WorldWideScience

Sample records for plant antioxidative mechanism

  1. Analysis and utilization of plant antioxidative mechanism by radiation

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Haeng-Soon; Kwon, Seock-Yoon; Shin, Seung-Yung [Korea Research Institute of Bioscience and Biotechnology, Taejeon (Korea)

    2001-04-01

    In an attempt to analysis the POD isoenzymes (swpa1, swpa2, swpa3, and swpn1) expression in response to gamma-irradiation in sweet potato. In suspension cells POD isoenzymes was highly expressed at 6 h postirradiation, and the transcript levels increased at 0 and 6 h at 50 Gy in plants. POD isoenzymes expression in response to irradiation appears not to be regulated in a different manner in cultured cells and plants. The gamma radiation-induced changes of proteins in tobacco suspension cells were investigated by SDS-PAGE. In tobacco cultured cells gamma irradiation did not significantly change the protein patterns. This indicates that the gamma irradiation-induced protein was not highly expressed or might be overlap with others. In the tobacco transgenic plants simultaneously expressing SOD and/or APX in chloroplast, the specific activities of SOD and APX of gamma-irradiated plants increased according to the dose of gamma-irradiation. These results indicate that antioxidative genes depends on antioxidative isoenzymes differently respond to gamma irradiation in transgenic tobacco plant lines. 35 refs., 9 figs. (Author)

  2. Analysis and utilization of plant antioxidative mechanism by radiation

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Haeng Soon; Kwak, Sang Soo; Kwon, Hye Gyung [Korea Research Institute of Bioscience and Biotechnology, Taejon (Korea)

    1999-03-01

    The gamma radiation-induced changes of antioxidant enzymes such as superoxide dismutase (SOD), peroxidase (POD) and catalase (CAT) in callus cultures of cassava (Manihot esculenta) and sweet potato (Ipomoea batatas) were investigated. Both cell lines irradiated with 50 and 70 Gy on 7 days after subculture inhibited significantly the cell growth by 50% and 80% at 14 days after treatment (DAT), respectively. In 70 Gy irradiated with cassava calli SOD and POD specific activities increased by 4 and 2.5 folds at 14 DAT, respectively, whereas CAT activity was not affected. When sweet potato calli were irradiated 10 Gy POD activity showed the highest at 14 DAT, whereas the CAT activity was not affected. In the transgenic tobacco plants that overexpress swpal encoding anionic POD cDNA or swpnl encoding neutral POD cDNA, POD and SOD activities were not significantly increased after {gamma}-radiation treatment, but swpal-plants showed a higher activity than that of swpnl-or non-transgenic plants. Plant growth was severely inhibited showing a well correlation with the dose of radiation. Specially, {gamma}-radiation affected growth of shoot apical meristem. (author). 32 refs., 7 figs.

  3. Radiation hormesis in plant - Analysis and utilization of plant antioxidative mechanism by radiation

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Haeng Soon; Kwon, Seok Yoon; Shin, Seung Yung [Korea Research Institute of Bioscience and Biotechnology, Taejon (Korea)

    2000-04-01

    In the tobacco transgenic plants simultaneously expressing SOD and APX in chloroplast, the specific activities of SOD and APX (CA, AM, C/A, A/C) were much higher than in the transgenic plants expressing SOD (CuZnSOD, MnSOD) or APX alone, respectively. Plant growth was severely inhibited showing a well correlation with the dose of gamma-irradiation. In 70 Gy-irradiation, C/A plants showed a slight resistance to gamma radiation. The stAPX gene in tobacco was not as strongly affected by gamma irradiation. After irradiation, the stAPX transcript level decreased at 2 h, then slightly increased at 6 h and the level was maintained until 48 h. Catalase transcripts level decreased at the early time point but at the late time points the level slightly increased. The gamma radiation-induced changes of proteins in tobacco suspension cells were investigated by two-dimensional gel electrophoresis. In the gamma-irradiated cells, a few polypeptides of were newly synthesized, increased, and decreased by comparing total proteins from gamma-irradiated and non-irradiated tobacco suspension cells. With the isolation and analysis of these polypeptides, irradiation-induced proteins could be developed. 35 refs., 5 figs. (Author)

  4. Oxidative stress and antioxidative mechanisms in tomato (solanum lycopersicum l.) plants sprayed with different pesticides

    International Nuclear Information System (INIS)

    Yildiztekin, M.; Kaya, C.

    2015-01-01

    A glasshouse experiment was conducted to appraise the influence of exogenously applied pesticides such as abamectin, thiamethoxam, pyriproxyfen and acetamiprid on oxidative defence system and some key physiological attributes in tomato (Solanum lycopersicum L.). Each of these pesticides was applied in three doses (recommended dose, twice and three times higher than the recommended dose). Higher doses of pesticides sprayed to the plants resulted in marked increase in leaf free proline content and electrolyte leakage, but in a decrease in shoot dry matter, chl a, chl b and chl a+b in tomato plants as compared to those plants not sprayed with pesticides. These reductions were greater in tomato plants sprayed with highest doses of thiamethoxam (144 mg L-1), whereas the reverse was true for proline content and electrolyte leakage. The foliar application of pesticides at the highest levels caused enhanced accumulation of malondialdehyde (MDA) in most cases, and these being greater in treatment of foliar application of thiamethoxam at the highest level. The highest doses of pesticides promoted the activities of catalase (CAT), peroxidase (POD), and superoxide dismutase (SOD) in most cases. The results clearly indicate that application of pesticides at higher doses than recommended doses provoked both oxidative and antioxidative systems in tomato plants. (author)

  5. Molecular mechanisms of plant response to ionising radiation. Exploration of the glucosinolate role in the anti-oxidative response

    International Nuclear Information System (INIS)

    Gicquel, M.

    2012-01-01

    Terrestrial organisms are exposed to low doses of ionising radiation from natural or anthropogenic sources. The major effects of the radiations are due to DNA deterioration and water radiolysis which generates an oxidative stress by free radical production. Plants constitute good models to study the effects of ionising radiations and the search of antioxidant molecules because of their important secondary metabolism. Thus this thesis, funded by the Brittany region, characterized the physiological and molecular response of the model plant Arabidopsis thaliana to low (10 Gy) and moderate (40 Gy) doses of ionising radiation, and was therefore interested in glucosinolates, characteristic compounds of the Brassicaceae family. The global proteomic and transcriptomic studies carried out on this model revealed (1) a common response for both doses dealing with the activation of DNA repair mechanisms, cell cycle regulation and protection of cellular structures; (2) an adjustment of the energetic metabolism and an activation of secondary compounds biosynthesis (i.e. glucosinolates and flavonoids) after the 10 Gy dose; (3) an induction of enzymatic control of ROS, the regulation of cellular components recycling and of programmed cell death after the 40 Gy dose. The potential anti-oxidative role of glucosinolates was then explored. The in vitro anti-oxidative power of some glucosinolates and their derivative products were demonstrated. Their modulating effects against irradiation-induced damages were then tested in vivo by simple experimental approaches. The importance of the glucosinolate level to give a positive or negative effect was demonstrated. (author)

  6. Differential antioxidant defense and detoxification mechanisms in photodynamically stressed rice plants treated with the deregulators of porphyrin biosynthesis, 5-aminolevulinic acid and oxyfluorfen

    Energy Technology Data Exchange (ETDEWEB)

    Phung, Thu-Ha; Jung, Sunyo, E-mail: sjung@knu.ac.kr

    2015-04-03

    This study focuses on differential molecular mechanisms of antioxidant and detoxification systems in rice plants under two different types of photodynamic stress imposed by porphyrin deregulators, 5-aminolevulinic acid (ALA) and oxyfluorfen (OF). The ALA-treated plants with white necrosis exhibited a greater decrease in photochemical quantum efficiency, F{sub v}/F{sub m}, as well as a greater increase in activity of superoxide dismutase, compared to the OF-treated plants. By contrast, the brown necrosis in OF-treated plants resulted in not only more widely dispersed H{sub 2}O{sub 2} production and greater increases in H{sub 2}O{sub 2}-decomposing enzymes, catalase and peroxidase, but also lower ascorbate redox state. In addition, ALA- and OF-treated plants markedly up-regulated transcript levels of genes involved in detoxification processes including transport and movement, cellular homeostasis, and xenobiotic conjugation, with prominent up-regulation of serine/threonine kinase and chaperone only in ALA-treated plants. Our results demonstrate that different photodynamic stress imposed by ALA and OF developed differential actions of antioxidant enzymes and detoxification. Particularly, detoxification system may play potential roles in plant protection against photodynamic stress imposed by porphyrin deregulators, thereby contributing to alleviation of photodynamic damage. - Highlights: • We employ two different types of photodynamic stress, white and brown necrosis. • We examine molecular mechanisms of antioxidative and detoxification systems. • ALA and OF develop differential actions of antioxidant and detoxification systems. • Coordinated mechanism of antioxidants and detoxification works against toxic ROS. • Detoxification system plays critical roles in protection against photodynamic stress.

  7. Differential antioxidant defense and detoxification mechanisms in photodynamically stressed rice plants treated with the deregulators of porphyrin biosynthesis, 5-aminolevulinic acid and oxyfluorfen

    International Nuclear Information System (INIS)

    Phung, Thu-Ha; Jung, Sunyo

    2015-01-01

    This study focuses on differential molecular mechanisms of antioxidant and detoxification systems in rice plants under two different types of photodynamic stress imposed by porphyrin deregulators, 5-aminolevulinic acid (ALA) and oxyfluorfen (OF). The ALA-treated plants with white necrosis exhibited a greater decrease in photochemical quantum efficiency, F v /F m , as well as a greater increase in activity of superoxide dismutase, compared to the OF-treated plants. By contrast, the brown necrosis in OF-treated plants resulted in not only more widely dispersed H 2 O 2 production and greater increases in H 2 O 2 -decomposing enzymes, catalase and peroxidase, but also lower ascorbate redox state. In addition, ALA- and OF-treated plants markedly up-regulated transcript levels of genes involved in detoxification processes including transport and movement, cellular homeostasis, and xenobiotic conjugation, with prominent up-regulation of serine/threonine kinase and chaperone only in ALA-treated plants. Our results demonstrate that different photodynamic stress imposed by ALA and OF developed differential actions of antioxidant enzymes and detoxification. Particularly, detoxification system may play potential roles in plant protection against photodynamic stress imposed by porphyrin deregulators, thereby contributing to alleviation of photodynamic damage. - Highlights: • We employ two different types of photodynamic stress, white and brown necrosis. • We examine molecular mechanisms of antioxidative and detoxification systems. • ALA and OF develop differential actions of antioxidant and detoxification systems. • Coordinated mechanism of antioxidants and detoxification works against toxic ROS. • Detoxification system plays critical roles in protection against photodynamic stress

  8. Plants as natural antioxidants for meat products

    Science.gov (United States)

    Tomović, V.; Jokanović, M.; Šojić, B.; Škaljac, S.; Ivić, M.

    2017-09-01

    The meat industry is demanding antioxidants from natural sources to replace synthetic antioxidants because of the negative health consequences or beliefs regarding some synthetic ones. Plants materials provide good alternatives. Spices and herbs, generally used for their flavouring characteristics, can be added to meat products in various forms: whole, ground, or as isolates from their extracts. These natural antioxidants contain some active compounds, which exert antioxidative potential in meat products. This antioxidant activity is most often due to phenolic acids, phenolic diterpenes, flavonoids and volatile oils. Each of these compounds often has strong H-donating activity, thus making them extremely effective antioxidants; some compounds can chelate metals and donate H to oxygen radicals, thus slowing oxidation via two mechanisms. Numerous studies have demonstrated the efficacy of natural antioxidants when used in meat products. Based on this literature review, it can be concluded that natural antioxidants are added to fresh and processed meat and meat products to delay, retard, or prevent lipid oxidation, retard development of off-flavours (rancidity), improve colour stability, improve microbiological quality and extend shelf-life, without any damage to the sensory or nutritional properties.

  9. Differential antioxidant defense and detoxification mechanisms in photodynamically stressed rice plants treated with the deregulators of porphyrin biosynthesis, 5-aminolevulinic acid and oxyfluorfen.

    Science.gov (United States)

    Phung, Thu-Ha; Jung, Sunyo

    2015-04-03

    This study focuses on differential molecular mechanisms of antioxidant and detoxification systems in rice plants under two different types of photodynamic stress imposed by porphyrin deregulators, 5-aminolevulinic acid (ALA) and oxyfluorfen (OF). The ALA-treated plants with white necrosis exhibited a greater decrease in photochemical quantum efficiency, Fv/Fm, as well as a greater increase in activity of superoxide dismutase, compared to the OF-treated plants. By contrast, the brown necrosis in OF-treated plants resulted in not only more widely dispersed H2O2 production and greater increases in H2O2-decomposing enzymes, catalase and peroxidase, but also lower ascorbate redox state. In addition, ALA- and OF-treated plants markedly up-regulated transcript levels of genes involved in detoxification processes including transport and movement, cellular homeostasis, and xenobiotic conjugation, with prominent up-regulation of serine/threonine kinase and chaperone only in ALA-treated plants. Our results demonstrate that different photodynamic stress imposed by ALA and OF developed differential actions of antioxidant enzymes and detoxification. Particularly, detoxification system may play potential roles in plant protection against photodynamic stress imposed by porphyrin deregulators, thereby contributing to alleviation of photodynamic damage. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. Antioxidant plants and diabetes mellitus

    Directory of Open Access Journals (Sweden)

    Hamid Nasri

    2015-01-01

    Full Text Available The incidence of diabetes mellitus (DM is increasing rapidly and it is expected to increase by 2030. Other than currently available therapeutic options, there are a lot of herbal medicines, which have been recommended for its treatment. Herbal medicines have long been used for the treatment of DM because of the advantage usually having no or less side-effects. Most of these plants have antioxidant activities and hence, prevent or treat hard curable diseases, other than having the property of combating the toxicity of toxic or other drugs. In this review other than presenting new findings of DM, the plants, which are used and have been evaluated scientifically for the treatment of DM are introduced.

  11. Antioxidative and antiradical properties of plant phenolics.

    Science.gov (United States)

    Sroka, Zbigniew

    2005-01-01

    The plant phenolic compounds such as flavonoids, tannins and phenolic acids appeared to be strong antiradical and antioxidant compounds. The number of hydroxy groups and the presence of a 2,3-double bond and orthodiphenolic structure enhance antiradical and antioxidative activity of flavonoids. The glycosylation, blocking the 3-OH group in C-ring, lack of a hydroxy group or the presence of only a methoxy group in B-ring have a decreasing effect on antiradical or antioxidative activity of these compounds. Tannins show strong antioxidative properties. Some tannins in red wine or gallate esters were proved to have antioxidative effect in vivo. The number of hydroxy groups connected with the aromatic ring, in ortho or para position relative to each other, enhance antioxidative and antiradical activity of phenolic acids. The substitution of a methoxy group in ortho position to the OH in monophenols seems to favour the antioxidative activity of the former.

  12. Antioxidative and proline potentials as a protective mechanism in ...

    African Journals Online (AJOL)

    Stress can define as all negative factors affecting plant growth. One of the most important problems among stress factors is salt stress. Antioxidant responses are tested in Soybean (Glycine max. L.) cv., “A3935” grown under 0, 50, 100 and 150 mM NaCl in order to investigate the plants protective mechanisms against salt ...

  13. Oxidative Stress and Antioxidant Potential of One Hundred Medicinal Plants.

    Science.gov (United States)

    Hassan, Waseem; Noreen, Hamsa; Rehman, Shakila; Gul, Shehnaz; Kamal, Mohammad Amjad; Kamdem, Jean Paul; Zaman, Bakht; da Rocha, Joao B T

    2017-01-01

    Reactive species are produced in biological system because of redox reactions. The imbalance in pro-oxidant and antioxidant homeostasis leads to the production of toxic reactive oxygen and nitrogen species like hydrogen peroxide, organic peroxides, hydroxyl radicals, superoxide anion and nitric oxide. Inactivation of metabolic enzymes, oxidation of biomolecules and cellular damage are some of the prominent characteristics of reactive species. Similarly, oxidative stress has been associated with more than one hundred (100) pathologies such as atherosclerosis, diabetes, cardiovascular diseases, pancreatic and liver diseases, joint disorders, cardiac fibrosis, acute respiratory distress syndrome, neurological diseases (amyotrophic lateral sclerosis, Huntington's disorder, Parkinson's disease and Alzheimer's disease), ageing and cancer etc. The toxicity of reactive species is balanced by the integrated antioxidant systems, which include enzymatic and non-enzymatic antioxidants. Antioxidant therapies or defenses protect the biological sites by removing or quenching the free radicals (prooxidants). Medicinal plants can not only protect the oxidative damage, but also play a vital role in health maintenance and prevention of chronic degenerative diseases. This review will provide a valuable discussion of one hundred (100) well known medicinal plants, which may add to the optimization of antioxidants rank. Besides, some of the antioxidant evaluation techniques or mechanisms via which medicinal plants act as antioxidants are also described. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  14. Plant Phenolics: Extraction, Analysis and Their Antioxidant and Anticancer Properties

    Directory of Open Access Journals (Sweden)

    Jin Dai

    2010-10-01

    Full Text Available Phenolics are broadly distributed in the plant kingdom and are the most abundant secondary metabolites of plants. Plant polyphenols have drawn increasing attention due to their potent antioxidant properties and their marked effects in the prevention of various oxidative stress associated diseases such as cancer. In the last few years, the identification and development of phenolic compounds or extracts from different plants has become a major area of health- and medical-related research. This review provides an updated and comprehensive overview on phenolic extraction, purification, analysis and quantification as well as their antioxidant properties. Furthermore, the anticancer effects of phenolics in-vitro and in-vivo animal models are viewed, including recent human intervention studies. Finally, possible mechanisms of action involving antioxidant and pro-oxidant activity as well as interference with cellular functions are discussed.

  15. Antioxidants, mechanisms, and recovery by membrane processes.

    Science.gov (United States)

    Bazinet, Laurent; Doyen, Alain

    2017-03-04

    Antioxidants molecules have a great interest for bio-food and nutraceutical industries since they play a vital role for their capacity to reduce oxidative processes. Consequently, these molecules, generally present in complex matrices, have to be fractionated and purified to characterize them and to test their antioxidant activity. However, as natural or synthetics antioxidant molecules differ in terms of structural composition and physico-chemical properties, appropriate separation technologies must be selected. Different fractionation technologies are available but the most commonly used are filtration processes. Indeed, these technologies allow fractionation according to molecular size (pressure-driven processes), charge, or both size and charge (electrically driven processes). In this context, and after summarizing the reaction mechanisms of the different classes and nature of antioxidants as well as membrane fractionation technologies, this manuscript presents the specific applications of these membranes processes for the recovery of antioxidant molecules.

  16. Antioxidant capacity of Macaronesian traditional medicinal plants.

    Science.gov (United States)

    Tavares, Lucélia; Carrilho, Dina; Tyagi, Meenu; Barata, David; Serra, Ana Teresa; Duarte, Catarina Maria Martins; Duarte, Rui Oliveira; Feliciano, Rodrigo Pedro; Bronze, Maria Rosário; Chicau, Paula; Espírito-Santo, Maria Dalila; Ferreira, Ricardo Boavida; dos Santos, Cláudia Nunes

    2010-04-12

    The use of many traditional medicinal plants is often hampered by the absence of a proper biochemical characterization, essential to identify the bioactive compounds present. The leaves from five species endemic to the Macaronesian islands with recognized ethnobotanical applications were analysed: Apollonias barbujana (Cav.) Bornm., Ocotea foetens (Ainton) Baill, Prunus azorica (Mouill.) Rivas-Mart., Lousã, Fern. Prieto, E. Días, J.C. Costa & C. Aguiar, Rumex maderensis Lowe and Plantago arborescens Poir. subsp. maderensis (Dcne.) A. Hans. et Kunk.. Since oxidative stress is a common feature of most diseases traditionally treated by these plants, it is important to assess their antioxidant capacity and determine the molecules responsible for this capacity. In this study, the antioxidant capacity of these plants against two of the most important reactive species in human body (hydroxyl and peroxyl radicals) was determined. To trace the antioxidant origin total phenol and flavonoid contents as well as the polyphenolic profile and the amount of trace elements were determined. There was a wide variation among the species analysed in what concerns their total leaf phenol and flavonoid contents. From the High Performance Liquid Chromatography (HPLC) electrochemically detected peaks it was possible to attribute to flavonoids the antioxidant capacity detected in A. barbujana, O. foetens, R. maderensis and P. azorica extracts. These potential reactive flavonoids were identified for A. barbujana, R. maderensis and P. azorica. For R. maderensis a high content (7 mg g-1 dry weight) of L-ascorbic acid, an already described antioxidant phytomolecule, was found. A high content in selenomethionine (414.35 microg g-1 dry weight) was obtained for P. arborescens subsp. maderensis extract. This selenocompound is already described as a hydroxyl radical scavenger is reported in this work as also possessing peroxyl radical scavenging capacity. This work is a good illustration of

  17. Antioxidant Capacity Determination in Plants and Plant-Derived Products: A Review

    Science.gov (United States)

    Pop, Aneta; Cimpeanu, Carmen; Predoi, Gabriel

    2016-01-01

    The present paper aims at reviewing and commenting on the analytical methods applied to antioxidant and antioxidant capacity assessment in plant-derived products. Aspects related to oxidative stress, reactive oxidative species' influence on key biomolecules, and antioxidant benefits and modalities of action are discussed. Also, the oxidant-antioxidant balance is critically discussed. The conventional and nonconventional extraction procedures applied prior to analysis are also presented, as the extraction step is of pivotal importance for isolation and concentration of the compound(s) of interest before analysis. Then, the chromatographic, spectrometric, and electrochemical methods for antioxidant and antioxidant capacity determination in plant-derived products are detailed with respect to their principles, characteristics, and specific applications. Peculiarities related to the matrix characteristics and other factors influencing the method's performances are discussed. Health benefits of plants and derived products are described, as indicated in the original source. Finally, critical and conclusive aspects are given when it comes to the choice of a particular extraction procedure and detection method, which should consider the nature of the sample, prevalent antioxidant/antioxidant class, and the mechanism underlying each technique. Advantages and disadvantages are discussed for each method. PMID:28044094

  18. Plant Polyphenol Antioxidants and Oxidative Stress

    Directory of Open Access Journals (Sweden)

    INES URQUIAGA

    2000-01-01

    Full Text Available In recent years there has been a remarkable increment in scientific articles dealing with oxidative stress. Several reasons justify this trend: knowledge about reactive oxygen and nitrogen species metabolism; definition of markers for oxidative damage; evidence linking chronic diseases and oxidative stress; identification of flavonoids and other dietary polyphenol antioxidants present in plant foods as bioactive molecules; and data supporting the idea that health benefits associated with fruits, vegetables and red wine in the diet are probably linked to the polyphenol antioxidants they contain.In this review we examine some of the evidence linking chronic diseases and oxidative stress, the distribution and basic structure of plant polyphenol antioxidants, some biological effects of polyphenols, and data related to their bioavailability and the metabolic changes they undergo in the intestinal lumen and after absorption into the organism.Finally, we consider some of the challenges that research in this area currently faces, with particular emphasis on the contributions made at the International Symposium "Biology and Pathology of Free Radicals: Plant and Wine Polyphenol Antioxidants" held July 29-30, 1999, at the Catholic University, Santiago, Chile and collected in this special issue of Biological Research

  19. Application of radiobiological techniques in studying antioxidant mechanisms: evaluation of their radioprotective, antioxidative and antiviral activities

    International Nuclear Information System (INIS)

    Hmamouchi, M.

    2000-01-01

    In the medical field, the oxidation phenomenon is the source of several pathologies (diabetes, cystic fibrosis, cancers,...). The natural oxidants are used as food preserving and skin ageing moderators. Several plant extracts with antioxidant activity were studied, this important antioxidant activity is probably due to their richness of compounds: polyphenols, phenolic acids, tocopherols, carotenoids, flavonoids,... Many techniques for evaluation and reactional mechanism study of the antioxidative activity are used. After selection, extraction, fractionation, activity screening, chemical analyses of molecules contained in the best active extracts, biological properties research of isolated redox pharmacophore, we have : - determined the structure of active products by spectroscopy and chromatography; - studied the antioxidative properties by EPR and spin trapping of the obtained extracts and molecules. The results of this first part of our work consists in evaluating the antioxidative degree of a great number of natural active principles, extracted from moroccan plants and pur obtained products. The second part consists in studying the action mechanisms using the LDL labelling (F. M.)

  20. Plant derived antioxidants and antifibrotic drugs: past, present and future

    Directory of Open Access Journals (Sweden)

    Devaraj Ezhilarasan

    2014-09-01

    Full Text Available Hepatic fibrosis occurs as a wound-healing process after several forms of chronic hepatic injury. Activation and proliferation of hepatic stellate cells play pivotal role in the pathogenesis of hepatic fibrosis. Many researchers, from the therapeutic perspective, have focused their attention on searching for novel agents with inhibitory effects on hepatic stellate cells proliferation and activation to prevent hepatic fibrogenesis and a number of plant derived antioxidants have been tested as anti-fibrogenic agents, they generally suppress proliferation and collagen synthesis. Plants remain an imperative source of novel drugs, novel drug leads and new chemical entities. The plant based drug discovery resulted primarily in the development of antioxidant, anti-cancer and other anti-infectious agents and continues to contribute to the new leads in clinical trials. This review summarizes some of those most important plant derived anti-fibrotic drugs and their beneficial effects on experimentally induced hepatic fibrosis in vitro and in vivo. The plant derived antioxidant compounds described herein are curcumin, silymarin, silibinin, baicalein, resveratrol, salvianolic acids, tetrandine, quercetin and berberine. Studies from ours and as demonstrated by pervious workers much information has been accumulated over the past two decades through in vivo and in vitro. In light of those studies, it has been confirmed that plants derived antioxidants, particularly flavanoids, show a significant influence to block hepatic fibrosis regardless of any etiology. This review outlines recent progress in the use of plant derived drugs against experimentally induced liver fibrosis by in vitro and in vivo studies and summarizes the possible mechanisms anti-fibrotic effects of these compounds.

  1. Radiolysis: an efficient method of studying radicalar antioxidant mechanisms

    International Nuclear Information System (INIS)

    Gardes-Albert, M.; Jore, D.

    1998-01-01

    The use of the radiolysis method for studying radicalar antioxidant mechanisms offers the different following possibilities: 1- quantitative evaluation of antioxidant activity of molecules soluble in aqueous or non aqueous media (oxidation yields, molecular mechanisms, rate constants), 2- evaluation of the yield of prevention towards polyunsaturated fatty acids peroxidation, 3- evaluation of antioxidant activity towards biological systems such as liposomes or low density lipoproteins (LDL), 4- simple comparison in different model systems of drags effect versus natural antioxidants. (authors)

  2. Antioxidant and free radical scavenging activities of plant extracts ...

    African Journals Online (AJOL)

    Twenty-two species of medicinal plants collected in the Mexican state of Morelos were selected to evaluate their free radical scavenging and antioxidant activities. The extracts from the aerial parts of the plants were obtained using hexane, acetone and methanol (66 extracts). The initial qualitative screening of antioxidants ...

  3. Antimicrobial and antioxidant activities of two endemic plants from ...

    African Journals Online (AJOL)

    In addition to the antioxidant activity of these plants, the total phenolic compounds and flavonoids were also measured in the extracts. ... that the extracts of A. scabriflorum and A. tchihatschewii possess antimicrobial and antioxidant properties, and therefore, they can be used as a natural preservative ingredient in food

  4. Three novel antioxidants from Cinnamomum plants | Cheng | African ...

    African Journals Online (AJOL)

    Three novel antioxidants from Cinnamomum plants. K-C Cheng, H-A Chen, P-F Wu, W-L Yang, H-M Wang, C-Y Chen. Abstract. In this study, we identified three novel antioxidants, subamolide C (1), subamolide E (2) and isokotomolide A (3) from the constitutes of Cinnamomum subavenium and Cinnamomum kotoense.

  5. Antioxidant activities of the selected plants from the family ...

    African Journals Online (AJOL)

    USER

    2010-02-15

    Feb 15, 2010 ... Extraction of nine plants selected from the family Euphorbiaceae, Lauraceae, Malvaceae and. Balsaminaceae ... Total phenolic contents were determined with Folin- ... levels of antioxidant activity in vitro may be of value in the.

  6. Antioxidant Potential of Selected Korean Edible Plant Extracts

    Directory of Open Access Journals (Sweden)

    Yaejin Woo

    2017-01-01

    Full Text Available This study aimed to evaluate the antioxidant activity of various plant extracts. A total of 94 kinds of edible plant extracts obtained from the Korea Plant Extract Bank were screened for cytotoxicity, following which the total phenolic content of 24 shortlisted extracts was determined. Of these, extracts from three plants, namely, Castanea crenata (CC leaf, Camellia japonica (CJ fruit, and Viburnum dilatatum (VD leaf, were examined for antioxidant capabilities by measuring radical scavenging activity, ferric reducing/antioxidant power, and lipid peroxidation inhibitory activity. In addition, cellular antioxidant activities of the three extracts were assessed by a cell-based dichlorofluorescein assay and antioxidant response element (ARE reporter activity assay. The results demonstrated that all three extracts concentration-dependently scavenged free radicals, inhibited lipid peroxidation, reduced the cellular level of reactive oxygen species, and increased ARE-luciferase activity, indicating antioxidant enzyme-inducing potential. In particular, CJ extract showed significantly greater antioxidative activity and antimigratory effect in a breast cancer cell line compared to CC and VD extracts. Hence, CJ extract deserves further study for its in vivo functionality or biologically active constituents.

  7. Antioxidant properties of Mediterranean food plant extracts: geographical differences.

    Science.gov (United States)

    Schaffer, S; Schmitt-Schillig, S; Müller, W E; Eckert, G P

    2005-03-01

    Locally grown, wild food plants seasonally contribute a considerable portion of the daily diet in certain Mediterranean areas and it has been suggested that the beneficial effects of the Mediterranean diet on human health partly originate from the antioxidant effect of flavonoid-rich food plants. The nutrient content of most wild plants is higher than that of cultivated ones and may vary depending on the prevailing environmental conditions. Accordingly, three local Mediterranean plant foods (i.e. Cichorium intybus, Sonchus oleraceus, Papaver rhoeas) were collected in Greece (Crete), southern Italy, and southern Spain in order to assess possible differences in their in vitro antioxidant potential. The biological assays revealed diverse intra-plant specific antioxidant effects for the tested extracts ranging from no activity to almost complete protection. Furthermore, substantial differences in the polyphenol content were found for the nutritionally used part of the same plant originating from different locations. However, no clear correlations between the polyphenol content and the extracts' antioxidant activities were found. Taken together, the data suggest that certain local Mediterranean plant foods possess promising antioxidant activity and that the observed biological effects are possibly influenced by the geographically-dependent environmental conditions prevailing during plant growth.

  8. Antioxidant capacity of some plants foods and beverages consumed ...

    African Journals Online (AJOL)

    Today plant foods and beverages are receiving more scientific attention because of their potential to curb the effect of free radicals in the human system. The present study reports on the antioxidant potentials of some plants foods and beverages consumed in the Eastern Region of Nigeria. The study made use of the ferric ...

  9. Antioxidant properties of some plants growing wild in Turkey

    Energy Technology Data Exchange (ETDEWEB)

    Serteser, A.; Kargioglu, M.; Gok, V.; Bagci, Y.; Musa Ozcan, M.; Arslan, D.

    2009-07-01

    In this study, the antioxidant activity of 50% aqueous methanol extracts of 38 plants growing in the Afyonkarahisar province of Turkey were evaluated by various antioxidant assay, including free radical scavenging, hydrogen peroxide (H{sub 2}O{sub 2}) scavenging and metal (Fe{sup 2}+) chelating activities. The methanolic fruit extracts of the Cornus and Morus species (H{sub 2}O{sub 2} and DPPH scavenging activities, Fe{sup 2}+ chelating activity) and the methanolic leaf extracts of the Mentha species (DPPH scavenging activities) examined in the assay showed the strongest activities. These antioxidant properties depended on the concentration of samples. (Author) 30 refs.

  10. Effect of antioxidants on aging of nuclear plant cable insulation

    International Nuclear Information System (INIS)

    Reynolds, A.B.; Ray, J.W.; Wlodkowski, P.A.

    1991-01-01

    The effects of various antioxidants and antioxidant concentrations on the radiation and thermal stability of EPDM and XLPE polymers used for insulation of electric cable in nuclear power plants were measured. The objective was to determine if particular antioxidants could be identified as being especially effective for stabilization against radiation aging and combined thermal and radiation aging. Elongation to rupture was used as the measure of stability. Materials were irradiated to doses up to 2 MGy (200 Mrad) at a dose rate of 200 to 300 Gy/h in the Cobalt-60 Gamma Irradiation Facility at the University of Virginia. All of the antioxidants tested, which were known to provide excellent thermal stability, also provided good stability for radiation aging and combined thermal/radiation aging, although small differences between antioxidants were noted. No antioxidant or antioxidant combination was identified as being especially outstanding. Stabilization against radiation increased with increasing antioxidant concentration, but this trend was not observed for thermal aging. Damage from thermal and radiation aging was superposable. 9 refs., 16 figs., 12 tabs

  11. Antioxidant Potential of Different Medicinal Plants

    OpenAIRE

    Vasanthi P; Parameswari CS

    2015-01-01

    Medicinal plants are the resource of new drug. Most of the modern medicines are produced indirectly from medicinal plants. Plants are directly used as medicines by a majority of cultures around the world. Studying medicinal plants helps to understand plant toxicity and protect human and animals from natural poisons. Medicinal plants are the important sources for pharmaceutical manufacturing. In developing countries, herbal medicines are considered to be readily available, accessible, affordab...

  12. Trichoderma harzianum T-78 supplementation of compost stimulates the antioxidant defence system in melon plants.

    Science.gov (United States)

    Bernal-Vicente, Agustina; Pascual, José A; Tittarelli, Fabio; Hernández, José A; Diaz-Vivancos, Pedro

    2015-08-30

    Compost is emerging as an alternative plant growing medium in efforts to achieve more sustainable agriculture. The addition of specific microorganisms such as Trichoderma harzianum to plant growth substrates increases yields and reduces plant diseases, but the mechanisms of such biostimulants and the biocontrol effects are not yet fully understood. In this work we investigated how the addition of citrus and vineyard composts, either alone or in combination with T. harzianum T-78, affects the antioxidant defence system in melon plants under nursery conditions. Compost application and/or Trichoderma inoculation modulated the antioxidant defence system in melon plants. The combination of citrus compost and Trichoderma showed a biostimulant effect that correlated with an increase in ascorbate recycling enzymes (monodehydroascorbate reductase, dehydroascorbate reductase) and peroxidase. Moreover, the inoculation of both composts with Trichoderma increased the activity of antioxidant enzymes, especially those involved in ascorbate recycling. Based on the long-established relationship between ascorbic acid and plant defence responses as well as plant growth and development, it can be suggested that ascorbate recycling activities play a major role in the protection provided by Trichoderma and its biostimulant effect and that these outcomes are linked to increases in antioxidant enzymes. We can conclude that the combination of citrus compost and T. harzianum T-78 constitutes a viable, environmentally friendly strategy for improving melon plant production. © 2014 Society of Chemical Industry.

  13. Antioxidant and antimicrobial activities of selected medicinal plants from Algeria

    Institute of Scientific and Technical Information of China (English)

    Krimat Soumia; Dob Tahar; Lamari Lynda; Boumeridja Saida; Chelghoum Chabane; Metidji Hafidha

    2014-01-01

    Objective:To evaluate the antioxidant and antimicrobial activity of methanolic extract extracts of selected Algerian medicinal plants. Methods:Antioxidant activity of extracts was evaluated in terms of radical scavenging potential (2,2-diphenyl-1-picrylhydrazyl) and β-carotene bleaching assay. Total phenolic contents and flavonoid contents were also measured. Antimicrobial activity of these plants was examined against Bacillus subtilis, Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa and Candida albicans. Results:The values of IC50 ranged from 4.30 μg/mL to 486.6 μg/mL for the DPPH method, while total antioxidant activity using β-carotene/linoleic acid bleaching assay ranged from 17.03%to 86.13%. It was found that Pistacia lentiscus showed the highest antioxidant capacities using DPPH assay (IC50=4.30 μg/mL), while Populus trimula, Origanum glandulosum, Centaurea calcitrapa, Sysimbrium officinalis and Rhamnus alaternus showed the highest percent of total antioxidant activity inβ-carotene/linoleic acid bleaching assay. Total phenolic and flavonoid contents ranged from 3.96 to 259.65 mg GAE/g extract and from 1.13 to 26.84 mg QE/g extract, respectively. The most interesting antimicrobial activity was obtained from Sysimbrium officinalis, Rhamnus alaternus, Origanum glandulosum, Cupressus sempervirens, Pinus halipensis and Centaurea calcitrapa. Conclusions:The results indicated that the plants tested may be potential sources for isolation of natural antioxidant and antimicrobial compounds.

  14. Zinc oxide and silver nanoparticles influence the antioxidative status in a higher aquatic plant, Spirodela punctata

    CSIR Research Space (South Africa)

    Thwala, Melusi

    2012-09-01

    Full Text Available during the 14-d exposure. The biochemical anti-oxidative status of the plant specimens were investigated using quantitative analysis of total antioxidant capacity, peroxidase and activity of catalase and superoxide dismutase. The anti-oxidative defence...

  15. Effects of gamma irradiation on antioxidants of medicinal plants

    Energy Technology Data Exchange (ETDEWEB)

    Jetawattana, Suwimol [The irradiation research for agriculture program, Office of Atoms for Peace, BK (Thailand); Chaichantipyuth, Chaiyo [Faculty of Pharmacy, Chulalongkorn University, BK (Thailand)

    2003-06-01

    The antioxidant effect of water extracts from irradiated medicinal plants on inhibition of lipid peroxidation in human plasma was examined. The results presented herein indicate that crude extracts from 29 kinds, 31 extracts, of medicinal plants, irradiated at 10 and 25 kilo gray. showed no significant change in inhibition of lipid peroxidation in plasma induced by gamma irradiation (p<0.05). It also found that extraction yields in some irradiated plants were increased.

  16. Effects of gamma irradiation on antioxidants of medicinal plants

    International Nuclear Information System (INIS)

    Jetawattana, Suwimol; Chaichantipyuth, Chaiyo

    2003-06-01

    The antioxidant effect of water extracts from irradiated medicinal plants on inhibition of lipid peroxidation in human plasma was examined. The results presented herein indicate that crude extracts from 29 kinds, 31 extracts, of medicinal plants, irradiated at 10 and 25 kilo gray. showed no significant change in inhibition of lipid peroxidation in plasma induced by gamma irradiation (p<0.05). It also found that extraction yields in some irradiated plants were increased

  17. Antioxidant Capacity of Selected Plant Extracts and Their Essential Oils

    Directory of Open Access Journals (Sweden)

    Charalampos Proestos

    2013-01-01

    Full Text Available The main objective of this study was the screening of some selected aromatic plants very popular in Greece, with respect to their total phenolic content, antioxidant capacity, reducing activity, and oxidative stability. All plants were extracted with the conventional method, reflux with methanol. The essential oils of the plants were also analyzed for their antioxidant properties. The total phenolic content was determined by the Folin-Ciocalteu method using gallic acid as the standard, while the phenolic substances were identified and quantified by High Performance Liquid Chromatography (HPLC coupled with a multi-wavelength ultraviolet-visible (UV-vis detector. The antioxidant capacity of the plant extracts was measured by their ability to scavenge free radicals such as (a DPPH (2,2-diphenyl-1-picrylhydrazyl and, (b ABTS (2,2′-azinobis-(3-ethylbenzothiaziline-6- sulfonate. The Folin-Ciocalteu method proved the existence of antioxidants in the aromatic plant extracts. Taking into account the results of the DPPH and ABTS methods, the free radical scavenging capacity was confirmed. Eventually, all plants exhibited low but noticeable protection levels against lipid oxidation, as determined by the Rancimat test.

  18. Antioxidant activity of Paraguayan plant extracts.

    Science.gov (United States)

    Velázquez, E; Tournier, H A; Mordujovich de Buschiazzo, P; Saavedra, G; Schinella, G R

    2003-02-01

    The antioxidant properties of six medical herbs used in the traditional Paraguayan medicine were studied using free radical-generating systems. The methanol extracts from Aristolochia giberti, Cecropia pachystachya, Eugenia uniflora, Piper fulvescens, Schinus weinmannifolia and Schinus terebinthifolia protected against enzymatic and non-enzymatic lipid peroxidation in microsomal membranes of rat. C. pachystachya, E. uniflora, S. weinmannifolia and S. terebinthifolia showed the highest scavenging activity on the superoxide and DPPH radicals.

  19. Radioprotective effects of antioxidative plant flavonoids in mice

    International Nuclear Information System (INIS)

    Shimoi, Kayoko; Masuda, Shuichi; Shen, Bingrong; Furugori, Michiyo; Kinae, Naohide

    1996-01-01

    Radioprotective effects of tea infusions and plant flavonoids were investigated by using the micronucleus test for anticlastogenic activity and the thiobarbituric acid assay for antioxidative activity. A single gastric intubation of rooibos tea (Aspalathus linearis) infusion at 1 ml per mouse 2 h prior to γ-ray irradiation (1.5 Gy) reduced the frequency of micronucleated reticulocytes (MNRETs). After the fractionation of rooibos tea infusion, the flavonoid fraction was found to be most anticlastogenic and antioxidative. From this fraction, luteolin was isolated as an effective component. Then, anticlastogenic effects of 12 flavonoids containing luteolin and their antioxidative activities against lipid peroxidation by Fenton's reagent were examined. A good correlation (r=0.717) was observed between both activities. Luteolin showed the most effective potency. A gastric intubation of luteolin (10 μmol/kg) 2 h prior to γ-ray irradiation (6 Gy) suppressed lipid peroxidation in mouse bone marrow and spleen and a trend of protective effect of luteolin against the decrease of endogenous ascorbic acid in mouse bone marrow after γ-ray irradiation (3 Gy) was observed. These results suggest that plant flavonoids, which show antioxidative potency in vitro, work as antioxidants in vivo and their radioprotective effects may be attributed to their scavenging potency towards free radicals such as hydroxyl radicals. Therefore, the flavonoids contained in tea, vegetables and fruits seem to be important as antioxidants in the human diet

  20. Evaluation of antifungal and antioxidant potential of two medicinal plants: Aconitum heterophyllum and Polygonum bistorta

    Directory of Open Access Journals (Sweden)

    Neelma Munir

    2014-07-01

    Conclusions: It was observed that A. heterophyllum and P. bistorta have significant antioxidant activity. Higher antioxidant activity was recorded in methanolic extract of A. heterophyllum as compared to its ethanolic extract. However, in case of P. bistorta ethanolic extract of the plant exhibited higher antioxidant potential than methanolic extracts. Hence both of these plants have significant antimicrobial as well as antioxidant potential.

  1. Study of a new alternative antioxidant in soybean plants subjected to abiotic stress

    International Nuclear Information System (INIS)

    Zilli, C.; Santa Cruz, D.; Caggiano, E.; Romanello, M.; Tomaro, M.; Balestrasse, K.

    2010-01-01

    We have recently, demonstrated that the induction of heme oxygenase-1 (HO-1) plays a protective role for soybean plants against oxidative stress produced by cadmium and UV-B radiation. At this moment we propose to investigate if the enzyme has the same capacity against another type of abiotic stress, such as drought, for to demonstrate that heme oxygenase acts as an enzyme of plant antioxidant defense system under several different stress situations, as occur in mammalian tissues. To carry out this objective we propose to study, in leaf, root and nodule of soybean plants, the oxidative stress generation; the behavior of classical antioxidant system; the behavior of HO-1 activity and protein and gene expression; the effect of its reaction products and inhibitors on the oxidative stress parameters; the signaling mechanism that produce HO-1 induction and the immunohistochemistry localization of the enzyme in the different plant tissues. The results obtained let us undoubtedly demonstrate the involvement of HO-1 in the antioxidant defense system in plants. This finding will allow the increase in the knowledge of the defense mechanisms in interesting economic plants for our country, such as soybean, and against drought, an abiotic stress considered one of the most important factors limiting plant performance and yield worldwide. (authors)

  2. Extraction and antioxidant activities of two species Origanum plant ...

    African Journals Online (AJOL)

    The antioxidant of ethanolic extract of two species of Origanum and essential oil of plant Origanum vulgare were investigated and also the total phenolic and flavonoid content measured. The radical scavenging activity was measured using the 2,2-diphenyl-1-picrylhydrazyl (DPPH) method. Total phenolic and flavonoid ...

  3. Methodological considerations for characterizing potential antioxidant actions of bioactive components in plant foods.

    Science.gov (United States)

    Aruoma, Okezie I

    2003-01-01

    The study of free radicals and antioxidants in biology is producing medical revolution that promises a new age of health and disease management. From prevention of the oxidative reactions in foods, pharmaceuticals and cosmetics to the role of reactive oxygen species (ROS) in chronic degenerative diseases including cancer, autoimmune, inflammatory, cardiovascular and neurodegenerative (e.g. Alzheimer's disease, Parkinson's disease, multiple sclerosis, Downs syndrome) and aging challenges continue to emerge from difficulties associated with methods used in evaluating antioxidant actions in vivo. Our interest presently is focused on development of neurodegeneration models based on the integrity of neuronal cells in the central nervous system and how they are protected by antioxidants when challenged by neurotoxins as well as Fenton chemistry models based on the profile of polyunsaturated fatty acids (PUFAs) for the assessment of antioxidant actions in vivo. Use continues to be made of several in vitro analytical tools to characterise the antioxidant propensity of bioactive compounds in plant foods and supplements. For example, the oxygen radical absorbance capacity (ORAC), ferric reducing antioxidant power (FRAP), total oxidant scavenging capacity (TOSC), the deoxyribose assay, assays involving oxidative DNA damage, assays involving reactive nitrogen intermediates (e.g. ONOO(-)), Trolox equivalent antioxidant capacity (TEAC) and the 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay. There is need to agree governance on in vitro antioxidant methods based on an understanding of the mechanisms involved. Because some of the assays are done in non-physiological pH values, it is impossible to extrapolate the results to physiological environment. The consensus of opinion is that a mix of these tools should be used in assessing the antioxidant activities in vitro. The proof of bio-efficacy must emanate from application of reliable in vivo models where markers of baseline oxidative

  4. Plant probiotic bacteria Bacillus and Paraburkholderia improve growth, yield and content of antioxidants in strawberry fruit.

    Science.gov (United States)

    Rahman, Mosaddiqur; Sabir, Abdullah As; Mukta, Julakha Akter; Khan, Md Mohibul Alam; Mohi-Ud-Din, Mohammed; Miah, Md Giashuddin; Rahman, Mahfuzur; Islam, M Tofazzal

    2018-02-06

    Strawberry is an excellent source of natural antioxidants with high capacity of scavenging free radicals. This study evaluated the effects of two plant probiotic bacteria, Bacillus amylolequefaciens BChi1 and Paraburkholderia fungorum BRRh-4 on growth, fruit yield and antioxidant contents in strawberry fruits. Root dipping of seedlings (plug plants) followed by spray applications of both probiotic bacteria in the field on foliage significantly increased fruit yield (up to 48%) over non-treated control. Enhanced fruit yield likely to be linked with higher root and shoot growth, individual and total fruit weight/plant and production of phytohormone by the probiotic bacteria applied on plants. Interestingly, the fruits from plants inoculated with the isolates BChi1 and BRRh-4 had significantly higher contents of phenolics, carotenoids, flavonoids and anthocyanins over non-treated control. Total antioxidant activities were also significantly higher (p < 0.05) in fruits of strawberry plants treated with both probiotic bacteria. To the best of our knowledge, this is the first report of significant improvement of both yield and quality of strawberry fruits by the application of plant probiotic bacteria BChi1 and BRRh-4 in a field condition. Further study is needed to elucidate underlying mechanism of growth and quality improvement of strawberry fruits by probiotic bacteria.

  5. Natural Antioxidants in Foods and Medicinal Plants: Extraction, Assessment and Resources.

    Science.gov (United States)

    Xu, Dong-Ping; Li, Ya; Meng, Xiao; Zhou, Tong; Zhou, Yue; Zheng, Jie; Zhang, Jiao-Jiao; Li, Hua-Bin

    2017-01-05

    Natural antioxidants are widely distributed in food and medicinal plants. These natural antioxidants, especially polyphenols and carotenoids, exhibit a wide range of biological effects, including anti-inflammatory, anti-aging, anti-atherosclerosis and anticancer. The effective extraction and proper assessment of antioxidants from food and medicinal plants are crucial to explore the potential antioxidant sources and promote the application in functional foods, pharmaceuticals and food additives. The present paper provides comprehensive information on the green extraction technologies of natural antioxidants, assessment of antioxidant activity at chemical and cellular based levels and their main resources from food and medicinal plants.

  6. Changes in antioxidants potential, secondary metabolites and plant hormones induced by different fungicides treatment in cotton plants.

    Science.gov (United States)

    Mohamed, Heba Ibrahim; Akladious, Samia Ageeb

    2017-10-01

    The use of fungicides for an effective control of plant diseases has become crucial in the last decades in the agriculture system. Seeds of cotton plants were treated with systemic and contact fungicides to study the efficiency of seed dressing fungicides in controlling damping off caused by Rhizoctonia solani under greenhouse conditions and its effect on plant growth and metabolism. The results showed that Mon-cut showed the highest efficiency (67.99%) while each of Tondro and Hemixet showed the lowest efficiency (31.99%) in controlling damping off. Rhizolex T, Mon-cut and Tondro fungicides caused significant decrease in plant height, dry weight of plant, phytohormones, photosynthetic pigments, soluble sugars, soluble proteins, total free amino acids but caused significant increases in total phenols, flavonoids, antioxidant enzymes, ascorbic acid, reduced glutathione, MDA and hydrogen peroxide as compared with untreated plants. On the other hand, the other fungicides (Maxim, Hemixet and Flosan) increased all the above recorded parameters as compared with untreated plants. Our results indicated that the fungicides application could be a potential tool to increase plant growth, the antioxidative defense mechanisms and decreased infection with plant diseases. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Plant Polyphenolic Antioxidants in Management of Chronic Degenerative Diseases

    Directory of Open Access Journals (Sweden)

    R.K. Das

    2017-12-01

    Full Text Available With the over growing global population, degenerative diseases are on rise, despite using modern medicine for its cure. People prefer alternative systems of medicine like natural therapy and polyherbal therapy due to adverse effects of allopathic medication. According to W.H.O. report about 70% of world population relying on natural plant-based therapy. For a suitable, sustainable and cost effective cure use of polyphenolic natural antioxidants may be an appropriate tool. Now a day’s most food and pharmaceutical products contain synthetic antioxidants. But recent data indicating that, long term use of synthetic antioxidants could have carcinogenic effects on human cells. Thus, search for new natural and efficient antioxidants is need of the hour. Phenolic compounds (polyphenols are products of secondary metabolites and constitute one of the most widely distributed groups of substance in plant kingdom with more than 10,000 phenolic structures. Polyphenols are structurally characterized by the presence of one or more aromatic benzene ring compounds with one or more functional hydroxyl groups. Polyphenols are naturally occurring and most abundant antioxidants in human diets found largely in the fruits, vegetables and beverages. Plant flavonoids are the largest and best studied class of polyphenols which include more than 4000 compounds. Numerous studies confirm that, flavonoids exert a protective action on human health and are key components of a healthy and balanced diet. Epidemiological studies and associated meta-analysis correlate and strongly   suggest that, long term consumption of diets rich in plant flavonoids offer protection against development of chronic and degenerative diseases, such as cardiovascular diseases , diabetes , cancer, osteoporosis and neurodegenerative diseases. One of the main reasons for the age related diseases is linked with reduction in cellular oxidative stress. The involvement of reactive oxygen species (ROS in

  8. Effects of ambient ozone on reactive oxygen species and antioxidant metabolites in leaves of pea (pisum sativum l.) plants

    International Nuclear Information System (INIS)

    Hassan, I.A.; Almeelbi, T.; Basahi, J.M.

    2017-01-01

    The differential response of two pea plants (Pisum sativum L. cultivars Little Marvel and Victory) to ambient O3 grown under open top chambers (OTCs) was analyzed and compared. Reactive oxygen species (ROS) generation, antioxidant metabolites such as ascorbate/glutathione as well as a series of enzymes for scavenging ROS were analyzed, all aiming to reveal the differential behavior of two closely related plants when exposed to ambient O3.Antioxidant levels and activities of related enzymes in response to ambient were noticeably different among Little Marvel and Victory plants. However, the response was cultivar-specific. There was higher accumulation of ROS and relatively lower induction of antioxidants and more inhibition in photosynthetic rates in Victory than Little Marvel. There was a good correlation between tolerance to O3 and high endogenous levels of antioxidant metabolites such as ascorbate (As), glutathione reductase (GR), superoxide dismutase (SOD), reduced (GSH) and oxidized glutathione (GSSG) in pea plants. These portrays a higher sensitivity of Victory to ambient O3.To the best of our knowledge, this is one of the very few studies attempted to describe the changes in contents of antioxidants and activities of related enzymes in leaves of two closely related cultivars to further ourunderstanding on the defense mechanism and strategies under ambient O3. The results highlighted the possible roles of antioxidants in O3 detoxification through activation an adaptive survival mechanism allowing the plant to complete its life cycle even under oxidative stressful conditions. (author)

  9. Mechanisms in Plant Development

    Energy Technology Data Exchange (ETDEWEB)

    Hake, Sarah [USDA ARS Plant Gene Expression Center

    2013-08-21

    This meeting has been held every other year for the past twenty-two years and is the only regularly held meeting focused specifically on plant development. Topics covered included: patterning in developing tissues; short and long distance signaling; differentiation of cell types; the role of epigenetics in development; evolution; growth.

  10. Antioxidant activity of rice plants sprayed with herbicides

    Directory of Open Access Journals (Sweden)

    Marcos André Nohatto

    2016-03-01

    Full Text Available Understanding the physiological defense behavior of plants subjected to herbicide application may help to identify products with higher or lower capacity to cause oxidative stress in crops. This study aimed at evaluating the effect of herbicides in the antioxidant activity of rice plants. The experimental design was completely randomized, with six replications. Treatments consisted of the herbicides bentazon (photosystem II inhibitor; 960 g ha-1, penoxsulam (acetolactate synthase inhibitor; 60 g ha-1, cyhalofop-butyl (acetyl coenzyme-A carboxylase inhibitor; 315 g ha-1 and a control. After the herbicides application, samples of rice shoots were collected at 12, 24, 48 and 96 hours after application (HAA. The components evaluated were hydrogen peroxide (H2O2, lipid peroxidation and activity of the antioxidant enzymes superoxide dismutase (SOD and catalase (CAT. Bentazon (up to 24 HAA and penoxsulam (48 and 96 HAA reduced the CAT activity. Moreover, these herbicides increased the levels of H2O2, lipid peroxidation and SOD activity, indicating a condition of oxidative stress in rice plants. The cyhalofop-butyl herbicide did not alter the antioxidant activity, showing that it causes less stress to the crop.

  11. Cadmium stress antioxidant responses and root-to-shoot communication in grafted tomato plants.

    Science.gov (United States)

    Gratão, Priscila Lupino; Monteiro, Carolina Cristina; Tezotto, Tiago; Carvalho, Rogério Falleiros; Alves, Letícia Rodrigues; Peters, Leila Priscila; Azevedo, Ricardo Antunes

    2015-10-01

    Many aspects related to ROS modulation of signaling networks and biological processes that control stress responses still remain unanswered. For this purpose, the grafting technique may be a powerful tool to investigate stress signaling and specific responses between plant organs during stress. In order to gain new insights on the modulation of antioxidant stress responses mechanisms, gas-exchange measurements, lipid peroxidation, H2O2 content, proline, superoxide dismutase (SOD), catalase (CAT), glutathione reductase (GR), ascorbate peroxidase (APX) and guaiacol peroxidase (GPOX) were analyzed in Micro-Tom grafted plants submitted to cadmium (Cd). The results observed revealed that higher amounts of Cd accumulated mainly in the roots and rootstocks when compared to leaves and scions. Macronutrients uptake (Ca, S, P and Mg) decreased in non-grafted plants, but differed among plant parts in all grafted plants. The results showed that the accumulation of proline observed in scions of grafted plants could be associated to the lower MDA contents in the scions of grafted plants. In the presence of Cd, non-grafted plants displayed increased CAT, GR, GPOX and APX activities for both tissues, whilst grafted plants revealed distinct trends that clearly indicate signaling responses from the rootstocks, allowing sufficient time to activate defense mechanisms in shoot. The information available concerning plants subjected to grafting can provide a better understanding of the mechanisms of Cd detoxification involving root-to-shoot signaling, opening new possibilities on strategies which can be used to manipulate heavy metal tolerance, since antioxidant systems are directly involved in such mechanism.

  12. Assessment of the effect of silicon on antioxidant enzymes in cotton plants by multivariate analysis.

    Science.gov (United States)

    Alberto Moldes, Carlos; Fontão de Lima Filho, Oscar; Manuel Camiña, José; Gabriela Kiriachek, Soraya; Lia Molas, María; Mui Tsai, Siu

    2013-11-27

    Silicon has been extensively researched in relation to the response of plants to biotic and abiotic stress, as an element triggering defense mechanisms which activate the antioxidant system. Furthermore, in some species, adding silicon to unstressed plants modifies the activity of certain antioxidant enzymes participating in detoxifying processes. Thus, in this study, we analyzed the activity of antioxidant enzymes in leaves and roots of unstressed cotton plants fertilized with silicon (Si). Cotton plants were grown in hydroponic culture and added with increasing doses of potassium silicate; then, the enzymatic activity of catalase (CAT), guaiacol peroxidase (GPOX), ascorbate peroxidase (APX), and lipid peroxidation were determined. Using multivariate analysis, we found that silicon altered the activity of GPOX, APX, and CAT in roots and leaves of unstressed cotton plants, whereas lipid peroxidation was not affected. The analysis of these four variables in concert showed a clear differentiation among Si treatments. We observed that enzymatic activities in leaves and roots changed as silicon concentration increased, to stabilize at 100 and 200 mg Si L(-1) treatments in leaves and roots, respectively. Those alterations would allow a new biochemical status that could be partially responsible for the beneficial effects of silicon. This study might contribute to adjust the silicon application doses for optimal fertilization, preventing potential toxic effects and unnecessary cost.

  13. Natural Antioxidants in Foods and Medicinal Plants: Extraction, Assessment and Resources

    OpenAIRE

    Xu, Dong-Ping; Li, Ya; Meng, Xiao; Zhou, Tong; Zhou, Yue; Zheng, Jie; Zhang, Jiao-Jiao; Li, Hua-Bin

    2017-01-01

    Natural antioxidants are widely distributed in food and medicinal plants. These natural antioxidants, especially polyphenols and carotenoids, exhibit a wide range of biological effects, including anti-inflammatory, anti-aging, anti-atherosclerosis and anticancer. The effective extraction and proper assessment of antioxidants from food and medicinal plants are crucial to explore the potential antioxidant sources and promote the application in functional foods, pharmaceuticals and food additive...

  14. Total phenolics and antioxidant activity of five medicinal plant

    International Nuclear Information System (INIS)

    Sousa, Cleyton Marcos de M.; Silva, Hilris Rocha e; Vieira-Junior, Gerardo Magela; Ayres, Mariane Cruz C.; Costa, Charllyton Luis S. da; Araajo, Delton Servulo; Cavalcante, Luis Carlos D.; Barros, Elcio Daniel S.; Araujo, Paulo Breitner de M.; Brandao, Marcela S.; Chaves, Mariana H.

    2007-01-01

    This paper describes total phenolics content and antioxidant activity in the ethanolic extract of leaves, bark and roots of five medicinal plants: Terminalia brasiliensis Camb., Terminalia fagifolia Mart. and Zucc., Copernicia cerifera (Miller) H.E. Moore, Cenostigma macrophyllum Tul. var. acuminata Teles Freire and Qualea grandiflora Mart. The total phenolics content of the plant extracts, determined by the Folin-Ciocalteu method, varied from 250.0 ±8,2 to 763,63 ±13.03 mg of gallic acid equivalent/g dry EtOH extract. The antioxidant activity of extracts was evaluated using the 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay system. Extract of bark from T. brasiliensis, the most active, with an EC 50 value of 27.59 ± 0.82 μg/mL, was comparable to rutin (EC 50 = 27.80 ± 1.38) and gallic acid (EC 50 = 24.27 ± 0.31), used as positive controls. The relationship between total phenolic content and antioxidant activity was positive and significant for T. brasiliensis, C. macrophyllum and C. cerifera. (author)

  15. Antioxidant and antibacterial activity of Thai medicinal plant (Capparis micracantha)

    Science.gov (United States)

    Laoprom, Nonglak; Sangprom, Araya; Chaisri, Patcharaporn

    2018-04-01

    This work aims to study the antioxidants capacity, Total phenolic content and antibacterial activity of Thai medicinal plant for the treatment of dermatitis-related inflammations, Capparis micracantha. Crude extract from stem of Thai medicinal plant was extracted with hexane, ethyl acetate, methanol and water. The antioxidant activities (IC50) was evaluated with 1,1-diphenyl-1-princylhydrazyl (DPPH) radical scavenging assay. Total phenolic content (TPC) was determined by using Folin-Ciocalteu method. Bacterial activities was tested with four human pathogenic bacteria; Escherichia coli, Listeria monocytogenes, Staphylococcus aureus and Stapylococcus epidermidis by using agar diffusion assay. Minimum Inhibition Concentration (MIC) and Minimum Bactericidal Concentration (MBC) were also determined by broth dilution method. For antioxidant activity, the methanol fraction from stem extract showed the highest activity with an IC50 of 2.4 mg/ml. Water extraction was the high TPC with 10,136.9 mg GAE/g dry weight. Methanol and water extraction showed the remarkable inhibition of bacterial growth was shown against L. monocytogenes and S. aureus. In addition, ethyl acetate, methanol and water fraction from stem extract against S. epidermidis. The present finding suggests that the extract of C. micracantha could be used to discover bioactive natural products that may serve as pharmaceutical products.

  16. Antioxidant capacities of ten edible North American plants.

    Science.gov (United States)

    Acuña, Ulyana Muñoz; Atha, Daniel E; Ma, Jun; Nee, Michael H; Kennelly, Edward J

    2002-02-01

    The EtOAc extract obtained from ten edible North American plants, Acorus calamus, Clintonia borealis, Gaultheria shallon, Juniperus osteosperma, Opuntia polyacantha, Prunus americana, Prunus virginiana, Sambucus cerulea, Sorbus americana and Vaccinium parvifolium, were tested in the 1,1-diphenyl-2-picrylhydrazyl (DPPH) free radical assay. High antioxidant activity was obtained from the extracts of three fruits, Gaultheria shallon, Sambucus cerulea and Prunus americana and one extracted rhizome, Acorus calamus. Catechin and epicatechin, potent polyphenolic antioxidants, were identified in the EtOAc extracts of Gaultheria shallon and Sambucus cerulea by reversed-phase thin-layer chromatography (TLC) and reversed-phase high-performance liquid chromatography (HPLC). Copyright 2002 John Wiley & Sons, Ltd.

  17. Significance of antioxidant potential of plants and its relevance to therapeutic applications.

    Science.gov (United States)

    Kasote, Deepak M; Katyare, Surendra S; Hegde, Mahabaleshwar V; Bae, Hanhong

    2015-01-01

    Oxidative stress has been identified as the root cause of the development and progression of several diseases. Supplementation of exogenous antioxidants or boosting endogenous antioxidant defenses of the body is a promising way of combating the undesirable effects of reactive oxygen species (ROS) induced oxidative damage. Plants have an innate ability to biosynthesize a wide range of non-enzymatic antioxidants capable of attenuating ROS- induced oxidative damage. Several in vitro methods have been used to screen plants for their antioxidant potential, and in most of these assays they revealed potent antioxidant activity. However, prior to confirming their in vivo therapeutic efficacy, plant antioxidants have to pass through several physiopharmacological processes. Consequently, the findings of in vitro and in vivo antioxidant potential assessment studies are not always the same. Nevertheless, the results of in vitro assays have been irrelevantly extrapolated to the therapeutic application of plant antioxidants without undertaking sufficient in vivo studies. Therefore, we have briefly reviewed the physiology and redox biology of both plants and humans to improve our understanding of plant antioxidants as therapeutic entities. The applications and limitations of antioxidant activity measurement assays were also highlighted to identify the precise path to be followed for future research in the area of plant antioxidants.

  18. Antioxidant Defense Mechanisms of Salinity Tolerance in Rice Genotypes

    Directory of Open Access Journals (Sweden)

    Mohammad Golam Kibria

    2017-05-01

    Full Text Available In order to elucidate the role of antioxidant responses in salinity tolerance in rice genotypes under salt stress, experiments were conducted using four rice varieties, including salt-sensitive BRRI dhan 28 and three salt-tolerant varieties BRRI dhan 47, BINA dhan 8 and BINA dhan 10. Thirty-day-old rice seedlings were transplanted into pots. At the active tillering stage (35 d after transplanting, plants were exposed to different salinity levels (0, 20, 40 and 60 mmol/L NaCl. Salt stress caused a significant reduction in growth for all the rice genotypes. Growth reduction was higher in the salt-sensitive genotype than in the salt-tolerant ones, and BINA dhan 10 showed higher salt tolerance in all measured physiological parameters. The reduction in shoot and root biomass was found to be minimal in BINA dhan 10. Chlorophyll content significantly decreased under salt stress except for BINA dhan 10. Proline content significantly increased in salt-tolerant rice genotypes with increased salt concentration, and the highest proline content was obtained from BINA dhan 10 under salt stress. Catalase and ascorbate peroxidase activities significantly decreased in salt-sensitive genotype whereas significantly increased in salt-tolerant ones with increasing salt concentration. However, salt stress significantly decreased guaiacol peroxidase activity in all the rice genotypes irrespective of salt tolerance. K+/Na+ ratio also significantly decreased in shoots and roots of all the rice genotypes. The salt-tolerant genotype BINA dhan 10 maintained higher levels of chlorophyll and proline contents as well as catalase and ascorbate peroxidase activities under salt stress, thus, this might be the underlying mechanism for salt tolerance.

  19. Why we should stop inferring simple correlations between antioxidants and plant stress resistance: towards the antioxidomic era.

    Science.gov (United States)

    Loiacono, F Vanessa; De Tullio, Mario C

    2012-04-01

    A large number of studies have investigated the relationship between different forms of abiotic stress and antioxidants. However, misconceptions and technical flaws often affect studies on this important topic. Reactive oxygen species (ROS) generated under stress conditions should not be considered just as potential threats, because they are essential components of the signaling mechanism inducing plant defenses. Similarly, the complexity of the antioxidant system should be considered, to avoid misleading oversimplifications. Recent literature is discussed, highlighting the importance of accurate experimental setups for obtaining reliable results in this delicate field of research. A tentative "troubleshooting guide" is provided to help researchers interested in improving the quality of their work on the role of antioxidants in plant stress resistance. Significant advancements in the field could be reached with the development of antioxidomics, defined here as a new branch of research at the crossroads of other disciplines including metabolomics and proteomics, studying the complex relationship among antioxidants and their functions.

  20. Antimicrobial and Antioxidant Activities of Plants from Northeast of Mexico

    Science.gov (United States)

    Salazar-Aranda, Ricardo; Pérez-López, Luis Alejandro; López-Arroyo, Joel; Alanís-Garza, Blanca Alicia; Waksman de Torres, Noemí

    2011-01-01

    Traditional medicine has a key role in health care worldwide. Obtaining scientific information about the efficacy and safety of the plants from our region is one of the goals of our research group. In this report, 17 plants were selected and collected in different localities from northeast Mexico. The dried plants were separated into leaves, flowers, fruit, stems, roots and bark. Each part was extracted with methanol, and 39 crude extracts were prepared. The extracts were tested for their antimicrobial activity using three Gram-negative bacterial strains (Pseudomonas aeruginosa, Klebsiella pneumoniae and Acinetobacter baumannii), three Gram-positive bacterial strains (Enterococcus faecalis and two Staphylococcus aureus strains), and seven clinically isolated yeasts (Candida albicans, C. krusei, C. tropicalis, C. parapsilosis and C. glabrata); their antioxidant activity was tested using a DPPH free radical assay. No activity against Gram-negative bacteria was observed with any extract up to the maximum concentration tested, 1000 μg ml−1. We report here for the first time activity of Ceanothus coeruleus against S. aureus (flowers, minimal inhibitory concentration (MIC) 125 μg ml−1), C. glabrata (MICs 31.25 μg ml−1) and C. parapsilosis (MICs between 31.25 and 125 μg ml−1); Chrysanctinia mexicana against C. glabrata (MICs 31.25 μg ml−1); Colubrina greggii against E. faecalis (MICs 250 μg ml−1) and Cordia boissieri against C. glabrata (MIC 125 μg ml−1). Furthermore, this is the first report about antioxidant activity of extracts from Ceanothus coeruleus, Chrysanctinia mexicana, Colubrina greggii and Cyperus alternifolius. Some correlation could exist between antioxidant activity and antiyeast activity against yeasts in the species Ceanothus coeruleus, Schinus molle, Colubrina greggii and Cordia boissieri. PMID:19770266

  1. Antimicrobial and Antioxidant Activities of Plants from Northeast of Mexico

    Directory of Open Access Journals (Sweden)

    Ricardo Salazar-Aranda

    2011-01-01

    Full Text Available Traditional medicine has a key role in health care worldwide. Obtaining scientific information about the efficacy and safety of the plants from our region is one of the goals of our research group. In this report, 17 plants were selected and collected in different localities from northeast Mexico. The dried plants were separated into leaves, flowers, fruit, stems, roots and bark. Each part was extracted with methanol, and 39 crude extracts were prepared. The extracts were tested for their antimicrobial activity using three Gram-negative bacterial strains (Pseudomonas aeruginosa, Klebsiella pneumoniae and Acinetobacter baumannii, three Gram-positive bacterial strains (Enterococcus faecalis and two Staphylococcus aureus strains, and seven clinically isolated yeasts (Candida albicans, C. krusei, C. tropicalis, C. parapsilosis and C. glabrata; their antioxidant activity was tested using a DPPH free radical assay. No activity against Gram-negative bacteria was observed with any extract up to the maximum concentration tested, 1000 μg ml−1. We report here for the first time activity of Ceanothus coeruleus against S. aureus (flowers, minimal inhibitory concentration (MIC 125 μg ml−1, C. glabrata (MICs 31.25 μg ml−1 and C. parapsilosis (MICs between 31.25 and 125 μg ml−1; Chrysanctinia mexicana against C. glabrata (MICs 31.25 μg ml−1; Colubrina greggii against E. faecalis (MICs 250 μg ml−1 and Cordia boissieri against C. glabrata (MIC 125 μg ml−1. Furthermore, this is the first report about antioxidant activity of extracts from Ceanothus coeruleus, Chrysanctinia mexicana, Colubrina greggii and Cyperus alternifolius. Some correlation could exist between antioxidant activity and antiyeast activity against yeasts in the species Ceanothus coeruleus, Schinus molle, Colubrina greggii and Cordia boissieri.

  2. Physiological and biochemical responses of thyme plants to some antioxidants

    Directory of Open Access Journals (Sweden)

    SALWA A. ORABI

    2014-11-01

    Full Text Available Orabi SA, Talaat IM, Balbaa LK. 2014. Physiological and biochemical responses of thyme plants to some antioxidants. Nusantara Bioscience 6: 118-125. Two pot experiments were conducted to investigate the effect of tryptophan, nicotinamide and α-tocopherol (each at 50 and 100 mg/L on plant growth, essential oil yield and its main constituents. All treatments significantly promoted plant height, and increased fresh and dry mass (g/plant of thyme (Thymus vulgaris L.. The treatment with 100 mg/L nicotinamide showed increasing in total potassium mainly in the first cut. Total soluble sugars, oil percentage and oil yield and protein recorded increments with tryptophan treatments. Treatment of Thymus plants with 100 mg/L nicotinamide observed the highest percentage of thymol (67.61%. Oxygenated compounds recorded the highest value with 50 mg/L α-tocopherol treatment, while the maximum non-oxygenated ones resulted from the application of 100 mg/L nicotinamide. All treatments under study significantly affected the activity of oxidoreductase enzymes (POX and PPO. Nicotinamide at the concentration of 100 mg/L recorded the highest increments in APX and GR and the lowest values in oxidoreductase enzyme activities added to the lowest values of lipid peroxidation to enhance the best protection of thyme plants.

  3. DDTs-induced antioxidant responses in plants and their influence on phytoremediation process.

    Science.gov (United States)

    Mitton, Francesca M; Gonzalez, Mariana; Monserrat, José M; Miglioranza, Karina S B

    2018-01-01

    Phytoremediation is a low cost technology based on the use of plants to remove a wide range of pollutants from the environment, including the insecticide DDT. However, some pollutants are known to enhance generation of reactive oxygen species (ROS), which can generate toxic effects on plants affecting the phytoremediation efficiency. This study aims to analyze the potential use of antioxidant responses as a measure of tolerance to select plants for phytoremediation purposes. Tomato and zucchini plants were grown for 15 days in soils contaminated with DDTs (DDT + DDE + DDD). Protein content, glutathione-S-transferase (GST), glutathione reductase (GR), glutathione peroxidase (GPx) and catalase (CAT) activities were measured in plant tissues. Exposure to DDTs did not affect protein content or CAT activity in any of the species. GST, GR and GPx activity showed different responses in exposed and control tomato plants. After DDTs exposure, tomato showed increased GR and GPX activity in stems and leaves, respectively, and a decrease in the GST activity in roots. As no effects were observed in zucchini, results suggest different susceptibility and/or defense mechanisms involved after pesticide exposure. Finally, both species differed also in terms of DDTs uptake and translocation. The knowledge about antioxidant responses induced by pesticides exposure could be helpful for planning phytoremediation strategies and for the selection of tolerant species according to particular scenarios. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. In vitro growth, phytochemical content, and antioxidant activity of gamma irradiated Tacca (Tacca leontopetaloides) plant

    International Nuclear Information System (INIS)

    Betalini Widhi Hapsari; Andri Fadillah Martin; Tri Muji Ermayanti

    2016-01-01

    Tacca leontopetaloides (L.) Kuntze is tuberous plant belongs to family Taccaceae. Tacca plant has a potential as the source of natural antioxidant. Radiation with Gamma radiation done either by in vitro or ex vitro plants is often used to increase chemical content of plants including antioxidant. The purpose of this study was to determine growth and phytochemical content and as well as the antioxidant activity of gamma irradiated tacca plant. Phytochemical analysis was done to detect alkaloids, flavonoids, steroid, tannin and saponin compounds, meanwhile, antioxidant activity was carried by DPPH analysis. The results showed that gamma irradiated tacca plant had lower growth compared to the control. Phytochemical analysis showed that tacca plant contains an alkaloid, flavonoid, and steroid. The highest antioxidant activity was obtained from tacca clone number 30 Gy 3.1.3.1 with an IC_5_0 value of 50.85 μg/mL. (author)

  5. Antioxidant mechanism of milk mineral-high-affinity iron binding.

    Science.gov (United States)

    Allen, K; Cornforth, D

    2007-01-01

    Milk mineral (MM), a by-product of whey processing, is an effective antioxidant in meat systems, but the antioxidant mechanism has not been established. MM has been postulated to chelate iron and prevent iron-catalysis of lipid oxidation. The objective of this research was to examine this putative mechanism. MM was compared to sodium tripolyphosphate (STPP), calcium phosphate monobasic (CPM), and calcium pyrophosphate (CPP) to determine iron-binding capacity, sample solubility, and eluate soluble phosphorus after treating samples with a ferrous chloride standard. Scanning electron microscopy with energy-dispersive X-ray analysis was used to localize minerals on iron-treated MM particle surfaces. Histochemical staining for calcium was performed on raw and cooked ground beef samples with added MM. MM bound more iron per gram (P compounds, and was much less soluble (P iron across the MM particle surface, directly demonstrating iron binding to MM particles. Unlike other common chelating agents, such as STPP and citrate, histochemical staining demonstrated that MM remained insoluble in ground beef, even after cooking. The ability of MM to bind iron and remain insoluble may enhance its antioxidant effect by removing iron ions from solution. However, MM particles must be small and well distributed in order to adequately bind iron throughout the food system.

  6. In vitro antioxidant and antiproliferative activities of methanolic plant part extracts of Theobroma cacao.

    Science.gov (United States)

    Baharum, Zainal; Akim, Abdah Md; Taufiq-Yap, Yun Hin; Hamid, Roslida Abdul; Kasran, Rosmin

    2014-11-10

    The aims of this study were to determine the antioxidant and antiproliferative activity of the following Theobroma cacao plant part methanolic extracts: leaf, bark, husk, fermented and unfermented shell, pith, root, and cherelle. Antioxidant activity was determined using 2,2-diphenyl-2-picrylhydrazyl (DPPH), thiobarbituric acid-reactive substances (TBARS), and Folin-Ciocalteu assays; the 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium (MTT) assay was used to determine antiproliferative activity. The root extract had the highest antioxidant activity; its median effective dose (EC50) was 358.3±7.0 µg/mL and total phenolic content was 22.0±1.1 g GAE/100 g extract as compared to the other methanolic plant part extracts. Only the cherelle extract demonstrated 10.4%±1.1% inhibition activity in the lipid peroxidation assay. The MTT assay revealed that the leaf extract had the highest antiproliferative activity against MCF-7 cells [median inhibitory concentration (IC50)=41.4±3.3 µg/mL]. Given the overall high IC50 for the normal liver cell line WRL-68, this study indicates that T. cacao methanolic extracts have a cytotoxic effect in cancer cells, but not in normal cells. Planned future investigations will involve the purification, identification, determination of the mechanisms of action, and molecular assay of T. cacao plant extracts.

