WorldWideScience

Sample records for planet future energy

  1. Cellulosic Ethanol: Securing the Planet Future Energy Needs

    Directory of Open Access Journals (Sweden)

    Hannah Uckelmann

    2008-05-01

    Full Text Available Bioenergy is fairly recognized as not only a necessity, but an inevitable path to secure the planet future energy needs. There is however a global consensus that the overall feasibility of bioenergy will require an integrated approach based on diversified feedstocks and conversion processes. As illustrated in the Brazilian experience, the thrust of any bioenergy program should be centered on the principles and criteria of sustainable production. In general the trends are towards exploiting low value cellulosic materials to obtain high-end value energy products. To this end, it is expected that scientific or technical innovation will come to play a critical role on the future prospects and potential of any bioenergy initiative.

  2. Planets and Dark Energy

    CERN Document Server

    Gibson, Carl H

    2008-01-01

    Self gravitational fluid mechanical methods termed hydro-gravitational-dynamics (HGD) predict plasma fragmentation 0.03 Myr after the turbulent big bang to form protosuperclustervoids, turbulent protosuperclusters, and protogalaxies at the 0.3 Myr transition from plasma to gas. Linear protogalaxyclusters fragment at 0.003 Mpc viscous-inertial scales along turbulent vortex lines or in spirals, as observed. The plasma protogalaxies fragment on transition into white-hot planet-mass gas clouds (PFPs) in million-solar-mass clumps (PGCs) that become globular-star-clusters (GCs) from tidal forces or dark matter (PGCs) by freezing and diffusion into 0.3 Mpc halos with 97% of the galaxy mass. The weakly collisional non-baryonic dark matter diffuses to > Mpc scales and fragments to form galaxy cluster halos. Stars and larger planets form by binary mergers of the trillion PFPs per PGC, mostly on 0.03 Mpc galaxy accretion disks. Stars deaths depend on rates of planet accretion and internal star mixing. Moderate accretion...

  3. Energy Futures

    DEFF Research Database (Denmark)

    Davies, Sarah Rachael; Selin, Cynthia

    2012-01-01

    foresight and public and stakeholder engagement are used to reflect on?and direct?the impacts of new technology. In this essay we draw on our experience of anticipatory governance, in the shape of the ?NanoFutures? project on energy futures, to present a reflexive analysis of engagement and deliberation. We...... draw out five tensions of the practice of deliberation on energy technologies. Through tracing the lineages of these dilemmas, we discuss some of the implications of these tensions for the practice of civic engagement and deliberation in a set of questions for this community of practitioner-scholars....

  4. Energy Futures

    DEFF Research Database (Denmark)

    Davies, Sarah Rachael; Selin, Cynthia

    2012-01-01

    foresight and public and stakeholder engagement are used to reflect on?and direct?the impacts of new technology. In this essay we draw on our experience of anticipatory governance, in the shape of the ?NanoFutures? project on energy futures, to present a reflexive analysis of engagement and deliberation. We...... draw out five tensions of the practice of deliberation on energy technologies. Through tracing the lineages of these dilemmas, we discuss some of the implications of these tensions for the practice of civic engagement and deliberation in a set of questions for this community of practitioner-scholars....

  5. DESERTEC: energy for the planet

    CERN Multimedia

    Anaïs Schaeffer

    2011-01-01

    The DESERTEC project, launched in 2007, aims to enable the countries of Europe, North Africa and the Middle East to cover a large part of their energy needs through the use of renewable energies by 2050. One of the instigators of this project is Gerhard Knies, former particle physicist at DESY (Deutsches Elektronen-Synchrotron). On several occasions he also took part in experiments at CERN, and on 3 February he returned to the Laboratory to present DESERTEC at a special colloquium.   By combining different sources of renewable energy, the DESERTEC project could supply the energy needs of the EU-MENA region countries. The red squares represent the total CSP surfaces needed to provide the present day electricity demands of the world, Europe and the MENA region. Source: DESERTEC Foundation, www.desertec.org The first stage of the project is to install solar power stations in the deserts of the North Africa and Middle East (MENA) region. Deserts are incomparable sources of clean energy and might hold ...

  6. Future prospects for the detection and characterization of extrasolar planets

    Directory of Open Access Journals (Sweden)

    Lunine J.I.

    2010-12-01

    Full Text Available Several distinctly different techniques have detected almost 500 planets orbiting around main-sequence stars, 45 multiple planet systems, and a number of extrasolar planets have been the subject of direct study. Hundreds of other “candidate” planets detected by the Kepler spacecraft await confirmation of their existence. Planets are thus common phenomena around stars, and the prospects seem good in the next few years for establishing statistics on the occurrence of Earth-sized planets. Extension of the most successful technique of Doppler spectroscopy in sensitivity to detect Earth-mass planets around Sun-like stars will be limited by the noise generated by the stellar photospheres themselves. The James Webb Space Telescope will have the capability to measure atmospheric abundances of certain gases and of liquid water on extrasolar planets, including “superEarths” within a factor of two of the radius of the Earth. The ultimate goal of measuring the atmospheric composition of an Earth-sized planet orbiting at 1 AU around a star like the Sun remains a daunting challenge that is perhaps twenty years in the future.

  7. Will Renewable Energy Save Our Planet?

    Science.gov (United States)

    Bojić, Milorad

    2010-06-01

    This paper discusses some important fundamental issues behind application of renewable energy (RE) to evaluate its impact as a climate change mitigation technology. The discussed issues are the following: definition of renewable energy, concentration of RE by weight and volume, generation of electrical energy and its power at unit area, electrical energy demand per unit area, life time approach vs. layman approach, energy return time, energy return ratio, CO2 return time, energy mix for RES production and use, geographical distribution of RES use, huge scale of energy shift from RES to non-RES, increase in energy consumption, Thermodynamic equilibrium of earth, and probable solutions for energy future of our energy and environmental crisis of today. The future solution (that would enable to human civilization further welfare, and good living, but with lower release of CO2 in atmosphere) may not be only RES. This will rather be an energy mix that may contain nuclear energy, non-nuclear renewable energy, or fossil energy with CO2 sequestration, efficient energy technologies, energy saving, and energy consumption decrease.

  8. The future of energy

    CERN Document Server

    Towler, Brian F

    2014-01-01

    Using the principle that extracting energy from the environment always involves some type of impact on the environment, The Future of Energy discusses the sources, technologies, and tradeoffs involved in meeting the world's energy needs. A historical, scientific, and technical background set the stage for discussions on a wide range of energy sources, including conventional fossil fuels like oil, gas, and coal, as well as emerging renewable sources like solar, wind, geothermal, and biofuels. Readers will learn that there are no truly ""green"" energy sources-all energy usage involves some trad

  9. Mobile energy sharing futures

    DEFF Research Database (Denmark)

    Worgan, Paul; Knibbe, Jarrod; Plasencia, Diego Martinez

    2016-01-01

    We foresee a future where energy in our mobile devices can be shared and redistributed to suit our current task needs. Many of us are beginning to carry multiple mobile devices and we seek to re-evaluate the traditional view of a mobile device as only accepting energy. In our vision, we can...... leverage the energy stored in our devices to wirelessly distribute energy between our friends, family, colleagues and strangers devices. In this paper we explore the opportunities and interactions presented by such spontaneous energy transfer interactions and present some envisaged collaborative energy...

  10. World Energy Future

    Energy Technology Data Exchange (ETDEWEB)

    Forbes, A.; Van der Linde, C.; Nicola, S.

    2009-03-15

    In the section World Energy Future of this magazine two articles, two interviews and one column are presented. The article 'A green example to the world' refers briefly to the second World Future Energy Summit in Abu Dhabi, which was held from 18-21 January, 2009. The second article, 'Green Utopia in the desert' attention is paid to the Abu Dhabi government-driven Masdar Initiative. The two interviews concern an interview with BP Alternative Energy ceo Vivienne Cox, and an interview with the founder and CEO of New Energy Finance Michael Liebreich. The column ('An efficient response') focuses on the impact of the economic crisis on energy policy.

  11. Our future energy

    Energy Technology Data Exchange (ETDEWEB)

    2011-11-15

    The Danish Government's plan ''Our Future Energy'' seeks to create green growth and help the country convert to 100 percent renewable energy use by 2050. The Danish Government in November 2011 presented its plan for how the country can secure its energy future. Titled ''Our Future Energy'', the strategy presents specific measures for fulfilling the Government's goal of stimulating green growth. The plan is based on the previous government's Energy Strategy 2050, but raises the bar higher. The long-term goal of the plan is to implement an energy and transport network that relies solely on renewable energy sources. By 2020, the initiatives will lead to extensive reductions in energy consumption, making it possible for half of the country's electricity consumption to be covered by wind power. Coal is to be phased out of Danish power plants by 2030. And by 2035, all electricity and heating will be generated using renewable sources. (Author)

  12. Future energy perspectives

    Energy Technology Data Exchange (ETDEWEB)

    Halsnaes, K.; Christensen, J.M. [Risoe National Lab., Systems Analysis Dept., Roskilde (Denmark)

    2002-10-01

    Future energy perspectives: 1) The global energy consumption will continue to grow primarily in developing countries, their share of global energy consumption will grow from approx. 35% in 1990 to 60% in 2050. 2) Policy focus will be primarily on environmental concerns in the industrial countries and on energy for development and access to energy for the poor in developing countries. 3) With global climate concerns and the implementation of the Kyoto protocol, global environment issues will have increased prominence in energy sector priorities. 4) Fossil fuel resources are on a global level still abundant and prices are expected to be relatively low in the short to medium term. 5) Energy supply security has for geopolitical reasons become an increasing concern especially in the US and the EU. 6) Significant investments are required to ensure development of new clean energy technologies for introduction in the medium to long term. 7) Market reforms are being implemented in almost all regions of the world changing both the investment and policy regimes. 8) International studies (IPCC and WEC) have analysed several alternative energy scenarios Alternative policies and priorities can lead to a wide range of different energy futures. 9) WEC middle scenario B, from 1990 to 2050; predicts growth in GDP 3.5 times and primary energy consumption 2.2 times and CO{sub 2} 1.5 times. This scenario is expecting supply to be dominated by fossil fuel (80% in 1990 and still 65% in 2050), with high share of natural gas and nuclear with slow growth in renewable energy. 10) A more radical scenario (C1) is expecting renewable energy such as biomass, solar and wind to contribute 27% in 2050; declining oil and coal; increased use of natural gas and a minor contribution from nuclear. A development path like this require significant near-term investments in technology research and development. 11) The large increase in global energy demand in the next century will require large investments

  13. Microlensing Searches for Planets: Results and Future Prospects

    CERN Document Server

    Gaudi, B Scott

    2007-01-01

    Microlensing is potentially sensitive to multiple-planet systems containing analogs of all the solar system planets except Mercury, as well as to free floating planets. I review the landscape of microlensing planet searches, beginning with an outline of the method itself, and continuing with an overview of the results that have been obtained to date. Four planets have been detected with microlensing. I discuss what these detections have taught us about the frequency of terrestrial and giant planets with separations beyond the ``snow line.'' I then discuss the near and long-term prospects for microlensing planet searches, and in particular speculate on the expected returns of next-generation microlensing experiments both from the ground and from space. When combined with the results from other complementary surveys, next generation microlensing surveys can yield an accurate and complete census of the frequency and properties of essentially all planets with masses greater than that of Mars.

  14. Energy future 2050

    Energy Technology Data Exchange (ETDEWEB)

    Syri, S.; Kainiemi, L.; Riikonen, V. [Aalto Univ. School of Engineering, Espoo (Finland). Dept. of Energy Technology

    2011-07-01

    The track was organized by the Department of Energy Technology, School of Engineering, at Aalto University. Energy future 2050 -track introduced participants to the global long-term challenges of achieving a sustainable energy supply. According to the Intergovernmental Panel on Climate Change (IPCC), effective climate change mitigation would require the global greenhouse gas emissions to be reduced by 50-85% from the present level by 2050. For industrialized countries, this would probably mean a practically carbon-neutral economy and energy supply, as developing countries need more possibilities for growth and probably enter stricter emission reduction commitments with some delay. In the beginning of the workshop, students were introduced to global energy scenarios and the challenge of climate change mitigation. Students worked in three groups with the following topics: How to gain public acceptance of Carbon (dioxide) Capture and Storage (CCS) ? Personal emissions trading as a tool to achieve deep emission cuts, How to get rid of fossil fuel subsidies? Nordic cases are peat use in Finland and Sweden. (orig.)

  15. Priming the Solar Neighborhood M dwarfs for Future Planet Searches

    Science.gov (United States)

    Dittmann, Jason

    2016-01-01

    The nearby low-mass stars are the best candidate hosts for searching for transiting exoplanets to enable atmospheric characterization. Unfortunately, our understanding of exoplanets is most often limited by our ability to characterize the host star. My thesis has focused on this stellar characterization problem. MEarth consists of 2 arrays of 8 telescopes each, one located at Mt. Hopkins, Arizona, and the other at Cerro Tololo, Chile. First, I used data from the Northern array to measure the trigonometric parallax of 1500 northern M dwarfs with a precision of 3 mas. With these distances we better characterized the MEarth M dwarfs and selected a volume-limited sample from which to search for planets. Second, I calibrated the MEarth photometric system using observations of Landolt standard fields. We measured the red-optical MEarth magnitude for 1800 M dwarfs with 1.5% precision. Combined with trigonometric parallaxes and spectroscopic metallicity estimates, I created a color-magnitude-metallicity relation for the mid-to-late M dwarfs capable of reproducing spectral metallicities with 0.1 dex precision. With these metallicities, we plan to measure any potential planet-metallicity correlation at the low-mass end of the stellar sequence once future missions uncover the planets orbiting these stars. Third, I present MEarth-South's discovery of a low mass eclipsing binary system. The system has an orbital period of 4.7 days, possesses zero eccentricity but is non-synchronously rotating. We obtained high precision radial velocity measurements from the TRES spectrograph, allowing us to measure the mass of each component with 1% precision. Both components are slightly inflated compared to the most recent stellar models, in keeping with previous precise mass-radius determinations for low mass stars. Fourth, I am currently gathering sloan photometry for M dwarfs to calibrate a color-color metallicity relation in the sloan bandpass. My thesis has focused on characterizing the

  16. On The History and Future of Cosmic Planet Formation

    CERN Document Server

    Behroozi, Peter

    2015-01-01

    We combine constraints on galaxy formation histories with planet formation models, yielding the Earth-like and giant planet formation histories of the Milky Way and the Universe as a whole. In the Hubble Volume (10^13 Mpc^3), we expect there to be ~10^20 Earth-like and ~10^20 giant planets; our own galaxy is expected to host ~10^9 and ~10^10 Earth-like and giant planets, respectively. Proposed metallicity thresholds for planet formation do not significantly affect these numbers. However, the metallicity dependence for giant planets results in later typical formation times and larger host galaxies than for Earth-like planets. The Solar System formed at the median age for existing giant planets in the Milky Way, and consistent with past estimates, formed after 80% of Earth-like planets. However, if existing gas within virialised dark matter haloes continues to collapse and form stars and planets, the Universe will form over 10 times more planets than currently exist. We show that this would imply at least a 92%...

  17. Harvesting alternate energies from our planet

    Science.gov (United States)

    Rath, Bhakta B.

    2009-04-01

    Recent price fluctuations have focused attention on the phenomenal increase of global energy consumption in recent years. We have almost reached a peak in global oil production. Total world consumption of oil will rise by nearly 60% between 1999 and 2020. In 1999 consumption was 86 million barrels of oil per day, which has reached a peak of production extracted from most known oil reserves. These projections, if accurate, will present an unprecedented crisis to the global economy and industry. As an example, in the United States, nearly 40% of energy usage is provided by petroleum, of which nearly a third is used in transportation. An aggressive search for alternate energy sources, both renewable and nonrenewable, is vital. This article will review national and international perspectives on the exploration of alternate energies with a focus on energy derivable from the ocean.

  18. Future: Solar energy. Zukunft: Sonnenenergie

    Energy Technology Data Exchange (ETDEWEB)

    Lange, V.

    1987-01-01

    The first chapter, 'Solar energy - more than just Utopia' deals with the following: Alternatives to nuclear energy problems of energy supply, solar energy use, commencement of the solar age in space, solar technology in the Federal Republic of Germany, solar collectors, wind power, energy from hydrogen. The second chapter 'Solar energy - its contribution to future energy supply' discusses prospects for the future (interviews with scientists and engineers). The third and last chapter gives practical hints (solar energy use: self-construction of solar plants). (HWJ).

  19. Renewable Energies, Present & Future

    Institute of Scientific and Technical Information of China (English)

    X. S. Cai

    2005-01-01

    Fossil fuels are major cause of environmental destruction in pollutions. It has created much needed momentum for renewable energies, which are environmentally benign, generated locally, and can play a significant role in developing economy. As a sustainable energy sources, it can grow at a rapid pace to meet increasing demands for electricity in a cost-effective way.

  20. Hydro-Gravitational Dynamics of Planets and Dark Energy

    Directory of Open Access Journals (Sweden)

    Carl H. Gibson

    2009-01-01

    Full Text Available Self gravitational fluid mechanical methods termed hydro-gravitational-dynamics (HGD predict plasma fragmentation 0.03 Myr after the turbulent big bang to form protosuperclustervoids, turbulent protosuperclusters, and protogalaxies at the 0.3 Myr transition from plasma to gas. Linear protogalaxyclusters fragment at 0.003 Mpc viscous-inertial scales along turbulent vortex lines or in spirals, as observed. The plasma protogalaxies fragment on transition into white-hot planet-mass gas clouds (PFPs in million-solar-mass clumps (PGCs that become globular-star-clusters (GCs from tidal forces or dark matter (PGCs by freezing and diffusion into 0.3 Mpc halos with 97% of the galaxy mass. The weakly collisional non-baryonic dark matter diffuses to > Mpc scales and fragments to form galaxy cluster halos. Stars and larger planets form by binary mergers of the trillion PFPs per PGC, mostly on 0.03 Mpc galaxy accretion disks. Stars deaths depend on rates of planet accretion and internal star mixing. Moderate accretion rates pro-duce white dwarfs that evaporate surrounding gas planets by spin-radiation to form planetary nebulae before Supernova Ia events, dimming some events to give systematic distance errors, the dark energy hypothesis, and overestimates of the universe age.

  1. Futures for energy cooperatives

    Energy Technology Data Exchange (ETDEWEB)

    None

    1981-01-01

    A listing of Federal agencies and programs with potential funding for community-scale cooperatives using conservation measures and solar technologies is presented in Section 1. Section 2 presents profiles of existing community energy cooperatives describing their location, history, membership, services, sources of finance and technical assistance. A condensed summary from a recent conference on Energy Cooperatives featuring notes on co-op members' experiences, problems, and opportunities is presented in Section 3. Section 4 lists contacts for additional information. A National Consumer Cooperative Bank Load Application is shown in the appendix.

  2. Solar System Exploration Augmented by Lunar and Outer Planet Resource Utilization: Historical Perspectives and Future Possibilities

    Science.gov (United States)

    Palaszewski, Bryan

    2014-01-01

    Establishing a lunar presence and creating an industrial capability on the Moon may lead to important new discoveries for all of human kind. Historical studies of lunar exploration, in-situ resource utilization (ISRU) and industrialization all point to the vast resources on the Moon and its links to future human and robotic exploration. In the historical work, a broad range of technological innovations are described and analyzed. These studies depict program planning for future human missions throughout the solar system, lunar launched nuclear rockets, and future human settlements on the Moon, respectively. Updated analyses based on the visions presented are presented. While advanced propulsion systems were proposed in these historical studies, further investigation of nuclear options using high power nuclear thermal propulsion, nuclear surface power, as well as advanced chemical propulsion can significantly enhance these scenarios. Robotic and human outer planet exploration options are described in many detailed and extensive studies. Nuclear propulsion options for fast trips to the outer planets are discussed. To refuel such vehicles, atmospheric mining in the outer solar system has also been investigated as a means of fuel production for high energy propulsion and power. Fusion fuels such as helium 3 (3He) and hydrogen (H2) can be wrested from the atmospheres of Uranus and Neptune and either returned to Earth or used in-situ for energy production. Helium 3 and H2 (deuterium, etc.) were the primary gases of interest with hydrogen being the primary propellant for nuclear thermal solid core and gas core rocket-based atmospheric flight. A series of analyses have investigated resource capturing aspects of atmospheric mining in the outer solar system. These analyses included the gas capturing rate, storage options, and different methods of direct use of the captured gases. While capturing 3He, large amounts of hydrogen and 4He are produced. With these two additional

  3. Denmark`s energy futures

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-06-01

    The stated aim of the document published by the Danish Ministry of Environment and Energy and the Danish Energy Agency is that it should form the basis for a broad public debate on the country`s future energy policy. The report has four main objectives: 1. To describe, with emphasis on the environment and the market, challenges that the energy sector will have to face in the future. 2. To illustrate the potentials for saving energy and for utilising energy sources and supply systems. 3. To present two scenarios of extreme developmental positions; the first where maximum effort is expended on increasing energy efficiency and the utilization of renewable energy and the second where no new initiative is taken and change occurs only when progress in available technology is exploited and 4. To raise a number of questions about our future way of living. Following the extensive summary, detailed information is given under the headings of: Challenges of the energy sector, Energy consumption and conservation, Energy consumption in the transport sector, Energy resources, Energy supply and production, Development scenario, and Elements of Strategy. The text is illustrated with maps, graphs and coloured photographs etc. (AB)

  4. Energy flux determines magnetic field strength of planets and stars.

    Science.gov (United States)

    Christensen, Ulrich R; Holzwarth, Volkmar; Reiners, Ansgar

    2009-01-08

    The magnetic fields of Earth and Jupiter, along with those of rapidly rotating, low-mass stars, are generated by convection-driven dynamos that may operate similarly (the slowly rotating Sun generates its field through a different dynamo mechanism). The field strengths of planets and stars vary over three orders of magnitude, but the critical factor causing that variation has hitherto been unclear. Here we report an extension of a scaling law derived from geodynamo models to rapidly rotating stars that have strong density stratification. The unifying principle in the scaling law is that the energy flux available for generating the magnetic field sets the field strength. Our scaling law fits the observed field strengths of Earth, Jupiter, young contracting stars and rapidly rotating low-mass stars, despite vast differences in the physical conditions of the objects. We predict that the field strengths of rapidly rotating brown dwarfs and massive extrasolar planets are high enough to make them observable.

  5. Energy flux determines magnetic field strength of planets and stars

    Science.gov (United States)

    Christensen, Ulrich R.; Holzwarth, Volkmar; Reiners, Ansgar

    2009-01-01

    The magnetic fields of Earth and Jupiter, along with those of rapidly rotating, low-mass stars, are generated by convection-driven dynamos that may operate similarly (the slowly rotating Sun generates its field through a different dynamo mechanism). The field strengths of planets and stars vary over three orders of magnitude, but the critical factor causing that variation has hitherto been unclear. Here we report an extension of a scaling law derived from geodynamo models to rapidly rotating stars that have strong density stratification. The unifying principle in the scaling law is that the energy flux available for generating the magnetic field sets the field strength. Our scaling law fits the observed field strengths of Earth, Jupiter, young contracting stars and rapidly rotating low-mass stars, despite vast differences in the physical conditions of the objects. We predict that the field strengths of rapidly rotating brown dwarfs and massive extrasolar planets are high enough to make them observable.

  6. On the Absorption and Redistribution of Energy in Irradiated Planets

    CERN Document Server

    Hansen, Brad

    2008-01-01

    We present a sequence of toy models for irradiated planet atmospheres, in which the effects of geometry and energy redistribution are modelled self-consistently. We use separate but coupled grey atmosphere models to treat the ingoing stellar irradiation and outgoing planetary reradiation. We investigate how observed quantities such as full phase secondary eclipses and orbital phase curves depend on various important parameters, such as the depth at which irradiation is absorbed and the depth at which energy is redistributed. We also compare our results to the more detailed radiative transfer models in the literature, in order to understand how those map onto the toy model parameter space. Such an approach can prove complementary to more detailed calculations, in that they demonstrate, in a simple way, how the solutions change depending on where, and how, energy redistribution occurs. As an example of the value of such models, we demonstrate how energy redistribution and temperature equilibration at moderate o...

  7. Generating High-Energy Events with Comets, Asteroids, and Planets

    Science.gov (United States)

    Di Stefano, Rosanne

    2015-08-01

    Many stellar remnants are likely to harbor systems of planetoids: comets, asteroids, and planets. Planetoids also travel freely through interstellar space. A combination of processes can therefore lead to tidal disruption events or collisions between planetoids and compact objects. These collisions can produce events that release a great deal of energy over a short time, and they are potentially detectable, even in external galaxies, by wide-field gamma-ray, X-ray, and optical surveys. We discuss the signatures and the possibility that these events could produce Type Ia supernovae.

  8. Wide Field Imager in Space for Dark Energy and Planets

    CERN Document Server

    Gould, Andrew

    2009-01-01

    A wide-field imager in space could make remarkable progress in two very different frontiers of astronomy: dark energy and extra-solar planets. Embedding such an imager on a much larger and more complicated DE mission would be a poor science-approach under any circumstances and is a prescription for disaster in the present fiscal climate. The 2010 Decadal Committee must not lead the lemming stampede that is driving toward a DE mega-mission, but should stand clearly in its path.

  9. Energy Resources in the Future

    Directory of Open Access Journals (Sweden)

    Ken Tomabechi

    2010-04-01

    Full Text Available Recent statistics indicate that in 2005 the world consumed about 0.5 ZJ (ZJ = 1021 Joules of energy. If one assumes that the future world population stabilizes at 10 billions, and the people consume a similar amount of energy per capita to that of the people in the presently developed countries, the world will need about 2 ZJ a year. A recent survey of the available future energy resources indicates that the energies recoverable from coal, oil and gas are only 23 ZJ, 6.7 ZJ and 6.4 ZJ, respectively. Other energy resources such as solar and wind have problems of fluctuation due to the weather conditions. However, the energy expected from known Uranium resources by breeder reactors is 227 ZJ and that from Lithium by fusion reactors is more than 175 ZJ. Therefore, it is important to make efforts to develop and use breeder reactors and fusion reactors to supply a major part of the energy need in the future.

  10. 75 FR 74712 - Planet Energy (Maryland) Corp.; Supplemental Notice That Initial Market-Based Rate Filing...

    Science.gov (United States)

    2010-12-01

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Federal Energy Regulatory Commission Planet Energy (Maryland) Corp.; Supplemental Notice That Initial Market... supplemental notice in the above-referenced proceeding, of Planet Energy (Maryland) Corp.'s application for...

  11. 75 FR 74711 - Planet Energy (Pennsylvania) Corp.; Supplemental Notice That Initial Market-Based Rate Filing...

    Science.gov (United States)

    2010-12-01

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Federal Energy Regulatory Commission Planet Energy (Pennsylvania) Corp.; Supplemental Notice That Initial Market... supplemental notice in the above-referenced proceeding, of Planet Energy (Pennsylvania) Corp.'s application for...

  12. Toward an energy surety future.

    Energy Technology Data Exchange (ETDEWEB)

    Tatro, Marjorie L.; Jones, Scott A.; Covan, John Morgan; Kuswa, Glenn W.; Menicucci, David F.; Robinett, Rush D. III (.; )

    2005-10-01

    Because of the inevitable depletion of fossil fuels and the corresponding release of carbon to the environment, the global energy future is complex. Some of the consequences may be politically and economically disruptive, and expensive to remedy. For the next several centuries, fuel requirements will increase with population, land use, and ecosystem degradation. Current or projected levels of aggregated energy resource use will not sustain civilization as we know it beyond a few more generations. At the same time, issues of energy security, reliability, sustainability, recoverability, and safety need attention. We supply a top-down, qualitative model--the surety model--to balance expenditures of limited resources to assure success while at the same time avoiding catastrophic failure. Looking at U.S. energy challenges from a surety perspective offers new insights on possible strategies for developing solutions to challenges. The energy surety model with its focus on the attributes of security and sustainability could be extrapolated into a global energy system using a more comprehensive energy surety model than that used here. In fact, the success of the energy surety strategy ultimately requires a more global perspective. We use a 200 year time frame for sustainability because extending farther into the future would almost certainly miss the advent and perfection of new technologies or changing needs of society.

  13. 78 FR 62615 - Healthy Planet Partners Energy Company, LLC; Supplemental Notice that Initial Market-Based Rate...

    Science.gov (United States)

    2013-10-22

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Federal Energy Regulatory Commission Healthy Planet Partners Energy Company, LLC; Supplemental Notice that... supplemental notice in the above-referenced proceeding of Healthy Planet Partners Energy Company,...

  14. Energy Budgets of the Giant Planets and Titan

    Science.gov (United States)

    Liming, Li; Smith, Mark A.; Conrath, Barney J.; Conrath, Peter J.; Simon-Miller, Amy A.; Baines, Kevin H.; West, Robert A.; Achterberg, Richard K.; Orton, Glenn S.; Santiago, Perez-Hoyos; hide

    2012-01-01

    As a fundamental property, the energy budget affects many aspeCts of planets and their moons, such as thermal structure, meteorology, and evolution. We use the observations from two Cassini spectrometers (i.e., CIRS and VIMS) to explore one important component of the energy budget the total emitted power of Jupiter, Saturn, and Titan (Li et al., 2010, 2011, 2012). Key results are: (1) The Cassini observations precisely measure the global-average emitted power of three bodies: 14.l0+/-0.03 Wm(exp -2), 4.952+/-0.035 Wm(exp -2), and 2.834+/-0.012 Wm(exp -2) for Jupiter, Saturn, and Titan, respectively. (2) The meridional distribution of emitted power displays a significant asymmetry between the northern and southern hemispheres on Jupiter and Saturn. On Titan, the meridional distribution of emitted power is basically symmetric around the equator. (3) Comparing with the Voyager measurements, the new Cassini observations reveal a significant temporal variation of emitted power on both Jupiter and Saturn: i) The asymmetry between the two hemisphere shown in the Cassini epoch (2000-2010) is not present in the Voyager epoch (1979-1980); and ii) From the Voyager epoch to the Cassini epoch, the global-average emitted power appeared to increase by approx 3.8% for Jupiter and approx 6.4% for Saturn. (4) Together with previous measurements of the absorbed solar power on Titan, the new Cassini measurements of emitted power provide the first observational evidence of the global energy balance on Titan. The uncertainty in the previous measurements of absorbed solar energy places an upper limit on its energy imbalance of 6.0% on Titan. The exploration of emitted power is the first part of a series of studies examining the temporal variability of the energy budget on the giant planets and Titan. Currently, We are measuring the absorbed solar energy in order to determine new constraints on the energy budgets of Jupiter, Saturn, and Titan.

  15. Coal: Energy for the future

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-05-01

    This report was prepared in response to a request by the US Department of energy (DOE). The principal objectives of the study were to assess the current DOE coal program vis-a-vis the provisions of the Energy Policy Act of 1992 (EPACT), and to recommend the emphasis and priorities that DOE should consider in updating its strategic plan for coal. A strategic plan for research, development, demonstration, and commercialization (RDD and C) activities for coal should be based on assumptions regarding the future supply and price of competing energy sources, the demand for products manufactured from these sources, technological opportunities, and the need to control the environmental impact of waste streams. These factors change with time. Accordingly, the committee generated strategic planning scenarios for three time periods: near-term, 1995--2005; mid-term, 2006--2020; and, long-term, 2021--2040. The report is divided into the following chapters: executive summary; introduction and scope of the study; overview of US DOE programs and planning; trends and issues for future coal use; the strategic planning framework; coal preparation, coal liquid mixtures, and coal bed methane recovery; clean fuels and specialty products from coal; electric power generation; technology demonstration and commercialization; advanced research programs; conclusions and recommendations; appendices; and glossary. 174 refs.

  16. Energy of our planet; La energia de nuestro planeta

    Energy Technology Data Exchange (ETDEWEB)

    Torres Alvarado, Ignacio; Santoyo Gutierrez, Edgar [Centro de Investigacion en Energia (CIE) de la UNAM, Temixco, Morelos (Mexico)

    2010-07-01

    The total heat flowing from the Earth's interior to the surface is estimated at {approx}42 TW (1012 watts) of which 19% comes from the crust, the 76% comes from the mantle and the 5% comes from the nucleus. The ability to drive the heat of the rocks is very low, causing the need of hundreds of millions of years to exhaust this energy resource. Based on the properties of the renewable heat flow and the long geological times required for its exhaustion, the Earth energy is considered by many scientists as a source of inexhaustible renewable energy, and by its natural availability in all parts of our planet, perhaps the best distributed, together with solar energy. One of the most important advantages of geothermal energy is that its energy can be used not only to generate electric power, but in a large number of applications or direct uses: the heating of buildings, greenhouses or incubators; aquaculture; in various industrial processes (drying products, food packaging, paper manufacturing, chemicals, etc.); balneology for recreational purposes and medicines, and many other applications. In fact, geothermal applications can be integrally one after another or in processes in cascade to fully utilize its energy content. [Spanish] El calor total que fluye del interior de la Tierra hacia la superficie se estima en {approx}42 TW (1012 watts) del cual 19% proviene de la corteza, el 76% proviene del manto y el 5% proviene del nucleo. La capacidad para conducir el calor de las rocas es muy baja, lo que ocasiona que se necesiten cientos de millones de anos para agotar este recurso energetico. Basado en las propiedades renovables del flujo de calor y los largos tiempos geologicos requeridos para su agotamiento, la energia de la Tierra es considerada por muchos cientificos como una fuente de energia renovable, practicamente inagotable, y por su disponibilidad natural en todo nuestro planeta, quizas la mejor distribuida, junto con la energia solar. Una de las ventajas mas

  17. A Comment on Tectonics and the Future of Life on Terrestrial Planets

    CERN Document Server

    Cirkovic, M M

    2003-01-01

    It is argued that the tight interconnection between biological, climatological, and geophysical factors in the history of the terrestrial biosphere can teach us something of wider importance regarding the general astrobiological evolution of planets in the Galactic habitable zone of the Milky Way. Motivated by a recent debate on the future of Earth's biosphere, we suggest an additional reason why the impact of plate tectonics on the biological evolution is significant on the global Galactic level.

  18. How does the Earth system generate and maintain thermodynamic disequilibrium and what does it imply for the future of the planet?

    Science.gov (United States)

    Kleidon, Axel

    2012-03-13

    The Earth's chemical composition far from chemical equilibrium is unique in our Solar System, and this uniqueness has been attributed to the presence of widespread life on the planet. Here, I show how this notion can be quantified using non-equilibrium thermodynamics. Generating and maintaining disequilibrium in a thermodynamic variable requires the extraction of power from another thermodynamic gradient, and the second law of thermodynamics imposes fundamental limits on how much power can be extracted. With this approach and associated limits, I show that the ability of abiotic processes to generate geochemical free energy that can be used to transform the surface-atmosphere environment is strongly limited to less than 1 TW. Photosynthetic life generates more than 200 TW by performing photochemistry, thereby substantiating the notion that a geochemical composition far from equilibrium can be a sign for strong biotic activity. Present-day free energy consumption by human activity in the form of industrial activity and human appropriated net primary productivity is of the order of 50 TW and therefore constitutes a considerable term in the free energy budget of the planet. When aiming to predict the future of the planet, we first note that since global changes are closely related to this consumption of free energy, and the demands for free energy by human activity are anticipated to increase substantially in the future, the central question in the context of predicting future global change is then how human free energy demands can increase sustainably without negatively impacting the ability of the Earth system to generate free energy. This question could be evaluated with climate models, and the potential deficiencies in these models to adequately represent the thermodynamics of the Earth system are discussed. Then, I illustrate the implications of this thermodynamic perspective by discussing the forms of renewable energy and planetary engineering that would

  19. Transport and energy policy. Looking to the future

    Energy Technology Data Exchange (ETDEWEB)

    Aaltonen, T. [European Commission (Belgium)

    1996-12-01

    In the quest of filling human needs, transport and energy do not appear to be the most exciting territories. They come in only later in the vast chain of commodities and services necessary in the smooth operation of a modern market economy. However, current concerns about pollution and the future of our planet have lifted these issues to the top of the agenda. The objective of this paper is to give a glance at the complexity of possible futures facing us. Indeed, one of the main objectives is to show that there are different paths to be taken and we can influence our future. Furthermore, it will be shown that a key element in planning for different futures is the proper choice of energy policy objectives and instruments. An even bigger impact could be expected from the changing paradigms in transport demand patterns. (au)

  20. Green Planet Architecture - A Methodology for Self-Sustainable Distributed Renewable Energy Ecosystems

    Science.gov (United States)

    Saxena, Nikita T.; Thomas, Anna E.; Johnson, Shawana; Venners, John P.; Hendricks, Robert C.

    2012-01-01

    Our planet has been endowed with a host of natural mechanisms to keep the environment and climate in balance. Humans are now facing the need to restore this balance that has been upset in the past years because of a growing population and resource demands. To steer dependency away from freshwater crops and decrease environmental damage from humanity s fuel and energy demands, it is necessary to take advantage of the natural adaptive biomass resources that are already in place. Using methods of Green Planet Architecture, based on compilations of current research and procedures, could lead to new forms of energy and fueling as well as new sources for food and feed. Green Planet Architecture involves climatic adaptive biomass; geospatial intelligence; agri- and aqua-culture life cycles; and soil, wetland, and shoreline restoration. Plants such as Salicornia, seashore mallow, castor, mangroves, and perhaps Moringa can be modified (natural, model-assisted, or genetically modified) to thrive in salt-water and brackish water or otherwise not arable conditions, making them potentially new crops that will not displace traditional farming. These fueling sources also have potential to be used in other rapid-growth industries, such as the aviation industry, that have incentive to move towards more sustainable fuel supplies. This paper highlights an example of how synergistic development of biomass resources and geospatial intelligence high-performance computing capabilities can be focused to resolve potential drought-famine problems. These techniques, provide a basis for future e-science-based discovery (and access) through technology that can be expanded to support global societal applications.

  1. "Green Planet Architecture"-A Methodology for Self-Sustainable Distributed Renewable Energy Ecosystems

    Science.gov (United States)

    Saxena, Nikita T.; Thomas, Anna E.; Johnson, Shawana; Venners, John P.; Hendricks, Robert C.

    2013-01-01

    This planet has been endowed with a host of natural mechanisms to keep the environment and climate in balance. Humans are now facing the need to restore this balance that has been upset in the past years because of a growing population and resource demands. To steer dependency away from freshwater crops and decrease environmental damage from humanity s fuel and energy demands, it is necessary to take advantage of the natural adaptive biomass resources that are already in place. Using methods of "Green Planet Architecture," based on compilations of current research and procedures, could lead to new forms of energy and fueling as well as new sources for food and feed. Green Planet Architecture involves climatic adaptive biomass; geospatial intelligence; agri- and aqua-culture life cycles; and soil, wetland, and shoreline restoration. Plants such as Salicornia, seashore mallow, castor, mangroves, and perhaps Moringa can be modified (naturally, model-assisted, or genetically) to thrive in salt water and brackish water or otherwise not arable conditions, making them potentially new crops that will not displace traditional farming. These fueling sources also have potential to be used in other rapid-growth industries, such as the aviation industry, that have incentive to move towards more sustainable fuel supplies. This report highlights an example of how synergistic development of biomass resources and geospatial intelligence high-performance computing capabilities can be focused to resolve potential drought-famine problems. These techniques provide a basis for future e-science-based discovery (and access) through technology that can be expanded to support global societal applications.

  2. Assessing Magnetic Torques and Energy Fluxes in Close-in Star-Planet Systems

    Science.gov (United States)

    Strugarek, A.

    2016-12-01

    Planets in close-in orbit interact with the magnetized wind of their hosting star. This magnetic interaction was proposed to be a source for enhanced emissions in the chromosphere of the star, and to participate in setting the migration timescale of the close-in planet. The efficiency of the magnetic interaction is known to depend on the magnetic properties of the host star and of the planet, and on the magnetic topology of the interaction. We use a global, three-dimensional numerical model of close-in star-planet systems, based on the magnetohydrodynamics approximation, to compute a grid of simulations for varying properties of the orbiting planet. We propose a simple parametrization of the magnetic torque that applies to the planet, and of the energy flux generated by the interaction. The dependency upon the planet properties and the wind properties is clearly identified in the derived scaling laws, which can be used in secular evolution codes to take into account the effect of magnetic interactions in planet migration. They can also be used to estimate a potential magnetic source of enhanced emissions in observed close-in star-planet systems, in order to constrain observationally possible exoplanetary magnetic fields.

  3. Primordial Planets Explain Interstellar Dust, the Formation of Life; and Falsify Dark Energy

    Science.gov (United States)

    Gibson, Carl H.; Wickramasinghe, N. Chandra; Schild, Rudolph E.

    2011-12-01

    Hydrogravitional-dynamics (HGD) cosmology of Gibson/Schild 1996 predicts proto-globular-star- cluster clumps of Earth-mass planets fragmented from plasma at 300 Kyr. Stars promptly formed from mergers of these gas planets, and chemicals C, N, O, Fe etc. were created by the stars and their supernovae. Seeded gas planets reduced the oxides to hot water oceans. Water oceans at critical temperature 647 K then hosted the first organic chemistry and the first life, distributed to the 1080 planets of the cosmological big bang by comets produced by the new (HGD) planet-merger star formation mechanism. This biological big bang began at 2 Myr when liquid oceans condensed. Life distributed by Hoyle/Wickramasinghe cometary panspermia evolved in a cosmological primordial soup of the merging planets throughout the universe. A primordial astrophysical basis is provided for astrobiology by HGD cosmology. Concordance ΛCDMHC cosmology is rendered obsolete by the observation of complex life on Earth, falsifying the dark energy and cold dark matter concepts. The dark matter of galaxies is mostly primordial planets in protoglobularstarcluster clumps, 30,000,000 planets per star (not 8!). Complex organic chemicals of the interstellar dust is formed by life on these planets, and distributed by their comets.

  4. Assessing magnetic torques and energy fluxes in close-in star-planet systems

    CERN Document Server

    Strugarek, A

    2016-01-01

    Planets in close-in orbit interact with the magnetized wind of their hosting star. This magnetic interaction was proposed to be a source for enhanced emissions in the chromosphere of the star, and to participate in setting the migration time-scale of the close-in planet. The efficiency of the magnetic interaction is know to depend on the magnetic properties of the host star, of the planet, and on the magnetic topology of the interaction. We use a global, three-dimensional numerical model of close-in star planet systems, based on the magnetohydrodynamics approximation, to compute a grid of simulations for varying properties of the orbiting planet. We propose a simple parametrization of the magnetic torque that applies to the planet, and of the energy flux generated by the interaction. The dependancy upon the planet properties and the wind properties are clearly identified in the derived scaling laws, which can be used in secular evolution codes to take into account the effect of magnetic interactions in planet...

  5. Alternative Energy Development and China's Energy Future

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Nina; Fridley, David

    2011-06-15

    In addition to promoting energy efficiency, China has actively pursued alternative energy development as a strategy to reduce its energy demand and carbon emissions. One area of particular focus has been to raise the share of alternative energy in China’s rapidly growing electricity generation with a 2020 target of 15% share of total primary energy. Over the last ten years, China has established several major renewable energy regulations along with programs and subsidies to encourage the growth of non-fossil alternative energy including solar, wind, nuclear, hydro, geothermal and biomass power as well as biofuels and coal alternatives. This study thus seeks to examine China’s alternative energy in terms of what has and will continue to drive alternative energy development in China as well as analyze in depth the growth potential and challenges facing each specific technology. This study found that despite recent policies enabling extraordinary capacity and investment growth, alternative energy technologies face constraints and barriers to growth. For relatively new technologies that have not achieved commercialization such as concentrated solar thermal, geothermal and biomass power, China faces technological limitations to expanding the scale of installed capacity. While some alternative technologies such as hydropower and coal alternatives have been slowed by uneven and often changing market and policy support, others such as wind and solar PV have encountered physical and institutional barriers to grid integration. Lastly, all alternative energy technologies face constraints in human resources and raw material resources including land and water, with some facing supply limitations in critical elements such as uranium for nuclear, neodymium for wind and rare earth metals for advanced solar PV. In light of China’s potential for and barriers to growth, the resource and energy requirement for alternative energy technologies were modeled and scenario analysis

  6. Energy consumption: Past, present, future

    Science.gov (United States)

    1973-01-01

    The energy consumption history of the United States and the changes which could occur in consumption characteristics in the next 50 years are presented. The various sources of energy are analyzed to show the limitations involved in development and utilization as a function of time available. Several scenarios were prepared to show the consumption and supply of energy under varying conditions.

