01

    Auxin is well known to control pattern formation and directional growth at the organ/tissue levels via the nuclear TIR1/AFB receptor-mediated transcriptional responses. Recent studies have expanded the arena of auxin actions as a trigger or key regulator of cell polarization and morphogenesis. These actions require non-transcriptional responses such as changes in the cytoskeleton and vesicular trafficking, which are commonly regulated by ROP/Rac GTPase-dependent pathways. These findings beg for the question about the nature of auxin receptors that regulate these responses and renew the interest in ABP1 as a cell surface auxin receptor, including the work showing auxin-binding protein 1 (ABP1) interacts with the extracellular domain of the transmembrane kinase (TMK) receptor-like kinases in an auxin-dependent manner, as well as the debate on this auxin binding protein discovered about 40 years ago. This review highlights recent work on the non-transcriptional auxin signaling mechanisms underscoring cell polarity and shape formation in plants.

  4. Plant and animal stem cells: similar yet different.

    Science.gov (United States)

    Heidstra, Renze; Sabatini, Sabrina

    2014-05-01

    The astonishingly long lives of plants and their regeneration capacity depend on the activity of plant stem cells. As in animals, stem cells reside in stem cell niches, which produce signals that regulate the balance between self-renewal and the generation of daughter cells that differentiate into new tissues. Plant stem cell niches are located within the meristems, which are organized structures that are responsible for most post-embryonic development. The continuous organ production that is characteristic of plant growth requires a robust regulatory network to keep the balance between pluripotent stem cells and differentiating progeny. Components of this network have now been elucidated and provide a unique opportunity for comparing strategies that were developed in the animal and plant kingdoms, which underlie the logic of stem cell behaviour.

  5. Enhancement of Median Nerve Regeneration by Mesenchymal Stem Cells Engraftment in an Absorbable Conduit: Improvement of Peripheral Nerve Morphology with Enlargement of Somatosensory Cortical Representation.

    Directory of Open Access Journals (Sweden)

    Julia Teixeira Oliveira

    2014-10-01

    Full Text Available We studied the morphology and the cortical representation of the median nerve (MN, 10 weeks after a transection immediately followed by treatment with tubulization using a polycaprolactone (PCL conduit with or without bone marrow-derived mesenchymal stem cell (MSC transplant. In order to characterize the cutaneous representation of MN inputs in primary somatosensory cortex (S1, electrophysiological cortical mapping of the somatosensory representation of the forepaw and adjacent body parts was performed after acute lesion of all brachial plexus nerves, except for the MN. This was performed in ten adult male Wistar rats randomly assigned in 3 groups: MN Intact (n=4, PCL-Only (n=3 and PCL+MSC (n=3. Ten weeks before mapping procedures in animals from PCL-Only and PCL+MSC groups, animal were subjected to MN transection with removal of a 4-mm-long segment, immediately followed by suturing a PCL conduit to the nerve stumps with (PCL+MSC group or without (PCL-Only group injection of MSC into the conduit. After mapping the representation of the MN in S1, animals had a segment of the regenerated nerve processed for light and transmission electron microscopy. For histomorphometric analysis of the nerve segment, sample size was increased to 5 animals per experimental group. The PCL+MSC group presented a higher number of myelinated fibers and a larger cortical representation of MN inputs in S1 (3,383±390 fibers; 2.3 mm2, respectively than the PCL-Only group (2,226±575 fibers; 1.6 mm2. In conclusion, MSC-based therapy associated with PCL conduits can improve MN regeneration. This treatment seems to rescue the nerve representation in S1, thus minimizing the stabilization of new representations of adjacent body parts in regions previously responsive to the MN.

  6. Programmed cell death in the plant immune system.

    Science.gov (United States)

    Coll, N S; Epple, P; Dangl, J L

    2011-08-01

    Cell death has a central role in innate immune responses in both plants and animals. Besides sharing striking convergences and similarities in the overall evolutionary organization of their innate immune systems, both plants and animals can respond to infection and pathogen recognition with programmed cell death. The fact that plant and animal pathogens have evolved strategies to subvert specific cell death modalities emphasizes the essential role of cell death during immune responses. The hypersensitive response (HR) cell death in plants displays morphological features, molecular architectures and mechanisms reminiscent of different inflammatory cell death types in animals (pyroptosis and necroptosis). In this review, we describe the molecular pathways leading to cell death during innate immune responses. Additionally, we present recently discovered caspase and caspase-like networks regulating cell death that have revealed fascinating analogies between cell death control across both kingdoms.

  7. A Gravity-Responsive Time-Keeping Protein of the Plant and Animal Cell Surface

    Science.gov (United States)

    Morre, D. James

    2003-01-01

    The hypothesis under investigation was that a ubiquinol (NADH) oxidase protein of the cell surface with protein disulfide-thiol interchange activity (= NOX protein) is a plant and animal time-keeping ultradian (period of less than 24 h) driver of both cell enlargement and the biological clock that responds to gravity. Despite considerable work in a large number of laboratories spanning several decades, this is, to my knowledge, our work is the first demonstration of a time-keeping biochemical reaction that is both gravity-responsive and growth-related and that has been shown to determine circadian periodicity. As such, the NOX protein may represent both the long-sought biological gravity receptor and the core oscillator of the cellular biological clock. Completed studies have resulted in 12 publications and two issued NASA-owned patents of the clock activity. The gravity response and autoentrainment were characterized in cultured mammalian cells and in two plant systems together with entrainment by light and small molecules (melatonin). The molecular basis of the oscillatory behavior was investigated using spectroscopic methods (Fourier transform infrared and circular dichroism) and high resolution electron microscopy. We have also applied these findings to an understanding of the response to hypergravity. Statistical methods for analysis of time series phenomena were developed (Foster et al., 2003).

  8. New plant-growth medium for increased power output of the Plant-Microbial Fuel Cell

    NARCIS (Netherlands)

    Helder, M.; Strik, D.P.B.T.B.; Hamelers, H.V.M.; Kuijken, R.C.P.; Buisman, C.J.N.

    2012-01-01

    In a Plant-Microbial Fuel Cell anode-conditions must be created that are favorable for plant growth and electricity production. One of the major aspects in this is the composition of the plant-growth medium. Hoagland medium has been used until now, with added phosphate buffer to reduce potential

  9. Experimental approaches to study plant cell walls during plant-microbe interactions.

    Science.gov (United States)

    Xia, Ye; Petti, Carloalberto; Williams, Mark A; DeBolt, Seth

    2014-01-01

    Plant cell walls provide physical strength, regulate the passage of bio-molecules, and act as the first barrier of defense against biotic and abiotic stress. In addition to providing structural integrity, plant cell walls serve an important function in connecting cells to their extracellular environment by sensing and transducing signals to activate cellular responses, such as those that occur during pathogen infection. This mini review will summarize current experimental approaches used to study cell wall functions during plant-pathogen interactions. Focus will be paid to cell imaging, spectroscopic analyses, and metabolic profiling techniques.

  10. Experimental approaches to study plant cell walls during plant-microbe interactions

    Directory of Open Access Journals (Sweden)

    Ye eXia

    2014-10-01

    Full Text Available Plant cell walls provide physical strength, regulate the passage of bio-molecules, and act as the first barrier of defense against biotic and abiotic stress. In addition to providing structural integrity, plant cell walls serve an important function in connecting cells to their extracellular environment by sensing and transducing signals to activate cellular responses, such as those that occur during pathogen infection. This mini review will summarize current experimental approaches used to study cell wall functions during plant-pathogen interactions. Focus will be paid to cell imaging, spectroscopic analyses, and metabolic profiling techniques

  11. Ultrastructural changes in aster yellows phytoplasma affected Limonium sinuatum Mill. plants II. Pathology of cortex parenchyma cells

    Directory of Open Access Journals (Sweden)

    Anna Rudzińska-Langwald

    2014-01-01

    Full Text Available In Limonium sinuatum Mill, plants with severe symptoms of aster yellows infection phytoplasmas were present not only in the phloem but also in some cortex parenchymas cells. These parenchyma cells were situated at some distance from the conducting bundles. The phytoplasmas were observed directly in parenchyma cells cytoplasm. The number of phytoplasmas present in each selected cell varies. The cells with a small number of phytoplasmas show little pathological changes compared with the unaffected cells of the same zone of the stem as well with the cells of healthy plants. The cells filled with a number of phytoplasmas had their protoplast very much changed. The vacuole was reduced and in the cytoplasm a reduction of the number of ribosomes was noted and regions of homogenous structure appeared. Mitochondria were moved in the direction of the tonoplast and plasma membrane. Compared to the cells unaffected by phytoplasma, the mitochondria were smaller and had an enlarged cristae internal space. The chloroplasts from affected cells had a very significant reduction in size and the tylacoids system had disappeared. The role of these changes for creating phytoplasma friendly enviroment is discused.

  12. Using Tissue Culture To Investigate Plant Cell Differentiation and Dedifferentiation.

    Science.gov (United States)

    Bozzone, Donna M.

    1997-01-01

    Describes an experimental project that uses plant tissue culture techniques to examine cell differentiation in the carrot. Allows students to gain experience in some important techniques and to explore fundamental questions about cell differentiation. (DDR)

  13. Epigenetic memory and cell fate reprogramming in plants.

    Science.gov (United States)

    Birnbaum, Kenneth D; Roudier, François

    2017-02-01

    Plants have a high intrinsic capacity to regenerate from adult tissues, with the ability to reprogram adult cell fates. In contrast, epigenetic mechanisms have the potential to stabilize cell identity and maintain tissue organization. The question is whether epigenetic memory creates a barrier to reprogramming that needs to be erased or circumvented in plant regeneration. Early evidence suggests that, while chromatin dynamics impact gene expression in the meristem, a lasting constraint on cell fate is not established until late stages of plant cell differentiation. It is not yet clear whether the plasticity of plant cells arises from the ability of cells to erase identity memory or to deploy cells that may exhibit cellular specialization but still lack an epigenetic restriction on cell fate alteration.

  14. Using Tissue Culture To Investigate Plant Cell Differentiation and Dedifferentiation.

    Science.gov (United States)

    Bozzone, Donna M.

    1997-01-01

    Describes an experimental project that uses plant tissue culture techniques to examine cell differentiation in the carrot. Allows students to gain experience in some important techniques and to explore fundamental questions about cell differentiation. (DDR)

  15. Plant cell wall-degrading enzymes and their secretion in plant-pathogenic fungi.

    Science.gov (United States)

    Kubicek, Christian P; Starr, Trevor L; Glass, N Louise

    2014-01-01

    Approximately a tenth of all described fungal species can cause diseases in plants. A common feature of this process is the necessity to pass through the plant cell wall, an important barrier against pathogen attack. To this end, fungi possess a diverse array of secreted enzymes to depolymerize the main structural polysaccharide components of the plant cell wall, i.e., cellulose, hemicellulose, and pectin. Recent advances in genomic and systems-level studies have begun to unravel this diversity and have pinpointed cell wall-degrading enzyme (CWDE) families that are specifically present or enhanced in plant-pathogenic fungi. In this review, we discuss differences between the CWDE arsenal of plant-pathogenic and non-plant-pathogenic fungi, highlight the importance of individual enzyme families for pathogenesis, illustrate the secretory pathway that transports CWDEs out of the fungal cell, and report the transcriptional regulation of expression of CWDE genes in both saprophytic and phytopathogenic fungi.

  16. Formative cell divisions: principal determinants of plant morphogenesis.

    Science.gov (United States)

    Smolarkiewicz, Michalina; Dhonukshe, Pankaj

    2013-03-01

    Formative cell divisions utilizing precise rotations of cell division planes generate and spatially place asymmetric daughters to produce different cell layers. Therefore, by shaping tissues and organs, formative cell divisions dictate multicellular morphogenesis. In animal formative cell divisions, the orientation of the mitotic spindle and cell division planes relies on intrinsic and extrinsic cortical polarity cues. Plants lack known key players from animals, and cell division planes are determined prior to the mitotic spindle stage. Therefore, it appears that plants have evolved specialized mechanisms to execute formative cell divisions. Despite their profound influence on plant architecture, molecular players and cellular mechanisms regulating formative divisions in plants are not well understood. This is because formative cell divisions in plants have been difficult to track owing to their submerged positions and imprecise timings of occurrence. However, by identifying a spatiotemporally inducible cell division plane switch system applicable for advanced microscopy techniques, recent studies have begun to uncover molecular modules and mechanisms for formative cell divisions. The identified molecular modules comprise developmentally triggered transcriptional cascades feeding onto microtubule regulators that now allow dissection of the hierarchy of the events at better spatiotemporal resolutions. Here, we survey the current advances in understanding of formative cell divisions in plants in the context of embryogenesis, stem cell functionality and post-embryonic organ formation.

  17. Cell Fate Switch during In Vitro Plant Organogenesis

    Institute of Scientific and Technical Information of China (English)

    Xiang Yu Zhao; Ying Hua Su; Zhi Juan Cheng; Xian Sheng Zhang

    2008-01-01

    Plant mature cells have the capability to reverse their state of differenUation and produce new organs under cultured conditions. Two phases, dedifferentiation and redifferentiation, are commonly characterized during in vitro organogenesis.In these processes, cells undergo fate switch several times regulated by both extrinsic and intrinsic factors, which are associated with reentry to the cell cycle, the balance between euchromatin and heterochromatin, reprogramming of gene expression, and so forth. This short article reviews the advances in the mechanism of organ regeneration from plant somatic cells in molecular, genomic and epigenetic aspects, aiming to provide important information on the mechanism underlying cell fate switch during in vitro plant organogenesis.

  18. The First Observation on Plant Cell Fossils in China

    Institute of Scientific and Technical Information of China (English)

    WANG Xin; CUI Jinzhong

    2007-01-01

    For a long time, paleontologists have been focusing on hard parts of organisms during different geological periods while soft parts are rarely reported. Well-preserved plant cells, if found in fossils, are treated only as a rarity. Recent progress in research on fossil cytoplasm indicates that plant cytoplasm not only has excellent ultrastructures preserved but also may be a quite commonly seen fossil in strata. However, up to now there is no report of plant cell fossils in China yet. Here plant cell fossils are reported from Huolinhe Coal Mine (the early Cretaceous), Inner Mongolia, China. The presence of plant cytoplasm fossils in two cones on the same specimen not only provides further support for the recently proposed hypothesis on plant cytoplasm fossilization but also marks the first record of plant cytoplasm fossils in China, which suggests a great research potential in this new area.

  19. Progress and prospects for phosphoric acid fuel cell power plants

    Energy Technology Data Exchange (ETDEWEB)

    Bonville, L.J.; Scheffler, G.W.; Smith, M.J. [International Fuel Cells Corp., South Windsor, CT (United States)

    1996-12-31

    International Fuel Cells (IFC) has developed the fuel cell power plant as a new, on-site power generation source. IFC`s commercial fuel cell product is the 200-kW PC25{trademark} power plant. To date over 100 PC25 units have been manufactured. Fleet operating time is in excess of one million hours. Individual units of the initial power plant model, the PC25 A, have operated for more than 30,000 hours. The first model {open_quotes}C{close_quotes} power plant has over 10,000 hours of operation. The manufacturing, application and operation of this power plant fleet has established a firm base for design and technology development in terms of a clear understanding of the requirements for power plant reliability and durability. This fleet provides the benchmark against which power plant improvements must be measured.

  20. Plastid osmotic stress influences cell differentiation at the plant shoot apex.

    Science.gov (United States)

    Wilson, Margaret E; Mixdorf, Matthew; Berg, R Howard; Haswell, Elizabeth S

    2016-09-15

    The balance between proliferation and differentiation in the plant shoot apical meristem is controlled by regulatory loops involving the phytohormone cytokinin and stem cell identity genes. Concurrently, cellular differentiation in the developing shoot is coordinated with the environmental and developmental status of plastids within those cells. Here, we employ an Arabidopsis thaliana mutant exhibiting constitutive plastid osmotic stress to investigate the molecular and genetic pathways connecting plastid osmotic stress with cell differentiation at the shoot apex. msl2 msl3 mutants exhibit dramatically enlarged and deformed plastids in the shoot apical meristem, and develop a mass of callus tissue at the shoot apex. Callus production in this mutant requires the cytokinin receptor AHK2 and is characterized by increased cytokinin levels, downregulation of cytokinin signaling inhibitors ARR7 and ARR15, and induction of the stem cell identity gene WUSCHEL Furthermore, plastid stress-induced apical callus production requires elevated plastidic reactive oxygen species, ABA biosynthesis, the retrograde signaling protein GUN1, and ABI4. These results are consistent with a model wherein the cytokinin/WUS pathway and retrograde signaling control cell differentiation at the shoot apex. © 2016. Published by The Company of Biologists Ltd.

  1. Polarity in plant asymmetric cell division: Division orientation and cell fate differentiation

    OpenAIRE

    Shao, Wanchen; Dong, Juan

    2016-01-01

    Asymmetric cell division (ACD) is universally required for the development of multicellular organisms. Unlike animal cells, plant cells have a rigid cellulosic extracellular matrix, the cell wall, which provides physical support and forms communication routes. This fundamental difference leads to some unique mechanisms in plants for generating asymmetries during cell division. However, plants also utilize intrinsically polarized proteins to regulate asymmetric signaling and cell division, a s...

  2. Chemical- and pathogen-induced programmed cell death in plants

    NARCIS (Netherlands)

    Iakimova, E.T.; Atanassov, A.; Woltering, E.J.

    2005-01-01

    This review focuses on recent update in the understanding of programmed cell death regarding the differences and similarities between the diverse types of cell death in animal and plant systems and describes the morphological and some biochemical determinants. The role of PCD in plant development an

  3. Chemical- and pathogen-induced programmed cell death in plants

    NARCIS (Netherlands)

    Iakimova, E.T.; Atanassov, A.; Woltering, E.J.

    2005-01-01

    This review focuses on recent update in the understanding of programmed cell death regarding the differences and similarities between the diverse types of cell death in animal and plant systems and describes the morphological and some biochemical determinants. The role of PCD in plant development

  4. Massive pregnancy gingival enlargement: A rare case.

    Science.gov (United States)

    Srivastava, Amitabh; Gupta, Krishna Kumar; Srivastava, Sunita; Garg, Jaishree

    2013-07-01

    Gingival enlargement related to pregnancy is sometimes seen in the oral cavity. Pregnancy is a physiological state that brings full of changes in a woman's life. The metabolism and immunology of the body are modified by progesterone and estrogen as well as other local factors, these sex hormones may modify the oral mucosa and may lead to various periodontal diseases. A case of female patient 23 yrs of age reported during 8(th) month of pregnancy with a localised gingival enlargement affecting the buccal aspect of left maxillary central incisor upto canine. The hormonal changes occurring during pregnancy may be associated with generalized or localised gingival enlargement and the presence of local factors may accentuate the gingival response. Rarely the enlargement becomes maasive and protrude out extraorally.

  5. Idiopathic gingival enlargement and its management

    Directory of Open Access Journals (Sweden)

    Shetty Arvind

    2010-01-01

    Full Text Available Idiopathic gingival enlargement is a proliferative fibrous lesion of the gingival tissue that causes esthetic and functional problems. Both genetically and pharmacologically induced forms of gingival enlargement exist. This case report addresses the diagnosis and treatment of a case of idiopathic gingival enlargement in a 13-year-old female. The patient presented with generalized diffuse gingival enlargement involving the maxillary and mandibular arches extending on buccal and lingual/palatal surfaces and covering incisal / occlusal third of the tooth resulting in difficulty in speech and mastication since last three years. Patient also gave a history of surgical treatment being carried out four years back in upper anterior region suggesting of recurrence. Biopsy report confirmed the diagnosis of gingival hyperplasia. Gingivectomy was carried out in all four quadrants by using four different methods.

  6. Severe gingival enlargement associated with aggressive periodontitis

    Directory of Open Access Journals (Sweden)

    Shyam Padmanabhan

    2013-01-01

    Full Text Available Enlargement of the gingiva can be due to various causes. Most prevalent are the inflammatory type and drug-induced type of gingival hyperplasia. However, sever enlargement associated with an aggressive type of periodontitis is an infrequent finding. Reported here is a case of a female patient aged 18 years who presented with severe enlargement of the maxillary and mandibular gingiva. Examination revealed enlargement extending up to the incisal edge of all the teeth and also an associated generalized loss of attachment with radiographic evidence of reduced bone height resembling an aggressive type of periodontitis. There were no associated systemic signs and symptoms or any family history except that there was generalized vitiligo of the skin and oral mucous membrane. The case was treated by gross electrosection of the gingiva.

  7. Enlarged prostate - what to ask your doctor

    Science.gov (United States)

    What to ask your doctor about enlarged prostate; Benign prostatic hypertrophy - what to ask your doctor; BPH - what to ... nlm.nih.gov/pubmed/23234640 . Roehrborn CG. Benign prostatic hyperplasia: Etiology, pathophysiology, epidemiology, and natural history. In: Wein ...

  8. The role of root border cells in plant defense.

    Science.gov (United States)

    Hawes, M C; Gunawardena, U; Miyasaka, S; Zhao, X

    2000-03-01

    The survival of a plant depends upon the capacity of root tips to sense and move towards water and other nutrients in the soil. Perhaps because of the root tip's vital role in plant health, it is ensheathed by large populations of detached somatic cells - root 'border' cells - which have the ability to engineer the chemical and physical properties of the external environment. Of particular significance, is the production by border cells of specific chemicals that can dramatically alter the behavior of populations of soilborne microflora. Molecular approaches are being used to identify and manipulate the expression of plant genes that control the production and the specialized properties of border cells in transgenic plants. Such plants can be used to test the hypothesis that these unusual cells act as a phalanx of biological 'goalies', which neutralize dangers to newly generated root tissue as the root tip makes its way through soil.

  9. Massive pregnancy gingival enlargement: A rare case

    OpenAIRE

    2013-01-01

    Gingival enlargement related to pregnancy is sometimes seen in the oral cavity. Pregnancy is a physiological state that brings full of changes in a woman's life. The metabolism and immunology of the body are modified by progesterone and estrogen as well as other local factors, these sex hormones may modify the oral mucosa and may lead to various periodontal diseases. A case of female patient 23 yrs of age reported during 8th month of pregnancy with a localised gingival enlargement affecting t...

  10. Acute exacerbation of airspace enlargement with fibrosis

    Directory of Open Access Journals (Sweden)

    Tomoyuki Kakugawa

    2014-01-01

    Full Text Available In 2008, Kawabata et al. described a lesion which they termed “airspace enlargement with fibrosis” that could be included on the spectrum of smoking-related interstitial lung diseases. This group also reported that patients with airspace enlargement with fibrosis but without coexisting interstitial pneumonia of another type had no acute exacerbations and favorable prognoses on clinical follow-up. Here we describe the first case, to our knowledge, of acute exacerbation of airspace enlargement with fibrosis without coexisting interstitial pneumonia of another type. An 82-year-old man was referred to our department for worsening dyspnea and new alveolar opacities on chest radiograph following left pulmonary segmentectomy (S6 for cancer. A diagnosis of acute exacerbation of airspace enlargement with fibrosis without coexisting interstitial pneumonia of other types was made, based on pathological evidence of airspace enlargement with fibrosis and organizing diffuse alveolar damage. Treatment with high-dose methylprednisolone followed by tapered oral prednisolone resulted in gradual improvement of the clinical condition and chest radiographic findings. Clinicians should be aware that patients with airspace enlargement with fibrosis may experience acute exacerbation.

  11. Animal and plant stem cells concepts, propagation and engineering

    CERN Document Server

    Pavlović, Mirjana

    2017-01-01

    This book provides a multifaceted look into the world of stem cells and explains the similarities and differences between plant and human stem cells. It explores the intersection between animals and plants and explains their cooperative role in bioengineering studies. The book treats both theoretical and practical aspects of stem cell research. It covers the advantages and limitations of many common applications related to stem cells: their sources, categories, engineering of these cells, reprogramming of their functions, and their role as novel cellular therapeutic approach. Written by experts in the field, the book focuses on aspects of stem cells ranging from expansion-propagation to metabolic reprogramming. It introduces the emergence of cancer stem cells and different modalities in targeted cancer stem cell therapies. It is a valuable source of fresh information for academics and researchers, examining molecular mechanisms of animal and plant stem cell regulation and their usage for therapeutic applicati...

  12. Production of recombinant proteins in suspension-cultured plant cells.

    Science.gov (United States)

    Plasson, Carole; Michel, Rémy; Lienard, David; Saint-Jore-Dupas, Claude; Sourrouille, Christophe; de March, Ghislaine Grenier; Gomord, Véronique

    2009-01-01

    Plants have emerged in the past decade as a suitable alternative to the current production systems for recombinant pharmaceutical proteins and, today their potential for low-cost production of high quality, much safer and biologically active mammalian proteins is largely documented. Among various plant expression systems being explored, genetically modified suspension-cultured plant cells offer a promising system for production of biopharmaceuticals. Indeed, when compared to other plant-based production platforms that have been explored, suspension-cultured plant cells have the advantage of being totally devoid of problems associated with the vagaries of weather, pest, soil and gene flow in the environment. Because of short growth cycles, the timescale needed for the production of recombinant proteins in plant cell culture can be counted in days or weeks after transformation compared to months needed for the production in transgenic plants. Moreover, recovery and purification of recombinant proteins from plant biomass is an expensive and technically challenging business that may amount to 80-94% of the final product cost. One additional advantage of plant cell culture is that the recombinant protein fused with a signal sequence can be expressed and secreted into the culture medium, and therefore recovered and purified in the absence of large quantities of contaminating proteins. Consequently, the downstream processing of proteins extracted from plant cell culture medium is less expensive, which may/does balance the higher costs of fermentation. When needed for clinical use, recombinant proteins are easily produced in suspension-cultured plant cells under certified, controllable and sterile conditions that offer improved safety and provide advantages for good manufacturing practices and regulatory compliance. In this chapter, we present basic protocols for rapid generation of transgenic suspension-cultured cells of Nicotiana tabacum, Oriza sativa and Arabidopis

  13. Plant programmed cell death, ethylene and flower senescence

    NARCIS (Netherlands)

    Woltering, E.J.; Jong, de A.; Hoeberichts, F.A.; Iakimova, E.T.; Kapchina, V.

    2005-01-01

    Programmed cell death (PCD) applies to cell death that is part of the normal life of multicellular organisms. PCD is found throughout the animal and plant kingdoms; it is an active process in which a cell suicide pathway is activated resulting in controlled disassembly of the cell. Most cases of PCD

  14. Dynamics and Regulation of Actin Cytoskeleton in Plant Cells

    Institute of Scientific and Technical Information of China (English)

    Ren Haiyun

    2007-01-01

    @@ The actin cytoskeleton constituted of globular actin (G-actin) is a ubiquitous component of eukaryotic cells and plays crucial roles in diverse physiological processes in plant cells, such as cytoplasmic streaming, organelle and nucleus positioning, cell morphogenesis, cell division, tip growth, etc.

  15. Plant programmed cell death, ethylene and flower senescence

    NARCIS (Netherlands)

    Woltering, E.J.; Jong, de A.; Hoeberichts, F.A.; Iakimova, E.T.; Kapchina, V.

    2005-01-01

    Programmed cell death (PCD) applies to cell death that is part of the normal life of multicellular organisms. PCD is found throughout the animal and plant kingdoms; it is an active process in which a cell suicide pathway is activated resulting in controlled disassembly of the cell. Most cases of PCD

  16. Plant cell wall proteomics: the leadership of Arabidopsis thaliana

    Directory of Open Access Journals (Sweden)

    Cécile eALBENNE

    2013-05-01

    Full Text Available Plant cell wall proteins (CWPs progressively emerged as crucial components of cell walls although present in minor amounts. Cell wall polysaccharides such as pectins, hemicelluloses and cellulose represent more than 90% of primary cell wall mass, whereas hemicelluloses, cellulose and lignins are the main components of lignified secondary walls. All these polymers provide mechanical properties to cell walls, participate in cell shape and prevent water loss in aerial organs. However, cells walls need to be modified and customized during plant development and in response to environmental cues, thus contributing to plant adaptation. CWPs play essential roles in all these physiological processes and particularly in the dynamics of cell walls, which requires organization and rearrangements of polysaccharides as well as cell-to-cell communication. In the last ten years, plant cell wall proteomics has greatly contributed to a wider knowledge of CWPs. This update will deal with (i a survey of plant cell wall proteomics studies with a focus on Arabidopsis thaliana; (ii the main protein families identified and the still missing peptides; (iii the persistent issue of the non-canonical CWPs; (iv the present challenges to overcome technological bottlenecks; and (v the perspectives beyond cell wall proteomics to understand CWP functions.

  17. Plant cell wall proteomics: the leadership of Arabidopsis thaliana.

    Science.gov (United States)

    Albenne, Cécile; Canut, Hervé; Jamet, Elisabeth

    2013-01-01

    Plant cell wall proteins (CWPs) progressively emerged as crucial components of cell walls although present in minor amounts. Cell wall polysaccharides such as pectins, hemicelluloses, and cellulose represent more than 90% of primary cell wall mass, whereas hemicelluloses, cellulose, and lignins are the main components of lignified secondary walls. All these polymers provide mechanical properties to cell walls, participate in cell shape and prevent water loss in aerial organs. However, cell walls need to be modified and customized during plant development and in response to environmental cues, thus contributing to plant adaptation. CWPs play essential roles in all these physiological processes and particularly in the dynamics of cell walls, which requires organization and rearrangements of polysaccharides as well as cell-to-cell communication. In the last 10 years, plant cell wall proteomics has greatly contributed to a wider knowledge of CWPs. This update will deal with (i) a survey of plant cell wall proteomics studies with a focus on Arabidopsis thaliana; (ii) the main protein families identified and the still missing peptides; (iii) the persistent issue of the non-canonical CWPs; (iv) the present challenges to overcome technological bottlenecks; and (v) the perspectives beyond cell wall proteomics to understand CWP functions.

  18. Fluorescent Probes for Exploring Plant Cell Wall Deconstruction: A Review

    Directory of Open Access Journals (Sweden)

    Gabriel Paës

    2014-07-01

    Full Text Available Plant biomass is a potential resource of chemicals, new materials and biofuels that could reduce our dependency on fossil carbon, thus decreasing the greenhouse effect. However, due to its chemical and structural complexity, plant biomass is recalcitrant to green biological transformation by enzymes, preventing the establishment of integrated bio-refineries. In order to gain more knowledge in the architecture of plant cell wall to facilitate their deconstruction, many fluorescent probes bearing various fluorophores have been devised and used successfully to reveal the changes in structural motifs during plant biomass deconstruction, and the molecular interactions between enzymes and plant cell wall polymers. Fluorescent probes are thus relevant tools to explore plant cell wall deconstruction.

  19. Super-resolution Microscopy in Plant Cell Imaging.

    Science.gov (United States)

    Komis, George; Šamajová, Olga; Ovečka, Miroslav; Šamaj, Jozef

    2015-12-01

    Although the development of super-resolution microscopy methods dates back to 1994, relevant applications in plant cell imaging only started to emerge in 2010. Since then, the principal super-resolution methods, including structured-illumination microscopy (SIM), photoactivation localization microscopy (PALM), stochastic optical reconstruction microscopy (STORM), and stimulated emission depletion microscopy (STED), have been implemented in plant cell research. However, progress has been limited due to the challenging properties of plant material. Here we summarize the basic principles of existing super-resolution methods and provide examples of applications in plant science. The limitations imposed by the nature of plant material are reviewed and the potential for future applications in plant cell imaging is highlighted.

  20. Hypoplastic uterus and clitoris enlargement in Swyer syndrome.

    Science.gov (United States)

    Hétu, Valérie; Caron, Evelyne; Francoeur, Diane

    2010-02-01

    Swyer syndrome is associated with absent testicular differentiation in a 46XY phenotypic female. A 17-year-old female presented with primary amenorrhea and 46XY karyotype. Breast and pubic hair development were Tanner 2, and clitoral enlargement was noted. Magnetic resonance imaging revealed a hypoplastic uterus and 2 "normal ovaries." Serum follicle-stimulating hormone and luteinizing hormone were elevated. Testosterone and androstenedione were in the female range. Dehydroepiandrosterone sulfate was slightly elevated. Laparoscopic bilateral gonadectomy was performed. Pathology reports showed bilateral microscopic benign hilar cell tumors. The diagnosis was a real puzzle for the clinicians because of the association of clitoral hypertrophy without hirsutism, female internal genitalia, and a 46XY karyotype. Clitoral enlargement can be explained by transient androgen secretion by the hilar cells found in the resected gonads. Copyright 2010 North American Society for Pediatric and Adolescent Gynecology. Published by Elsevier Inc. All rights reserved.

  1. Multidimensional solid-state NMR spectroscopy of plant cell walls.

    Science.gov (United States)

    Wang, Tuo; Phyo, Pyae; Hong, Mei

    2016-09-01

    Plant biomass has become an important source of bio-renewable energy in modern society. The molecular structure of plant cell walls is difficult to characterize by most atomic-resolution techniques due to the insoluble and disordered nature of the cell wall. Solid-state NMR (SSNMR) spectroscopy is uniquely suited for studying native hydrated plant cell walls at the molecular level with chemical resolution. Significant progress has been made in the last five years to elucidate the molecular structures and interactions of cellulose and matrix polysaccharides in plant cell walls. These studies have focused on primary cell walls of growing plants in both the dicotyledonous and grass families, as represented by the model plants Arabidopsis thaliana, Brachypodium distachyon, and Zea mays. To date, these SSNMR results have shown that 1) cellulose, hemicellulose, and pectins form a single network in the primary cell wall; 2) in dicot cell walls, the protein expansin targets the hemicellulose-enriched region of the cellulose microfibril for its wall-loosening function; and 3) primary wall cellulose has polymorphic structures that are distinct from the microbial cellulose structures. This article summarizes these key findings, and points out future directions of investigation to advance our fundamental understanding of plant cell wall structure and function.

  2. Incorporation of mammalian actin into microfilaments in plant cell nucleus

    Directory of Open Access Journals (Sweden)

    Paves Heiti

    2004-04-01

    Full Text Available Abstract Background Actin is an ancient molecule that shows more than 90% amino acid homology between mammalian and plant actins. The regions of the actin molecule that are involved in F-actin assembly are largely conserved, and it is likely that mammalian actin is able to incorporate into microfilaments in plant cells but there is no experimental evidence until now. Results Visualization of microfilaments in onion bulb scale epidermis cells by different techniques revealed that rhodamine-phalloidin stained F-actin besides cytoplasm also in the nuclei whereas GFP-mouse talin hybrid protein did not enter the nuclei. Microinjection of fluorescently labeled actin was applied to study the presence of nuclear microfilaments in plant cells. Ratio imaging of injected fluorescent rabbit skeletal muscle actin and phalloidin staining of the microinjected cells showed that mammalian actin was able to incorporate into plant F-actin. The incorporation occurred preferentially in the nucleus and in the perinuclear region of plant cells whereas part of plant microfilaments, mostly in the periphery of cytoplasm, did not incorporate mammalian actin. Conclusions Microinjected mammalian actin is able to enter plant cell's nucleus, whereas incorporation of mammalian actin into plant F-actin occurs preferentially in the nucleus and perinuclear area.

  3. Fuel Cell Power Plants Renewable and Waste Fuels

    Science.gov (United States)

    2011-01-13

    Fuel Cell Power Plants Renewable and Waste Fuels DOE-DOD Workshop Washington, DC. January 13, 2011 reliable, efficient, ultra-clean Report...2011 2. REPORT TYPE 3. DATES COVERED 00-00-2011 to 00-00-2011 4. TITLE AND SUBTITLE Fuel Cell Power Plants Renewable and Waste Fuels 5a. CONTRACT...Approved for public release; distribution unlimited 13. SUPPLEMENTARY NOTES presented at the DOE-DOD Waste-to-Energy using Fuel Cells Workshop held

  4. Advanced technologies for plant cell wall evolution and diversity

    DEFF Research Database (Denmark)

    Fangel, Jonatan Ulrik

    Plant cell walls consist of polysaccharides, glycoproteins and phenolic polymers interlinked together in a highly complex network. The detailed analysis of cell walls is challenging because of their inherent complexity and heterogeneity. Also, complex carbohydrates, unlike proteins and nucleotide...... angiosperms. This analysis has enabled cell wall diversity to be placed in a phylogenetic context, and, when integrated with transcriptomic and genomic analysis has contributed to our understanding of important aspects of plant evolution....

  5. Generalised Leukaemic Gingival Enlargement: a Case Report

    Directory of Open Access Journals (Sweden)

    Mechery Reenesh

    2012-09-01

    Full Text Available Background: Acute myeloblastic leukaemia is a malignant bone marrow neoplasm of myeloid precursors of white blood cells. Due to its high morbidity rate, early diagnosis and appropriate medical therapy is essential. Methods: The article highlights normal blood alterations like anaemia, thrombocytopenia, leukocytosis and advanced diagnostic aids like flow cytometry, special staining as a diagnostic modality as well as for prognostic information in acute leukaemia, particularly as a tool for assigning lineage and facilitating further pathologic classification which may be helpful in influencing treatment strategies.Results: On clinical examination the case presented with features of inflammatory gingival enlargement with presence of local deposits and calculus. Routine blood examination anaemia, thrombocytopenia, leukocytosis with haemoglobin 5.6 gm% and total leukocyte count of 1,12,000 / cu mm suggestive of leukaemia. Myeloperoxidase and leukocyte nonspecific esterase (NSE special stain were used which showed presence of myeloblasts in the peripheral smear suggestive of acute myelocytic leukaemia. Flow cytometry were done which further helped in interpretation of these cells which showed to be strongly positive for CD45, CD13, CD14, and anti HLADR and moderately positive for CD4, CD34 and Anti MPO confirming to be case of AML-M4 with 57.73% gating.Conclusions: Fact that gingival alterations are sometimes the first manifestations of the disease implies that dental professionals must be sufficiently familiarized with the clinical manifestations of systemic diseases. The timely referral by the general dentist for a suspicious lesion provided an early diagnosis and early intervention reducing the patient morbidity.

  6. PECULIARITIES OF SECONDARY METABOLITES BIOSYNTHESIS IN PLANT CELL CULTURES

    Directory of Open Access Journals (Sweden)

    A.M. NOSOV

    2014-06-01

    Full Text Available metabolites formation in plant cell cultures of Panax spp., (ginsenosides; Dioscorea deltoidea (steroid glycosides; Ajuga reptans, Serratula coronata, Rhaponticum carthamoides (ecdisteroids; Polyscias spp., (triterpene glycosides, Taxus spp. (taxoids, Stevia rebaudiana (diterpene steviol-glycosides, Stephania glabra (alkaloids. They are some regular trends of secondary metabolites synthesis in the plant cell culture:It can be noted the stable synthesis of the compound promoting cell proliferation. Indeed, cell cultures of Dioscorea deltoidea were demonstrated to accumulate only furostanol glycosides, which promoted cell division. Furostanol glycoside content of Dioscorea strain DM-0.5 was up to 6 - 12% by dry biomass.Panax ginseng and P. japonicus plant cell cultures synthesize as minimum seven triterpene glycosides (ginsenosides, the productivity of these compounds was up to 6.0 - 8.0% on dry biomass.By contrast, the detectable synthesis of diterpene steviol-glycosides in cultivated cells of Stevia rebaudiana initiated in the mixotrophic cultures during chloroplast formation only.Despite these differences, or mainly due to them, plant cell cultures have become an attractive source of phytochemicals in alternative to collecting wild plants. It provides a guideline to bioreactor-based production of isoprenoids using undifferentiated plant cell cultures. 

  7. Apoptotic-like programmed cell death in plants.

    Science.gov (United States)

    Reape, Theresa J; McCabe, Paul F

    2008-01-01

    Programmed cell death (PCD) is now accepted as a fundamental cellular process in plants. It is involved in defence, development and response to stress, and our understanding of these processes would be greatly improved through a greater knowledge of the regulation of plant PCD. However, there may be several types of PCD that operate in plants, and PCD research findings can be confusing if they are not assigned to a specific type of PCD. The various cell-death mechanisms need therefore to be carefully described and defined. This review describes one of these plant cell death processes, namely the apoptotic-like PCD (AL-PCD). We begin by examining the hallmark 'apoptotic-like' features (protoplast condensation, DNA degradation) of the cell's destruction that are characteristic of AL-PCD, and include examples of AL-PCD during the plant life cycle. The review explores the possible cellular 'executioners' (caspase-like molecules; mitochondria; de novo protein synthesis) that are responsible for the hallmark features of the cellular destruction. Finally, senescence is used as a case study to show that a rigorous definition of cell-death processes in plant cells can help to resolve arguments that occur in the scientific literature regarding the timing and control of plant cell death.

  8. Mechanisms of developmentally controlled cell death in plants.

    Science.gov (United States)

    Van Durme, Matthias; Nowack, Moritz K

    2016-02-01

    During plant development various forms of programmed cell death (PCD) are implemented by a number of cell types as inherent part of their differentiation programmes. Differentiation-induced developmental PCD is gradually prepared in concert with the other cell differentiation processes. As precocious or delayed PCD can have detrimental consequences for plant development, the actual execution of PCD has to be tightly controlled. Once triggered, PCD is irrevocably and rapidly executed accompanied by the breakdown of cellular compartments. In most developmental PCD forms, cell death is followed by cell corpse clearance. Devoid of phagocytic mechanisms, dying plant cells have to prepare their own demise in a cell-autonomous fashion before their deaths, ensuring the completion of cell clearance post mortem. Depending on the cell type, cell clearance can be complete or rather selective, and persistent corpses of particular cells accomplish vital functions in the plant body. The present review attempts to give an update on the molecular mechanisms that coordinate differentiation-induced PCD as vital part of plant development. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Plant response to heavy metals and organic pollutants in cell culture and at whole plant level

    Energy Technology Data Exchange (ETDEWEB)

    Golan-Goldhirsh, A.; Barazani, O. [Ben-Gurion Univ. of The Negev, The Jacob Blaustein Inst. for Desert Research, Albert Katz Dept. of Dryland Biotechnologies, Desert Plant Biotechnology Lab., Sede Boqer Campus (Israel); Nepovim, A.; Soudek, P.; Vanek, T. [Inst. of Organic Chemistry and Biochemistry (Czech Republic); Smrcek, S.; Dufkova, L.; Krenkova, S. [Faculty of Natural Sciences, Charles Univ. (Czech Republic); Yrjala, K. [Univ. of Helsinki, Dept. of Biosciences, Div. of General Microbiology, Helsinki (Finland); Schroeder, P. [Inst. for Soil Ecology, GSF National Research Center for Environment and Health, Neuherberg, Oberschleissheim (Germany)

    2004-07-01

    Background. Increasing awareness in the last decade concerning environmental quality had prompted research into 'green solutions' for soil and water remediation, progressing from laboratory in vitro experiments to pot and field trials. In vitro cell culture experiments provide a convenient system to study basic biological processes, by which biochemical pathways, enzymatic activity and metabolites can be specifically studied. However, it is difficult to relate cell cultures, calli or even hydroponic experiments to the whole plant response to pollutant stress. In the field, plants are exposed to additional a-biotic and biotic factors, which complicate further plant response. Hence, we often see that in vitro selected species perform poorly under soil and field conditions. Soil physical and chemical properties, plant-mycorrhizal association and soil-microbial activity affect the process of contaminant degradation by plants and/or microorganisms, pointing to the importance of pot and field experiments. Objective. This paper is a joint effort of a group of scientists in COST action 837. It represents experimental work and an overview on plant response to environmental stress from in vitro tissue culture to whole plant experiments in soil. Results. Results obtained from in vitro plant tissue cultures and whole plant hydroponic experiments indicate the phytoremediation potential of different plant species and the biochemical mechanisms involved in plant tolerance. In pot experiments, several selected desert plant species, which accumulated heavy metal in hydroponic systems, succeeded in accumulating the heavy metal in soil conditions as well. Conclusions and recommendations. In vitro plant tissue cultures provide a useful experimental system for the study of the mechanisms involved in the detoxification of organic and heavy metal pollutants. However, whole plant experimental systems, as well as hydroponics followed by pot and field trials, are essential when

  10. Root Border Cells and Their Role in Plant Defense.

    Science.gov (United States)

    Hawes, Martha; Allen, Caitilyn; Turgeon, B Gillian; Curlango-Rivera, Gilberto; Minh Tran, Tuan; Huskey, David A; Xiong, Zhongguo

    2016-08-01

    Root border cells separate from plant root tips and disperse into the soil environment. In most species, each root tip can produce thousands of metabolically active cells daily, with specialized patterns of gene expression. Their function has been an enduring mystery. Recent studies suggest that border cells operate in a manner similar to mammalian neutrophils: Both cell types export a complex of extracellular DNA (exDNA) and antimicrobial proteins that neutralize threats by trapping pathogens and thereby preventing invasion of host tissues. Extracellular DNases (exDNases) of pathogens promote virulence and systemic spread of the microbes. In plants, adding DNase I to root tips eliminates border cell extracellular traps and abolishes root tip resistance to infection. Mutation of genes encoding exDNase activity in plant-pathogenic bacteria (Ralstonia solanacearum) and fungi (Cochliobolus heterostrophus) results in reduced virulence. The study of exDNase activities in plant pathogens may yield new targets for disease control.