  7. In Vitro Antioxidant and Antiproliferative Activities of Methanolic Plant Part Extracts of Theobroma cacao

    Directory of Open Access Journals (Sweden)

    Zainal Baharum

    2014-11-01

    Full Text Available The aims of this study were to determine the antioxidant and antiproliferative activity of the following Theobroma cacao plant part methanolic extracts: leaf, bark, husk, fermented and unfermented shell, pith, root, and cherelle. Antioxidant activity was determined using 2,2-diphenyl-2-picrylhydrazyl (DPPH, thiobarbituric acid-reactive substances (TBARS, and Folin-Ciocalteu assays; the 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium (MTT assay was used to determine antiproliferative activity. The root extract had the highest antioxidant activity; its median effective dose (EC50 was 358.3 ± 7.0 µg/mL and total phenolic content was 22.0 ± 1.1 g GAE/100 g extract as compared to the other methanolic plant part extracts. Only the cherelle extract demonstrated 10.4% ± 1.1% inhibition activity in the lipid peroxidation assay. The MTT assay revealed that the leaf extract had the highest antiproliferative activity against MCF-7 cells [median inhibitory concentration (IC50 = 41.4 ± 3.3 µg/mL]. Given the overall high IC50 for the normal liver cell line WRL-68, this study indicates that T. cacao methanolic extracts have a cytotoxic effect in cancer cells, but not in normal cells. Planned future investigations will involve the purification, identification, determination of the mechanisms of action, and molecular assay of T. cacao plant extracts.

  8. Morphological, mechanical and antioxidant properties of Portuguese almond cultivars

    DEFF Research Database (Denmark)

    Oliveira, Ivo; Meyer, Anne S.; Afonso, Silvia

    2018-01-01

    The aim of this study was to evaluate morphological (of fruit and kernel), mechanical (namely shell rupture force) and antioxidant properties (including phenolics and flavonoid content) of five Portuguese almond cultivars, comparing them with two commercial cultivars (Glorieta and Ferragnès). Of ...... high kernel weight, low percentages of double kernels or losses during shelling and considerable higher phenolics and flavonoids content may be considered by industry during selection of almond.......). Of the analyzed traits, nut and kernel dimensions varied substantially and were used to describe cultivars. However, some traditional cultivars recorded similar (Pegarinhos), or even higher (Amendoão, Casanova and Refêgo) nut and kernel weight than commercial cultivars. Furthermore, shelling percentage...... of traditional cultivar (Bonita) was higher than commercial cultivars. Rupture force necessary to break fruits of all traditional cultivars was higher than commercial ones, and was correlated to nut weight cultivars. The phenolics, flavonoids content and antioxidants were higher for Casanova. Parameters like...

  9. Coordinated Actions of Glyoxalase and Antioxidant Defense Systems in Conferring Abiotic Stress Tolerance in Plants

    Directory of Open Access Journals (Sweden)

    Mirza Hasanuzzaman

    2017-01-01

    Full Text Available Being sessile organisms, plants are frequently exposed to various environmental stresses that cause several physiological disorders and even death. Oxidative stress is one of the common consequences of abiotic stress in plants, which is caused by excess generation of reactive oxygen species (ROS. Sometimes ROS production exceeds the capacity of antioxidant defense systems, which leads to oxidative stress. In line with ROS, plants also produce a high amount of methylglyoxal (MG, which is an α-oxoaldehyde compound, highly reactive, cytotoxic, and produced via different enzymatic and non-enzymatic reactions. This MG can impair cells or cell components and can even destroy DNA or cause mutation. Under stress conditions, MG concentration in plants can be increased 2- to 6-fold compared with normal conditions depending on the plant species. However, plants have a system developed to detoxify this MG consisting of two major enzymes: glyoxalase I (Gly I and glyoxalase II (Gly II, and hence known as the glyoxalase system. Recently, a novel glyoxalase enzyme, named glyoxalase III (Gly III, has been detected in plants, providing a shorter pathway for MG detoxification, which is also a signpost in the research of abiotic stress tolerance. Glutathione (GSH acts as a co-factor for this system. Therefore, this system not only detoxifies MG but also plays a role in maintaining GSH homeostasis and subsequent ROS detoxification. Upregulation of both Gly I and Gly II as well as their overexpression in plant species showed enhanced tolerance to various abiotic stresses including salinity, drought, metal toxicity, and extreme temperature. In the past few decades, a considerable amount of reports have indicated that both antioxidant defense and glyoxalase systems have strong interactions in conferring abiotic stress tolerance in plants through the detoxification of ROS and MG. In this review, we will focus on the mechanisms of these interactions and the coordinated

  10. Coordinated Actions of Glyoxalase and Antioxidant Defense Systems in Conferring Abiotic Stress Tolerance in Plants

    Science.gov (United States)

    Hasanuzzaman, Mirza; Nahar, Kamrun; Hossain, Md. Shahadat; Mahmud, Jubayer Al; Rahman, Anisur; Inafuku, Masashi; Oku, Hirosuke; Fujita, Masayuki

    2017-01-01

    Being sessile organisms, plants are frequently exposed to various environmental stresses that cause several physiological disorders and even death. Oxidative stress is one of the common consequences of abiotic stress in plants, which is caused by excess generation of reactive oxygen species (ROS). Sometimes ROS production exceeds the capacity of antioxidant defense systems, which leads to oxidative stress. In line with ROS, plants also produce a high amount of methylglyoxal (MG), which is an α-oxoaldehyde compound, highly reactive, cytotoxic, and produced via different enzymatic and non-enzymatic reactions. This MG can impair cells or cell components and can even destroy DNA or cause mutation. Under stress conditions, MG concentration in plants can be increased 2- to 6-fold compared with normal conditions depending on the plant species. However, plants have a system developed to detoxify this MG consisting of two major enzymes: glyoxalase I (Gly I) and glyoxalase II (Gly II), and hence known as the glyoxalase system. Recently, a novel glyoxalase enzyme, named glyoxalase III (Gly III), has been detected in plants, providing a shorter pathway for MG detoxification, which is also a signpost in the research of abiotic stress tolerance. Glutathione (GSH) acts as a co-factor for this system. Therefore, this system not only detoxifies MG but also plays a role in maintaining GSH homeostasis and subsequent ROS detoxification. Upregulation of both Gly I and Gly II as well as their overexpression in plant species showed enhanced tolerance to various abiotic stresses including salinity, drought, metal toxicity, and extreme temperature. In the past few decades, a considerable amount of reports have indicated that both antioxidant defense and glyoxalase systems have strong interactions in conferring abiotic stress tolerance in plants through the detoxification of ROS and MG. In this review, we will focus on the mechanisms of these interactions and the coordinated action of

  11. Antioxidant and antibacterial activities of polyphenols from ethnomedicinal plants of Burkina Faso

    NARCIS (Netherlands)

    Karou, D.; Dicko, M.H.; Simpore, J.; Traore, A.S.

    2005-01-01

    Polyphenols from four medicinal plants of Burkina Faso, Combretum micranthum, Khaya senegalensis, Pterocarpus erinaceus and Sida acuta, were screened for their antioxidant and antimicrobial activities against pathogenic bacteria. The medicinal plants displayed different polyphenols contents and

  12. Antioxidant Property of Jobelyn as the Possible Mechanism Underlying

    Directory of Open Access Journals (Sweden)

    Solomon Umukoro

    2013-01-01

    Full Text Available   Introduction: Amnesia or loss of memory is the cardinal hallmark of Alzheimer’s disease (AD, a progressive neurodegenerative disorder associated with ageing process. Although, AD had been discovered over a century ago, drugs which could cure or halt the progression of the disease are yet to see the light of the day. However, there has been a growing interest in the use of phytomedicines with multipronged mechanisms of action that could target various aspects of the pathologies of AD. Jobelyn (JB is a potent antioxidant African polyherbal formulation with active components that have been acclaimed to show neuroprotection. T his investigation was carried out to evaluate whether JB has anti-amnesic and antioxidant activities.   Methods: The alteration of alternation behavior in the Y-maze paradigm was utilized as the test for memory function in mice. The effect of JB on a cetylcholinesterase (AChE activity, malondialdehyde (MDA level and the concentrations of glutathione (GSH in the frontal cortex and hippocampus were assessed in rats as means of providing insight into the mechanism underlying its anti-amnesic activity. The animals were given JB (1, 2.5 or 5mg/kg, i.p. daily for 7 days before the biochemical assays or test for memory functions were carried out.   Results: JB was found to produce a significant increase in the level of alternation behavior compared with the control, suggesting anti-amnesic activity. Also, JB reversed the memory impairment induced by scopolamine, which further indicates anti-amnesic property. Furthermore, JB demonstrated a significant inhibition of MDA formation in the frontal cortex and hippocampus of rats, indicating antioxidant property. In addition, it increased the defense armory of the brain tissues, as it significantly increased the concentrations of GSH in the frontal cortex and hippocampus of rats. However, JB did not demonstrate any inhibitory effect against AChE activity in the frontal cortex and

  13. Phenylpropanoid Glycoside Analogues: Enzymatic Synthesis, Antioxidant Activity and Theoretical Study of Their Free Radical Scavenger Mechanism

    Science.gov (United States)

    López-Munguía, Agustín; Hernández-Romero, Yanet; Pedraza-Chaverri, José; Miranda-Molina, Alfonso; Regla, Ignacio; Martínez, Ana; Castillo, Edmundo

    2011-01-01

    Phenylpropanoid glycosides (PPGs) are natural compounds present in several medicinal plants that have high antioxidant power and diverse biological activities. Because of their low content in plants (less than 5% w/w), several chemical synthetic routes to produce PPGs have been developed, but their synthesis is a time consuming process and the achieved yields are often low. In this study, an alternative and efficient two-step biosynthetic route to obtain natural PPG analogues is reported for the first time. Two galactosides were initially synthesized from vanillyl alcohol and homovanillyl alcohol by a transgalactosylation reaction catalyzed by Kluyveromyces lactis β-galactosidase in saturated lactose solutions with a 30%–35% yield. To synthesize PPGs, the galactoconjugates were esterified with saturated and unsaturated hydroxycinnamic acid derivatives using Candida antarctica Lipase B (CaL-B) as a biocatalyst with 40%–60% yields. The scavenging ability of the phenolic raw materials, intermediates and PPGs was evaluated by the 2,2-diphenyl-1-picrylhydrazyl radical (DPPH•) method. It was found that the biosynthesized PPGs had higher scavenging abilities when compared to ascorbic acid, the reference compound, while their antioxidant activities were found similar to that of natural PPGs. Moreover, density functional theory (DFT) calculations were used to determine that the PPGs antioxidant mechanism proceeds through a sequential proton loss single electron transfer (SPLET). The enzymatic process reported in this study is an efficient and versatile route to obtain PPGs from different phenylpropanoid acids, sugars and phenolic alcohols. PMID:21674039

  14. Fertilization Mechanisms in Flowering Plants.

    Science.gov (United States)

    Dresselhaus, Thomas; Sprunck, Stefanie; Wessel, Gary M

    2016-02-08

    Compared with the animal kingdom, fertilization is particularly complex in flowering plants (angiosperms). Sperm cells of angiosperms have lost their motility and require transportation as a passive cargo by the pollen tube cell to the egg apparatus (egg cell and accessory synergid cells). Sperm cell release from the pollen tube occurs after intensive communication between the pollen tube cell and the receptive synergid, culminating in the lysis of both interaction partners. Following release of the two sperm cells, they interact and fuse with two dimorphic female gametes (the egg and the central cell) forming the major seed components embryo and endosperm, respectively. This process is known as double fertilization. Here, we review the current understanding of the processes of sperm cell reception, gamete interaction, their pre-fertilization activation and fusion, as well as the mechanisms plants use to prevent the fusion of egg cells with multiple sperm cells. The role of Ca(2+) is highlighted in these various processes and comparisons are drawn between fertilization mechanisms in flowering plants and other eukaryotes, including mammals. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Antioxidants

    Science.gov (United States)

    Antioxidants are man-made or natural substances that may prevent or delay some types of cell damage. Antioxidants are found in many foods, including fruits and ... are also available as dietary supplements. Examples of antioxidants include Beta-carotene Lutein Lycopene Selenium Vitamin A ...

  16. Detoxification Mechanisms of Mercury Toxicity in Plants: A Review

    Directory of Open Access Journals (Sweden)

    Shilpa Shrivastava

    2015-12-01

    Full Text Available Mercury is one of the most toxic heavy metals present in the earth’s crust. It has been considered as environmental pollutant because of its potent toxicity to plants and humans. In this review, we discuss mercury toxicity responses on plant metabolism and its detoxification mechanism by phytochelatins and antioxidant enzymes. Some light is also shed on selenium antagonistic study with mercury. Due to its potential toxicity, it has attracted attention in fields of soil science and plant nutrition. Mercury has harmful toxic effects on the molecular and physiobiochemical behavior of plants. Mostly research work has been done on seed germination, and shoot, root, and leaf morphology. Enzyme responses with respect to mercury as a result Hg accumulated in food chain is also reviewed here. Hence, this review may provide a compiled data for other researches in this direction, to provide a better mechanism or details about mercury’s noxious effect in the ecosystem.

  17. Antioxidant activity of five Brazilian plants used as traditional medicines and food in Brazil.

    Science.gov (United States)

    Santos, Allana K L; Costa, José G M; Menezes, Irwin R A; Cansanção, Isaac F; Santos, Karla K A; Matias, Edinardo F F; Coutinho, Henrique D M

    2010-10-01

    This study evaluates the radical-scavenging activity of five plants used as food and medicines in the northeastern region of Brazil. Spectrophotometric analysis of the plants' ethanol extracts was carried out. The antioxidant activity was determined by the DPPH (2,2-diphenyl-1 picrylhydrazyl) test. The antioxidant capacity was measured using ascorbic acid as a positive control. All tested plant extracts showed an antioxidant activity, but the highest activity was observed with the extracts of Momordica charantia and Eugenia jambolana. Therefore, these species must be studied as a putative source of products for use in the prevention and treatment of diseases in which oxidants or free radicals are implicated.

  18. In vitro antioxidant assay of selected aqueous plant extracts and their polyherbal formulation

    Directory of Open Access Journals (Sweden)

    Ganga Raju M.

    2015-04-01

    Full Text Available To support the use of selected plant extracts in Ayurveda, naturopathy, the antioxidant potential of the aqueous extract of Vincarosea (VR, Gymnemasylvestre (GS, Tinosporacordifolia (TC and Emblicaofficinalis (EO and their mixture (PHF of Indian origin was investigated for in vitro antioxidant activity by using in vitro models like superoxide, hydroxyl radical scavenging activity and lipid peroxide inhibition assay. The results were compared with standard (ascorbic acid, a known antioxidant. The various phytoconstituents identified in the above selected plants extracts were poly phenols, flavonoids, terpenoids, tannins, alkaloids. The terpenoids were reported to protect lipids, blood and body fluids against the attack of free radicals, some types of reactive oxygen, hydroxylic groups, peroxides and superoxide radicals. The presence of these phytoconstituents in selected plants might be responsible for antioxidant activity with that of known antioxidant ascorbic acid.

  19. Effect of water deficiency on the cellular status and antioxidant defences in anthyllis sericea. A saharian plant

    International Nuclear Information System (INIS)

    Triki, T.; Selmi, A.

    2017-01-01

    Drought is known as an important restricting factor of plant productivity in arid and semi arid areas of the world. The intended increase of temperature in many areas will intensify this problem. In this study the effect of drought stress was studied in a Saharan plant, Anthyllissericea, by Poly-ethylene glycol (PEG-6000) in three different treatments (-0.2 MPa (control), -1.2 MPa (moderate stress) and -2.1 MPa (severe stress)) after 14 days. Nitric oxide (NO) content, Hydrogen peroxide (H/sub 2/O/sub 2/), RWC, lipid peroxidation and enzymatic antioxidant levels from the leaves were analyzed. Initially, plant growth, RWC and the water potentiel (/psi/ w) were decreased with increase of osmotic stress. Drought induces the increase of NO and hydrogen peroxide levels reaching maximum in severe stress period. MDA, proline content and soluble sugars were found to be higher under moderate and severe stress conditions. Plant employs enzymatic antioxidant system to avoid the subproduction of (ROS) resulting by drought. The analysis of CAT, APX and POD activities showed a significant increase during drought stress. Under moderate and severe stress treatments, the higher activities of H/sub 2/O/sub 2/, NO, CAT and POD showed a stronger system of antioxidant defences in the metabolic regulation during the applied stress. These results propose that A. sericea has the capacity to activate important adaptative mechanisms under dry conditions involving activation of enzymatic antioxidative defense system and higher osmoprotectants accumulation. (author)

  20. Antioxidant properties and principal phenolic phytochemicals of Indian medicinal plants from Asclepiadoideae and Periplocoideae.

    Science.gov (United States)

    Surveswaran, Siddharthan; Cai, Yi-Zhong; Xing, Jie; Corke, Harold; Sun, Mei

    2010-02-01

    The subfamily Asclepiadoideae (Apocynaceae) and the closely-related Periplocoideae are sources of many indigenous Indian medicinal plants. We surveyed antioxidant properties and total phenolic and flavonoid contents of 15 samples, representing 12 Indian medicinal plant species from these subfamilies. Total antioxidant assay was performed using the 2,2-azinobis-3-ethylbenzothiazoline-6-sulfonic acid and ferric-reducing antioxidant power methods. Total phenolic and flavonoid contents were measured using colourimetric methods. Principal phenolic compounds were detected by liquid chromatography-mass spectrometry (LC-MS). The highest antioxidant capacity and high levels of total phenolics and flavonoids were found in the leaves of Decalepis hamiltonii. The stems of Sarcostemma brevistigma exhibited the highest xanthine oxidase (XO) inhibitory activity. The roots of Hemidesmus indicus showed the highest OH(-) radical scavenging activity. In general, Periplocoideae members exhibited higher antioxidant activity than Asclepiadoideae members. The highly significant and positive correlations (R > 0.914) between total antioxidant capacity parameters and total phenolic content indicated that the phenolic compounds contributed significantly to the antioxidant activity of the tested plant samples. The principal phenolic phytochemicals from these plants were identified by LC-MS, including flavonoids, phenolic acids and phenolic terpenoids. Chlorogenic acid and rutin were detected in almost all of the plant samples. The LC-MS analysis provided full fingerprints of the principal phenolic compounds in the medicinal plants from these two subfamilies, which are useful for their authentication and quality evaluation.

  1. Release of Antioxidant Capacity from Five Plant Foods during a Multistep Enzymatic Digestion Protocol

    NARCIS (Netherlands)

    Papillo, V.A.; Vitaglione, P.; Graziani, G.; Gokmen, V.; Fogliano, V.

    2014-01-01

    This study aimed at elucidating the influence of food matrix on the release of antioxidant activity from five plant foods (apple, spinach, walnut, red bean, and whole wheat). To this purpose a protocol based on sequential enzymatic digestion was adopted. The total antioxidant capacity (TAC) of both

  2. Evaluation of Antioxidant Activity of Medicinal Plant Extracts Produced for Commercial Purpose

    Directory of Open Access Journals (Sweden)

    A. D. Sathisha

    2011-01-01

    Full Text Available The antioxidant potential of some herbal plant extracts (commercial products was measured using various in vitro assays. Among the extracts from Curcuma longa, Caffea arabica, Tribulus terrestris, Bacopa monnieri and Trigonella foenum- graecum, the Curcuma longa and coffee bean extract (Caffea Arabica showed greater antioxidant activity measured as scavenging of DPPH, superoxide radicals, reducing power and inhibition of microsomal lipid peroxidation.

  3. Phytochemical profiles and antioxidant potential of four Arctic vascular plants from Svalbard

    Digital Repository Service at National Institute of Oceanography (India)

    Singh, P.; Singh, S.M.; DeSouza, L.; Wahidullah, S.

    the chemical composition and antioxidative activities of four Arctic flowering plant species (Dryas octopetala, Carex rupestris, Silene uralensis and Deschampsia alpina.) through in vitro measurements of the free radical scavenging activities (FRS), inhibition...

  4. In vitro antioxidant and anti-proliferative activity of Ethiopian medicinal plant extracts

    Czech Academy of Sciences Publication Activity Database

    Tauchen, J.; Doskočil, I.; Caffi, C.; Lulekal, E.; Maršík, Petr; Havlík, J.; Van Damme, P.; Kokoška, L.

    2015-01-01

    Roč. 74, NOV 15 (2015), s. 671-679 ISSN 0926-6690 Institutional support: RVO:61389030 Keywords : Antioxidant * Anticarcinogenic * Plant extract Subject RIV: GM - Food Processing Impact factor: 3.449, year: 2015

  5. Antioxidant activity of the medicinal plant Coleus forskohlii Briq.

    African Journals Online (AJOL)

    user

    2011-03-28

    Mar 28, 2011 ... Key words: Coleus forskohlii, roots, stem, leaves, tubers, enzymatic ... of the antioxidant defence system in the cell to counteract oxidation ... member of the family Lamiaceae, is an ancient root drug ... rate of sensory nerve regeneration in freeze-lesioned ... tubers were screened for their antioxidant potential.

  6. Biochemical mechanisms of signaling: perspectives in plants under arsenic stress.

    Science.gov (United States)

    Islam, Ejazul; Khan, Muhammad Tahir; Irem, Samra

    2015-04-01

    Plants are the ultimate food source for humans, either directly or indirectly. Being sessile in nature, they are exposed to various biotic and abiotic stresses because of changing climate that adversely effects their growth and development. Contamination of heavy metals is one of the major abiotic stresses because of anthropogenic as well as natural factors which lead to increased toxicity and accumulation in plants. Arsenic is a naturally occurring metalloid toxin present in the earth crust. Due to its presence in terrestrial and aquatic environments, it effects the growth of plants. Plants can tolerate arsenic using several mechanisms like phytochelation, vacuole sequestration and activation of antioxidant defense systems. Several signaling mechanisms have evolved in plants that involve the use of proteins, calcium ions, hormones, reactive oxygen species and nitric oxide as signaling molecules to cope with arsenic toxicity. These mechanisms facilitate plants to survive under metal stress by activating their defense systems. The pathways by which these stress signals are perceived and responded is an unexplored area of research and there are lots of gaps still to be filled. A good understanding of these signaling pathways can help in raising the plants which can perform better in arsenic contaminated soil and water. In order to increase the survival of plants in contaminated areas there is a strong need to identify suitable gene targets that can be modified according to needs of the stakeholders using various biotechnological techniques. This review focuses on the signaling mechanisms of plants grown under arsenic stress and will give an insight of the different sensory systems in plants. Furthermore, it provides the knowledge about several pathways that can be exploited to develop plant cultivars which are resistant to arsenic stress or can reduce its uptake to minimize the risk of arsenic toxicity through food chain thus ensuring food security. Copyright © 2015

  7. The total antioxidant capacity and fluorescence imaging of selected plant leaves commonly consumed in Brunei Darussalam

    Science.gov (United States)

    Watu, Aswani; Metussin, Nurzaidah; Yasin, Hartini M.; Usman, Anwar

    2018-02-01

    We investigated the total antioxidant capacity and fluorescence imaging of several selected plants, namely Centella asiatica, Aidia borneensis and Anacardium occidentale, which are grown and traditionally consumed in Brunei Darussalam. The total antioxidant capacities of aqueous-methanolic infusions of their leaves were measured by 2,2-diphenyl-1-picrylhydrazyl (DPPH) free radical scavenging activity, and microscopic fluorescence images were measured to identify the fluorescent substances bound in the leaves. We found that the total antioxidant capacity of their infusions is estimated to be 150, 25, 15 folds, respectively, lower compared with that of the standard gallic acid. Accordingly, we demonstrated that the relative antioxidant activity of young and matured leaves agrees with the intensity of red light emission of their fresh leaves upon UV excitation. Thus, this non-invasive spectroscopic method can be potentially utilized to indicate the antioxidants in plant leaves qualitatively.

  8. Antibacterial, antioxidant and antitumor properties of Moroccan medicinal plants: A review

    Directory of Open Access Journals (Sweden)

    Abdelhakim Bouyahya

    2017-01-01

    Full Text Available Aromatic and medicinal plants have been traditionally used since antiquity to fight against illnesses. Recently, several researches have focused on the pharmacological properties and various bioactivities of natural products are extracted from medicinal plants, including the properties of antibacterial, antitumor and antioxidant activities. The products of medicinal plants are the secondary metabolites belonging to different compound classes such as essential oils, polyphenols, flavonoids and other phytochemical classes. In Morocco, medicinal plants are the major source of bioactive compounds and the majority of them are used in phytotherapy. The biological potential of various Moroccan medicinal plants attracts a lot of interest in the literature. They include antibacterial, antioxidant and antitumor investigations. In this context, this work aims at discussing antibacterial, antitumor and antioxidant properties of Moroccan medicinal plants.

  9. Relation between Silver Nanoparticle Formation Rate and Antioxidant Capacity of Aqueous Plant Leaf Extracts

    Directory of Open Access Journals (Sweden)

    Azat Akbal

    2016-01-01

    Full Text Available Correlation between the antioxidant capacity and silver nanoparticle formation rates of pomegranate (Punica granatum, quince (Cydonia oblonga, chestnut (Castanea sativa, fig (Ficus carica, walnut (Juglans cinerea, black mulberry (Morus nigra, and white mulberry (Morus alba leaf extracts is investigated at a fixed illumination. Silver nanoparticles formed in all plant leaf extracts possess round shapes with average particle size of 15 to 25 nm, whereas corresponding surface plasmon resonance peak wavelengths vary between 422 nm and 451 nm. Cupric reducing antioxidant capacity technique is used as a reference method to determine total antioxidant capacity of the plant leaf extracts. Integrated absorbance over the plasmon resonance peaks exhibits better linear relation with antioxidant capacities of various plant leaf extracts compared to peak absorbance values, with correlation coefficient values of 0.9333 and 0.7221, respectively.

  10. Natural antioxidant activity of commonly consumed plant foods in India: effect of domestic processing.

    Science.gov (United States)

    Sreeramulu, D; Reddy, C V K; Chauhan, Anitha; Balakrishna, N; Raghunath, M

    2013-01-01

    Phytochemicals protect against oxidative stress which in turn helps in maintaining the balance between oxidants and antioxidants. In recent times natural antioxidants are gaining considerable interest among nutritionists, food manufacturers, and consumers because of their perceived safety, potential therapeutic value, and long shelf life. Plant foods are known to protect against degenerative diseases and ageing due to their antioxidant activity (AOA) attributed to their high polyphenolic content (PC). Data on AOA and PC of Indian plant foods is scanty. Therefore we have determined the antioxidant activity in 107 commonly consumed Indian plant foods and assessed their relation to their PC. Antioxidant activity is presented as the range of values for each of the food groups. The foods studied had good amounts of PC and AOA although they belonged to different food groups. Interestingly, significant correlation was observed between AOA (DPPH and FRAP) and PC in most of the foods, corroborating the literature that polyphenols are potent antioxidants and that they may be important contributors to the AOA of the plant foods. We have also observed that common domestic methods of processing may not affect the PC and AOA of the foods studied in general. To the best of our knowledge, these are the first results of the kind in commonly consumed Indian plant foods.

  11. Antioxidant activities of the selected plants from the family ...

    African Journals Online (AJOL)

    . Antioxidant activities of these extracts were evaluated through DPPH• radical scavenging, phosphomolybdate and ferric thiocyanate (FTC) methods. Methanolic extract of Cinnamomum zeylanicum and Cinnamomum tamala showed highest ...

  12. A Microfluidic Lab-on-a-Disc (LOD for Antioxidant Activities of Plant Extracts

    Directory of Open Access Journals (Sweden)

    Nurhaslina Abd Rahman

    2018-03-01

    Full Text Available Antioxidants are an important substance that can fight the deterioration of free radicals and can easily oxidize when exposed to light. There are many methods to measure the antioxidant activity in a biological sample, for example 2,2-diphenyl-1-picrylhydrazyl (DPPH antioxidant activity test, which is one of the simplest methods used. Despite its simplicity, the organic solvent that has been used to dilute DPPH is easily evaporated and degraded with respect to light exposure and time. Thus, it needs to be used at the earliest convenient time prior to the experiment. To overcome this issue, a rapid and close system for antioxidant activity is required. In this paper, we introduced the Lab-on-a-Disc (LoD method that integrates the DPPH antioxidant activity test on a microfluidic compact disc (CD. We used ascorbic acid, quercetin, Areca catechu, Polygonum minus, and Syzygium polyanthum plant extracts to compare the results of our proposed LoD method with the conventional method. Contrasted to the arduous laborious conventional method, our proposed method offer rapid analysis and simple determination of antioxidant. This proposed LoD method for antioxidant activity in plants would be a platform for the further development of antioxidant assay.

  13. Antioxidative Activities and Active Compounds of Extracts from Catalpa Plant Leaves

    Directory of Open Access Journals (Sweden)

    Hongyu Xu

    2014-01-01

    Full Text Available In order to screen the Catalpa plant with high antioxidant activity and confirm the corresponding active fractions from Catalpa ovata G. Don, C. fargesii Bur., and C. bungei C. A. Mey., total flavonoid contents and antioxidant activities of the extracts/fractions of Catalpa plant leaves were determined. The determined total flavonoid content and antioxidant activity were used as assessment criteria. Those compounds with antioxidant activity were isolated with silica gel column chromatography and ODS column chromatography. Our results showed that the total flavonoid content in C. bungei C. A. Mey. (30.07 mg/g·DW was the highest, followed by those in C. fargesii Bur. (25.55 mg/g·DW and C. ovata G. Don (24.96 mg/g·DW. According to the determination results of total flavonoid content and antioxidant activity in 3 clones of leaves of C. bungei C. A. Mey., the total flavonoid content and antioxidant activity in crude extracts from C. bungei C. A. Mey. 6 (CA6 leaves were the highest. Moreover, the results showed that the total flavonoid content and antioxidant activities of ethyl acetate (EA fraction in ethanol crude extracts in CA6 leaves were the highest, followed by n-butanol, petroleum ether (PE, and water fractions. Two flavonoid compounds with antioxidant activity were firstly isolated based on EA fraction. The two compounds were luteolin (1 and apigenin (2, respectively.

  14. Natural Antioxidants: Multiple Mechanisms to Protect Skin From Solar Radiation

    Directory of Open Access Journals (Sweden)

    Spencer Dunaway

    2018-04-01

    Full Text Available Human skin exposed to solar ultraviolet radiation (UVR results in a dramatic increase in the production of reactive oxygen species (ROS. The sudden increase in ROS shifts the natural balance toward a pro-oxidative state, resulting in oxidative stress. The detrimental effects of oxidative stress occur through multiple mechanisms that involve alterations to proteins and lipids, induction of inflammation, immunosuppression, DNA damage, and activation of signaling pathways that affect gene transcription, cell cycle, proliferation, and apoptosis. All of these alterations promote carcinogenesis and therefore, regulation of ROS levels is critical to the maintenance of normal skin homeostasis. Several botanical products have been found to exhibit potent antioxidant capacity and the ability to counteract UV-induced insults to the skin. These natural products exert their beneficial effects through multiple pathways, including some known to be negatively affected by solar UVR. Aging of the skin is also accelerated by UVR exposure, in particular UVA rays that penetrate deep into the epidermis and the dermis where it causes the degradation of collagen and elastin fibers via oxidative stress and activation of matrix metalloproteinases (MMPs. Because natural compounds are capable of attenuating some of the UV-induced aging effects in the skin, increased attention has been generated in the area of cosmetic sciences. The focus of this review is to cover the most prominent phytoproducts with potential to mitigate the deleterious effects of solar UVR and suitability for use in topical application.

  15. Effect of drought and rewatering on the cellular status and antioxidant response of Medicago truncatula plants.

    Science.gov (United States)

    Filippou, Panagiota; Antoniou, Chrystalla; Fotopoulos, Vasileios

    2011-02-01

    Effects of water stress on plants have been well-documented. However, the combined responses to drought and rewatering and their underlying mechanisms are relatively unknown. The present study attempts to describe spatiotemporal alterations in the physiology and cellular status of Medicago truncatula tissues that result from and subsequently follow a period of moderate water deficit. Physiological processes and cellular damage levels were monitored in roots and leaves by determining lipid peroxidation levels, as well as nitric oxide and hydrogen peroxide content, further supported by stomatal conductance and chlorophyll fluorescence measurements in leaves. During water stress, cells in both organs displayed increased damage levels and reactive oxygen and nitrogen species content, while leaves showed reduced stomatal conductance. Furthermore, both tissues demonstrated increased proline content. Upon rewatering, plants recovered displaying readings similar to pre-stress control conditions. Furthermore, molecular analysis of antioxidant gene expression by quantitative real-time RT-PCR revealed differential spatiotemporal regulation in a number of genes examined (including catalase, cytosolic ascorbate peroxidase, copper/zinc and iron superoxide dismutase and alternative oxidase). Overall, M. truncatula plants demonstrated increased sensitivity to drought-induced oxidative damage; however, this was reversed following rewatering indicating a great elasticity in the plant's capacity to cope with free oxygen radicals. 

  16. Assessment of effect of hydroalcoholic and decoction methods on extraction of antioxidants from selected Indian medicinal plants.

    Science.gov (United States)

    Kaneria, Mital; Kanani, Bhavana; Chanda, Sumitra

    2012-03-01

    To assess the effects of extraction methods on antioxidant activities of selected Indian medicinal flora. Different parts of plants were extracted by hydroalcoholic and decoction methods using water and various concentrations of methanol (ME) viz. 75%, 50% and 25% ME. The antioxidant activity of all the different extracts was evaluated using two different antioxidant assays viz. 2,2-diphenyl-1-picryl hydrazyl (DPPH) free radical scavenging assay and superoxide anion radical scavenging assay. Total phenol and flavonoid content was also estimated. The results showed that the extracting solvent significantly altered the antioxidant property estimations of screened plants. High correlations between phenolic compositions and antioxidant activities of extracts were observed. High levels of antioxidant activities were detected in Manilkara zapota (M. zapota) as compared with other screened plants. The results obtained appear to confirm the effect of different methods on extraction of antioxidants and antioxidant property of M. zapota.

  17. 28-Homobrassinolide mitigates boron induced toxicity through enhanced antioxidant system in Vigna radiata plants.

    Science.gov (United States)

    Yusuf, Mohammad; Fariduddin, Qazi; Ahmad, Aqil

    2011-11-01

    The objective of this study was to establish relationship between boron induced oxidative stress and antioxidant system in Vigna radiata plants and also to investigate whether brassinosteroids will enhance the level of antioxidant system that could confer tolerance to the plants from the boron induced oxidative stress. The mung bean (V. radiata cv. T-44) plants were administered with 0.50, 1.0 and 2.0 mM boron at 6 d stage for 7 d along with nutrient solution. At 13 d stage, the seedlings were sprayed with deionized water (control) or 10(-8) M of 28-homobrassinolide and plants were harvested at 21 d stage to assess growth, leaf gas-exchange traits and biochemical parameters. The boron treatments diminished growth, water relations and photosynthetic attributes along with nitrate reductase and carbonic anhydrase activity in the concentration dependent manner whereas, it enhanced lipid peroxidation, electrolyte leakage, accumulation of H(2)O(2) as well as proline, and various antioxidant enzymes in the leaves of mung bean which were more pronounced at higher concentrations of boron. However, the follow-up application of 28-homobrassinolide to the boron stressed plants improved growth, water relations and photosynthesis and further enhanced the various antioxidant enzymes viz. catalase, peroxidase and superoxide dismutase and content of proline. The elevated level of antioxidant enzymes as well as proline could have conferred tolerance to the B-stressed plants resulting in improved growth, water relations and photosynthetic attributes. Copyright © 2011 Elsevier Ltd. All rights reserved.

  18. The Antioxidant Capacities and Total Phenolic Contents of Some Medicinal Plants in Iran

    Directory of Open Access Journals (Sweden)

    Ali Mirzaei

    2011-12-01

    Full Text Available Background & Objectives: Free radicals are highly reactive molecules may cause great damage to cell membranes and DNA and Result in inducing oxidation DNA mutations leading to cancer, degenerative, and other diseases. Plant antioxidant derived may be preventive of free radical damages. Methods & Materials: The Stems and flower sample of plants air-dried, finely ground and were extracted by ethanol: water (70:30 for 48 h. Extracts were filtered and dried under vacuum. The antioxidant activity of five ethanolic extract of medicinal plants (Descurainia Sophia, Plantago major, Trachyspermum copticum L, Coriandrum sativum and Trigonella foenum-graecum from Iran were analysed by five different methods [1,1-diphenyl-2-picrylhydrazyl (DPPH radical, 2,2,azinobis-3-ethylbenzthiazoline-6-sulphonic acid (ABTS radical cation, Ferric-reducing antioxidant power assay (FRAP, phosphomolybdenum (PMB and reducing power (RP]. In addition, for determination of antioxidant components total phenolic content was also analyzed. Results: The total phenolic content of medicinal plant ranges from 74 to 154.3 mg Gallic acid/g extract as measured by the Folin–Ciocalteau method. Values of DPPH varied from 15.5 to 19.6 µmol trolex/g. FRAP ranged from 124.2 to 753 µmol of Fe(II/g extract. Antioxidant activity of the Plantago major was always higher compared to the other plants extracts values of total phenols content and antioxidant capacity by DPPH, ABTS, FRAP, (154.33 mg GAE/g, 1856 µmol trolox, 750 µmol trolox and 1169 µmol of Fe(II/g, extract respectively. The range of total antioxidant activity by phosphomolybdenum method was 513.3 to 870 µmol trolox/g. The reducing ability of the tested extracts was between 0.31-1.26. Plantago majorwas also highest activity in both tests. Conclusion: This study clearly demonstrated that Plantago major crude extract exhibit significant antioxidant activity.

  19. Antioxidant Activity of Some Plant Extracts Towards Xanthine Oxidase, Lipoxygenase and Tyrosinase

    Directory of Open Access Journals (Sweden)

    Pi-Yu Chen

    2009-08-01

    Full Text Available Natural products have the potential to be developed into new drugs for the treatment of various diseases. The aim of the present study was to screen the antioxidant activities of some common edible fruits, garden plants and medicinal plants indigenous to Taiwan. This was performed by assessing the activities of lipoxygenase, xanthine oxidase and tyrosinase following incubation with extracts from these plants. A further aim was to use HPLC-DAD and tyrosinase to chromatographically identify the antioxidative constituents obtained from an extract exhibiting strong antioxidative properties. The acetone extracts of 27 cultivated plant species from Taiwan were tested for antioxidant activities towards xanthine oxidase, tyrosinase and lipoxygenase using spectrophotometric assays. Koelreuteria henryi, Prunus campanulata, and Rhodiola rosea showed the highest xanthine oxidase inhibitory activities. Camellia sinensis, Rhodiola rosea, and Koelreuteria henryi exhibited good tyrosinase inhibitory activities and potent anti-lipoxygenase activities. As Koelreuteria henryi had notable significant inhibitory activities towards xanthine oxidase, tyrosinase, and lipoxygenase, it was further tested with tyrosinase and HPLC-DAD. The results from this part of the study revealed that the more powerful the antioxidant capability of the extracted component, the greater the decrease in peak height obtained after reacting with tyrosinase. Additional studies are warranted to further characterize the compounds responsible for the antioxidant properties of the examined extracts.

  20. Evaluation of Antioxidant Activity from Different Plant Parts of Senduduk Herb: Extraction Conditions Optimization of Selected Plant Part

    Directory of Open Access Journals (Sweden)

    Kamaludin Nor Helya Iman

    2017-01-01

    Full Text Available This work reports a study on evaluation of antioxidant properties from flower of Senduduk herb. Natural occurring antioxidant was mostly preferred due to their little or no toxicity compared to the synthetic antioxidants which posses carcinogenic effects. Extraction was done on selected plant parts of Sendududk herb including leaves, stem, flower and berry parts to evaluate their antioxidant potentiality. Flower part of Sendudk herb extracted using acetonic solvent promotes highest antioxidant activity which is 93.97 ± 1.38 % as compared to leaves (92.20 ± 0.20 %, stem (47.94 ± 1.42% and berry (92.88 ± 0.63% using the same extracting solvent. Thus, Senduduk flower was chosen to be continued with screening and optimization process. Single factor experiment using the one factor at a time (OFAT method was done to study the effect of each extraction parameter that was solid to solvent ratio, temperature and solvent concentration. The extraction condition in each parametric study which results in highest antioxidant activity was used as the middle level of optimization process using Response Surface Methodology (RSM coupled with Central Composite Design (CCD. The optimum condition was at 1:20 solid to solvent ratio, 64.61°C temperature and 80.24% acetone concentration which result in antioxidant activity of 96.53%. The verification of RSM showed that the model used to predict the antioxidant activity was valid and adequate with the experimental parameters.

  1. Gene expression and activity of antioxidant enzymes in rice plants, cv. BRS AG, under saline stress.

    Science.gov (United States)

    Rossatto, Tatiana; do Amaral, Marcelo Nogueira; Benitez, Letícia Carvalho; Vighi, Isabel Lopes; Braga, Eugenia Jacira Bolacel; de Magalhães Júnior, Ariano Martins; Maia, Mara Andrade Colares; da Silva Pinto, Luciano

    2017-10-01

    The rice cultivar ( Oryza sativa L.) BRS AG, developed by Embrapa Clima Temperado, is the first cultivar designed for purposes other than human consumption. It may be used in ethanol production and animal feed. Different abiotic stresses negatively affect plant growth. Soil salinity is responsible for a serious reduction in productivity. Therefore, the objective of this study was to evaluate the gene expression and the activity of antioxidant enzymes (SOD, CAT, APX and GR) and identify their functions in controlling ROS levels in rice plants, cultivar BRS AG, after a saline stress period. The plants were grown in vitro with two NaCl concentrations (0 and 136 mM), collected at 10, 15 and 20 days of cultivation. The results indicated that the activity of the enzymes evaluated promotes protection against oxidative stress. Although, there was an increase of reactive oxygen species, there was no increase in MDA levels. Regarding genes encoding isoforms of antioxidant enzymes, it was observed that OsSOD3 - CU/Zn , OsSOD2 - Cu/Zn , OsSOD - Cu/Zn , OsSOD4 - Cu/Zn , OsSODCc1 - Cu/Zn , OsSOD - Fe , OsAPX1 , OsCATB and OsGR2 were the most responsive. The increase in the transcription of all genes among evaluated isoforms, except for OsAPX6 , which remained stable, contributed to the increase or the maintenance of enzyme activity. Thus, it is possible to infer that the cv. BRS AG has defense mechanisms against salt stress.

  2. Mechanism of antioxidant interaction on polymer oxidation by thermal and radiation ageing

    International Nuclear Information System (INIS)

    Seguchi, Tadao; Tamura, Kiyotoshi; Shimada, Akihiko; Sugimoto, Masaki; Kudoh, Hisaaki

    2012-01-01

    The mechanism of polymer oxidation by radiation and thermal ageing was investigated for the life evaluation of cables installed in radiation environments. The antioxidant as a stabilizer was very effective for thermal oxidation with a small content in polymers, but was not effective for radiation oxidation. The ionizing radiation induced the oxidation to result in chain scission even at low temperature, because the free radicals were produced and the antioxidant could not stop the oxidation of radicals with the chain scission. A new mechanism of antioxidant effect for polymer oxidation was proposed. The effect of antioxidant was not the termination of free radicals in polymer chains such as peroxy radicals, but was the depression of initial radical formation in polymer chains by thermal activation. The antioxidant molecule was assumed to delocalize the activated energy in polymer chains by the Boltzmann statics (distribution) to result in decrease in the probability of radical formation at a given temperature. The interaction distance (delocalization volume) by one antioxidant molecule was estimated to be 5–10 nm by the radius of sphere in polymer matrix, though the value would depend on the chemical structure of antioxidant. - Highlights: ► Interaction of antioxidant on polymer oxidation is discussed for thermal and radiation ageings. ► Antioxidant is very effective for thermal oxidation, but not for radiation induced oxidation. ► Interaction of antioxidant is not the termination reaction of radicals on polymers. ► Antioxidant is supposed to reduce the provability of polymer radical formation by thermal activation. ► Mechanism of polymer oxidation may not be chain reaction via peroxy radical and hydro-peroxide.

  3. Physico-chemical and antioxidant properties of two medicinal wild plants grown in Moldova region

    OpenAIRE

    Sorina Ropciuc

    2015-01-01

    The major objective of this study is to report physico-chemical (moisture, ash, protein, total phenolic compounds and ascorbic acid) and the antioxidant properties of methanol extracts of nettle (Urtica dioica L.) and typical romaine spice "leurda" (Allium ursinum, wild garlic) fresh and dried. The antioxidant properties of methanol extract of medicinal herbs were evaluated using free radical scavenging test. The phenols were extracted from the medicinal plants with methanol solvent and were ...

  4. Polyphenolic content and antioxidant activity of some wild Saudi Arabian Asteraceae plants.

    Science.gov (United States)

    Shahat, Abdelaaty A; Ibrahim, Abeer Y; Elsaid, Mansour S

    2014-07-01

    To study the antioxidant properties of crude extract of different Asteraceae plants. The antioxidant properties of six extracts were evaluated using different antioxidant tests, including free radical scavenging, reducing power, metal chelation, superoxide anion radical scavenging, total antioxidant capacity and inhibition of lipid peroxidation activities. Picris cyanocarpa (P. cyanocarpa) and Anthemis deserti (A. deserti) had powerful antioxidant properties as radical scavenger, reducing agent and superoxide anion radical scavenger while Achillia fragrantissima (A. fragrantissima) and Artemissia monosperma (A. monosperma) were the most efficient as ion chelator (100% at 100, 200 and 400 μg/mL) A. fragrantissima and Rhantarium appoposum (R. appoposum) showed 100% inhibition on peroxidation of linoleic acid emulsion at 200 and 400 μg/mL, while butylatedhydroxy toluene and ascorbic acid showed 100 and 95% inhibition percentage at 400 μg/mL, respectively. Those various antioxidant activities were compared to standard antioxidants such as butylated hydroxyl toluene and ascorbic acid. In most tests P. cyanocarpa and A. deserti had powerful antioxidant properties as radical scavenger, reducing agent and superoxide anion radical scavenger. Copyright © 2014 Hainan Medical College. Published by Elsevier B.V. All rights reserved.

  5. Phytochemicals, antioxidant, and anthelmintic activity of selected traditional wild edible plants of lower Assam.

    Science.gov (United States)

    Swargiary, Ananta; Daimari, Abhijita; Daimari, Manita; Basumatary, Noymi; Narzary, Ezekiel

    2016-01-01

    Clerodendrum viscosum , Eryngium foetidum , Lippia javanica , and Murraya koenigii are one among the common wild edible plants in Northeast India which are also used as antidiabetic, stomach-ache relieving drugs, etc., The present study was aimed to reveal the phytochemical, antioxidant, and anthelmintic activity of the plants. The antioxidant capacity of methanolic extract of plants was studied by 1,1-diphenyl-2-picrylhydrazyl (DPPH), ferric reducing antioxidant power, TBARS, and total antioxidant activity (TAA). Total phenolics, flavonoids, Vitamin C, carbohydrate, and protein are also estimated following standard protocols. Anthelmintic activity of the extracts has also been studied in vitro against trematode parasites. The result showed that the methanolic extracts of plants possess a substantial quantity of alkaloids, phenolics, flavonoids, proteins, carbohydrates, and Vitamin C. Phenolics, flavonoids, and Vitamin C contents were found higher in C. viscosum followed by M. koenigii , L. javanica , and E. foetidum . The in vitro antioxidant assays revealed substantial free radical scavenging property in all the plants. TAA increased in the order C. viscosum > M. koenigii > L. javanica > E. foetidum . Similarly, C. viscosum displayed a better antioxidant capacity with IC 50 values 29.74 ± 3.63 μg and 148.77 ± 18.38 μg for DPPH and thiobarbituric acid reactive species, respectively. In addition, the plant extracts also showed good anthelmintic activity against Paramphistomum sp. Time taken for paralysis and death were 0:56 ± 0:09 h and 1:35 ± 0:07 h for L. javanica at 50 mg/mL concentration. The study therefore suggests the importance of tested plants as a natural source of free radical scavenger and plausible veterinary uses.

  6. Enhancement the Thermal Stability and the Mechanical Properties of Acrylonitrile-Butadiene Copolymer by Grafting Antioxidant

    Directory of Open Access Journals (Sweden)

    Abdulaziz Ibrahim Al-Ghonamy

    2010-01-01

    Full Text Available Monomeric antioxidants are widely used as effective antioxidants to protect polymers against thermal oxidation. Low molecular weight antioxidants are easily lost from polymer through migration, evaporation, and extraction. Physical loss of antioxidants is considered to be major concern in the environmental issues and safety regulation as well as long life time of polymers. The grafting copolymerization of natural rubber and o-aminophenol was carried out by using two-roll mill machine. The prepared natural rubber-graft-o-Aminophenol, NR-graft-o-AP, was analysed by using Infrared and 1H-NMR Spectroscopy techniques. The thermal stability, mechanical properties, and ultrasonic attenuation coefficient were evaluated for NBR vulcanizates containing the commercial antioxidant, N-phenyl--naphthylamine (PBN, the prepared grafted antioxidant, NR-graft-o-AP, and the control vulcanizate. Results of the thermal stability showed that the prepared NR-graft-o-AP can protect NBR vulcanizate against thermal treatment much better than the commercial antioxidant, PBN, and control mix, respectively. The prepared grafted antioxidant improves the mechanical properties of NBR vulcanizate.

  7. Enhancement the Thermal Stability and the Mechanical Properties of Acrylonitrile-Butadiene Copolymer by Grafting Antioxidant

    International Nuclear Information System (INIS)

    Al-Ghonamy, A.I.; El-Wakil, A.A.; Ramadan, M.; El-Wakil, A.A.; Ramadan, M.

    2010-01-01

    Monomeric antioxidants are widely used as effective antioxidants to protect polymers against thermal oxidation. Low molecular weight antioxidants are easily lost from polymer through migration, evaporation, and extraction. Physical loss of antioxidants is considered to be major concern in the environmental issues and safety regulation as well as long life time of polymers. The grafting copolymerization of natural rubber and o-aminophenol was carried out by using two-roll mill machine. The prepared natural rubber-graft-o-Aminophenol, NR-graft-o-AP, was analysed by using Infrared and 1H-NMR Spectroscopy techniques. The thermal stability, mechanical properties, and ultrasonic attenuation coefficient were evaluated for NBR vulcanizations containing the commercial antioxidant, N-phenyl-β-naphthylamine (PBN), the prepared grafted antioxidant, NR-graft-o-AP, and the control vulcanization. Results of the thermal stability showed that the prepared NR-graft-o-AP can protect NBR vulcanization against thermal treatment much better than the commercial antioxidant, PBN, and control mix, respectively. The prepared grafted antioxidant improves the mechanical properties of NBR vulcanization.

  8. Antioxidative and proline potentials as a protective mechanism in ...

    African Journals Online (AJOL)

    Jane

    2011-07-04

    Jul 4, 2011 ... Antioxidant responses are tested in Soybean (Glycine max. L.) cv.,. “A3935” grown under 0, 50, 100 and 150 ..... dismutase activities by triadimefon in NaCl stressed Raphanus sativus L. Biol. Plantarum 43: 317-320. Nemoto Y ...

  9. Antioxidant Properties and Cardioprotective Mechanism of Malaysian Propolis in Rats

    Science.gov (United States)

    Ahmed, Romana; Hossen, Md. Sakib; Ahmmed, Istiyak; Rumpa, Nur-E-Noushin; Sulaiman, Siti Amrah

    2017-01-01

    Propolis contains high concentrations of polyphenols, flavonoids, tannins, ascorbic acid, and reducing sugars and proteins. Malaysian Propolis (MP) has been reported to exhibit high 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical-scavenging activity and ferric reducing antioxidant power (FRAP) values. Herein, we report the antioxidant properties and cardioprotective properties of MP in isoproterenol- (ISO-) induced myocardial infarction in rats. Male Wistar rats (n = 32) were pretreated orally with an ethanol extract of MP (100 mg/kg/day) for 30 consecutive days. Subcutaneous injection of ISO (85 mg/kg in saline) for two consecutive days caused a significant increase in serum cardiac marker enzymes and cardiac troponin I levels and altered serum lipid profiles. In addition significantly increased lipid peroxides and decreased activities of cellular antioxidant defense enzymes were observed in the myocardium. However, pretreatment of ischemic rats with MP ameliorated the biochemical parameters, indicating the protective effect of MP against ISO-induced ischemia in rats. Histopathological findings obtained for the myocardium further confirmed the biochemical findings. It is concluded that MP exhibits cardioprotective activity against ISO-induced oxidative stress through its direct cytotoxic radical-scavenging activities. It is also plausible that MP contributed to endogenous antioxidant enzyme activity via inhibition of lipid peroxidation. PMID:28261310

  10. Antioxidant Properties and Cardioprotective Mechanism of Malaysian Propolis in Rats

    Directory of Open Access Journals (Sweden)

    Romana Ahmed

    2017-01-01

    Full Text Available Propolis contains high concentrations of polyphenols, flavonoids, tannins, ascorbic acid, and reducing sugars and proteins. Malaysian Propolis (MP has been reported to exhibit high 1,1-diphenyl-2-picrylhydrazyl (DPPH radical-scavenging activity and ferric reducing antioxidant power (FRAP values. Herein, we report the antioxidant properties and cardioprotective properties of MP in isoproterenol- (ISO- induced myocardial infarction in rats. Male Wistar rats (n=32 were pretreated orally with an ethanol extract of MP (100 mg/kg/day for 30 consecutive days. Subcutaneous injection of ISO (85 mg/kg in saline for two consecutive days caused a significant increase in serum cardiac marker enzymes and cardiac troponin I levels and altered serum lipid profiles. In addition significantly increased lipid peroxides and decreased activities of cellular antioxidant defense enzymes were observed in the myocardium. However, pretreatment of ischemic rats with MP ameliorated the biochemical parameters, indicating the protective effect of MP against ISO-induced ischemia in rats. Histopathological findings obtained for the myocardium further confirmed the biochemical findings. It is concluded that MP exhibits cardioprotective activity against ISO-induced oxidative stress through its direct cytotoxic radical-scavenging activities. It is also plausible that MP contributed to endogenous antioxidant enzyme activity via inhibition of lipid peroxidation.

  11. Use of Gallic Acid to Enhance the Antioxidant and Mechanical Properties of Active Fish Gelatin Film.

    Science.gov (United States)

    Limpisophon, Kanokrat; Schleining, Gerhard

    2017-01-01

    This study explores the potential roles of gallic acid in fish gelatin film for improving mechanical properties, UV barrier, and providing antioxidant activities. Glycerol, a common used plasticizer, also impacts on mechanical properties of the film. A factorial design was used to investigate the effects of gallic acid and glycerol concentrations on antioxidant activities and mechanical properties of fish gelatin film. Increasing the amount of gallic acid increased the antioxidant capacities of the film measured by radical scavenging assay and the ferric reducing ability of plasma assay. The released antioxidant power of gallic acid from the film was not reduced by glycerol. The presence of gallic acid not only increased the antioxidant capacity of the film, but also increased the tensile strength, elongation at break, and reduced UV absorption due to interaction between gallic acid and protein by hydrogen bonding. Glycerol did not affect the antioxidant capacities of the film, but increased the elasticity of the films. Overall, this study revealed that gallic acid entrapped in the fish gelatin film provided antioxidant activities and improved film characteristics, namely UV barrier, strength, and elasticity of the film. © 2016 Institute of Food Technologists®.

  12. Antioxidant activities of traditional plants in Sri Lanka by DPPH free radical-scavenging assay

    Directory of Open Access Journals (Sweden)

    Kotaro Hara

    2018-04-01

    Full Text Available This article describes free radical-scavenging activities of extracts of several plants harvested in Sri Lanka through the 1,1-diphenyl-2-picrylhydrazyl (DPPH assay. These plants have traditionally been used in the indigenous systems of medicine in Sri Lanka, such as Ayurveda, as described below. (English name, “local name in Sri Lanka,” (scientific name.bougainvillea plant, “bouganvilla,” (Bougainvillea grabla, purple fruited pea eggplant,”welthibbatu,” (Solanum trilobatum [1], country borage plant, “kapparawalliya,” (Plectranthus amboinicus [2], malabar nut plant, “adhatoda,” (Justicia adhatoda [3], long pepper plant,”thippili,” (Piper longum [4], holy basil plant, “maduruthala,” (Ocimum tenuiflorum [5], air plant, “akkapana,” (Kalanchoe pinnata [6], plumed cockscomb plant, “kiri-henda,” (Celosia argentea [7], neem plant,”kohomba,” (Azadirachta indica [8], balipoovu plant, “polpala,” (Aerva lanata [9], balloon-vine plant, “wel penera,” (Cardiospermum halicacabum [10], emblic myrobalan plant, “nelli,” (Phyllanthus emblica [11], indian copperleaf plant, “kuppameniya,” (Acalypha indica [12], spreading hogweed plant, “pita sudu sarana,” (Boerhavia diffusa [13], curry leaf plant, “karapincha,” (Murraya koenigii [14], indian pennywort plant, “gotukola,” (Centera asiatica [15], jewish plum plant, “ambarella,”(Spondias dulcis [16]. Keywords: Antioxidative activity, DPPH radical-scavenging assay, Traditional plant, Medical herb

  13. Evaluation of antioxidant capacity of Aidia borneensis leaf infusion, an endemic plant in Brunei Darussalam

    Directory of Open Access Journals (Sweden)

    Metussin, N.,

    2017-08-01

    Full Text Available We investigated the total antioxidant capacity of Aidia borneensis leaf infusion, a Bornean endemic plant, which is traditionally consumed as a home-remedy beverage in Brunei Darussalam. The antioxidant capacity of the infusion of A. borneensis leaves was evaluated by 2,2-diphenyl-1-picryhydrazyl (DPPH radical-scavenging ability. We found that the infusion shows a relatively high antioxidant capacity, and it was attributed to its high phenolic, flavonoid, and flavanol contents which were evaluated by Folin–Ciocalteu reagent, colorimetric assay, and aluminum chloride colorimetric method, respectively. By comparing its total antioxidant capacity, we estimated that the infusion of A. borneensis leaves is in the middle rank among twelve different commercially available Camellia sinensis teas. Our findings would have significant implications on A. borneensis products from Brunei Darussalam and on the feasibility of establishing this new beverage among the commercially available conventional C. sinensis and herbal teas.

  14. Applicability Of A Semi-Automated Clinical Chemistry Analyzer In Determining The Antioxidant Concentrations Of Selected Plants

    OpenAIRE

    Allan L. Hilario; Phylis C. Rio; Geraldine Susan C. Tengco; Danilo M. Menorca

    2017-01-01

    Plants are rich sources of antioxidants that are protective against diseases associated to oxidative stress. There is a need for high throughput screening method that should be useful in determining the antioxidant concentration in plants. Such screening method should significantly simplify and speed up most antioxidant assays. This paper aimed at comparing the applicability of a semi-automated clinical chemistry analyzer Pointe Scientific MI USA with the traditional standard curve method and...

  15. Assay for the antioxidant and radioprotectant activity of extracts form endemic plants

    International Nuclear Information System (INIS)

    Kim, Jin Kyu; Kim, Ji Hyang; Woo, Hyun Jung; Plewa, Michael J.

    2004-01-01

    Since radiation damage and oxygen poisoning occur through the formation of reactive oxygen species, it is a challenging task to develop agents with high antioxidant and radioprotectant activities from plant species. In this study, several species of Korean endemic plants were chosen as experimental candidates. Water-and ethanol extracts were made from the candidates and tested for their antioxidant and radioprotectant activities. In vitro antioxidant assay of the aqueous-organic extracts was carried out using the free radical 2,2-diphenyl-1-picryl-hydrazyl scavenging method. Radioprotective effects were tested by means of experimental on irradiated cell cultures and animals. Among others, the water-extract of Ixeris dentata leaves showed a marked effect on the viability of B16 melanoma cells and provided a radioprotective effect on the number of the leukocytes in the irradiated rodents. DNA damage in the lymphocytes after γ-irradiation decreased in the extract administered animals. Many of the extracts tested in this study showed a slightly lower activity in free radical scavenging than the well-known chemical antiozidants such as ascorbic acid, butylated hydroxytuluene, and glutathione. However, some extracts showed an antioxidant activity similar to that of α-tocopherol acetate and caffeine. These results support the optimistic view for developing radioprotective agents from the Korean endemic plants that showed a strong antioxidant activity

  16. Assay for the antioxidant and radioprotectant activity of extracts form endemic plants

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jin Kyu; Kim, Ji Hyang; Woo, Hyun Jung [KAERI, Taejeon (Korea, Republic of); Plewa, Michael J. [University of Illinois, Illinosi (United States)

    2004-07-01

    Since radiation damage and oxygen poisoning occur through the formation of reactive oxygen species, it is a challenging task to develop agents with high antioxidant and radioprotectant activities from plant species. In this study, several species of Korean endemic plants were chosen as experimental candidates. Water-and ethanol extracts were made from the candidates and tested for their antioxidant and radioprotectant activities. In vitro antioxidant assay of the aqueous-organic extracts was carried out using the free radical 2,2-diphenyl-1-picryl-hydrazyl scavenging method. Radioprotective effects were tested by means of experimental on irradiated cell cultures and animals. Among others, the water-extract of Ixeris dentata leaves showed a marked effect on the viability of B16 melanoma cells and provided a radioprotective effect on the number of the leukocytes in the irradiated rodents. DNA damage in the lymphocytes after {gamma}-irradiation decreased in the extract administered animals. Many of the extracts tested in this study showed a slightly lower activity in free radical scavenging than the well-known chemical antiozidants such as ascorbic acid, butylated hydroxytuluene, and glutathione. However, some extracts showed an antioxidant activity similar to that of {alpha}-tocopherol acetate and caffeine. These results support the optimistic view for developing radioprotective agents from the Korean endemic plants that showed a strong antioxidant activity.

  17. Dissecting the integrative antioxidant and redox systems in plant mitochondria. Effect of stress and S-nitrosylation.

    Directory of Open Access Journals (Sweden)

    Juan José Lázaro

    2013-11-01

    Full Text Available Mitochondrial respiration provides the energy needed to drive metabolic and transport processes in cells. Mitochondria are a significant site of reactive oxygen species (ROS production in plant cells, and redox-system components obey fine regulation mechanisms that are essential in protecting the mitochondrial integrity. In addition to ROS, there are compelling indications that nitric oxide (NO. can be generated in this organelle by both reductive and oxidative pathways. ROS and reactive nitrogen species (RNS play a key role in signaling but they can also be deleterious via oxidation of macromolecules. The high production of ROS obligates mitochondria to be provided with a set of ROS scavenging mechanisms. The first line of mitochondrial antioxidants is composed of superoxide dismutase and the enzymes of the ascorbate-glutathione cycle, which are not only able to scavenge ROS but also to repair cell damage and possibly serve as redox sensors. The dithiol-disulfide exchanges form independent signaling nodes and act as antioxidant defense mechanisms as well as sensor proteins modulating redox signaling during development and stress adaptation. The presence of thioredoxin (Trx, peroxiredoxin (Prx and sulfiredoxin (Srx in the mitochondria has been recently reported. Cumulative results obtained from studies in salt stress models have demonstrated that these redox proteins play a significant role in the establishment of salt tolerance. The Trx/Prx/Srx system may be subjected to a fine regulated mechanism involving post-translational modifications, among which S-glutathionylation and S-nitrosylation seem to exhibit a critical role that is just beginning to be understood. This review summarizes our current knowledge in antioxidative systems in plant mitochondria, their interrelationships, mechanisms of compensation and some unresolved questions, with special focus on their response to abiotic stress.

  18. Antioxidant mechanism of bilirubin: both HAT and SET are possible

    International Nuclear Information System (INIS)

    Adhikari, Soumyakanti; Joshi, Ravi; Mukherjee, Tulsi

    2008-01-01

    Bilirubin (BR) plays two extreme roles in physiology, one hand it is a toxic metabolite while at micromolar concentration it acts as antioxidant. It has been observed that hydroxyl, glutathiyl and Linoleic peroxyl radicals abstract hydrogen atom from bilirubin, whereas N 3 , Br 2 , CCl 3 OO, NO 2 radicals react via single electron transfer action. Our study demonstrates that oxidation of bilirubin occurs via both hydrogen atom transfer and single electron transfer depending on the nature of the radical. (author)

  19. Investigation of Extracts from Tunisian Ethnomedicinal Plants as Antioxidants, Cytotoxins, and Antimicrobials

    Institute of Scientific and Technical Information of China (English)

    Guesmi Fatma; Ben Hadj Ahmed Sami; Landoulsi Ahmed

    2017-01-01

    Objective To determine the medicinal potential of various plants and their parts extracted with different solvents. Methods The total phenolic content of acetonitrile/water (60%-40%) (ACN/W) and aqueous (W) extract fractions was determined by high-performance liquid chromatography (HPLC), and terpenic compounds were detected by gas chromatography/mass spectrometry (GC/MS). Antioxidant activity of the samples was evaluated using 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay and β-carotene bleaching method. Cell viability was investigated by thiazolyl blue tetrazolium bromide [3-(4,5-dimethylthiazol)-2-yl 2,5-diphenyltetrazolium bromide] (MTT) assay. The mechanisms involved in cytotoxic activity were investigated in a murine macrophage cell line (RAW 264.7) and cancer lines. Results Our findings show that 11 plant species exhibited biological activity. In addition, moderate antibacterial activity was reported against one or more of the tested bacterial strains at two concentrations: 300μg and 3 mg/disc. Furthermore, our data reveal that among all plants investigated, some extract and hydrophobic fractions were potent scavengers of the DPPH radical (6.78 μg/mL 400, 47.20, and 116.74 μg/mL, respectively. The current work demonstrates that RAW 264.7 cell proliferation was inhibited by samples in a dose-dependent manner. Conclusion Our findings, validated through free radical scavenging activity, agar diffusion assay, and cytotoxicity of essential oils towards cancer cells, show that ethnomedicinal plants used in this work have a novel application as a tumor suppressor.

  20. Eucalyptus tolerance mechanisms to lanthanum and cerium: subcellular distribution, antioxidant system and thiol pools.

    Science.gov (United States)

    Shen, Yichang; Zhang, Shirong; Li, Sen; Xu, Xiaoxun; Jia, Yongxia; Gong, Guoshu

    2014-12-01

    Guanglin 9 (Eucalyptus grandis × Eucalyptus urophlla) and Eucalyptus grandis 5 are two eucalyptus species which have been found to grow normally in soils contaminated with lanthanum and cerium, but the tolerance mechanisms are not clear yet. In this study, a pot experiment was conducted to investigate the tolerance mechanisms of the eucalyptus to lanthanum and cerium. Cell walls stored 45.40-63.44% of the metals under lanthanum or cerium stress. Peroxidase and catalase activities enhanced with increasing soil La or Ce concentrations up to 200 mg kg(-1), while there were no obvious changes in glutathione and ascorbate concentrations. Non-protein thiols concentrations increased with increasing treatment levels up to 200 mg kg(-1), and then decreased. Phytochelatins concentrations continued to increase under La or Ce stress. Therefore, the two eucalyptus species are La and Ce tolerant plants, and the tolerance mechanisms include cell wall deposition, antioxidant system response, and thiol compound synthesis. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Antioxidant responses of chickpea plants subjected to boron toxicity.

    Science.gov (United States)

    Ardic, M; Sekmen, A H; Tokur, S; Ozdemir, F; Turkan, I

    2009-05-01

    This study investigated oxidative stress and the antioxidant response to boron (B) of chickpea cultivars differing in their tolerance to drought. Three-week-old chickpea seedlings were subjected to 0.05 (control), 1.6 or 6.4 mm B in the form of boric acid (H(3)BO(3)) for 7 days. At the end of the treatment period, shoot length, dry weight, chlorophyll fluorescence, B concentration, malondialdehyte content and the antioxidant enzymes superoxide dismutase (SOD), peroxidase (POX), catalase (CAT), ascorbate peroxidase (APX) and glutathione reductase (GR) were measured. The 1.6 mm B treatment did not cause significant changes in shoot length of cultivars, although shoot length increased in the drought-tolerant Gökce and decreased in the drought-sensitive Küsmen after 6.4 mm B treatment. Dry weights of both cultivars decreased with 6.4 mm B treatment. Chlorophyll fluorescence (Fv/Fm) did not change in Gökce at either B level. Nor did it change in Küsmen with 1.6 mm B but Fv/Fm decreased with 6.4 mm B. Boron concentration in the shoots of both cultivars increased significantly with increasing levels of applied B. Significant increases in total SOD activity were observed in shoots of both cultivars given 1.6 and 6.4 mm B. Shoot extracts exhibited five activity bands, two of which were identified as MnSOD and Cu/ZnSOD. In comparison to the control group, all enzyme activities (except APX and SOD) decreased with 1.6 mm B stress. GR activity decreased, while activities of CAT, POX and APX did not change with 6.4 mm B in Küsmen. On the other hand, activities of CAT, APX and SOD increased in Gökce at both B levels. In addition, lipid peroxidation was higher in Küsmen than in Gökce, indicating more damage by B to membrane lipids in the former cultivar. These results suggest that (i) Gökce is tolerant and Küsmen is sensitive to B, and (ii) B tolerance of Gökce might be closely related to increased capacity of the antioxidative system (total SOD, CAT and APX) to

  2. Antioxidant activity of an invasive plant, Melastoma malabathricum and its potential as herbal tea product

    Science.gov (United States)

    Sari, N. M.; Kuspradini, H.; Amirta, R.; Kusuma, I. W.

    2018-04-01

    East Kalimantan possesses abundant biodiversity of tropical medicinal plant. Melastoma malabathricum (known locally as karamunting, senduduk) is an invasive plant along with other species in the family of Melastomataceae with traditional medicinal purposes. This research explored the potential of Karamunting (M. malabathricum) plant for its antioxidant activity and the potential as a material for herbal tea product. The plant was macerated to yield ethanolic extract, and at the same time plant powder was packed into tea bags and extracted with hot water to obtain the infused water. Antioxidant activity was evaluated by DPPH radical scavenging assay. The results showed that the ethanol extracts of plant samples displayed ability to inhibit DPPH free radical formation by 82% at 50 ppm concentration. Evaluation of the tea water extract showed that the highest inhibition obtained by leaves powder by 90% and fruit 88% at 1 minutes immersion time. This finding suggest that leaves and fruit of M. malabathricum plants display potential as herbal tea material having antioxidant activity if the safety aspect can be assured.

  3. Anticancer Activity, Antioxidant Activity, and Phenolic and Flavonoids Content of Wild Tragopogon porrifolius Plant Extracts

    Directory of Open Access Journals (Sweden)

    Fuad Al-Rimawi

    2016-01-01

    Full Text Available Tragopogon porrifolius, commonly referred to as white salsify, is an edible herb used in folk medicine to treat cancer. Samples of Tragopogon porrifolius plant grown wild in Palestine were extracted with different solvents: water, 80% ethanol, and 100% ethanol. The extracts were analyzed for their total phenolic content (TPC, total flavonoid content (TFC, and antioxidant activity (AA. Four different antioxidant assays were used to evaluate AA of the extracts: two measures the reducing power of the extracts (ferric reducing antioxidant power (FRAP and cupric reducing antioxidant power (CUPRAC, while two other assays measure the scavenging ability of the extracts (2,2-azino-di-(3-ethylbenzothialozine-sulphonic acid (ABTS and 2,2-diphenyl-1-picrylhydrazyl (DPPH. Anticancer activity of the plant extracts were also tested on HOS and KHOS osteosarcoma cell lines. The results revealed that the polarity of the extraction solvent affects the TPC, TFC, and AA. It was found that both TPC and AA are highest for plant extracted with 80% ethanol, followed by water, and finally with 100% ethanol. TFC however was the highest in the following order: 80% ethanol > 100% ethanol > water. The plant extracts showed anticancer activities against KHOS cancer cell lines; they reduced total cell count and induced cell death in a drastic manner.

  4. Zinc oxide and silver nanoparticles influence the antioxidative status in a higher aquatic plant, Spirodela punctata

    CSIR Research Space (South Africa)

    Thwala, Melusi

    2012-09-01

    Full Text Available The authors present evidence of free radical activity and resultant anti-oxidative defence in Spirodela plants after exposure to 0.01-1000 mg/L of ZnO and Ag nanoparticles (NPs) over 96-h and 14-d. The quantification of reactive nitrogen...

  5. Total Content of Polyphenols and Antioxidant Activity of Different Melliferous Plants

    Directory of Open Access Journals (Sweden)

    Claudia Pasca

    2016-01-01

    Full Text Available In this study polyphenols content and antioxidant activity of melliferous plants for the following: mint (Mentha pulegium, burdock (Arctium lappa, comfrey (Symphytum officinale, plantain (Pantago lanceolata, thyme (Thymus vulgaris, sage (Salvia officinalis, marigold (Calendula officinalis, small marshmallow (Althaea officinalis, echinacea (Echinaceea angustifolia and black popular (Populus nigra were investigated, using two different extraction methods. High content of polyphenols and flavones were extracted from Populus nigra, with an average of both extractions 23.14 mg GAE/g and 78.07 mg QE/g flavones. Among the studied plants, Arctium lappa registered the highest antioxidant activity (0.129 mmol Trolox/mL in alcoholic extract and Echinaceea angustifolia with a value of 0.122 mmol Trolox/mL in aqueous extract. The lowest values were recorded for the antioxidant activity of Althaea officinalis (alcoholic extract and Arctium lappa (aqueous extract. The results show that Arctium lappa, Echinaceea angustifolia and Populus nigra can be considered melliferous plants for their high biologically active compounds potential and bee products (honey and pollen that having the composition of these plants will have high antioxidant and antibacterial properties.

  6. Antioxidant mechanism of black garlic extract involving nuclear factor erythroid 2-like factor 2 pathway.

    Science.gov (United States)

    Ha, Ae Wha; Kim, Woo Kyoung

    2017-06-01

    Although studies have revealed that black garlic is a potent antioxidant, its antioxidant mechanism remains unclear. The objective of this study was to determine black garlic's antioxidant activities and possible antioxidant mechanisms related to nuclear factor erythroid 2-like factor 2 (Nrf2)-Keap1 complex. After four weeks of feeding rats with a normal fat diet (NF), a high-fat diet (HF), a high-fat diet with 0.5% black garlic extract (HF+BGE 0.5), a high-fat diet with 1.0% black garlic extract (HF+BGE 1.0), or a high-fat diet with 1.5% black garlic extract (HF+BGE 1.5), plasma concentrations of glucose, insulin,homeostatic model assessment of insulin resistance (HOMA-IR) were determined. As oxidative stress indices, plasma concentrations of thiobarbituric acid reactive substances (TBARS) and 8-isoprostaglandin F2α (8-iso-PGF) were determined. To measure antioxidant capacities, plasma total antioxidant capacity (TAC) and activities of antioxidant enzymes in plasma and liver were determined. The mRNA expression levels of antioxidant related proteins such as Nrf2, NAD(P)H: quinone-oxidoreductase-1 (NQO1), heme oxygenase-1 (HO-1), glutathione reductase (GR), and glutathione S-transferase alpha 2 (GSTA2) were examined. Plasma glucose level, plasma insulin level, and HOMA-IR in black garlic supplemented groups were significantly ( P concentration and TAC in the HF+BGE 1.5 group were significantly decreased compared to those of the HF group. The activities of catalase and glutathione peroxidase were significantly ( P antioxidant systems in rats fed with black garlic extract were related to mRNA expression levels of Nrf2 related genes.

  7. Mechanical Stress and Antioxidant Protection in the Retina of Hindlimb Suspended Rats

    Science.gov (United States)

    Glass, Aziza; Theriot, Corey A.; Alway, Stephen E.; Zanello, Susana B.

    2012-01-01

    It has been postulated that hindlimb suspension (HS) causes a cephalad fluid shift in quadrupeds similar to that occurring to humans in microgravity. Therefore, HS may provide a suitable animal model in which to recapitulate the ocular changes observed in the human Visual Impairment and Intracranial Pressure (VIIP) syndrome. This work reports preliminary results from a tissue sharing project using 34 week-old Brown Norway rats. Two different experiments compared normal posture controls and HS rats for 2 weeks and rats exposed to HS for 2 weeks but allowed to recover in normal posture for 2 additional weeks. The effects of two nutritional countermeasures, green tea extract (GT) and plant polyphenol resveratrol (Rv), were also evaluated. Green tea contains the antioxidant epigallocatechin gallate (EGCG). qPCR gene expression analysis of selected targets was performed on RNA from isolated retinas, and histologic analysis was done on one fixed eye per rat. The transcription factor early growth response protein 1 (Egr1) was upregulated almost 2-fold in HS retinas relative to controls (P = 0.059), and its expression returned to control levels after 2 weeks of recovery in normal posture (P = 0.023). HS-induced upregulation of Egr1 was attenuated (but not significantly) in retinas from rats fed an antioxidant rich (GT extract) diet. In rats fed the GT-enriched diet, antioxidant enzymes were induced, evidenced by the upregulation of the gene heme oxygenase 1 (Hmox1) (P = 0.042) and the gene superoxide dismutase 2 (Sod2) (P = 0.0001). Egr1 is a stretch-activated transcription factor, and the Egr1 mechanosensitive response to HS may have been caused by a change in the translaminal pressure and/or mechanical deformation of the eye globe. The observed histologic measurements of the various retinal layers in the HS rats were lower in value than those of the control animal (n = 1), however insufficient data were available for statistical analysis. Aquaporin 4, a water

  8. Chemical composition and antioxidant activity of essential oils isolated from Colombian plants

    Directory of Open Access Journals (Sweden)

    Jesús Olivero-Verbel

    Full Text Available Thirteen essential oils from Colombian plants, obtained by hydrodistillation or microwave-assisted hydrodistillation of total plant, stem, leaves, and flowers were analyzed by gas-chromatography-mass spectrometry techniques. Cytotoxicity of essential oils was assessed using the brine shrimp assay, and their antioxidant activities measuring their effects on the levels of thiobarbituric acid reactive substances on rat liver microsomes induced by Fe2+/H2O2. Five oils showed high cytotoxicity (LC501000 µg/mL.

  9. In vitro propagation of the medicinal plant Ziziphora tenuior L. and evaluation of its antioxidant activity

    OpenAIRE

    Dakah, Abdulkarim; Zaid, Salim; Suleiman, Mohamad; Abbas, Sami; Wink, Michael

    2014-01-01

    Ziziphora tenuior L. (Lamiaceae) is an aromatic herb used for its medicinal values against fungi, bacteria. Micropropagation can be used for large-scale multiplication of essential oil producing plants thus avoiding an overexploitation of natural resources. This work aims to develop a reliable protocol for the in vitro propagation of Z. tenuior, and to compare the antioxidant activity between in vitro propagated and wild plants.

  10. Correlation between heavy metal contents and antioxidants in medicinal plants grown in mining areas

    International Nuclear Information System (INIS)

    Maharia, R.; Dutta, R.K.; Acharya, R.; Reddy, A.V.R.