  7. Hydro-Gravitational-Dynamics of Planets and Dark Energy

    CERN Document Server

    Gibson, Carl H

    2008-01-01

    Self-gravitational fluid mechanical methods termed hydro-gravitational-dynamics (HGD) predict plasma fragmentation 0.03 Myr after the turbulent big bang to form protosuperclustervoids, turbulent protosuperclusters, and protogalaxies at the 0.3 Myr transition from plasma to gas. Linear protogalaxyclusters fragment at 0.003 Mpc viscous-inertial scales along turbulent vortex lines or in spirals, as observed. The plasma protogalaxies fragment on transition into white-hot planet-mass gas clouds (PFPs) in million-solar-mass clumps (PGCs) that become globular-star-clusters (GCs) from tidal forces or dark matter (PGCs) by freezing and diffusion into 0.3 Mpc halos with 97% of the galaxy mass. The weakly collisional non-baryonic dark matter diffuses to > Mpc scales and frag-ments to form galaxy cluster halos. Stars and larger planets form by binary mergers of the trillion PFPs per PGC on 0.03 Mpc galaxy accretion disks. Star deaths depend on rates of planet accretion and internal star mixing. Moderate accretion rates p...

  8. Sustainable Energy Future - Nordic Perspective

    DEFF Research Database (Denmark)

    Nørgaard, Jørgen

    1998-01-01

    This invited paper first outlines the methodologies applied in analysing the energy savings potentials, as applied to a Nordic and a European case study. Afterwards are shown results for how a high quality of life can be achieved with an energy consumption only a small fraction of the present...... in Europe. The energy policy in Denmark since 1973 is outlined, including the activities and the roles of NGOs. Finally are described some of the difficulties of implementing energy saving policies, especially in combination with increasing liberalization of the energy market....

  9. Toward a sustainable energy future in Australia

    Energy Technology Data Exchange (ETDEWEB)

    Kinrade, P. [Melbourne Univ., VIC (Australia). School of Anthropology, Geography and Environmental Studies; Marsden Jacob Associates, Camberwell, VIC (Australia)

    2007-03-15

    Envisioning Australia's energy future through a 'strong sustainability' framework would see a future that is based on the efficient and equitable use of energy, sourced from a diverse range of renewable, distributed energy systems. Supply and use of this energy would produce low or zero greenhouse gases and other emissions. A sustainable energy future in Australia would also see a shift in focus to meeting energy service needs (rather increased energy consumption). Importantly, energy users would be empowered, being knowledgeable and active participants in energy markets. In reality, Australia currently stands a long way from this vision: energy-related greenhouse gas emissions are growing rapidly; take up of renewable energy is slow, particularly of distributed energy forms such as solar photovoltaics; and energy intensity of the economy is declining at a slower rate than many other OECD economies. Furthermore, Australians consume far more energy than is required to meet the service needs of even modern lifestyles. If Australia is to move towards a sustainable energy future, then significant barriers must be overcome including aspects of Australia's economic structure, a misdirected energy market reform process and a lack of visionary thinking by decision makers. Hope comes in the form of the broader Australian community who intuitively support a sustainable energy vision but currently lack the institutional, market and regulatory support to make it happen. [Author].

  10. Energy sources for the future

    Energy Technology Data Exchange (ETDEWEB)

    Duggan, J.L.; Cloutier, R.J. (eds.)

    1977-04-01

    The symposium program was designed for college faculty members who are teaching or plan to teach energy courses at their educational institutions. Lectures were presented on socio-economic aspects of energy development, fusion reactors, solar energy, coal-fired power plants, nuclear power, radioactive waste disposal, and radiation hazards. A separate abstract was prepared for each of 16 of the 18 papers presented; two papers were processed earlier: Residential Energy Use Alternatives to the Year 2000, by Eric Hurst (EAPA 2:257; ERA 1:25978) and The Long-Term Prospects for Solar Energy, by W. G. Pollard (EAPA 3:1008). Fourteen of the papers are included in Energy Abstracts for Policy Analysis. (EAPA).

  11. Energy Efficiency in Future PONs

    DEFF Research Database (Denmark)

    Reschat, Halfdan; Laustsen, Johannes Russell; Wessing, Henrik;

    2012-01-01

    There is a still increasing tendency to give energy efficiency a high priority, even in already low energy demanding systems. This is also the case for Passive Optical Networks (PONs) for which many different methods for saving energy are proposed. This paper uses simulations to evaluate three...... proposed power saving solutions for PONs which use sleep mechanisms for saving power. The discovered advantages and disadvantages of these methods are then used as a basis for proposing a new solution combining different techniques in order to increase the energy efficiency further. This novel solution...

  12. Renewable energiesFuture perspectives

    Directory of Open Access Journals (Sweden)

    Vitale Gianpaolo

    2016-01-01

    Full Text Available The Global Energy Scenario is analyzed starting from a global energy consumption still sustained by fossil sources. Comparing the time to reach as much as the 50% of the market share of traditional sources with the trend of renewable ones, it appears that this growth is too slow taking into account the urgent request to lessen CO2 emissions. Some supporting technologies are presented with reference to the use of storage systems to mitigate the intermittent nature of energy produced by photovoltaic and wind plants. The adoption of power electronics systems to increase the energy saving quote is finally explained.

  13. The Economics of America's Energy Future.

    Science.gov (United States)

    Simmons, Henry

    This is an Energy Research and Development Administration (ERDA) pamphlet which reviews economic and technical considerations for the future development of energy sources. Included are sections on petroleum, synthetic fuels, oil shale, nuclear power, geothermal power, and solar energy. Also presented are data pertaining to U.S. energy production…

  14. Hydrogen: the future energy carrier.

    Science.gov (United States)

    Züttel, Andreas; Remhof, Arndt; Borgschulte, Andreas; Friedrichs, Oliver

    2010-07-28

    Since the beginning of the twenty-first century the limitations of the fossil age with regard to the continuing growth of energy demand, the peaking mining rate of oil, the growing impact of CO2 emissions on the environment and the dependency of the economy in the industrialized world on the availability of fossil fuels became very obvious. A major change in the energy economy from fossil energy carriers to renewable energy fluxes is necessary. The main challenge is to efficiently convert renewable energy into electricity and the storage of electricity or the production of a synthetic fuel. Hydrogen is produced from water by electricity through an electrolyser. The storage of hydrogen in its molecular or atomic form is a materials challenge. Some hydrides are known to exhibit a hydrogen density comparable to oil; however, these hydrides require a sophisticated storage system. The system energy density is significantly smaller than the energy density of fossil fuels. An interesting alternative to the direct storage of hydrogen are synthetic hydrocarbons produced from hydrogen and CO2 extracted from the atmosphere. They are CO2 neutral and stored like fossil fuels. Conventional combustion engines and turbines can be used in order to convert the stored energy into work and heat.

  15. The Future of Geothermal Energy

    Energy Technology Data Exchange (ETDEWEB)

    Kubik, Michelle [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)

    2006-01-01

    A comprehensive assessment of enhanced, or engineered, geothermal systems was carried out by an 18-member panel assembled by the Massachusetts Institute of Technology (MIT) to evaluate the potential of geothermal energy becoming a major energy source for the United States.

  16. Nuclear energy: basics, present, future

    Directory of Open Access Journals (Sweden)

    Ricotti M. E

    2013-06-01

    Full Text Available The contribution is conceived for non-nuclear experts, intended as a synthetic and simplified overview of the technology related to energy by nuclear fission. At the end of the paper, the Reader will find a minimal set of references, several of them on internet, useful to start deepening the knowledge on this challenging, complex, debated albeit engaging energy source.

  17. 75 FR 76004 - Planet Energy (New York) Corp.; Supplemental Notice That Initial Market-Based Rate Filing...

    Science.gov (United States)

    2010-12-07

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Federal Energy Regulatory Commission Planet Energy (New York) Corp.; Supplemental Notice That Initial Market... supplemental notice in the above-referenced proceeding, of Planet Energy (New York) Corp.'s application for...

  18. 75 FR 74711 - Planet Energy (USA) Corp.; Supplemental Notice That Initial Market-Based Rate Filing Includes...

    Science.gov (United States)

    2010-12-01

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Federal Energy Regulatory Commission Planet Energy (USA) Corp.; Supplemental Notice That Initial Market-Based... supplemental notice in the above-referenced proceeding, of Planet Energy (USA) Corp.'s application for market...

  19. Calculating the X-Ray Fluorescence from the Planet Mercury Due to High-Energy Electrons

    Science.gov (United States)

    Burbine, T. H.; Trombka, J. I.; Bergstrom, P. M., Jr.; Christon, S. P.

    2005-01-01

    The least-studied terrestrial planet is Mercury due to its proximity to the Sun, which makes telescopic observations and spacecraft encounters difficult. Our lack of knowledge about Mercury should change in the near future due to the recent launching of MESSENGER, a Mercury orbiter. Another mission (BepiColombo) is currently being planned. The x-ray spectrometer on MESSENGER (and planned for BepiColombo) can characterize the elemental composition of a planetary surface by measuring emitted fluorescent x-rays. If electrons are ejected from an atom s inner shell by interaction with energetic particles such as photons, electrons, or ions, electrons from an outer shell can transfer to the inner shell. Characteristic x-rays are then emitted with energies that are the difference between the binding energy of the ion in its excited state and that of the ion in its ground state. Because each element has a unique set of energy levels, each element emits x-rays at a unique set of energies. Electrons and ions usually do not have the needed flux at high energies to cause significant x-ray fluorescence on most planetary bodies. This is not the case for Mercury where high-energy particles were detected during the Mariner 10 flybys. Mercury has an intrinsic magnetic field that deflects the solar wind, resulting in a bow shock in the solar wind and a magnetospheric cavity. Electrons and ions accelerated in the magnetosphere tend to follow its magnetic field lines and can impact the surface on Mercury s dark side Modeling has been done to determine if x-ray fluorescence resulting from the impact of high-energy electrons accelerated in Mercury's magnetosphere can be detected by MESSENGER. Our goal is to understand how much bulk chemical information can be obtained from x-ray fluorescence measurements on the dark side of Mercury.

  20. Vision of future energy networks

    Energy Technology Data Exchange (ETDEWEB)

    Froehlich, K.; Andersson, G.; Arnold, M.; Favre-Perrod, P.; Geidl, M.; Kienzle, F.; Koeppel, G.; Schulze, M.

    2006-11-15

    This annual report for 2006 for the Swiss Federal Office of Energy (SFOE) reviews the work done in 2006 in the area of electricity distribution networks and the effects resulting from decentralised and stochastic power generation. This includes modelling to provide new approaches for the optimisation of structures, distributed storage, combined operation of gas and electricity mains systems and the development of models for the description of the reliability and availability of such systems. A model distribution system for electrical, chemical and thermal energy is presented and theoretical considerations concerning the storage of energy are examined. Co-operation in industrial and academic areas is discussed and the dynamic modelling and control of so-called 'energy-hubs' is examined. Finally, a plan for further work to be carried out in 2007 is presented.

  1. Energy Efficiency Vital for Future

    Institute of Scientific and Technical Information of China (English)

    2012-01-01

    The world is hoping the Chinese economy will continue to be the engine of global growth after growing by about 9 percent in 2011. This relentless economic expansion comes at a high price, and China finds itself well short of immediate solutions on how to rein in its vast energy consumption and, consequently, the environmental pollution that threatens its progress. In 2010 China's electricity consumption grew 13.7 percent, outstripping its GDP growth of 10.4 percent. It used 3.2 trillion tons of coal equivalent, or about 20 percent of the world's energy consumption, overtaking the US to become the world's largest energy consumer.

  2. Future Scenario of Renewable Energy in India

    Directory of Open Access Journals (Sweden)

    Sandeep Kumar

    2012-08-01

    Full Text Available This paper presents a review about future scenario of renewable energy in India.Energy is a vital input for economic and social development of any country. With increasing industrialand agricultural activities in the country, the demand for energy is also rising. Solar, wind and biomassare accepted as dependable and widely available renewable sources of energy. To meet the energy requirement for such a fast growingeconomy, India will require an assured supply of 3–5 times more energy than the total energy consumedtoday. The renewable energy is one of the options to meet this requirement Energy is the prime mover of economic growth and is vital to the sustenance of a modern economy. Future economic growth crucially depends on the long-term availability of energy from sources that are affordable, accessible and environmentally friendly. India has obtained application of a variety of renewable energy technologies for use in different sectors too. This paper presents current status, major achievements and future aspects of renewable energy in India. In this paper evaluation of current energy policies for conquering the obstructions and implementing renewables for the future is also been presented.

  3. Hydrogen and OUr Energy Future

    Energy Technology Data Exchange (ETDEWEB)

    Rick Tidball; Stu Knoke

    2009-03-01

    In 2003, President George W. Bush announced the Hydrogen Fuel Initiative to accelerate the research and development of hydrogen, fuel cell, and infrastructure technologies that would enable hydrogen fuel cell vehicles to reach the commercial market in the 2020 timeframe. The widespread use of hydrogen can reduce our dependence on imported oil and benefit the environment by reducing greenhouse gas emissions and criteria pollutant emissions that affect our air quality. The Energy Policy Act of 2005, passed by Congress and signed into law by President Bush on August 8, 2005, reinforces Federal government support for hydrogen and fuel cell technologies. Title VIII, also called the 'Spark M. Matsunaga Hydrogen Act of 2005' authorizes more than $3.2 billion for hydrogen and fuel cell activities intended to enable the commercial introduction of hydrogen fuel cell vehicles by 2020, consistent with the Hydrogen Fuel Initiative. Numerous other titles in the Act call for related tax and market incentives, new studies, collaboration with alternative fuels and renewable energy programs, and broadened demonstrations--clearly demonstrating the strong support among members of Congress for the development and use of hydrogen fuel cell technologies. In 2006, the President announced the Advanced Energy Initiative (AEI) to accelerate research on technologies with the potential to reduce near-term oil use in the transportation sector--batteries for hybrid vehicles and cellulosic ethanol--and advance activities under the Hydrogen Fuel Initiative. The AEI also supports research to reduce the cost of electricity production technologies in the stationary sector such as clean coal, nuclear energy, solar photovoltaics, and wind energy.

  4. Green nanotechnology of trends in future energy.

    Science.gov (United States)

    Guo, Kelvii Wei

    2011-06-01

    It is well known that current fossil fuel usage is unsustainable and associated with greenhouse gas production. The amount of the world's primary energy supply provided by renewable energy technologies is required urgently. Therefore, the relevant technologies such as hydrogen fuel, solar cell, biotechnology based on nanotechnology and the relevant patents for exploiting the future energy for the friendly environment are reviewed. At the same time, it is pointed out that the significantly feasible world's eco-energy for the foreseeable future should not only be realized, but also methods for using the current energy and their by-products more efficiently should be found correspondingly to ensure the minimal environmental impact.

  5. Energy Education: Teaching for the Future

    Science.gov (United States)

    Gierke, C. David

    1978-01-01

    A major challenge to education for the future involves energy attitude modification, and industrial arts is best prepared to institute energy education, says the author. He outlines the energy technology curriculum at East Senior High School, West Seneca, New York, and includes photographs from the solar and wind power course. (MF)

  6. Global Energy Assessment. Toward a Sustainable Future

    Energy Technology Data Exchange (ETDEWEB)

    Johansson, T.B.; Nakicenovic, N.; Patwardhan, A.; Gomez-Echeverri, L. (eds.)

    2012-11-01

    The Global Energy Assessment (GEA) brings together over 300 international researchers to provide an independent, scientifically based, integrated and policy-relevant analysis of current and emerging energy issues and options. It has been peer-reviewed anonymously by an additional 200 international experts. The GEA assesses the major global challenges for sustainable development and their linkages to energy; the technologies and resources available for providing energy services; future energy systems that address the major challenges; and the policies and other measures that are needed to realize transformational change toward sustainable energy futures. The GEA goes beyond existing studies on energy issues by presenting a comprehensive and integrated analysis of energy challenges, opportunities and strategies, for developing, industrialized and emerging economies. This volume is an invaluable resource for energy specialists and technologists in all sectors (academia, industry and government) as well as policymakers, development economists and practitioners in international organizations and national governments.

  7. Comparison of future energy scenarios for Denmark

    DEFF Research Database (Denmark)

    Kwon, Pil Seok; Østergaard, Poul Alberg

    2012-01-01

    Scenario-making is becoming an important tool in energy policy making and energy systems analyses. This article probes into the making of scenarios for Denmark by presenting a comparison of three future scenarios which narrate 100% renewable energy system for Denmark in 2050; IDA 2050, Climate...... Commission 2050, and CEESA (Coherent Energy and Environmental System Analysis). Generally, although with minor differences, the scenarios suggest the same technological solutions for the future such as expansion of biomass usage and wind power capacity, integration of transport sector into the other energy...... sectors. The methodologies used in two academic scenarios, IDA 2050 and CEESA, are compared. The main differences in the methodologies of IDA 2050 and CEESA are found in the estimation of future biomass potential, transport demand assessment, and a trial to examine future power grid in an electrical...

  8. THE FUTURE OF GEOTHERMAL ENERGY

    Energy Technology Data Exchange (ETDEWEB)

    J. L. Renner

    2006-11-01

    Recent national focus on the value of increasing our supply of indigenous, renewable energy underscores the need for reevaluating all alternatives, particularly those that are large and welldistributed nationally. This analysis will help determine how we can enlarge and diversify the portfolio of options we should be vigorously pursuing. One such option that is often ignored is geothermal energy, produced from both conventional hydrothermal and Enhanced (or engineered) Geothermal Systems (EGS). An 18-member assessment panel was assembled in September 2005 to evaluate the technical and economic feasibility of EGS becoming a major supplier of primary energy for U.S. base-load generation capacity by 2050. This report documents the work of the panel at three separate levels of detail. The first is a Synopsis, which provides a brief overview of the scope, motivation, approach, major findings, and recommendations of the panel. At the second level, an Executive Summary reviews each component of the study, providing major results and findings. The third level provides full documentation in eight chapters, with each detailing the scope, approach, and results of the analysis and modeling conducted in each area.

  9. Present and Near-Future Reflected Light Searches for Close-In Planets

    CERN Document Server

    Charbonneau, D; Charbonneau, David; Noyes, Robert W.

    2000-01-01

    Close-in extrasolar giant planets may be directly detectable by theirreflected light, due to the proximity of the planet to the illuminating star.The spectrum of the system will contain a reflected light component that variesin amplitude and Doppler shift as the planet orbits the star. Intensivesearches for this effect have been carried out for only one extrasolar planetsystem, tau Boo. There exist several other attractive targets, including thetransiting planet system HD 209458.

  10. Fusion as a future energy source

    Science.gov (United States)

    Ward, D. J.

    2016-11-01

    Fusion remains the main source of energy generation in the Universe and is indirectly the origin of nearly all terrestrial energy (including fossil fuels) but it is the only fundamental energy source not used directly on Earth. Here we look at the characteristics of Earth-based fusion power, how it might contribute to future energy supply and what that tells us about the future direction of the R&D programme. The focus here is Magnetic Confinement Fusion although many of the points apply equally to inertial confinement fusion.

  11. The Earth in energy troubles; La Planete en mal d'energie

    Energy Technology Data Exchange (ETDEWEB)

    Pierret, Ch.; Carroue, L.; Goodchild, M.F.; Charvet, J.P.; Simon, A.; Ane, J.M.; Auburtin, E.; Barre, B.; Bonin, S.; Fumey, G.; Daviet, S.; Goupil, Ph.; Helfer, M.; Raison, J.; Velut, S.; Vidal, D.; Radvanyi, J.; Tapia, St. de; Pourtier, R.; Sebille-Lopez, Ph.; Clairet, S.; Poirson, A.C.; Guillaume, J.; Collignon, B.; Bauquis, P.R.; Brunel, S.; Guillaume, J.; Hourcade, B.; Marchand-Vaguet, Y.; Pitte, J.R.; Marchand-Vaguet, Y.; Laherrere, J.; Letourneau, M.; Lemarchand, N.; Beltran, A.; Bret, B.; Feckoua, L.; Helfer, M.; Lacoste, R.; Manzagol, C.; Tessier, F.; Vanneph, A.; Claessens, M.; Berdevet, M.; Tabeaud, M.; Laherrere, J.; Arnould, P.; Berque, A.; Brucher, W.; Deshaies, M.; Douguedroit, A.; Husson, J.P.; Lemartinel, J.; Mancebo, F.; Baron-Yelles, N.; Pitte, J.R.; Sede Marceau, J.H. de; Vigneau, J.P.; Tabeaud, M.; Fremont, A.; Crozet, Y.; Maupu, J.L.; Orfeuil, J.P.; Savy, M.; Viel, D.; Hammer, A.; Sanjuan, Th.; Lagarec, D.; Raillon, F.; Koninck, R. de; Bailly, A.; Bruneau, M.; Boulanger, Ph.; Bret, B.; Fournet-Guerin, C.; Hourcade, J.Ch.; Pitte, J.R.; Sanjuan, Th.; Verdeil, E.; Butler, S. de; Saint Germain, F.; Bouette, N.; Detot, A.; Caracchioli, Ph.; Bouette, N.; Smaghue, N.; Pousin, J.; Buysse, Ph.; Riallant, Y.; Durand, H.; Genter, A.; Dieulin, C.; Pronier, O.; Badea, A.; Tetart, F.; Genevois, S.; Leobet, M.; Angsthelm, B.; Calugaru, C.; Domergue, Ph.; Iacu, C.; Muntele, L.; Goodchild, M.F.; Costa, P

    2007-07-01

    This document gathers the available presentations (articles and transparencies) given at this annual meeting, the 2007 topic of which was the technological, geopolitical, economical, environmental, societal and development stakes of energy. 1 - technological stakes - which energies for the future: new energies, illusion or solution of the future; the Lorraine region, an energy land: strategies and stakes for a sustainable development; from China to Brazil: understanding the nuclear energy revival; hydroelectric power: renewable and sustainable energy; renewable energies and environment protection: the contribution of biofuels; wind power in Germany between success and contestation; 2 - geopolitical stakes - energy levier of power: the Gulf of Guinea hydrocarbons: between development and geopolitics; the complex evaluation of resources and reserves between technology, market and geopolitics; the new Bakou-Tbilissi-Ceyhan pipeline: what impacts for Turkey and the European Union; 3 - economical stakes - are public energy policies possible: the pro-alcohol program in Brazil; the surprising development of coal in the 21. century; natural gas: geo-economical and geopolitical stakes; exploitation of offshore platforms in Newfoundland: the new future of codfish island; tar sands of Alberta: promises and stakes of a 'Northern Arabia'; 4 - environmental stakes - energies responsible for the global warming: energy transformation and work in human societies; lessons learnt from the pre-industrial era: the limits of modern renewable energy sources; the energy policies in Europe: environmental constraints and geopolitical risks; reducing our energy consumption: a stake of the future; global warming and energy troubles; a territorial approach of energy, an answer to the 21. century challenges; the climate in an energy consuming world, debate and precautions; the Kyoto protocol through the geographical critics; 5 - society stakes - what energies for tomorrow's city

  12. Modeling global and regional energy futures

    Science.gov (United States)

    Rethinaraj, T. S. Gopi

    A rigorous econometric calibration of a model of energy consumption is presented using a comprehensive time series database on energy consumption and other socioeconomic indicators. The future of nuclear power in the evolving distribution of various energy sources is also examined. An important consideration for the long-term future of nuclear power concerns the rate of decline of the fraction of energy that comes from coal, which has historically declined on a global basis about linearly as a function of the cumulative use of coal. The use of fluid fossil fuels is also expected to eventually decline as the more readily extractable deposits are depleted. The investigation here is restricted to examining a comparatively simple model of the dynamics of competition between nuclear and other competing energy sources. Using a defined tropical/temperate disaggregation of the world, region-specific modeling results are presented for population growth, GDP growth, energy use, and carbon use compatible with a gradual transition to energy sustainability. Results for the fractions of energy use from various sources by grouping nine commercial primary energy sources into pairs of competing fuel categories are presented in combination with the idea of experiential learning and resource depletion. Analysis based on this division provides estimates for future evolution of the fractional shares, annual use rates, cumulative use of individual energy sources, and the economic attractiveness of spent nuclear fuel reprocessing. This unified approach helps to conceptualize and understand the dynamics of evolution of importance of various energy resources over time.

  13. A critical knowledge pathway to a sustainable future in an urbanizing planet

    Science.gov (United States)

    Romero-Lankao, P.

    2014-12-01

    The pace and scale of contemporary urbanization is a defining feature of the Anthropocene, which characterizes the dominance of human influence on the global environment. Although urban areas occupy less than three percent of the global land surface, they have global-scale impacts on natural resources, social dynamics, human wellbeing and the environment. The global environmental changes already underway are profound and in some ways irreversible. Altogether, these have serious implications for future human and environmental health, and social wellbeing. Despite considerable research and policy attention to cities, efforts are strongly needed towards integration that builds upon this and facilitates intensive interactions among disciplines in developing new perspectives, theory and methods for understanding urbanizations and urban systems as they drive and are affected by global environmental change, and for exploring options to achieve sustainability and resilience in an urbanizing world. I will present initial outcomes from a 2014 NSF/Future Earth-funded activity to develop a co-designed and interdisciplinary urban initiative within the Future Earth framework. The complexity of urban systems and the global sustainability challenges we face require inter- and trans-disciplinary research approaches that adopt a contextual approach to finding solutions. I will synthesize perspectives spanning multiple urban research and practice communities from workshops that took place over 2014 including the 2104 UGEC Conference, where emphasis was given to exploring: knowledge gaps and key urban research and socially-relevant questions moving forward; major challenges and opportunities for developing conceptual and methodological frameworks that support the global transformation to sustainability in the context of an urbanizing planet; operational mechanisms that must be in place for a successful interdisciplinary urban project that fits within Future Earth.

  14. Future possibilities for energy-storage automobiles

    Energy Technology Data Exchange (ETDEWEB)

    O' Connell, L.G.

    1981-04-23

    Because of the potential threat of a future petroleum shortage, there is increased interest in developing alternative propulsion systems for automobiles, systems that will allow the nation to reduce its demand for petroleum by this part of the transportation sector. A four-year study which assessed the future of energy storage devices for use in automobile propulsion systems has been completed. Results of the energy storage device evaluation are presented. This includes projections of future device characteristics. In addition, the results of the propulsion system analysis are given. Future energy storage automobiles were conceptually designed and they are compared to each other and the baseline internal combustion engine vehicle for several levels of performance.

  15. Current and future industrial energy service characterizations

    Energy Technology Data Exchange (ETDEWEB)

    Krawiec, F.; Thomas, T.; Jackson, F.; Limaye, D.R.; Isser, S.; Karnofsky, K.; Davis, T.D.

    1980-10-01

    Current and future energy demands, end uses, and cost used to characterize typical applications and resultant services in the industrial sector of the United States and 15 selected states are examined. A review and evaluation of existing industrial energy data bases was undertaken to assess their potential for supporting SERI research on: (1) market suitability analysis, (2) market development, (3) end-use matching, (3) industrial applications case studies, and (4) identification of cost and performance goals for solar systems and typical information requirements for industrial energy end use. In reviewing existing industrial energy data bases, the level of detail, disaggregation, and primary sources of information were examined. The focus was on fuels and electric energy used for heat and power purchased by the manufacturing subsector and listed by 2-, 3-, and 4-digit SIC, primary fuel, and end use. Projections of state level energy prices to 1990 are developed using the energy intensity approach. The effects of federal and state industrial energy conservation programs on future industrial sector demands were assessed. Future end-use energy requirements were developed for each 4-digit SIC industry and were grouped as follows: (1) hot water, (2) steam (212 to 300/sup 0/F, each 100/sup 0/F interval from 300 to 1000/sup 0/F, and greater than 1000/sup 0/F), and (3) hot air (100/sup 0/F intervals). Volume I details the activities performed in this effort.

  16. Basic Science for a Secure Energy Future

    Science.gov (United States)

    Horton, Linda

    2010-03-01

    Anticipating a doubling in the world's energy use by the year 2050 coupled with an increasing focus on clean energy technologies, there is a national imperative for new energy technologies and improved energy efficiency. The Department of Energy's Office of Basic Energy Sciences (BES) supports fundamental research that provides the foundations for new energy technologies and supports DOE missions in energy, environment, and national security. The research crosses the full spectrum of materials and chemical sciences, as well as aspects of biosciences and geosciences, with a focus on understanding, predicting, and ultimately controlling matter and energy at electronic, atomic, and molecular levels. In addition, BES is the home for national user facilities for x-ray, neutron, nanoscale sciences, and electron beam characterization that serve over 10,000 users annually. To provide a strategic focus for these programs, BES has held a series of ``Basic Research Needs'' workshops on a number of energy topics over the past 6 years. These workshops have defined a number of research priorities in areas related to renewable, fossil, and nuclear energy -- as well as cross-cutting scientific grand challenges. These directions have helped to define the research for the recently established Energy Frontier Research Centers (EFRCs) and are foundational for the newly announced Energy Innovation Hubs. This overview will review the current BES research portfolio, including the EFRCs and user facilities, will highlight past research that has had an impact on energy technologies, and will discuss future directions as defined through the BES workshops and research opportunities.

  17. Future high energy colliders symposium. Summary report

    Energy Technology Data Exchange (ETDEWEB)

    Parsa, Z. [Univ. of California, Santa Barbara, CA (United States). Institute for Theoretical Physics]|[Brookhaven National Lab., Upton, CA (United States)

    1996-12-31

    A `Future High Energy Colliders` Symposium was held October 21-25, 1996 at the Institute for Theoretical Physics (ITP) in Santa Barbara. This was one of the 3 symposia hosted by the ITP and supported by its sponsor, the National Science Foundation, as part of a 5 month program on `New Ideas for Particle Accelerators`. The long term program and symposia were organized and coordinated by Dr. Zohreh Parsa of Brookhaven National Laboratory/ITP. The purpose of the symposium was to discuss the future direction of high energy physics by bringing together leaders from the theoretical, experimental and accelerator physics communities. Their talks provided personal perspectives on the physics objectives and the technology demands of future high energy colliders. Collectively, they formed a vision for where the field should be heading and how it might best reach its objectives.

  18. The future of energy and climate

    CERN Document Server

    CERN. Geneva

    2009-01-01

    The talk will review some of the basic facts about the history and present status of the use of energy and its climatic consequences. It is clear that the world will have to change its way of energy production, the sooner the better. Because of the difficulty of storing electric energy, by far the best energy source for the future is thermal solar from the deserts, with overnight thermal storage. I will give some description of the present status of the technologies involved and end up with a pilot project for Europe and North Africa.

  19. Growing America's Energy Future

    Energy Technology Data Exchange (ETDEWEB)

    None

    2016-06-01

    The emerging U.S. bioenergy industry provides a secure and growing supply of transportation fuels, biopower, and bioproducts produced from a range of abundant, renewable biomass resources. Bioenergy can help ensure a secure, sustainable, and economically sound future by reducing U.S. dependence on foreign oil, developing domestic clean energy sources, and generating domestic green jobs. Bioenergy can also help address growing concerns about climate change by reducing greenhouse gas emissions to create a healthier environment for current and future generations.

  20. Transforming and Building the Future Energy Industry

    Energy Technology Data Exchange (ETDEWEB)

    Ellis, Vernon

    1998-12-31

    The petroleum industry is experiencing unprecedented change: increasing competition within a global context, deregulation in the European gas market, technological innovation that will fundamentally alter the economics of the industry. Sustainable Development, the challenge of balancing the Financial, Social and Environmental demands: collectively these demands are fundamentally altering the future shape of the industry. In this presentation the author describes his perspectives on the impact of change on the future shape of the energy industry in the years to come

  1. How a future energy world could look?

    Directory of Open Access Journals (Sweden)

    Ewert M.

    2012-10-01

    Full Text Available The future energy system will change significantly within the next years as a result of the following Mega Trends: de-carbonization, urbanization, fast technology development, individualization, glocalization (globalization and localization and changing demographics. Increasing fluctuating renewable production will change the role of non-renewable generation. Distributed energy from renewables and micro generation will change the direction of the energy flow in the electricity grids. Production will not follow demand but demand has to follow production. This future system is enabled by the fast technical development of information and communication technologies which will be present in the entire system. In this paper the results of a comprehensive analysis with different scenarios is summarized. Tools were used like the analysis of policy trends in the European countries, modelling of the European power grid, modelling of the European power markets and the analysis of technology developments with cost reduction potentials. With these tools the interaction of the main actors in the energy markets like conventional generation and renewable generation, grid transport, electricity storage including new storage options from E-Mobility, Power to Gas, Compressed Air Energy storage and demand side management were considered. The potential application of technologies and investments in new energy technologies were analyzed within existing frameworks and markets as well as new business models in new markets with different frameworks. In the paper the over all trend of this analysis is presented by describing a potential future energy world. This world represents only one of numerous options with comparable characteristics.

  2. How a future energy world could look?

    Science.gov (United States)

    Ewert, M.

    2012-10-01

    The future energy system will change significantly within the next years as a result of the following Mega Trends: de-carbonization, urbanization, fast technology development, individualization, glocalization (globalization and localization) and changing demographics. Increasing fluctuating renewable production will change the role of non-renewable generation. Distributed energy from renewables and micro generation will change the direction of the energy flow in the electricity grids. Production will not follow demand but demand has to follow production. This future system is enabled by the fast technical development of information and communication technologies which will be present in the entire system. In this paper the results of a comprehensive analysis with different scenarios is summarized. Tools were used like the analysis of policy trends in the European countries, modelling of the European power grid, modelling of the European power markets and the analysis of technology developments with cost reduction potentials. With these tools the interaction of the main actors in the energy markets like conventional generation and renewable generation, grid transport, electricity storage including new storage options from E-Mobility, Power to Gas, Compressed Air Energy storage and demand side management were considered. The potential application of technologies and investments in new energy technologies were analyzed within existing frameworks and markets as well as new business models in new markets with different frameworks. In the paper the over all trend of this analysis is presented by describing a potential future energy world. This world represents only one of numerous options with comparable characteristics.

  3. Future of high energy physics some aspects

    CERN Document Server

    Prokofiev, Kirill

    2017-01-01

    This book comprises 26 carefully edited articles with well-referenced and up-to-date material written by many of the leading experts. These articles originated from presentations and dialogues at the second HKUST Institute for Advanced Study Program on High Energy Physics are organized into three aspects, Theory, Accelerator, and Experiment, focusing on in-depth analyses and technical aspects that are essential for the developments and expectations for the future high energy physics.

  4. Fusion energy - an abundant energy source for the future

    DEFF Research Database (Denmark)

    this goal, mankind will have a sustainable base load energy source with abundant resources, having no CO2 release, and with no longlived radioactive waste. This presentation will describe the basics of fusion energy production and the status and future prospects of the research. Considerations...

  5. U.S. energy outlook and future energy impacts

    Science.gov (United States)

    Hamburger, Randolph John

    2011-12-01

    Energy markets were not immune to the 2007 financial crisis. Growth in the Indian and Chinese economies is placing strains on global energy supplies that could force a repeat of the 2008 price spike of $145/bbl for crude oil. Emerging market growth coupled with inefficiencies, frictions, and speculation in the energy markets has the potential to create drastic economic shocks throughout the world. The 2007 economic crisis has pushed back investment in energy projects where a low-growth scenario in world GDP could create drastic price increases in world energy prices. Without a long-term energy supply plan, the U.S. is destined to see growth reduced and its trade imbalances continue to deteriorate with increasing energy costs. Analysis of the U.S. natural gas futures markets and the impact of financial speculation on natural gas market pricing determined that financial speculation adds to price movements in the energy markets, which could cause violent swings in energy prices.

  6. World energy: Building a sustainable future

    Energy Technology Data Exchange (ETDEWEB)

    Schipper, L.; Meyers, S.

    1992-04-01

    As the 20th century draws to a close, both individual countries and the world community face challenging problems related to the supply and use energy. These include local and regional environmental impacts, the prospect of global climate and sea level change associated with the greenhouse effect, and threats to international relations in connection with oil supply or nuclear proliferation. For developing countries, the financial cost of providing energy to provide basic needs and fuel economic development pose an additional burden. To assess the magnitude of future problems and the potential effectiveness of response strategies, it is important to understand how and why energy use has changed in the post and where it is heading. This requires study of the activities for which energy is used, and of how people and technology interact to provide the energy services that are desired. The authors and their colleagues have analyzed trends in energy use by sector for most of the world`s major energy-consuming countries. The approach we use considers three key elements in each sector: the level of activity, structural change, and energy intensity, which expresses the amount of energy used for various activities. At a disaggregated level, energy intensity is indicative of energy efficiency. But other factors besides technical efficiency also shape intensity.

  7. World energy: Building a sustainable future

    Energy Technology Data Exchange (ETDEWEB)

    Schipper, L.; Meyers, S.

    1992-04-01

    As the 20th century draws to a close, both individual countries and the world community face challenging problems related to the supply and use energy. These include local and regional environmental impacts, the prospect of global climate and sea level change associated with the greenhouse effect, and threats to international relations in connection with oil supply or nuclear proliferation. For developing countries, the financial cost of providing energy to provide basic needs and fuel economic development pose an additional burden. To assess the magnitude of future problems and the potential effectiveness of response strategies, it is important to understand how and why energy use has changed in the post and where it is heading. This requires study of the activities for which energy is used, and of how people and technology interact to provide the energy services that are desired. The authors and their colleagues have analyzed trends in energy use by sector for most of the world's major energy-consuming countries. The approach we use considers three key elements in each sector: the level of activity, structural change, and energy intensity, which expresses the amount of energy used for various activities. At a disaggregated level, energy intensity is indicative of energy efficiency. But other factors besides technical efficiency also shape intensity.

  8. The Hurst exponent in energy futures prices

    Science.gov (United States)

    Serletis, Apostolos; Rosenberg, Aryeh Adam

    2007-07-01

    This paper extends the work in Elder and Serletis [Long memory in energy futures prices, Rev. Financial Econ., forthcoming, 2007] and Serletis et al. [Detrended fluctuation analysis of the US stock market, Int. J. Bifurcation Chaos, forthcoming, 2007] by re-examining the empirical evidence for random walk type behavior in energy futures prices. In doing so, it uses daily data on energy futures traded on the New York Mercantile Exchange, over the period from July 2, 1990 to November 1, 2006, and a statistical physics approach-the ‘detrending moving average’ technique-providing a reliable framework for testing the information efficiency in financial markets as shown by Alessio et al. [Second-order moving average and scaling of stochastic time series, Eur. Phys. J. B 27 (2002) 197-200] and Carbone et al. [Time-dependent hurst exponent in financial time series. Physica A 344 (2004) 267-271; Analysis of clusters formed by the moving average of a long-range correlated time series. Phys. Rev. E 69 (2004) 026105]. The results show that energy futures returns display long memory and that the particular form of long memory is anti-persistence.

  9. Energy infrastructure: Mapping future electricity demand

    Science.gov (United States)

    Janetos, Anthony C.

    2016-08-01

    Electricity distribution system planners rely on estimations of future energy demand to build adequate supply, but these are complicated to achieve. An approach that combines spatially resolved projections of population movement and climate change offers a method for building better demand maps to mid-century.

  10. Proceedings. Future Energy - Resources, Distribution and Use

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-07-01

    Leading abstract. The goals of the Norwegian Academy of Technological Sciences (NTVA) are to promote research, education and development within technological and related sciences, for the benefit of the Norwegian society and for the development of Norwegian industry. Future energy policy and Global climate change are major issues in the Norwegian discussion today. The answers given have great influence on our industry and involve huge technological challenges. In the current situation NTVA wishes to contribute to the development of new technology. In 1998 the Norwegian Academy of Technological Sciences organized the seminar ''Do We Understand Global Climate Change''. NTVA have now followed this up with a seminar on the Energy System, one of the major sources of manmade greenhouse gases. The world's demand for energy increases with improvements in our standards of living. The cleaning of emissions from production processes requires more energy. A modem information and communication society requires more energy. A new life style with increased use of all kinds of motorized tools is also leading to growth in energy consumption. Due to the risk in this human contribution to global warming, a major shift in the Energy System towards environmental sustain ability is being discussed. Changing the Energy System will require large investments in know-how and technology development, and it will take a long time to alter the rigid infrastructure of our existing Energy System. The road to the ''Clean Energy Society'' probably cannot be built by prescribing the use of one technology only. It makes a lot more sense to encourage competition between different technologies and then let experience and the market decide the winners. It will also be important to invest in the development of robust knowledge that can be applied within a broad spectrum of possible development scenarios during the next decades. Society's attitudes towards

  11. Rosier future for solar energy conversion

    Institute of Scientific and Technical Information of China (English)

    SONG Jianlan

    2008-01-01

    @@ Recent progress in dye-sensitized solar cells (DSCs) research and development,which use innovative light-harvesting dye (the "sensitizer") to improve the optical absorption coefficient of the stained nanostructured electrodes,might color our seemingly dimming future energy security with a tint of rose,despite the looming depletion of fossil fuels.Costing only 10~20% as its silicon counterparts,the new devices might make it affordable for much more people to utilize solar energy,a handy renewable energy source.

  12. On the Future High Energy Colliders

    Energy Technology Data Exchange (ETDEWEB)

    Shiltsev, Vladimir [Fermilab

    2015-09-28

    High energy particle colliders have been in the forefront of particle physics for more than three decades. At present the near term US, European and international strategies of the particle physics community are centered on full exploitation of the physics potential of the Large Hadron Collider (LHC) through its high-luminosity upgrade (HL-LHC). A number of the next generation collider facilities have been proposed and are currently under consideration for the medium and far-future of accelerator-based high energy physics. In this paper we offer a uniform approach to evaluation of various accelerators based on the feasibility of their energy reach, performance potential and cost range.

  13. Energy Scenarios For A Sustainable Future

    Directory of Open Access Journals (Sweden)

    Ion Chiuta

    2008-05-01

    Full Text Available It is clear that the future is not simplysomething already predetermined that we must acceptblindly: rather, it is open and to a large extent determinedby the course of actions we decide to take. For thisreason, we need to look at the future and its uncertaintiesin an articulated fashion, developing specific tools toconsider both how the future might unfold if we do notact and how we might like the future to unfold if actionwere to be taken.As demonstrated on valuable intellectual exercise forlooking into an uncertain future involves the developmentof “scenarios” intended as logical and plausibleconjectures about how fundamental drivers will affectglobal societies, economics, resource use and theenvironment. The literature review shows a multiplicity ofscenarios, conducted as different scales ranging from thenational to the global scale, with different time horizonsand with a focus on different strategic issues.Exploratory scenarios help prepare for events that,without representing a straight-line continuation of pasttrends, are plausible and entirely possible. Exploratoryscenarios can help a lot to accelerate and calibrate theresponse to new developments, as well as providing astrategic framework technology development policy.Normative scenario has, as its goal, the evolution of adesirable future rather than a future inexorably imposedupon us by the inertia of system. Building a normativescenario requires the creators to clearly define thedesirable characteristics of their future, and to expressthis future in terms of measurable targets.The use of such a scenario process lies as much in theissues it requires us to comfort as the precise details isgenerates. The future will not look exactly like the oneenvisioned: other priorities will intercede and nationalconditions and circumstances will dictate the specifics ofthe energy policies that may be adopted. But such aprocess of interacting around scenarios can providevaluable guidance as to

  14. The High-Energy Radiation Environment of Planets around Low-Mass Stars

    Science.gov (United States)

    Shkolnik, Evgenya; Miles, Brittany; Barman, Travis; Peacock, Sarah

    2015-12-01

    Low-mass stars are the dominant planet hosts averaging about one planet per star. Many of these planets orbit in the canonical habitable zone (HZ) of the star where, if other conditions allowed, liquid water may exist on the surface.A planet’s habitability, including atmospheric retention, is strongly dependent on the star’s ultraviolet (UV) emission, which chemically modifies, ionizes, and even erodes the atmosphere over time including the photodissociation of important diagnostic molecules, e.g. H2O, CH4, and CO2. The UV spectral slope of a low-mass star can enhance atmospheric lifetimes, and increase the detectability of biologically generated gases. But, a different slope may lead to the formation of abiotic oxygen and ozone producing a false-positive biosignature for oxygenic photosynthesis. Realistic constraints on the incident UV flux over a planet’s lifetime are necessary to explore the cumulative effects on the evolution, composition, and fate of a HZ planetary atmosphere.NASA’s Galaxy Evolution Explorer (GALEX) provides a unique data set with which to study the broadband UV emission from many hundreds of M dwarfs. The GALEX satellite has imaged nearly 3/4 of the sky simultaneously in two UV bands: near-UV (NUV; 175-275 nm) and far-UV (FUV; 135-175 nm). With these data these, we are able to calculate the mean UV emission and its level of variability at these wavelengths over critical planet formation and evolution time scales to better understand the probable conditions in HZ planetary atmospheres.In the near future, dedicated CubeSats (miniaturized satellites for space research) to monitor M dwarf hosts of transiting exoplanets will provide the best opportunity to measure their UV variability, constrain the probabilities of detecting habitable (and inhabited) planets, and provide the correct context within which to interpret IR transmission and emission spectroscopy of transiting exoplanets.