  11. An introduction to plant cell culture: the future ahead.

    Science.gov (United States)

    Loyola-Vargas, Víctor M; Ochoa-Alejo, Neftalí

    2012-01-01

    Plant cell, tissue, and organ culture (PTC) techniques were developed and established as an experimental necessity for solving important fundamental questions in plant biology, but they currently represent very useful biotechnological tools for a series of important applications such as commercial micropropagation of different plant species, generation of disease-free plant materials, production of haploid and doublehaploid plants, induction of epigenetic or genetic variation for the isolation of variant plants, obtention of novel hybrid plants through the rescue of hybrid embryos or somatic cell fusion from intra- or intergeneric sources, conservation of valuable plant germplasm, and is the keystone for genetic engineering of plants to produce disease and pest resistant varieties, to engineer metabolic pathways with the aim of producing specific secondary metabolites or as an alternative for biopharming. Some other miscellaneous applications involve the utilization of in vitro cultures to test toxic compounds and the possibilities of removing them (bioremediation), interaction of root cultures with nematodes or mycorrhiza, or the use of shoot cultures to maintain plant viruses. With the increased worldwide demand for biofuels, it seems that PTC will certainly be fundamental for engineering different plants species in order to increase the diversity of biofuel options, lower the price marketing, and enhance the production efficiency. Several aspects and applications of PTC such as those mentioned above are the focus of this edition.

  12. Small molecule probes for plant cell wall polysaccharide imaging

    Directory of Open Access Journals (Sweden)

    Ian eWallace

    2012-05-01

    Full Text Available Plant cell walls are composed of interlinked polymer networks consisting of cellulose, hemicelluloses, pectins, proteins, and lignin. The ordered deposition of these components is a dynamic process that critically affects the development and differentiation of plant cells. However, our understanding of cell wall synthesis and remodeling, as well as the diverse cell wall architectures that result from these processes, has been limited by a lack of suitable chemical probes that are compatible with live-cell imaging. In this review, we summarize the currently available molecular toolbox of probes for cell wall polysaccharide imaging in plants, with particular emphasis on recent advances in small molecule-based fluorescent probes. We also discuss the potential for further development of small molecule probes for the analysis of cell wall architecture and dynamics.

  13. Role of proline in cell wall synthesis and plant development and its implications in plant ontogeny

    Directory of Open Access Journals (Sweden)

    POLAVARAPU BILHAN KAVI KISHOR

    2015-07-01

    Full Text Available Proline is a proteogenic amino acid and accumulates both under stress and non-stress conditions as a beneficial solute in plants. Recent discoveries point out that proline plays an important role in plant growth and differentiation across life cycle. It is a key determinant of many cell wall proteins that plays important roles in plant development. The role of extensins (EXTs, arabinogalactan proteins (AGPs and hydroxyproline- and proline-rich proteins (H/PRPs as important components of cell wall proteins that play pivotal roles in cell wall signal transduction cascades, plant development and stress tolerance is discussed in this review. Molecular insights are also provided here into the plausible roles of proline transporters modulating key events in plant development. In addition, the roles of proline during seed developmental transitions including storage protein synthesis are discussed.

  14. Guard cell protoplasts: isolation, culture, and regeneration of plants.

    Science.gov (United States)

    Tallman, Gary

    2006-01-01

    Guard cell protoplasts have been used extensively in short-term experiments designed to elucidate the signal transduction mechanisms that regulate stomatal movements. The utility of uard cell protoplasts for other types of longer-term signal transduction experiments is just now being realized. Because highly purified, primary isolates of guard cell protoplasts are synchronous initially, they are uniform in their responses to changes in culture conditions. Such isolates have demonstrated potential to reveal mechanisms that underlie hormonal signalling for plant cell survival, cell cycle re-entry, reprogramming of genes during dedifferentiation to an embryogenic state, and plant cell thermotolerance. Plants have been regenerated from cultured guard cell protoplasts of two species: Nicotiana glauca (Graham), tree tobacco, and Beta vulgaris, sugar beet. Plants genetically engineered for herbicide tolerance have been regenerated from cultured guard cell protoplasts of B. vulgaris. The method for isolating, culturing, and regenerating plants from guard cell protoplasts of N. glauca is described here. A recently developed procedure for large-scale isolation of these cells from as many as nine leaves per experiment is described. Using this protocol, yields of 1.5-2 x 10(7) per isolate may be obtained. Such yields are sufficient for standard methods of molecular, biochemical, and proteomic analysis.

  15. Phospholipids trigger Cryptococcus neoformans capsular enlargement during interactions with amoebae and macrophages.

    Directory of Open Access Journals (Sweden)

    Cara J Chrisman

    2011-05-01

    Full Text Available A remarkable aspect of the interaction of Cryptococcus neoformans with mammalian hosts is a consistent increase in capsule volume. Given that many aspects of the interaction of C. neoformans with macrophages are also observed with amoebae, we hypothesized that the capsule enlargement phenomenon also had a protozoan parallel. Incubation of C. neoformans with Acanthamoeba castellanii resulted in C. neoformans capsular enlargement. The phenomenon required contact between fungal and protozoan cells but did not require amoeba viability. Analysis of amoebae extracts showed that the likely stimuli for capsule enlargement were protozoan polar lipids. Extracts from macrophages and mammalian serum also triggered cryptococcal capsular enlargement. C. neoformans capsule enlargement required expression of fungal phospholipase B, but not phospholipase C. Purified phospholipids, in particular, phosphatidylcholine, and derived molecules triggered capsular enlargement with the subsequent formation of giant cells. These results implicate phospholipids as a trigger for both C. neoformans capsule enlargement in vivo and exopolysaccharide production. The observation that the incubation of C. neoformans with phospholipids led to the formation of giant cells provides the means to generate these enigmatic cells in vitro. Protozoan- or mammalian-derived polar lipids could represent a danger signal for C. neoformans that triggers capsular enlargement as a non-specific defense mechanism against potential predatory cells. Hence, phospholipids are the first host-derived molecules identified to trigger capsular enlargement. The parallels apparent in the capsular response of C. neoformans to both amoebae and macrophages provide additional support for the notion that certain aspects of cryptococcal virulence emerged as a consequence of environmental interactions with other microorganisms such as protists.

  16. Hosting the plant cells in vitro: recent trends in bioreactors.

    Science.gov (United States)

    Georgiev, Milen I; Eibl, Regine; Zhong, Jian-Jiang

    2013-05-01

    Biotechnological production of high-value metabolites and therapeutic proteins by plant in vitro systems has been considered as an attractive alternative of classical technologies. Numerous proof-of-concept studies have illustrated the feasibility of scaling up plant in vitro system-based processes while keeping their biosynthetic potential. Moreover, several commercial processes have been established so far. Though the progress on the field is still limited, in the recent years several bioreactor configurations has been developed (e.g., so-called single-use bioreactors) and successfully adapted for growing plant cells in vitro. This review highlights recent progress and limitations in the bioreactors for plant cells and outlines future perspectives for wider industrialization of plant in vitro systems as "green cell factories" for sustainable production of value-added molecules.

  17. Formation and maintenance of the Golgi apparatus in plant cells.

    Science.gov (United States)

    Ito, Yoko; Uemura, Tomohiro; Nakano, Akihiko

    2014-01-01

    The Golgi apparatus plays essential roles in intracellular trafficking, protein and lipid modification, and polysaccharide synthesis in eukaryotic cells. It is well known for its unique stacked structure, which is conserved among most eukaryotes. However, the mechanisms of biogenesis and maintenance of the structure, which are deeply related to ER-Golgi and intra-Golgi transport systems, have long been mysterious. Now having extremely powerful microscopic technologies developed for live-cell imaging, the plant Golgi apparatus provides an ideal system to resolve the question. The plant Golgi apparatus has unique features that are not conserved in other kingdoms, which will also give new insights into the Golgi functions in plant life. In this review, we will summarize the features of the plant Golgi apparatus and transport mechanisms around it, with a focus on recent advances in Golgi biogenesis by live imaging of plants cells.

  18. Body-enlarging effect of royal jelly in a non-holometabolous insect species, Gryllus bimaculatus

    Directory of Open Access Journals (Sweden)

    Atsushi Miyashita

    2016-06-01

    Full Text Available Honeybee royal jelly is reported to have body-enlarging effects in holometabolous insects such as the honeybee, fly and silkmoth, but its effect in non-holometabolous insect species has not yet been examined. The present study confirmed the body-enlarging effect in silkmoths fed an artificial diet instead of mulberry leaves used in the previous literature. Administration of honeybee royal jelly to silkmoth from early larval stage increased the size of female pupae and adult moths, but not larvae (at the late larval stage or male pupae. We further examined the body-enlarging effect of royal jelly in a non-holometabolous species, the two-spotted cricket Gryllus bimaculatus, which belongs to the evolutionarily primitive group Polyneoptera. Administration of royal jelly to G. bimaculatus from its early nymph stage enlarged both males and females at the mid-nymph and adult stages. In the cricket, the body parts were uniformly enlarged in both males and females; whereas the enlarged female silkmoths had swollen abdomens. Administration of royal jelly increased the number, but not the size, of eggs loaded in the abdomen of silkmoth females. In addition, fat body cells were enlarged by royal jelly in the silkmoth, but not in the cricket. These findings suggest that the body-enlarging effect of royal jelly is common in non-holometabolous species, G. bimaculatus, but it acts in a different manner than in holometabolous species.

  19. Cytokinesis in plant and animal cells: endosomes 'shut the door'.

    Science.gov (United States)

    Baluska, Frantisek; Menzel, Diedrik; Barlow, Peter W

    2006-06-01

    For many years, cytokinesis in eukaryotic cells was considered to be a process that took a variety of forms. This is rather surprising in the face of an apparently conservative mitosis. Animal cytokinesis was described as a process based on an actomyosin-based contractile ring, assembling, and acting at the cell periphery. In contrast, cytokinesis of plant cells was viewed as the centrifugal generation of a new cell wall by fusion of Golgi apparatus-derived vesicles. However, recent advances in animal and plant cell biology have revealed that many features formerly considered as plant-specific are, in fact, valid also for cytokinetic animal cells. For example, vesicular trafficking has turned out to be important not only for plant but also for animal cytokinesis. Moreover, the terminal phase of animal cytokinesis based on midbody microtubule activity resembles plant cytokinesis in that interdigitating microtubules play a decisive role in the recruitment of cytokinetic vesicles and directing them towards the cytokinetic spaces which need to be plugged by fusing endosomes. Presently, we are approaching another turning point which brings cytokinesis in plant and animal cells even closer. As an unexpected twist, new studies reveal that both plant and animal cytokinesis is driven not so much by Golgi-derived vesicles but rather by homotypically and heterotypically fusing endosomes. These are generated from cytokinetic cortical sites defined by preprophase microtubules and contractile actomyosin ring, which induce local endocytosis of both the plasma membrane and cell wall material. Finally, plant and animal cytokinesis meet together at the physical separation of daughter cells despite obvious differences in their preparatory events.

  20. Plant and algal cell walls: diversity and functionality.

    Science.gov (United States)

    Popper, Zoë A; Ralet, Marie-Christine; Domozych, David S

    2014-10-01

    Although plants and many algae (e.g. the Phaeophyceae, brown, and Rhodophyceae, red) are only very distantly related they are united in their possession of carbohydrate-rich cell walls, which are of integral importance being involved in many physiological processes. Furthermore,wall components have applications within food, fuel, pharmaceuticals, fibres (e.g. for textiles and paper) and building materials and have long been an active topic of research. As shown in the 27 papers in this Special Issue, as the major deposit of photosynthetically fixed carbon, and therefore energy investment, cell walls are of undisputed importance to the organisms that possess them, the photosynthetic eukaryotes ( plants and algae). The complexities of cell wall components along with their interactions with the biotic and abiotic environment are becoming increasingly revealed. The importance of plant and algal cell walls and their individual components to the function and survival of the organism, and for a number of industrial applications, are illustrated by the breadth of topics covered in this issue, which includes papers concentrating on various plants and algae, developmental stages, organs, cell wall components, and techniques. Although we acknowledge that there are many alternative ways in which the papers could be categorized (and many would fit within several topics), we have organized them as follows: (1) cell wall biosynthesis and remodelling, (2) cell wall diversity, and (3) application of new technologies to cell walls. Finally, we will consider future directions within plant cell wall research. Expansion of the industrial uses of cell walls and potentially novel uses of cell wall components are both avenues likely to direct future research activities. Fundamentally, it is the continued progression from characterization (structure, metabolism, properties and localization) of individual cell wall components through to defining their roles in almost every aspect of plant

  1. New fuel cell plants and power sources for submarines

    Energy Technology Data Exchange (ETDEWEB)

    Nikiforov, B.; Sokolov, V. [CDB ME ' ' Rubin' ' (Russian Federation)

    2000-07-01

    The existing storage batteries for submarines have been analyzed, the quality of their design has been estimated and a power plant with electrochemical generators (fuel cells) has been suggested as an electric energy source. The history and the status of power plant design in Russia have been reflected. (authors)

  2. The role of the cell wall in plant immunity

    DEFF Research Database (Denmark)

    Malinovsky, Frederikke Gro; Fangel, Jonatan Ulrik; Willats, William George Tycho

    2014-01-01

    The battle between plants and microbes is evolutionarily ancient, highly complex, and often co-dependent. A primary challenge for microbes is to breach the physical barrier of host cell walls whilst avoiding detection by the plant's immune receptors. While some receptors sense conserved microbial...

  3. The Nucleolonema of Plant and Animal Cells: A Comparison

    OpenAIRE

    Deltour, Roger; Motte, Patrick

    1990-01-01

    Depending on the author and the animal or plant origin of the material under study, the term "nucleolonema" is used in different contexts and thus indicates nucleolar ultrastructures that are different. In this paper, we attempt to clarify this state of affairs and to propose a definition for the plant cell nucleolonema. Peer reviewed

  4. Aortic Annular Enlargement during Aortic Valve Replacement

    Directory of Open Access Journals (Sweden)

    Selman Dumani

    2016-09-01

    Full Text Available In the surgery of aortic valve replacement is always attempted, as much as possible, to implant the larger prosthesis with the mains goals to enhance the potential benefits, to minimise transvalvular gradient, decrease left ventricular size and avoid the phenomenon of patient-prosthesis mismatch. Implantation of an ideal prosthesis often it is not possible, due to a small aortic annulus. A variety of aortic annulus enlargement techniques is reported to avoid patient-prosthesis mismatch. We present the case that has submitted four three times open heart surgery. We used Manouguian technique to enlarge aortic anulus with excellent results during the fourth time of surgery.

  5. Atypical And Severe Enlargement Of Right Atrium.

    Science.gov (United States)

    Siniscalchi, Carmine; Rossetti, Pietro; Rocci, Anna; Rubino, Pasquale; Basaglia, Manuela; Gaibazzi, Nicola; Quintavalla, Roberto

    2016-09-13

    A 76 year-old woman was admitted to the Emergency Department for recent-onset dyspnea and cough. The electrocardiogram was considered inconclusive. A thoracic X-ray showed global cardiac profile enlargement. Computed tomography, acutely performed in the clinical suspicion of atypical pneumonia/myocarditis or pericardial effusion, showed cardiac enlargement especially of the right chambers. In order to investigate Ebstein's anomaly, pericardial cysts, tumors or other conditions of the right heart a simple trans-thoracic echocardiogram was performed. Four chambers view showed a giant right atrium aneurysm with moderate tricuspid regurgitation without stenosis or typical Ebstein's echocardiographic pattern.

  6. Specification of Epidermal Cell Fate in Plant Shoots

    Directory of Open Access Journals (Sweden)

    Shinobu eTakada

    2014-02-01

    Full Text Available Land plants have evolved a single layer of epidermal cells, which are characterized by mostly anticlinal cell division patterns, formation of a waterproof coat called cuticle, and unique cell types such as stomatal guard cells and trichomes. The shoot epidermis plays important roles not only to protect plants from dehydration and pathogens but also to ensure their proper organogenesis and growth control. Extensive molecular genetic studies in Arabidopsis and maize have identified a number of genes that are required for epidermal cell differentiation. However, the mechanism that specifies shoot epidermal cell fate during plant organogenesis remains largely unknown. Particularly, little is known regarding positional information that should restrict epidermal cell fate to the outermost cell layer of the developing organs. Recent studies suggested that certain members of the HD-ZIP class IV homeobox genes are possible master regulators of shoot epidermal cell fate. Here, we summarize the roles of the regulatory genes that are involved in epidermal cell fate specification and discuss the possible mechanisms that limit the expression and/or activity of the master transcriptional regulators to the outermost cell layer in plant shoots.

  7. Asymmetric cell divisions: a view from plant development.

    Science.gov (United States)

    Abrash, Emily B; Bergmann, Dominique C

    2009-06-01

    All complex multicellular organisms must solve the problem of generating diverse and appropriately patterned cell types. Asymmetric division, in which a single mother cell gives rise to daughters with distinct identities, is instrumental in the generation of cellular diversity and higher-level patterns. In animal systems, there exists considerable evidence for conserved mechanisms of polarization and asymmetric division. Here, we consider asymmetric cell divisions in plants, highlighting the unique aspects of plant cell biology and organismal development that constrain the process, but also emphasizing conceptual and mechanistic similarities with animal asymmetric divisions.

  8. Structural Studies of Complex Carbohydrates of Plant Cell Walls

    Energy Technology Data Exchange (ETDEWEB)

    Darvill, Alan [Univ. of Georgia, Athens, GA (United States); Hahn, Michael G. [Univ. of Georgia, Athens, GA (United States); O' Neill, Malcolm A. [Univ. of Georgia, Athens, GA (United States); York, William S. [Univ. of Georgia, Athens, GA (United States)

    2015-02-17

    Most of the solar energy captured by land plants is converted into the polysaccharides (cellulose, hemicellulose, and pectin) that are the predominant components of the cell wall. These walls, which account for the bulk of plant biomass, have numerous roles in the growth and development of plants. Moreover, these walls have a major impact on human life as they are a renewable source of biomass, a source of diverse commercially useful polymers, a major component of wood, and a source of nutrition for humans and livestock. Thus, understanding the molecular mechanisms that lead to wall assembly and how cell walls and their component polysaccharides contribute to plant growth and development is essential to improve and extend the productivity and value of plant materials. The proposed research will develop and apply advanced analytical and immunological techniques to study specific changes in the structures and interactions of the hemicellulosic and pectic polysaccharides that occur during differentiation and in response to genetic modification and chemical treatments that affect wall biosynthesis. These new techniques will make it possible to accurately characterize minute amounts of cell wall polysaccharides so that subtle changes in structure that occur in individual cell types can be identified and correlated to the physiological or developmental state of the plant. Successful implementation of this research will reveal fundamental relationships between polysaccharide structure, cell wall architecture, and cell wall functions.

  9. Heat stress induces ferroptosis-like cell death in plants

    Science.gov (United States)

    D’Ippólito, Sebastián; Colman, Silvana Lorena; Soto, Débora; Bartoli, Carlos Guillermo; Fiol, Diego Fernando

    2017-01-01

    In plants, regulated cell death (RCD) plays critical roles during development and is essential for plant-specific responses to abiotic and biotic stresses. Ferroptosis is an iron-dependent, oxidative, nonapoptotic form of cell death recently described in animal cells. In animal cells, this process can be triggered by depletion of glutathione (GSH) and accumulation of lipid reactive oxygen species (ROS). We investigated whether a similar process could be relevant to cell death in plants. Remarkably, heat shock (HS)–induced RCD, but not reproductive or vascular development, was found to involve a ferroptosis-like cell death process. In root cells, HS triggered an iron-dependent cell death pathway that was characterized by depletion of GSH and ascorbic acid and accumulation of cytosolic and lipid ROS. These results suggest a physiological role for this lethal pathway in response to heat stress in Arabidopsis thaliana. The similarity of ferroptosis in animal cells and ferroptosis-like death in plants suggests that oxidative, iron-dependent cell death programs may be evolutionarily ancient. PMID:28100685

  10. Centrality of host cell death in plant-microbe interactions.

    Science.gov (United States)

    Dickman, Martin B; Fluhr, Robert

    2013-01-01

    Programmed cell death (PCD) is essential for proper growth, development, and cellular homeostasis in all eukaryotes. The regulation of PCD is of central importance in plant-microbe interactions; notably, PCD and features associated with PCD are observed in many host resistance responses. Conversely, pathogen induction of inappropriate cell death in the host results in a susceptible phenotype and disease. Thus, the party in control of PCD has a distinct advantage in these battles. PCD processes appear to be of ancient origin, as indicated by the fact that many features of cell death strategy are conserved between animals and plants; however, some of the details of death execution differ. Mammalian core PCD genes, such as caspases, are not present in plant genomes. Similarly, pro- and antiapoptotic mammalian regulatory elements are absent in plants, but, remarkably, when expressed in plants, successfully impact plant PCD. Thus, subtle structural similarities independent of sequence homology appear to sustain operational equivalence. The vacuole is emerging as a key organelle in the modulation of plant PCD. Under different signals for cell death, the vacuole either fuses with the plasmalemma membrane or disintegrates. Moreover, the vacuole appears to play a key role in autophagy; evidence suggests a prosurvival function for autophagy, but other studies propose a prodeath phenotype. Here, we describe and discuss what we know and what we do not know about various PCD pathways and how the host integrates signals to activate salicylic acid and reactive oxygen pathways that orchestrate cell death. We suggest that it is not cell death as such but rather the processes leading to cell death that contribute to the outcome of a given plant-pathogen interaction.

  11. Polarity establishment, morphogenesis, and cultured plant cells in space

    Science.gov (United States)

    Krikorian, Abraham D.

    1989-01-01

    Plant development entails an orderly progression of cellular events both in terms of time and geometry. There is only circumstantial evidence that, in the controlled environment of the higher plant embryo sac, gravity may play a role in embryo development. It is still not known whether or not normal embryo development and differentiation in higher plants can be expected to take place reliably and efficiently in the micro g space environment. It seems essential that more attention be given to studying aspects of reproductive biology in order to be confident that plants will survive seed to seed to seed in a space environment. Until the time arrives when successive generations of plants can be grown, the best that can be done is utilize the most appropriate systems and begin, piece meal, to accumulate information on important aspects of plant reproduction. Cultured plant cells can play an important role in these activities since they can be grown so as to be morphogenetically competent, and thus can simulate those embryogenic events more usually identified with fertilized eggs in the embryo sac of the ovule in the ovary. Also, they can be manipulated with relative ease. The extreme plasticity of such demonstrably totipotent cell systems provides a means to test environmental effects such as micro g on a potentially free-running entity. The successful manipulation and management of plant cells and propagules in space also has significance for exploitation of biotechnologies in space since such systems, perforce, are an important vehicle whereby many genetic engineering manipulations are achieved.

  12. ES1 is a mitochondrial enlarging factor contributing to form mega-mitochondria in zebrafish cones.

    Science.gov (United States)

    Masuda, Takamasa; Wada, Yasutaka; Kawamura, Satoru

    2016-03-01

    Total mass of mitochondria increases during cell proliferation and differentiation through mitochondrial biogenesis, which includes mitochondrial proliferation and growth. During the mitochondrial growth, individual mitochondria have been considered to be enlarged independently of mitochondrial fusion. However, molecular basis for this enlarging process has been poorly understood. Cone photoreceptor cells in the retina possess large mitochondria, so-called mega-mitochondria that have been considered to arise via the enlarging process. Here we show that ES1 is a novel mitochondria-enlarging factor contributing to form mega-mitochondria in cones. ES1 is specifically expressed in cones and localized to mitochondria including mega-mitochondria. Knockdown of ES1 markedly reduced the mitochondrial size in cones. In contrast, ectopic expression of ES1 in rods significantly increased both the size of individual mitochondria and the total mass of the mitochondrial cluster without changing the number of them. RNA-seq analysis showed that ERRα and its downstream mitochondrial genes were significantly up-regulated in the ES1-expressing rods, suggesting facilitation of mitochondrial enlargement via ERRα-dependent processes. Furthermore, higher energy state was detected in the ES1-expressing rods, indicating that the enlarged mitochondria by ES1 are capable of producing high energy. ES1 is the mitochondrial protein that is first found to promote enlargement of individual mitochondria.

  13. From plants to animals; the role of plant cell death in ruminant herbivores.

    Science.gov (United States)

    Kingston-Smith, Alison H; Davies, Teri E; Edwards, Joan E; Theodorou, Michael K

    2008-01-01

    Plant cell death occurring as a result of adverse environmental conditions is known to limit crop production. It is less well recognized that plant cell death processes can also contribute to the poor environmental footprint of ruminant livestock production. Although the forage cells ingested by grazing ruminant herbivores will ultimately die, the lack of oxygen, elevated temperature, and challenge by microflora experienced in the rumen induce regulated plant stress responses resulting in DNA fragmentation and autolytic protein breakdown during the cell death process. Excessive ruminal proteolysis contributes to the inefficient conversion of plant to microbial and animal protein which results in up to 70% of the ingested nitrogen being returned to the land as the nitrogenous pollutants ammonia and urea. This constitutes a significant challenge for sustainable livestock production. As it is estimated that 25% of cultivated land worldwide is assigned to livestock production, it is clear that understanding the fundamental biology underlying cell death in ingested forage will have a highly significant role in minimizing the impact of human activities. This review examines our current understanding of plant metabolism in the rumen and explores opportunities for exploitation of plant genetics to advance sustainable land use.

  14. Nato enlarging into the Baltic States

    Index Scriptorium Estoniae

    2003-01-01

    Prahas 21.-22. novembrini 2002 toimunud NATO tippkohtumisest ja seal vastu võetud otsusest Balti riikide alliansiga ühinemise kohta. Vt. samas: Russia's attitude to the NATO enlargement; Bush in Vilnius; Baltic states' prime ministers' met; Supporting USA?

  15. Penile Enlargement : From Medication to Surgery

    NARCIS (Netherlands)

    Nugteren, Helena M.; Balkema, G. T.; Pascal, A. L.; Schultz, W. C. M. Weijmar; Nijman, J. M.; Van Driel, M. F.

    2010-01-01

    Penis lengthening pills, stretch apparatus, vacuum pumps, silicone injections, and lengthening and thickening operations are available for men who worry about their penis size. Surgery is thus far the only proven scientific method for penile enlargement. In this article, we consider patient

  16. Field-enlarging transformations and chiral theories

    CERN Document Server

    Sladkowski, J

    1995-01-01

    A field-enlarging transformation in the chiral electrodynamics is performed. This introduces an additional gauge symmetry to the model that is unitary and anomaly-free and allows for comparison of different models discussed in the literature. The problem of superfluous degrees of freedom and their influence on quantization is discussed. Several "mysteries" are explained from this point of view.

  17. A rapidly enlarging cutaneous hemangioma in pregnancy.

    LENUS (Irish Health Repository)

    Ma'ayeh, Marwan

    2014-06-18

    This is a case of a rapidly enlarging cutaneous pedunculated tumor on a patient\\'s thumb during her pregnancy. This was excised and identified as a hemangioma. A literature search identified a possible hormonal factor in causing an accelerated growth of this tumor.

  18. A rapidly enlarging cutaneous hemangioma in pregnancy

    Directory of Open Access Journals (Sweden)

    Marwan Ma’ayeh

    2014-10-01

    Full Text Available This is a case of a rapidly enlarging cutaneous pedunculated tumor on a patient’s thumb during her pregnancy. This was excised and identified as a hemangioma. A literature search identified a possible hormonal factor in causing an accelerated growth of this tumor.

  19. Nato enlarging into the Baltic States

    Index Scriptorium Estoniae

    2003-01-01

    Prahas 21.-22. novembrini 2002 toimunud NATO tippkohtumisest ja seal vastu võetud otsusest Balti riikide alliansiga ühinemise kohta. Vt. samas: Russia's attitude to the NATO enlargement; Bush in Vilnius; Baltic states' prime ministers' met; Supporting USA?

  20. Subdifferentials of Distance Functions, Approximations and Enlargements

    Institute of Scientific and Technical Information of China (English)

    Jean-Paul PENOT; Robert RATSIMAHALO

    2007-01-01

    In this work, we study some subdifferentials of the distance function to a nonempty non-convex closed subset of a general Banach space. We relate them to the normal cone of the enlargements of the set which can be considered as regularizations of the set.

  1. Hearts and Flowers: Learning To Enlarge Images.

    Science.gov (United States)

    Kalil, Judy

    2003-01-01

    Describes a lesson that teaches kindergarten students how to enlarge a smaller drawing onto a bigger piece of paper. Explains that the students create their heart-shape designs using tempera paint and pastels in the larger picture. Includes a list of materials. (CMK)

  2. Liver enlargement demonstrated by scintigraphy in rheumatoid arthritis

    Energy Technology Data Exchange (ETDEWEB)

    Tiger, L.H.; Gordon, M.H.; Ehrlich, G.E.; Shapiro, B.

    1976-03-01

    Scintigraphic scanning employing technetium-99m sulfur colloid was used to assess the size of the liver and spleen in 32 consecutive patients with rheumatoid arthritis. The data were correlated with clinical and laboratory assessment. Seven patients had enlarged livers, three enlarged spleens. An expected correlation of liver enlargement with Sjogren's syndrome did not materialize. Splenic enlargement and liver enlargement were discordant. Liver enlargement correlation best with elevations of rheumatoid factor as measured by latex fixation. As liver enlargement is not an appreciated feature of rheumatoid arthritis, these findings suggest that hepatomegaly need not necessarily imply adverse treatment results or the development of lymphoproliferative disorders.

  3. The Untapped Potential Of Plant Thin Cell Layers

    Directory of Open Access Journals (Sweden)

    Teixeira da Silva Jaime

    2015-12-01

    Full Text Available Thin cell layers (TCLs, which contain a small number of cells or tissues, are explants excised from different organs (stems, leaves, roots, inflorescences, flowers, cotyledons, hypocotyls/epicotyls, and embryos. After almost 45 years of research, this culture system has been used for several monocotyledonous and dicotyledonous plants of commercial importance, and for model plants. The limited amount of cells in a TCL is of paramount importance because marker molecules/genes of differentiation can be easily localized in situ in the target/responsive cells. Thus, the use of TCLs has allowed, and continues to allow, for the expansion of knowledge in plant research in a practical and applied manner into the fields of tissue culture and micropropagation, cell and organ genetics, molecular biology, biochemistry, and development. Starting from a brief historical background, the actual and potential uses of the TCL system are briefly reviewed.

  4. Plant cell culture strategies for the production of natural products.

    Science.gov (United States)

    Ochoa-Villarreal, Marisol; Howat, Susan; Hong, SunMi; Jang, Mi Ok; Jin, Young-Woo; Lee, Eun-Kyong; Loake, Gary J

    2016-03-01

    Plants have evolved a vast chemical cornucopia to support their sessile lifestyles. Man has exploited this natural resource since Neolithic times and currently plant-derived chemicals are exploited for a myriad of applications. However, plant sources of most high-value natural products (NPs) are not domesticated and therefore their production cannot be undertaken on an agricultural scale. Further, these plant species are often slow growing, their populations limiting, the concentration of the target molecule highly variable and routinely present at extremely low concentrations. Plant cell and organ culture constitutes a sustainable, controllable and environmentally friendly tool for the industrial production of plant NPs. Further, advances in cell line selection, biotransformation, product secretion, cell permeabilisation, extraction and scale-up, among others, are driving increases in plant NP yields. However, there remain significant obstacles to the commercial synthesis of high-value chemicals from these sources. The relatively recent isolation, culturing and characterisation of cambial meristematic cells (CMCs), provides an emerging platform to circumvent many of these potential difficulties. [BMB Reports 2016; 49(3): 149-158].

  5. Plant Cell Cultures as Source of Cosmetic Active Ingredients

    Directory of Open Access Journals (Sweden)

    Ani Barbulova

    2014-04-01

    Full Text Available The last decades witnessed a great demand of natural remedies. As a result, medicinal plants have been increasingly cultivated on a commercial scale, but the yield, the productive quality and the safety have not always been satisfactory. Plant cell cultures provide useful alternatives for the production of active ingredients for biomedical and cosmetic uses, since they represent standardized, contaminant-free and biosustainable systems, which allow the production of desired compounds on an industrial scale. Moreover, thanks to their totipotency, plant cells grown as liquid suspension cultures can be used as “biofactories” for the production of commercially interesting secondary metabolites, which are in many cases synthesized in low amounts in plant tissues and differentially distributed in the plant organs, such as roots, leaves, flowers or fruits. Although it is very widespread in the pharmaceutical industry, plant cell culture technology is not yet very common in the cosmetic field. The aim of the present review is to focus on the successful research accomplishments in the development of plant cell cultures for the production of active ingredients for cosmetic applications.

  6. Programmed cell death in C. elegans, mammals and plants.

    Science.gov (United States)

    Lord, Christina E N; Gunawardena, Arunika H L A N

    2012-08-01

    Programmed cell death (PCD) is the regulated removal of cells within an organism and plays a fundamental role in growth and development in nearly all eukaryotes. In animals, the model organism Caenorhabditis elegans (C. elegans) has aided in elucidating many of the pathways involved in the cell death process. Various analogous PCD processes can also be found within mammalian PCD systems, including vertebrate limb development. Plants and animals also appear to share hallmarks of PCD, both on the cellular and molecular level. Cellular events visualized during plant PCD resemble those seen in animals including: nuclear condensation, DNA fragmentation, cytoplasmic condensation, and plasma membrane shrinkage. Recently the molecular mechanisms involved in plant PCD have begun to be elucidated. Although few regulatory proteins have been identified as conserved across all eukaryotes, molecular features such as the participation of caspase-like proteases, Bcl-2-like family members and mitochondrial proteins appear to be conserved between plant and animal systems. Transgenic expression of mammalian and C. elegans pro- and anti-apoptotic genes in plants has been observed to dramatically influence the regulatory pathways of plant PCD. Although these genes often show little to no sequence similarity they can frequently act as functional substitutes for one another, thus suggesting that action may be more important than sequence resemblance. Here we present a summary of these findings, focusing on the similarities, between mammals, C. elegans, and plants. An emphasis will be placed on the mitochondria and its role in the cell death pathway within each organism. Through the comparison of these systems on both a cellular and molecular level we can begin to better understand PCD in plant systems, and perhaps shed light on the pathways, which are controlling the process. This manuscript adds to the field of PCD in plant systems by profiling apoptotic factors, to scale on a protein

  7. Chromosomes and plant cell division in space

    Science.gov (United States)

    Krikorian, A. D.

    1988-01-01

    The objectives were: examination of chromosomal aberrations; development of an experimental system; and engineering design units (EDUs) evaluation. Evaluation criteria are presented. Procedures were developed for shuttle-based investigations which result in the procurement of plant root tips for subsequent cytological examination.

  8. Trichomes as models for studying plant cell differentiation.

    Science.gov (United States)

    Yang, Changxian; Ye, Zhibiao

    2013-06-01

    Trichomes, originating from epidermal cells, are present on nearly all terrestrial plants. They exist in diverse forms, are readily accessible, and serve as an excellent model system for analyzing the molecular mechanisms in plant cell differentiation, including cell fate choices, cell cycle control, and cell morphogenesis. In Arabidopsis, two regulatory models have been identified that function in parallel in trichome formation; the activator-inhibitor model and the activator-depletion model. Cotton fiber, a similar unicellular structure, is controlled by some functional homologues of Arabidopsis trichome-patterning genes. Multicellular trichomes, as in tobacco and tomato, may form through a distinct pathway from unicellular trichomes. Recent research has shown that cell cycle control participates in trichome formation. In this review, we summarize the molecular mechanisms involved in the formation of unicellular and multicellular trichomes, and discuss the integration of the cell cycle in its initiation and morphogenesis.

  9. Increase of the processing capacity through modification and enlargement of the assets areas preparation and waste water purification in the fermentation plant Kirchstockach; Durchsatzsteigerung der Vergaerungsanlage Kirchstockach durch Umbau und Erweiterung der Anlagenbereiche Aufbereitung und Prozesswasserreinigung

    Energy Technology Data Exchange (ETDEWEB)

    Kirschenhofer, M. [LRA Muenchen (Germany). Tiefbau, Verkehrsplanung, Abfallwirtschaft; Kroner, T. [ia GmbH - Wissensmanagement und Ingenieurleistungen, Muenchen (Germany). Bereich Kommunale Abfallwirtschaft und Energie; Niefnecker, U. [M. Ganser GmbH und Co. Entsorgungsbetriebe KG, Brunnthal/Kirchstockach (Germany)

    2006-04-15

    At the fermentation plant Kirchstockach the operations for the rectification of deficiencies and process optimisations were completed in 2004. Now process results of 2005 show the success of the performed actions. In the asset area of preparations the existing rake discharge system was removed and the use of the new discharge reservoir with a drainage coil conveyor system minimises deadlock times and rises preparations throughput. With the new set-up of the light material presses the process procedure was optimised, too. The installation of the new process water reservoir was conditional on the non-uniform hydraulic load of the waste-water purification, which results from the operation of the facility. With the higher buffer capacity, realised by the new process water reservoir, a uniform hydraulic load of the purification system and an optimised process control was implemented. With the optimised performance of the wastewater purification wastewater thresholds are guaranteed now and it is possible to realise the increased throughput of the preparation in the complete system of the fermentation plant Kirchstockach. (orig.)

  10. Structure and function of endosomes in plant cells.

    Science.gov (United States)

    Contento, Anthony L; Bassham, Diane C

    2012-08-01

    Endosomes are a heterogeneous collection of organelles that function in the sorting and delivery of internalized material from the cell surface and the transport of materials from the Golgi to the lysosome or vacuole. Plant endosomes have some unique features, with an organization distinct from that of yeast or animal cells. Two clearly defined endosomal compartments have been studied in plant cells, the trans-Golgi network (equivalent to the early endosome) and the multivesicular body (equivalent to the late endosome), with additional endosome types (recycling endosome, late prevacuolar compartment) also a possibility. A model has been proposed in which the trans-Golgi network matures into a multivesicular body, which then fuses with the vacuole to release its cargo. In addition to basic trafficking functions, endosomes in plant cells are known to function in maintenance of cell polarity by polar localization of hormone transporters and in signaling pathways after internalization of ligand-bound receptors. These signaling functions are exemplified by the BRI1 brassinosteroid hormone receptor and by receptors for pathogen elicitors that activate defense responses. After endocytosis of these receptors from the plasma membrane, endosomes act as a signaling platform, thus playing an essential role in plant growth, development and defense responses. Here we describe the key features of plant endosomes and their differences from those of other organisms and discuss the role of these organelles in cell polarity and signaling pathways.

  11. Space radiation effects on plant and mammalian cells

    Science.gov (United States)

    Arena, C.; De Micco, V.; Macaeva, E.; Quintens, R.

    2014-11-01

    The study of the effects of ionizing radiation on organisms is related to different research aims. The current review emphasizes the studies on the effects of different doses of sparsely and densely ionizing radiation on living organisms, with the final purpose of highlighting specific and common effects of space radiation in mammals and plants. This topic is extremely relevant in the context of radiation protection from space environment. The response of different organisms to ionizing radiation depends on the radiation quality/dose and/or the intrinsic characteristics of the living system. Macromolecules, in particular DNA, are the critical targets of radiation, even if there is a strong difference between damages encountered by plant and mammalian cells. The differences in structure and metabolism between the two cell types are responsible for the higher resistance of the plant cell compared with its animal counterpart. In this review, we report some recent findings from studies performed in Space or on Earth, simulating space-like levels of radiation with ground-based facilities, to understand the effect of ionizing radiation on mammalian and plant cells. In particular, our attention is focused on genetic alterations and repair mechanisms in mammalian cells and on structures and mechanisms conferring radioresistance to plant cells.

  12. Plant organelle proteomics: collaborating for optimal cell function.

    Science.gov (United States)

    Agrawal, Ganesh Kumar; Bourguignon, Jacques; Rolland, Norbert; Ephritikhine, Geneviève; Ferro, Myriam; Jaquinod, Michel; Alexiou, Konstantinos G; Chardot, Thierry; Chakraborty, Niranjan; Jolivet, Pascale; Doonan, John H; Rakwal, Randeep

    2011-01-01

    Organelle proteomics describes the study of proteins present in organelle at a particular instance during the whole period of their life cycle in a cell. Organelles are specialized membrane bound structures within a cell that function by interacting with cytosolic and luminal soluble proteins making the protein composition of each organelle dynamic. Depending on organism, the total number of organelles within a cell varies, indicating their evolution with respect to protein number and function. For example, one of the striking differences between plant and animal cells is the plastids in plants. Organelles have their own proteins, and few organelles like mitochondria and chloroplast have their own genome to synthesize proteins for specific function and also require nuclear-encoded proteins. Enormous work has been performed on animal organelle proteomics. However, plant organelle proteomics has seen limited work mainly due to: (i) inter-plant and inter-tissue complexity, (ii) difficulties in isolation of subcellular compartments, and (iii) their enrichment and purity. Despite these concerns, the field of organelle proteomics is growing in plants, such as Arabidopsis, rice and maize. The available data are beginning to help better understand organelles and their distinct and/or overlapping functions in different plant tissues, organs or cell types, and more importantly, how protein components of organelles behave during development and with surrounding environments. Studies on organelles have provided a few good reviews, but none of them are comprehensive. Here, we present a comprehensive review on plant organelle proteomics starting from the significance of organelle in cells, to organelle isolation, to protein identification and to biology and beyond. To put together such a systematic, in-depth review and to translate acquired knowledge in a proper and adequate form, we join minds to provide discussion and viewpoints on the collaborative nature of organelles in

  13. Fluids as Dynamic Templates for Cytoskeletal Proteins in Plant Cells

    CERN Document Server

    Lofthouse, J T

    2008-01-01

    The Dynamic Template model of biological cell membranes and the cytoplasm as spatially organised fluid layers is extended to plant cells, and is shown to offer a feasible shear driven mechanism for the co-alignment of internal and external fibres observed during growth and tropic responses

  14. Why should we study the plant cell cycle?

    Science.gov (United States)

    Inzé, Dirk

    2003-04-01

    Description of the molecular biology of plant and animal cell cycles highlights similarities and critical differences. The cell cycle is a point of control in both growth and development and deepening understanding of underlying processes and mechanisms may have many practical applications.

  15. A xylogalacturonan epitope is specifically associated with plant cell detachment

    DEFF Research Database (Denmark)

    Willats, William George Tycho; McCartney, L.; Steele-King, C.G.

    2004-01-01

    A monoclonal antibody (LM8) was generated with specificity for xyloglacturonan (XGA) isolated from pea (Pisum sativum L.) testae. Characterization of the LM8 epitope indicates that it is a region of XGA that is highly substituted with xylose. Immunocytochemical analysis indicates that this epitope...... that is specifically associated with a plant cell separation process that results in complete cell detachment....

  16. Localization of muscarinic acetylcholine receptor in plant guard cells

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Acetylcholine (ACh), as an important neurotransmitter in animals, also plays a significant role in various kinds of physiological functions in plants. But relatively little is known about its receptors in plants. A green fluorescence BODIPY FL-labeled ABT, which is a high affinity ligand of muscarinic acetylcholine receptor (mAChR), was used to localize mAChR in plant guard cells. In Vicia faba L. and Pisum sativum L., mAChR was found both on the plasma membrane of guard cells. mAChR may also be distributed on guard cell chloroplast membrane of Vicia faba L. The evidence that mAChR localizes in the guard cells provides a new possible signal transduction pathway in ACh mediated stomata movement.

  17. Primary Cell Wall Structure in the Evolution of Land Plants

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Investigation of the primary cell walls of lower plants improves our understanding of the cell biology of these organisms but also has the potential to improve our understanding of cell wall structure and function in angiosperms that evolved from lower plants. Cell walls were prepared from eight species, ranging from a moss to advanced gymnosperms, and subjected to sequential chemical extraction to separate the main polysaccharide fractions. The glycosyl compositions of these fractions were then determined by gas chromatography. The results were compared among the eight plants and among data from related studies reported in the existing published reports to identify structural features that have been either highly conserved or clearly modified during evolution. Among the highly conserved features are the presence of a cellulose framework, the presence of certain hemicelluloses such as xyloglucan, and the presence of rhamnogalacturonan Ⅱ, a domain in pectic polysaccharides. Among the modified features are the abundance of mannosyl-containing hemicelluloses and the presence of methylated sugars.