    2010-01-01

    Full texts: Medicinal plants are widely used as alternate therapeutic agents for various diseases. Three medicinal plants grown in copper mining regions of Khetri in Rajasthan was analyzed for heavy metal contents by instrumental neutron activation analysis. The copper levels were found to be two to three folds higher in these plant leaves as compared to the reported copper levels in the medicinal plants grown in environmentally friendly regions. In our previous study on heavy metals in soil and medicinal plant of Khetri region we have shown bioaccumulation of Cu in the medicinal plants. In addition, the levels of Cr, Fe and Zn were also higher. Antioxidant properties of medicinal plants are one of their major therapeutic functionalities. The role of elevated levels of heavy metals in the medicinal plants was studied with respect to their antioxidant properties. Standard procedures were used for measuring total phenols, flavanoids and DPPH assay of these medicinal plants which were correlated with the heavy metals contents of these plants

  11. Antioxidant and antifungal activities of two spices of mangrove plant extract

    Directory of Open Access Journals (Sweden)

    Somayeh Rastegar

    2016-10-01

    Full Text Available Objective: To evaluate the antifungal and the radical scavenging capacity related to antioxidant potential of ethanol and water extracts of leaves of Rhizophora mucronata (R. mucronata and Avicennia marina (A. marina mangrove plant species against five postharvest pathogenic bacteria. Methods: In vitro assessment of antioxidant and antifungal activities was evaluated in this present study for both aqueous and ethanol extracts prepared from leaves of A. marina and R. mucronata. The antioxidant activities of these mangroves were evaluated by using reducing power and 1,1-diphenyl-2-picrylhydrazyl assays with butylated hydroxytoluene and L-(+- ascorbic acid as standards. Results: The result showed that the antioxidant activities of all extracts increased with increasing concentration of extracts. However, the ethanol extracts of both species showed the highest antioxidant activities. Antimicrobial tests were then carried out by the disk diffusion method. The ethanol extracts of both species showed antifungal activities on Penicillium purpurogenum, Penicillium chrysogenum, Penicillium notatum, Aspergillus niger, Alternaria alternata and Penicillium italicum. However, none of the water extracts exhibited antifungal activity on the studied fungi. Among all the pathogens, tested Aspergillus flavus was the most resistant fungi. Different concentrations of extracts from A. marina and R. mucronata showed different amounts of control against tested fungal strains. Conclusions: This study indicated that mangrove species has natural antioxidant and antifungal properties.

  12. Plant acoustics: in the search of a sound mechanism for sound signaling in plants.

    Science.gov (United States)

    Mishra, Ratnesh Chandra; Ghosh, Ritesh; Bae, Hanhong

    2016-08-01

    Being sessile, plants continuously deal with their dynamic and complex surroundings, identifying important cues and reacting with appropriate responses. Consequently, the sensitivity of plants has evolved to perceive a myriad of external stimuli, which ultimately ensures their successful survival. Research over past centuries has established that plants respond to environmental factors such as light, temperature, moisture, and mechanical perturbations (e.g. wind, rain, touch, etc.) by suitably modulating their growth and development. However, sound vibrations (SVs) as a stimulus have only started receiving attention relatively recently. SVs have been shown to increase the yields of several crops and strengthen plant immunity against pathogens. These vibrations can also prime the plants so as to make them more tolerant to impending drought. Plants can recognize the chewing sounds of insect larvae and the buzz of a pollinating bee, and respond accordingly. It is thus plausible that SVs may serve as a long-range stimulus that evokes ecologically relevant signaling mechanisms in plants. Studies have suggested that SVs increase the transcription of certain genes, soluble protein content, and support enhanced growth and development in plants. At the cellular level, SVs can change the secondary structure of plasma membrane proteins, affect microfilament rearrangements, produce Ca(2+) signatures, cause increases in protein kinases, protective enzymes, peroxidases, antioxidant enzymes, amylase, H(+)-ATPase / K(+) channel activities, and enhance levels of polyamines, soluble sugars and auxin. In this paper, we propose a signaling model to account for the molecular episodes that SVs induce within the cell, and in so doing we uncover a number of interesting questions that need to be addressed by future research in plant acoustics. © The Author 2016. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions

  13. Antioxidant activity and concentration of secondary metabolites in the plant parts of Euphorbia cyparissias L.

    Directory of Open Access Journals (Sweden)

    Stanković Milan S.

    2014-01-01

    Full Text Available This paper presents the results of a screening of nine different extracts from the plant parts (leaves, flowers and stems of Euphorbia cyparissias for total phenolic content, concentration of flavonoids and in vitro antioxidant activity. Main reason for this study is the determination of these parameters and their variability among plant parts and plant extracts obtained by different solvents, respectively. Obtained amounts for total phenolic content ranged from 10.76 to 40.72 mg GA/g. The concentration of flavonoids varied from 34.32 to 134.34 mg Ru/g. The IC50 values of antioxidant activity varied from 88.48 to 2891.08 μg/ml. Results obtained from the different plant parts were of uneven value. Great variability of the studied parameters was observed when comparing the effectiveness of the used solvents. The acetone extracts from stems contain the greatest concentrations of phenolic compounds, especially flavonoids, and showed high antioxidant activity. According to our research, plant parts from E. cyparissias can be regarded as promising candidates for natural plant sources with high value of biological compounds.

  14. ANTIOXIDANT AND ANTIFUNGAL ACTIVITY OF SELECTED MEDICINAL PLANT EXTRACTS AGAINST PHYTOPATHOGENIC FUNGI.

    Science.gov (United States)

    Mahlo, Salome Mamokone; Chauke, Hasani Richard; McGaw, Lyndy; Eloff, Jacobus

    2016-01-01

    Medicinal plants are used by many ethnic groups as a source of medicine for the treatment of various ailments in both humans and domestic animals. These plants produce secondary metabolites that have antimicrobial properties, thus screening of medicinal plants provide another alternative for producing chemical fungicides that are relatively non-toxic and cost-effective. Leaf extracts of selected South African plant species ( Bucida buceras, Breonadia salicina, Harpephyllum caffrum, Olinia ventosa, Vangueria infausta and Xylotheca kraussiana ) were investigated for activity against selected phytopathogenic fungi ( Aspergillus niger, Aspergillus parasiticus, Colletotricum gloeosporioides, Penicillium janthinellum, P. expansum, Trichoderma harzianum and Fusarium oxysporum ). These plant fungal pathogens causes major economic losses in fruit industry such as blue rot on nectaries and postharvest disease in citrus. Plant species were selected from 600 evaluated inter alia, against two animal fungal pathogens ( Candida albicans and Cryptococcus neoformans ). Antioxidant activity of the selected plant extracts were investigated using a qualitative assay (2, 2-diphenyl-1-picrylhydrazyl (DPPH)). Bioautography assay was used to determine the number of antifungal compounds in plant extracts. All plant extracts were active against the selected plant phytopathogenic fungi. Moreover, Bucida buceras had the best antifungal activity against four of the fungi, with minimum inhibitory concentration (MIC) values as low as 0.02 mg/ml and 0.08 mg/ml against P. expansum, P. janthinellum, T. harzianum and F. oxysporum . The plant extracts of five plant species did not possess strong antioxidant activity. However, methanol extract of X. kraussiana was the most active radical scavenger in the DPPH assay amongst the six medicinal plants screened. No antifungal compounds were observed in some of the plant extracts with good antifungal activity as shown in the microdilution assay, indicating

  15. Effect of the radiation processing on the antioxidant activity of zingiberaceae family plants

    Energy Technology Data Exchange (ETDEWEB)

    Almeida, Mariana C. de; Santillo, Amanda G.; Fanaro, Gustavo B.; Villavicencio, Anna Lucia C.H., E-mail: gbfanaro@ipen.b, E-mail: villavic@ipen.b [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil). Centro de Tecnologia das Radiacoes; Sampaio, Geni R.; Bastos, Deborah H.M., E-mail: genirs@usp.b, E-mail: dmbastos@usp.b [Universidade de Sao Paulo (USP), SP (Brazil). Fac. de Saude Publica. Dept. de Nutricao

    2011-07-01

    The aim of this study was to evaluate the effectiveness of gamma radiation from {sup 60}Co at doses 0, 5, 10, 15 and 20 kGy on the antioxidant activity of Zingiberaceae plants. For this study were selected: turmeric (Curcuma longa L.), ginger (Zingiber officinale Roscoe) and zedoaria (Curcuma zedoaria (Christm.) Roscoe). The following methodologies applied were: quantification of phenolic compounds by Folin-Ciocalteu method and assessing the potential of antioxidant activity by the free radical [2,2 difenil-1-pricril-hidrazil (DPPH{center_dot})] scavenging and by Rancimat method in acetone:methanol extracts of selected vegetables. Regardless of the radiation dose applied there were no decrease of total phenolic compounds compared to the control, in any plant studied. The results did not show a decrease in the ability to scavenge free radicals in turmeric case and in the case of zedoaria it were decreased only in doses of 20 kGy. Non-irradiated ginger extract showed higher ability on scavenge. The analysis of the antioxidant potential by Rancimat method showed no significant difference in the antioxidant activity index (AAI) between doses applied in turmeric and ginger extracts. Already, zedoaria non-irradiated extract showed significantly higher AAI than those presented by irradiated ones. Major losses in the potential of antioxidant activity were found in doses of 20 kGy. It could be concluded that gamma radiation processing of Zingiberaceae plants in doses until 15 kGy may be a feasible alternative to industry, do not change the quantitative profile of phenolic compounds or decrease its expressive antioxidant potential. (author)

  16. Effect of the radiation processing on the antioxidant activity of zingiberaceae family plants

    International Nuclear Information System (INIS)

    Almeida, Mariana C. de; Santillo, Amanda G.; Fanaro, Gustavo B.; Villavicencio, Anna Lucia C.H.; Sampaio, Geni R.; Bastos, Deborah H.M.

    2011-01-01

    The aim of this study was to evaluate the effectiveness of gamma radiation from 60 Co at doses 0, 5, 10, 15 and 20 kGy on the antioxidant activity of Zingiberaceae plants. For this study were selected: turmeric (Curcuma longa L.), ginger (Zingiber officinale Roscoe) and zedoaria (Curcuma zedoaria (Christm.) Roscoe). The following methodologies applied were: quantification of phenolic compounds by Folin-Ciocalteu method and assessing the potential of antioxidant activity by the free radical [2,2 difenil-1-pricril-hidrazil (DPPH·)] scavenging and by Rancimat method in acetone:methanol extracts of selected vegetables. Regardless of the radiation dose applied there were no decrease of total phenolic compounds compared to the control, in any plant studied. The results did not show a decrease in the ability to scavenge free radicals in turmeric case and in the case of zedoaria it were decreased only in doses of 20 kGy. Non-irradiated ginger extract showed higher ability on scavenge. The analysis of the antioxidant potential by Rancimat method showed no significant difference in the antioxidant activity index (AAI) between doses applied in turmeric and ginger extracts. Already, zedoaria non-irradiated extract showed significantly higher AAI than those presented by irradiated ones. Major losses in the potential of antioxidant activity were found in doses of 20 kGy. It could be concluded that gamma radiation processing of Zingiberaceae plants in doses until 15 kGy may be a feasible alternative to industry, do not change the quantitative profile of phenolic compounds or decrease its expressive antioxidant potential. (author)

  17. Differential oxidative and antioxidative response of duckweed Lemna minor toward plant growth promoting/inhibiting bacteria.

    Science.gov (United States)

    Ishizawa, Hidehiro; Kuroda, Masashi; Morikawa, Masaaki; Ike, Michihiko

    2017-09-01

    Bacteria colonizing the plant rhizosphere are believed to positively or negatively affect the host plant productivity. This feature has inspired researchers to engineer such interactions to enhance crop production. However, it remains to be elucidated whether rhizobacteria influences plant oxidative stress vis-a-vis other environmental stressors, and whether such influence is associated with their growth promoting/inhibiting ability. In this study, two plant growth-promoting bacteria (PGPB) and two plant growth-inhibiting bacteria (PGIB) were separately inoculated into axenic duckweed (Lemna minor) culture under laboratory conditions for 4 and 8 days in order to investigate their effects on plant oxidative stress and antioxidant activities. As previously characterized, the inoculation of PGPB and PGIB strains accelerated and reduced the growth of L. minor, respectively. After 4 and 8 days of cultivation, compared to the PGPB strains, the PGIB strains induced larger amounts of O 2 •- , H 2 O 2 , and malondialdehyde (MDA) in duckweed, although all bacterial strains consistently increased O 2 •- content by two times more than that in the aseptic control plants. Activities of five antioxidant enzymes were also elevated by the inoculation of PGIB, confirming the severe oxidative stress condition in plants. These results suggest that the surface attached bacteria affect differently on host oxidative stress and its response, which degree correlates negatively to their effects on plant growth. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  18. Concurrent measurement of cellular turbidity and hemoglobin to evaluate the antioxidant activity of plants.

    Science.gov (United States)

    Bellik, Yuva; Iguer-Ouada, Mokrane

    2016-01-01

    In past decades, a multitude of analytical methods for measuring antioxidant activity of plant extracts has been developed. However, when using methods to determine hemoglobin released from human erythrocytes treated with ginger extracts, we found hemoglobin concentrations were significantly higher than in untreated control samples. This suggests in the presence of antioxidants that measuring hemoglobin alone is not sufficient to determine hemolysis. We show concurrent measurement of erythrocyte concentration and hemoglobin is essential in such assays, and describe a new protocol based on simultaneous measurement of cellular turbidity and hemoglobin. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Physico-chemical and antioxidant properties of two medicinal wild plants grown in Moldova region

    Directory of Open Access Journals (Sweden)

    Sorina Ropciuc

    2015-05-01

    Full Text Available The major objective of this study is to report physico-chemical (moisture, ash, protein, total phenolic compounds and ascorbic acid and the antioxidant properties of methanol extracts of nettle (Urtica dioica L. and typical romaine spice "leurda" (Allium ursinum, wild garlic fresh and dried. The antioxidant properties of methanol extract of medicinal herbs were evaluated using free radical scavenging test. The phenols were extracted from the medicinal plants with methanol solvent and were quantified by the Folin-Ciocalteu method. The ascorbic acid content varied between 77.94 mg/100g in the fresh Urtica dioica L. and 39.55 from fresh Allium ursinum. The results showed that the total phenolic compounds in all medicinal plants decreased along processing. These results suggest that the medicinal plants sample extract with highest polyphenolic content will indicates the possibility of using them  as ingredients in functional foods.

  20. Correlation between heavy metal contents and antioxidant activities in medicinal plants grown in copper mining areas

    International Nuclear Information System (INIS)

    Maharia, R.S.; Dutta, R.K.; Acharya, R.; Reddy, A.V.R.

    2012-01-01

    Three commonly used medicinal plants, e.g., Adhatoda vasica, Cassia fistula, and Withania somnifera grown in two contrasting environmental conditions, namely from copper mining site and from control site corresponding to soil not contaminated with Cu, to understand correlations between high Cu bioaccumulation in medicinal plants on their antioxidant activities. Concentrations of some essential metals, e.g., Cr, Mn, Fe, Cu, Zn, and Se in the leaves of these plants were measured by instrumental neutron activation analysis. The Cu levels in the samples from mining site were in the range of 32.6 to 57.2 mg/kg, which were 5-7 folds higher than the control samples, while Cr levels were about 2-folds higher in the mining site. Speciation studies of Cr revealed negligible content of toxic hexavalent Cr. Antioxidant assay of these plants from both the sampling sites, measured as total phenolic content, total flavonoid content, 2,2'-diphenyl-1-picrylhydrazyl, free radical scavenging ability, and chelating ability with ferrous ions exhibited maximum activity for A. vasica, while that of W. somnifera was minimum. However, the variations in the antioxidant activities for each medicinal plant species from mining site and control site did not reveal significant differences. (author)

  1. Synergistic effects of plant defense elicitors and Trichoderma harzianum on enhanced induction of antioxidant defense system in tomato against Fusarium wilt disease.

    Science.gov (United States)

    Zehra, Andleeb; Meena, Mukesh; Dubey, Manish Kumar; Aamir, Mohd; Upadhyay, R S

    2017-11-02

    Plant defense against their pathogens can be induced by a complex network of different inducers. The present study investigates the synergistic effect of Trichoderma harzianum, exogenous salicylic acid (SA) and methyl jasmonate (MeJA) over the response and regulation of the antioxidant defense mechanisms and lipid peroxidation in tomato plants against Fusarium wilt disease. In the present work, tomato plants were infected by Fusarium oxysporum f. sp. lycopersici 3 days after inoculated with T. harzianum and/or sprayed daily for 3 days with chemical inducers (SA and MeJA). Plants were analysed at 0, 24, 48, 72 and 96 h after inoculation with Fusarium oxysporum f. sp. lycopersici. Infection of tomato plants by pathogen led to strong reduction in the dry weight of roots and shoots with the enhanced concentration of H 2 O 2 and varying degree of lipid peroxidation. Concurrently, exogenous SA, when applied with pathogen greatly enhanced H 2 O 2 content as well as activities of antioxidant enzymes except catalase (CAT) and ascorbate peroxidase (APx). The pathogen challenged plants pretreated with T. harzianum and MeJA together exhibited less lipid peroxidation and as well as the elevated level of ascorbic acid and enhanced activities of antioxidant enzymes. All applied treatments protected tomato seedlings against Fusarium wilt disease but the percentage of protection was found higher in plants pretreated with the combination of T. harzianum and chemical inducers.

  2. Copper-induced changes in growth and antioxidative mechanisms ...

    African Journals Online (AJOL)

    sarmishta

    2015-02-18

    Feb 18, 2015 ... number of physiological processes, and is an essential ... manganese, lead and cadmium can cause oxidative ..... The cooperation and the interaction ... mineral and chlorophyll contents, and enzyme activities, Plant and. Soil.

  3. Copper-induced changes in growth and antioxidative mechanisms ...

    African Journals Online (AJOL)

    Tea plants are prone to the attack of many diseases which can be controlled by the ... In the present study, we observed the effects of high concentration of Cu ... stress, physiological characters, lipid peroxidation, reactive oxygen species.

  4. Antioxidant activities and flavonoid contents of selected plants ...

    African Journals Online (AJOL)

    user

    2012-09-27

    Sep 27, 2012 ... and sodium hydroxide (Sigma-Aldrich) was prepared as 1 M. Plant materials ... solution was neutralized with HCl and extracted with CHCl3 (3 × 10 ml). The CHCl3 .... The method depends on formation of aluminium complex.

  5. Antimicrobial and antioxidant activities of Cortex Magnoliae Officinalis and some other medicinal plants commonly used in South-East Asia

    Directory of Open Access Journals (Sweden)

    Weng Wanyu

    2008-11-01

    Full Text Available Abstract Background Eight medicinal plants were tested for their antimicrobial and antioxidant activities. Different extraction methods were also tested for their effects on the bioactivities of the medicinal plants. Methods Eight plants, namely Herba Polygonis Hydropiperis (Laliaocao, Folium Murraya Koenigii (Jialiye, Rhizoma Arachis Hypogea (Huashenggen, Herba Houttuyniae (Yuxingcao, Epipremnum pinnatum (Pashulong, Rhizoma Typhonium Flagelliforme (Laoshuyu, Cortex Magnoliae Officinalis (Houpo and Rhizoma Imperatae (Baimaogen were investigated for their potential antimicrobial and antioxidant properties. Results Extracts of Cortex Magnoliae Officinalis had the strongest activities against M. Smegmatis, C. albicans, B. subtilis and S. aureus. Boiled extracts of Cortex Magnoliae Officinalis, Folium Murraya Koenigii, Herba Polygonis Hydropiperis and Herba Houttuyniae demonstrated greater antioxidant activities than other tested medicinal plants. Conclusion Among the eight tested medicinal plants, Cortex Magnoliae Officinalis showed the highest antimicrobial and antioxidant activities. Different methods of extraction yield different spectra of bioactivities.

  6. Antimicrobial and antioxidant activities of Cortex Magnoliae Officinalis and some other medicinal plants commonly used in South-East Asia

    Science.gov (United States)

    Chan, Lai Wah; Cheah, Emily LC; Saw, Constance LL; Weng, Wanyu; Heng, Paul WS

    2008-01-01

    Background Eight medicinal plants were tested for their antimicrobial and antioxidant activities. Different extraction methods were also tested for their effects on the bioactivities of the medicinal plants. Methods Eight plants, namely Herba Polygonis Hydropiperis (Laliaocao), Folium Murraya Koenigii (Jialiye), Rhizoma Arachis Hypogea (Huashenggen), Herba Houttuyniae (Yuxingcao), Epipremnum pinnatum (Pashulong), Rhizoma Typhonium Flagelliforme (Laoshuyu), Cortex Magnoliae Officinalis (Houpo) and Rhizoma Imperatae (Baimaogen) were investigated for their potential antimicrobial and antioxidant properties. Results Extracts of Cortex Magnoliae Officinalis had the strongest activities against M. Smegmatis, C. albicans, B. subtilis and S. aureus. Boiled extracts of Cortex Magnoliae Officinalis, Folium Murraya Koenigii, Herba Polygonis Hydropiperis and Herba Houttuyniae demonstrated greater antioxidant activities than other tested medicinal plants. Conclusion Among the eight tested medicinal plants, Cortex Magnoliae Officinalis showed the highest antimicrobial and antioxidant activities. Different methods of extraction yield different spectra of bioactivities. PMID:19038060

  7. Total phenol content and antioxidant activity of water solutions of plant extracts

    Directory of Open Access Journals (Sweden)

    Mirela Kopjar

    2009-01-01

    Full Text Available Water solutions of extracts were investigated for total phenol content, flavonoid content and antioxidant activity. Susceptibility to degradation of water solutions of plant extracts, under light and in the dark, during storage at room temperature was investigated in order to determine their stability prior to their application for fortification of food products. Large dispersion of total phenol (TP content in the investigated model solutions of selected extracts (olive leaves, green tea, red grape, red wine, pine bark PE 5:1, pine bark PE 95 %, resveratrol, ranging from 11.10 mg GAE/100 mL to 92.19 mg GAE/100 mL was observed. Consequently, large dispersion of total flavonoids (TF content (8.89 mg to 61.75 mg CTE/100 mL was also observed. Since phenols have been mostly responsible for antioxidant activity of extracts, in most cases, antioxidant activity followed the TP content. That was proven by estimation of correlation coefficient between the total phenol content and antioxidant activity. Correlation coefficients between investigated parameters ranged from 0.5749 to 0.9604. During storage of 5 weeks at room temperature loss of phenols and flavonoids occurred. Antioxidant activity decreased with the decrease of TP and TF content. Degradations of phenols and flavonoids were more pronounced in samples stored at light.

  8. Oxidative Stress and Antioxidants in Tomato (Solanum lycopersicum) Plants Subjected to Boron Toxicity

    Science.gov (United States)

    Cervilla, Luis M.; Blasco, Begoña; Ríos, Juan J.; Romero, Luis; Ruiz, Juan M.

    2007-01-01

    Background and Aims Boron (B) toxicity triggers the formation of reactive oxygen species in plant tissues. However, there is still a lack of knowledge as to how B toxicity affects the plant antioxidant defence system. It has been suggested that ascorbate could be important against B stress, although existing information is limited in this respect. The objective of this study was to analyse how ascorbate and some other components of the antioxidant network respond to B toxicity. Methods Two tomato (Solanum lycopersicum) cultivars (‘Kosaco’ and ‘Josefina’) were subjected to 0·05 (control), 0·5 and 2 mm B. The following were studied in leaves: dry weight; relative leaf growth rate; total and free B; H2O2; malondialdehyde; ascorbate; glutathione; sugars; total non-enzymatic antioxidant activity, and the activity of superoxide dismutase, catalase, ascorbate peroxidase, monodehydroascorbate reductase, dehydroascorbate reductase, glutathione reductase, ascorbate oxidase and l-galactose dehydrogenase. Key Results The B-toxicity treatments diminished growth and boosted the amount of B, malondialdehyde and H2O2 in the leaves of the two cultivars, these trends being more pronounced in ‘Josefina’ than in ‘Kosaco’. B toxicity increased ascorbate concentration in both cultivars and increased glutathione only in ‘Kosaco’. Activities of antioxidant- and ascorbate-metabolizing enzymes were also induced. Conclusions High B concentration in the culture medium provokes oxidative damage in tomato leaves and induces a general increase in antioxidant enzyme activity. In particular, B toxicity increased ascorbate pool size. It also increased the activity of l-galactose dehydrogenase, an enzyme involved in ascorbate biosynthesis, and the activity of enzymes of the Halliwell–Asada cycle. This work therefore provides a starting point towards a better understanding of the role of ascorbate in the plant response against B stress. PMID:17660516

  9. The mechanisms of protection of antioxidants on Nostoc sphaeroides against UV-B radiation

    Science.gov (United States)

    Wang, G. H.

    UV radiation is one of space harmful factor for earth organisms in space exploration In the present work we studied on the role of antioxidant system in Nostoc sphaeroides K u tz Cyanobacteria and the effects of exogenous antioxidant molecules on its photosynthetic rate under UV-B radiation It was found that UV-B radiation decreased the photosynthetic activity of cyanobacterium but promoted the activity of antioxidant system to protect photosystem II PSII and exogenous antioxidant sodium nitroprusside SNP N-acetylcysteine NAC had an obvious protection on PSII activity under UV-B radiation The activity of SOD Superoxide Dismutase EC 1 15 1 1 CAT Catalase EC 1 11 1 6 POD Peroxidase EC 1 11 1 7 and content of MDA and ASC were improved by 0 5mM and 1mM SNP but 0 1mM SNP decreased the activity of antioxide system Exogenous NAC addition decreased the activity of SOD POD CAT and the content MDA and ASC but exogenous NAC addition increased the content of GSH The results suggested that exogenous SNP and NAC may protect algae by different mechanisms in which SNP maybe play double roles as sources of reactive free radicals or ROS scavengers in formation of algae s protection of PSII under UV-B radiation while NAC does function as antioxidant reagent or precursor of glutathione which could protect PSII directly from UV-B radiation Keyword antioxidant system exogenous or endogenous antioxidant Nostoc sphaeroides photosynthesis UV-B radiation

  10. Salt-tolerance mechanisms induced in Stevia rebaudiana Bertoni: Effects on mineral nutrition, antioxidative metabolism and steviol glycoside content.

    Science.gov (United States)

    Cantabella, Daniel; Piqueras, Abel; Acosta-Motos, José Ramón; Bernal-Vicente, Agustina; Hernández, José A; Díaz-Vivancos, Pedro

    2017-06-01

    In order to cope with challenges linked to climate change such as salinity, plants must develop a wide spectrum of physiological and molecular mechanisms to rapidly adapt. Stevia rebaudiana Bertoni plants are a case in point. According to our findings, salt stress has no significant effect on plant growth in these plants, which accumulate sodium (Na + ) in their roots, thus avoiding excessive Na + accumulation in leaves. Furthermore, salt stress (NaCl stress) increases the potassium (K + ), calcium (Ca 2+ ), chloride ion (Cl - ) and proline concentrations in Stevia leaves, which could contribute to osmotic adjustment. We also found that long-term NaCl stress does not produce changes in chlorophyll concentrations in Stevia leaves, reflecting a mechanism to protect the photosynthesis process. Interestingly, an increase in chlorophyll b (Chlb) content occured in the oldest plants studied. In addition, we found that NaCl induced reactive oxygen species (ROS) accumulation in Stevia leaves and that this accumulation was more evident in the presence of 5 g/L NaCl, the highest concentration used in the study. Nevertheless, Stevia plants are able to induce (16 d) or maintain (25 d) antioxidant enzymes to cope with NaCl-induced oxidative stress. Low salt levels did not affect steviolbioside and rebaudioside A contents. Our results suggest that Stevia plants induce tolerance mechanisms in order to minimize the deleterious effects of salt stress. We can thus conclude that saline waters can be used to grow Stevia plants and for Steviol glycosides (SGs) production. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  11. Heterocyclic Schiff bases as non toxic antioxidants: Solvent effect, structure activity relationship and mechanism of action

    Science.gov (United States)

    Shanty, Angamaly Antony; Mohanan, Puzhavoorparambil Velayudhan

    2018-03-01

    Phenolic heterocyclic imine based Schiff bases from Thiophene-2-carboxaldehyde and Pyrrole-2-carboxaldehyde were synthesized and characterized as novel antioxidants. The solvent effects of these Schiff bases were determined and compared with standard antioxidants, BHA employing DPPH assay and ABTS assay. Fixed reaction time and Steady state measurement were used for study. IC50 and EC50 were calculated. Structure-activity relationship revealed that the electron donating group in the phenolic ring increases the activity where as the electron withdrawing moiety decreases the activity. The Schiff base derivatives showed antioxidant property by two different pathways namely SPLET and HAT mechanisms in DPPH assay. While in ABTS method, the reaction between ABTS radical and Schiff bases involves electron transfer followed by proton transfer (ET-PT) mechanism. The cytotoxicity of these compounds has been evaluated by MTT assay. The results showed that all these compounds are non toxic in nature.

  12. Antioxidant activity, phenolic and flavonoid content of wild Alhagi maurorum root plant extracts

    Directory of Open Access Journals (Sweden)

    Fuad AL-RIMAWI

    2016-11-01

    Full Text Available Alhagi maurorum, belonging to family Leguminosae, is a highly branched spiny shrub. Roots may reach up to the depth of 15 meters. Alhagi maurorum is used in folk medicine, as a purgative, diaphoretic, expectorant and diuretic used to treat piles, migraine, warts and rheumatism. Samples of the root of Alhagi maurorum plant grown wild in Palestine were extracted with different solvents; water, 80% ethanol, and 100% ethanol. The extracts were analyzed for their total phenolic content (TPC, total flavonoid content (TFC, and antioxidant activity (AA. Four different antioxidant assays were used to evaluate AA of the extracts: two measures the reducing power of the extracts (ferric reducing antioxidant power (FRAP and Cupric reducing antioxidant power (CUPRAC, while two other assays measure the scavenging ability of the extracts (2,2-azino-di-(3-ethylbenzothialozine-sulphonic acid (ABTS, and 2,2-diphenyl-1-picrylhydrazyl (DPPH.The results revealed that the polarity of the extraction solvent affects the TPC, TFC, and AA. It was found that both TPC and AA are highest for plant extracted with 80% ethanol, followed by water, and finally with 100% ethanol. TFC however was highest in the following order: 80% ethanol >100% ethanol >water

  13. Antioxidative response mechanisms in halophytes: their role in ...

    Indian Academy of Sciences (India)

    changes in ionic and water balance cause molecular damage and growth arrest. ... An optimal supply of CO2 determines the availability of. NADP to leaves via the ...... plasts in the plant cell, but could also leak into the cytosol, resulting in ...

  14. Alteration in antioxidant potential of spinacia oleracea in response to selected plant growth regulators

    International Nuclear Information System (INIS)

    Aslam, M.; Sultana, B.; Ali, S.; Rehman, K.U.

    2013-01-01

    The spinach (Spinacia oleracea) plants treated with certain seed priming (bio-fertilizer and Humic acid) and foliar treatments (Humic acid, Moringa leaf extract, 6-Benzyl amino purine etc.) were tested for total phenolic content and the antioxidant activity. Methanolic extracts of all spinach samples were assessed performing three different protocols including Folin-Ciocalteu, reducing power and DPPH radical scavenging assays. TPC value ranged 4.678-13.236 mg GAE/g of dry matter. Reducing power assay showed values (absorbance at lambda max=700nm) in the range of 0.351-1.874 at 10 mg/mL extract concentration. The range of IC 50 values in DPPH radical scavenging assay was 0.499-1.063 mu g/mL extract concentration. The one way ANOVA under CRD showed significant differences among treatments. Among various plant growth regulators, fresh Moringa leaf extract proved as the potent enhancer of antioxidant activity of spinach leaves. (author)

  15. The Antioxidant and Antihaemolytic Activities and the Polyphenolic Contents of Some Plants Seeds Extracts

    International Nuclear Information System (INIS)

    Atrooz, O.; Harb, M.; Al-Qato, M.

    2007-01-01

    Results of the this study which were carried out on yhe ethanol and acetone extracts of Prunus armeniaca, Cerasus vulgare, Nespole, Opuntia ficus-indica, Cucumis melo, and Vitis vinifera proved that theses extracts contain bioctive substances such as polyohenols and flavonids. The UV-VIS spectropgotometric assays showed that the extracted materials posses strong band in the range between 250-300 nm which confirm the presence of polyphenols and flavonoids. The concentration of these materials were different depending on the type pf plant seeds and the solvents used for extraction. The antioxidant and antihaemolytic activities of the extracts were determined by 1, 1-dipheny1-2picry1-hydeazy1 (DPPH) method, and red blood cells (RBCs) haemolysis test. Results of these extracts showed remarkable antioxidant activities depending on the origin of plant extracts. (Author's) 23 refs., 4 Tabs., 1fig

  16. Antioxidant activity of wild edible plants in the Black Sea Region of Turkey

    Energy Technology Data Exchange (ETDEWEB)

    Ozen, T.

    2010-07-01

    The anti oxidative activity of the 80% ethanol extract obtained from eleven commonly consumed wild edible plants was determined according to the phospho molybdenum method, reducing power, metal chelating, superoxide anion and free radical scavenging activity and compared to standard compounds such as butylated hydroxyanisole (BHA), butylated hydroxytoluene (BHT) and trolox. Total phenolic compounds, flavonoids, and anthocyanins in the extracts were also measured. Trachystemon orientalis, Vaccinium mrytillus, Rumex acetosella Polygonum amphibium, Beta vulgaris, and Similax Excelsa had the highest antioxidant capacities. Overall results showed that these plants can serve as good sources of bioactive polyphenols in the human diet and can be regarded as good candidates for nutritional supplement formulations due to their high concentrations of total phenolic compounds, flavonoids and anthocyanins as well as their strong antioxidant activity. (Author) 42 refs.

  17. Echinacea plants as antioxidant and antibacterial agents: From traditional medicine to biotechnological applications.

    Science.gov (United States)

    Sharifi-Rad, Mehdi; Mnayer, Dima; Morais-Braga, Maria Flaviana Bezerra; Carneiro, Joara Nályda Pereira; Bezerra, Camila Fonseca; Coutinho, Henrique Douglas Melo; Salehi, Bahare; Martorell, Miquel; Del Mar Contreras, María; Soltani-Nejad, Azam; Uribe, Yoshie Adriana Hata; Yousaf, Zubaida; Iriti, Marcello; Sharifi-Rad, Javad

    2018-05-10

    The genus Echinacea consists of 11 taxa of herbaceous and perennial flowering plants. In particular, Echinacea purpurea (L.) Moench is widely cultivated all over the United States, Canada, and in Europe, exclusively in Germany, for its beauty and reported medicinal properties. Echinacea extracts have been used traditionally as wound healing to improve the immune system and to treat respiratory symptoms caused by bacterial infections. Echinacea extracts have demonstrated antioxidant and antimicrobial activities, and to be safe. This survey aims at reviewing the medicinal properties of Echinacea species, their cultivation, chemical composition, and the potential uses of these plants as antioxidant and antibacterial agents in foods and in a clinical context. Moreover, the factors affecting the chemical composition of Echinacea spp. are also covered. Copyright © 2018 John Wiley & Sons, Ltd.

  18. Antioxidant and free radical scavenging activities of plant extracts ...

    African Journals Online (AJOL)

    STORAGESEVER

    2008-06-17

    Jun 17, 2008 ... venging mechanism as part of their activity (Perry et al.,. 1999; Lin ... are used in traditional medicine (Argueta et al., 1994;. Monroy-Ortíz ..... Bermejo P, Iglesias I, Abad MJ, Gómez-Serranillos P, Liso PA, Villar. A, Chiriboga X ...

  19. Antimicrobial, Antioxidant, and Anti-Inflammatory Activities of Essential Oils of Selected Aromatic Plants from Tajikistan

    OpenAIRE

    Sharopov, Farukh; Braun, Markus Santhosh; Gulmurodov, Isomiddin; Khalifaev, Davlat; Isupov, Salomiddin; Wink, Michael

    2015-01-01

    Antimicrobial, antioxidant, and anti-inflammatory activities of the essential oils of 18 plant species from Tajikistan (Central Asia) were investigated. The essential oil of Origanum tyttanthum showed a strong antibacterial activity with both minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) values of 312.5 µg/mL for E. coli, 625 µg/mL (MIC) and 1250 µg/mL (MBC) for MRSA (methicillin-resistant Staphylococcus aureus), respectively. The essential oil of Galagan...

  20. Antibacterial, Antioxidant, and Anticholinesterase Activities of Plant Seed Extracts from Brazilian Semiarid Region

    OpenAIRE

    Davi Felipe Farias; Terezinha Maria Souza; Martônio Ponte Viana; Bruno Marques Soares; Arcelina Pacheco Cunha; Ilka Maria Vasconcelos; Nágila Maria Pontes Silva Ricardo; Paulo Michel Pinheiro Ferreira; Vânia Maria Maciel Melo; Ana Fontenele Urano Carvalho

    2013-01-01

    The antimicrobial, antioxidant, and anticholinesterase activities of ethanolic seed extracts of twenty-one plant species from Brazilian semiarid region were investigated. The extracts were tested for antimicrobial activity against six bacteria strains and three yeasts. Six extracts presented activity against the Gram (−) organism Salmonella choleraesuis and the Gram (+) organisms Staphylococcus aureus and Bacillus subtilis. The MIC values ranged from 4.96 to 37.32 mg/mL. The Triplaris gardner...

  1. Structural mechanics in nuclear power plant

    International Nuclear Information System (INIS)

    Han Liangbi

    1998-01-01

    The main research works in structural mechanics in reactor technology are emphatically introduced. It is completed by structural mechanics engineers at Shanghai Nuclear Research and Design Institute associated with the design and construction problems for Qinshan NPP Unit 1 and Pakistani CHASNUPP. About structural mechanics problem for the containment, the rock and soft soil two different bases are considered. For the later the interaction between soil and structure is carefully studied. About the structural mechanics problem for the equipment and pipings, the three dimensional stress and fracture analyses are studied. For the structural dynamics problem, including flow induced vibration, the response analyses under earthquake and loss coolant accident loadings are studied. For pipings, the leak before break technique has been emphatically introduced. A lot of mathematical models, the used computer codes, analytical calculations and experimental results are also introduced. This is a comprehensive description about structural mechanics problem in pressurized water reactor nuclear power plant

  2. Monoamine Oxidase-A Inhibition and Associated Antioxidant Activity in Plant Extracts with Potential Antidepressant Actions

    Directory of Open Access Journals (Sweden)

    Tomás Herraiz

    2018-01-01

    Full Text Available Monoamine oxidase (MAO catalyzes the oxidative deamination of amines and neurotransmitters and is involved in mood disorders, depression, oxidative stress, and adverse pharmacological reactions. This work studies the inhibition of human MAO-A by Hypericum perforatum, Peganum harmala, and Lepidium meyenii, which are reported to improve and affect mood and mental conditions. Subsequently, the antioxidant activity associated with the inhibition of MAO is determined in plant extracts for the first time. H. perforatum inhibited human MAO-A, and extracts from flowers gave the highest inhibition (IC50 of 63.6 μg/mL. Plant extracts were analyzed by HPLC-DAD-MS and contained pseudohypericin, hypericin, hyperforin, adhyperforin, hyperfirin, and flavonoids. Hyperforin did not inhibit human MAO-A and hypericin was a poor inhibitor of this isoenzyme. Quercetin and flavonoids significantly contributed to MAO-A inhibition. P. harmala seed extracts highly inhibited MAO-A (IC50 of 49.9 μg/L, being a thousand times more potent than H. perforatum extracts owing to its content of β-carboline alkaloids (harmaline and harmine. L. meyenii root (maca extracts did not inhibit MAO-A. These plants may exert protective actions related to antioxidant effects. Results in this work show that P. harmala and H. perforatum extracts exhibit antioxidant activity associated with the inhibition of MAO (i.e., lower production of H2O2.

  3. Antimicrobial and antioxidant activities of medicinal plant Glycyrrhiza glabra var. glandulifera from different habitats

    Directory of Open Access Journals (Sweden)

    Faruk Karahan

    2016-07-01

    Full Text Available In this study, the antimicrobial and antioxidant activities of root methanolic extracts of Glycyrrhiza glabra var. glandulifera (Waldst. & Kit. Boiss. (Fabaceae were investigated. Plant samples were collected from different habitats in the East Mediterranean part of Turkey. The plant extracts were evaluated for antimicrobial activities against nine bacterial and two yeast strains using disc-diffusion and minimum inhibitory concentration methods. The antioxidant activity was determined by using the DPPH (1,1-diphenyl-2-picrylhydrazyl method. The antimicrobial assays indicated that the plant root extracts were more effective against Gram-positive bacteria than against Gram-negative ones. In addition, the extracts had higher antimicrobial effect against Candida species than against bacteria. The extracts showed good antioxidant activity, with a median inhibitory concentration (IC50 in the range of 588 ± 0.86 µg/mL to 2190 ± 1.73 µg/mL. Results indicated that different environmental conditions in each habitat might affect the contents of chemical compounds and biological activity in the natural licorice populations of. This study also supported the traditional use of licorice and as well as suggested that it may also be its beneficial role in the treatment of other infections. The obtained results indicated that different environmental conditions in each habitat might affect the contents of chemical compounds and the biological activity in the natural licorice populations.

  4. Plant mechanisms of siderophore-iron utilization

    International Nuclear Information System (INIS)

    Crowley, D.E.

    1986-01-01

    Mechanisms of siderophore iron-utilization by plants were examined to determine whether plants have direct mechanisms for acquiring iron from microbially-produced hydroxamate siderophores or simply take up inorganic iron in equilibrium with the chelate (shuttle mechanism). Experiments were designed to determine whether the monocot plant species, oat (Avena sativa L. cv. Victory) could acquire iron from ferrichrome under hydroponic conditions in which iron uptake was most likely to occur by direct use of the chelating agent. Ten-day-old iron-deficient seedlings, grown in aerated Hoagland's nutrient solution (minus iron) buffered at pH 7.4 with CaCO 3 , were placed in fresh nutrient solution containing 10/sup -7.4/M radioactive 55 FeCl 3 (23.7 mCi/mg) with the synthetic chelate, EDDHA (10π 5 M), ferrichrome (10 -5 M), or with no chelate. After 6 days, shoot content of 55 Fe in shoots of plants provided with ferrichrome was 100-fold greater than that in shoots of plants provided with EDDHA. Therefore iron uptake by oat under these conditions not only indicates direct use of ferrichrome, but also suggest that oat may be better able to acquire iron from siderophores than from synthetic chelates. One possible mechanism for direct use of chelating agents, may involve siderophore binding sites on the plasmalemma of root cortical cells where iron is split from the chelate by enzymatic reduction of ferric to ferrous iron. To demonstrate hypothesized siderophore binding sites on oat roots, experiments examined possible competition for presumed siderophore binding sites by an inert analog of ferrichrome constructed by irreversible chelation with chromium

  5. Molecular mechanisms and in vitro antioxidant effects of Lactobacillus plantarum MA2.

    Science.gov (United States)

    Tang, Wei; Xing, Zhuqing; Li, Chao; Wang, Jinju; Wang, Yanping

    2017-04-15

    Lactobacillus plantarum MA2 was isolated from Chinese traditional Tibetan kefir grains. The antioxidant activities in vitro of this strain were evaluated extensively. The results showed that L. plantarum MA2 can tolerate hydrogen peroxide up to 2.0mM, and its fermentate (fermented supernatant, intact cell and cell-free extract) had strong reducing capacities, lipid peroxidation inhibition capacities, Fe 2+ -chelating abilities, as well as various free radical scavenging capacities. Additionally, both the fermented supernatant and cell homogenate exhibited glutathione peroxidase activity and superoxide dismutase activity. In order to investigate the antioxidant mechanism of L. plantarum MA2 at the molecular level, eight antioxidant-related genes were identified, and further analyzed. Three groups of genes cat, gshR and npx, were found up-regulated under H 2 O 2 challenge. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Polyamine metabolism influences antioxidant defense mechanism in foxtail millet (Setaria italica L.) cultivars with different salinity tolerance.

    Science.gov (United States)

    Sudhakar, Chinta; Veeranagamallaiah, Gounipalli; Nareshkumar, Ambekar; Sudhakarbabu, Owku; Sivakumar, M; Pandurangaiah, Merum; Kiranmai, K; Lokesh, U

    2015-01-01

    Polyamines can regulate the expression of antioxidant enzymes and impart plants tolerance to abiotic stresses. A comparative analysis of polyamines, their biosynthetic enzymes at kinetic and at transcriptional level, and their role in regulating the induction of antioxidant defense enzymes under salt stress condition in two foxtail millet (Setaria italica L.) cultivars, namely Prasad, a salt-tolerant, and Lepakshi, a salt-sensitive cultivar was conducted. Salt stress resulted in elevation of free polyamines due to increase in the activity of spermidine synthase and S-adenosyl methionine decarboxylase enzymes in cultivar Prasad compared to cultivar Lepakshi under different levels of NaCl stress. These enzyme activities were further confirmed at the transcript level via qRT-PCR analysis. The cultivar Prasad showed a greater decrease in diamine oxidase and polyamine oxidase activity, which results in the accumulation of polyamine pools over cultivar Lepakshi. Generation of free radicals, such as O 2 (·-) and H2O2, was also analyzed quantitatively. A significant increase in O 2 (·-) and H2O2 in the cultivar Lepakshi compared with cultivar Prasad was recorded in overall pool sizes. Further, histochemical staining showed lesser accumulation of O 2 (·-) and of H2O2 in the leaves of cultivar Prasad than cultivar Lepakshi. Our results also suggest the ability of polyamine oxidation in regulating the induction of antioxidative defense enzymes, which involve in the elimination of toxic levels of O 2 (·-) and H2O2, such as Mn-superoxide dismutase, catalase and ascorbate peroxidase. The contribution of polyamines in modulating antioxidative defense mechanism in NaCl stress tolerance is discussed.

  7. Effect of the application of silver nitrate on antioxidant status in watermelon plants

    International Nuclear Information System (INIS)

    Fuente, M.C.D.L.; Rangel, A.S.

    2014-01-01

    In this experiment we studied the absorption of silver by watermelon plants of the variety Jubilee, as well as the effect on the lycopene content and antioxidant status. The treatments were based on a silver nitrate solution of different concentrations: 0, 30, 60, 90 and 200 mg L-1, applied at intervals of 8 days throughout the crop cycle. The determination of silver content was performed by atomic emission spectroscopy (AES), whereas the detection of the silver particles inside plant tissues was carried out by means of scanning electron microscopy (SEM). By analyzing the data obtained in the experiment, a statistically significant difference was detected between treatments and between different plant organs. There was a greater accumulation of silver in the roots of plants and the content was positively related to the rate of application of AgNO/sub 3/. The antioxidant status analyzed in the fruits increased three times in the plants exposed to 30 mg L-1 AgNO/sub 3/ concentration. Meanwhile, lycopene content decreased with increased concentration of silver in solution and showed the highest content with 30 mg L-1 AgNO/sub 3/. (author)

  8. Antioxidant, antimicrobial, antitumor, and cytotoxic activities of an important medicinal plant (Euphorbia royleana from Pakistan

    Directory of Open Access Journals (Sweden)

    Aisha Ashraf

    2015-03-01

    Full Text Available The aim of present study was to evaluate antioxidant, antimicrobial, and antitumor activities of methanol, hexane, and aqueous extracts of fresh Euphorbia royleana. Total phenolic and flavonoid contents were estimated as gallic acid and querectin equivalents, respectively. Antioxidant activity was assessed by scavenging of free 2,2′- diphenyl-1-picrylhydrazyl radicals and reduction of ferric ions, and it was observed that inhibition values increase linearly with increase in concentration of extract. The results of ferric reducing antioxidant power assay showed that hexane extract has maximum ferric reducing power (12.70 ± 0.49 mg gallic acid equivalents/g of plant extract. Maximum phenolic (47.47 ± 0.71 μg gallic acid equivalents/mg of plant extract and flavonoid (63.68 ± 0.43 μg querectin equivalents/mg of plant extract contents were also found in the hexane extract. Furthermore, we examined antimicrobial activity of the three extracts (methanol, hexane, aqueous against a panel of microorganisms (Escherichia coli, Bacillus subtillis, Pasteurella multocida, Aspergillus niger, and Fusarium solani by disc-diffusion assay, and found the hexane extract to be the best antimicrobial agent. Hexane extract was also observed as to be most effective in a potato disc assay. As hexane extract showed potent activity in all the investigated assays, it was targeted for cytotoxic assessment. Maximum cytotoxicity (61.66% by hexane extract was found at 800 μg/mL. It is concluded that investigated extracts have potential for isolation of antioxidant and antimicrobial compounds for the pharmaceutical industry.

  9. Antiobesity, antioxidant and antidiabetic activities of red Ginseng plant extract in obese diabetic rats

    Directory of Open Access Journals (Sweden)

    Mostafa Abbas Shalaby

    2013-06-01

    Full Text Available Aim: This study aimed to investigate the effects of red ginseng extract (RGE on adiposity index, some serum biochemical parameters and tissue antioxidant activity in obese diabetic rats. Materials and Methods: Five groups of male Sprague-Dawley rats were used. Group (1 was negative control and the other 4 groups were fed on high fat-diet for 6 weeks to induce obesity. The obese rats were then rendered diabetic by intraperitoneal injection of alloxan for 5 days. Group (2 was kept obese diabetic (positive control and the other 3 groups were orally given RGE at 100, 200 and 400 mg /kg /day, respectively, for 4 weeks. Blood samples were collected for biochemical analyses and kidneys were taken to assay of activities of antioxidant enzymes. Results: oral dosage of RGE to obese diabetic rats significantly (P < 0.05 reduced adiposity index; decreased serum levels of aspartate aminotransferase (AST, alanine aminotransferase (ALT, gamma- glutamyl transpeptidase (GGT enzymes, total cholesterol (TC, triglycerides (TG, and low density lipoproteins (LDL-c and improved atherogenic index. Blood glucose and leptin hormone decreased, but insulin increased by administration of RGE. it increased activities of superoxide dismutase (SOD, glutathione peroxidase (GPx and catalase (CAT antioxidant enzymes in kidneys tissues. Conclusion: Red ginseng extract produces antiobesity, antioxidant, and antidiabetic activities in obese diabetic rats. The study suggests that red ginseng plant may be beneficial for the treatment of patients who suffer from obesity associated with diabetes. [J Intercult Ethnopharmacol 2013; 2(3.000: 165-172

  10. Positive effects of temperature and growth conditions on enzymatic and antioxidant status in lettuce plants.

    Science.gov (United States)

    Boo, Hee-Ock; Heo, Buk-Gu; Gorinstein, Shela; Chon, Sang-Uk

    2011-10-01

    The contents of two bioactive compounds (polyphenols and flavonoids) and their antioxidant and enzyme activities were determined in the leaves of six lettuce (Latuca sativa L.) cultivars subjected to 4 different day/night temperatures for 6 weeks. The total polyphenol and anthocyanin contents and the corresponding antioxidant activities were the highest at 13/10°C and 20/13°C, followed by 25/20°C and 30/25°C. The enzymatic activities of polyphenol oxidase (PPO) and phenylalanine ammonia-lyase (PAL) were also the highest at low day/night temperatures, but the peroxidase (POD) activity was decreased at low day/night temperatures and increased at high day/night temperatures. The most significant positive correlation existed between anthocyanin content and PPO activity, total polyphenols and their antioxidant activities. The results showed that at relatively low temperatures, lettuce plants have a high antioxidant and enzymatic status. These results provide additional information for the lettuce growers. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  11. Comparison of various techniques for the extraction and determination of antioxidants in plants.

    Science.gov (United States)

    Bajerová, Petra; Adam, Martin; Bajer, Tomáš; Ventura, Karel

    2014-04-01

    The following extraction techniques have been used for extracting antioxidants (apigenin, coumarin, esculetin, umbelliferone, bergapten, quercetin, rutin, scopoletin and xanthotoxin) from plant material: supercritical fluid extraction, pressurized liquid extraction, extraction by means of Soxhlet apparatus, ultrasonic extraction in ultrasonic bath, and by means of ultrasonic probe. The analytical method based on HPLC-UV detection for the determination of selected antioxidants was developed. For all extracts the antioxidant capacity based on the reduction of free 2,2-diphenyl-1-picrylhydrazyl radical was also determined. Comparing all results the ultrasonic probe method using 0.75 g of sample extracted by 50 mL of acetonitrile in water (30%, v/v) for 25 min at room temperature and with amplitude at 60% (equal to 90 W) without pulsation was evaluated as the best tool. The most significant indicator demonstrating this statement is the antioxidant capacity expressed as gallic acid equivalent where the ultrasonic probe method showed the best results in 10 of 16 samples. Also the operability of ultrasonic probe extraction method compared to other tested methods is more favorable. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Analysis of Antimicrobial and Antioxidant Activities of Chenopodium ambrosioides: An Ethnomedicinal Plant

    Directory of Open Access Journals (Sweden)

    Muhammad Ajaib

    2016-01-01

    Full Text Available The antimicrobial and antioxidant potential of Chenopodium ambrosioides L. was explored. Antimicrobial potential was investigated through zone of inhibition and minimum inhibition concentration whereas antioxidant potential of selected plant was evaluated through different techniques, that is, total phenolic contents, total flavonoids content, DPPH assay, ABTS assay, and metal chelating. It is concluded that both parts showed good to satisfactory antimicrobial and antioxidant results. The maximum antibacterial potential is exhibited by bark macerated in petroleum ether against Bacillus subtilis (33±1.5 mm and maximum antifungal potential exhibited by methanol extracts of fruit against Aspergillus niger (16±1.5 mm. Aqueous extracts failed to show any activity against selected organisms. The minimum (significant MIC value exhibited by fruit extract against Staphylococcus aureus was 0.009±0.02 at 0.7 mg/mL. Aqueous extracts of bark and fruit exhibited maximum antioxidant potential in all assays except DPPH assay. Petroleum ether bark extract showed maximum % DPPH value.

  13. Antioxidant Defenses in Plants with Attention to Prunus and Citrus spp.

    Directory of Open Access Journals (Sweden)

    Milvia Luisa Racchi

    2013-11-01

    Full Text Available This short review briefly introduces the formation of reactive oxygen species (ROS as by-products of oxidation/reduction (redox reactions, and the ways in which the antioxidant defense machinery is involved directly or indirectly in ROS scavenging. Major antioxidants, both enzymatic and non enzymatic, that protect higher plant cells from oxidative stress damage are described. Biochemical and molecular features of the antioxidant enzymes superoxide dismutase (SOD, catalase (CAT, and ascorbate peroxidase (APX are discussed because they play crucial roles in scavenging ROS in the different cell compartments and in response to stress conditions. Among the non enzymatic defenses, particular attention is paid to ascorbic acid, glutathione, flavonoids, carotenoids, and tocopherols. The operation of ROS scavenging systems during the seasonal cycle and specific developmental events, such as fruit ripening and senescence, are discussed in relation to the intense ROS formation during these processes that impact fruit quality. Particular attention is paid to Prunus and Citrus species because of the nutritional and antioxidant properties contained in these commonly consumed fruits.

  14. Mechanism of melanosomes action in antioxidant reactions following optic irradiation

    Science.gov (United States)

    Lapina, Victoria A.; Dontsov, Alexander E.; Sakina, Natalia L.; Ostrovsky, Michail A.

    1996-05-01

    Hyphema is often associated with traumatic eye injuries. Its blood is subjected to considerable changes in aqueous humor and causes toxic effect on eye tissues. The metabolism disturbances in eye tissues unfavorably affecting their cell structures play a significant role in the development of pathologic conditions in cases of intraocular hemorrhages. This is to be attributed to the correlation of lipid peroxidation (LP) processes and antioxidant system (AOS) activity of both the cellular membrane and its environment necessary for maintaining cell homeostasis as a whole. The aim of the present work is an experimental study of LP processes of aqueous humor (AH) in total traumatic hyphema (TTH) after magnet-laser stimulation different doses (3 and 6 minutes). TTH and aqueous humor collection were made on the eyes on rabbit (Schinchilla) according to Krasnov A.M. under the local anaesthesia (dicaine 0.25%). The study of biochemical aqueous indices was carried out on healthy eyes and after development of hyphema on day 1, 3, 5, 7, 10, 14, 30, and 45. The animals were divided into three groups: in the first group the biochemical indices were defined in the aqueous humor in TTH; in the second and the third groups the similar investigation was carried out after magnet- laser radiation with 3 and 6 minutes exposition. The malonic dialdehyde (MDA) was defined according to Ishihara, Shiff's bases -- and their concentration was determined on the total amount of lipids (reagent kit of 'Lachema'). He-Ne laser (with power density of 0.05 mVt) was used, streaming impulsed magnet field voltage being 10 mTl. The magnet head of a magnet radiator was fixed 0.5 cm from the eye; laser beam being sent to the central hole of the magnet head. The duration of exposure was 3 minutes in the second group and 6 minutes in the third group, daily for 10 days. Significant increase of LP product concentration level with two clear ascending peaks was seen on the third and tenth days in the first

  15. In vitro propagation of the medicinal plant Ziziphora tenuior L. and evaluation of its antioxidant activity

    Science.gov (United States)

    Dakah, Abdulkarim; Zaid, Salim; Suleiman, Mohamad; Abbas, Sami; Wink, Michael

    2014-01-01

    Ziziphora tenuior L. (Lamiaceae) is an aromatic herb used for its medicinal values against fungi, bacteria. Micropropagation can be used for large-scale multiplication of essential oil producing plants thus avoiding an overexploitation of natural resources. This work aims to develop a reliable protocol for the in vitro propagation of Z. tenuior, and to compare the antioxidant activity between in vitro propagated and wild plants. The explants were sterilized and cultured on MS medium containing different concentrations of growth regulators naphthalene acetic acid (NAA) or indole-3-butyric acid (IBA) with 0.5 mg/L of kinetin (Kin) callus formation was 70.2% after 45 days of incubation in dark on medium supplemented with 1.5 mg/L of NAA. After one month of callus culture on medium supplemented with 2 mg/L BA the shoot number was 5.12 and for the multiplication stage. The shoot number was 4.21 and length was 6.17 cm on medium supplemented with 1 mg/L Kin + 0.1 mg/L NAA. DPPH• reagent was used to test the antioxidant activity. The aqueous and methanol extracts of in vitro plants which were treated with 1.5 and 1 mg/L of kin plus 0.1 mg/L of NAA showed a strong DPPH• scavenging activity where IC50 was 0.307 and 0.369 mg/ml, respectively, while the IC50 of aqueous and methanol extracts of wild plants was 0.516 and 9.229 mg/ml, respectively. Our results suggested that plant growth regulators and in vitro culture conditions increased the antioxidant activity. PMID:25183942

  16. In vitro propagation of the medicinal plant Ziziphora tenuior L. and evaluation of its antioxidant activity.

    Science.gov (United States)

    Dakah, Abdulkarim; Zaid, Salim; Suleiman, Mohamad; Abbas, Sami; Wink, Michael

    2014-09-01

    Ziziphora tenuior L. (Lamiaceae) is an aromatic herb used for its medicinal values against fungi, bacteria. Micropropagation can be used for large-scale multiplication of essential oil producing plants thus avoiding an overexploitation of natural resources. This work aims to develop a reliable protocol for the in vitro propagation of Z. tenuior, and to compare the antioxidant activity between in vitro propagated and wild plants. The explants were sterilized and cultured on MS medium containing different concentrations of growth regulators naphthalene acetic acid (NAA) or indole-3-butyric acid (IBA) with 0.5 mg/L of kinetin (Kin) callus formation was 70.2% after 45 days of incubation in dark on medium supplemented with 1.5 mg/L of NAA. After one month of callus culture on medium supplemented with 2 mg/L BA the shoot number was 5.12 and for the multiplication stage. The shoot number was 4.21 and length was 6.17 cm on medium supplemented with 1 mg/L Kin + 0.1 mg/L NAA. DPPH• reagent was used to test the antioxidant activity. The aqueous and methanol extracts of in vitro plants which were treated with 1.5 and 1 mg/L of kin plus 0.1 mg/L of NAA showed a strong DPPH• scavenging activity where IC50 was 0.307 and 0.369 mg/ml, respectively, while the IC50 of aqueous and methanol extracts of wild plants was 0.516 and 9.229 mg/ml, respectively. Our results suggested that plant growth regulators and in vitro culture conditions increased the antioxidant activity.

  17. Polysaccharides, total flavonoids content and antioxidant activities in different parts of Silybum marianum L. plants

    Science.gov (United States)

    Sun, Jing; Li, Xinhua; Yu, Xiaolei

    2017-01-01

    Silybum marianum L. is used for the production of silymarin, a flavonoid utilized for regenerating damaged hepatic tissues. Herein, the total flavonoid content (TFC) and polysaccharides content (PC) in the roots, main stems, leaves, fruit receptacles, and pappi of Silybum marianum were determined. The antioxidant activities of plant ethanol extracts were assessed to validate the medicinal potential of the various plant parts. The pappi exhibited the highest TFC (17.10 mg rutin/g of dry plant material), followed by the fruit receptacles (15.34 mg/g). The PC varied from 3.57±0.23 to 11.02±0.35 mg glucose /g dry plant material; the highest PC was obtained from the roots. At 50 ug/mL, the pappi ethanol extract showed the highest 1, 1-Diphenyl-2-picryl-hydrazyl (DPPH) radical scavenging activity (69.68%), followed by the roots (66.02%).

  18. The oxidation mechanism of the antioxidant quercetin in nonaqueous media

    Energy Technology Data Exchange (ETDEWEB)

    Sokolova, Romana, E-mail: romana.sokolova@jh-inst.cas.cz [J. Heyrovsky Institute of Physical Chemistry, v.v.i., Academy of Sciences of the Czech Republic, Dolejskova 3, 18223 Prague (Czech Republic); Degano, Ilaria [Department of Chemistry and Industrial Chemistry, University of Pisa, Via Risorgimento 35, 56100 Pisa (Italy); Ramesova, Sarka; Bulickova, Jana; Hromadova, Magdalena; Gal, Miroslav; Fiedler, Jan [J. Heyrovsky Institute of Physical Chemistry, v.v.i., Academy of Sciences of the Czech Republic, Dolejskova 3, 18223 Prague (Czech Republic); Valasek, Michal [Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Flemingovo nam. 2, 16610 Prague 6 (Czech Republic)

    2011-08-30

    The knowledge of the degradation pathways of natural dyes used in medieval textiles is necessary for the restoration of their original color. Quercetin, one of such colorants, reportedly yields the wide spectrum of oxidation products in different types of media. This study deals with electrochemical oxidation mechanism of quercetin in nonaqueous solution, which has not been yet attempted. The final oxidation product at the first oxidation wave was identified by HPLC-DAD and GC-MS techniques as 2-(3',4'-dihydroxybenzoyl)-2,4,6-trihydroxybenzofuran-3(2H)-one. The apparent two-electron process at the potential of the first oxidation wave yields current-voltage shapes with one-electron characteristics. The in situ spectroelectrochemistry measurements proved the oxidation mechanism leading through a short-lived anion radical. Two possibilities of the oxidation mechanism are discussed: two one-electron transfers, which do not have identical but similar redox potentials, or the presence of a disproportionation chemical reaction following the first one electron transfer. The quinone formed in either case is stable only on the time scale of a fast spectroelectrochemistry and undergoes fast hydroxylation reaction, where 2-(3,4-dihydroxybenzoyl)-2,4,6-trihydroxybenzofuran-3-one is formed. This compound is oxidized at the potential of the second oxidation wave of quercetin.

  19. The oxidation mechanism of the antioxidant quercetin in nonaqueous media

    International Nuclear Information System (INIS)

    Sokolova, Romana; Degano, Ilaria; Ramesova, Sarka; Bulickova, Jana; Hromadova, Magdalena; Gal, Miroslav; Fiedler, Jan; Valasek, Michal

    2011-01-01

    The knowledge of the degradation pathways of natural dyes used in medieval textiles is necessary for the restoration of their original color. Quercetin, one of such colorants, reportedly yields the wide spectrum of oxidation products in different types of media. This study deals with electrochemical oxidation mechanism of quercetin in nonaqueous solution, which has not been yet attempted. The final oxidation product at the first oxidation wave was identified by HPLC-DAD and GC-MS techniques as 2-(3',4'-dihydroxybenzoyl)-2,4,6-trihydroxybenzofuran-3(2H)-one. The apparent two-electron process at the potential of the first oxidation wave yields current-voltage shapes with one-electron characteristics. The in situ spectroelectrochemistry measurements proved the oxidation mechanism leading through a short-lived anion radical. Two possibilities of the oxidation mechanism are discussed: two one-electron transfers, which do not have identical but similar redox potentials, or the presence of a disproportionation chemical reaction following the first one electron transfer. The quinone formed in either case is stable only on the time scale of a fast spectroelectrochemistry and undergoes fast hydroxylation reaction, where 2-(3,4-dihydroxybenzoyl)-2,4,6-trihydroxybenzofuran-3-one is formed. This compound is oxidized at the potential of the second oxidation wave of quercetin.

  20. Phytochemical screening, antiglycation and antioxidant activities of whole plant of Boerhavia repens L. from Cholistan, Pakistan.

    Science.gov (United States)

    Nazneen, Fariha; Sheikh, Munir A; Jameel, Amir; Rahman, Ziaur

    2016-05-01

    Present study was aimed to explore a traditionally used indigenous medicinal plant Boerhavia repens (Nyctaginaceae family) of the Cholistan desert, Pakistan. Crude aqueous and methanolic extracts of the whole plant were investigated in vitro for preliminary phytochemical screening, antioxidant and antiglycation activities. Antioxidant activities were determined by total phenolic contents, 1,1-diphenyl-2-picrylhydrazyl (DPPH) free radical scavenging and inhibition of lipid peroxidation. For antiglycation activities browning production was noted and thiobarbituric acid (TBA) technique was used to determine glycation level. Boerhavia repens expressed considerable amounts of phytochemicals. Extract yield was found to be 4.59%-7.85% g/100g of dry matter with total phenolics ranging from 47.9- 190.77mg/GAE per g for aqueous and methanol extract respectively. Strong inhibitory effect was exhibited by methanolic extract in linoleic acid per oxidation system (86.11%, EC50=0.99mg/mL) and DPPH assay (88.65%, EC50=212.33μg/ml). In term of browning maximum inhibition (81.50%) was exhibited by methanolic extract at 37°C at third week of incubation. Both extracts expressed significant (P>0.05) and comparable inhibition of glycation level. In conclusion, Boerhavia repens showed promising antioxidant and antiglycation activities validating its therapeutic potential.

  1. In vitro antioxidant activity and phytochemical screening of Garhwal Himalaya medicinal plants

    Directory of Open Access Journals (Sweden)

    Subhash Chandra

    2016-08-01

    Full Text Available Bistorta macrophylla, B.vaccinifolia and Persicaria polystachya are used for the treatment and prevention of many ailments including tuberculosis, inflammation, pyretic, fever, flue, lungs disorders, diarrhea, vomiting, arthritis, gout, kidney stones or hyperacidity and hypertension. This study was aimed to evaluate the possible in vitro antioxidant activity and phytochemical screening of B. macrophylla, B.vaccinifolia and P. polystachya. The results of antioxidant activity study of B. macrophylla showed maximum activity in the methanolic extracts at different concentration of 20, 40, 60, 80 and 100 µg/ml. The percent inhibition of writhing response by the extract was 36.18%, 44.72%, 59.21%. 67.08% and 83.39% respectively. In the present work a potent anti-oxidant activity of methanolic extract of the whole plants of B. macrophylla were demonstrated, validating the ethno pharmacological claims. These experimental findings would further establish the scientific basis of the traditional uses of the plant in the management of different conditions as well as control of different disease.

  2. Quantum Chemical Study on the Antioxidation Mechanism of Piceatannol and Isorhapontigenin toward Hydroxyl and Hydroperoxyl Radicals.

    Directory of Open Access Journals (Sweden)

    Yang Lu

    Full Text Available A systematic study of the antioxidation mechanisms behind hydroxyl (•OH and hydroperoxyl (•OOH radical scavenging activity of piceatannol (PIC and isorhapontigenin (ISO was carried out using density functional theory (DFT method. Two reaction mechanisms, abstraction (ABS and radical adduct formation (RAF, were discussed. A total of 24 reaction pathways of scavenging •OH and •OOH with PIC and ISO were investigated in the gas phase and solution. The thermodynamic and kinetic properties of all pathways were calculated. Based on these results, we evaluated the antioxidant activity of every active site of PIC and ISO and compared the abilities of PIC and ISO to scavenge radicals. According to our results, PIC and ISO may act as effective •OH and •OOH scavengers in organism. A4-hydroxyl group is a very important active site for PIC and ISO to scavenge radicals. The introducing of -OH or -OCH3 group to the ortho-position of A4-hydroxyl group would increase its antioxidant activity. Meanwhile, the conformational effect was researched, the results suggest that the presence and pattern of intramolecular hydrogen bond (IHB are considerable in determining the antioxidant activity of PIC and ISO.

  3. Antioxidant and signal modulation properties of plant polyphenols in controlling vascular inflammation.

    Science.gov (United States)

    Kostyuk, Vladimir A; Potapovich, Alla I; Suhan, Tatyana O; de Luca, Chiara; Korkina, Liudmila G

    2011-05-11

    Oxidized low-density lipoproteins (oxLDL) play a critical role in the initiation of atherosclerosis through activation of inflammatory signaling. In the present work we investigated the role of antioxidant and signal modulation properties of plant polyphenols in controlling vascular inflammation. Significant decrease in intracellular NO level and superoxide overproduction was found in human umbilical vein endothelial cells (HUVEC) treated with oxLDL, but not with LDL. The redox imbalance was prevented by the addition of quercetin or resveratrol. Expression analysis of 14 genes associated with oxidative stress and inflammation revealed oxLDL-mediated up-regulation of genes specifically involved in leukocyte recruitment and adhesion. This up-regulation could be partially avoided by the addition of verbascoside or resveratrol, while treatment with quercetin resulted in a further increase in the expression of these genes. Lipopolysaccharide (LPS)-treated HUVEC were also used for the evaluation of anti-inflammatory potency of plant polyphenols. Significant differences between HUVEC treaded with oxLDL and LPS were found in both the expression pattern of inflammation-related genes and the effects of plant polyphenols on cellular responses. The present data indicate that plant polyphenols may affect vascular inflammation not only as antioxidants but also as modulators of inflammatory redox signaling pathways. Crown Copyright © 2011. Published by Elsevier B.V. All rights reserved.

  4. Mechanisms of male sterility in higher plants

    Energy Technology Data Exchange (ETDEWEB)

    Ohta, Yasuo [Tsukuba Univ., Sakura, Ibaraki (Japan)

    1982-03-01

    The mechanisms causing male sterility in higher plants were classified into two major categories: genetic and non-genetic. The former was further divided into six classes: 1) Anomality in spindle mechanism during meiosis, 2) chromosomal anomality such as haploidy, polyploidy, aneuploidy, chromosome some deficiency, inversion and reciprocal translocation, 3) presence of male sterile genes, 4) cytoplasmic abnormality, 5) the combination of some specific cytoplasm with particular genes, and 6) infections of microorganisms or viruses. Each mechanism was briefly explained, and the methods for the maintenance of parent lines for heterosis breeding and hybrid seed production were described. The non-genetic male sterility was classified into four types, which are caused by 1) low or high temperature, 2) water deficiency, 3) application of chemicals, and 4) radiation, with a brief explanation given for each of them.

  5. Mechanisms of male sterility in higher plants

    International Nuclear Information System (INIS)

    Ohta, Yasuo

    1982-01-01

    The mechanisms causing male sterility in higher plants were classified into two major categories: genetic and non-genetic. The former was further divided into six classes: 1) Anomality in spindle mechanism during meiosis, 2) chromosomal anomality such as haploidy, polyploidy, aneuploidy, chromosome some deficiency, inversion and reciprocal translocation, 3) presence of male sterile genes, 4) cytoplasmic abnormality, 5) the combination of some specific cytoplasm with particular genes, and 6) infections of microorganisms or viruses. Each mechanism was briefly explained, and the methods for the maintenance of parent lines for heterosis breeding and hybrid seed production were described. The non-genetic male sterility was classified into four types, which are caused by 1) low or high temperature, 2) water deficiency, 3) application of chemicals, and 4) radiation, with a brief explanation given for each of them. (Kaihara, S.)

  6. Ex Vivo Antioxidant Activity of Selected Medicinal Plants against Fenton Reaction-Mediated Oxidation of Biological Lipid Substrates

    Directory of Open Access Journals (Sweden)

    Namratha Pai Kotebagilu

    2015-01-01

    Full Text Available Free radical-mediated oxidation is often linked to various degenerative diseases. Biological substrates with lipids as major components are susceptible to oxygen-derived lipid peroxidation due to their composition. Lipid peroxide products act as biomarkers in evaluating the antioxidant potential of various plants and functional foods. The study focused on evaluation of the antioxidant potential of two extracts (methanol and 80% methanol of four medicinal plants, Andrographis paniculata, Costus speciosus, Canthium parviflorum, and Abrus precatorius, against Fenton reaction-mediated oxidation of three biological lipid substrates; cholesterol, low-density lipoprotein, and brain homogenate. The antioxidant activity of the extracts was measured by thiobarbituric acid reactive substances method. Also, the correlation between the polyphenol, flavonoid content, and the antioxidant activity in biological substrates was analyzed. Results indicated highest antioxidant potential by 80% methanol extract of Canthium parviflorum (97.55%, methanol extract of Andrographis paniculata (72.15%, and methanol extract of Canthium parviflorum (49.55% in cholesterol, low-density lipoprotein, and brain, respectively. The polyphenol and flavonoid contents of methanol extract of Andrographis paniculata in cholesterol (r=0.816 and low-density lipoprotein (r=0.948 and Costus speciosus in brain (r=0.977, polyphenols, and r=0.949, flavonoids correlated well with the antioxidant activity. The findings prove the antioxidant potential of the selected medicinal plants against Fenton reaction in biological lipid substrates.

  7. Antioxidant Activity of Dominant Plants Species in Obat Pahit from Lingga Malay Ethnic in Riau Archipelago

    Directory of Open Access Journals (Sweden)

    Fitmawati Fitmawati

    2017-07-01

    Full Text Available Obat Pahit is a potion that has been long commonly consumed by Lingga Malay society for generations as stamina keeper. The most dominant plants found in the packaging of the Obat Pahit were namely Bauhunia semibifida, Cnestis palala and Penawa Root (3 species. This research aimed to investigate and determine activity of antioxidant contents in Obat Pahit from five Traditional Medicine Practitioners (TMPs in the district of Lingga. The tested samples were mashed then being soaked into 2 types of solvent: distilled water and methanol, containing HCl 1%. DPPH method was also used in this research. Quantitatively antioxidant activity test of Obat Pahit from the five TMPs by using methanol solvent had extremely highest activity compared to the distilled water solvent. The test, using TLC plate by spraying the extract from three dominant plants with 0.1 mM of DPPH solution, produced a pale-yellow spots at a wavelength of 366 nm. On the other hand, the test using HPLC at wavelengths of 230 nm and 280 nm showed the presence of two dominant secondary metabolites contents: flavonoid and phenolic. IC50 (ppm of Bauhinia semibifida (6.6247, Penawa Root (5.0124 and Cnestis palala (5.9968 were much lower than IC50 of mangosteen’s rind (41.7675, vitamin C (6.6612 and Stimuno drug (8.333. This antioxidant analysis has not been reported previously. This proof contributed greatly to uncovering potentially native natural resources as an indigenous Indonesian drug which is expected to decrease dependence on imported drugs especially imunomodulator, antihypertensive, antidiabet etc. This research would be beneficial and excellent manifestation for the development of natural antioxidant-based medicines from traditional knowledge of Indonesia’s local ethnicities.

  8. Molecular mechanisms of plant competition: neighbour detection and response strategies

    NARCIS (Netherlands)

    Pierik, R.; Mommer, L.; Voesenek, L.A.C.J.

    2013-01-01

    Plant competition determines the diversity and species abundance of natural communities as well as potential yields in agricultural systems. Understanding the mechanisms of plant competition is instrumental to understanding plant performance in true vegetations. In this review, we will address

  9. Synthetic Isoliquiritigenin Inhibits Human Tongue Squamous Carcinoma Cells through Its Antioxidant Mechanism

    OpenAIRE

    Hou, Cuilan; Li, Wenguang; Li, Zengyou; Gao, Jing; Chen, Zhenjie; Zhao, Xiqiong; Yang, Yaya; Zhang, Xiaoyu; Song, Yong

    2017-01-01

    Isoliquiritigenin (ISL), a natural antioxidant, has antitumor activity in different types of cancer cells. However the antitumor effect of ISL on human tongue squamous carcinoma cells (TSCC) is not clear. Here we aimed to investigate the effects of synthetic isoliquiritigenin (S-ISL) on TSCC and elucidate the underlying mechanisms. S-ISL was synthesized and elucidated from its nuclear magnetic resonance spectrum and examined using high performance liquid chromatography. The effects of S-ISL o...

  10. In Vitro Protective Effect and Antioxidant Mechanism of Resveratrol Induced by Dapsone Hydroxylamine in Human Cells.

    Directory of Open Access Journals (Sweden)

    Rosyana V Albuquerque

    Full Text Available Dapsone (DDS hydroxylamine metabolites cause oxidative stress- linked adverse effects in patients, such as methemoglobin formation and DNA damage. This study evaluated the ameliorating effect of the antioxidant resveratrol (RSV on DDS hydroxylamine (DDS-NHOH mediated toxicity in vitro using human erythrocytes and lymphocytes. The antioxidant mechanism was also studied using in-silico methods. In addition, RSV provided intracellular protection by inhibiting DNA damage in human lymphocytes induced by DDS-NHOH. However, whilst pretreatment with RSV (10-1000 μM significantly attenuated DDS-NHOH-induced methemoglobinemia, but it was not only significantly less effective than methylene blue (MET, but also post-treatment with RSV did not reverse methemoglobin formation, contrarily to that observed with MET. DDS-NHOH inhibited catalase (CAT activity and reactive oxygen species (ROS generation, but did not alter superoxide dismutase (SOD activity in erythrocytes. Pretreatment with RSV did not alter these antioxidant enzymes activities in erythrocytes treated with DDS-NHOH. Theoretical calculations using density functional theory methods showed that DDS-NHOH has a pro-oxidant effect, whereas RSV and MET have antioxidant effect on ROS. The effect on methemoglobinemia reversion for MET was significantly higher than that of RSV. These data suggest that the pretreatment with resveratrol may decrease heme-iron oxidation and DNA damage through reduction of ROS generated in cells during DDS therapy.