  15. Hydrogen Storage Technologies for Future Energy Systems.

    Science.gov (United States)

    Preuster, Patrick; Alekseev, Alexander; Wasserscheid, Peter

    2017-06-07

    Future energy systems will be determined by the increasing relevance of solar and wind energy. Crude oil and gas prices are expected to increase in the long run, and penalties for CO2 emissions will become a relevant economic factor. Solar- and wind-powered electricity will become significantly cheaper, such that hydrogen produced from electrolysis will be competitively priced against hydrogen manufactured from natural gas. However, to handle the unsteadiness of system input from fluctuating energy sources, energy storage technologies that cover the full scale of power (in megawatts) and energy storage amounts (in megawatt hours) are required. Hydrogen, in particular, is a promising secondary energy vector for storing, transporting, and distributing large and very large amounts of energy at the gigawatt-hour and terawatt-hour scales. However, we also discuss energy storage at the 120-200-kWh scale, for example, for onboard hydrogen storage in fuel cell vehicles using compressed hydrogen storage. This article focuses on the characteristics and development potential of hydrogen storage technologies in light of such a changing energy system and its related challenges. Technological factors that influence the dynamics, flexibility, and operating costs of unsteady operation are therefore highlighted in particular. Moreover, the potential for using renewable hydrogen in the mobility sector, industrial production, and the heat market is discussed, as this potential may determine to a significant extent the future economic value of hydrogen storage technology as it applies to other industries. This evaluation elucidates known and well-established options for hydrogen storage and may guide the development and direction of newer, less developed technologies.

  16. Renewable Energy Education for Future Generations

    Science.gov (United States)

    Ng, R.

    2015-12-01

    Considering the constantly growing use of technology, modern society requires increasing amounts of electrical power. Acknowledging the global efforts to increase the use of renewable energy sources, the Independent Schools Foundation Academy, a school in Hong Kong, plans to provide the opportunity for students to explore the applications of various forms of renewable energy through a Renewable Energy Education Centre (REEC). Two students are involved in the designing and construction of the Renewable Energy Education Centre to understand the technologies, processes, and provide insight from the students' perspective. The REEC will incorporate various uses of renewable energy, including a solar photovoltaic system, hybrid photovoltaic/thermal system, vertical windmill, hot water heater, and heat pump. As a means to enrich students' learning experiences, the REEC will be open to access by science students for a wide range of investigations, such as science experiments related to renewable energy and energy efficiency, providing opportunities for student led research projects, Personal Projects and IB Extended Essays. In short, the Independent Schools Foundation Academy aims to allow students to familiarize themselves with various forms of renewable energy from a young age, and develop a deeper understanding of technologies that will become primary sources of electrical power in the near future.

  17. Vision of future energy networks - Final report; Vision of future energy networks - Schlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Froehlich, K.; Andersson, G.

    2008-07-01

    In the framework of the project 'Vision of Future Networks', models and methods have been developed that enable a greenfield approach for energy systems with multiple energy carriers. Applying a greenfield approach means that no existing infrastructure is taken into account when designing the energy system, i.e. the system is virtually put up on a green field. The developed models refer to the impacts of energy storage on power systems with stochastic generation, to the integrated modelling and optimization of multi-carrier energy systems, to reliability considerations of future energy systems as well as to possibilities of combined transmission of multiple energy carriers. Key concepts, which have been developed in the framework of this project, are the Energy Hub (for the conversion and storage of energy) and the Energy Interconnector (for energy transmission). By means of these concepts, it is possible to design structures for future energy systems being able to cope with the growing requirements regarding energy supply. (author)

  18. The future of energy; Die Zukunft der Energie

    Energy Technology Data Exchange (ETDEWEB)

    Romer, A. [ESI - Elettricita Svizzera Italiana, Bellinzona (Switzerland)

    2001-07-01

    The article discusses not only the future of energy and resource consumption in various areas of the world, but also its development over the centuries since the industrial revolution. The present situation, with large discrepancies between the energy consumption of industrialised nations and the developing countries is examined. Social and environmental aspects are discussed and the sustainable use of the Earth's resources and the inconsistencies in this area is looked at. Rather than adopting a moralistic approach, the article appeals to man's powers of innovation and sense of responsibility in order to develop solutions to today's and future energy supply problems. The article is richly illustrated with diagrams and graphs on world energy and social statistics.

  19. Future of Energy in Egypt and the World

    Directory of Open Access Journals (Sweden)

    Hani Nokraschy

    2015-08-01

    Full Text Available If the whole world, which Egypt is a part of, continues business as usual in the field of electricitygeneration, namely, using the same regimes adopts today, burning fossil fuels and Uranium fission,both fuels will run out within sixty years at most and the world will definitely return to the Stone Age.Shall this be the end of the Egyptian people … the history makers?Generating energy is the next necessity to human life after water and food, since it is the majorstimulus of development. However, what is the aim of development if it is only momentary; thenfollowed by an endless abyss?Shall we wait till fossil and nuclear fuels run out? Jostling over the remaining fuel will certainly befierce and we will pay a high price for it, a matter that will subsequently lead to demolishing theingredients of development.Considering that oil is now dominating our way of life, it shall be wise to start immediately planning forthe post-oil age, provided that it is a sustainable plan set up to continue its validity as long as humanslive on this planet; this cannot be achieved except if we shift to renewable energies.Looking at Egypt and its available renewable energy sources, it becomes evident that the solarenergy, particularly in Upper Egypt, can give more than the present and future needs of the Egyptiansociety and even cover the demand of the whole world for electricity.

  20. Perspectives on future high energy physics

    Energy Technology Data Exchange (ETDEWEB)

    Samios, N.P.

    1996-12-31

    The author states two general ways in which one must proceed in an attempt to forecast the future of high energy physics. The first is to utilize the state of knowledge in the field and thereby provide theoretical and experimental guidance on future directions. The second approach is technical, namely, how well can one do in going to higher energies with present techniques or new accelerator principles. He concludes that the future strategy is straightforward. The present accelerator facilities must be upgraded and run to produce exciting and forefront research. At the same time, the theoretical tools should be sharpened both extrapolating from lower energies (100 GeV) to high (multi TeV) and vice versa. The US should be involved in the LHC, both in the accelerator and experimental areas. There should be an extensive R and D program on accelerators for a multi-TeV capability, emphasizing e{sup +}e{sup {minus}} and {mu}{sup +}{mu}{sup {minus}} colliders. Finally, the international cooperative activities should be strengthened and maintained.

  1. Note to Energy Source of Tsunami Earthquake on the Planet Earth

    Science.gov (United States)

    Nakamura, S.

    2012-04-01

    Note to Energy Source of Tsunami Earthquake on the Planet Earth Shigehisa Nakamura Kyoto University, Japan This note concerns to an energyy source of tsunami earthquake. In the case of the earthquake on 11 March 2011, a satellite monitoring by the Geographic Survey Institute informed some spcific pattern of the earth surface displacements just around tothe epicenter of the interested earthquake. The monitoring pattern shows that the pattern of the earth surface displacements must be understood well when the earth surface as a part of the spherical earth crusts with a physical property of a visco-plastic material rather than with a solid plate consisted by rigid material made by the products of the magma in the planet earth. This means that the pattern was appared in a short time of only several minutes, say, two or three munutes after the seismic shock was happened. The pattern of the displacement shows as if it was for a pattern of a visco-plastic fluid flowing to the pit hole force for the at the epicenter out of a conduit of the magma in order to return to the mother magma flow under the spherical crust of the planet earth. This pattern is raising us to find an updateddd model after an advanced reserarch as soon as possible in order to realize what should be a reasonable energy source to see the tsunami earthquake.

  2. Sustainable uranium energy - an optional future

    Energy Technology Data Exchange (ETDEWEB)

    Meneley, D. [Univ. of Ontario Inst. of Tech., Oshawa, Ontario (Canada)

    2015-06-15

    After 50 plus years of working on uranium fission principles and application, it is a bit hard for me to talk about anything else - but I'll give it a try. To start, I solemnly promise not to recommend to you any new reactor design - be it small, medium, modular, or large. The Uranium-fuelled power plant will be discussed ONLY as a finished product. Note that this sketch is an optional future. Ontario will, of course, take it or leave it, in whole or in part. This paper concentrates on future potential achievements of the CANDU nuclear energy systems. In the past, this venture has produced several modular systems, ranging from small (NPD and CANDU 3), medium (CANDU 6 and 6E) and large (Bruce, Darlington, and CANDU 9). All of these projects are more Ol' less finished products, and yet the CANDU concept still has broad scope for refinement and upgrading. This paper is, however, not about nuclear technology per se, but rather it is about what nuclear energy can do, both now and in the future. What does Ontario need to do next, in the line of technology applications that can help deal with the negative aspects of human-induced climate change? What energy systems can be installed to sustain the wealth and prosperity that Ontario's citizens now enjoy? What are the opportunities and the engineering challenges ahead of us? I do wish to apologize in advance for errors and omissions, and can only hope that missed details do not detract nor completely destroy an optimistic vision. Energy engineering is my game. Economics is not my specialty though it is an integral part of every engineering project. It is likely that the topic of economics will dominate the future choice of world energy supply, whatever that choice may be. Some people claim that the decisive factor dominating decisions with respect to uranium energy will be fear. In fact many opponents of the associated technology aim to induce fear as their main guiding theme. On the contrary, it is more

  3. Future Energy Grid. Migration paths into the energy Internet; Future Energy Grid. Migrationspfade ins Internet der Energie

    Energy Technology Data Exchange (ETDEWEB)

    Appelrath, Hans-Juergen [Oldenburg Univ. (Germany); Kagermann, Henning [acatech - Deutsche Akademie der Technikwissenschaften, Berlin (Germany). Hauptstadtbuero; Mayer, Christoph (eds.) [OFFIS e.V., Oldenburg (Germany)

    2012-07-01

    The present study describes the migration path that must be taken up to the year 2030 in pursuit of the Future Energy Grid. For this purpose it has explored what possible future scenarios must be taken into account along the migration path. The following key factors were identified in preparation of drawing up scenarios: expansion of the electrical infrastructure; system-wide availability of an information and communication technology infrastructure; flexibilisation of consumption; energy mix; new services and products; final consumer costs; and standardisation and political framework conditions. These eight key factors were combined with each other in different variants to give three consistent scenarios for the year 2030.

  4. Air quality and future energy system planning

    Science.gov (United States)

    Sobral Mourao, Zenaida; Konadu, Dennis; Lupton, Rick

    2016-04-01

    Ambient air pollution has been linked to an increasing number of premature deaths throughout the world. Projected increases in demand for food, energy resources and manufactured products will likely contribute to exacerbate air pollution with an increasing impact on human health, agricultural productivity and climate change. Current events such as tampering emissions tests by VW car manufacturers, failure to comply with EU Air Quality directives and WHO guidelines by many EU countries, the problem of smog in Chinese cities and new industrial emissions regulations represent unique challenges but also opportunities for regulators, local authorities and industry. However current models and practices of energy and resource use do not consider ambient air impacts as an integral part of the planing process. Furthermore the analysis of drivers, sources and impacts of air pollution is often fragmented, difficult to understand and lacks effective visualization tools that bring all of these components together. This work aims to develop a model that links impacts of air quality on human health and ecosystems to current and future developments in the energy system, industrial and agricultural activity and patterns of land use. The model will be added to the ForeseerTM tool, which is an integrated resource analysis platform that has been developed at the University of Cambridge initially with funding from BP and more recently through the EPSRC funded Whole Systems Energy Modeling (WholeSEM) project. The basis of the tool is a set of linked physical models for energy, water and land, including the technologies that are used to transform these resources into final services such as housing, food, transport and household goods. The new air quality model will explore different feedback effects between energy, land and atmospheric systems with the overarching goal of supporting better communication about the drivers of air quality and to incorporate concerns about air quality into

  5. Energy in Latin America: Present and future

    Energy Technology Data Exchange (ETDEWEB)

    Ortiz, Johnny N; Sheffield, John W [University of Missouri-Rolla (United States)

    1997-07-01

    The primary focus of this paper is on the analysis of the current situation of energy production and consumption in the region as a whole, to examine the determinants of energy supply and demand growth, and to forecast the future growth of energy production, consumption, and balances. Since the growth of oil demand in Latin American countries themselves began to accelerate in the early 1990s, the lack of investment and development and the consequence shrinking base of Latin America's energy exports may pose serious challenges to North America, where dependence on the Middle Eastern oil and gas is growing. This paper attempts to present different scenarios and strategies to tackle the problem of Latin America's future net energy supply. [Spanish] El enfoque principal de este articulo es sobre la base de la situacion actual de la produccion y consumo de energia en la region como un todo, para examinar las determinantes del suministro de energia y el crecimiento de la demanda y la prediccion del crecimiento futuro de la produccion de energia, consumo y balances. Desde el crecimiento de la demanda del petroleo, en los paises latinoamericanos, ellos mismos empezaron a acelerar a principios de los 90s, la falta de inversion y desarrollo y la consecuencia del encogimiento de la base de las exportaciones de energia de Latinoamerica podrian imponer serios retos a Norte America, en donde la dependencia del petroleo y del gas del Medio-Oeste esta creciendo. Este articulo intenta presentar diferentes escenarios y estrategias para atacar el problema del suministro neto de energia de Latinoamerica.

  6. Available Energy for Life on a Planet, with or without Stellar Radiation

    CERN Document Server

    Sertorio, L

    2001-01-01

    The quest for life in the Universe is often affected by the free use of extrapolations of our phenomenological geocentric knowledge. We point out that the existence of a living organism, and a population of organisms, requires the existence of available energy or, more precisely, available power per unit volume (Sect. 1). This is not a geocentric concept, but a principle that belongs to the foundations of thermodynamics. A quest about availability in the Universe is justified. We discuss the case in which power comes from mining (Sect. 2), and from thermal disequilibrium (Sect. 3). Thermal disequilibrium may show up in two ways: on planets without a star (Sect. 4), and on planets where the surface thermal disequilibrium is dominated by the incoming photon flux from the nearest star (Sect. 6). In the first case we study the availability by simulating the structure of the planet with a simple model that contains the general features of the problem. For the first case we show that the availability is in general ...

  7. PREFACE: PAGES 1st Young Scientists Meeting (YSM) - 'Retrospective views on our planet's future'

    Science.gov (United States)

    Margrethe Basse, Ellen

    2010-03-01

    'Retrospective views on our planet's future' - This was the theme of a tandem of meetings held by Past Global Changes (PAGES; http://www.pages-igbp.org), a project of the International Geosphere-Biosphere Programme (IGBP). It reflects the philosophy of PAGES and its community of scientists that the past holds the key to better projections of the future. Climatic and environmental evidence from the past can be used to sharpen future projections of global change, thereby informing political and societal decisions on mitigation and adaptation. Young scientists are critical to the future of this endeavour, which we call 'paleoscience'. Their scientific knowledge, interdisciplinarity, international collaboration, and leadership skills will be required if this field is to continue to thrive. Meanwhile, it is also important to remember that science develops not only by applying new strategies and new tools to make new observations, but also by building upon existing knowledge. Modern research in paleoscience began around fifty years ago, and one could say that the third generation of researchers is now emerging. It is a wise investment to ensure that existing skills and knowledge are transferred to this generation. This will enable them to lead the science towards new accomplishments, and to make important contributions towards the wider field of global change science. Motivated by such considerations, PAGES organized its first Young Scientists Meeting (YSM), held in Corvallis (Oregon, USA) in July 2009 (http://www.pages-osm.org/ysm/index.html). The meeting took place immediately before the much larger 3rd PAGES Open Science Meeting (OSM; http://www.pages-osm.org/osm/index.html). The YSM brought together 91 early-career scientists from 21 different nations. During the two-day meeting, PhD students, postdoctoral researchers, and new faculty met to present their work and build networks across geographical and disciplinary borders. Several experienced and well

  8. Clean Economy, Living Planet. The Race to the Top of Global Clean Energy Technology Manufacturing

    Energy Technology Data Exchange (ETDEWEB)

    Van der Slot, A.; Van den Berg, W. [Roland Berger Strategy Consultants RBSC, Amsterdam (Netherlands)

    2012-05-15

    For four years, WWF and Roland Berger have tracked developments in the global clean energy technology (cleantech) sector and ranked countries according to their cleantech sales. The 3rd annual 'Clean Economy, Living Planet' report ranks 40 countries based on the 2011 sales value of the clean energy technology products they manufacture. The report shows that the EU has lost its position to China as the leader in the fast growing global cleantech energy manufacturing sector. However, when cleantech sales are weighted as a percentage of GDP, Denmark and Germany occupied the first and third position globally. Last year the sector's global sales value rose by 10% to almost 200 billion euros, close to the scale of consumer electronics manufacturing. It is projected to overtake oil and gas equipment in the next three years.

  9. The effect of host star spectral energy distribution and ice-albedo feedback on the climate of extrasolar planets.

    Science.gov (United States)

    Shields, Aomawa L; Meadows, Victoria S; Bitz, Cecilia M; Pierrehumbert, Raymond T; Joshi, Manoj M; Robinson, Tyler D

    2013-08-01

    Planetary climate can be affected by the interaction of the host star spectral energy distribution with the wavelength-dependent reflectivity of ice and snow. In this study, we explored this effect with a one-dimensional (1-D), line-by-line, radiative transfer model to calculate broadband planetary albedos as input to a seasonally varying, 1-D energy balance climate model. A three-dimensional (3-D) general circulation model was also used to explore the atmosphere's response to changes in incoming stellar radiation, or instellation, and surface albedo. Using this hierarchy of models, we simulated planets covered by ocean, land, and water-ice of varying grain size, with incident radiation from stars of different spectral types. Terrestrial planets orbiting stars with higher near-UV radiation exhibited a stronger ice-albedo feedback. We found that ice extent was much greater on a planet orbiting an F-dwarf star than on a planet orbiting a G-dwarf star at an equivalent flux distance, and that ice-covered conditions occurred on an F-dwarf planet with only a 2% reduction in instellation relative to the present instellation on Earth, assuming fixed CO(2) (present atmospheric level on Earth). A similar planet orbiting the Sun at an equivalent flux distance required an 8% reduction in instellation, while a planet orbiting an M-dwarf star required an additional 19% reduction in instellation to become ice-covered, equivalent to 73% of the modern solar constant. The reduction in instellation must be larger for planets orbiting cooler stars due in large part to the stronger absorption of longer-wavelength radiation by icy surfaces on these planets in addition to stronger absorption by water vapor and CO(2) in their atmospheres, which provides increased downwelling longwave radiation. Lowering the IR and visible-band surface ice and snow albedos for an M-dwarf planet increased the planet's climate stability against changes in instellation and slowed the descent into global ice

  10. The Effect of Host Star Spectral Energy Distribution and Ice-Albedo Feedback on the Climate of Extrasolar Planets

    Science.gov (United States)

    Shields, Aomawa; Meadows, V.; Bitz, C. M.; Pierrehumbert, R. T.; Joshi, M. M.; Robinson, T. D.

    2013-01-01

    Planetary climate can be affected by the interaction of the host star spectral energy distribution with the wavelength-dependent reflectivity of ice and snow. A one dimensional (1-D), line-by-line, radiative-transfer model is used to calculate broadband planetary albedos as input to a seasonally varying, 1-D energy-balance climate model. We simulated planets covered by ocean, land, and water ice of varying grain size, with incident radiation from stars of different spectral types. Our results show that terrestrial planets orbiting stars with higher near-UV radiation exhibit a stronger ice-albedo feedback. Using a general circulation model we demonstrate that an ocean-covered planet orbiting in the habitable zone of an M-dwarf star has a higher global mean surface temperature than a planet orbiting the Sun (a G-dwarf star) at an equivalent stellar flux distance. The effect is even more pronounced when the albedos of snow and ice are lowered, indicating the importance of the spectral dependence of surface ice and snow on climate for these planets. We find that the sensitivity of climate to changes in stellar insolation for M-dwarf planets is weaker than for planets orbiting stars with greater visible and near-UV radiation. While a planet orbiting the Sun becomes ice-covered with an 8% reduction in stellar insolation, a similar planet orbiting an M dwarf requires a 27% reduction to become ice-covered. A 2% reduction in stellar insolation is all that is required for global ice cover on a planet orbiting an F-dwarf star. Consequently the habitable zone for surface liquid water on planets with Earth-like greenhouse gas concentrations may be ~12% wider for M-dwarf stars than for G-dwarf stars, and ~3% narrower for F-dwarf stars. Higher obliquities expand the outer habitable zone boundary for surface liquid water. Raising atmospheric CO2 can reduce the ice-albedo effect on M-dwarf planets, but ~3-10 bars are required to entirely mask the climatic effect of ice and snow.

  11. A Carbon-Free Energy Future

    Science.gov (United States)

    Linden, H. R.; Singer, S. F.

    2001-12-01

    desirable for other economic uses. A hydrogen-based energy future is inevitable as low-cost sources of petroleum and natural gas become depleted with time. However, such fundamental changes in energy systems will take time to accomplish. Coal may survive for a longer time but may not be able to compete as the century draws to a close.

  12. Deciding the Future: Energy Policy Scenarios to 2050

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-11-15

    This WEC study is bottom-up regional view of our energy future focusing on policies to ensure energy sustainability. Experts from five regions and all energy domains worked together to produce four different scenarios to predict how differing levels of cooperation and government involvement would affect the energy future of the world.

  13. Risoe energy report 7. Future low carbon energy systems

    Energy Technology Data Exchange (ETDEWEB)

    Larsen, Hans; Soenderberg Petersen, L. (eds.)

    2008-10-15

    This Risoe Energy Report, the seventh of a series that began in 2002, takes as its point of reference the recommendations of the Intergovernmental Panel on Climate Change (IPCC) in 2007. The IPCC states that if anticipated climate change is to remain in the order of 2 to 3 degrees centigrades over the next century, the world's CO{sub 2} emissions would have to peak within the next 10-15 years and ultimately be reduced to approximately 50% of their present level by the middle of the century. The IPCC states further that this would be possible, provided that serious action is taken now. The different regions and countries of the world are in various states of development, and hence have different starting points for contributing to these reductions in CO{sub 2} emissions. This report presents state-of-the-art and development perspectives for energy supply technologies, new energy systems, end-use energy efficiency improvements and new policy measures. It also includes estimates of the CO{sub 2} reduction potentials for different technologies. The technologies are characterized with regard to their ability to contribute either to ensuring a peak in CO{sub 2} emissions within 10-15 years, or to long-term CO{sub 2} reductions. The report outlines the current and likely future composition of energy systems in Denmark, and examines three groups of countries: i) Europe and the other OECD member nations; ii) large and rapidly growing developing economies, notably India and China; iii) typical least developed countries, such as many African nations. The report emphasises how future energy developments and systems might be composed in these three country groupings, and to what extent the different technologies might contribute. The report addresses the need for research and demonstration together with market incentives, and policy measures with focus on initiatives that can promote the development towards CO{sub 2} reductions. Specifically, the report identifies system

  14. Renewable: A key component of our global energy future

    Energy Technology Data Exchange (ETDEWEB)

    Hartley, D.

    1995-12-31

    Inclusion of renewable energy sources in national and international energy strategies is a key component of a viable global energy future. The global energy balance is going to shift radically in the near future brought about by significant increases in population in China and India, and increases in the energy intensity of developing countries. To better understand the consequences of such global shifts in energy requirements and to develop appropriate energy strategies to respond to these shifts, we need to look at the factors driving choices among supply options by geopolitical consumers and the impact these factors can have on the future energy mix.

  15. Materials, Chemistry, and Simulation for Future Energy Technology.

    Science.gov (United States)

    Aguey-Zinsou, Kondo-Francois; Wang, Da-Wei; Su, Dang-Sheng

    2015-09-01

    Special Issue: The Future of Energy. The science and engineering of clean energy now is becoming a multidisciplinary area, typically when new materials, chemistry, or mechanisms are met. "Trial and error" is the past. Exploration of new concepts for future clean energy can be accomplished through computer-aided materials design and reaction simulation, thanks to innovations in information technologies. This special issue, a fruit of the Energy Future Conference organized by UNSW Australia, has compiled some excellent examples of such approaches.

  16. Future Mercury Exploration: Unique Science Opportunities from Our Solar System's Innermost Planet

    Science.gov (United States)

    Chabot, N. L.; McNutt, R. L.; Blewett, D. T.; Denevi, B. W.; Ernst, C. M.; Mazarico, E.; Jozwiak, L. M.

    2017-02-01

    Mercury is one of only five inner solar system terrestrial bodies, each of which is unique. What properties and processes made these bodies so diverse? Future planetary exploration must include Mercury to make advances on this fundamental question.

  17. Current Renewable Energy Technologies and Future Projections

    Energy Technology Data Exchange (ETDEWEB)

    Allison, Stephen W [ORNL; Lapsa, Melissa Voss [ORNL; Ward, Christina D [ORNL; Smith, Barton [ORNL; Grubb, Kimberly R [ORNL; Lee, Russell [ORNL

    2007-05-01

    The generally acknowledged sources of renewable energy are wind, geothermal, biomass, solar, hydropower, and hydrogen. Renewable energy technologies are crucial to the production and utilization of energy from these regenerative and virtually inexhaustible sources. Furthermore, renewable energy technologies provide benefits beyond the establishment of sustainable energy resources. For example, these technologies produce negligible amounts of greenhouse gases and other pollutants in providing energy, and they exploit domestically available energy sources, thereby reducing our dependence on both the importation of fossil fuels and the use of nuclear fuels. The market price of renewable energy technologies does not reflect the economic value of these added benefits.

  18. Digital cartography of the planets - New methods, its status, and its future

    Science.gov (United States)

    Batson, R. M.

    1987-01-01

    A system has been developed that establishes a standardized cartographic database for each of the 19 planets and major satellites that have been explored to date. Compilation of the databases involves both traditional and newly developed digital image processing and mosaicking techniques, including radiometric and geometric corrections of the images. Each database, or digital image model (DIM), is a digital mosaic of spacecraft images that have been radiometrically and geometrically corrected and photometrically modeled. During compilation, ancillary data files such as radiometric calibrations and refined photometric values for all camera lens and filter combinations and refined camera-orientation matrices for all images used in the mapping are produced. The system is designed to aid in the following: access to and utilization of spatial data returned by planetary spacecraft; coregistration of cartographic image and topographic elevation models with geological, geophysical, and geochemical databases; and the design and preparation of both standard and custom map products. A major goal of the project is to publish the DIMs on compact computer-compatible media such as digital-optical (CD-ROM) disks.

  19. Far-Infrared Space Interferometers: Future Windows on Star and Planet Formation

    Science.gov (United States)

    Leisawitz, David

    2004-01-01

    Far-IR space interferometers will provide observational access to a spectral region containing many important cooling and diagnostic spectral lines and the bulk of the thermal emission from dust at angular scales critical to advancing our understanding of the star and planet formation process. We will describe concepts for the Space Infrared Interferometric Telescope (SPIRIT) and the Submillimeter Probe of the Evolution of Cosmic Structure (SPECS). Both of these candidate NASA missions are imaging and spectral Michelson interferometers operating in the wavelength range -40 - 800 microns. SPIRIT, which could be launched in a decade as a NASA Origins Probe, is built on a deployable boom and has a maximum baseline length of -30 - 50 m, yielding sub-arcsecond resolution in the far-IR. SPIRIT will thus provide far-IR/sub-mm measurements complementary to the near- and mid-IR measurements obtainable with the James Webb Space Telescope (JWST), and well matched to JWST observations in angular resolution. Ultimately SPECS, a NASA Vision Mission, will use formation flying to attain baseline lengths up to 1 km, and thus angular resolution comparable to that of the Hubble Space Telescope and the Atacama Large Millimeter Array. We will report preliminary results of the NASA-sponsored SPIRIT and SPECS mission studies, which are now underway.

  20. The Effect of Giant Planets on Habitable Planet Formation

    Science.gov (United States)

    Quintana, Elisa V.; Barclay, Thomas

    2016-06-01

    The giant planets in the Solar System likely played a large role in shaping the properties of the Earth during its formation. To explore their effects, we numerically model the growth of Earth-like planets around Sun-like stars with and without Jupiter and Saturn analog companions. Employing state-of-the-art dynamical formation models that allow both accretion and collisional fragmentation, we perform hundreds of simulations and quantify the specific impact energies of all collisions that lead to the formation of an Earth-analog. Our model tracks the bulk compositions and water abundances in the cores and mantles of the growing protoplanets to constrain the types of giant planet configurations that allow the formation of habitable planets. We find significant differences in the collisional histories and bulk compositions of the final planets formed in the presence of different giant planet configurations. Exoplanet surveys like Kepler hint at a paucity of Jupiter analogs, thus these analyses have important implications for determining the frequency of habitable planets and also support target selection for future exoplanet characterization missions.

  1. Nuclear energy, energy of the future or bad solution?; Energie nucleaire, energie d'avenir ou fausse solution?

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-07-01

    The document presents the speeches of the debate on the nuclear energy solution for the future, presented during the meeting of the 6 may in Rennes, in the framework of the National Debate on the energies. The debate concerns the risks assessment and control, the solutions for the radioactive wastes, the foreign examples and the future of the nuclear energy. (A.L.B.)

  2. America's energy future: technology and transformation

    National Research Council Canada - National Science Library

    Committee on America's Energy Future; National Academy of Sciences; National Academy of Engineering

    2009-01-01

    ... are increasingly concentrated in geopolitically unstable regions. The country's challenge is to develop an energy portfolio that addresses these concerns while still providing sufficient, affordable energy reserves for the nation...

  3. Future scientific applications for high-energy lasers

    Energy Technology Data Exchange (ETDEWEB)

    Lee, R.W. [comp.

    1994-08-01

    This report discusses future applications for high-energy lasers in the areas of astrophysics and space physics; hydrodynamics; material properties; plasma physics; radiation sources; and radiative properties.

  4. Fast low-energy halo-to-halo transfers between Sun–planet systems

    Directory of Open Access Journals (Sweden)

    Shang Haibin

    2014-04-01

    Full Text Available In this paper, the problem of fast low-energy halo-to-halo transfers between Sun–planet systems is discussed under ephemeris constraints. According to the structure of an invariant manifold, employing an invariant manifold and planetary gravity assist to save fuel consumption is analyzed from the view of orbital energy. Then, a pseudo-manifold is introduced to replace the invariant manifold in such a way that more transfer opportunities are allowed. Fast escape and capture can be achieved along the pseudo-manifold. Furthermore, a global searching method that is based on patched-models is proposed to find an appropriate transfer trajectory. In this searching method, the trajectory is divided into several segments that can be designed under simple dynamical models, and an analytical algorithm is developed for connecting the segments. Earth–Mars and Earth–Venus halo-to-halo transfers are designed to demonstrate the proposed approach. Numerical results show that the transfers that combine the pseudo-manifolds and planetary gravity assist can offer significant fuel consumption and flight time savings over traditional transfer schemes.

  5. Wind Energy Status and Future Wind Engineering Challenges: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Thresher, R.; Schreck, S.; Robinson, M.; Veers, P.

    2008-08-01

    This paper describes the current status of wind energy technology, the potential for future wind energy development and the science and engineering challenges that must be overcome for the technology to meet its potential.

  6. Energy and future Internet; Energia e futura internet

    Energy Technology Data Exchange (ETDEWEB)

    Lovasz, Gergoe; Niedermeier, Florian; Beri, Andreas; Meers, Hermann de [Universidade de Passau (Germany)

    2012-06-15

    One of the main concern related with future of Internet as far the elevated energy consumption of the infrastructure, which includes the energy supply for the servers and equipment need to refrigerate the necessary hardware.

  7. AB initio free energy calculations of the solubility of silica in metallic hydrogen and application to giant planet cores

    Energy Technology Data Exchange (ETDEWEB)

    González-Cataldo, F. [Grupo de NanoMateriales, Departamento de Física, Facultad de Ciencias, Universidad de Chile, Casilla 653, Santiago (Chile); Wilson, Hugh F.; Militzer, B., E-mail: fgonzalez@lpmd.cl [Department of Earth and Planetary Science, University of California Berkeley, Berkeley, CA 94720 (United States)

    2014-05-20

    By combining density functional molecular dynamics simulations with a thermodynamic integration technique, we determine the free energy of metallic hydrogen and silica, SiO{sub 2}, at megabar pressures and thousands of degrees Kelvin. Our ab initio solubility calculations show that silica dissolves into fluid hydrogen above 5000 K for pressures from 10 and 40 Mbars, which has implications for the evolution of rocky cores in giant gas planets like Jupiter, Saturn, and a substantial fraction of known extrasolar planets. Our findings underline the necessity of considering the erosion and redistribution of core materials in giant planet evolution models, but they also demonstrate that hot metallic hydrogen is a good solvent at megabar pressures, which has implications for high-pressure experiments.

  8. Precision velocimetry planet hunting with PARAS: current performance and lessons to inform future extreme precision radial velocity instruments

    Science.gov (United States)

    Roy, Arpita; Chakraborty, Abhijit; Mahadevan, Suvrath; Chaturvedi, Priyanka; Prasad, Neelam J. S. S. V.; Shah, Vishal; Pathan, F. M.; Anandarao, B. G.

    2016-08-01

    The PRL Advanced Radial-velocity Abu-sky Search (PARAS) instrument is a fiber-fed stabilized high-resolution cross-dispersed echelle spectrograph, located on the 1.2 m telescope in Mt. Abu India. Designed for exoplanet detection, PARAS is capable of single-shot spectral coverage of 3800 - 9600 Å, and currently achieving radial velocity (RV) precisions approaching 1 m s-1 over several months using simultaneous ThAr calibration. As such, it is one of the few dedicated stabilized fiber-fed spectrographs on small (1-2 m) telescopes that are able to fill an important niche in RV follow-up and stellar characterization. The success of ground-based RV surveys is motivating the push into extreme precisions, with goals of 10 cm s-1 in the optical and <1 m s-1 in the near-infrared (NIR). Lessons from existing instruments like PARAS are invaluable in informing hardware design, providing pipeline prototypes, and guiding scientific surveys. Here we present our current precision estimates of PARAS based on observations of bright RV standard stars, and describe the evolution of the data reduction and RV analysis pipeline as instrument characterization progresses and we gather longer baselines of data. Secondly, we discuss how our experience with PARAS is a critical component in the development of future cutting edge instruments like (1) the Habitable Zone Planet Finder (HPF), a near-infrared spectrograph optimized to look for planets around M dwarfs, scheduled to be commissioned on the Hobby Eberly Telescope in 2017, and (2) the NEID optical spectrograph, designed in response to the NN-EXPLORE call for an extreme precision Doppler spectrometer (EPDS) for the WIYN telescope. In anticipation of instruments like TESS and GAIA, the ground-based RV support system is being reinforced. We emphasize that instruments like PARAS will play an intrinsic role in providing both complementary follow-up and battlefront experience for these next generation of precision velocimeters.

  9. Reinflating Giant Planets

    Science.gov (United States)

    Kohler, Susanna

    2017-01-01

    expected lifetime). The two newly discovered hot Jupiters with inflated radii, for instance, are orbiting stars that are roughly 84% and 83% through their life spans and are approaching the main-sequence turnoff point.Late-Life ReinflationFractional age of the host stars of close-in transiting exoplanets vs. the planets radius. There is a statistically significant correlation between age and planet radius. [Adapted from Hartman et al. 2016]Hartman and collaborators propose that the data support the following scenario: as host stars evolve and become more luminous toward the ends of their main-sequence lifetimes, they deposit more energy deep into the interiors of the planets closely orbiting them. These close-in planets then increase their equilibrium temperatures and their radii reinflate as a result.Based on these results, we would expect to continue to find hot Jupiters with inflated radii primarily orbiting closely around older stars. Conversely, close-in giant planets around younger stars should primarily have non-inflated radii. As we continue to build our observational sample of transiting hot Jupiters in the future, we will be able to see how this model holds up.CitationJ. D. Hartman et al 2016 AJ 152 182. doi:10.3847/0004-6256/152/6/182

  10. Imagining a Future for the Planet through Literature, Writing, Images, and Drama

    Science.gov (United States)

    Beach, Richard

    2015-01-01

    This Commentary posits the need to analyze how the energy/transportation, agricultural/food, and economic/political systems influence climate change through responding to literary "cli-fi" texts, place-based writing, visual representation of the effects of climate change, and drama activities.

  11. Present and Future Energy Scenario in India

    Science.gov (United States)

    Kumar, S.; Bhattacharyya, B.; Gupta, V. K.

    2014-09-01

    India's energy sector is one of the most critical components of an infrastructure that affects India's economic growth and therefore is also one of the largest industries in India. India has the 5th largest electricity generating capacity and is the 6th largest energy consumer amounting for around 3.4 % of global energy consumption. India's energy demand has grown at 3.6 % pa over the past 30 years. The consumption of the energy is directly proportional to the progress of manpower with ever growing population, improvement in the living standard of the humanity and industrialization of the developing countries. Very recently smart grid technology can attribute important role in energy scenario. Smart grid refers to electric power system that enhances grid reliability and efficiency by automatically responding to system disturbances. This paper discusses the new communication infrastructure and scheme designed to integrate data.

  12. Energy efficiency in future wireless broadband networks

    CSIR Research Space (South Africa)

    Masonta, MT

    2012-10-01

    Full Text Available , and will require unique energy efficient solutions. For instance, an MS may be battery-powered, and the relevant energy efficient solution would include switching-off the display and minimizing signalling overhead (e.g. sleep mode). Meanwhile energy efficient... solution for the BS may include the intelligent sleep mode policies when the number of users and the traffic load decreases [3]. Due to the growing demand for advanced broadband wireless technologies and services, research in green radio solutions...

  13. Bright Future for Xinjiang's Energy Industry

    Institute of Scientific and Technical Information of China (English)

    Li Jun

    2010-01-01

    @@ Xinjiang enjoys huge energy resources,and the amount of total storage of petroleum,natural-gas,and coal takes up about 30 percent of the national resource storage.It also benefits from its geographical borders,which extend north to Russia and west to Central Asia.This puts Xinjiang in position to become an international energy city for energy trade and cooperation with China's neighboring countries.

  14. Mapping the Future of Renewable Energy

    Energy Technology Data Exchange (ETDEWEB)

    2016-06-01

    This EC-LEDS fact sheet describes the NREL Geospatial Toolkit (GsT), an open-source, map-based software application that provide an intuitive, user-friendly interface for visualizing data and renewable energy potential. The GsT is a country-specific tool that maps renewable energy resources (e.g., for solar, wind, and biomass) in relation to enabling infrastructure like roads and transmission lines, providing necessary information for deploying new clean energy generation.

  15. Rethinking EU energy security considering past trends and future prospects

    NARCIS (Netherlands)

    Amineh, Mehdi P.; Crijns - Graus, Wina

    2014-01-01

    EU energy policy objectives are directed at three highly interdependent areas: energy supply security, competitiveness and decarbonization to prevent climate change. In this paper, we focus on the issue of energy supply security. Security of energy supply for the immediate and medium-term future is

  16. Two Energy Futures: A National Choice for the 80s.

    Science.gov (United States)

    American Petroleum Inst., Washington, DC.

    Examined in this American Petroleum Institute (API) publication on energy technology and energy policy, is the future potential of oil, natural gas, coal, nuclear energy, synthetic fuels, and renewable energy resources. Among the related issues emphasized are environmental protection, access to federal lands, government policies, and the national…

  17. Rethinking EU energy security considering past trends and future prospects

    NARCIS (Netherlands)

    Amineh, Mehdi P.; Crijns - Graus, Wina

    2014-01-01

    EU energy policy objectives are directed at three highly interdependent areas: energy supply security, competitiveness and decarbonization to prevent climate change. In this paper, we focus on the issue of energy supply security. Security of energy supply for the immediate and medium-term future is

  18. Renewable Energy: The Future of Bangladesh

    Directory of Open Access Journals (Sweden)

    Md. Mamunur Rahman

    2017-06-01

    Full Text Available Electrical energy is versatile and considered as the back bone of our daily life. It is directly or indirectly used in everyone’s daily activities. But for having the availability of the sources, we cannot but depend on the renewable resources. The renewable resources can be replaced through the natural process at a rate which is equal or greater than this rate at which they are used. Actually, renewable energy is generated from natural resources like sunlight, wind, tide, geothermal heat, ocean energy etc. that are renewable. A prediction is that in 2030, energy comes from renewable sources is 28% of total generation. Though Bangladesh having lots of natural resources, but still now facing and struggling with the shortage of power, while our neighboring countries are utilizing their sources properly and being richer with better economic growth. The vision for increasing economic growth to 10% by 2017 can be come into reality through the proper utilization of renewable energy resources for having a sustainable development of our country. This paper shows an analytical study on recent energy scenario of Bangladesh and describes the potentiality of available renewable energy resources that should be incorporated in the national energy planning.

  19. Future of the Energy in Asia

    Institute of Scientific and Technical Information of China (English)

    YukioMasuda

    2003-01-01

    I have been in oil and gas business, orthe evergy business in Japan for almost40 years at Mitsubishi Corporation. I hope myfew words will be a useful contribution totoday's agenda"Energy Security in Asia"and"Energy and Environment".

  20. Energy storage in future power systems

    DEFF Research Database (Denmark)

    Rasmussen, Claus Nygaard; Østergaard, Jacob; Divya, K. C.

    2011-01-01

    Most sources of renewable power are characterised by uncontrollable and chaotic variations in power output. We here look at how energy storage may benefit renewable power generation by making it available in periods with little or no intermittent generation and thereby prevent additional...... conventional generation form being used. In addition to this, one of the strongest concerns in relation to renewable power is the instability in the electric power system that it may introduce as a result of large and relatively fast power fluctuations. An additional benefit of energy storage is therefore its...... of renewable energy. Meanwhile, the insurance of power system stability through reduction of power gradients is of major importance even at lower penetration levels and some form of energy storage therefore seems unavoidable. A variety of technologies are available for storage of energy in the power system...

  1. Energy storage in future power systems

    DEFF Research Database (Denmark)

    Rasmussen, Claus Nygaard; Østergaard, Jacob; Divya, K. C.

    2011-01-01

    Most sources of renewable power are characterised by uncontrollable and chaotic variations in power output. We here look at how energy storage may benefit renewable power generation by making it available in periods with little or no intermittent generation and thereby prevent additional...... conventional generation form being used. In addition to this, one of the strongest concerns in relation to renewable power is the instability in the electric power system that it may introduce as a result of large and relatively fast power fluctuations. An additional benefit of energy storage is therefore its...... of renewable energy. Meanwhile, the insurance of power system stability through reduction of power gradients is of major importance even at lower penetration levels and some form of energy storage therefore seems unavoidable. A variety of technologies are available for storage of energy in the power system...

  2. Mark Lynas, 2007, Six Degrees. Our future on a hotter planet, Fourth Estate (Harper Collins.

    Directory of Open Access Journals (Sweden)

    Luc Semal

    2008-05-01

    Full Text Available À quoi ressemblerait une application du catastrophisme éclairé de Jean-Pierre Dupuy au sujet du changement climatique ? Bien qu’il n’y fasse pas référence, Six degrees en est un très bon exemple. Certes, il existait déjà des livres décrivant le futur apocalyptique que nous promet une planète beaucoup plus chaude, et l’ouvrage de Mark Lynas s’inscrit pleinement dans ce registre : de ce point de vue, il n’est pas particulièrement original, si ce n’est par l’ampleur des données scientifiques qui...