  18. Peroxisome Ca(2+) homeostasis in animal and plant cells.

    Science.gov (United States)

    Costa, Alex; Drago, Ilaria; Zottini, Michela; Pizzo, Paola; Pozzan, Tullio

    2013-01-01

    Ca(2+) homeostasis in peroxisomes has been an unsolved problem for many years. Recently novel probes to monitor Ca(2+) levels in the lumen of peroxisomes in living cells of both animal and plant cells have been developed. Here we discuss the contrasting results obtained in mammalian cells with chemiluminecsent (aequorin) and fluorescent (cameleon) probes targeted to peroxisomes. We briefly discuss the different characteristics of these probes and the possible pitfalls of the two approaches. We conclude that the contrasting results obtained with the two probes may reflect a heterogeneity among peroxisomes in mammalian cells. We also discuss the results obtained in plant peroxisomes. In particular we demonstrate that Ca(2+) increases in the cytoplasm are mirrored by similar rises of Ca(2+) concentration the lumen of peroxisomes. The increases in peroxisome Ca(2+) level results in the activation of a catalase isoform, CAT3. Other functional roles of peroxisomal Ca(2+) changes in plant physiology are briefly discussed.

  19. Prospects for advanced coal-fuelled fuel cell power plants

    Science.gov (United States)

    Jansen, D.; Vanderlaag, P. C.; Oudhuis, A. B. J.; Ribberink, J. S.

    1994-04-01

    As part of ECN's in-house R&D programs on clean energy conversion systems with high efficiencies and low emissions, system assessment studies have been carried out on coal gasification power plants integrated with high-temperature fuel cells (IGFC). The studies also included the potential to reduce CO2 emissions, and to find possible ways for CO2 extraction and sequestration. The development of this new type of clean coal technology for large-scale power generation is still far off. A significant market share is not envisaged before the year 2015. To assess the future market potential of coal-fueled fuel cell power plants, the promise of this fuel cell technology was assessed against the performance and the development of current state-of-the-art large-scale power generation systems, namely the pulverized coal-fired power plants and the integrated coal gasification combined cycle (IGCC) power plants. With the anticipated progress in gas turbine and gas clean-up technology, coal-fueled fuel cell power plants will have to face severe competition from advanced IGCC power plants, despite their higher efficiency.

  20. Advanced technologies for plant cell wall evolution and diversity

    DEFF Research Database (Denmark)

    Fangel, Jonatan Ulrik

    Plant cell walls consist of polysaccharides, glycoproteins and phenolic polymers interlinked together in a highly complex network. The detailed analysis of cell walls is challenging because of their inherent complexity and heterogeneity. Also, complex carbohydrates, unlike proteins and nucleotides...... probes (monoclonal antibodies mAbs and carbohydrate binding modules, CBMs) to rapidly profile polysaccharides across a sample set. During my PhD I have further developed the CoMPP technique and used it for cell wall analysis within the context of a variety of applied and fundamental projects. The data...... produced has provided new insight into cell wall evolution and biosynthesis and has contributed to the commercial development of cell wall materials. A major focus of the work has been the wide scale sampling of cell wall diversity across the plant kingdom, from unicellular algae to highly evolved...

  1. Polarity in plant asymmetric cell division: Division orientation and cell fate differentiation.

    Science.gov (United States)

    Shao, Wanchen; Dong, Juan

    2016-11-01

    Asymmetric cell division (ACD) is universally required for the development of multicellular organisms. Unlike animal cells, plant cells have a rigid cellulosic extracellular matrix, the cell wall, which provides physical support and forms communication routes. This fundamental difference leads to some unique mechanisms in plants for generating asymmetries during cell division. However, plants also utilize intrinsically polarized proteins to regulate asymmetric signaling and cell division, a strategy similar to the differentiation mechanism found in animals. Current progress suggests that common regulatory modes, i.e. protein spontaneous clustering and cytoskeleton reorganization, underlie protein polarization in both animal and plant cells. Despite these commonalities, it is important to note that intrinsic mechanisms in plants are heavily influenced by extrinsic cues. To control physical asymmetry in cell division, although our understanding is fragmentary thus far, plants might have evolved novel polarization strategies to orientate cell division plane. Recent studies also suggest that the phytohormone auxin, one of the most pivotal small molecules in plant development, regulates ACD in plants. Copyright © 2016. Published by Elsevier Inc.

  2. An Evolutionarily Conserved Plant RKD Factor Controls Germ Cell Differentiation.

    Science.gov (United States)

    Koi, Satoshi; Hisanaga, Tetsuya; Sato, Katsutoshi; Shimamura, Masaki; Yamato, Katsuyuki T; Ishizaki, Kimitsune; Kohchi, Takayuki; Nakajima, Keiji

    2016-07-11

    In contrast to animals, in which the germ cell lineage is established during embryogenesis, plant germ cells are generated in reproductive organs via reprogramming of somatic cells. The factors that control germ cell differentiation and reprogramming in plants are poorly understood. Members of the RKD subfamily of plant-specific RWP-RK transcription factors have been implicated in egg cell formation in Arabidopsis based on their expression patterns and ability to cause an egg-like transcriptome upon ectopic expression [1]; however, genetic evidence of their involvement is lacking, due to possible genetic redundancy, haploid lethality, and the technical difficulty of analyzing egg cell differentiation in angiosperms. Here we analyzed the factors that govern germ cell formation in the liverwort Marchantia polymorpha. This recently revived model bryophyte has several characteristics that make it ideal for studies of germ cell formation, such as low levels of genetic redundancy, readily accessible germ cells, and the ability to propagate asexually via gemma formation [2, 3]. Our analyses revealed that MpRKD, a single RWP-RK factor closely related to angiosperm RKDs, is preferentially expressed in developing eggs and sperm precursors in M. polymorpha. Targeted disruption of MpRKD had no effect on the gross morphology of the vegetative and reproductive organs but led to striking defects in egg and sperm cell differentiation, demonstrating that MpRKD is an essential regulator of germ cell differentiation. Together with previous findings [1, 4-6], our results suggest that RKD factors are evolutionarily conserved regulators of germ cell differentiation in land plants. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Aortic Root Enlargement or Sutureless Valve Implantation?

    Directory of Open Access Journals (Sweden)

    Nikolaos G. Baikoussis

    2016-11-01

    Full Text Available Aortic valve replacement (AVR in patients with a small aortic annulus is a challenging issue. The importance of prosthesis–patient mismatch (PPM post aortic valve replacement (AVR is controversial but has to be avoided. Many studies support the fact that PPM has a negative impact on short and long term survival. In order to avoid PPM, aortic root enlargement may be performed. Alternatively and keeping in mind that often some comorbidities are present in old patients with small aortic root, the Perceval S suturelles valve implantation could be a perfect solution. The Perceval sutureless bioprosthesis provides reasonable hemodynamic performance avoiding the PPM and providing the maximum of aortic orifice area. We would like to see in the near future the role of the aortic root enlargement techniques in the era of surgical implantation of the sutureless valve (SAVR and the transcatheter valve implantation (TAVI.

  4. Why do objects appear enlarged under water?

    Directory of Open Access Journals (Sweden)

    Helen E. Ross

    2003-01-01

    Full Text Available Objects appear enlarged in water by less than the 4/3 angular magnification. They usually appear beyond their optical distance and slightly enlarged in linear size, but not in accordance with size-distance invariance (SDI. We investigated whether misperceptions of angular size could explain the discrepancies. Twenty observers viewed targets of various sizes and distances within transparent tanks 40 cm long containing air or water. They judged distance by hidden reaching, and linear or angular size by adjusting the size of a target in air at a further distance. Matched distance was close to physical distance in air and optical distance in water. All size matches were close to true linear size, and were larger in water than in air. Angular size matches were much too small to explain departures from SDI. Size perception under water is best explained by incomplete adaptation to optical distortion, and by the use of various size cues.

  5. Enlarged Molecules from Excited Atoms in Nanochannels

    CERN Document Server

    Boström, Mathias; Sernelius, Bo E; Dou, Maofeng; Persson, Clas; Ninham, Barry W

    2012-01-01

    The resonance interaction that takes place in planar nanochannels between pairs of excited state atoms is explored. We consider interactions in channels of silica, zinc oxide and gold. The nanosized channels induce a dramatically different interaction from that in free space. Illustrative calculations for two lithium and cesium atoms, demonstrate that there is a short range repulsion followed by long range attraction. The binding energy is strongest near the surfaces. The size of the enlarged molecule is biggest at the center of the cavity and increases with channel width. Since the interaction is generic, we predict that enlarged molecules are formed in porous structures, and that the molecule size depends on the size of the nanochannels

  6. Enlarged pancreas: not always a cancer.

    Science.gov (United States)

    Calculli, Lucia; Festi, Davide; Pezzilli, Raffaele

    2015-02-01

    Pancreatic fat accumulation has been described with various terms including pancreatic lipomatosis, pancreatic steatosis, fatty replacement, fatty infiltration, fatty pancreas, lipomatous pseudohypertrophy and nonalcoholic fatty pancreas disease. It has been reported to be associated with type 2 diabetes mellitus, acute pancreatitis, pancreatic cancer and the formation of pancreatic fistula. The real incidence of this condition is still unknown. We report a case of pancreatic steatosis in a non-obese female patient initially diagnosed with a mass in the head of the pancreas. Magnetic resonance imaging (MRI) was carried out to define the characteristics of the pancreatic mass. MRI confirmed the diagnosis of fat pancreas. Enlarged pancreas is not always a cancer, but pancreatic steatosis is characterized by pancreatic enlargement. MRI could give a definite diagnosis of pancreatic steatosis or cancer.

  7. Enlarged pancreas:not always a cancer

    Institute of Scientific and Technical Information of China (English)

    Lucia Calculli; Davide Festi; Raffaele Pezzilli

    2015-01-01

    Pancreatic fat accumulation has been described with various terms including pancreatic lipomatosis, pancre-atic steatosis, fatty replacement, fatty infiltration, fatty pan-creas, lipomatous pseudohypertrophy and nonalcoholic fatty pancreas disease. It has been reported to be associated with type 2 diabetes mellitus, acute pancreatitis, pancreatic cancer and the formation of pancreatic fistula. The real incidence of this condition is still unknown. We report a case of pancreatic steatosis in a non-obese female patient initially diagnosed with a mass in the head of the pancreas. Magnetic resonance imaging (MRI) was carried out to define the characteristics of the pancreatic mass. MRI confirmed the diagnosis of fat pan-creas. Enlarged pancreas is not always a cancer, but pancreatic steatosis is characterized by pancreatic enlargement. MRI could give a definite diagnosis of pancreatic steatosis or cancer.

  8. An enlarged sella turcica on cephalometric radiograph.

    Science.gov (United States)

    Chang, H-P; Tseng, Y-C; Chou, T-M

    2005-09-01

    A 28-year-old male presented to the Orthodontic clinic for correction of his anterior crossbite due to mandibular prognathism as a result of pituitary adenoma with acromegaly. A radiographic cephalometric analysis and clinical orthodontic examination were made. This article describes in detail the methods of correcting the magnification of cephalometric linear measurements in sellar dimensions (length, depth and width) from lateral and posteroanterior cephalograms. Cephalometric findings revealed that the sella enlarged in all its dimensions with a deepening of the floor in this acromegalic case. We discuss the radiographic diagnosis of an enlarged sella turcica in intrasellar tumours and also emphasise the dentist's important role in the initial diagnosis of pituitary adenoma cases.

  9. Dynamic metabolic flux analysis of plant cell wall synthesis.

    Science.gov (United States)

    Chen, Xuewen; Alonso, Ana P; Shachar-Hill, Yair

    2013-07-01

    The regulation of plant cell wall synthesis pathways remains poorly understood. This has become a bottleneck in designing bioenergy crops. The goal of this study was to analyze the regulation of plant cell wall precursor metabolism using metabolic flux analysis based on dynamic labeling experiments. Arabidopsis T87 cells were cultured heterotrophically with (13)C labeled sucrose. The time course of ¹³C labeling patterns in cell wall precursors and related sugar phosphates was monitored using liquid chromatography tandem mass spectrometry until steady state labeling was reached. A kinetic model based on mass action reaction mechanisms was developed to simulate the carbon flow in the cell wall synthesis network. The kinetic parameters of the model were determined by fitting the model to the labeling time course data, cell wall composition, and synthesis rates. A metabolic control analysis was performed to predict metabolic regulations that may improve plant biomass composition for biofuel production. Our results describe the routes and rates of carbon flow from sucrose to cell wall precursors. We found that sucrose invertase is responsible for the entry of sucrose into metabolism and UDP-glucose-4-epimerase plays a dominant role in UDP-Gal synthesis in heterotrophic Aradidopsis cells under aerobic conditions. We also predicted reactions that exert strong regulatory influence over carbon flow to cell wall synthesis and its composition.

  10. Are kinesins required for organelle trafficking in plant cells?

    Directory of Open Access Journals (Sweden)

    Giampiero eCai

    2012-07-01

    Full Text Available Plant cells exhibit active movement of membrane-bounded materials, which is more pronounced in large cells but is also appreciable in medium-sized cells and in tip-growing cells (such as pollen tubes and root hairs. Trafficking of organelles (such as Golgi bodies, endoplasmic reticulum, peroxisomes, and mitochondria and vesicles is essential for plant cell physiology and allows a more or less homogeneous distribution of the cell content. It is well established that the long-range trafficking of organelles is dependent essentially on the network of actin filaments and is powered by the enzyme activity of myosins. However, some lines of evidence suggest that microtubules and members of the kinesin microtubule-based motor superfamily might have a role in the positioning and/or short-range movement of cell organelles and vesicles. Data collected in different cells (such as trichomes and pollen tubes, in specific stages of the plant cell life cycle (for example during phragmoplast development and for different organelle classes (mitochondria, Golgi bodies and chloroplasts encourage the hypothesis that microtubule-based motors might play subtle yet unclarified roles in organelle trafficking. In some cases, this function could be carried out in cooperation with actin filaments according to the model of functional cooperation by which motors of different families are associated with the organelle surface. Since available data did not provide an unambiguous conclusion with regard to the role of kinesins in organelle transport, here we want to debate such hypothesis.

  11. Fiscal Convergence in an Enlarged European Union

    Directory of Open Access Journals (Sweden)

    Georgeta VINTILĂ

    2014-02-01

    Full Text Available Taxation convergence in the European Union has always been a heatedly debated issue, and it has constantly resurfaced to the limelight as more and more fiscal directive proposals are being discussed. The current study is an analysis of the evolution of taxation convergence tendencies within the European Union in recent years, using sigma-convergence and cluster analysis. Our goal is to analyze the fiscal convergence trends in the context of European Union enlargement over the last two decades.

  12. NIFEDIPINE - INDUCED GINGIVAL ENLARGEMENT (IN SPANISH)

    OpenAIRE

    Manzur-Villalobos Isabella; Manzur-Jattin Fernando; Díaz-Caballero Antonio José

    2014-01-01

    Introduction: the gingival enlargement is the increase of the size of the gingiva caused by diverse factors, between which are the drugs, mainly the antihypertensive, immunosuppressive and anticonvulsant medications. Between the first ones, the nifedipine, an antagonist of the calcium, is one of the most frequently indicated. Clinical case: A 62-year-old-male patient with arterial hypertension treated with nifedipine for more of fifteenth years, who presented chronic gingival e...

  13. Particularities of the European Union enlargement process

    Directory of Open Access Journals (Sweden)

    Andreea Bucur

    2009-12-01

    Full Text Available The European integration model has proven to be so far a successful one, with a high consideration from the other countries of the world and their attempts to replicate its components and to learn from its experience of regional integration is perhaps the most sincere form of appreciation. Contemporary global economy knows various other models of economic integration, but none of the existing forms of regional integration was not up to the achievements of the EU which is distinguished primarily by the stage reached and function andits ability to create unity in the context of diversity. Irreversible process, and currently ongoing, and designed to produce positive results in perspective, the enlargement is one of the most significant factors of European construction success, always accompanying its history, marking the development, institutional structure, mode of cooperation and its policies. For these reasons, the present paper aims to approach the European integration model by the factors that influenced the enlargement and also by the course of events that are reflected in so-called “waves” of EU enlargement.

  14. THE CRUCIAL THEMES OF EU ENLARGEMENT

    Directory of Open Access Journals (Sweden)

    Jacques Pelkmans

    2001-12-01

    Full Text Available This article provides a critical review of the “terms” of the ongoing EU enlargement, in the light of the European public interest. The European public interest ought to include the prospective (Central European members, within a perspective of an enlarged Union in 2010, or so. The following forms a personalised summary of a major report published (in Dutch in September 2001 by the WRR in The Hague (a think-tank, formally under the Dutch Prime Minister, but by statute fully independent. The author was one of the lead-writers of this report. The present article merely focuses on the policy recommendations of the report. It is hoped that these kinds of critical analyses will help to stimulate solid policy debate on the EU in Romania, on the road to EU membership. The article discusses why the notion of a “core-acquis” would improve the enlargement strategy; the application of the core acquis to the internal market, environment and justice and home affairs; judicial and administrative capacity; accession to “euro-land”; the rapid reform of the CAP; a reform of “cohesion” approaches; and a note on the EU budgetary implications.

  15. How do filamentous pathogens deliver effector proteins into plant cells?

    Directory of Open Access Journals (Sweden)

    Benjamin Petre

    2014-02-01

    Full Text Available Fungal and oomycete plant parasites are among the most devastating pathogens of food crops. These microbes secrete effector proteins inside plant cells to manipulate host processes and facilitate colonization. How these effectors reach the host cytoplasm remains an unclear and debated area of plant research. In this article, we examine recent conflicting findings that have generated discussion in the field. We also highlight promising approaches based on studies of both parasite and host during infection. Ultimately, this knowledge may inform future broad spectrum strategies for protecting crops from such pathogens.

  16. How Do Filamentous Pathogens Deliver Effector Proteins into Plant Cells?

    Science.gov (United States)

    Petre, Benjamin; Kamoun, Sophien

    2014-01-01

    Fungal and oomycete plant parasites are among the most devastating pathogens of food crops. These microbes secrete effector proteins inside plant cells to manipulate host processes and facilitate colonization. How these effectors reach the host cytoplasm remains an unclear and debated area of plant research. In this article, we examine recent conflicting findings that have generated discussion in the field. We also highlight promising approaches based on studies of both parasite and host during infection. Ultimately, this knowledge may inform future broad spectrum strategies for protecting crops from such pathogens. PMID:24586116

  17. Compost in plant microbial fuel cell for bioelectricity generation.

    Science.gov (United States)

    Moqsud, M A; Yoshitake, J; Bushra, Q S; Hyodo, M; Omine, K; Strik, David

    2015-02-01

    Recycling of organic waste is an important topic in developing countries as well as developed countries. Compost from organic waste has been used for soil conditioner. In this study, an experiment has been carried out to produce green energy (bioelectricity) by using paddy plant microbial fuel cells (PMFCs) in soil mixed with compost. A total of six buckets filled with the same soil were used with carbon fiber as the electrodes for the test. Rice plants were planted in five of the buckets, with the sixth bucket containing only soil and an external resistance of 100 ohm was used for all cases. It was observed that the cells with rice plants and compost showed higher values of voltage and power density with time. The highest value of voltage showed around 700 mV when a rice plant with 1% compost mixed soil was used, however it was more than 95% less in the case of no rice plant and without compost. Comparing cases with and without compost but with the same number of rice plants, cases with compost depicted higher voltage to as much as 2 times. The power density was also 3 times higher when the compost was used in the paddy PMFCs which indicated the influence of compost on bio-electricity generation. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Gene Delivery into Plant Cells for Recombinant Protein Production

    Directory of Open Access Journals (Sweden)

    Qiang Chen

    2015-01-01

    Full Text Available Recombinant proteins are primarily produced from cultures of mammalian, insect, and bacteria cells. In recent years, the development of deconstructed virus-based vectors has allowed plants to become a viable platform for recombinant protein production, with advantages in versatility, speed, cost, scalability, and safety over the current production paradigms. In this paper, we review the recent progress in the methodology of agroinfiltration, a solution to overcome the challenge of transgene delivery into plant cells for large-scale manufacturing of recombinant proteins. General gene delivery methodologies in plants are first summarized, followed by extensive discussion on the application and scalability of each agroinfiltration method. New development of a spray-based agroinfiltration and its application on field-grown plants is highlighted. The discussion of agroinfiltration vectors focuses on their applications for producing complex and heteromultimeric proteins and is updated with the development of bridge vectors. Progress on agroinfiltration in Nicotiana and non-Nicotiana plant hosts is subsequently showcased in context of their applications for producing high-value human biologics and low-cost and high-volume industrial enzymes. These new advancements in agroinfiltration greatly enhance the robustness and scalability of transgene delivery in plants, facilitating the adoption of plant transient expression systems for manufacturing recombinant proteins with a broad range of applications.

  19. A quantitative and dynamic model for plant stem cell regulation.

    Directory of Open Access Journals (Sweden)

    Florian Geier

    Full Text Available Plants maintain pools of totipotent stem cells throughout their entire life. These stem cells are embedded within specialized tissues called meristems, which form the growing points of the organism. The shoot apical meristem of the reference plant Arabidopsis thaliana is subdivided into several distinct domains, which execute diverse biological functions, such as tissue organization, cell-proliferation and differentiation. The number of cells required for growth and organ formation changes over the course of a plants life, while the structure of the meristem remains remarkably constant. Thus, regulatory systems must be in place, which allow for an adaptation of cell proliferation within the shoot apical meristem, while maintaining the organization at the tissue level. To advance our understanding of this dynamic tissue behavior, we measured domain sizes as well as cell division rates of the shoot apical meristem under various environmental conditions, which cause adaptations in meristem size. Based on our results we developed a mathematical model to explain the observed changes by a cell pool size dependent regulation of cell proliferation and differentiation, which is able to correctly predict CLV3 and WUS over-expression phenotypes. While the model shows stem cell homeostasis under constant growth conditions, it predicts a variation in stem cell number under changing conditions. Consistent with our experimental data this behavior is correlated with variations in cell proliferation. Therefore, we investigate different signaling mechanisms, which could stabilize stem cell number despite variations in cell proliferation. Our results shed light onto the dynamic constraints of stem cell pool maintenance in the shoot apical meristem of Arabidopsis in different environmental conditions and developmental states.

  20. Plant cell, tissue and organ culture: the most flexible foundations for plant metabolic engineering applications.

    Science.gov (United States)

    Ogita, Shinjiro

    2015-05-01

    Significant advances in plant cell, tissue and organ culture (PCTOC) have been made in the last five decades. PCTOC is now thought to be the underlying technique for understanding general or specific biological functions of the plant kingdom, and it is one of the most flexible foundations for morphological, physiological and molecular biological applications of plants. Furthermore, the recent advances in the field of information technology (IT) have enabled access to a large amount of information regarding all aspects of plant biology. For example, sequencing information is stored in mega repositories such as the National Center for Biotechnology Information (NCBI), which can be easily accessed by researchers worldwide. To date, the PCTOC and IT combination strategy for regulation of target plant metabolism and the utilization of bioactive plant metabolites for commercial purposes is essential. In this review, the advantages and the limitations of these methodologies, especially regarding the production of bioactive plant secondary metabolites and metabolic engineering in target plants are discussed mainly from the phenotypic view point.

  1. The Endoplasmic Reticulum: A Social Network in Plant Cells

    Institute of Scientific and Technical Information of China (English)

    Jun Chen; Caitlin Doyle; Xingyun Qi; Huanquan Zheng

    2012-01-01

    The endoplasmic reticulum (ER) is an interconnected network comprised of ribosome-studded sheets and smooth tubules.The ER plays crucial roles in the biosynthesis and transport of proteins and lipids,and in calcium (Ca2+) regulation in compartmentalized eukaryotic cells including plant cells.To support its well-segregated functions,the shape of the ER undergoes notable changes in response to both developmental cues and outside influences.In this review,we will discuss recent findings on molecular mechanisms underlying the unique morphology and dynamics of the ER,and the importance of the interconnected ER network in cell polarity.In animal and yeast cells,two family proteins,the reticulons and DP1/Yop1,are required for shaping high-curvature ER tubules,while members of the atlastin family of dynamin-like GTPases are involved in the fusion of ER tubules to make an interconnected ER network.In plant cells,recent data also indicate that the reticulons are involved in shaping ER tubules,while RHD3,a plant member of the atlastin GTPases,is required for the generation of an interconnected ER network.We will also summarize the current knowledge on how the ER interacts with other membrane-bound organelles,with a focus on how the ER and Golgi interplay in plant cells.

  2. Role of the plant cell wall in gravity resistance.

    Science.gov (United States)

    Hoson, Takayuki; Wakabayashi, Kazuyuki

    2015-04-01

    Gravity resistance, mechanical resistance to the gravitational force, is a principal graviresponse in plants, comparable to gravitropism. The cell wall is responsible for the final step of gravity resistance. The gravity signal increases the rigidity of the cell wall via the accumulation of its constituents, polymerization of certain matrix polysaccharides due to the suppression of breakdown, stimulation of cross-link formation, and modifications to the wall environment, in a wide range of situations from microgravity in space to hypergravity. Plants thus develop a tough body to resist the gravitational force via an increase in cell wall rigidity and the modification of growth anisotropy. The development of gravity resistance mechanisms has played an important role in the acquisition of responses to various mechanical stresses and the evolution of land plants.

  3. Optical Property Analyses of Plant Cells for Adaptive Optics Microscopy

    Science.gov (United States)

    Tamada, Yosuke; Murata, Takashi; Hattori, Masayuki; Oya, Shin; Hayano, Yutaka; Kamei, Yasuhiro; Hasebe, Mitsuyasu

    2014-04-01

    In astronomy, adaptive optics (AO) can be used to cancel aberrations caused by atmospheric turbulence and to perform diffraction-limited observation of astronomical objects from the ground. AO can also be applied to microscopy, to cancel aberrations caused by cellular structures and to perform high-resolution live imaging. As a step toward the application of AO to microscopy, here we analyzed the optical properties of plant cells. We used leaves of the moss Physcomitrella patens, which have a single layer of cells and are thus suitable for optical analysis. Observation of the cells with bright field and phase contrast microscopy, and image degradation analysis using fluorescent beads demonstrated that chloroplasts provide the main source of optical degradations. Unexpectedly, the cell wall, which was thought to be a major obstacle, has only a minor effect. Such information provides the basis for the application of AO to microscopy for the observation of plant cells.

  4. Nanosecond electric pulses trigger actin responses in plant cells.

    Science.gov (United States)

    Berghöfer, Thomas; Eing, Christian; Flickinger, Bianca; Hohenberger, Petra; Wegner, Lars H; Frey, Wolfgang; Nick, Peter

    2009-09-25

    We have analyzed the cellular effects of nanosecond pulsed electrical fields on plant cells using fluorescently tagged marker lines in the tobacco cell line BY-2 and confocal laser scanning microscopy. We observe a disintegration of the cytoskeleton in the cell cortex, followed by contraction of actin filaments towards the nucleus, and disintegration of the nuclear envelope. These responses are accompanied by irreversible permeabilization of the plasma membrane manifest as uptake of Trypan Blue. By pretreatment with the actin-stabilizing drug phalloidin, the detachment of transvacuolar actin from the cell periphery can be suppressed, and this treatment can also suppress the irreversible perforation of the plasma membrane. We discuss these findings in terms of a model, where nanosecond pulsed electric fields trigger actin responses that are key events in the plant-specific form of programmed cell death.

  5. Control of division and differentiation of plant stem cells and their derivatives.

    Science.gov (United States)

    Nieuwland, Jeroen; Scofield, Simon; Murray, James A H

    2009-12-01

    The core mechanism of the plant cell cycle is conserved with all other eukaryotes but several aspects are unique to plant cells. Key characteristics of plant development include indeterminate growth and repetitive organogenesis derived from stem cell pools and they may explain the existence of the high number of cell cycle regulators in plants. In this review, we give an overview of the plant cell cycle and its regulatory components. Furthermore, we discuss the cell cycle aspects of plant stem cell maintenance and how the cell cycle relates to cellular differentiation during development. We exemplify this transition by focusing on organ initiation in the shoot.

  6. Microanalysis of Plant Cell Wall Polysaccharides

    NARCIS (Netherlands)

    Obel, N.; Erben, V.; Schwarz, T.; Kühnel, S.; Fodor, A.; Pauly, M.

    2009-01-01

    Oligosaccharide Mass Profiling (OLIMP) allows a fast and sensitive assessment of cell wall polymer structure when coupled with Matrix Assisted Laser Desorption Ionisation Time Of Flight Mass Spectrometry (MALDI-TOF MS). The short time required for sample preparation and analysis makes possible the s

  7. Calcium signaling in plant cells in altered gravity

    Science.gov (United States)

    Kordyum, E. L.

    2003-10-01

    Changes in the intracellular Ca 2+ concentration in altered gravity (microgravity and clinostating) evidence that Ca 2+ signaling can play a fundamental role in biological effects of microgravity. Calcium as a second messenger is known to play a crucial role in stimulus - response coupling for many plant cellular signaling pathways. Its messenger functions are realized by transient changes in the cytosolic ion concentration induced by a variety of internal and external stimuli such as light, hormones, temperature, anoxia, salinity, and gravity. Although the first data on the changes in the calcium balance in plant cells under the influence of altered gravity have appeared in 80 th, a review highlighting the performed research and the possible significance of such Ca 2+ changes in the structural and metabolic rearrangements of plant cells in altered gravity is still lacking. In this paper, an attempt was made to summarize the available experimental results and to consider some hypotheses in this field of research. It is proposed to distinguish between cell gravisensing and cell graviperception; the former is related to cell structure and metabolism stability in the gravitational field and their changes in microgravity (cells not specialized to gravity perception), the latter is related to active use of a gravitational stimulus by cells presumebly specialized to gravity perception for realization of normal space orientation, growth, and vital activity (gravitropism, gravitaxis) in plants. The main experimental data concerning both redistribution of free Ca 2+ ions in plant cell organelles and the cell wall, and an increase in the intracellular Ca 2+ concentration under the influence of altered gravity are presented. Based on the gravitational decompensation hypothesis, the consequence of events occurring in gravisensing cells not specialized to gravity perception under altered gravity are considered in the following order: changes in the cytoplasmic membrane surface

  8. Cell cycle and epigenetic changes of plant DNA

    Directory of Open Access Journals (Sweden)

    Shevchenko G. V.

    2010-04-01

    Full Text Available Plants can apply various strategies to minimize environmental impact. One of the strategies is heritable modifications of gene expression which occur without changing original DNA sequence and are known as epigenetic. Signaling pathway Rb-E2F (retinoblastoma (Rb-transcription factor E2F/DP connects the cell cycle with factors, modifying structure of chromatin and DNA. It also coordinates cell proliferation and differentiation influenced by external stimuli. The article highlights the activity of Rb-E2F/DP signaling pathway and its connection with the epigenetic changes of DNA in plants.

  9. Gravity research on plants: use of single cell experimental models

    Directory of Open Access Journals (Sweden)

    Youssef eChebli

    2011-09-01

    Full Text Available Future space missions and implementation of permanent bases on Moon and Mars will greatly depend on the availability of ambient air and sustainable food supply. Therefore, understanding the effects of altered gravity conditions on plant metabolism and growth is vital for space missions and extra-terrestrial human existence. In this mini-review we summarize how plant cells are thought to perceive changes in magnitude and orientation of the gravity vector. The particular advantages of several single celled model systems for gravity research are explored and an overview over recent advancements and potential use of these systems is provided.

  10. Plant Cell and Signaling Biology Blooms in the Wuyi Mountain

    Institute of Scientific and Technical Information of China (English)

    Jianping Hu

    2011-01-01

    @@ INTRODUCTION The Eighth International Conference on Plant Biology Fron-tiers, organized by Zhenbiao Yang, Chentao Lin, and Xing-wang Deng, was convened in the Wuyi Mountain Yeohwa Resort in Fujian, China, 23-27 September 2010.The meeting's main theme was Cells and Signals, featuring four keynote speeches, 45 plenary talks, and over 40 poster presentations that covered a wide range of topics, from dynamic cellular structures to how developmental and environmental signals control various plant processes at the juncture of cells.

  11. Plant Cell Division Analyzed by Transient Agrobacterium-Mediated Transformation of Tobacco BY-2 Cells.

    Science.gov (United States)

    Buschmann, Henrik

    2016-01-01

    The continuing analysis of plant cell division will require additional protein localization studies. This is greatly aided by GFP-technology, but plant transformation and the maintenance of transgenic lines can present a significant technical bottleneck. In this chapter I describe a method for the Agrobacterium-mediated genetic transformation of tobacco BY-2 cells. The method allows for the microscopic analysis of fluorescence-tagged proteins in dividing cells in within 2 days after starting a coculture. This transient transformation procedure requires only standard laboratory equipment. It is hoped that this rapid method would aid researchers conducting live-cell localization studies in plant mitosis and cytokinesis.

  12. The plant cell nucleus: a true arena for the fight between plants and pathogens.

    Science.gov (United States)

    Deslandes, Laurent; Rivas, Susana

    2011-01-01

    Communication between the cytoplasm and the nucleus is a fundamental feature shared by both plant and animal cells. Cellular factors involved in the transport of macromolecules through the nuclear envelope, including nucleoporins, importins and Ran-GTP related components, are conserved among a variety of eukaryotic systems. Interestingly, mutations in these nuclear components compromise resistance signalling, illustrating the importance of nucleocytoplasmic trafficking in plant innate immunity. Indeed, spatial restriction of defence regulators by the nuclear envelope and stimulus-induced nuclear translocation constitute an important level of defence-associated gene regulation in plants. A significant number of effectors from different microbial pathogens are targeted to the plant cell nucleus. In addition, key host factors, including resistance proteins, immunity components, transcription factors and transcriptional regulators shuttle between the cytoplasm and the nucleus, and their level of nuclear accumulation determines the output of the defence response, further confirming the crucial role played by the nucleus during the interaction between plants and pathogens. Here, we discuss recent findings that situate the nucleus at the frontline of the mutual recognition between plants and invading microbes.

  13. Specific organization of Golgi apparatus in plant cells.

    Science.gov (United States)

    Vildanova, M S; Wang, W; Smirnova, E A

    2014-09-01

    Microtubules, actin filaments, and Golgi apparatus are connected both directly and indirectly, but it is manifested differently depending on the cell organization and specialization, and these connections are considered in many original studies and reviews. In this review we would like to discuss what underlies differences in the structural organization of the Golgi apparatus in animal and plant cells: specific features of the microtubule cytoskeleton organization, the use of different cytoskeleton components for Golgi apparatus movement and maintenance of its integrity, or specific features of synthetic and secretory processes. We suppose that a dispersed state of the Golgi apparatus in higher plant cells cannot be explained only by specific features of the microtubule system organization and by the absence of centrosome as an active center of their organization because the Golgi apparatus is organized similarly in the cells of other organisms that possess the centrosome and centrosomal microtubules. One of the key factors determining the Golgi apparatus state in plant cells is the functional uniformity or functional specialization of stacks. The functional specialization does not suggest the joining of the stacks to form a ribbon; therefore, the disperse state of the Golgi apparatus needs to be supported, but it also can exist "by default". We believe that the dispersed state of the Golgi apparatus in plants is supported, on one hand, by dynamic connections of the Golgi apparatus stacks with the actin filament system and, on the other hand, with the endoplasmic reticulum exit sites distributed throughout the endoplasmic reticulum.

  14. New aspects of gravity responses in plant cells.

    Science.gov (United States)

    Hoson, Takayuki; Soga, Kouichi

    2003-01-01

    Plants show two distinct responses to gravity: gravity-dependent morphogenesis (gravimorphogenesis) and gravity resistance. In gravitropism, a typical mechanism of gravimorphogenesis, gravity is utilized as a signal to establish an appropriate form. The response has been studied in a gravity-free environment, where plant seedlings were found to perform spontaneous morphogenesis, termed automorphogenesis. Automorphogenesis consists of a change in growth direction and spontaneous curvature in dorsiventral directions. The spontaneous curvature is caused by a difference in the capacity of the cell wall to expand between the dorsal and the ventral sides of organs, which originates from the inherent structural anisotropy. Gravity resistance is a response that enables the plant to develop against the gravitational force. To resist the force, the plant constructs a tough body by increasing the cell wall rigidity that suppresses growth. The mechanical properties of the cell wall are changed by modification of the cell wall metabolism and cell wall environment, especially pH. In gravitropism, gravity is perceived by amyloplasts in statocytes, whereas gravity resistance may be mediated by mechanoreceptors on the plasma membrane.

  15. The cell biology of lignification in higher plants.

    Science.gov (United States)

    Barros, Jaime; Serk, Henrik; Granlund, Irene; Pesquet, Edouard

    2015-06-01

    Lignin is a polyphenolic polymer that strengthens and waterproofs the cell wall of specialized plant cell types. Lignification is part of the normal differentiation programme and functioning of specific cell types, but can also be triggered as a response to various biotic and abiotic stresses in cells that would not otherwise be lignifying. Cell wall lignification exhibits specific characteristics depending on the cell type being considered. These characteristics include the timing of lignification during cell differentiation, the palette of associated enzymes and substrates, the sub-cellular deposition sites, the monomeric composition and the cellular autonomy for lignin monomer production. This review provides an overview of the current understanding of lignin biosynthesis and polymerization at the cell biology level. The lignification process ranges from full autonomy to complete co-operation depending on the cell type. The different roles of lignin for the function of each specific plant cell type are clearly illustrated by the multiple phenotypic defects exhibited by knock-out mutants in lignin synthesis, which may explain why no general mechanism for lignification has yet been defined. The range of phenotypic effects observed include altered xylem sap transport, loss of mechanical support, reduced seed protection and dispersion, and/or increased pest and disease susceptibility. © The Author 2015. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  16. An unusual case of generalized severe gingival enlargement during pregnancy.

    Science.gov (United States)

    McIntosh, Crystal L; Kolhatkar, Shilpa; Winkler, James R; Ojha, Junu; Bhola, Monish

    2010-01-01

    Increased hormone levels that are present during puberty and pregnancy are associated with localized or generalized gingival enlargement. This article reviews the gingival alterations that can occur during pregnancy and describes a case of generalized severe gingival enlargement associated with pregnancy and its management. A 36-year-old woman had severe bilateral gingival enlargement of short duration. The patient denied taking any medications. The laboratory report revealed no systemic abnormalities; however, the report disclosed that she was pregnant. Surgical therapy for the gingival enlargement included gingivectomy and gingivoplasty of all quadrants, which reduced the size of the enlarged gingiva. Postoperative visits demonstrated uneventful healing, with no recurrence seen at the one-year follow-up appointment. It appears that the English literature includes only one other case report that discusses generalized gingival enlargement during pregnancy. Pregnancy-related gingival enlargement should be included as a differential diagnosis in women who have non-drug-induced generalized gingival enlargement.

  17. Arsenal of plant cell wall degrading enzymes reflects host preference among plant pathogenic fungi

    Directory of Open Access Journals (Sweden)

    Bergstrom Gary C

    2011-02-01

    Full Text Available Abstract Background The discovery and development of novel plant cell wall degrading enzymes is a key step towards more efficient depolymerization of polysaccharides to fermentable sugars for the production of liquid transportation biofuels and other bioproducts. The industrial fungus Trichoderma reesei is known to be highly cellulolytic and is a major industrial microbial source for commercial cellulases, xylanases and other cell wall degrading enzymes. However, enzyme-prospecting research continues to identify opportunities to enhance the activity of T. reesei enzyme preparations by supplementing with enzymatic diversity from other microbes. The goal of this study was to evaluate the enzymatic potential of a broad range of plant pathogenic and non-pathogenic fungi for their ability to degrade plant biomass and isolated polysaccharides. Results Large-scale screening identified a range of hydrolytic activities among 348 unique isolates representing 156 species of plant pathogenic and non-pathogenic fungi. Hierarchical clustering was used to identify groups of species with similar hydrolytic profiles. Among moderately and highly active species, plant pathogenic species were found to be more active than non-pathogens on six of eight substrates tested, with no significant difference seen on the other two substrates. Among the pathogenic fungi, greater hydrolysis was seen when they were tested on biomass and hemicellulose derived from their host plants (commelinoid monocot or dicot. Although T. reesei has a hydrolytic profile that is highly active on cellulose and pretreated biomass, it was less active than some natural isolates of fungi when tested on xylans and untreated biomass. Conclusions Several highly active isolates of plant pathogenic fungi were identified, particularly when tested on xylans and untreated biomass. There were statistically significant preferences for biomass type reflecting the monocot or dicot host preference of the

  18. Cloning higher plants from aseptically cultured tissues and cells

    Science.gov (United States)

    Krikorian, A. D.

    1982-01-01

    A review of aseptic culture methods for higher plants is presented, which focuses on the existing problems that limit or prevent the full realization of cloning plants from free cells. It is shown that substantial progress in clonal multiplication has been made with explanted stem tips or lateral buds which can be stimulated to produce numerous precocious axillary branches. These branches can then be separated or subdivided and induced to root in order to yield populations of genetically and phenotypically uniorm plantlets. Similarly, undifferentiated calluses can sometimes be induced to form shoots and/or roots adventitiously. Although the cell culture techniques required to produce somatic embryos are presently rudimentary, steady advances are being made in learning how to stimulate formation of somatic or adventive embryos from totipotent cells grown in suspension cultures. It is concluded that many problems exist in the producing and growing of totipotent or morphogenetically competent cell suspensions, but the potential benefits are great.

  19. Plant cell walls: New insights from ancient species

    DEFF Research Database (Denmark)

    Sørensen, Iben; Willats, William George Tycho

    2008-01-01

    Cell walls are a defining feature of plants and have numerous crucial roles in growth and development. They are also the largest source of terrestrial biomass and have many important industrial applications - ranging from bulk products to functional food ingredients. There is considerable interest......-D-glucan is not unique to the Poales and is an abundant component of Equisetum arvense cell walls. Plant J 2008; 54:510-21....... in the structure and functions of cell walls, and in the evolution of their remarkably complex polysaccharide structures. The grasses and cereals (order Poales), have long been regarded as being unique in that their cell walls contain an unbranched homopolymer, (1¿3)(1¿4)-ß-D-glucan, in which short blocks of (1...

  20. Arsenal of plant cell wall degrading enzymes reflects host preference among plant pathogenic fungi

    Science.gov (United States)

    Discovery and development of novel plant cell wall degrading enzymes is a key step towards more efficient depolymerization of polysaccharides to fermentable sugars for production of liquid transportation biofuels and other bioproducts. The industrial fungus Trichoderma reesei is known to be highly c...

  1. Hypersensitive cell death in plants : its mechanisms and role in plant defense against pathogens

    NARCIS (Netherlands)

    Iakimova, E.T.; Michalczuk, L.; Woltering, E.J.

    2005-01-01

    This review is a recent update in the understanding of the hypersensitive response (HR) of plants with special consideration to the physiological and biochemical determinants in different model systems. Hypersensitive response is reviewed as a form of programmed cell death (PCD) representing one of

  2. Plant cells use auxin efflux to explore geometry.

    Science.gov (United States)

    Zaban, Beatrix; Liu, Wenwen; Jiang, Xingyu; Nick, Peter

    2014-07-28

    Cell movement is the central mechanism for animal morphogenesis. Plant cell development rather relies on flexible alignment of cell axis adjusting cellular differentiation to directional cues. As central input, vectorial fields of mechanical stress and gradients of the phytohormone auxin have been discussed. In tissue contexts, mechanical and chemical signals will always act in concert; experimentally it is difficult to dissect their individual roles. We have designed a novel approach, based on cells, where directionality has been eliminated by removal of the cell wall. We impose a new axis using a microfluidic set-up to generate auxin gradients. Rectangular microvessels are integrated orthogonally with the gradient. Cells in these microvessels align their new axis with microvessel geometry before touching the wall. Auxin efflux is necessary for this touch-independent geometry exploration and we suggest a model, where auxin gradients can be used to align cell axis in tissues with minimized mechanical tensions.

  3. Mechanical Response of Single Plant Cells to Cell Poking: A Numerical Simulation Model

    Institute of Scientific and Technical Information of China (English)

    Rong Wang; Qun-Ying Jiao; De-Qiang Wei

    2006-01-01

    Cell poking is an experimental technique that is widely used to study the mechanical properties of plant cells. A full understanding of the mechanical responses of plant cells to poking force is helpful for experimental work. The aim of this study was to numerically investigate the stress distribution of the cell wall,cell turgor, and deformation of plant cells in response to applied poking force. Furthermore, the locations damaged during poking were analyzed. The model simulates cell poking, with the cell treated as a spherical,homogeneous, isotropic elastic membrane, filled with incompressible, highly viscous liquid. Equilibrium equations for the contact region and the non-contact regions were determined by using membrane theory.The boundary conditions and continuity conditions for the solution of the problem were found. The forcedeformation curve, turgor pressure and tension of the cell wall under cell poking conditions were obtained.The tension of the cell wall circumference was larger than that of the meridian. In general, maximal stress occurred at the equator around. When cell deformation increased to a certain level, the tension at the poker tip exceeded that of the equator. Breakage of the cell wall may start from the equator or the poker tip,depending on the deformation. A nonlinear model is suitable for estimating turgor, stress, and stiffness,and numerical simulation is a powerful method for determining plant cell mechanical properties.