  11. DFT Study on Molecular Structures and ROS Scavenging Mechanisms of Novel Antioxidants from Lespedeza Virgata

    Science.gov (United States)

    Li, Min-jie; Zhang, Liang-miao; Liu, Wei-xia; Lu, Wen-cong

    2011-04-01

    The molecular structure and radical scavenging activity of three novel antioxidants from Lespedeza Virgata, lespedezavirgatol, lespedezavirgatal, and lespedezacoumestan, have been studied using density functional theory with the B3LYP and BhandHLYP methods. The optimized geometries of neutral, radical cation, radical and anion forms were obtained at the B3LYP/6-31G(d) level, in which it was found that all the most stable conformations contain intramolecular hydrogen bonds. The same results were obtained from the MP2 method. The homolytic O—H bond dissociation enthalpy and the adiabatic ionization potential of neutral and anion forms for the three new antioxidants and adiabatic electron affinity and H-atom affinity for hydroxyl radical, superoxide anion radical, and hydrogen peroxide radical were determined both in gas phase and in aqueous solution using IEF-PCM and CPCM model with UAHF or Bondi cavity. The antioxidant activities and reactive oxygen species scavenging mechanisms were then discussed, and the results obtained from different methods are consistent. Furthermore, the antioxidant activities are consistent with the experimental findings of the compounds under investigation.

  12. Epiphytes modulate Posidonia oceanica photosynthetic production, energetic balance, antioxidant mechanisms and oxidative damage

    Directory of Open Access Journals (Sweden)

    Monya Mendes Costa

    2015-12-01

    Full Text Available Epiphytes impose physical barriers to light penetration into seagrass leaves causing shading, which may decrease the production of oxygen reactive species (ROS, but also constitute a physical aggression that may trigger the production of ROS, leading to oxidative damage. Here we investigate the effects of epiphytes on Posidonia oceanica under both interactive perspectives, light attenuation and oxidative stress. Specifically the role of epiphytes in net photosynthesis, chlorophyll a and b, photoprotection (Violaxanthin+Anteraxanthin+Zeaxanthin cycle, soluble sugar and starch contents, enzymatic (ascorbate peroxidase (APX and dehydroascorbate reductase (DHAR and global (trolox equivalent antioxidant capacity (TEAC and oxygen radical antioxidant capacity (ORAC antioxidant responses, phenolics and oxidative damage (malondialdehyde are tested. Leaves with epiphytes showed higher chlorophyll b and lower content in VAZ cycle carotenoids. Epiphyte shading was the probable reason for the lower VAZ de-epoxidation-ratio of leaves with epiphytes. In spite of being shaded, leaves with epiphytes showed higher antioxidant levels, indicating that epiphytes trigger the production of ROS. Both ORAC and TEAC and also APX and DHAR activities were higher in leaves with epiphytes, indicating that this response was related with its presence. Malondialdehyde concentrations also suggest oxidative damage caused by epiphytes. We conclude that the epiphyte load causes oxidative stress in P. oceanica and the mechanisms to scavenge ROS were not completely effective to avoid cell damage.

  13. Antioxidant Capacity, Cytotoxicity and Antimycobacterial Activity of Madeira Archipelago Endemic Helichrysum Dietary and Medicinal Plants

    Directory of Open Access Journals (Sweden)

    Sandra C. Gouveia-Figueira

    2014-10-01

    Full Text Available The potential bioactivity of dietary and medicinal endemic Helichrysum plants from Madeira Archipelago was explored, for the first time, in order to supply new information for the general consumer. In vitro antioxidant properties were investigated using DPPH, ABTS•+, FRAP and β-Carotene assays, and the total phenolic content (TPC and total flavonoid content (TFC were also determined. Although the results generally showed a large variation among the three analyzed plants, the methanolic extracts showed the highest antioxidant capacity. Exception is made for H. devium n-hexane extract that showed good radical scavenger capacity associated to compounds with good reducing properties. In the Artemia salina toxicity assay and antimycobaterial activity, H. devium was the most potent plant with the lowest LD50 at 216.7 ± 10.4 and MIC ≤ 50 μg·mL−1. Chemometric evaluation (Principal Component Analysis—PCA showed close interdependence between the ABTS, TPC and TFC methods and allowed to group H. devium samples.

  14. Antioxidant Capacity, Cytotoxicity and Antimycobacterial Activity of Madeira Archipelago Endemic Helichrysum Dietary and Medicinal Plants.

    Science.gov (United States)

    Gouveia-Figueira, Sandra C; Gouveia, Carla A; Carvalho, Maria J; Rodrigues, Ana I; Nording, Malin L; Castilho, Paula C

    2014-10-31

    The potential bioactivity of dietary and medicinal endemic Helichrysum plants from Madeira Archipelago was explored, for the first time, in order to supply new information for the general consumer. In vitro antioxidant properties were investigated using DPPH, ABTS(•+), FRAP and β-Carotene assays, and the total phenolic content (TPC) and total flavonoid content (TFC) were also determined. Although the results generally showed a large variation among the three analyzed plants, the methanolic extracts showed the highest antioxidant capacity. Exception is made for H. devium n-hexane extract that showed good radical scavenger capacity associated to compounds with good reducing properties. In the Artemia salina toxicity assay and antimycobaterial activity, H. devium was the most potent plant with the lowest LD50 at 216.7 ± 10.4 and MIC ≤ 50 μg·mL(-1). Chemometric evaluation (Principal Component Analysis-PCA) showed close interdependence between the ABTS, TPC and TFC methods and allowed to group H. devium samples.

  15. Antimicrobial, Antioxidant, and Anti-Inflammatory Activities of Essential Oils of Selected Aromatic Plants from Tajikistan

    Directory of Open Access Journals (Sweden)

    Farukh Sharopov

    2015-11-01

    Full Text Available Antimicrobial, antioxidant, and anti-inflammatory activities of the essential oils of 18 plant species from Tajikistan (Central Asia were investigated. The essential oil of Origanum tyttanthum showed a strong antibacterial activity with both minimum inhibitory concentration (MIC and minimum bactericidal concentration (MBC values of 312.5 µg/mL for E. coli, 625 µg/mL (MIC and 1250 µg/mL (MBC for MRSA (methicillin-resistant Staphylococcus aureus, respectively. The essential oil of Galagania fragrantissima was highly active against MRSA at concentrations as low as 39.1 µg/mL and 78.2 µg/mL for MIC and MBC, respectively. Origanum tyttanthum essential oil showed the highest antioxidant activity with IC50 values of 0.12 mg/mL for ABTS (2,2′-azino-bis-(3-ethylbenzthiazoline-6-sulfonic acid and 0.28 mg/mL for DPPH (2,2-diphenyl-1-picrylhydrazyl. Galagania fragrantissima and Origanum tyttanthum essential oils showed the highest anti-inflammatory activity; IC50 values of 5-lipoxygenase (5-LOX inhibition were 7.34 and 14.78 µg/mL, respectively. In conclusion, essential oils of Origanum tyttanthum and Galagania fragrantissima exhibit substantial antimicrobial, antioxidant, and anti-inflammatory activities. They are interesting candidates in phytotherapy.

  16. and Antioxidant Activity of Endophytic Fungi from Mahogoni Plant (Swietenia macrophylla King

    Directory of Open Access Journals (Sweden)

    Edward J Dompeipen

    2015-06-01

    Full Text Available Diabetes mellitus is a degenerative disease characterized by hyperglycemia due to insulin insulin deficiency either absoluteor relative. This study was conducted to isolate endophytic fungi from plant twigs mahogany (Swietenia macrophylla King which active as antidiabetic and antioxidant. Antidiabetic activity conducted by using the α-glucosidase inhibitory and antioxidant activity using free radical reduction method with reagent 2.2-diphenyl-1-picrylhydrazyl (DPPH. Isolation of microbes conducted in the media Corn Meal Malt Agar (CMMA and Potato Dextrose Agar (PDA which 7 isolates of fungus in total. Inhibitory activity against α-glucosidase to extract the filtrate and biomass of the isolates A.Sm.2F (72.59 and 92.22%, A.Sm.3F (81.87 and 79.37%, B.Sm.1F (63.40 and 98.84%, B.Sm.2F (65.60 and 62.72%, B.Sm.3F (93.91 and 51.48%, B.Sm.4F (87.48 and 74.64% thus has potential as an antidiabetic activity. B.Sm.1F was the only isolates active as antioxidants with IC50 of 84.41.

  17. Antimicrobial, Antioxidant, and Anti-Inflammatory Activities of Essential Oils of Selected Aromatic Plants from Tajikistan.

    Science.gov (United States)

    Sharopov, Farukh; Braun, Markus Santhosh; Gulmurodov, Isomiddin; Khalifaev, Davlat; Isupov, Salomiddin; Wink, Michael

    2015-11-02

    Antimicrobial, antioxidant, and anti-inflammatory activities of the essential oils of 18 plant species from Tajikistan (Central Asia) were investigated. The essential oil of Origanum tyttanthum showed a strong antibacterial activity with both minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) values of 312.5 µg/mL for E. coli , 625 µg/mL (MIC) and 1250 µg/mL (MBC) for MRSA (methicillin-resistant Staphylococcus aureus), respectively. The essential oil of Galagania fragrantissima was highly active against MRSA at concentrations as low as 39.1 µg/mL and 78.2 µg/mL for MIC and MBC, respectively. Origanum tyttanthum essential oil showed the highest antioxidant activity with IC 50 values of 0.12 mg/mL for ABTS (2,2'-azino-bis-(3-ethylbenzthiazoline-6-sulfonic acid)) and 0.28 mg/mL for DPPH (2,2-diphenyl-1-picrylhydrazyl) . Galagania fragrantissima and Origanum tyttanthum essential oils showed the highest anti-inflammatory activity; IC 50 values of 5-lipoxygenase (5-LOX) inhibition were 7.34 and 14.78 µg/mL, respectively. In conclusion, essential oils of Origanum tyttanthum and Galagania fragrantissima exhibit substantial antimicrobial, antioxidant, and anti-inflammatory activities. They are interesting candidates in phytotherapy.

  18. Modulation of plasma antioxidant activity in weaned piglets by plant polyphenols

    Directory of Open Access Journals (Sweden)

    Hai J. Zhang

    2014-06-01

    Full Text Available This study was conducted to evaluate the effect of plant polyphenols (PP on antioxidant activity in weaned piglets. First, a uniform design, one optimising an experimental technique that can rationally arrange the concentrations of mixture components, was used to obtain the best PP mixture of apple, grape seed, green tea and olive leaf polyphenols based on in vitro antioxidant capacity and inhibitory action on bacterial growth. Second, the optimised PP mixture was tested in vivo with an efficacy trial on piglets. The optimal effects of the mix were observed in vitro when apple, grape seed, green tea, olive leaf polyphenols and a carrier (silicon dioxide accounted for 16.5, 27.5, 30, 2.5 and 23.5%, respectively, of the mixture. Forty-eight weaned piglets were randomly allocated to two dietary treatments (6 replicates of 4 piglets each per treatment and fed a control diet (CTR or CTR supplemented with 0.1% of the optimised PP mixture. Dietary PP did not affect growth performance compared to the CTR group. Plasma total protein, urea nitrogen and lysozyme content were not affected by dietary treatment. No differences of E. coli or Clostridia counts in the faeces and caecum content between the CTR and PP groups were observed. A reduced malondialdehyde concentration in the PP group was observed on day 21 compared to the CTR group (P=0.02. In conclusion, the prepared PP mixture has the potential to improve plasma antioxidant activity.

  19. Subcellular Iron Localization Mechanisms in Plants

    Directory of Open Access Journals (Sweden)

    Emre Aksoy

    2017-12-01

    Full Text Available The basic micro-nutrient element iron (Fe is present as a cofactor in the active sites of many metalloproteins with important roles in the plant. On the other hand, since it is excessively reactive, excess accumulation in the cell triggers the production of reactive oxygen species, leading to cell death. Therefore, iron homeostasis in the cell is very important for plant growth. Once uptake into the roots, iron is distributed to the subcellular compartments. Subcellular iron transport and hence cellular iron homeostasis is carried out through synchronous control of different membrane protein families. It has been discovered that expression levels of these membrane proteins increase under iron deficiency. Examination of the tasks and regulations of these carriers is very important in terms of understanding the iron intake and distribution mechanisms in plants. Therefore, in this review, the transporters responsible for the uptake of iron into the cell and its subcellular distribution between organelles will be discussed with an emphasis on the current developments about these transporters.

  20. TAHLAB (SPIRULINA) AND FEW OTHER MEDICINAL PLANTS HAVING ANTI-OXIDANT & IMMUNOMODULATORY PROPERTIES DESCRIBED IN UNANI MEDICINE - A REVIEW

    OpenAIRE

    Md. Anzar Alam*, Nafis Haider , Shamim Ahmed , Md. Tanwir Alam and Abdul Azeez

    2013-01-01

    : Antioxidants are substances that may protect cells from the damage caused by unstable molecules known as free radicals; free radicals damage may lead to cancer and other diseases. Some of the example of antioxidants are like β-carotene, lycopene, Vit. C, E & A and other substances which are found in variety of fruits, vegetables, algae (spirulina) & other medicinal plants. Spirulina (Blue green algae) is a microscopic single cell alga which grows in fresh water and has a simple structure bu...

  1. Trichoderma-Plant Root Colonization: Escaping Early Plant Defense Responses and Activation of the Antioxidant Machinery for Saline Stress Tolerance

    Science.gov (United States)

    Brotman, Yariv; Landau, Udi; Cuadros-Inostroza, Álvaro; Takayuki, Tohge; Fernie, Alisdair R.; Chet, Ilan; Viterbo, Ada; Willmitzer, Lothar

    2013-01-01

    Trichoderma spp. are versatile opportunistic plant symbionts which can colonize the apoplast of plant roots. Microarrays analysis of Arabidopsis thaliana roots inoculated with Trichoderma asperelloides T203, coupled with qPCR analysis of 137 stress responsive genes and transcription factors, revealed wide gene transcript reprogramming, proceeded by a transient repression of the plant immune responses supposedly to allow root colonization. Enhancement in the expression of WRKY18 and WRKY40, which stimulate JA-signaling via suppression of JAZ repressors and negatively regulate the expression of the defense genes FMO1, PAD3 and CYP71A13, was detected in Arabidopsis roots upon Trichoderma colonization. Reduced root colonization was observed in the wrky18/wrky40 double mutant line, while partial phenotypic complementation was achieved by over-expressing WRKY40 in the wrky18 wrky40 background. On the other hand increased colonization rate was found in roots of the FMO1 knockout mutant. Trichoderma spp. stimulate plant growth and resistance to a wide range of adverse environmental conditions. Arabidopsis and cucumber (Cucumis sativus L.) plants treated with Trichoderma prior to salt stress imposition show significantly improved seed germination. In addition, Trichoderma treatment affects the expression of several genes related to osmo-protection and general oxidative stress in roots of both plants. The MDAR gene coding for monodehydroascorbate reductase is significantly up-regulated and, accordingly, the pool of reduced ascorbic acid was found to be increased in Trichoderma treated plants. 1-Aminocyclopropane-1-carboxylate (ACC)-deaminase silenced Trichoderma mutants were less effective in providing tolerance to salt stress, suggesting that Trichoderma, similarly to ACC deaminase producing bacteria, can ameliorate plant growth under conditions of abiotic stress, by lowering ameliorating increases in ethylene levels as well as promoting an elevated antioxidative capacity

  2. Influence of antioxidants synthesized by plants on physico-chemical and microbiological evolution of Callovo-Oxfordian clay material

    International Nuclear Information System (INIS)

    Ubersfeld, Dimitri

    2016-01-01

    This study is a part of the deep disposal site development for radioactive waste in Meuse-Haute Marne (France), most specifically on the bio-physico-chemical conversion of sedimentary clay rocks (Callovo- Oxfordian, COx), excavated and stored on surface in the form of heap. During the experimental and operational phases, several million cubic meters of argillite will be excavated. Argillite stored in the open air will be exposed to meteoritic alterations, oxidizing conditions of surface and colonized biologically (plants, bacteria, fungi). The aim of the thesis is to study the impact of naturally derived antioxidants from revegetation of heap with antioxidant-producing plants on the physical, chemical or microbial weathering processes of argillite. This work was designed to (i) identify suitable naturally derived antioxidants and the plants to produce them (ii) assess the antioxidant inhibitory effects on weathering and leaching COx metals in the laboratory, (iv) field test selected plants on the heap, (iii) follow in situ physicochemical and microbiological evolution of the argillite heap planted with antioxidant producing plants. In the laboratory, percolating model antioxidants of Lamiaceae (linalool, thymol, carvacrol) through a packed column of argillite showed variable water weathering/leaching rate depending on the metal elements present; very low for aluminum (<1 o/oo), between 1-3% for other metals (Ca, Mg, Fe...) and reach more than 60% for sodium. With thymol at 20 mg/l for 3 months, it was found that there are a decrease in sulfur leached amount and the metal elements from the sulfides (Fe, As) and carbonates (Ca, Sr) and inhibition of bacterial and fungal microflora growths. However, intake of artificial root exudates in columns stimulates microbial growth, improves the availability of aluminum, iron and provides sequestration of calcium. Among the tested plants, lavender and lavandin were selected. Two successive plantation tests were carried out in

  3. Oxidative Stress-Related Mechanisms and Antioxidant Therapy in Diabetic Retinopathy

    Directory of Open Access Journals (Sweden)

    Cheng Li

    2017-01-01

    Full Text Available Diabetic retinopathy (DR is one of the most common microvascular complications of diabetes and is the leading cause of blindness in young adults. Oxidative stress has been implicated as a critical cause of DR. Metabolic abnormalities induced by high-glucose levels are involved in the development of DR and appear to be influenced by oxidative stress. The imbalance between reactive oxygen species (ROS production and the antioxidant defense system activates several oxidative stress-related mechanisms that promote the pathogenesis of DR. The damage caused by oxidative stress persists for a considerable time, even after the blood glucose concentration has returned to a normal level. Animal experiments have proved that the use of antioxidants is a beneficial therapeutic strategy for the treatment of DR, but more data are required from clinical trials. The aims of this review are to highlight the improvements to our understanding of the oxidative stress-related mechanisms underlying the development of DR and provide a summary of the main antioxidant therapy strategies used to treat the disease.

  4. Antioxidant and antidiabetic profiles of two African medicinal plants: Picralima nitida (Apocynaceae) and Sonchus oleraceus (Asteraceae).

    Science.gov (United States)

    Teugwa, Clautilde Mofor; Mejiato, Pascaline Chouadeu; Zofou, Denis; Tchinda, Bruno Tugnoua; Boyom, Fabrice Fekam

    2013-07-15

    Diabetes mellitus (DM) is a metabolic disease characterized by chronic hyperglycaemia generally associated with oxidative stress. The present study aims at evaluating the antioxidant and antidiabetic potential of methanol and hydroethanol extracts of the stem bark and leaves of Pricralima nitida and the Sonchus oleraceus whole plant respectively. The in vitro antioxidant activity was assessed using 1,1-Diphenyl-2-picrilhydrazyl (DPPH) for free radical-scavenging properties of the extracts, and the Folin-Ciocalteu method in determining their phenol contents. The antidiabetic activity was tested in mice following streptozotocin diabetes induction, and selected oxidative stress markers (Malondialdehyde, Hydrogen peroxides and Catalase) were measured in order to evaluate the level of oxidative stress in treated animals. The in vitro antioxidant activity using DPPH showed IC50 ranging from 0.19 ± 0.08 to 1.00 ± 0.06 mg/mL. The highest activity was obtained with the hydroethanol extracts of S. oleraceus (0.19 mg/mL and P. nitida (0.24 mg/mL). Polyphenol contents ranged from 182.25 ± 16.76 to 684.62 ± 46.66 μg Eq Cat/g. The methanol extract of P. nitida showed the highest activity, followed by the hydroethanol extract of S. oleraceus (616.89 ± 19.20 μEq Cat/g). The hydroethanol extract of whole plants (150 mg/Kg) and methanol leave extract of P. nitida (300 mg/Kg) exhibited significant antidiabetic activities with 39.40% and 38.48% glycaemia reduction, respectively. The measurement of stress markers in plasma, liver and kidney after administration of both extracts showed significant reduction in MDA and hydrogen peroxide levels, coupled with a substantial increase in catalase activity. These findings suggest that S. oleraceus whole plant and P. nitida leaves possess both antidiabetic and antioxidant properties, and therefore could be used as starting point for the development of herbal medicines and/or source of new drug molecules against

  5. Mechanisms of selenium hyperaccumulation in plants: A survey of molecular, biochemical and ecological cues.

    Science.gov (United States)

    Lima, Leonardo Warzea; Pilon-Smits, Elizabeth A H; Schiavon, Michela

    2018-04-04

    Selenium (Se) is a micronutrient required for many life forms, but toxic at higher concentration. Plants do not have a Se requirement, but can benefit from Se via enhanced antioxidant activity. Some plant species can accumulate Se to concentrations above 0.1% of dry weight and seem to possess mechanisms that distinguish Se from its analog sulfur (S). Research on these so-called Se hyperaccumulators aims to identify key genes for this remarkable trait and to understand ecological implications. This review gives a broad overview of the current knowledge about Se uptake and metabolism in plants, with a special emphasis on hypothesized mechanisms of Se hyperaccumulation. The role of Se in plant defense responses and the associated ecological implications are discussed. Hyperaccumulators have enhanced expression of S transport and assimilation genes, and may possess transporters with higher specificity for selenate over sulfate. Genes involved in antioxidant reactions and biotic stress resistance are also upregulated. Key regulators in these processes appear to be the growth regulators jasmonic acid, salicylic acid and ethylene. Hyperaccumulation may have evolved owing to associated ecological benefits, particularly protection against pathogens and herbivores, and as a form of elemental allelopathy. Understanding plant Se uptake and metabolism in hyperaccumulators has broad relevance for the environment, agriculture and human and animal nutrition and may help generate crops with selenate-specific uptake and high capacity to convert selenate to less toxic, anticarcinogenic, organic Se compounds. Copyright © 2018 Elsevier B.V. All rights reserved.

  6. Anti-lipase and antioxidant properties of 30 medicinal plants used in Oaxaca, México.

    Science.gov (United States)

    Villa-Ruano, Nemesio; Zurita-Vásquez, Guilibaldo G; Pacheco-Hernández, Yesenia; Betancourt-Jiménez, Martha G; Cruz-Durán, Ramiro; Duque-Bautista, Horacio

    2013-01-01

    We report the results of in vitro anti-lipase and antioxidant assays using crude ethanolic extracts from 30 plants grown in Oaxaca, México. Anti-lipase tests were performed by using porcine pancreatic lipase (PPL) [EC 3.1.1.3] from Affymetrix/USB. The extracts of Solanum erianthum, Salvia microphylla, Brungmansia suaveolens and Cuphea aequipetala showed up to 60% PPL inhibition. The effect of these extracts on the kinetic parameters of PPL (Km= 0.36 mM, and Vmax=0.085 mM min -1) revealed that the alcoholic preparations of S. erianthum and C. aequipetala engendered a non-competitive inhibition (Vmax=0.055 mM min -1; Vmax= 0.053 mM min -1), whereas those of S. microphylla and B. suaveolens produced a mixed inhibition (Km= 0.567 mM, Vmax=0.051 mM min _1; Km=0.643 mM, Vmax= 0.042 mM min ¹). In addition to these findings, seven extracts from different plants were able to inhibit PPL in the range of 30-50%. Antioxidant tests against 2,2-Diphenyl-1-picryl hydrazyl (DPPH) confirmed that Arctostaphylos pungens, Gnaphalium roseum, Crotalaria pumila, Cuphea aequipetala, Rhus chondroloma, and Satureja laevigata possess relevant antioxidant activity (IC(5)0=50-80 μg mL¹). The general composition of the most effective ethanolic extracts was obtained in order to confirm their known chemistry reported by previous works. Comprehensive chemical analysis of the ethanolic extracts and their poisoning effects suggests that S. microphylla, C. aequipetala and A. pungens could be considered as the best sources with both desired properties.

  7. Anti-Iipase and antioxidant properties of 30 medicinal plants used in Oaxaca, México

    Directory of Open Access Journals (Sweden)

    Nemesio Villa-Ruano

    2013-01-01

    Full Text Available We report the results of in vitro anti-lipase and antioxidant assays using crude ethanolic extracts from 30 plants grown in Oaxaca, México. Anti-lipase tests were performed by using porcine pancreatic lipase (PPL [EC 3.1.1.3] from Affymetrix/USB. The extracts of Solanum erianthum, Salvia microphylla, Brungmansia suaveolens and Cuphea aequipetala showed up to 60% PPL inhibition. The effect of these extracts on the kinetic parameters of PPL (Km= 0.36 mM, and Vmax=0.085 mM min -1 revealed that the alcoholic preparations of S. erianthum and C. aequipetala engendered a non-competitive inhibition (Vmax=0.055 mM min -1; Vmax= 0.053 mM min -1, whereas those of S. microphylla and B. suaveolens produced a mixed inhibition (Km= 0.567 mM, Vmax=0.051 mM min _1; Km=0.643 mM, Vmax= 0.042 mM min ¹. In addition to these findings, seven extracts from different plants were able to inhibit PPL in the range of 30-50%. Antioxidant tests against 2,2-Diphenyl-1-picryl hydrazyl (DPPH confirmed that Arctostaphylos pungens, Gnaphalium roseum, Crotalaria pumila, Cuphea aequipetala, Rhus chondroloma, and Satureja laevigata possess relevant antioxidant activity (IC(50=50-80 μg mL¹. The general composition of the most effective ethanolic extracts was obtained in order to confirm their known chemistry reported by previous works. Comprehensive chemical analysis of the ethanolic extracts and their poisoning effects suggests that S. microphylla, C. aequipetala and A. pungens could be considered as the best sources with both desired properties.

  8. Qualitative characterisation of cultivated and wild edible plants: Mineral elements, phenols content and antioxidant capacity

    Directory of Open Access Journals (Sweden)

    Grazia Disciglio

    2017-12-01

    Full Text Available This study investigated the qualitative characteristics of several edible wild herbaceous species, including those most consumed in Foggia Province (southern Italy. Analysis of qualitative characteristics was performed for the edible parts of 11 wild species (Beta vulgaris L., Foeniculum vulgare Miller, Centaurea solstitialis L., Cichorium intybus L., Scolymus hispanicus L., Sonchus oleraceus L., Borago officinalis L., Diplotaxis erucoides L., Diplotaxis tenuifolia (L. DC, Sinapis arvensis L., Portulaca oleracea L. and three cultivated species (C. intybus, B. officinalis, D. tenuifolia. The plants were collected from areas in the Foggia countryside, and the edible part of each species was analysed for dry matter, protein, cation and anion contents as well as total phenols and antioxidant activities. Among the cations, calcium was the most differentiated among species, ranging 784 mg kg–1 fresh weight (Fw for B. vulgaris to 5886 mg kg–1 Fw for S. hispanicus. The nitrate contents were also highly variable, from 75 mg kg–1 Fw for C. intybus to 3874 mg kg–1 Fw for D. tenuifolia. Total polyphenols ranged from 1054 mg gallic acid equivalents (GAE mg kg–1 Fw for C. solstitialis to 3664 mg GAE mg kg–1 Fw for S. arvensis. Antioxidant activities ranged from 839 mg Trolox equivalents (TE kg–1 Fw for B. vulgaris to 5658 mg TE kg–1 Fw for C. intybus. Significant differences were also noted between wild and cultivated plants in the qualitative parameters. Total polyphenols and antioxidant activity were higher in wild C. intybus and B. officinalis than in their cultivated counterparts. Multivariate analysis (cluster analysis and linear discriminant analysis allowed integration of the ANOVA data to determine the qualitative characteristics of the wild species that contribute most to group differences. The results of the present study aims to improve current knowledge about edible wild species as vegetable sources in the Mediterranean diet.

  9. Antioxidant activity of wild edible plants in the Black Sea Region of Turkey

    Directory of Open Access Journals (Sweden)

    Özen, Tevfik

    2010-03-01

    Full Text Available The antioxidative activity of the 80% ethanol extract obtained from eleven commonly consumed wild edible plants was determined according to the phosphomolybdenum method, reducing power, metal chelating, superoxide anion and free radical scavenging activity and compared to standard compounds such as butylated hydroxyanisole (BHA, butylated hydroxytoluene (BHT and trolox. Total phenolic compounds, flavonoids, and anthocyanins in the extracts were also measured. Trachystemon orientalis, Vaccinium mrytillus, Rumex acetosella Polygonum amphibium, Beta vulgaris, and Similax Excelsa had the highest antioxidant capacities. Overall results showed that these plants can serve as good sources of bioactive polyphenols in the human diet and can be regarded as good candidates for nutritional supplement formulations due to their high concentrations of total phenolic compounds, flavonoids and anthocyanins as well as their strong antioxidant activity.La actividad antioxidante de extractos etanólicos al 80%, obtenidos de once plantas salvajes comúnmente consumidas, fue determinada por el método del fosfomolibdeno, poder reductor, actividad quelatante de metales, actividad captadora de aniones superóxidos y actividad captadora de radicales libres, y comparada con compuestos patrones tales como el butil hidroxianisol (BHA, butil hidroxitolueno (BHT y Trolox. El contenido de fenoles totales, flavonoides y antocianinas en el extracto fue también determinado. Trachystemon orientalis, Vaccinium mrytillus, Rumex acetosella Polygonum amphibium, Beta vulgaris, y Similax Excelsa tienen las capacidades antioxidantes más altas. En general, los resultados muestran que estas plantas pueden servir como una buena fuente de polifenoles bioactivos en la dieta humana, y pueden ser considerados como buenos candidatos para su uso como suplemento nutricional en formulaciones debido a su alta concentración en fenoles, flavonoides y antocinainas y a su fuerte actividad

  10. Role of the reacting free radicals on the antioxidant mechanism of curcumin

    Energy Technology Data Exchange (ETDEWEB)

    Galano, Annia, E-mail: agalano@prodigy.net.mx [Universidad Autonoma Metropolitana-Iztapalapa, Departamento de Quimica, Area de Quimica Analitica, San Rafael Atlixco 186, Col. Vicentina, Iztapalapa, C.P. 09340, Mexico D.F. (Mexico); Alvarez-Diduk, Ruslan; Ramirez-Silva, Maria Teresa; Alarcon-Angeles, Georgina; Rojas-Hernandez, Alberto [Universidad Autonoma Metropolitana-Iztapalapa, Departamento de Quimica, Area de Quimica Analitica, San Rafael Atlixco 186, Col. Vicentina, Iztapalapa, C.P. 09340, Mexico D.F. (Mexico)

    2009-09-18

    Density functional theory is used to study the antioxidant mechanism of curcumin. Five different mechanisms are considered: single electron transfer (SET), radical adduct formation (RAF), H atom transfer from neutral curcumin (HAT), H atom transfer from deprotonated curcumin (HAT-D), and sequential proton loss electron transfer (SPLET). The influence of the environment is investigated for polar and non-polar surroundings. The apparent contradictions among previous experimental results are explained by the role of the nature of the reacting free radical on the relative importance of the above mentioned mechanism. It is proposed that the curcumin + DPPH reaction actually takes place mainly through the SPLET mechanism, while the reaction with {sup {center_dot}}OCH{sub 3}, and likely with other alkoxyl radicals, is governed by the HAT mechanism. Branching ratios for the {sup {center_dot}}OCH{sub 3} + curcumin reaction are reported for the first time. The calculated overall rate constants for this reaction are 1.16 x 10{sup 10} (benzene) and 5.52 x 10{sup 9} (water) L mol{sup -1} s{sup -1}. The role of phenolic groups on the antioxidant activity of curcumin has been experimentally confirmed.

  11. Evaluation of selected Indian traditional folk medicinal plants against Mycobacterium tuberculosis with antioxidant and cytotoxicity study.

    Directory of Open Access Journals (Sweden)

    Tawde K. V

    2012-10-01

    Full Text Available Objective: To evaluate different solvent extracts of selected Indian traditional medicinal plant against Mycobacterium tuberculosis, its antioxidant potential and cytotoxicity. Methods: Acacia catechu (L. Willd (Root extract and Ailanthus excelsa Roxb., leaf extracts of Aegle marmelos Corr., Andrographis paniculata Nees. and Datura metel L. were sequentially extracted in water, ethanol, chloroform and hexane and evaluated for their anti-tuberculosis (TB activity against Mycobacterium tuberculosis using agar diffusion assay. The zone of inhibition ( at 20 and 40 mg/ ml was measured and MIC were calculated. The results were compared with Rifampicin as a standard anti TB drug. The extracts were also evaluated for DPPH and OH radical scavenging activities to understand their antioxidant potential. MTT based cytotoxicity assay was used for evaluating cytotoxicity of the selected samples against Chang liver cells. Results: The selected botanicals were sequentially extracted in water, ethanol, chloroform and hexane and tested for growth inhibition of M. tuberculosi. The hexane extract of A. catechu root and ethanol extract of A. paniculata leaf showed promising activity against M. tuberculosis while remaining extracts showed moderate anti TB activity. The samples were found to possess considerable DPPH and OH radical scavenging activities with no demonstrable cytotoxicity against Chang liver cells. Conclusions: Five traditional medicinal plants were selected for the present study. The selection of medicinal plants was based on their traditional usage for the treatment of tuberculosis, asthma and chronic respiratory diseases. Herein we report for the first time, the anti TB activity of root extracts of Acacia catechu and Ailanthus excelsa while leaf extract of Andrographis paniculata, Aegle marmelos and Datura metel. The study holds importance in the midst of multi drug resistance (MDR crisis in the TB management, since it unravels the scientific basis

  12. Screening for Endophytic Fungi from Turmeric Plant (Curcuma longa L.) of Sukabumi and Cibinong with Potency as Antioxidant Compounds Producer.

    Science.gov (United States)

    Bustanussalam; Rachman, Fauzy; Septiana, Eris; Lekatompessy, Sylvia J R; Widowati, Tiwit; Sukiman, Harmastini I; Simanjuntak, Partomuan

    2015-01-01

    Potency of medicinal plant is related to microorganisms lived in the plant tissue. Those microorganisms are known as endophytic microbes that live and form colonies in the plant tissue without harming its host. Each plant may contains several endophytic microbes that produce biological compounds or secondary metabolites due to co-evolution or genetic transfer from the host plant to endophytic microbes. Endophytic fungi research done for turmeric plant (Curcuma longa L.) gave 44 isolated fungi as results. Those 44 fungi isolated were fermented in Potato Dextrose Broth (PDB) media, filtered, extracted with ethylacetate and then were analyzed by Thin Layer Chromatography (TLC) method and tested for their antioxidant activity by radical scavenging method. The antioxidant activity of the ethylacetate filtrate extracts either from Sukabumi or Cibinong were higher than the biomass extracts. There were 6 fungi that showed antioxidant activities over 65%, i.e., with code name K.Cl.Sb.R9 (93.58%), K.Cl.Sb.A11 (81.49%), KCl.Sb.B1 (78.81%), KCl.Sb.R11 (71.67%) and K.Cl.Sb.A12 (67.76%) from Sukabumi and K.Cl.Cb.U1 (69.27%) from Cibinong. These results showed that bioproduction by endophytic microbes can gave potential antioxidant compounds.

  13. Improved antioxidant activity in transgenic Perilla frutescens plants via overexpression of the γ-tocopherol methyltransferase (γ-tmt) gene.

    Science.gov (United States)

    Ghimire, Bimal Kumar; Seong, Eun Soo; Lee, Chan Ok; Lee, Jae Geun; Yu, Chang Yeon; Kim, Seung Hyun; Chung, Ill Min

    2015-09-01

    The main goal of this study was to generate transgenic Perilla frutescens with enhanced antioxidant properties by overexpressing the γ-tocopherol methyltransferase (γ-tmt) gene. In this study, the antioxidant activity of methanolic crude extracts of transgenic and non-transgenic control plants was investigated using the 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging method. Free radical scavenging activity was evaluated using α-tocopherol and butylated hydroxyl toluene as standard antioxidants. In general, the ethyl acetate fraction of transgenic P. frutescens showed stronger DPPH radical scavenging activity than the ethyl acetate fraction from non-transgenic control plants (IC50 2.00 ± 0.10 and 5.53 ± 0.40 μg ∙ ml(-1), respectively). High-performance liquid chromatography analysis of phenolic acids in leaf extracts confirmed increased levels of 16 individual phenolic compounds in two transgenic lines (pf47-5 and pf47-8) compared with control plants. Changes in the phenolic compound profile and α-tocopherol content were correlated with the antioxidant properties of transgenic plants, indicating that the introduction of transgene γ-tmt influenced the metabolism of phenolic compounds and subsequently produced biochemical changes in the transformants. There were no significant differences in photosynthetic rate in the transgenic plants as compared to the non-transgenic control plants, suggesting that the alteration of phenolic compounds and tocopherol composition had little impact on photosynthesis.

  14. Mechanical vapor compression Desalination plant at Trombay

    International Nuclear Information System (INIS)

    Adak, A.K.; Kishore, G.; Srivastava, V.K.; Tewari, P.K.

    2007-01-01

    Desalination plants based on Mechanical Vapour Compression (MVC) technology are inherently the most thermodynamically efficient. The thermodynamic efficiency of the MVC process is derived from the application of the heat pump principle. A single unit of two-effect MVC desalination pilot plant of capacity 50 m3/day has recently been commissioned at Trombay, Mumbai. The desalination unit is very compact and unique of its kind in the seawater desalination technologies and is being operated by using electricity only. Horizontal tube thin film spray desalination evaporators are used for efficient heat transfer. It is suitable for a site, where feed water is highly saline and condenser cooling water is absent and where a thermal heat source is not available. The unit produces high quality water, nearly demineralized (DM) quality directly from seawater. There is no need of polishing unit and product water can be utilized directly as make up of boiler feed and for other high quality process water requirements in the industries. This paper includes the design and highlights the technical features of this unit. (author)

  15. Linking plants, fungi and soil mechanics

    Science.gov (United States)

    Yildiz, Anil; Graf, Frank

    2017-04-01

    Plants provide important functions in respect soil strength and are increasingly considered for slope stabilisation within eco-engineering methods, particularly to prevent superficial soil failure. The protective functions include hydrological regulation through interception and evapo-transpiration as well as mechanical stabilisation through root reinforcement and, to a certain extent, chemical stabilisation through sticky metabolites. The ever-growing application of plants in slope stabilisation demanded more precise information of the vegetation effects and, concomitant, led the models for quantifying the reinforcement shoot up like mushrooms. However, so far, the framework and interrelationships for both the role of plants and the quantification concepts have not been thoroughly analysed and comprehensively considered, respectively, often resulting in unsatisfactory results. Although it seems obvious and is implicitly presupposed that the plant specific functions related to slope stability require growth and development, this is anything but given, particularly under the often hostile conditions dominating on bare and steep slopes. There, the superficial soil layer is often characterised by a lack of fines and missing medium-sized and fine pores due to an unstable soil matrix, predominantly formed by coarse grains. Low water retention capacity and substantial leaching of nutrients are the adverse consequences. Given this general set-up, sustainable plant growth and, particularly, root development is virtually unachievable. At exactly this point mycorrhizal fungi, the symbiotic partners of almost all plants used in eco-engineering, come into play. Though, they are probably well-known within the eco-engineering community, mycorrhizal fungi lead a humble existence. This is in spite of the fact that they supply their hosts with water and nutrients, improving the plant's ability to master otherwise unbridgeable environmental conditions. However, in order to support

  16. Enzyme inhibitory and antioxidant activities of traditional medicinal plants: Potential application in the management of hyperglycemia

    Directory of Open Access Journals (Sweden)

    Gulati Vandana

    2012-06-01

    Full Text Available Abstract Background Traditional Indian and Australian medicinal plant extracts were investigated to determine their therapeutic potential to inhibit key enzymes in carbohydrate metabolism, which has relevance to the management of hyperglycemia and type 2 diabetes. The antioxidant activities were also assessed. Methods The evaluation of enzyme inhibitory activity of seven Australian aboriginal medicinal plants and five Indian Ayurvedic plants was carried out against α-amylase and α-glucosidase. Antioxidant activity was determined by measuring (i the scavenging effect of plant extracts against 2, 2-diphenyl-1-picryl hydrazyl (DPPH and 2, 2′-azinobis-3-ethylbenzothiazoline-6-sulfonate (ABTS and (ii ferric reducing power. Total phenolic and total flavonoid contents were also determined. Results Of the twelve plant extracts evaluated, the highest inhibitory activity against both α-amylase and α-glucosidase enzymes was exerted by Santalum spicatum and Pterocarpus marsupium with IC50 values of 5.43 μg/ml and 0.9 μg/ml, respectively, and 5.16 μg/ml and 1.06 μg/ml, respectively. However, the extracts of Acacia ligulata (IC50 = 1.01 μg/ml, Beyeria leshnaultii (0.39 μg/ml, Mucuna pruriens (0.8 μg/ml and Boerhaavia diffusa (1.72 μg/ml exhibited considerable activity against α-glucosidase enzyme only. The free radical scavenging activity was found to be prominent in extracts of Acacia kempeana, Acacia ligulata followed by Euphorbia drummondii against both DPPH and ABTS. The reducing power was more pronounced in Euphorbia drummondii and Pterocarpus marsupium extracts. The phenolic and flavonoid contents ranged from 0.42 to 30.27 μg/mg equivalent of gallic acid and 0.51 to 32.94 μg/mg equivalent of quercetin, respectively, in all plant extracts. Pearson’s correlation coefficient between total flavonoids and total phenolics was 0.796. Conclusion The results obtained in this study showed that most of the plant extracts

  17. Responses of Phospholipase D and Antioxidant System to Mechanical Wounding in Postharvest Banana Fruits

    Directory of Open Access Journals (Sweden)

    Li Li

    2017-01-01

    Full Text Available Banana fruits are susceptible to mechanical damage. The present study was to investigate the responses of phospholipase D (PLD and antioxidant system to mechanical wounding in postharvest banana fruits. During 16 d storage at 25°C and 90% relative humidity, PLD activity in wounded fruits was significantly higher than that in control (without artificial wounding fruits. The higher value of PLD mRNA was found in wounded fruits than in control. PLD mRNA expression reached the highest peak on day 4 in both groups, but it was 2.67 times in wounded fruits compared to control at that time, indicating that PLD gene expression was activated in response to wounding stress. In response to wounding stress, the higher lipoxygenase (LOX activity was observed and malondialdehyde (MDA production was accelerated. The activities of antioxidant enzymes such as superoxide dismutase (SOD, catalase (CAT, peroxidase (POD, and ascorbate peroxidase (APX in wounded fruits were significantly higher than those in control. The concentrations of reactive oxygen species (ROS such as superoxide anion (O2•- and hydrogen peroxide (H2O2 in fruits increased under mechanical wounding. The above results provided a basis for further investigating the mechanism of postharvest banana fruits adapting to environmental stress.

  18. Theoretical simulations on the antioxidant mechanism of naturally occurring flavonoid: A DFT approach

    International Nuclear Information System (INIS)

    Praveena, R.; Sadasivam, K.

    2016-01-01

    Synthetic antioxidants such as butylated hydroxyanisole (BHA) and butylated hydroxytoluene (BHT) are found to be toxic, hence non-carcinogenic naturally occurring radical scavengers especially flavonoids have gained considerable importance in the past two decades. In the present investigation, the radical scavenging activity of C-glycosyl flavonoids is evaluated using theoretical approach which could broaden its scope in therapeutic applications. Gas and solvent phase studies of structural and molecular characteristics of C-glycosyl flavonoid, isovitexin is investigated through hydrogen atom transfer mechanism (HAT), Electron transfer-proton transfer (ET–PT) and Sequential proton loss electron transfer (SPLET) by Density functional theory (DFT) using hybrid parameters. The computed values of the adiabatic ionization potential, electron affinity, hardness, softness, electronegativity and electrophilic index indicate that isovitexin possess good radical scavenging activity. The behavior of different –OH groups in polyphenolic compounds is assessed by considering electronic effects of the neighbouring groups and the overall geometry of molecule which in turn helps in analyzing the antioxidant capacity of the polyphenolic molecule. The studies indicate that the H–atom abstraction from 4’–OH site is preferred during the radical scavenging process. From Mulliken spin density analysis and FMOs, B–ring is found to be more delocalized center and capable of electron donation. Comparison of antioxidant activity of vitexin and isovitexin leads to the conclusion that isovitexin acts as a better radical scavenger. This is an evidence for the importance of position of glucose unit in the flavonoid.

  19. Theoretical simulations on the antioxidant mechanism of naturally occurring flavonoid: A DFT approach

    Energy Technology Data Exchange (ETDEWEB)

    Praveena, R. [Department of Chemistry, Bannari Amman Institute of Technology, Sathyamangalam, Erode, Tamil Nadu (India); Sadasivam, K. [Department of Physics, Bannari Amman Institute of Technology, Sathyamangalam, Erode, Tamil Nadu (India)

    2016-05-06

    Synthetic antioxidants such as butylated hydroxyanisole (BHA) and butylated hydroxytoluene (BHT) are found to be toxic, hence non-carcinogenic naturally occurring radical scavengers especially flavonoids have gained considerable importance in the past two decades. In the present investigation, the radical scavenging activity of C-glycosyl flavonoids is evaluated using theoretical approach which could broaden its scope in therapeutic applications. Gas and solvent phase studies of structural and molecular characteristics of C-glycosyl flavonoid, isovitexin is investigated through hydrogen atom transfer mechanism (HAT), Electron transfer-proton transfer (ET–PT) and Sequential proton loss electron transfer (SPLET) by Density functional theory (DFT) using hybrid parameters. The computed values of the adiabatic ionization potential, electron affinity, hardness, softness, electronegativity and electrophilic index indicate that isovitexin possess good radical scavenging activity. The behavior of different –OH groups in polyphenolic compounds is assessed by considering electronic effects of the neighbouring groups and the overall geometry of molecule which in turn helps in analyzing the antioxidant capacity of the polyphenolic molecule. The studies indicate that the H–atom abstraction from 4’–OH site is preferred during the radical scavenging process. From Mulliken spin density analysis and FMOs, B–ring is found to be more delocalized center and capable of electron donation. Comparison of antioxidant activity of vitexin and isovitexin leads to the conclusion that isovitexin acts as a better radical scavenger. This is an evidence for the importance of position of glucose unit in the flavonoid.

  20. ENDURANCE TRAINING AND GLUTATHIONE-DEPENDENT ANTIOXIDANT DEFENSE MECHANISM IN HEART OF THE DIABETIC RATS

    Directory of Open Access Journals (Sweden)

    Mustafa Atalay

    2003-06-01

    Full Text Available Regular physical exercise beneficially influences cardiac antioxidant defenses in normal rats. The aim of this study was to test whether endurance training can strengthen glutathione-dependent antioxidant defense mechanism and decrease lipid peroxidation in heart of the streptozotocin-induced diabetic rats. Redox status of glutathione in blood of diabetic rats in response to training and acute exercise was also examined. Eight weeks of treadmill training increased the endurance in streptozotocin-induced diabetic rats. It did not affect glutathione level in heart tissue at rest and also after exercise. On the other hand, endurance training decreased glutathione peroxidase activity in heart, while glutathione reductase and glutathione S-transferase activities were not affected either by acute exhaustive exercise or endurance training. Reduced and oxidized glutathione levels in blood were not affected by either training or acute exercise. Conjugated dienes levels in heart tissue were increased by acute exhaustive exercise and also 8 weeks treadmill training. Longer duration of exhaustion in trained group may have contributed to the increased conjugated dienes levels in heart after acute exercise. Our results suggest that endurance type exercise may make heart more susceptible to oxidative stress. Therefore it may be wise to combine aerobic exercise with insulin treatment to prevent its adverse effects on antioxidant defense in heart in patients with diabetes mellitus

  1. An efficient and economical MTT assay for determining the antioxidant activity of plant natural product extracts and pure compounds.

    Science.gov (United States)

    Liu, Yunbao; Nair, Muraleedharan G

    2010-07-23

    Antioxidants scavenge free radicals, singlet oxygen, and electrons in cellular redox reactions. The yellow MTT [3-(4,5-dimethylthiazole-2-yl)-2,5-diphenyltetrazolium bromide] is reduced to a purple formazan by mitochondrial enzymes. NADPH is the basis of established in vitro cell viability assays. An antioxidant assay has been developed utilizing the redox reaction between MTT and selected natural product extracts and purified compounds. This simple, fast, and inexpensive MTT antioxidant assay is comparable with the lipid peroxidation inhibitory assay and can be mechanized to achieve high throughput.

  2. Photosynthetic, antioxidative, molecular and ultrastructural responses of young cacao plants to Cd toxicity in the soil.

    Science.gov (United States)

    Pereira de Araújo, Romária; Furtado de Almeida, Alex-Alan; Silva Pereira, Lidiane; Mangabeira, Pedro A O; Olimpio Souza, José; Pirovani, Carlos P; Ahnert, Dário; Baligar, Virupax C

    2017-10-01

    Cadmium (Cd) is a highly toxic metal for plants, even at low concentrations in the soil. The annual production of world cocoa beans is approximately 4 million tons. Most of these fermented and dried beans are used in the manufacture of chocolate. Recent work has shown that the concentration of Cd in these beans has exceeded the critical level (0.6mgkg -1 DM). The objective of this study was to evaluate the toxicity of Cd in young plants of CCN 51 cacao genotype grown in soil with different concentrations of Cd (0, 0.05 and 0.1gkg -1 soil) through photosynthetic, antioxidative, molecular and ultrastructural changes. The increase of Cd concentration in the soil altered mineral nutrient absorption by competition or synergism, changed photosynthetic activity caused by reduction in chloroplastidic pigment content and damage to the photosynthetic machinery evidenced by the Fv/Fm ratio and expression of the psbA gene and increased GPX activity in the root and SOD in leaves. Additionally, ultrastructural alterations in roots and leaves were also evidenced with the increase of the concentration of Cd in the soil, whose toxicity caused rupture of biomembranes in root and leaf cells, reduction of the number of starch grains in foliar cells, increase of plastoglobules in chloroplasts and presence of multivesiculated bodies in root cells. It was concluded, therefore, that soil Cd toxicity caused damage to the photosynthetic machinery, antioxidative metabolism, gene expression and irreversible damage to root cells ultrastructure of CCN 51 cocoa plants, whose damage intensity depended on the exposure time to the metal. Copyright © 2017. Published by Elsevier Inc.

  3. Studies on antioxidative enzymes induced by cadmium in pea plants (Pisum sativum).

    Science.gov (United States)

    Pandey, Nalini; Singh, Gaurav Kumar

    2012-03-01

    Pea plants (Pisum sativum cv. Swati) exposed to different concentration of cadmium (50,100, 200 microM Cd) under controlled glass house conditions were quantified for different physiological parameters and antioxidative enzymes. In pea plants, Cd produced a significant inhibition of growth and induced chlorosis, marginal yellowing and necrosis in young leaves, the effect being most pronounced at 200 microM Cd supply. An alteration in the activated oxygen metabolism of pea plants were also detected as evidenced by an increase in concentration of H2O2 and TBARS along with decrease in the chlorophyll and carotenoid concentration in leaves. Cadmium toxicity induced an increase in non-protein thiol, ascorbate, proline and cysteine concentration. A significant increment in the activity of SOD, APX and GR, and a decrease in CAT was observed as a result of Cd treatment. The enhanced activity of SOD and inhibition of CAT and POD produces a high build up of H2O2 which appears to be the main cause of oxidative stress due to Cd toxicity in pea plants.

  4. Antioxidant Property of Jobelyn as the Possible Mechanism Underlying its Anti-amnesic Activity in Rodents

    Directory of Open Access Journals (Sweden)

    Solomon Umukoro

    2013-02-01

    Full Text Available Introduction: Amnesia or loss of memory is the cardinal hallmark of Alzheimer’s disease (AD, a progressive neurodegenerative disorder associated with ageing process. Although, AD had been discovered over a century ago, drugs which could cure or halt the progression of the disease are yet to see the light of the day. However, there has been a growing interest in the use of phytomedicines with multipronged mechanisms of action that could target various aspects of the pathologies of AD. Jobelyn (JB is a potent antioxidant African polyherbal formulation with active components that have been acclaimed to show neuroprotection. This investigation was carried out to evaluate whether JB has anti-amnesic and antioxidant activities. Methods: The alteration of alternation behavior in the Y-maze paradigm was utilized as the test for memory function in mice.  The effect of JB on acetylcholinesterase (AChE activity, malondialdehyde (MDA level and the concentrations of glutathione (GSH in the frontal cortex and hippocampus were assessed in rats as means of providing insight into the mechanism underlying its anti-amnesic activity. The animals were given JB (1, 2.5 or 5mg/kg, i.p. daily for 7 days before the biochemical assays or test for memory functions were carried out.  Results: JB was found to produce a signi.cant increase in the level of alternation behavior compared with the control, suggesting anti-amnesic activity. Also, JB reversed the memory impairment induced by scopolamine, which further indicates anti-amnesic property. Furthermore, JB demonstrated a signi.cant inhibition of MDA formation in the frontal cortex and hippocampus of rats, indicating antioxidant property.  In addition, it increased the defense armory of the brain tissues, as it signi.cantly increased the concentrations of GSH in the frontal cortex and hippocampus of rats. However, JB did not demonstrate any inhibitory effect against AChE activity in the frontal cortex and hippocampus

  5. An appraisal of eighteen commonly consumed edible plants as functional food based on their antioxidant and starch hydrolase inhibitory activities.

    Science.gov (United States)

    Lee, Yian Hoon; Choo, Candy; Watawana, Mindani I; Jayawardena, Nilakshi; Waisundara, Viduranga Y

    2015-11-01

    Eighteen edible plants were assessed for their antioxidant potential based on oxygen radical absorbance capacity (ORAC), 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activity, total phenolics, vitamin C content and various lipophilic antioxidants. The inhibitory activities of the plant extracts against the enzymatic activities of α-amylase and α-glucosidase were also evaluated. The antioxidant and starch hydrolase activities of the plants varied widely across a single batch of analysis. The ORAC and DPPH radical scavenging EC50 values varied between 298 and 1984 Trolox equivalents g(-1) fresh weight and between 91 and 533 mg kg(-1) fresh weight, respectively. The total phenolics and vitamin C contents varied between 32 and 125 mg gallic acid equivalents g(-1) fresh weight and between 96 and 285 µg g(-1) fresh weight, respectively. All the plants contained neoxanthin, violaxanthin, and α- and β-carotene in varying amounts. Coccinia grandis, Asparagus racemosus, Costus speciosus, Amaranthus viridis and Annona muricata displayed the highest inhibitory activities against starch hydrolases. They were the most efficient against the breakdown of seven starches exposed to the two enzymes as well. Overall, the edible plants were observed to display a high antioxidant potential with starch hydrolase inhibitory properties, which were beneficial in their being recognized as functional food. © 2014 Society of Chemical Industry.

  6. Cnidoscolus chayamansa Mc Vaugh, an important antioxidant, anti-inflammatory and cardioprotective plant used in Mexico.

    Science.gov (United States)

    García-Rodríguez, Rosa Virginia; Gutiérrez-Rebolledo, Gabriel Alfonso; Méndez-Bolaina, Enrique; Sánchez-Medina, Alberto; Maldonado-Saavedra, Octavio; Domínguez-Ortiz, Miguel Ángel; Vázquez-Hernández, Maribel; Muñoz-Muñiz, Omar David; Cruz-Sánchez, Jesús Samuel

    2014-02-03

    Cnidoscolus chayamansa Mc Vaugh (Euphorbiaceae) is commonly known as 'chaya' in Central America. In South East Mexico, because of its high nutritional values, is an important part of the diet of many indigenous communities. Chaya is also used as a traditional remedy for the treatment of diabetes, rheumatism, gastrointestinal disorders and inflammation-related diseases. Although Cnidoscolus chayamansa is one of most used and valued medicinal plants, only few studies on documenting its pharmacological properties can be found. Dried leaves of Cnidoscolus chayamansa were subjected to a successive maceration using Hex, EtOAc and EtOH. The antioxidant activities of the extracts were tested using the DPPH radical scavenging, Ferric reducing/antioxidant power and total phenolic content assays. To determine the anti-inflammatory activity, the TPA-induced mouse ear edema and the carrageenan-induced mouse paw edema assays were used. The cardioprotective effects of the EtOH extract was determined using the ischemia/reperfusion (I/R) rat model. Finally, the acute toxicity was determined using Lorke's method. The results showed a similar anti-inflammatory activity (≈30%) for all extracts but only the EtOAc extract showed relevant activity when applied intraperitoneally. When tested for their antioxidant activity none of the extracts showed a significant activity suggesting that the antinflammatory activity is not related to a direct free radical scavenging of the extracts. Additionally, the EtOH extract showed a strong cardioprotective effect at 500mg/kg when given orally. Both the EtOAc and the EtOH extract have a LD50 >5g/kg, confirming their safety in acute oral administration. All these results are relevant for a better understanding of the therapeutic used of Cnidoscolus chayamansa in the Mexican traditional medicine and highlights its cardioprotective potential. © 2013 Published by Elsevier Ireland Ltd.

  7. Antibacterial, Antioxidant, and Anticholinesterase Activities of Plant Seed Extracts from Brazilian Semiarid Region

    Directory of Open Access Journals (Sweden)

    Davi Felipe Farias

    2013-01-01

    Full Text Available The antimicrobial, antioxidant, and anticholinesterase activities of ethanolic seed extracts of twenty-one plant species from Brazilian semiarid region were investigated. The extracts were tested for antimicrobial activity against six bacteria strains and three yeasts. Six extracts presented activity against the Gram (− organism Salmonella choleraesuis and the Gram (+ organisms Staphylococcus aureus and Bacillus subtilis. The MIC values ranged from 4.96 to 37.32 mg/mL. The Triplaris gardneriana extract presented activity against the three species, with MIC values 18.8, 13.76, and 11.15 mg/mL, respectively. Five extracts presented antioxidant activity, with EC50 values ranging from 69.73 μg/mL (T. gardneriana to 487.51 μg/mL (Licania rigida. For the anticholinesterase activity, eleven extracts were capable of inhibiting the enzyme activity. From those, T. gardneriana, Parkia platycephala and Connarus detersus presented the best activities, with inhibition values of 76.7, 71.5, and 91.9%, respectively. The extracts that presented antimicrobial activity were tested for hemolytic assay against human A, B, and O blood types and rabbit blood. From those, only the Myracrodruon urundeuva extract presented activity (about 20% of hemolysis at the lowest tested concentration, 1.9 µg/mL. Infrared spectroscopy of six representative extracts attested the presence of tannins, polyphenols, and flavonoids, which was confirmed by a qualitative phytochemical assay.

  8. ANTIOXIDANT CAPACITY, MINERAL CONTENT AND ESSENTIAL OIL COMPOSITION FROM SELECT ALGERIAN MEDICINAL PLANTS

    Directory of Open Access Journals (Sweden)

    Hadjira Guenane1

    2017-10-01

    Full Text Available The objective of the present study was to analyze the total antioxidant capacity, minerals contents of four plants (Juniperus oxycedrus, Thymus capitatus, Laurus nobilis and Eruca vesicaria and chemical composition of the essential oils of the aerial parts of T. capitatus. Their antioxidant activity was assessed by DPPH, ABTS and FRAPS assays. Total phenol and flavonoid contents of the extracts were also determined. The results showed that the L. nobilis extract had the highest total phenolic and flavonoids contents (19.11 ± 0.22 mg GAE•g-1 dw, 4.47 ± 0.12 mg QE•g-1 dw, respectively. The extract of E. vesicaria had the highest value of TEAC for scavenging DPPH, whereas L. nobilis extract was active for ABTS and FRAP. GC/MS analysis revealed that the essential oil from the aerial parts of T. capitatus contained thirty-seven compounds; thymol was the major constituent (82.79 %. Atomic absorption spectroscopy showed high levels of Ca, K, Mg and Fe, and trace amounts of Zn, Cu and Mn in all four extracts.

  9. Antibacterial, antioxidant, and anticholinesterase activities of plant seed extracts from Brazilian semiarid region.

    Science.gov (United States)

    Farias, Davi Felipe; Souza, Terezinha Maria; Viana, Martônio Ponte; Soares, Bruno Marques; Cunha, Arcelina Pacheco; Vasconcelos, Ilka Maria; Ricardo, Nágila Maria Pontes Silva; Ferreira, Paulo Michel Pinheiro; Melo, Vânia Maria Maciel; Carvalho, Ana Fontenele Urano

    2013-01-01

    The antimicrobial, antioxidant, and anticholinesterase activities of ethanolic seed extracts of twenty-one plant species from Brazilian semiarid region were investigated. The extracts were tested for antimicrobial activity against six bacteria strains and three yeasts. Six extracts presented activity against the Gram (-) organism Salmonella choleraesuis and the Gram (+) organisms Staphylococcus aureus and Bacillus subtilis. The MIC values ranged from 4.96 to 37.32 mg/mL. The Triplaris gardneriana extract presented activity against the three species, with MIC values 18.8, 13.76, and 11.15 mg/mL, respectively. Five extracts presented antioxidant activity, with EC50 values ranging from 69.73 μ g/mL (T. gardneriana) to 487.51 μ g/mL (Licania rigida). For the anticholinesterase activity, eleven extracts were capable of inhibiting the enzyme activity. From those, T. gardneriana, Parkia platycephala and Connarus detersus presented the best activities, with inhibition values of 76.7, 71.5, and 91.9%, respectively. The extracts that presented antimicrobial activity were tested for hemolytic assay against human A, B, and O blood types and rabbit blood. From those, only the Myracrodruon urundeuva extract presented activity (about 20% of hemolysis at the lowest tested concentration, 1.9 µg/mL). Infrared spectroscopy of six representative extracts attested the presence of tannins, polyphenols, and flavonoids, which was confirmed by a qualitative phytochemical assay.

  10. Potential applications of plant based derivatives as fat replacers, antioxidants and antimicrobials in fresh and processed meat products.

    Science.gov (United States)

    Hygreeva, Desugari; Pandey, M C; Radhakrishna, K

    2014-09-01

    Growing concern about diet and health has led to development of healthier food products. In general consumer perception towards the intake of meat and meat products is unhealthy because it may increase the risk of diseases like cardiovascular diseases, obesity and cancer, because of its high fat content (especially saturated fat) and added synthetic antioxidants and antimicrobials. Addition of plant derivatives having antioxidant components including vitamins A, C and E, minerals, polyphenols, flavanoids and terpenoids in meat products may decrease the risk of several degenerative diseases. To change consumer attitudes towards meat consumption, the meat industry is undergoing major transformations by addition of nonmeat ingredients as animal fat replacers, natural antioxidants and antimicrobials, preferably derived from plant sources. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Influence of stripe rust infection on the photosynthetic characteristics and antioxidant system of susceptible and resistant wheat cultivars at the adult plant stage.

    Science.gov (United States)

    Chen, Yang-Er; Cui, Jun-Mei; Su, Yan-Qiu; Yuan, Shu; Yuan, Ming; Zhang, Huai-Yu

    2015-01-01

    Wheat stripe rust (Puccinia striiformis f. sp. tritici, Pst), is one of the most serious diseases of wheat (Triticum aestivum L.) worldwide. To gain a better understanding of the protective mechanism against stripe rust at the adult plant stage, the differences in photosystem II and antioxidant enzymatic systems between susceptible and resistant wheat in response to stripe rust disease (P. striiformis) were investigated. We found that chlorophyll fluorescence and the activities of the antioxidant enzymes were higher in resistant wheat than in susceptible wheat after stripe rust infection. Compared with the susceptible wheat, the resistant wheat accumulated a higher level of D1 protein and a lower level of reactive oxygen species after infection. Furthermore, our results demonstrate that D1 and light-harvesting complex II (LHCII) phosphorylation are involved in the resistance to stripe rust in wheat. The CP29 protein was phosphorylated under stripe rust infection, like its phosphorylation in other monocots under environmental stresses. More extensive damages occur on the thylakoid membranes in the susceptible wheat compared with the resistant wheat. The findings provide evidence that thylakoid protein phosphorylation and antioxidant enzyme systems play important roles in plant responses and defense to biotic stress.

  12. Antioxidant, Cytotoxic Activities and Total Phenolic Content of Four Indonesian Medicinal Plants

    Directory of Open Access Journals (Sweden)

    Waras Nurcholis

    2017-03-01

    Full Text Available The crude ethanol extracts of four Indonesian medicinal plants namely Curcuma xanthorrhiza Roxb.,Phyllanthus niruri Linn., Andrographis paniculata Ness., and Curcuma aeruginosa Roxb. wereexamined for their antioxidant (radical scavenging activity using 2, 2-diphenyl-2-picrylhydrazyl(DPPH free radical and cytotoxicity using brine shrimp lethality test (BSLT. The total phenoliccontent was used the Folin-Ciocalteu method. IC50 values for DPPH radical scavenging activityranged from 14.5 to 178.5 μg/ml, with P. niruri having the lowest value and therefore the mostpotent, and C. aeruginosa having the highest value. LC50 values for BSLT ranged from 210.3 to593.2 μg/ml, with C. xanthorrhiza and A. paniculata having the lowest and highest values,respectively. The total phenolic content of the Indonesian plants ranged from 133.0 ±3.7 to863.3±54.7 mg tannic acid equivalent per 1 g extract, with C. aeruginosa and P. niruri having thelowest and highest values, respectively. A positive correlation between free radical scavengingactivity and the content of phenolic compounds was found in the four of Indonesian medicinal plants.

  13. Phenolic compound contents and antioxidant activity in plants with nutritional and/or medicinal properties form the Peruvian Andean region

    NARCIS (Netherlands)

    Chirinos, R.; Pedreschi Plasencia, R.P.; Rogez, H.

    2013-01-01

    Total phenolic compounds (TPC) and antioxidant activities using different assays (DPPH, ABTS and ORAC) in fruits, grains, leaves, seeds, roots and tubers from 27 different Peruvian Andean plants used in folk medicine or/and as food by the native population were evaluated in order to use these as

  14. Antioxidant and Vasodilator Activity of Ugni molinae Turcz. (Murtilla and Its Modulatory Mechanism in Hypotensive Response

    Directory of Open Access Journals (Sweden)

    Ignacio Jofré

    2016-01-01

    Full Text Available Hypertension is a systemic condition with high morbidity and mortality rates worldwide, which poses an increased risk for cardiovascular diseases. In this study, we demonstrated the antioxidant and vasodilator activity of Ugni molinae Turcz. (Murtilla fruit, a berry native to Chile and proposed models to explain its modulatory mechanism in hypotensive response. Murtilla fruits were cultivated in a germplasm bank and submitted to chemical and biological analyses. The phenolic compounds gallic acid, Catechin, Quercetin-3-β-D-glucoside, Myricetin, Quercetin, and Kaempferol were identified. Murtilla extract did not generate toxic effects on human endothelial cells and had significant antioxidant activity against ROS production, lipid peroxidation, and superoxide anion production. Furthermore, it showed dose-dependent vasodilator activity in aortic rings in the presence of endothelium, whose hypotensive mechanism is partially mediated by nitric oxide synthase/guanylate cyclase and large-conductance calcium-dependent potassium channels. Murtilla fruits might potentially have beneficial effects on the management of cardiovascular diseases.

  15. Antioxidant and anti-inflammatory nutrient status, supplementation, and mechanisms in patients with schizophrenia.

    Science.gov (United States)

    Mitra, Sumedha; Natarajan, Radhika; Ziedonis, Douglas; Fan, Xiaoduo

    2017-08-01

    Over 50 million people around the world suffer from schizophrenia, a severe mental illness characterized by misinterpretation of reality. Although the exact causes of schizophrenia are still unknown, studies have indicated that inflammation and oxidative stress may play an important role in the etiology of the disease. Pro-inflammatory cytokines are crucial for normal central nervous development and proper functioning of neural networks and neurotransmitters. Patients with schizophrenia tend to have abnormal immune activation resulting in elevated pro-inflammatory cytokine levels, ultimately leading to functional brain impairments. Patients with schizophrenia have also been found to suffer from oxidative stress, a result of an imbalance between the production of free radicals and the ability to detoxify their harmful effects. Furthermore, inflammation and oxidative stress are implicated to be related to the severity of psychotic symptoms. Several nutrients are known to have anti-inflammatory and antioxidant functions through various mechanisms in our body. The present review evaluates studies and literature that address the status and supplementation of omega-3 polyunsaturated fatty acids, vitamin D, B vitamins (B6, folate, B12), vitamin E, and carotenoids in different stages of schizophrenia. The possible anti-inflammatory and antioxidant mechanisms of action of each nutrient are discussed. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Phenolic content, antioxidant potential and Aedes aegyptii ecological friend larvicidal activity of some selected Egyptian plants.

    Science.gov (United States)

    El-Hela, Atef A; Abdel-Hady, Nevein M; Dawoud, Gouda T M; Hamed, Abdo M; Morsy, Tosson A

    2013-04-01

    Polyphenols constitute a distinct group of natural compounds of medicinal importance exhibiting wide range of physiological activities as antioxidant, immunestimulant, antitumor and antiparasitic. Yellow fever and dengue fever are mosquito-borne infectious diseases transmitted by Aedes aegyptii, the presence of yellow fever in Sudan and dengue fever in Saudi Arabia are threats to Egypt with the reemerging of Ae. aegyptii in Southern Egypt, larvae control is feasible than flying adults. This work was conducted targeting estimation of the relative levels of total phenolic content, antioxidant potential and larvicidal activity of 110 selected Egyptian plants. The highest total phenolic contents were estimated in aqueous extracts of Coronilla scorpioides L., Forsskaolea tenacissima L., Crataegus sinaica Boiss., Pistacia khinjuk Boiss. and Loranthus acacia Benth.; they were 916.70 +/- 4.80, 813.70 +/- 4.16, 744.90 +/- 4.93, 549.00 +/- 3.93& 460.80 +/- 4.02 mg% while those of methanol extracts were estimated in Coronilla scorpioides, Forsskaolea tenacissima, Crataegus sinaica, Loranthus acacia and Pistacia khinjuk, they were 915.60-4.86, 664.60 +/- 4.16, 659.30 +/- 4.80, 590.80 +/- 4.49 & 588.00 +/- 3.85 mg% respectively. Investigation of the antioxidant potentials revealed that the most potent plants were Co-ronilla scorpioides, Forsskaolea tenacissima, Crataegus sinaica, Pistacia khinjuk and Loranthus acacia with calculated values of 454.80 +/- 4.83, 418.4 +/- 4.16, 399.10 +/- 4.90, 342.5 +/- 2.72 & 239.7 +/- 2.91% for aqueous extracts and 452.9 +/- 4.94, 389.6 +/- 4.6, 378.48 +/- 3.84, 352.3 +/- 3.06 & 346.5 +/- 2.98% for methanol extracts respectively while screening of larvicidal activity proved that Coronilla scorpioides, Forsskaolea tenacissima, Crataegus sinaica, Pistacia khinjuk and Loranthus acacia exhibited highest potency calculated as 22.53 +/- 2.01, 23.85 +/- 2.07, 28.17 +/- 2.06, 31.60 +/- 2.93 & 39.73 +/- 4.58 mg% aqueous extracts and 18.53 +/- 1.95, 18

  17. Aboveground mechanical stimuli affect belowground plant-plant communication.

    Science.gov (United States)

    Elhakeem, Ali; Markovic, Dimitrije; Broberg, Anders; Anten, Niels P R; Ninkovic, Velemir

    2018-01-01

    Plants can detect the presence of their neighbours and modify their growth behaviour accordingly. But the extent to which this neighbour detection is mediated by abiotic stressors is not well known. In this study we tested the acclimation response of Zea mays L. seedlings through belowground interactions to the presence of their siblings exposed to brief mechano stimuli. Maize seedling simultaneously shared the growth solution of touched plants or they were transferred to the growth solution of previously touched plants. We tested the growth preferences of newly germinated seedlings toward the growth solution of touched (T_solution) or untouched plants (C_solution). The primary root of the newly germinated seedlings grew significantly less towards T_solution than to C_solution. Plants transferred to T_solution allocated more biomass to shoots and less to roots. While plants that simultaneously shared their growth solution with the touched plants produced more biomass. Results show that plant responses to neighbours can be modified by aboveground abiotic stress to those neighbours and suggest that these modifications are mediated by belowground interactions.

  18. Aboveground mechanical stimuli affect belowground plant-plant communication.

    Directory of Open Access Journals (Sweden)

    Ali Elhakeem

    Full Text Available Plants can detect the presence of their neighbours and modify their growth behaviour accordingly. But the extent to which this neighbour detection is mediated by abiotic stressors is not well known. In this study we tested the acclimation response of Zea mays L. seedlings through belowground interactions to the presence of their siblings exposed to brief mechano stimuli. Maize seedling simultaneously shared the growth solution of touched plants or they were transferred to the growth solution of previously touched plants. We tested the growth preferences of newly germinated seedlings toward the growth solution of touched (T_solution or untouched plants (C_solution. The primary root of the newly germinated seedlings grew significantly less towards T_solution than to C_solution. Plants transferred to T_solution allocated more biomass to shoots and less to roots. While plants that simultaneously shared their growth solution with the touched plants produced more biomass. Results show that plant responses to neighbours can be modified by aboveground abiotic stress to those neighbours and suggest that these modifications are mediated by belowground interactions.

  19. Plant pigments (antioxidants of medicinal plants Malva Sylvestris l. and Malva Moschata l. (Malvaceae

    Directory of Open Access Journals (Sweden)

    Sulejman Redžić

    2005-05-01

    Full Text Available Qualitative-quantitative structure of plant pigments in wild plants Malva silvestrs L. and Malva moschata L. (Malvaceae, which were collected in 20 locations in Sarajevo area and surroundings, was tested during spring and summer in 2003. Acetone extracts of both categories were made and rising paper-chromatography done for the purpose of qualitative analysis. Quantitative analysis was done by spectrophotometry. Chlorophyll a, chlorophyll b and xanthophylls presence was confirmed by separation of pigments from acetone extract of these plant species. Spectrophotometric analysis of acetone extracts showed these results (given in mg/L: chlorophyll a 2,386, chlorophyll b 0,332 and carrotenoides 1,037. Data given in mg/g dry substance are: chlorophyll a 1,193x10(-2, chlorophyll b 1,66x10(-3, and carrotenoides 5,185x10(-3. Pigments structure (in mg/L in species Malva moschata is 1,6 for chlorophyll; 1,419 for chlorophyll b; and 0,364 for carrotenoides. Data given in mg/g are: chlorophyll a 8x10(-3, chlorophyll b 7,09x10(-3, and carrotenoides 1,82x10(-3. Considering that species Malva moschata L. grows on ecologically clear soils as opposed to well-known medicinal species Malvasylvestris L., and considering the production of phytomass, phytochemical structure and pharmacological influence it can be considered very medical and be given advantage over this wider spread category.

  20. Understanding salt tolerance mechanisms in wheat genotypes by exploring antioxidant enzymes

    DEFF Research Database (Denmark)

    Amjad, M.; Akhtar, J.; Haq, M.A.

    2014-01-01

    The activities of antioxidant enzymes were analyzed in six wheat genotypes under different concentrations of NaCl (0, 100 and 200 mM). Plants were harvested after either 15 or 30 days of salt stress. The most salt tolerant genotype (SARC-1) maintained lower Na+ and higher relative growth rate (RGR......), shoot fresh weight (SFW), shoot-root ratio, and K+:Na+ ratio, compared to the most salt sensitive genotypes (S-9189 and S-9476). Superoxide dismutase (SOD) and catalase (CAT) increased significantly in SARC-1 and SARC-2 with increasing salt stress, while there was no difference in S-9189 and S- 9476....... Additionally, glutathione reductase (GR) activity was decreased in salt sensitive (S-9189 and S-9476) than salt tolerant (SARC-1) genotypes. Under salt stress conditions a negative relationship between SOD and leaf Na+, and a positive between SOD and shoot fresh weight (SFW), were observed. The higher...

  1. [Molecular mechanisms of cytoprotective action of the plant proanthocyanidins in gastric lesions].

    Science.gov (United States)

    Zaiachkivs'ka, O S

    2006-01-01

    The molecular defence mechanisms against ethanol- and stress-induced (WRS) gastric lesions under the action of plant proanthocyanidins from grapefruit-seed extract (GSE) were investigated. Pre-treatment with GSE (8-64 mg/kg/day) in dose-dependent manner attenuated gastric lesions induced by 100% ethanol and WRS; the doses of GCE reducing these lesions by 50% (ID50) were 28 and 36 mg/kg/day, respectively and this protective effect was similar to that obtained with PGE2 analogue. Lesions reduction was also accompanied by improvement of gastric blood flow, antiradical action, increased mucosal generation of PGE2, antioxidant activity.

  2. Applicability Of A Semi-Automated Clinical Chemistry Analyzer In Determining The Antioxidant Concentrations Of Selected Plants

    Directory of Open Access Journals (Sweden)

    Allan L. Hilario

    2017-07-01

    Full Text Available Plants are rich sources of antioxidants that are protective against diseases associated to oxidative stress. There is a need for high throughput screening method that should be useful in determining the antioxidant concentration in plants. Such screening method should significantly simplify and speed up most antioxidant assays. This paper aimed at comparing the applicability of a semi-automated clinical chemistry analyzer Pointe Scientific MI USA with the traditional standard curve method and using a Vis spectrophotometer in performing the DPPH assay for antioxidant screening. Samples of crude aqueous leaf extract of kulitis Amaranthus viridis Linn and chayote Sechium edule Linn were screened for the Total Antioxidant Concentration TAC using the two methods. Results presented in mean SD amp956gdl were compared using unpaired Students t-test P0.05. All runs were done in triplicates. The mean TAC of A. viridis was 646.0 45.5 amp956gdl using the clinical chemistry analyzer and 581.9 19.4 amp956gdl using the standard curve-spectrophotometer. On the other hand the mean TAC of S. edule was 660.2 35.9 amp956gdl using the semi-automated clinical chemistry analyzer and 672.3 20.9 amp956gdl using the spectrophotometer. No significant differences were observed between the readings of the two methods for A. viridis P0.05 and S. edible P0.05. This implies that the clinical chemistry analyzer can be an alternative method in conducting the DPPH assay to determine the TAC in plants. This study presented the applicability of a semi-automated clinical chemistry analyzer in performing the DPPH assay. Further validation can be conducted by performing other antioxidant assays using this equipment.

  3. Pomegranate-mediated chemoprevention of experimental hepatocarcinogenesis involves Nrf2-regulated antioxidant mechanisms

    Science.gov (United States)

    Bishayee, Anupam; Bhatia, Deepak; Thoppil, Roslin J.; Darvesh, Altaf S.; Nevo, Eviatar; Lansky, Ephraim P.