  3. Advanced technology paths to global climate stability: energy for a greenhouse planet.

    Science.gov (United States)

    Hoffert, Martin I; Caldeira, Ken; Benford, Gregory; Criswell, David R; Green, Christopher; Herzog, Howard; Jain, Atul K; Kheshgi, Haroon S; Lackner, Klaus S; Lewis, John S; Lightfoot, H Douglas; Manheimer, Wallace; Mankins, John C; Mauel, Michael E; Perkins, L John; Schlesinger, Michael E; Volk, Tyler; Wigley, Tom M L

    2002-11-01

    Stabilizing the carbon dioxide-induced component of climate change is an energy problem. Establishment of a course toward such stabilization will require the development within the coming decades of primary energy sources that do not emit carbon dioxide to the atmosphere, in addition to efforts to reduce end-use energy demand. Mid-century primary power requirements that are free of carbon dioxide emissions could be several times what we now derive from fossil fuels (approximately 10(13) watts), even with improvements in energy efficiency. Here we survey possible future energy sources, evaluated for their capability to supply massive amounts of carbon emission-free energy and for their potential for large-scale commercialization. Possible candidates for primary energy sources include terrestrial solar and wind energy, solar power satellites, biomass, nuclear fission, nuclear fusion, fission-fusion hybrids, and fossil fuels from which carbon has been sequestered. Non-primary power technologies that could contribute to climate stabilization include efficiency improvements, hydrogen production, storage and transport, superconducting global electric grids, and geoengineering. All of these approaches currently have severe deficiencies that limit their ability to stabilize global climate. We conclude that a broad range of intensive research and development is urgently needed to produce technological options that can allow both climate stabilization and economic development.

  4. Fault feature extraction of planet gear in wind turbine gearbox based on spectral kurtosis and time wavelet energy spectrum

    Science.gov (United States)

    Kong, Yun; Wang, Tianyang; Li, Zheng; Chu, Fulei

    2017-01-01

    Planetary transmission plays a vital role in wind turbine drivetrains, and its fault diagnosis has been an important and challenging issue. Owing to the complicated and coupled vibration source, time-variant vibration transfer path, and heavy background noise masking effect, the vibration signal of planet gear in wind turbine gearboxes exhibits several unique characteristics: Complex frequency components, low signal-to-noise ratio, and weak fault feature. In this sense, the periodic impulsive components induced by a localized defect are hard to extract, and the fault detection of planet gear in wind turbines remains to be a challenging research work. Aiming to extract the fault feature of planet gear effectively, we propose a novel feature extraction method based on spectral kurtosis and time wavelet energy spectrum (SK-TWES) in the paper. Firstly, the spectral kurtosis (SK) and kurtogram of raw vibration signals are computed and exploited to select the optimal filtering parameter for the subsequent band-pass filtering. Then, the band-pass filtering is applied to extrude periodic transient impulses using the optimal frequency band in which the corresponding SK value is maximal. Finally, the time wavelet energy spectrum analysis is performed on the filtered signal, selecting Morlet wavelet as the mother wavelet which possesses a high similarity to the impulsive components. The experimental signals collected from the wind turbine gearbox test rig demonstrate that the proposed method is effective at the feature extraction and fault diagnosis for the planet gear with a localized defect.

  5. Fault feature extraction of planet gear in wind turbine gearbox based on spectral kurtosis and time wavelet energy spectrum

    Science.gov (United States)

    Kong, Yun; Wang, Tianyang; Li, Zheng; Chu, Fulei

    2017-09-01

    Planetary transmission plays a vital role in wind turbine drivetrains, and its fault diagnosis has been an important and challenging issue. Owing to the complicated and coupled vibration source, time-variant vibration transfer path, and heavy background noise masking effect, the vibration signal of planet gear in wind turbine gearboxes exhibits several unique characteristics: Complex frequency components, low signal-to-noise ratio, and weak fault feature. In this sense, the periodic impulsive components induced by a localized defect are hard to extract, and the fault detection of planet gear in wind turbines remains to be a challenging research work. Aiming to extract the fault feature of planet gear effectively, we propose a novel feature extraction method based on spectral kurtosis and time wavelet energy spectrum (SK-TWES) in the paper. Firstly, the spectral kurtosis (SK) and kurtogram of raw vibration signals are computed and exploited to select the optimal filtering parameter for the subsequent band-pass filtering. Then, the band-pass filtering is applied to extrude periodic transient impulses using the optimal frequency band in which the corresponding SK value is maximal. Finally, the time wavelet energy spectrum analysis is performed on the filtered signal, selecting Morlet wavelet as the mother wavelet which possesses a high similarity to the impulsive components. The experimental signals collected from the wind turbine gearbox test rig demonstrate that the proposed method is effective at the feature extraction and fault diagnosis for the planet gear with a localized defect.

  6. Primordial Planets Explain Interstellar Dust, the Formation of Life; and Falsify Dark Energy

    CERN Document Server

    Gibson, Carl H; Schild, Rudolph E

    2011-01-01

    Hydrogravitional-dynamics (HGD) cosmology of Gibson/Schild 1996 predicts proto-globular-star-cluster PGC clumps of Earth-mass planets fragmented from plasma at ~0.3 Myr. Protogalaxies retained the ~0.03 Myr baryonic density existing at the time of the first viscous-gravitational plasma fragmentation. Stars promptly formed from mergers of these gas planets, seeded by chemicals C, N, O, Fe etc. created by the first stars and their supernovae at ~ 0.33 Myr. Hot hydrogen gas planets reduced seeded oxides to hot water oceans over metal-rock cores at water critical temperature 647 K, at ~2 Myr. Merging planets and moons hosted the first organic chemistry and the first life, distributed to the 10^80 planets of the cosmological big bang by comets produced by the (HGD) binary-planet-merger star formation mechanism: the biological big bang. Life distributed by the Hoyle/Wickramasinghe cometary-panspermia mechanism thus evolves in a cosmological primordial soup of the merging planets throughout the universe space-time. ...

  7. UV DRIVEN EVAPORATION OF CLOSE-IN PLANETS: ENERGY-LIMITED, RECOMBINATION-LIMITED, AND PHOTON-LIMITED FLOWS

    Energy Technology Data Exchange (ETDEWEB)

    Owen, James E. [Institute for Advanced Study, Einstein Drive, Princeton NJ, 08540 (United States); Alvarez, Marcelo A., E-mail: jowen@ias.edu [Canadian Institute for Theoretical Astrophysics, 60 St George Street, Toronto, M5S 3H8, ON (Canada)

    2016-01-01

    We have investigated the evaporation of close-in exoplanets irradiated by ionizing photons. We find that the properties of the flow are controlled by the ratio of the recombination time to the flow timescale. When the recombination timescale is short compared to the flow timescale, the flow is in approximate local ionization equilibrium with a thin ionization front where the photon mean free path is short compared to the flow scale. In this “recombination-limited” flow the mass-loss scales roughly with the square root of the incident flux. When the recombination time is long compared to the flow timescale the ionization front becomes thick and encompasses the entire flow with the mass-loss rate scaling linearly with flux. If the planet's potential is deep, then the flow is approximately “energy-limited”; however, if the planet's potential is shallow, then we identify a new limiting mass-loss regime, which we term “photon-limited.” In this scenario, the mass-loss rate is purely limited by the incoming flux of ionizing photons. We have developed a new numerical approach that takes into account the frequency dependence of the incoming ionizing spectrum and performed a large suite of 1D simulations to characterize UV driven mass-loss around low-mass planets. We find that the flow is “recombination-limited” at high fluxes but becomes “energy-limited” at low fluxes; however, the transition is broad occurring over several orders of magnitude in flux. Finally, we point out that the transitions between the different flow types do not occur at a single flux value but depend on the planet's properties, with higher-mass planets becoming “energy-limited” at lower fluxes.

  8. The Uncertain Future of Nuclear Energy

    OpenAIRE

    Bunn, Matthew G.; von Hippel, Frank; Diakov, Anatoli; Ding, Ming; Katsuta, Tadahiro; McCombie, Charles; M. V. Ramana; Suzuki, Tatsujiro; Voss, Susan; Yu, Suyuan

    2010-01-01

    In the 1970s, nuclear energy was expected to quickly become the dominant generator of electrical power. Its fuel costs are remarkably low because a million times more energy is released per unit weight by fission than by combustion. But its capital costs have proven to be high. Safety requires redundant cooling and control systems, massive leak-tight containment structures, very conservative seismic design and extremely stringent quality control. The routine health risks and greenhouse-gas...

  9. Absorption of solar energy heats up our planet's surface and the atmosphere and makes life for us po

    Science.gov (United States)

    2002-01-01

    Credit: Image courtesy Barbara Summey, NASA Goddard Visualization Analysis Lab, based upon data processed by Takmeng Wong, CERES Science Team, NASA Langley Research Center Satellite: Terra Sensor: CERES Image Date: 09-30-2001 VE Record ID: 11546 Description: Absorption of solar energy heats up our planet's surface and the atmosphere and makes life for us possible. But the energy cannot stay bound up in the Earth's environment forever. If it did then the Earth would be as hot as the Sun. Instead, as the surface and the atmosphere warm, they emit thermal longwave radiation, some of which escapes into space and allows the Earth to cool. This false-color image of the Earth was produced on September 30, 2001, by the Clouds and the Earth's Radiant Energy System (CERES) instrument flying aboard NASA's Terra spacecraft. The image shows where more or less heat, in the form of longwave radiation, is emanating from the top of Earth's atmosphere. As one can see in the image, the thermal radiation leaving the oceans is fairly uniform. The blue swaths across the central Pacific represent thick clouds, the tops of which are so high they are among the coldest places on Earth. In the American Southwest, which can be seen in the upper righthand corner of the globe, there is often little cloud cover to block outgoing radiation and relatively little water to absorb solar energy. Consequently, the amount of outgoing radiation in the American Southwest exceeds that of the oceans. Also, that region was experiencing an extreme heatwave when these data were acquired. Recently, NASA researchers discovered that incoming solar radiation and outgoing thermal radiation increased in the tropics from the 1980s to the 1990s. (Click to read the press release .) They believe that the reason for the unexpected increase has to do with an apparent change in circulation patterns around the globe, which effectively reduced the amount of water vapor and cloud cover in the upper reaches of the atmosphere

  10. The Future of Energy and Environment

    Science.gov (United States)

    Frois, Bernard

    2011-05-01

    This brief review is a tribute to Professor Akito Arima on the occasion of his 80th birthday, celebrated at the Okinawa Institute of Science and Technology. Professor Akito Arima has played a major role in nuclear physics and the development of international collaborations. He has strongly encouraged the science community to bridge university research and industry, and to connect science to the needs of the world population. This paper describes the present challenges of producing enough energy for the world population in a context of diminishing fossil fuels and climate change. Coal, gas and nuclear energy dominate the scene at short and medium term, while new energy technologies are very promising in the long term. In contrast with the situation ten years ago, a significant expansion of nuclear power is planned all over the world.

  11. Can Future Energy Needs be Met Sustainably?

    CERN Document Server

    CERN. Geneva

    2015-01-01

    After briefly reviewing trends in energy demand, supply and efficiency, I will focus on the potential and outlook for the major low carbon energy sources - in order of decreasing current importance: bioenergy, hydro, nuclear, wind and solar. Together, they are sufficiently abundant to replace fossil fuels, which would presumably happen if they were economically competitive. I will discuss how close low carbon sources are to being competitive (which in the case of wind and solar depends on the cost of integrating large-scale intermittent supply), and the tech...

  12. The Renewable Energy Data Explorer: Mapping Our Renewable Energy Future

    Energy Technology Data Exchange (ETDEWEB)

    2017-04-13

    The Renewable Energy (RE) Data Explorer, developed by the National Renewable Energy Laboratory, is an innovative web-based platform that allows users to visualize and analyze renewable energy potential. The RE Data Explorer informs prospecting, integrated planning, and policymaking to enable low emission development.

  13. Future Energy Technology. A Basic Teaching Unit on Energy. Revised.

    Science.gov (United States)

    McDermott, Hugh, Ed.; Scharmann, Larry, Ed.

    Recommended for grades 7-12 language arts, science, and social studies classes, this 5-7 day unit encourages students to investigate alternative energy sources through research. Focusing on geothermal energy, tide and ocean, fusion, wind, biomass, and solar energy as possible areas of consideration, the unit attempts to create an awareness of the…

  14. Biofuels, fossil energy ratio, and the future of energy production

    Science.gov (United States)

    Consiglio, David

    2017-05-01

    Two hundred years ago, much of humanity's energy came from burning wood. As energy needs outstripped supplies, we began to burn fossil fuels. This transition allowed our civilization to modernize rapidly, but it came with heavy costs including climate change. Today, scientists and engineers are taking another look at biofuels as a source of energy to fuel our ever-increasing consumption.

  15. Embracing a clean-energy future.

    Science.gov (United States)

    Sebelius, Kathleen

    2009-01-01

    The former governor of Kansas describes how her state is greening. The Blue Green Alliance has estimated that in a renewable-energy economy, Kansas stands to gain more than 11,000 jobs and almost $2 billion in new economic investments.

  16. Nordic Energy Technologies : Enabling a sustainable Nordic energy future

    Energy Technology Data Exchange (ETDEWEB)

    Vik, Amund; Smith, Benjamin

    2009-10-15

    A high current Nordic competence in energy technology and an increased need for funding and international cooperation in the field are the main messages of the report. This report summarizes results from 7 different research projects relating to policies for energy technology, funded by Nordic Energy Research for the period 2007-2008, and provides an analysis of the Nordic innovation systems in the energy sector. The Nordic countries possess a high level of competence in the field of renewable energy technologies. Of the total installed capacity comprises a large share of renewable energy, and Nordic technology companies play an important role in the international market. Especially distinguished wind energy, both in view of the installed power and a global technology sales. Public funding for energy research has experienced a significant decline since the oil crisis of the 1970s, although the figures in recent years has increased a bit. According to the IEA, it will require a significant increase in funding to reduce greenhouse gas emissions and limit further climate change. The third point highlighted in the report is the importance of international cooperation in energy research. Nordic and international cooperation is necessary in order to reduce duplication and create the synergy needed if we are to achieve our ambitious policy objectives in the climate and energy issue. (AG)

  17. Future Electric Ship and Power and Energy

    Science.gov (United States)

    2010-09-01

    Storage: •Advanced materials ( high purity , high dielectric breakdown) •Increased energy density and high temperature operation Goal: Increased... SiC Substrate Wafers • High Yield Systems • Cost Reduction • Next Generation P/E Research essential for powering large/diverse electrical loads and... Silicon Carbide Based • 10kV Standards, Methods, & Tools • DC 10kV components Distribution Statement A: Approved for public release; distribution is

  18. Black Sea Energy Security - Present and Future

    Directory of Open Access Journals (Sweden)

    Florinel Iftode

    2011-05-01

    Full Text Available We chose this theme to highlight the need for continuous and sustained human society to secure energy resources needed to survive, needs reflected in an increasingly in recent years in the strategies adopted at both states, as at the level of international organizations. Achieving security and stability in the wider Black Sea area has been among the priorities of each country's interests in this region. In this context, state and non-state actors were being called to come up with new solutions to achieve those interests. Certainly not in all cases the negotiations were completed or not yet found a generally accepted formula for others to apply, but most of them show off their values. The main environmental threats to security environment in the Black Sea region are represented by ethnic conflicts and territorial secessionism. A significant contribution to the security environment of the Black Sea region has the phenomenon of globalization, which in this region is manifested by a steady increase in traffic and volume of shipping passage of communication, which largely affects the security in the region. Globalization and the need for energy resources in the Black Sea was an important area not only as energy transport route, but as a potential supplier of material energy (oil and natural gas. Black Sea Basin can be stabilized and secured only by the will and input from all States and interested international organizations in pragmatic and effective institutional frameworks, meant to promote and protect the common interests of countries decided to participate in actions aimed at ensuring a stable environment security.

  19. TRADING ACTIVITY AND PRICES IN ENERGY FUTURES MARKET

    Directory of Open Access Journals (Sweden)

    Aysegul Ates

    2016-04-01

    Full Text Available This paper aims to examine trading activity and the relationship between futures trading activity by trader type and energy price movements in three energy futures markets –natural gas, crude oil and heating oil. We find that the level of net positions of speculators are positively related to future returns and in contrast net positions of hedgers are negatively related to futures price changes in all three markets. The changes in net positions are relatively more informative compare to the level of net positions in predicting price changes in related markets.

  20. Risoe energy report 6. Future options for energy technologies

    Energy Technology Data Exchange (ETDEWEB)

    Larsen, Hans; Soenderberg Petersen, L. (eds.)

    2007-11-15

    Fossil fuels provide about 80% of the global energy demand, and this will continue to be the situation for decades to come. In the European Community we are facing two major energy challenges. The first is sustainability, and the second is security of supply, since Europe is becoming more dependent on imported fuels. These challenges are the starting point for the present Risoe Energy Report 6. It gives an overview of the energy scene together with trends and emerging energy technologies. The report presents status and trends for energy technologies seen from a Danish and European perspective from three points of view: security of supply, climate change and industrial perspectives. The report addresses energy supply technologies, efficiency improvements and transport. The report is volume 6 in a series of reports covering energy issues at global, regional and national levels. The individual chapters of the report have been written by staff members from the Technical University of Denmark and Risoe National Laboratory together with leading Danish and international experts. The report is based on the latest research results from Risoe National Laboratory, Technical University of Denmark, together with available internationally recognized scientific material, and is fully referenced and refereed by renowned experts. Information on current developments is taken from the most up-to-date and authoritative sources available. Our target groups are colleagues, collaborating partners, customers, funding organizations, the Danish government and international organizations including the European Union, the International Energy Agency and the United Nations. (au)

  1. Thermoelectricity for future sustainable energy technologies

    Science.gov (United States)

    Weidenkaff, Anke

    2017-07-01

    Thermoelectricity is a general term for a number of effects describing the direct interconversion of heat and electricity. Thermoelectric devices are therefore promising, environmental-friendly alternatives to conventional power generators or cooling units. Since the mid-90s, research on thermoelectric properties and their applications has steadily increased. In the course of years, the development of high-temperature resistant TE materials and devices has emerged as one of the main areas of interest focusing both on basic research and practical applications. A wide range of innovative and cost-efficient material classes has been studied and their properties improved. This has also led to advances in synthesis and metrology. The paper starts out with thermoelectric history, basic effects underlying thermoelectric conversion and selected examples of application. The main part focuses on thermoelectric materials including an outline of the design rules, a review on the most common materials and the feasibility of improved future high-temperature thermoelectric converters.

  2. Hydrogen: an energy vector for the future?

    Energy Technology Data Exchange (ETDEWEB)

    His, St

    2004-07-01

    Used today in various industrial sectors including refining and chemicals, hydrogen is often presented as a promising energy vector for the transport sector. However, its balance sheet presents disadvantages as well as advantages. For instance, some of its physical characteristics are not very well adapted to transport use and hydrogen does not exist in pure form. Hydrogen technologies can offer satisfactory environmental performance in certain respects, but remain handicapped by costs too high for large-scale development. A great deal of research will be required to develop mass transport application. (author)

  3. Should Nuclear Energy Form Part of the UK's Energy Future?

    Science.gov (United States)

    Campbell, Peter

    2003-01-01

    Energy policies are under review everywhere, as the world tries to meet targets for reducing climate change despite continuing population growth. A major change in energy patterns is needed, with the critical period for transition predictably happening when young people currently at school are in their middle years of their lives. This article…

  4. Should Nuclear Energy Form Part of the UK's Energy Future?

    Science.gov (United States)

    Campbell, Peter

    2003-01-01

    Energy policies are under review everywhere, as the world tries to meet targets for reducing climate change despite continuing population growth. A major change in energy patterns is needed, with the critical period for transition predictably happening when young people currently at school are in their middle years of their lives. This article…

  5. Denmark's clean energy future from waves

    Energy Technology Data Exchange (ETDEWEB)

    Lund, G. [Nova Pro, CADDET Danish National Team, Toelloese (Denmark)

    1999-10-01

    This article presents a brief overview of Denmark's wave energy programme which aims to develop wave energy plants to supply 15% of Denmark's energy consumption. Details are given of the Wave Dragon deep water floating wave power plant, the Swan DK3 backward bend duct buoy, the point absorber float, and the WavePlane floating device. The step by step development approach for projects accepted by the wave energy programme, and future options are discussed. (UK)

  6. Fossil fuels in a sustainable energy future

    Energy Technology Data Exchange (ETDEWEB)

    Bechtel, T.F. [Dept. of Energy, Morgantown, WV (United States)

    1995-12-01

    The coal industry in the United States has become a world leader in safety, productivity, and environmental protection in the mining of coal. The {open_quotes}pick-and-shovel{close_quotes} miner with mangled limbs and black lung disease has been replaced by the highly skilled technicians that lead the world in tons per man-hour. The gob piles, polluted streams, and scared land are a thing of the past. The complementary efforts of the DOE and EPRI-funded programs in coal utilization R&D and the Clean Coal Technology Program commercial demonstrations, have positioned the power generation industry to utilize coal in a way that doesn`t pollute the air or water, keeps electrical power costs low, and avoids the mountains of waste material. This paper reviews the potential for advanced coal utilization technologies in new power generation applications as well as the repowering of existing plants to increase their output, raise their efficiency, and reduce pollution. It demonstrates the potential for these advanced coal-fueled plants to play a complementary role in future planning with the natural gas and oil fired units currently favored in the market place. The status of the US program to demonstrate these technologies at commercial scale is reviewed in some detail.

  7. Carbonless Transportation and Energy Storage in Future Energy Systems

    Energy Technology Data Exchange (ETDEWEB)

    Lamont, A.D.; Berry, G.D.

    2001-01-17

    By 2050 world population is projected to stabilize near 10 billion. Global economic development will outpace this growth, achieving present European per capita living standards by quintupling the size of the global economy--and increasing energy use, especially electricity, substantially. Even with aggressive efficiency improvements, global electricity use will at least triple to 30 trillion kWh/yr in 2050. Direct use of fuels, with greater potential for efficiency improvement, may be held to 80 trillion kWh (289 EJ) annually, 50% above present levels (IPCC, 1996). Sustaining energy use at these or higher rates, while simultaneously stabilizing atmospheric greenhouse gas levels, will require massive deployment of carbon-conscious energy systems for electricity generation and transportation by the mid 21st Century. These systems will either involve a shift to non-fossil primary energy sources (such as solar, wind, biomass, nuclear, and hydroelectric) or continue to rely on fossil primary energy sources and sequester carbon emissions (Halmann, 1999). Both approaches share the need to convert, transmit, store and deliver energy to end-users through carbonless energy carriers.

  8. High energy physics, past, present and future

    Science.gov (United States)

    Sugawara, Hirotaka

    2017-03-01

    At the beginning of last century we witnessed the emergence of new physics, quantum theory and gravitational theory, which gave us correct understanding of the world of atoms and deep insight into the structure of universe we live in. Towards the end of the century, string theory emerged as the most promising candidate to unify these two theories. In this talk, I would like to assert that the understanding of the origin of physical constants, ℏ (Planck constant) for quantum theory, and G (Newton’s gravitational constant) for gravitational theory within the framework of string theory is the key to understanding string theory. Then, I will shift to experimental high energy physics and discuss the necessity of world-wide collaboration in the area of superconducting technology which is essential in constructing the 100 TeV hadron collider.

  9. Shaping our energy future by electrospinning

    DEFF Research Database (Denmark)

    Zhang, Wenjing (Angela)

    Electrospinning is the most versatile technique to design nanofiber materials with numerous applications in the fields of filtration, membranes, catalysts, reinforcement and biomedicals. Using electrospinning, we are able to design a complex structure from a rich variety of materials including...... polymers, metals, ceramics and composite, with the ability to control composition, morphology and secondary structure and tailor performance and functionality for specific applications. Moreover, with significant improvement in electrospinning equipment design, industrial-scale electrospinning technologies...... with production rate of several thousands of square meters per day are transforming advanced material research done in our labs into products serving our everyday life. This talk will show you the power of electrospinning technology with exciting projects that address the sizable challenges in energy devices...

  10. Single-Family Houses That Meet The Future Energy Demands

    DEFF Research Database (Denmark)

    Rose, Jørgen; Svendsen, Svend

    2002-01-01

    to examine these consequences thoroughly. The department is presently contributing to this end by participating in quite a few investigative projects, where single-family houses are designed to meet the proposed future energy demands. This paper describes the results obtained from one such project where...... the department, in co-operation with a major building entrepreneur, has developed a single-family house that shows that there are no evident problems in meeting the future energy demands....

  11. Identification of the Opportunities for Future Development of Tidal Energy

    Directory of Open Access Journals (Sweden)

    Navid Bozorgan

    2015-09-01

    Full Text Available An overview of status of development of tidal energy is given in this article. To reduce the dependance on fossil fuel and imported energy resources, the need for ocean energy is a global demand in developing countries. The ability to directly extract from the world’s oceans may be in the form of mechanical energy from waves, tides, or currents, or in the form of thermal energy from the sun’s heat. This paper identifies the opportunities for future development of tidal energy.

  12. DTU international energy report 2013. Energy storage options for future sustainable energy systems

    Energy Technology Data Exchange (ETDEWEB)

    Hvidtfeldt Larsen, H.; Soenderberg Petersen, L. (eds.)

    2013-11-01

    One of the great challenges in the transition to a non-fossil energy system with a high share of fluctuating renewable energy sources such as solar and wind is to align consumption and production in an economically satisfactory manner. Energy storage could provide the necessary balancing power to make this possible. This energy report addresses energy storage from a broad perspective: It analyses smaller stores that can be used locally in for example heat storage in the individual home or vehicle, such as electric cars or hydrogen cars. The report also addresses decentralized storage as flywheels and batteries linked to decentralized energy systems. In addition it addresses large central storages as pumped hydro storage and compressed air energy storage and analyse this in connection with international transmission and trading over long distances. The report addresses electrical storage, thermal storage and other forms of energy storage, for example conversion of biomass to liquid fuel and conversion of solar energy directly into hydrogen, as well as storage in transmission, grid storage etc. Finally, the report covers research, innovation and the future prospects and addresses the societal challenges and benefits of the use of energy storage. (Author)

  13. The Effect of Host Star Spectral Energy Distribution and Ice-Albedo Feedback on the Climate of Extrasolar Planets

    CERN Document Server

    Shields, Aomawa L; Bitz, Cecilia M; Pierrehumbert, Raymond T; Joshi, Manoj M; Robinson, Tyler D

    2013-01-01

    Planetary climate can be affected by the interaction of the host star spectral energy distribution with the wavelength-dependent reflectivity of ice and snow. Here we explore this effect using a one dimensional (1-D), line-by-line, radiative-transfer model to calculate broadband planetary albedos as input to a seasonally varying, 1-D energy-balance climate model. A three-dimensional general circulation model is also used to explore the atmosphere's response to changes in incoming stellar radiation, or instellation, and surface albedo. Using this hierarchy of models we simulate planets covered by ocean, land, and water ice of varying grain size, with incident radiation from stars of different spectral types. Terrestrial planets orbiting stars with higher near-UV radiation exhibit a stronger ice-albedo feedback. We find that ice-covered conditions occur on an F-dwarf planet with only a 2% reduction in instellation relative to the present instellation on Earth, assuming fixed CO2 (present atmospheric level on Ea...

  14. Hyper Jobs and Future Skills in the Field of Energy

    Directory of Open Access Journals (Sweden)

    Ahmad Farmahini Farahani

    2016-09-01

    Full Text Available As we gradually approach the depth of information and knowledge era and traditional jobs are disappearing, we must seek skills which cannot be automated. Three key areas for development of future hyper jobs include: energy, material manipulation and restoration of human being. This paper examines hyper jobs and their attributes and key points and then examines hyper jobs and future skills in the field of energy and the way a jobs turns to a hyper job. In the end, success steps in designing hyper jobs and future skills are recommended.

  15. Three solar urban futures: characterization of a future community under three energy-supply scenarios

    Energy Technology Data Exchange (ETDEWEB)

    Milne, M; Adelson, M; Corwin, R

    1979-10-01

    This study examines a hypothetical city of 100,000 people in the year 2025 based on three initially given energy-supply scenarios: Future 1 specifying approximately 6% of the city's demand being met by solar technologies; Future 2 specifying about 25%; and Future 3 seeking maximum use of solar technologies. These three versions of the hypothetical city are to be identical in terms of population, goods and services produced, and energy demand. Their differences are compared in terms of physical layout, environmental quality, socio-economics, and quality of life. It is concluded that in Future 1 and Future 2, the city's residential, commercial, and industrial sectors can easily meet the on-site energy-collection requirements of the given supply scenarios. In Future 3, the Solar City, the residential sector can be totally energy self-sufficient (collecting all needed energy on-site), and the commercial sector can collect 59.7% of its energy requirement. Passive design of buildings plays a large part in these results. The industrial sector can collect on-site only 18.2% of its energy needs. In what is called Future 3A, all three sectors of the hypothetical city can be 100% energy self-sufficient if the land area available for various types of solar collectors is increased 34.5%; the commercial sector needs 650 additional acres, while the industrial sector needs 2800 acres, provided that moderate temperature energy (250/sup 0/F to 600/sup 0/F) is adequate to meet industrial process needs.

  16. The modelling of future energy scenarios for Denmark

    DEFF Research Database (Denmark)

    Kwon, Pil Seok

    2014-01-01

    for the important but uncertain areas biomass and flexible demand are performed. Thirdly, modelling-related issues are investigated with a focus on the effect of future forecasting assumption and differences between a predefined priority order and order determined by given efficiencies and constraints...... the overall energy system model for analyzing three subjects which are important but uncertain areas in the future. The first model is a consequential LCA analysis for biomass potential. The second model targets transport demand due to uncertain technology development in the future transport sector. The third...... performance, more than a quarter of the classic electricity demand would need to be flexible within a month, which is highly unlikely to happen. For the investigation of the energy system model, EnergyPLAN, which is used for two scenario analyses, two questions are asked; “what is the value of future...

  17. 100% Renewable Energy Systems in Project Future Climate

    DEFF Research Database (Denmark)

    Mathiesen, Brian Vad

    2009-01-01

    , create employment and potentially lead to large earnings on exports. If externalities such as health effects etc. are included, even more benefits can be expected. 100 per cent renewable energy systems will be technically possible in the future, and may even be economically beneficial compared...... energy system by the year 2050 are presented. Two short term transition target years in the process towards this goal are analysed for 2015 and 2030. The analyses reveal that implementing energy savings, renewable energy and more efficient conversion technologies can have positive socioeconomic effects...... to the business-as-usual energy system. Hence the current debate between leaders should reflect a combination of these two main challenges....

  18. GEMINI PLANET IMAGER SPECTROSCOPY OF THE HR 8799 PLANETS c AND d

    Energy Technology Data Exchange (ETDEWEB)

    Ingraham, Patrick; Macintosh, Bruce [Kavli Institute for Particle Astrophysics and Cosmology, Stanford University, Stanford, CA 94305 (United States); Marley, Mark S. [NASA Ames Research Center, Moffett Field, CA 94035 (United States); Saumon, Didier [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Marois, Christian; Dunn, Jennifer; Erikson, Darren [NRC Herzberg Astronomy and Astrophysics, 5071 West Saanich Road, Victoria, BC V9E 2E7 (Canada); Barman, Travis [Lunar and Planetary Laboratory, University of Arizona, Tucson, Arizona 85721-0092 (United States); Bauman, Brian [Lawrence Livermore National Lab, 7000 East Avenue, Livermore, CA 94551 (United States); Burrows, Adam [Department of Astrophysical Sciences, Princeton University, Princeton, NJ 08544 (United States); Chilcote, Jeffrey K.; Fitzgerald, Michael P. [Department of Physics and Astronomy, UCLA, Los Angeles, CA 90095 (United States); De Rosa, Robert J. [School of Earth and Space Exploration, Arizona State University, PO Box 871404, Tempe, AZ 85287 (United States); Dillon, Daren; Gavel, Donald [Department of Astronomy, UC Santa Cruz, 1156 High Street, Santa Cruz, CA 95064 (United States); Doyon, René [Department de Physique, Université de Montréal, Montréal QC H3C 3J7 (Canada); Goodsell, Stephen J.; Hartung, Markus; Hibon, Pascale [Gemini Observatory, Casilla 603, La Serena (Chile); Graham, James R. [Department of Astronomy, UC Berkeley, Berkeley CA, 94720 (United States); and others

    2014-10-10

    During the first-light run of the Gemini Planet Imager we obtained K-band spectra of exoplanets HR 8799 c and d. Analysis of the spectra indicates that planet d may be warmer than planet c. Comparisons to recent patchy cloud models and previously obtained observations over multiple wavelengths confirm that thick clouds combined with horizontal variation in the cloud cover generally reproduce the planets' spectral energy distributions. When combined with the 3 to 4 μm photometric data points, the observations provide strong constraints on the atmospheric methane content for both planets. The data also provide further evidence that future modeling efforts must include cloud opacity, possibly including cloud holes, disequilibrium chemistry, and super-solar metallicity.

  19. Gemini Planet Imager Spectroscopy of the HR 8799 planets c and d

    CERN Document Server

    Ingraham, Patrick; Saumon, Didier; Marois, Christian; Macintosh, Bruce; Barman, Travis; Bauman, Brian; Burrows, Adam; Chilcote, Jeffrey K; De Rosa, Robert J; Dillon, Daren; Doyon, Rene; Dunn, Jennifer; Erikson, Darren; Fitzgerald, Michael P; Gavel, Donald; Goodsell, Stephen J; Graham, James R; Hartung, Markus; Hibon, Pascale; Kalas, Paul G; Konopacky, Quinn; Larkin, James A; Maire, Jerome; Marchis, Franck; McBride, James; Millar-Blanchaer, Max; Morzinski, Katie M; Norton, Andrew; Oppenheimer, Rebecca; Palmer, Dave W; Patience, Jenny; Perrin, Marshall D; Poyneer, Lisa A; Pueyo, Laurent; Rantakyro, Fredrik; Sadakuni, Naru; Saddlemyer, Leslie; Savransky, Dmitry; Soummer, Remi; Sivaramakrishnan, Anand; Song, Inseok; Thomas, Sandrine; Wallace, J Kent; Wiktorowicz, Sloane J; Wolff, Schuyler G

    2014-01-01

    During the first-light run of the Gemini Planet Imager (GPI) we obtained K-band spectra of exoplanets HR 8799 c and d. Analysis of the spectra indicates that planet d may be warmer than planet c. Comparisons to recent patchy cloud models and previously obtained observations over multiple wavelengths confirm that thick clouds combined with horizontal variation in the cloud cover generally reproduce the planets' spectral energy distributions. When combined with the 3 to 4 um photometric data points, the observations provide strong constraints on the atmospheric methane content for both planets. The data also provide further evidence that future modeling efforts must include cloud opacity, possibly including cloud holes, disequilibrium chemistry, and super-solar metallicity.

  20. Model atmospheres for massive gas giants with thick clouds: Application to the HR 8799 planets and predictions for future detections

    CERN Document Server

    Madhusudhan, Nikku; Currie, Thayne

    2011-01-01

    We have generated an extensive new suite of massive giant planet atmosphere models and used it to obtain fits to photometric data for the planets HR 8799b, c, and d. We consider a wide range of cloudy and cloud-free models. The cloudy models incorporate different geometrical and optical thicknesses, modal particle sizes, and metallicities. For each planet and set of cloud parameters, we explore grids in gravity and effective temperature, with which we determine constraints on the planet's mass and age. Our new models yield statistically significant fits to the data, and conclusively confirm that the HR 8799 planets have much thicker clouds than those required to explain data for typical L and T dwarfs. Both models with 1) physically thick forsterite clouds and a 60-micron modal particle size and 2) clouds made of 1 micron-sized pure iron droplets and 1% supersaturation fit the data. The range of best-estimated masses for HR 8799b, HR 8799c, and HR 8799d conservatively span 2-12 M_J, 7-13 M_J, and 3-11 M_J, re...

  1. Fuel cells and electrolysers in future energy systems

    DEFF Research Database (Denmark)

    Mathiesen, Brian Vad

    in which fuel cell appli‐ cations create synergy effects with other components of the system, as well as in which the efficiency improvements achieved by using fuel cells are lost elsewhere in the system. In order to identify suitable applications of fuel cells and electrolysers in future energy sys‐ tems...... be considered which fuels such technologies can utilise and how these fuels can be distributed. Natural gas is not an option in future renewable energy systems and the de‐ mand for gaseous fuels, such as biogas or syngas, will increase significantly. Hence, fuel cell CHP plants represent a more fuel...... of transport, battery electric vehicles are more suitable than hydrogen fuel cell vehicles in future energy system. Battery electric ve‐ hicles may, for a part of the transport demand, have limitations in their range. Hybrid tech‐ nologies may provide a good option, which can combine the high fuel efficiency...

  2. Multidimensional materials and device architectures for future hybrid energy storage

    Science.gov (United States)

    Lukatskaya, Maria R.; Dunn, Bruce; Gogotsi, Yury

    2016-09-01

    Electrical energy storage plays a vital role in daily life due to our dependence on numerous portable electronic devices. Moreover, with the continued miniaturization of electronics, integration of wireless devices into our homes and clothes and the widely anticipated `Internet of Things', there are intensive efforts to develop miniature yet powerful electrical energy storage devices. This review addresses the cutting edge of electrical energy storage technology, outlining approaches to overcome current limitations and providing future research directions towards the next generation of electrical energy storage devices whose characteristics represent a true hybridization of batteries and electrochemical capacitors.

  3. Examining Tatooine: Atmospheric Models of Neptune-Like Circumbinary Planets

    CERN Document Server

    May, E M

    2016-01-01

    Circumbinary planets experience a time varying irradiation pattern as they orbit their two host stars. In this work, we present the first detailed study of the atmospheric effects of this irradiation pattern on known and hypothetical gaseous circumbinary planets. Using both a one-dimensional Energy Balance Model and a three-dimensional General Circulation Model, we look at the temperature differences between circumbinary planets and their equivalent single-star cases in order to determine the nature of the atmospheres of these planets. We find that for circumbinary planets on stable orbits around their host stars, temperature differences are on average no more than 1.0% in the most extreme cases. Based on detailed modeling with the General Circulation Model, we find that these temperature differences are not large enough to excite circulation differences between the two cases. We conclude that gaseous circumbinary planets can be treated as their equivalent single-star case in future atmospheric modeling effor...

  4. Energy-water-environment nexus underpinning future desalination sustainability

    KAUST Repository

    Shahzad, Muhammad Wakil

    2017-03-11

    Energy-water-environment nexus is very important to attain COP21 goal, maintaining environment temperature increase below 2°C, but unfortunately two third share of CO2 emission has already been used and the remaining will be exhausted by 2050. A number of technological developments in power and desalination sectors improved their efficiencies to save energy and carbon emission but still they are operating at 35% and 10% of their thermodynamic limits. Research in desalination processes contributing to fuel World population for their improved living standard and to reduce specific energy consumption and to protect environment. Recently developed highly efficient nature-inspired membranes (aquaporin & graphene) and trend in thermally driven cycle\\'s hybridization could potentially lower then energy requirement for water purification. This paper presents a state of art review on energy, water and environment interconnection and future energy efficient desalination possibilities to save energy and protect environment.

  5. Optimization of use of waste in the future energy system

    DEFF Research Database (Denmark)

    Münster, Marie; Meibom, Peter

    2011-01-01

    Alternative uses of waste for energy production become increasingly interesting when considered from two perspectives, that of waste management and the energy system perspective. This paper presents the results of an enquiry into the use of waste in a future energy system. The analysis...... was performed using the energy system analysis model, Balmorel. The study is focused on Germany and the Nordic countries and demonstrates the optimization of both investments and production within the energy systems. The results present cost optimization excluding taxation concerning the use of waste for energy...... production in Denmark in a 2025 scenario with 48% renewable energy. Investments in a range of waste conversion technologies are facilitated, including waste incineration, co-combustion with coal, anaerobic digestion, and gasification. The most economically feasible solutions are found to be incineration...

  6. Energy supplies and future engines for land, sea, and air.

    Science.gov (United States)

    Wilson, David Gordon

    2012-06-01

    The years 2012 and beyond seem likely to record major changes in energy use and power generation. The Japanese tsunami has resulted in large countries either scaling back or abolishing the future use of nuclear energy. The discovery of what seems like vast amounts of economically deliverable natural gas has many forecasting a rapid switch from coal- to gas-fired generating plants. On the other hand, environmentalists have strong objections to the production of natural gas and of petroleum by hydraulic fracturing from shale, or by extraction of heavy oil. They believe that global warming from the use of fossil fuels is now established beyond question. There has been rapid progress in the development of alternative energy supplies, particularly from on-shore and off-shore wind. Progress toward a viable future energy mix has been slowed by a U.S. energy policy that seems to many to be driven by politics. The author will review the history of power and energy to put all of the above in context and will look at possible future developments. He will propose what he believes to be an idealized energy policy that could result in an optimum system that would be arrived at democratically.

  7. Future energy demand in Laos. Scenario alternatives for development

    Energy Technology Data Exchange (ETDEWEB)

    Luukkanen, J.; Kouphokham, K.; Panula-Ontto, J. [and others

    2012-07-01

    Energy production in Laos is still dominated by traditional fuels. Fuelwood in the main source of energy and most of the energy is consumed at households for cooking. Increase in the number of cars and motorbikes is rapidly increasing the use of imported petroleum products. Electrification is one of the central targets of the Lao government. The electrification rate has increased fast in Laos and in the year 2010 over 70 % households had electricity supply. The target is to have 90 % access to electricity by the year 2020. The World Bank regards the electrification of Lao PDR to be a success story. This paper deals with the present and future energy consumption in Laos. First the historical trends of energy use in different sectors are analysed. The future scenarios are constructed using LaoLinda model. Four different future alternative development paths are analysed using the model results. The energy use data source for the analysis is from the Ministry of Energy and Mines (MEM) of Lao PDR. Economic and other data is from the Department of Statistics of Lao PDR.

  8. Tatooine's Future: The Eccentric Response of Kepler's Circumbinary Planets to Common-Envelope Evolution of their Host Stars

    CERN Document Server

    Kostov, Veselin B; Tamayo, Daniel; Jayawardhana, Ray; Rinehart, Stephen A

    2016-01-01

    Inspired by the recent Kepler discoveries of circumbinary planets orbiting nine close binary stars, we explore the fate of the former as the latter evolve off the main sequence. We combine binary star evolution models with dynamical simulations to study the orbital evolution of these planets as their hosts undergo common-envelope stages, losing in the process a tremendous amount of mass on dynamical timescales. Five of the systems experience at least one Roche-lobe overflow and common-envelope stages (Kepler-1647 experiences three), and the binary stars either shrink to very short orbits or coalesce; two systems trigger a double-degenerate supernova explosion. Kepler's circumbinary planets predominantly remain gravitationally bound at the end of the common-envelope phase, migrate to larger orbits, and may gain significant eccentricity; their orbital expansion can be more than an order of magnitude and can occur over the course of a single planetary orbit. The orbits these planets can reach are qualitatively c...

  9. Elucidating Dark Energy with Future 21 cm Observations

    CERN Document Server

    Kohri, Kazunori; Sekiguchi, Toyokazu; Takahashi, Tomo

    2016-01-01

    We investigate how precisely we can determine the nature of dark energy such as the equation of state (EoS) and its time dependence by using future observations of 21 cm fluctuations such as Square Kilometre Array (SKA) and Omniscope in combination with those from cosmic microwave background, baryon acoustic oscillation, type Ia supernovae and direct measurement of the Hubble constant. We consider several parametrizations for the EoS and find that future 21 cm observations will be powerful in constraining models of dark energy, especially when its EoS varies at high redshifts.