  4. Plant recombinant erythropoietin attenuates inflammatory kidney cell injury.

    Science.gov (United States)

    Conley, Andrew J; Mohib, Kanishka; Jevnikar, Anthony M; Brandle, Jim E

    2009-02-01

    Human erythropoietin (EPO) is a pleiotropic cytokine with remarkable tissue-protective activities in addition to its well-established role in red blood cell production. Unfortunately, conventional mammalian cell cultures are unlikely to meet the anticipated market demands for recombinant EPO because of limited capacity and high production costs. Plant expression systems may address these limitations to enable practical, cost-effective delivery of EPO in tissue injury prevention therapeutics. In this study, we produced human EPO in tobacco and demonstrated that plant-derived EPO had tissue-protective activity. Our results indicated that targeting to the endoplasmic reticulum (ER) provided the highest accumulation levels of EPO, with a yield approaching 0.05% of total soluble protein in tobacco leaves. The codon optimization of the human EPO gene for plant expression had no clear advantage; furthermore, the human EPO signal peptide performed better than a tobacco signal peptide. In addition, we found that glycosylation was essential for the stability of plant recombinant EPO, whereas the presence of an elastin-like polypeptide fusion had a limited positive impact on the level of EPO accumulation. Confocal microscopy showed that apoplast and ER-targeted EPO were correctly localized, and N-glycan analysis demonstrated that complex plant glycans existed on apoplast-targeted EPO, but not on ER-targeted EPO. Importantly, plant-derived EPO had enhanced receptor-binding affinity and was able to protect kidney epithelial cells from cytokine-induced death in vitro. These findings demonstrate that tobacco plants may be an attractive alternative for the production of large amounts of biologically active EPO.

  5. Mechanisms of Organelle Inheritance in Dividing Plant Cells

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Organelles form essential compartments of all eukaryotic cells. Mechanisms that ensure the unbiased inheritance of organelles during cell division are therefore necessary to maintain the viability of future cell generations. Although inheritance of organelles represents a fundamental component of the cell cycle, surprisingly little is known about the underlying mechanisms that facilitate unbiased organelle inheritance. Evidence from a select number of studies, however,indicates that ordered organelle inheritance strategies exist in dividing cells of higher plants. The basic requirement for unbiased organelle inheritance is the duplication of organelle volume and distribution of the resulting organelle populations in a manner that facilitates unbiased partitioning of the organelle population to each daughter cell. Often, partitioning strategies are specific to the organelle, being influenced by the functional requirements of the organelle and whether the cells are mitotically active or re-entering into the cell cycle. Organelle partitioning mechanisms frequently depend on interactions with either the actin or microtubule cytoskeleton. In this focused review, we attempt to summarize key findings regarding organelle partitioning strategies in dividing cells of higher plants. We particularly concentrate on the role of the cytoskeleton in mediating unbiased organelle partitioning.

  6. Idiopathic gingival enlargement: A case report

    Directory of Open Access Journals (Sweden)

    Rajesh Shah

    2015-09-01

    Full Text Available Idiopathic gingival fibromatosis is a relatively rare condition characterized by the proliferation of the gingival tissues resulting in masticatory, esthetics, phonetics and psychological disturbances. We present a case with generalized diffuse gingival enlargement involving the maxillary and mandibular arches extending on buccal and lingual/palatal surfaces and covering incisal/occlusal third of the tooth in the left maxillary region. Gingivectomy was carried out in all four quadrants. Periodic recalls showed maintenance of good oral hygiene and one year follow-up revealed no recurrence.JCMS Nepal. 2015;11(1: 26-28

  7. Martingale representation property in progressively enlarged filtrations

    CERN Document Server

    Jeanblanc, M

    2012-01-01

    Consider $\\mathbb{G}$ the progressive enlargement of a filtration $\\mathbb{F}$ with a random time $\\tau$. Assuming that, in $\\mathbb{F}$, the martingale representation property holds, we examine conditions under which the martingale representation property holds also in $\\mathbb{G}$. It is noted that the classical results on this subject are no more sufficient to deal with all examples coming from credit risk modeling. In this paper, we introduce a new methodology which extends the various classical results and applies on recent examples.

  8. Compost in plant microbial fuel cell for bioelectricity generation

    NARCIS (Netherlands)

    Moqsud, M.A.; Yoshitake, J.; Bushra, Q.S.; Hyodo, M.; Omine, K.; Strik, D.P.B.T.B.

    2015-01-01

    Recycling of organic waste is an important topic in developing countries as well as developed countries. Compost from organic waste has been used for soil conditioner. In this study, an experiment has been carried out to produce green energy (bioelectricity) by using paddy plant microbial fuel cells

  9. Measuring the Mechanical Properties of Plant Cell Walls

    Directory of Open Access Journals (Sweden)

    Hannes Vogler

    2015-03-01

    Full Text Available The size, shape and stability of a plant depend on the flexibility and integrity of its cell walls, which, at the same time, need to allow cell expansion for growth, while maintaining mechanical stability. Biomechanical studies largely vanished from the focus of plant science with the rapid progress of genetics and molecular biology since the mid-twentieth century. However, the development of more sensitive measurement tools renewed the interest in plant biomechanics in recent years, not only to understand the fundamental concepts of growth and morphogenesis, but also with regard to economically important areas in agriculture, forestry and the paper industry. Recent advances have clearly demonstrated that mechanical forces play a crucial role in cell and organ morphogenesis, which ultimately define plant morphology. In this article, we will briefly review the available methods to determine the mechanical properties of cell walls, such as atomic force microscopy (AFM and microindentation assays, and discuss their advantages and disadvantages. But we will focus on a novel methodological approach, called cellular force microscopy (CFM, and its automated successor, real-time CFM (RT-CFM.

  10. Fluorescence Correlation Spectroscopy Applied to Living Plant Cells

    NARCIS (Netherlands)

    Hink, M.A.

    2002-01-01

    Keywords: Fluorescence correlation spectroscopy, photon counting histogram, intracellular, plant, AtSERK1In order to survive organisms have to be capable to adjust theirselves to changes in the environment. Cells, the building blocks of an organism react to these

  11. Aspergillus enzymes involved in degradation of plant cell wall polysaccharides

    NARCIS (Netherlands)

    Vries, de R.P.; Visser, J.

    2001-01-01

    Degradation of plant cell wall polysaccharides is of major importance in the food and feed, beverage, textile, and paper and pulp industries, as well as in several other industrial production processes. Enzymatic degradation of these polymers has received attention for many years and is becoming a m

  12. Protease signaling in animal and plant-regulated cell death.

    Science.gov (United States)

    Salvesen, Guy S; Hempel, Anne; Coll, Nuria S

    2016-07-01

    This review aims to highlight the proteases required for regulated cell death mechanisms in animals and plants. The aim is to be incisive, and not inclusive of all the animal proteases that have been implicated in various publications. The review also aims to focus on instances when several publications from disparate groups have demonstrated the involvement of an animal protease, and also when there is substantial biochemical, mechanistic and genetic evidence. In doing so, the literature can be culled to a handful of proteases, covering most of the known regulated cell death mechanisms: apoptosis, regulated necrosis, necroptosis, pyroptosis and NETosis in animals. In plants, the literature is younger and not as extensive as for mammals, although the molecular drivers of vacuolar death, necrosis and the hypersensitive response in plants are becoming clearer. Each of these death mechanisms has at least one proteolytic component that plays a major role in controlling the pathway, and sometimes they combine in networks to regulate cell death/survival decision nodes. Some similarities are found among animal and plant cell death proteases but, overall, the pathways that they govern are kingdom-specific with very little overlap. © 2015 FEBS.

  13. Histological and immunohistochemical features of gingival enlargement in a patient with AML.

    Science.gov (United States)

    Sonoi, Norihiro; Soga, Yoshihiko; Maeda, Hiroshi; Ichimura, Koichi; Yoshino, Tadashi; Aoyama, Kazutoshi; Fujii, Nobuharu; Maeda, Yoshinobu; Tanimoto, Mitsune; Logan, Richard; Raber-Durlacher, Judith; Takashiba, Shogo

    2012-07-01

    Here, we discuss the pathophysiology of leukemia-associated gingival enlargement based on a case of acute myelomonocytic leukemia (AML-M4) with typical gingival enlargement. Uniquely, this patient was well enough to allow full periodontal examination and incisional gingival biopsy to be performed both before and after chemotherapy. The patient was a 39-year-old Japanese woman with AML-M4 showing gingival enlargement. Histological and immunohistochemical features of gingiva and bacterial counts in the periodontal pockets were examined before and after chemotherapy. The results were as follows: (1) infiltration of myelomonocytic blasts in enlarged gingiva; (2) resolution of gingival enlargement with complete remission of AML by anticancer chemotherapy; and (3) the numbers of bacteria in the periodontal pockets were not high and were not altered before or after chemotherapy. In patients with AML-M4, remarkable mucosal enlargement is not generally observed in the body except in the gingiva. We hypothesized that antigens derived from periodontal bacteria, even if they are not present in large numbers, could act as chemoattractants for myelomonocytic leukemic cells.

  14. Plant Cell Cancer: May Natural Phenolic Compounds Prevent Onset and Development of Plant Cell Malignancy? A Literature Review.

    Science.gov (United States)

    Rasouli, Hassan; Farzaei, Mohammad Hosein; Mansouri, Kamran; Mohammadzadeh, Sara; Khodarahmi, Reza

    2016-08-23

    Phenolic compounds (PCs) are known as a chemically diverse category of secondary and reactive metabolites which are produced in plants via the shikimate-phenylpropanoid pathways. These compounds-ubiquitous in plants-are an essential part of the human diet, and are of considerable interest due to their antioxidant properties. Phenolic compounds are essential for plant functions, because they are involved in oxidative stress reactions, defensive systems, growth, and development. A large body of cellular and animal evidence carried out in recent decades has confirmed the anticancer role of PCs. Phytohormones-especially auxins and cytokinins-are key contributors to uncontrolled growth and tumor formation. Phenolic compounds can prevent plant growth by the endogenous regulation of auxin transport and enzymatic performance, resulting in the prevention of tumorigenesis. To conclude, polyphenols can reduce plant over-growth rate and the development of tumors in plant cells by regulating phytohormones. Future mechanistic studies are necessary to reveal intracellular transcription and transduction agents associated with the preventive role of phenolics versus plant pathological malignancy cascades.

  15. Molecular mechanisms of cholangiocarcinoma cell inhibition by medicinal plants

    Science.gov (United States)

    Leelawat, Surang; Leelawat, Kawin

    2017-01-01

    Cholangiocarcinoma (CCA) is one of the most common causes of cancer-associated mortality in Thailand. Certain phytochemicals have been demonstrated to modulate apoptotic signaling pathways, which may be targeted for the prevention and treatment of cancer. Therefore, the aim of the present study was to investigate the effect of specific medicinal plants on the inhibition of CCA cell proliferation, and to identify the molecular mechanisms underlying this. A WST-1 cell proliferation assay was performed using an RMCCA1 cell line, and apoptotic signaling pathways were also investigated using a PathScan Stress and Apoptosis Signaling Antibody Array Kit. The cell proliferation assay indicated that extracts from the Phyllanthus emblica fruit pulp (PEf), Phyllanthus emblica seed (PEs), Terminalia chebula fruit pulp (TCf), Terminalia chebula seed (TCs), Areca catechu seed (ACs), Curcuma longa (CL) and Moringa oleifera seed (MOs) exerted anti-proliferative activity in RMCCA1 cells. In addition, the PathScan assay revealed that certain pro-apoptotic molecules, including caspase-3, poly (ADP-ribose) polymerase, checkpoint kinase 2 and tumor protein 53, exhibited increased activity in RMCCA1 cells treated with the aforementioned selected plant extracts, with the exception of PEf. The mitogen-activated protein kinase (MAPK) pathways (including ERK1/2 and p38 MAPK) expression level was significantly increased in RMCCA1 cells pre-treated with extracts of PEs, TCf, CL and MOs. The activation of protein kinase B (Akt) was significantly demonstrated in RMCCA1 cells pre-treated with extracts of TCf, ACs and MOs. In summary, the present study demonstrated that extracts of PEs, TCf, TCs, ACs, CL and MOs exhibited anti-proliferative effects in CCA cells by inducing pro-apoptotic signals and modulating signal transduction molecules. Further studies in vivo are required to demonstrate the potential applications of specific plant extracts for the treatment of human cancer.

  16. Quantification of plant cell coupling with live-cell microscopy

    DEFF Research Database (Denmark)

    Liesche, Johannes; Schulz, Alexander

    2015-01-01

    by confocal microscopy, loaded tracer is activated by UV illumination in a target cell and its spread to neighboring cells monitored. When combined with high-speed acquisition by resonant scanning or spinning disc confocal microscopy, the high signal-to-noise ratio of photoactivation allows collection...

  17. Micrasterias as a Model System in Plant Cell Biology

    Science.gov (United States)

    Lütz-Meindl, Ursula

    2016-01-01

    The unicellular freshwater alga Micrasterias denticulata is an exceptional organism due to its complex star-shaped, highly symmetric morphology and has thus attracted the interest of researchers for many decades. As a member of the Streptophyta, Micrasterias is not only genetically closely related to higher land plants but shares common features with them in many physiological and cell biological aspects. These facts, together with its considerable cell size of about 200 μm, its modest cultivation conditions and the uncomplicated accessibility particularly to any microscopic techniques, make Micrasterias a very well suited cell biological plant model system. The review focuses particularly on cell wall formation and composition, dictyosomal structure and function, cytoskeleton control of growth and morphogenesis as well as on ionic regulation and signal transduction. It has been also shown in the recent years that Micrasterias is a highly sensitive indicator for environmental stress impact such as heavy metals, high salinity, oxidative stress or starvation. Stress induced organelle degradation, autophagy, adaption and detoxification mechanisms have moved in the center of interest and have been investigated with modern microscopic techniques such as 3-D- and analytical electron microscopy as well as with biochemical, physiological and molecular approaches. This review is intended to summarize and discuss the most important results obtained in Micrasterias in the last 20 years and to compare the results to similar processes in higher plant cells. PMID:27462330

  18. Micrasterias as a model system in plant cell biology

    Directory of Open Access Journals (Sweden)

    Ursula Luetz-Meindl

    2016-07-01

    Full Text Available The unicellular freshwater alga Micrasterias denticulata is an exceptional organism due to its extraordinary star-shaped, highly symmetric morphology and has thus attracted the interest of researchers for many decades. As a member of the Streptophyta, Micrasterias is not only genetically closely related to higher land plants but shares common features with them in many physiological and cell biological aspects. These facts, together with its considerable cell size of about 200 µm, its modest cultivation conditions and the uncomplicated accessibility particularly to any microscopic techniques, make Micrasterias a very well suited cell biological plant model system. The review focuses particularly on cell wall formation and composition, dictyosomal structure and function, cytoskeleton control of growth and morphogenesis as well as on ionic regulation and signal transduction. It has been also shown in the recent years that Micrasterias is a highly sensitive indicator for environmental stress impact such as heavy metals, high salinity, oxidative stress or starvation. Stress induced organelle degradation, autophagy, adaption and detoxification mechanisms have moved in the center of interest and have been investigated with modern microscopic techniques such as 3-D- and analytical electron microscopy as well as with biochemical, physiological and molecular approaches. This review is intended to summarize and discuss the most important results obtained in Micrasterias in the last 20 years and to compare the results to similar processes in higher plant cells.

  19. Regulation of cell division in higher plants. Final technical report

    Energy Technology Data Exchange (ETDEWEB)

    Jacobs, Thomas W.

    2000-02-29

    Research in the latter part of the grant period was divided into two parts: (1) expansion of the macromolecular tool kit for studying plant cell division; (2) experiments in which the roles played by plant cell cycle regulators were to be cast in the light of the emerging yeast and animal cell paradigm for molecular control of the mitotic cycle. The first objectives were accomplished to a very satisfactory degree. With regard to the second part of the project, we were driven to change our objectives for two reasons. First, the families of cell cycle control genes that we cloned encoded such closely related members that the prospects for success at raising distinguishing antisera against each were sufficiently dubious as to be impractical. Epitope tagging is not feasible in Pisum sativum, our experimental system, as this species is not realistically transformable. Therefore, differentiating the roles of diverse cyclins and cyclin-dependent kinases was problematic. Secondly, our procedure for generating mitotically synchronized pea root meristems for biochemical studies was far too labor intensive for the proposed experiments. We therefore shifted our objectives to identifying connections between the conserved proteins of the cell cycle engine and factors that interface it with plant physiology and development. In this, we have obtained some very exciting results.

  20. Homotypic fusion of endoplasmic reticulum membranes in plant cells

    Directory of Open Access Journals (Sweden)

    Junjie eHu

    2013-12-01

    Full Text Available The endoplasmic reticulum (ER is a membrane-bounded organelle whose membrane comprises a network of tubules and sheets. The formation of these characteristic shapes and maintenance of their continuity through homotypic membrane fusion appears to be critical for the proper functioning of the ER. The atlastins (ATLs, a family of ER-localized dynamin-like GTPases, have been identified as fusogens of the ER membranes in metazoans. Mutations of the ATL proteins in mammalian cells cause morphological defects in the ER, and purified Drosophila ATL mediates membrane fusion in vitro. Plant cells do not possess ATL, but a family of similar GTPases, named root hair defective 3 (RHD3, are likely the functional orthologs of ATLs. In this review, we summarize recent advances in our understanding of how RHD3 proteins play a role in homotypic ER fusion. We also discuss the possible physiological significance of forming a tubular ER network in plant cells.

  1. 1000kW phosphoric acid fuel cell power plant. Outline of the plant

    Energy Technology Data Exchange (ETDEWEB)

    Shinobe, Kenji; Suzuki, Kazuo; Kaneko, Hideo

    1988-02-10

    The outline of the 1000KW phosphoric acid fuel cell power plant, developed as part of the Moonlight plan, was described. The plant was composed of 4 stacks of 260KW DC output. They were devided into two train with 680V and 765A. The generation efficiency of the plant was 40% and more. Steam reforming of natural gas was used. As the fuel, fuel cell exhaust gas was used in composition with the natural gas. The DC-AC inverter had an efficiency of 96%. The capacity of hot water generator and demineralized water plant for cell cooling were 2t/h and 1.6t/h, respectively, and air-system was incorporated. In September of 1987, the plant has succeeded in 1000KW power generation, and put in operation now. Under the 100% loaded condition, each cell had a voltage of 0.7V with little variation, and the current was 200mA/cm/sup 2/. No problems were found in cooling conditions and in the control of interpole differential pressure. The reformer has been operated for 1200h scince its commisioning, and had experiences of 100 times on start up-shut down operations, the reformer also indicated good performances in the gas compositions. The starting time of 8h and the load follow-up rate 10%/min remain as the subjects for shortening. DC-AC conversion was good. The concentration of NOx and the noise level satisfied the target values. (12 figs, 1 tab)

  2. Putting On The Breaks: Regulating Organelle Movements in Plant Cells

    Institute of Scientific and Technical Information of China (English)

    Julianna K.Vick; Andreas Nebenführ

    2012-01-01

    A striking characteristic of plant cells is that their organelles can move rapidly through the cell.This movement,commonly referred to as cytoplasmic streaming,has been observed for over 200 years,but we are only now beginning to decipher the mechanisms responsible for it.The identification of the myosin motor proteins responsible for these movements allows us to probe the regulatory events that coordinate organelle displacement with normal cell physiology.This review will highlight several recent developments that have provided new insight into the regulation of organelle movement,both at the cellular level and at the molecular level.

  3. Engineering controlled mammalian type O-Glycosylation in plant cells

    DEFF Research Database (Denmark)

    Yang, Zhang; Drew, Damian Paul; Jørgensen, Bodil

    2011-01-01

    Human mucins are large heavily O-glycosylated glycoproteins (>200 kDa), which account for the majority of proteins in mucus layers that e.g. hydrate, lubricate and protect cells from proteases as well as from pathogens. O-linked mucin glycans are truncated in many cancers, yielding truncated cancer...... specific glyco-peptide epitopes, such as the Tn epitope (GalNAc sugar attached to either Serine or Threonine), which are antigenic to the immune system. In the present study, we have identified plant cells as the only eukaryotic cells without mammalian type O-glycosylation or competing (for sites) O...

  4. Introducing the Cell Concept with Both Animal and Plant Cells: A Historical and Didactic Approach

    Science.gov (United States)

    Clement, Pierre

    2007-01-01

    In France, as well as in several other countries, the cell concept is introduced at school by two juxtaposed drawings, a plant cell and an animal cell. After indicating the didactic obstacles associated with this presentation, this paper focuses on the reasons underlying the persistence of these two prototypes, through three complementary…

  5. Introducing the Cell Concept with Both Animal and Plant Cells: A Historical and Didactic Approach

    Science.gov (United States)

    Clement, Pierre

    2007-01-01

    In France, as well as in several other countries, the cell concept is introduced at school by two juxtaposed drawings, a plant cell and an animal cell. After indicating the didactic obstacles associated with this presentation, this paper focuses on the reasons underlying the persistence of these two prototypes, through three complementary…

  6. Enlargements of Monotone Operators Determined by Representing Function

    Directory of Open Access Journals (Sweden)

    M. Rezaei

    2012-03-01

    Full Text Available In this paper, we study a new enlargement of subdifferential for any proper lower semicontinuous function. We know that ε-subdifferential of any proper lower semicontinuous function is an enlargement of its subfifferential and any point from the graph of ε- subdifferential can be approximated by a point from the graph of sub- fifferential. This nice property, apart from its theoretical importance, gives also the possibility to use the enlargement of subdifferentials in finding approximate solutions of inclusions determined by subdifferentials. We define a new enlargement and observe, in the case subdifferentials, the relation between this new enlargement and the ε- subdifferentia

  7. ROS-mediated redox signaling during cell differentiation in plants.

    Science.gov (United States)

    Schmidt, Romy; Schippers, Jos H M

    2015-08-01

    Reactive oxygen species (ROS) have emerged in recent years as important regulators of cell division and differentiation. The cellular redox state has a major impact on cell fate and multicellular organism development. However, the exact molecular mechanisms through which ROS manifest their regulation over cellular development are only starting to be understood in plants. ROS levels are constantly monitored and any change in the redox pool is rapidly sensed and responded upon. Different types of ROS cause specific oxidative modifications, providing the basic characteristics of a signaling molecule. Here we provide an overview of ROS sensors and signaling cascades that regulate transcriptional responses in plants to guide cellular differentiation and organ development. Although several redox sensors and cascades have been identified, they represent only a first glimpse on the impact that redox signaling has on plant development and growth. We provide an initial evaluation of ROS signaling cascades involved in cell differentiation in plants and identify potential avenues for future studies. This article is part of a Special Issue entitled Redox regulation of differentiation and de-differentiation. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Production of therapeutic proteins through plant tissue and cell culture

    Directory of Open Access Journals (Sweden)

    Reza S. Gharelo

    2016-04-01

    Full Text Available Nowadays, pharmaceutical recombinant protein is increasingly used in treatment of many diseases such as hepatitis, anemia, diabetes and cancer. Different protein expression systems have been used for the expression of recombinant proteins in which each of them face obstacles that make utilizing them as comprehensive expression system in order to express wide variety of proteins difficult. Plant cell as a eukaryotic expression system have many advantages compared to other hosts. They are very "safe" and significantly decrease concerns about the contamination of recombinant proteins with human pathogens. In addition to this, plants as eukaryotic expression system perform proper post-translational modification, in case of eukaryotic proteins, and appropriate folding resulting in right function in biological environments. Therefore, the production of pharmaceutical protein through plant cells can be absolutely promising approach. In this review, the production of pharmaceutical protein in plant cells, advantages and disadvantages, offered methods and techniques for developing recombinant protein yields, and affective factors on the whole process of pharmaceutical protein expression in the molecular level will be reviewed.

  9. Mass spectrometry for characterizing plant cell wall polysaccharides

    Directory of Open Access Journals (Sweden)

    Stefan eBauer

    2012-03-01

    Full Text Available Mass spectrometry is a selective and powerful technique to obtain identification and structural information on compounds present in complex mixtures. Since it requires only small sample amount it is an excellent tool for researchers interested in detecting changes in composition of complex carbohydrates of plants. This mini-review gives an overview of common mass spectrometry techniques applied to the analysis of plant cell wall carbohydrates. It presents examples in which mass spectrometry has been used to elucidate the structure of oligosaccharides derived from hemicelluloses and pectins and illustrates how information on sequence, linkages, branching and modifications are obtained from characteristic fragmentation patterns.

  10. Analysis of reforming process of large distorted ring in final enlarging forging

    Energy Technology Data Exchange (ETDEWEB)

    Miyazawa, Takeshi; Murai, Etsuo [Kushiro National College of Technology, Dept. of Mechanical Engineering, Kushiro, Hokkaido (Japan)

    2002-10-01

    In the construction of reactors or pressure vessels for oil chemical plants and nuclear power stations, mono block open-die forging rings are often utilized. Generally, a large forged ring is manufactured by means of enlarging forging with reductions of the wall thickness. During the enlarging process the circular ring is often distorted and becomes an ellipse in shape. However the shape control of the ring is a complicated work. This phenomenon makes the matter still worse in forging of larger rings. In order to make precision forging of large rings, we have developed the forging method using a v-shape anvil. The v-shape anvil is geometrically adjusted to fit the distorted ring in the final circle and reform automatically the shape of the ring during enlarging forging. This paper has analyzed the reforming process of distorted ring by computer program based on F.E.M. and examined the effect on the precision of ring forging. (author)

  11. Metabolism of fluoranthene in different plant cell cultures and intact plants

    Energy Technology Data Exchange (ETDEWEB)

    Kolb, M.; Harms, H.

    2000-05-01

    The metabolism of fluoranthene was investigated in 11 cell cultures of different plant species using a [{sup 14}C]-labeled standard. Most species metabolized less than 5% of fluoranthene to soluble metabolites and formed less than 5% nonextractable residues during the standardized 48-h test procedure. Higher metabolic rates were observed in lettuce (Lactuca sativa, 6%), wheat (Tricitum aestivum, 9%), and tomato (Lycopersicon esculentum, 15%). A special high metabolic rate of nearly 50% was determined for the rose species Paul's Scarlet. Chromatographic analysis of metabolites extracted from aseptically grown tomato plants proved that the metabolites detected in the cell cultures were also formed in the intact plants. Metabolites produced in tomato and rose cells from [{sup 14}C]-fluoranthene were conjugated with glucose, glucuronic acid, and other cell components. After acid hydrolyses, the main metabolite of both species was 1-hydroxyfluoranthene as identified by gas chromatography-mass spectrometry and high-performance liquid chromatography with diode array detection. The second metabolite formed by both species was 8-hydroxyfluoranthene. A third metabolite in tomatoes was 3-hydroxyfluoranthene.

  12. A Study of Digital Image Enlargement and Enhancement

    Directory of Open Access Journals (Sweden)

    Hsueh-Yi Lin

    2014-01-01

    Full Text Available Most image enlargement techniques suffer the problem of zigzagged edges and jagged images following enlargement. Humans are sensitive to the edges of objects; if the edges in the image are sharp, the visual is considered to be high quality. To solve this problem, this paper presents a new and effective method for image enlargement and enhancement based on adaptive inverse hyperbolic tangent (AIHT algorithm. Conventional image enlargement and enhancement methods enlarge the image using interpolation, and subsequently enhance the image without considering image features. However, this study presents the method based on Adaptive Inverse Hyperbolic Tangent algorithm to enhance images according to image features before enlarging the image. Experimental results indicate that the proposed algorithm is capable of adaptively enhancing the image and extruding object details, thereby improving enlargements by smoothing the edge of the objects in the image.

  13. Evolution of plant conducting cells: perspectives from key regulators of vascular cell differentiation.

    Science.gov (United States)

    Ohtani, Misato; Akiyoshi, Nobuhiro; Takenaka, Yuto; Sano, Ryosuke; Demura, Taku

    2017-01-01

    One crucial problem that plants faced during their evolution, particularly during the transition to growth on land, was how to transport water, nutrients, metabolites, and small signaling molecules within a large, multicellular body. As a solution to this problem, land plants developed specific tissues for conducting molecules, called water-conducting cells (WCCs) and food-conducting cells (FCCs). The well-developed WCCs and FCCs in extant plants are the tracheary elements and sieve elements, respectively, which are found in vascular plants. Recent molecular genetic studies revealed that transcriptional networks regulate the differentiation of tracheary and sieve elements, and that the networks governing WCC differentiation are largely conserved among land plant species. In this review, we discuss the molecular evolution of plant conducting cells. By focusing on the evolution of the key transcription factors that regulate vascular cell differentiation, the NAC transcription factor VASCULAR-RELATED NAC-DOMAIN for WCCs and the MYB-coiled-coil (CC)-type transcription factor ALTERED PHLOEM DEVELOPMENT for sieve elements, we describe how land plants evolved molecular systems to produce the specialized cells that function as WCCs and FCCs. © The Author 2016. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  14. Can plant oncogenes inhibit programmed cell death? The rolB oncogene reduces apoptosis-like symptoms in transformed plant cells.

    Science.gov (United States)

    Gorpenchenko, Tatiana Y; Aminin, Dmitry L; Vereshchagina, Yuliya V; Shkryl, Yuri N; Veremeichik, Galina N; Tchernoded, Galina K; Bulgakov, Victor P

    2012-09-01

    The rolB oncogene was previously identified as an important player in ROS metabolism in transformed plant cells. Numerous reports indicate a crucial role for animal oncogenes in apoptotic cell death. Whether plant oncogenes such as rolB can induce programmed cell death (PCD) in transformed plant cells is of particular importance. In this investigation, we used a single-cell assay based on confocal microscopy and fluorescent dyes capable of discriminating between apoptotic and necrotic cells. Our results indicate that the expression of rolB in plant cells was sufficient to decrease the proportion of apoptotic cells in steady-state conditions and diminish the rate of apoptotic cells during induced PCD. These data suggest that plant oncogenes, like animal oncogenes, may be involved in the processes mediating PCD.

  15. Hydrogen peroxide homeostasis and signaling in plant cells

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    The increases of H2O2 concentrations in plant cells often occur under biotic and abiotic stress conditions (e.g. light, environmental stresses and plant hormone abscisic acid).Atmospheric H2O2 as an ancient signal molecule not only plays the key role in inducing evolution of oxygenic photosynthesis, but also modulates many physiological events, such as stomatal movement, hypersensitive responses, programmed cell death and gene expressions. H2O2 levels in cells must sustain a fine equilibrium between production and scavenging. H2O2 enters cells from the apoplast or generated sources, and in turn is distributed in sub-cellular compartments.H2O2 can modulate the activities of many components in signaling, such as protein phosphatases,protein kinases, transcription factors (TFs), and calcium channels. Elevated cytosolic calcium concentrations will initiate further downstream responses, via the action of calcium-binding proteins. On the other hand, the research of H2O2 as a signal molecule is still in a comparatively juvenile stage, for example, little is known about how the cells sense H2O2, what the rate-limiting steps and most important cellular events are in cell signaling and what kind of genes is specific or necessary to H2O2 signaling. The answers to all the questions depend on the functional genomic and molecular genetics analysis.

  16. EU Enlargement between Economic and Political Criteria

    Directory of Open Access Journals (Sweden)

    Romeo-Victor Ionescu

    2013-05-01

    Full Text Available The paper answers at two important questions: Is the EU able to support new adhering processes? and Is the Euro area able to enlarge in 2014? The comparative analysis in the paper covers four economic competitors: EU, USA, China and Japan, and is based on GDP growth rate, unemployment and inflation rates. The second part of the paper deals with an economic forecast during 2015-2016, focused on EU27, Euro area, Croatia and Latvia, in order to discuss the effects of the adhering to EU and Euro area. The results of the two-level analysis are supported by pertinent diagrams and annexes. The analysis uses a neutral statistical database – Eurostat – and dedicated forecast software. The main conclusion of the paper is that the adhering processes from 2013 and 2014 are based on economic and political criteria.

  17. Streamlining Education System Through Waqf Enlargement

    Directory of Open Access Journals (Sweden)

    Imam Bahroni

    2016-06-01

    Full Text Available This paper is aimed at discussing the development of education systembased on the Waqf Empowerment. It is an experience of Gontor ModernIntegrated Islamic Institution to maintain its existence through the activitiesof Waqf Enlargement. The spirit of self-reliance which has been implementedby Gontor through various economic enterprise activities inside the campus isthe total processes of educational activities, carried out by students andteachers themselves. They act as the subjects and objects of the education atthe same time. They teach themselves through various activities, creativitiesand social interaction for their character and personality building. Thislearning process is purposely undertaken in Gontor, because the basicprinciple of this system is to actualize the community orientation throughwhich the students in the campus guided and prepared to have a spirit ofself reliance. So when they back to the society to undertake the real life theyconfidently take their role to develop their society for the sake of Allah andunity of muslim ummah.

  18. Cell physiology of plants growing in cold environments.

    Science.gov (United States)

    Lütz, Cornelius

    2010-08-01

    The life of plants growing in cold extreme environments has been well investigated in terms of morphological, anatomical, and ecophysiological adaptations. In contrast, long-term cellular or metabolic studies have been performed by only a few groups. Moreover, a number of single reports exist, which often represent just a glimpse of plant behavior. The review draws together the literature which has focused on tissue and cellular adaptations mainly to low temperatures and high light. Most studies have been done with European alpine plants; comparably well studied are only two phanerogams found in the coastal Antarctic. Plant adaptation in northern polar regions has always been of interest in terms of ecophysiology and plant propagation, but nowadays, this interest extends to the effects of global warming. More recently, metabolic and cellular investigations have included cold and UV resistance mechanisms. Low-temperature stress resistance in plants from cold environments reflects the climate conditions at the growth sites. It is now a matter of molecular analyses to find the induced genes and their products such as chaperones or dehydrins responsible for this resistance. Development of plants under snow or pollen tube growth at 0 degrees C shows that cell biology is needed to explain the stability and function of the cytoskeleton. Many results in this field are based on laboratory studies, but several publications show that it is not difficult to study cellular mechanisms with the plants adapted to a natural stress. Studies on high light and UV loads may be split in two parts. Many reports describe natural UV as harmful for the plants, but these studies were mainly conducted by shielding off natural UV (as controls). Other experiments apply additional UV in the field and have had practically no negative impact on metabolism. The latter group is supported by the observations that green overwintering plants increase their flavonoids under snow even in the absence of

  19. Plant Phosphoglycerolipids: The Gatekeepers of Vascular Cell Differentiation.

    Science.gov (United States)

    Gujas, Bojan; Rodriguez-Villalon, Antia

    2016-01-01

    In higher plants, the plant vascular system has evolved as an inter-organ communication network essential to deliver a wide range of signaling factors among distantly separated organs. To become conductive elements, phloem and xylem cells undergo a drastic differentiation program that involves the degradation of the majority of their organelles. While the molecular mechanisms regulating such complex process remain poorly understood, it is nowadays clear that phosphoglycerolipids display a pivotal role in the regulation of vascular tissue formation. In animal cells, this class of lipids is known to mediate acute responses as signal transducers and also act as constitutive signals that help defining organelle identity. Their rapid turnover, asymmetrical distribution across subcellular compartments as well as their ability to rearrange cytoskeleton fibers make phosphoglycerolipids excellent candidates to regulate complex morphogenetic processes such as vascular differentiation. Therefore, in this review we aim to summarize, emphasize and connect our current understanding about the involvement of phosphoglycerolipids in phloem and xylem differentiation.

  20. Plant phosphoglycerolipids: the gatekeepers of vascular cell differentiation

    Directory of Open Access Journals (Sweden)

    Bojan eGujas

    2016-02-01

    Full Text Available In higher plants, the plant vascular system has evolved as an inter-organ communication network essential to deliver a wide range of signaling factors among distantly separated organs. To become conductive elements, phloem and xylem cells undergo a drastic differentiation program that involves the degradation of the majority of their organelles. While the molecular mechanisms regulating such complex process remain poorly understood, it is nowadays clear that phosphoglycerolipids display a pivotal role in the regulation of vascular formation. In animal cells, this class of lipids is known to mediate acute responses as signal transducers and also act as constitutive signals that help defining organelle identity. Their rapid turnover, asymmetrical distribution across subcellular compartments as well as their ability to rearrange cytoskeleton fibers make phosphoglycerolipids excellent candidates to regulate complex morphogenetic processes such as vascular differentiation. Therefore, in this review we aim to summarize, emphasize and connect our current understanding about the involvement of phosphoglycerolipids in phloem and xylem differentiation.

  1. Plant cell walls: New insights from ancient species

    DEFF Research Database (Denmark)

    Sørensen, Iben; Willats, William George Tycho

    2008-01-01

    Cell walls are a defining feature of plants and have numerous crucial roles in growth and development. They are also the largest source of terrestrial biomass and have many important industrial applications - ranging from bulk products to functional food ingredients. There is considerable interest......¿4)-linked ß-D-Glcp are joined by occasional (1¿3)-linkages. This mixed linkage glucan (MLG) has been the subject of extensive research because of the economic importance of several Poales species including rice, barley and wheat and because MLG has proven health benefits. The recent discovery of MLG......-D-glucan is not unique to the Poales and is an abundant component of Equisetum arvense cell walls. Plant J 2008; 54:510-21....

  2. Secondary Metabolite Localization by Autofluorescence in Living Plant Cells

    Directory of Open Access Journals (Sweden)

    Pascale Talamond

    2015-03-01

    Full Text Available Autofluorescent molecules are abundant in plant cells and spectral images offer means for analyzing their spectra, yielding information on their accumulation and function. Based on their fluorescence characteristics, an imaging approach using multiphoton microscopy was designed to assess localization of the endogenous fluorophores in living plant cells. This method, which requires no previous treatment, provides an effective experimental tool for discriminating between multiple naturally-occurring fluorophores in living-tissues. Combined with advanced Linear Unmixing, the spectral analysis extends the possibilities and enables the simultaneous detection of fluorescent molecules reliably separating overlapping emission spectra. However, as with any technology, the possibility for artifactual results does exist. This methodological article presents an overview of the applications of tissular and intra-cellular localization of these intrinsic fluorophores in leaves and fruits (here for coffee and vanilla. This method will provide new opportunities for studying cellular environments and the behavior of endogenous fluorophores in the intracellular environment.

  3. Host cell modulation by human, animal and plant pathogens.

    Science.gov (United States)

    Andersson, Siv G E; Kempf, Volkhard A J

    2004-04-01

    Members of the alpha-proteobacteria display a broad range of interactions with higher eukaryotes. Some are pathogens of humans, such as Rickettsia and Bartonella that are associated with diseases like epidemic typhus, trench fever, cat scratch disease and bacillary angiomatosis. Others like the Brucella cause abortions in pregnant animals. Yet other species have evolved elaborate interactions with plants; in this group we find both plant symbionts and parasites. Despite radically different host preferences, extreme genome size variations and the absence of toxin genes, similarities in survival strategies and host cell interactions can be recognized among members of the alpha-proteobacteria. Here, we review some of these similarities, with a focus on strategies for modulation of the host target cell.

  4. Cell-size dependent progression of the cell cycle creates homeostasis and flexibility of plant cell size

    Science.gov (United States)

    R. Jones, Angharad; Forero-Vargas, Manuel; Withers, Simon P.; Smith, Richard S.; Traas, Jan; Dewitte, Walter; Murray, James A. H.

    2017-01-01

    Mean cell size at division is generally constant for specific conditions and cell types, but the mechanisms coupling cell growth and cell cycle control with cell size regulation are poorly understood in intact tissues. Here we show that the continuously dividing fields of cells within the shoot apical meristem of Arabidopsis show dynamic regulation of mean cell size dependent on developmental stage, genotype and environmental signals. We show cell size at division and cell cycle length is effectively predicted using a two-stage cell cycle model linking cell growth and two sequential cyclin dependent kinase (CDK) activities, and experimental results concur in showing that progression through both G1/S and G2/M is size dependent. This work shows that cell-autonomous co-ordination of cell growth and cell division previously observed in unicellular organisms also exists in intact plant tissues, and that cell size may be an emergent rather than directly determined property of cells. PMID:28447614

  5. EU Enlargement Law: History and Recent Developments: Treaty Custom Concubinage?

    Directory of Open Access Journals (Sweden)

    Dimitry Kochenov

    2005-04-01

    Full Text Available This note provides a detailed account of the development of the EU enlargement law. Based on the material provided by the latest enlargement round, it outlines the main set of enlargement principles, criteria and procedural tools employed by the Union in the process, also making a sketch of the actual chronology of enlargement events. Based on the analysis of the legal regulation of five rounds of enlargement and making parallels with the notion of customary law as understood in public international law, it argues that the Union enlargements have always enjoyed a dual regulation: by written (mostly Treaty based and also by customary enlargement law. The existence of customary law explains the consistency of enlargement regulation throughout all the rounds of this process, notwithstanding the stage of the Treaty reform in force at the time of every particular accession. The minimal amendments introduced into the enlargement article by the Treaty Establishing a Constitution for Europe (Art. I-58 suggest that the future enlargements are likely to be building on the body of customary law in force to date. The process of gradual incorporation of customary law into the written law of the EU is also likely to continue.

  6. Gene Delivery into Plant Cells for Recombinant Protein Production

    OpenAIRE

    Qiang Chen; Huafang Lai

    2015-01-01

    Recombinant proteins are primarily produced from cultures of mammalian, insect, and bacteria cells. In recent years, the development of deconstructed virus-based vectors has allowed plants to become a viable platform for recombinant protein production, with advantages in versatility, speed, cost, scalability, and safety over the current production paradigms. In this paper, we review the recent progress in the methodology of agroinfiltration, a solution to overcome the challenge of transgene d...

  7. Vacuolar processing enzyme in plant programmed cell death

    Directory of Open Access Journals (Sweden)

    Noriyuki eHatsugai

    2015-04-01

    Full Text Available Vacuolar processing enzyme (VPE is a cysteine proteinase originally identified as the proteinase responsible for the maturation and activation of vacuolar proteins in plants, and it is known to be an orthologue of animal asparaginyl endopeptidase (AEP/VPE/legumain. VPE has been shown to exhibit enzymatic properties similar to that of caspase 1, which is a cysteine protease that mediates the programmed cell death (PCD pathway in animals. Although there is limited sequence identity between VPE and caspase 1, their predicted three-dimensional structures revealed that the essential amino-acid residues for these enzymes form similar pockets for the substrate peptide YVAD. In contrast to the cytosolic localization of caspases, VPE is localized in vacuoles. VPE provokes vacuolar rupture, initiating the proteolytic cascade leading to PCD in the plant immune response. It has become apparent that the VPE-dependent PCD pathway is involved not only in the immune response, but also in the responses to a variety of stress inducers and in the development of various tissues. This review summarizes the current knowledge on the contribution of VPE to plant PCD and its role in vacuole-mediated cell death, and it also compares VPE with the animal cell death executor caspase 1.

  8. Morphological Transformation of Plant Cells in vitro and Its Effect on Plant Growth

    Institute of Scientific and Technical Information of China (English)

    GUO Zhigang; ZENG Zhaolin; LIU Ruizhi; DENG Ying

    2005-01-01

    Enhancement of cell growth in suspension cultures is urgently needed in plant cell culture engineering. This study investigates the relationship between morphological transformation and cell growth in callus and suspension cultures of saffron cells belonging to the cell line C96 induced from Crocus sativus L. In the suspension culture, an unbalanced osmotic pressure between the intracell and extracell regions induced a large morphological transformation which affected normal division of the saffron cells. An increase in osmotic pressure caused by the addition of sucrose inhibits the vacuolation and shrinkage of cytoplasm in the cells. As the sucrose concentration increases, the total amount of accumulated biomass also increases. Besides the sucrose concentration, increased ionic strength and inoculation ratio also help restrain to a large extent the vacuolation and shrinkage of the cytoplasm in the suspended cells, which results in increased biomass. The conditions for optimal biomass are: Murashige and Skoog's (MS) medium with 40 g/L sucrose and 60% (v/v) inoculation ratio.

  9. Integrating fuel cell power systems into building physical plants

    Energy Technology Data Exchange (ETDEWEB)

    Carson, J. [KCI Technologies, Inc., Hunt Valley, MD (United States)

    1996-12-31

    This paper discusses the integration of fuel cell power plants and absorption chillers to cogenerate chilled water or hot water/steam for all weather air conditioning as one possible approach to building system applications. Absorption chillers utilize thermal energy in an absorption based cycle to chill water. It is feasible to use waste heat from fuel cells to provide hydronic heating and cooling. Performance regimes will vary as a function of the supply and quality of waste heat. Respective performance characteristics of fuel cells, absorption chillers and air conditioning systems will define relationships between thermal and electrical load capacities for the combined systems. Specifically, this paper develops thermodynamic relationships between bulk electrical power and cooling/heating capacities for combined fuel cell and absorption chiller system in building applications.