    2011-01-01

    Hepatocellular carcinoma (HCC), one of the most prevalent and lethal cancers, has shown an alarming rise in the USA. Without effective therapy for HCC, novel chemopreventive strategies may effectively circumvent the current morbidity and mortality. Oxidative stress predisposes to hepatocarcinogenesis and is the major driving force of HCC. Pomegranate, an ancient fruit, is gaining tremendous attention due to its powerful antioxidant properties. Here, we examined mechanism-based chemopreventive potential of a pomegranate emulsion (PE) against dietary carcinogen diethylnitrosamine (DENA)-induced rat hepatocarcinogenesis that mimics human HCC. PE treatment (1 or 10 g/kg), started 4 weeks prior to the DENA challenge and continued for 18 weeks thereafter, showed striking chemopreventive activity demonstrated by reduced incidence, number, multiplicity, size and volume of hepatic nodules, precursors of HCC. Both doses of PE significantly attenuated the number and area of γ-glutamyl transpeptidase-positive hepatic foci compared with the DENA control. PE also attenuated DENA-induced hepatic lipid peroxidation and protein oxidation. Mechanistic studies revealed that PE elevated gene expression of an array of hepatic antioxidant and carcinogen detoxifying enzymes in DENA-exposed animals. PE elevated protein and messenger RNA expression of the hepatic nuclear factor E2-related factor 2 (Nrf2). Our results provide substantial evidence, for the first time, that pomegranate constituents afford chemoprevention of hepatocarcinogenesis possibly through potent antioxidant activity achieved by upregulation of several housekeeping genes under the control of Nrf2 without toxicity. The outcome of this study strongly supports the development of pomegranate-derived products in the prevention and treatment of human HCC, which remains a devastating disease. PMID:21389260

  4. Anti-amnesic effects of Ganoderma species: A possible cholinergic and antioxidant mechanism.

    Science.gov (United States)

    Kaur, Ravneet; Singh, Varinder; Shri, Richa

    2017-08-01

    Mushrooms are valued for their nutritional as well as medicinal properties. Ganoderma species are used traditionally to treat neurological disorders but scientific evidence for this is insufficient. The present study was designed to systematically evaluate the anti-amnesic effect of selected Ganoderma species i.e. G. mediosinense and G. ramosissimum. Extracts of selected mushroom species were evaluated for their antioxidant activity and acetylcholinesterase (AChE) inhibition using in-vitro assays (DPPH and Ellman tests respectively). The anti-amnesic potential of the most active extract (i.e. 70% methanol extract of G. mediosinense) was confirmed using mouse model of scopolamine-induced amnesia. Mice were treated with bioactive extract and donepezil once orally before the induction of amnesia. Cognitive functions were evaluated using passive shock avoidance (PSA) and novel object recognition (NOR) tests. The effect on brain AChE activity, brain oxidative stress (TBARS level) and neuronal damage (H & E staining) were also assessed. In-vitro results showed strong antioxidant and AChE inhibitory activities by G. mediosinense extract (GME). Therefore, it was selected for in-vivo studies. GME pre-treatment (800mg/kg, p.o.) reversed the effect of scopolamine in mice, evident by significant decrease (p <0.05) in the transfer latency time and increase in object recognition index in PSA and NOR, respectively. GME significantly reduced the brain AChE activity and oxidative stress. Histopathological examination of brain tissues showed decrease in vacuolated cytoplasm and increase in pyramidal cells in brain hippocampal and cortical regions. GME exerts anti-amnesic effect through AChE inhibition and antioxidant mechanisms. Copyright © 2017. Published by Elsevier Masson SAS.

  5. The potential medicinal value of plants from Asteraceae family with antioxidant defense enzymes as biological targets.

    Science.gov (United States)

    Koc, Suheda; Isgor, Belgin S; Isgor, Yasemin G; Shomali Moghaddam, Naznoosh; Yildirim, Ozlem

    2015-05-01

    Plants and most of the plant-derived compounds have long been known for their potential pharmaceutical effects. They are well known to play an important role in the treatment of several diseases from diabetes to various types of cancers. Today most of the clinically effective pharmaceuticals are developed from plant-derived ancestors in the history of medicine. The aim of this study was to evaluate the free radical scavenging activity and total phenolic and flavonoid contents of methanol, ethanol, and acetone extracts from flowers and leaves of Onopordum acanthium L., Carduus acanthoides L., Cirsium arvense (L.) Scop., and Centaurea solstitialis L., all from the Asteraceae family, for investigating their potential medicinal values of biological targets that are participating in the antioxidant defense system such as catalase (CAT), glutathione S-transferase (GST), and glutathione peroxidase (GPx). In this study, free radical scavenging activity and total phenolic and flavonoid contents of the plant samples were assayed by DPPH, Folin-Ciocalteu, and aluminum chloride colorimetric methods. Also, the effects of extracts on CAT, GST, and GPx enzyme activities were investigated. The highest phenolic and flavonoid contents were detected in the acetone extract of C. acanthoides flowers, with 90.305 mg GAE/L and 185.43 mg Q/L values, respectively. The highest DPPH radical scavenging was observed with the methanol leaf extracts of C. arvense with an IC50 value of 366 ng/mL. The maximum GPx and GST enzyme inhibition activities were observed with acetone extracts from the flower of C. solstitialis with IC50 values of 79 and 232 ng/mL, respectively.

  6. Total Phenolic, Flavonoid, Tomatine, and Tomatidine Contents and Antioxidant and Antimicrobial Activities of Extracts of Tomato Plant

    Science.gov (United States)

    Silva-Beltrán, Norma Patricia; Ruiz-Cruz, Saul; Cira-Chávez, Luis Alberto; Estrada-Alvarado, María Isabel; Ornelas-Paz, José de Jesús; López-Mata, Marco Antonio; Del-Toro-Sánchez, Carmen Lizette; Ayala-Zavala, J. Fernando; Márquez-Ríos, Enrique

    2015-01-01

    The purpose of this study was to evaluate the antioxidant and antimicrobial properties of extracts of different fractions of two tomato plant cultivars. The stems, roots, leaves, and whole-plant fractions were evaluated. Tomatine and tomatidine were identified by HPLC-DAD. The leaf extracts from the two varieties showed the highest flavonoids, chlorophyll, carotenoids, and total phenolics contents and the highest antioxidant activity determined by DPPH, ABTS, and ORAC. A positive correlation was observed between the antioxidant capacities of the extracts and the total phenolic, flavonoid, and chlorophyll contents. The Pitenza variety extracts inhibited the growth of pathogens such as E. coli O157:H7, Salmonella Typhimurium, Staphylococcus aureus, and Listeria ivanovii, yielding inhibition halos of 8.0 to 12.9 mm in diameter and MIC values of 12.5 to 3.125 mg/mL. These results suggest that tomato plant shows well potential as sources of various bioactive compounds, antioxidants, and antimicrobials. PMID:26609308

  7. Conservation of boundary extension mechanisms between plants and animals

    OpenAIRE

    Mathur, Jaideep

    2005-01-01

    Locomotion clearly sets plants and animals apart. However, recent studies in higher plants reveal cell-biological and molecular features similar to those observed at the leading edge of animal cells and suggest conservation of boundary extension mechanisms between motile animal cells and nonmotile plant cells.

  8. Resistance mechanisms to plant viruses: an overview

    NARCIS (Netherlands)

    Goldbach, R.W.; Bucher, E.C.; Prins, A.H.

    2003-01-01

    To obtain virus-resistant host plants, a range of operational strategies can be followed nowadays. While for decades plant breeders have been able to introduce natural resistance genes in susceptible genotypes without knowing precisely what these resistance traits were, currently a growing number of

  9. Lipid antioxidant and galactolipid remodeling under temperature stress in tomato plants

    Directory of Open Access Journals (Sweden)

    Livia eSpicher

    2016-02-01

    Full Text Available Increased temperatures are a major scenario in climate change and present a threat to plant growth and agriculture. Plant growth depends on photosynthesis. To function optimally the photosynthetic machinery at the thylakoid membrane in chloroplasts continuously adapts to changing conditions. Here, we set out to discover the most important changes arising at the lipid level under high temperature (38°C in comparison to mild (20°C and moderately cold temperature (10°C using a non-targeted lipidomics approach. To our knowledge, no comparable experiment at the level of the whole membrane system has been documented. Here, 791 molecular species were detected by mass spectrometry and ranged from membrane lipids, prenylquinones (tocopherols, phylloquinone, plastoquinone, plastochromanol, carotenoids (β-carotene, xanthophylls to numerous unidentified compounds. At high temperatures, the most striking changes were observed for the prenylquinones (α-tocopherol and plastoquinone/-ol and the degree of saturation of fatty acids in galactolipids and phosphatidyl ethanolamine. Photosynthetic efficiency at high temperature was not affected but at moderately cold temperature mild photoinhibition occurred. The results indicate that the thylakoid membrane is remodeled with regard to fatty acid saturation in galactolipids and lipid antioxidant concentrations under high temperature stress. The data strongly suggest that massively increased concentrations of α-tocopherol and plastoquinone are important for protection against high temperature stress and proper function of the photosynthetic apparatus.

  10. Antioxidant properties of extracts from selected plant materials (Caesalpinia spinosa, Perilla frutescens, Artemisia annua and Viola wittrockiana) in vitro and in model food systems

    OpenAIRE

    Skowyra, Monika

    2014-01-01

    Phenolic compounds, ubiquitous in plants, are of considerable interest and are increasingly becoming a subject of intensive research due to their bioactive properties such as antioxidant, antimicrobial, anti-mutagenic, anti-viral and anti-inflammatory activity. The objective of this research was to determine the antioxidant activity of extracts from selected plant materials, namely Caesalpinia spinosa, Perilla frutescens, Artemisia annua and Viola wittrockiana Gams. Plant material extracts we...

  11. Portraying mechanics of plant growth promoting rhizobacteria (PGPR: A review

    Directory of Open Access Journals (Sweden)

    Dweipayan Goswami

    2016-12-01

    Full Text Available Population growth and increase in food requirement is the global problem. It is inevitable to introduce new practices that help to increase agricultural productivity. Use of plant growth promoting rhizobacteria (PGPR has shown potentials to be a promising technique in the practice of sustainable agriculture. A group of natural soil microbial flora acquire dwelling in the rhizosphere and on the surface of the plant roots which impose beneficial effect on the overall well-being of the plant are categorized as PGPR. Researchers are actively involved in understanding plant growth promoting mechanics employed by PGPR. Broadly, these are divided into direct and indirect mechanics. Any mechanism that directly enhances plant growth either by providing nutrients or by producing growth regulators are portrayed as direct mechanics. Whereas, any mechanisms that protects plant from acquiring infections (biotic stress or helps plant to grow healthily under environmental stresses (abiotic stress are considered indirect mechanics. This review is focused to describe cogent mechanics employed by PGPR that assists plant to sustain healthy growth. Also, we emphasized on the PGPR-based products which have been commercially developed exploiting these mechanics of PGPR.

  12. Antioxidant activity of various plant extracts under ambient and accelerated storage of sunflower oil

    Directory of Open Access Journals (Sweden)

    Sheikh, Munir A.

    2006-06-01

    Full Text Available The present study was conducted to investigate the antioxidant potential of 11 medicinally or economically important plant materials indigenous to Pakistan. The materials were extracted with 80% methanol and examined  for their antioxidant activity under different storage conditions using sunflower and soybean oils as oxidation substrates. Preliminary antioxidant activity assessment among the extracts was conducted with the TLC-test and by measuring percent inhibition of linoleic acid peroxidation. The rhizome of Iris germanica, leaves of Lawsonia alba, and M. oleifera, coffee (Coffee arabica beans, rice (Oryza sativa bran, wheat bran and oats (Avenis sativa groats and hull, which showed higher antioxidant activity among the extracts, were further evaluated using soybean and sunflower oils as oxidation substrates. The vegetable oils were stabilized with extracts at a dosage of 0.12% (w/w, and individually subjected to accelerated (65 oC, 15 days and ambient (6 months storage. The oxidative deterioration level was monitored for the measurement of antioxidant activity index (AI, peroxide value (PV, conjugated dienes and trienes contents. Overall, the extracts of coffee beans, oat groats and hull, Iris germanica and M. oleifera leaves were found to be the most effective in extending oxidative stability, and retarding PV, primary and secondary oxidation products of soybean and sunflower oils. The order of efficiency of the plant extracts for stabilization of the subject oils was as follows: oat groats and hull > coffee beans > M. oleifera leaves > Lawsonia alba > Iris germanica > rice bran > wheat bran. Significant differences in the antioxidant potential of some of the extracts for stabilization of substrate oils were observed under ambient and accelerated storage conditions and thus demonstrated a variable antioxidant prospective of the extracts under different analytical protocols.El presente trabajo se ha realizado para investigar la capacidad

  13. Effects of antimony on redox activities and antioxidant defence systems in sunflower (Helianthus annuus L. plants.

    Directory of Open Access Journals (Sweden)

    Alfonso Ortega

    Full Text Available The alterations induced by the toxicity of antimony (Sb in the roots and leaves of sunflower plants were determined. The plants were grown hydroponically with different concentrations of Sb, a heavy metal which reduces biomass production and growth. There was preferential accumulation of Sb in the tissues of the roots, with the concentrations in the leaves being much lower. The accumulation of other mineral elements was also altered, especially that of Fe and Zn. Chlorophyll content declined, as also did the photosynthetic efficiency, but the carotenoid content remained unaltered. The total content of phenolics, flavonoids, and phenylpropanoid glycosides rose, evidence of their participation in the defence response. Increases were observed in the amount of superoxide anion in both roots and leaves, and in lipid peroxidation levels, especially with the highest Sb concentration of 1.0 mM. The induced oxidative stress leads to a strong increase in the SOD, POX and APX antioxidant activities, while the GR activity was only increased in the leaves and at the 1.0 mM Sb concentration. In contrast, the DHAR activity increased considerably in both organs. The GSNOR activity increased only in roots, and the total RSNOs increased. The total amount of AsA + DHA increased in roots and remained unaltered in leaves, whereas that of GSH + GSSG decreased considerably in all cases. As a whole, these results are evidence for the development of a strong oxidative stress induced by Sb, with there being a clear imbalance in the content of the compounds that constitute the AsA/GSH cycle. 0.5 mM Sb enhances GST expression, especially in leaves. This, together with the increase that was observed in the amount of GSH, may play an important part in detoxification. This oxidative stress affects both the phenolic and the ROS/RNS metabolic processes, which seems to implicate their involvement in the plant's defence and response to the stress.

  14. Antioxidant and protective mechanisms against hypoxia and hypoglycaemia in cortical neurons in vitro.

    Science.gov (United States)

    Merino, José Joaquín; Roncero, César; Oset-Gasque, María Jesús; Naddaf, Ahmad; González, María Pilar

    2014-02-12

    In the present work, we have studied whether cell death could be induced in cortical neurons from rats subjected to different period of O2 deprivation and low glucose (ODLG). This "in vitro" model is designed to emulate the penumbra area under ischemia. In these conditions, cortical neurons displayed loss of mitochondrial respiratory ability however, nor necrosis neither apoptosis occurred despite ROS production. The absence of cellular death could be a consequence of increased antioxidant responses such as superoxide dismutase-1 (SOD1) and GPX3. In addition, the levels of reduced glutathione were augmented and HIF-1/3α overexpressed. After long periods of ODLG (12-24 h) cortical neurons showed cellular and mitochondrial membrane alterations and did not recuperate cellular viability during reperfusion. This could mean that therapies directed toward prevention of cellular and mitochondrial membrane imbalance or cell death through mechanisms other than necrosis or apoptosis, like authophagy, may be a way to prevent ODLG damage.

  15. Anti-inflammatory and antioxidant properties of Piper species: a perspective from screening to molecular mechanisms.

    Science.gov (United States)

    Kumar, Sarvesh; Malhotra, Shashwat; Prasad, Ashok K; Van der Eycken, Erik V; Bracke, Marc E; Stetler-Stevenson, William G; Parmar, Virinder S; Ghosh, Balaram

    2015-01-01

    Identifying novel therapeutic agents from natural sources and their possible intervention studies has been one of the major areas in biomedical research in recent years. Piper species are highly important - commercially, economically and medicinally. Our groups have been working for more than two decades on the identification and characterization of novel therapeutic lead molecules from Piper species. We have extensively studied the biological activities of various extracts of Piper longum and Piper galeatum, and identified and characterized novel molecules from these species. Using synthetic chemistry, various functional groups of the lead molecules were modified and structure activity relationship (SAR) studies identified synthetic molecules with better efficacy and lower IC50 values. Moreover, the mechanisms of actions of some of these molecules were studied at the molecular level. The objective of this review is to summarize experimental data published from our laboratories and others on antioxidant and anti-inflammatory potentials of Piper species and their chemical constituents.

  16. Ebselen, a promising antioxidant drug: mechanisms of action and targets of biological pathways.

    Science.gov (United States)

    Azad, Gajendra Kumar; Tomar, Raghuvir S

    2014-08-01

    Ebselen, an organoselenium compound, mimics glutathione peroxidase activity. It is a multifunctional compound, which catalyzes several essential reactions for the protection of cellular components from oxidative and free radical damage. Based on a number of in vitro and in vivo studies, various mechanisms are proposed to understand the biomedical actions of ebselen in health and diseases. It modulates metallo-proteins, enzymatic cofactors, gene expression, epigenetics, antioxidant defenses and immune systems. Owing to these properties, ebselen is currently under clinical trials for the prevention and treatment of various disorders such as cardiovascular diseases, arthritis, stroke, atherosclerosis, and cancer. A few ebselen-based pharmaceutical agents are under extensive investigation. As ebselen has been shown to have significant cellular toxicity, appropriate studies are needed to redesign the ebselen-based therapy for clinical trials. This review summarizes current understanding of the biochemical and molecular properties, and pharmacological applications of ebselen and future directions in this area of research.

  17. Antioxidant and antimicrobial effect of some natural plant extracts added to lamb patties during storage

    Directory of Open Access Journals (Sweden)

    Ibrahim, Hayam M.

    2011-06-01

    Full Text Available Natural plants are considered an important target to investigate in order to provide a new source of natural antioxidants and/or antimicrobial agents. The optimum concentrations of some natural plant (jojoba, jatropha, ginseng and ginger extracts were determined and added to lamb patties. Some chemical and microbial characteristics of the prepared patties during storage for 9 days at 4°C were evaluated. Both the addition of these extracts and storage time had a significant effect on the patties throughout the storage period. The effectiveness of the tested natural extracts can be listed in the following order of decreasing Thiobarbituric acid reactive substance (TBARS values: ginseng > jatropha > jojoba > ginger. Aerobic plate count, mould and yeast counts decreased significantly with addition of the extracts during the storage period. Also, the addition of the extracts was significantly effective in reducing histamine, tyramine and putrescine formation during the storage period. Compared to control patties, the addition of these natural extracts was effective as antioxidant and antimicrobial agents for improving the properties of lamb patties.

    Las plantas naturales están consideradas como un importante producto donde buscar y encontrar nuevas fuentes de antioxidantes naturales y/o agentes antimicrobianos. La concentración óptima de algunos extractos de plantas naturales (jojoba, jatropha, ginseng y jengibre fueron determinado y añadidas a pasteles de cordero. Algunas características químicas y microbiológicas de los pasteles preparados y almacenados durante 9 días a 4°C fueron evaluados. Tanto la adición de estos extractos como el tiempo de almacenamiento tuvieron un efecto significativo en los pasteles en el periodo de almacenamiento. La efectividad de los extractos naturales ensayados puede ser enumerada en el siguiente orden decreciente de valores de substancias reactivas con el ácido tiobarbitúrico (TBARS: ginseng

  18. Comprehensive Evaluation of Antioxidant Potential of 10 Salvia Species Using High Pressure Methods for the Isolation of Lipophilic and Hydrophilic Plant Fractions.

    Science.gov (United States)

    Šulniūtė, Vaida; Ragažinskienė, Ona; Venskutonis, Petras Rimantas

    2016-03-01

    Common sage (Salvia officinalis) is a well-known source of antioxidants and other bioactive compounds, while many other species within the Salvia genus have been poorly studied. The total content of phenolic compounds (TPC) and antioxidant capacity indicators were evaluated for the extracts of 10 Salvia spp. consecutively isolated by supercritical carbon dioxide (SFE-CO2) and pressurized liquid extraction with ethanol and water. Antioxidant properties of solid plant material were evaluated by the direct antioxidant capacity measurement by the so-called QUENCHER method. Total antioxidant capacity values were calculated by integrating the results obtained for all extracts and the whole plant material. TPC and antioxidant capacity of the extracts were greatly dependent on the plant species and extraction solvent. Ethanol extracts possessed significantly higher antioxidant capacity and TPC comparing to the extracts isolated with other solvents. In general, all studied Salvia species demonstrated strong antioxidant capacity; however, the antioxidant potential of such species as S. forsskaolii and S. verticillata was the highest and comparable with that of S. officinalis. The majority of studied Salvia species may be considered as promising sources of functional ingredients to be used in human nutrition for functional food and nutraceutical formulations.

  19. Effects of intermittent acid rain on proline and antioxidant content on medicinal plant “Pereskia bleo”

    Science.gov (United States)

    Sulandjari; Dewi, W. S.

    2018-03-01

    Global warming due to CO2 and other greenhouse gas emissions from human activities have led to climate change and environmental degradation. The acid rain, with the pH of rainwater below 5.6, is a serious environmental problem. Arising from air pollution and potentially harmful to health, it can damage old buildings and distract the growth and physiological metabolism of sensitive plants. How does the influence of climate change on medicinal plants such as Pereskia bleo? The leaf of Pereskia bleo (Kunth) DC. contains high antioxidants with benefits for anti-cancer, anti-tumor, anti-rheumatic, and anti-inflammatory. This research aims to investigate the influence of acid rain on the proline level and antioxidant content of Pereskia bleo. Having been carried out from June to August in Jogjakarta, this study was conducted through the use of artificial acid rain with pH 5.8, 4.9, 3.7 and 2.9, by adding sulfate acid (H2SO4) to rainwater. The interval of intermittent watering acid rain to the plants is once a day, twice a day, and once in three days with three replications for six weeks. The results showed that Acid rain with a pH less than 4.9 and the intermittent interval of acid rain twice a day and once in three days significantly suppresses growth and chlorophyll content. In contrast, it increases the proline and antioxidant levels as a tolerant action of the plant.

  20. Protective role of Scoparia dulcis plant extract on brain antioxidant status and lipidperoxidation in STZ diabetic male Wistar rats

    Directory of Open Access Journals (Sweden)

    Latha Muniappan

    2004-11-01

    Full Text Available Abstract Background The aim of the study was to investigate the effect of aqueous extract of Scoparia dulcis on the occurrence of oxidative stress in the brain of rats during diabetes by measuring the extent of oxidative damage as well as the status of the antioxidant defense system. Methods Aqueous extract of Scoparia dulcis plant was administered orally (200 mg/kg body weight and the effect of extract on blood glucose, plasma insulin and the levels of thiobarbituric acid reactive substances (TBARS, hydroperoxides, superoxide dismutase (SOD, catalase (CAT, glutathione peroxidase (GPx, glutathione-S-transferase (GST and reduced glutathione (GSH were estimated in streptozotocin (STZ induced diabetic rats. Glibenclamide was used as standard reference drug. Results A significant increase in the activities of plasma insulin, superoxide dismutase, catalase, glutathione peroxidase, glutathione-S-transferase and reduced glutathione was observed in brain on treatment with 200 mg/kg body weight of Scoparia dulcis plant extract (SPEt and glibenclamide for 6 weeks. Both the treated groups showed significant decrease in TBARS and hydroperoxides formation in brain, suggesting its role in protection against lipidperoxidation induced membrane damage. Conclusions Since the study of induction of the antioxidant enzymes is considered to be a reliable marker for evaluating the antiperoxidative efficacy of the medicinal plant, these findings suggest a possible antiperoxidative role for Scoparia dulcis plant extract. Hence, in addition to antidiabetic effect, Scoparia dulcis possess antioxidant potential that may be used for therapeutic purposes.

  1. Protective role of Scoparia dulcis plant extract on brain antioxidant status and lipidperoxidation in STZ diabetic male Wistar rats.

    Science.gov (United States)

    Pari, Leelavinothan; Latha, Muniappan

    2004-11-02

    The aim of the study was to investigate the effect of aqueous extract of Scoparia dulcis on the occurrence of oxidative stress in the brain of rats during diabetes by measuring the extent of oxidative damage as well as the status of the antioxidant defense system. Aqueous extract of Scoparia dulcis plant was administered orally (200 mg/kg body weight) and the effect of extract on blood glucose, plasma insulin and the levels of thiobarbituric acid reactive substances (TBARS), hydroperoxides, superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), glutathione-S-transferase (GST) and reduced glutathione (GSH) were estimated in streptozotocin (STZ) induced diabetic rats. Glibenclamide was used as standard reference drug. A significant increase in the activities of plasma insulin, superoxide dismutase, catalase, glutathione peroxidase, glutathione-S-transferase and reduced glutathione was observed in brain on treatment with 200 mg/kg body weight of Scoparia dulcis plant extract (SPEt) and glibenclamide for 6 weeks. Both the treated groups showed significant decrease in TBARS and hydroperoxides formation in brain, suggesting its role in protection against lipidperoxidation induced membrane damage. Since the study of induction of the antioxidant enzymes is considered to be a reliable marker for evaluating the antiperoxidative efficacy of the medicinal plant, these findings suggest a possible antiperoxidative role for Scoparia dulcis plant extract. Hence, in addition to antidiabetic effect, Scoparia dulcis possess antioxidant potential that may be used for therapeutic purposes.

  2. Evaluation of the antioxidants activities of four Slovene medicinal plant species by traditional and novel biosensory assays.

    Science.gov (United States)

    Kintzios, Spiridon; Papageorgiou, Katerina; Yiakoumettis, Iakovos; Baricevic, Dea; Kusar, Anita

    2010-11-02

    We investigated the antioxidant activity of methanolic and water extracts of Slovene accessions of four medicinal plant species (Salvia officinalis, Achillea millefolium, Origanum vulgare subsp. vulgare and Gentiana lutea). Their free radical-scavenging activity against the DPPH. free radical was studied with a spectrophotometric assay, while their biological activity with the help of a laboratory-made biosensor based on immobilized fibroblast cells (assay duration: 3 min). The observed antioxidant activity of the extracts from the four investigated medicinal plant species was dependent on both the solvent used for extraction and the assay method (conventional or biosensor-based). Independently from the assay method and the solvent used for extraction, the lowest scavenging activity was observed in root extracts of G. lutea. Treatment of the immobilized cells with the plant extracts resulted in an increase of the cell membrane potential (membrane hyperpolarization), possibly due to the reduction of membrane damage due to oxidation. The novel cell biosensor could be utilized as a rapid, high throughput tool for screening the antioxidant properties of plant-derived compounds. Copyright (c) 2010 Elsevier B.V. All rights reserved.

  3. Association of antioxidative enzymes with the synergistic effect of selenium and UV irradiation in enhancing plant growth

    Directory of Open Access Journals (Sweden)

    T. XUE

    2008-12-01

    Full Text Available Selenium (Se is able to defend human and animal cells against UV(B stress. Higher plants are generally considered not to require Se but to have a low tolerance to it. However, recently it has been demonstrated that Se is able to protect also plants against UV-induced oxidative stress and even to promote the growth of plants subjected to high-energy light. In the present study the effects of Se on antioxidative enzymes possibly associated with this synergistic effect were investigated. Ryegrass and lettuce were grown in soil supplemented with Se at 0, 0.1 or 1.0 mg kg-1 under normal light or subjected to UV episodes. Lipid peroxidation and the changes of antioxidative enzymes were measured at two growing stages. The positive synergistic effect of the lower Se dosage and UV was found to be at least partly associated with the antioxidative role of Se through increased glutathione peroxidase (GSH-Px and catalase (CAT activity, whereas ascorbate peroxidase (APX responded negatively to both factors. The contribution of the other enzymes studied seemed to be plant-specific: glutathione S-transferase (GST increased in both ryegrass assays and superoxide dismutase (SOD in the first lettuce assay. At the higher addition level Se acted as a pro-oxidant and diminished fresh weight yields. UV irradiation alleviated the toxicity coincidently with increase of CAT in ryegrass and SOD in lettuce.;

  4. Studies of the in vitro anticancer, antimicrobial and antioxidant potentials of selected Yemeni medicinal plants from the island Soqotra

    Science.gov (United States)

    2009-01-01

    Background Recent years have witnessed that there is a revival of interest in drug discovery from medicinal plants for the maintenance of health in all parts of the world. The aim of this work was to investigate 26 plants belonging to 17 families collected from a unique place in Yemen (Soqotra Island) for their in vitro anticancer, antimicrobial and antioxidant activities. Methods The 26 plants were extracted with methanol and hot water to yield 52 extracts. Evaluation for in vitro anticancer activity was done against three human cancer cell lines (A-427, 5637 and MCF-7) by using an established microtiter plate assay based on cellular staining with crystal violet. Antimicrobial activity was tested against three Gram-positive bacteria, two Gram-negative bacteria, one yeast species and three multiresistant Staphylococcus strains by using an agar diffusion method and the determination of MIC against three Gram-positive bacteria with the broth micro-dilution assay. Antioxidant activity was investigated by measuring the scavenging activity of the DPPH radical. Moreover, a phytochemical screening of the methanolic extracts was done. Results Notable cancer cell growth inhibition was observed for extracts from Ballochia atro-virgata, Eureiandra balfourii and Hypoestes pubescens, with IC50 values ranging between 0.8 and 8.2 μg/ml. The methanol extracts of Acanthospermum hispidum, Boswellia dioscorides, Boswellia socotrana, Commiphora ornifolia and Euphorbia socotrana also showed noticeable antiproliferative potency with IC50 values 15 mm and MIC values ≤ 250 μg/ml. In addition, the methanolic extracts of Acacia pennivenia, Boswellia dioscorides, Boswellia socotrana and Commiphora ornifolia showed good antioxidant potential at low concentrations (more than 80% at 50 μg/ml). Conclusion Our results show once again that medicinal plants can be promising sources of natural products with potential anticancer, antimicrobial and antioxidative activity. The results will guide

  5. The Effects of Drought Stress on Yield, Yield Components and Anti-oxidant of Two Garlic (Allium sativum L. Ecotypes with Different Planting Densities

    Directory of Open Access Journals (Sweden)

    shiva akbari

    2016-07-01

    Drought stress decreased bulb yield and dry matter percentage significantly. Planting density had significant effects on bulb yield and the yield of planting density of 50 plants m-2 were significantly higher than two other densities. The interaction of drought stress and ecotype factors affected the dry matter percentage. Drought stress decreased fresh and dry weight, length of bulbs and the bulb diameter significantly. Drought stress decreased fresh and dry weight, diameter, length and number of cloves significantly as well. Drought stress is an important limiting factor at the initial phase of plant growth and establishment. It affects both elongation and expansion growth (Shao et al., 2008. Fresh and dry weight and length of cloves were significantly higher in Toroud ecotype. In contrast, the number of cloves in the bulb was significantly higher in Tabas. Studying the correlation coefficients showed that the bulb yield per unit area was significantly and positively correlated with diameter, weight and length of cloves and bulbs and also the dry matter percentage at P≤0.001. The maximum correlation belonged to yield at the unit area and weight of the bulb (r=0.72. In other words, any bulb-weight-increasing factor did have the highest effect on increasing the yield per unit area as well. Drought stress, increased leaf non-enzymatic anti-oxidant significantly. Anti-oxidants plays significant roles in ROS scavenging and influences cellular ROS balance. Activation of antioxidant system helps the plants to tolerate stress form induced damage. The effect of ecotype was significant on anti-oxidant content and the value were significantly higher in Toroud ecotype. Toroud ecotype showed resisting reactions against higher levels of drought stress by increasing the non-enzymatic anti-oxidant content and created tolerating mechanisms versus stress. Conclusion Drought stress reduced yield and yield parameters and increased non-enzymatic anti-oxidant content of garlic. The

  6. Structural mechanics of nuclear plant components

    International Nuclear Information System (INIS)

    Roche, R.

    1986-10-01

    Sound structural analysis are needed for designing safe and reliable components, hence his play is very important in nuclear industry. This report is a provisional writing on the good practice in structural mechanics. Emphasis is put on non elastic analysis, damage appraisal, fatigue, fracture mechanics and also on elevated temperature behaviour [fr

  7. Rock mechanics activities at the Waste Isolation Pilot Plant

    International Nuclear Information System (INIS)

    Francke, C.; Saeb, S.

    1996-01-01

    The application of rock mechanics at nuclear waste repositories is a true multidisciplinary effort. A description and historical summary of the Waste Isolation Pilot Plant (WIPP) is presented. Rock mechanics programs at the WIPP are outlined, and the current rock mechanics modeling philosophy of the Westinghouse Waste Isolation Division is discussed

  8. Electrochemical Quantification of the Antioxidant Capacity of Medicinal Plants Using Biosensors

    Directory of Open Access Journals (Sweden)

    Erika Rodríguez-Sevilla

    2014-08-01

    Full Text Available The working area of a screen-printed electrode, SPE, was modified with the enzyme tyrosinase (Tyr using different immobilization methods, namely entrapment with water-soluble polyvinyl alcohol (PVA, cross-linking using glutaraldehyde (GA, and cross-linking using GA and human serum albumin (HSA; the resulting electrodes were termed SPE/Tyr/PVA, SPE/Tyr/GA and SPE/Tyr/HSA/GA, respectively. These biosensors were characterized by means of amperometry and EIS techniques. From amperometric evaluations, the apparent Michaelis-Menten constant, Km′, of each biosensor was evaluated while the respective charge transfer resistance, Rct, was assessed from impedance measurements. It was found that the SPE/Tyr/GA had the smallest Km′ (57 ± 7 µM and Rct values. This electrode also displayed both the lowest detection and quantification limits for catechol quantification. Using the SPE/Tyr/GA, the Trolox Equivalent Antioxidant Capacity (TEAC was determined from infusions prepared with “mirto” (Salvia microphylla, “hHierba dulce” (Lippia dulcis and “salve real” (Lippia alba, medicinal plants commonly used in Mexico.

  9. Electrochemical Quantification of the Antioxidant Capacity of Medicinal Plants Using Biosensors

    Science.gov (United States)

    Rodríguez-Sevilla, Erika; Ramírez-Silva, María-Teresa; Romero-Romo, Mario; Ibarra-Escutia, Pedro; Palomar-Pardavé, Manuel

    2014-01-01

    The working area of a screen-printed electrode, SPE, was modified with the enzyme tyrosinase (Tyr) using different immobilization methods, namely entrapment with water-soluble polyvinyl alcohol (PVA), cross-linking using glutaraldehyde (GA), and cross-linking using GA and human serum albumin (HSA); the resulting electrodes were termed SPE/Tyr/PVA, SPE/Tyr/GA and SPE/Tyr/HSA/GA, respectively. These biosensors were characterized by means of amperometry and EIS techniques. From amperometric evaluations, the apparent Michaelis-Menten constant, Km′, of each biosensor was evaluated while the respective charge transfer resistance, Rct, was assessed from impedance measurements. It was found that the SPE/Tyr/GA had the smallest Km′ (57 ± 7) μM and Rct values. This electrode also displayed both the lowest detection and quantification limits for catechol quantification. Using the SPE/Tyr/GA, the Trolox Equivalent Antioxidant Capacity (TEAC) was determined from infusions prepared with “mirto” (Salvia microphylla), “hHierba dulce” (Lippia dulcis) and “salve real” (Lippia alba), medicinal plants commonly used in Mexico. PMID:25111237

  10. Electrochemical quantification of the antioxidant capacity of medicinal plants using biosensors.

    Science.gov (United States)

    Rodríguez-Sevilla, Erika; Ramírez-Silva, María-Teresa; Romero-Romo, Mario; Ibarra-Escutia, Pedro; Palomar-Pardavé, Manuel

    2014-08-08

    The working area of a screen-printed electrode, SPE, was modified with the enzyme tyrosinase (Tyr) using different immobilization methods, namely entrapment with water-soluble polyvinyl alcohol (PVA), cross-linking using glutaraldehyde (GA), and cross-linking using GA and human serum albumin (HSA); the resulting electrodes were termed SPE/Tyr/PVA, SPE/Tyr/GA and SPE/Tyr/HSA/GA, respectively. These biosensors were characterized by means of amperometry and EIS techniques. From amperometric evaluations, the apparent Michaelis-Menten constant, Km', of each biosensor was evaluated while the respective charge transfer resistance, Rct, was assessed from impedance measurements. It was found that the SPE/Tyr/GA had the smallest Km' (57 ± 7) µM and Rct values. This electrode also displayed both the lowest detection and quantification limits for catechol quantification. Using the SPE/Tyr/GA, the Trolox Equivalent Antioxidant Capacity (TEAC) was determined from infusions prepared with "mirto" (Salvia microphylla), "hHierba dulce" (Lippia dulcis) and "salve real" (Lippia alba), medicinal plants commonly used in Mexico.

  11. Antioxidant and antibacterial activity of six edible wild plants (Sonchus spp.) in China.

    Science.gov (United States)

    Xia, Dao-Zong; Yu, Xin-Fen; Zhu, Zhuo-Ying; Zou, Zhuang-Dan

    2011-12-01

    The total phenolic and flavonoid, antioxidant and antibacterial activities of six Sonchus wild vegetables (Sonchus oleraceus L., Sonchus arvensis L., Sonchus asper (L.) Hill., Sonchus uliginosus M.B., Sonchus brachyotus DC. and Sonchus lingianus Shih) in China were investigated. The results revealed that S. arvensis extract and S. oleraceus extract contained the highest amount of phenolic and flavonoid, respectively. Among the methanol extracts of six Sonchus species, S. arvensis extract exhibited the highest radical (DPPH and ABTS+ scavenging power and lipid peroxidation inhibitory power. It also exhibited the highest reducing power at 500 µg mL⁻¹ by A (700) = 0.80. The results of antibacterial test indicated that the S. oleraceus extract showed higher activity than the other five Sonchus wild vegetables extracts, both in Gram-negative bacteria (Escherichia coli, Salmonella enterica and Vibrio parahaemolyticus) and in a Gram-positive bacterium (Staphylococcus aureus). These results indicate that Sonchus wild food plants might be applicable in natural medicine and healthy food.

  12. Evaluation of Anticancer, Antioxidant, and Possible Anti-inflammatory Properties of Selected Medicinal Plants Used in Indian Traditional Medication

    Directory of Open Access Journals (Sweden)

    Rafik Shaikh

    2014-10-01

    Full Text Available The present study was carried out to evaluate the anticancer, antioxidant, and possible anti-inflammatory properties of diverse medicinal plants frequently used in Indian traditional medication. The selected botanicals such as Soymida fembrifuga (Roxb. A. Juss. (Miliaceae, Tinospora cordifolia (Willd. Miers. (Menispermaceae, Lavandula bipinnata (L. O. Ktze. (Lamiaceae, and Helicteres isora L. (Sterculiaceae extracted in different solvents were evaluated for their in vitro anticancer and antioxidant activities. The results obtained indicate that H. isora has potent cytotoxic activity toward the selected cancer cells such as HeLa-B75 (34.21±0.24%, HL-60 (30.25±1.36%, HEP-3B (25.36±1.78%, and PN-15 (29.21±0.52%. Interestingly, the selected botanicals selectively inhibited cyclooxygenase-2 (COX-2 more than (COX-1, which are the key enzymes implicated in inflammation. COX-2 inhibition was observed to be in the range of 19.66-49.52% as compared to COX-1 inhibition (3.93-19.61%. The results of the antioxidant study revealed that the selected plants were found to be effective 1,1-diphenyl-2-picrylhydrazyl (DPPH, hydroxyl (OH, and superoxide radical (SOR scavenging agents. High-performance thin layer chromatography (HPTLC fingerprint of flavonoids was used as a measure of quality control of the selected plant samples. The results of the present findings strengthen the potential of the selected plants as a resource for the discovery of novel anticancer, anti-inflammatory, and antioxidant agents.

  13. Evaluation of Anticancer, Antioxidant, and Possible Anti-inflammatory Properties of Selected Medicinal Plants Used in Indian Traditional Medication.

    Science.gov (United States)

    Shaikh, Rafik; Pund, Mahesh; Dawane, Ashwini; Iliyas, Sayyed

    2014-10-01

    The present study was carried out to evaluate the anticancer, antioxidant, and possible anti-inflammatory properties of diverse medicinal plants frequently used in Indian traditional medication. The selected botanicals such as Soymida fembrifuga (Roxb.) A. Juss. (Miliaceae), Tinospora cordifolia (Willd.) Miers. (Menispermaceae), Lavandula bipinnata (L.) O. Ktze. (Lamiaceae), and Helicteres isora L. (Sterculiaceae) extracted in different solvents were evaluated for their in vitro anticancer and antioxidant activities. The results obtained indicate that H. isora has potent cytotoxic activity toward the selected cancer cells such as HeLa-B75 (34.21 ± 0.24%), HL-60 (30.25 ± 1.36%), HEP-3B (25.36 ± 1.78%), and PN-15 (29.21 ± 0.52%). Interestingly, the selected botanicals selectively inhibited cyclooxygenase-2 (COX-2) more than (COX-1), which are the key enzymes implicated in inflammation. COX-2 inhibition was observed to be in the range of 19.66-49.52% as compared to COX-1 inhibition (3.93-19.61%). The results of the antioxidant study revealed that the selected plants were found to be effective 1,1-diphenyl-2-picrylhydrazyl (DPPH), hydroxyl (OH), and superoxide radical (SOR) scavenging agents. High-performance thin layer chromatography (HPTLC) fingerprint of flavonoids was used as a measure of quality control of the selected plant samples. The results of the present findings strengthen the potential of the selected plants as a resource for the discovery of novel anticancer, anti-inflammatory, and antioxidant agents.

  14. Protective role of Scoparia dulcis plant extract on brain antioxidant status and lipidperoxidation in STZ diabetic male Wistar rats

    OpenAIRE

    Pari, Leelavinothan; Latha, Muniappan

    2004-01-01

    Abstract Background The aim of the study was to investigate the effect of aqueous extract of Scoparia dulcis on the occurrence of oxidative stress in the brain of rats during diabetes by measuring the extent of oxidative damage as well as the status of the antioxidant defense system. Methods Aqueous extract of Scoparia dulcis plant was administered orally (200 mg/kg body weight) and the effect of extract on blood glucose, plasma insulin and the levels of thiobarbituric acid reactive substance...

  15. Bio-guided Isolation of Antioxidant Compounds from Chrysophyllum perpulchrum, a Plant Used in the Ivory Coast Pharmacopeia

    OpenAIRE

    Philippe, Bidie Alain; Karine, Ndjoko; Barthélemy, Attioua Koffi; Noél, Zirihi Guédé; David, N’guessan Jean; Joseph, Djaman Allico; Hosttetmann, Kurt

    2010-01-01

    Chrysophyllum perpulchrum (Sapotaceae) is used in the traditional Ivory Coast pharmacopeia to cure fevers. The extract of C. perpulchrum used for this study was the powdered form obtained from the maceration of the dried plant bark in 96% methanol, followed by evaporation to dryness. In the present study, the antioxidative and radical-scavenging activities of the methanolic extract were studied with three standard biological tests: DPPH reduction, ferric thiocyanate (FTC) lipidic peroxidation...

  16. The mechanisms of caesium uptake by plants

    International Nuclear Information System (INIS)

    White, P.; Bowen, H.; Broadley, M.; Hammond, J.; Hampton, C.; Payne, K.

    2004-01-01

    Persistent radioactive isotopes of caesium ( 134 Cs and 137 Cs) in the environment are of concern because they impact on both health and commerce. They enter the terrestrial food chain through plants. Plant roots take up Cs + from the soil solution. To reach the shoot via the xylem, Cs + must cross the plasma membranes of root cells at least twice. This is catalysed by transport proteins. Since Cs is an alkali metal with chemical properties similar to potassium (K), it has been suggested that the same proteins that transport K + also transport Cs + . However, the Cs:K ratio in the shoots of different plant species grown under identical conditions varies widely. Since different transport proteins have contrasting abilities to discriminate between Cs + and K + , this varying Cs:K ratio suggests that a different complement of transport proteins operates in different plant species. In the plasma membrane of root cells inward-rectifying K + channels (KIRCs), outward-rectifying cation channels (KORCs and NORCs), voltage-independent cation channels (VICCs) and voltage-dependent Ca 2+ channels (HACCs and DACCs) are all permeable to Cs + and K + . In addition, the 'high-affinity' K + /H + symporters (KUPs) and 'low affinity' transporters, such as the wheat TaLCT1 protein, may also transport Cs + and K + . The relative abundance and selectivity of these transport proteins in the root plasma membrane will determine the relative fluxes of Cs + and K + to the shoot. Theoretical models describing Cs + fluxes across the plasma membrane of root cells predict that, under natural conditions, VICCs mediate most (30 to 90%) of the Cs + influx, with KUPs mediating the remainder, Cs + influx through KIRCs is negligible, and stelar KORCs load Cs + into the xylem. These predictions are consistent with the identical pharmacology of VICCs and Cs + uptake by plants, which are both partially inhibited by La 3+ , Ba 2+ or Ca 2+ at millimolar concentrations, and the phenotypes of Arabidopsis

  17. ROS-mediated inhibition of S-nitrosoglutathione reductase contributes to the activation of anti-oxidative mechanisms

    Directory of Open Access Journals (Sweden)

    Izabella Kovacs

    2016-11-01

    Full Text Available Nitric oxide (NO has emerged as a signaling molecule in plants being involved in diverse physiological processes like germination, root growth, stomata closing and response to biotic and abiotic stress. S-nitrosoglutathione (GSNO as a biological NO donor has a very important function in NO signaling since it can transfer its NO moiety to other proteins (trans-nitrosylation. Such trans-nitrosylation reactions are equilibrium reactions and depend on GSNO level. The breakdown of GSNO and thus the level of S-nitrosylated proteins are regulated by GSNO-reductase (GSNOR. In this way, this enzyme controls S-nitrosothiol levels and regulates NO signaling. Here we report that Arabidopsis thaliana GSNOR activity is reversibly inhibited by H2O2 in-vitro and by paraquat-induced oxidative stress in-vivo. Light scattering analyses of reduced and oxidized recombinant GSNOR demonstrated that GSNOR proteins form dimers under both reducing and oxidizing conditions. Moreover, mass spectrometric analyses revealed that H2O2-treatment increased the amount of oxidative modifications on Zn2+-coordinating Cys47 and Cys177. Inhibition of GSNOR results in enhanced levels of S-nitrosothiols followed by accumulation of glutathione. Moreover, transcript levels of redox-regulated genes and activities of glutathione-dependent enzymes are increased in gsnor-ko plants, which may contribute to the enhanced resistance against oxidative stress. In sum, our results demonstrate that ROS-dependent inhibition of GSNOR is playing an important role in activation of anti-oxidative mechanisms to damping oxidative damage and imply a direct crosstalk between ROS- and NO-signaling.

  18. Alpha-Amylase Inhibition and Antioxidative Capacity of Some Antidiabetic Plants Used by the Traditional Healers in Southeastern Nigeria

    Directory of Open Access Journals (Sweden)

    Sunday O. Oyedemi

    2017-01-01

    Full Text Available Oxidative stress plays a significant role in the pathogenesis of metabolic syndrome including diabetes mellitus (DM. The inhibition of alpha-amylase is an important therapeutic target in the regulation of postprandial increase of blood glucose in diabetic patients. The present study investigated the alpha-amylase inhibitory and antioxidant potential of selected herbal drugs used in the treatment of DM by the traditional healers in Isiala Mbano and Ikwuano regions of southeastern Nigeria. Antioxidant activity was evaluated in terms of free radical scavenging, reducing power, and total phenolic (TPC and flavonoid content (TFC in consonance with the TLC profiling. The results showed that methanol crude extracts from Anacardium occidentale (AO and Ceiba pentandra (CP recorded higher TPC and TFC, potent free radical scavenging, and efficient reducing power (RP as compared with other plant samples. All the plant extracts exhibited a relative alpha-amylase inhibition apart from Strophanthus hispidus (SH extract with a negative effect. We discovered a mild to weak correlation between alpha-amylase inhibition or antioxidative capacity and the total phenol or flavonoid content. At least in part, the results obtained in this work support the traditional use of certain plant species in the treatment of patients with DM.

  19. Alpha-Amylase Inhibition and Antioxidative Capacity of Some Antidiabetic Plants Used by the Traditional Healers in Southeastern Nigeria

    Science.gov (United States)

    Oyedemi, Blessing O.; Ijeh, Ifeoma I.; Ohanyerem, Princemartins E.; Aiyegoro, Olayinka A.

    2017-01-01

    Oxidative stress plays a significant role in the pathogenesis of metabolic syndrome including diabetes mellitus (DM). The inhibition of alpha-amylase is an important therapeutic target in the regulation of postprandial increase of blood glucose in diabetic patients. The present study investigated the alpha-amylase inhibitory and antioxidant potential of selected herbal drugs used in the treatment of DM by the traditional healers in Isiala Mbano and Ikwuano regions of southeastern Nigeria. Antioxidant activity was evaluated in terms of free radical scavenging, reducing power, and total phenolic (TPC) and flavonoid content (TFC) in consonance with the TLC profiling. The results showed that methanol crude extracts from Anacardium occidentale (AO) and Ceiba pentandra (CP) recorded higher TPC and TFC, potent free radical scavenging, and efficient reducing power (RP) as compared with other plant samples. All the plant extracts exhibited a relative alpha-amylase inhibition apart from Strophanthus hispidus (SH) extract with a negative effect. We discovered a mild to weak correlation between alpha-amylase inhibition or antioxidative capacity and the total phenol or flavonoid content. At least in part, the results obtained in this work support the traditional use of certain plant species in the treatment of patients with DM. PMID:28367491

  20. In vitro antioxidant potential of medicinal plant extracts and their activities against oral bacteria based on Brazilian folk medicine.

    Science.gov (United States)

    Alviano, Wagner S; Alviano, Daniela S; Diniz, Cláudio G; Antoniolli, Angelo R; Alviano, Celuta S; Farias, Luiz M; Carvalho, Maria Auxiliadora R; Souza, Margareth M G; Bolognese, Ana Maria

    2008-06-01

    This study aims to determine antibacterial activities of Cocos nucifera (husk fiber), Ziziphus joazeiro (inner bark), Caesalpinia pyramidalis (leaves), aqueous extracts and Aristolochia cymbifera (rhizomes) alcoholic extract against Prevotella intermedia, Porphyromonas gingivalis, Fusobacterium nucleatum, Streptococcus mutans and Lactobacillus casei. The antioxidant activity and acute toxicity of these extracts were also evaluated. The plant extracts antibacterial activity was evaluated in vitro and the minimal inhibitory concentration (MIC) was determined by the broth micro-dilution assay. The bacterial killing kinetic was also evaluated for all extracts. In addition, the antibacterial effect of the extracts was tested in vitro on artificial oral biofilms. The acute toxicity of each extract was determined in according to Lorke [Lorke D. A new approach to practical acute toxicity testing. Arch Toxicol 1983;54:275-87] and the antioxidant activity was evaluated by DPPH photometric assay [Mensor LL, Menezes FS, Leitão GG, Reis AS, Santos TC, Coube CS, et al. Screening of Brazilian plants extract for antioxidant activity by the use of DPPH free radical method. Phytother Res 2001;15:127-30]. MIC and the bactericidal concentrations were identical, for each evaluated extract. However, microbes of artificial biofilms were less sensitive to the extracts than the planktonic strains. A. cymbifera extract induced the highest bactericidal effect against all tested bacteria, followed by C. nucifera, Z. joazeiro and C. pyramidalis extracts, respectively. All extracts showed good antioxidant potential, being C. nucifera and C. pyramidalis aqueous extracts the most active ones. In conclusion, all oral bacteria tested (planktonic or in artificial biofilms) were more susceptible to, and rapidly killed in presence of A. cymbifera, C. pyramidalis and C. nucifera than Z. joazeiro extracts, respectively. Thus, these extracts may be of great interest for future studies about treatment of

  1. Evaluation of Phenolic Content Variability along with Antioxidant, Antimicrobial, and Cytotoxic Potential of Selected Traditional Medicinal Plants from India.

    Science.gov (United States)

    Singh, Garima; Passsari, Ajit K; Leo, Vincent V; Mishra, Vineet K; Subbarayan, Sarathbabu; Singh, Bhim P; Kumar, Brijesh; Kumar, Sunil; Gupta, Vijai K; Lalhlenmawia, Hauzel; Nachimuthu, Senthil K

    2016-01-01

    Plants have been used since ancient times as an important source of biologically active substances. The aim of the present study was to investigate the phytochemical constituents (flavonoids and phenolics), antioxidant potential, cytotoxicity against HepG2 (human hepato carcinoma) cancer cell lines, and the antimicrobial activity of the methanol extract of selected traditional medicinal plants collected from Mizoram, India. A number of phenolic compounds were detected using HPLC-DAD-ESI-TOF-MS, mainly Luteolin, Kaempferol, Myricetin, Gallic Acid, Quercetin and Rutin, some of which have been described for the first time in the selected plants. The total phenolic and flavonoid contents showed high variation ranging from 4.44 to 181.91 μg of Gallic Acid equivalent per milligram DW (GAE/mg DW) and 3.17 to 102.2 μg of Quercetin/mg, respectively. The antioxidant capacity was determined by DPPH (IC50 values ranges from 34.22 to 131.4 μg/mL), ABTS (IC50 values ranges from 24.08 to 513.4 μg/mL), and reducing power assays. Antimicrobial activity was assayed against gram positive (Staphylococcus aureus), gram negative (Escherichia coli, Pseudomonas aeruginosa), and yeast (Candida albicans) demonstrating that the methanol extracts of some plants were efficacious antimicrobial agents. Additionally, cytotoxicity was assessed on human hepato carcinoma (HepG2) cancer cell lines and found that the extracts of Albizia lebbeck, Dillenia indica, and Bombax ceiba significantly decreased the cell viability at low concentrations with IC50 values of 24.03, 25.09, and 29.66 μg/mL, respectively. This is the first report of detection of phenolic compounds along with antimicrobial, antioxidant and cytotoxic potential of selected medicinal plants from India, which indicates that these plants might be valuable source for human and animal health.

  2. Evaluation of phenolic content variability, antioxidant, antimicrobial and cytotoxic potential of selected traditional medicinal plants from India

    Directory of Open Access Journals (Sweden)

    Garima eSingh

    2016-03-01

    Full Text Available Plants have been used since ancient times as an important source of biologically active substances. The aim of the present study was to investigate the phytochemical constituents (flavonoids and phenolics, antioxidant potential, cytotoxicity against HepG2 (human hepato carcinoma cancer cell lines and the antimicrobial activity of the methanol extract of selected traditional medicinal plants collected from Mizoram, India. A number of phenolic compounds were detected using HPLC-DAD-ESI-TOF-MS, mainly Luteolin, Kaempferol, Myricetin, Gallic Acid, Quercetin and Rutin, some of which have been described for the first time in the selected plants. The total phenolic and flavonoid contents showed high variation ranging from 4.44 to 181.91 µg of Gallic Acid equivalent per milligram DW (GAE/mg DW and 3.17 to 102.2 µg of Quercetin/mg, respectively. The antioxidant capacity was determined by DPPH (IC50 values ranges from 34.22 to 131.4 µg/mL, ABTS (IC50 values ranges from 24.08 to 513.4 µg/mL and reducing power assays. Antimicrobial activity was assayed against gram positive (Staphylococcus aureus, gram negative (Escherichia coli, Pseudomonas aeruginosa and yeast (Candida albicans demonstrating that the methanol extracts of some plants were efficacious antimicrobial agents. Additionally, cytotoxicity was assessed on human hepato carcinoma (HepG2 cancer cell lines and found that the extracts of Albizia lebbeck, Dillenia indica and Bombax ceiba significantly decreased the cell viability at low concentrations with IC50 values of 24.03, 25.09 and 29.66 µg/mL, respectively. This is the first report of detection of phenolic compounds along with antimicrobial, antioxidant and cytotoxic potential of selected medicinal plants from India, which indicates that these plants might be valuable source for human and animal health.

  3. What molecular mechanism is adapted by plants during salt stress ...

    African Journals Online (AJOL)

    What molecular mechanism is adapted by plants during salt stress tolerance? ... Salt stress harmfully shocks agricultural yield throughout the world affecting production whether it is for subsistence or economic outcomes. ... from 32 Countries:.

  4. Eco-taxonomic distribution of plant species around motor mechanic ...

    African Journals Online (AJOL)

    A survey of plant species and their families present in auto mechanic workshops in Benin City and Asaba was carried out. The frequency of occurrence of plants in the sites visited was used to determine prevalence. Peperomia pellucida occurred most in all the sites visited with a 55% frequency. The high rate of occurrence ...

  5. Characterization of Essential Oils Obtained from Abruzzo Autochthonous Plants: Antioxidant and Antimicrobial Activities Assessment for Food Application

    Science.gov (United States)

    Pellegrini, Marika; Chaves-López, Clemencia; Mazzarrino, Giovanni; D’Amato, Serena; Lo Sterzo, Claudio

    2018-01-01

    In the present study, the essential oils (EOs) of some officinal plants from Abruzzo territory (Italy) were evaluated for their antimicrobial and antioxidant activities and their volatile fraction chemical characterization. The EOs were extracted from Rosmarinus officinalis, Origanum vulgare, Salvia officinalis, Mentha piperita, Allium sativum, Foeniculum vulgare, Satureja montana, Thymus vulgaris and Coriandrum sativum seeds. The antimicrobial activity was screened against thirteen Gram-positive and Gram-negative strains to determine the Minimal Inhibitory Concentration (MIC). The total phenolic content (TPC) and the antioxidant capacity (AOC) were assessed by means of Folin-Ciocâlteu method, and Trolox Equivalent Antioxidant Capacity with 2,2′-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid (TEAC/ABTS), Ferric Reducing Antioxidant Power (FRAP) and 2,2-diphenyl-1-picrylhydrazyl (DPPH) assays respectively. Among the nine EOs tested, T. vulgaris, S. montana, O. vulgare and C. sativum EOs showed MIC values ranging from 0.625 to 5 μL/mL. The AOC and TPC results for these species were also interesting. The major components for these EOs were thymol for T. vulgaris (44%) and O. vulgare (40%), linalool (77%) for C. sativum, and carvacrol for S. montana (54%). The results allowed the study to establish that these EOs are good candidates for potential application as biopreservatives in foods and/or food manufacture environments. PMID:29393893

  6. Characterization of Essential Oils Obtained from Abruzzo Autochthonous Plants: Antioxidant and Antimicrobial Activities Assessment for Food Application

    Directory of Open Access Journals (Sweden)

    Marika Pellegrini

    2018-02-01

    Full Text Available In the present study, the essential oils (EOs of some officinal plants from Abruzzo territory (Italy were evaluated for their antimicrobial and antioxidant activities and their volatile fraction chemical characterization. The EOs were extracted from Rosmarinus officinalis, Origanum vulgare, Salvia officinalis, Mentha piperita, Allium sativum, Foeniculum vulgare, Satureja montana, Thymus vulgaris and Coriandrum sativum seeds. The antimicrobial activity was screened against thirteen Gram-positive and Gram-negative strains to determine the Minimal Inhibitory Concentration (MIC. The total phenolic content (TPC and the antioxidant capacity (AOC were assessed by means of Folin-Ciocâlteu method, and Trolox Equivalent Antioxidant Capacity with 2,2′-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid (TEAC/ABTS, Ferric Reducing Antioxidant Power (FRAP and 2,2-diphenyl-1-picrylhydrazyl (DPPH assays respectively. Among the nine EOs tested, T. vulgaris, S. montana, O. vulgare and C. sativum EOs showed MIC values ranging from 0.625 to 5 μL/mL. The AOC and TPC results for these species were also interesting. The major components for these EOs were thymol for T. vulgaris (44% and O. vulgare (40%, linalool (77% for C. sativum, and carvacrol for S. montana (54%. The results allowed the study to establish that these EOs are good candidates for potential application as biopreservatives in foods and/or food manufacture environments.

  7. Evaluation of Antioxidant and Antifungal Activities of Polyphenol-rich ...

    African Journals Online (AJOL)

    therapeutic activity against certain diseases. Methods: Analysis of ... hydroxyl radical (HO-) and nitric oxide (NO) radical are ... medicinal and aromatic plant section, Life. Sciences ..... Many antioxidant defenses depend on ... Mechanisms of cell.

  8. Evaluation of vacuum microwave-assisted extraction technique for the extraction of antioxidants from plant samples.

    Science.gov (United States)

    Xiao, Xiao-Hua; Wang, Jun-Xia; Wang, Gang; Wang, Jia-Yue; Li, Gong-Ke

    2009-12-18

    In the present work, vacuum microwave-assisted extraction (VMAE) was to perform microwave-assisted extraction in vacuum. Two well-known antioxidants, vitamin C from guava and green pepper, and vitamin E (alpha-tocopherol and gamma-tocopherol) from soybean and tea leaves, which were easy to be oxidized, were chosen as representative target compounds for the evaluation of VMAE. The extraction yields of vitamin C, alpha-tocopherol and gamma-tocopherol in VMAE and those in MAE performed in atmosphere (air-MAE) were compared and the effects of extraction time, extraction temperature and sample matrix were studied. Moreover, the effects of the oxygen and subpressure invacuo were also discussed via performed MAE in N(2) atmosphere (N(2)-MAE). The extraction yields of vitamin C, alpha-tocopherol and gamma-tocopherol in VMAE were higher than that in air-MAE, 35% increments of vitamin C from green pepper, 22% increments of alpha-tocopherol and 47% increments of gamma-tocopherol from tea leaves were obtained, respectively. The comparable increased extraction yields of vitamin C, alpha-tocopherol and gamma-tocopherol in N(2)-MAE to that in air-MAE confirmed that oxygen in system was the crucial factor for the oxidation of vitamin C and vitamin E, VMAE was beneficial for the extraction of these oxygen-sensitive compounds. In addition, the subpressure invacuo in the VMAE system also showed positive affect on the extraction yields. On the basis of preventing oxidation and improving extraction efficiency of target compounds because of less oxygen and subpressure invacuo in the extraction system, VMAE has good potential for the extraction of oxygen-sensitive and thermosensitive compounds from plant samples.

  9. The Combined Effects of Arbuscular Mycorrhizal Fungi (AMF) and Lead (Pb) Stress on Pb Accumulation, Plant Growth Parameters, Photosynthesis, and Antioxidant Enzymes in Robinia pseudoacacia L.

    Science.gov (United States)

    Liang, Yan; Ghosh, Amit; Chen, Jie; Tang, Ming

    2015-01-01

    Arbuscular mycorrhizal fungi (AMF) are considered as a potential biotechnological tool for improving phytostabilization efficiency and plant tolerance to heavy metal-contaminated soils. However, the mechanisms through which AMF help to alleviate metal toxicity in plants are still poorly understood. A greenhouse experiment was conducted to evaluate the effects of two AMF species (Funneliformis mosseae and Rhizophagus intraradices) on the growth, Pb accumulation, photosynthesis and antioxidant enzyme activities of a leguminous tree (Robinia pseudoacacia L.) at Pb addition levels of 0, 500, 1000 and 2000 mg kg-1 soil. AMF symbiosis decreased Pb concentrations in the leaves and promoted the accumulation of biomass as well as photosynthetic pigment contents. Mycorrhizal plants had higher gas exchange capacity, non-photochemistry efficiency, and photochemistry efficiency compared with non-mycorrhizal plants. The enzymatic activities of superoxide dismutase (SOD), ascorbate peroxidases (APX) and glutathione peroxidase (GPX) were enhanced, and hydrogen peroxide (H2O2) and malondialdehyde (MDA) contents were reduced in mycorrhizal plants. These findings suggested that AMF symbiosis could protect plants by alleviating cellular oxidative damage in response to Pb stress. Furthermore, mycorrhizal dependency on plants increased with increasing Pb stress levels, indicating that AMF inoculation likely played a more important role in plant Pb tolerance in heavily contaminated soils. Overall, both F. mosseae and R. intraradices were able to maintain efficient symbiosis with R. pseudoacacia in Pb polluted soils. AMF symbiosis can improve photosynthesis and reactive oxygen species (ROS) scavenging capabilities and decrease Pb concentrations in leaves to alleviate Pb toxicity in R. pseudoacacia. Our results suggest that the application of the two AMF species associated with R. pseudoacacia could be a promising strategy for enhancing the phytostabilization efficiency of Pb contaminated

  10. Hydrogen sulfide: a new endogenous player in an old mechanism of plant tolerance to high salinity

    Directory of Open Access Journals (Sweden)

    Cristiane J. da-Silva

    2017-10-01

    Full Text Available ABSTRACT High salinity affects plants due to stimulation of osmotic stress. Cell signaling triggered by nitric oxide (NO and hydrogen sulfide (H2S activates a cascade of biochemical events that culminate in plant tolerance to abiotic and biotic stresses. For instance, the NO/H2S-stimulated biochemical events that occur in plants during response to high salinity include the control of reactive oxygen species, activation of antioxidant system, accumulation of osmoprotectants in cytosol, induction of K+ uptake and Na+ cell extrusion or its vacuolar compartmentation among others. This review is a compilation of what we have learned in the last 10 years about NO participation during cell signaling in response to high salinity as well as the role of H2S, a new player in the mechanism of plant tolerance to salt stress. The main sources of NO and H2S in plant cells is also discussed together with the evidence of interplay between both signaling molecules during response to stress.

  11. Mechanisms and applications of plant growth promoting rhizobacteria: Current perspective

    Directory of Open Access Journals (Sweden)

    Munees Ahemad

    2014-01-01

    Full Text Available Plant growth promoting rhizobacteria are the soil bacteria inhabiting around/on the root surface and are directly or indirectly involved in promoting plant growth and development via production and secretion of various regulatory chemicals in the vicinity of rhizosphere. Generally, plant growth promoting rhizobacteria facilitate the plant growth directly by either assisting in resource acquisition (nitrogen, phosphorus and essential minerals or modulating plant hormone levels, or indirectly by decreasing the inhibitory effects of various pathogens on plant growth and development in the forms of biocontrol agents. Various studies have documented the increased health and productivity of different plant species by the application of plant growth promoting rhizobacteria under both normal and stressed conditions. The plant-beneficial rhizobacteria may decrease the global dependence on hazardous agricultural chemicals which destabilize the agro-ecosystems. This review accentuates the perception of the rhizosphere and plant growth promoting rhizobacteria under the current perspectives. Further, explicit outlooks on the different mechanisms of rhizobacteria mediated plant growth promotion have been described in detail with the recent development and research. Finally, the latest paradigms of applicability of these beneficial rhizobacteria in different agro-ecosystems have been presented comprehensively under both normal and stress conditions to highlight the recent trends with the aim to develop future insights.

  12. Antioxidant Properties and Flavonoid Profile in Leaves of Calabrian Lavandula multifida L., an Autochthon Plant of Mediterranean Southern Regions.

    Science.gov (United States)

    Panuccio, Maria Rosaria; Fazio, Angela; Papalia, Teresa; Barreca, Davide

    2016-04-01

    Lavandula multifida is a rare short-lived plant characteristic of Mediterranean basin able to survive in hot and arid climatic conditions on poorly evolved limestone soils. In this work, we characterize the enzymatic antioxidant system and phenolic composition, as well as the antioxidant properties of L. multifida fresh leaves. Enzymatic patterns show high level of peroxidases, ascorbate peroxidase, and dehydroascorbate reductase activities, when compared with L. angustifolia. The same trend is evident in total carotenoids, ascorbic acid, and reduced glutathione, and in the total antioxidant capacity assay. Moreover, RP-DAD-HPLC analyses of EtOH extract, obtained from fresh leaves, reveal main components, carvacrol, vitexin, and 7- or 8-glucoside derivatives of hypolaetin, scutellarein, luteolin, isoscutellarein, apigenin, and chrysoeriol. The analysis of this autochthon plant depicted a series of strategies adopted by L. multifida to survive in its stressful natural habitat and richness in health-promoting compounds that can be a resource for the preservation of this variety in dangerous of extinction. © 2016 Verlag Helvetica Chimica Acta AG, Zürich.

  13. Phenolic composition, antioxidant and anti-proliferative activities of edible and medicinal plants from the Peruvian Amazon

    Directory of Open Access Journals (Sweden)

    Jan Tauchen

    Full Text Available ABSTRACT Among 23 extracts of medicinal and edible plants tested, Mauritia flexuosa L.f., Arecaceae, showed significant antioxidant ability (DPPH and ORAC = 1062.9 and 645.9 ± 51.4 µg TE/mg extract, respectively, while Annona montana Macfad., Annonaceae, demonstrated the most promising anti-proliferative effect (IC50 for Hep-G2 and HT-29 = 2.7 and 9.0 µg/ml, respectively. However, combinatory antioxidant/anti-proliferative effect was only detected in Oenocarpus bataua Mart., Arecaceae (DPPH = 903.8 and ORAC = 1024 µg TE/mg extract; IC50 for Hep-G2 and HT-29 at 102.6 and 38.8 µg/ml, respectively and Inga edulis Mart., Fabaceae (DPPH = 337.0 and ORAC = 795.7 µg TE/mg extract; IC50 for Hep-G2 and HT-29 at 36.3 and 57.9 µg/ml, respectively. Phenolic content was positively correlated with antioxidant potential, however not with anti-proliferative effect. None of these extracts possessed toxicity towards normal foetal lung cells, suggesting their possible use in development of novel plant-based agents with preventive and/or therapeutic action against oxidative stress-related diseases.

  14. Accumulation of free polyamines enhances the antioxidant response in fruits of grafted tomato plants under water stress.

    Science.gov (United States)

    Sánchez-Rodríguez, E; Romero, L; Ruiz, J M

    2016-01-15

    Polyamines, small aliphatic polycations, have been suggested to play key roles in a number of biological processes. In this paper, attempts were made to investigate the possibility of improving antioxidant response of tomato fruits in relation with endogenous free polyamines content. We studied the reactive oxygen species and polyamines content, and antioxidant and polyamine-biosynthesis enzyme activities in fruits of ungrafted and grafted tomato plants under moderate water stress. We used a drought-tolerant cultivar (Zarina) and drought-sensitive cultivar (Josefina) to obtain reciprocal graft, selfgraft and ungraft plants. Fruits contained higher endogenous polyamine content during the course of the experiment relative to the control, coupled with higher arginine decarboxylase and spermine synthase activities in Zarina ungrafted and ZarxJos. In these cultivars, tomato fruits showed a lower reactive oxygen species generation and higher catalase and superoxide dismutase activities, suggesting that a higher content in polyamines (especially spermine) exerted a positive effect on antioxidant systems. All of these data suggest that spermine leads to more effective reactive oxygen species scavenging (less tissue damage) in tomato fruits, which may function collectively to enhance dehydration tolerance. Copyright © 2015 Elsevier GmbH. All rights reserved.

  15. Total phenolics and antioxidant activity of five medicinal plant; Fenois totais e atividade antioxidante de cinco plantas medicinais

    Energy Technology Data Exchange (ETDEWEB)

    Sousa, Cleyton Marcos de M.; Silva, Hilris Rocha e; Vieira-Junior, Gerardo Magela; Ayres, Mariane Cruz C.; Costa, Charllyton Luis S. da; Araajo, Delton Servulo; Cavalcante, Luis Carlos D.; Barros, Elcio Daniel S.; Araujo, Paulo Breitner de M.; Brandao, Marcela S.; Chaves, Mariana H. [Universidade Federal do Piaui, Teresina, PI (Brazil). Dept. de Quimica]. E-mail: mariana@ufpi.br

    2007-03-15

    This paper describes total phenolics content and antioxidant activity in the ethanolic extract of leaves, bark and roots of five medicinal plants: Terminalia brasiliensis Camb., Terminalia fagifolia Mart. and Zucc., Copernicia cerifera (Miller) H.E. Moore, Cenostigma macrophyllum Tul. var. acuminata Teles Freire and Qualea grandiflora Mart. The total phenolics content of the plant extracts, determined by the Folin-Ciocalteu method, varied from 250.0 {+-}8,2 to 763,63 {+-}13.03 mg of gallic acid equivalent/g dry EtOH extract. The antioxidant activity of extracts was evaluated using the 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay system. Extract of bark from T. brasiliensis, the most active, with an EC{sub 50} value of 27.59 {+-} 0.82 {mu}g/mL, was comparable to rutin (EC{sub 50} = 27.80 {+-} 1.38) and gallic acid (EC{sub 50} = 24.27 {+-} 0.31), used as positive controls. The relationship between total phenolic content and antioxidant activity was positive and significant for T. brasiliensis, C. macrophyllum and C. cerifera. (author)

  16. Radiolysis study of the radical-like action mechanisms of an antioxidant: Sulfarlem

    International Nuclear Information System (INIS)

    Ruimy-Ifrah, Pascale

    1989-01-01

    Sulfarlem or p-anisyldithiolthione (ADT) is a sulfured heterocyclic compound which exhibits antioxidant properties. This work presents the quantitative study of the mono-electronic exchange mechanisms involved in this action. This study has been performed by gamma radiolysis and pulse radiolysis. The gamma radiolysis of ADT aerated ethanolic solutions has shown that O 2 . and RO 2 . radicals are not reactive towards ADT. In return, ADT is an efficient scavenger of R . radicals; the rate constant of this reaction being k (ADT + R . ) = 6.7 x 10 4 mol -1 .l.s -1 . The pulse radiolysis experiments allowed the characterization of ADT reduction by the solvated electron (k (e solv - + ADT) = 2.3 x 10 10 mol -1 .l.s -1 ), the determination of the absorption spectrum of the reduced species A . (maximum wavelength = 580 nm) and the rate constant of its evolution (k (A . + A . ) = 5.7 x 10 8 mol -1 .l.s -1 ). An analogous study has been performed with ADO, an ADT oxidized derivative, which appeared to be a less efficient free radicals scavenger. (author) [fr

  17. Antioxidant and Protective Mechanisms against Hypoxia and Hypoglycaemia in Cortical Neurons in Vitro

    Directory of Open Access Journals (Sweden)

    José Joaquín Merino

    2014-02-01

    Full Text Available In the present work, we have studied whether cell death could be induced in cortical neurons from rats subjected to different period of O2 deprivation and low glucose (ODLG. This “in vitro” model is designed to emulate the penumbra area under ischemia. In these conditions, cortical neurons displayed loss of mitochondrial respiratory ability however, nor necrosis neither apoptosis occurred despite ROS production. The absence of cellular death could be a consequence of increased antioxidant responses such as superoxide dismutase-1 (SOD1 and GPX3. In addition, the levels of reduced glutathione were augmented and HIF-1/3α overexpressed. After long periods of ODLG (12–24 h cortical neurons showed cellular and mitochondrial membrane alterations and did not recuperate cellular viability during reperfusion. This could mean that therapies directed toward prevention of cellular and mitochondrial membrane imbalance or cell death through mechanisms other than necrosis or apoptosis, like authophagy, may be a way to prevent ODLG damage.

  18. Comparative study of herbal plants on the phenolic and flavonoid content, antioxidant activities and toxicity on cells and zebrafish embryo

    Directory of Open Access Journals (Sweden)

    Hassan Fahmi Ismail

    2017-10-01

    Full Text Available Natural antioxidants derived from plants have shown a tremendous inhibitory effect on free radicals in actively metabolizing cells. Overproduction of free radicals increases the risk factor of chronic diseases associated with diabetes, cancer, arthritis and cardiovascular disease. Andrographis paniculata, Cinnamon zeylanicum, Curcuma xanthorrhiza, Eugenia polyantha and Orthosiphon stamineus are ethnomedicinal plants used in the Asian region to treat various illnesses from a common fever to metabolic disease. In this study, we have quantified the total phenolic (TPC and flavonoid content (TFC in these plants and its inhibitory effect on 1,1-diphenyl-2-picrylhydrazyl radical (DPPH and 2,2′-azinobis(3-ethylbenzothiazoline-6-sulfonic acid (ABTS free radicals as well as the cytotoxicity effect on cell lines proliferation and zebrafish embryogenesis. Results showed that Cinnamon zeylanicum and E. polyantha have the highest phenolic and flavonoid content. Furthermore, both herbs significantly inhibited the formation of DPPH and ABTS free radicals. Meanwhile, O. stamineus exhibited minimum cytotoxicity and embryotoxicity on tested models. Good correlation between IC50 of 3T3-L1 cells and LC50 embyrotoxicity was also found. This study revealed the potent activity of antioxidant against free radical and the toxicology levels of the tested herbal plants.

  19. Involvement of thiol-based mechanisms in plant development.

    Science.gov (United States)

    Rouhier, Nicolas; Cerveau, Delphine; Couturier, Jérémy; Reichheld, Jean-Philippe; Rey, Pascal

    2015-08-01

    Increasing knowledge has been recently gained regarding the redox regulation of plant developmental stages. The current state of knowledge concerning the involvement of glutathione, glutaredoxins and thioredoxins in plant development is reviewed. The control of the thiol redox status is mainly ensured by glutathione (GSH), a cysteine-containing tripeptide and by reductases sharing redox-active cysteines, glutaredoxins (GRXs) and thioredoxins (TRXs). Indeed, thiol groups present in many regulatory proteins and metabolic enzymes are prone to oxidation, ultimately leading to post-translational modifications such as disulfide bond formation or glutathionylation. This review focuses on the involvement of GSH, GRXs and TRXs in plant development. Recent studies showed that the proper functioning of root and shoot apical meristems depends on glutathione content and redox status, which regulate, among others, cell cycle and hormone-related processes. A critical role of GRXs in the formation of floral organs has been uncovered, likely through the redox regulation of TGA transcription factor activity. TRXs fulfill many functions in plant development via the regulation of embryo formation, the control of cell-to-cell communication, the mobilization of seed reserves, the biogenesis of chloroplastic structures, the metabolism of carbon and the maintenance of cell redox homeostasis. This review also highlights the tight relationships between thiols, hormones and carbon metabolism, allowing a proper development of plants in relation with the varying environment and the energy availability. GSH, GRXs and TRXs play key roles during the whole plant developmental cycle via their antioxidant functions and the redox-regulation of signaling pathways. This article is part of a Special Issue entitled Redox regulation of differentiation and de-differentiation. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Hepatoprotective potential of antioxidant potent fraction from Urtica dioica Linn. (whole plant in CCl4 challenged rats

    Directory of Open Access Journals (Sweden)

    Bhuwan Chandra Joshi

    2015-01-01

    Full Text Available The aim of the present study was to isolate hepatoprotective component from Urtica dioica Linn. (whole plant against CCl4-induced hepatotoxicity in-vitro (HepG2 cells and in-vivo (rats model. Antioxidant activity of hydro alcoholic extract and its fractions petroleum ether fraction (PEF, ethyl acetate fraction (EAF, n-butanol fraction (NBF and aqueous fraction (AF were determined by DPPH and NO radicals scavenging assay. Fractions were subjected to in-vitro HepG2 cell line study. Further, the most potent fraction (EAF was subjected to in-vivo hepatoprotective potential against CCl4 challenged rats. The in-vivo hepatoprotective active fraction was chromatographed on silica column to isolate the bioactive constituent(s. Structure elucidation was done by using various spectrophotometric techniques like UV, IR, 1H NMR, 13C NMR and MS spectroscopy. Ethyl acetate fraction (EAF of hydro-alcoholic extract of U. dioica possessed the potent antioxidant activity viz. DPPH (IC50 78.99 ± 0.17 μg/ml and NO (IC50101.39 ± 0.30 μg/ml. The in-vitro HepG2 cell line study showed that the EAF prevented the cell damage. The EAF significantly attenuated the increased liver enzymes activities in serum and oxidative parameters in tissue of CCl4-induced rats, suggesting hepatoprotective and anti-oxidant action respectively. Column chromatography of most potent antioxidant fraction (EAF lead to the isolation of 4-hydroxy-3-methoxy cinnamic acid (ferulic acid which is responsible for its hepatoprotective potential. Hence, the present study suggests that EAF of hydro-alcoholic extract has significant antioxidant and hepatoprotective potential on CCl4 induced hepatotoxicity in-vitro and in-vivo.