  10. Energy for the future. New solutions - made in Germany

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-10-15

    Today we are once again in the middle of a new industrial and energy technology revolution. From a technology point of view, it is even a huge positive, as it opens up new markets for new and more energy and natural efficient solutions. Under this aspect, the paper under considerations consists of the following contributions: (a) From grassroots movement to political power; (b) Constructive experimentation; (c) Degrees for a green future (German universities offer a wide variety of courses in renewable energy); (d) Climbing the green career ladder (Diverse career opportunities in the renewable energy sector); (e) Natural power plants: Energy you can count on (German researchers successfully focus on the sun's energy); (f) Concentrated energy from the ocean (Dynamic development of wind energy in Germany); (g) Powerful waves and extraordinary treasures (German water experts are in demand all over the world); (h) Designer diesel and deep heat (Germany leads the fields in biofuels); (i) Sending the right signals (Climate protection as an opportunity for change); (k) Car today, bike tomorrow (Environmental psychologist Ellen Matthies); (l) The secret lies under the Bonnet (Hybrid technology paves the way for ''clean'' buses and trains); (m) Pioneering the ''silent'' car (Researchers put their foot on the accelerator for electromobility); (n) The school of the future (Students at RWTH Aachen University design an energy project for the classroom).

  11. The G20 and the Future of Energy Governance

    Directory of Open Access Journals (Sweden)

    Tristram Sainsbury

    2016-03-01

    Full Text Available The fraught history of energy governance means that despite the oil shocks of the 1970s and ongoing resource price volatility, today there are no effective global mechanisms for cooperation between energy -producing and energy-consuming countries. Furthermore, there are two conflicting challenges at the heart of energy governance — ensuring energy access for all and transitioning to a low-carbon future. This article argues that the current global energy institutions are illequipped to provide the impetus for energy governance cooperation, and the solution will have to come from collective political will at the leader level. The Group of 20 (G20 could be part of the solution as the economic forum for the world’s largest advanced and emerging economies, including both energy producers and consumers. The article gives a brief history of energy governance and the institutions that emerged in the second half of the 20th century. It explores the strengths and weaknesses of each institution, including the well-established International Energy Agency (IEA and Organization of Petroleum Exporting Countries, as well as more recent players such as the International Energy Forum and the International Renewable Energy Agency. It goes on to explain how the lack of progress in reaching global solutions led to G20 interest in energy governance, and what that forum has achieved on energy cooperation so far, notably the G20 Principles on Energy Collaboration in 2014 and the meeting of G20 energy ministers in 2015. The article focuses mainly on how the G20 can progress the energy governance agenda, and what pragmatic options are available for the forum. In particular, it discusses how the G20 might spearhead reform of the IEA, support new initiatives and pursue a new platform for discussion within the G20.

  12. Status in quo and future of geothermal energy in China

    Institute of Scientific and Technical Information of China (English)

    Zheng Xiuhua; Zhao Jun; Du Limeng

    2011-01-01

    Energy saving and CO2 emissions reduction are critical tasks currently, and great effort has been made by Chinese government. Renewable energy consumption and CO2 emissions and reduction plan in China are introduced in this paper. Analysis is also made on present status and prospect of geothermal power generation and direct use in China respectively. Now, there is a new understanding of geothermal resources, and hot dry rock, considered as the future of geothermal resources, is likely used to generate electricity.

  13. Energy efficiency in passenger transportation: What the future may hold

    Energy Technology Data Exchange (ETDEWEB)

    Plotkin, S. [Argonne National Lab., IL (United States)

    1996-12-31

    This presentation very briefly projects future impacts of energy efficiency in passenger transportation. Continuing expansion of the U.S. transportation sector, with a corresponding increased dependency on imported oil, is noted. Freight trucks and air fleets are targeted as having the greatest potential for increased energy efficiency. The light duty vehicle is identified as the only technology option for major efficiency increases. 4 figs., 11 tabs.

  14. Dark Matter and Dark Energy: Summary and Future Directions

    OpenAIRE

    Ellis, John

    2003-01-01

    This paper reviews the progress reported at this Royal Society Discussion Meeting and advertizes some possible future directions in our drive to understand dark matter and dark energy. Additionally, a first attempt is made to place in context the exciting new results from the WMAP satellite, which were published shortly after this Meeting. In the first part of this review, pieces of observational evidence shown here that bear on the amounts of dark matter and dark energy are reviewed. Subsequ...

  15. Energy technologies at Sandia National Laboratories: Past, Present, Future

    Energy Technology Data Exchange (ETDEWEB)

    1989-08-01

    We at Sandia first became involved with developing energy technology when the nation initiated its push toward energy independence in the early 1970s. That involvement continues to be strong. In shaping Sandia's energy programs for the 1990s, we will build on our track record from the 70s and 80s, a record outlined in this publication. It contains reprints of three issues of Sandia's Lab News that were devoted to our non-nuclear energy programs. Together, they summarize the history, current activities, and future of Sandia's diverse energy concerns; hence my desire to see them in one volume. Written in the fall of 1988, the articles cover Sandia's extremely broad range of energy technologies -- coal, oil and gas, geothermal, solar thermal, photovoltaics, wind, rechargeable batteries, and combustion.

  16. Proceedings of the 14. world hydrogen energy conference 2002 : The hydrogen planet. CD-ROM ed.

    Energy Technology Data Exchange (ETDEWEB)

    Venter, R.D.; Bose, T.K. [Quebec Univ., Trois-Rivieres, PQ (Canada). Institut de recherche sur l' hydrogene; Veziroglu, N. [International Association for Hydrogen Energy, Coral Gables, FL (United States)] (eds.)

    2002-07-01

    Hydrogen has often been named as the ultimate fuel because it can be generated from a variety of renewable and non-renewable fuels and its direct conversion to electricity in fuel cells is efficient and results in no emissions other than water vapour. The opportunities and issues associated with the use of hydrogen as the energy carrier of the future were presented at this conference which addressed all aspects of hydrogen and fuel cell development including hydrogen production, storage, hydrogen-fuelled internal combustion engines, hydrogen infrastructure, economics, and the environment. Hydrogen is currently used as a chemical feedstock and a space fuel, but it is receiving considerable attention for bring renewable energy into the transportation and power generation sectors with little or no environmental impact at the point of end use. Canada leads the way in innovative ideas for a hydrogen infrastructure, one of the most challenging tasks for the transportation sector along with hydrogen storage. Major vehicle manufacturers have announced that they will have hydrogen-fueled cars and buses on the market beginning in 2003 and 2004. Solid oxide fuel cells will be used for generating electricity with efficiencies of 70 per cent, and proton exchange membrane (PEM) and other fuel cells are being tested for residential power supply with efficiencies of 85 per cent. The conference included an industrial exposition which demonstrated the latest developments in hydrogen and fuel cell research. More than 300 papers were presented at various oral and poster sessions, of which 172 papers have been indexed separately for inclusion in the database.

  17. SAVE ENERGY FOR BETTER FUTURE%SAVE ENERGY FOR BETTER FUTURE

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    Chinese Premier Wen Jiabao called for intensified efforts to save energy and reduce emissions over the next five years to ease climate change and promote sustainable development. The country fulfilled most of its binding energy-saving and emission reduction goals set out in the nation's l lth Five-Year Plan period (2006-2010). China's energy consumption grew at an annual rate of 6.6 percent over the last five years, much slower than the 11.2-percent increase in the country's economic growth.

  18. From the past to future: from energy expenditure to energy intake to energy expenditure.

    Science.gov (United States)

    Müller, M J; Geisler, C

    2017-03-01

    Although most recent research on energy balance focusses on energy intake (EI) there is still need to think about both sides of the energy balance. Current research on energy expenditure (EE) relates to metabolic adaptation to negative energy balance, mitochondrial metabolism associated with aging, obesity and type 2 diabetes mellitus, the role of EE in hunger and appetite control, non-shivering thermogenesis and brown adipose tissue activity, cellular bioenergetics as a target of obesity treatment and the evolutionary and ecological determinants of EE in humans and other primates. As far as regulation of energy balance is concerned there is recent evidence that EE rather than body weight is under tight control. Biologically, EE is maintained within a narrow physiological range. An EE-set point has been proposed as the width between the upper and lower boundaries of the individual EE range. Regulation of EE may fail in very obese patients with an EI above their upper boundary and after drastic weight loss when patients may go far below their lower EE boundary and thus are loosing control. In population studies, fat-free mass (FFM) and its composition (that is, the proportion of high to low metabolic rate organs) are major determinants of EE. It is tempting to speculate that tight biologic control of EE is related to brain energy need, which is preserved at the cost of peripheral metabolism. There is a moderate heritability of EE, which is independent of the heritability of FFM. In future, metabolic phenotyping should focus on the EE-FFM relationship rather than on EE-values alone.

  19. (Very)-high-energy gamma-ray astrophysics: The future

    Science.gov (United States)

    De Angelis, Alessandro

    2016-04-01

    Several projects planned or proposed can significantly expand our knowledge of the high-energy Universe in gamma rays. Construction of the Cherenkov telescope array CTA is started, and other detectors are planned which will use the reconstruction of extensive air showers. This report explores the near future, and possible evolutions in a longer term.

  20. (Very)-High-Energy Gamma-Ray Astrophysics: the Future

    CERN Document Server

    De Angelis, Alesandro

    2016-01-01

    Several projects planned or proposed can significantly expand our knowledge of the high-energy Universe in gamma rays. Construction of the Cherenkov telescope array CTA is started, and other detectors are planned which will use the reconstruction of extensive air showers. This report explores the near future, and possible evolutions in a longer term.

  1. (Very-high-energy gamma-ray astrophysics: The future

    Directory of Open Access Journals (Sweden)

    Angelis Alessandro De

    2016-01-01

    Full Text Available Several projects planned or proposed can significantly expand our knowledge of the high-energy Universe in gamma rays. Construction of the Cherenkov telescope array CTA is started, and other detectors are planned which will use the reconstruction of extensive air showers. This report explores the near future, and possible evolutions in a longer term.

  2. No Snowball on Habitable Tidally Locked Planets

    Science.gov (United States)

    Checlair, Jade; Menou, Kristen; Abbot, Dorian S.

    2017-08-01

    The TRAPPIST-1, Proxima Centauri, and LHS 1140 systems are the most exciting prospects for future follow-up observations of potentially inhabited planets. All of the planets orbit nearby M-stars and are likely tidally locked in 1:1 spin-orbit states, which motivates the consideration of the effects that tidal locking might have on planetary habitability. On Earth, periods of global glaciation (snowballs) may have been essential for habitability and remote signs of life (biosignatures) because they are correlated with increases in the complexity of life and in the atmospheric oxygen concentration. In this paper, we investigate the snowball bifurcation (sudden onset of global glaciation) on tidally locked planets using both an energy balance model and an intermediate-complexity global climate model. We show that tidally locked planets are unlikely to exhibit a snowball bifurcation as a direct result of the spatial pattern of insolation they receive. Instead, they will smoothly transition from partial to complete ice coverage and back. A major implication of this work is that tidally locked planets with an active carbon cycle should not be found in a snowball state. Moreover, this work implies that tidally locked planets near the outer edge of the habitable zone with low CO2 outgassing fluxes will equilibrate with a small unglaciated substellar region rather than cycling between warm and snowball states. More work is needed to determine how the lack of a snowball bifurcation might affect the development of life on a tidally locked planet.

  3. Joint optimisation of the future Danish waste and energy system

    DEFF Research Database (Denmark)

    Münster, Marie; Pizarro, Amalia Rosa; Salvucci, Raffaele

    2015-01-01

    In this article the impact of the future development of the energy system on the feasibility of waste treatment options is analysed. In the article two different optimization tools are used: a regional electricity model (Balmorel) and a national waste treatment and district heating model (OptiWaste......). When performing optimization by minimizing the socio-economic costs, into future energy systems with high wind power production, it proves feasible primarily to incinerate waste in large scale combined heat and power (CHP) plants, whereas more incineration takes place in decentralized CHP plants...... in future scenarios with higher biomass consumption, where the average heat prices are higher. In both scenarios, biogas produced from organic waste is upgraded and fed into the natural gas grid and waste is incinerated rather than being centrally sorted in a material recovery facility....

  4. Powering Future Mobile Phones Through RF Energy Harvesting

    OpenAIRE

    Jolly, Ankush; Peer, Mansi; Bohara, Vivek Ashok

    2017-01-01

    In this paper we present the preliminary measurement results of harvesting radio frequency(RF) energy from the mobile phones. The aim is to revolutionize the way mobile phones are being charged and paving a way of charging the future mobile phones through RF energy harvesting. In order to measure the amount of energy that can be harvested, mobile phones from two different manufactures namely Asus and Samsung have been used. It was shown that depending on the manufacturer it is possible to har...

  5. Electrical energy in the future. A vision of 2050

    Directory of Open Access Journals (Sweden)

    Sławomir Królikowski

    2012-09-01

    Full Text Available The article contains scenarios for the power sector’s development until 2050, as proposed by students of Electrical High School No. 4 in Wloclawek. Many current trends in the development of technology have led the authors to attribute the verisimilitude to their selected visions of the future. The growing demand for energy, while fossil fuel resources and traditional methods of processing them are shrinking, will cause dissemination of the use of so-called environment-friendly sources of energy, such as wind or biomass. Energy will be commonly converted in domestic power stations equipped with energy storage capabilities and integrated with the grid by smart controllers for two-way energy transfer. The power grid role will change, and the existing energy consumers will become its prosumers. In the opinion of the authors the only alternative for this power sector development vision may be thermonuclear generation, which requires, however, incredibly high capital expenditures and level of technological development. However, launching thermonuclear power plants would free humanity from the fear of a future predominated by energy crisis.

  6. Energy Sources Management and Future Automotive Technologies: Environmental Impact

    Directory of Open Access Journals (Sweden)

    Florin Mariasiu

    2012-01-01

    Full Text Available The paper presents the environmental impact created through the introduction of introducing new technologies in transportation domain. New electric vehicles are considered zero-emission vehicles (ZEV. However, electricity produced in power plants is still predominantly based on fossil fuel usage (required for recharge electric vehicle batteries and thus directly affects the quantity of pollutant emissions and greenhouse gases (CO2, NOx and SOx. Given the structure of EU-wide energy sources used for electricity generation, the potential pollutant emissions stemming from these energy sources, related to energy consumption of an electric vehicle, was determined under the projected environmental impact of specific market penetration of electric vehicles. In addition to the overall impact at the EU level, were identified the countries for which the use of electric vehicles is (or not feasible in terms of reaching the lower values ​​of future emissions compared to the present and future European standards.

  7. World energy : the past and possible futures. 2. ed.

    Energy Technology Data Exchange (ETDEWEB)

    Masri, M.; Prince, J.P.; Jazayeri, S.; Naini, A.; Walden, T. [Canadian Energy Research Inst., Calgary, Alberta (Canada)

    2008-02-15

    This is the second edition of World Energy: The Past and Possible Futures. The first edition was published in March 2005. The basic structure of this publication has undergone few changes in comparison to the previous edition. The world energy situation and markets, however, have experienced many changes since March 2005. Fossil fuel prices, in general, have significantly increased. While the oil price benchmark spot West Texas Intermediate (WTI) averaged US$54.19 per barrel in March 2005, it averaged US$72.36 in August 2007 and climbed above US$80 in mid-September. Fossil fuel based electricity generation is becoming increasingly more costly and concerns over global warming and CO{sub 2} emissions are gaining further momentum in world public opinion. These have led to a resurrection of interest in relatively more economical and cleaner electricity generation sources such as wind and nuclear power. Energy has been and remains an essential element of human evolution and progress. To attain a sustainable future, we must not only achieve efficiency in using global resources but also ensure that the capacity of the biosphere to absorb residual products and waste from our activities is not breached. Many believe that this requires significant and immediate changes to how we produce and use energy. Without such change, the path we are on, in this view, could lead to social and economic conflict and irreversible environmental damage. This study brings together the work of many commentators on energy and the environment to provide a summary of the relevant past and a way to look at the possible future. We have drawn liberally from previous work within the Canadian Energy Research Institute (CERI); adapted the presentations of others, such as BP's Annual Review of Energy and the works of the International Energy Agency and the US Energy Information Administration; and drawn from the World Energy Assessment, a joint review of the United Nations Development Programme

  8. Science and defense 2003: the future on-board energies; Science et defense 2003: les futures energies embarquees

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-07-01

    Since 1983, the DGA (delegation of armament) organizes the colloquium ''Science and defense'' in the domains of the scientific research and the defense. The 2003 colloquium took place in Paris on December 2 and 3 and concerns the future portable energies. This paper is a summary presentation of the presented topics: the needs and the developments for the portable energies, the state of the art of the mini and micro energy sources and their limitations, the energy materials which strongly provide energy by chemical transformation, the new energy sources of medium power, the environmental impacts. The budget devoted to these researches in 2002 by the DGA, are also presented. (A.L.B.)

  9. Alternative futures for the Department of Energy National Laboratories

    Energy Technology Data Exchange (ETDEWEB)

    1995-02-01

    This Task Force was asked to propose alternate futures for the Department of Energy laboratories noted in the report. The authors` intensive ten months` study revealed multiple missions and sub-missions--traditional missions and new missions--programs and projects--each with factors of merit. They respectively suggest that the essence of what the Department, and particularly the laboratories, should and do stand for: the energy agenda. Under the overarching energy agenda--the labs serving the energy opportunities--they comment on their national security role, the all important energy role, all related environmental roles, the science and engineering underpinning for all the above, a focused economic role, and conclude with governance/organization change recommendations.

  10. Status and Future Directions of the ENERGY STAR Program

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Richard; Webber, Carrie; Koomey, Jonathan

    2001-12-04

    In 1992 the U.S. Environmental Protection Agency (EPA) introduced ENERGY STAR (registered trademark) a voluntary labeling program designed to identify and promote energy-efficient products, in order to reduce carbon dioxide emissions. Since then, the EPA, now in partnership with the U.S. Department of Energy (DOE), has expanded the program to cover nearly the entire buildings sector, spanning new homes, commercial buildings, residential heating and cooling equipment, major appliances, office equipment, commercial and residential lighting, and home electronics. This paper is based on our experience since 1993 in providing technical support to the ENERGY STAR program. We provide a snapshot of the ENERGY STAR program in the year 2000, including a general overview of the program, its accomplishments, and the possibilities for future development.

  11. Durability of future energy-efficient building components

    DEFF Research Database (Denmark)

    Lauritsen, Diana

    Over the last decade, there has been a goal-oriented focus in the European Union on energy efficiency in the building sector to free it from the use of fossil fuels. Increases in the energy efficiency of building components means increased initial costs, for both new buildings and renovations...... tools. The method includes both energy analysis compared to current and future energy requirements, and analysis of possible failures in the building design (Failure Mode and Effects analysis). The method also includes an economic perspective (Net present value) given that the choice of a specific...... that the maintenance is already thought into the solution, so that the work can be done fast and easily with a minimum of expense. Minimizing costs is an important aspect in the complete solution so that we not only develop energy-efficient solutions, but also solutions that are economical. Two case studies were...

  12. Exploring Disks Around Planets

    Science.gov (United States)

    Kohler, Susanna

    2017-07-01

    Giant planets are thought to form in circumstellar disks surrounding young stars, but material may also accrete into a smaller disk around the planet. Weve never detected one of these circumplanetary disks before but thanks to new simulations, we now have a better idea of what to look for.Image from previous work simulating a Jupiter-mass planet forming inside a circumstellar disk. The planet has its own circumplanetary disk of accreted material. [Frdric Masset]Elusive DisksIn the formation of giant planets, we think the final phase consists of accretion onto the planet from a disk that surrounds it. This circumplanetary disk is important to understand, since it both regulates the late gas accretion and forms the birthplace of future satellites of the planet.Weve yet to detect a circumplanetary disk thus far, because the resolution needed to spot one has been out of reach. Now, however, were entering an era where the disk and its kinematics may be observable with high-powered telescopes (like the Atacama Large Millimeter Array).To prepare for such observations, we need models that predict the basic characteristics of these disks like the mass, temperature, and kinematic properties. Now a researcher at the ETH Zrich Institute for Astronomy in Switzerland, Judit Szulgyi, has worked toward this goal.Simulating CoolingSzulgyi performs a series of 3D global radiative hydrodynamic simulations of 1, 3, 5, and 10 Jupiter-mass (MJ) giant planets and their surrounding circumplanetary disks, embedded within the larger circumstellar disk around the central star.Density (left column), temperature (center), and normalized angular momentum (right) for a 1 MJ planet over temperatures cooling from 10,000 K (top) to 1,000 K (bottom). At high temperatures, a spherical circumplanetary envelope surrounds the planet, but as the planet cools, the envelope transitions around 64,000 K to a flattened disk. [Szulgyi 2017]This work explores the effects of different planet temperatures and

  13. Options for Kentucky's Energy Future

    Energy Technology Data Exchange (ETDEWEB)

    Larry Demick

    2012-11-01

    Three important imperatives are being pursued by the Commonwealth of Kentucky: ? Developing a viable economic future for the highly trained and experienced workforce and for the Paducah area that today supports, and is supported by, the operations of the US Department of Energy’s (DOE’s) Paducah Gaseous Diffusion Plant (PGDP). Currently, the PGDP is scheduled to be taken out of service in May, 2013. ? Restructuring the economic future for Kentucky’s most abundant indigenous resource and an important industry – the extraction and utilization of coal. The future of coal is being challenged by evolving and increasing requirements for its extraction and use, primarily from the perspective of environmental restrictions. Further, it is important that the economic value derived from this important resource for the Commonwealth, its people and its economy is commensurate with the risks involved. Over 70% of the extracted coal is exported from the Commonwealth and hence not used to directly expand the Commonwealth’s economy beyond the severance taxes on coal production. ? Ensuring a viable energy future for Kentucky to guarantee a continued reliable and affordable source of energy for its industries and people. Today, over 90% of Kentucky’s electricity is generated by burning coal with a delivered electric power price that is among the lowest in the United States. Anticipated increased environmental requirements necessitate looking at alternative forms of energy production, and in particular electricity generation.

  14. Transportation Energy Futures Series: Freight Transportation Demand: Energy-Efficient Scenarios for a Low-Carbon Future

    Energy Technology Data Exchange (ETDEWEB)

    Grenzeback, L. R.; Brown, A.; Fischer, M. J.; Hutson, N.; Lamm, C. R.; Pei, Y. L.; Vimmerstedt, L.; Vyas, A. D.; Winebrake, J. J.

    2013-03-01

    Freight transportation demand is projected to grow to 27.5 billion tons in 2040, and to nearly 30.2 billion tons in 2050. This report describes the current and future demand for freight transportation in terms of tons and ton-miles of commodities moved by truck, rail, water, pipeline, and air freight carriers. It outlines the economic, logistics, transportation, and policy and regulatory factors that shape freight demand, the trends and 2050 outlook for these factors, and their anticipated effect on freight demand. After describing federal policy actions that could influence future freight demand, the report then summarizes the capabilities of available analytical models for forecasting freight demand. This is one in a series of reports produced as a result of the Transportation Energy Futures project, a Department of Energy-sponsored multi-agency effort to pinpoint underexplored strategies for reducing GHGs and petroleum dependence related to transportation.

  15. Coal and nuclear power: Illinois' energy future

    Energy Technology Data Exchange (ETDEWEB)

    1982-01-01

    This conference was sponsored by the Energy Resources Center, University of Illinois at Chicago; the US Department of Energy; the Illinois Energy Resources Commission; and the Illinois Department of Energy and Natural Resources. The theme for the conference, Coal and Nuclear Power: Illinois' Energy Future, was based on two major observations: (1) Illinois has the largest reserves of bituminous coal of any state and is surpassed in total reserves only by North Dakota, and Montana; and (2) Illinois has made a heavy commitment to the use of nuclear power as a source of electrical power generation. Currently, nuclear power represents 30% of the electrical energy produced in the State. The primary objective of the 1982 conference was to review these two energy sources in view of the current energy policy of the Reagan Administration, and to examine the impact these policies have on the Midwest energy scene. The conference dealt with issues unique to Illinois as well as those facing the entire nation. A separate abstract was prepared for each of the 30 individual presentations.

  16. Energy mix of the future will be a mosaic

    Energy Technology Data Exchange (ETDEWEB)

    Chandler, G.

    2000-06-30

    Research into alternative energy sources is being undertaken by several of the large petroleum companies, including PanCanadian Petroleum, PetroCanada, Royal Dutch Shell, BP and Suncor Energy, an indication of the anticipated importance of renewables in the energy mix of the future. Clean electricity generation facilities fuelled by natural gas is one of the areas of interest to PanCanadian Petroleum and TransCanada Pipelines, while PetroCanada is diversifying into biofuels. Worldwide, Royal Dutch Shell has proclaimed renewables as one of its core businesses, budgeting US$500 million for renewable energy research over the next five years. BPSolarex, a subsidiary of British Petroleum, is well on the way to becoming the world's largest manufacturer and marketer of solar technology, while Suncor Energy of Calgary earmarked $100 million over the next five years to research in producing fuel from biomass, conversion of waste to energy, capture of carbon dioxide, and solar and wind power. The driving force behind these efforts is the significant global pressure to reduce greenhouse gas emissions and to meet the commitments undertaken at the 1997 Kyoto Climate Change Conference. Equally important is the recognition of the finite character of conventional energy sources, and the the various scenarios designed by diverse organizations to show the impact of new energy technologies on how people live and work, and how people, goods and resources move. For example, the scenarios developed by the Energy Technologies Futures Program of Natural Resources Canada are designed to provoke discussion of strategic directions and to challenge current thinking about energy consumption, efficiency and conservation. These scenarios identifiy a range of possible outcomes, depending on industry and government efforts to balance the pillars of sustainable development, i. e. the economy, society and the environment. Industry is taking an increasing interest in these projections as shown

  17. Impact of future energy policy on water resources in Kazakhstan

    Science.gov (United States)

    Rivotti, Pedro; Karatayev, Marat; Sobral Mourão, Zenaida; Shah, Nilay; Clarke, Michèle; Konadu, D. Dennis

    2017-04-01

    As part of its commitment to become one of the top-30 developed countries in the world, Kazakhstan set out an ambitious target of increasing the share of renewables and alternative sources of energy in its power generation mix to 50% by 2050. This vision greatly contrasts with the current situation, with coal and natural gas power plants producing around 90% of total electricity in 2016. While this transition provides a unique opportunity to improve the sustainability of the national energy system, major natural resources challenges currently faced in the country should be taken into account. Particularly in the case of water resources management, the current system is characterised by significant losses, heavy reliance on irrigation for the agricultural sector, unevenly distributed surface water, vulnerability to climate change and variations in transboundary inflows, amongst other issues. In this context, this study aims to investigate the future availability of water resources to support food production and the transition to a new energy system. Given the challenges mentioned above, tackling this question requires an integrated analysis of the water-energy-food systems in Kazakhstan. This is done in three stages: (1) characterising the water supply and demand in the country; (2) establishing the linkages between water resources and activities in the power production and agricultural sectors; and (3) identifying potential conflicts at the nexus between water, energy and food, taking into account future energy policy scenarios, trends for food production and water resource use.

  18. UV driven evaporation of close-in planets: energy-limited; recombination-limited and photon-limited flows

    CERN Document Server

    Owen, James E

    2016-01-01

    We have investigated the evaporation of close-in exoplanets irradiated by ionizing photons. We find that the properties of the flow are controlled by the ratio of the recombination time to the flow time-scale. When the recombination time-scale is short compared to the flow time-scale the the flow is in approximate local ionization equilibrium with a thin ionization front, where the photon mean free path is short compared to flow scale. In this "recombination limited" flow the mass-loss scales roughly with the square root of the incident flux. When the recombination time is long compared to the flow time-scale the ionization front becomes thick and encompasses the entire flow, with the mass-loss rate scaling linearly with flux. If the planet's potential is deep the flow is approximately "energy-limited"; however, if the planet's potential is shallow we identify a new limiting mass-loss regime, which we term "photon-limited". In this scenario the mass-loss rate is purely limited by the incoming flux of ionizing...

  19. Search for a bridge to the energy future: Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Saluja, S.S. (ed.)

    1986-01-01

    The alarming effects, concerns, and even the insights into long-range energy planning that grew out of the OPEC oil embargo of 1973 are fading from the view of a shortsighted public. The enthusiastic initiatives taken in many countries for the development of alternative energy sources have withered due to lack of economic and/or ideological incentive. The events since December 1985, when the members of OPEC decided to increase production in an effort to capture their share of market, have brought down the prices of a barrel of crude to less than US $11 and have made any rational analysis very complex. This has made even the proponents of the alternative energy sources pause and think. The US has, as usual, oscillated from panic to complacency. The Libyan crisis, however, has brought the dangers of complacency into sharp focus. The first commercial coal gasification plant, constructed with a capital investment of over US $2 billion, was abandoned by the owners and is being operated by the US Department of Energy temporarily. In their effort to find a private owner, the US Department of Energy has set the date of auction of this prestigious plant for May 28, 1986. And if an appropriate bid is not forthcoming, the plant faces a very uncertain future. Coal, considered by the World Coal Study (WOCOL) at MIT in 1980, to be a bridge to a global energy future, seems to have lost its luster due to the oil glut which we all know is temporary. This was evident when the bill to grant the Right of Eminent Domain for transportation of coal was defeated. This conference was organized to bring together experts in different areas from various countries to discuss the state of the art and the rate of progress in different alternative energy forms. The recent accident at the Chernobyl nuclear power plant in USSR has brought home the need of diversification of the alternative energy sources.

  20. Future World Energy Constraints and the Direction for Solutions

    Energy Technology Data Exchange (ETDEWEB)

    Lightfoot, H.D.

    2004-09-12

    This paper was originally written in response to the concern that rising levels of CO2 in the atmosphere caused by burning of fossil fuels will ultimately contribute to global warming. Now we are beginning to see evidence of coming problems in the supply of fuels for transportation. This paper describes the benefits of adequate energy supply and the problems of future energy supply. Partial solutions are suggested for immediate application as well as longer term solutions to address both of these concerns. To evaluate the situation and solutions we must understand: (1) how much primary energy is currently used world-wide and might be needed in 2100, (2) how important energy is to the welfare of people, (3) the forms of energy sources and end uses and (4) where new sources may come from. The major portion of world primary energy demand is provided by fossil fuels. This portion dropped from 93% in 1970 to 85% in 1995, mainly because of the increased use of nuclear energy. How ever, since the mid-1990s fossil fuels have maintained their 85% share of world energy supply. The importance of the relationship between per capita energy consumption and per capita income for the world is discussed. The limits of conservation, energy efficiency and renewable energies are examined. The contribution of renewable energies is compared to 41 different views of world energy demand in 2100. Without new technology for large scale storage of intermittent electricity from wind and solar the contribution of renewable energies is not likely to grow significantly beyond the current level of 7-8%. The paper offers conclusions and partial solutions that we can work on immediately. Examination of the forms of energy supplied by the sun, which is powered by nuclear fusion, and the way in which nuclear fission currently supplies energy to the world sets the research framework for longer term solutions. This framework points towards two possible longer term complementary res earch projects which

  1. Renewable Energy Generation in India: Present Scenario and Future Prospects

    DEFF Research Database (Denmark)

    Singh, Sri Niwas; Singh, Bharat; Østergaard, Jacob

    2009-01-01

    The development of Renewable Energy Sources (RES) is necessary for the sustainable development of any country due to depleting fossil fuel level, climbing fossil fuel prices across the world and more recently pressure for reduction emission level. In India, several schemes and policies are launched...... by the government to support the use of RES to achieve energy security and self-sufficiency. This paper discusses the present scenario and future prospects of RES in India. Various schemes such as financial assistance, tax holiday etc for promoting RESs development and utilization are also discussed. The present...

  2. Transportation Energy Futures: Freight Transportation Modal Shares: Scenarios for a Low-Carbon Future

    Energy Technology Data Exchange (ETDEWEB)

    Brogan, J. J. [Cambridge Systematics Inc., Cambridge, MA (United States); Aeppli, A. E. [Cambridge Systematics Inc., Cambridge, MA (United States); Brown, D. F. [Cambridge Systematics Inc., Cambridge, MA (United States); Fischer, M. J. [Cambridge Systematics Inc., Cambridge, MA (United States); Grenzeback, L. R. [Cambridge Systematics Inc., Cambridge, MA (United States); McKenzie, E. [Cambridge Systematics Inc., Cambridge, MA (United States); Vimmerstedt, L. [Cambridge Systematics Inc., Cambridge, MA (United States); Vyas, A. D. [Cambridge Systematics Inc., Cambridge, MA (United States); Witzke, E. [Cambridge Systematics Inc., Cambridge, MA (United States)

    2013-03-01

    Freight transportation modes—truck, rail, water, air, and pipeline—each serve a distinct share of the freight transportation market. A variety of factors influence the modes chosen by shippers, carriers, and others involved in freight supply chains. Analytical methods can be used to project future modal shares, and federal policy actions could influence future freight mode choices. This report considers how these topics have been addressed in existing literature and offers insights on federal policy decisions with the potential to prompt mode choices that reduce energy use and greenhouse gas emissions.

  3. Landscape of Future Accelerators at the Energy and Intensity Frontier

    Energy Technology Data Exchange (ETDEWEB)

    Syphers, M. J. [Northern Illinois U.; Chattopadhyay, S. [Northern Illinois U.

    2016-11-21

    An overview is provided of the currently envisaged landscape of charged particle accelerators at the energy and intensity frontiers to explore particle physics beyond the standard model via 1-100 TeV-scale lepton and hadron colliders and multi-Megawatt proton accelerators for short- and long- baseline neutrino experiments. The particle beam physics, associated technological challenges and progress to date for these accelerator facilities (LHC, HL-LHC, future 100 TeV p-p colliders, Tev-scale linear and circular electron-positron colliders, high intensity proton accelerator complex PIP-II for DUNE and future upgrade to PIP-III) are outlined. Potential and prospects for advanced “nonlinear dynamic techniques” at the multi-MW level intensity frontier and advanced “plasma- wakefield-based techniques” at the TeV-scale energy frontier and are also described.

  4. Single-Family Houses That Meet The Future Energy Demands

    DEFF Research Database (Denmark)

    Rose, Jørgen; Svendsen, Svend

    2002-01-01

    In 1990 the Danish Government decided to make an effort to reduce the heat demand of new buildings by 50% before the year 2000. In 1995 a new Building Code (Boligministeriet 1995) was introduced, which resulted in a 25% reduction compared to the previous Building Code (Boligministeriet 1988). Bef...... the department, in co-operation with a major building entrepreneur, has developed a single-family house that shows that there are no evident problems in meeting the future energy demands....... to examine these consequences thoroughly. The department is presently contributing to this end by participating in quite a few investigative projects, where single-family houses are designed to meet the proposed future energy demands. This paper describes the results obtained from one such project where...

  5. The modelling of future energy scenarios for Denmark

    DEFF Research Database (Denmark)

    Kwon, Pil Seok

    2014-01-01

    the overall energy system model for analyzing three subjects which are important but uncertain areas in the future. The first model is a consequential LCA analysis for biomass potential. The second model targets transport demand due to uncertain technology development in the future transport sector. The third...... model addresses grid stability with a high time resolution. As a result of the consequential LCA, the potential of biomass is less than that of IDA2050. The reduced biomass potential in turn requires larger non-biomass RES capacity, which necessitates a larger capacity of flexible means as a chain...... for the important but uncertain areas biomass and flexible demand are performed. Thirdly, modelling-related issues are investigated with a focus on the effect of future forecasting assumption and differences between a predefined priority order and order determined by given efficiencies and constraints...

  6. Eating energy. Identifying possibilities for reduced energy use in the future food supply system

    Energy Technology Data Exchange (ETDEWEB)

    Wallgren, Christine; Hoejer, Mattias [Division of Environmental Strategies Research-fms, Department of Urban Planning and Environment, Royal Institute of Technology, Stockholm (Sweden)

    2009-12-15

    This paper explores the possibilities for reducing future energy use for eating to a sustainable level. A backcasting approach is used to generate an image of the future where energy use for eating is 60% lower in 2050 than in 2000. The currently known potential to reduce energy use in the food supply system for producing, transporting, storing, cooking and eating food is explored and described in terms of a number of distinct changes that are numbered consecutively and presented in both a quantitative and qualitative way. Sweden is used as the case and all data regarding energy use apply for Swedish conditions. An exercise like this illustrates the possible outcome of taking sustainability seriously. If sustainability is to be achieved, some images of the future are needed so that potential targets can be identified. This paper does not present forecasts, but illustrates the kind of changes needed in order to achieve sustainable energy use in the food system. (author)

  7. Eating energy-Identifying possibilities for reduced energy use in the future food supply system

    Energy Technology Data Exchange (ETDEWEB)

    Wallgren, Christine [Division of Environmental Strategies Research-fms, Department of Urban Planning and Environment, Royal Institute of Technology, Stockholm (Sweden); Hoejer, Mattias, E-mail: hojer@kth.s [Division of Environmental Strategies Research-fms, Department of Urban Planning and Environment, Royal Institute of Technology, Stockholm (Sweden)

    2009-12-15

    This paper explores the possibilities for reducing future energy use for eating to a sustainable level. A backcasting approach is used to generate an image of the future where energy use for eating is 60% lower in 2050 than in 2000. The currently known potential to reduce energy use in the food supply system for producing, transporting, storing, cooking and eating food is explored and described in terms of a number of distinct changes that are numbered consecutively and presented in both a quantitative and qualitative way. Sweden is used as the case and all data regarding energy use apply for Swedish conditions. An exercise like this illustrates the possible outcome of taking sustainability seriously. If sustainability is to be achieved, some images of the future are needed so that potential targets can be identified. This paper does not present forecasts, but illustrates the kind of changes needed in order to achieve sustainable energy use in the food system.

  8. On the Feasibility of Characterizing Free-floating Planets with Current and Future Space-based Microlensing Surveys

    CERN Document Server

    Henderson, Calen B

    2016-01-01

    Simultaneous space- and ground-based microlensing surveys, such as K2's Campaign 9 (K2C9) and $WFIRST$, facilitate measuring the masses and distances of free-floating planet (FFP) candidates. FFPs are identified as single-lens events with a short timescale, of-order 1 day. Measuring the mass of the lensing object requires determining the finite size of the source star $\\rho$, as well as the microlens parallax $\\pi_{\\rm E}$. A planet that is bound to but widely separated from a host star can produce a light curve similar to that of an FFP. This tension can be resolved with high-resolution imaging of the microlensing target to search for the lens flux $F_l$ from a possible host star. Here we investigate the accessible parameter space for each of these components --- $\\pi_{\\rm E}$, $\\rho$, and $F_l$ --- considering different satellites for a range of FFP masses, Galactic distances, and source star properties. We find that at the beginning of K2C9, when its projected separation from the Earth (as viewed from the ...

  9. Transportation Energy Futures Series: Freight Transportation Modal Shares: Scenarios for a Low-Carbon Future

    Energy Technology Data Exchange (ETDEWEB)

    Brogan, J. J.; Aeppli, A. E.; Beagan, D. F.; Brown, A.; Fischer, M. J.; Grenzeback, L. R.; McKenzie, E.; Vimmerstedt, L.; Vyas, A. D.; Witzke, E.

    2013-03-01

    Truck, rail, water, air, and pipeline modes each serve a distinct share of the freight transportation market. The current allocation of freight by mode is the product of technologic, economic, and regulatory frameworks, and a variety of factors -- price, speed, reliability, accessibility, visibility, security, and safety -- influence mode. Based on a comprehensive literature review, this report considers how analytical methods can be used to project future modal shares and offers insights on federal policy decisions with the potential to prompt shifts to energy-efficient, low-emission modes. There are substantial opportunities to reduce the energy used for freight transportation, but it will be difficult to shift large volumes from one mode to another without imposing considerable additional costs on businesses and consumers. This report explores federal government actions that could help trigger the shifts in modal shares needed to reduce energy consumption and emissions. This is one in a series of reports produced as a result of the Transportation Energy Futures project, a Department of Energy-sponsored multi-agency effort to pinpoint underexplored strategies for reducing GHGs and petroleum dependence related to transportation.

  10. Key Assets for a Sustainable Low Carbon Energy Future

    Science.gov (United States)

    Carre, Frank

    2011-10-01

    Since the beginning of the 21st century, concerns of energy security and climate change gave rise to energy policies focused on energy conservation and diversified low-carbon energy sources. Provided lessons of Fukushima accident are evidently accounted for, nuclear energy will probably be confirmed in most of today's nuclear countries as a low carbon energy source needed to limit imports of oil and gas and to meet fast growing energy needs. Future challenges of nuclear energy are then in three directions: i) enhancing safety performance so as to preclude any long term impact of severe accident outside the site of the plant, even in case of hypothetical external events, ii) full use of Uranium and minimization long lived radioactive waste burden for sustainability, and iii) extension to non-electricity energy products for maximizing the share of low carbon energy source in transportation fuels, industrial process heat and district heating. Advanced LWRs (Gen-III) are today's best available technologies and can somewhat advance nuclear energy in these three directions. However, breakthroughs in sustainability call for fast neutron reactors and closed fuel cycles, and non-electric applications prompt a revival of interest in high temperature reactors for exceeding cogeneration performances achievable with LWRs. Both types of Gen-IV nuclear systems by nature call for technology breakthroughs to surpass LWRs capabilities. Current resumption in France of research on sodium cooled fast neutron reactors (SFRs) definitely aims at significant progress in safety and economic competitiveness compared to earlier reactors of this type in order to progress towards a new generation of commercially viable sodium cooled fast reactor. Along with advancing a new generation of sodium cooled fast reactor, research and development on alternative fast reactor types such as gas or lead-alloy cooled systems (GFR & LFR) is strategic to overcome technical difficulties and/or political

  11. Energy sources and energy generation in the future; Fuentes de energia y la generacion del futuro

    Energy Technology Data Exchange (ETDEWEB)

    Alvarez Pelegry, E.

    2001-07-01

    With this article, that gathers the conference imparted inside of the cycle Technologies and Power Supply Development: Gas or Coal, complementary alternatives, organized by the Spanish Club of the Energy (ENERCLUB), the author plants a series of questions over the sources of energy and the its generation in the future, in order to wake the reflections over the theme. (Author)

  12. Superconducting Magnet Technology for Future High Energy Proton Colliders

    Science.gov (United States)

    Gourlay, Stephen

    2017-01-01

    Interest in high field dipoles has been given a boost by new proposals to build a high-energy proton-proton collider to follow the LHC and programs around the world are taking on the task to answer the need. Studies aiming toward future high-energy proton-proton colliders at the 100 TeV scale are now being organized. The LHC and current cost models are based on technology close to four decades old and point to a broad optimum of operation using dipoles with fields between 5 and 12T when site constraints, either geographical or political, are not a factor. Site geography constraints that limit the ring circumference can drive the required dipole field up to 20T, which is more than a factor of two beyond state-of-the-art. After a brief review of current progress, the talk will describe the challenges facing future development and present a roadmap for moving high field accelerator magnet technology forward. This work was supported by the Director, Office of Science, High Energy Physics, US Department of Energy, under contract No. DE-AC02-05CH11231.

  13. Solar/electric heating systems for the future energy system

    DEFF Research Database (Denmark)

    Furbo, Simon; Dannemand, Mark; Perers, Bengt

    The project “Solar/electric heating systems in the future energy system” was carried out in the period 2008‐2013. The project partners were DTU Byg, DTU Informatics (now DTU Compute), DMI, ENFOR A/S and COWI A/S. The companies Ajva ApS, Ohmatex ApS and Innogie ApS worked together with the project...... partners in two connected projects in order to develop solar/electric heating systems for laboratory tests. The project was financed by the Danish Agency for Science, Technology and Innovation under the Danish Council for Strategic Research in the program Sustainable Energy and Environment. The DSF number...... of the project is 2104‐07‐0021/09‐063201/DSF. This report is the final report of the project. The aim of the project is to elucidate how individual heating units for single family houses are best designed in order to fit into the future energy system. The units are based on solar energy, electrical heating...

  14. Crystal Ball: On the Future High Energy Colliders

    Energy Technology Data Exchange (ETDEWEB)

    Shiltsev, Vladimir [Fermilab

    2015-09-20

    High energy particle colliders have been in the forefront of particle physics for more than three decades. At present the near term US, European and international strategies of the particle physics community are centered on full exploitation of the physics potential of the Large Hadron Collider (LHC) through its high-luminosity upgrade (HL-LHC). A number of next generation collider facilities have been proposed and are currently under consideration for the medium- and far-future of the accelerator-based high energy physics. In this paper we offer a uniform approach to evaluation of various accelerators based on the feasibility of their energy reach, performance reach and cost range. We briefly review such post-LHC options as linear e+e- colliders in Japan (ILC) or at CERN (CLIC), muon collider, and circular lepton or hadron colliders in China (CepC/SppC) and Europe (FCC). We conclude with a look into ultimate energy reach accelerators based on plasmas and crystals, and some perspectives for the far future of accelerator-based particle physics.