  10. How to let go: pectin and plant cell adhesion

    Science.gov (United States)

    Daher, Firas Bou; Braybrook, Siobhan A.

    2015-01-01

    Plant cells do not, in general, migrate. They maintain a fixed position relative to their neighbors, intimately linked through growth and differentiation. The mediator of this connection, the pectin-rich middle lamella, is deposited during cell division and maintained throughout the cell’s life to protect tissue integrity. The maintenance of adhesion requires cell wall modification and is dependent on the actin cytoskeleton. There are developmental processes that require cell separation, such as organ abscission, dehiscence, and ripening. In these instances, the pectin-rich middle lamella must be actively altered to allow cell separation, a process which also requires cell wall modification. In this review, we will focus on the role of pectin and its modification in cell adhesion and separation. Recent insights gained in pectin gel mechanics will be discussed in relation to existing knowledge of pectin chemistry as it relates to cell adhesion. As a whole, we hope to begin defining the physical mechanisms behind a cells’ ability to hang on, and how it lets go. PMID:26236321

  11. How to let go: pectin and plant cell adhesion

    Directory of Open Access Journals (Sweden)

    Firas eBou Daher

    2015-07-01

    Full Text Available Plant cells do not, in general, migrate. They maintain a fixed position relative to their neighbours, intimately linked through growth and differentiation. The mediator of this connection, the pectin-rich middle lamella, is deposited during cell division and maintained throughout the cell’s life to protect tissue integrity. The maintenance of adhesion requires cell wall modification and is dependent on the actin cytoskeleton. There are developmental processes that require cell separation, such as organ abscission, dehiscence, and ripening. In these instances, the pectin-rich middle lamella must be actively altered to allow cell separation, a process which also requires cell wall modification. In this review, we will focus on the role of pectin and its modification in cell adhesion and separation. Recent insights gained in pectin gel mechanics will be discussed in relation to existing knowledge of pectin chemistry as it relates to cell adhesion. As a whole, we hope to begin defining the physical mechanisms behind a cells’ ability to hang on, and how it lets go.

  12. Integrating cell biology and proteomic approaches in plants.

    Science.gov (United States)

    Takáč, Tomáš; Šamajová, Olga; Šamaj, Jozef

    2017-04-22

    Significant improvements of protein extraction, separation, mass spectrometry and bioinformatics nurtured advancements of proteomics during the past years. The usefulness of proteomics in the investigation of biological problems can be enhanced by integration with other experimental methods from cell biology, genetics, biochemistry, pharmacology, molecular biology and other omics approaches including transcriptomics and metabolomics. This review aims to summarize current trends integrating cell biology and proteomics in plant science. Cell biology approaches are most frequently used in proteomic studies investigating subcellular and developmental proteomes, however, they were also employed in proteomic studies exploring abiotic and biotic stress responses, vesicular transport, cytoskeleton and protein posttranslational modifications. They are used either for detailed cellular or ultrastructural characterization of the object subjected to proteomic study, validation of proteomic results or to expand proteomic data. In this respect, a broad spectrum of methods is employed to support proteomic studies including ultrastructural electron microscopy studies, histochemical staining, immunochemical localization, in vivo imaging of fluorescently tagged proteins and visualization of protein-protein interactions. Thus, cell biological observations on fixed or living cell compartments, cells, tissues and organs are feasible, and in some cases fundamental for the validation and complementation of proteomic data. Validation of proteomic data by independent experimental methods requires development of new complementary approaches. Benefits of cell biology methods and techniques are not sufficiently highlighted in current proteomic studies. This encouraged us to review most popular cell biology methods used in proteomic studies and to evaluate their relevance and potential for proteomic data validation and enrichment of purely proteomic analyses. We also provide examples of

  13. Traffic monitors at the cell periphery: the role of cell walls during early female reproductive cell differentiation in plants.

    Science.gov (United States)

    Tucker, Matthew R; Koltunow, Anna M G

    2014-02-01

    The formation of female gametes in plants occurs within the ovule, a floral organ that is also the precursor of the seed. Unlike animals, plants lack a typical germline separated from the soma early in development and rely on positional signals, including phytohormones, mobile mRNAs and sRNAs, to direct diploid somatic precursor cells onto a reproductive program. In addition, signals moving between plant cells must overcome the architectural limitations of a cell wall which surrounds the plasma membrane. Recent studies have addressed the molecular and histological signatures of young ovule cells and indicate that dynamic cell wall changes occur over a short developmental window. These changes in cell wall properties impact signal flow and ovule cell identity, thereby aiding the establishment of boundaries between reproductive and somatic ovule domains. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. Essential role of the unordered VP2 n-terminal domain of the parvovirus MVM capsid in nuclear assembly and endosomal enlargement of the virion fivefold channel for cell entry

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez-Martinez, Cristina; Grueso, Esther [Centro de Biologia Molecular Severo Ochoa (CSIC-UAM), Universidad Autonoma de Madrid, 28049 Cantoblanco, Madrid (Spain); Carroll, Miles [Health Protection Agency, Centre for Emergency Preparedness and Response, Porton Down, Salisbury SP4 OJG, Wilts (United Kingdom); Rommelaere, Jean [Deutsches Krebsforschungszentrum Division F010, Im Neuenheimer Feld 242, D-69120 Heidelberg (Germany); Almendral, Jose M., E-mail: jmalmendral@cbm.uam.es [Centro de Biologia Molecular Severo Ochoa (CSIC-UAM), Universidad Autonoma de Madrid, 28049 Cantoblanco, Madrid (Spain)

    2012-10-10

    The unordered N-termini of parvovirus capsid proteins (Nt) are translocated through a channel at the icosahedral five-fold axis to serve for virus traffick. Heterologous peptides were genetically inserted at the Nt of MVM to study their functional tolerance to manipulations. Insertion of a 5T4-single-chain antibody at VP2-Nt (2Nt) yielded chimeric capsid subunits failing to enter the nucleus. The VEGFR2-binding peptide (V1) inserted at both 2Nt and VP1-Nt efficiently assembled in virions, but V1 disrupted VP1 and VP2 entry functions. The VP2 defect correlated with restricted externalization of V1-2Nt out of the coat. The specific infectivity of MVM and wtVP-pseudotyped mosaic MVM-V1 virions, upon heating and/or partial 2Nt cleavage, demonstrated that some 2Nt domains become intracellularly translocated out of the virus shell and cleaved to initiate entry. The V1 insertion defines a VP2-driven endosomal enlargement of the channel as an essential structural rearrangement performed by the MVM virion to infect.

  15. A mixture of peptides and sugars derived from plant cell walls increases plant defense responses to stress and attenuates ageing-associated molecular changes in cultured skin cells.

    Science.gov (United States)

    Apone, Fabio; Tito, Annalisa; Carola, Antonietta; Arciello, Stefania; Tortora, Assunta; Filippini, Lucio; Monoli, Irene; Cucchiara, Mirna; Gibertoni, Simone; Chrispeels, Maarten J; Colucci, Gabriella

    2010-02-15

    Small peptides and aminoacid derivatives have been extensively studied for their effect of inducing plant defense responses, and thus increasing plant tolerance to a wide range of abiotic stresses. Similarly to plants, these compounds can activate different signaling pathways in mammalian skin cells as well, leading to the up-regulation of anti-aging specific genes. This suggests the existence of analogous defense response mechanisms, well conserved both in plants and animal cells. In this article, we describe the preparation of a new mixture of peptides and sugars derived from the chemical and enzymatic digestion of plant cell wall glycoproteins. We investigate the multiple roles of this product as potential "biostimulator" to protect plants from abiotic stresses, and also as potential cosmeceutical. In particular, the molecular effects of the peptide/sugar mixture of inducing plant defense responsive genes and protecting cultured skin cells from oxidative burst damages were deeply evaluated.

  16. Anhydrobiosis and programmed cell death in plants: Commonalities and Differences

    Directory of Open Access Journals (Sweden)

    Samer Singh

    2015-05-01

    Full Text Available Anhydrobiosis is an adaptive strategy of certain organisms or specialised propagules to survive in the absence of water while programmed cell death (PCD is a finely tuned cellular process of the selective elimination of targeted cell during developmental programme and perturbed biotic and abiotic conditions. Particularly during water stress both the strategies serve single purpose i.e., survival indicating PCD may also function as an adaptive process under certain conditions. During stress conditions PCD cause targeted cells death in order to keep the homeostatic balance required for the organism survival, whereas anhydrobiosis suspends cellular metabolic functions mimicking a state similar to death until reestablishment of the favourable conditions. Anhydrobiosis is commonly observed among organisms that have ability to revive their metabolism on rehydration after removal of all or almost all cellular water without damage. This feature is widely represented in terrestrial cyanobacteria and bryophytes where it is very common in both vegetative and reproductive stages of life-cycle. In the course of evolution, with the development of advanced vascular system in higher plants, anhydrobiosis was gradually lost from the vegetative phase of life-cycle. Though it is retained in resurrection plants that primarily belong to thallophytes and a small group of vascular angiosperm, it can be mostly found restricted in orthodox seeds of higher plants. On the contrary, PCD is a common process in all eukaryotes from unicellular to multicellular organisms including higher plants and mammals. In this review we discuss physiological and biochemical commonalities and differences between anhydrobiosis and PCD.

  17. Nitration of plant apoplastic proteins from cell suspension cultures.

    Science.gov (United States)

    Szuba, Agnieszka; Kasprowicz-Maluśki, Anna; Wojtaszek, Przemysław

    2015-04-29

    Nitric oxide causes numerous protein modifications including nitration of tyrosine residues. This modification, though one of the greatest biological importance, is poorly recognized in plants and is usually associated with stress conditions. In this study we analyzed nitrotyrosines from suspension cultures of Arabidopsis thaliana and Nicotiana tabacum, treated with NO modulators and exposed to osmotic stress, as well as of BY2 cells long-term adapted to osmotic stress conditions. Using confocal microscopy, we showed that the cell wall area is one of the compartments most enriched in nitrotyrosines within a plant cell. Subsequently, we analyzed nitration of ionically-bound cell-wall proteins and identified selected proteins with MALDI-TOF spectrometry. Proteomic analysis indicated that there was no significant increase in the amount of nitrated proteins under the influence of NO modulators, among them 3-morpholinosydnonimine (SIN-1), considered a donor of nitrating agent, peroxynitrite. Moreover, osmotic stress conditions did not increase the level of nitration in cell wall proteins isolated from suspension cells, and in cultures long-term adapted to stress conditions; that level was even reduced in comparison with control samples. Among identified nitrotyrosine-containing proteins dominated the ones associated with carbon circulation as well as the numerous proteins responding to stress conditions, mainly peroxidases. High concentrations of nitric oxide found in the cell wall and the ability to produce large amounts of ROS make the apoplast a site highly enriched in nitrotyrosines, as presented in this paper. Analysis of ionically bound fraction of the cell wall proteins indicating generally unchanged amounts of nitrotyrosines under influence of NO modulators and osmotic stress, is noticeably different from literature data concerning, however, the total plant proteins analysis. This observation is supplemented by further nitroproteome analysis, for cells long

  18. O-acetylation of Plant Cell Wall Polysaccharides

    Directory of Open Access Journals (Sweden)

    Sascha eGille

    2012-01-01

    Full Text Available Plant cell walls are composed of structurally diverse polymers, many of which are O-acetylated. How plants O-acetylate wall polymers and what its function is remained elusive until recently, when two protein families were identified in the model plant Arabidopsis that are involved in the O-acetylation of wall polysaccharides – the reduced wall acetylation (RWA and the trichome birefringence-like (TBL proteins. This review discusses the role of these two protein families in polysaccharide O-acetylation and outlines the differences and similarities of polymer acetylation mechanisms in plants, fungi, bacteria and mammals. Members of the TBL protein family had been shown to impact pathogen resistance, freezing tolerance, and cellulose biosynthesis. The connection of TBLs to polysaccharide O-acetylation thus gives crucial leads into the biological function of wall polymer O-acetylation.From a biotechnological point understanding the O-acetylation mechanism is important as acetyl-substituents inhibit the enzymatic degradation of wall polymers and released acetate can be a potent inhibitor in microbial fermentations, thus impacting the economic viability of e.g. lignocellulosic based biofuel production.

  19. Management of phenytoin-induced gingival enlargement: a case report.

    Science.gov (United States)

    Parwani, Rajkumar N; Parwani, Simran R

    2013-01-01

    Gingival enlargements may adversely affect speech, mastication, tooth eruption, and esthetics. These enlargements can occur as a result of the administration of certain anticonvulsants, immunosuppressants, and calcium channel blockers. The present case report describes the treatment of a patient with a phenytoin-induced gingival enlargement. A case of gingival enlargement should be treated in a step-wise manner, including consultation with the patient's physician, substitution of the drug, nonsurgical therapy, surgical therapy (if needed), and supportive periodontal therapy after every 3 months. In this case, healing was uneventful, and no recurrences occurred 3 months postoperatively.

  20. A simple way to identify non-viable cells within living plant tissue using confocal microscopy

    Directory of Open Access Journals (Sweden)

    Truernit Elisabeth

    2008-06-01

    Full Text Available Abstract Background Plant cell death is a normal process during plant development. Mutant plants may exhibit misregulation of this process, which can lead to severe growth defects. Simple ways of visualising cell death in living plant tissues can aid the study of plant development and physiology. Results Spectral variants of the fluorescent SYTOX dyes were tested for their usefulness for the detection of non-viable cells within plant embryos and roots using confocal laser-scanning microscopy. The dyes were selective for non-viable cells and showed very little background staining in living cells. Simultaneous detection of SYTOX dye and fluorescent protein (e.g. GFP fluorescence was possible. Conclusion The fluorescent SYTOX dyes are useful for an easy and quick first assay of plant cell viability in living plant samples using fluorescence and confocal laser-scanning microscopy.

  1. Estimation of turgor pressure through comparison between single plant cell and pressurized shell mechanics

    Science.gov (United States)

    Durand-Smet, P.; Gauquelin, E.; Chastrette, N.; Boudaoud, A.; Asnacios, A.

    2017-10-01

    While plant growth is well known to rely on turgor pressure, it is challenging to quantify the contribution of turgor pressure to plant cell rheology. Here we used a custom-made micro-rheometer to quantify the viscoelastic behavior of isolated plant cells while varying their internal turgor pressure. To get insight into how plant cells adapt their internal pressure to the osmolarity of their medium, we compared the mechanical behavior of single plant cells to that of a simple, passive, pressurized shell: a soccer ball. While both systems exhibited the same qualitative behavior, a simple mechanical model allowed us to quantify turgor pressure regulation at the single cell scale.

  2. A methodology to enlarge narrow stability windows

    Energy Technology Data Exchange (ETDEWEB)

    Araujo, Ewerton M.P.; Pastor, Jorge A.S.C.; Fontoura, Sergio A.B. [Pontificia Univ. Catolica do Rio de Janeiro (PUC-Rio), RJ (Brazil). Dept. de Engenharia Civil. Grupo de Tecnologia e Engenharia de Petroleo

    2004-07-01

    The stability window in a wellbore design is defined by the difference between fracture pressure and collapse pressure. Deep water environments typically present narrow stability windows, because rocks have low strength due to under-compaction process. Often also, horizontal wells are drilled to obtain a better development of reservoirs placed in thin layers of sandstone. In this scenario, several challenges are faced when drilling in deep water. The traditional approach for predicting instabilities is to determine collapses and fractures at borehole wall. However, the initiation of rupture does not indicate that the borehole fails to perform its function as a wellbore. Thus, a methodology in which the stability window may be enlarged is desirable. This paper presents one practical analytical methodology that consists in allowing wellbore pressures smaller than the conventional collapse pressure, i.e., based upon failure on the borehole wall. This means that a collapse region (shear failure) will be developed around the borehole wall. This collapse region is pre-defined and to estimate its size is used a failure criterion. The aforementioned methodology is implemented in a user-friendly software, which can perform analyses of stress, pore pressure, formation failure, mud weight and mud salinity design for drilling in shale formations. Simulations of a wellbore drilling in a narrow stability window environment are performed to demonstrate the improvements of using the methodology. (author)

  3. Amygdalar enlargement associated with unique perception.

    Science.gov (United States)

    Asari, Tomoki; Konishi, Seiki; Jimura, Koji; Chikazoe, Junichi; Nakamura, Noriko; Miyashita, Yasushi

    2010-01-01

    Interference by amygdalar activity in perceptual processes has been reported in many previous studies. Consistent with these reports, previous clinical studies have shown amygdalar volume change in multiple types of psychotic disease presenting with unusual perception. However, the relationship between variation in amygdalar volume in the normal population and the tendency toward unusual or unique perception has never been investigated. To address this issue, we defined an index to represent the tendency toward unique perception using ambiguous stimuli: subjects were instructed to state what the figures looked like to them, and "unique responses" were defined depending on the appearance frequency of the same responses in an age- and gender-matched control group. The index was defined as the ratio of unique responses to total responses per subject. We obtained structural brain images and values of the index from sixty-eight normal subjects. Voxel-based morphometry analyses revealed a positive correlation between amygdalar volume and the index. Since previous reports have indicated that unique responses were observed at higher frequency in the artistic population than in the nonartistic normal population, this positive correlation suggests that amygdalar enlargement in the normal population might be related to creative mental activity.

  4. [Enlargement in managment of lumbar spinal stenosis].

    Science.gov (United States)

    Steib, J P; Averous, C; Brinckert, D; Lang, G

    1996-05-01

    Lumbar stenosis has been well discussed recently, especially at the 64th French Orthopaedic Society (SOFCOT: July 1989). The results of different surgical treatments were considered as good, but the indications for surgical treatment were not clear cut. Laminectomy is not the only treatment of spinal stenosis. Laminectomy is an approach with its own rate of complications (dural tear, fibrosis, instability... ).Eight years ago, J. Sénégas described what he called the "recalibrage" (enlargement). His feeling was that, in the spinal canal, we can find two different AP diameters. The first one is a fixed constitutional AP diameter (FCAPD) at the cephalic part of the lamina. The second one is a mobile constitutional AP diameter (MCAPD) marked by the disc and the ligamentum flavum. This diameter is maximal in flexion, minimal in extension. The nerve root proceeds through the lateral part of the canal: first above, between the disc and the superior articular process, then below, in the lateral recess bordered by the pedicle, the vertebral body and the posterior articulation. With the degenerative change the disc space becomes shorter, the superior articular process is worn out with osteophytes. These degenerative events are complicated by inter vertebral instability increasing the stenosis. The idea of the "recalibrage" is to remove only the upper part of the lamina with the ligamentum flavum and to cut the hypertrophied anterior part of the articular process from inside. If needed the disc and other osteophytes are removed. The surgery is finished with a ligamentoplasty reducing the flexion and preventing the extension by a posterior wedge.Our experience in spine surgery especially in scoliosis surgery, showed us that it was possible to cure a radicular compression without opening the canal. The compression is then lifted by the 3D reduction and restoration of an anatomy as normal as possible. Lumbar stenosis is the consequence of a degenerative process. Indeed, hip

  5. Plant cell nucleolus as a hot spot for iron.

    Science.gov (United States)

    Roschzttardtz, Hannetz; Grillet, Louis; Isaure, Marie-Pierre; Conéjéro, Geneviève; Ortega, Richard; Curie, Catherine; Mari, Stéphane

    2011-08-12

    Many central metabolic processes require iron as a cofactor and take place in specific subcellular compartments such as the mitochondrion or the chloroplast. Proper iron allocation in the different organelles is thus critical to maintain cell function and integrity. To study the dynamics of iron distribution in plant cells, we have sought to identify the different intracellular iron pools by combining three complementary imaging approaches, histochemistry, micro particle-induced x-ray emission, and synchrotron radiation micro X-ray fluorescence. Pea (Pisum sativum) embryo was used as a model in this study because of its large cell size and high iron content. Histochemical staining with ferrocyanide and diaminobenzidine (Perls/diaminobenzidine) strongly labeled a unique structure in each cell, which co-labeled with the DNA fluorescent stain DAPI, thus corresponding to the nucleus. The unexpected presence of iron in the nucleus was confirmed by elemental imaging using micro particle-induced x-ray emission. X-ray fluorescence on cryo-sectioned embryos further established that, quantitatively, the iron concentration found in the nucleus was higher than in the expected iron-rich organelles such as plastids or vacuoles. Moreover, within the nucleus, iron was particularly accumulated in a subcompartment that was identified as the nucleolus as it was shown to transiently disassemble during cell division. Taken together, our data uncover an as yet unidentified although abundant iron pool in the cell, which is located in the nuclei of healthy, actively dividing plant tissues. This result paves the way for the discovery of a novel cellular function for iron related to nucleus/nucleolus-associated processes.

  6. Esau's Plant anatomy: meristems, cells, and tissues of the plant body : their structure, function, and development

    National Research Council Canada - National Science Library

    Evert, Ray Franklin; Esau, Katherine; Eichhorn, Susan E

    2006-01-01

    ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xix Chapter 1 Structure and Development of the Plant Body- An Overview . . . . . . . . . . . . . . . . . . . . . . . . 1 Internal Organization of the Plant Body...

  7. A comparative mechanical analysis of plant and animal cells reveals convergence across kingdoms.

    Science.gov (United States)

    Durand-Smet, Pauline; Chastrette, Nicolas; Guiroy, Axel; Richert, Alain; Berne-Dedieu, Annick; Szecsi, Judit; Boudaoud, Arezki; Frachisse, Jean-Marie; Bendahmane, Mohammed; Bendhamane, Mohammed; Hamant, Oliver; Asnacios, Atef

    2014-11-18

    Plant and animals have evolved different strategies for their development. Whether this is linked to major differences in their cell mechanics remains unclear, mainly because measurements on plant and animal cells relied on independent experiments and setups, thus hindering any direct comparison. In this study we used the same micro-rheometer to compare animal and plant single cell rheology. We found that wall-less plant cells exhibit the same weak power law rheology as animal cells, with comparable values of elastic and loss moduli. Remarkably, microtubules primarily contributed to the rheological behavior of wall-less plant cells whereas rheology of animal cells was mainly dependent on the actin network. Thus, plant and animal cells evolved different molecular strategies to reach a comparable cytoplasmic mechanical core, suggesting that evolutionary convergence could include the internal biophysical properties of cells.

  8. Fuel Cell Balance-of-Plant Reliability Testbed Project

    Energy Technology Data Exchange (ETDEWEB)

    Sproat, Vern [Stark State College of Technology, North Canton, OH (United States); LaHurd, Debbie [Lockheed Martin Corp., Oak Ridge, TN (United States)

    2016-10-29

    Reliability of the fuel cell system balance-of-plant (BoP) components is a critical factor that needs to be addressed prior to fuel cells becoming fully commercialized. Failure or performance degradation of BoP components has been identified as a life-limiting factor in fuel cell systems.1 The goal of this project is to develop a series of test beds that will test system components such as pumps, valves, sensors, fittings, etc., under operating conditions anticipated in real Polymer Electrolyte Membrane (PEM) fuel cell systems. Results will be made generally available to begin removing reliability as a roadblock to the growth of the PEM fuel cell industry. Stark State College students participating in the project, in conjunction with their coursework, have been exposed to technical knowledge and training in the handling and maintenance of hydrogen, fuel cells and system components as well as component failure modes and mechanisms. Three test beds were constructed. Testing was completed on gas flow pumps, tubing, and pressure and temperature sensors and valves.

  9. A radioimmunoassay for lignin in plant cell walls

    Energy Technology Data Exchange (ETDEWEB)

    Dawley, R.M.

    1989-01-01

    Lignin detection and determination in herbaceous tissue requires selective, specific assays which are not currently available. A radioimmunoassay (RIA) was developed to study lignin metabolism in these tissues. A {beta}-aryl ether lignin model compound was synthesized, linked to keyhole limpet hemocyanin using a water-soluble carbodiimide, and injected into rabbits. The highest titer of the antiserum obtained was 34 {eta}g/mL of model derivatized BSA. An in vitro system was developed to characterize the RIA. The model compound was linked to amino activated polyacrylamide beads to mimic lignin in the cell walls. {sup 125}I Radiolabelled protein A was used to detect IgG antibody binding. The RIA was shown in the in vitro system to exhibit saturable binding. The amount of antibody bound decreased when the serum was diluted. Immunoelectrophoresis and competitive binding experiments confirmed that both aromatic rings of the lignin model compound had been antigenic. Chlorogenic acid, a phenolic known to be present in plant cells, did not compete for antibody binding. The RIA was used to measure lignin in milled plant samples and barley seedlings. Antiserum binding to wheat cell walls and stressed barley segments was higher than preimmune serum binding. Antibody binding to stressed barley tissue decreased following NaClO{sub 2} delignification. The RIA was found to be less sensitive than expected, so several avenues for improving the method are discussed.

  10. Microfluidic monitoring of programmed cell death in living plant seed tissue

    DEFF Research Database (Denmark)

    Mark, Christina; Heiskanen, Arto; Zor, Kinga

    Programmed cell death (PCD) is a highly regulated process in which cells are dismantled. Reactive oxygen species (ROS) are involved in PCD in plants, but the relationship between and mechanisms behind ROS and PCD are only poorly understood in plant cells compared to in animal cells (Gechev, Tsanko...

  11. Microfluidic monitoring of programmed cell death in living plant seed tissue

    DEFF Research Database (Denmark)

    Mark, Christina; Heiskanen, Arto; Zor, Kinga

    Programmed cell death (PCD) is a highly regulated process in which cells are dismantled. Reactive oxygen species (ROS) are involved in PCD in plants, but the relationship between and mechanisms behind ROS and PCD are only poorly understood in plant cells compared to in animal cells (Gechev, Tsank...

  12. Direct fuel cell power plants: the final steps to commercialization

    Science.gov (United States)

    Glenn, Donald R.

    Since the last paper presented at the Second Grove Fuel Cell Symposium, the Energy Research Corporation (ERC) has established two commercial subsidiaries, become a publically-held firm, expanded its facilities and has moved the direct fuel cell (DFC) technology and systems significantly closer to commercial readiness. The subsidiaries, the Fuel Cell Engineering Corporation (FCE) and Fuel Cell Manufacturing Corporation (FCMC) are perfecting their respective roles in the company's strategy to commercialize its DFC technology. FCE is the prime contractor for the Santa Clara Demonstration and is establishing the needed marketing, sales, engineering, and servicing functions. FCMC in addition to producing the stacks and stack modules for the Santa Clara demonstration plant is now upgrading its production capability and product yields, and retooling for the final stack scale-up for the commercial unit. ERC has built and operated the tallest and largest capacities-to-date carbonate fuel cell stacks as well as numerous short stacks. While most of these units were tested at ERC's Danbury, Connecticut (USA) R&D Center, others have been evaluated at other domestic and overseas facilities using a variety of fuels. ERC has supplied stacks to Elkraft and MTU for tests with natural gas, and RWE in Germany where coal-derived gas were used. Additional stack test activities have been performed by MELCO and Sanyo in Japan. Information from some of these activities is protected by ERC's license arrangements with these firms. However, permission for limited data releases will be requested to provide the Grove Conference with up-to-date results. Arguably the most dramatic demonstration of carbonate fuel cells in the utility-scale, 2 MW power plant demonstration unit, located in the City of Santa Clara, California. Construction of the unit's balance-of-plant (BOP) has been completed and the installed equipment has been operationally checked. Two of the four DFC stack sub-modules, each

  13. Green electricity production with living plants and bacteria in a fuel cell

    NARCIS (Netherlands)

    Strik, D.P.B.T.B.; Hamelers, H.V.M.; Snel, J.F.H.; Buisman, C.J.N.

    2008-01-01

    The world needs sustainable, efficient, and renewable energy production. We present the plant microbial fuel cell (plant-MFC), a concept that exploits a bioenergy source in situ. In the plant-MFC, plants and bacteria were present to convert solar energy into green electricity. The principal idea is

  14. Statistical optimization of single-cell production from Taxus cuspidata plant cell aggregates.

    Science.gov (United States)

    Gaurav, Vishal; Roberts, Susan C

    2011-01-01

    Flow-cytometric characterization of plant cell culture growth and metabolism at the single-cell level is a method superior to traditional culture average measurements for collecting population information. Investigation of culture heterogeneity and production variability by obtaining information about different culture subpopulations is crucial for optimizing bio-processes for enhanced productivity. Obtaining high yields of intact and viable single cells from aggregated plant cell cultures is an enabling criterion for their analysis and isolation using high-throughput flow cytometric methods. The critical parameters affecting the enzymatic isolation of single cells from aggregated Taxus cuspidata plant cell suspensions were optimized using response-surface methodology and factorial central composite design. Using a design of experiments approach, the output response single-cell yield (SCY, percentage of cell clusters containing only a single cell) was optimized. Optimal conditions were defined for the independent parameters cellulase concentration, pectolyase Y-23 concentration, and centrifugation speed to be 0.045% (w/v), 0.7% (w/v), and 1200 × g, respectively. At these optimal conditions, the model predicted a maximum SCY of 48%. The experimental data exhibited a 72% increase over previously attained values and additionally validated the model predictions. More than 99% of the isolated cells were viable and suitable for rapid analysis through flow cytometry, thus enabling the collection of population information from cells that accurately represent aggregated suspensions. These isolated cells can be further studied to gain insight into both growth and secondary metabolite production, which can be used for bio-process optimization.

  15. Cytoplasmic streaming in plant cells: the role of wall slip.

    Science.gov (United States)

    Wolff, K; Marenduzzo, D; Cates, M E

    2012-06-01

    We present a computer simulation study, via lattice Boltzmann simulations, of a microscopic model for cytoplasmic streaming in algal cells such as those of Chara corallina. We modelled myosin motors tracking along actin lanes as spheres undergoing directed motion along fixed lines. The sphere dimension takes into account the fact that motors drag vesicles or other organelles, and, unlike previous work, we model the boundary close to which the motors move as walls with a finite slip layer. By using realistic parameter values for actin lane and myosin density, as well as for endoplasmic and vacuole viscosity and the slip layer close to the wall, we find that this simplified view, which does not rely on any coupling between motors, cytoplasm and vacuole other than that provided by viscous Stokes flow, is enough to account for the observed magnitude of streaming velocities in intracellular fluid in living plant cells.

  16. Novel roles of plant RETINOBLASTOMA-RELATED (RBR) protein in cell proliferation and asymmetric cell division.

    Science.gov (United States)

    Desvoyes, Bénédicte; de Mendoza, Alex; Ruiz-Trillo, Iñaki; Gutierrez, Crisanto

    2014-06-01

    The retinoblastoma (Rb) protein was identified as a human tumour suppressor protein that controls various stages of cell proliferation through the interaction with members of the E2F family of transcription factors. It was originally thought to be specific to animals but plants contain homologues of Rb, called RETINOBLASTOMA-RELATED (RBR). In fact, the Rb-E2F module seems to be a very early acquisition of eukaryotes. The activity of RBR depends on phosphorylation of certain amino acid residues, which in most cases are well conserved between plant and animal proteins. In addition to its role in cell-cycle progression, RBR has been shown to participate in various cellular processes such as endoreplication, transcriptional regulation, chromatin remodelling, cell growth, stem cell biology, and differentiation. Here, we discuss the most recent advances to define the role of RBR in cell proliferation and asymmetric cell division. These and other reports clearly support the idea that RBR is used as a landing platform of a plethora of cellular proteins and complexes to control various aspects of cell physiology and plant development.

  17. Measuring NO Production by Plant Tissues and Suspension Cultured Cells

    Institute of Scientific and Technical Information of China (English)

    Jan Vitecek; Vilem Reinohl; Russell L.Jones

    2008-01-01

    We describe an inexpensive and reliable detector for measuring NO emitted in the gas phase from plants.The method relies on the use of a strong oxidizer to convert NO to NO2 and subsequent capture of NO2 by a Griess reagent trap.The set-up approaches the sensitivity for NO comparable to that of instruments based on chemiluminescence and photoacoustic detectors.We demonstrate the utility of our set-up by measuring NO produced by a variety of well established plant sources.NO produced by nitrate reductase (NR) in tobacco leaves and barley aleurone was readily detected,as was the production of NO from nitrite by the incubation medium of barley aleurone.Arabidopsis mutants that overproduce NO or lack NO-synthase (AtNOS1) also displayed the expected NO synthesis phenotype when assayed by our set-up.We could also measure NO production from elicitor-treated suspension cultured cells using this set-up.Further,we have focused on the detection of NO by a widely used fluorescent probe 4-amino-5-methylamino-2',7'-difluorofluorescein (DAF-FM).Our work points to the pitfalls that must be avoided when using DAF-FM to detect the production of NO by plant tissues.In addition to the dramatic effects that pH can have on fluorescence from DAF-FM,the widely used NO scavengers 2-phenyl-4,4,5,5-tetramethylimidazoline-l-oxyl-3-oxide (PTIO) and 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (cPTIO) can produce anomalous and unexpected results.Perhaps the most serious drawback of DAF-FM is its ability to bind to dead cells and remain NO-sensitive.

  18. Plant stem cell maintenance involves direct transcriptional repression of differentiation program

    OpenAIRE

    Yadav, Ram Kishor; Perales, Mariano; Gruel, Jérémy; Ohno, Carolyn; Heisler, Marcus; Girke, Thomas; Jönsson, Henrik; Reddy, G. Venugopala

    2013-01-01

    In animal systems, master regulatory transcription factors (TFs) mediate stem cell maintenance through a direct transcriptional repression of differentiation promoting TFs. Whether similar mechanisms operate in plants is not known. In plants, shoot apical meristems serve as reservoirs of stem cells that provide cells for all above ground organs. WUSCHEL, a homeodomain TF produced in cells of the niche, migrates into adjacent cells where it specifies stem cells. Through high-resolution genomic...

  19. Cell-to-cell communication in plants, animals, and fungi: a comparative review

    Science.gov (United States)

    Bloemendal, Sandra; Kück, Ulrich

    2013-01-01

    Cell-to-cell communication is a prerequisite for differentiation and development in multicellular organisms. This communication has to be tightly regulated to ensure that cellular components such as organelles, macromolecules, hormones, or viruses leave the cell in a precisely organized way. During evolution, plants, animals, and fungi have developed similar ways of responding to this biological challenge. For example, in higher plants, plasmodesmata connect adjacent cells and allow communication to regulate differentiation and development. In animals, two main general structures that enable short- and long-range intercellular communication are known, namely gap junctions and tunneling nanotubes, respectively. Finally, filamentous fungi have also developed specialized structures called septal pores that allow intercellular communication via cytoplasmic flow. This review summarizes the underlying mechanisms for intercellular communication in these three eukaryotic groups and discusses its consequences for the regulation of differentiation and developmental processes.

  20. Cell-to-cell communication in plants, animals, and fungi: a comparative review.

    Science.gov (United States)

    Bloemendal, Sandra; Kück, Ulrich

    2013-01-01

    Cell-to-cell communication is a prerequisite for differentiation and development in multicellular organisms. This communication has to be tightly regulated to ensure that cellular components such as organelles, macromolecules, hormones, or viruses leave the cell in a precisely organized way. During evolution, plants, animals, and fungi have developed similar ways of responding to this biological challenge. For example, in higher plants, plasmodesmata connect adjacent cells and allow communication to regulate differentiation and development. In animals, two main general structures that enable short- and long-range intercellular communication are known, namely gap junctions and tunneling nanotubes, respectively. Finally, filamentous fungi have also developed specialized structures called septal pores that allow intercellular communication via cytoplasmic flow. This review summarizes the underlying mechanisms for intercellular communication in these three eukaryotic groups and discusses its consequences for the regulation of differentiation and developmental processes.

  1. Chest radiographs fail to detect right ventricular enlargement and right atrial enlargement in patients with a pure restrictive ventilatory impairment.

    Science.gov (United States)

    Shivkumar, K; Ravi, K; Henry, J W; Eichenhorn, M S; Stein, P D

    1994-08-01

    The validity of measurements of the cardiac silhouette on chest radiographs for the evaluation of right ventricular enlargement and right atrial enlargement in patients with a pure restrictive ventilatory impairment was investigated in 19 patients. The forced vital capacity (FVC) percent predicted in these patients was 59 +/- 12 percent (mean +/- SD) (range, 29 to 79 percent). Right ventricular enlargement, by two-dimensional echocardiography, was defined as a right ventricular area > 20.4 cm2 and right atrial enlargement was defined as a right atrial area > 15.3 cm2. Chest radiographic measurements in the posteroanterior (PA) projection included distance from the midline to the farthest point of the right border of the cardiac silhouette, transverse cardiac diameter, and cardiothoracic ratio. Measurements in the lateral projection included the lateral horizontal transverse diameter, ventral portion of the lateral broad diameter, and obliteration of the retrosternal space. Neither the right ventricular area nor the right atrial area correlated with any of these radiographic measurements. There were no differences in these chest radiographic measurements among patients with normal right ventricular and right atrial dimensions, patients with right ventricular enlargement, and patients with right atrial enlargement. We conclude, therefore, that PA and lateral chest radiographs do not reliably detect right ventricular enlargement or right atrial enlargement in patients with a pure restrictive ventilatory impairment.

  2. The Arabidopsis synaptotagmin SYTA regulates the cell-to-cell movement of diverse plant viruses

    Directory of Open Access Journals (Sweden)

    Asako eUchiyama

    2014-11-01

    Full Text Available Synaptotagmins are a large gene family in animals that have been extensively characterized due to their role as calcium sensors to regulate synaptic vesicle exocytosis and endocytosis in neurons, and dense core vesicle exocytosis for hormone secretion from neuroendocrine cells. Thought to be exclusive to animals, synaptotagmins have recently been characterized in Arabidopsis thaliana, in which they comprise a five gene family. Using infectivity and leaf-based functional assays, we have shown that Arabidopsis SYTA regulates endocytosis and marks an endosomal vesicle recycling pathway to regulate movement protein-mediated trafficking of the Begomovirus Cabbage leaf curl virus (CaLCuV and the Tobamovirus Tobacco mosaic virus (TMV through plasmodesmata (Lewis and Lazarowitz, 2010. To determine whether SYTA has a central role in regulating the cell-to-cell trafficking of a wider range of diverse plant viruses, we extended our studies here to examine the role of SYTA in the cell-to-cell movement of additional plant viruses that employ different modes of movement, namely the Potyvirus Turnip mosaic virus (TuMV, the Caulimovirus Cauliflower mosaic virus (CaMV and the Tobamovirus Turnip vein clearing virus (TVCV, which in contrast to TMV does efficiently infect Arabidopsis. We found that both TuMV and TVCV systemic infection, and the cell-to-cell trafficking of the their movement proteins, were delayed in the Arabidopsis Col-0 syta-1 knockdown mutant. In contrast, CaMV systemic infection was not inhibited in syta-1. Our studies show that SYTA is a key regulator of plant virus intercellular movement, being necessary for the ability of diverse cell-to-cell movement proteins encoded by Begomoviruses (CaLCuV MP, Tobamoviruses (TVCV and TMV 30K protein and Potyviruses (TuMV P3N-PIPO to alter PD and thereby mediate virus cell-to-cell spread.

  3. A Receptor-Like Kinase, Related to Cell Wall Sensor of Higher Plants, is Required for Sexual Reproduction in the Unicellular Charophycean Alga, Closterium peracerosum-strigosum-littorale Complex.

    Science.gov (United States)

    Hirano, Naoko; Marukawa, Yuka; Abe, Jun; Hashiba, Sayuri; Ichikawa, Machiko; Tanabe, Yoichi; Ito, Motomi; Nishii, Ichiro; Tsuchikane, Yuki; Sekimoto, Hiroyuki

    2015-07-01

    Here, we cloned the CpRLK1 gene, which encodes a receptor-like protein kinase expressed during sexual reproduction, from the heterothallic Closterium peracerosum-strigosum-littorale complex, one of the closest unicellular alga to land plants. Mating-type plus (mt(+)) cells with knockdown of CpRLK1 showed reduced competence for sexual reproduction and formed an abnormally enlarged conjugation papilla after pairing with mt(-) cells. The knockdown cells were unable to release a naked gamete, which is indispensable for zygote formation. We suggest that the CpRLK1 protein is an ancient cell wall sensor that now functions to regulate osmotic pressure in the cell to allow proper gamete release.

  4. Plant cell wall extensibility: connecting plant cell growth with cell wall structure, mechanics, and the action of wall-modifying enzymes

    Energy Technology Data Exchange (ETDEWEB)

    Cosgrove, Daniel J.

    2015-11-25

    The advent of user-friendly instruments for measuring force/deflection curves of plant surfaces at high spatial resolution has resulted in a recent outpouring of reports of the ‘Young's modulus’ of plant cell walls. The stimulus for these mechanical measurements comes from biomechanical models of morphogenesis of meristems and other tissues, as well as single cells, in which cell wall stress feeds back to regulate microtubule organization, auxin transport, cellulose deposition, and future growth directionality. In this article I review the differences between elastic modulus and wall extensibility in the context of cell growth. Some of the inherent complexities, assumptions, and potential pitfalls in the interpretation of indentation force/deflection curves are discussed. Reported values of elastic moduli from surface indentation measurements appear to be 10- to >1000-fold smaller than realistic tensile elastic moduli in the plane of plant cell walls. Potential reasons for this disparity are discussed, but further work is needed to make sense of the huge range in reported values. The significance of wall stress relaxation for growth is reviewed and connected to recent advances and remaining enigmas in our concepts of how cellulose, hemicellulose, and pectins are assembled to make an extensible cell wall. A comparison of the loosening action of α-expansin and Cel12A endoglucanase is used to illustrate two different ways in which cell walls may be made more extensible and the divergent effects on wall mechanics.

  5. Nanobiotechnology meets plant cell biology: Carbon nanotubes as organelle targeting nanocarriers

    KAUST Repository

    Bayoumi, Maged Fouad

    2013-01-01

    For years, nanotechnology has shown great promise in the fields of biomedical and biotechnological sciences and medical research. In this review, we demonstrate its versatility and applicability in plant cell biology studies. Specifically, we discuss the ability of functionalized carbon nanotubes to penetrate the plant cell wall, target specific organelles, probe protein-carrier activity and induce organelle recycling in plant cells. We also, shed light on prospective applications of carbon nanomaterials in cell biology and plant cell transformation. © 2013 The Royal Society of Chemistry.

  6. Guiding plant virus particles to integrin-displaying cells

    Science.gov (United States)

    Hovlid, Marisa L.; Steinmetz, Nicole F.; Laufer, Burkhardt; Lau, Jolene L.; Kuzelka, Jane; Wang, Qian; Hyypiä, Timo; Nemerow, Glen R.; Kessler, Horst; Manchester, Marianne; Finn, M. G.

    2012-05-01

    Viral nanoparticles (VNPs) are structurally regular, highly stable, tunable nanomaterials that can be conveniently produced in high yields. Unmodified VNPs from plants and bacteria generally do not show tissue specificity or high selectivity in binding to or entry into mammalian cells. They are, however, malleable by both genetic and chemical means, making them useful scaffolds for the display of large numbers of cell- and tissue-targeting ligands, imaging moieties, and/or therapeutic agents in a well-defined manner. Capitalizing on this attribute, we modified the genetic sequence of the Cowpea mosaic virus (CPMV) coat protein to display an RGD oligopeptide sequence derived from human adenovirus type 2 (HAdV-2). Concurrently, wild-type CPMV was modified via NHS acylation and Cu(i)-catalyzed azide-alkyne cycloaddition (CuAAC) chemistry to attach an integrin-binding cyclic RGD peptide. Both types of particles showed strong and selective affinity for several different cancer cell lines that express RGD-binding integrin receptors.Viral nanoparticles (VNPs) are structurally regular, highly stable, tunable nanomaterials that can be conveniently produced in high yields. Unmodified VNPs from plants and bacteria generally do not show tissue specificity or high selectivity in binding to or entry into mammalian cells. They are, however, malleable by both genetic and chemical means, making them useful scaffolds for the display of large numbers of cell- and tissue-targeting ligands, imaging moieties, and/or therapeutic agents in a well-defined manner. Capitalizing on this attribute, we modified the genetic sequence of the Cowpea mosaic virus (CPMV) coat protein to display an RGD oligopeptide sequence derived from human adenovirus type 2 (HAdV-2). Concurrently, wild-type CPMV was modified via NHS acylation and Cu(i)-catalyzed azide-alkyne cycloaddition (CuAAC) chemistry to attach an integrin-binding cyclic RGD peptide. Both types of particles showed strong and selective affinity

  7. Behind the lines–actions of bacterial type III effector proteins in plant cells

    OpenAIRE

    Büttner, Daniela

    2016-01-01

    Pathogenicity of most Gram-negative plant-pathogenic bacteria depends on the type III secretion (T3S) system, which translocates bacterial effector proteins into plant cells. Type III effectors modulate plant cellular pathways to the benefit of the pathogen and promote bacterial multiplication. One major virulence function of type III effectors is the suppression of plant innate immunity, which is triggered upon recognition of pathogen-derived molecular patterns by plant receptor proteins. Ty...

  8. A fuel cell balance of plant test facility

    Science.gov (United States)

    Dicks, A. L.; Martin, P. A.