  1. Hepatoprotective potential of antioxidant potent fraction from Urtica dioica Linn. (whole plant) in CCl4 challenged rats.

    Science.gov (United States)

    Joshi, Bhuwan Chandra; Prakash, Atish; Kalia, Ajudhia N

    2015-01-01

    The aim of the present study was to isolate hepatoprotective component from Urtica dioica Linn. (whole plant) against CCl 4 -induced hepatotoxicity in-vitro (HepG2 cells) and in-vivo (rats) model. Antioxidant activity of hydro alcoholic extract and its fractions petroleum ether fraction (PEF), ethyl acetate fraction (EAF), n -butanol fraction (NBF) and aqueous fraction (AF) were determined by DPPH and NO radicals scavenging assay. Fractions were subjected to in-vitro HepG2 cell line study. Further, the most potent fraction (EAF) was subjected to in-vivo hepatoprotective potential against CCl 4 challenged rats. The in-vivo hepatoprotective active fraction was chromatographed on silica column to isolate the bioactive constituent(s). Structure elucidation was done by using various spectrophotometric techniques like UV, IR, 1 H NMR, 13 C NMR and MS spectroscopy. Ethyl acetate fraction (EAF) of hydro-alcoholic extract of U. dioica possessed the potent antioxidant activity viz. DPPH (IC 50 78.99 ± 0.17 μg/ml) and NO (IC 50 101.39 ± 0.30 μg/ml). The in-vitro HepG2 cell line study showed that the EAF prevented the cell damage. The EAF significantly attenuated the increased liver enzymes activities in serum and oxidative parameters in tissue of CCl 4 -induced rats, suggesting hepatoprotective and anti-oxidant action respectively. Column chromatography of most potent antioxidant fraction (EAF) lead to the isolation of 4-hydroxy-3-methoxy cinnamic acid (ferulic acid) which is responsible for its hepatoprotective potential. Hence, the present study suggests that EAF of hydro-alcoholic extract has significant antioxidant and hepatoprotective potential on CCl 4 induced hepatotoxicity in-vitro and in-vivo .

  2. Lack of mitochondrial thioredoxin o1 is compensated by antioxidant components under salinity in Arabidopsis thaliana plants.

    Science.gov (United States)

    Calderón, Aingeru; Sánchez-Guerrero, Antonio; Ortiz-Espín, Ana; Martínez-Alcalá, Isabel; Camejo, Daymi; Jiménez, Ana; Sevilla, Francisca

    2018-02-15

    In a changing environment, plants are able to acclimate to the new conditions by regulating their metabolism through the antioxidant and redox systems involved in the stress response. Here we studied a mitochondrial thioredoxin in wild type (WT) Arabidopis thaliana and two Attrxo1 mutant lines grown in the absence or presence of 100 mM NaCl. Compared to WT plants, no evident phenotype was observed in the mutant plants in control condition, although they had higher number of stomata, loss of water, nitric oxide and carbonyl protein contents as well as higher activity of superoxide dismutase (SOD) and catalase enzymes than WT plants. Under salinity, the mutants presented lower water loss and higher stomatal closure, H 2 O 2 and lipid peroxidation levels accompanied by higher enzymatic activity of catalase and the different SOD isoenzymes compared to WT plants. These inductions may collaborate in the maintenance of plant integrity and growth observed under saline conditions, possibly as a way to compensate the lack of TRXo1. We discuss the potential of TRXo1 to influence the development of the whole plant under saline conditions, which have great value for the agronomy of plants growing under unfavourable environment. This article is protected by copyright. All rights reserved.

  3. Extraction of essential oils from native plants and algae from the coast of Peniche (Portugal: antimicrobial and antioxidant activity.

    Directory of Open Access Journals (Sweden)

    Clélia Neves Afonso

    2014-06-01

    Full Text Available Coastal areas are highly complex and dynamic ecosystem of interface between land, sea and atmosphere, which also suffer biotic influences. These areas play several important ecological functions, and here we can find an enormous biodiversity. The coastline of Portugal features a high number of endemic flora and vegetation with the potential to provide functional compounds that may provide physiological benefits at nutritional and therapeutic levels, as sources of bioactive substances with antimicrobial, antioxidant, antifungal, antitumalr and anti-inflammatory activity. Among these compounds, we find essential oils, also known as volatile oils, which are a result of secondary metabolism of aromatic plants, containing a large number of substances with varied chemical composition that can be obtained by different methods of extraction. The aim of this study was to extract essential oils of native plants and seaweeds from the coast of Peniche by hydrodistillation in Clevenger apparatus, with optimization of the purification process. Extracted essential oils were tested as to their ability as antibacterial and antifungal agents, and also as antioxidants. The plants studied for this purpose were Inula chritmoides L., Juniperus phoenicea subsp. turbinata (Guss. Nyman, Daucus carota spp. halophilus and the seaweeds Fucus spiralis L., Codium tomentosum Stackhouse, Stypocaulon scoparium (Linnaeus Kützing and Plocamium cartilagineum (Linnaeus P.S.Dixon. The antimicrobial ability was tested in two bacteria species, Bacillus subtilis and Escherichia coli and in the yeast Saccharomyces cerevisiae, using standard procedures. The antioxidant potential was evaluated and from the results obtained, we can conclude that the essential oils extracted by the hydrodistillation method of plants and algae contain bioactive compounds present in its constitution with interesting bio-activity that can offer significant benefits and biotechnological relevance.

  4. Total Phenolic, Flavonoids and Antioxidant Capacity of Some Medicinal and Aromatic Plants

    Directory of Open Access Journals (Sweden)

    Melinda Nagy

    2014-11-01

    Full Text Available Abstract: Antioxidants are substances that protect cells from the induced oxidative stress damage caused by unstable molecules known as free radicals that. Antioxidants neutralize free radicals as a natural by-product of normal cell processes. In the present study,were evaluated  the phenolic and flavonoids contents as well as the antioxidant capacity of seeds from  the Lamiaceae and Apiaceae family: fennel  (Foeniculum vulgare, dill (Anethum graveolens and rosemary (Rosmarinus officinalis . (Sreemoyee Ch. et. al., 2012 The main objective of the study was the comparative assessment of the phenolic and flavonoid compounds from dill, rosemary and fennel methanolic extracts correlated with their  antioxidant activity. Both total phenolic content and flavonoids content of the seeds samples were measured spectrophotometrically using the Folin-Ciocalteu assay and a chromogenic system of NaNO2–Al(NO33–NaOH, respectively.. Antioxidant capacity was determined by 2,2-DPPH method. Results strongly showed that Rosmarinus officinalis extract has the most effective antioxidant capacity in scavenging DPPH radicals, while Foeniculum vulgare and Anethum graveolens were less active. The total phenolic content was within 773,14 and 3367,24mg GAE/ 100g while the concentration in flavonoids was between 231,84 and 1325,53 QEg/100g dry seeds.  

  5. Taurine protects methamphetamine-induced developmental angiogenesis defect through antioxidant mechanism

    International Nuclear Information System (INIS)

    Shao, Xue; Hu, Zhengtao; Hu, Chunyan; Bu, Qian; Yan, Guangyan; Deng, Pengchi; Lv, Lei; Wu, Dan; Deng, Yi; Zhao, Jinxuan; Zhu, Ruiming; Li, Yan; Li, Hongyu; Xu, Youzhi; Yang, Hanshuo; Zhao, Yinglan; Cen, Xiaobo

    2012-01-01

    Investigations have characterized addictive drug-induced developmental cardiovascular malformation in human, non-human primate and rodent. However, the underlying mechanism of malformation caused by drugs during pregnancy is still largely unknown, and preventive and therapeutic measures have been lacking. Using 1 H NMR spectroscopy, we profiled the metabolites from human embryo endothelial cells exposed to methamphetamine (METH) and quantified a total of 226 peaks. We identified 11 metabolites modified robustly and found that taurine markedly increased. We then validated the hypothesis that this dramatic increase in taurine could attribute to its effect in inhibiting METH-induced developmental angiogenesis defect. Taurine supplement showed a more significant potential than other metabolites in protecting against METH-induced injury in endothelial cells. Taurine strongly attenuated METH-induced inhibition of proliferation and migration in endothelial cells. Furthermore, death rate and vessel abnormality of zebrafish embryos treated with METH were greatly reversed by taurine. In addition, taurine supplement caused a rapid decrease in reactive oxygen species generation and strongly attenuated the excitable arise of antioxidase activities in the beginning of METH exposure prophase. Dysregulations of NF-κB, p-ERK as well as Bax, which reflect apoptosis, cell cycle arrest and oxidative stress in vascular endothelium, were blocked by taurine. Our results provide the first evidence that taurine prevents METH-caused developmental angiogenesis defect through antioxidant mechanism. Taurine could serve as a potential therapeutic or preventive intervention of developmental vascular malformation for the pregnant women with drug use. Highlights: ► Metabonomics findings. ► Abnormal development. ► Dysregulations of key proteins.

  6. Taurine protects methamphetamine-induced developmental angiogenesis defect through antioxidant mechanism

    Energy Technology Data Exchange (ETDEWEB)

    Shao, Xue; Hu, Zhengtao; Hu, Chunyan; Bu, Qian; Yan, Guangyan [National Chengdu Center for Safety Evaluation of Drugs, State Key Lab of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041 (China); Deng, Pengchi [Analytical and Testing Center, Sichuan University, Chengdu 610041 (China); Lv, Lei [National Chengdu Center for Safety Evaluation of Drugs, State Key Lab of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041 (China); Wu, Dan [College of Basic and Forensic Medicine, Sichuan University, Chengdu 610041 (China); Deng, Yi; Zhao, Jinxuan; Zhu, Ruiming; Li, Yan; Li, Hongyu; Xu, Youzhi; Yang, Hanshuo; Zhao, Yinglan [National Chengdu Center for Safety Evaluation of Drugs, State Key Lab of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041 (China); Cen, Xiaobo, E-mail: xbcenalan@vip.sina.com [National Chengdu Center for Safety Evaluation of Drugs, State Key Lab of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041 (China)

    2012-05-01

    Investigations have characterized addictive drug-induced developmental cardiovascular malformation in human, non-human primate and rodent. However, the underlying mechanism of malformation caused by drugs during pregnancy is still largely unknown, and preventive and therapeutic measures have been lacking. Using {sup 1}H NMR spectroscopy, we profiled the metabolites from human embryo endothelial cells exposed to methamphetamine (METH) and quantified a total of 226 peaks. We identified 11 metabolites modified robustly and found that taurine markedly increased. We then validated the hypothesis that this dramatic increase in taurine could attribute to its effect in inhibiting METH-induced developmental angiogenesis defect. Taurine supplement showed a more significant potential than other metabolites in protecting against METH-induced injury in endothelial cells. Taurine strongly attenuated METH-induced inhibition of proliferation and migration in endothelial cells. Furthermore, death rate and vessel abnormality of zebrafish embryos treated with METH were greatly reversed by taurine. In addition, taurine supplement caused a rapid decrease in reactive oxygen species generation and strongly attenuated the excitable arise of antioxidase activities in the beginning of METH exposure prophase. Dysregulations of NF-κB, p-ERK as well as Bax, which reflect apoptosis, cell cycle arrest and oxidative stress in vascular endothelium, were blocked by taurine. Our results provide the first evidence that taurine prevents METH-caused developmental angiogenesis defect through antioxidant mechanism. Taurine could serve as a potential therapeutic or preventive intervention of developmental vascular malformation for the pregnant women with drug use. Highlights: ► Metabonomics findings. ► Abnormal development. ► Dysregulations of key proteins.

  7. Modulation of antioxidant enzymes as radioprotector mechanism of oligo elements and lachesis muta in normal tissues

    International Nuclear Information System (INIS)

    Crescenti, E.; Croci, M.; Mohamad, N.; Medina, V.; Sambuco, L.; Gutierrez, A.; Nunez, M.; Martin, G.; Cricco, G.; Bergoc, R.; Rivera, E.

    2006-01-01

    The therapeutic use of the ionizing radiations (IR) it has acquired great relevance in the last decades although their effects are not selective and they are also manifested on the normal tissues. In previous works we demonstrate the radioprotector effect that the combination of oligo elements Zinc, Selenium and Manganese associated to the snake poison Lachesis muta (O-LM) it exercises on the small intestine and the bone marrow of irradiated mouse. The objective of this work was to study the molecular mechanisms, and particularly the paper of the anti-oxidant superoxide dismutases enzymes (MnSOD and Cu/ZnSOD), Catalase (CAT), and Glutathione Peroxidase (GPx), in the radioprotector action that exercises the combination O-LM. Four groups of mice were used: A) control; B) treated with O-LM; C) irradiated; D) irradiated and treated with O-LM. The two treated groups were injected daily via s.c. with 0,1 ml of O-LM from 30 days before the irradiation and until to 4 days later. The two irradiated groups received 10 Gy in whole body the day 30. The day 35 all the animals were sacrificed. The histological intestinal cuts of the mucous one were evaluated by tint with hematoxyline-eosin; the presence of apoptotic cells it was determined by the Tunel method (Apoptag kit); the expression of PCNA (nuclear antigen of proliferating cells), MnSOD, CuZnSOD, CAT and GPx, by immunohistochemistry. The results demonstrated that in the lot D it was preserved totally the histology of the intestinal mucous. In the control A it was observed PCNA expression in the crypts, of MnSOD in the hairiness and CuZnSOD, CAT and Gpx in both. The change produced by O-LM (group B) it was the increase of PCNA, of CAT and the appearance of MnSOD in the crypts. On the other hand, the irradiation (C) it produced a marked descent in the GPx, the complete disappearance of PCNA and an increase of the apoptotic cells. The group D showed that O-LM it reverted totally the effect of the RI on the expression of PCNA

  8. Studies of the in vitro anticancer, antimicrobial and antioxidant potentials of selected Yemeni medicinal plants from the island Soqotra

    Directory of Open Access Journals (Sweden)

    Bednarski Patrick J

    2009-03-01

    Full Text Available Abstract Background Recent years have witnessed that there is a revival of interest in drug discovery from medicinal plants for the maintenance of health in all parts of the world. The aim of this work was to investigate 26 plants belonging to 17 families collected from a unique place in Yemen (Soqotra Island for their in vitro anticancer, antimicrobial and antioxidant activities. Methods The 26 plants were extracted with methanol and hot water to yield 52 extracts. Evaluation for in vitro anticancer activity was done against three human cancer cell lines (A-427, 5637 and MCF-7 by using an established microtiter plate assay based on cellular staining with crystal violet. Antimicrobial activity was tested against three Gram-positive bacteria, two Gram-negative bacteria, one yeast species and three multiresistant Staphylococcus strains by using an agar diffusion method and the determination of MIC against three Gram-positive bacteria with the broth micro-dilution assay. Antioxidant activity was investigated by measuring the scavenging activity of the DPPH radical. Moreover, a phytochemical screening of the methanolic extracts was done. Results Notable cancer cell growth inhibition was observed for extracts from Ballochia atro-virgata, Eureiandra balfourii and Hypoestes pubescens, with IC50 values ranging between 0.8 and 8.2 μg/ml. The methanol extracts of Acanthospermum hispidum, Boswellia dioscorides, Boswellia socotrana, Commiphora ornifolia and Euphorbia socotrana also showed noticeable antiproliferative potency with IC50 values Acacia pennivenia, Boswellia dioscorides, Boswellia socotrana, Commiphora ornifolia, Euclea divinorum, Euphorbia socotrana, Leucas samhaensis, Leucas virgata, Rhus thyrsiflora, and Teucrium sokotranum with inhibition zones > 15 mm and MIC values ≤ 250 μg/ml. In addition, the methanolic extracts of Acacia pennivenia, Boswellia dioscorides, Boswellia socotrana and Commiphora ornifolia showed good antioxidant potential

  9. Investigation on Antibacterial and Antioxidant Activities, Phenolic and Flavonoid Contents of Some Thai Edible Plants as an Alternative for Antibiotics

    Directory of Open Access Journals (Sweden)

    J. H. Lee

    2014-10-01

    Full Text Available This study was aimed to examine the antibacterial and antioxidative properties of seven edible plants from Thailand to develop alternative antibiotics as feed additives. The plants include Citrus aurantifolia Swingle (Lime fruits and its leaves, Sesbania grandiflora L. (Agati sesbania leaves, Piper sarmentosum Roxb (Wild betal leaves, Curcuma domestica Valeton (Turmeric roots, Morinda citrifolia L. (Beach mulberry leaves, Cassia siamea britt (Siamea cassia leaves, and Cocos nucifera L. (Coconut peels. The plants were extracted by methanol, n-hexane, chloroform, ethyl acetate, butanol and water. Antibacterial activities with minimum inhibitory concentration (MIC were determined by agar diffusion assay against Escherichia coli, Burkholderia sp., Haemopilus somnus, Haemopilus parasuis, and Clostridium perfringens that were considered pathogenic strains in livestock infection. Methanol extracts of C. aurantifolia Swingle fruits and leaves showed the broadest spectrum of antibacterial activities except for C. perfringens. Butanol extract of S. grandiflora L. leaves showed the strongest activity against Burkholderia sp. with MIC, 135 μg/mL. P. sarmentosum Roxb leaves showed antibacterial activities against E. coli, Burkholderia sp. and H. parasuis. Ethyl acetate and water extracts from C. domesitca Valeton roots showed MIC of 306 μg/mL and 183 μg/mL, respectively against only C. perfringens. Antioxidative activity was determined by 2-diphenyl-2-picryl hydrazyl photometric assay. The methanol extracts of C. aurantifolia Swingle fruits and P. sarmentosum Roxb leaves showed the highest antioxidant activity among all the extracts with 3.46 mg/mL and 2.70 mg/mL effective concentration 50% (EC50 values, respectively. Total contents of phenolics and flavonoids were measured from the plant extracts. Methanol extracts of S. grandiflora L. and chloroform extracts of C. domestica Valeton were found to have the highest amount of total phenolics, 41.7 and 47

  10. Nutritional and antioxidant properties of wild edible plants and their use as potential ingredients in the modern diet.

    Science.gov (United States)

    Romojaro, Ana; Botella, Ma Ángeles; Obón, Concepción; Pretel, Ma Teresa

    2013-12-01

    Thirteen species of wild edible plants belonging to 11 botanical families consumed in the traditional Mediterranean diet were evaluated. Sanguisorba minor, Quercus ballota and Sedum sediforme showed the highest hydrophilic total antioxidant activity (H-TAA) and total phenols. Asparagus acutifolius, Allium ampeloprasum, Foeniculum vulgare and Malva sylvestris presented high levels of potassium, Malva and Asparagus are interesting due to their zinc content, and Urtica urens contains a high content of calcium. Sensory analysis indicated that fruits from Q. ballota could be considered very sweet and plants of Crithmum maritimum and Oxalis pes-caprae are very acidic. Moreover, testers highlighted the salty taste of C. maritimum. Mesembryanthemum nodiflorum and Mesembryanthemum cristalinum, the spicy taste of A. ampeloprasum, and the aroma of F. vulgare. Our results indicate that increased consumption of the investigated plant species could provide health benefits. Moreover, due to their sensorial properties, they could be used as new ingredients to improve the diversity in modern diet and highly creative cuisine.

  11. New insights into the mechanisms of polyphenols beyond antioxidant properties; lessons from the green tea polyphenol, epigallocatechin 3-gallate

    Directory of Open Access Journals (Sweden)

    Hae-Suk Kim

    2014-01-01

    Full Text Available Green tea is rich in polyphenol flavonoids including catechins. Epigallocatechin 3-gallate (EGCG is the most abundant and potent green tea catechin. EGCG has been extensively studied for its beneficial health effects as a nutriceutical agent. Based upon its chemical structure, EGCG is often classified as an antioxidant. However, treatment of cells with EGCG results in production of hydrogen peroxide and hydroxyl radicals in the presence of Fe (III. Thus, EGCG functions as a pro-oxidant in some cellular contexts. Recent investigations have revealed many other direct actions of EGCG that are independent from anti-oxidative mechanisms. In this review, we discuss these novel molecular mechanisms of action for EGCG. In particular, EGCG directly interacts with proteins and phospholipids in the plasma membrane and regulates signal transduction pathways, transcription factors, DNA methylation, mitochondrial function, and autophagy to exert many of its beneficial biological actions.

  12. Review: Wind impacts on plant growth, mechanics and damage.

    Science.gov (United States)

    Gardiner, Barry; Berry, Peter; Moulia, Bruno

    2016-04-01

    Land plants have adapted to survive under a range of wind climates and this involve changes in chemical composition, physical structure and morphology at all scales from the cell to the whole plant. Under strong winds plants can re-orientate themselves, reconfigure their canopies, or shed needles, leaves and branches in order to reduce the drag. If the wind is too strong the plants oscillate until the roots or stem fail. The mechanisms of root and stem failure are very similar in different plants although the exact details of the failure may be different. Cereals and other herbaceous crops can often recover after wind damage and even woody plants can partially recovery if there is sufficient access to water and nutrients. Wind damage can have major economic impacts on crops, forests and urban trees. This can be reduced by management that is sensitive to the local site and climatic conditions and accounts for the ability of plants to acclimate to their local wind climate. Wind is also a major disturbance in many plant ecosystems and can play a crucial role in plant regeneration and the change of successional stage. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  13. High resolution UHPLC-MS characterization and isolation of main compounds from the antioxidant medicinal plant Parastrephia lucida (Meyen

    Directory of Open Access Journals (Sweden)

    Carlos Echiburu-Chau

    2017-11-01

    Full Text Available High-resolution mass spectrometry is currently used to determine the mass of biologically active compounds in medicinal plants and food and UHPLC-Orbitrap is a relatively new technology that allows fast fingerprinting and metabolomics analysis. Forty-two metabolites including several phenolic acids, flavonoids, coumarines, tremetones and ent-clerodane diterpenes were accurately identified for the first time in the resin of the medicinal plant Parastrephia lucida (Asteraceae a Chilean native species, commonly called umatola, collected in the pre-cordillera and altiplano regions of northern Chile, by means of UHPLC-PDA-HR-MS. This could be possible by the state of the art technology employed, which allowed well resolved total ion current peaks and the proposal of some biosynthetic relationships between the compounds detected. Some mayor compounds were also isolated using HSCCC. The ethanolic extract showed high total polyphenols content and significant antioxidant capacity. Furthermore, several biological assays were performed that determined the high antioxidant capacity found for the mayor compound isolated from the plant, 11- p-coumaroyloxyltremetone.

  14. Plant growth-promoting bacteria: mechanisms and applications.

    Science.gov (United States)

    Glick, Bernard R

    2012-01-01

    The worldwide increases in both environmental damage and human population pressure have the unfortunate consequence that global food production may soon become insufficient to feed all of the world's people. It is therefore essential that agricultural productivity be significantly increased within the next few decades. To this end, agricultural practice is moving toward a more sustainable and environmentally friendly approach. This includes both the increasing use of transgenic plants and plant growth-promoting bacteria as a part of mainstream agricultural practice. Here, a number of the mechanisms utilized by plant growth-promoting bacteria are discussed and considered. It is envisioned that in the not too distant future, plant growth-promoting bacteria (PGPB) will begin to replace the use of chemicals in agriculture, horticulture, silviculture, and environmental cleanup strategies. While there may not be one simple strategy that can effectively promote the growth of all plants under all conditions, some of the strategies that are discussed already show great promise.

  15. An Investigation of the Antioxidant Capacity in Extracts from Moringa oleifera Plants Grown in Jamaica

    Science.gov (United States)

    Wright, Racquel J.; Lee, Ken S.; Hyacinth, Hyacinth I.; Hibbert, Jacqueline M.; Reid, Marvin E.; Wheatley, Andrew O.

    2017-01-01

    Moringa oleifera trees grow well in Jamaica and their parts are popularly used locally for various purposes and ailments. Antioxidant activities in Moringa oleifera samples from different parts of the world have different ranges. This study was initiated to determine the antioxidant activity of Moringa oleifera grown in Jamaica. Dried and milled Moringa oleifera leaves were extracted with ethanol/water (4:1) followed by a series of liquid–liquid extractions. The antioxidant capacities of all fractions were tested using a 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay. IC50 values (the amount of antioxidant needed to reduce 50% of DPPH) were then determined and values for the extracts ranged from 177 to 4458 μg/mL. Extracts prepared using polar solvents had significantly higher antioxidant capacities than others and may have clinical applications in any disease characterized by a chronic state of oxidative stress, such as sickle cell anemia. Further work will involve the assessment of these extracts in a sickle cell model of oxidative stress. PMID:29065510

  16. An Investigation of the Antioxidant Capacity in Extracts from Moringa oleifera Plants Grown in Jamaica.

    Science.gov (United States)

    Wright, Racquel J; Lee, Ken S; Hyacinth, Hyacinth I; Hibbert, Jacqueline M; Reid, Marvin E; Wheatley, Andrew O; Asemota, Helen N

    2017-10-23

    Moringa oleifera trees grow well in Jamaica and their parts are popularly used locally for various purposes and ailments. Antioxidant activities in Moringa oleifera samples from different parts of the world have different ranges. This study was initiated to determine the antioxidant activity of Moringa oleifera grown in Jamaica. Dried and milled Moringa oleifera leaves were extracted with ethanol/water (4:1) followed by a series of liquid-liquid extractions. The antioxidant capacities of all fractions were tested using a 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay. IC 50 values (the amount of antioxidant needed to reduce 50% of DPPH) were then determined and values for the extracts ranged from 177 to 4458 μg/mL. Extracts prepared using polar solvents had significantly higher antioxidant capacities than others and may have clinical applications in any disease characterized by a chronic state of oxidative stress, such as sickle cell anemia. Further work will involve the assessment of these extracts in a sickle cell model of oxidative stress.

  17. Importance of Silicon and Mechanisms of Biosilica Formation in Plants

    Science.gov (United States)

    Siti Nor Akmar, Abdullah; Rafii, Mohd Y.; Tengoua, F. F.; Nurul Mayzaitul Azwa, Jamaludin; Shabanimofrad, M.

    2015-01-01

    Silicon (Si) is one of the most prevalent macroelements, performing an essential function in healing plants in response to environmental stresses. The purpose of using Si is to induce resistance to distinct stresses, diseases, and pathogens. Additionally, Si can improve the condition of soils, which contain toxic levels of heavy metals along with other chemical elements. Silicon minimizes toxicity of Fe, Al, and Mn, increases the availability of P, and enhances drought along with salt tolerance in plants through the formation of silicified tissues in plants. However, the concentration of Si depends on the plants genotype and organisms. Hence, the physiological mechanisms and metabolic activities of plants may be affected by Si application. Peptides as well as amino acids can effectively create polysilicic species through interactions with different species of silicate inside solution. The carboxylic acid and the alcohol groups of serine and asparagine tend not to engage in any significant role in polysilicates formation, but the hydroxyl group side chain can be involved in the formation of hydrogen bond with Si(OH)4. The mechanisms and trend of Si absorption are different between plant species. Furthermore, the transportation of Si requires an energy mechanism; thus, low temperatures and metabolic repressors inhibit Si transportation. PMID:25685787

  18. Importance of Silicon and Mechanisms of Biosilica Formation in Plants

    Directory of Open Access Journals (Sweden)

    Mahbod Sahebi

    2015-01-01

    Full Text Available Silicon (Si is one of the most prevalent macroelements, performing an essential function in healing plants in response to environmental stresses. The purpose of using Si is to induce resistance to distinct stresses, diseases, and pathogens. Additionally, Si can improve the condition of soils, which contain toxic levels of heavy metals along with other chemical elements. Silicon minimizes toxicity of Fe, Al, and Mn, increases the availability of P, and enhances drought along with salt tolerance in plants through the formation of silicified tissues in plants. However, the concentration of Si depends on the plants genotype and organisms. Hence, the physiological mechanisms and metabolic activities of plants may be affected by Si application. Peptides as well as amino acids can effectively create polysilicic species through interactions with different species of silicate inside solution. The carboxylic acid and the alcohol groups of serine and asparagine tend not to engage in any significant role in polysilicates formation, but the hydroxyl group side chain can be involved in the formation of hydrogen bond with Si(OH4. The mechanisms and trend of Si absorption are different between plant species. Furthermore, the transportation of Si requires an energy mechanism; thus, low temperatures and metabolic repressors inhibit Si transportation.

  19. Dietary Plants for the Prevention and Management of Kidney Stones: Preclinical and Clinical Evidence and Molecular Mechanisms

    Science.gov (United States)

    Nirumand, Mina Cheraghi; Hajialyani, Marziyeh; Rahimi, Roja; Farzaei, Mohammad Hosein; Nabavi, Seyed Mohammad

    2018-01-01

    Kidney stones are one of the oldest known and common diseases in the urinary tract system. Various human studies have suggested that diets with a higher intake of vegetables and fruits play a role in the prevention of kidney stones. In this review, we have provided an overview of these dietary plants, their main chemical constituents, and their possible mechanisms of action. Camellia sinensis (green tea), Rubus idaeus (raspberry), Rubia cordifolia (common madder), Petroselinum crispum (parsley), Punica granatum (pomegranate), Pistacia lentiscus (mastic), Solanum xanthocarpum (yellow-fruit nightshade), Urtica dioica (stinging nettle), Dolichos biflorus (horse gram), Ammi visnaga (khella), Nigella sativa (black-cumin), Hibiscus sabdariffa (roselle), and Origanum vulgare (oregano) have received considerable interest based on scientific evidence. Beside these dietary plants, phytochemicals—such as catechin, epicatechin, epigallocatechin-3-gallate, diosmin, rutin, quercetin, hyperoside, and curcumin—as antioxidant dietary phyto-phenols were found to be effective for the prevention of urolithiasis (the process of stone formation in the urinary tract). The main underlying mechanisms of these dietary plants and their isolated phytonutrients in the management of urolithiasis include diuretic, antispasmodic, and antioxidant activity, as well as an inhibitory effect on crystallization, nucleation, and aggregation of crystals. The results as presented in this review demonstrate the promising role of dietary plants and phytophenols in the prevention and management of kidney stones. Further investigations are required to confirm the safety and efficacy of these compounds. PMID:29518971

  20. Dietary Plants for the Prevention and Management of Kidney Stones: Preclinical and Clinical Evidence and Molecular Mechanisms.

    Science.gov (United States)

    Nirumand, Mina Cheraghi; Hajialyani, Marziyeh; Rahimi, Roja; Farzaei, Mohammad Hosein; Zingue, Stéphane; Nabavi, Seyed Mohammad; Bishayee, Anupam

    2018-03-07

    Kidney stones are one of the oldest known and common diseases in the urinary tract system. Various human studies have suggested that diets with a higher intake of vegetables and fruits play a role in the prevention of kidney stones. In this review, we have provided an overview of these dietary plants, their main chemical constituents, and their possible mechanisms of action. Camellia sinensis (green tea), Rubus idaeus (raspberry), Rubia cordifolia (common madder), Petroselinum crispum (parsley), Punica granatum (pomegranate), Pistacia lentiscus (mastic), Solanum xanthocarpum (yellow-fruit nightshade), Urtica dioica (stinging nettle), Dolichos biflorus ( horse gram ), Ammi visnaga (khella), Nigella sativa (black-cumin), Hibiscus sabdariffa (roselle), and Origanum vulgare (oregano) have received considerable interest based on scientific evidence. Beside these dietary plants, phytochemicals-such as catechin, epicatechin, epigallocatechin-3-gallate, diosmin, rutin, quercetin, hyperoside, and curcumin-as antioxidant dietary phyto-phenols were found to be effective for the prevention of urolithiasis (the process of stone formation in the urinary tract). The main underlying mechanisms of these dietary plants and their isolated phytonutrients in the management of urolithiasis include diuretic, antispasmodic, and antioxidant activity, as well as an inhibitory effect on crystallization, nucleation, and aggregation of crystals. The results as presented in this review demonstrate the promising role of dietary plants and phytophenols in the prevention and management of kidney stones. Further investigations are required to confirm the safety and efficacy of these compounds.

  1. Dietary Plants for the Prevention and Management of Kidney Stones: Preclinical and Clinical Evidence and Molecular Mechanisms

    Directory of Open Access Journals (Sweden)

    Mina Cheraghi Nirumand

    2018-03-01

    Full Text Available Kidney stones are one of the oldest known and common diseases in the urinary tract system. Various human studies have suggested that diets with a higher intake of vegetables and fruits play a role in the prevention of kidney stones. In this review, we have provided an overview of these dietary plants, their main chemical constituents, and their possible mechanisms of action. Camellia sinensis (green tea, Rubus idaeus (raspberry, Rubia cordifolia (common madder, Petroselinum crispum (parsley, Punica granatum (pomegranate, Pistacia lentiscus (mastic, Solanum xanthocarpum (yellow-fruit nightshade, Urtica dioica (stinging nettle, Dolichos biflorus (horse gram, Ammi visnaga (khella, Nigella sativa (black-cumin, Hibiscus sabdariffa (roselle, and Origanum vulgare (oregano have received considerable interest based on scientific evidence. Beside these dietary plants, phytochemicals—such as catechin, epicatechin, epigallocatechin-3-gallate, diosmin, rutin, quercetin, hyperoside, and curcumin—as antioxidant dietary phyto-phenols were found to be effective for the prevention of urolithiasis (the process of stone formation in the urinary tract. The main underlying mechanisms of these dietary plants and their isolated phytonutrients in the management of urolithiasis include diuretic, antispasmodic, and antioxidant activity, as well as an inhibitory effect on crystallization, nucleation, and aggregation of crystals. The results as presented in this review demonstrate the promising role of dietary plants and phytophenols in the prevention and management of kidney stones. Further investigations are required to confirm the safety and efficacy of these compounds.

  2. Influence of a Modified Plant Extract on Activity of Antioxidant Enzymes and Concentration of Pigments in Gamma-Irradiated Plants of Maize and Wheat

    Directory of Open Access Journals (Sweden)

    Azizov Ibrahim

    2018-02-01

    Full Text Available The influence of a medicinal plant extract, immobilised by ligands, on the activity of antioxidant enzymes and photosynthetic pigment concentration of wheat and maize was studied. The object of study was seed of drought-resistant firm durum wheat (Triticum durum Desf. and maize (Zea mays L.. Seeds were subjected to general uniform γ-radiation from a 60Co source on a Rkhund installation at average dose power of MD = 0.306 Gy/sec. Before radiation seeds were treated in modified extract from medicinal plants. The treatment of seeds with 0.1 and 0.01% solution of modified extract from Hypericum, Dandelion, and Calendula caused significant reduction in processes initiated by radiation and in formation of free radicals. On the basis of the obtained results it was concluded that the used modified plant extract collection had a protective effect, reducing the amount of free radicals produced by γ-irradiation.

  3. Preliminary Phytochemical Screening, Quantitative Analysis of Alkaloids, and Antioxidant Activity of Crude Plant Extracts from Ephedra intermedia Indigenous to Balochistan.

    Science.gov (United States)

    Gul, Rahman; Jan, Syed Umer; Faridullah, Syed; Sherani, Samiullah; Jahan, Nusrat

    2017-01-01

    The aim of this study was to evaluate the antioxidant activity, screening the phytogenic chemical compounds, and to assess the alkaloids present in the E. intermedia to prove its uses in Pakistani folk medicines for the treatment of asthma and bronchitis. Antioxidant activity was analyzed by using 2,2-diphenyl-1-picryl-hydrazyl-hydrate assay. Standard methods were used for the identification of cardiac glycosides, phenolic compounds, flavonoids, anthraquinones, and alkaloids. High performance liquid chromatography (HPLC) was used for quantitative purpose of ephedrine alkaloids in E. intermedia . The quantitative separation was confirmed on Shimadzu 10AVP column (Shampack) of internal diameter (id) 3.0 mm and 50 mm in length. The extract of the solute in flow rate of 1 ml/min at the wavelength 210 nm and methanolic extract showed the antioxidant activity and powerful oxygen free radicals scavenging activities and the IC50 for the E. intermedia plant was near to the reference standard ascorbic acid. The HPLC method was useful for the quantitative purpose of ephedrine (E) and pseudoephedrine (PE) used for 45 samples of one species collected from central habitat in three districts (Ziarat, Shairani, and Kalat) of Balochistan. Results showed that average alkaloid substance in E. intermedia was as follows: PE (0.209%, 0.238%, and 0.22%) and E (0.0538%, 0.0666%, and 0.0514%).

  4. Chemical composition and antioxidant and anti-Listeria activities of essential oils obtained from some Egyptian plants.

    Science.gov (United States)

    Viuda-Martos, Manuel; El Gendy, Abd El-Nasser G S; Sendra, Esther; Fernández-López, Juana; Abd El Razik, K A; Omer, Elsayed A; Pérez-Alvarez, Jose A

    2010-08-25

    The aim of this work was to (i) determine the chemical composition of the essential oils of six spices widely cultivated in Egypt (Origanum syriacum, Majorana hortensis, Rosmarinus officinalis, Cymbopogon citratus, Thymus vulgaris, and Artemisia annua); (ii) determine the antioxidant activity of the Egyptian essential oils by means of five different antioxidant tests; and (iii) determine the effectiveness of these essential oils on the inhibition of Listeria innocua CECT 910. There is a great variability in the chemical composition of essential oils obtained from the six Egyptian aromatic plants. Overall, thyme (highest percentage of inhibition of DPPH radical: 89.40%) and oregano (highest percentage of inhibition of TBARS: 85.79) essential oils presented the best antioxidant profiles, whereas marjoram, lemongrass, and artemisia were highly effective in metal chelating but had a pro-oxidative behavior by Rancimat induction test. Lemongrass essential oil showed the highest antibacterial activity against L. innocua with an inhibition zone of 49.00 mm, followed in effectiveness by thyme, marjoram, and oregano.

  5. Antibacterial and antioxidant activities of an ethno botanically important plant sauromatum venosum (ait.) schott. of district Kotli, Azad Jammu and Kashmir

    International Nuclear Information System (INIS)

    Ajaib, M.; Khan, Z.U.D.; Abbadi, M.A.; Khan, N.; Wahab, M.

    2011-01-01

    In order to verify the ethnopharmacological effects of local plant, Sauromatum venosum (Ait.) Schott., on scientific lines the antibacterial activity including MIC and antioxidant activity of the crude extracts of its fruits were tested against Gram-positive and Gram-negative bacteria using well diffusion method and 2, 2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activity test. The results indicated a reasonable antibacterial potential and significant total antioxidant activity, thus supporting its traditional medicinal practices. (author)

  6. Plant effects on soil denitrification - a review of potential mechanisms

    Science.gov (United States)

    Malique, Francois; Butterbach-Bahl, Klaus; Dannenmann, Michael

    2017-04-01

    Denitrification is a microbial process occurring in soils, both producing and consuming the potent greenhouse gas nitrous oxide (NO), competing for nitrate with plants and hydrological leaching pathways, removing nutrients and reactive nitrogen from the biosphere, and closing the global nitrogen cycle. Despite its obvious importance, denitrification remained among the least well quantified biogeochemical processes in soils. This is due to enormous methodological difficulties involved in the direct quantification of soil microbial denitrification rates (mainly with regard to the terminal product N2) and the denitrification nitrogen gas product ratios (NO:N2O:N2), Plants may affect denitrification through a myriad of mechanisms such as e.g., competition for nitrate and water, through oxygen consumption, by regulating litter quality and changing soil pH, and via the exudation of labile carbon or secondary plant compounds involved in shaping the rhizospheric microbial community. However, plant effects on denitrification so far hardly were quantified so that the actual extent of plant control on denitrification is largely unknown. Here, we summarize the current knowledge on mechanisms how plants can affect denitrification rates and N gas product ratios in soils at temporal scales from hours to days and years. We review earlier research to quantify plant effects on denitrification as well as critically discuss the limited methods currently available to quantify plant-soil-denitrifier interactions. Finally, we provide pointers to use plants as tools to manage denitrification, e.g. to improve N use efficiency in agricultural ecosystems and to minimize soil nitrous oxide emissions.

  7. Nuclear Power Plant Mechanical Component Flooding Fragility Experiments Status

    Energy Technology Data Exchange (ETDEWEB)

    Pope, C. L. [Idaho State Univ., Pocatello, ID (United States); Savage, B. [Idaho State Univ., Pocatello, ID (United States); Johnson, B. [Idaho State Univ., Pocatello, ID (United States); Muchmore, C. [Idaho State Univ., Pocatello, ID (United States); Nichols, L. [Idaho State Univ., Pocatello, ID (United States); Roberts, G. [Idaho State Univ., Pocatello, ID (United States); Ryan, E. [Idaho State Univ., Pocatello, ID (United States); Suresh, S. [Idaho State Univ., Pocatello, ID (United States); Tahhan, A. [Idaho State Univ., Pocatello, ID (United States); Tuladhar, R. [Idaho State Univ., Pocatello, ID (United States); Wells, A. [Idaho State Univ., Pocatello, ID (United States); Smith, C. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2017-07-24

    This report describes progress on Nuclear Power Plant mechanical component flooding fragility experiments and supporting research. The progress includes execution of full scale fragility experiments using hollow-core doors, design of improvements to the Portal Evaluation Tank, equipment procurement and initial installation of PET improvements, designation of experiments exploiting the improved PET capabilities, fragility mathematical model development, Smoothed Particle Hydrodynamic simulations, wave impact simulation device research, and pipe rupture mechanics research.

  8. Fracture mechanics based life assessment in petrochemical plants

    International Nuclear Information System (INIS)

    Norasiah Ab Kasim; Abd Nassir Ibrahim; Ab Razak Hamzah; Shukri Mohd

    2004-01-01

    The increasing use of thick walled pressure vessels in petrochemical plants operating at high pressure under severe service conditions could lead to catastrophic failure. In the Malaysian Institute for Nuclear Technology Research (MINT), initial efforts are underway to apply fracture mechanics approach for assessment of significance of defects detected during periodic in service inspection (ISI) of industrial plants. This paper outlines the integrity management strategy based on fracture mechanics and proposes a new procedure for life assessment of petrochemical plants based on ASME Boiler and Pressure Vessel Code, Section XI, BSI PD 6493:1991, BSI 6539:1994, BSI Standard 7910:1999 and API 579:2000. Essential relevant data required for the assessment is listed. Several methods available for determination of fracture toughness are reviewed with limitations in their application to petrochemical plants. A new non destructive method for determination of fracture toughness based on hardness testing and normalized key roughness curve is given. Results of fracture mechanics based life assessment conducted for 100 mm thick ammonia converter of Ni r o steel and 70 mm thick plat forming reactor vessel of ASTM A 38 7 grade B steel in operational fertilizer and petroleum refining plants are presented. (Author)

  9. Induction of Oxidative Stress and Antioxidative Mechanisms in Arabidopsis thaliana after Uranium Exposure at pH 7.5

    Directory of Open Access Journals (Sweden)

    Eline Saenen

    2015-06-01

    Full Text Available To evaluate the environmental impact of uranium (U contamination, it is important to investigate the effects of U at ecologically relevant conditions. Since U speciation, and hence its toxicity, strongly depends on environmental pH, the present study aimed to investigate dose-dependent effects of U at pH 7.5. Arabidopsis thaliana plants (Mouse-ear Cress were exposed for three days to different U concentrations at pH 7.5. In the roots, the increased capacities of ascorbate peroxidase and glutathione reductase indicate an important role for the ascorbate-glutathione cycle during U-induced stress. However, a significant decrease in the ascorbate redox state was observed after exposure to 75 and 100 µM U, indicating that those roots are severely stressed. In accordance with the roots, the ascorbate-glutathione cycle plays an important role in the antioxidative defence systems in A. thaliana leaves exposed to U at pH 7.5 as the ascorbate and glutathione biosynthesis were upregulated. In addition, small inductions of enzymes of the antioxidative defence system were observed at lower U concentrations to counteract the U-induced stress. However, at higher U concentrations it seems that the antioxidative defence system of the leaves collapses as reductions in enzyme activities and gene expression levels were observed.

  10. Cytokinin-induced activity of antioxidant enzymes in transgenic Pssu-ipt tobacco during plant ontogeny

    Czech Academy of Sciences Publication Activity Database

    Synková, Helena; Semorádová, Šárka; Schnablová, Renáta; Witters, E.; Hušák, M.; Valcke, R.

    2006-01-01

    Roč. 50, - (2006), s. 31-41 ISSN 0006-3134 R&D Projects: GA ČR GA206/01/1061; GA ČR GA206/03/0310 Institutional research plan: CEZ:AV0Z50380511 Keywords : cytokinins * antioxidant enzymes * ontogenesis Subject RIV: CE - Biochemistry Impact factor: 1.198, year: 2006

  11. Screening of Plant Extracts for Antioxidant Activity: a Comparative Study on Three Testing Methods

    NARCIS (Netherlands)

    Koleva, I.; Beek, van T.A.; Linssen, J.P.H.; Groot, de Æ.; Evstatieva, L.N.

    2002-01-01

    Three methods widely employed in the evaluation of antioxidant activity, namely 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging method, static headspace gas chromatography (HS-GC) and -carotene bleaching test (BCBT), have been compared with regard to their application in the screening of

  12. Evidence of Possible Evolutionary Divergence in Plant Genera Based on Antioxidant Properties

    Science.gov (United States)

    Asai, Elizabeth; Cao, Sharon

    2009-01-01

    The purpose of this investigation was to determine if three Western species of the Panax, Lycium, and Astragalus genera had antibacterial and/or antioxidant properties, and how their properties compared to Eastern herbs in the same genera. The group hypothesized that when compared, the corresponding herbs would have identical antibacterial and…

  13. Antioxidant and anti-inflammatory activities of extracts from Cassia alata, Eleusine indica, Eremomastax speciosa, Carica papaya and Polyscias fulva medicinal plants collected in Cameroon.

    Science.gov (United States)

    Sagnia, Bertrand; Fedeli, Donatella; Casetti, Rita; Montesano, Carla; Falcioni, Giancarlo; Colizzi, Vittorio

    2014-01-01

    The vast majority of the population around the world has always used medicinal plants as first source of health care to fight infectious and non infectious diseases. Most of these medicinal plants may have scientific evidence to be considered in general practice. The aim of this work was to investigate the antioxidant capacities and anti-inflammatory activities of ethanol extracts of leaves of Cassia alata, Eleusine indica, Carica papaya, Eremomastax speciosa and the stem bark of Polyscias fulva, collected in Cameroon. Chemiluminescence was used to analyze the antioxidant activities of plant extracts against hydrogen peroxide or superoxide anion. Comet assays were used to analyze the protection against antioxidant-induced DNA damage induced in white blood cells after treating with hydrogen peroxide. Flow cytometry was used to measure γδ T cells proliferation and anti-inflammatory activity of γδ T cells and of immature dendritic cells (imDC) in the presence of different concentrations of plant extracts. Ethanol extracts showed strong antioxidant properties against both hydrogen peroxide and superoxide anion. Cassia alata showed the highest antioxidant activity. The effect of plant extracts on γδ T cells and imDC was evidenced by the dose dependent reduction in TNF-α production in the presence of Cassia alata, Carica papaya, Eremomastax speciosa Eleusine indica, and Polyscias fulva. γδ T cells proliferation was affected to the greatest extent by Polyscias fulva. These results clearly show the antioxidant capacity and anti-inflammatory activities of plant extracts collected in Cameroon. These properties of leaves and stem bark extracts may contribute to the value for these plants in traditional medicine and in general medical practice.

  14. Antioxidant and anti-inflammatory activities of extracts from Cassia alata, Eleusine indica, Eremomastax speciosa, Carica papaya and Polyscias fulva medicinal plants collected in Cameroon.

    Directory of Open Access Journals (Sweden)

    Bertrand Sagnia

    Full Text Available BACKGROUND: The vast majority of the population around the world has always used medicinal plants as first source of health care to fight infectious and non infectious diseases. Most of these medicinal plants may have scientific evidence to be considered in general practice. OBJECTIVE: The aim of this work was to investigate the antioxidant capacities and anti-inflammatory activities of ethanol extracts of leaves of Cassia alata, Eleusine indica, Carica papaya, Eremomastax speciosa and the stem bark of Polyscias fulva, collected in Cameroon. METHODS: Chemiluminescence was used to analyze the antioxidant activities of plant extracts against hydrogen peroxide or superoxide anion. Comet assays were used to analyze the protection against antioxidant-induced DNA damage induced in white blood cells after treating with hydrogen peroxide. Flow cytometry was used to measure γδ T cells proliferation and anti-inflammatory activity of γδ T cells and of immature dendritic cells (imDC in the presence of different concentrations of plant extracts. RESULTS: Ethanol extracts showed strong antioxidant properties against both hydrogen peroxide and superoxide anion. Cassia alata showed the highest antioxidant activity. The effect of plant extracts on γδ T cells and imDC was evidenced by the dose dependent reduction in TNF-α production in the presence of Cassia alata, Carica papaya, Eremomastax speciosa Eleusine indica, and Polyscias fulva. γδ T cells proliferation was affected to the greatest extent by Polyscias fulva. CONCLUSION: These results clearly show the antioxidant capacity and anti-inflammatory activities of plant extracts collected in Cameroon. These properties of leaves and stem bark extracts may contribute to the value for these plants in traditional medicine and in general medical practice.

  15. Antiproliferative and Antioxidant Activities of Two Extracts of the Plant Species Euphorbia dendroides L.

    Directory of Open Access Journals (Sweden)

    Agena Ghout

    2018-04-01

    Full Text Available Background: These days, the desire for naturally occurring antioxidants has significantly increased, especially for use in foodstuffs, cosmetics, and pharmaceutical products, to replace synthetic antioxidants that are regularly constrained due to their carcinogenicity. Methods: The study in hand aimed to appraise the antioxidant effect of two Euphorbia dendroides extracts using reducing power, anti-peroxidation, and DPPH (1,1 Diphenyl 2 Pycril Hydrazil scavenging essays, in addition to the anticancer activity against two tumor cell lines, namely C6 (rat brain tumorcells, and Hela (human uterus carcinomacell lines. Results: The results indicated that the ethyl acetate extract exhibited antiradical activity of 29.49%, higher than that of n-butanol extract (18.06% at 100 µg/mL but much lower than that of gallic acid (78.21%.The ethyl acetate extract exhibits better reducing capacity and lipid peroxidation inhibitory activity compared to n-butanol extract but less than all tested standards. Moreover, the ethyl acetate extract was found to have an antiproliferative activity of more than 5-FU (5-fluoro-Uracil against C6 cells at 250 µg/mL with IC50 and IC75 of 113.97, 119.49 µg/mL, respectively, and good cytotoxic activity against the Hela cell lines at the same concentration. The HPLC-TOF-MS (high performance liquid chromatography-Time-of-flight-Mass Spectrometry analyses exposed the presence of various compounds, among which Gallic and Chlorogenic acids functioned as major compounds. Conclusions: The two extracts exhibited moderate anticancer abilities and behaved somewhat as average antioxidant agents. Based on the total phenolics and flavonoids contents, as well as HPLC results, it could be concluded that antiproliferative and antioxidant activities depend upon the content of different phenolics and flavonoids.

  16. Photoprotection in Plants Optical Screening-based Mechanisms

    CERN Document Server

    Solovchenko, Alexei

    2010-01-01

    Optical screening of excessive and potentially harmful solar radiation is an important photoprotective mechanism, though it has received much less attention in comparison with other systems preventing photooxidative damage to photoautotrophic organisms. This photoprotection in the form of screening appears to be especially important for juvenile and senescing plants as well as under environmental stresses—i.e. in situations where the efficiency of enzymatic ROS elimination, DNA repair and other ‘classical’ photoprotective systems could be impaired. This book represents an attempt to develop an integral view of optical screening-based photoprotection in microalgae and higher plants. Towards this end, the key groups of pigments involved in the screening of ultraviolet and visible components of solar radiation in microalgae and higher plants, and the patterns of their accumulation and distribution within plant cells and tissues, are described. Special attention is paid to the manifestations of screening pi...

  17. Antibacterial, Antioxidant Activity of Ethanolic Plant Extracts of Some Convolvulus Species and Their DART-ToF-MS Profiling

    Directory of Open Access Journals (Sweden)

    Asma’a Al-Rifai

    2017-01-01

    Full Text Available Convolvulus austroaegyptiacus Abdallah & Sa’ad (CA and Convolvulus pilosellifolius Desr. (CP are commonly used in the Saudi Arabia folk medicine. They are potent in treating the ulcers and skin diseases. The lack of information about their biological activities led us to investigate the possible biological activities by determination of antibacterial and antioxidant activities of total ethanolic extracts and various fractions. Total flavonoid contents of the plants were determined by colorimetric method while total phenols were determined by using Folin-Ciocalteu method. In vitro antibacterial activity was studied against E. coli, P. aeruginosa, and B. subtilis, and the total antioxidant capacity was evaluated by radical scavenging method. IC50 were found to be 21.81, 17.62, and 3.31 μg/mL for CA, CP, and vitamin C, respectively, while the lowest MIC value of 0.25 mg/mL was recorded with CP extract against B. subtilis. Around 21 compounds are tentatively elucidated from both plants using rapid, simple, and high-resolution analytical technique for chemical profiling of natural compounds by direct analysis in real-time of flight-mass spectrometry, of which 17 were not isolated or reported previously.

  18. Antioxidant, antitumor activities and phyto chemical investigation of hedera nepalensis K. koch, an important medicinal plant from Pakistan

    International Nuclear Information System (INIS)

    Kanwal, S.; Ullah, N.; Ihsan-ul-Haq; Mirza, B.; Afzal, I.

    2011-01-01

    Hedera nepalensis is a ground-creeping evergreen woody plant growing mainly in the Himalayas and Kashmir. This plant is frequently used in folk medicines for the treatment of various ailments. The present research focused on the pharmacological evaluation and phyto chemical analysis of crude methanolic extract (CME) and three fractions, n-hexane (n-HF), ethyl acetate (EAF) and aqueous (AQF). The biological assays used for this study included DPPH free radical values scavenging assay, DNA protection assay and potato disc antitumor assay. Maximum antioxidant activities with IC/sub 50/ of 9.834 ppm and 14.22 ppm were shown by EAF and AQF, respectively. Crude methanolic extract (CME) and the fractions OH induced DNA damage assay, at all the concentrations tested. Both also exhibited significant DNA protection activity in EAF and AQF showed well-defined tumor inhibition in the potato disc antitumor assay, with the lowest IC/sub 50/ values shown by EAF and AQF (less than 1 ppm). Phyto chemical analysis showed the presence of flavonoids, steroids, tannins, terpenoids and cardiac glycosides in the crude extract and its fractions. The present study demonstrated that EAF and AQF of Hedera nepalensis have potent antioxidant and antitumor activity with the presence of effective phytochemicals. (author)

  19. Potential of antioxidant and toxicity of some medical plants used by sub-ethnic communities of Bahau in East Kalimantan

    Science.gov (United States)

    Rohim, P.; Arung, E. T.; Kusuma, I. W.

    2018-04-01

    The purpose of this research is to assay the potential antioxidant and toxicity of several plants from Bahau, a sub-ethnic in East Kalimantan in regard to their utilization as traditional medicines. This research includes phytochemical analysis, DPPH radical and superoxide radical scavenging activity as well as toxicity assay using Artemiasalina shrimp larvae. The results of the extraction showed the highest yield was 2,91% obtained from avung tanaq (Ficus uncinata), while the lowest is 1.14% obtained from tevoqsalah (Saccharum sp.) species. The result of phytochemicals showed that all plants contain alkaloid and carbohydrate. While carotenoids, saponins, triterpenoids and steroids were absence in all plant extracts. The DPPH radical scavenging activity test showed that the lowest IC50 value of kayog kue (Dictamnus albus) by 23.96 μg/mL. The superoxide radical scavenging activity assay showed IC50 values of all extract samples were >100 μg/mL. The toxicity assay showed that LC50 values of all samples of extract tested were >1000 μg/mL. The present research suggested good potential activity of some plants from Bahau ethnic and further research oriented to wide uses of the plants as herbal products is needed.

  20. Evaluation of the lemongrass plant (Cymbopogon citratus extracted in different solvents for antioxidant and antibacterial activity against human pathogens

    Directory of Open Access Journals (Sweden)

    Balachandar Balakrishnan

    2014-02-01

    Full Text Available Objective: To test antibacterial and antioxidant activity of the lemongrass plant Cymbopogon citratus (C. citratus leaves extracted serially by the solvents (chloroform, methanol and water. Methods: The plant leaves extracts were used for antibacterial activity on Bacillus subtilis, Pseudomonas aeruginosa, Proteus vulgaris, Staphylococcus aureus, Nocardia sp., Serratia sp., and Enterobacter aeruginosa microorganisms by the Kirby Bauer agar disc diffusion method. This study was carried out on lemongrass plant leaf extracts in different concentration of all solvents. The leaf extracts from different solvents were tested for their scavenging activity against the stable free radical DPPH in quantization using a spectrophotometric assay. Oxidative damage was induced in vitro by treating blood DNA and analyzing the effects of the leaf extracts. Results: The results showed that C. citratus extracts exhibited maximum zones of inhibition in chloroform, methanol and water extracts. It was Observed that the C. citratus extracts exhibited maximum zone of inhibition against Bacillus subtilis, Pseudomonas aeruginosa and Proteus vulgaris. Analyzed data in the present work suggested that antibacterial activity of C. citratus plant leaf extracts showed good results for Gram-positive and Gram-negative organisms. DPPH scavenging activity was highly elicited by the extract of C. citratus. Chloroform, methanol and water extracts of C. citratus leaves effectively decreased the extent of DNA damage. Conclusions: The present study suggested that the lemongrass plant extracts could offer various health benefits.

  1. An exploration of the potential mechanisms and translational potential of five medicinal plants for applications in Alzheimer’s disease

    Science.gov (United States)

    Shakir, Taner; Coulibaly, Ahmed Y; Kehoe, Patrick G

    2013-01-01

    Alzheimer’s disease (AD) is the most common type of dementia, and represents a vast worldwide socio-economic burden, and in the absence of a current cure, effective therapeutic strategies are still needed. Cholinergic and cerebral blood flow deficits, excessive levels of oxidative stress, neuroinflammation and glutamate excitatory mechanisms are all believed to contribute to the development and progression of the disease. Scoparia dulcis, Catharanthus roseus, Sesamum indicum, Erythrina senegalensis and Vigna unguiculata represent five plants that have been used as traditional medicines for the treatment of AD in certain cultures. Review of the scientific literature was conducted to explore the properties of these plants that might be beneficial and explain what would be perceived by many to be largely anecdotal evidence of their benefit. All plants were found to possess varying levels of anti-oxidant capability. Scoparia dulcis was also found to potentiate nerve growth factor-like effects upon cell lines. Catharanthus roseus appears to inhibit acetylcholinesterase with relatively high potency, while Sesamum indicum demonstrated the strongest antioxidant ability. Comparisons with currently used plant derived therapeutics illustrate how these plants may be likely to have some therapeutic benefits in AD. The evidence presented also highlights how appropriate dietary supplementation with some of these plants in various cultural settings might have effects analogous or complementary to the so-called protective Mediterranean diet. However, prior to embarking on making any formal recommendations to this end, further rigorous evaluation is needed to better elucidate the breadth and potential toxicological aspects of medicinal properties harboured by these plants. This would be vital to ensuring a more informed and safe delivery of preparations of these plants if they were to be considered as a form of dietary supplementation and where appropriate, how these might

  2. An exploration of the potential mechanisms and translational potential of five medicinal plants for applications in Alzheimer's disease.

    Science.gov (United States)

    Shakir, Taner; Coulibaly, Ahmed Y; Kehoe, Patrick G

    2013-01-01

    Alzheimer's disease (AD) is the most common type of dementia, and represents a vast worldwide socio-economic burden, and in the absence of a current cure, effective therapeutic strategies are still needed. Cholinergic and cerebral blood flow deficits, excessive levels of oxidative stress, neuroinflammation and glutamate excitatory mechanisms are all believed to contribute to the development and progression of the disease. Scoparia dulcis, Catharanthus roseus, Sesamum indicum, Erythrina senegalensis and Vigna unguiculata represent five plants that have been used as traditional medicines for the treatment of AD in certain cultures. Review of the scientific literature was conducted to explore the properties of these plants that might be beneficial and explain what would be perceived by many to be largely anecdotal evidence of their benefit. All plants were found to possess varying levels of anti-oxidant capability. Scoparia dulcis was also found to potentiate nerve growth factor-like effects upon cell lines. Catharanthus roseus appears to inhibit acetylcholinesterase with relatively high potency, while Sesamum indicum demonstrated the strongest antioxidant ability. Comparisons with currently used plant derived therapeutics illustrate how these plants may be likely to have some therapeutic benefits in AD. The evidence presented also highlights how appropriate dietary supplementation with some of these plants in various cultural settings might have effects analogous or complementary to the so-called protective Mediterranean diet. However, prior to embarking on making any formal recommendations to this end, further rigorous evaluation is needed to better elucidate the breadth and potential toxicological aspects of medicinal properties harboured by these plants. This would be vital to ensuring a more informed and safe delivery of preparations of these plants if they were to be considered as a form of dietary supplementation and where appropriate, how these might interact

  3. Regulation of Plant Growth, Photosynthesis, Antioxidation and Osmosis by an Arbuscular Mycorrhizal Fungus in Watermelon Seedlings under Well-Watered and Drought Conditions

    Science.gov (United States)

    Mo, Yanling; Wang, Yongqi; Yang, Ruiping; Zheng, Junxian; Liu, Changming; Li, Hao; Ma, Jianxiang; Zhang, Yong; Wei, Chunhua; Zhang, Xian

    2016-01-01

    Drought stress has become an increasingly serious environmental issue that influences the growth and production of watermelon. Previous studies found that arbuscular mycorrhizal (AM) colonization improved the fruit yield and water use efficiency (WUE) of watermelon grown under water stress; however, the exact mechanisms remain unknown. In this study, the effects of Glomus versiforme symbiosis on the growth, physio-biochemical attributes, and stress-responsive gene expressions of watermelon seedlings grown under well-watered and drought conditions were investigated. The results showed that AM colonization did not significantly influence the shoot growth of watermelon seedlings under well-watered conditions but did promote root development irrespective of water treatment. Drought stress decreased the leaf relative water content and chlorophyll concentration, but to a lesser extent in the AM plants. Compared with the non-mycorrhizal seedlings, mycorrhizal plants had higher non-photochemical quenching values, which reduced the chloroplast ultrastructural damage in the mesophyll cells and thus maintained higher photosynthetic efficiency. Moreover, AM inoculation led to significant enhancements in the enzyme activities and gene expressions of superoxide dismutase, catalase, ascorbate peroxidase, glutathione reductase, and monodehydroascorbate reductase in watermelon leaves upon drought imposition. Consequently, AM plants exhibited lower accumulation of MDA, H2O2 and O2− compared with non-mycorrhizal plants. Under drought stress, the soluble sugar and proline contents were significantly increased, and further enhancements were observed by pre-treating the drought-stressed plants with AM. Taken together, our findings indicate that mycorrhizal colonization enhances watermelon drought tolerance through a stronger root system, greater protection of photosynthetic apparatus, a more efficient antioxidant system and improved osmoregulation. This study contributes to advances

  4. Regulation of Plant Growth, Photosynthesis, Antioxidation and Osmosis by an Arbuscular Mycorrhizal Fungus in Watermelon Seedlings under Well-Watered and Drought Conditions.

    Science.gov (United States)

    Mo, Yanling; Wang, Yongqi; Yang, Ruiping; Zheng, Junxian; Liu, Changming; Li, Hao; Ma, Jianxiang; Zhang, Yong; Wei, Chunhua; Zhang, Xian

    2016-01-01

    Drought stress has become an increasingly serious environmental issue that influences the growth and production of watermelon. Previous studies found that arbuscular mycorrhizal (AM) colonization improved the fruit yield and water use efficiency (WUE) of watermelon grown under water stress; however, the exact mechanisms remain unknown. In this study, the effects of Glomus versiforme symbiosis on the growth, physio-biochemical attributes, and stress-responsive gene expressions of watermelon seedlings grown under well-watered and drought conditions were investigated. The results showed that AM colonization did not significantly influence the shoot growth of watermelon seedlings under well-watered conditions but did promote root development irrespective of water treatment. Drought stress decreased the leaf relative water content and chlorophyll concentration, but to a lesser extent in the AM plants. Compared with the non-mycorrhizal seedlings, mycorrhizal plants had higher non-photochemical quenching values, which reduced the chloroplast ultrastructural damage in the mesophyll cells and thus maintained higher photosynthetic efficiency. Moreover, AM inoculation led to significant enhancements in the enzyme activities and gene expressions of superoxide dismutase, catalase, ascorbate peroxidase, glutathione reductase, and monodehydroascorbate reductase in watermelon leaves upon drought imposition. Consequently, AM plants exhibited lower accumulation of MDA, H2O2 and [Formula: see text] compared with non-mycorrhizal plants. Under drought stress, the soluble sugar and proline contents were significantly increased, and further enhancements were observed by pre-treating the drought-stressed plants with AM. Taken together, our findings indicate that mycorrhizal colonization enhances watermelon drought tolerance through a stronger root system, greater protection of photosynthetic apparatus, a more efficient antioxidant system and improved osmoregulation. This study contributes

  5. Anti-oxidant defence mechanism in vitiliginous skin increases with skin type

    NARCIS (Netherlands)

    Briganti, S.; Caron-Schreinemachers, A.-L. D. B.; Picardo, M.; Westerhof, W.

    2012-01-01

    Background Vitiligo skin shows different burning capacity in people with different phototype. In normal skin antioxidant status is correlated to skin phototype, but unexpectedly it appears that there is a gradual decrease in burning susceptibility of depigmented skin of individuals with increasing

  6. Coping mechanisms for crop plants in drought-prone environments.

    Science.gov (United States)

    Neumann, Peter M

    2008-05-01

    Drought is a major limitation to plant productivity. Various options are available for increasing water availability and sustaining growth of crop plants in drought-prone environments. After a general introduction to the problems of water availability, this review focuses on a critical evaluation of recent progress in unravelling mechanisms for modifying plant growth responses to drought. Investigations of key regulatory mechanisms integrating plant growth responses to water deficits at the whole-organism, cellular and genomic levels continue to provide novel and exiting research findings. For example, recent reports contradict the widespread conception that root-derived abscisic acid is necessarily involved in signalling for stomatal and shoot-growth responses to soil water deficits. The findings bring into question the theoretical basis for alternate-side root-irrigation techniques. Similarly, recent reports indicate that increased ABA production or increased aquaporin expression did not lead to improved drought resistance. Other reports have concerned key genes and proteins involved in regulation of flowering (FT), vegetative growth (DELLA), leaf senescence (IPT) and desiccation tolerance (LEA). Introgression of such genes, with suitable promoters, can greatly impact on whole-plant responses to drought. Further developments could facilitate the introduction by breeders of new crop varieties with growth physiologies tailored to improved field performance under drought. Parallel efforts to encourage the introduction of supplementary irrigation with water made available by improved conservation measures and by sea- or brackish-water desalination, will probably provide comprehensive solutions to coping with drought-prone environments.

  7. Nuclear plant aging research - an overview (electrical and mechanical components)

    International Nuclear Information System (INIS)

    Vora, J.P.

    1985-01-01

    As the operating nuclear power plants advance in age there must be a conscious national and international effort to understand the influence and safety implications of aging and service wear of components and structures in nuclear power plants and develop measures which are practical and cost effective for timely mitigation of aging degradation that could significantly affect plant safety. The Office of Nuclear Regulatory Research has, therefore, initiated a multi-year, multi-disciplinary program on Nuclear Plant Aging Research (NPAR). The overall goals identified for the program are as follows: 1) to identify and characterize aging and service wear effects associated with electrical and mechanical components, interfaces, and systems whose failure could impair plant safety; 2) to identify and recommend methods of inspection, surveillance and condition monitoring of electrical and mechanical components and systems which will be effective in detecting significant aging effects prior to loss of safety function so that timely maintenance and repair or replacement can be implemented; and, 3) to identify and recommend acceptable maintenance practices which can be undertaken to mitigate the effects of aging and to diminish the rate and extent of degradation caused by aging and service wear. The specific research activities to be implemented to achieve these goals are described

  8. Insights into the Mechanisms Underlying Boron Homeostasis in Plants

    Directory of Open Access Journals (Sweden)

    Akira Yoshinari

    2017-11-01

    Full Text Available Boron is an essential element for plants but is toxic in excess. Therefore, plants must adapt to both limiting and excess boron conditions for normal growth. Boron transport in plants is primarily based on three transport mechanisms across the plasma membrane: passive diffusion of boric acid, facilitated diffusion of boric acid via channels, and export of borate anion via transporters. Under boron -limiting conditions, boric acid channels and borate exporters function in the uptake and translocation of boron to support growth of various plant species. In Arabidopsis thaliana, NIP5;1 and BOR1 are located in the plasma membrane and polarized toward soil and stele, respectively, in various root cells, for efficient transport of boron from the soil to the stele. Importantly, sufficient levels of boron induce downregulation of NIP5;1 and BOR1 through mRNA degradation and proteolysis through endocytosis, respectively. In addition, borate exporters, such as Arabidopsis BOR4 and barley Bot1, function in boron exclusion from tissues and cells under conditions of excess boron. Thus, plants actively regulate intracellular localization and abundance of transport proteins to maintain boron homeostasis. In this review, the physiological roles and regulatory mechanisms of intracellular localization and abundance of boron transport proteins are discussed.

  9. Measuring the Mechanical Properties of Plant Cell Walls

    Directory of Open Access Journals (Sweden)

    Hannes Vogler

    2015-03-01

    Full Text Available The size, shape and stability of a plant depend on the flexibility and integrity of its cell walls, which, at the same time, need to allow cell expansion for growth, while maintaining mechanical stability. Biomechanical studies largely vanished from the focus of plant science with the rapid progress of genetics and molecular biology since the mid-twentieth century. However, the development of more sensitive measurement tools renewed the interest in plant biomechanics in recent years, not only to understand the fundamental concepts of growth and morphogenesis, but also with regard to economically important areas in agriculture, forestry and the paper industry. Recent advances have clearly demonstrated that mechanical forces play a crucial role in cell and organ morphogenesis, which ultimately define plant morphology. In this article, we will briefly review the available methods to determine the mechanical properties of cell walls, such as atomic force microscopy (AFM and microindentation assays, and discuss their advantages and disadvantages. But we will focus on a novel methodological approach, called cellular force microscopy (CFM, and its automated successor, real-time CFM (RT-CFM.

  10. Curcumin Stimulates the Antioxidant Mechanisms in Mouse Skin Exposed to Fractionated γ-Irradiation

    Directory of Open Access Journals (Sweden)

    Ganesh Chandra Jagetia

    2015-01-01

    Full Text Available Fractionated irradiation is one of the important radiotherapy regimens to treat different types of neoplasia. Despite of the immense therapeutic gains accrued by delivering fractionated irradiation to tumors, the radiation burden on skin increases significantly. Low doses of irradiation to skin adversely affect its molecular and metabolic status. The use of antioxidant/s may help to alleviate the radiation-induced changes in the skin and allow delivering a higher dose of radiation to attain better therapeutic gains. Curcumin is an antioxidant and a free radical scavenging dietary supplement, commonly used as a flavoring agent in curries. Therefore, the effect of 100 mg/kg body weight curcumin was studied on the antioxidant status of mice skin exposed to a total dose of 10, 20 and 40 Gy γ-radiation below the rib cage delivered as a single fraction of 2 Gy per day for 5, 10 or 20 days. Skin biopsies from both the curcumin treated or untreated irradiated groups were collected for the biochemical estimations at various post-irradiation times. The irradiation of animals caused a dose dependent decline in the glutathione concentration, glutathione peroxidase, and superoxide dismutase activities and increased the lipid peroxidation in the irradiated skin. Curcumin treatment before irradiation resulted in a significant rise in the glutathione concentration and activities of both the glutathione peroxidase and superoxide dismutase enzymes in mouse skin, whereas lipid peroxidation declined significantly. The present study indicates that curcumin treatment increased the antioxidant status of mouse exposed to different doses of fractionated γ-radiation.

  11. Brassinosteroids improve photosystem II efficiency, gas exchange, antioxidant enzymes and growth of cowpea plants exposed to water deficit.

    Science.gov (United States)

    Lima, J V; Lobato, A K S

    2017-01-01

    Water deficit is considered the main abiotic stress that limits agricultural production worldwide. Brassinosteroids (BRs) are natural substances that play roles in plant tolerance against abiotic stresses, including water deficit. This research aims to determine whether BRs can mitigate the negative effects caused by water deficiency, revealing how BRs act and their possible contribution to increased tolerance of cowpea plants to water deficit. The experiment was a factorial design with the factors completely randomised, with two water conditions (control and water deficit) and three levels of brassinosteroids (0, 50 and 100 nM 24-epibrassinolide; EBR is an active BRs). Plants sprayed with 100 nM EBR under the water deficit presented significant increases in Φ PSII , q P and ETR compared with plants subjected to the water deficit without EBR. With respect to gas exchange, P N , E and g s exhibited significant reductions after water deficit, but application of 100 nM EBR caused increases in these variables of 96, 24 and 33%, respectively, compared to the water deficit + 0 nM EBR treatment. To antioxidant enzymes, EBR resulted in increases in SOD, CAT, APX and POX, indicating that EBR acts on the antioxidant system, reducing cell damage. The water deficit caused significant reductions in Chl a , Chl b and total Chl, while plants sprayed with 100 nM EBR showed significant increases of 26, 58 and 33% in Chl a , Chl b and total Chl, respectively. This study revealed that EBR improves photosystem II efficiency, inducing increases in Φ PSII , q P and ETR. This substance also mitigated the negative effects on gas exchange and growth induced by the water deficit. Increases in SOD, CAT, APX and POX of plants treated with EBR indicate that this steroid clearly increased the tolerance to the water deficit, reducing reactive oxygen species, cell damage, and maintaining the photosynthetic pigments. Additionally, 100 nM EBR resulted in a better dose-response of cowpea

  12. [Review: plant polyphenols modulate lipid metabolism and related molecular mechanism].

    Science.gov (United States)

    Dai, Yan-li; Zou, Yu-xiao; Liu, Fan; Li, Hong-zhi

    2015-11-01

    Lipid metabolism disorder is an important risk factor to obesity, hyperlipidemia and type 2 diabetes as well as other chronic metabolic disease. It is also a key target in preventing metabolic syndrome, chronic disease prevention. Plant polyphenol plays an important role in maintaining or improving lipid profile in a variety of ways. including regulating cholesterol absorption, inhibiting synthesis and secretion of triglyceride, and lowering plasma low density lipoprotein oxidation, etc. The purpose of this article is to review the lipid regulation effects of plant polyphenols and its related mechanisms.

  13. Synchrotron radiation induced X-ray emission studies of the antioxidant mechanism of the organoselenium drug ebselen.

    Science.gov (United States)

    Aitken, Jade B; Lay, Peter A; Duong, T T Hong; Aran, Roshanak; Witting, Paul K; Harris, Hugh H; Lai, Barry; Vogt, Stefan; Giles, Gregory I

    2012-04-01

    Synchrotron radiation induced X-ray emission (SRIXE) spectroscopy was used to map the cellular uptake of the organoselenium-based antioxidant drug ebselen using differentiated ND15 cells as a neuronal model. The cellular SRIXE spectra, acquired using a hard X-ray microprobe beam (12.8-keV), showed a large enhancement of fluorescence at the K(α) line for Se (11.2-keV) following treatment with ebselen (10 μM) at time periods from 60 to 240 min. Drug uptake was quantified and ebselen was shown to induce time-dependent changes in cellular elemental content that were characteristic of oxidative stress with the efflux of K, Cl, and Ca species. The SRIXE cellular Se distribution map revealed that ebselen was predominantly localized to a discreet region of the cell which, by comparison with the K and P elemental maps, is postulated to correspond to the endoplasmic reticulum. On the basis of these findings, it is hypothesized that a major outcome of ebselen redox catalysis is the induction of cellular stress. A mechanism of action of ebselen is proposed that involves the cell responding to drug-induced stress by increasing the expression of antioxidant genes. This hypothesis is supported by the observation that ebselen also regulated the homeostasis of the transition metals Mn, Cu, Fe, and Zn, with increases in transition metal uptake paralleling known induction times for the expression of antioxidant metalloenzymes. © SBIC 2012

  14. Phytochemical standardization, antioxidant, and antibacterial evaluations of Leea macrophylla: A wild edible plant.

    Science.gov (United States)

    Joshi, Apurva; Prasad, Satyendra K; Joshi, Vinod Kumar; Hemalatha, Siva

    2016-04-01

    In Ayurveda, Leea macrophylla Roxb. ex Hornem. (Leeaceae) is indicated in worm infestation, dermatopathies, wounds, inflammation, and in symptoms of diabetes. The present study aims to determine the antioxidant and antibacterial potential of ethanolic extract and its different fractions of Leea macrophylla root tubers using phytochemical profiling which is still unexplored. Quantitative estimations of different phytoconstituents along with characterization of ethanol extract using high performance liquid chromatography (HPLC) were performed using chlorogenic acid as a marker compound for the first time. The extract and its successive fractions were also evaluated for in vitro antioxidant activity using different models. The extract was further tested against a few Gram-positive and Gram-negative bacteria for its antibacterial activity. Phytochemical screening and quantitative estimations revealed the extract to be rich in alkaloid, flavonoid, phenols, and tannins, whereas chlorogenic acid quantified by HPLC in ethanol extract was 9.01% w/w. The results also indicated potential antioxidant and antibacterial activity, which was more prominent in the extract followed by its butanol fraction. Copyright © 2016. Published by Elsevier B.V.