  15. Crystal Ball: On the Future High Energy Colliders

    CERN Document Server

    Shiltsev, Vladimir

    2015-01-01

    High energy particle colliders have been in the forefront of particle physics for more than three decades. At present the near term US, European and international strategies of the particle physics community are centered on full exploitation of the physics potential of the Large Hadron Collider (LHC) through its high-luminosity upgrade (HL-LHC). A number of next generation collider facilities have been proposed and are currently under consideration for the medium- and far-future of the accelerator-based high energy physics. In this paper we offer a uniform approach to evaluation of various accelerators based on the feasibility of their energy reach, performance reach and cost range. We briefly review such post-LHC options as linear e+e- colliders in Japan (ILC) or at CERN (CLIC), muon collider, and circular lepton or hadron colliders in China (CepC/SppC) and Europe (FCC). We conclude with a look into ultimate energy reach accelerators based on plasmas and crystals, and some perspectives for the far future of ...

  16. Astrometric Detection of Earthlike Planets

    CERN Document Server

    Shao, Michael; Catanzarite, Joseph H; Edberg, Stephen J; Leger, Alain; Malbet, Fabien; Queloz, Didier; Muterspaugh, Matthew W; Beichman, Charles; Fischer, Debra A; Ford, Eric; Olling, Robert; Kulkarni, Shrinivas; Unwin, Stephen C; Traub, Wesley

    2009-01-01

    Astrometry can detect rocky planets in a broad range of masses and orbital distances and measure their masses and three-dimensional orbital parameters, including eccentricity and inclination, to provide the properties of terrestrial planets. The masses of both the new planets and the known gas giants can be measured unambiguously, allowing a direct calculation of the gravitational interactions, both past and future. Such dynamical interactions inform theories of the formation and evolution of planetary systems, including Earth-like planets. Astrometry is the only technique technologically ready to detect planets of Earth mass in the habitable zone (HZ) around solar-type stars within 20 pc. These Earth analogs are close enough for follow-up observations to characterize the planets by infrared imaging and spectroscopy with planned future missions such as the James Webb Space Telescope (JWST) and the Terrestrial Planet Finder/Darwin. Employing a demonstrated astrometric precision of 1 microarcsecond and a noise ...

  17. Transportation Energy Futures Series: Freight Transportation Demand: Energy-Efficient Scenarios for a Low-Carbon Future

    Energy Technology Data Exchange (ETDEWEB)

    Grenzeback, L. R. [Cambridge Systematics Inc., Cambridge, MA (United States); Brown, A. [Cambridge Systematics Inc., Cambridge, MA (United States); Fischer, M. J. [Cambridge Systematics Inc., Cambridge, MA (United States); Hutson, N. [Cambridge Systematics Inc., Cambridge, MA (United States); Lamm, C. R. [Cambridge Systematics Inc., Cambridge, MA (United States); Pei, Y. L. [Cambridge Systematics Inc., Cambridge, MA (United States); Vimmerstedt, L. [Cambridge Systematics Inc., Cambridge, MA (United States); Vyas, A. D. [Cambridge Systematics Inc., Cambridge, MA (United States); Winebrake, J. J. [Cambridge Systematics Inc., Cambridge, MA (United States)

    2013-03-01

    Freight transportation demand is projected to grow to 27.5 billion tons in 2040, and by extrapolation, to nearly 30.2 billion tons in 2050, requiring ever-greater amounts of energy. This report describes the current and future demand for freight transportation in terms of tons and ton-miles of commodities moved by truck, rail, water, pipeline, and air freight carriers. It outlines the economic, logistics, transportation, and policy and regulatory factors that shape freight demand; the possible trends and 2050 outlook for these factors, and their anticipated effect on freight demand and related energy use. After describing federal policy actions that could influence freight demand, the report then summarizes the available analytical models for forecasting freight demand, and identifies possible areas for future action.

  18. Revolution Now: The Future Arrives for Four Clean Energy Technologies

    Science.gov (United States)

    Tillemann, Levi; Beck, Fredric; Brodrick, James; Brown, Austin; Feldman, David; Nguyen, Tien; Ward, Jacob

    2013-09-17

    For decades, America has anticipated the transformational impact of clean energy technologies. But even as costs fell and technology matured, a clean energy revolution always seemed just out of reach. Critics often said a clean energy future would "always be five years away." This report focuses on four technology revolutions that are here today. In the last five years they have achieved dramatic reductions in cost and this has been accompanied by a surge in consumer, industrial and commercial deployment. Although these four technologies still represent a small percentage of their total market, they are growing rapidly. The four key technologies this report focuses on are: onshore wind power, polysilicon photovoltaic modules, LED lighting, and electric vehicles.

  19. Risoe energy report 8. The intelligent energy system infrastructure for the future

    Energy Technology Data Exchange (ETDEWEB)

    Larsen, Hans; Soenderberg Petersen, L. (eds.)

    2009-09-15

    This report is volume 8 in a series started in 2002, and will take its point of reference in the need for the development of a highly flexible and intelligent energy system infrastructure which facilitates substantial higher amounts of renewable energy than today's energy systems. This intelligent and flexible infrastructure is a prerequisite in achieving the goals set up by IPCC in 2007 on CO{sub 2} reductions as well as ensuring the future security of energy supply in all regions of the world. The report presents a generic approach for future infrastructure issues on local, regional and global scale with focus on the energy system. The report is based on chapters and updates from Risoe Energy Report 1 - 7, as well as input from contributors to the DTU Climate Change Technology workshops and available international literature and reports. (author)

  20. New Science for a Secure and Sustainable Energy Future

    Energy Technology Data Exchange (ETDEWEB)

    None

    2008-12-01

    Over the past five years, the Department of Energy's Office of Basic Energy Sciences has engaged thousands of scientists around the world to study the current status, limiting factors and specific fundamental scientific bottlenecks blocking the widespread implementation of alternate energy technologies. The reports from the foundational BESAC workshop, the ten 'Basic Research Needs' workshops and the panel on Grand Challenge science detail the necessary research steps (http://www.sc.doe.gov/bes/reports/list.html). This report responds to a charge from the Director of the Office of Science to the Basic Energy Sciences Advisory Committee to conduct a study with two primary goals: (1) to assimilate the scientific research directions that emerged from these workshop reports into a comprehensive set of science themes, and (2) to identify the new implementation strategies and tools required to accomplish the science. From these efforts it becomes clear that the magnitude of the challenge is so immense that existing approaches - even with improvements from advanced engineering and improved technology based on known concepts - will not be enough to secure our energy future. Instead, meeting the challenge will require fundamental understanding and scientific breakthroughs in new materials and chemical processes to make possible new energy technologies and performance levels far beyond what is now possible.

  1. Energy, equity and the future of the fuel poor

    Energy Technology Data Exchange (ETDEWEB)

    Roberts, Simon [Centre for Sustainable Energy, 3 St.Peter' s Court, Bedminster Parade, Bristol BS3 4AQ (United Kingdom)

    2008-12-15

    A warm and adequately-lit home is considered a basic need, together with access to energy-consuming appliances ranging from a fridge to a TV. An underlying tenet of sustainable energy is that such basic needs should be affordably met. Yet low incomes, energy-inefficient housing and appliances and high energy costs mean that roughly 10 per cent of UK households, many of them elderly or with young children, fail to attain this basic standard. These households, which would need to spend more than 10 per cent of their income to attain adequate energy services, are officially defined as 'fuel poor'. Their cold, poorly equipped homes lead to chronic cold-related health conditions, exacerbate social isolation, and may undermine educational achievement. In addition, rural areas have a disproportionately high incidence of fuel poverty. This Review examines the current distribution of energy consumption, its social impacts, and the opportunities to address fuel poverty through improvements to the housing stock. It will then consider potential future developments. (author)

  2. Regional Dynamic Simulation Modeling and Analysis of Integrated Energy Futures

    Energy Technology Data Exchange (ETDEWEB)

    MALCZYNSKI, LEONARD A.; BEYELER, WALTER E.; CONRAD, STEPHEN H.; HARRIS, DAVID B; REXROTH, PAUL E.; BAKER, ARNOLD B.

    2002-11-01

    The Global Energy Futures Model (GEFM) is a demand-based, gross domestic product (GDP)-driven, dynamic simulation tool that provides an integrated framework to model key aspects of energy, nuclear-materials storage and disposition, environmental effluents from fossil and non fossil energy and global nuclear-materials management. Based entirely on public source data, it links oil, natural gas, coal, nuclear and renewable energy dynamically to greenhouse-gas emissions and 12 other measures of environmental impact. It includes historical data from 1990 to 2000, is benchmarked to the DOE/EIA/IEO 2001 [5] Reference Case for 2000 to 2020, and extrapolates energy demand through the year 2050. The GEFM is globally integrated, and breaks out five regions of the world: United States of America (USA), the Peoples Republic of China (China), the former Soviet Union (FSU), the Organization for Economic Cooperation and Development (OECD) nations excluding the USA (other industrialized countries), and the rest of the world (ROW) (essentially the developing world). The GEFM allows the user to examine a very wide range of ''what if'' scenarios through 2050 and to view the potential effects across widely dispersed, but interrelated areas. The authors believe that this high-level learning tool will help to stimulate public policy debate on energy, environment, economic and national security issues.

  3. An energy vision for a planet under pressure. Transformation to sustainability: interconnected challenges and solutions

    NARCIS (Netherlands)

    Vuuren, D.P. van; Nakicenovic, N.; Riahi, K.

    2012-01-01

    Worldwide, global energy systems face an array of challenges, from access for the poor to reliability and security. Meanwhile, the provision of energy creates local human and ecological health impacts as well as dangerous global climate change. Addressing these issues simultaneously will require a f

  4. Transportation Energy Futures Series. Potential for Energy Efficiency Improvement Beyond the Light-Duty-Vehicle Sector

    Energy Technology Data Exchange (ETDEWEB)

    Vyas, A. D. [Argonne National Lab. (ANL), Argonne, IL (United States); Patel, D. M. [Argonne National Lab. (ANL), Argonne, IL (United States); Bertram, K. M. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2013-02-01

    Considerable research has focused on energy efficiency and fuel substitution options for light-duty vehicles, while much less attention has been given to medium- and heavy-duty trucks, buses, aircraft, marine vessels, trains, pipeline, and off-road equipment. This report brings together the salient findings from an extensive review of literature on future energy efficiency options for these non-light-duty modes. Projected activity increases to 2050 are combined with forecasts of overall fuel efficiency improvement potential to estimate the future total petroleum and greenhouse gas (GHG) emissions relative to current levels. This is one of a series of reports produced as a result of the Transportation Energy Futures (TEF) project, a Department of Energy-sponsored multi-agency project initiated to pinpoint underexplored strategies for abating GHGs and reducing petroleum dependence related to transportation.

  5. Transportation Energy Futures Series: Potential for Energy Efficiency Improvement Beyond the Light-Duty-Vehicle Sector

    Energy Technology Data Exchange (ETDEWEB)

    Vyas, A. D.; Patel, D. M.; Bertram, K. M.

    2013-03-01

    Considerable research has focused on energy efficiency and fuel substitution options for light-duty vehicles, while much less attention has been given to medium- and heavy-duty trucks, buses, aircraft, marine vessels, trains, pipeline, and off-road equipment. This report brings together the salient findings from an extensive review of literature on future energy efficiency options for these non-light-duty modes. Projected activity increases to 2050 are combined with forecasts of overall fuel efficiency improvement potential to estimate the future total petroleum and greenhouse gas (GHG) emissions relative to current levels. This is one of a series of reports produced as a result of the Transportation Energy Futures (TEF) project, a Department of Energy-sponsored multi-agency project initiated to pinpoint underexplored strategies for abating GHGs and reducing petroleum dependence related to transportation.

  6. Expert elicitation survey on future wind energy costs

    Science.gov (United States)

    Wiser, Ryan; Jenni, Karen; Seel, Joachim; Baker, Erin; Hand, Maureen; Lantz, Eric; Smith, Aaron

    2016-10-01

    Wind energy supply has grown rapidly over the last decade. However, the long-term contribution of wind to future energy supply, and the degree to which policy support is necessary to motivate higher levels of deployment, depends—in part—on the future costs of both onshore and offshore wind. Here, we summarize the results of an expert elicitation survey of 163 of the world’s foremost wind experts, aimed at better understanding future costs and technology advancement possibilities. Results suggest significant opportunities for cost reductions, but also underlying uncertainties. Under the median scenario, experts anticipate 24-30% reductions by 2030 and 35-41% reductions by 2050 across the three wind applications studied. Costs could be even lower: experts predict a 10% chance that reductions will be more than 40% by 2030 and more than 50% by 2050. Insights gained through expert elicitation complement other tools for evaluating cost-reduction potential, and help inform policy and planning, R&D and industry strategy.

  7. Expert elicitation survey on future wind energy costs

    Energy Technology Data Exchange (ETDEWEB)

    Wiser, Ryan; Jenni, Karen; Seel, Joachim; Baker, Erin; Hand, Maureen; Lantz, Eric; Smith, Aaron

    2016-09-12

    Wind energy supply has grown rapidly over the last decade. However, the long-term contribution of wind to future energy supply, and the degree to which policy support is necessary to motivate higher levels of deployment, depends -- in part -- on the future costs of both onshore and offshore wind. Here, we summarize the results of an expert elicitation survey of 163 of the world's foremost wind experts, aimed at better understanding future costs and technology advancement possibilities. Results suggest significant opportunities for cost reductions, but also underlying uncertainties. Under the median scenario, experts anticipate 24-30% reductions by 2030 and 35-41% reductions by 2050 across the three wind applications studied. Costs could be even lower: experts predict a 10% chance that reductions will be more than 40% by 2030 and more than 50% by 2050. Insights gained through expert elicitation complement other tools for evaluating cost-reduction potential, and help inform policy and planning, R&D and industry strategy.

  8. Magnetospheric energy inputs into the upper atmospheres of the giant planets

    Directory of Open Access Journals (Sweden)

    C. G. A. Smith

    2005-07-01

    Full Text Available We revisit the effects of Joule heating upon the upper atmospheres of Jupiter and Saturn. We show that in addition to direct Joule heating there is an additional input of kinetic energy – ion drag energy – which we quantify relative to the Joule heating. We also show that fluctuations about the mean electric field, as observed in the Earth's ionosphere, may significantly increase the Joule heating itself. For physically plausible parameters these effects may increase previous estimates of the upper atmospheric energy input at Saturn from ~10 TW to ~20 TW.

    Keywords. Ionosphere (Electric fields and currents; Planetary ionosphere – Magnetospheric physics (Auroral phenomena

  9. Roadmap for the Future of Commercial Energy Codes

    Energy Technology Data Exchange (ETDEWEB)

    Rosenberg, Michael I.; Hart, Philip R.; Zhang, Jian; Athalye, Rahul A.

    2015-01-26

    Building energy codes have significantly increased building efficiency over the last 38 years, since the first national energy code was published in 1975. The most commonly used path in energy codes, the prescriptive path, appears to be reaching a point of diminishing returns. The current focus on prescriptive codes has limitations including significant variation in actual energy performance depending on which prescriptive options are chosen, a lack of flexibility for designers and developers, the inability to handle optimization that is specific to building type and use, the inability to account for project-specific energy costs, and the lack of follow-through or accountability after a certificate of occupancy is granted. It is likely that an approach that considers the building as an integrated system will be necessary to achieve the next real gains in building efficiency. This report provides a high-level review of different formats for commercial building energy codes, including prescriptive, prescriptive packages, capacity constrained, outcome based, and predictive performance approaches. This report also explores a next generation commercial energy code approach that places a greater emphasis on performance-based criteria. For commercial building energy codes to continue to progress as they have over the last 40 years, the next generation of building codes will need to provide a path that is led by energy performance, ensuring a measurable trajectory toward net zero energy buildings. This report outlines a vision to serve as a roadmap for future commercial code development. That vision is based on code development being led by a specific approach to predictive energy performance combined with building-specific prescriptive packages that are designed both to be cost-effective and to achieve a desired level of performance. Compliance with this new approach can be achieved by either meeting the performance target, as demonstrated by whole building energy

  10. Energy Use in China: Sectoral Trends and Future Outlook

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Nan; McNeil, Michael A.; Fridley, David; Lin, Jiang; Price,Lynn; de la Rue du Can, Stephane; Sathaye, Jayant; Levine, Mark

    2007-10-04

    This report provides a detailed, bottom-up analysis ofenergy consumption in China. It recalibrates official Chinese governmentstatistics by reallocating primary energy into categories more commonlyused in international comparisons. It also provides an analysis of trendsin sectoral energy consumption over the past decades. Finally, itassesses the future outlook for the critical period extending to 2020,based on assumptions of likely patterns of economic activity,availability of energy services, and energy intensities. The followingare some highlights of the study's findings: * A reallocation of sectorenergy consumption from the 2000 official Chinese government statisticsfinds that: * Buildings account for 25 percent of primary energy, insteadof 19 percent * Industry accounts for 61 percent of energy instead of 69percent * Industrial energy made a large and unexpected leap between2000-2005, growing by an astonishing 50 percent in the 3 years between2002 and 2005. * Energy consumption in the iron and steel industry was 40percent higher than predicted * Energy consumption in the cement industrywas 54 percent higher than predicted * Overall energy intensity in theindustrial sector grew between 2000 and 2003. This is largely due tointernal shifts towards the most energy-intensive sub-sectors, an effectwhich more than counterbalances the impact of efficiency increases. *Industry accounted for 63 percent of total primary energy consumption in2005 - it is expected to continue to dominate energy consumption through2020, dropping only to 60 percent by that year. * Even assuming thatgrowth rates in 2005-2020 will return to the levels of 2000-2003,industrial energy will grow from 42 EJ in 2005 to 72 EJ in 2020. * Thepercentage of transport energy used to carry passengers (instead offreight) will double from 37 percent to 52 percent between 2000 to 2020,.Much of this increase is due to private car ownership, which willincrease by a factor of 15 from 5.1 million in 2000 to

  11. Future Transportation with Smart Grids and Sustainable Energy

    Directory of Open Access Journals (Sweden)

    Gustav R. Grob

    2009-10-01

    Full Text Available Transportation is facing fundamental change due to the rapid depletion of fossil fuels, environmental and health problems, the growing world population, rising standards of living with more individual mobility and the globalization of trade with its increasing international transport volume. To cope with these serious problems benign, renewable energy systems and much more efficient drives must be multiplied as rapidly as possible to replace the polluting combustion engines with their much too low efficiency and high fuel logistics cost. Consequently the vehicles of the future must be non-polluting and super-efficient, i.e. electric. The energy supply must come via smart grids from clean energy sources not affecting the health, climate and biosphere. It is shown how this transition to the clean, sustainable energy age is possible, feasible and why it is urgent. The important role of international ISO, IEC and ITU standards and the need for better legislation by means of the Global Energy Charter for Sustainable Development are also highlighted.

  12. Innovative thermal energy harvesting for future autonomous applications

    Science.gov (United States)

    Monfray, Stephane

    2013-12-01

    As communicating autonomous systems market is booming, the role of energy harvesting will be a key enabler. As example, heat is one of the most abundant energy sources that can be converted into electricity in order to power circuits. Harvesting systems that use wasted heat open new ways to power autonomous sensors when the energy consumption is low, or to create systems of power generators when the conversion efficiency is high. The combination of different technologies (low power μ-processors, μ-batteries, radio, sensors...) with new energy harvesters compatible with large varieties of use-cases with allow to address this booming market. Thanks to the conjunction of ultra-low power electronic development, 3D technologies & Systems in Package approaches, the integration of autonomous sensors and electronics with ambient energy harvesting will be achievable. The applications are very wide, from environment and industrial sensors to medical portable applications, and the Internet of things may also represent in the future a several billions units market.

  13. Managing Water-Food-Energy Futures in the Canadian Prairies

    Science.gov (United States)

    Wheater, H. S.; Hassanzadeh, E.; Nazemi, A.; Elshorbagy, A. A.

    2016-12-01

    The water-food-energy nexus is a convenient phrase to highlight competing societal uses for water and the need for cross-sectoral policy integration, but this can lead to oversimplification of the multiple dimensions of water (and energy) management. In practice, water managers must balance (and prioritize) demands for water for many uses, including environmental flows, and reservoir operation often involves managing conflicting demands, for example to maximize retention for supply, reduce storage to facilitate flood control, and constrain water levels and releases for habitat protection. Agriculture and water quality are also inextricably linked: irrigated agriculture requires appropriate water quality for product quality and certification, but agriculture can be a major source of nutrient pollution, with impacts on human and ecosystem health, drinking water treatment and amenity. And energy-water interactions include energy production (hydropower and cooling water for thermal power generation) and energy consumption (e.g. for pumping and water and wastewater treatment). These dependencies are illustrated for the Canadian prairies, and a risk-based approach to the management of climate change is presented. Trade-offs between economic benefits of hydropower and irrigation are illustrated for alternative climate futures, including implications for freshwater habitats. The results illustrate that inter-sector interactions vary as a function of climate and its variability, and that there is a need for policy to manage inter-sector allocations as a function of economic risk.

  14. Materials challenges in present and future wind energy

    DEFF Research Database (Denmark)

    Hayman, B.; Wedel-Heinen, J.; Brøndsted, Povl

    2008-01-01

    , preventing buckling failure, ensuring adequate fatigue life under variable wind loading combined with gravitational loading, and minimizing the occurrence and consequences of production defects. A major challenge is to develop cost-effective ways to ensure that production defects do not cause unacceptable......The main concept currently in use in wind energy involves horizontal-axis wind turbines with blades of fiber composite materials. This turbine concept is expected to remain as the major provider of wind power in the foreseeable future. However, turbine sizes are increasing, and installation...

  15. Earth energies a quest for the hidden power of the planet

    CERN Document Server

    King, Serge Kahili

    1992-01-01

    Examinations and accounts of experimentation with subtle energies. In addition to the scientifically accepted forces of electricity, magnetism, and gravity, there are, according to the author, "psychoenergetic" forces, those that interact with the mind as well as the body. His research deals with the energies behind extraordinary phenomena like non-physical healing, levitation, telekinesis, superstrength, and many others in which the mind is always an important factor. He touches on pyramid power, dowsing, feng shui, and the use of magnets for healing. These, and many more sources may have a single energy in common; the same way different physical elements all have electrons in common. Leave skepticism behind, and be fascinated by his examples and observations that may someday prove to be of practical value, and no more "strange" than bread mold being used to cure disease.

  16. Past and future of European solar energy school

    Energy Technology Data Exchange (ETDEWEB)

    Lindberg, Eva; Fiedler, Frank; Bales, Chris [Solar Energy Research Center, SERC, Dalarna Univ. Coll., Borlange (Sweden)

    2008-07-01

    The European Solar Engineering School ESES is a one-year master program that started in 1999 at the Solar Energy Research Center SERC, Dalarna University College. It has been growing in popularity over the years, with over 20 students in the current year. Approximately half the students come from Europe, the rest coming from all over the globe. This paper describes the contents and experiences from eight years of running the programme and the adapting the programme to the Bologna process. The majority of the students from ESES have found work in the solar industry, energy industry or taken up PhD positions. An alumni group has been started that actively gives support to past, present and potential future students. (orig.)

  17. The role of district heating in future renewable energy systems

    DEFF Research Database (Denmark)

    Lund, Henrik; Möller, Bernd; Mathiesen, Brian Vad

    2010-01-01

    heating options, including district heating as well as individual heat pumps and micro CHPs (Combined Heat and Power). The study includes almost 25 per cent of the Danish building stock, namely those buildings which have individual gas or oil boilers today and could be substituted by district heating...... or a more efficient individual heat source. In such overall perspective, the best solution will be to combine a gradual expansion of district heating with individual heat pumps in the remaining houses. Such conclusion is valid in the present systems, which are mainly based on fossil fuels, as well......Based on the case of Denmark, this paper analyses the role of district heating in future Renewable Energy Systems. At present, the share of renewable energy is coming close to 20 per cent. From such point of departure, the paper defines a scenario framework in which the Danish system is converted...

  18. The future of seawater desalination: energy, technology, and the environment.

    Science.gov (United States)

    Elimelech, Menachem; Phillip, William A

    2011-08-05

    In recent years, numerous large-scale seawater desalination plants have been built in water-stressed countries to augment available water resources, and construction of new desalination plants is expected to increase in the near future. Despite major advancements in desalination technologies, seawater desalination is still more energy intensive compared to conventional technologies for the treatment of fresh water. There are also concerns about the potential environmental impacts of large-scale seawater desalination plants. Here, we review the possible reductions in energy demand by state-of-the-art seawater desalination technologies, the potential role of advanced materials and innovative technologies in improving performance, and the sustainability of desalination as a technological solution to global water shortages.

  19. Hydrogen: Its Future Role in the Nation's Energy Economy.

    Science.gov (United States)

    Winsche, W E; Hoffman, K C; Salzano, F J

    1973-06-29

    In examining the potential role of hydrogen in the energy economy of the future, we take an optimistic view. All the technology required for implementation is feasible but a great deal of development and refinement is necessary. A pessimistic approach would obviously discourage further thinking about an important and perhaps the most reasonable alternative for the future. We have considered a limited number of alternative energy systems involving hydrogen and have shown that hydrogen could be a viable secondary source of energy derived from nuclear power; for the immediate future, hydrogen could be derived from coal. A hydrogen supply system could have greater flexibility and be competitive with a more conventional all-electric delivery system. Technological improvements could make hydrogen as an energy source an economic reality. The systems examined in this article show how hydrogen can serve as a general-purpose fuel for residential and automotive applications. Aside from being a source of heat and motive power, hydrogen could also supply the electrical needs of the household via fuel cells (19), turbines, or conventional "total energy systems." The total cost of energy to a residence supplied with hydrogen fuel depends on the ratio of the requirements for direct fuel use to the requirements for electrical use. A greater direct use of hydrogen as a fuel without conversion to electricity reduces the overall cost of energy supplied to the household because of the greater expense of electrical transmission and distribution. Hydrogen fuel is especially attractive for use in domestic residential applications where the bulk of the energy requirement is for thermal energy. Although a considerable amount of research is required before any hydrogen energy delivery system can be implemented, the necessary developments are within the capability of present-day technology and the system could be made attractive economically .Techniques for producing hydrogen from water by

  20. Energy in India's Future: Insights

    Energy Technology Data Exchange (ETDEWEB)

    Lesourne, J.; Ramsay, W.C.; Jaureguy-Naudin, Maite; Boillot, Jean-Joseph; Autheman, Nicolas; Ruet, Joel; Siddiqui, Zakaria; Zaleski, C. Pierre; Cruciani, Michel

    2009-07-01

    In the decades following India's independence from British rule in 1947, the West's image of India was summarized in three simple cliches: the world's largest democracy, an impoverished continent, and economic growth hampered by a fussy bureaucracy and the caste system, all in a context of a particular religion. These cliches are perhaps one of the reasons that the success of India's green revolution was recognized so late, a revolution that allowed the country to develop its agricultural sector and to feed its population. Since the 1990's, the easing of planning constraints have liberated the Indian economy and allowed it to embark on a more significant path of growth. New cliches have begun to replace the old: India will become a second China and, lagging by 10 to 20 years, will follow the same trajectory, with its development marked more by services and the use of renewable energy. However, these trends will not prevent primary energy demand from exploding. On the contrary, India faces difficult choices on how it increases clean, secure, affordable energy to all its citizens. Many of the choices are the same as found elsewhere, but on a scale matched only by China. The IFRI European Governance and Geopolitics of Energy Project intends this study to deepen public understanding of the magnitude of India's challenges. Various aspects of the serious energy problems are studied throughout this monograph. The authors have written freely on these matters without attempting to reconcile their different viewpoints. The first chapter, by Maite Jaureguy-Naudin and Jacques Lesourne, presents an overview of India's present and future energy system. The authors follow a prudent but realistic view of India's future. The second chapter, by Jean-Joseph Boillot, a French expert on India who has published several books and articles on this subject, and Nicolas Autheman, research fellow, describes in greater detail the specifics of India

  1. Satellite Collectors of Solar Energy for Earth and Colonized Planet Habitats

    Science.gov (United States)

    Kusiolek, Richard

    Summary An array of 55,000 40-foot antennas can generate from the rays of the Sun enough electrical power to replace 50 The economic potential is huge. There are new industries that will only grow and there are different ways to collect solar energy, including wind power. The energy sources we rely on for the most part are finite - fossil fuels, coal, oil and natural gas are all limited in supply. The cost will only continue to rise as demand increases. The time of global economic crossover between the EU, Asia Pacific and North America is coming within less than five years. The biggest opportunity for solar energy entrepreneurs would seem to be in municipal contracting where 1500 40-foot stacking antennas can be hooked into a grid to power an entire city. The antenna can generate 45 kilowatts of energy, enough to satisfy the electrical needs 7x24 of ten to twenty homes. It is possible to design and build 35-by-80-foot pedestals that track the sun from morning until night to provide full efficiency. A normal solar cell looks in the sky for only four or five hours of direct sunlight. Fabrication of these pedestals would sell for USD 50, 000-70,000 each. The solar heat collected by the antennas can be bounced into a Stirling engine, creating electricity at a focal point. Water can be heated by running through that focal point. In addition, salt water passing through the focal point can be desalinated, and since the antenna can generate up to 2,000 degrees of heat at the focal point. The salt water passing through the focal point turns to steam, which separates the salt and allows the steam to be turned into fresh drinking water. Collector energy can be retained in betavoltaics which uses semiconductors to capture energy from radioactive materials and turn it into usable electricity for automobiles. In a new battery, the silicon wafers in the battery are etched with a network of deep pores. These pores vastly increase the exposure surface area of the silicon, allowing

  2. Extrasolar planets.

    Science.gov (United States)

    Lissauer, J J; Marcy, G W; Ida, S

    2000-11-07

    The first known extrasolar planet in orbit around a Sun-like star was discovered in 1995. This object, as well as over two dozen subsequently detected extrasolar planets, were all identified by observing periodic variations of the Doppler shift of light emitted by the stars to which they are bound. All of these extrasolar planets are more massive than Saturn is, and most are more massive than Jupiter. All orbit closer to their stars than do the giant planets in our Solar System, and most of those that do not orbit closer to their star than Mercury is to the Sun travel on highly elliptical paths. Prevailing theories of star and planet formation, which are based on observations of the Solar System and of young stars and their environments, predict that planets should form in orbit about most single stars. However, these models require some modifications to explain the properties of the observed extrasolar planetary systems.

  3. Habitable planets around the star Gl 581?

    CERN Document Server

    Selsis, Franck; Levrard, B; Paillet, J; Ribas, I; Delfosse, X

    2007-01-01

    Radial velocity surveys are now able to detect terrestrial planets at habitable distance from M-type stars. Recently, two planets with minimum masses below 10 Earth masses were reported in a triple system around the M-type star Gliese 581. Using results from atmospheric models and constraints from the evolution of Venus and Mars, we assess the habitability of planets Gl 581c and Gl 581d and we discuss the uncertainties affecting the habitable zone (HZ) boundaries determination. We provide simplified formulae to estimate the HZ limits that may be used to evaluate the astrobiological potential of terrestrial exoplanets that will hopefully be discovered in the near future. Planets Gl 581c and 'd' are near, but outside, what can be considered as the conservative HZ. Planet 'c' receives 30% more energy from its star than Venus from the Sun, with an increased radiative forcing caused by the spectral energy distribution of Gl 581. Its habitability cannot however be positively ruled out by theoretical models due to u...

  4. Hydrogen energy and fuel cells. A vision of our future

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-07-01

    Hydrogen and fuel cells are seen by many as key solutions for the 21 century, enabling clean efficient production of power and heat from a range of primary energy sources. The High Level Group for Hydrogen and Fuel Cells Technologies was initiated in October 2002 by the Vice President of the European Commission, Loyola de Palacio, Commissioner for Energy and Transport, and Mr Philippe Busquin, Commissioner for Research. The group was invited to formulate a collective vision on the contribution that hydrogen and fuel cells could make to the realisation of sustainable energy systems in future. The report highlights the need for strategic planning and increased effort on research, development and deployment of hydrogen and fuel cell technologies. It also makes wide-ranging recommendations for a more structured approach to European Energy policy and research, for education and training, and for developing political and public awareness. Foremost amongst its recommendations is the establishment of a European Hydrogen and Fuel Cell Technology Partnership and Advisory Council to guide the process. (author)

  5. Apodized Pupil Lyot Coronagraphs for Arbitrary Apertures. V. Hybrid Shaped Pupil Designs for Imaging Earth-like planets with Future Space Observatories

    Science.gov (United States)

    N'Diaye, Mamadou; Soummer, Rémi; Pueyo, Laurent; Carlotti, Alexis; Stark, Christopher C.; Perrin, Marshall D.

    2016-02-01

    We introduce a new class of solutions for Apodized Pupil Lyot Coronagraphs (APLC) with segmented aperture telescopes to remove broadband diffracted light from a star with a contrast level of 1010. These new coronagraphs provide a key advance to enabling direct imaging and spectroscopy of Earth twins with future large space missions. Building on shaped pupil (SP) apodization optimizations, our approach enables two-dimensional optimizations of the system to address any aperture features such as central obstruction, support structures, or segment gaps. We illustrate the technique with a design that could reach a 1010 contrast level at 34 mas for a 12 m segmented telescope over a 10% bandpass centered at a wavelength of {λ }0 = 500 nm. These designs can be optimized specifically for the presence of a resolved star and, in our example, for stellar angular size up to 1.1 mas. This would allow one to probe the vicinity of Sun-like stars located beyond 4.4 pc, therefore, fully retiring this concern. If the fraction of stars with Earth-like planets is {η }\\oplus =0.1, with 18% throughput, assuming a perfect, stable wavefront and considering photon noise only, 12.5 exo-Earth candidates could be detected around nearby stars with this design and a 12 m space telescope during a five-year mission with two years dedicated to exo-Earth detection (one total year of exposure time and another year of overheads). Our new hybrid APLC/SP solutions represent the first numerical solution of a coronagraph based on existing mask technologies and compatible with segmented apertures, and that can provide contrast compatible with detecting and studying Earth-like planets around nearby stars. They represent an important step forward toward enabling these science goals with future large space missions.

  6. Implications of Energy Return on Energy Invested on Future Total Energy Demand

    Directory of Open Access Journals (Sweden)

    Shinuo Deng

    2011-12-01

    Full Text Available Human society is now at the beginning of a transition from fossil-fuel based primary energy sources to a mixture of renewable and nuclear based energy sources which have a lower Energy Return On Energy Invested (EROEI than the older fossil based sources. This paper examines the evolution of total energy demand during this transition for a highly idealized energy economy. A simple model is introduced in which the net useful energy output required to operate an economy is assumed to remain fixed while the lower EROEI source gradually replaces the older higher EROEI primary energy source following a logistics substitution model. The results show that, for fixed net useful energy output, total energy demand increases as the ratio EROEInew/EROEIold decreases; total energy demand diverges as EROEInew approaches unity, indicating that the system must collapse in this limit.

  7. On the Feasibility of Characterizing Free-floating Planets with Current and Future Space-based Microlensing Surveys

    Science.gov (United States)

    Henderson, Calen B.; Shvartzvald, Yossi

    2016-10-01

    Simultaneous space- and ground-based microlensing surveys, such as K2's Campaign 9 (K2C9) and WFIRST, facilitate measuring the masses and distances of free-floating planet (FFP) candidates, which are identified as single-lens events with timescales that are of the order of 1 day. Measuring the mass and distance of an FFP lens requires determining the size of the source star ρ, measuring the microlens parallax {π }{{E}}, and using high-resolution imaging to search for the lens flux {F}{\\ell } from a possible host star. Here we investigate the accessible parameter space for each of these components considering different satellites for a range of FFP masses, Galactic distances, and source star properties. We find that at the beginning of K2C9, when its projected separation {D}\\perp from the Earth is ≲0.2 au, it will be able to measure {π }{{E}} for Jupiter-mass FFP candidates at distances larger than ∼2 kpc and to Earth-mass lenses at ∼8 kpc. At the end of K2C9, when {D}\\perp = 0.81 au, it is sensitive to planetary-mass lenses for distances ≳3.5 kpc, and even then only to those with mass ≳M Jup. From lens flux constraints we find that it will be possible to exclude hosts down to the deuterium-burning limit for events within ∼2 kpc. This indicates that the ability to characterize FFPs detected during K2C9 is optimized for events occurring toward the beginning of the campaign. WFIRST, on the other hand, will be able to detect and characterize FFP masses down to or below super-Earths throughout the Galaxy during its entire microlensing survey.

  8. DTU International Energy Report 2013:Energy storage options for future sustainable energy systems

    OpenAIRE

    2013-01-01

    One of the great challenges in the transition to a non-fossil energy system with a high share of fluctuating renewable energy sources such as solar and wind is to align consumption and production in an economically satisfactory manner. Energy storage could provide the necessary balancing power to make this possible. This energy report addresses energy storage from a broad perspective: It analyses smaller stores that can be used locally in for example heat storage in the individual home or veh...

  9. Energy efficiency in Serbia national energy efficiency program: Strategy and priorities for the future

    Directory of Open Access Journals (Sweden)

    Oka Simeon

    2006-01-01

    Full Text Available Energy system in Serbia, in the whole energy chain, from exploitation of primary energy sources, transformations in electric power plants and district heating plants, energy (electric and heat transmission and distribution to final users, and up to final energy consumption, is faced with a number of irrational and inefficient behavior and processes. In order to fight with such situation National Energy Efficiency Program, financed by the Ministry of Science and Environmental Protection has been founded in 2001. Basic facts about status of energy sector in Serbia, with special emphasis on the energy efficiency and use of renewable energy sources have been given in the review paper published in the issue No. 2, 2006 of this journal. In present paper new strategy and priorities of the National Energy Efficiency Program for the future period from 2006 to 2008, and beyond, is presented. This strategy and priorities are mainly based on the same concept and principles as previous, but new reality and new and more simulative economic and financial environment in energy sector made by the Energy low (accepted by Parliament in 2004 and Strategy of Development of Energy Sector in Republic Serbia up to 2015 (accepted by the Parliament in May 2005, have been taken into account. Also, responsibilities that are formulated in the Energy Community Treaty signed by the South-East European countries, and also coming from documents and directives of the European Community and Kyoto Protocol are included in new strategy. Once again necessity of legislative framework and influence of regulations and standards, as well as of the governmental support, has been pointed out if increased energy efficiency and increased use of renewable energy sources are expected. .

  10. ThinkHome Energy Efficiency in Future Smart Homes

    Directory of Open Access Journals (Sweden)

    Reinisch Christian

    2011-01-01

    Full Text Available Abstract Smart homes have been viewed with increasing interest by both home owners and the research community in the past few years. One reason for this development is that the use of modern automation technology in the home or building promises considerable savings of energy, therefore, simultaneously reducing the operational costs of the building over its whole lifecycle. However, the full potential of smart homes still lies fallow, due to the complexity and diversity of the systems, badly engineered and configured installations, as well as the frequent problem of suboptimal control strategies. Summarized, these problems converge to two undesirable conditions in the "not-so-smart" home: energy consumption is still higher than actually necessary and users are unable to yield full comfort in their automated homes. This work puts its focus on alleviating the current problems by proposing a comprehensive system concept, that shall ensure that smart homes can keep their promise in the future. The system operates on an extensive knowledge base that stores all information needed to fulfill the goals of energy efficiency and user comfort. Its intelligence is implemented as and within a multiagent system that also caters for the system's openness to the outside world. As a first evaluation, a profile-based control strategy for thermal comfort is developed and verified by means of simulation.

  11. Future-oriented energy and raw materials policy. [in German]. Zukunftsorientierte Energie- und Rohstoffpolitik

    Energy Technology Data Exchange (ETDEWEB)

    Apel, H.; von Benningsen, R.; Bund, K.; Ehrenberg, H.; Frankel, P.H.; Hauff, V.; Liesen, K.; Mandel, H.; Matthoefer, H.; Mommsen, E.W.

    1976-01-01

    On October 13/14, 1975, the Friedrich-Ebert-Stiftung held an international technical congress on the subject 'Problems of a future-oriented energy and raw materials policy' at the Beethoven Hall, Bonn. This book contains the papers and discussions of this congress, which had 1053 registered participants from 47 countries. (orig.) 891 UA.

  12. Globalization of the energy sector: Environmental challenges and options for future actions

    Energy Technology Data Exchange (ETDEWEB)

    Benavides, Pablo

    1998-12-01

    This publication relates to environmental challenges of the energy sector and options for future action. Following themes are discussed: Globalisation of the energy sector; environmental challenges; the challenge of climate change; options for future action

  13. Atmospheric dynamics of tidally synchronized extrasolar planets.

    Science.gov (United States)

    Cho, James Y-K

    2008-12-13

    Tidally synchronized planets present a new opportunity for enriching our understanding of atmospheric dynamics on planets. Subject to an unusual forcing arrangement (steady irradiation on the same side of the planet throughout its orbit), the dynamics on these planets may be unlike that on any of the Solar System planets. Characterizing the flow pattern and temperature distribution on the extrasolar planets is necessary for reliable interpretation of data currently being collected, as well as for guiding future observations. In this paper, several fundamental concepts from atmospheric dynamics, likely to be central for characterization, are discussed. Theoretical issues that need to be addressed in the near future are also highlighted.

  14. Magic Planet

    DEFF Research Database (Denmark)

    Jacobsen, Aase Roland

    2009-01-01

    Med den digitale globe som omdrejningspunkt bestemmer publikum, hvilken planet, der er i fokus. Vores solsystem udforskes interaktivt. Udgivelsesdato: november......Med den digitale globe som omdrejningspunkt bestemmer publikum, hvilken planet, der er i fokus. Vores solsystem udforskes interaktivt. Udgivelsesdato: november...

  15. The Weather of the Future: Heat Waves, Extreme Storms, and Other Scenes from a Climate-Changed Planet

    Science.gov (United States)

    Cullen, H. M.

    2010-12-01

    In The Weather of the Future, Dr. Heidi Cullen puts a vivid face on climate change, offering a new way of seeing this phenomenon not just as an event set to happen in the distant future but as something happening right now in our own backyards. Arguing that we must connect the weather of today with the climate change of tomorrow, Cullen combines the latest research from scientists on the ground with state-of-the-art climate model projections to create climate-change scenarios for seven of the most at-risk locations around the world. From the Central Valley of California, where coming droughts will jeopardize the entire state’s water supply, to Greenland, where warmer temperatures will give access to mineral wealth buried beneath ice sheets for millennia, Cullen illustrates how, if left unabated, climate change will transform every corner of the world by midcentury. What emerges is a mosaic of changing weather patterns that collectively spell out the range of risks posed by global warming—whether it’s New York City, whose infrastructure is extremely vulnerable even to a relatively weak Category 3 hurricane or to Bangladesh, a country so low-lying that millions of people could become climate refugees thanks to rising sea levels. The Weather of the Future makes climate change local, showing how no two regions of the country or the world will be affected in quite the same way and demonstrating that melting ice is just the beginning.