    Much attention is focused in the fuel cell community on the development of reliable stack technology, but to successfully exploit fuel cells, they must form part of integrated power generation systems. No universal test facilities exist to evaluate SOFC stacks and comparatively little research has been undertaken concerning the issues of the rest of the system, or balance of plant (BOP). BG, in collaboration with Eniricerche, has therefore recently designed and built a test facility to evaluate different configurations of the BOP equipment for a 1-5 kWe solid oxide fuel cell (SOFC) stack. Within this BOP project, integrated, dynamic models have been developed. These have shown that three characteristic response times exist when the stack load is changed and that three independent control loops are required to manage the almost instantaneous change in power output from an SOFC stack, maintain the fuel utilisation and control the stack temperature. Control strategies and plant simplifications, arising from the dynamic modelling, have also been implemented in the BOP test facility. An SOFC simulator was designed and integrated into the control system of the test rig to behave as a real SOFC stack, allowing the development of control strategies without the need for a real stack. A novel combustor has been specifically designed, built and demonstrated to be capable of burning the low calorific anode exhaust gas from an SOFC using the oxygen depleted cathode stream. High temperature, low cost, shell and tube heat exchangers have been shown to be suitable for SOFC systems. Sealing of high temperature anode recirculation fans has, however, been shown to be a major issue and identified as a key area for further investigation.

  9. Plant protoplast fusion and growth of intergeneric hybrid cells.

    Science.gov (United States)

    Kao, K N; Constabel, F; Michayluk, M R; Gamborg, O L

    1974-01-01

    Interspecific and intergeneric fusions of plant protoplasts were induced by polyethylene glycol (PEG) 1540 or 4000. The frequency of heterokaryocyte formation (or rate of fusion) was much higher when PEG was eluted with a high pH-high Ca(2+) solution or a salt solution than when it was eluted with a protoplast culture medium. The frequency of heterokaryocyte formation was also affected by the types of enzymes used for wall degradation, duration of enzyme incubation and molality of the PEG solutions.The maximum frequency of heterokaryocyte formation was 23% for V. hajastana Grossh.-soybean (Glycine max L.) and barley (Hordeum vulgare L.)-soybean, 35% for pea (Pisum sativum L.)-soybean, 20% for pea-V. hajastana, 14% for corn (Zea mays L.)-soybean and 10% for V. villosa Roth-V. hajastana.40% of the barley-soybean, corn-soybean and pea-soybean heterokaryocytes divided at least once. Some divided many times and formed clusters of up to 100 cells in 2 weeks. The heterokaryocytes of soybean-V. hajastana, V. villosa-V. hajastana also divided. Of the PEG-treated protoplasts of N. langsdorffii and N. glauca 13.5% developed into tumor-like calli. The morphology of these calli was very much like that of the tumors produced on amphidiploid plants of N. langsdorffii x glauca.Nuclear staining indicated that heterokaryocytes of V. hajastana-soybean, pea-soybean, corn-soybean and barley-soybean could undergo mitosis. Nuclear divisions in a heterokaryocyte were usually synchronized or almost synchronized. Nuclear fusion and true hybrid formation usually occurred during the first mitotic division after protoplast fusion. A hybrid of barley-soybean in third cell division was observed. The frequency of heterokaryocytes which underwent nuclear fusion has not been determined. Multipole formation and chimeral cell colonies were also observed.

  10. Exocytosis and polarity in plant cells: insights by studying cellulose synthase complexes and the exocyst

    NARCIS (Netherlands)

    Ying Zhang, Ying

    2012-01-01

    The work presented in this thesis covers aspects of exocytosis, plant cell growth and cell wall formation. These processes are strongly linked as cell growth and cell wall formation occur simultaneously and exocytosis is the process that delivers cell wall components to the existing cell wall and in

  11. NADH oxidase activity (NOX) and enlargement of HeLa cells oscillate with two different temperature-compensated period lengths of 22 and 24 minutes corresponding to different NOX forms

    Science.gov (United States)

    Wang, S.; Pogue, R.; Morre, D. M.; Morre, D. J.

    2001-01-01

    NOX proteins are cell surface-associated and growth-related hydroquinone (NADH) oxidases with protein disulfide-thiol interchange activity. A defining characteristic of NOX proteins is that the two enzymatic activities alternate to generate a regular period length of about 24 min. HeLa cells exhibit at least two forms of NOX. One is tumor-associated (tNOX) and is inhibited by putative quinone site inhibitors (e.g., capsaicin or the antitumor sulfonylurea, LY181984). Another is constitutive (CNOX) and refractory to inhibition. The periodic alternation of activities and drug sensitivity of the NADH oxidase activity observed with intact HeLa cells was retained in isolated plasma membranes and with the solubilized and partially purified enzyme. At least two activities were present. One had a period length of 24 min and the other had a period length of 22 min. The lengths of both the 22 and the 24 min periods were temperature compensated (approximately the same when measured at 17, 27 or 37 degrees C) whereas the rate of NADH oxidation approximately doubled with each 10 degrees C rise in temperature. The rate of increase in cell area of HeLa cells when measured by video-enhanced light microscopy also exhibited a complex period of oscillations reflective of both 22 and 24 min period lengths. The findings demonstrate the presence of a novel oscillating NOX activity at the surface of cancer cells with a period length of 22 min in addition to the constitutive NOX of non-cancer cells and tissues with a period length of 24 min.

  12. Doorkeepers and Gatecrashers: EU Enlargement and Negotiation Strategies

    DEFF Research Database (Denmark)

    Brücker, Herbert; Schröder, Philipp; Weise, Christian

    2004-01-01

    This paper discusses the eastward enlargement process of the EU in the framework of a simple war of attrition bargaining game. Both players -- the existing EU members and the applicants -- benefit from enlargement, yet for the applicants, reform to the acquis is costly, while the EU prefers...... substantially reformed candidates. A waiting game unfolds. Within this framework the present enlargement round is analysed and policy results are deduced. For example, it is shown that delegating the evaluation of applicants to a third party, compensating applicants for their reform efforts or increasing...... the benefits for new members are all effective negotiation strategies for the EU that have been applied in the process....

  13. Growth and the Enlargement of a Common Market

    Directory of Open Access Journals (Sweden)

    Cheng-Te Lee

    2013-12-01

    Full Text Available This paper explores the growth effects of the enlargement of a common market from two to three countries by making use of a three-country equilibrium growth model with heterogeneous labour. We prove that the enlargement will stimulate the backward countries’ economic growth. In addition, we also demonstrate that the higher the new member country’s average talent level is, the more likely it is that the enlargement can speed up the initial integrated-economy’s economic growth.

  14. Imaging Nuclear Morphology and Organization in Cleared Plant Tissues Treated with Cell Cycle Inhibitors.

    Science.gov (United States)

    de Souza Junior, José Dijair Antonino; de Sa, Maria Fatima Grossi; Engler, Gilbert; Engler, Janice de Almeida

    2016-01-01

    Synchronization of root cells through chemical treatment can generate a large number of cells blocked in specific cell cycle phases. In plants, this approach can be employed for cell suspension cultures and plant seedlings. To identify plant cells in the course of the cell cycle, especially during mitosis in meristematic tissues, chemical inhibitors can be used to block cell cycle progression. Herein, we present a simplified and easy-to-apply protocol to visualize mitotic figures, nuclei morphology, and organization in whole Arabidopsis root apexes. The procedure is based on tissue clearing, and fluorescent staining of nuclear DNA with DAPI. The protocol allows carrying out bulk analysis of nuclei and cell cycle phases in root cells and will be valuable to investigate mutants like overexpressing lines of genes disturbing the plant cell cycle.

  15. Plasma membrane protein trafficking in plant-microbe interactions: a plant cell point of view

    Directory of Open Access Journals (Sweden)

    Nathalie eLeborgne-Castel

    2014-12-01

    Full Text Available In order to ensure their physiological and cellular functions, plasma membrane (PM proteins must be properly conveyed from their site of synthesis, i.e. the endoplasmic reticulum, to their final destination, the PM, through the secretory pathway. PM protein homeostasis also relies on recycling and/or degradation, two processes that are initiated by endocytosis. Vesicular membrane trafficking events to and from the PM have been shown to be altered when plant cells are exposed to mutualistic or pathogenic microbes. In this review, we will describe the fine-tune regulation of such alterations, and their consequence in PM protein activity. We will consider the formation of intracellular perimicrobial compartments, the PM protein trafficking machinery of the host, and the delivery or retrieval of signaling and transport proteins such as pattern-recognition receptors, producers of reactive oxygen species, and sugar transporters.

  16. A plant cell division algorithm based on cell biomechanics and ellipse-fitting

    Science.gov (United States)

    Abera, Metadel K.; Verboven, Pieter; Defraeye, Thijs; Fanta, Solomon Workneh; Hertog, Maarten L. A. T. M.; Carmeliet, Jan; Nicolai, Bart M.

    2014-01-01

    Background and Aims The importance of cell division models in cellular pattern studies has been acknowledged since the 19th century. Most of the available models developed to date are limited to symmetric cell division with isotropic growth. Often, the actual growth of the cell wall is either not considered or is updated intermittently on a separate time scale to the mechanics. This study presents a generic algorithm that accounts for both symmetrically and asymmetrically dividing cells with isotropic and anisotropic growth. Actual growth of the cell wall is simulated simultaneously with the mechanics. Methods The cell is considered as a closed, thin-walled structure, maintained in tension by turgor pressure. The cell walls are represented as linear elastic elements that obey Hooke's law. Cell expansion is induced by turgor pressure acting on the yielding cell-wall material. A system of differential equations for the positions and velocities of the cell vertices as well as for the actual growth of the cell wall is established. Readiness to divide is determined based on cell size. An ellipse-fitting algorithm is used to determine the position and orientation of the dividing wall. The cell vertices, walls and cell connectivity are then updated and cell expansion resumes. Comparisons are made with experimental data from the literature. Key Results The generic plant cell division algorithm has been implemented successfully. It can handle both symmetrically and asymmetrically dividing cells coupled with isotropic and anisotropic growth modes. Development of the algorithm highlighted the importance of ellipse-fitting to produce randomness (biological variability) even in symmetrically dividing cells. Unlike previous models, a differential equation is formulated for the resting length of the cell wall to simulate actual biological growth and is solved simultaneously with the position and velocity of the vertices. Conclusions The algorithm presented can produce different

  17. Microtubules in Plant Cells: Strategies and Methods for Immunofluorescence, Transmission Electron Microscopy and Live Cell Imaging

    Science.gov (United States)

    Celler, Katherine; Fujita, Miki; Kawamura, Eiko; Ambrose, Chris; Herburger, Klaus; Wasteneys, Geoffrey O.

    2016-01-01

    Microtubules are required throughout plant development for a wide variety of processes, and different strategies have evolved to visualize and analyze them. This chapter provides specific methods that can be used to analyze microtubule organization and dynamic properties in plant systems and summarizes the advantages and limitations for each technique. We outline basic methods for preparing samples for immunofluorescence labelling, including an enzyme-based permeabilization method, and a freeze-shattering method, which generates microfractures in the cell wall to provide antibodies access to cells in cuticle-laden aerial organs such as leaves. We discuss current options for live cell imaging of MTs with fluorescently tagged proteins (FPs), and provide chemical fixation, high pressure freezing/freeze substitution, and post-fixation staining protocols for preserving MTs for transmission electron microscopy and tomography. PMID:26498784

  18. Calcium localization and tipburn development in lettuce leaves during early enlargement

    Science.gov (United States)

    Barta, D. J.; Tibbitts, T. W.

    2000-01-01

    Tissue concentrations of Ca, Mg, and K were determined across immature leaves of lettuce (Lactuca sativa L. 'Buttercrunch') at different stages of enlargement using electron microprobe x-ray analysis. The analysis was with a wavelength dispersive spectrometer to permit detection of low concentrations of Ca. Patterns of mineral accumulation in immature leaves that were exposed were compared to patterns of accumulation in leaves that were enclosed within a developing head. The leaves developing without enclosure were free to transpire and developed normally whereas leaves developing with enclosure were restricted in transpiration and developed an injury that was characteristic of Ca deficiency. In the exposed leaves, Ca concentrations increased from an average of 1.0 to 2.1 mg g-1 dry weight (DW) as the leaves enlarged from 5 to 30 mm in length. In the enclosed leaves, Ca concentrations decreased from 1.0 to 0.7 mg g-1 DW as the leaves enlarged from 5 to 30 mm in length. At the tips of these enclosed leaves a larger decrease was found, from 0.9 to 0.3 mg g-1 DW during enlargement. Necrotic injury first became apparent in this tip area when the concentration was approximate to 0.4 mg g-1 DW. Magnesium concentrations across the exposed leaves were similar to concentrations across the enclosed leaves, and did not change with enlargement. Magnesium concentrations averaged 3.5. mg g-1 DW in both enclosed and exposed leaves during enlargement from 5 to 30 mm. In both exposed and enclosed leaves, K concentrations increased during enlargement from 40 to approximate to 60 mg g-1 DW. Potassium concentrations were highest toward the leaf apex and upper margin where injury symptoms occurred, and this may have enhanced injury development. This research documents the critical low levels of Ca (0.2 to 0.4 mg g-1 DW) that can occur in enclosed leaves of plants and which apparently leads to the marginal apex necrosis of developing leaves seen frequently on lettuce and other crops.

  19. Cellulose microfibril assembly and orientation in higher plant cells

    Energy Technology Data Exchange (ETDEWEB)

    Mueller, S.C. (Syracuse Univ., NY); Maclachlan, G.A.; Brown, R.M. Jr.

    1983-01-01

    Freeze-fractured plasma membranes of seedlings of Zea mays L., Burpee's Snowcross, and Pisum sativum L., variety Alsaka, contain terminal complex structures and the impressions of microfibrils from the newest cell wall layer.Terminal complex subunits are on the exoplasmic fracture (EF) face, and rosette subunits are on the protoplasmic fracture (PF) face of the membrane. The association of terminal complexes and rosettes with microfibril tips and their association with newly deposited groups of microfibrils is indirect evidence for their role in microfibril assembly. Microtubules may be responsible for certain orientations of microfibrils, particularly the formation of bands of microfibrils in newly deposited wall layers. However, microfibril orienting mechanisms are more complex, involving factors still present during colchicine treatment. Since UDP-glucose is thought to be a precursor of cellulose microfibrils in higher plant cells, EM radioautography was used to determine the site of incorporation of glucose. However, under the conditions used, glucose was only incorporated from UDP-glucose at the surface of cut or damaged pea stem cells, i.e., in vitro. Thus, incorporation of glucose from UDP-glucose was not useful for probing the patterns of cellulose microfibril synthesis in vivo. 18 references, 8 figures.

  20. On the track of transfer cells formation by specialized plant-parasitic nematodes

    Directory of Open Access Journals (Sweden)

    Natalia eRodiuc

    2014-05-01

    Full Text Available Transfer cells are ubiquitous plant cells that play an important role in plant development as well as in responses to biotic and abiotic stresses. They are highly specialized and differentiated cells playing a central role in the acquisition, distribution and exchange of nutrients. Their unique structural traits are characterized by augmented ingrowths of invaginated secondary wall material, unsheathed by an amplified area of plasma membrane enriched in a suite of solute transporters. Similar morphological features can be perceived in vascular root feeding cells induced by sedentary plant-parasitic nematodes, such as root-knot and cyst nematodes, in a wide range of plant hosts. Despite their close phylogenetic relationship, these obligatory biotrophic plant pathogens engage different approaches when reprogramming root cells into giant cells or syncytia, respectively. Both nematode feeding-cells types will serve as the main source of nutrients until the end of the nematode life cycle. In both cases, these nematodes are able to remarkably maneuver and reprogram plant host cells. In this review we will discuss the structural, functional and morphogenetic characteristics function and formation of these specialized multinucleate cells that act as nutrient transfer cells to accumulate and synthesize components needed for survival and successful offspring of plant-parasitic nematodes. Plant cells with transfer-like functions are also a renowned subject of interest involving still poorly understood molecular and cellular transport processes.

  1. Asymmetric cell division in land plants and algae: the driving force for differentiation.

    Science.gov (United States)

    De Smet, Ive; Beeckman, Tom

    2011-03-01

    Asymmetric cell division generates two cells with different fates and has an important role in plant development. It produces distinct cell types and new organs, and maintains stem cell niches. To handle the constraints of having immobile cells, plants possess numerous unique features to obtain asymmetry, such as specific regulators of intrinsic polarity. Although several components have not yet been identified, new findings, together with knowledge from different developmental systems, now allow us to take an important step towards a mechanistic overview of asymmetric cell division in plants and algae. Strikingly, several key regulators are used for different developmental processes, and common mechanisms can be recognized.

  2. Towards high-yield production of pharmaceutical proteins with plant cell suspension cultures.

    Science.gov (United States)

    Xu, Jianfeng; Ge, Xumeng; Dolan, Maureen C

    2011-01-01

    "Molecular farming" in plants with significant advantages in cost and safety is touted as a promising platform for the production of complex pharmaceutical proteins. While whole-plant produced biopharmaceuticals account for a significant portion of the preclinical and clinical pipeline, plant cell suspension culture, which integrates the merits of whole-plant systems with those of microbial fermentation, is emerging as a more compliant alternative "factory". However, low protein productivity remains a major obstacle that limits extensive commercialization of plant cell bioproduction platform. This review highlights the advantages and recent progress in plant cell culture technology and outlines viable strategies at both the biological and process engineering levels for advancing the economic feasibility of plant cell-based protein production. Approaches to overcome and solve the associated challenges of this culture system that include non-mammalian glycosylation and genetic instability will also be discussed.

  3. Programmed cell cycle arrest is required for infection of corn plants by the fungus Ustilago maydis.

    Science.gov (United States)

    Castanheira, Sónia; Mielnichuk, Natalia; Pérez-Martín, José

    2014-12-01

    Ustilago maydis is a plant pathogen that requires a specific structure called infective filament to penetrate the plant tissue. Although able to grow, this filament is cell cycle arrested on the plant surface. This cell cycle arrest is released once the filament penetrates the plant tissue. The reasons and mechanisms for this cell cycle arrest are unknown. Here, we have tried to address these questions. We reached three conclusions from our studies. First, the observed cell cycle arrest is the result of the cooperation of at least two distinct mechanisms: one involving the activation of the DNA damage response (DDR) cascade; and the other relying on the transcriptional downregulation of Hsl1, a kinase that modulates the G2/M transition. Second, a sustained cell cycle arrest during the infective filament step is necessary for the virulence in U. maydis, as a strain unable to arrest the cell cycle was severely impaired in its ability to infect corn plants. Third, production of the appressorium, a structure required for plant penetration, is incompatible with an active cell cycle. The inability to infect plants by strains defective in cell cycle arrest seems to be caused by their failure to induce the appressorium formation process. In summary, our findings uncover genetic circuits to arrest the cell cycle during the growth of this fungus on the plant surface, thus allowing the penetration into plant tissue.

  4. Fusion and metabolism of plant cells as affected by microgravity.

    Science.gov (United States)

    Hampp, R; Hoffmann, E; Schönherr, K; Johann, P; De Filippis, L

    1997-01-01

    Plant cell protoplasts derived from leaf tissue of two different tobacco species (Nicotiana tabacum., N. rustica L.) were exposed to short-term (sounding rocket experiments) and long-term (spacelab) microgravity environments in order to study both (electro) cell fusion and cell metabolism during early and later stages of tissue regeneration. The period of exposure to microgravity varied from 10 min (sounding rocket) to 10 d (space shuttle). The process of electro fusion of protoplasts was improved under conditions of microgravity: the time needed to establish close membrane contact between protoplasts (alignment time) was reduced (5 as compared to 15 s under 1 g) and numbers of fusion products between protoplasts of different specific density were increased by a factor of about 10. In addition, viability of fusion products, as shown by the ability to form callus, increased from about 60% to more than 90%. Regenerated fusion products obtained from both sounding-rocket and spacelab experiments showed a wide range of intermediate properties between the two parental plants. This was verified by isozyme analysis and random amplified polymorphic DNA-polymerase chain reaction (RAPD-PCR). In order to address potential metabolic responses, more general markers such as the overall energy state (ATP/ADP ratio), the redox charge of the diphosphopyridine nucleotide system (NADH/NAD ratio), and the pool size of fructose-2,6-bisphosphate (Fru 2,6 bisp), a regulator of the balance between glycolysis and gluconeogenesis, were determined. Responses of these parameters were different with regard to short-term and long-term exposure. Shortly after transition to reduced gravitation (sounding rocket) ratios of ATP/ADP exhibited strong fluctuation while the pool size of NAD decreased (indicating an increased NADH/NAD ratio) and that of Fru 2,6 bisp increased. As similar changes can be observed under stress conditions, this response is probably indicative of a metabolic stress

  5. Challenges for monetary policy in the enlarged European monetary Union

    Directory of Open Access Journals (Sweden)

    Radović Irena

    2009-01-01

    Full Text Available The eastward enlargement of the Euro area entails significant implications for the accession candidates in Central and Eastern Europe (CEE, the existing Euro system and the monetary policy of the European Central Bank (ECB. The present analysis assesses the challenges and critical aspects in monetary policy modeling with special emphasis to enlargement. The focus is on the difficulty of implementing a unique currency policy in view or growing heterogeneity within the enlarged monetary union, and secondly - the issue of the voting mechanism within the ECB. When analyzing those two issues, it is conclusive that the difficulties for the ECB and the current Euro zone members will increase. For the enlarged Euro zone, which is becoming more divergent, it will be very hard to find adequate recipes to meet the needs and requirements of all. The big question is: whether centralization of monetary policy is a sustainable and superior solution?.

  6. POSSIBLE TRADE EFFECTS OF THE NEXT EUROPEAN UNION ENLARGEMENT

    Directory of Open Access Journals (Sweden)

    Nedelescu-Ionescu Daniela

    2012-07-01

    Full Text Available The European Union next enlargement will constitute a significant qualitative change in the structure of the current Union, as the accession of the Western Balkan countries and of Turkey in particular will bring a brand new set of economic problems. It is expected that this enlargement to have a considerable effect for the new entrants, as well as for the European Union as a whole.\\r\

  7. Doorkeepers and Gatecrashers: EU Enlargement and Negotiation Strategies

    DEFF Research Database (Denmark)

    Brücker, Herbert; Schröder, Philipp; Weise, Christian

    2004-01-01

    This paper discusses the eastward enlargement process of the EU in the framework of a simple war of attrition bargaining game. Both players -- the existing EU members and the applicants -- benefit from enlargement, yet for the applicants, reform to the acquis is costly, while the EU prefers subst...... the benefits for new members are all effective negotiation strategies for the EU that have been applied in the process....

  8. Enlargement of cerebral ventricles as an early indicator of encephalomyelitis.

    Directory of Open Access Journals (Sweden)

    Stefano Lepore

    Full Text Available Inflammatory disorders of the central nervous system such as multiple sclerosis and acute disseminated encephalomyelitis involve an invasion of immune cells that ultimately leads to white matter demyelination, neurodegeneration and development of neurological symptoms. A clinical diagnosis is often made when neurodegenerative processes are already ongoing. In an attempt to seek early indicators of disease, we studied the temporal and spatial distribution of brain modifications in experimental autoimmune encephalomyelitis (EAE. In a thorough magnetic resonance imaging study performed with EAE mice, we observed significant enlargement of the ventricles prior to disease clinical manifestation and an increase in free water content within the cerebrospinal fluid as demonstrated by changes in T2 relaxation times. The increase in ventricle size was seen in the lateral, third and fourth ventricles. In some EAE mice the ventricle size started returning to normal values during disease remission. In parallel to this macroscopic phenomenon, we studied the temporal evolution of microscopic lesions commonly observed in the cerebellum also starting prior to disease onset. Our data suggest that changes in ventricle size during the early stages of brain inflammation could be an early indicator of the events preceding neurological disease and warrant further exploration in preclinical and clinical studies.

  9. The hypersensitive induced reaction and leucine-rich repeat proteins regulate plant cell death associated with disease and plant immunity.

    Science.gov (United States)

    Choi, Hyong Woo; Kim, Young Jin; Hwang, Byung Kook

    2011-01-01

    Pathogen-induced programmed cell death (PCD) is intimately linked with disease resistance and susceptibility. However, the molecular components regulating PCD, including hypersensitive and susceptible cell death, are largely unknown in plants. In this study, we show that pathogen-induced Capsicum annuum hypersensitive induced reaction 1 (CaHIR1) and leucine-rich repeat 1 (CaLRR1) function as distinct plant PCD regulators in pepper plants during Xanthomonas campestris pv. vesicatoria infection. Confocal microscopy and protein gel blot analyses revealed that CaLRR1 and CaHIR1 localize to the extracellular matrix and plasma membrane (PM), respectively. Bimolecular fluorescent complementation and coimmunoprecipitation assays showed that the extracellular CaLRR1 specifically binds to the PM-located CaHIR1 in pepper leaves. Overexpression of CaHIR1 triggered pathogen-independent cell death in pepper and Nicotiana benthamiana plants but not in yeast cells. Virus-induced gene silencing (VIGS) of CaLRR1 and CaHIR1 distinctly strengthened and compromised hypersensitive and susceptible cell death in pepper plants, respectively. Endogenous salicylic acid levels and pathogenesis-related gene transcripts were elevated in CaHIR1-silenced plants. VIGS of NbLRR1 and NbHIR1, the N. benthamiana orthologs of CaLRR1 and CaHIR1, regulated Bax- and avrPto-/Pto-induced PCD. Taken together, these results suggest that leucine-rich repeat and hypersensitive induced reaction proteins may act as cell-death regulators associated with plant immunity and disease.

  10. Involvement of plant stem cells or stem cell-like cells in dedifferentiation

    Directory of Open Access Journals (Sweden)

    Fangwei eJiang

    2015-11-01

    Full Text Available Dedifferentiation is the transformation of cells from a given differentiated state to a less differentiated or stem cell-like state. Stem cell-related genes play important roles in dedifferentiation, which exhibits similar histone modification and DNA methylation features to stem cell maintenance. Hence, stem cell-related factors possibly synergistically function to provide a specific niche beneficial to dedifferentiation. During callus formation in Arabidopsis petioles, cells adjacent to procambium cells (stem cell-like cells are dedifferentiated and survive more easily than other cell types. This finding indicates that stem cells or stem cell-like cells may influence the dedifferentiating niche. In this paper, we provide a brief overview of stem cell maintenance and dedifferentiation regulation. We also summarize current knowledge of genetic and epigenetic mechanisms underlying the balance between differentiation and dedifferentiation. Furthermore, we discuss the correlation of stem cells or stem cell-like cells with dedifferentiation.

  11. Multiple host-cell recombination pathways act in Agrobacterium-mediated transformation of plant cells.

    Science.gov (United States)

    Mestiri, Imen; Norre, Frédéric; Gallego, Maria E; White, Charles I

    2014-02-01

    Using floral-dip, tumorigenesis and root callus transformation assays of both germline and somatic cells, we present here results implicating the four major non-homologous and homologous recombination pathways in Agrobacterium-mediated transformation of Arabidopsis thaliana. All four single mutant lines showed similar mild reductions in transformability, but knocking out three of four pathways severely compromised Agrobacterium-mediated transformation. Although integration of T-DNA into the plant genome is severely compromised in the absence of known DNA double-strand break repair pathways, it does still occur, suggesting the existence of other pathways involved in T-DNA integration. Our results highlight the functional redundancy of the four major plant recombination pathways in transformation, and provide an explanation for the lack of strong effects observed in previous studies on the roles of plant recombination functions in transformation.

  12. Ubx Regulates Differential Enlargement and Diversification of Insect Hind Legs

    Science.gov (United States)

    Mahfooz, Najmus; Turchyn, Nataliya; Mihajlovic, Michelle; Hrycaj, Steven; Popadić, Aleksandar

    2007-01-01

    Differential enlargement of hind (T3) legs represents one of the hallmarks of insect evolution. However, the actual mechanism(s) responsible are yet to be determined. To address this issue, we have now studied the molecular basis of T3 leg enlargement in Oncopeltus fasciatus (milkweed bug) and Acheta domesticus (house cricket). In Oncopeltus, the T3 tibia displays a moderate increase in size, whereas in Acheta, the T3 femur, tibia, and tarsus are all greatly enlarged. Here, we show that the hox gene Ultrabithorax (Ubx) is expressed in the enlarged segments of hind legs. Furthermore, we demonstrate that depletion of Ubx during embryogenesis has a primary effect in T3 legs and causes shortening of leg segments that are enlarged in a wild type. This result shows that Ubx is regulating the differential growth and enlargement of T3 legs in both Oncopeltus and Acheta. The emerging view suggests that Ubx was co-opted for a novel role in regulating leg growth and that the transcriptional modification of its expression may be a universal mechanism for the evolutionary diversification of insect hind legs. PMID:17848997

  13. Rib enlargement in premature infants with bronchopulmonary dysplasia

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Hye Kyung; Han, Kim Bokyung; Chang, Yun Sil; Choo, In Wook [Samsung Medical Center, School of Medicine, Sungkyunkwan University, Seoul (Korea, Republic of); Kim, Kyeong Ah [Anyang General Hospital, Anyang (Korea, Republic of)

    2000-04-01

    The purpose of this study is to describe the rib changes seen in patients with brochopulmonary dysplasia (BPD). Serial chest radiographs of nine premature infants with BPD who showed diffuse rib enlargement were reviewed for hyperinflation, which was compared with the observed degree of rib enlargement. Vibrator chest physiotherapy was performed in all cases, and five infants underwent conventional ventilation plus high frequency oscillatory ventilation therapy. Their calcium level was normal whereas alkaline phosphatase and phosphate levels were high. In all infants except one, liver enzyme levels were normal. For the treatment of patent ductus arteriosus, infection, and BPD, medications including indomethacin, antibiotics, and dexamethasone were administered. Vitamin D was given to all patients with total parenteral nutrition. Rib enlargement was found to be severe (n=3D4), moderate (n=3D3), or mild (n=3D2) with undulating margins or posterior tapering (n=3D2). Hyperinflation was noted in eight patients, in seven of whom it was moderate to severe. Among these seven, rib enlargement was severe (n=3D2), moderate (n=3D3), or mild (n=3D2). In one infant with mild hyperinflation, rib enlargement was severe. Bilateral irregular infiltrates and atelectases were noted in all patients. In BPD patients, rib enlargement may be seen. In order to differentiate this process from systemic bone disease or bony dysplasia, an awareness of the rib changes occurring in patients with BPD may be important. (author)

  14. Ubx regulates differential enlargement and diversification of insect hind legs.

    Directory of Open Access Journals (Sweden)

    Najmus Mahfooz

    Full Text Available Differential enlargement of hind (T3 legs represents one of the hallmarks of insect evolution. However, the actual mechanism(s responsible are yet to be determined. To address this issue, we have now studied the molecular basis of T3 leg enlargement in Oncopeltus fasciatus (milkweed bug and Acheta domesticus (house cricket. In Oncopeltus, the T3 tibia displays a moderate increase in size, whereas in Acheta, the T3 femur, tibia, and tarsus are all greatly enlarged. Here, we show that the hox gene Ultrabithorax (Ubx is expressed in the enlarged segments of hind legs. Furthermore, we demonstrate that depletion of Ubx during embryogenesis has a primary effect in T3 legs and causes shortening of leg segments that are enlarged in a wild type. This result shows that Ubx is regulating the differential growth and enlargement of T3 legs in both Oncopeltus and Acheta. The emerging view suggests that Ubx was co-opted for a novel role in regulating leg growth and that the transcriptional modification of its expression may be a universal mechanism for the evolutionary diversification of insect hind legs.

  15. Membrane associated qualitative differences in cell ultrastructure of chemically and high pressure cryofixed plant cells.

    Science.gov (United States)

    Zechmann, Bernd; Müller, Maria; Zellnig, Günther

    2007-06-01

    Membrane contrast can sometimes be poor in biological samples after high pressure freezing (HPF) and freeze substitution (FS). The addition of water to the FS-medium has been shown to improve membrane contrast in animal tissue and yeast. In the present study we tested the effects of 1% and 5% water added to the FS-medium (2% osmium with 0.2% uranyl acetate in anhydrous acetone) on the quality and visibility of membranes in high pressure frozen leaf samples of Cucurbita pepo L. plants and compared them to chemically fixed cells (3% glutaraldehyde post-fixed with 1% osmium tetroxide). The addition of water to the FS-medium drastically decreased the amounts of well preserved cells and did not significantly improve the quality nor visibility of membranes. In samples that were freeze substituted in FS-media containing 1% and 5% water the width of thylakoid membranes was found to be significantly increased of about 20% and the perinuclear space was up to 76% wider in comparison to what was found in samples which were freeze substituted without water. No differences were found in the thickness of membranes between chemically and cryofixed cells that were freeze substituted in the FS-medium without water. Nevertheless, in chemically fixed cells the intrathylakoidal space was about 120% wider than in cryofixed cells that were freeze substituted with or without water. The present results demonstrate that the addition of water to the FS-medium does not improve membrane contrast but changes the width of thylakoid membranes and the perinuclear space in the present plant material. The addition of water to the FS-medium is therefore not as essential for improved membrane contrast in the investigated plant samples as it was observed in cells of animal tissues and yeast cells.

  16. Regulation of plant cells, cell walls and development by mechanical signals

    Energy Technology Data Exchange (ETDEWEB)

    Meyerowitz, Elliot M. [California Inst. of Technology (CalTech), Pasadena, CA (United States)

    2016-06-14

    The overall goal of the revised scope of work for the final year of funding was to characterize cell wall biosynthesis in developing cotyledons and in the shoot apical meristem of Arabidopsis thaliana, as a way of learning about developmental control of cell wall biosynthesis in plants, and interactions between cell wall biosynthesis and the microtubule cytoskeleton. The proposed work had two parts – to look at the effect of mutation in the SPIRAL2 gene on microtubule organization and reorganization, and to thoroughly characterize the glycosyltransferase genes expressed in shoot apical meristems by RNA-seq experiments, by in situ hybridization of the RNAs expressed in the meristem, and by antibody staining of the products of the glycosyltransferases in meristems. Both parts were completed; the spiral2 mutant was found to speed microtubule reorientation after ablation of adjacent cells, supporting our hypothesis that reorganization correlates with microtubule severing, the rate of which is increased by the mutation. The glycosyltransferase characterization was completed and published as Yang et al. (2016). Among the new things learned was that primary cell wall biosynthesis is strongly controlled both by cell type, and by stage of cell cycle, implying not only that different, even adjacent, cells can have different sugar linkages in their (nonshared) walls, but also that a surprisingly large proportion of glycosyltransferases is regulated in the cell cycle, and therefore that the cell cycle regulates wall maturation to a degree previously unrecognized.

  17. Evolution of plant cell wall: Arabinogalactan-proteins from three moss genera show structural differences compared to seed plants.

    Science.gov (United States)

    Bartels, Desirée; Baumann, Alexander; Maeder, Malte; Geske, Thomas; Heise, Esther Marie; von Schwartzenberg, Klaus; Classen, Birgit

    2017-05-01

    Arabinogalactan-proteins (AGPs) are important proteoglycans of plant cell walls. They seem to be present in most, if not all seed plants, but their occurrence and structure in bryophytes is widely unknown and actually the focus of AGP research. With regard to evolution of plant cell wall, we isolated AGPs from the three mosses Sphagnum sp., Physcomitrella patens and Polytrichastrum formosum. The moss AGPs show structural characteristics common for AGPs of seed plants, but also unique features, especially 3-O-methyl-rhamnose (trivial name acofriose) as terminal monosaccharide not found in arabinogalactan-proteins of angiosperms and 1,2,3-linked galactose as branching point never found in arabinogalactan-proteins before. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Im"plant"ing of Mammalian Glycosyltransferase Gene into Plant Suspension-Cultured Cells Using Agrobacterium-Mediated Transformation.

    Science.gov (United States)

    Kajiura, Hiroyuki; Fujiyama, Kazuhito

    2015-01-01

    Enzymatic activity assay of exogenous glycosyltransferase (GT) and glycosylhydrolase (GH) expressed in plants is an important analysis for determination of the expression of the gene of interest. However, generations and establishment of in planta transgenic lines are time-consuming. Furthermore, the expression levels and the activities of the exogenous GTs and GHs are quite low and weak, the radiolabeled donor substrate had to be used to analyze the enzymatic activity. Here, we describe a protocol for the generation of transgenic plants using suspension-cultured cells and a high sensitive assay for GT, especially β1,4-galactosyltransferase, using microsomal fraction from plant cells and fluorescent-labeled sugar chains as an acceptor substrate. This method enables less-time-consuming preparation of stable transgenic plants, non-radiolabeled, high-throughput detail analysis which includes mass spectrometric analysis and exo-glycosidase digestions.

  19. Chemical Profiling of the Plant Cell Wall through Raman Microspectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Han, Ju; Singh, Seema; Sun, Lan; Simmons, Blake; Auer, Manfred; Parvin, Bahram

    2010-03-02

    This paper presents a computational framework for chemical pro.ling of the plant cell wall through the Raman spectroscopy. The system enables query of known spectral signatures and clustering of spectral data based on intrinsic properties. As a result, presence and relative concentration of speci.c chemical bonds can be quanti.ed. The primary contribution of this paper is in representation of raman pro.le in terms of .uorescence background and multiscale peak detection at each grid point (voxel). Such a representation allows ef.cient spatial segmentation based on the coupling between high-level salient properties and low-level symbolic representation at each voxel. The high-level salient properties refer to preferred peaks and their attributes for the entire image. The low-level symbolic representations are based on .uorescence background, spectral peak locations, and their attributes. We present results on a corn stover tissue section that is imaged through Raman microscopy, and the results are consistent with the literature. In addition, automatic clustering indicates several distinct layers of the cell walls with different spectral signatures.

  20. Ubiquitin chain topology and its impact on plant cell signalling

    Directory of Open Access Journals (Sweden)

    Charlotte Kirsten Walsh

    2014-04-01

    Full Text Available Ubiquitin is a peptide modifier able to form polymers of varying length and linkage as part of a powerful signalling system. Perhaps the best-known aspect of this protein’s function is as the driver of targeted protein degradation through the Ubiquitin Proteasome System (UPS. Through the formation of lysine 48-linked polyubiquitin chains, it is able to direct the degradation of tagged proteins by the 26S proteasome, indirectly controlling many processes within the cell. However, recent research has indicated that ubiquitin performs a multitude of other roles within the cell beyond protein degradation. It is able to form 6 other ‘atypical’ linkages though lysine residues at positions 6, 11, 27, 29, 33 and 63. These atypical chains perform a range of diverse functions, including the regulation of iron uptake in response to perceived deficiency, repair of double stranded breaks in the DNA, and regulation of the auxin response through the non-proteasomal degradation of auxin efflux carrier protein PIN1. This review explores the role ubiquitin chain topology plays in plant cellular function. We aim to highlight the importance of these varying functions and the future challenges to be encountered within this field.

  1. Pectinous cell wall thickenings formation - A common defense strategy of plants to cope with Pb.

    Science.gov (United States)

    Krzesłowska, Magdalena; Rabęda, Irena; Basińska, Aneta; Lewandowski, Michał; Mellerowicz, Ewa J; Napieralska, Anna; Samardakiewicz, Sławomir; Woźny, Adam

    2016-07-01

    Lead, one of the most abundant and hazardous trace metals affecting living organisms, has been commonly detected in plant cell walls including some tolerant plants, mining ecotypes and hyperaccumulators. We have previously shown that in tip growing Funaria sp. protonemata cell wall is remodeled in response to lead by formation of thickenings rich in low-methylesterified pectins (pectin epitope JIM5 - JIM5-P) able to bind metal ions, which accumulate large amounts of Pb. Hence, it leads to the increase of cell wall capacity for Pb compartmentalization. Here we show that diverse plant species belonging to different phyla (Arabidopsis, hybrid aspen, star duckweed), form similar cell wall thickenings in response to Pb. These thickenings are formed in tip growing cells such as the root hairs, and in diffuse growing cells such as meristematic and root cap columella cells of root apices in hybrid aspen and Arabidopsis and in mesophyll cells in star duckweed fronds. Notably, all analyzed cell wall thickenings were abundant in JIM5-P and accumulated high amounts of Pb. In addition, the co-localization of JIM5-P and Pb commonly occurred in these cells. Hence, cell wall thickenings formed the extra compartment for Pb accumulation. In this way plant cells increased cell wall capacity for compartmentalization of this toxic metal, protecting protoplast from its toxicity. As cell wall thickenings occurred in diverse plant species and cell types differing in the type of growth we may conclude that pectinous cell wall thickenings formation is a widespread defense strategy of plants to cope with Pb. Moreover, detection of natural defense strategy, increasing plant cell walls capacity for metal accumulation, reveals a promising direction for enhancing plant efficiency in phytoremediation.

  2. [Spin-lattice relaxation of water protons in plant and animal cells].

    Science.gov (United States)

    Samuilov, F D; Nikiforov, E A; Nikiforova, V I

    2012-01-01

    NMR-spin echo method has been used to study spin-lattice relaxation time of protons T1 in plant and animal cells - muscle tissue of fish, the cells of which unlike plant cells have no developed system of vacuoles, plastids and a solid cell wall. According to the values of T1 time a new NMR parameter K, a coefficient of relaxation effectiveness of a cell structure, has been calculated. This parameter can be used for quantitative characterization of the influence of different cell structures, the tissue water interact with, for a time of spin-lattice relaxation of water protons. It has been ascertained that the values of K coefficient in animal tissue and in storing tissues of some plants differ little; it may be stipulated by permanent transmembrane water exchange which occurs at high rate in the living cell. It has been concluded that there exists a certain similarity between water state in protoplast of plant and animal cells.

  3. Navigating the plant cell: intracellular transport logistics in the green kingdom.

    Science.gov (United States)

    Geitmann, Anja; Nebenführ, Andreas

    2015-10-01

    Intracellular transport in plant cells occurs on microtubular and actin arrays. Cytoplasmic streaming, the rapid motion of plant cell organelles, is mostly driven by an actin-myosin mechanism, whereas specialized functions, such as the transport of large cargo or the assembly of a new cell wall during cell division, are performed by the microtubules. Different modes of transport are used, fast and slow, to either haul cargo over long distances or ascertain high-precision targeting, respectively. Various forms of the actin-specific motor protein myosin XI exist in plant cells and might be involved in different cellular functions.

  4. Escherichia coli common pilus (ECP) targets arabinosyl residues in plant cell walls to mediate adhesion to fresh produce plants.

    Science.gov (United States)

    Rossez, Yannick; Holmes, Ashleigh; Lodberg-Pedersen, Henriette; Birse, Louise; Marshall, Jacqueline; Willats, William G T; Toth, Ian K; Holden, Nicola J

    2014-12-05

    Outbreaks of verotoxigenic Escherichia coli are often associated with fresh produce. However, the molecular basis to adherence is unknown beyond ionic lipid-flagellum interactions in plant cell membranes. We demonstrate that arabinans present in different constituents of plant cell walls are targeted for adherence by E. coli common pilus (ECP; or meningitis-associated and temperature-regulated (Mat) fimbriae) for E. coli serotypes O157:H7 and O18:K1:H7. l-Arabinose is a common constituent of plant cell wall that is rarely found in other organisms, whereas ECP is widespread in E. coli and other environmental enteric species. ECP bound to oligosaccharides of at least arabinotriose or longer in a glycan array, plant cell wall pectic polysaccharides, and plant glycoproteins. Recognition overlapped with the antibody LM13, which binds arabinanase-sensitive pectic epitopes, and showed a preferential affinity for (1→5)-α-linked l-arabinosyl residues and longer chains of arabinan as demonstrated with the use of arabinan-degrading enzymes. Functional adherence in planta was mediated by the adhesin EcpD in combination with the structural subunit, EcpA, and expression was demonstrated with an ecpR-GFP fusion and ECP antibodies. Spinach was found to be enriched for ECP/LM13 targets compared with lettuce. Specific recognition of arabinosyl residues may help explain the persistence of E. coli in the wider environment and association of verotoxigenic E. coli with some fresh produce plants by exploitation of a glycan found only in plant, not animal, cells.

  5. Cytotoxicity of Selected Medicinal and Nonmedicinal Plant Extracts to Microbial and Cervical Cancer Cells

    Directory of Open Access Journals (Sweden)

    Gary M. Booth

    2012-01-01

    Full Text Available This study investigated the cytotoxicity of 55 species of plants. Each plant was rated as medicinal, or nonmedicinal based on the existing literature. About 79% of the medicinal plants showed some cytotoxicity, while 75% of the nonmedicinal plants showed bioactivity. It appears that Asteraceae, Labiatae, Pinaceae, and Chenopodiaceae were particularly active against human cervical cancer cells. Based on the literature, only three of the 55 plants have been significantly investigated for cytotoxicity. It is clear that there is much toxicological work yet to be done with both medicinal and nonmedicinal plants.