  15. Antioxidant capacity and light-aging study of HPMC films functionalized with natural plant extract.

    Science.gov (United States)

    Akhtar, Muhammad Javeed; Jacquot, Muriel; Jasniewski, Jordane; Jacquot, Charlotte; Imran, Muhammad; Jamshidian, Majid; Paris, Cédric; Desobry, Stéphane

    2012-08-01

    The aims of this work were to functionalize edible hydroxypropyl methylcellulose (HPMC) films with natural coloring biomolecules having antioxidant capacity and to study their photo-aging stability in the films. HPMC films containing a natural red color compound (NRC) at the level of 1, 2, 3 or 4% (v/v) were prepared by a casting method. A slight degradation of films color was observed after 20 days of continuous light exposure. The antioxidant activity of NRC incorporated films was stable during different steps of film formation and 20 days of dark storage. On the other hand, antioxidant activity of samples stored under light was significantly affected after 20 days. FTIR (Fourier Transformed Infrared) spectroscopy was used to characterize the new phenolic polymeric structures and to study the photo-degradation of films. The results showed a good polymerization phenomenon between NRC and HPMC in polymer matrix giving a natural color to the films. NRC showed an ability to protect pure HPMC films against photo-degradation. This phenomenon was directly proportional to the concentration of NRC. Copyright © 2012 Elsevier Ltd. All rights reserved.

  16. Antioxidant property of aerial parts and root of Phyllanthus fraternus Webster, an important medicinal plant.

    Science.gov (United States)

    Upadhyay, Richa; Chaurasia, Jitendra Kumar; Tiwari, Kavindra Nath; Singh, Karuna

    2014-01-01

    In present study free radical scavenging potential of aerial parts and root of Phyllanthus fraternus was investigated. Extraction was done in water and ethanol. Total antioxidant capacity was measured by DPPH free radical scavenging method; ethanolic extract of aerial part was most potent in activity with 50% inhibition at 258 μg/mL concentration. Lipid peroxidation (LPO) was measured in terms of thiobarbituric acid-reactive substances (TBARS) by using egg-yolk homogenates as lipid-rich media with EC₅₀ of aerial part (ethanolic) 1522 μg/mL which was found to be most active. Superoxide (SO) radical scavenging activity was measured using riboflavin-light-nitroblue tetrazolium assay. Ethanolic and aqueous extract of both aerial part and root was almost similar in superoxide radical scavenging activity. Reducing power was determined on the basis of Fe³⁺-Fe⁺ transformation in the presence of extract. Total phenolic and flavonoid contents were also measured by spectroscopic method. Results showed that the ethanolic fraction of aerial part is most active towards antioxidant potential and this activity is related to its polyphenolic content and reducing potential. Thus, P. fraternus extract can be used as potent natural antioxidant.

  17. Ferulic acid: an antioxidant found naturally in plant cell walls and feruloyl esterases involved in its release and their applications.

    Science.gov (United States)

    Mathew, Sindhu; Abraham, T Emilia

    2004-01-01

    Ferulic acid is the most abundant hydroxycinnamic acid in the plant world and maize bran with 3.1% (w/w) ferulic acid is one of the most promising sources of this antioxidant. The dehydrodimers of ferulic acid are important structural components in the plant cell wall and serve to enhance its rigidity and strength. Feruloyl esterases are a subclass of the carboxylic acid esterases that hydrolyze the ester bond between hydroxycinnamic acids and sugars present in plant cell walls and they have been isolated from a wide range of microorganisms, when grown on complex substrates such as cereal brans, sugar beet pulp, pectin and xylan. These enzymes perform a function similar to alkali in the deesterification of plant cell wall and differ in their specificities towards the methyl esters of cinnamic acids and ferulolylated oligosaccharides. They act synergistically with xylanases and pectinases and facilitate the access of hydrolases to the backbone of cell wall polymers. The applications of ferulic acid and feruloyl esterase enzymes are many and varied. Ferulic acid obtained from agricultural byproducts is a potential precursor for the production of natural vanillin, due to the lower production cost.

  18. Measurement of total phenolic content and antioxidant activity of aerial parts of medicinal plant Coronopus didymus.

    Science.gov (United States)

    Noreen, Hafiza; Semmar, Nabil; Farman, Muhammad; McCullagh, James S O

    2017-08-01

    To evaluate the total phenolic content and compare the antioxidant activity of various solvent extracts and fractions from the aerial parts of Coronopus didymus through various assays. Total phenolic content was determined using the Folin-Ciocalteu assay and the in vitro antioxidant activity of a number of different extracts was investigated in a dose-dependent manner with three different methods: the 2,2-diphenyl-1-picrylhydrazyl (DPPH), 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt (ABTS) and ferric reducing antioxidant power (FRAP) assays. A flavone was isolated from the most active ethanolic extract with high antioxidant activity using size exclusion chromatography. IC 50 values were calculated for the DPPH and ABTS methods. The FRAP activity was assessed in terms of μM Fe (II) equivalent. The phenolic content was found to be highest in the ethanol extract (CDA Et; 47.8 mM GAE) and the lowest in the dichloromethane extract (CDA DCM; 3.13 mM GAE). The ethanol extract showed high radical scavenging activity towards DPPH and ABTS radicals with IC 50 values of (7.80 × 10 2 ) and (4.32 × 10 2 ) μg/mL, respectively. The most active ethanol extract had a FRAP value of 1921.7 μM Fe (II) equivalent. The isolated flavone F10C (5,7,4'-trihydroxy-3'-methoxy flavone) was far more effective for scavenging free radicals in the DPPH and ABTS assays with IC 50 of 43.8 and 0.08 μg/mL, than the standard trolox, with IC 50 values of 97.5 and 21.1 μg/mL, respectively. In addition, the flavone F10C and the standard ascorbic acid had FRAP values of 1621.7 and 16 038.0 μM Fe (II) equivalents, respectively. The total phenolic content of extracts in decreasing order is ethanol extract (CDA Et) > acetone extract (CDA ACE) > phenolic extract (CDA MW) > n-hexane extract (CDA nHX)> chloroform extract (CDA CHL) > dichloromethane extract (CDA DCM). The ordering of extracts in terms of antioxidant activity from highest to lowest is CDA Et

  19. Antioxidant and Anti-Inflammatory Activities of Kenyan Leafy Green Vegetables, Wild Fruits, and Medicinal Plants with Potential Relevance for Kwashiorkor

    Directory of Open Access Journals (Sweden)

    H. R. Tufts

    2015-01-01

    Full Text Available Background. Inflammation, together with related oxidative stress, is linked with the etiology of kwashiorkor, a form of severe acute malnutrition in children. A diet rich in anti-inflammatory and antioxidant phytochemicals may offer potential for the prevention and treatment of kwashiorkor. We selected and assayed five leafy green vegetables, two wild fruits, and six medicinal plants from Kenya for their antioxidant and anti-inflammatory properties. Consensus regarding medicinal plant use was established from ethnobotanical data. Methods. Antioxidant activity and phenolic content were determined using the oxygen radical absorbance capacity (ORAC assay and Folin-Ciocalteu procedure, respectively. Anti-inflammatory activity was assessed in vitro targeting the inflammatory mediator tumour necrosis factor-alpha (TNF-α. Results. Mangifera indica (leaves used medicinally showed the greatest antioxidant activity (5940 ± 632 µM TE/µg and total phenolic content (337 ± 3 mg GAE/g but Amaranthus dubius (leafy vegetable showed the greatest inhibition of TNF-α (IC50 = 9 ± 1 μg/mL, followed by Ocimum americanum (medicinal plant (IC50 = 16 ± 1 μg/mL. Informant consensus was significantly correlated with anti-inflammatory effects among active medicinal plants (r2=0.7639, P=0.0228. Conclusions. Several plant species commonly consumed by Kenyan children possess activity profiles relevant to the prevention and treatment of kwashiorkor and warrant further investigation.

  20. Conservation of Salmonella infection mechanisms in plants and animals.

    Directory of Open Access Journals (Sweden)

    Adam Schikora

    Full Text Available Salmonella virulence in animals depends on effectors injected by Type III Secretion Systems (T3SSs. In this report we demonstrate that Salmonella mutants that are unable to deliver effectors are also compromised in infection of Arabidopsis thaliana plants. Transcriptome analysis revealed that in contrast to wild type bacteria, T3SS mutants of Salmonella are compromised in suppressing highly conserved Arabidopsis genes that play a prominent role during Salmonella infection of animals. We also found that Salmonella originating from infected plants are equally virulent for human cells and mice. These results indicate a high degree of conservation in the defense and infection mechanism of animal and plant hosts during Salmonella infection.

  1. Plant uprooting by flow as a fatigue mechanical process

    Science.gov (United States)

    Perona, Paolo; Edmaier, Katharina; Crouzy, Benoît

    2015-04-01

    In river corridors, plant uprooting by flow mostly occurs as a delayed process where flow erosion first causes root exposure until residual anchoring balances hydrodynamic forces on the part of the plant that is exposed to the stream. Because a given plant exposure time to the action of the stream is needed before uprooting occurs (time-to-uprooting), this uprooting mechanism has been denominated Type II, in contrast to Type I, which mostly affect early stage seedlings and is rather instantaneous. In this work, we propose a stochastic framework that describes a (deterministic) mechanical fatigue process perturbed by a (stochastic) process noise, where collapse occurs after a given exposure time. We test the model using the experimental data of Edmaier (2014) and Edmaier et al. (submitted), who investigated vegetation uprooting by flow in the limit of low plant stem-to-sediment size ratio by inducing parallel riverbed erosion within an experimental flume. We first identify the proper timescale and lengthscale for rescaling the model. Then, we show that it describes well all the empirical cumulative distribution functions (cdf) of time-to-uprooting obtained under constant riverbed erosion rate and assuming additive gaussian process noise. By this mean, we explore the level of determinism and stochasticity affecting the time-to-uprooting for Avena sativa in relation to root anchoring and flow drag forces. We eventually ascribe the overall dynamics of the Type II uprooting mechanism to the memory of the plant-soil system that is stored by root anchoring, and discuss related implications thereof. References Edmaier, K., Uprooting mechansims of juvenile vegetation by flow erosion, Ph.D. thesis, EPFL, 2014. Edmaier, K., Crouzy, B. and P. Perona. Experimental characterization of vegetation uprooting by flow. J. of Geophys. Res. - Biogeosci., submitted

  2. The Venturia Apple Pathosystem: Pathogenicity Mechanisms and Plant Defense Responses

    Directory of Open Access Journals (Sweden)

    Gopaljee Jha

    2009-01-01

    Full Text Available Venturia inaequalis is the causal agent of apple scab, a devastating disease of apple. We outline several unique features of this pathogen which are useful for molecular genetics studies intended to understand plant-pathogen interactions. The pathogenicity mechanisms of the pathogen and overview of apple defense responses, monogenic and polygenic resistance, and their utilization in scab resistance breeding programs are also reviewed.

  3. Antioxidant mechanisms of iso-6-cassine in suppressing seizures induced by pilocarpine

    Directory of Open Access Journals (Sweden)

    Rivelilson Mendes de Freitas

    2011-06-01

    Full Text Available The aim of this study was to evaluate the in vitro antioxidant effects of 12-[(2R,5R,6R-5-hydroxy-6-methylpiperidin-2-yl]dodecan-2-one (iso-6-cassine; ISO and the anticonvulsant effects of ISO on pilocarpine-induced seizures in rats. Wistar rats were treated with 0.9% saline (i.p., control group, pilocarpine (400 mg/kg, i.p., pilocarpine group, and the association of ISO (1.0 mg/kg, i.p. plus pilocarpine (400 mg/kg, i.p., 30 min after administration of ISO (ISO plus pilocarpine group. After the treatments all groups were observed for 1h. The antioxidant effect of ISO on the pilocarpine model was assessed by determining the activity of glutathione peroxidase (GPx, glutathione-S-transferase (GST and catalase (CAT as well as the levels of reactive species (RS and lipid peroxidation (LP. In vitro, ISO (5 μM reduced RS and LP. ISO (1.0 mg/kg and abolished seizures and death induced by pilocarpine in rats. ISO protected against the increase in the RS and LP levels, GST activity as well as the inhibition of GPx activity caused by pilocarpine. In addition, ISO increased the catalase activity in hippocampus of seized rats. In conclusion, the dta suggest that ISO can present anticonvulsant and antioxidant properties in the pilocarpine model of seizures in rats.

  4. Sexual polyploidization in plants--cytological mechanisms and molecular regulation.

    Science.gov (United States)

    De Storme, Nico; Geelen, Danny

    2013-05-01

    In the plant kingdom, events of whole genome duplication or polyploidization are generally believed to occur via alterations of the sexual reproduction process. Thereby, diploid pollen and eggs are formed that contain the somatic number of chromosomes rather than the gametophytic number. By participating in fertilization, these so-called 2n gametes generate polyploid offspring and therefore constitute the basis for the establishment of polyploidy in plants. In addition, diplogamete formation, through meiotic restitution, is an essential component of apomixis and also serves as an important mechanism for the restoration of F1 hybrid fertility. Characterization of the cytological mechanisms and molecular factors underlying 2n gamete formation is therefore not only relevant for basic plant biology and evolution, but may also provide valuable cues for agricultural and biotechnological applications (e.g. reverse breeding, clonal seeds). Recent data have provided novel insights into the process of 2n pollen and egg formation and have revealed multiple means to the same end. Here, we summarize the cytological mechanisms and molecular regulatory networks underlying 2n gamete formation, and outline important mitotic and meiotic processes involved in the ectopic induction of sexual polyploidization. © 2013 Ghent University. New Phytologist © 2013 New Phytologist Trust.

  5. Salicylic acid confers salt tolerance in potato plants by improving water relations, gaseous exchange, antioxidant activities and osmoregulation.

    Science.gov (United States)

    Faried, Hafiz Nazar; Ayyub, Chaudhary Muhammad; Amjad, Muhammad; Ahmed, Rashid; Wattoo, Fahad Masoud; Butt, Madiha; Bashir, Mohsin; Shaheen, Muhammad Rashid; Waqas, Muhammad Ahmed

    2017-04-01

    Potato is an important vegetable; however, salt stress drastically affects its growth and yield. A pot experiment was therefore conducted to assess salicylic acid efficacy in improving performance of potato cultivars, grown under salt stress (50 mmol L -1 ). Salicylic acid at 0.5 mmol L -1 was sprayed on to potato plants after 1 week of salinity application. Salt stress effects were ameliorated by salicylic acid effectively in both the studied cultivars. N-Y LARA proved more responsive to salicylic acid application than 720-110 NARC, which confirmed genetic variation between cultivars. Salicylic acid scavenged reactive oxygen species by improving antioxidant enzyme activities (superoxide dismutase, catalase, peroxidases) and regulating osmotic adjustment (proline, phenolic contents), which led to enhanced water relation and gaseous exchange attributes, and thereby increased potassium availability and reduced sodium content in potato leaves. Moreover, potato tuber yield showed a positive correlation with potassium content, photosynthesis and antioxidant enzyme activities. Salt tolerance efficacy of salicylic acid is authenticated in improving potato crop performance under salt stress. Salicylic acid effect was more pronounced in N-Y LARA, reflecting greater tolerance than 720-110 NARC, which was confirmed as a susceptible cultivar. Hence salicylic acid at 0.5 mmol L -1 and cultivation of N-Y LARA may be recommended in saline soil. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  6. Phytochemical screening, anticancer and antioxidant activities of Origanum vulgare L. ssp. viride (Boiss.) Hayek, a plant of traditional usage.

    Science.gov (United States)

    Koldaş, Serkan; Demirtas, Ibrahim; Ozen, Tevfik; Demirci, Mehmet Ali; Behçet, Lütfi

    2015-03-15

    A detailed phytochemical analysis of Origanum vulgare L. ssp. viride (Boiss.) Hayek was carried out and the antioxidant activities of five different crude extracts were determined. The antiproliferative activities of the extracts were determined using the xCELLigence system (Real Time Cell Analyzer). Differences between the essential oil and volatile organic compound profiles of the plant were shown. The main component of the essential oil was caryophyllene oxide, while the main volatile organic compounds were sabinene and eucalyptol as determined by HS-GC/MS. Phenolic contents of the extracts were determined qualitatively and quantitatively by HPLC/TOF-MS. Ten phenolic compounds were found in the extracts from O. vulgare and Origanum acutidens: rosmarinic acid (in highest abundance), chicoric acid, caffeic acid, p-coumaric acid, gallic acid, quercetin, apigenin-7-glucoside, kaempferol, naringenin and 4-hydroxybenzaldehyde. This study provides first results on the antiproliferative and antioxidant properties and detailed phytochemical screening of O. vulgare ssp. viride (Boiss.) Hayek. © 2014 Society of Chemical Industry.

  7. Plant Growth-Promoting Bacteria: Mechanisms and Applications

    Directory of Open Access Journals (Sweden)

    Bernard R. Glick

    2012-01-01

    Full Text Available The worldwide increases in both environmental damage and human population pressure have the unfortunate consequence that global food production may soon become insufficient to feed all of the world's people. It is therefore essential that agricultural productivity be significantly increased within the next few decades. To this end, agricultural practice is moving toward a more sustainable and environmentally friendly approach. This includes both the increasing use of transgenic plants and plant growth-promoting bacteria as a part of mainstream agricultural practice. Here, a number of the mechanisms utilized by plant growth-promoting bacteria are discussed and considered. It is envisioned that in the not too distant future, plant growth-promoting bacteria (PGPB will begin to replace the use of chemicals in agriculture, horticulture, silviculture, and environmental cleanup strategies. While there may not be one simple strategy that can effectively promote the growth of all plants under all conditions, some of the strategies that are discussed already show great promise.

  8. Native plants ( and extracts act as antioxidants to support developmental competence of bovine blastocysts

    Directory of Open Access Journals (Sweden)

    Geon-Yeop Do

    2017-09-01

    Full Text Available Objective Phellodendron amurense (P. amurense and Humulus japonicus (H. japonicus are closely involved in anti-oxidative response and increasing antioxidant enzymes activities. However, the effects of their extracts on development of preimplantation bovine embryos have not been investigated. Therefore, we investigated the effects of P. amurense and H. japonicus extracts on developmental competence and quality of preimplantation bovine embryos. Methods After in vitro fertilization, bovine embryos were cultured for 7 days in Charles Rosenkrans amino acid medium supplemented with P. amurense (0.01 μg/mL and H. japonicus (0.01 μg/mL. The effect of this supplementation during in vitro culture on development competence and antioxidant was investigated. Results We observed that the blastocysts rate was significantly increased (p<0.05 in P. amurense (28.9%±2.9%, H. japonicus (30.9%±1.5%, and a mixture of P. amurense and H. japonicus (34.8%± 2.1% treated groups compared with the control group (25.4%±1.6%. We next confirmed that the intracellular levels of reactive oxygen species (ROS were significantly decreased (p<0.01 in P. amurense and/or H. japonicus extract treated groups when compared with the control group. Our results also showed that expression of cleaved caspase-3 and apoptotic cells of blastocysts were significantly decreased (p<0.05 in bovine blastocysts derived from both P. amurense and H. japonicus extract treated embryos. Conclusion These results suggest that proper treatment with P. amurense and H. japonicus extracts in the development of preimplantation bovine embryos improves the quality of blastocysts, which may be related to the reduction of ROS level and apoptosis.

  9. Total Content of Phenolics and Antioxidant Activity in Crispbreads with Plant By-product addition

    Directory of Open Access Journals (Sweden)

    Konrade Daiga

    2017-11-01

    Full Text Available Vegetable processing in food industry results in significant amount of by-products – peel, mark, bark, seeds still rich in bioactive compounds. Apple, carrot and pumpkin peel and mark may be used for production of crispbreads as functional ingredients. The objective of this study is to investigate the stability of total phenolic content (TPC and antioxidant activity after high temperature and short time (HTST extrusion cooking of a wheat and rice-based crispbreads with addition of apple, carrot and pumpkin by-products obtained after juice extraxtion and dried. Raw materials for crispbread production were wheat flour, rice flour, wheat bran (72%, 24% and 4% respectively with addition of microwave–vacuum dried by-product powder in different amount (5%, 10%, 15%, 20%. Extrusion process was performed by using a laboratory singlescrew extruder GÖTTFERT 1 screw Extrusiometer L series (Germany. Total phenolic content (TPC was determined using the Folin Ciocalteu method. Antioxidant activity was evaluated by free radical 2, 2-diphenyl-1-picrylhydrazyl (DPPH antioxidant scavenging activity using a modified colorimetric method. Comparing different raw formulations, it was observed that the TPC of the apple by-product flour was significantly higher (p < 0.05 than in carrot and pumpkin flour. TPC in cereal-based crispbread was 36.06±1.15 before extrusion and 13.90±1.01 mg GAEg-1 DW (milligram Gallic acid equivalent per 100 g of dry weight (mg GAE 100 g−1 DW after extrusion. Addition of apple BPF increased TPC in crispbreads to 106.25±2.08, carrot BPF 84.73±3.45 and pumpkin BPF to 108.82±1.04 mg GAEg−1 DW. Antioxidant activity of control sample was 1.07±0.01mg TE (Trolox equivalents g−1 DW but in samples with addition of 20% apple by-products, it reached 3.77±0.02 TE g−1 DW for samples wih 20% carrot by-products reached 2.52±0.03TE g−1 DW and for samples wih 20% pumpkin by-products reached 3.77±0.02 TE g−1 DW.

  10. Estimation of antioxidant, antimicrobial activity and brine shrimp toxicity of plants collected from Oymyakon region of the Republic of Sakha (Yakutia, Russia

    Directory of Open Access Journals (Sweden)

    Babita Paudel

    2014-01-01

    Full Text Available BACKGROUND: Several plants are reported to be produced various biological active compounds. Lichens from the extreme environments such as high altitude, high UV, drought and cold are believed to be synthesized unique types of secondary metabolites than the other one. Several human pathogenic bacteria and fungi have been muted into drug resistant strains. Various synthetic antioxidant compounds have posed carcinogenic effects. This phenomenon needs further research for new effective drugs of natural origin. This manuscript aimed to screen new source of biological active compounds from plants of subarctic origin. RESULTS: A total of 114 plant species, including 80 species of higher plants, 19 species of lichens and 15 species of mosses, were collected from Oymyakon region of the Republic of Sakha (Yakutia, Russia (63˚20′N, 141˚42′E - 63˚15′N, 142˚27′E. Antimicrobial, DPPH free radical scavenging and brine shrimp (Artemia salina toxicity of all crude extract were evaluated. The obtained result was analyzed and compared with commercial standards. A total of 28 species of higher plants showed very strong antioxidant activity (DPPH IC50, 0.45-5.0 µg/mL, 13 species showed strong activity (DPPH IC50, 5-10 µg/mL, 22 species showed moderate antioxidant activity (DPPH IC50,10-20 µg/mL and 17 species showed weak antioxidant activity (DPPH IC50 more than 20 µg/mL. Similarly, 3 species of lichen showed strong antioxidant activity, one species showed moderate and 15 species showed weak DPPH reducing activity. In addition, 4 species of mosses showed moderate antioxidant activity and 11 species showed weak antioxidant activity. Similarly, extracts of 51 species of higher plants showed antimicrobial (AM activity against Staphylococcus aureus and 2 species showed AM activity against Candida albicans. Similarly, 11 species of lichen showed AM activity against S. aureus and 3 species showed AM activity against Escherichia coli. One species of moss

  11. Skin photoprotection by natural polyphenols: Anti-inflammatory, anti-oxidant and DNA repair mechanisms

    Science.gov (United States)

    Nichols, Joi A.; Katiyar, Santosh K.

    2009-01-01

    Epidemiological, clinical and laboratory studies have implicated solar ultraviolet (UV) radiation in various skin diseases including premature aging of the skin and melanoma and nonmelanoma skin cancers. Chronic UV radiation exposure-induced skin diseases or skin disorders are caused by the excessive induction of inflammation, oxidative stress and DNA damage, etc.. The use of chemopreventive agents, such as plant polyphenols, to inhibit these events in UV-exposed skin is gaining attention. Chemoprevention refers to the use of agents that can inhibit, reverse, or retard the process of these harmful events in the UV-exposed skin. A wide variety of polyphenols or phytochemicals, most of which are dietary supplements, have been reported to possess substantial skin photoprotective effects. This review article summarizes the photoprotective effects of some selected polyphenols, such as green tea polyphenols, grape seed proanthocyanidins, resveratrol, silymarin and genistein, on UV-induced skin inflammation, oxidative stress, and DNA damage, etc., with a focus on mechanisms underlying the photoprotective effects of these polyphenols. The laboratory studies conducted in animal models, suggest that these polyphenols have the ability to protect the skin from the adverse effects of UV radiation, including the risk of skin cancers. It is suggested that polyphenols may favorably supplement sunscreens protection, and may be useful for skin diseases associated with solar UV radiation-induced inflammation, oxidative stress and DNA damage. PMID:19898857

  12. Skin photoprotection by natural polyphenols: anti-inflammatory, antioxidant and DNA repair mechanisms.

    Science.gov (United States)

    Nichols, Joi A; Katiyar, Santosh K

    2010-03-01

    Epidemiological, clinical and laboratory studies have implicated solar ultraviolet (UV) radiation in various skin diseases including, premature aging of the skin and melanoma and non-melanoma skin cancers. Chronic UV radiation exposure-induced skin diseases or skin disorders are caused by the excessive induction of inflammation, oxidative stress and DNA damage, etc. The use of chemopreventive agents, such as plant polyphenols, to inhibit these events in UV-exposed skin is gaining attention. Chemoprevention refers to the use of agents that can inhibit, reverse or retard the process of these harmful events in the UV-exposed skin. A wide variety of polyphenols or phytochemicals, most of which are dietary supplements, have been reported to possess substantial skin photoprotective effects. This review article summarizes the photoprotective effects of some selected polyphenols, such as green tea polyphenols, grape seed proanthocyanidins, resveratrol, silymarin and genistein, on UV-induced skin inflammation, oxidative stress and DNA damage, etc., with a focus on mechanisms underlying the photoprotective effects of these polyphenols. The laboratory studies conducted in animal models suggest that these polyphenols have the ability to protect the skin from the adverse effects of UV radiation, including the risk of skin cancers. It is suggested that polyphenols may favorably supplement sunscreens protection, and may be useful for skin diseases associated with solar UV radiation-induced inflammation, oxidative stress and DNA damage.

  13. Excess boron responsive regulations of antioxidative mechanism at physio-biochemical and molecular levels in Arabidopsis thaliana.

    Science.gov (United States)

    Kayıhan, Doğa Selin; Kayıhan, Ceyhun; Çiftçi, Yelda Özden

    2016-12-01

    This work was aimed to evaluate the effect of boron (B) toxicity on oxidative damage level, non-enzymatic antioxidant accumulation such as anthocyanin, flavonoid and proline and expression levels of antioxidant enzymes including superoxide dismutase (SOD), ascorbate peroxidase (APX), catalase (CAT) and glutathione reductase (GR) and their respective activities as well as expression levels of miR398 and miR408 in Arabidopsis thaliana. Plants were germinated and grown on MS medium containing 1 mM B (1B) and 3 mM B (3B) for 14 d. Toxic B led to a decrease of photosynthetic pigments and an increase in accumulation of total soluble and insoluble sugars in accordance with phenotypically viewed chlorosis of seedlings through increasing level of B concentration. Along with these inhibitions, a corresponding increase in contents of flavonoid, anthocyanin and proline occurred that provoked oxidative stress tolerance. 3B caused a remarkable increase in total SOD activity whereas the activities of APX, GR and CAT remained unchanged as verified by expected increase in H 2 O 2 content. In contrast to GR, the coincidence was found between the expressions of SOD and APX genes and their respective activities. 1B induced mir398 expression, whereas 3B did not cause any significant change in expression of mir408 and mir398. Expression levels of GR genes were coordinately regulated with DHAR2 expression. Moreover, the changes in expression level of MDAR2 was in accordance with changes in APX6 expression and total APX activity, indicating fine-tuned regulation of ascorbate-glutathione cycle which might trigger antioxidative responses against B toxicity in Arabidopsis thaliana. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  14. In vitro screening for anti-cholinesterase and antioxidant activity of methanolic extracts of ayurvedic medicinal plants used for cognitive disorders.

    Directory of Open Access Journals (Sweden)

    Maya Mathew

    Full Text Available Inhibition of Acetylcholinesterase (AChE is still considered as the main therapeutic strategy against Alzheimer's disease (AD. Many plant derived phytochemicals have shown AChE inhibitory activity in addition to the currently approved drugs for AD. In the present study, methanolic extracts of 20 plants used in Indian Ayurvedic system of medicine for improving cognitive function were screened for acetylcholinesterase inhibitory activity by Ellman's microplate colorimetric method. Out of 20 extracts, Emblica officinalis, Nardostachys jatamansi, Nelumbo nucifera, Punica granatum and Raulfia Serpentina showed IC50 values <100 µg/ml for acetylcholinesterase inhibitory activity. Antioxidant activities of these plants were assessed by DPPH scavenging assay. Among the extracts used, antioxidant activity was highest for Terminalia chebula and Emblica officinalis with IC50 values <10 µg/ml. Considering the complex multifactorial etiology of AD, these plant extracts will be safer and better candidates for the future disease modifying therapies against this devastating disease.

  15. In Vitro Screening for Anti-Cholinesterase and Antioxidant Activity of Methanolic Extracts of Ayurvedic Medicinal Plants Used for Cognitive Disorders

    Science.gov (United States)

    Mathew, Maya; Subramanian, Sarada

    2014-01-01

    Inhibition of Acetylcholinesterase (AChE) is still considered as the main therapeutic strategy against Alzheimer’s disease (AD). Many plant derived phytochemicals have shown AChE inhibitory activity in addition to the currently approved drugs for AD. In the present study, methanolic extracts of 20 plants used in Indian Ayurvedic system of medicine for improving cognitive function were screened for acetylcholinesterase inhibitory activity by Ellman’s microplate colorimetric method. Out of 20 extracts, Emblica officinalis, Nardostachys jatamansi, Nelumbo nucifera, Punica granatum and Raulfia Serpentina showed IC50 values <100 µg/ml for acetylcholinesterase inhibitory activity. Antioxidant activities of these plants were assessed by DPPH scavenging assay. Among the extracts used, antioxidant activity was highest for Terminalia chebula and Emblica officinalis with IC50 values <10 µg/ml. Considering the complex multifactorial etiology of AD, these plant extracts will be safer and better candidates for the future disease modifying therapies against this devastating disease. PMID:24466247

  16. Effect of scoparia dulcis (Sweet Broomweed) plant extract on plasma antioxidants in streptozotocin-induced experimental diabetes in male albino Wistar rats.

    Science.gov (United States)

    Pari, L; Latha, M

    2004-07-01

    Clinical research has confirmed the efficacy of several plants in the modulation of oxidative stress associated with diabetes mellitus. Scoparia dulcis plant extract is tried for prevention and treatment of diabetes mellitus induced experimentally by streptozotocin injection. A single dose of streptozotocin (45 mg/kg body weight) produced decrease in insulin, hyperglycemia, increased lipid peroxidation (Thiobarbituric reactive substances and lipid hydroperoxides) and decreased antioxidant levels (vitamin C, vitamin E, reduced glutathione, ceruloplasmin). Oral administration of an aqueous extract of Scoparia dulcis plant (200 mg/kg body weight) for 6 weeks to diabetic rats significantly increased the plasma insulin and plasma antioxidants and significantly decreased lipid peroxidation. The effect of Scoparia dulcis plant extract at 200 mg/kg body weight was better than that of glibenclamide, a reference drug.

  17. Gallic Acid Content and an Antioxidant Mechanism Are Responsible for the Antiproliferative Activity of ‘Ataulfo’ Mango Peel on LS180 Cells

    Directory of Open Access Journals (Sweden)

    Gustavo. R. Velderrain-Rodríguez

    2018-03-01

    Full Text Available Mango “Ataulfo” peel is a rich source of polyphenols (PP, with antioxidant and anti-cancer properties; however, it is unknown whether such antiproliferative activity is related to PP’s antioxidant activity. The content (HPLC-DAD, antioxidant (DPPH, FRAP, ORAC, and antiproliferative activities (MTT of free (FP and chemically-released PP from mango ‘Ataulfo’ peel after alkaline (AKP and acid (AP hydrolysis, were evaluated. AKP fraction was higher (µg/g DW in gallic acid (GA; 23,816 ± 284 than AP (5610 ± 8 of FR (not detected fractions. AKP fraction and GA showed the highest antioxidant activity (DPPH/FRAP/ORAC and GA’s antioxidant activity follows a single electron transfer (SET mechanism. AKP and GA also showed the best antiproliferative activity against human colon adenocarcinoma cells (LS180; IC50 (µg/mL 138.2 ± 2.5 and 45.7 ± 5.2 and mouse connective cells (L929; 93.5 ± 7.7 and 65.3 ± 1.2; Cheminformatics confirmed the hydrophilic nature (LogP, 0.6 and a good absorption capacity (75% for GA. Data suggests that GA’s antiproliferative activity appears to be related to its antioxidant mechanism, although other mechanisms after its absorption could also be involved.

  18. Antibacterial and antioxidant activities and acute toxicity of Bumelia sartorum Mart., Sapotaceae, a Brazilian medicinal plant

    Directory of Open Access Journals (Sweden)

    Halliny S. Ruela

    2011-03-01

    Full Text Available In order to validate the Bumelia sartorum Mart., Sapotaceae, traditional use for infection diseases, this study evaluates the antibacterial activity of the stem bark fractions against methicillin-sensitive (MSSA and methicillin-resistant (MRSA Staphylococcus aureus strains by using the agar dilution method and reported as MIC (minimal inhibitory concentration. In addition, the DPPH scavenging activity of these fractions was measured and the chemical composition and acute toxicity of the active fraction were also determined. The ethyl acetate (EtOAc extract was chemically analyzed by LC/MS, direct ionization APCI/MS, ¹H NMR and 13C-NMR. All fractions, except butanol extract, presented high antioxidant activity, especially the methanol and the EtOAc extracts, which showed EC50 values (5.67 and 5.30 µg/mL, respectively considerably lower than the Gingko-standard EGb 761® (38.58 µg/mL. The antibacterial activity against S. aureus strains was observed in EtOAc (MIC 256-512 µg/mL, which showed a very low toxicity. The chemical study of this fraction revealed the abundant presence of polyphenolic compounds. The antibacterial and antioxidant activities reported in this paper for EtOAc extract from B. sartorum and the low toxicity of this fraction opens the possibility that it could be helpful for the developing of new antibacterial agents for treating S. aureus infections.

  19. Study On DPPH Free Radical - Scavenging Activity Of Antioxidant Compounds In Plants Composing BIN-5 Biological Active Preparation

    Directory of Open Access Journals (Sweden)

    Purevjav Urjintseren

    2015-08-01

    Full Text Available Recently there has been common trend among people to refuse from food and medications produced via synthetic method but try to consume natural products as much as possible instead. In this regard wild berries and medicinal plants are considered to be highly essential for human health as these kinds of plants serve as rich sources of biological active substances-phenol compounds. As a result of conducting research on source and spread of herbs which are commonly used as anti-diabetic medication we have developed a technological method to extract preparations from medicinal herbs such as Peony Paeonia lactiflora Pall Dandelion Taraxacum officinalis Wigg. Huckleberry Vaccinium myrtillus L Blueberry Vaccinium uliginosum L Cranberry Vaccinium vitisidaea L and Stinging nettles Urtica dioica accordingly studied chemical composition and antioxidant activity and conducted pharmacological study. With the use of Folin Denis amp Folin Ciocalteu reagent methodit was determined that the content of polyphenol compounds was 4.14-5.17 and 27.5 101.5mgml. The study was also aimed to investigate DPPH free radical-scavenging activity in connection with term temperature and concentration to identify the most rational technological procedure. As a result of study it was identified that free radical-scavenging activity of herbs selected for the study was generally estimated at 564.25-1750.00 mcgml whereas antioxidant activity of solvents with 2-10 mgml concentration was 417.20-1750.00 mcg ml respectively. This shows that such activity is dependent on concentration. However in temperature of 30 1000amp1057 degrees their activity has slowly been decreased by 1750 mcgml 476.7mcgml depending on temperature. Regarding the stinging nettles the activity was grown directly dependent from temperature. DPHH free radical-scavenging activity was gradually increased in 1-10 minutes but was relatively stable and active in 11-16 minutes.

  20. Ruminal Prevotella spp. may play an important role in the conversion of plant lignans into human health beneficial antioxidants.

    Directory of Open Access Journals (Sweden)

    Ana L B Schogor

    Full Text Available Secoisolariciresinol diglucoside (SDG, the most abundant lignan in flaxseed, is metabolized by the ruminal microbiota into enterolignans, which are strong antioxidants. Enterolactone (EL, the main mammalian enterolignan produced in the rumen, is transferred into physiological fluids, with potentially human health benefits with respect to menopausal symptoms, hormone-dependent cancers, cardiovascular diseases, osteoporosis and diabetes. However, no information exists to our knowledge on bacterial taxa that play a role in converting plant lignans into EL in ruminants. In order to investigate this, eight rumen cannulated cows were used in a double 4 × 4 Latin square design and fed with four treatments: control with no flax meal (FM, or 5%, 10% and 15% FM (on a dry matter basis. Concentration of EL in the rumen increased linearly with increasing FM inclusion. Total rumen bacterial 16S rRNA concentration obtained using Q-PCR did not differ among treatments. PCR-T-RFLP based dendrograms revealed no global clustering based on diet indicating between animal variation. PCR-DGGE showed a clustering by diet effect within four cows that had similar basal ruminal microbiota. DNA extracted from bands present following feeding 15% FM and absent with no FM supplementation were sequenced and it showed that many genera, in particular Prevotella spp., contributed to the metabolism of lignans. A subsequent in vitro study using selected pure cultures of ruminal bacteria incubated with SDG indicated that 11 ruminal bacteria were able to convert SDG into secoisolariciresinol (SECO, with Prevotella spp. being the main converters. These data suggest that Prevotella spp. is one genus playing an important role in the conversion of plant lignans to human health beneficial antioxidants in the rumen.

  1. Novel cytoprotective mechanism of anti-parkinsonian drug deprenyl: PI3K and Nrf2-derived induction of antioxidative proteins

    International Nuclear Information System (INIS)

    Nakaso, Kazuhiro; Nakamura, Chiharu; Sato, Hiromi; Imamura, Keiko; Takeshima, Takao; Nakashima, Kenji

    2006-01-01

    Neuroprotection has received considerable attention as a strategy for the treatment of Parkinson's disease (PD). Deprenyl (Selegiline) is a promising candidate for neuroprotection; however, its cytoprotective mechanism has not been fully clarified. Here, we report a novel cytoprotective mechanism of deprenyl involving PI3K and Nrf2-mediated induction of oxidative stress-related proteins. Deprenyl increased the expression of HO-1, PrxI, TrxI, TrxRxI, γGCS, and p62/A170 in SH-SY5Y cells. Deprenyl also induced the nuclear accumulation of Nrf2 and increased the binding activity of Nrf2 to the enhancer region of human genomic HO-1. The Nrf2-mediated induction of antioxidative molecules was controlled by PI3K. Indeed, furthermore, neurotrophin receptor TrkB was identified as an upstream signal for PI3K-Nrf2 activation by deprenyl. These results suggest that the cytoprotective effect of deprenyl is, in part, dependent on Nrf2-mediated induction of antioxidative proteins, suggesting that activation of the PI3K-Nrf2 system may be a useful therapeutic strategy for PD

  2. Antioxidant and antitopoisomerase activities in plant extracts of some Colombian flora from La Marcada Natural Regional Park

    Directory of Open Access Journals (Sweden)

    Jaime Niño

    2011-09-01

    Full Text Available Many plants have been used to treat some diseases and infections since time immemorial, and this potential has been exploited by the pharmaceutical industry in the search of new analgesic, anticarcinogenic and antimicrobial agents, among other active agents. in order to contribute with bioprospection studies on the Colombian flora, 35 extracts from 13 plant species belonging to seven families (Apocynaceae, Cactaceae, Costaceae, Eremolepidaceae, Passifloraceae, Solanaceae and Urticaceae were collected from La Marcada Natural Regional Park (LMNRP, Colombia. Dichloromethane, n-hexane and aqueous-methanol crude extracts were prepared and evaluated for their activity against Saccharomyces cerevisiae RS322N, R52Y and RS321 strains in the yeast mutant assay and their antioxidant capacity through the DPPH test. The dichloromethane extract from Myriocarpa stipitata (Urticaceae showed moderate inhibitory activity against the three S. cerevisiae strains tested. The capacity of the dichloromethane extract from M. stipitata to inhibit the enzyme topoisomerase I and to cause DNA damage was inferred from these results. In the DPPH assay, the n-hexane crude extract from Costus sp. (Costaceae showed good antioxidant activity (48%; in addition, the crude dichloromethane and aqueous-methanol extracts from Rhipsalis micrantha (Cactaceae showed moderate antioxidant activity with percentage of 29 and 21%, respectively. Rev. Biol. Trop. 59 (3: 1089-1097. Epub 2011 September 01.Desde tiempos inmemoriales, muchas plantas han sido usadas para el tratamiento de varias enfermedades e infecciones, este potencial ha sido explotado por la industria farmacéutica en la búsqueda de nuevos agentes analgésicos, anticancerígenos y antimicrobianos, entre otros. Consientes con esto, se evaluó la actividad de 35 extractos de 13 especies de plantas recolectadas en el Parque Regional Natural La Marcada (PRNLM, Colombia contra las cepas mutadas de Saccharomyces cerevisiae RS322N, R

  3. Assessment of antioxidative, chelating, and DNA-protective effects of selected essential oil components (eugenol, carvacrol, thymol, borneol, eucalyptol) of plants and intact Rosmarinus officinalis oil.

    Science.gov (United States)

    Horvathova, Eva; Navarova, Jana; Galova, Eliska; Sevcovicova, Andrea; Chodakova, Lenka; Snahnicanova, Zuzana; Melusova, Martina; Kozics, Katarina; Slamenova, Darina

    2014-07-16

    Selected components of plant essential oils and intact Rosmarinus officinalis oil (RO) were investigated for their antioxidant, iron-chelating, and DNA-protective effects. Antioxidant activities were assessed using four different techniques. DNA-protective effects on human hepatoma HepG2 cells and plasmid DNA were evaluated with the help of the comet assay and the DNA topology test, respectively. It was observed that whereas eugenol, carvacrol, and thymol showed high antioxidative effectiveness in all assays used, RO manifested only antiradical effect and borneol and eucalyptol did not express antioxidant activity at all. DNA-protective ability against hydrogen peroxide (H2O2)-induced DNA lesions was manifested by two antioxidants (carvacrol and thymol) and two compounds that do not show antioxidant effects (RO and borneol). Borneol was able to preserve not only DNA of HepG2 cells but also plasmid DNA against Fe(2+)-induced damage. This paper evaluates the results in the light of experiences of other scientists.

  4. Comparative antioxidant and hypoglycaemic effects of aqueous ...

    African Journals Online (AJOL)

    DEYAKS PLC

    2013-10-02

    Oct 2, 2013 ... acid reactive substance (TBARS), aspartatate aminotransfrease (AST), alanine ... from diseases in antioxidant defense potential ... is a renewed and growing interest in the use of plant- ..... is a critical pathogenic mechanism that initiates a .... Stress and Nitric Oxide Related Parameters in Type II Diabetes.

  5. Mechanisms of action of plant growth promoting bacteria.

    Science.gov (United States)

    Olanrewaju, Oluwaseyi Samuel; Glick, Bernard R; Babalola, Olubukola Oluranti

    2017-10-06

    The idea of eliminating the use of fertilizers which are sometimes environmentally unsafe is slowly becoming a reality because of the emergence of microorganisms that can serve the same purpose or even do better. Depletion of soil nutrients through leaching into the waterways and causing contamination are some of the negative effects of these chemical fertilizers that prompted the need for suitable alternatives. This brings us to the idea of using microbes that can be developed for use as biological fertilizers (biofertilizers). They are environmentally friendly as they are natural living organisms. They increase crop yield and production and, in addition, in developing countries, they are less expensive compared to chemical fertilizers. These biofertilizers are typically called plant growth-promoting bacteria (PGPB). In addition to PGPB, some fungi have also been demonstrated to promote plant growth. Apart from improving crop yields, some biofertilizers also control various plant pathogens. The objective of worldwide sustainable agriculture is much more likely to be achieved through the widespread use of biofertilizers rather than chemically synthesized fertilizers. However, to realize this objective it is essential that the many mechanisms employed by PGPB first be thoroughly understood thereby allowing workers to fully harness the potentials of these microbes. The present state of our knowledge regarding the fundamental mechanisms employed by PGPB is discussed herein.

  6. Phytochemical analysis, antiproliferative and antioxidant activities of Chrozophora tinctoria: a natural dye plant.

    Science.gov (United States)

    Oke-Altuntas, Feyza; Ipekcioglu, Selma; Sahin Yaglioglu, Ayse; Behcet, Lutfi; Demirtas, Ibrahim

    2017-12-01

    Chrozophora tinctoria (L.) A. Juss. (Euphorbiaceae) is known as 'dyer's-croton' and used to obtain dye substances. Recently, natural antioxidants and colorants have been of interest because of their safety and therapeutic effects. This study investigates the antiproliferative and antioxidant activities of the various extracts and fractions from C. tinctoria and analyzes their phytochemical contents. The aerial parts of C. tinctoria were extracted with water, ethyl acetate, n-butanol, and methanol/chloroform. Phenolic compounds and other constituents of the extracts were analyzed by HPLC/TOF-MS. The ethyl acetate extract (EA) was fractionated by flash chromatography. The extracts, fractions, and major phenolic compounds were investigated for their antiproliferative activities on human cervical adenocarcinoma (HeLa) cell line at the concentrations of 5-100 μg/mL by using BrdU ELISA assay during 24 h of incubation. DPPH radical scavenging activities (5-150 μg/mL) and total phenolic contents of the samples were also evaluated. 4-Hydroxybenzoic acid (268.20 mg/kg), apigenin-7-glucoside (133.34 mg/kg), and gallic acid (68.92 mg/kg) were the major components of EA. CT/E-F6 (IC 50  = 64.59 ± 0.01 μg/mL) exhibited the highest antiproliferative activity. CT/E-F2 (IC 50 = 14.0 ± 0.0 μg/mL) and some fractions displayed higher radical scavenging activity compared to synthetic antioxidant BHT (IC 50  =   23.1 ± 0.0 μg/mL). Among the main phenolics, gallic acid exhibited the highest antiproliferative and radical scavenging abilities (IC 50  <   5 μg/mL). In this study, we have determined the biologically active fractions and their high effects may be attributed to the presence of gallic acid.

  7. Genetic variability in chronic irradiated plant populations - Polymorphism and activity of antioxidant enzymes in chronic irradiated plant populations

    Energy Technology Data Exchange (ETDEWEB)

    Volkova, Polina Y.; Geras' kin, Stanislav A. [Russian Institute of Agricultural Radiology and Agroecology, 249030, Obninsk, Kievskoe shosse 109 km (Russian Federation)

    2014-07-01

    Introduction: The gene pool of natural population is constantly changing in order to provide the greatest fitness at this time. Ability of population to adapt to changing environmental conditions depends on genetic polymorphism of traits which are operates by selection. Chronic stress exposure can change amount or structure intra-population variability. Therefore, it is necessary to analyze the relationships between genetic polymorphism and stress factors, such as radiation exposure. This studies my assist in the development of new bio-indication methods. Materials and methods: Studying sites: Bryansk region is the most contaminated region of Russia as a result of Chernobyl accident. The initial activity by {sup 137}Cs on this territory reached 1 MBq/m{sup 2} above surface. Our study conducted in several districts of Bryansk region, which are characterized the most dose rate. Experimental sites similar to climate characteristics, stand of trees is homogeneous, pine trees take up a significant part of phytocenosis. Heavy metals content in soils and cones be within background. Dose rates vary from 0.14 to 130 mGy/year. Object: Pinus sylvestris L.,the dominant tree species in North European and Asian boreal forests. Scots pine has a long maturation period (18-20 month), which means that significant DNA damage may accumulate in the undifferentiated stem cells, even at low doses (or dose rates) during exposure to low concentrations of contaminants Isozyme analysis: We evaluated isozyme polymorphism of three antioxidant enzymes: superoxide dismutase, glutatione reductase and glutatione peroxidase. Analysis of enzymes activities: We chose key enzymes of antioxidant system for this experiment: superoxide dismutase, catalase and peroxidase. Results and conclusions: We estimated frequency of each allele in reference and experimental populations. based It was showed that frequency of rare alleles increase in chronic irradiated populations, i.e. increase the sampling variance

  8. Antioxidant effects of polysaccharides from traditional Chinese medicines.

    Science.gov (United States)

    Liu, Yang; Huang, Gangliang

    2017-12-07

    Polysaccharides are a kind of biological macromolecules with immune regulation, anti-tumor, anti-radiation, anti-inflammation, anti-fatigue and anti-aging effects. These effects are related to their antioxidant properties. The action mechanisms of antioxidation and scavenging free radicals for polysaccharides were reviewed. The polysaccharides contain plant polysaccharides, animal polysaccharides and microbial polysaccharides. The recent research progresses and our work on antioxidant properties of polysaccharides and their derivatives were summarized. At last, the existing problems of antioxidant polysaccharides were analyzed, and the development prospects were also presented. It is important to study the antioxidant activities of polysaccharides and their derivatives for the development of natural antioxidants. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  9. Design and structural calculation of nuclear power plant mechanical components

    International Nuclear Information System (INIS)

    Amaral, J.A.R. do

    1986-01-01

    The mechanical components of a nuclear power plant must show high quality and safety due to the presence of radioactivity. Besides the perfect functioning during the rigid operating conditions, some postulated loadings are foreseen, like earthquake and loss of coolant accidents, which must be also considered in the design. In this paper, it is intended to describe the design and structural calculations concept and development, the interactions with the piping and civil designs, as well as their influences in the licensing process with the authorities. (Author) [pt

  10. Dietary antioxidants and exercise.

    Science.gov (United States)

    Powers, Scott K; DeRuisseau, Keith C; Quindry, John; Hamilton, Karyn L

    2004-01-01

    Muscular exercise promotes the production of radicals and other reactive oxygen species in the working muscle. Growing evidence indicates that reactive oxygen species are responsible for exercise-induced protein oxidation and contribute to muscle fatigue. To protect against exercise-induced oxidative injury, muscle cells contain complex endogenous cellular defence mechanisms (enzymatic and non-enzymatic antioxidants) to eliminate reactive oxygen species. Furthermore, exogenous dietary antioxidants interact with endogenous antioxidants to form a cooperative network of cellular antioxidants. Knowledge that exercise-induced oxidant formation can contribute to muscle fatigue has resulted in numerous investigations examining the effects of antioxidant supplementation on human exercise performance. To date, there is limited evidence that dietary supplementation with antioxidants will improve human performance. Furthermore, it is currently unclear whether regular vigorous exercise increases the need for dietary intake of antioxidants. Clearly, additional research that analyses the antioxidant requirements of individual athletes is needed.

  11. Effect of urdbean leaf crinkle virus infection on total soluble protein and antioxidant enzymes in blackgram plants

    International Nuclear Information System (INIS)

    Ashfaq, M.; Mughal, S.M.; Khan, A.; Javed, N.; Sahi, S.T.; Shahid, M.

    2010-01-01

    Urdbean leaf crinkle virus (ULCV) is a common, wide spread, destructive and economically important disease causing systemic infection in blackgram (Vigna mungo (L.) Hepper), resulting in extreme crinkling, curling, puckering and rugosity of leaves, and yield reductions. Effect of viral infection was investigated on total soluble proteins and antioxidant enzymes activity in two genotypes viz., Mash-88-susceptible and CM-2002-resistant, at different growth stages under both the inoculated and un-inoculated conditions. ULCV infection resulted in significant increase in total soluble protein contents of the leaves in both genotypes. In healthy plant, super oxide dismutase (SOD), catalase (CAT) and peroxidase (PO) showed similar activity levels. In inoculated plants of Mash-88, SOD and PO activities decreased and increased non-significantly at all growth stages, respectively. The activities of PO and SOD increased and decreased significantly after 15 and 30 days of inoculation in resistant genotype, respectively. No significant changes in catalase (CAT) activity were detected in ULCV-infected leaves over the control. It was concluded that the super oxide dismutase and peroxidases might be associated with resistance/susceptibility to ULCV infection. (author)

  12. Purslane weed (Portulaca oleracea): a prospective plant source of nutrition, omega-3 fatty acid, and antioxidant attributes.

    Science.gov (United States)

    Uddin, Md Kamal; Juraimi, Abdul Shukor; Hossain, Md Sabir; Nahar, Most Altaf Un; Ali, Md Eaqub; Rahman, M M

    2014-01-01

    Purslane (Portulaca oleracea L.) is an important plant naturally found as a weed in field crops and lawns. Purslane is widely distributed around the globe and is popular as a potherb in many areas of Europe, Asia, and the Mediterranean region. This plant possesses mucilaginous substances which are of medicinal importance. It is a rich source of potassium (494 mg/100 g) followed by magnesium (68 mg/100 g) and calcium (65 mg/100 g) and possesses the potential to be used as vegetable source of omega-3 fatty acid. It is very good source of alpha-linolenic acid (ALA) and gamma-linolenic acid (LNA, 18 : 3 w3) (4 mg/g fresh weight) of any green leafy vegetable. It contained the highest amount (22.2 mg and 130 mg per 100 g of fresh and dry weight, resp.) of alpha-tocopherol and ascorbic acid (26.6 mg and 506 mg per 100 g of fresh and dry weight, resp.). The oxalate content of purslane leaves was reported as 671-869 mg/100 g fresh weight. The antioxidant content and nutritional value of purslane are important for human consumption. It revealed tremendous nutritional potential and has indicated the potential use of this herb for the future.

  13. Response of growth and antioxidant enzymes in Azolla plants (Azolla pinnata and Azolla filiculoides) exposed to UV-B.

    Science.gov (United States)

    Masood, Amjad; Zeeshan, M; Abraham, G

    2008-06-01

    Effect of ultravilolet-B (0.4 Wm(-2)) irradiation on growth, flavonoid content, lipid peroxidation, proline accumulation and activities of superoxide dismutase and peroxidase was comparatively analysed in Azolla pinnata and Azolla filiculoides. Growth measured as increment in dry weight reduced considerably due to all UV-B treatments. However, the reduction was found to be severe in A. filiculoides as compared to A. pinnata. The level of UV-absorbing compound flavonoids increased significantly in A. pinnata plants whereas only a slight increase in the flavonoid content was observed in A. filiculoides. UV-B exposure led to enhanced production of malondialdehyde (MDA) and electrolyte leakage in A. filiculoides than A. pinnata. Proline accumulation also showed a similar trend. Marked differences in the activity of antioxidant enzymes such as superoxide dismutase (SOD) and peroxidase (POD) was noticed in both the plants exposed to UV-B. Our comparative studies indicate A. pinnata to be better tolerant to UV-B as compared with A. filiculoides which appears to be sensitive.

  14. Effects of fluoride on germination, early growth and antioxidant enzyme activities of legume plant species Prosopis juliflora.

    Science.gov (United States)

    Saini, Poonam; Khan, Suphiya; Baunthiyal, Mamta; Sharma, Vinay

    2013-03-01

    Prosopis juliflora (Mimosoideae) is a fast growing and drought resistant tree of semi-arid region of India where fluoride (F) toxicity is a common problem. In the present investigations this species was fluoride tested to check their capacity as bioindicator plant and its efficiency to accumulate. To achieve this aim, P. juliflora seedlings grown in hydroponic culture containing different concentrations of F were analyzed for germination percentage together with some biochemical parameters viz, antioxidant enzyme activities, total chlorophyll and accumulation of F in different plant parts. After 15 days of treatment, root growth (r = -0.928, p juliflora did not show any morphological changes (marginal and tip chlorosis of leaf portions, necrosis and together these features are referred to as leaf "tip-burn") therefore, this species may be used as suitable bioindicator species for potentially F affected areas. Further, higher accumulation of F in roots indicates that P. juliflora is a suitable species for the removal of F in phytoremediation purposes.

  15. HPLC-UV-ESI-MS analysis of phenolic compounds and antioxidant properties of Hypericum undulatum shoot cultures and wild-growing plants.

    Science.gov (United States)

    Rainha, Nuno; Koci, Kamila; Coelho, Ana Varela; Lima, Elisabete; Baptista, José; Fernandes-Ferreira, Manuel

    2013-02-01

    LC-UV and LC-MS analysis were used to study the phenolic composition of water extracts of Hypericum undulatum (HU) shoot cultures and wild-growing (WG) plants. Total phenolic content (TPC), determined using the Folin-Ciocalteu assay, and the antioxidant activity measured by two complementary methods were also performed for each sample. Mass spectrometry revealed several phenolics acids with quinic acid moieties, flavonols, mostly quercetin, luteolin and apigenin glycosides, flavan-3-ols (catechin and epicatechin) and the xanthonoid mangiferin. Differences in phenolic composition profile and TPC were found between the samples. The major phenolic in HU culture-growing (CG) samples is chlorogenic acid, followed by epicatechin, quercitrin and isoquercitrin. The WG plants presents hyperoside as the main phenolic, followed by isoquercitrin, chlorogenic acid and quercetin. The TPC and antioxidant activity were higher in samples from WG plants. Copyright © 2012 Elsevier Ltd. All rights reserved.

  16. Oxidative Stress and Antioxidant Defense Mechanisms Linked to Exercise During Cardiopulmonary and Metabolic Disorders

    Directory of Open Access Journals (Sweden)

    Kelsey Fisher-Wellman

    2009-01-01

    Full Text Available Oxidative stress has been implicated in the pathophysiology of multiple human diseases, in addition to the aging process. Although various stimuli exist, acute exercise is known to induce a transient increase in reactive oxygen and nitrogen species (RONS, evident by several reports of increased oxidative damage following acute bouts of aerobic and anaerobic exercise. Although the results are somewhat mixed and appear disease dependent, individuals with chronic disease experience an exacerbation in oxidative stress following acute exercise when compared to healthy individuals. However, this increased oxidant stress may serve as a necessary “signal” for the upregulation in antioxidant defenses, thereby providing protection against subsequent exposure to prooxidant environments within susceptible individuals. Here we present studies related to both acute exercise-induced oxidative stress in those with disease, in addition to studies focused on adaptations resulting from increased RONS exposure associated with chronic exercise training in persons with disease.

  17. Chemical composition, antioxidant, anti-inflammatory and anti-proliferative activities of essential oils of plants from Burkina Faso.

    Directory of Open Access Journals (Sweden)

    Bagora Bayala

    Full Text Available This research highlights the chemical composition, antioxidant, anti-inflammatory and anti-proliferative activities of essential oils from leaves of Ocimum basilicum, Ocimum americanum, Hyptis spicigera, Lippia multiflora, Ageratum conyzoides, Eucalyptus camaldulensis and Zingiber officinale. Essential oils were analyzed by gas chromatography-mass spectrometry and gas chromatography-flame ionization detector. Major constituents were α-terpineol (59.78% and β-caryophyllene (10.54% for Ocimum basilicum; 1, 8-cineol (31.22%, camphor (12.730%, α-pinene (6.87% and trans α-bergamotene (5.32% for Ocimum americanum; β-caryophyllene (21%, α-pinene (20.11%, sabinene (10.26%, β-pinene (9.22% and α-phellandrene (7.03% for Hyptis spicigera; p-cymene (25.27%, β-caryophyllene (12.70%, thymol (11.88, γ-terpinene (9.17% and thymyle acetate (7.64% for Lippia multiflora; precocene (82.10%for Ageratum conyzoides; eucalyptol (59.55%, α-pinene (9.17% and limonene (8.76% for Eucalyptus camaldulensis; arcurcumene (16.67%, camphene (12.70%, zingiberene (8.40%, β-bisabolene (7.83% and β-sesquiphellandrène (5.34% for Zingiber officinale. Antioxidant activities were examined using 1,1-diphenyl-2-picryl-hydrazyl (DPPH and 2,2'-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid (ABTS methods. O. basilicum and L. multiflora exhibited the highest antioxidant activity in DPPH and ABTS tests, respectively. Anti-inflammatory properties were evaluated by measuring the inhibition of lipoxygenase activity and essential oil of Z. officinale was the most active. Anti-proliferative effect was assayed by the measurement of MTT on LNCaP and PC-3 prostate cancer cell lines, and SF-763 and SF-767 glioblastoma cell lines. Essential oils from A. conyzoides and L. multiflora were the most active on LNCaP and PC-3 cell lines, respectively. The SF-767 glioblastoma cell line was the most sensitive to O. basilicum and L. multiflora EOs while essential oil of A. conyzoides showed the

  18. Bio-guided Isolation of Antioxidant Compounds from Chrysophyllum perpulchrum, a Plant Used in the Ivory Coast Pharmacopeia

    Directory of Open Access Journals (Sweden)

    Kurt Hosttetmann

    2010-09-01

    Full Text Available Chrysophyllum perpulchrum (Sapotaceae is used in the traditional Ivory Coast pharmacopeia to cure fevers. The extract of C. perpulchrum used for this study was the powdered form obtained from the maceration of the dried plant bark in 96% methanol, followed by evaporation to dryness. In the present study, the antioxidative and radical-scavenging activities of the methanolic extract were studied with three standard biological tests: DPPH reduction, ferric thiocyanate (FTC lipidic peroxidation inhibition and thiobarbituric acid reacting substances (TBARS. Gallic acid and quercetin were used as references. The total amount of phenolic compounds in the extract was determined by ultraviolet (UV spectrometry and calculated as gallic acid equivalents. Catechin and two dimeric procyanidins were found to be the compounds responsible for the activities. They were chemically dereplicated in the extract by LC-MS. For quantitation purposes, they were isolated by successive chromatographic methods and characterized by mass spectrometry (MS and nuclear magnetic resonance (NMR spectrometry. The quantities of these compounds in C. perpulchrum were 5.4% for catechin (P1, and 5.6 and 9.2% for dimers (compounds 2 (P2 and 3 (P3, respectively. They displayed antioxidant activity with IC50 values of 2.50 ± 0.15 µg/mL (P1, 2.10 ± 0.2 µg/mL (P2 and 2.10 ± 0.1 µg/mL (P3. The total extract, the active fractions and the pure compounds inhibited the lipid peroxidation by the FTC method and the TBARS method in the range of 60%. These values were comparable to those seen for quercetin.

  19. Bio-guided isolation of antioxidant compounds from Chrysophyllum perpulchrum, a plant used in the Ivory Coast pharmacopeia.

    Science.gov (United States)

    Philippe, Bidie Alain; Karine, Ndjoko; Barthélemy, Attioua Koffi; Noél, Zirihi Guédé; David, N'guessan Jean; Joseph, Djaman Allico; Hosttetmann, Kurt

    2010-09-13

    Chrysophyllum perpulchrum (Sapotaceae) is used in the traditional Ivory Coast pharmacopeia to cure fevers. The extract of C. perpulchrum used for this study was the powdered form obtained from the maceration of the dried plant bark in 96% methanol, followed by evaporation to dryness. In the present study, the antioxidative and radical-scavenging activities of the methanolic extract were studied with three standard biological tests: DPPH reduction, ferric thiocyanate (FTC) lipidic peroxidation inhibition and thiobarbituric acid reacting substances (TBARS). Gallic acid and quercetin were used as references. The total amount of phenolic compounds in the extract was determined by ultraviolet (UV) spectrometry and calculated as gallic acid equivalents. Catechin and two dimeric procyanidins were found to be the compounds responsible for the activities. They were chemically dereplicated in the extract by LC-MS. For quantitation purposes, they were isolated by successive chromatographic methods and characterized by mass spectrometry (MS) and nuclear magnetic resonance (NMR) spectrometry. The quantities of these compounds in C. perpulchrum were 5.4% for catechin (P1), and 5.6 and 9.2% for dimers (compounds 2 (P2) and 3 (P3)), respectively. They displayed antioxidant activity with IC(50) values of 2.50 ± 0.15 µg/mL (P1), 2.10 ± 0.2 µg/mL (P2) and 2.10 ± 0.1 µg/mL (P3). The total extract, the active fractions and the pure compounds inhibited the lipid peroxidation by the FTC method and the TBARS method in the range of 60%. These values were comparable to those seen for quercetin.

  20. Mechanized ultrasonic examination of piping systems in nuclear power plants

    International Nuclear Information System (INIS)

    Edelmann, X.; Pfister, O.; Allidi, F.

    1988-01-01

    The success of mechanized ultrasonic examination applied on welds in piping systems in nuclear power plants is highly dependent on its careful preparation. From the development of an adequate examination technique to its implementation on site, many problems are to be solved. This is especially the case when dealing with austenitic welds or dissimilar metal welds. In addition to the specific needs for examination technique based on material properties and requirements for minimum flaw size detection, accessibility and radiation aspects have to be considered. A crew of skilled and highly trained examination personnel is required. Experience in various nuclear power plants, - BWR's and PWR's of different designs - has shown, that even difficult examination problems can be successfully solved, provided that there is a good preparation. The necessary step by step proceeding is illustrated by examples concerning mechanized examination. Preservice inspections and in-service inspections with specific requirements, due to the types of flaws to be found or the type of material concerned, are discussed

  1. A study on the total phenols content and antioxidant activity of essential oil and different solvent extracts of endemic plant Merremia borneensis

    Directory of Open Access Journals (Sweden)

    M. Amzad Hossain

    2015-01-01

    Full Text Available This study is planned to determine the antioxidant activity and total phenols content of the essential oil and different solvent extracts of the endemic plant Merremia borneensis. The antioxidant activities of the extracts were examined by three different methods, DPPH, β-carotene and reducing power assays. In all methods, aqueous ethanol extract exhibited a higher activity potential than that of other extracts (hexane, chloroform, ethyl acetate and butanol and the essential oil. As assumed, the amount of total phenolics was very high in this extract. Chloroform extract has been found to be rich in flavonoids. A positive result was observed between the antioxidant activity potential and total flavonoid levels of the extracts.

  2. Evaluation of antioxidant activity of medicinal plants containing polyphenol compounds. Comparison of two extraction systems

    Czech Academy of Sciences Publication Activity Database

    Kratchanova, M.; Denev, P.; Číž, Milan; Lojek, Antonín; Mihailov, A.

    2010-01-01

    Roč. 57, č. 2 (2010), s. 229-234 ISSN 0001-527X R&D Projects: GA MŠk(CZ) OC08058 Institutional research plan: CEZ:AV0Z50040507; CEZ:AV0Z50040702 Keywords : medicinal plants * ORAC * polyphenols Subject RIV: BO - Biophysics Impact factor: 1.234, year: 2010

  3. Mechanism of Uptake of Trace Elements by Plants

    International Nuclear Information System (INIS)

    Broda, E.

    1965-01-01

    MECHANISM OF UPTAKE OF TRACE ELEMENTS BY PLANTS (EXPERIMENTS WlTH RADIOZINC). Some authors have assumed that the uptake of (essential or non-essential) trace elements by plants is due to active transport, and therefore needs metabolic energy. In our laboratory it has been found that the uptake of zinc (“6”5Zn) by chlorella and barley roots is, in the main, a passive process, and is based largely on ion exchange. In these experiments the Zn system contrasted sharply with actively transporting systems, e. g. the K system, although the extent of accumulation may be similar: (1) decouplers (DNP, azide) or anaerobiosis do not depress the uptake of Zn: (2) plants killed by grinding, freezing or alcohol treatment take up more Zn than living plants: (3) the temperature coefficient of the Zn uptake is small: (4) many ions compete with Zn, i.e. the uptake is unspecific. We have measured - primarily with dead cells, where equilibria are reached easily - the competition of several foreign ions with radiozinc at fixed pH (usually 6). These values have been compared with analogous values obtained with radiozinc (and verified with radiocopper) in respect to cation exchange resins. It is concluded from the sequence of the different ions that the active sites in the cells are mainly carboxyl groups. Probably most of the ‘exchanger’ consists of carbohydrate derivatives in the cell wall, i.e. in the ‘free space’, However, both by Langmuir analysis of the observed ‘uptake isotherm’ and by radiochemical work with partly blocked material, sites with anomalous affinity to Zn have been demonstrated. These may be imidazol groups in the proteins known to bind zinc strongly by complexation. (author)

  4. In vitro total phenolics, flavonoids contents and antioxidant activity of essential oil, various organic extracts from the leaves of tropical medicinal plant Tetrastigma from Sabah.

    Science.gov (United States)

    Hossain, M Amzad; Shah, Muhammad Dawood; Gnanaraj, Charles; Iqbal, Muhammad

    2011-09-01

    To detect the in vitro total phenolics, flavonoids contents and antioxidant activity of essential oil, various organic extracts from the leaves of tropical medicinal plant Tetrastigma from Sabah. The dry powder leaves of Tetrastigma were extracted with different organic solvent such as hexane, ethyl acetate, chloroform, butanol and aqueous methanol. The total phenolic and total flavonoids contents of the essential oil and various organic extracts such as hexane, ethyl acetate, chloroform, butanol and aqueous ethanol were determined by Folin - Ciocalteu method and the assayed antioxidant activity was determined in vitro models such as antioxidant capacity by radical scavenging activity using α, α-diphenyl- β-picrylhydrazyl (DPPH) method. The total phenolic contents of the essential oil and different extracts as gallic acid equivalents were found to be highest in methanol extract (386.22 mg/g) followed by ethyl acetate (190.89 mg/g), chloroform (175.89 mg/g), hexane (173.44 mg/g), and butanol extract (131.72 mg/g) and the phenolic contents not detected in essential oil. The antioxidant capacity of the essential oil and different extracts as ascorbic acid standard was in the order of methanol extract > ethyl acetate extract >chloroform> butanol > hexane extract also the antioxidant activity was not detected in essential oil. The findings show that the extent of antioxidant activity of the essential oil and all extracts are in accordance with the amount of phenolics present in that extract. Leaves of Tetrastigma being rich in phenolics may provide a good source of antioxidant. Copyright © 2011 Hainan Medical College. Published by Elsevier B.V. All rights reserved.

  5. Research Progress on the use of Plant Allelopathy in Agriculture and the Physiological and Ecological Mechanisms of Allelopathy.

    Science.gov (United States)

    Cheng, Fang; Cheng, Zhihui

    2015-01-01

    Allelopathy is a common biological phenomenon by which one organism produces biochemicals that influence the growth, survival, development, and reproduction of other organisms. These biochemicals are known as allelochemicals and have beneficial or detrimental effects on target organisms. Plant allelopathy is one of the modes of interaction between receptor and donor plants and may exert either positive effects (e.g., for agricultural management, such as weed control, crop protection, or crop re-establishment) or negative effects (e.g., autotoxicity, soil sickness, or biological invasion). To ensure sustainable agricultural development, it is important to exploit cultivation systems that take advantage of the stimulatory/inhibitory influence of allelopathic plants to regulate plant growth and development and to avoid allelopathic autotoxicity. Allelochemicals can potentially be used as growth regulators, herbicides, insecticides, and antimicrobial crop protection products. Here, we reviewed the plant allelopathy management practices applied in agriculture and the underlying allelopathic mechanisms described in the literature. The major points addressed are as follows: (1) Description of management practices related to allelopathy and allelochemicals in agriculture. (2) Discussion of the progress regarding the mode of action of allelochemicals and the physiological mechanisms of allelopathy, consisting of the influence on cell micro- and ultra-structure, cell division and elongation, membrane permeability, oxidative and antioxidant systems, growth regulation systems, respiration, enzyme synthesis and metabolism, photosynthesis, mineral ion uptake, protein and nucleic acid synthesis. (3) Evaluation of the effect of ecological mechanisms exerted by allelopathy on microorganisms and the ecological environment. (4) Discussion of existing problems and proposal for future research directions in this field to provide a useful reference for future studies on plant

  6. Research progress on the use of plant allelopathy in agriculture and the physiological and ecological mechanisms of allelopathy

    Directory of Open Access Journals (Sweden)

    Fang eCheng

    2015-11-01

    Full Text Available Allelopathy is a common biological phenomenon by which one organism produces biochemicals that influence the growth, survival, development, and reproduction of other organisms. These biochemicals are known as allelochemicals and have beneficial or detrimental effects on target organisms. Plant allelopathy is one of the modes of interaction between receptor and donor plants and may exert either positive effects (e.g., for agricultural management, such as weed control, crop protection, or crop re-establishment or negative effects (e.g., autotoxicity, soil sickness, or biological invasion. To ensure sustainable agricultural development, it is important to exploit cultivation systems that take advantage of the stimulatory / inhibitory influence of allelopathic plants to regulate plant growth and development and to avoid allelopathic autotoxicity. Allelochemicals can potentially be used as growth regulators, herbicides, insecticides and antimicrobial crop protection products. Here, we reviewed the plant allelopathy management practices applied in agriculture and the underlying allelopathic mechanisms described in the literature. The major points addressed are as follows: (1 Description of management practices related to allelopathy and allelochemicals in agriculture. (2 Discussion of the progress regarding the mode of action of allelochemicals and the physiological mechanisms of allelopathy, consisting of the influence on cell micro- and ultra-structure, cell division and elongation, membrane permeability, oxidative and antioxidant systems, growth regulation systems, respiration, enzyme synthesis and metabolism, photosynthesis, mineral ion uptake, protein and nucleic acid synthesis. (3 Evaluation of the effect of ecological mechanisms exerted by allelopathy on microorganisms and the ecological environment. (4 Discussion of existing problems and proposal for future research directions in this field to provide a useful reference for future studies on

  7. Mechanisms of transformation of the antioxidant kaempferol into depsides. Gamma-radiolysis study in methanol and ethanol.

    Science.gov (United States)

    Marfak, A; Trouillas, P; Allais, D P; Calliste, C A; Cook-Moreau, J; Duroux, J L

    2003-09-01

    In this study, we irradiated the antioxidant kaempferol in ethanol and methanol solutions with gamma rays at doses ranging from 0.2-20 kGy. NMR and ES-MS spectroscopy were used to identify radiolysis products. Two depsides, [2-[(4'-hydroxybenzoyl)oxy]-4,6-dihydroxyphenyl](oxo) methyl acetate and [2-[(4'-hydroxybenzoyl)oxy]-4,6-dihydroxyphenyl](oxo) ethyl acetate, were the major compounds of kaempferol degradation in methanol and in ethanol, respectively. Other products formed in low concentrations were identified as [4-hydroxyphenyl](oxo) methyl acetate, [4-hydroxyphenyl](oxo) ethyl acetate, and depside [2-[(4'-hydroxybenzoyl)oxy]-4,6-dihydroxyphenyl](oxo) acetic acid. The formation of the latter was observed in both solvents. We propose degradation mechanisms that suggest that (.)CH(2)OH and CH(3)(.)CHOH, produced by solvent radiolysis, react with the 3-OH kaempferol group because of its high H-donor capacity. pi-Electron delocalization in the flavonoxy formed after the first H-transfer leads to C-ring opening and consequently to the formation of depsides. G calculation of the degradation products and of (.)CH(2)OH and CH(3)(.)CHOH radicals confirmed the proposed mechanism of kaempferol radiolysis. The rate constants for the reaction between kaempferol and these free radicals were also calculated. Formation of depside has also been observed in many studies of the oxidation of flavonoids; those studying human metabolism have suggested similar redox transformation of flavonols. The antioxidant activities of radiolysis products were evaluated and compared to those of kaempferol.

  8. Chromium toxicity tolerance of Solanum nigrum L. and Parthenium hysterophorus L. plants with reference to ion pattern, antioxidation activity and root exudation.

    Science.gov (United States)

    UdDin, Islam; Bano, Asghari; Masood, Sajid

    2015-03-01

    Chromium (Cr), being a highly toxic metal, adversely affects the mineral uptake and metabolic processes in plants when present in excess. The current study was aimed at investigating the Cr accumulation in various plant tissues and its relation to the antioxidation activity and root exudation. Plants were grown in soil spiked with different concentrations of Cr for three weeks in pots and analysed for different growth, antioxidants and ion attributes. Furthermore, plants treated with different concentrations of Cr in pots were shifted to rhizobox-like system for 48h and organic acids were monitored in the mucilage dissolved from the plant root surface, mirroring rhizospheric solution. The results revealed that the Cr application at 1mM increased the shoot fresh and dry weight and root dry weight of Solanum nigrum, whereas the opposite was observed for Parthenium hysterophorus when compared with lower levels of Cr (0.5mM) or control treatment. In both plant species, Cr and Cl concentrations were increased while Ca, Mg and K concentrations in root, shoot and root exudates were decreased with increasing levels of Cr. Higher levels of Cr treatments enhanced the activities of SOD, POD and proline content in leaves of S. nigrum, whereas lower levels of Cr treatment were found to have stimulatory effects in P. hysterophorus. P. hysterophorus exhibited highest exudation of organic acid contents. With increasing levels of Cr treatments, citric acid concentration in root exudates increased by 35% and 44% in S. nigrum, whereas 20% and 76% in P. hysterophorus. Cr toxicity was responsible for the shoot growth reduction of S. nigrum and P. hysterophorus, however, shoot growth response was different at different levels of applied Cr. Consequently, Cr stress negatively altered the plant physiology and biochemistry. However, the enhanced antioxidant production, Cl uptake and root exudation are the physiological and biochemical indicators for the plant adaptations in biotic systems

  9. Assessment of the content of phenolics and antioxidant actions of the Rubiaceae, Ebenaceae, Celastraceae, Erythroxylaceae and Sterculaceae families of Mauritian endemic plants.

    Science.gov (United States)

    Soobrattee, Muhammad A; Bahorun, Theeshan; Neergheen, Vidushi S; Googoolye, Kreshna; Aruoma, Okezie I

    2008-02-01

    There is continued interest in the assessment of the bioefficacy of the active principles in extracts from a variety of traditional medicine and food plants in order to determine their impact on the management of a variety of clinical conditions and maintenance of health. The polyphenolic composition and antioxidant potential of Mauritian endemic plants of the Rubiaceae, Ebenaceae, Celastraceae, Erythroxylaceae and Sterculaceae family were determined. The phenolics level of the plant extracts varied from 1 to 75 mg/g FW, the maximum level measured in Diospyros neraudii (Ebenaceae). Coffea macrocarpa showed the highest flavonoids content with 18+/-0.7 mg/g FW. The antioxidant capacity based on the TEAC and FRAP values were strongly related to total phenolics and proanthocyanidins content, while a weaker correlation was observed with (-) gallic acid. Erythroxylum sideroxyloides showed the highest protective effect in the lipid peroxidation systems with IC(50) of 0.0435+/-0.001 mg FW/ml in the Fe(3+)/ascorbate system and 0.05+/-0.002 mg FW/ml in the AAPH system. Cassine orientalis, E. sideroxyloides, Diospyros mellanida and Chassalia coriancea var. johnstonii were weakly prooxidant only at higher concentration greater of 10 g FW/L indicating potential safety. Mauritian endemic plants, particularly the genus Diospyros, are good sources of phenolic antioxidants and potential candidates for the development of prophylactic agents.