  16. Solar/electric heating systems for the future energy system

    Energy Technology Data Exchange (ETDEWEB)

    Furbo, S.; Dannemand, M.; Perers, B. [and others

    2013-05-15

    The aim of the project is to elucidate how individual heating units for single family houses are best designed in order to fit into the future energy system. The units are based on solar energy, electrical heating elements/heat pump, advanced heat storage tanks and advanced control systems. Heat is produced by solar collectors in sunny periods and by electrical heating elements/heat pump. The electrical heating elements/heat pump will be in operation in periods where the heat demand cannot be covered by solar energy. The aim is to use the auxiliary heating units when the electricity price is low, e.g. due to large electricity production by wind turbines. The unit is equipped with an advanced control system where the control of the auxiliary heating is based on forecasts of the electricity price, the heat demand and the solar energy production. Consequently, the control is based on weather forecasts. Three differently designed heating units are tested in a laboratory test facility. The systems are compared on the basis of: 1) energy consumption for the auxiliary heating; 2) energy cost for the auxiliary heating; 3) net utilized solar energy. Starting from a normal house a solar combi system (for hot water and house heating) can save 20-30% energy cost, alone, depending on sizing of collector area and storage volume. By replacing the heat storage with a smart tank based on electric heating elements and a smart control based on weather/load forecast and electricity price information 24 hours ahead, another 30-40% can be saved. That is: A solar heating system with a solar collector area of about 10 m{sup 2}, a smart tank based on electric heating element and a smart control system, can reduce the energy costs of the house by at least 50%. No increase of heat storage volume is needed to utilize the smart control. The savings in % are similar for different levels of building insulation. As expected a heat pump in the system can further reduce the auxiliary electricity

  17. A new energy future for South Africa: The political ecology of South African renewable energy

    Energy Technology Data Exchange (ETDEWEB)

    Krupa, Joel, E-mail: jkrupa@mstar-ca.com [University of Oxford, South Parks Road, Oxford OX1 3QY (United Kingdom); Burch, Sarah [University of Oxford, South Parks Road, Oxford OX1 3QY (United Kingdom)

    2011-10-15

    Renewable energy remains a contested topic in South Africa. This paper argues that South Africa can build on the momentum surrounding its introduction of a feed-in tariff by enacting policies that may, if given adequate funding and political effort, allow the country to be a world leader in renewable energy. Given a variety of renewable energy policy options for moving forward, a majority of stakeholders consulted in this study strongly prefer the development of a renewable energy manufacturing cluster, in which government develops coordinated policy mechanisms that attract renewable energy manufacturers, over three other policies suggested by the authors. Interviews with key informants that play critical roles in this decision-making process suggest that there are reasons to remain cautiously optimistic about the country's renewable energy future while cognizant of the challenges that must still be overcome. Opportunities for a low carbon renewable energy transition in South Africa include the prevalence of broad stakeholder consultation, facilitated by civil society, and an innovative policy development context. Significant impediments also exist, however, and include pervasive social issues such as poverty and political inertia, along with the ongoing difficulties facing renewable energy technologies in reaching grid parity with inexpensive and abundant South African coal. - Highlights: > Numerous opportunities exist for a low carbon energy transition in South Africa. > Stakeholders in study prefer development of a renewable energy manufacturing cluster. > Significant impediments still exist, including grid parity, poverty, and inequality.

  18. Observing Planets and Small Bodies in Sputtered High Energy Atom (SHEA) Fluxes

    Science.gov (United States)

    Milillo, A.; Orsini, S.; Hsieh, K. C.; Baragiola, R.; Fama, M.; Johnson, R.; Mura, A.; Plainaki, Ch.; Sarantos, M.; Cassidy, T. A.; DeAngelis, E; Desai, M.; Goldstein, R.; Lp, W.-H.; Killen, R.; Livi, S.

    2012-01-01

    The evolution of the surfaces of bodies unprotected by either strong magnetic fields or thick atmospheres in the Solar System is caused by various processes, induced by photons, energetic ions and micrometeoroids. Among these processes, the continuous bombardment of the solar wind or energetic magnetospheric ions onto the bodies may significantly affect their surfaces, with implications for their evolution. Ion precipitation produces neutral atom releases into the exosphere through ion sputtering, with velocity distribution extending well above the particle escape limits. We refer to this component of the surface ejecta as sputtered high-energy atoms (SHEA). The use of ion sputtering emission for studying the interaction of exposed bodies (EB) with ion environments is described here. Remote sensing in SHEA in the vicinity of EB can provide mapping of the bodies exposed to ion sputtering action with temporal and mass resolution. This paper speculates on the possibility of performing remote sensing of exposed bodies using SHEA The evolution of the surfaces of bodies unprotected by either strong magnetic fields or thick atmospheres in the Solar System is caused by various processes, induced by photons, energetic ions and micrometeoroids. Among these processes, the continuous bombardment of the solar wind or energetic magnetospheric ions onto the bodies may significantly affect their surfaces, with implications for their evolution. Ion precipitation produces neutral atom releases into the exosphere through ion sputtering, with velocity distribution extending well above the particle escape limits. We refer to this component of the surface ejecta as sputtered high-energy atoms (SHEA). The use of ion sputtering emission for studying the interaction of exposed bodies (EB) with ion environments is described here. Remote sensing in SHEA in the vicinity of EB can provide mapping of the bodies exposed to ion sputtering action with temporal and mass resolution. This paper

  19. American’s Energy Future: An Analysis of the Proposed Energy Policy Plans in Presidential Election

    Directory of Open Access Journals (Sweden)

    Ming-Hsun Cheng

    2016-11-01

    Full Text Available As the leader of the largest economy, President of the United States has substantive influence on addressing climate change problems. However, a presidential election is often dominated by issues other than energy problems. This paper focuses on the 2016 presidential election, and examines the energy plans proposed by the leading Democrat and Republican candidates. Our data from the Iowa caucus survey in January 2016 suggests that voters were more concerned about terrorism and economic issues than environmental issues. We then compare the Democratic and Republican candidate’s view of America’s energy future, and evaluate their proposed renewable energy targets. We find that the view on renewable energy is polarized between Democratic and Republican candidates, while candidates from both parties agree on the need for energy efficiency. Results from our ordinal least squares regression models suggests that Democratic candidates have moderate to ambitious goals for developing solar and other renewables. The Republican candidates favor fossil fuels and they choose not to provide any specific target for developing renewable energy. In addition, this trend of party polarization has grown more significant when compared with the past three presidential elections. Our observation suggests that energy policies need to be discussed more often regarding the diversification and decarbonization of the nation’s energy system.

  20. Hydrogen and the materials of a sustainable energy future

    Energy Technology Data Exchange (ETDEWEB)

    Zalbowitz, M. [ed.

    1997-02-01

    The National Educator`s Workshop (NEW): Update 96 was held October 27--30, 1996, and was hosted by Los Alamos National Laboratory. This was the 11th annual conference aimed at improving the teaching of material science, engineering and technology by updating educators and providing laboratory experiments on emerging technology for teaching fundamental and newly evolving materials concepts. The Hydrogen Education Outreach Activity at Los Alamos National Laboratory organized a special conference theme: Hydrogen and the Materials of a Sustainable Energy Future. The hydrogen component of the NEW:Update 96 offered the opportunity for educators to have direct communication with scientists in laboratory settings, develop mentor relationship with laboratory staff, and bring leading edge materials/technologies into the classroom to upgrade educational curricula. Lack of public education and understanding about hydrogen is a major barrier for initial implementation of hydrogen energy technologies and is an important prerequisite for acceptance of hydrogen outside the scientific/technical research communities. The following materials contain the papers and view graphs from the conference presentations. In addition, supplemental reference articles are also included: a general overview of hydrogen and an article on handling hydrogen safely. A resource list containing a curriculum outline, bibliography, Internet resources, and a list of periodicals often publishing relevant research articles can be found in the last section.

  1. The future of energy security in the 21st Century

    Science.gov (United States)

    Gupta, Rajan

    2006-10-01

    Energy is essential for modern life and is a critical resource that we take for granted. Economies and security of nations depend on reliable and cost-effective access. As the world transitions from conventional oil and natural gas to nuclear, renewables, and unconventional sources we are increasingly confronted by many unsettling questions. Will there be enough cheap oil and gas for preserve the standard of living in the developed world and allow the industrializing world to develop? Will renewable sources provide a significant fraction of our energy needs in the near future? Is global warming already happening as a result of our consumption of fossil fuels? If there is a resource crunch before new sources come on line, will there be conflict or global cooperation? This talk will attempt to answer these questions by examining the global oil and gas resources, geopolitics, and key science and technology issues that need to be addressed by the global community with cooperation and a sense of urgency.

  2. Efficient integration of renewable energy into future energy systems. Development of European energy infrastructures in the period 2030 to 2050

    Energy Technology Data Exchange (ETDEWEB)

    Funk, Carolin; Uhlig, Jeanette; Zoch, Immo (eds.)

    2011-10-15

    In consideration of strategic climate mitigation, energy security and economic competitiveness goals, the EU passed the Directive 2009/28/EC, including a binding target of 20 per cent renewable energy consumption in the EU by 2020. This target is comprehensive and includes energy generation, transport, heating and cooling sectors. In 2008, renewable energy consumption in the EU was about 10 per cent. So meeting the 20 per cent renewable energy objective will require massive changes in energy production, transmission and consumption in the EU. Furthermore, it is obvious that the development of the energy system will not stop in 2020, but that it will continue towards 2050 and beyond. Over the past century, the European electricity system was developed in line with a national utilit y perspective which heavily emphasised large, centralised conventional power production. Investment decisions for new energy infrastructure and technology were typically made at the national level. In the future, much more energy production will be based on local or regional renewable energy sources (RES). Many consumers may also become energy producers feeding into the infrastructures. Transnational energy transfers will gain in importance. These changes will require very different electricity and gas infrastructures and decision-making processes from today. Lack of infrastructure capacity is already a barrier for the further deployment of RES-based energy production in some regions in Europe. (orig.)

  3. Efficient integration of renewable energy into future energy systems. Development of European energy infrastructures in the period 2030 to 2050

    Energy Technology Data Exchange (ETDEWEB)

    Funk, Carolin; Uhlig, Jeanette; Zoch, Immo (eds.)

    2011-10-15

    In consideration of strategic climate mitigation, energy security and economic competitiveness goals, the EU passed the Directive 2009/28/EC, including a binding target of 20 per cent renewable energy consumption in the EU by 2020. This target is comprehensive and includes energy generation, transport, heating and cooling sectors. In 2008, renewable energy consumption in the EU was about 10 per cent. So meeting the 20 per cent renewable energy objective will require massive changes in energy production, transmission and consumption in the EU. Furthermore, it is obvious that the development of the energy system will not stop in 2020, but that it will continue towards 2050 and beyond. Over the past century, the European electricity system was developed in line with a national utilit y perspective which heavily emphasised large, centralised conventional power production. Investment decisions for new energy infrastructure and technology were typically made at the national level. In the future, much more energy production will be based on local or regional renewable energy sources (RES). Many consumers may also become energy producers feeding into the infrastructures. Transnational energy transfers will gain in importance. These changes will require very different electricity and gas infrastructures and decision-making processes from today. Lack of infrastructure capacity is already a barrier for the further deployment of RES-based energy production in some regions in Europe. (orig.)

  4. The Radiometric Bode's Law and Extrasolar Planets

    CERN Document Server

    Lazio, T J W; Dietrick, J; Greenlees, E; Hogan, E; Jones, C; Hennig, L A

    2004-01-01

    We predict the radio flux densities of the extrasolar planets in the current census, making use of an empirical relation--the radiometric Bode's Law--determined from the five ``magnetic'' planets in the solar system (Earth and the four gas giants). Radio emission from these planets results from solar-wind powered electron currents depositing energy in the magnetic polar regions. We find that most of the known extrasolar planets should emit in the frequency range 10--1000 MHz and, under favorable circumstances, have typical flux densities as large as 1 mJy. We also describe an initial, systematic effort to search for radio emission in low radio frequency images acquired with the Very Large Array. The limits set by the VLA images (~ 300 mJy) are consistent with, but do not provide strong constraints on, the predictions of the model. Future radio telescopes, such as the Low Frequency Array (LOFAR) and the Square Kilometer Array (SKA), should be able to detect the known extrasolar planets or place austere limits ...

  5. Future dark energy constraints from measurements of quasar parallax: Gaia, SIM and beyond

    Science.gov (United States)

    Ding, Fiona; Croft, Rupert A. C.

    2009-08-01

    A consequence of the Earth's well-measured motion with respect to the cosmic microwave background is that over a 10-yr period it will travel a distance of ~800au. As first pointed out by Kardashev in 1986, this distance can be used as a baseline to carry out astrometric measurements of quasar parallaxes, so that only microarcsecond precision is necessary to detect parallax shifts of objects at gigaparsec distances. Such precision will soon be approached with the launch of the astrometric satellites Gaia and Space Interferometry Mission (SIM). We use a Fisher matrix formalism to investigate the constraints that these and future, even more ambitious, missions may be able to place on the cosmological distance scale and the parameters describing dark energy. We find that by observing around a million quasars as planned, an extended 10yr Gaia mission should have the capability to detect quasar parallax shifts at the 2.8σ level and so measure the Hubble constant to within 25 kms-1. For the interferometer SIM (in its currently proposed SIMLite configuration) a Key Project using 2.4 per cent of the total mission time to observe 750 quasars could detect the effect at the 2σ level and dedicated use of the instrument at the 3.3σ level. In a concordance cosmological model, Gaia and dedicated SIMLite only weakly constrain the presence of a cosmological constant at the ~1σ levels. We also investigate a range of future mission concepts, such as an interferometer similar in scope and design to NASA's Terrestrial Planet Finder. This could in principle measure the dark energy parameters w0 and wa with precision and , respectively, yielding a Figure of Merit larger than the stage IV experiments considered in the report of the Dark Energy Task Force. Unlike perhaps all other probes of dark energy there appear to be no obvious astrophysical sources of systematic error on these measurements. There is however uncertainty regarding the statistical errors. As well as measurement error

  6. Future electricity production methods. Part 1: Nuclear energy

    Science.gov (United States)

    Nifenecker, Hervé

    2011-02-01

    The global warming challenge aims at stabilizing the concentrations of Green House Gas (GHG) in the atmosphere. Carbon dioxide is the most effective of the anthropogenic GHG and is essentially produced by consumption of fossil fuels. Electricity production is the dominant cause of CO2 emissions. It is, therefore, crucial that the share of 'carbon less' electricity production techniques increases at a fast pace. This is the more so, that 'clean' electricity would be useful to displace 'dirty' techniques in other fields such as heat production and transportation. Here we examine the extent to which nuclear energy could be operational in providing 'clean' electricity. A nuclear intensive scenario is shown to give the possibility to divide CO2 emissions by a factor of 2 worldwide, within 50 years. However, the corresponding sharp increase in nuclear power will put a heavy burden on uranium reserves and will necessitate the development of breeding reactors as soon as possible. A review of present and future reactors is given with special attention to the safety issues. The delicate question of nuclear fuel cycle is discussed concerning uranium reserves and management of used fuels. It is shown that dealing with nuclear wastes is more a socio-political problem than a technical one. The third difficult question associated with the development of nuclear energy is the proliferation risk. It is advocated that, while this is, indeed, a very important question, it is only weakly related to nuclear power development. Finally, the possibilities of nuclear fusion are discussed and it is asserted that, under no circumstances, could nuclear fusion give a significant contribution to the solution of the energy problem before 50 years, too late for dealing with the global warming challenge.

  7. Proceedings of the Chinese-American symposium on energy markets and the future of energy demand

    Energy Technology Data Exchange (ETDEWEB)

    Meyers, S. (ed.)

    1988-11-01

    The Symposium was organized by the Energy Research Institute of the State Economic Commission of China, and the Lawrence Berkeley Laboratory and Johns Hopkins University from the United States. It was held at the Johns Hopkins University Nanjing Center in late June 1988. It was attended by about 15 Chinese and an equal number of US experts on various topics related to energy demand and supply. Each presenter is one of the best observers of the energy situation in their field. A Chinese and US speaker presented papers on each topic. In all, about 30 papers were presented over a period of two and one half days. Each paper was translated into English and Chinese. The Chinese papers provide an excellent overview of the emerging energy demand and supply situation in China and the obstacles the Chinese planners face in managing the expected increase in demand for energy. These are matched by papers that discuss the energy situation in the US and worldwide, and the implications of the changes in the world energy situation on both countries. The papers in Part 1 provide historical background and discuss future directions. The papers in Part 2 focus on the historical development of energy planning and policy in each country and the methodologies and tools used for projecting energy demand and supply. The papers in Part 3 examine the pattern of energy demand, the forces driving demand, and opportunities for energy conservation in each of the major sectors in China and the US. The papers in Part 4 deal with the outlook for global and Pacific region energy markets and the development of the oil and natural gas sector in China.

  8. Risø energy report 4. The future energy system - distributed production and use

    DEFF Research Database (Denmark)

    Larsen, Hans Hvidtfeldt; Sønderberg Petersen, Leif

    2005-01-01

    The coming decades will bring big changes in energy systems throughout the world. The systems are expected to change from central power plants producing electricity and maybe heat for the customers to a combination of central units and a variety ofdistributed units such as renewable energy...... technologies or fuel cells. Furthermore the following developments are expected: -closer link between supply and end-use -closer link between the various energy carriers distributed through grids such aselectricity, heat, natural gas and maybe hydrogen in the future -increased energy trade across national...... by an international panel of independent experts. Information on current developments is taken from the most up-to-date and authoritative sources available. Our target groups are colleagues, collaborating partners, customers, fundingorganisations, the Danish government and international organisations including...

  9. A review and future prospects of renewable energy in the global energy system

    Institute of Scientific and Technical Information of China (English)

    D Yogi GOSWAMI; John & Naida Ramil Professor; Co-Director

    2008-01-01

    Global energy consumption in the last half century has rapidly increased and is expected to continue to grow over the next 50 years, however, with significant differences. The past increase was stimulated by relatively "cheap" fossil fuels and increased rates of industrialization in North America, Europe and Japan; yet while energy consumption in these countries continues to increase, additional factors make the picture for the next 50 years more complex. These additional complicating factors include China and India's rapid increase in energy use as they represent about a third of the world's population; the expected depletion of oil resources in the near future; and, the effect of human activities on global climate change. On the positive side, the renewable energy (RE) technologies of wind, bio-fuels, solar thermal and photovoltaics (PV) are finally showing maturity and the ultimate promise of cost competitiveness.

  10. Modelling the existing Irish energy-system to identify future energy costs and the maximum wind penetration feasible

    DEFF Research Database (Denmark)

    Connolly, D.; Lund, Henrik; Mathiesen, Brian Vad;

    2010-01-01

    energy- system to future energy costs by considering future fuel prices, CO2 prices, and different interest rates. The final investigation identifies the maximum wind penetration feasible on the 2007 Irish energy- system from a technical and economic perspective, as wind is the most promising fluctuating...

  11. Science for Today's Energy Challenges: Accelerating Progress for a Sustainable Energy Future

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-07-01

    With a growing population and energy demand in the world, there is a pressing need for research to create secure and accessible energy options with greatly reduced emissions of greenhouse gases. While we work to deploy the clean and efficient technologies that we already have--which will be urgent for the coming decades--we must also work to develop the science for the technologies of the future. This brochure gives examples of some of the most promising developments, and it provides 'snapshots' of cutting edge work of scientists in the field. The areas of greatest promise include biochemistry, nanotechnology, supraconductivity, electrophysics and computing. There are many others.

  12. Economic Impacts of Future Changes in the Energy System - National Perspectives

    DEFF Research Database (Denmark)

    Glynn, James; Fortes, Patrícia; Krook-Riekkola, Anna

    2015-01-01

    In a climate constrained future, hybrid energy-economy model coupling gives additional insight into interregional competition, trade, industrial delocalisation and overall macroeconomic consequences of decarbonising the energy system. Decarbonising the energy system is critical in mitigating clim...

  13. Risoe energy report 4: The future energy system - distributed production and use

    Energy Technology Data Exchange (ETDEWEB)

    Larsen, Hans; Soenderberg Petersen, L.

    2005-10-01

    The world is facing major challenges in providing energy services to meet the future needs of the developed world and the growing needs of developing countries. These challenges are exacerbated by the need to provide energy services with due respect to economic growth, sustainability and security of supply. Today, the world's energy system is based mainly on oil, gas and coal, which together supply around 80% of our primary energy. Only around 0.5% of primary energy comes from renewable sources such as wind, solar and geothermal. Despite the rapid development of new energy technologies, the world will continue to depend on fossil fuels for several decades to come - and global primary energy demand is forecasted to grow by 60% between 2002 and 2030. The expected post Kyoto targets call for significant CO{sub 2} reductions, increasing the demand to decouple the energy and transport systems from fossil fuels. There is a strong need for closer links between electricity, heat and other energy carriers, including links to the transport sector. On a national scale Denmark has three main characteristics. Firstly, it has a diverse and distributed energy system based on the power grid, the district heating grid and the natural gas grid. Secondly, renewable energy, especially wind power, plays an increasingly important role in the Danish energy system. Thirdly, Denmark's geographical location allows it to act as a buffer between the energy systems of the European continent and the Nordic countries. Energy systems can be made more robust by decentralising both power generation and control. Distributed generation (DG) is characterised by a variety of energy production technologies integrated into the electricity supply system, and the ability of different segments of the grid to operate autonomously. The use of a more distributed power generation system would be an important element in the protection of the consumers against power interruptions and blackouts, whether

  14. Future-orientated energy and raw materials policies. Zukunftsorientierte Energie- und Rohstoffpolitik

    Energy Technology Data Exchange (ETDEWEB)

    Apel, H. (Bundesministerium der Finanzen, Bonn (Germany, F.R.)); Bennigsen, R. v. (VEBA A.G., Duesseldorf (Germany, F.R.); Mineraloelwirtschaftsverband e.V., Hamburg (Germany, F.R.)); Bund, K. (Ruhrkohle A.G., Essen (Germany, F.R.); Gesamtverband des Deutschen Steinkohlenbergbaus, Essen (Germany, F.R.)); Hauff, V.; Matthoefer, H. (Bundesministerium fuer Forschung und Technologie, Bonn (Germany, F.R.)); Liesen, K. (Ruhrgas A.G., Essen (Germany, F.R.)); Mandel, H. (Deutsches Atomforum e.V., Bonn (Germany, F.R.)); Mommsen, E.W. (Krupp (Friedr.) G.m.b.H., Essen (Germany, F.R.))

    1976-01-01

    The Friedrich-Ebert-Stiftung held an international experts' congress on the subject 'Problems of future-oriented energy and raw materials policies' on October 13th/14th, 1975, in the Beethoven Hall in Bonn. This volume contains the lectures held and the contributions made to the podium discussions in the presence of 1,053 registered participants from 47 countries.

  15. Electrodynamics on extrasolar giant planets

    Energy Technology Data Exchange (ETDEWEB)

    Koskinen, T. T.; Yelle, R. V. [Lunar and Planetary Laboratory, University of Arizona, 1629 East University Boulevard, Tucson, AZ 85721-0092 (United States); Lavvas, P. [Groupe de Spectroscopie Moléculaire et Atmosphérique UMR CNRS 7331, Université Reims Champagne-Ardenne, F-51687 Reims (France); Cho, J. Y-K., E-mail: tommi@lpl.arizona.edu [Astronomy Unit, School of Mathematical Sciences, Queen Mary, University of London, Mile End Road, London E1 4NS (United Kingdom)

    2014-11-20

    Strong ionization on close-in extrasolar giant planets (EGPs) suggests that their atmospheres may be affected by ion drag and resistive heating arising from wind-driven electrodynamics. Recent models of ion drag on these planets, however, are based on thermal ionization only and do not include the upper atmosphere above the 1 mbar level. These models are also based on simplified equations of resistive magnetohydrodynamics that are not always valid in extrasolar planet atmospheres. We show that photoionization dominates over thermal ionization over much of the dayside atmosphere above the 100 mbar level, creating an upper ionosphere dominated by ionization of H and He and a lower ionosphere dominated by ionization of metals such as Na, K, and Mg. The resulting dayside electron densities on close-in exoplanets are higher than those encountered in any planetary ionosphere of the solar system, and the conductivities are comparable to the chromosphere of the Sun. Based on these results and assumed magnetic fields, we constrain the conductivity regimes on close-in EGPs and use a generalized Ohm's law to study the basic effects of electrodynamics in their atmospheres. We find that ion drag is important above the 10 mbar level where it can also significantly alter the energy balance through resistive heating. Due to frequent collisions of the electrons and ions with the neutral atmosphere, however, ion drag is largely negligible in the lower atmosphere below the 10 mbar level for a reasonable range of planetary magnetic moments. We find that the atmospheric conductivity decreases by several orders of magnitude in the night side of tidally locked planets, leading to a potentially interesting large-scale dichotomy in electrodynamics between the day and night sides. A combined approach that relies on UV observations of the upper atmosphere, phase curve and Doppler measurements of global dynamics, and visual transit observations to probe the alkali metals can potentially

  16. Current status and future tasks of the Sunshine Project. (Development of new energy technology)

    Energy Technology Data Exchange (ETDEWEB)

    Takada, T.

    1983-01-01

    Since its inception in 1974, the Sunshine Project has involved advances in new energy technology in many areas. The present report covers the principal areas of activity in 1980, examining the development status of solar energy, goethermal energy, coal liquefaction and gasification, hydrogen energy, wind power, ocean thermal energy conversion, etc. Future trends and tasks of new energy technology development are discussed. (In Japanese)

  17. Atmospheres of Extrasolar Giant Planets

    CERN Document Server

    Marley, M S; Seager, S; Barman, T; Marley, Mark S.; Fortney, Jonathan; Seager, Sara; Barman, Travis

    2006-01-01

    The key to understanding an extrasolar giant planet's spectrum--and hence its detectability and evolution--lies with its atmosphere. Now that direct observations of thermal emission from extrasolar giant planets are in hand, atmosphere models can be used to constrain atmospheric composition, thermal structure, and ultimately the formation and evolution of detected planets. We review the important physical processes that influence the atmospheric structure and evolution of extrasolar giant planets and consider what has already been learned from the first generation of observations and modeling. We pay particular attention to the roles of cloud structure, metallicity, and atmospheric chemistry in affecting detectable properties through Spitzer Space Telescope observations of the transiting giant planets. Our review stresses the uncertainties that ultimately limit our ability to interpret EGP observations. Finally we will conclude with a look to the future as characterization of multiple individual planets in a ...

  18. Thorium and its future importance for nuclear energy generation

    Energy Technology Data Exchange (ETDEWEB)

    Lainetti, Paulo E.O., E-mail: lainetti@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2015-07-01

    Thorium was discovered in 1828 by the Swedish chemist Jons J. Berzelius. Despite some advantages over uranium for use in nuclear reactors, its main use, in the almost two centuries since its discovery, the use of thorium was restricted to use for gas mantles, especially in the early twentieth century. In the beginning of the Nuclear Era, many countries had interested on thorium, particularly during the 1950-1970 period. There are about 435 nuclear reactors in the world nowadays. They need more than 65.000 tons of uranium yearly. The future world energy needs will increase and, even if we assumed a conservative contribution of nuclear generation, it will be occur a significant increasing in the uranium prices, taking into account that uranium, as used in the present thermal reactors, is a finite resource. Thorium is nearly three times more abundant than uranium in the Earth's crust. Despite thorium is not a fissile material, {sup 232}Th can be converted to {sup 233}U (fissile) more efficiently than {sup 238}U to {sup 239}Pu. Besides this, since it is possible to convert thorium waste into nonradioactive elements, thorium is an environment-friendly alternative energy source. Thorium fuel cycle is also inherently resistant to proliferation. Some papers evaluate the thorium resources in Brazil over 1.200.000 metric t. Then, the thorium alternative must be seriously considered in Brazil for strategic reasons. In this paper a brief history of thorium is presented, besides a review of the world thorium utilization and a discussion about advantages and restrictions of thorium use. (author)

  19. Transits of extrasolar moons around luminous giant planets

    CERN Document Server

    Heller, René

    2016-01-01

    Beyond Earth-like planets, moons can be habitable, too. No exomoons have been securely detected, but they could be extremely abundant. Young Jovian planets can be as hot as late M stars, with effective temperatures of up to 2000 K. Transits of their moons might be detectable in their infrared photometric light curves if the planets are sufficiently separated ($\\gtrsim10$ AU) from the stars to be directly imaged. The moons will be heated by radiation from their young planets and potentially by tidal friction. Although stellar illumination will be weak beyond 5 AU, these alternative energy sources could liquify surface water on exomoons for hundreds of Myr. A Mars-mass H$_2$O-rich moon around $\\beta$ Pic b would have a transit depth of $1.5\\times10^{-3}$, in reach of near-future technology.

  20. Renewable Energy Requirements for Future Building Codes: Options for Compliance

    Energy Technology Data Exchange (ETDEWEB)

    Dillon, Heather E.; Antonopoulos, Chrissi A.; Solana, Amy E.; Russo, Bryan J.

    2011-09-30

    As the model energy codes are improved to reach efficiency levels 50 percent greater than current codes, use of on-site renewable energy generation is likely to become a code requirement. This requirement will be needed because traditional mechanisms for code improvement, including envelope, mechanical and lighting, have been pressed to the end of reasonable limits. Research has been conducted to determine the mechanism for implementing this requirement (Kaufman 2011). Kaufmann et al. determined that the most appropriate way to structure an on-site renewable requirement for commercial buildings is to define the requirement in terms of an installed power density per unit of roof area. This provides a mechanism that is suitable for the installation of photovoltaic (PV) systems on future buildings to offset electricity and reduce the total building energy load. Kaufmann et al. suggested that an appropriate maximum for the requirement in the commercial sector would be 4 W/ft{sup 2} of roof area or 0.5 W/ft{sup 2} of conditioned floor area. As with all code requirements, there must be an alternative compliance path for buildings that may not reasonably meet the renewables requirement. This might include conditions like shading (which makes rooftop PV arrays less effective), unusual architecture, undesirable roof pitch, unsuitable building orientation, or other issues. In the short term, alternative compliance paths including high performance mechanical equipment, dramatic envelope changes, or controls changes may be feasible. These options may be less expensive than many renewable systems, which will require careful balance of energy measures when setting the code requirement levels. As the stringency of the code continues to increase however, efficiency trade-offs will be maximized, requiring alternative compliance options to be focused solely on renewable electricity trade-offs or equivalent programs. One alternate compliance path includes purchase of Renewable Energy

  1. Hydrogen - the source of energy for future transport

    Energy Technology Data Exchange (ETDEWEB)

    Wacker, M.; Schubert, J.

    2001-07-01

    Although the European laws for the limitation of emissions proved to be very efficient in leading to very good results, it is doubtful whether gasoline and diesel can be used as fuels in motor vehicles for an unlimited period of time. The problem of the 'greenhouse-effect' generated partly by the release of CO{sub 2} from combustion engines along with the limitation of the natural reserves of oil and natural gas call for the search for an alternative fuel. Hydrogen is currently the undisputed alternative for the future. Therefore a lot of tests have already been done with hydrogen powered vehicles in Germany. The most successful concepts are those in which the fuel cell is implemented to produce on-board power. On assignment of the Ministry for Environment and Traffic of the state of Baden-Wuerttemberg (Germany) the short-term, medium-term and long-term effects of the introduction of hydrogen powered fuel cell busses are being analyzed by means of three scenarios taking the state of Baden-Wuerttemberg as an example. The evaluation of the economic effects is intended to illustrate the supplementary costs arising for the bus operators due to the new actuation concept. The ecological and economic effects are being estimated in dependence of the presentation of energy consumption and emissions occurring in the case of implementation of hydrogen powered fuel cell busses in comparison to values furnished by diesel powered busses. (orig.)

  2. US energy policies: Will they be responsive to future needs?

    Energy Technology Data Exchange (ETDEWEB)

    Hemphill, J.G.

    1995-12-31

    This paper reviews the history of early US energy policy as a prescription for failure, the evolution of national goals in energy, and the basic principles of energy policy (market based, clean energy alternatives should receive recognition; energy and environment planning coordinated; progress measured and adjustments made; technology transfer encouraged; government assistance should support economic and environmental objectives).

  3. The Energy-Water Nexus: Managing the Links between Energy and Water for a Sustainable Future

    Science.gov (United States)

    Hussey, Karen; Petit, Carine

    2010-05-01

    preliminary list of recommendations on how best to account for and integrate these impacts into policy and decision-making processes at various institutional levels was prepared and future research needs in the energy-water nexus were suggested as main outcomes. This presentation draws on the contributions to the COST water-energy-links exploratory workshops and the development of 12 case studies undertaken by researchers from Europe, the United States, Australia and China, which will be published in a Special Feature of Ecology and Society, mid-2010.

  4. Detection of the Magnetospheric Emissions from Extrasolar Planets

    Science.gov (United States)

    Lazio, J.

    2014-12-01

    Planetary-scale magnetic fields are a window to a planet's interior and provide shielding of the planet's atmosphere. The Earth, Mercury, Ganymede, and the giant planets of the solar system all contain internal dynamo currents that generate planetary-scale magnetic fields. These internal dynamo currents arise from differential rotation, convection, compositional dynamics, or a combination of these. If coupled to an energy source, such as the incident kinetic or magnetic energy from the solar wind, a planet's magnetic field can produce electron cyclotron masers in its magnetic polar regions. The most well known example of this process is the Jovian decametric emission, but all of the giant planets and the Earth contain similar electron cyclotron masers within their magnetospheres. Extrapolated to extrasolar planets, the remote detection of the magnetic field of an extrasolar planet would provide a means of obtaining constraints on the thermal state, composition, and dynamics of its interior as well as improved understanding of the basic planetary dynamo process. The magnetospheric emissions from solar system planets and the discovery of extrasolar planets have motivated both theoretical and observational work on magnetospheric emissions from extrasolar planets. Stimulated by these advances, the W.M. Keck Institute for Space Studies hosted a workshop entitled "Planetary Magnetic Fields: Planetary Interiors and Habitability." I summarize the current observational status of searches for magnetospheric emissions from extrasolar planets, based on observations from a number of ground-based radio telescopes, and future prospects for ground-based studies. Using the solar system planetary magnetic fields as a guide, future space-based missions will be required to study planets with magnetic field strengths lower than that of Jupiter. I summarize mission concepts identified in the KISS workshop, with a focus on the detection of planetary electron cyclotron maser emission. The

  5. Statistical mechanics of light elements at high pressure. IV - A model free energy for the metallic phase. [for Jovian type planet interiors

    Science.gov (United States)

    Dewitt, H. E.; Hubbard, W. B.

    1976-01-01

    A large quantity of data on the thermodynamic properties of hydrogen-helium metallic liquids have been obtained in extended computer calculations in which a Monte Carlo code essentially identical to that described by Hubbard (1972) was used. A model free energy for metallic hydrogen with a relatively small mass fraction of helium is discussed, taking into account the definition of variables, a procedure for choosing the free energy, values for the fitting parameters, and the evaluation of the entropy constants. Possibilities concerning a use of the obtained data in studies of the interiors of the outer planets are briefly considered.

  6. The energy construction of the Sun and planets of the solar system from the viewpoint of mechanics of the inertless mass

    CERN Document Server

    Shkurchenko, I Z

    2010-01-01

    This monograph (1977) is a continuation of the monograph "The construction of the Sun and planets of the solar system from the viewpoint of mechanics of the inertless mass" (refer to: http://arxiv.org/abs/physics/0701258, part 1, http://arxiv.org/abs/physics/0701259, part 2). This manuscript concerning the studies of the energy structure of the Sun and planets was discovered in the archive of the author in 2009. Being a draft version, it contains some remarks of the author on other subjects and has a free style. The editor has omitted all the retreats of the author. Thus, the work is a final study and is intended for the reader who is familiar with previous studies of the author that are placed in this Archive.

  7. World Energy Supplies: The Present Use and Future Prospects.

    Science.gov (United States)

    Harris, John; Osborne, Jonathan

    1978-01-01

    Presents Unit Nine Change and Chance of the Nuffield Advanced Physics, dealing with energy conservation, and a novel statistical approach to diffusion, thermal equilibrium and thermodynamics. Information about energy resources, alternative sources of energy, and energy-cost of materials are also presented. (HM)

  8. Key Factors in Planning a Sustainable Energy Future Including Hydrogen and Fuel Cells

    Science.gov (United States)

    Hedstrom, Lars; Saxe, Maria; Folkesson, Anders; Wallmark, Cecilia; Haraldsson, Kristina; Bryngelsson, Marten; Alvfors, Per

    2006-01-01

    In this article, a number of future energy visions, especially those basing the energy systems on hydrogen, are discussed. Some often missing comparisons between alternatives, from a sustainability perspective, are identified and then performed for energy storage, energy transportation, and energy use in vehicles. It is shown that it is important…

  9. Key Factors in Planning a Sustainable Energy Future Including Hydrogen and Fuel Cells

    Science.gov (United States)

    Hedstrom, Lars; Saxe, Maria; Folkesson, Anders; Wallmark, Cecilia; Haraldsson, Kristina; Bryngelsson, Marten; Alvfors, Per

    2006-01-01

    In this article, a number of future energy visions, especially those basing the energy systems on hydrogen, are discussed. Some often missing comparisons between alternatives, from a sustainability perspective, are identified and then performed for energy storage, energy transportation, and energy use in vehicles. It is shown that it is important…

  10. PLASMA GASIFICATION – THE WASTE-to-ENERGY SOLUTION FOR THE FUTURE

    Directory of Open Access Journals (Sweden)

    Birsan N.

    2014-12-01

    Full Text Available Plasma WtE is currently subject of extensive research and a number of companies across the globe are trying to develop a suitable, eco-friendly and efficient WtE technology for the future. While all of these companies are still working on concept designs or small-scale prototypes, there is one company already building large industrial scale plasma gasifiers around the globe to treat MSW, Industrial and Toxic waste all together. In 1999 in Japan, Hitachi Metals and Westinghouse Plasma Corp (“WPC” built the World’s First commercial demonstration plasma WtE plant. Hitachi Metals operated the plant for one year on municipal solid waste and obtained a certification from the Japan Waste Research Foundation (JWRF. Subsequently, Hitachi Metals leveraged this success into the two commercial plants at Mihama-Mikata and Utashinai in Japan, both having at the very core the now proven Westinghouse Plasma gasification technology. For more than 20 years, Westinghouse Plasma Corp (WPC has been leading the technology platform for converting the world’s waste into clean energy for a healthier planet. The WPC technology makes landfills obsolete and replaces Incineration as the primary process for WtE. The WPC technology already operates in three reference plants around the world and other three new commercial plants are under construction (two plants of 1000 tons/day in UK and a 650 tons/day in China, all three designed to convert municipal solid waste to electricity and district heat, in the most efficient and environmental-friendly manner.

  11. Climate change, renewable energy and population impact on future energy demand for Burkina Faso build environment

    Science.gov (United States)

    Ouedraogo, B. I.

    This research addresses the dual challenge faced by Burkina Faso engineers to design sustainable low-energy cost public buildings and domestic dwellings while still providing the required thermal comfort under warmer temperature conditions caused by climate change. It was found base don climate change SRES scenario A2 that predicted mean temperature in Burkina Faso will increase by 2oC between 2010 and 2050. Therefore, in order to maintain a thermally comfortable 25oC inside public buildings, the projected annual energy consumption for cooling load will increase by 15%, 36% and 100% respectively for the period between 2020 to 2039, 2040 to 2059 and 2070 to 2089 when compared to the control case. It has also been found that a 1% increase in population growth will result in a 1.38% and 2.03% increase in carbon emission from primary energy consumption and future electricity consumption respectively. Furthermore, this research has investigated possible solutions for adaptation to the severe climate change and population growth impact on energy demand in Burkina Faso. Shading devices could potentially reduce the cooling load by up to 40%. Computer simulation programming of building energy consumption and a field study has shown that adobe houses have the potential of significantly reducing energy demand for cooling and offer a formidable method for climate change adaptation. Based on the Net Present Cost, hybrid photovoltaic (PV) and Diesel generator energy production configuration is the most cost effective local electricity supply system, for areas without electricity at present, with a payback time of 8 years when compared to diesel generator stand-alone configuration. It is therefore a viable solution to increase electricity access to the majority of the population.

  12. Giant Planets

    CERN Document Server

    Guillot, Tristan

    2014-01-01

    We review the interior structure and evolution of Jupiter, Saturn, Uranus and Neptune, and giant exoplanets with particular emphasis on constraining their global composition. Compared to the first edition of this review, we provide a new discussion of the atmospheric compositions of the solar system giant planets, we discuss the discovery of oscillations of Jupiter and Saturn, the significant improvements in our understanding of the behavior of material at high pressures and the consequences for interior and evolution models. We place the giant planets in our Solar System in context with the trends seen for exoplanets.

  13. Future of energy savings policy in Denmark (in Japanese)

    DEFF Research Database (Denmark)

    Nørgaard, Jørgen

    2007-01-01

    After a brief description of Denmark, its energy development and CO2 emission is outlined, especially in the years after 1973. Energy consumption within the country has remained almost constant, but including the country's large merchant fleet, energy consumption has grown by more than 50% to now...... 260 GJ annually per person. Danish energy saving policies with energy taxes, etc. are described. One important measure has been the use of heat from combined heat and power plants to heat buildings, which used to account for 40% of all energy consumption....

  14. Renewable energy projects in Croatia: Present situation and future activities

    Directory of Open Access Journals (Sweden)

    Granić Goran

    2007-01-01

    Full Text Available Renewable energy sources should play an important role in the promotion of numerous Croatian energy goals. The development of a successful sector of renewable could in the long run contribute to energy efficiency improvement, diversification of production and supply safety, domestic production and lesser imports of energy sources and significant reduction of the environmental influences. Targets and strategy of the implementation for every renewable energy resource depends on the specifics of the particular one, with general trends in the European Union of renewable resource ratio increase in the energy balance.

  15. Realizing a Clean Energy Future: Highlights of NREL Analysis (Brochure)

    Energy Technology Data Exchange (ETDEWEB)

    2013-12-01

    Profound energy system transformation is underway. In Hawaiian mythology, Maui set out to lasso the sun in order to capture its energy. He succeeded. That may have been the most dramatic leap forward in clean energy systems that the world has known. Until now. Today, another profound transformation is underway. A combination of forces is taking us from a carbon-centric, inefficient energy system to one that draws from diverse energy sources - including the sun. NREL analysis is helping guide energy systems policy and investment decisions through this transformation. This brochure highlights NREL analysis accomplishments in the context of four thematic storylines.

  16. REPORT OF RESEARCH ACCOMPLISHMENTS AND FUTURE GOALS HIGH ENERGY PHYSICS

    Energy Technology Data Exchange (ETDEWEB)

    Wise, Mark B. [California Inst. of Technology (CalTech), Pasadena, CA (United States); Kapustin, Anton N. [California Inst. of Technology (CalTech), Pasadena, CA (United States); Schwarz, John Henry [California Inst. of Technology (CalTech), Pasadena, CA (United States); Carroll, Sean [California Inst. of Technology (CalTech), Pasadena, CA (United States); Ooguri, Hirosi [California Inst. of Technology (CalTech), Pasadena, CA (United States); Gukov, Sergei [California Inst. of Technology (CalTech), Pasadena, CA (United States); Preskill, John [California Inst. of Technology (CalTech), Pasadena, CA (United States); Hitlin, David G. [California Inst. of Technology (CalTech), Pasadena, CA (United States); Porter, Frank C. [California Inst. of Technology (CalTech), Pasadena, CA (United States); Patterson, Ryan B. [California Inst. of Technology (CalTech), Pasadena, CA (United States); Newman, Harvey B. [California Inst. of Technology (CalTech), Pasadena, CA (United States); Spiropulu, Maria [California Inst. of Technology (CalTech), Pasadena, CA (United States); Golwala, Sunil [California Inst. of Technology (CalTech), Pasadena, CA (United States); Zhu, Ren-Yuan [California Inst. of Technology (CalTech), Pasadena, CA (United States)

    2014-08-26

    Caltech High Energy Physics (HEP) has a broad program in both experimental and theoretical physics. We are known for our creativity and leadership. The future is uncertain and we strive to be involved in all the major areas of experimental and theoretical HEP physics so no matter where the important discoveries occur we are well positioned to play an important role. An outstanding group of postdoctoral scholars, graduate students, staff scientists, and technical and administrative personnel support our efforts in experimental and theoretical physics. The PI’s on this grant are involved in the following program of experimental and theoretical activities: I) EXPERIMENTAL PHYSICS Our CMS group, led by Harvey Newman and Maria Spiropulu, has played a key role in the discovery and interpretation of the Higgs boson and in searches for new physics. They have important hardware responsibilities in both ECAL and HCAL and are also involved in the upgrades needed for the High Luminosity LHC. Newman's group also develops and operates Grid-based computing, networking, and collaborative systems for CMS and the US HEP community. The charged lepton (Mu2e) and quark BaBar flavor physics group is led by David Hitlin and Frank Porter. On Mu2e they have been instrumental in the design of the calorimeter. Construction responsibilities include one third of the crystals and associated readout as well as the calibration system. They also will have responsibility for a major part of the online system software. Although data taking ceased in 2008 the Caltech BaBar group is active on several new forefront analyses. The neutrino group is led by Ryan Patterson. They are central to NOvA's core oscillation physics program, to calibration, and to detector readiness being responsible for the production and installation of 12,000 APD arrays. They have key roles in neutrino appearance and disappearance analysis in MINOS and MINOS+. Sunil Golwala leads the dark matter direct detection

  17. REPORT OF RESEARCH ACCOMPLISHMENTS AND FUTURE GOALS HIGH ENERGY PHYSICS

    Energy Technology Data Exchange (ETDEWEB)

    Wise, Mark B. [California Institute of Technology; Kapustin, Anton N. [California Institute of Technology; Schwarz, John Henry [California Institute of Technology; Carroll, Sean [California Institute of Technology; Ooguri, Hirosi [California Institute of Technology; Gukov, Sergei [California Institute of Technology; Preskill, John [California Institute of Technology; Hitlin, David G. [California Institute of Technology; Porter, Frank C. [California Institute of Technology; Patterson, Ryan B. [California Institute of Technology; Newman, Harvey B. [California Institute of Technology; Spiropulu, Maria [California Institute of Technology; Golwala, Sunil [California Institute of Technology; Zhu, Ren-Yuan

    2014-08-26

    Caltech High Energy Physics (HEP) has a broad program in both experimental and theoretical physics. We are known for our creativity and leadership. The future is uncertain and we strive to be involved in all the major areas of experimental and theoretical HEP physics so no matter where the important discoveries occur we are well positioned to play an important role. An outstanding group of postdoctoral scholars, graduate students, staff scientists, and technical and administrative personnel support our efforts in experimental and theoretical physics. The PI’s on this grant are involved in the following program of experimental and theoretical activities: I) EXPERIMENTAL PHYSICS Our CMS group, led by Harvey Newman and Maria Spiropulu, has played a key role in the discovery and interpretation of the Higgs boson and in searches for new physics. They have important hardware responsibilities in both ECAL and HCAL and are also involved in the upgrades needed for the High Luminosity LHC. Newman's group also develops and operates Grid-based computing, networking, and collaborative systems for CMS and the US HEP community. The charged lepton (Mu2e) and quark BaBar flavor physics group is led by David Hitlin and Frank Porter. On Mu2e they have been instrumental in the design of the calorimeter. Construction responsibilities include one third of the crystals and associated readout as well as the calibration system. They also will have responsibility for a major part of the online system software. Although data taking ceased in 2008 the Caltech BaBar group is active on several new forefront analyses. The neutrino group is led by Ryan Patterson. They are central to NOvA's core oscillation physics program, to calibration, and to detector readiness being responsible for the production and installation of 12,000 APD arrays. They have key roles in neutrino appearance and disappearance analysis in MINOS and MINOS+. Sunil Golwala leads the dark matter direct detection

  18. Past and Future Cost of Wind Energy: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Lantz, E.; Hand, M.; Wiser, R.