  6. Hypericum perforatum plant cells reduce Agrobacterium viability during co-cultivation.

    Science.gov (United States)

    Franklin, G; Conceição, L F R; Kombrink, E; Dias, A C P

    2008-05-01

    Plant recalcitrance is the major barrier in developing Agrobacterium-mediated transformation protocols for several important plant species. Despite the substantial knowledge of T-DNA transfer process, very little is known about the factors leading to the plant recalcitrance. Here, we analyzed the basis of Hypericum perforatum L. (HP) recalcitrance to Agrobacterium-mediated transformation using cell suspension culture. When challenged with Agrobacterium, HP cells swiftly produced an intense oxidative burst, a typical reaction of plant defense. Agrobacterium viability started to decline and reached 99% mortality within 12 h, while the plant cells did not suffer apoptotic process. This is the first evidence showing that the reduction of Agrobacterium viability during co-cultivation with recalcitrant plant cells can affect transformation.

  7. Rapid optimization of electroporation conditions for plant cells, protoplasts, and pollen.

    Science.gov (United States)

    Saunders, J A; Lin, C H; Hou, B H; Cheng, J; Tsengwa, N; Lin, J J; Smith, C R; McIntosh, M S; Van Wert, S

    1995-06-01

    The optimization of electroporation conditions for maximal uptake of DNA during direct gene transfer experiments is critical to achieve high levels of gene expression in transformed plant cells. Two stains, trypan blue and fluorescein diacetate, have been applied to optimize electroporation conditions for three plant cell types, using different square wave and exponential wave electroporation devices. The different cell types included protoplasts from tobacco, a stable mixotrophic suspension cell culture from soybean with intact cell walls, and germinating pollen from alfalfa and tobacco. Successful electroporation of each of these cell types was obtained, even in the presence of an intact cell wall when conditions were optimized for the electroporation pulse. The optimal field strength for each of these cells differs, protoplasts having the lowest optimal pulse field strength, followed by suspension cells and finally germinating pollen requiring the strongest electroporation pulse. A rapid procedure is described for optimizing electroporation parameters using different types of cells from different plant sources.

  8. Timing mechanism dependent on cell division is invoked by Polycomb eviction in plant stem cells.

    Science.gov (United States)

    Sun, Bo; Looi, Liang-Sheng; Guo, Siyi; He, Zemiao; Gan, Eng-Seng; Huang, Jiangbo; Xu, Yifeng; Wee, Wan-Yi; Ito, Toshiro

    2014-01-31

    Plant floral stem cells divide a limited number of times before they stop and terminally differentiate, but the mechanisms that control this timing remain unclear. The precise temporal induction of the Arabidopsis zinc finger repressor KNUCKLES (KNU) is essential for the coordinated growth and differentiation of floral stem cells. We identify an epigenetic mechanism in which the floral homeotic protein AGAMOUS (AG) induces KNU at ~2 days of delay. AG binding sites colocalize with a Polycomb response element in the KNU upstream region. AG binding to the KNU promoter causes the eviction of the Polycomb group proteins from the locus, leading to cell division-dependent induction. These analyses demonstrate that floral stem cells measure developmental timing by a division-dependent epigenetic timer triggered by Polycomb eviction.

  9. Microbial community structure elucidates performance of Glyceria maxima plant microbial fuel cell

    NARCIS (Netherlands)

    Timmers, R.A.; Rothballer, M.; Strik, D.P.B.T.B.; Engel, M.; Schulz, M.; Hartmann, A.; Hamelers, H.V.M.; Buisman, C.J.N.

    2012-01-01

    The plant microbial fuel cell (PMFC) is a technology in which living plant roots provide electron donor, via rhizodeposition, to a mixed microbial community to generate electricity in a microbial fuel cell. Analysis and localisation of the microbial community is necessary for gaining insight into

  10. High-resolution solution-state NMR of unfractionated plant cell walls

    Science.gov (United States)

    John Ralph; Fachuang Lu; Hoon Kim; Dino Ress; Daniel J. Yelle; Kenneth E. Hammel; Sally A. Ralph; Bernadette Nanayakkara; Armin Wagner; Takuya Akiyama; Paul F. Schatz; Shawn D. Mansfield; Noritsugu Terashima; Wout Boerjan; Bjorn Sundberg; Mattias Hedenstrom

    2009-01-01

    Detailed structural studies on the plant cell wall have traditionally been difficult. NMR is one of the preeminent structural tools, but obtaining high-resolution solution-state spectra has typically required fractionation and isolation of components of interest. With recent methods for dissolution of, admittedly, finely divided plant cell wall material, the wall can...

  11. Microbial community structure elucidates performance of Glyceria maxima plant microbial fuel cell

    NARCIS (Netherlands)

    Timmers, R.A.; Rothballer, M.; Strik, D.P.B.T.B.; Engel, M.; Schulz, M.; Hartmann, A.; Hamelers, H.V.M.; Buisman, C.J.N.

    2012-01-01

    The plant microbial fuel cell (PMFC) is a technology in which living plant roots provide electron donor, via rhizodeposition, to a mixed microbial community to generate electricity in a microbial fuel cell. Analysis and localisation of the microbial community is necessary for gaining insight into th

  12. Phospholipase D activation correlates with microtubule reorganization in living plant cells

    NARCIS (Netherlands)

    P.B. Dhonukshe; A.M. Laxalt; J. Goedhart; Th.W.J. Gadella; T. Munnik

    2003-01-01

    A phospholipase D (PLD) was shown recently to decorate microtubules in plant cells. Therefore, we used tobacco BY-2 cells expressing the microtubule reporter GFP-MAP4 to test whether PLD activation affects the organization of plant microtubules. Within 30 min of adding n-butanol, a potent activator

  13. Phosphoric acid fuel cell power plant system performance model and computer program

    Science.gov (United States)

    Alkasab, K. A.; Lu, C. Y.

    1984-01-01

    A FORTRAN computer program was developed for analyzing the performance of phosphoric acid fuel cell power plant systems. Energy mass and electrochemical analysis in the reformer, the shaft converters, the heat exchangers, and the fuel cell stack were combined to develop a mathematical model for the power plant for both atmospheric and pressurized conditions, and for several commercial fuels.

  14. Application of plant cell and tissue culture for the production of phytochemicals in medicinal plants.

    Science.gov (United States)

    Pant, Bijaya

    2014-01-01

    Approximately 80% of the world inhabitants depend on the medicinal plants in the form of traditional formulations for their primary health care system well as in the treatment of a number of diseases since the ancient time. Many commercially used drugs have come from the information of indigenous knowledge of plants and their folk uses. Linking of the indigenous knowledge of medicinal plants to modern research activities provides a new reliable approach, for the discovery of novel drugs much more effectively than with random collection. Increase in population and increasing demand of plant products along with illegal trade are causing depletion of medicinal plants and many are threatened in natural habitat. Plant tissue culture technique has proved potential alternative for the production of desirable bioactive components from plants, to produce the enough amounts of plant material that is needed and for the conservation of threatened species. Different plant tissue culture systems have been extensively studied to improve and enhance the production of plant chemicals in various medicinal plants.

  15. Application of the comet assay in studies of programmed cell death (PCD) in plants

    OpenAIRE

    2014-01-01

    Programmed cell death (PCD) in plants is an intensively investigated process. One of the main characteristics of PCD in both animal and plant organisms is the non-random, internucleosomal fragmentation of nuclear DNA, usually analysed using total DNA gel electrophoresis or TUNEL method. In this paper we present application of the "comet assay" (Single Cell Gel Electrophoresis) for detection of nDNA degradation in studies of PCD during plant life cycle. We analyzed three types of tissue: anthe...

  16. Hypericum perforatum plant cells reduce Agrobacterium viability during co-cultivation

    OpenAIRE

    2008-01-01

    Plant recalcitrance is the major barrier in developing Agrobacterium-mediated transformation protocols for several important plant species. Despite the substantial knowledge of T-DNA transfer process, very little is known about the factors leading to the plant recalcitrance. Here, we analyzed the basis of Hypericum perforatum L. (HP) recalcitrance to Agrobacterium-mediated transformation using cell suspension culture. When challenged with Agrobacterium, HP cells swiftl...

  17. Behind the lines–actions of bacterial type III effector proteins in plant cells

    Science.gov (United States)

    Büttner, Daniela

    2016-01-01

    Pathogenicity of most Gram-negative plant-pathogenic bacteria depends on the type III secretion (T3S) system, which translocates bacterial effector proteins into plant cells. Type III effectors modulate plant cellular pathways to the benefit of the pathogen and promote bacterial multiplication. One major virulence function of type III effectors is the suppression of plant innate immunity, which is triggered upon recognition of pathogen-derived molecular patterns by plant receptor proteins. Type III effectors also interfere with additional plant cellular processes including proteasome-dependent protein degradation, phytohormone signaling, the formation of the cytoskeleton, vesicle transport and gene expression. This review summarizes our current knowledge on the molecular functions of type III effector proteins with known plant target molecules. Furthermore, plant defense strategies for the detection of effector protein activities or effector-triggered alterations in plant targets are discussed. PMID:27526699

  18. Pectic homogalacturonan masks abundant sets of xyloglucan epitopes in plant cell walls

    DEFF Research Database (Denmark)

    Marcus, Susan E; Verhertbruggen, Yves; Hervé, Cécile

    2008-01-01

    is associated with pectin in plant cell walls. They also indicate that documented patterns of cell wall epitopes in relation to cell development and cell differentiation may need to be re-considered in relation to the potential masking of cell wall epitopes by other cell wall components.......BACKGROUND: Molecular probes are required to detect cell wall polymers in-situ to aid understanding of their cell biology and several studies have shown that cell wall epitopes have restricted occurrences across sections of plant organs indicating that cell wall structure is highly developmentally...... regulated. Xyloglucan is the major hemicellulose or cross-linking glycan of the primary cell walls of dicotyledons although little is known of its occurrence or functions in relation to cell development and cell wall microstructure. RESULTS: Using a neoglycoprotein approach, in which a XXXG heptasaccharide...

  19. Evidence for land plant cell wall biosynthetic mechanisms in charophyte green algae

    DEFF Research Database (Denmark)

    Mikkelsen, Maria Dalgaard; Harholt, Jesper; Ulvskov, Peter

    2014-01-01

    to colonize land. These cell walls provide support and protection, are a source of signalling molecules, and provide developmental cues for cell differentiation and elongation. The cell wall of land plants is a highly complex fibre composite, characterized by cellulose cross-linked by non......BACKGROUND AND AIMS: The charophyte green algae (CGA) are thought to be the closest living relatives to the land plants, and ancestral CGA were unique in giving rise to the land plant lineage. The cell wall has been suggested to be a defining structure that enabled the green algal ancestor......-cellulosic polysaccharides, such as xyloglucan, embedded in a matrix of pectic polysaccharides. How the land plant cell wall evolved is currently unknown: early-divergent chlorophyte and prasinophyte algae genomes contain a low number of glycosyl transferases (GTs), while land plants contain hundreds. The number of GTs...

  20. Cell-phone based assistance for waterworks/sewage plant maintenance.

    Science.gov (United States)

    Kawada, T; Nakamichi, K; Hisano, N; Kitamura, M; Miyahara, K

    2006-01-01

    Cell-phones are now incorporating the functions necessary for them to be used as mobile IT devices. In this paper, we present our results of the evaluation of cell-phones as the mobile IT device to assist workers in industrial plants. We use waterworks and sewage plants as examples. By employing techniques to squeeze the SCADA screen on CRT into a small cell-phone LCD, we have made it easier for a plant's field workers to access the information needed for effective maintenance, regardless of location. An idea to link SCADA information and the plant facility information on the cell-phone is also presented. Should an accident or emergency situation arise, these cell-phone-based IT systems can efficiently deliver the latest plant information, thus the worker out in the field can respond to and resolve the emergency.

  1. Function of root border cells in plant health: pioneers in the rhizosphere.

    Science.gov (United States)

    Hawes, M C; Brigham, L A; Wen, F; Woo, H H; Zhu, Y

    1998-01-01

    Plants dedicate a large amount of energy to the regulated production of living cells programmed to separate from roots into the external environment. This unusual process may be worth the cost because it enables the plant to dictate which species will share its ecological niche. For example, border cells can rapidly attract and stimulate growth in some microorganisms and repel and inhibit the growth of others. Such specificity may provide a way to control the dynamics of adjacent microbial populations in the soil to foster beneficial associations and inhibit pathogenic invasion. Plant genes controlling the delivery of border cells and the expression of their unique properties provide tools to genetically engineer plants with altered border cell quality and quantity. Such variants are being used to test the hypothesis that the function of border cells is to protect plant health by controlling the ecology of the root system.

  2. Eduard Strasburger (1844-1912): founder of modern plant cell biology.

    Science.gov (United States)

    Volkmann, Dieter; Baluška, František; Menzel, Diedrik

    2012-10-01

    Eduard Strasburger, director of the Botany Institute and the Botanical Garden at the University of Bonn from 1881 to 1912, was one of the most admirable scientists in the field of plant biology, not just as the founder of modern plant cell biology but in addition as an excellent teacher who strongly believed in "education through science." He contributed to plant cell biology by discovering the discrete stages of karyokinesis and cytokinesis in algae and higher plants, describing cytoplasmic streaming in different systems, and reporting on the growth of the pollen tube into the embryo sac and guidance of the tube by synergides. Strasburger raised many problems which are hot spots in recent plant cell biology, e.g., structure and function of the plasmodesmata in relation to phloem loading (Strasburger cells) and signaling, mechanisms of cell plate formation, vesicle trafficking as a basis for most important developmental processes, and signaling related to fertilization.

  3. Plant cell walls throughout evolution: towards a molecular understanding of their design principles

    Energy Technology Data Exchange (ETDEWEB)

    Sarkar, Purbasha; Bosneaga, Elena; Auer, Manfred

    2009-02-16

    Throughout their life, plants typically remain in one location utilizing sunlight for the synthesis of carbohydrates, which serve as their sole source of energy as well as building blocks of a protective extracellular matrix, called the cell wall. During the course of evolution, plants have repeatedly adapted to their respective niche,which is reflected in the changes of their body plan and the specific design of cell walls. Cell walls not only changed throughout evolution but also are constantly remodelled and reconstructed during the development of an individual plant, and in response to environmental stress or pathogen attacks. Carbohydrate-rich cell walls display complex designs, which together with the presence of phenolic polymers constitutes a barrier for microbes, fungi, and animals. Throughout evolution microbes have co-evolved strategies for efficient breakdown of cell walls. Our current understanding of cell walls and their evolutionary changes are limited as our knowledge is mainly derived from biochemical and genetic studies, complemented by a few targeted yet very informative imaging studies. Comprehensive plant cell wall models will aid in the re-design of plant cell walls for the purpose of commercially viable lignocellulosic biofuel production as well as for the timber, textile, and paper industries. Such knowledge will also be of great interest in the context of agriculture and to plant biologists in general. It is expected that detailed plant cell wall models will require integrated correlative multimodal, multiscale imaging and modelling approaches, which are currently underway.

  4. Studies on the control of cell wall extension. Yearly progress report, September 1, 1978-August 31, 1979

    Energy Technology Data Exchange (ETDEWEB)

    Cleland, R. E.

    1979-01-01

    Research has been centered around the question as to how plant cell enlargement is controlled and regulated at the cellular level. Progress is reported on the following projects: proton permeability of plant cuticles; the control of osmoregulation in Avena coleoptiles; an analysis of the acid-extension curves. (ACR)

  5. A rare case of unusual gingival enlargement post radiotherapy

    Directory of Open Access Journals (Sweden)

    Vishal Singh

    2011-01-01

    Full Text Available Oral changes following radiotherapy are not uncommon. Oral mucositis, alteration in salivary gland function, radiation caries, and gingival changes have all been reported following radiotherapy and chemotherapy. The gingival changes seen after radiotherapy may be unusual and often cause diagnostic dilemma. Metastasis to the gingiva has also to be ruled out in these cases. A 30-year-old female patient presented with enlargement of the gingiva of 6 months′ duration and lower lip swelling of 7 months′ duration. She was a known case of carcinoma of nasopharynx and had received radiotherapy and chemotherapy. Based on the history, the clinical appearance of the gingiva, and the other oral changes we considered both post-radiotherapy gingival enlargement and secondary metastasis to gingiva as possibilities. An incisional biopsy was performed (internal bevel gingivectomy. The histopathological report did not reveal any metastatic changes. Thus, we diagnosed post-radiotherapy gingival enlargement. For the multiple carious teeth, extraction and root canal treatment was carried out as necessary. The patient was referred to the department of Oral and Maxillofacial Surgery for management of swelling of the lips, which was diagnosed as lymphedema of the lip. Gingival enlargement is rare post radiotherapy. Such nonplaque-associated gingival enlargement in a patient who has undergone radiotherapy should be subjected to biopsy and histopathological examination to distinguish between secondary metastasis and post-radiation changes.

  6. Foaming and cell flotation in suspended plant cell cultures and the effect of chemical antifoams.

    Science.gov (United States)

    Wongsamuth, R; Doran, P M

    1994-08-01

    Foam development and stability in Atropa belladonna suspensions were investigated as a function of culture conditions. Foaming was due mainly to properties of the cell-free broth and was correlated with protein content; effects due to presence of cells increased towards the end of batch culture. Highest foam levels were measured 11 days after inoculation. Air flow rate was of major importance in determining foam volume; foam volume and stability were also strongly dependent on pH. Foam flotation of plant cells was very effective. After 30 min foaming, ca. 55% of cells were found in the foam; this increased to ca. 75% after 90 min. Polypropylene glycol 1025 and 2025, Pluronic PE 6100, and Antifoam-C emulsion were tested as chemical antifoams. Polypropylene glycol 1025 and Antifoam C at concentrations up to 600 ppm had no adverse effect on growth in shake flasks; Pluronic PE 6100 has an inhibitory effect at all levels tested. Concentrations of polypropylene glycol 2025 and Pluronic PE 6100 as low as 20 ppm reduced foam volumes by a factor of ca. 10. Addition of antifoam reduced k(L)a values in bubble-column and stirred-tank bioreactors. After operation of a stirred reactor for 2 days using Antifoam C for foam control, cell production was limited by oxygen due to the effect of antifoam on mass transfer. Theoretical analysis showed that maximum cell concentrations and biomass levels decline with increasing reactors working volume due to greater consumption of antifoam to prevent foam overflow. The results indicate that when chemical foam control is used in plant cell cultures, head-space volume and tolerable foam levels must be considered to optimize biomass production. (c) 1994 John Wiley & Sons, Inc.

  7. Mechanics of Cellulose Synthase Complexes in Living Plant Cells

    Science.gov (United States)

    Zehfroosh, Nina; Liu, Derui; Ramos, Kieran P.; Yang, Xiaoli; Goldner, Lori S.; Baskin, Tobias I.

    The polymer cellulose is one of the major components of the world's biomass with unique and fascinating characteristics such as its high tensile strength, renewability, biodegradability, and biocompatibility. Because of these distinctive aspects, cellulose has been the subject of enormous scientific and industrial interest, yet there are still fundamental open questions about cellulose biosynthesis. Cellulose is synthesized by a complex of transmembrane proteins called ``Cellulose Synthase A'' (CESA) in the plasma membrane. Studying the dynamics and kinematics of the CESA complex will help reveal the mechanism of cellulose synthesis and permit the development and validation of models of CESA motility. To understand what drives these complexes through the cell membrane, we used total internal reflection fluorescence microscopy (TIRFM) and variable angle epi-fluorescence microscopy to track individual, fluorescently-labeled CESA complexes as they move in the hypocotyl and root of living plants. A mean square displacement analysis will be applied to distinguish ballistic, diffusional, and other forms of motion. We report on the results of these tracking experiments. This work was funded by NSF/PHY-1205989.

  8. Meristem Plant Cells as a Sustainable Source of Redox Actives for Skin Rejuvenation.

    Science.gov (United States)

    Korkina, Liudmila G; Mayer, Wolfgang; de Luca, Chiara

    2017-05-12

    Recently, aggressive advertisement claimed a "magic role" for plant stem cells in human skin rejuvenation. This review aims to shed light on the scientific background suggesting feasibility of using plant cells as a basis of anti-age cosmetics. When meristem cell cultures obtained from medicinal plants are exposed to appropriate elicitors/stressors (ultraviolet, ultrasound ultraviolet (UV), ultrasonic waves, microbial/insect metabolites, heavy metals, organic toxins, nutrient deprivation, etc.), a protective/adaptive response initiates the biosynthesis of secondary metabolites. Highly bioavailable and biocompatible to human cells, low-molecular weight plant secondary metabolites share structural/functional similarities with human non-protein regulatory hormones, neurotransmitters, pigments, polyamines, amino-/fatty acids. Their redox-regulated biosynthesis triggers in turn plant cell antioxidant and detoxification molecular mechanisms resembling human cell pathways. Easily isolated in relatively large quantities from contaminant-free cell cultures, plant metabolites target skin ageing mechanisms, above all redox imbalance. Perfect modulators of cutaneous oxidative state via direct/indirect antioxidant action, free radical scavenging, UV protection, and transition-metal chelation, they are ideal candidates to restore photochemical/redox/immune/metabolic barriers, gradually deteriorating in the ageing skin. The industrial production of plant meristem cell metabolites is toxicologically and ecologically sustainable for fully "biological" anti-age cosmetics.

  9. Application of the comet assay in studies of programmed cell death (PCD in plants

    Directory of Open Access Journals (Sweden)

    Maria Charzyńska

    2014-01-01

    Full Text Available Programmed cell death (PCD in plants is an intensively investigated process. One of the main characteristics of PCD in both animal and plant organisms is the non-random, internucleosomal fragmentation of nuclear DNA, usually analysed using total DNA gel electrophoresis or TUNEL method. In this paper we present application of the "comet assay" (Single Cell Gel Electrophoresis for detection of nDNA degradation in studies of PCD during plant life cycle. We analyzed three types of tissue: anther tapetum, endosperm and mesophyll which were prepared in different ways to obtain a suspension of viable cells (without cell walls. The comet assay gives a possibility of examination of the nDNA degradation in individual cell. This method is significant for studies of the plant tissue differentiation and senescence especially in the cases when it is not possible to isolate large number of cells at the same developmental stage.

  10. Programmed cell death: similarities and differences in animals and plants. A flower paradigm.

    Science.gov (United States)

    Mea, M Della; Serafini-Fracassini, D; Duca, S Del

    2007-08-01

    After an overview of the criteria for the definition of cell death in the animal cell and of its different types of death, a comparative analysis of PCD in the plant cell is reported. The cytological characteristics of the plant cell undergoing PCD are described. The role of plant hormones and growth factors in the regulation of this event is discussed with particular emphasis on PCD activation or prevention by polyamine treatment (doses, timing and developmental stage of the organism) in a Developmental cell death plant model: the Nicotiana tabacum (tobacco) flower corolla. Some of the effects of polyamines might be mediated by transglutaminase catalysis. The activity of this enzyme was examined in different parts of the corolla during its life span showing an acropetal trend parallel to the cell death wave. The location of transglutaminase in some sub-cellular compartments suggests that it exerts different functions in the corolla DCD.

  11. Peculiar enlargement of the nasopharynx in patients with anorexia nervosa

    Energy Technology Data Exchange (ETDEWEB)

    Okamoto, K. [Department of Radiology, School of Dentistry, Niigata Univ. (Japan); Ito, J. [Department of Radiology, School of Dentistry, Niigata Univ. (Japan); Tokiguchi, S. [Department of Radiology, School of Dentistry, Niigata Univ. (Japan); Kuwabara, G. [Department of Radiology, School of Medicine, Niigata University, Niigata (Japan); Nishihara, M. [Department of Radiology, School of Medicine, Niigata University, Niigata (Japan)

    1995-11-01

    We examined the nasopharynx and brain in 17 patients with anorexia nervosa by CT and compared the findings with those of 44 normal subjects and of 5 patients of the same age with marked emaciation caused by various psychiatric disorders. An enlarged nasopharyngeal space with a flattened posterior wall and enlarged lateral pharyngeal recesses were demonstrated in all patients with anorexia nervosa whose weight was lowest at the time of the CT examination, and these CT features regressed or became normal quickly after they had gained some weight. This characteristic enlargement of the nasopharynx and lateral pharyngeal recesses was observed neither in the markedly emaciated patients (2 with schizophrenia, 1 with major depression, 1 with stupor and the other with an extremely unbalanced diet) nor in 44 normal subjects without emaciation. These features were therefore thought to be characteristic and of diagnostic significance. (orig.). With 5 figs., 3 tabs.

  12. Disodium cromoglycate attenuates hypoxia induced enlargement of end-expiratory lung volume in rats.

    Science.gov (United States)

    Maxová, H; Hezinová, A; Vízek, M

    2011-01-01

    Mechanism responsible for the enlargement of end-expiratory lung volume (EELV) induced by chronic hypoxia remains unclear. The fact that the increase in EELV persists after return to normoxia suggests involvement of morphological changes. Because hypoxia has been also shown to activate lung mast cells, we speculated that they could play in the mechanism increasing EELV similar role as in vessel remodeling in hypoxic pulmonary hypertension (HPH). We, therefore, tested an effect of mast cells degranulation blocker disodium cromoglycate (DSCG) on hypoxia induced EELV enlargement. Ventilatory parameters, EELV and right to left heart weight ratio (RV/LV+S) were measured in male Wistar rats. The experimental group (H+DSCG) was exposed to 3 weeks of normobaric hypoxia and treated with DSCG during the first four days of hypoxia, control group was exposed to hypoxia only (H), two others were kept in normoxia as non-treated (N) and treated (N+DSCG) groups. DSCG treatment significantly attenuated the EELV enlargement (H+DSCG = 6.1+/-0.8; H = 9.2+/-0.9; ml +/-SE) together with the increase in minute ventilation (H + DSCG = 190+/-8; H = 273 +/- 10; ml/min +/- SE) and RV/LV + S (H + DSCG = 0.39 +/- 0.03; H = 0.50 +/- 0.06).

  13. The role of the secondary cell walls in plant resistance to pathogens

    Directory of Open Access Journals (Sweden)

    Eva eMiedes

    2014-08-01

    Full Text Available Plant resistance to pathogens relies on a complex network of constitutive and inducible defensive barriers. The plant cell wall is one of the barriers that pathogens need to overcome to successfully colonize plant tissues. The traditional view of the plant cell wall as a passive barrier has evolved to a concept that considers the wall as a dynamic structure that regulates both constitutive and inducible defence mechanisms, and as a source of signalling molecules that trigger immune responses. The secondary cell walls of plants also represent a carbon-neutral feedstock (lignocellulosic biomass for the production of biofuels and biomaterials. Therefore, engineering plants with improved secondary cell wall characteristics is an interesting strategy to ease the processing of lignocellulosic biomass in the biorefinery. However, modification of the integrity of the cell wall by impairment of proteins required for its biosynthesis or remodelling may impact the plants resistance to pathogens. This review summarizes our understanding of the role of the plant cell wall in pathogen resistance with a focus on the contribution of lignin to this biological process.

  14. Enlarged Right Ventricle Without Shock in Acute Pulmonary Embolism: Prognosis

    Science.gov (United States)

    Stein, Paul D.; Beemath, Afzal; Matta, Fadi; Goodman, Lawrence R.; Weg, John G.; Hales, Charles A.; Hull, Russell D.; Leeper, Kenneth V.; Dirk Sostman, H; Woodard, Pamela K.

    2008-01-01

    Background An unsettled issue is use of thrombolytic agents in patients with acute pulmonary embolism who are hemodynamically stable, but have right ventricular enlargement. Purpose To assess in-hospital mortality of hemodynamically stable patients with pulmonary embolism and right ventricular enlargement. Methods Patients were enrolled in the Prospective Investigation of Pulmonary Embolism Diagnosis II (PIOPED II). Exclusions included shock, critically ill, ventilatory support, myocardial infarction within 1 month, or ventricular tachycardia or ventricular fibrillation within 24 hours. We evaluated the ratio of the right ventricular minor axis to the left ventricular minor axis measured on transverse images during computed tomographic angiography. Results Among 76 patients with right ventricular enlargement treated with anticoagulants and/or inferior vena cava filters, in–hospital deaths from pulmonary embolism were 0 of 76 (0%) and all-cause mortality was 2 of 76 (2.6%). No septal motion abnormality was observed in 49 (64%), septal flattening in 25 (33%) and septal deviation in 2 (3%). None required ventilatory support, vasopressor therapy, rescue thrombolytic therapy, or catheter embolectomy. There were no in-hospital deaths due to pulmonary embolism. There was no difference in all-cause mortality comparing patients with and without right ventricular enlargement (relative risk = 1.04) Conclusion In-hospital prognosis is good in patients with pulmonary embolism and right ventricular enlargement if not in shock, acutely ill, on ventilatory support, recent myocardial infarction or life threatening arrhythmia. Right ventricular enlargement alone in patients with pulmonary embolism, therefore, does not appear to indicate a poor prognosis or an indication for thrombolytic therapy. PMID:18187071

  15. The Role of Pectin Acetylation in the Organization of Plant Cell Walls

    DEFF Research Database (Denmark)

    Fimognari, Lorenzo

    All plant cells are surrounded by one or more cell wall layers. The cell wall serves as a stiff mechanical support while it allows cells to expand and provide a protective barrier to invading pathogens. Cell walls are dynamic structures composed of entangled cell wall polysaccharides that must...... adopt defined 3D organization to allow their composition/interactions to be tweaked upon developmental need. Failure to build functional cell wall architecture will affect plant growth and resistance to stresses. In this PhD dissertation I explored the role of pectin acetylation in controlling...... that the loss of structural integrity in the cell wall was the underlying cause for triggering defenses response. This hypothesis was tested in Manuscript II. Through a suppressor screen of 30.000 Arabidopsis rwa2 plants and mapping of mutations by next generation sequencing, we pinpointed pectin deacetylation...

  16. Cell polarity in plants: when two do the same, it is not the same....

    Science.gov (United States)

    Dettmer, Jan; Friml, Jiří

    2011-12-01

    In unicellular and multicellular organisms, cell polarity is essential for a wide range of biological processes. An important feature of cell polarity is the asymmetric distribution of proteins in or at the plasma membrane. In plants such polar localized proteins play various specific roles ranging from organizing cell morphogenesis, asymmetric cell division, pathogen defense, nutrient transport and establishment of hormone gradients for developmental patterning. Moreover, flexible respecification of cell polarities enables plants to adjust their physiology and development to environmental changes. Having evolved multicellularity independently and lacking major cell polarity mechanisms of animal cells, plants came up with alternative solutions to generate and respecify cell polarity as well as to regulate polar domains at the plasma membrane.

  17. Programmed cell death in plants and caspase-like activities

    NARCIS (Netherlands)

    Gaussand, Gwénael Martial Daniel Jean-Marie

    2007-01-01

    The development of multicellular organisms involves an important balance between cell growth, cell division and cell death. In animals, programmed cell death (PCD) plays a key role by forming and deleting structures, controlling cell numbers and eliminating abnormal damaged cells. Caspases were foun

  18. Pyrrolizidine alkaloid variation in Jacobaea plants : from plant organ to cell level

    NARCIS (Netherlands)

    Nuringtyas, Tri Rini

    2013-01-01

    The aim of this thesis is to understand the diversity of pyrrolizidine alkaloids (PAs) in Jacobaea plants with respect to their spatial distribution and its consequences for generalist insects. Chapter 2 reports on the role of endophytes in the production of PAs in Jacobaea. Plants were treated with

  19. 植物激素在植物细胞壁扩展中的作用%The role of phytohormones in plant cell wall expansion

    Institute of Scientific and Technical Information of China (English)

    陈光辉; 高艳; 陈秀娟; 谢丽琼

    2012-01-01

    细胞壁不仅是植物细胞结构的重要组成部分,而且控制着细胞的大小、形状和生长.细胞经有丝分裂后,原生质体吸水膨胀,细胞壁重塑,新生壁物质合成,纤维素定向沉积等引发细胞壁生长.在这些过程中,乙烯(ethylene,ET)、生长素(auxin)、赤霉素(gibberellin,GA)、油菜素甾醇(brassinosteroids,BR)等植物激素调控细胞壁生长相关酶类如纤维素合酶复合体(cellulose synthase A,CESA)、扩展素(expansin,EXP)、木葡聚糖内糖基转移酶/水解酶(xyloglucan endotran glucosylase/hydrolase,XET/XTH)的表达活性,进而调控细胞壁扩展,促使细胞壁的生长.%The cell wall not only provides basic skeleton to plant cell, but also controls the cell size, shape and growth. After mitosis, protoplast enlarges its size through absorbing water. In this phase, the cell wall is remodeled, with cellulose and other new wall materials synthesized and integrated. It finally causes cell growth. Phytohormones, such as IAA, GA, ET and BR, play vital roles in the process of cell expansion, which alters the expression and activity of cell wall-related enzymes such as cellulose synthase A (CESA), expansin (EXP) and xyloglucan endotran glucosylase /hydrolase (XET/XTH), and these factors regulate the cell wall expansion and finally promote cell growth.

  20. Gingival enlargement unveiling sarcoidosis: Report of a rare case

    Directory of Open Access Journals (Sweden)

    Sabeeha Abbas Kadiwala

    2013-01-01

    Full Text Available Sarcoidosis is classified as an acquired systemic granulomatous disease. Because of the fact that sarcoidosis affects multiple tissues and organs, it is characterized by many potential signs and symptoms, as well as by the presence of non-caseating granulomas in the organs involved. Although oral sarcoidosis is relatively rare, it may however, present in the oral cavity. This report presents a rare case of sarcoidosis with the initial presenting symptom as severe generalized gingival enlargement. The gingival enlargement was treated by gingivectomy. After histopathological examination of gingival biopsy and certain special investigations, a diagnosis of sarcoidosis was made.

  1. Image enlargement using biharmonic Said-Ball surface

    Science.gov (United States)

    Saaban, A.; Kherd, A.; Jameel, A. F.; Akhadkulov, H.; Alipiah, F. M.

    2017-09-01

    This paper discusses the use of biharmonic cubic Said-Ball surfaces in image enlargement area. Resizing an image through up sampling or down sampling is generally common for making smaller image fit a bigger screen in full screen mode or reducing a higher resolution image to a smaller resolution. However due to some limitation, this paper will focus on image enlargement based on scaling factor of two. We use biharmonic cubic Said-Ball subject to a given four boundary curves condition respectively. We implement and evaluate the performance of the proposed method based on peak signal to noise ratio (PSNR) indicator using well-known gray-scale test images.

  2. Spleen and liver enlargement in a patient with rheumatoid arthritis.

    Science.gov (United States)

    Bedoya, María Eugenia; Ceccato, Federico; Paira, Sergio

    2015-01-01

    We describe the case of a 51-year-old woman with a seropositive, erosive, and non-nodular rheumatoid arthritis of 15 year of evolution. The patient had poor compliance with medical visits and treatment. She came to the clinic with persistent pancytopenia and spleen and liver enlargement. Liver and bone marrow biopsies were carried out and amyloidosis, neoplasias and infections were ruled out. We discuss the differential diagnosis of pancytopenia and spleen and liver enlargement in a long-standing rheumatoid arthritis patient. Copyright © 2014 Elsevier España, S.L.U. All rights reserved.

  3. Mitral-aortic annular enlargement: modification of Manouguian's technique

    Directory of Open Access Journals (Sweden)

    Costa Mario Gesteira

    2002-01-01

    Full Text Available We hereby present a technical modification for mitral-aortic annular enlargement. The mitral valve is replaced through the retro-septal approach, avoiding patches for left atrial roof closure. We report a mitral-aortic valve replacement in a patient whose original annuli would preclude adequate prostheses. The simultaneous annular enlargement may be necessary for avoiding patient-prosthesis mismatch and for reconstructing destroyed mitral and aortic annuli. The technique may minimize the risk of bleeding and of paravalvular leakage, using an approach well known to cardiac surgeons.

  4. Decreased Polysaccharide Feruloylation Compromises Plant Cell Wall Integrity and Increases Susceptibility to Necrotrophic Fungal Pathogens

    Directory of Open Access Journals (Sweden)

    Nathan T Reem

    2016-05-01

    Full Text Available The complexity of cell wall composition and structure determines the strength, flexibility, and function of the primary cell wall in plants. However, the contribution of the various components to cell wall integrity and function remains unclear. Modifications of cell wall composition can induce plant responses known as Cell Wall Integrity control. In this study, we used transgenic expression of the fungal feruloyl esterase AnFAE to examine the effect of post-synthetic modification of Arabidopsis and Brachypodium cell walls. Transgenic Arabidopsis plants expressing AnFAE showed a significant reduction of monomeric ferulic acid, increased amounts of wall-associated extensins, and increased susceptibility to Botrytis cinerea, compared with wild type. Transgenic Brachypodium showed reductions in monomeric and dimeric ferulic acids and increased susceptibility to Bipolaris sorokiniana. Upon infection, transgenic Arabidopsis and Brachypodium plants also showed increased expression of several defense-related genes compared with wild type. These results demonstrate a role, in both monocot and dicot plants, of polysaccharide feruloylation in plant cell wall integrity, which contributes to plant resistance to necrotrophic pathogens.

  5. The plant cell wall integrity maintenance mechanism-concepts for organization and mode of action.

    Science.gov (United States)

    Hamann, Thorsten

    2015-02-01

    One of the main differences between plant and animal cells are the walls surrounding plant cells providing structural support during development and protection like an adaptive armor against biotic and abiotic stress. During recent years it has become widely accepted that plant cells use a dedicated system to monitor and maintain the functional integrity of their walls. Maintenance of integrity is achieved by modifying the cell wall and cellular metabolism in order to permit tightly controlled changes in wall composition and structure. While a substantial amount of evidence supporting the existence of the mechanism has been reported, knowledge regarding its precise mode of action is still limited. The currently available evidence suggests similarities of the plant mechanism with respect to both design principles and molecular components involved to the very well characterized system active in the model organism Saccharomyces cerevisiae. There the system has been implicated in cell morphogenesis as well as response to abiotic stresses such as osmotic challenges. Here the currently available knowledge on the yeast system will be reviewed initially to provide a framework for the subsequent discussion of the plant cell wall integrity maintenance mechanism. The review will then end with a discussion on possible design principles for the cell wall integrity maintenance mechanism and the function of the plant turgor pressure in this context. © The Author 2014. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  6. DCD – a novel plant specific domain in proteins involved in development and programmed cell death

    Directory of Open Access Journals (Sweden)

    Doerks Tobias

    2005-07-01

    Full Text Available Abstract Background Recognition of microbial pathogens by plants triggers the hypersensitive reaction, a common form of programmed cell death in plants. These dying cells generate signals that activate the plant immune system and alarm the neighboring cells as well as the whole plant to activate defense responses to limit the spread of the pathogen. The molecular mechanisms behind the hypersensitive reaction are largely unknown except for the recognition process of pathogens. We delineate the NRP-gene in soybean, which is specifically induced during this programmed cell death and contains a novel protein domain, which is commonly found in different plant proteins. Results The sequence analysis of the protein, encoded by the NRP-gene from soybean, led to the identification of a novel domain, which we named DCD, because it is found in plant proteins involved in development and cell death. The domain is shared by several proteins in the Arabidopsis and the rice genomes, which otherwise show a different protein architecture. Biological studies indicate a role of these proteins in phytohormone response, embryo development and programmed cell by pathogens or ozone. Conclusion It is tempting to speculate, that the DCD domain mediates signaling in plant development and programmed cell death and could thus be used to identify interacting proteins to gain further molecular insights into these processes.

  7. Navigating the transcriptional roadmap regulating plant secondary cell wall deposition

    Directory of Open Access Journals (Sweden)

    Steven Grant Hussey

    2013-08-01

    Full Text Available The current status of lignocellulosic biomass as an invaluable resource in industry, agriculture and health has spurred increased interest in understanding the transcriptional regulation of secondary cell wall (SCW biosynthesis. The last decade of research has revealed an extensive network of NAC, MYB and other families of transcription factors regulating Arabidopsis SCW biosynthesis, and numerous studies have explored SCW-related transcription factors in other dicots and monocots. Whilst the general structure of the Arabidopsis network has been a topic of several reviews, they have not comprehensively represented the detailed protein-DNA and protein-protein interactions described in the literature, and an understanding of network dynamics and functionality has not yet been achieved for SCW formation. Furthermore the methodologies employed in studies of SCW transcriptional regulation have not received much attention, especially in the case of non-model organisms. In this review, we have reconstructed the most exhaustive literature-based network representations to date of SCW transcriptional regulation in Arabidopsis. We include a manipulable Cytoscape representation of the Arabidopsis SCW transcriptional network to aid in future studies, along with a list of supporting literature for each documented interaction. Amongst other topics, we discuss the various components of the network, its evolutionary conservation in plants, putative modules and dynamic mechanisms that may influence network function, and the approaches that have been employed in network inference. Future research should aim to better understand network function and its response to dynamic perturbations, whilst the development and application of genome-wide approaches such as ChIP-seq and systems genetics are in progress for the study of SCW transcriptional regulation in non-model organisms.

  8. Cross-talk of nitric oxide and reactive oxygen species in plant programed cell death

    Directory of Open Access Journals (Sweden)

    Yiqin eWang

    2013-08-01

    Full Text Available In plants, programed cell death (PCD is an important mechanism to regulate multiple aspects of growth and development, as well as to remove damaged or infected cells during responses to environmental stresses and pathogen attacks. Under biotic and abiotic stresses, plant cells exhibit a rapid synthesis of nitric oxide (NO and a parallel accumulation of reactive oxygen species (ROS. Frequently, these responses trigger a PCD process leading to an intrinsic execution of plant cells. The accumulating evidence suggests that both NO and ROS play key roles in PCD. These redox active small molecules can trigger cell death either independently or synergistically. Here we summarize the recent progress on the cross-talk of NO and ROS signals in the hypersensitive response (HR, leaf senescence and other kinds of plant PCD caused by diverse cues.

  9. Actin based processes that could determine the cytoplasmic architecture of plant cells.

    Science.gov (United States)

    van der Honing, Hannie S; Emons, Anne Mie C; Ketelaar, Tijs

    2007-05-01

    Actin polymerisation can generate forces that are necessary for cell movement, such as the propulsion of a class of bacteria, including Listeria, and the protrusion of migrating animal cells. Force generation by the actin cytoskeleton in plant cells has not been studied. One process in plant cells that is likely to depend on actin-based force generation is the organisation of the cytoplasm. We compare the function of actin binding proteins of three well-studied mammalian models that depend on actin-based force generation with the function of their homologues in plants. We predict the possible role of these proteins, and thus the role of actin-based force generation, in the production of cytoplasmic organisation in plant cells.

  10. Direct metabolomics for plant cells by live single-cell mass spectrometry.

    Science.gov (United States)

    Fujii, Takashi; Matsuda, Shuichi; Tejedor, Mónica Lorenzo; Esaki, Tsuyoshi; Sakane, Iwao; Mizuno, Hajime; Tsuyama, Naohiro; Masujima, Tsutomu

    2015-09-01

    Live single-cell mass spectrometry (live MS) provides a mass spectrum that shows thousands of metabolite peaks from a single live plant cell within minutes. By using an optical microscope, a cell is chosen for analysis and a metal-coated nanospray microcapillary tip is used to remove the cell's contents. After adding a microliter of ionization solvent to the opposite end of the tip, the trapped contents are directly fed into the mass spectrometer by applying a high voltage between the tip and the inlet port of the spectrometer to induce nanospray ionization. Proteins are not detected because of insufficient sensitivity. Metabolite peaks are identified by exact mass or tandem mass spectrometry (MS/MS) analysis, and isomers can be separated by combining live MS with ion-mobility separation. By using this approach, spectra can be acquired in 10 min. In combination with metabolic maps and/or molecular databases, the data can be annotated into metabolic pathways; the data analysis takes 30 min to 4 h, depending on the MS/MS data availability from databases. This method enables the analysis of a number of metabolites from a single cell with rapid sampling at sub-attomolar-level sensitivity.

  11. Ceratopteris richardii (C-fern: A model for investigating adaptive modification of vascular plant cell walls

    Directory of Open Access Journals (Sweden)

    Olivier eLeroux

    2013-09-01

    Full Text Available Plant cell walls are essential for most aspects of plant growth, development, and survival, including cell division, expansive cell growth, cell-cell communication, biomechanical properties, and stress responses. Therefore, characterising cell wall diversity contributes to our overall understanding of plant evolution and development. Recent biochemical analyses, concomitantly with whole genome sequencing of plants located at pivotal points in plant phylogeny, have helped distinguish between homologous characters and those which might be more derived. Most plant lineages now have at least one fully sequenced representative and although genome sequences for fern species are in progress they not yet available this group. Ferns offer key advantages for the study of developmental processes leading to vascularisation and complex organs as well as the specific differences between diploid sporophyte tissues and haploid gametophyte tissues and the interplay between them. Ceratopteris richardii has been well investigated building a body of knowledge which combined with the genomic and biochemical information available for other plants will progress our understanding of wall diversity and its impact on evolution and development.