  10. Antioxidant Capacity, Radical Scavenging Kinetics and Phenolic ...

    African Journals Online (AJOL)

    HP

    Phenolic Profile of Methanol Extracts of Wild Plants of. Southern Sonora ... plant extracts. Phenolic compounds determination was carried out by high ... Determination of antioxidant capacity ..... In vitro antioxidant and antiproliferative activities ...

  11. The antioxidant properties, cytotoxicity and monoamine oxidase ...

    African Journals Online (AJOL)

    ajl yemi

    2011-11-28

    Nov 28, 2011 ... and the nitroblue tetrazolium (NBT) assay. The cytotoxicity ... The antioxidant activity and cytotoxic effect of the extracts increased with increase ... supplements are concoctions of plants and/or plant .... In vitro antioxidant assay.

  12. Antioxidant and antimicrobial activities of polyphenols from ...

    African Journals Online (AJOL)

    the medicinal plants were screened for their antioxidant and antimicrobial activities against pathogenic micro organisms (Staphylococcus aureus, Streptococcus pyogenes, Esherichia coli and Candida albicans). The medicinal plants displayed different polyphenols contents and antioxidant activities. In addition, varying ...

  13. Accumulation of phenolic compounds in in vitro cultures and wild plants of Lavandula viridis L'Hér and their antioxidant and anti-cholinesterase potential.

    Science.gov (United States)

    Costa, Patrícia; Gonçalves, Sandra; Valentão, Patrícia; Andrade, Paula B; Romano, Anabela

    2013-07-01

    In this study, we evaluated the phenolic profile, antioxidant and anti-cholinesterase potential of different extracts from wild plants and in vitro cultures of Lavandula viridis L'Hér. The HPLC-DAD analysis allowed the identification and quantification of 3-O-caffeoylquinic, 4-O-caffeoylquinic, 5-O-caffeoylquinic and rosmarinic acids, and luteolin and pinocembrin. Water/ethanol extract from in vitro cultures contained the highest amount of the identified phenolic compounds (51652.92 mg/kg). To investigate the antioxidant activity we used Trolox equivalent antioxidant capacity, oxygen radical absorbance capacity, Fe(2+) chelation activity and the inhibition of Fe(2+)-induced lipid peroxidation in mouse brain homogenates (in vitro). Overall, all the extracts from both wild plants and in vitro cultures exhibited ability to scavenge free radicals, to chelate Fe(2+) and to protect against lipid peroxidation. In addition, the extracts from L. viridis were active in inhibiting both acetylcholinesterase and butyrylcholinesterase (Ellman's method). Our findings suggest that L. viridis in vitro cultures represent a promising alternative for the production of active metabolites with antioxidant and anti-cholinesterase activity. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. Nephroprotective potential of artichoke leaves extract against gentamicin in rats: Antioxidant mechanisms.

    Science.gov (United States)

    Khattab, Hala Ah; Wazzan, Maha Am; Al-Ahdab, Maha A

    2016-09-01

    Nephrotoxicity represents a major health problem. This study aims to determine nephroprotective of artichoke leaves extract (ALE) against gentamicin (GM) injection in male rats. Rats (n=30) were divided into; negative control, nephrotoxic (GM) injected intraperitoneally (i.p.) with GM (100 mg/kg b.wt/d for 10 days), and groups administered orally with ALE (200, 400 or 600 mg/kg b.wt/d) and injected with GM. The results revealed that, GM injection induced marked nephrotoxicity as evidenced by significant increase in kidney functions, albumin and potassium (K+), with significant decrease in serum levels of total protein and sodium (Na + ) as compared with negative control group. There was significant increase in malondialdehyde (MDA) level in GM group compared with negative control group. Renal examined tissues showed severe changes manifested by atrophy of glomerular tuft, necrosis of epithelial lining renal tubules with apoptosis of tubular epithelium and renal hemorrhage. Simultaneous administration of ALE during GM therapy protected kidney tissues as evidenced by normalization of kidney biochemical parameters and minimized the histopathological changes. Therefore, ALE has nephroprotective and antioxidant effects, thus could be beneficial for kidney patients.

  15. Stress-related phenomena and detoxification mechanisms induced by common pharmaceuticals in alfalfa (Medicago sativa L.) plants

    International Nuclear Information System (INIS)

    Christou, Anastasis; Antoniou, Chrystalla; Christodoulou, Charalampia; Hapeshi, Evroula; Stavrou, Ioannis; Michael, Costas; Fatta-Kassinos, Despo; Fotopoulos, Vasileios

    2016-01-01

    Pharmaceutically active compounds (PhACs) have been recently shown to exert phytotoxic effects. The present study explores the uptake, systemic translocation, and abiotic stress responses and detoxification mechanisms induced by the exposure of alfalfa plants grown in sand under greenhouse conditions to four common, individually applied PhACs (10 μg L −1 ) (diclofenac, sulfamethoxazole, trimethoprim, 17a-ethinylestradiol) and their mixture. Stress physiology markers (lipid peroxidation, proline, H 2 O 2 and NO content, antioxidant activity assays) and gene expression levels of key plant detoxification components (including glutathione S-transferases, GST7, GST17; superoxide dismutases, CuZnSOD, FeSOD; proton pump, H + -ATP, and cytochrome c oxidase, CytcOx), were evaluated. PhACs were detected in significantly higher concentrations in roots compared with leaves. Stress related effects, manifested via membrane lipid peroxidation and oxidative burst, were local (roots) rather than systemic (leaves), and exacerbated when the tested PhACs were applied in mixture. Systemic accumulation of H 2 O 2 in leaves suggests its involvement in signal transduction and detoxification responses. Increased antioxidant enzymatic activities, as well as upregulated transcript levels of GST7, GST17, H + -ATPase and CytcOx, propose their role in the detoxification of the selected PhACs in plants. The current findings provide novel biochemical and molecular evidence highlighting the studied PhACs as an emerging abiotic stress factor, and point the need for further research on wastewater flows under natural agricultural environments. - Highlights: • PhACs were detected in higher concentrations in roots compared with leaves. • Stress effects were local and exacerbated when PhACs were applied in mixture. • H 2 O 2 may be involved in signal transduction and detoxification responses. • GSTs, H + -ATPase and CytcOx contribute to the detoxification of PhACs in plants. • Results

  16. Inducible indirect defence of plants : from mechanisms to ecological functions

    NARCIS (Netherlands)

    Dicke, M.; Poecke, van R.M.P.; Boer, de J.G.

    2003-01-01

    Inducible defences allow plants to be phenotypically plastic. Inducible indirect defence of plants by attracting carnivorous enemies of herbivorous arthropods can vary with plant species and genotype, with herbivore species or instar and potentially with other environmental conditions. So far,

  17. Impact of lead tolerant plant growth promoting rhizobacteria on growth, physiology, antioxidant activities, yield and lead content in sunflower in lead contaminated soil.

    Science.gov (United States)

    Saleem, Muhammad; Asghar, Hafiz Naeem; Zahir, Zahir Ahmad; Shahid, Muhammad

    2018-03-01

    Present study was conducted to evaluate the effect of lead tolerant plant growth promoting rhizobacteria (LTPGPR) on growth, physiology, yield, antioxidant activities and lead uptake in sunflower in soil contaminated with lead under pot conditions. Three pre-characterized LTPGP strains (S2 (Pseudomonas gessardii strain BLP141), S5 (Pseudomonas fluorescens A506) and S10 (Pseudomonas fluorescens strain LMG 2189)) were used to inoculate sunflower growing in soil contaminated with different levels (300, 600 and 900 mg kg -1 ) of lead by using lead nitrate salt as source of lead. Treatments were arranged according to completely randomized design with factorial arrangements. At harvesting, data regarding growth attributes (root shoot length, root shoot fresh and dry weights), yield per plant, physiological attributes (Chlorophyll 'a', 'b' and carotenoids content), antioxidant activities (Ascorbate peroxidase, catalase, superoxide dismutase and glutathione reductase), proline and malanodialdehyde content, and lead content in root, shoot and achenes of sunflower were recorded. Data were analysed by standard statistical procedures. Results showed that lead contamination reduced the plants growth, physiology and yield at all levels of lead stress. But application of LTPGPR in soil contaminated with lead improved plant growth, physiology, yield, and antioxidant activities, proline, and reduced the malanodialdehyde content (that is reduced by the application of different strains in lead contamination) of sunflower as compared to plants grown in soil without inoculation. Inoculation also promoted the uptake of lead in root, shoots and reduced the uptake of lead in achenes of plants as compared to plants in lead contamination without inoculation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Anticancer Chemodiversity of Ranunculaceae Medicinal Plants: Molecular Mechanisms and Functions.

    Science.gov (United States)

    Hao, Da-Cheng; He, Chun-Nian; Shen, Jie; Xiao, Pei-Gen

    2017-02-01

    The buttercup family, Ranunculaceae, comprising more than 2,200 species in at least 62 genera, mostly herbs, has long been used in folk medicine and worldwide ethnomedicine since the beginning of human civilization. Various medicinal phytometabolites have been found in Ranunculaceae plants, many of which, such as alkaloids, terpenoids, saponins, and polysaccharides, have shown anti-cancer activities in vitro and in vivo. Most concerns have been raised for two epiphany molecules, the monoterpene thymoquinone and the isoquinoline alkaloid berberine. At least 17 genera have been enriched with anti-cancer phytometabolites. Some Ranunculaceae phytometabolites induce the cell cycle arrest and apoptosis of cancer cells or enhance immune activities, while others inhibit the proliferation, invasion, angiogenesis, and metastasis, or reverse the multi-drug resistance of cancer cells thereby regulating all known hallmarks of cancer. These phytometabolites could exert their anti-cancer activities via multiple signaling pathways. In addition, absorption, distribution, metabolism, and excretion/toxicity properties and structure/activity relationships of some phytometabolites have been revealed assisting in the early drug discovery and development pipelines. However, a comprehensive review of the molecular mechanisms and functions of Ranunculaceae anti-cancer phytometabolites is lacking. Here, we summarize the recent progress of the anti-cancer chemo- and pharmacological diversity of Ranunculaceae medicinal plants, focusing on the emerging molecular machineries and functions of anti-cancer phytometabolites. Gene expression profiling and relevant omics platforms (e.g. genomics, transcriptomics, proteomics, and metabolomics) could reveal differential effects of phytometabolites on the phenotypically heterogeneous cancer cells.

  19. Analytical traceability of melon (Cucumis melo var reticulatus): proximate composition, bioactive compounds, and antioxidant capacity in relation to cultivar, plant physiology state, and seasonal variability.

    Science.gov (United States)

    Maietti, Annalisa; Tedeschi, Paola; Stagno, Caterina; Bordiga, Matteo; Travaglia, Fabiano; Locatelli, Monica; Arlorio, Marco; Brandolini, Vincenzo

    2012-06-01

    Two morphologically different cultivars of Italian melons (Baggio and Giusto) were characterized considering samples harvested in different times, at the beginning (BPP) and at the end of the physiological plant production period (EPP). Proximate composition, protein, minerals, pH, phenolic content, antioxidant capacity, ascorbic acid, carotenoids, condensed tannins, and flavonoids were measured, showing a significant decrease in EPP samples (phenolics, antioxidant capacity, condensed tannins, and flavonoids); ascorbic acid decreased in Giusto cv, carotenoids in Baggio cv. Mineral content increased in either the cultivars (EPP samples). Year-to-year difference was significantly highlighted; the plant growing cycle significantly affected the chemotype. Despite these effects, the Principal Component Analysis (PCA) permitted the discrimination of Baggio from Giusto cv, and the discrimination of BPP from EPP samples as well. © 2012 Institute of Food Technologists®

  20. [INFLUENCE OF MEDICINAL PLANT EXTRACTS ON THE FUNCTIONS AND ANTIOXIDANT PROTECTION OF ERYTHROCYTES IN RATS WITH EXPERIMENTAL DIABETES MELLITUS].

    Science.gov (United States)

    Vengerovskii, A I; Yakimova, T V; Nasanova, O N

    2016-01-01

    Experiments on rats with diabetes mellitus model induced by streptosotocin and high (30%) fat diet showed that the daily treatment with aqueous extracts of great nettle leaves (100 mg/kg) and common burdock roots (25 mg/kg) for a period of 10 days led to a decrease in the glycemic index and triglyceride level and produced protective action on erythrocytes both in animals kept on a fat-rich diet and on the background of a low-caloric ration. Both medicinal plant extracts were comparable with reference drug metformin in reducing the concentration of glycosylated hemoglobin (by 12-31%) and ectoglobular hemoglobin (1.7-1.8 times, p <0.05), decreasing the content of malonic dialdehyde in erythrocytes (1.3 times, p < 0.05), and increasing erythrocyte deformability (1.3-1.4 times, p < 0.05) and activity of their antioxidant enzymes glutathione peroxidase, glutathione reductase, glutathione-S-transferase, catalase, and supe- roxide dismutase (1.2-2.6 times, p < 0.05). A diet with usual (8%) fat content improved the metabolic indices to a lower degree (on the average by 13-21%, p < 0.05) than did the proposed phytotherapy.

  1. Therapeutic Efficacy of Topically Applied Antioxidant Medicinal Plant Extracts in a Mouse Model of Experimental Dry Eye.

    Science.gov (United States)

    Choi, Won; Lee, Jee Bum; Cui, Lian; Li, Ying; Li, Zhengri; Choi, Ji Suk; Lee, Hyo Seok; Yoon, Kyung Chul

    2016-01-01

    Purpose. To investigate the therapeutic effects of topical administration of antioxidant medicinal plant extracts in a mouse model of experimental dry eye (EDE). Methods. Eye drops containing balanced salt solution (BSS) or 0.001%, 0.01%, and 0.1% extracts were applied for the treatment of EDE. Tear volume, tear film break-up time (BUT), and corneal fluorescein staining scores were measured 10 days after desiccating stress. In addition, we evaluated the levels of interleukin- (IL-) 1β, tumor necrosis factor- (TNF-) α, IL-6, interferon- (IFN-) γ, and IFN-γ associated chemokines, percentage of CD4+C-X-C chemokine receptor type 3 positive (CXCR3+) T cells, goblet cell density, number of 4-hydroxy-2-nonenal (4-HNE) positive cells, and extracellular reactive oxygen species (ROS) production. Results. Compared to the EDE and BSS control groups, the mice treated with topical application of the 0.1% extract showed significant improvements in all clinical parameters, IL-1β, IL-6, TNF-α, and IFN-γ levels, percentage of CD4+CXCR3+ T cells, goblet cell density, number of 4-HNE-positive cells, and extracellular ROS production (P model mice.

  2. Global plant-responding mechanisms to salt stress: physiological and molecular levels and implications in biotechnology.

    Science.gov (United States)

    Tang, Xiaoli; Mu, Xingmin; Shao, Hongbo; Wang, Hongyan; Brestic, Marian

    2015-01-01

    The increasing seriousness of salinization aggravates the food, population and environmental issues. Ameliorating the salt-resistance of plants especially the crops is the most effective measure to solve the worldwide problem. The salinity can cause damage to plants mainly from two aspects: hyperosmotic and hyperionic stresses leading to the restrain of growth and photosynthesis. To the adverse effects, the plants derive corresponding strategies including: ion regulation and compartmentalization, biosynthesis of compatible solutes, induction of antioxidant enzymes and plant hormones. With the development of molecular biology, our understanding of the molecular and physiology knowledge is becoming clearness. The complex signal transduction underlying the salt resistance is being illuminated brighter and clearer. The SOS pathway is the central of the cell signaling in salt stress. The accumulation of the compatible solutes and the activation of the antioxidant system are the effective measures for plants to enhance the salt resistance. How to make full use of our understanding to improve the output of crops is a huge challenge for us, yet the application of the genetic engineering makes this possible. In this review, we will discuss the influence of the salt stress and the response of the plants in detail expecting to provide a particular account for the plant resistance in molecular, physiological and transgenic fields.

  3. The Extract of D. dasycarpus Ameliorates Oxazolone-Induced Skin Damage in Mice by Anti-Inflammatory and Antioxidant Mechanisms

    Directory of Open Access Journals (Sweden)

    Tsong-Min Chang

    2018-06-01

    Full Text Available Dictamni dasycarpus is a type of Chinese medicine made from the root bark of D. dasycarpus. It has been reported to show a wide spectrum of biological and pharmacological effects, for example, it has been used widely for the treatment of rheumatism, nettle rash, itching, jaundice, chronic hepatitis and skin diseases. In the current study, D. dasycarpus extract was investigated for its antioxidant and anti-inflammatory effects, as well as its capability to alleviate oxazolone-induced skin damage in mice. The possible anti-inflammatory mechanism of D. dasycarpus extract against oxidative challenge was elucidated by measuring the levels of reactive oxygen species (ROS production, interleukin-6, Tumor necrosis factor-α, NLRP3 (NACHT, LRR and PYD domains-containing protein 3 (NALP3 inflammasome and interleukin-1β in HaCaT cells. D. dasycarpus extract did not affect cell viability in basal conditions. The extract significantly reduced oxazolone-induced epidermal swelling compared to untreated animal in the hairless albino mice (ICR mice model. At the molecular level, Western blot assays indicated that the D. dasycarpus extract attenuated oxazolone-induced activation of apoptosis-associated speck-like protein containing CARD (ASC, procaspase-1, NF-κB and mitogen-activated protein kinase (MAPKs such as c-Jun N-terminal protein kinase (JNK and p38. This study demonstrates that D. dasycarpus extract could protect skin cells against oxidative and inflammatory insult by modulating the intracellular levels of ROS, TNF-α, interleukin-1, interleukin-6, NLR family pyrin domain containing 3 (NLRP3 inflammasome generation, antioxidant enzyme activity and cell signaling pathways. D. dasycarpus extract also attenuated the expression of NF-κB in HaCaT keratinocytes and thereby effectively downregulated inflammatory responses in the skin. Furthermore, D. dasycarpus extract alleviated oxazolone-induced damage in mice. Our results suggest the potential application

  4. The Extract of D. dasycarpus Ameliorates Oxazolone-Induced Skin Damage in Mice by Anti-Inflammatory and Antioxidant Mechanisms.

    Science.gov (United States)

    Chang, Tsong-Min; Yang, Ting-Ya; Niu, Yu-Lin; Huang, Huey-Chun

    2018-06-15

    Dictamni dasycarpus is a type of Chinese medicine made from the root bark of D. dasycarpus . It has been reported to show a wide spectrum of biological and pharmacological effects, for example, it has been used widely for the treatment of rheumatism, nettle rash, itching, jaundice, chronic hepatitis and skin diseases. In the current study, D. dasycarpus extract was investigated for its antioxidant and anti-inflammatory effects, as well as its capability to alleviate oxazolone-induced skin damage in mice. The possible anti-inflammatory mechanism of D. dasycarpus extract against oxidative challenge was elucidated by measuring the levels of reactive oxygen species (ROS) production, interleukin-6, Tumor necrosis factor-α, NLRP3 (NACHT, LRR and PYD domains-containing protein 3 (NALP3)) inflammasome and interleukin-1β in HaCaT cells. D. dasycarpus extract did not affect cell viability in basal conditions. The extract significantly reduced oxazolone-induced epidermal swelling compared to untreated animal in the hairless albino mice (ICR mice) model. At the molecular level, Western blot assays indicated that the D. dasycarpus extract attenuated oxazolone-induced activation of apoptosis-associated speck-like protein containing CARD (ASC), procaspase-1, NF-κB and mitogen-activated protein kinase (MAPKs) such as c-Jun N-terminal protein kinase (JNK) and p38. This study demonstrates that D. dasycarpus extract could protect skin cells against oxidative and inflammatory insult by modulating the intracellular levels of ROS, TNF-α, interleukin-1, interleukin-6, NLR family pyrin domain containing 3 (NLRP3) inflammasome generation, antioxidant enzyme activity and cell signaling pathways. D. dasycarpus extract also attenuated the expression of NF-κB in HaCaT keratinocytes and thereby effectively downregulated inflammatory responses in the skin. Furthermore, D. dasycarpus extract alleviated oxazolone-induced damage in mice. Our results suggest the potential application of D

  5. Mechanism Profiling of Hepatotoxicity Caused by Oxidative Stress Using Antioxidant Response Element Reporter Gene Assay Models and Big Data.

    Science.gov (United States)

    Kim, Marlene Thai; Huang, Ruili; Sedykh, Alexander; Wang, Wenyi; Xia, Menghang; Zhu, Hao

    2016-05-01

    Hepatotoxicity accounts for a substantial number of drugs being withdrawn from the market. Using traditional animal models to detect hepatotoxicity is expensive and time-consuming. Alternative in vitro methods, in particular cell-based high-throughput screening (HTS) studies, have provided the research community with a large amount of data from toxicity assays. Among the various assays used to screen potential toxicants is the antioxidant response element beta lactamase reporter gene assay (ARE-bla), which identifies chemicals that have the potential to induce oxidative stress and was used to test > 10,000 compounds from the Tox21 program. The ARE-bla computational model and HTS data from a big data source (PubChem) were used to profile environmental and pharmaceutical compounds with hepatotoxicity data. Quantitative structure-activity relationship (QSAR) models were developed based on ARE-bla data. The models predicted the potential oxidative stress response for known liver toxicants when no ARE-bla data were available. Liver toxicants were used as probe compounds to search PubChem Bioassay and generate a response profile, which contained thousands of bioassays (> 10 million data points). By ranking the in vitro-in vivo correlations (IVIVCs), the most relevant bioassay(s) related to hepatotoxicity were identified. The liver toxicants profile contained the ARE-bla and relevant PubChem assays. Potential toxicophores for well-known toxicants were created by identifying chemical features that existed only in compounds with high IVIVCs. Profiling chemical IVIVCs created an opportunity to fully explore the source-to-outcome continuum of modern experimental toxicology using cheminformatics approaches and big data sources. Kim MT, Huang R, Sedykh A, Wang W, Xia M, Zhu H. 2016. Mechanism profiling of hepatotoxicity caused by oxidative stress using antioxidant response element reporter gene assay models and big data. Environ Health Perspect 124:634-641;

  6. Antioxidative properties of flavonoids

    NARCIS (Netherlands)

    Bowedes, T.C.F.; Luttikhold, J.; Stijn, van M.F.M.; Visser, M.; Norren, van K.; Vermeulen, M.A.R.; Leeuwen, P.A.M.

    2011-01-01

    Evidence accumulates that a family of plant compounds, known as flavonoids, can prevent or slow down the progression of cardiovascular diseases, cancer, inflammatory and neurodegenerative diseases. Flavonoids are considered beneficial, this is often attributed to their powerful antioxidant

  7. Effects of water stress and inoculation with plant growth promoting rhizobacteria (PGPR on antioxidant status and photosynthetic pigments in basil (Ocimum basilicum L.

    Directory of Open Access Journals (Sweden)

    Mostafa Heidari

    2012-01-01

    Full Text Available Effects of water stress and inoculation with plant growth promoting rhizobacteria (PGPR on antioxidant activity and photosynthetic pigments were studied in basil plants. A field experiment was conducted at the University of Zabol in Iran during 2010 growing season. The experiment laid out as split plot based on randomized complete block design with three replications. Three levels of water stress W1 = 80 (control, W2 = 60 and W3 = 40% of the field capacity (FC as main plots and four levels of bacterial species consisting of S1 = Pseudomonades sp., S2 = Bacillus lentus, S3 = Azospirillum brasilens, S4 = combination of three bacterial species and S5 = control (without use of bacterial as sub plots. The results revealed that water stress caused a significant change in the antioxidant activity. The highest concentration CAT and GPX activity were in W3 treatments. By increasing water stress from control to W3, chlorophyll content in leaves was increased but Fv/Fm and APX activity decreased. Application of rhizobacteria under water stress improved the antioxidant and photosynthetic pigments in basil plants. S1 = Pseudomonades sp. under water stress, significantly increased the CAT enzyme activity, but the highest GPX and APX activity and chlorophyll content in leaves under water stress were in S4 = combination of three bacterial species.

  8. The Substitution Effect on Reaction Enthalpies of Antioxidant Mechanisms of Juglone and Its Derivatives in Gas and Solution Phase: DFT Study

    Directory of Open Access Journals (Sweden)

    Aymard Didier Tamafo Fouegue

    2018-01-01

    Full Text Available We examined the structure-reaction enthalpies-antioxidant activity relationship of the molecule library built around juglone and its derivatives at B3LYP/6-31+G(d,p level. Three major antioxidant mechanisms (hydrogen atom transfer (HAT, single electron transfer-proton transfer (SET-PT, and sequential proton loss electron transfer (SPLET have been investigated in five solvents and in the gas phase. The delocalization of the unpaired electrons in the radicals or cation radicals has been explored by the natural bond orbital analysis and the interpretation of spin density maps. The results obtained have proven that the HAT mechanism is the thermodynamically preferred mechanism in the gas phase. But, in the solution phase, the SPLET mechanism has been shown to be more predominant than HAT. The reactivity order of compounds towards selected reactive oxygen species has also been studied.

  9. Hydrogen sulfide regulates the levels of key metabolites and antioxidant defense system to counteract oxidative stress in pepper (Capsicum annuum L.) plants exposed to high zinc regime.

    Science.gov (United States)

    Kaya, Cengiz; Ashraf, Muhammad; Akram, Nudrat Aisha

    2018-02-21

    In the present experiment, we aimed to test the impact of hydrogen sulfide (H 2 S) on growth, key oxidant such as hydrogen peroxide, mineral elements, and antioxidative defense in Capia-type red sweet pepper (Capsicum annuum L.) plants subjected to high concentration of zinc (Zn). A factorial experiment was designed with two Zn levels (0.05 and 0.5 mM) and 0.2 mM sodium hydrosulfide (NaHS) as a donor of H 2 S supplied in combination plus nutrient solution through the root zone. High level of Zn led to reduce dry mass, chlorophyll pigments, fruit yield, leaf maximum fluorescence, and relative water content, but enhanced endogenous hydrogen peroxide (H 2 O 2 ), free proline, malondialdehyde (MDA), electrolyte leakage (EL), H 2 S, as well as the activities of peroxidase (POD), catalase (CAT), and superoxide dismutase (SOD) enzymes. Exogenously applied NaHS significantly enhanced plant growth, fruit yield, water status, the levels of H 2 S and proline as well as the activities of different antioxidant enzymes, while it significantly suppressed EL, MDA, and H 2 O 2 contents in the pepper plants receiving low level Zn. NaHS application to the control plants did not significantly change all these parameters tested except the dry matter which increased significantly. High Zn regime led to increase intrinsic Zn levels in the leaves and roots, but it lowered leaf nitrogen (N), phosphorus (P), and iron (Fe) concentrations. However, NaHS reduces the Zn conc. and enhances Fe and N in leaf and root organs. It can be concluded that NaHS can mitigate the harmful effects of Zn on plant growth particularly by lowering the concentrations of H 2 O 2 , Zn, EL, and MDA, and enhancing the activities of enzymatic antioxidants and levels of essential nutrients in pepper plants.

  10. Protective Effect of Flos Lonicerae against Experimental Gastric Ulcers in Rats: Mechanisms of Antioxidant and Anti-Inflammatory Action

    Directory of Open Access Journals (Sweden)

    Jung-Woo Kang

    2014-01-01

    Full Text Available Flos Lonicerae is one of the oldest and most commonly prescribed herbs in Eastern traditional medicine to treat various inflammatory diseases. In the present study, we investigated the effects of ethyl acetate fraction of Flos Lonicerae (GC-7101 on experimental gastric ulcer models and its mechanisms of action in gastric ulcer healing. The pharmacological activity of GC-7101 was investigated in rats on HCl/EtOH, indomethacin, water immersion restraint stress induced acute gastric ulcer, and acetic-acid-induced subchronic gastric ulcer. To determine its gastroprotective mechanisms, gastric wall mucus secretion, mucosal PGE2, mucosal NO content, nuclear translocation of NF-κB, mRNA expression of inflammatory cytokines, lipid peroxidation and glutathione content, and superoxide dismutase and catalase activities were measured. GC-7101 significantly attenuated development of acute gastric ulcer and accelerated the healing of acetic-acid-induced subchronic gastric ulcer. In HCl/EtOH-induced gastric ulcer, GC-7101 markedly enhanced gastric wall mucus content which was accompanied by increased mucosal PGE2 and NO production. Furthermore, treatment of GC-7101 exhibited anti-inflammatory and antioxidant activities as evidenced by decreased myeloperoxidase activity, NF-κB translocation, inflammatory cytokines mRNA expression, and lipid peroxidation and increased glutathione content and superoxide dismutase and catalase activities. These results demonstrated that GC-7101 possesses strong antiulcerogenic effect by modulating oxidative stress and proinflammatory mediators.

  11. Antinociceptive effects of fisetin against diabetic neuropathic pain in mice: Engagement of antioxidant mechanisms and spinal GABAA receptors.

    Science.gov (United States)

    Zhao, Xin; Li, Xin-Lin; Liu, Xin; Wang, Chuang; Zhou, Dong-Sheng; Ma, Qing; Zhou, Wen-Hua; Hu, Zhen-Yu

    2015-12-01

    Peripheral painful neuropathy is one of the most common complications in diabetes and necessitates improved treatment. Fisetin, a naturally occurring flavonoid, has been reported to exert antidepressant-like effect in previous studies. As antidepressant drugs are employed clinically to treat neuropathic pain, this work aimed to investigate whether fisetin possess beneficial effect on diabetic neuropathic pain and explore the mechanism(s). We subjected mice to diabetes by a single intraperitoneal (i.p.) injection of streptozotocin (200mg/kg), and von Frey test or Hargreaves test was used to assess mechanical allodynia or thermal hyperalgesia, respectively. Chronic treatment of diabetic mice with fisetin not only ameliorated the established symptoms of thermal hyperalgesia and mechanical allodynia, but also arrested the development of neuropathic pain when given at low doses. Although chronic fisetin administration did not impact on the symptom of hyperglycemia in diabetic mice, it reduced exacerbated oxidative stress in tissues of spinal cord, dorsal root ganglion (DRG) and sciatic verve. Furthermore, the analgesic actions of fisetin were abolished by repetitive co-treatment with the reactive oxygen species (ROS) donor tert-butyl hydroperoxide (t-BOOH), but potentiated by the ROS scavenger phenyl-N-tert-butylnitrone (PBN). Finally, acute blockade of spinal GABAA receptors by bicuculline totally counteracted such fisetin analgesia. These findings indicate that chronic fisetin treatment can delay or correct neuropathic hyperalgesia and allodynia in mice with type 1 diabetes. Mechanistically, the present fisetin analgesia may be associated with its antioxidant activity, and spinal GABAA receptors are likely rendered as downstream targets. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Age-related mechanism and its relationship with secondary metabolism and abscisic acid in Aristotelia chilensis plants subjected to drought stress.

    Science.gov (United States)

    González-Villagra, Jorge; Rodrigues-Salvador, Acácio; Nunes-Nesi, Adriano; Cohen, Jerry D; Reyes-Díaz, Marjorie M

    2018-03-01

    Drought stress is the most important stress factor for plants, being the main cause of agricultural crop loss in the world. Plants have developed complex mechanisms for preventing water loss and oxidative stress such as synthesis of abscisic acid (ABA) and non-enzymatic antioxidant compounds such as anthocyanins, which might help plants to cope with abiotic stress as antioxidants and for scavenging reactive oxygen species. A. chilensis (Mol.) is a pioneer species, colonizing and growing on stressed and disturbed environments. In this research, an integrated analysis of secondary metabolism in Aristotelia chilensis was done to relate ABA effects on anthocyanins biosynthesis, by comparing between young and fully-expanded leaves under drought stress. Plants were subjected to drought stress for 20 days, and physiological, biochemical, and molecular analyses were performed. The relative growth rate and plant water status were reduced in stressed plants, with young leaves significantly more affected than fully-expanded leaves beginning from the 5th day of drought stress. A. chilensis plants increased their ABA and total anthocyanin content and showed upregulation of gene expression when they were subjected to severe drought (day 20), with these effects being higher in fully-expanded leaves. Multivariate analysis indicated a significant positive correlation between transcript levels for NCED1 (9-cis-epoxycarotenoid dioxygenase) and UFGT (UDP glucose: flavonoid-3-O-glucosyltransferase) with ABA and total anthocyanin, respectively. Thus, this research provides a more comprehensive analysis of the mechanisms that allow plants to cope with drought stress. This is highlighted by the differences between young and fully-expanded leaves, showing different sensibility to stress due to their ability to synthesize anthocyanins. In addition, this ability to synthesize different and high amounts of anthocyanins could be related to higher NCED1 and MYB expression and ABA levels

  13. Correlation of the inhibitory activity of phospholipase A2 snake venom and the antioxidant activity of Colombian plant extracts

    Directory of Open Access Journals (Sweden)

    Jaime A. Pereañez

    2010-12-01

    Full Text Available Snakebite continues to be a significant health problem in many countries of Latin America. Even though, there has been an improvement in the antivenom therapy, the local effects caused by myotoxic phospholipases A2 (PLA2 present in the venoms, still persist. In search for alternatives to antagonize the PLA2 activity of Bothrops asper's venom, 36 extracts belonging to seventeen families of vascular plants and bryophytes were screened. A significant inhibition of the enzymatic activity of PLA2 present in B. asper's whole venom was seen in eleven of these extracts. In addition, the antioxidant activity of all the extracts was evaluated. The results evidenced a significant statistical correlation between extracts with an inhibitory effect against PLA2 and those with an antioxidant activity. Moreover, the amount of phenols was quantified finding a relationship between the bioactivity and the presence of these compounds. Nine extracts were screened against a fraction of the venom rich in basic PLA2 (Fx-V B. asper, exhibiting an inhibitory effect on PLA2 activity of this fraction in a range from 30-80%. This activity was supported by the inhibition that these extracts presented on the cytotoxicity caused by Fx-V B. asper on murine skeletal muscle C2C12 myoblasts. The results obtained, could point to minimize efforts in the search of PLA2 inhibitors by focusing in samples with known antioxidant properties.Veneno de cobra continua a ser um problema importante de saúde em muitos países da América Latina. Apesar dos avanços na terapia antiveneno, os efeitos locais causados por fosfolipases A2 miotóxica (PLA2 presentes no veneno, ainda persistem. Em busca de alternativas para antagonizar a atividade da PLA2 do veneno de Bothrops asper, foram selecionados 36 extratos pertencentes a dezessete famílias de plantas vasculares e briófitas. Uma inibição significativa da atividade enzimática de PLA2 presente no veneno de B. asper foi observada em onze

  14. Preparation of antioxidant enzymatic hydrolysates from honeybee-collected pollen using plant enzymes.

    Science.gov (United States)

    Marinova, Margarita D; Tchorbanov, Bozhidar P

    2011-01-09

    Enzymatic hydrolysates of honeybee-collected pollen were prepared using food-grade proteinase and aminopeptidases entirely of plant origin. Bromelain from pineapple stem was applied (8 mAU/g substrate) in the first hydrolysis stage. Aminopeptidase (0.05 U/g substrate) and proline iminopeptidase (0.03 U/g substrate) from cabbage leaves (Brassica oleracea var. capitata), and aminopeptidase (0.2 U/g substrate) from chick-pea cotyledons (Cicer arietinum L.) were involved in the additional hydrolysis of the peptide mixtures. The degree of hydrolysis (DH), total phenolic contents, and protein contents of these hydrolysates were as follows: DH (about 20-28%), total phenolics (15.3-27.2 μg/mg sample powder), and proteins (162.7-242.8 μg/mg sample powder), respectively. The hydrolysates possessed high antiradical scavenging activity determined with DPPH (42-46% inhibition). The prepared hydrolysates of bee-collected flower pollen may be regarded as effective natural and functional dietary food supplements due to their remarkable content of polyphenol substances and significant radical-scavenging capacity with special regard to their nutritional-physiological implications.

  15. Preparation of Antioxidant Enzymatic Hydrolysates from Honeybee-Collected Pollen Using Plant Enzymes

    Directory of Open Access Journals (Sweden)

    Margarita D. Marinova

    2010-01-01

    Full Text Available Enzymatic hydrolysates of honeybee-collected pollen were prepared using food-grade proteinase and aminopeptidases entirely of plant origin. Bromelain from pineapple stem was applied (8 mAU/g substrate in the first hydrolysis stage. Aminopeptidase (0.05 U/g substrate and proline iminopeptidase (0.03 U/g substrate from cabbage leaves (Brassica oleracea var. capitata, and aminopeptidase (0.2 U/g substrate from chick-pea cotyledons (Cicer arietinum L. were involved in the additional hydrolysis of the peptide mixtures. The degree of hydrolysis (DH, total phenolic contents, and protein contents of these hydrolysates were as follows: DH (about 20–28%, total phenolics (15.3–27.2 μg/mg sample powder, and proteins (162.7–242.8 μg/mg sample powder, respectively. The hydrolysates possessed high antiradical scavenging activity determined with DPPH (42–46% inhibition. The prepared hydrolysates of bee-collected flower pollen may be regarded as effective natural and functional dietary food supplements due to their remarkable content of polyphenol substances and significant radical-scavenging capacity with special regard to their nutritional-physiological implications.

  16. Relationships between degree of polymerization and antioxidant activities: a study on proanthocyanidins from the leaves of a medicinal mangrove plant Ceriops tagal.

    Directory of Open Access Journals (Sweden)

    Hai-Chao Zhou

    Full Text Available Tannins from the leaves of a medicinal mangrove plant, Ceriops tagal, were purified and fractionated on Sephadex LH-20 columns. 13C nuclear magnetic resonance (13C-NMR, reversed/normal high performance liquid chromatography electrospray ionization mass spectrometry (HPLC-ESI MS and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDT-TOF MS analysis showed that the tannins were predominantly B-type procyanidins with minor A-type linkages, galloyl and glucosyl substitutions, and a degree of polymerization (DP up to 33. Thirteen subfractions of the procyanidins were successfully obtained by a modified fractionation method, and their antioxidant activities were investigated using 2,2-diphenyl-1-picrylhydrazyl (DPPH scavenging capacity and ferric reducing antioxidant power (FRAP method. All these subfractions exhibited potent antioxidant activities, and eleven of them showed significantly different mean DP (mDP ranging from 1.43±0.04 to 31.77±1.15. Regression analysis demonstrated that antioxidant activities were positively correlative with mDP when around mDP <10, while dropped and then remained at a level similar to mDP = 5 with around 95 µg ml(-1 for DPPH scavenging activity and 4 mmol AAE g(-1 for FRAP value.

  17. Enhanced salt-induced antioxidative responses involve a contribution of polyamine biosynthesis in grapevine plants.

    Science.gov (United States)

    Ikbal, Fatima Ezzohra; Hernández, José Antonio; Barba-Espín, Gregorio; Koussa, Tayeb; Aziz, Aziz; Faize, Mohamed; Diaz-Vivancos, Pedro

    2014-06-15

    The possible involvement of polyamines in the salt stress adaptation was investigated in grapevine (Vitis vinifera L.) plantlets focusing on photosynthesis and oxidative metabolism. Salt stress resulted in the deterioration of plant growth and photosynthesis, and treatment of plantlets with methylglyoxal-bis(guanylhydrazone) (MGBG), a S-adenosylmethionine decarboxylase (SAMDC) inhibitor, enhanced the salt stress effect. A decrease in PSII quantum yield (Fv/Fm), effective PSII quantum yield (Y(II)) and coefficient of photochemical quenching (qP) as well as increases in non-photochemical quenching (NPQ) and its coefficient (qN) was observed by these treatments. Salt and/or MGBG treatments also triggered an increase in lipid peroxidation and reactive oxygen species (ROS) accumulation as well as an increase of superoxide dismutase (SOD) and peroxidase (POX) activities, but not ascorbate peroxidase (APX) activity. Salt stress also resulted in an accumulation of oxidized ascorbate (DHA) and a decrease in reduced glutathione. MGBG alone or in combination with salt stress increased monodehydroascorbate reductase (MDHAR), SOD and POX activities and surprisingly no accumulation of DHA was noticed following treatment with MGBG. These salt-induced responses correlated with the maintaining of high level of free and conjugated spermidine and spermine, whereas a reduction of agmatine and putrescine levels was observed, which seemed to be amplified by the MGBG treatment. These results suggest that maintaining polyamine biosynthesis through the enhanced SAMDC activity in grapevine leaf tissues under salt stress conditions could contribute to the enhanced ROS scavenging activity and a protection of photosynthetic apparatus from oxidative damages. Copyright © 2014 Elsevier GmbH. All rights reserved.

  18. Effect of Antioxidants, Amino Acids and Plant Growth Regulators on in vitro Propagation of Rosa centifolia.

    Science.gov (United States)

    Akhtar, Gulzar; Jaskani, Muhammad Jafar; Sajjad, Yasar; Akram, Ahsan

    2016-03-01

    Rosa centifoliais commercially propagated by asexual means but in vitro propagation ensure the production of disease free and healthy plants and browning of explants creates hurdle in their multiplication. The aim was to reduce oxidative browning of shoots of R. centifolia in MS medium during in vitro propagation. Axillary buds of R. centifolia were sterilized with 70% ethyl alcohol for 4 min and 5% sodium hypochlorite for 2 min followed by three washing with sterilized double distilled water. In order to control oxidative browning, Ascorbic acid (100 mg.L -1 ), citric acid (100 mg.L -1 ) and activated charcoal (3 g.L -1 ) were used while to control withering of shoots, different concentrations (3.0 mg.L -1 , 6.0 mg.L -1 , 9.0 mg.L -1 ) of either glutamine, asparagine and proline were put into trial. Different concentrations of Benzyl aminopurine (BAP) and naphthalene acetic acid (NAA) were used for in vitro shoot and root formation. Minimum browning percentage (20%) was achieved in the presence of activated charcoal (3.0 g.L -1 ) and pretreatment of explants with running tap water. Asparagin (9.0 mg.L -1 ) produced maximum shooting (93%), minimum withering (6.67%), and it took longer period (27 days) for shoots to wither. BAP (3.0 mg.L -1 ) + NAA (0.5 mg.L -1 ) was produced the highest number of shoots (1.63), in a shortest periods (9 days). For root production, NAA (1.5 mg.L -1 ) + BAP (0.5 mg.L -1 ) reduced the time to 11 days with maximum number of roots (4.33) and root length (4.20 cm). The supplement of activated charcoal (3.0 g.L -1 ), a sparagin (9.0 mg.L -1 ) and combination of BAP and NAA in the MS medium is effective for in vitro propagation of R. centifolia.

  19. The Role of Oxidative Stress and Antioxidants in Liver Diseases

    Directory of Open Access Journals (Sweden)

    Sha Li

    2015-11-01

    Full Text Available A complex antioxidant system has been developed in mammals to relieve oxidative stress. However, excessive reactive species derived from oxygen and nitrogen may still lead to oxidative damage to tissue and organs. Oxidative stress has been considered as a conjoint pathological mechanism, and it contributes to initiation and progression of liver injury. A lot of risk factors, including alcohol, drugs, environmental pollutants and irradiation, may induce oxidative stress in liver, which in turn results in severe liver diseases, such as alcoholic liver disease and non-alcoholic steatohepatitis. Application of antioxidants signifies a rational curative strategy to prevent and cure liver diseases involving oxidative stress. Although conclusions drawn from clinical studies remain uncertain, animal studies have revealed the promising in vivo therapeutic effect of antioxidants on liver diseases. Natural antioxidants contained in edible or medicinal plants often possess strong antioxidant and free radical scavenging abilities as well as anti-inflammatory action, which are also supposed to be the basis of other bioactivities and health benefits. In this review, PubMed was extensively searched for literature research. The keywords for searching oxidative stress were free radicals, reactive oxygen, nitrogen species, anti-oxidative therapy, Chinese medicines, natural products, antioxidants and liver diseases. The literature, including ours, with studies on oxidative stress and anti-oxidative therapy in liver diseases were the focus. Various factors that cause oxidative stress in liver and effects of antioxidants in the prevention and treatment of liver diseases were summarized, questioned, and discussed.

  20. Chemical composition, in vitro antioxidant and anti-inflammatory properties of essential oils of four dietary and medicinal plants from Cameroon.

    Science.gov (United States)

    Ndoye Foe, Florentine Marie-Chantal; Tchinang, Tatiana Flore Kemegni; Nyegue, Ascencion Maximilienne; Abdou, Jean-Pierre; Yaya, Abel Joel Gbaweng; Tchinda, Alembert Tiabou; Essame, Jean-Louis Oyono; Etoa, François-Xavier

    2016-04-07

    In the Cameroonian traditional medicine, plants of the Capparidaceae, Euphorbiaceae and Liliaceae families are used to treat several metabolic diseases. These plants are rich in various compounds belonging to the glucosinolates and thiosulfinates family. Till date, very little studies have been done aiming at assessing the antioxidant and inflammatory properties of the essential oils (EOs) of these plants. Essential oils are volatile extracts produced by secondary metabolism. They are usually constituted of terpens and may also contain specific non terpenic components such as glucosinolates and thiosulfinates for the species that are being considered in the present study. This study highlights and compares the chemical composition, antioxidant and anti-inflammatory properties of the essential oils of the stem barks of Drypetes gossweileri (Euphorbiaceae), roots of Pentadiplandra brazzeana (Capparidaceae), red bulbs of Allium cepa and Alium sativum (Liliaceae) collected in Cameroon (Central Africa). The essential oils were extracted by hydrodistillation and analyzed by gas chromatography (GC) and gas chromatography coupled to mass spectrometry (GC-MS). In vitro antioxidant activities were determined using the radical scavenging assay, total phenolic content, ferric reducing antioxidant power (FRAP) assay and determination of antioxidant activity index (AAI) according to the method described by Scherer and Godoy. The anti-inflammatory activities were evaluated using albumin denaturation method. Differences (p essential oil were diallyl trisulfide (41.62 %), diallyl disulfide (19.74 %), allyl methyl trisulfide (12.95 %), diallyl sulfide (7.1 %) and diallyl tetrasulfide (4.22 %). Those of Allium cepa essential oil were diallyl trisulfide (22.17 %), dipropyl trisulfide (11.11 %), 2-methyl-3,4-dithiaheptane (9.88 %), methyl propyl trisulfide (8.14 %), dipropyl tetrasulfide (8.07 %) and 2-propenyl propyl disulfide (5.15 %). Drypetes gossweileri and Pentadiplandra

  1. Antioxidant activity and total phenolic and flavonoid content of ...

    African Journals Online (AJOL)

    ajl yemi

    2011-12-19

    Dec 19, 2011 ... Key words: Astragalus squarrosus, antioxidant, phenolics, flavonoids. INTRODUCTION ... Phenolic and flavonoid compounds are widely distri- buted plant constituents. ..... Antioxidant effects of some ginger constituents.

  2. Mechanics of Cellulose Synthase Complexes in Living Plant Cells

    Science.gov (United States)

    Zehfroosh, Nina; Liu, Derui; Ramos, Kieran P.; Yang, Xiaoli; Goldner, Lori S.; Baskin, Tobias I.

    The polymer cellulose is one of the major components of the world's biomass with unique and fascinating characteristics such as its high tensile strength, renewability, biodegradability, and biocompatibility. Because of these distinctive aspects, cellulose has been the subject of enormous scientific and industrial interest, yet there are still fundamental open questions about cellulose biosynthesis. Cellulose is synthesized by a complex of transmembrane proteins called ``Cellulose Synthase A'' (CESA) in the plasma membrane. Studying the dynamics and kinematics of the CESA complex will help reveal the mechanism of cellulose synthesis and permit the development and validation of models of CESA motility. To understand what drives these complexes through the cell membrane, we used total internal reflection fluorescence microscopy (TIRFM) and variable angle epi-fluorescence microscopy to track individual, fluorescently-labeled CESA complexes as they move in the hypocotyl and root of living plants. A mean square displacement analysis will be applied to distinguish ballistic, diffusional, and other forms of motion. We report on the results of these tracking experiments. This work was funded by NSF/PHY-1205989.

  3. Antioxidant activity, phenolic content, and peroxide value of essential oil and extracts of some medicinal and aromatic plants used as condiments and herbal teas in Turkey.

    Science.gov (United States)

    Ozcan, Mehmet Musa; Erel, Ozcan; Herken, Emine Etöz

    2009-02-01

    The antioxidant activity, total peroxide values, and total phenol contents of several medicinal and aromatic plant essential oil and extracts from Turkey were examined. Total phenolic contents were determined using a spectrophotometric technique and calculated as gallic acid equivalents. Total antioxidant activity of essential oil and extracts varied from 0.6853 to 1.3113 and 0.3189 to 0.6119 micromol of Trolox equivalents/g, respectively. The total phenolic content of essential oil ranged from 0.0871 to 0.5919 mg of gallic acid/g dry weight. However, the total phenolic contents of extracts were found to be higher compared with those of essential oils. The amount of total peroxide values of oils varied from 7.31 (pickling herb) to 58.23 (bitter fennel flower) mumol of H(2)O(2)/g. As a result, it is shown that medicinal plant derivatives such as extract and essential oils can be useful as a potential source of total phenol, peroxide, and antioxidant capacity for protection of processed foods.

  4. Thioredoxins, Glutaredoxins, and Peroxiredoxins—Molecular Mechanisms and Health Significance: from Cofactors to Antioxidants to Redox Signaling

    Science.gov (United States)

    Hanschmann, Eva-Maria; Godoy, José Rodrigo; Berndt, Carsten; Hudemann, Christoph

    2013-01-01

    Abstract Thioredoxins (Trxs), glutaredoxins (Grxs), and peroxiredoxins (Prxs) have been characterized as electron donors, guards of the intracellular redox state, and “antioxidants”. Today, these redox catalysts are increasingly recognized for their specific role in redox signaling. The number of publications published on the functions of these proteins continues to increase exponentially. The field is experiencing an exciting transformation, from looking at a general redox homeostasis and the pathological oxidative stress model to realizing redox changes as a part of localized, rapid, specific, and reversible redox-regulated signaling events. This review summarizes the almost 50 years of research on these proteins, focusing primarily on data from vertebrates and mammals. The role of Trx fold proteins in redox signaling is discussed by looking at reaction mechanisms, reversible oxidative post-translational modifications of proteins, and characterized interaction partners. On the basis of this analysis, the specific regulatory functions are exemplified for the cellular processes of apoptosis, proliferation, and iron metabolism. The importance of Trxs, Grxs, and Prxs for human health is addressed in the second part of this review, that is, their potential impact and functions in different cell types, tissues, and various pathological conditions. Antioxid. Redox Signal. 19, 1539–1605. PMID:23397885

  5. Antihyperglycemic Potential of Grewia asiatica Fruit Extract against Streptozotocin-Induced Hyperglycemia in Rats: Anti-Inflammatory and Antioxidant Mechanisms

    Directory of Open Access Journals (Sweden)

    Hala A. H. Khattab

    2015-01-01

    Full Text Available Diabetes mellitus is regarded as a serious chronic disease that carries a high risk for considerable complications. In folk medicine, the edible Grewia asiatica fruit is used in a number of pathological conditions. This study aimed to investigate the possible curative effect of G. asiatica fruit ethanolic extract against streptozotocin- (STZ- induced hyperglycemia in rats. Furthermore, mechanism of antihyperglycemic action is investigated. Hyperglycemic rats are either treated with 100 or 200 mg/kg/day G. asiatica fruits extract. Serum glucose, liver glycogen, malondialdehyde (MDA, reduced glutathione (GSH, superoxide dismutase (SOD, interleukin- (IL- 1β, and tumor necrosis factor- (TNF- α are measured. G. asiatica fruits extract reduces blood glucose and pancreatic MDA levels. It increases liver glycogen and pancreatic GSH contents and SOD enzyme activity. Furthermore, Grewia asiatica fruits extract decreases serum IL-1β and TNF-α. The treatment also protects against STZ-induced pathological changes in the pancreas. The results of this study indicated that G. asiatica fruit extract exerts antihyperglycemic activity against STZ-induced hyperglycemia. The improvement in the pancreatic β-cells and antioxidant and anti-inflammatory effects of G. asiatica fruit extract may explain the antihyperglycemic effect.

  6. Antihyperglycemic Potential of Grewia asiatica Fruit Extract against Streptozotocin-Induced Hyperglycemia in Rats: Anti-Inflammatory and Antioxidant Mechanisms

    Science.gov (United States)

    Khattab, Hala A. H.; El-Shitany, Nagla A.; Abdallah, Inas Z. A.; Yousef, Fatimah M.; Alkreathy, Huda M.

    2015-01-01

    Diabetes mellitus is regarded as a serious chronic disease that carries a high risk for considerable complications. In folk medicine, the edible Grewia asiatica fruit is used in a number of pathological conditions. This study aimed to investigate the possible curative effect of G. asiatica fruit ethanolic extract against streptozotocin- (STZ-) induced hyperglycemia in rats. Furthermore, mechanism of antihyperglycemic action is investigated. Hyperglycemic rats are either treated with 100 or 200 mg/kg/day G. asiatica fruits extract. Serum glucose, liver glycogen, malondialdehyde (MDA), reduced glutathione (GSH), superoxide dismutase (SOD), interleukin- (IL-) 1β, and tumor necrosis factor- (TNF-) α are measured. G. asiatica fruits extract reduces blood glucose and pancreatic MDA levels. It increases liver glycogen and pancreatic GSH contents and SOD enzyme activity. Furthermore, Grewia asiatica fruits extract decreases serum IL-1β and TNF-α. The treatment also protects against STZ-induced pathological changes in the pancreas. The results of this study indicated that G. asiatica fruit extract exerts antihyperglycemic activity against STZ-induced hyperglycemia. The improvement in the pancreatic β-cells and antioxidant and anti-inflammatory effects of G. asiatica fruit extract may explain the antihyperglycemic effect. PMID:26347423

  7. Antioxidant activity of nine Fabaceae species growing in Serbia and Montenegro.

    Science.gov (United States)

    Godevac, Dejan; Zdunić, Gordana; Savikin, Katarina; Vajs, Vlatka; Menković, Nebojsa

    2008-04-01

    The aim of this study was to investigate antioxidant capacity of nine Fabaceae species collected on the mountains of Serbia and Montenegro. Antioxidant assays with various reaction mechanisms were used, including total phenolic content by Folin-Ciocalteu, DPPH radical scavenging capacity, Trolox equivalent antioxidant capacity (TEAC) values by ABTS radical cation and inhibition of liposome peroxidation. The investigated plants exhibited strong antioxidant capacity in all the tested methods, and among them, Lathyrus binatus, Trifolium pannonicum, and Anthyllis aurea were found to be the most active.

  8. A study of antioxidant activity, enzymatic inhibition and in vitro toxicity of selected traditional sudanese plants with anti-diabetic potential

    Science.gov (United States)

    2014-01-01

    Background Diabetes mellitus is a chronic metabolic disease with life-threatening complications. Despite the enormous progress in conventional medicine and pharmaceutical industry, herbal-based medicines are still a common practice for the treatment of diabetes. This study evaluated ethanolic and aqueous extracts of selected Sudanese plants that are traditionally used to treat diabetes. Methods Extraction was carried out according to method described by Sukhdev et. al. and the extracts were tested for their glycogen phosphorylase inhibition, Brine shrimp lethality and antioxidant activity using (DPPH) radical scavenging activity and iron chelating activity. Extracts prepared from the leaves of Ambrosia maritima, fruits of Foeniculum vulgare and Ammi visnaga, exudates of Acacia Senegal, and seeds of Sesamum indicum and Nigella sativa. Results Nigella sativa ethanolic extract showed no toxicity on Brine shrimp Lethality Test, while its aqueous extract was toxic. All other extracts were highly toxic and ethanolic extracts of Foeniculum vulgare exhibited the highest toxicity. All plant extracts with exception of Acacia senegal revealed significant antioxidant activity in DPPH free radical scavenging assay. Conclusions These results highly agree with the ethnobotanical uses of these plants as antidiabetic. This study endorses further studies on plants investigated, to determine their potential for type 2 diabetes management. Moreover isolation and identification of active compounds are highly recommended. PMID:24885334

  9. Antioxidants of edible mushrooms

    NARCIS (Netherlands)

    Kozarski, Maja; Klaus, Anita; Jakovljevic, Dragica; Todorovic, Nina; Vunduk, Jovana; Petrović, Predrag; Niksic, Miomir; Vrvic, Miroslav M.; Griensven, Van Leo

    2015-01-01

    Oxidative stress caused by an imbalanced metabolism and an excess of reactive oxygen species (ROS) lead to a range of health disorders in humans. Our endogenous antioxidant defense mechanisms and our dietary intake of antioxidants potentially regulate our oxidative homeostasis. Numerous synthetic

  10. HPTLC-profiling of eleutherosides, mechanism of antioxidative action of eleutheroside E1, the PAMPA test with LC/MS detection and the structure–activity relationship

    Directory of Open Access Journals (Sweden)

    Daniel Załuski

    2018-03-01

    Full Text Available Human body is constantly generating free radicals, which causes oxidative stress. Despite naturally occurring antioxidant systems in human body, free radicals cause lipid, proteins and DNA oxidation. New antioxidants are still urgent as well as their mechanisms of action should be explained. In this study, we investigated the mechanism by which eleutherosides B, E and E1 may act as antioxidants, identified eleutherosides in Eleutherococcus lasiogyne and Eleutherococcus giraldii, and explained in vitro the absorption of eleutheroside E1 based on passive transport. The DPPH∗ and DB-HPTLC tests were used to assess the antioxidant activity. Of the three eleutherosides, only eleutheroside E1 exhibited a strong anti-DPPH∗ activity (EC50 37.03 μg/mL; 63 mMol compared to the raw extracts (EC50 170 and 180 μg/mL for E. lasiogyne and E. giraldii. This activity was also confirmed by the DB-HPTLC autography technique. According to Załuski’s hypothesis, the antioxidant mechanism of eleutheroside E1 is based on the complexation of DPPH∗ molecule with its aryl radical. During this reaction, the aryl radical of eleutheroside E1 (E1∗ and DPPHH are created. Next, the aryl radical (E1∗ is complexed with another DPPH∗ molecule. Additionally, the aryl radical can be stabilized by the presence of the methoxy groups in the aromatic ring, which increases its antioxidative action. The HPTLC-identification of extracts showed the presence of eleutherosides B, E and E1 in both species. The PAMPA test coupled with LC/MS detection showed a low permeability of eleutheroside E1 across artificial membrane. Because eleutherosides belong to the polyphenols, the TPC and TFC were quantified. The TPC and TFC varied from 51.4 to 49.3 mg/g dry extract for TPC, and from 5.73 to 4.91 mg/g dry extract for TFC, for E. giraldii and E. lasiogyne, respectively. In conclusion, eleutheroside E1 in its pure form could be a chemopreventive ingredient of new pharmacological

  11. HPLC-UV/DAD and ESI-MS(n) analysis of flavonoids and antioxidant activity of an Algerian medicinal plant: Paronychia argentea Lam.

    Science.gov (United States)

    Sait, Sabrina; Hamri-Zeghichi, Sabrina; Boulekbache-Makhlouf, Lila; Madani, Khodir; Rigou, Peggy; Brighenti, Virginia; Pio Prencipe, Francesco; Benvenuti, Stefania; Pellati, Federica

    2015-01-01

    Paronychia argentea Lam., belonging to the Caryophyllaceae family, is a perennial plant widely distributed in Algeria. Even though this plant is used in the Algerian popular medicine, its phytochemical characterization is incomplete. In this study, the flavonoid profile and the in vitro antioxidant activity of the ethanolic extract, decoction and infusion of P. argentea aerial parts are reported. Flavonoids were analyzed by means of high-performance liquid chromatography coupled with diode array detection and electrospray ionization mass spectrometry. Eleven compounds were identified and six of them, including isorhamnetin-3-O-dihexoside, quercetin-3-O-glucoside, quercetinmethylether-O-hexoside, quercetin, jaceosidin and isorhamnetin, were described in this plant for the first time. The ethanol extract showed the highest flavonoid content, followed by the decoction and the infusion (25.4 ± 0.8 mg/g of DM, 8.4 ± 0.5 mg/g of DM, 0.2 mg/g of DM, respectively), while the best antioxidant activity was shown by the decoction (RC0.5 = 178 μg/mL for reducing power, 72.4% of inhibition of lipid peroxidation, IC50 = 27.38μ g/mL for DPPH radical scavenging activity and 59.7% of inhibition of NO radical). These results showed that P. argentea decoction could be considered as a valuable source of flavonoids and antioxidants that might contribute to the valorization of the phytotherapeutic potential of this plant. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Quantitative Proteomic Analysis Reveals that Antioxidation Mechanisms Contribute to Cold Tolerance in Plantain (Musa paradisiaca L.; ABB Group) Seedlings*

    Science.gov (United States)

    Yang, Qiao-Song; Wu, Jun-Hua; Li, Chun-Yu; Wei, Yue-Rong; Sheng, Ou; Hu, Chun-Hua; Kuang, Rui-Bin; Huang, Yong-Hong; Peng, Xin-Xiang; McCardle, James A.; Chen, Wei; Yang, Yong; Rose, Jocelyn K. C.; Zhang, Sheng; Yi, Gan-Jun

    2012-01-01

    Banana and its close relative, plantain are globally important crops and there is considerable interest in optimizing their cultivation. Plantain has superior cold tolerance compared with banana and a thorough understanding of the molecular mechanisms and responses of plantain to cold stress has great potential value for developing cold tolerant banana cultivars. In this study, we used iTRAQ-based comparative proteomic analysis to investigate the temporal responses of plantain to cold stress. Plantain seedlings were exposed for 0, 6, and 24 h of cold stress at 8 °C and subsequently allowed to recover for 24 h at 28 °C. A total of 3477 plantain proteins were identified, of which 809 showed differential expression from the three treatments. The majority of differentially expressed proteins were predicted to be involved in oxidation-reduction, including oxylipin biosynthesis, whereas others were associated with photosynthesis, photorespiration, and several primary metabolic processes, such as carbohydrate metabolic process and fatty acid beta-oxidation. Western blot analysis and enzyme activity assays were performed on seven differentially expressed, cold-response candidate plantain proteins to validate the proteomics data. Similar analyses of the seven candidate proteins were performed in cold-sensitive banana to examine possible functional conservation, and to compare the results to equivalent responses between the two species. Consistent results were achieved by Western blot and enzyme activity assays, demonstrating that the quantitative proteomics data collected in this study are reliable. Our results suggest that an increase of antioxidant capacity through adapted ROS scavenging capability, reduced production of ROS, and decreased lipid peroxidation contribute to molecular mechanisms for the increased cold tolerance in plantain. To the best of our knowledge, this is the first report of a global investigation on molecular responses of plantain to cold stress by

  13. Quantitative proteomic analysis reveals that antioxidation mechanisms contribute to cold tolerance in plantain (Musa paradisiaca L.; ABB Group) seedlings.

    Science.gov (United States)

    Yang, Qiao-Song; Wu, Jun-Hua; Li, Chun-Yu; Wei, Yue-Rong; Sheng, Ou; Hu, Chun-Hua; Kuang, Rui-Bin; Huang, Yong-Hong; Peng, Xin-Xiang; McCardle, James A; Chen, Wei; Yang, Yong; Rose, Jocelyn K C; Zhang, Sheng; Yi, Gan-Jun

    2012-12-01

    Banana and its close relative, plantain are globally important crops and there is considerable interest in optimizing their cultivation. Plantain has superior cold tolerance compared with banana and a thorough understanding of the molecular mechanisms and responses of plantain to cold stress has great potential value for developing cold tolerant banana cultivars. In this study, we used iTRAQ-based comparative proteomic analysis to investigate the temporal responses of plantain to cold stress. Plantain seedlings were exposed for 0, 6, and 24 h of cold stress at 8 °C and subsequently allowed to recover for 24 h at 28 °C. A total of 3477 plantain proteins were identified, of which 809 showed differential expression from the three treatments. The majority of differentially expressed proteins were predicted to be involved in oxidation-reduction, including oxylipin biosynthesis, whereas others were associated with photosynthesis, photorespiration, and several primary metabolic processes, such as carbohydrate metabolic process and fatty acid beta-oxidation. Western blot analysis and enzyme activity assays were performed on seven differentially expressed, cold-response candidate plantain proteins to validate the proteomics data. Similar analyses of the seven candidate proteins were performed in cold-sensitive banana to examine possible functional conservation, and to compare the results to equivalent responses between the two species. Consistent results were achieved by Western blot and enzyme activity assays, demonstrating that the quantitative proteomics data collected in this study are reliable. Our results suggest that an increase of antioxidant capacity through adapted ROS scavenging capability, reduced production of ROS, and decreased lipid peroxidation contribute to molecular mechanisms for the increased cold tolerance in plantain. To the best of our knowledge, this is the first report of a global investigation on molecular responses of plantain to cold stress by

  14. Interactive effects of UV radiation and reduced precipitation on the seasonal leaf phenolic content/composition and the antioxidant activity of naturally growing Arbutus unedo plants.

    Science.gov (United States)

    Nenadis, Nikolaos; Llorens, Laura; Koufogianni, Agathi; Díaz, Laura; Font, Joan; Gonzalez, Josep Abel; Verdaguer, Dolors

    2015-12-01

    The effects of UV radiation and rainfall reduction on the seasonal leaf phenolic content/composition and antioxidant activity of the Mediterranean shrub Arbutus unedo were studied. Naturally growing plants of A. unedo were submitted to 97% UV-B reduction (UVA), 95% UV-A+UV-B reduction (UV0) or near-ambient UV levels (UVBA) under two precipitation regimes (natural rainfall or 10-30% rainfall reduction). Total phenol, flavonol and flavanol contents, levels of eight phenols and antioxidant activity [DPPH(●) radical scavenging and Cu (II) reducing capacity] were measured in sun-exposed leaves at the end of four consecutive seasons. Results showed a significant seasonal variation in the leaf content of phenols of A. unedo, with the lowest values found in spring and the highest in autumn and/or winter. Leaf ontogenetic development and/or a possible effect of low temperatures in autumn/winter may account for such findings. Regardless of the watering regime and the sampling date, plant exposure to UV-B radiation decreased the total flavanol content of leaves, while it increased the leaf content in quercitrin (the most abundant quercetin derivative identified). By contrast, UV-A radiation increased the leaf content of theogallin, a gallic acid derivative. Other phenolic compounds (two quercetin derivatives, one of them being avicularin, and one kaempferol derivative, juglanin), as well as the antioxidant activity of the leaves, showed different responses to UV radiation depending on the precipitation regime. Surprisingly, reduced rainfall significantly decreased the total amount of quantified quercetin derivatives as well as the DPPH scavenging activity in A. unedo leaves. To conclude, present findings indicate that leaves of A. unedo can be a good source of antioxidants throughout the year, but especially in autumn and winter. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Variations in Essential Oil Yield, Composition, and Antioxidant Activity of Different Plant Organs from Blumea balsamifera (L.) DC. at Different Growth Times.

    Science.gov (United States)

    Yuan, Yuan; Huang, Mei; Pang, Yu-Xin; Yu, Fu-Lai; Chen, Ce; Liu, Li-Wei; Chen, Zhen-Xia; Zhang, Ying-Bo; Chen, Xiao-Lu; Hu, Xuan

    2016-08-05

    Blumea balsamifera, also named Ainaxiang, is widely used as an ancient medicinal herb in tropical and subtropical Asia. It is rich in essential oils. In this work the essential oils of B. balsamifera from different plant organs and in different months were extracted, and then analyzed by gas chromatography-mass spectrometry. The results showed that essential oil yield of young leaves was the highest (0.65 mL/100 g), followed by mature leaves (0.57 mL/100 g), and the oil yield was higher in October (0.47 mL/100 g) than other months. A total of 44 compounds were identified, representing 92.64%-96.71% of the oil. Eighteen common chemical components were found among the six plant organs, representing >80% of the oil constituents. l-borneol was the main ingredient in leaves, and its content was the highest in senescent leaves and in December. In the essential oils of young shoots and young stems, the main component was dimethoxydurene. Antioxidant activity was also determined using the 2,2-diphenyl-1-picrylhydrazyl (DPPH) and β-carotene bleaching (BCB) assays. The results indicated that the β-carotene bleaching activity was far stronger than the DPPH radical-scavenging capacity, and the young leaves and young shoots showed stronger antioxidant activity. Dimethoxydurene, β-caryophyllene, and α-caryophyllene play a positive role in good antioxidant activity, while β-eudesmol, phytol, and tetradecanal play a negative role. The antioxidant activity revealed in this study might help in developing this promising bioresource for use in the medicinal and cosmetic industries.

  16. Antioxidants of Edible Mushrooms

    Directory of Open Access Journals (Sweden)

    Maja Kozarski

    2015-10-01

    Full Text Available Oxidative stress caused by an imbalanced metabolism and an excess of reactive oxygen species (ROS lead to a range of health disorders in humans. Our endogenous antioxidant defense mechanisms and our dietary intake of antioxidants potentially regulate our oxidative homeostasis. Numerous synthetic antioxidants can effectively improve defense mechanisms, but because of their adverse toxic effects under certain conditions, preference is given to natural compounds. Consequently, the requirements for natural, alternative sources of antioxidant foods identified in edible mushrooms, as well as the mechanistic action involved in their antioxidant properties, have increased rapidly. Chemical composition and antioxidant potential of mushrooms have been intensively studied. Edible mushrooms might be used directly in enhancement of antioxidant defenses through dietary supplementation to reduce the level of oxidative stress. Wild or cultivated, they have been related to significant antioxidant properties due to their bioactive compounds, such as polyphenols, polysaccharides, vitamins, carotenoids and minerals. Antioxidant and health benefits, observed in edible mushrooms, seem an additional reason for their traditional use as a popular delicacy food. This review discusses the consumption of edible mushrooms as a powerful instrument in maintaining health, longevity and life quality.

  17. The long-term resistance mechanisms, critical irrigation threshold and relief capacity shown by Eugenia myrtifolia plants in response to saline reclaimed water

    DEFF Research Database (Denmark)

    Acosta-Motos, José Ramón; Hernández, José Antonio; Álvarez, Sara

    2017-01-01

    water potential, the relative water content of leaves, leaf stomatal conductance, the leaf photosynthetic rate, water-use efficiency and accumulated evapotranspiration in order to limit water loss; and 4) changes in the antioxidant defence mechanisms. These different responses induced oxidative stress...... to different electric conductivities of the treatments. Based on these premises, we studied the long-term effect of three reclaimed water treatments with different saline concentrations on Eugenia myrtifolia plants. We also looked at the ability of these plants to recover when no drainage was applied. The RW...... with the highest electric conductivity (RW3, EC = 6.96 dS m(-1)) provoked a number of responses to salinity in these plants, including: 1) accumulation and extrusion of phytotoxic ions in roots; 2) a decrease in the shoot/root ratio, leaf area, number of leaves; 3) a decrease in root hydraulic conductivity, leaf...

  18. Dietary Protection Against Free Radicals: A Case for Multiple Testing to Establish Structure-activity Relationships for Antioxidant Potential of Anthocyanic Plant Species

    Directory of Open Access Journals (Sweden)

    Chiara Cheng Lim

    2009-03-01

    Full Text Available DNA damage by reactive species is associated with susceptibility to chronic human degenerative disorders. Anthocyanins are naturally occurring antioxidants, that may prevent or reverse such damage. There is considerable interest in anthocyanic food plants as good dietary sources, with the potential for reducing susceptibility to chronic disease. While structure-activity relationships have provided guidelines on molecular structure in relation to free hydroxyl- radical scavenging, this may not cover the situation in food plants where the anthocyanins are part of a complex mixture, and may be part of complex structures, including anthocyanic vacuolar inclusions (AVIs. Additionally, new analytical methods have revealed new structures in previously-studied materials. We have compared the antioxidant activities of extracts from six anthocyanin-rich edible plants (red cabbage, red lettuce, blueberries, pansies, purple sweetpotato skin, purple sweetpotato flesh and Maori potato flesh using three chemical assays (DPPH, TRAP and ORAC, and the in vitro Comet assay. Extracts from the flowering plant, lisianthus, were used for comparison. The extracts showed differential effects in the chemical assays, suggesting that closely related structures have different affinities to scavenge different reactive species. Integration of anthocyanins to an AVI led to more sustained radical scavenging activity as compared with the free anthocyanin. All but the red lettuce extract could reduce endogenous DNA damage in HT-29 colon cancer cells. However, while extracts from purple sweetpotato skin and flesh, Maori potato and pansies, protected cells against subsequent challenge by hydrogen peroxide at 0oC, red cabbage extracts were pro-oxidant, while other extracts had no effect. When the peroxide challenge was at 37oC, all of the extracts appeared pro-oxidant. Maori potato extract, consistently the weakest antioxidant in all the chemical assays, was more effective in the

  19. Chemical analysis, antimicrobial and anti-oxidative properties of Daucus gracilis essential oil and its mechanism of action

    Directory of Open Access Journals (Sweden)

    Meriem El Kolli

    2016-01-01

    Conclusions: D. gracilis EO showed potent antimicrobial and anti-oxidative activities and had acted on the cytoplasm membrane. These activities could be exploited in the food industry for food preservation.

  20. A review on the molecular mechanism of plants rooting modulated ...

    African Journals Online (AJOL)

    Phytohormones, especially auxin, played an essential role in regulating roots developments. This review focused on recent advances in the research of plants rooting genomics and proteomics, including auxin biosynthesis, metabolism, transport, and signaling pathway which are involved in modulating plants rooting and ...

  1. Preventive effects of Salvia officinalis L. against learning and memory deficit induced by diabetes in rats: Possible hypoglycaemic and antioxidant mechanisms.

    Science.gov (United States)

    Hasanein, Parisa; Felehgari, Zhila; Emamjomeh, Abbasali

    2016-05-27

    Learning and memory impairment occurs in diabetes. Salvia officinalis L. (SO) has been used in Iranian traditional medicine as a remedy against diabetes. We hypothesized that chronic administration of SO (400, 600 and 800mg/kg, p.o.) and its principal constituent, rosmarinic acid, would affect on passive avoidance learning (PAL) and memory in streptozocin-induced diabetic and non-diabetic rats. We also explored hypoglycemic and antioxidant activities of SO as the possible mechanisms. Treatments were begun at the onset of hyperglycemia. PAL was assessed 30days later. Retention test was done 24h after training. At the end, animals were weighed and blood samples were drawn for further analyzing of glucose and oxidant/antioxidant markers. Diabetes induced deficits in acquisition and retrieval processes. SO (600 and 800mg/kg) and rosmarinic acid reversed learning and memory deficits induced by diabetes and improved cognition of healthy rats. While the dose of 400mg/kg had no effect, the higher doses and rosmarinic acid inhibited hyperglycemia and lipid peroxidation as well as enhanced the activity of antioxidant enzymes superoxide dismutase and catalase. SO prevented diabetes-induced acquisition and memory deficits through inhibiting hyperglycemia, lipid peroxidation as well as enhancing antioxidant defense systems. Therefore, SO and its principal constituent rosmarinic acid represent a potential therapeutic option against diabetic memory impairment which deserves consideration and further examination. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  2. The molecular mechanisms of OPA1-mediated optic atrophy in Drosophila model and prospects for antioxidant treatment.

    Directory of Open Access Journals (Sweden)

    Will Yarosh

    2008-01-01

    Full Text Available Mutations in optic atrophy 1 (OPA1, a nuclear gene encoding a mitochondrial protein, is the most common cause for autosomal dominant optic atrophy (DOA. The condition is characterized by gradual loss of vision, color vision defects, and temporal optic pallor. To understand the molecular mechanism by which OPA1 mutations cause optic atrophy and to facilitate the development of an effective therapeutic agent for optic atrophies, we analyzed phenotypes in the developing and adult Drosophila eyes produced by mutant dOpa1 (CG8479, a Drosophila ortholog of human OPA1. Heterozygous mutation of dOpa1 by a P-element or transposon insertions causes no discernable eye phenotype, whereas the homozygous mutation results in embryonic lethality. Using powerful Drosophila genetic techniques, we created eye-specific somatic clones. The somatic homozygous mutation of dOpa1 in the eyes caused rough (mispatterning and glossy (decreased lens and pigment deposition eye phenotypes in adult flies; this phenotype was reversible by precise excision of the inserted P-element. Furthermore, we show the rough eye phenotype is caused by the loss of hexagonal lattice cells in developing eyes, suggesting an increase in lattice cell apoptosis. In adult flies, the dOpa1 mutation caused an increase in reactive oxygen species (ROS production as well as mitochondrial fragmentation associated with loss and damage of the cone and pigment cells. We show that superoxide dismutase 1 (SOD1, Vitamin E, and genetically overexpressed human SOD1 (hSOD1 is able to reverse the glossy eye phenotype of dOPA1 mutant large clones, further suggesting that ROS play an important role in cone and pigment cell death. Our results show dOpa1 mutations cause cell loss by two distinct pathogenic pathways. This study provides novel insights into the pathogenesis of optic atrophy and demonstrates the promise of antioxidants as therapeutic agents for this condition.

  3. Secondary targets of nitrite-derived reactive nitrogen species: nitrosation/nitration pathways, antioxidant defense mechanisms and toxicological implications.

    Science.gov (United States)

    d'Ischia, Marco; Napolitano, Alessandra; Manini, Paola; Panzella, Lucia

    2011-12-19

    Nitrite, the primary metabolite of nitric oxide (NO) and a widely diffused component of human diet, plays distinct and increasingly appreciated roles in human physiology. However, when exposed to acidic environments, typically in the stomach, or under oxidative stress conditions, it may be converted to a range of reactive nitrogen species (RNS) which in turn can target a variety of biomolecules. Typical consequences of toxicological relevance include protein modification, DNA base deamination and the formation of N-nitrosamines, among the most potent mutagenic and carcinogenic compounds for humans. Besides primary biomolecules, nitrite can cause structural modifications to a variety of endogenous and exogenous organic compounds, ranging from polyunsaturated fatty acids to estrogens, tocopherol, catecholamines, furans, retinoids, dietary phenols, and a range of xenobiotics. The study of the interactions between nitrite and key food components, including phenolic antioxidants, has therefore emerged as an area of great promise for delineating innovative strategies in cancer chemoprevention. Depending on substrates and conditions, diverse reaction pathways may compete to determine product features and distribution patterns. These include nitrosation and nitration but also oxidation, via electron transfer to nitrosonium ion or nitrogen dioxide. This cont