  12. Debate on Global Impact of EU Enlargement Held in Guangzhou

    Institute of Scientific and Technical Information of China (English)

    2004-01-01

    <正>On the afternoon of April 27, the CPAFFC, the China- EU Association (CEUA), the Guangdong Provincial People’s Association for Friendship with Foreign Countries (GPPAFFC) and the Delegation of the European Commission of the European Union jointly held a debate on the global impact brought about by the 15+10 enlargement of European Union in Zhongshan University, Guangzhou.

  13. The Trade and FDI Effects of EMU Enlargement

    NARCIS (Netherlands)

    R. Paap (Richard); J.M.A. Viaene (Jean-Marie); J. Brouwer (Jelle)

    2007-01-01

    textabstractThis paper considers the nature and the distribution of trade and FDI effects of a potential enlargement of the European Monetary Union (EMU) to the ten countries that obtained EU membership in 2004. Intuitively, the implementation of a single currency for these countries means replacing

  14. Amygdala and hippocampus enlargement during adolescence in autism.

    NARCIS (Netherlands)

    Groen, W.B.; Teluij, M.; Buitelaar, J.K.; Tendolkar, I.

    2010-01-01

    OBJECTIVE: The amygdala and hippocampus are key components of the neural system mediating emotion perception and regulation and are thought to be involved in the pathophysiology of autism. Although some studies in children with autism suggest that there is an enlargement of amygdala and hippocampal

  15. Congress announcement: PHARM Connect Congress for Enlarged Europe 2012

    Directory of Open Access Journals (Sweden)

    Silvia Maina

    2012-01-01

    Full Text Available PHARM Connect Congress for Enlarged Europe 2012 is a must-attend event for Pharmaceutical industry professionals. Over two days (8-9 February, in Budapest, the conference will include the most up-to-date market insights into R&D, Production, Packaging, Supply Chain and Quality Management-related topics.

  16. [Enlargement of the buccal aperture via. Technical consideration (author's transl)].

    Science.gov (United States)

    Pons, J; Pasturel, A; Pochan, Y; Barbier, M

    1979-01-01

    For a long time we know that it is possible to take out from the mouth a part or all the mandibule which presents a local malignant tumour. When the tumour is too extensed, the buccal aperture can be enlarged. The authors describe a new surgical technique which resolves this problem with notable and faithful advantages.

  17. The Trade and FDI Effects of EMU Enlargement

    NARCIS (Netherlands)

    R. Paap (Richard); J.M.A. Viaene (Jean-Marie); J. Brouwer (Jelle)

    2007-01-01

    textabstractThis paper considers the nature and the distribution of trade and FDI effects of a potential enlargement of the European Monetary Union (EMU) to the ten countries that obtained EU membership in 2004. Intuitively, the implementation of a single currency for these countries means replacing

  18. Construction and enlargement of traversable wormholes from Schwarzschild black holes

    CERN Document Server

    Koyama, H; Koyama, Hiroko; Hayward, Sean A.

    2004-01-01

    Analytic solutions are presented which describe the construction of a traversable wormhole from a Schwarzschild black hole, and the enlargement of such a wormhole, in Einstein gravity. The matter model is pure radiation which may have negative energy density (phantom or ghost radiation) and the idealization of impulsive radiation (infinitesimally thin null shells) is employed.

  19. Mitochondria and cell death pathways in plants: Actions speak louder than words

    OpenAIRE

    Scott, Iain; Logan, David C

    2008-01-01

    The mitochondrion has a central role during programmed cell death (PCD) in animals, acting as both a sensor of death signals, and as an initiator of the biochemical processes which lead to the controlled destruction of the cell. In contrast to our extensive knowledge of animal cell death, the part played by mitochondria in the death of plant cells has received relatively little attention. Using a combination of whole-organism and cell-based models, we recently demonstrated that changes in mit...

  20. The Role of Plant Cell Wall Proteins in Response to Salt Stress

    Directory of Open Access Journals (Sweden)

    Lyuben Zagorchev

    2014-01-01

    Full Text Available Contemporary agriculture is facing new challenges with the increasing population and demand for food on Earth and the decrease in crop productivity due to abiotic stresses such as water deficit, high salinity, and extreme fluctuations of temperatures. The knowledge of plant stress responses, though widely extended in recent years, is still unable to provide efficient strategies for improvement of agriculture. The focus of study has been shifted to the plant cell wall as a dynamic and crucial component of the plant cell that could immediately respond to changes in the environment. The investigation of plant cell wall proteins, especially in commercially important monocot crops revealed the high involvement of this compartment in plants stress responses, but there is still much more to be comprehended. The aim of this review is to summarize the available data on this issue and to point out the future areas of interest that should be studied in detail.

  1. Plant autophagy puts the brakes on cell death by controlling salicylic acid signaling.

    Science.gov (United States)

    Yoshimoto, Kohki

    2010-01-01

    It has long been recognized that autophagy in plants is important for nutrient recycling and plays a critical role in the ability of plants to adapt to environmental extremes such as nutrient deprivation. Recent reverse genetic studies, however, hint at other roles for autophagy, showing that autophagy defects in higher plants result in early senescence and excessive immunity-related programmed cell death (PCD), irrespective of nutrient conditions. Until now, the mechanisms by which cells die in the absence of autophagy were unclear. In our study, using biochemical, pharmacological and genetic approaches, we reveal that excessive salicylic acid (SA) signaling is a major factor in autophagy-defective plant-dependent cell death and that the SA signal can induce autophagy. These findings suggest a novel physiological function for plant autophagy that operates via a negative feedback loop to modulate proper SA signaling.

  2. Mathematical Modeling and Simulation of the Photosynthesis in a Plant Leaf Cell

    OpenAIRE

    Yonthanthum, Pinyo

    2016-01-01

    Photosynthesis is a very important process in plants which occurs in chloro- plasts. Plants use photon energy to oxidize water molecule, release oxygen, and convert carbon dioxide to sugar molecule. The process of photosynthe- sis contains two main parts: light dependent reactions and light independent reactions. A mathematical model, which describes the diffusion-transport and related chemical reactions in a multi-component flow in a single C3 plant leaf cell, is constr...

  3. Gene delivery into plant cells for recombinant protein production

    National Research Council Canada - National Science Library

    Chen, Qiang; Lai, Huafang

    2015-01-01

    .... In recent years, the development of deconstructed virus-based vectors has allowed plants to become a viable platform for recombinant protein production, with advantages in versatility, speed, cost...

  4. Embedding Arabidopsis Plant Cell Suspensions in Low-Melting Agarose Facilitates Altered Gravity Studies

    Science.gov (United States)

    Kamal, Khaled Y.; van Loon, Jack J. W. A.; Medina, F. Javier; Herranz, Raúl

    2017-02-01

    Gravity plays a role in modulating plant growth and development and its alteration induces changes in these processes. Microgravity research has recently been extended to the use of in vitro plant cell cultures which are considered as an ideal model system to study cell proliferation and growth. In general, among the ground-based facilities available for microgravity simulation, the 2D pipette clinostat had been previously considered a suitable facility to be used for unicellular biological models although studies using single plant cell cultures raised some concerns. The incompatibility comes from the standard requirement of shaking a suspension culture for assuring its viability and active proliferation status in the control samples. Moreover, a related issue applies to the use of the random positioning machine (RPM) for cell suspension experiments. Here, we demonstrate an alternative culture method based on the immobilization of the culture before the altered gravity treatment occurs, such that it behaves as a solid object. Our immobilization procedure preserved plant cell culture viability without compromising basic cell properties as viability, morphology, cell cycle phases distribution, or chromatin organization, when compared with a standard cell suspension under shaking as a control. This approach should allow the space biology community to improve the quantity and quality of plant cell results in future simulated microgravity experiments or spaceflight opportunities.

  5. A unifying new model of cytokinesis for the dividing plant and animal cells.

    Science.gov (United States)

    Dhonukshe, Pankaj; Samaj, Jozef; Baluska, Frantisek; Friml, Jirí

    2007-04-01

    Cytokinesis ensures proper partitioning of the nucleocytoplasmic contents into two daughter cells. It has generally been thought that cytokinesis is accomplished differently in animals and plants because of the differences in the preparatory phases, into the centrosomal or acentrosomal nature of the process, the presence or absence of rigid cell walls, and on the basis of 'outside-in' or 'inside-out' mechanism. However, this long-standing paradigm needs further reevaluation based on new findings. Recent advances reveal that plant cells, similarly to animal cells, possess astral microtubules that regulate the cell division plane. Furthermore, endocytosis has been found to be important for cytokinesis in animal and plant cells: vesicles containing endocytosed cargo provide material for the cell plate formation in plants and for closure of the midbody channel in animals. Thus, although the preparatory phases of the cell division process differ between plant and animal cells, the later phases show similarities. We unify these findings in a model that suggests a conserved mode of cytokinesis. (c) 2007 Wiley Periodicals, Inc.

  6. Electricity generation by a plant microbial fuel cell with an integrated oxygen reducing biocathode

    NARCIS (Netherlands)

    Wetser, K.; Sudirjo, E.; Buisman, C.J.N.; Strik, D.P.B.T.B.

    2015-01-01

    In this study we show that a chemical ferricyanide cathode can be replaced by a biological oxygen reducing cathode in a plant microbial fuel cell (PMFC) with a new record power output. A biocathode was successfully integrated in a PMFC and operated for 151 days. Plants growth continued and the power

  7. BIOCONVERSION OF NATURALLY-OCCURRING PRECURSORS AND RELATED SYNTHETIC COMPOUNDS USING PLANT-CELL CULTURES

    NARCIS (Netherlands)

    PRAS, N

    1992-01-01

    The nearly unlimited enzymatic potential of cultured plant cells can basically be employed for bioconversion purposes. Plant enzymes are able to catalyze regio- and stereospecific reactions and can therefore be applied to the production of compounds of pharmaceutical interest. Naturally occurring as

  8. Glow in the dark: fluorescent proteins as cell and tissue-specific markers in plants.

    Science.gov (United States)

    Ckurshumova, Wenzislava; Caragea, Adriana E; Goldstein, Rochelle S; Berleth, Thomas

    2011-09-01

    Since the hallmark discovery of Aequorea victoria's Green Fluorescent Protein (GFP) and its adaptation for efficient use in plants, fluorescent protein tags marking expression profiles or genuine proteins of interest have been used to recognize plant tissues and cell types, to monitor dynamic cell fate selection processes, and to obtain cell type-specific transcriptomes. Fluorescent tagging enabled visualization in living tissues and the precise recordings of dynamic expression pattern changes. The resulting accurate recording of cell fate acquisition kinetics in space and time has strongly stimulated mathematical modeling of self-organizing feedback mechanisms. In developmental studies, the use of fluorescent proteins has become critical, where morphological markers of tissues, cell types, or differentiation stages are either not known or not easily recognizable. In this review, we focus on the use of fluorescent markers to identify and illuminate otherwise invisible cell states in plant development.

  9. The nucleus of differentiated root plant cells: modifications induced by arbuscular mycorrhizal fungi

    Directory of Open Access Journals (Sweden)

    G Lingua

    2009-12-01

    Full Text Available The nuclei of plant cells show marked differences in chromatin organisation, related to their DNA content, which ranges from the type with large strands of condensed chromatin (reticulate or chromonematic nuclei to one with mostly decondensed chromatin (chromocentric or diffuse nuclei. A loosening of the chromatin structure generally occurs in actively metabolising cells, such as differentiating and secretory cells, in relation to their high transcriptional activity. Endoreduplication may occur, especially in plants with a small genome, which increases the availability of nuclear templates, the synthesis of DNA, and probably regulates gene expression. Here we describe structural and quantitative changes of the chromatin and their relationship with transcription that occur in differentiated cells following an increase of their metabolism. The nuclei of root cortical cells of three plants with different 2C DNA content (Allium porrum, Pisum sativum and Lycopersicon esculentm and their modifications induced by arbuscular mycorrhization, which strongly increase the metabolic activity of colonised cells, are taken as examples.

  10. A novel approach for studying programmed cell death in living plant tissues

    DEFF Research Database (Denmark)

    Mark, Christina

    using the inhibitor DPI. The new incubation system for immobilised aleurone layers enabled simple, user friendly handling of plant tissue incubations and facilitated transient expression studies in plant tissues by particle bombardment as well as time course studies on the same population of cells......Programmed cell death (PCD) is a highly regulated process in which cells are killed as part of developmental programmes or as defence mechanisms against pathogens, but the process is less well understood in plant cells compared to animal cells. Reactive oxygen species (ROS) are involved in PCD...... and quality of crops and thus contribute to solving the increasing food demands of the planet. Examples of this could be the development of cultivars with enhanced and/or faster response to pathogen attacks, or cultivars with increased grain filling and hence increased starch content through delayed cell...

  11. Glow in the Dark: Fluorescent Proteins as Cell and Tissue-Specific Markers in Plants

    Institute of Scientific and Technical Information of China (English)

    Wenzislava Ckurshumova; Adriana E. Caragea; Rochelle S. Goldstein; Thomas Berleth

    2011-01-01

    Since the hallmark discovery of Aequorea victoria's Green Fluorescent Protein (GFP) and its adaptation for efficient use in plants,fluorescent protein tags marking expression profiles or genuine proteins of interest have been used to recognize plant tissues and cell types,to monitor dynamic cell fate selection processes,and to obtain cell type-specific transcriptomes.Fluorescent tagging enabled visualization in living tissues and the precise recordings of dynamic expression pattern changes.The resulting accurate recording of cell fate acquisition kinetics in space and time has strongly stimulated mathematical modeling of self-organizing feedback mechanisms.In developmental studies,the use of fluorescent proteins has become critical,where morphological markers of tissues,cell types,or differentiation stages are either not known or not easily recognizable.In this review,we focus on the use of fluorescent markers to identify and illuminate otherwise invisible cell states in plant development.

  12. 4-Methylthiobutyl isothiocyanate (Erucin) from rocket plant dichotomously affects the activity of human immunocompetent cells.

    Science.gov (United States)

    Gründemann, Carsten; Garcia-Käufer, Manuel; Lamy, Evelyn; Hanschen, Franziska S; Huber, Roman

    2015-03-15

    Isothiocyanates (ITC) from the Brassicaceae plant family are regarded as promising for prevention and treatment of cancer. However, experimental settings consider their therapeutic action without taking into account the risk of unwanted effects on healthy tissues. In the present study we investigated the effects of Eruca sativa seed extract containing MTBITC (Erucin) and pure Erucin from rocket plant on healthy cells of the human immune system in vitro. Hereby, high doses of the plant extract as well as of Erucin inhibited cell viability of human lymphocytes via induction of apoptosis to comparable amounts. Non-toxic low concentrations of the plant extract and pure Erucin altered the expression of the interleukin (IL)-2 receptor but did not affect further T cell activation, proliferation and the release of the effector molecules interferon (IFN)-gamma and IL-2 of T-lymphocytes. However, the activity of NK-cells was significantly reduced by non-toxic concentrations of the plant extract and pure Erucin. These results indicate that the plant extract and pure Erucin interfere with the function of human T lymphocytes and decreases the activity of NK-cells in comparable concentrations. Long-term clinical studies with ITC-enriched plant extracts from Brassicaceae should take this into account.

  13. Decreased Polysaccharide Feruloylation Compromises Plant Cell Wall Integrity and Increases Susceptibility to Necrotrophic Fungal Pathogens.

    Science.gov (United States)

    Reem, Nathan T; Pogorelko, Gennady; Lionetti, Vincenzo; Chambers, Lauran; Held, Michael A; Bellincampi, Daniela; Zabotina, Olga A

    2016-01-01

    The complexity of cell wall composition and structure determines the strength, flexibility, and function of the primary cell wall in plants. However, the contribution of the various components to cell wall integrity (CWI) and function remains unclear. Modifications of cell wall composition can induce plant responses known as CWI control. In this study, we used transgenic expression of the fungal feruloyl esterase AnFAE to examine the effect of post-synthetic modification of Arabidopsis and Brachypodium cell walls. Transgenic Arabidopsis plants expressing AnFAE showed a significant reduction of monomeric ferulic acid, decreased amounts of wall-associated extensins, and increased susceptibility to Botrytis cinerea, compared with wild type. Transgenic Brachypodium showed reductions in monomeric and dimeric ferulic acids and increased susceptibility to Bipolaris sorokiniana. Upon infection, transgenic Arabidopsis and Brachypodium plants also showed increased expression of several defense-related genes compared with wild type. These results demonstrate a role, in both monocot and dicot plants, of polysaccharide feruloylation in plant CWI, which contributes to plant resistance to necrotrophic pathogens.

  14. Cryptococcus neoformans capsular enlargement and cellular gigantism during Galleria mellonella infection.

    Directory of Open Access Journals (Sweden)

    Rocío García-Rodas

    Full Text Available We have studied infection of Cryptococcus neoformans in the non-vertebrate host Galleria mellonella with particular interest in the morphological response of the yeast. Inoculation of C. neoformans in caterpillars induced a capsule-independent increase in haemocyte density 2 h after infection. C. neoformans manifested a significant increase in capsule size after inoculation into the caterpillar. The magnitude of capsule increase depended on the temperature, being more pronounced at 37°C than at 30°C, which correlated with an increased virulence of the fungus and reduced phagocytosis at 37°C. Capsule enlargement impaired phagocytosis by haemocytes. Incubation of the yeast in G. mellonella extracts also resulted in capsule enlargement, with the polar lipidic fraction having a prominent role in this effect. During infection, the capsule decreased in permeability. A low proportion of the cells (<5% recovered from caterpillars measured more than 30 µm and were considered giant cells. Giant cells recovered from mice were able to kill the caterpillars in a manner similar to regular cells obtained from in vivo or grown in vitro, establishing their capacity to cause disease. Our results indicate that the morphological transitions exhibited by C. neoformans in mammals also occur in a non-vertebrate host system. The similarities in morphological transitions observed in different animal hosts and in their triggers are consistent with the hypothesis that the cell body and capsular responses represent an adaptation of environmental survival strategies to pathogenesis.

  15. Plant-made trastuzumab (herceptin inhibits HER2/Neu+ cell proliferation and retards tumor growth.

    Directory of Open Access Journals (Sweden)

    Tatiana V Komarova

    Full Text Available BACKGROUND: Plant biotechnology provides a valuable contribution to global health, in part because it can decrease the cost of pharmaceutical products. Breast cancer can now be successfully treated by a humanized monoclonal antibody (mAb, trastuzumab (Herceptin. A course of treatment, however, is expensive and requires repeated administrations of the mAb. Here we used an Agrobacterium-mediated transient expression system to produce trastuzumab in plant cells. METHODOLOGY/PRINCIPAL FINDINGS: We describe the cloning and expression of gene constructs in Nicotiana benthamiana plants using intron-optimized Tobacco mosaic virus- and Potato virus X-based vectors encoding, respectively, the heavy and light chains of trastuzumab. Full-size antibodies extracted and purified from plant tissues were tested for functionality and specificity by (i binding to HER2/neu on the surface of a human mammary gland adenocarcinoma cell line, SK-BR-3, in fluorescence-activated cell sorting assay and (ii testing the in vitro and in vivo inhibition of HER-2-expressing cancer cell proliferation. We show that plant-made trastuzumab (PMT bound to the Her2/neu oncoprotein of SK-BR-3 cells and efficiently inhibited SK-BR-3 cell proliferation. Furthermore, mouse intraperitoneal PMT administration retarded the growth of xenografted tumors derived from human ovarian cancer SKOV3 Her2+ cells. CONCLUSIONS/SIGNIFICANCE: We conclude that PMT is active in suppression of cell proliferation and tumor growth.

  16. Reversal of an immunity associated plant cell death program by the growth regulator auxin

    Directory of Open Access Journals (Sweden)

    Gopalan Suresh

    2008-12-01

    Full Text Available Abstract Background One form of plant immunity against pathogens involves a rapid host programmed cell death at the site of infection accompanied by the activation of local and systemic resistance to pathogens, termed the hypersensitive response (HR. In this work it was tested (i if the plant growth regulator auxin can inhibit the cell death elicited by a purified proteinaceous HR elicitor, (ii how far down the process this inhibition can be achieved, and (iii if the inhibition affects reporters of immune response. The effect of constitutive modulation of endogenous auxin levels in transgenic plants on this cell death program was also evaluated. Results The HR programmed cell death initiated by a bacterial type III secretion system dependent proteinaceous elicitor harpin (from Erwinia amylovora can be reversed till very late in the process by the plant growth regulator auxin. Early inhibition or late reversal of this cell death program does not affect marker genes correlated with local and systemic resistance. Transgenic plants constitutively modulated in endogenous levels of auxin are not affected in ability or timing of cell death initiated by harpin. Conclusion These data indicate that the cell death program initiated by harpin can be reversed till late in the process without effect on markers strongly correlated with local and systemic immunity. The constitutive modulation of endogenous auxin does not affect equivalent signaling processes affecting cell death or buffers these signals. The concept and its further study has utility in choosing better strategies for treating mammalian and agricultural diseases.

  17. The use of fluorescence-activated cell sorting in studying plant development and environmental responses.

    Science.gov (United States)

    Carter, Anthony D; Bonyadi, Roxanna; Gifford, Miriam L

    2013-01-01

    Fluorescence-Activated Cell Sorting (FACS) is a powerful tool that enables plant growth and development to be studied at the cellular level. Flow cytometry is used to isolate subpopulations of cells, such as those of specific cell types, or cells at particular developmental stages that have been marked with fluorescent proteins. Transgenic technology has given us the ability to generate plants that express fluorescent proteins, not just constitutively in particular cell types, but also dynamically in response to endogenous or external factors. By processing such transgenic lines with FACS, it is possible to isolate distinct populations of cells in a wide range of likely response states for further analysis. This is particularly useful for investigating biological mechanisms in plants because the control of growth and development is manifest at the cell type level. Furthermore, the specificity of the resulting data enables fine modelling of the transcriptional networks that exert systems-level control of the transcriptome; hence key regulators of responses and processes in the plant can be identified. In this review, the current state of the art for FACS methods in plants is explored by means of case studies of research in which cell sorting allowed us to make significant new discoveries.

  18. The oxidative protein folding machinery in plant cells.

    Science.gov (United States)

    Aller, Isabel; Meyer, Andreas J

    2013-08-01

    Formation of intra-molecular disulfides and concomitant oxidative protein folding is essential for stability and catalytic function of many soluble and membrane-bound proteins in the endomembrane system, the mitochondrial inter-membrane space and the thylakoid lumen. Disulfide generation from free cysteines in nascent polypeptide chains is generally a catalysed process for which distinct pathways exist in all compartments. A high degree of similarities between highly diverse eukaryotic and bacterial systems for generation of protein disulfides indicates functional conservation of key processes throughout evolution. However, while many aspects about molecular function of enzymatic systems promoting disulfide formation have been demonstrated for bacterial and non-plant eukaryotic organisms, it is now clear that the plant machinery for oxidative protein folding displays distinct details, suggesting that the different pathways have been adapted to plant-specific requirements in terms of compartmentation, molecular function and regulation. Here, we aim to evaluate biological diversity by comparing the plant systems for oxidative protein folding to the respective systems from non-plant eukaryotes.

  19. Extracellular Trapping of Soil Contaminants by Root Border Cells: New Insights into Plant Defense

    Directory of Open Access Journals (Sweden)

    Martha C. Hawes

    2016-01-01

    Full Text Available Soil and water pollution by metals and other toxic chemicals is difficult to measure and control, and, as such, presents an ongoing global threat to sustainable agriculture and human health. Efforts to remove contaminants by plant-mediated pathways, or “phytoremediation”, though widely studied, have failed to yield consistent, predictable removal of biological and chemical contaminants. Emerging research has revealed that one major limitation to using plants to clean up the environment is that plants are programmed to protect themselves: Like white blood cells in animals, border cells released from plant root tips carry out an extracellular trapping process to neutralize threats and prevent injury to the host. Variability in border cell trapping has been found to be correlated with variation in sensitivity of roots to aluminum, and removal of border cell results in increased Al uptake into the root tip. Studies now have implicated border cells in responses of diverse plant roots to a range of heavy metals, including arsenic, copper, cadmium, lead, mercury, iron, and zinc. A better understanding of border cell extracellular traps and their role in preventing toxin uptake may facilitate efforts to use plants as a nondestructive approach to neutralize environmental threats.

  20. Recent advances towards development and commercialization of plant cell culture processes for the synthesis of biomolecules.

    Science.gov (United States)

    Wilson, Sarah A; Roberts, Susan C

    2012-04-01

    Plant cell culture systems were initially explored for use in commercial synthesis of several high-value secondary metabolites, allowing for sustainable production that was not limited by the low yields associated with natural harvest or the high cost associated with complex chemical synthesis. Although there have been some commercial successes, most notably paclitaxel production from Taxus sp., process limitations exist with regards to low product yields and inherent production variability. A variety of strategies are being developed to overcome these limitations including elicitation, in situ product removal and metabolic engineering with single genes and transcription factors. Recently, the plant cell culture production platform has been extended to pharmaceutically active heterologous proteins. Plant systems are beneficial because they are able to produce complex proteins that are properly glycosylated, folded and assembled without the risk of contamination by toxins that are associated with mammalian or microbial production systems. Additionally, plant cell culture isolates transgenic material from the environment, allows for more controllable conditions over field-grown crops and promotes secretion of proteins to the medium, reducing downstream purification costs. Despite these benefits, the increase in cost of heterologous protein synthesis in plant cell culture as opposed to field-grown crops is significant and therefore processes must be optimized with regard to maximizing secretion and enhancing protein stability in the cell culture media. This review discusses recent advancements in plant cell culture processing technology, focusing on progress towards overcoming the problems associated with commercialization of these production systems and highlighting recent commercial successes.

  1. Long-term performance of a plant microbial fuel cell with Spartina anglica

    Energy Technology Data Exchange (ETDEWEB)

    Timmers, Ruud A.; Strik, David P.B.T.B.; Hamelers, Hubertus V.M.; Buisman, Cees J.N. [Wageningen Univ. (Netherlands). Sub-dept. of Environmental Technology

    2010-04-15

    The plant microbial fuel cell is a sustainable and renewable way of electricity production. The plant is integrated in the anode of the microbial fuel cell which consists of a bed of graphite granules. In the anode, organic compounds deposited by plant roots are oxidized by electrochemically active bacteria. In this research, salt marsh species Spartina anglica generated current for up to 119 days in a plant microbial fuel cell. Maximum power production was 100 mW m{sup -2} geometric anode area, highest reported power output for a plant microbial fuel cell. Cathode overpotential was the main potential loss in the period of oxygen reduction due to slow oxygen reduction kinetics at the cathode. Ferricyanide reduction improved the kinetics at the cathode and increased current generation with a maximum of 254%. In the period of ferricyanide reduction, the main potential loss was transport loss. This research shows potential application of microbial fuel cell technology in salt marshes for bio-energy production with the plant microbial fuel cell. (orig.)

  2. Time-resolved NMR metabolomics of plant cells based on a microfluidic chip.

    Science.gov (United States)

    Maisch, Jan; Kreppenhofer, Kristina; Büchler, Silke; Merle, Christian; Sobich, Shukhrat; Görling, Benjamin; Luy, Burkhard; Ahrens, Ralf; Guber, Andreas E; Nick, Peter

    2016-08-01

    The plant secondary metabolism generates numerous compounds harbouring pharmaceutical activity. In plants, these compounds are typically formed by different and specialised cell types that have to interact constituting a metabolic process chain. This interactivity impedes biotechnological production of secondary compounds, because cell differentiation is suppressed under the conditions of a batch bio-fermenter. We present a novel strategy to address this limitation using a biomimetic approach, where we simulate the situation in a real tissue by a microfluidic chamber system, where plant cells can be integrated into a process flow. We show that walled cells of the plant model tobacco BY-2 can be successfully cultivated in this system and that physiological parameters (such as cell viability, mitotic index and division synchrony) can be preserved over several days. The microfluidic design allows to resolve dynamic changes of specific metabolites over different stages of culture development. These results serve as proof-of-principle that a microfluidic organisation of cultivated plant cells can mimic the metabolic flows in a real plant tissue.

  3. Phenytoin, folic acid and gingival enlargement: Breaking myths

    Directory of Open Access Journals (Sweden)

    Abhishek Singh Nayyar

    2014-01-01

    Full Text Available Background: Epilepsy is described as a chronic neurological disorder characterized by recurrent seizures of cerebral origin, presenting with episodes of sensory, motor or autonomic phenomenon with or, without loss of consciousness. A recent meta-analysis of published and unpublished studies puts an overall prevalence rate of epilepsy in India at 5.59 per 1,000 populations.There have been studies that report clinical benefits of the use of folic acid as an adjuvant to the anti-epileptic therapy in the prevention of anti-epileptic drug induced gingival enlargement. However, studies conducted in the past have also reported precipitation of epileptic attacks in patients on folic acid adjuvant therapy due to fall in sera levels of phenytoin due to drug interactions. The study was planned to investigate the association of phenytoin induced gingival enlargement and sera levels of folic acid in epileptic patients on phenytoin therapy so as to justify the use of folic acid as a routine adjuvant to the usual anti-epileptic therapy to prevent this inevitable adverse effect without destabilizing the ongoing regimen leading to the precipitation of seizures in an otherwise stable patient (breakthrough seizures. Materials and Methods: A total of 100 patients between the ages 18 and 50 years were clinically diagnosed with epilepsy prior to the start of phenytoin therapy were included based on selection criteria and written informed consents were obtained. Assessment of serum folic acid levels and gingival enlargement was performed prior to the start of and after 1 year of phenytoin therapy. Statistical Analysis Used: The statistical analysis was carried out using t-test and the baseline serum folate levels and the serum folate levels obtained after 1 year of phenytoin therapy were correlated with the respective grades of gingival enlargement using Pearson′s coefficient formula. Results: The results of the study confirmed a significant association between low

  4. Primary observations of the existence of Fas-like cytoplasmic death factor in plant cells

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The main activity of Fas is to trigger cytoplasm death program in animal cells. In G2 pea, vacuole plays a pivotal role in inducing cell death in the cytoplasm of longday (LD) grown apical meristem cells. Expression patterns of the Fas in G2 pea cells revealed that the Fas is mainly localized in the vacuole of cells undergoing programmed cell death (PCD). The Fas expression is corresponding to the initiation of menadione-induced PCD in tobacco protoplasts.The results suggest the existence of the Fas-like mediated cytoplasmic death pathway in plant cells.``

  5. Genome editing in plant cells by zinc finger nucleases.

    Science.gov (United States)

    Weinthal, Dan; Tovkach, Andriy; Zeevi, Vardit; Tzfira, Tzvi

    2010-06-01

    Gene targeting is a powerful tool for functional gene studies. However, only a handful of reports have been published describing the successful targeting of genome sequences in model and crop plants. Gene targeting can be stimulated by induction of double-strand breaks at specific genomic sites. The expression of zinc finger nucleases (ZFNs) can induce genomic double-strand breaks. Indeed, ZFNs have been used to drive the replacement of native DNA sequences with foreign DNA molecules, to mediate the integration of the targeted transgene into native genome sequences, to stimulate the repair of defective transgenes, and as site-specific mutagens in model and crop plant species. This review introduces the principles underlying the use of ZFNs for genome editing, with an emphasis on their recent use for plant research and biotechnology.

  6. Programmed Cell Death in Relation to Petal Senescence in Ornamental Plants

    Institute of Scientific and Technical Information of China (English)

    Yuan ZHOU; Cai-Yun WANG; Hong GE; Frank A. HOEBERICHTS; Peter B. VISSER

    2005-01-01

    Cell death is a common event in all types of plant organisms. Understanding the phenomenon of programmed cell death (PCD) is an important area of research for plant scientists because of its role in senescence and the post-harvest quality of ornamentals, fruits, and vegetables. In the present paper, PCD in relation to petal senescence in ornamental plants is reviewed. Morphological, anatomical, physiological,and biochemical changes that are related to PCD in petals, such as water content, sink-source relationships,hormones, genes, and signal transduction pathways, are discussed. Several approaches to improving the quality of post-harvest ornamentals are reviewed and some prospects for future research are given.

  7. Integration of A Solid Oxide Fuel Cell into A 10 MW Gas Turbine Power Plant

    Directory of Open Access Journals (Sweden)

    Denver F. Cheddie

    2010-04-01

    Full Text Available Power generation using gas turbine power plants operating on the Brayton cycle suffers from low efficiencies. In this work, a solid oxide fuel cell (SOFC is proposed for integration into a 10 MW gas turbine power plant, operating at 30% efficiency. The SOFC system utilizes four heat exchangers for heat recovery from both the turbine outlet and the fuel cell outlet to ensure a sufficiently high SOFC temperature. The power output of the hybrid plant is 37 MW at 66.2% efficiency. A thermo-economic model predicts a payback period of less than four years, based on future projected SOFC cost estimates.

  8. Bench to batch: advances in plant cell culture for producing useful products.

    Science.gov (United States)

    Weathers, Pamela J; Towler, Melissa J; Xu, Jianfeng

    2010-02-01

    Despite significant efforts over nearly 30 years, only a few products produced by in vitro plant cultures have been commercialized. Some new advances in culture methods and metabolic biochemistry have improved the useful potential of plant cell cultures. This review will provide references to recent relevant reviews along with a critical analysis of the latest improvements in plant cell culture, co-cultures, and disposable reactors for production of small secondary product molecules, transgenic proteins, and other products. Some case studies for specific products or production systems are used to illustrate principles.

  9. Cell wall assembly and intracellular trafficking in plant cells are directly affected by changes in the magnitude of gravitational acceleration.

    Directory of Open Access Journals (Sweden)

    Youssef Chebli

    Full Text Available Plants are able to sense the magnitude and direction of gravity. This capacity is thought to reside in selected cell types within the plant body that are equipped with specialized organelles called statoliths. However, most plant cells do not possess statoliths, yet they respond to changes in gravitational acceleration. To understand the effect of gravity on the metabolism and cellular functioning of non-specialized plant cells, we investigated a rapidly growing plant cell devoid of known statoliths and without gravitropic behavior, the pollen tube. The effects of hyper-gravity and omnidirectional exposure to gravity on intracellular trafficking and on cell wall assembly were assessed in Camellia pollen tubes, a model system with highly reproducible growth behavior in vitro. Using an epi-fluorescence microscope mounted on the Large Diameter Centrifuge at the European Space Agency, we were able to demonstrate that vesicular trafficking is reduced under hyper-gravity conditions. Immuno-cytochemistry confirmed that both in hyper and omnidirectional gravity conditions, the characteristic spatial profiles of cellulose and callose distribution in the pollen tube wall were altered, in accordance with a dose-dependent effect on pollen tube diameter. Our findings suggest that in response to gravity induced stress, the pollen tube responds by modifying cell wall assembly to compensate for the altered mechanical load. The effect was reversible within few minutes demonstrating that the pollen tube is able to quickly adapt to changing stress conditions.

  10. Penium margaritaceum as a model organism for cell wall analysis of expanding plant cells

    DEFF Research Database (Denmark)

    Rydahl, Maja Gro; Fangel, Jonatan Ulrik; Mikkelsen, Maria Dalgaard

    2015-01-01

    have focused primarily upon late divergent multicellular land plants and specialized cell types (e.g., pollen tubes, root hairs). Here, we describe a unicellular green alga, Penium margaritaceum (Penium), which can serve as a valuable model organism for understanding cell expansion and the underlying...

  11. The cytoskeleton in plant and fungal cell tip growth

    NARCIS (Netherlands)

    Geitmann, A.; Emons, A.M.C.

    2000-01-01

    Tip-growing cells have a particular lifestyle that is characterized by the following features: (1) the cells grow in one direction, forming a cylindrical tube; (2) tip-growing cells are able to penetrate their growth environment, thus having to withstand considerable external forces; (3) the growth

  12. Effects of several salt marsh plants on mouse spleen and thymus cell proliferation using mtt assay

    Science.gov (United States)

    Seo, Youngwan; Lee, Hee-Jung; Kim, You Ah; Youn, Hyun Joo; Lee, Burm-Jong

    2005-12-01

    In the present study, we have tested the effects of 21 salt marsh plants on cell proliferation of mouse immune cells (spleen and thymus) using MTT assay in culture. The methanolic extracts of six salt marsh plants ( Rosa rugosa, Ixeris tamagawaensis, Artemisia capillaris, Tetragonia tetragonoides, Erigeron annus, and Glehnia littoralis) showed very powerful suppressive effects of mouse immune cell death and significant activities of cell proliferation in vitro. Especially, the methanolic extract of Rosa rugosa was found to have fifteen times compared to the control treatment, demonstrating that Rosa rugosa may have a potent stimulation effect on immune cell proliferation. These results suggest that several salt marsh plants including Rosa rugosa could be useful for further study as an immunomodulating agent.

  13. A suitable model plant for control of the set fuel cell-DC/DC converter

    Energy Technology Data Exchange (ETDEWEB)

    Andujar, J.M.; Segura, F.; Vasallo, M.J. [Departamento de Ingenieria Electronica, Sistemas Informaticos y Automatica, E.P.S. La Rabida, Universidad de Huelva, Ctra. Huelva - Palos de la Frontera, S/N, 21819 La Rabida - Palos de la Frontera Huelva (Spain)

    2008-04-15

    In this work a state and transfer function model of the set made up of a proton exchange membrane (PEM) fuel cell and a DC/DC converter is developed. The set is modelled as a plant controlled by the converter duty cycle. In addition to allow setting the plant operating point at any point of its characteristic curve (two interesting points are maximum efficiency and maximum power points), this approach also allows the connection of the fuel cell to other energy generation and storage devices, given that, as they all usually share a single DC bus, a thorough control of the interconnected devices is required. First, the state and transfer function models of the fuel cell and the converter are obtained. Then, both models are related in order to achieve the fuel cell+DC/DC converter set (plant) model. The results of the theoretical developments are validated by simulation on a real fuel cell model. (author)

  14. Fine coal flotation plant waste comparison--column vs. sub-a cells

    Energy Technology Data Exchange (ETDEWEB)

    Ehrlinger, H.P. III.

    1991-01-01

    The objective of this project was to compare results from a small commercially sized Deister Flotaire column flotation cell with the subaeration cells at Kerr-McGee's Galatia plant during side by side testing of feed splits from the same sources. Typical cell criteria for both cells are included in the appendix. The project involved the activities of three organizations: the Kerr-McGee Coal Corporation, the Deister Concentrator Company, and the Illinois State Geological Survey. Their roles were as follows: Kerr-McGee installed the Deister column with sample splitter and tailings volume measuring cell in the Galatia Coal Preparation Plant to treat a representative split of their flotation feed; Deister provided a 30 inch diameter {times} 35{prime} high Deister Flotaire Column Flotation Cell capable of treating nominally one ton per hour or slightly over 1% of the plant feed. Deister additionally provided the sample splitter and the tailings volume measuring cell. ISGS personnel worked with both companies on the installation, conducted laboratory tests to direct the early plant test reagent practice, attended all of the plant runs cutting representative samples of feed, measuring slurry and reagent flows, preparing samples and writing reports.

  15. Haspin has Multiple Functions in the Plant Cell Division Regulatory Network.

    Science.gov (United States)

    Kozgunova, Elena; Suzuki, Takamasa; Ito, Masaki; Higashiyama, Tetsuya; Kurihara, Daisuke

    2016-04-01

    Progression of cell division is controlled by various mitotic kinases. In animal cells, phosphorylation of histone H3 at Thr3 by the kinase Haspin (haploid germ cell-specific nuclear protein kinase) promotes centromeric Aurora B localization to regulate chromosome segregation. However, less is known about the function of Haspin in regulatory networks in plant cells. Here, we show that inhibition of Haspin with 5-iodotubercidin (5-ITu) in Bright Yellow-2 (BY-2) cells delayed chromosome alignment. Haspin inhibition also prevented the centromeric localization of Aurora3 kinase (AUR3) and disrupted its function. This suggested that Haspin plays a role in the specific positioning of AUR3 on chromosomes in plant cells, a function conserved in animals. The results also indicated that Haspin and AUR3 are involved in the same pathway, which regulates chromosome alignment during prometaphase/metaphase. Remarkably, Haspin inhibition by 5-ITu also led to a severe cytokinesis defect, resulting in binuclear cells with a partially formed cell plate. The 5-ITu treatment did not affect microtubules, AUR1/2 or the NACK-PQR pathway; however, it did alter the distribution of actin filaments on the cell plate. Together, these results suggested that Haspin has several functions in regulating cell division in plant cells: in the localization of AUR3 on centromeres and in regulating late cell plate expansion during cytokinesis.

  16. A simple and efficient method for the long-term preservation of plant cell suspension cultures

    Directory of Open Access Journals (Sweden)

    Boisson Anne-Marie

    2012-01-01

    Full Text Available Abstract Background The repeated weekly subculture of plant cell suspension is labour intensive and increases the risk of variation from parental cells lines. Most of the procedures to preserve cultures are based on controlled freezing/thawing and storage in liquid nitrogen. However, cells viability after unfreezing is uncertain. The long-term storage and regeneration of plant cell cultures remains a priority. Results Sycamore (Acer pseudoplatanus and Arabidopsis cell were preserved over six months as suspensions cultures in a phosphate-free nutrient medium at 5°C. The cell recovery monitored via gas exchange measurements and metabolic profiling using in vitro and in vivo 13C- and 31P-NMR took a couple of hours, and cell growth restarted without appreciable delay. No measurable cell death was observed. Conclusion We provide a simple method to preserve physiologically homogenous plant cell cultures without subculture over several months. The protocol based on the blockage of cell growth and low culture temperature is robust for heterotrophic and semi-autotrophic cells and should be adjustable to cell lines other than those utilised in this study. It requires no specialized equipment and is suitable for routine laboratory use.

  17. Enlargement of the European Union and agricultural policy reform

    DEFF Research Database (Denmark)

    Jensen, Maria Skovager; Lind, Kim Martin Hjorth; Zobbe, Henrik

    2009-01-01

    A connection exists between enlargement of the European Union and reforms of the Common Agricultural Policy (CAP). Based upon rational choice theory, we examine whether the member states’ CAP positions are related to structures in their agricultural sectors. The overall hypothesis...... is that intensiveness of agricultural production corresponds to the willingness to reform the CAP. Political CAP positions, together with the development of member states’ structural fundamentals, are analysed using cluster analysis. The results show that EU enlargements have extensified agricultural production...... at the EU level, and that extensive agricultural production in a member state is often an indicator of reduced willingness to reform. However, the intensiveness of agricultural production is only part of the explanation. Moreover, negotiation tactics play an important role for the positions on the CAP....

  18. The EU Eastern enlargement: Policy choices of the Spanish government

    Directory of Open Access Journals (Sweden)

    Sonia Piedrafita Tremosa

    2005-01-01

    Full Text Available Eastern enlargement is a process in which the very identity of the European Union is under construction, with its constitutive principles and values being challenged. Policy choices of the member governments participating in this process can not exclusively being explained by rational choice assumptions, but a sociological approach to the issue also becomes necessary. Through the analysis of the Spanish government's policy on enlargement, this paper aims to show how policy preferences might not only respond to a cost-benefit calculus and how policy contents might develop endogenously during the process of policy formation in the EU. In this process there is room for member states to pursue their goals and search a collective decision that better accommodates their self-interest. However, deliberation also matters, and governments have to justify their actions in terms considered legitimate by all according to the constitutive principles and values of the EU polity.

  19. The Study on Pipe Sudden Enlargement Local Resistant Coefficient

    Institute of Scientific and Technical Information of China (English)

    1999-01-01

    During the design of pipeline,the determination of local resistant coefficient is often come arcoss. The sudden enlargement local resistant coefficient ζ1 = [1A1-A2]2 is determined through theory. In the paper,the sudden enlargement local resistant coefficient under the conditions of three kinds of A1-A2 was studied in experi-ment. In the end ,the result shows that ζ1 is related not only to two flow cross sections ,but also to the veloci research ,the relationship between ζ1A1-A2 and V1 was determined. In a word ,the hy-draulic calculation of pipeline can be done by taking correspondent ζ1 ,according to the design velocity V1 and A1/A2.

  20. Old 'foundations' and new 'rules' - For an enlarged European Union

    Directory of Open Access Journals (Sweden)

    Philippe C. Schmitter

    1997-04-01

    Full Text Available This paper presents a novel arrangement for the distribution of votes and the rules of decision-making in an enlarged European Union (EU. We make two assumptions: (1 that the EU is condemned to enlarge its membership in the near future; and (2 if it does this without changing the existing rules for voting in the Council of Ministers and distributing seats in the European Parliament, such an expanded EU would suffer severe distortions and disequilibria. However, if it were to adopt a new, simplified system that would combine arrangements for proportional proportionality in representation and concurrent majorities in decision-making, this impending dilemma could be avoided. Moreover, if these reforms were introduced sooner rather than later, they would be easier to agree upon, their impact would be phased in gradually, and their legitimacy could be stabilized in the face of far greater challenges in the future.