    2012-08-01

    The future of wind power will depend on the ability of the industry to continue to achieve cost reductions. To better understand the potential for cost reductions, this report provides a review of historical costs, evaluates near-term market trends, and summarizes the range of projected costs. It also notes potential sources of future cost reductions.

  19. Improving energy decisions towards better scientific policy advice for a safe and secure future energy system

    CERN Document Server

    Droste-Franke, Bert; Kaiser, M; Schreurs, Miranda; Weber, Christoph; Ziesemer, Thomas

    2015-01-01

    Managing a successful transition of the current energy supply system to less carbon emitting options, ensuring a safe and secure supply during the whole process and in the long term, is one of the largest challenges of our time. Various approaches and first implementations show that it is not only technological issue, but also a matter of societal acceptance and acceptability, considering basic ethic values of the society. The main foci of the book are, thus, to develop an understanding about the specific challenges of the scientific policy advice in the area, to explore typical current approaches for the analysis of future energy systems and to develop criteria for the quality assessment and guidelines for the improvement of such studies. The book provides assistance to the interpretation of existing studies and guidelines for setting up and carrying out new analyses as well as for communicating and applying the results. Thereby, it aims to support the involved actors such as the respective scientific expert...

  20. RETHINKING THE FUTURE GRID: INTEGRATED NUCLEAR-RENEWABLE ENERGY SYSTEMS

    Energy Technology Data Exchange (ETDEWEB)

    S.M. Bragg-Sitton; R. Boardman

    2014-12-01

    The 2013 electricity generation mix in the United States consisted of ~13% renewables (hydropower, wind, solar, geothermal), 19% nuclear, 27% natural gas, and 39% coal. In the 2011 State of the Union Address, President Obama set a clean energy goal for the nation: “By 2035, 80 percent of America’s electricity will come from clean energy sources. Some folks want wind and solar. Others want nuclear, clean coal and natural gas. To meet this goal we will need them all.” The U.S. Department of Energy (DOE) Offices of Nuclear Energy (NE) and Energy Efficiency and Renewable Energy (EERE) recognize that “all of the above” means that we are called to best utilize all available clean energy sources. To meet the stated environmental goals for electricity generation and for the broader energy sector, there is a need to transform the energy infrastructure of the U.S. and elsewhere. New energy systems must be capable of significantly reducing environmental impacts in an efficient and economically viable manner while utilizing both hydrocarbon resources and clean energy generation sources. The U.S. DOE is supporting research and development that could lead to more efficient utilization of clean energy generation sources, including renewable and nuclear options, to meet both grid demand and thermal energy needs in the industrial sector. A concept being advanced by the DOE-NE and DOE-EERE is tighter coupling of nuclear and renewable energy sources in a manner that better optimizes energy use for the combined electricity, industrial manufacturing, and the transportation sectors. This integration concept has been referred to as a “hybrid system” that is capable of apportioning thermal and electrical energy to first meet the grid demand (with appropriate power conversion systems), then utilizing excess thermal and, in some cases, electrical energy to drive a process that results in an additional product. For the purposes of the present work, the hybrid system would

  1. Future key energy monitoring; Zukunftsschluessel Energiemonitoring. Energiemanagement mit System

    Energy Technology Data Exchange (ETDEWEB)

    Junge, Mark [Limon GmbH, Kassel (Germany)

    2012-10-15

    The analysis of the energy infrastructure as well as potential measures to increase energy efficiency in manufacturing companies requires the compilation of various data and parameters. Yet these numbers are often lacking and must be collected by way of complex analysis or exemplary measurements. Such problems can be avoided with the help of smart energy monitoring systems.

  2. Pluto: Planet or "Dwarf Planet"?

    Science.gov (United States)

    Voelzke, M. R.; de Araújo, M. S. T.

    2010-09-01

    In August 2006 during the XXVI General Assembly of the International Astronomical Union (IAU), taken place in Prague, Czech Republic, new parameters to define a planet were established. According to this new definition Pluto will be no more the ninth planet of the Solar System but it will be changed to be a "dwarf planet". This reclassification of Pluto by the academic community clearly illustrates how dynamic science is and how knowledge of different areas can be changed and evolves through the time, allowing to perceive Science as a human construction in a constant transformation, subject to political, social and historical contexts. These epistemological characteristics of Science and, in this case, of Astronomy, constitute important elements to be discussed in the lessons, so that this work contributes to enable Science and Physics teachers who perform a basic education to be always up to date on this important astronomical fact and, thereby, carry useful information to their teaching.

  3. Identifying Ultrahigh-Energy Cosmic-Ray Accelerators with Future Ultrahigh-Energy Neutrino Detectors

    CERN Document Server

    Fang, Ke; Miller, M Coleman; Murase, Kohta; Oikonomou, Foteini

    2016-01-01

    The detection of ultrahigh-energy (UHE) neutrino sources would contribute significantly to solving the decades-old mystery of the origin of the highest-energy cosmic rays. We investigate the ability of a future UHE neutrino detector to identify neutrino point sources, by exploring the parameter space of the total number of observed events and the angular resolution of the detector. The favored parameter region can be translated to requirements for the effective area, sky coverage and angular resolution of future detectors, for a given source number density and evolution history. Moreover, by studying the typical distance to sources that are expected to emit more than one event for a given diffuse neutrino flux, we find that a significant fraction of the identifiable UHE neutrino sources may be located in the nearby Universe if the source number density is above $\\sim10^{-6}\\,\\rm Mpc^{-3}$. If sources are powerful and rare enough, as predicted in blazar scenarios, they can first be detected at distant location...

  4. Tatooine’s Future: The Eccentric Response of Kepler’s Circumbinary Planets to Common-envelope Evolution of Their Host Stars

    Science.gov (United States)

    Kostov, Veselin B.; Moore, Keavin; Tamayo, Daniel; Jayawardhana, Ray; Rinehart, Stephen A.

    2016-12-01

    Inspired by the recent Kepler discoveries of circumbinary planets orbiting nine close binary stars, we explore the fate of the former as the latter evolve off the main sequence. We combine binary star evolution models with dynamical simulations to study the orbital evolution of these planets as their hosts undergo common-envelope (CE) stages, losing in the process a tremendous amount of mass on dynamical timescales. Five of the systems experience at least one Roche-lobe overflow and CE stage (Kepler-1647 experiences three), and the binary stars either shrink to very short orbits or coalesce; two systems trigger a double-degenerate supernova explosion. Kepler’s circumbinary planets predominantly remain gravitationally bound at the end of the CE phase, migrate to larger orbits, and may gain significant eccentricity; their orbital expansion can be more than an order of magnitude and can occur over the course of a single planetary orbit. The orbits these planets can reach are qualitatively consistent with those of the currently known post-CE, eclipse-time variations circumbinary candidates. Our results also show that circumbinary planets can experience both modes of orbital expansion (adiabatic and nonadiabatic) if their host binaries undergo more than one CE stage; multiplanet circumbinary systems like Kepler-47 can experience both modes during the same CE stage. Additionally, unlike Mercury orbiting the Sun, a circumbinary planet with the same semimajor axis can survive the CE evolution of a close binary star with a total mass of 1 {M}⊙ .

  5. Atmospheres of Extrasolar Giant Planets

    Science.gov (United States)

    Marley, M. S.; Fortney, J.; Seager, S.; Barman, T.

    The key to understanding an extrasolar giant planet's spectrum - and hence its detectability and evolution - lies with its atmosphere. Now that direct observations of thermal emission from extrasolar giant planets (EGPs) are in hand, atmosphere models can be used to constrain atmospheric composition, thermal structure, and ultimately the formation and evolution of detected planets. We review the important physical processes that influence the atmospheric structure and evolution of EGPs and consider what has already been learned from the first generation of observations and modeling. We pay particular attention to the roles of cloud structure, metallicity, and atmospheric chemistry in affecting detectable properties through Spitzer Space Telescope observations of the transiting giant planets. Our review stresses the uncertainties that ultimately limit our ability to interpret EGP observations. Finally we will conclude with a look to the future as characterization of multiple individual planets in a single stellar system leads to the study of comparative planetary architectures.

  6. Rethinking the Future Grid: Integrated Nuclear Renewable Energy Systems: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Bragg-Sitton, S. M.; Boardman, R.; Ruth, M.; Zinaman, O.; Forsberg, C.

    2015-01-01

    The U.S. DOE is supporting research and development that could lead to more efficient utilization of clean energy generation sources, including renewable and nuclear options, to meet both grid demand and thermal energy needs in the industrial sector. One concept under consideration by the DOE-NE and DOE-EERE is tighter coupling of nuclear and renewable energy sources in a manner that better optimizes energy use for the combined electricity, industrial manufacturing, and transportation sectors. This integration concept has been referred to as a 'hybrid system' that is capable of apportioning thermal and electrical energy to first meet the grid demand (with appropriate power conversion systems), then utilizing excess thermal and, in some cases, electrical energy to drive a process that results in an additional product.

  7. A New Family of Planets ? "Ocean Planets"

    OpenAIRE

    Leger, A.; Selsis, F.; Sotin, C.; Guillot, T.; Despois, D.; Lammer, H.; Ollivier, M.; Brachet, F.; Labeque, A.; Valette, C.

    2003-01-01

    A new family of planets is considered which is between rochy terrestrial planets and gaseous giant ones: "Ocean-Planets". We present the possible formation, composition and internal models of these putative planets, including that of their ocean, as well as their possible Exobiology interest. These planets should be detectable by planet detection missions such as Eddington and Kepler, and possibly COROT (lauch scheduled in 2006). They would be ideal targets for spectroscopic missions such as ...

  8. High energy physics advisory panel`s subpanel on vision for the future of high-energy physics

    Energy Technology Data Exchange (ETDEWEB)

    1994-05-01

    This report was requested by the Secretary of Energy to (1) define a long-term program for pursuing the most important high-energy physics goals since the termination of the Superconducting Super Collider (SSC) project, (2) assess the current US high-energy physics program, and (3) make recommendations regarding the future of the field. Subjects on which recommendations were sought and which the report addresses were: high-energy physics funding priorities; facilitating international collaboration for future construction of large high-energy physics facilities; optimizing uses of the investment made in the SSC; how to encourage displaced scientists and engineers to remain in high-energy physics and to attract young scientists to enter the field in the future. The report includes a description of the state of high-energy physics research in the context of history, a summary of the SSC project, and documentation of the report`s own origins and development.

  9. High energy physics advisory panel`s subpanel on vision for the future of high-energy physics

    Energy Technology Data Exchange (ETDEWEB)

    1994-05-01

    This report was requested by the Secretary of Energy to (1) define a long-term program for pursuing the most important high-energy physics goals since the termination of the Superconducting Super Collider (SSC) project, (2) assess the current US high-energy physics program, and (3) make recommendations regarding the future of the field. Subjects on which recommendations were sought and which the report addresses were: high-energy physics funding priorities; facilitating international collaboration for future construction of large high-energy physics facilities; optimizing uses of the investment made in the SSC; how to encourage displaced scientists and engineers to remain in high-energy physics and to attract young scientists to enter the field in the future. The report includes a description of the state of high-energy physics research in the context of history, a summary of the SSC project, and documentation of the report`s own origins and development.

  10. The Effectiveness of Taiwan Building Energy Regulation under the influence of Future Climate

    Science.gov (United States)

    Weng, Yu-Teng; Huang, Kuo-Tsang

    2017-04-01

    Building energy consumption comprises circa 40% of the national annual energy usage in Taiwan, and the majority proportion is attributed to the cooling apparatus usage. As cooling energy is closely related to the outdoor climate, it is expected that the future global climate change would amplify its demand. Considering the building energy regulation criteria are the minimum requirements that the building has to be complied with, this study tried to investigate whether the current building energy regulation in Taiwan, initiated in 2013, would still be capable of maintaining the energy use in the future as today's level. The research adopted EnergyPlus to simulate the annual cooling energy use of several virtual office building cases with the constructed hourly future weather data under future climate change scenarios of RCP45 and RCP85 defined by IPCC. The virtual building cases are generated by a structured orthogonal array with each case is constituted by 10 building design parameters. The results revealed that the building energy consumption based on the current regulation criteria failed to maintain at the same level in the future as oppose to nowadays. By comparing to the current cooling energy usage, it would rise by 13% and 22% in RCP45 and RCP85, respectively, at the end of this century. This research further parametrically studied the potential cooling energy mitigation strategies and proposed effective building envelope design schemes in order to neutralize the future building energy increase.

  11. Energy efficiency in future wireless networks: cognitive radio standardization requirements

    CSIR Research Space (South Africa)

    Masonta, M

    2012-09-01

    Full Text Available ] S. Ehsan and B. Hamdaoui, ?A Survey on Energy-Efficient Routing Techniques with QoS Assurances for Wireless Multimedia Sensor Net- works? IEEE Comm. Surv. & Tut., vol. 14, no. 2, pp. 265-278, 2012. [16] T. Watteyne, A. Molinaro, M.G. Richichi... in the wireless and wired networks by application of, e.g., energy-efficient routing protocols. In summary, the effective use of energy and opportunities for energy saving through CR are key aspects defining the shape of the final implementation of CR concept...

  12. Renewable energy: past trends and future growth in 2 degrees scenarios

    NARCIS (Netherlands)

    Crijns-Graus, Wina

    2016-01-01

    This study explores past growth rates of renewable energy sources (1971-2012) and required future ones in 2 degrees scenarios. Results show that in spite of comparatively high growth of renewable energy in the period 2000-2012, the share of renewable energy in total energy use stayed the same (13%).

  13. Renewable energy: past trends and future growth in 2 degrees scenarios

    NARCIS (Netherlands)

    Crijns-Graus, Wina

    2016-01-01

    This study explores past growth rates of renewable energy sources (1971-2012) and required future ones in 2 degrees scenarios. Results show that in spite of comparatively high growth of renewable energy in the period 2000-2012, the share of renewable energy in total energy use stayed the same (13%).

  14. The role of fuel cells and electrolysers in future efficient energy systems

    DEFF Research Database (Denmark)

    Hendriksen, Peter Vang; Mathiesen, Brian Vad; Pedersen, Allan S.

    2012-01-01

    Fuel cells can increase the efficiency of the energy system and electrolysers can help enable a de-carbonisation of the energy supply. In this chapter we explain the role of fuel cells in future energy systems together with the role of electrolysers in smart energy systems with increasing...

  15. Editorial: Introduction to Energy Strategy Reviews theme issue “Future Energy Systems and Market Integration of Wind Power”

    NARCIS (Netherlands)

    Lund, H.; Weijermars, R.

    2013-01-01

    Energy Strategy Reviews (ESR) provides a peer-reviewed publication platformto evaluate strategy options for tomorrow’s energy systems. The focus in this special issue is on “Future Energy Systems and Market Integration of Wind Power” and possible solutions are highlighted from the strategy viewpoint

  16. Hydrogen energy and fuel cells. A vision of our future

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-07-01

    This document presents the possibilities of energy systems based on the hydrogen, in the world and more specially in Europe in the context of an environmental and energy strategy. It proposes then the necessary structures and actions to implement at a commercial feasibility. (A.L.B.)

  17. Aspects of a meaningful energy policy in the future

    Energy Technology Data Exchange (ETDEWEB)

    Pestel, E. (Niedersaechsisches Ministerium fuer Wissenschaft und Kunst, Hannover (Germany, F.R.))

    1978-02-01

    A lecture held on the international symposium for alcohol automotive fuels in Wolfsburg includes a global view at the energy situation of today, possible alternatives with special regard to alcohol automotive fuels and setting up of a new energy structure for the year 2000.

  18. Biomass power generation: toward a sustainable energy future

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    @@ 16 October, 2005 was a day of celebration for the Guangzhou Institute of Energy Conversion(GIEC), CAS, as its technology ofbiomass gasification and power generation (BGPG) was chosen by an evaluation panel of the United Nations Industrial Development Organization as one of the 10 top investment scenarios to apply new technologies for renewable energy utilization.

  19. From planetesimals to planets: volatile molecules

    CERN Document Server

    Marboeuf, Ulysse; Alibert, Yann; Cabral, Nahuel; Benz, Willy

    2014-01-01

    Solar and extrasolar planets are the subject of numerous studies aiming to determine their chemical composition and internal structure. In the case of extrasolar planets, the composition is important as it partly governs their potential habitability. Moreover, observational determination of chemical composition of planetary atmospheres are becoming available, especially for transiting planets. The present works aims at determining the chemical composition of planets formed in stellar systems of solar chemical composition. The main objective of this work is to provide valuable theoretical data for models of planet formation and evolution, and future interpretation of chemical composition of solar and extrasolar planets. We have developed a model that computes the composition of ices in planets in different stellar systems with the use of models of ice and planetary formation. We provide the chemical composition, ice/rock mass ratio and C:O molar ratio for planets in stellar systems of solar chemical compositio...

  20. Low Temperature District Heating for Future Energy Systems

    DEFF Research Database (Denmark)

    Schmidt, Dietrich; Kallert, Anna; Blesl, Markus

    2017-01-01

    of the building stock. Low temperature district heating (LTDH) can contribute significantly to a more efficient use of energy resources as well as better integration of renewable energy (e.g. geothermal or solar heat), and surplus heat (e.g. industrial waste heat) into the heating sector. LTDH offers prospects......, such as combustible fuels, and minimising energy losses and irreversible dissipation. The paper presents the international co-operative work in the framework of the International Energy Agency (IEA), the Technology Cooperation Programme on District Heating and Cooling including Combined Heat and Power (DHC|CHP) Annex......The building sector is responsible for more than one third of the final energy consumption of societies and produces the largest amount of greenhouse gas emissions of all sectors. This is due to the utilisation of combustion processes of mainly fossil fuels to satisfy the heating demand...

  1. Magnetic Activity and High Energy XUV Irradiances of Dwarf K-Stars - Impacts of XUV Emissions on Hosted Extrasolar Planets

    Science.gov (United States)

    Lakatos, S. L.; Voyer, E. N.; Guinan, E. F.; DeWarf, L. E.; Ribas, I.; Harper, G. M.

    2005-05-01

    We report on the study of magnetic activity and spectral X-ray-UV (XUV) irradiances of main-sequence K-type (dK) stars covering a wide range of ages from <0.1 to 10 Gyr and rotation periods of <0.5 - 45d. This study is an extension of the Villanova ``Sun in Time'' Program (see Guinan et al. 2003; Ribas et al. 2005) to cooler, less luminous, but much more numerous, dK stars. These dK stars have deeper convective zones and more efficient magnetic dynamos. Of particular interest is the study of the evolution of coronal and chromospheric XUV emissions of these stars because of the critical roles that these emissions play in the photochemical and photoionization (and possible erosion) of the atmospheres of potentially hosted planets. The extension to dK stars is motivated by the upcoming extrasolar planet search missions (such as Kepler, SIM, and Darwin-TPF) that will search for earth-size planets in the (liquid water) habitable zones of nearby dG, dK and dM stars. Because of the very high space densities of low mass stars, they will likely be discovered to host numerous planets. In this study we have combined our FUSE FUV observations with archival X-ray, EUV, and UV, along with ground-based photometry, to study dependencies of XUV emissions with respect to age and rotation. Here we report on our initial study of a small sample of bright, nearby dK0-5 stars with a wide range of ages and rotation periods. The initial results are presented and we discuss the suitability of low mass dK stars as hosts for planets habitable for life. Also, the long lifetimes and high spacial densities of older dK stars make them attractive targets for searches for advanced intelligent life. This research is supported by NASA/FUSE Grants NAG5-12125, NNG04G038G, and NNGG04GC76G, which we gratefully acknowledge.

  2. International Conference and Advanced School Planet Earth

    CERN Document Server

    Jeltsch, Rolf; Pinto, Alberto; Viana, Marcelo

    2015-01-01

    The focus of this volume is research carried out as part of the program Mathematics of Planet Earth, which provides a platform to showcase the essential role of mathematics in addressing problems of an economic and social nature and creating a context for mathematicians and applied scientists to foster mathematical and interdisciplinary developments that will be necessary to tackle a myriad of issues and meet future global economic and social challenges. Earth is a planet with dynamic processes in its mantle, oceans and atmosphere creating climate, causing natural disasters, and influencing fundamental aspects of life and life-supporting systems. In addition to these natural processes, human activity has developed highly complex systems, including economic and financial systems; the World Wide Web; frameworks for resource management, transportation, energy production and utilization; health care delivery, and social organizations. This development has increased to the point where it impacts the stability and ...

  3. Urban Planning for a Renewable Energy Future: Methodological Challenges and Opportunities from a Design Perspective

    NARCIS (Netherlands)

    Vandevijvere, H.; Stremke, S.

    2012-01-01

    Urban planning for a renewable energy future requires the collaboration of different disciplines both in research and practice. In the present article, the planning of a renewable energy future is approached from a designer’s perspective. A framework for analysis of the planning questions at hand is

  4. Global energy futures and human development: a framework for analysis

    Energy Technology Data Exchange (ETDEWEB)

    Pasternak, A.D. [Lawrence Livermore National Lab., CA (United States)

    2001-07-01

    This paper explores the relationship between measures of human well-being and consumption of energy and electricity. A correlation is shown between the United Nations Human Development Index (HDI) and annual per- capita electricity consumption for 60 populous countries comprising 90% of the world population. In this correlation, HDI reaches a maximum value when electricity consumption is about 4,000 kWh per person per year, well below consumption levels for most developed countries but also well above the level for developing countries. The correlation with electricity use is better than with total primary energy use. Global electricity consumption associated with a ''Human Development Scenario'' is estimated by adding to U.S. Department of Energy projections for the year 2020 increments of additional electricity consumption sufficient to reach 4,000 kWh per capita on a country-by-country basis. A roughly constant ratio of primary energy consumption to electric energy consumption is observed for countries with high levels of electricity use, and this ratio is used to estimate global primary energy consumption in the Human Development Scenario. The Human Development Scenario implies significantly greater global consumption of electricity and primary energy than do projections for 2020 by the DOE and others. (author)

  5. Roadmap for the Future of Commercial Energy Codes

    Energy Technology Data Exchange (ETDEWEB)

    Rosenberg, Michael I. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Hart, Philip R. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Zhang, Jian [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Athalye, Rahul A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-01-01

    Building energy codes have significantly increased building efficiency over the last 38 years, since the first national energy code was published in 1975. The most commonly used path in energy codes, the prescriptive path, appears to be reaching a point of diminishing returns. The current focus on prescriptive codes has limitations including significant variation in actual energy performance depending on which prescriptive options are chosen, a lack of flexibility for designers and developers, the inability to handle optimization that is specific to building type and use, the inability to account for project-specific energy costs, and the lack of follow-through or accountability after a certificate of occupancy is granted. It is likely that an approach that considers the building as an integrated system will be necessary to achieve the next real gains in building efficiency. This report provides a high-level review of different formats for commercial building energy codes, including prescriptive, prescriptive packages, capacity constrained, outcome based, and predictive performance approaches. This report also explores a next generation commercial energy code approach that places a greater emphasis on performance-based criteria.

  6. Keynote address: High energy physics in 2014 and its future

    Indian Academy of Sciences (India)

    G Rajasekaran

    2016-02-01

    After a brief history, we focus on the present status of HEP and its possible future. Ideas to ensure a healthy growth of HEP in India are discussed. This involves a few major experimental projects in fundamental physics. None of these projects can succeed unless the crucial problem of manpower is solved. A few suggestions are offered towards this aim.

  7. Intelligent DC Homes in Future Sustainable Energy Systems

    DEFF Research Database (Denmark)

    Diaz, Enrique Rodriguez; Quintero, Juan Carlos Vasquez; Guerrero, Josep M.

    2016-01-01

    distribution systems. As a consequence a lot of research has been done on DC distribution systems and its potential for residential applications. Furthermore, the increasing presence and used of smart devices in homes, reveal a promising future for intelligent homes, integrated in the Internet of Things...

  8. Overcoming Challenges of Renewable Energy on Future Smart Grid

    Directory of Open Access Journals (Sweden)

    Mohamed Shaaban

    2012-06-01

    Full Text Available The increasing complexity of the conventional grid due to population growth, advancement in technology and infrastructures which contribute immensely to instability, insecurity, and inefficiency and environmental energy sustainability calls for the use of renewable energy for sustainability of power supply. Intermittency and fluctuation of the renewable energy is a great challenge on the smart grid. This paper reveal the potential challenges of renewable energy on the smart grid and proffer solution with the application of high voltage DC (HVDC and Flexible AC transmission system (FACTS devices. The functions and advantages of FACTS devices are presented in this paper. Voltage control and stability control with FACTS application are also discussed. This was achieved because FACTS has fast controllability and capability to exchange active and reactive power independently.

  9. Residential heat pumps in the future Danish energy system

    DEFF Research Database (Denmark)

    Petrovic, Stefan; Karlsson, Kenneth Bernard

    2016-01-01

    Denmark is striving towards 100% renewable energy system in 2050. Residential heat pumps are expected to be a part of that system.We propose two novel approaches to improve the representation of residential heat pumps: Coefficients of performance (COPs) are modelled as dependent on air and ground...... temperature while installation of ground-source heat pumps is constrained by available ground area. In this study, TIMES-DK model is utilised to test the effects of improved modelling of residential heat pumps on the Danish energy system until 2050.The analysis of the Danish energy system was done...... for politically agreed targets which include: at least 50% of electricity consumption from wind power starting from 2020, fossil fuel free heat and power sector from 2035 and 100% renewable energy system starting from 2050. Residential heat pumps supply around 25% of total residential heating demand after 2035...

  10. The Role of Fusion in the Future World Energy Market

    Science.gov (United States)

    Sheffield, John

    1996-05-01

    The energy world, in which fusion energy must compete, has changed in recent years with the prospect of a 40-year supply of low-cost oil and gas. This cheap fuel represents a one-time opportunity for developing countries to raise their standards of living, and if historical trends continue, lower their rate of population growth. This brief opportunity for cheap fossil-fuel and the similar 40-year period to commercialize fusion are transients when viewed against the time scale of civilization. We need to develop and deploy the long-term energy sources, such as fusion (fission and 'renewables'), and in all cases improve energy efficiency before the fossil fuels rise in cost and a large fraction of a burgeoning world population is condemned to permanent poverty.

  11. A Review and Preview of Magnetic Star-Planet Interactions

    Science.gov (United States)

    Shkolnik, Evgenya

    2017-05-01

    Planets interact with their host stars through gravity, radiation and magnetic fields, and for those giant planets that orbit their stars within 20 stellar radii (=0.1 AU for a sun-like star), star-planet interactions (SPI) are observable with a wide variety of photometric, spectroscopic and spectropolarimetric studies. At such close distances, the planet orbits within the sub-alfvénic radius of the star in which the transfer of energy and angular momentum between the two bodies is particularly efficient. The nature of magnetic SPI is modeled to be strongly affected by both the stellar and planetary magnetic fields, possibly influencing the magnetic activity of both, as well as affecting the irradiation and even the migration of the planet. As we refine our observational techniques for hot Jupiter systems, we can begin to extend them to other tightly orbiting stellar systems, such as smaller planets close to M dwarfs where the region near tens of stellar radii begins to coincide with the classical habitable zone. Future studies of SPI with space-based telescopes and the next generation of ground-based telescopes will be informative pursuits for the study of the internal dynamics and atmospheric evolution of exoplanets.

  12. The Isla de la Juventud - Renewable energy future

    Energy Technology Data Exchange (ETDEWEB)

    Alonso, A.C.; Moreda, B.G. [Agency of Science and Technology (Cuba); Cabrera, L.C. [Ministry of Science Technology and Environment, Island of the Youth (Cuba); Hernandez, J. [Direction of Planning, Island of the Youth (Cuba)

    1999-11-01

    Currently 96% of the energy services of the island are provided by means of conventional sources. The principal destinations of primary energy are the electricity generation, transport and industry sectors. The power is produced using diesel set-generators that guarantee the electrical service to the 99% of the population. The principal source of renewable energy is biomass. In the case of other sources like hydroenergy and wind power, the existing potential is not considerable or it is required to be established. In order to elaborate a project directed to increase the contribution of the renewable sources of energy in the energy balance of the island the Agency of Science and Technology of the Ministry of Science, Technology and Environment, together with the Delegation of this ministry in the territory (its local representatives) and the local energy authorities, has accomplished an evaluation of these resources. This assessment demonstrates the possibility of reaching a participation of these sources of 32% and 40% in the electrical generation and of a 28% and 48% in primary energy balance of the region in the years 2005 and 2010 respectively. The principal actions identified to reach this aim are the forestry biomass power; the substitution, by means of the biomass gasification, of the fuel oil and the diesel oil used to fuel ovens and boilers; the biogas production from pig excrete and the production of bio-diesel from vegetable oil to be used in land transport. The use of other energy sources like hydroenergy and wind power requires more detailed studies included in the elaborated project. (EHS)

  13. Energy Choices. Choices for future technology development; Vaegval Energi. Vaegval foer framtidens teknikutveckling

    Energy Technology Data Exchange (ETDEWEB)

    Billfalk, Lennart; Haegermark, Harald (eds.)

    2009-03-15

    In the next few years political decisions lie ahead in Sweden and the EU regarding the detailed formulation of the EU's so-called 20-20-20 targets and accompanying EU directives. Talks on a new international post-2012 climate agreement are imminent. The EU targets involve reducing emissions of greenhouse gases by 20 per cent, increasing the proportion of renewable energy by 20 per cent and improving energy efficiency by 20 per cent - all by the year 2020. According to the analysis of the consequences of the targets that the Technology Development Group has commissioned, the reduction in carbon dioxide in the stationary energy system in the Nordic region will be 40 per cent, not 20 per cent, if all the EU targets are to be achieved. The biggest socio-economic cost is associated with achieving the efficiency target, followed by the costs associated with achieving the renewable energy target and the CO{sub 2} target. On the basis of this analysis and compilations about technology development, we want to highlight the following important key issues: Does Sweden want to have the option of nuclear power in the future or not? How to choose good policy instruments for new electricity production and networks? How best to reduce the carbon dioxide emissions of the transport sector and how to develop control and incentive measures that promote such a development? We are proposing the following: Carry out a more in-depth analysis of the consequences of the EU targets, so that the policy instruments produce the best combination as regards climate, economy and security of supply. To achieve the EU targets would require large investments in electricity production, particularly renewable energy, and in electricity networks. Internationally harmonized policy instruments and other incentive measures are required in order for the necessary investments to take place. The policy instruments have to provide a level playing field for all players in the energy sector. The large

  14. Current status and future potential of energy derived from Chinese agricultural land: a review.

    Science.gov (United States)

    Zhai, Ningning; Mao, Chunlan; Feng, Yongzhong; Zhang, Tong; Xing, Zhenjie; Wang, Yanhong; Zou, Shuzhen; Yin, Dongxue; Han, Xinhui; Ren, Guangxin; Yang, Gaihe

    2015-01-01

    Energy crisis is receiving attention with regard to the global economy and environmental sustainable development. Developing new energy resources to optimize the energy supply structure has become an important measure to prevent energy shortage as well as achieving energy conservation and emission reduction in China. This study proposed the concept of energy agriculture and constructed an energy agricultural technical support system based on the analysis of energy supply and demand and China's foreign dependence on energy resources, combined with the function of agriculture in the energy field. Manufacturing technology equipment and agricultural and forestry energy, including crop or forestry plants and animal feces, were used in the system. The current status and future potential of China's marginal land resources, energy crop germplasm resources, and agricultural and forestry waste energy-oriented resources were analyzed. Developing the function of traditional agriculture in food production may promote China's social, economic, and environmental sustainable development and achieve energy saving and emission reduction.

  15. Current best estimates of planet populations

    Science.gov (United States)

    Rogers, Leslie A.

    2016-05-01

    Exoplanets are revolutionizing planetary science by enabling statistical studies of a large number of planets. Empirical measurements of planet occurrence rates inform our understanding of the ubiquity and efficiency of planet formation, while the identification of sub-populations and trends in the distribution of observed exoplanet properties provides insights into the formation and evolution processes that are sculpting distant Solar Systems. In this paper, we review the current best estimates of planet populations. We focus in particular on η⊕, the occurrence rate of habitable zone rocky planets, since this factor strongly influences the design of future space based exoplanet direct detection missions.

  16. Forenergy a solution for the future needs in energy; Forenergy une solution pour les besoins futurs en energie

    Energy Technology Data Exchange (ETDEWEB)

    Sylvain, Martin [Timberjack Oy (Finland)

    2002-03-01

    The wood-energy is developing and implementing since the Kyoto agreements and more especially since the European Union engagement in the White Book of 1998. To give the wood energy a real economic dimension, it is necessary to develop innovative methods and new technologies. This paper presents the research programs of Forenergy in the domain. (A.L.B.)

  17. Residential energy efficiency: Progress since 1973 and future potential

    Science.gov (United States)

    Rosenfeld, Arthur H.

    1985-11-01

    Today's 85 million U.S. homes use 100 billion of fuel and electricity (1150/home). If their energy intensity (resource energy/ft2) were still frozen at 1973 levels, they would use 18% more. With well-insulated houses, need for space heat is vanishing. Superinsulated Saskatchewan homes spend annually only 270 for space heat, 150 for water heat, and 400 for appliances, yet they cost only 2000±1000 more than conventional new homes. The concept of Cost of Conserved Energy (CCE) is used to rank conservation technologies for existing and new homes and appliances, and to develop supply curves of conserved energy and a least cost scenario. Calculations are calibrated with the BECA and other data bases. By limiting investments in efficiency to those whose CCE is less than current fuel and electricity prices, the potential residential plus commercial energy use in 2000 AD drops to half of that estimated by DOE, and the number of power plants needed drops by 200. For the whole buildings sector, potential savings by 2000 are 8 Mbod (worth 50B/year), at an average CCE of 10/barrel.

  18. GOCE and Future Gravity Missions for Geothermal Energy Exploitation

    Science.gov (United States)

    Pastorutti, Alberto; Braitenberg, Carla; Pivetta, Tommaso; Mariani, Patrizia

    2016-08-01

    Geothermal energy is a valuable renewable energy source the exploitation of which contributes to the worldwide reduction of consumption of fossil fuels oil and gas. The exploitation of geothermal energy is facilitated where the thermal gradient is higher than average leading to increased surface heat flow. Apart from the hydrologic circulation properties which depend on rock fractures and are important due to the heat transportation from the hotter layers to the surface, essential properties that increase the thermal gradient are crustal thinning and radiogenic heat producing rocks. Crustal thickness and rock composition form the link to the exploration with the satellite derived gravity field, because both induce subsurface mass changes that generate observable gravity anomalies. The recognition of gravity as a useful investigation tool for geothermal energy lead to a cooperation with ESA and the International Renewable Energy Agency (IRENA) that included the GOCE derived gravity field in the online geothermal energy investigation tool of the IRENA database. The relation between the gravity field products as the free air gravity anomaly, the Bouguer and isostatic anomalies and the heat flow values is though not straightforward and has not a unique relationship. It is complicated by the fact that it depends on the geodynamical context, on the geologic context and the age of the crustal rocks. Globally the geological context and geodynamical history of an area is known close to everywhere, so that a specific known relationship between gravity and geothermal potential can be applied. In this study we show the results of a systematic analysis of the problem, including some simulations of the key factors. The study relies on the data of GOCE and the resolution and accuracy of this satellite. We also give conclusions on the improved exploration power of a gravity mission with higher spatial resolution and reduced data error, as could be achieved in principle by flying

  19. Danish energy efficiency policy: revisited and future improvements

    Energy Technology Data Exchange (ETDEWEB)

    Togeby, Mikael; Dyhr-Mikkelsen, Kirsten (Ea Energy Analyses (Denmark)); Larsen, Anders; Juel Hansen, Morten (Roskilde Univ., Dept. of Society and Globalisation, Roskilde (Denmark)); Bach, Peter (Danish Energy Authority, Copenhagen (Denmark))

    2009-07-01

    Ten groups of policy instruments for promoting energy efficiency are actively used in Denmark. Among these are the EU instruments such as the CO{sub 2} emissions trading scheme and labelling of appliances, labelling of all buildings, combined with national instruments such as high taxes especially on households and the public sector, obligations for energy companies (electricity, natural gas, district heating, and oil) to deliver documented savings, strict building codes, special instructions for the public sector, and an Electricity Saving Trust. A political agreement from 2005 states that an evaluation of the entire Danish energy efficiency policy portfolio must be carried out before end 2008 and put forward for discussion among governing parties no later than February 2009. A consortium comprising Ea Energy Analyses, Niras, the Dept. of Society and Globalisation (Roskilde Univ.) and 4-Fact was assigned with this task. The evaluation aimed to answer the crucial questions: - Is the overall design of the portfolio of instruments appropriate? - Does the impact of the instruments justify the costs, so that we reach the national goals in a cost efficient way? - Will the current instrument portfolio be able to meet the required reduction in final energy consumption (goal for 2013) and in primary energy consumption (with goals in 2011 and 2020) as planned by parliament? Recommendations were made on how to improve and develop the portfolio using cost effectiveness as well as organisational clarity as criteria in developing the recommendations. The evaluation was completed in December 2008, and this paper presents the main findings and proceeds to discuss the issues from an EU perspective.

  20. An accelerator-driven reactor for meeting future energy demand

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, Hiroshi; Yang, Y.; Yu, A.

    1997-12-31

    Fissile fuel can be produced at a high rate using an accelerator-driven Pu-fueled subcritical fast reactor which avoids encountering a shortage of Pu during a high growth rate in the production of nuclear energy. Furthermore, the necessity of the early introduction of the fast reactor can be moderated. Subcritical operation provides flexible nuclear energy options along with high neutron economy for producing the fuel, for transmuting high-level waste such as minor actinides, and for efficiently converting excess and military Pu into proliferation-resistant fuel.

  1. Energy Harvesting and Storage Systems for Future AF Vehicles

    Science.gov (United States)

    2012-05-18

    D.J., 2010. “Broadband Piezoelectric Power Generation on High-Energy Orbits of the Bistable Duffing Oscillator with Electromechanical Coupling...capacity after thermal processing oscillates within ±3% with respect to the baseline capacity measured before the test. The capacity variation is...

  2. The future of OA in high-energy physics

    CERN Multimedia

    2008-01-01

    CERN 's SCOAP3 project has posted a summary of Rolf-Dieter Heuer's talk, Innovation in Scholarly Communication: Vision and Projects from High Energy Physics , at the Academic Publishing in Europe 2008 conference (Berlin, January 21-23, 2008). Heuer is the Research director of DESY and Director-General Elect of CERN .

  3. GEA, 2012 : Global Energy Assessment - Toward a Sustainable Future

    NARCIS (Netherlands)

    Johansson, T.B.; Patwardhan, A.; Nakicenovic, N.; Gomez-Echeverri, L.; Turkenburg, W.C.; Global Energy Assessment (GEA) Council

    2012-01-01

    Energy is central to addressing major challenges of the 21st Century, challenges like climate change, economic and social development, human well-being, sustainable development, and global security. In 2005, Prof. Bert Bolin, the founding Chair of the Intergovernmental Panel on Climate Change (IPCC)

  4. Assessment of the energy efficiency enhancement of future mobile networks

    NARCIS (Netherlands)

    Litjens, R.; Toh, Y.; Zhang, H.; Blume, O.

    2014-01-01

    We assess the energy efficiency of mobile networks in 2020, and compare it with a 2010 baseline. A comprehensive assessment approach is taken, considering all relevant scenario aspects such as data traffic growth, hardware evolutions, mobile network deployments and operations including network shari

  5. Emerging Energy Requirements for Future C4ISR

    Science.gov (United States)

    2002-09-01

    fulfill the role once envisioned for the military energy depot. One proposed design is the pebble bed modular reactor ( PBMR ) under development by...designs. The PBMR and GT-MHR, coupled with a direct-cycle gas turbine generator, would have a thermal efficiency of about 42-45 percent and would produce

  6. Intelligent Glazed Facades for Fulfilment of Future Energy Regulations

    DEFF Research Database (Denmark)

    Winther, Frederik Vildbrad; Heiselberg, Per; Jensen, Rasmus Lund

    2010-01-01

    This project aims at testing technologies for control of heat transfer, irradiation, mass transport and energy storage in order to investigate the potential of a intelligent dynamic glazed facade. Furthermore a development of algorithms for control of the technologies included in the facade...

  7. Future of the beam energy scan program at RHIC

    Directory of Open Access Journals (Sweden)

    Odyniec Grazyna

    2015-01-01

    Full Text Available The first exploratory phase of a very successful Beam Energy Scan Program at RHIC was completed in 2014 with Au+Au collisions at energies ranging from 7 to 39 GeV. Data sets taken earlier extended the upper limit of energy range to the √sNN of 200 GeV. This provided an initial look into the uncharted territory of the QCD phase diagram, which is considered to be the single most important graph of our field. The main results from BES phase I, although effected by large statistical errors (steeply increasing with decreasing energy, suggest that the highest potential for discovery of the QCD Critical Point lies bellow √sNN 20 GeV. Here, we discuss the plans and the preparation for phase II of the BES program, with an order of magnitude larger statistics, which is planned for 2018-2019. The BES II will focus on Au+Au collisions at √sNN from 20 to 7 GeV in collider mode, and from √sNN 7 to 3.5 GeV in the fixed target mode, which will be run concurrently with the collider mode operation.

  8. Affordable comfort 95 - investing in our energy future

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-12-31

    This report describes the topics from the conference on Affordable Comfort, held March 26-31, 1995. Topics are concerned with energy efficiency in homes, retrofitting, weatherization, and monitoring of appliances, heating, and air conditioning systems for performance, as well as topics on electric utilities.

  9. High Energy Colliding Beams; What Is Their Future?

    CERN Document Server

    Richter, Burton

    2014-01-01

    The success of the first few years of LHC operations at CERN, and the expectation of more to come as the LHC performance improves, are already leading to discussions of what should be next for both proton-proton and electron-positron colliders. In this discussion I see too much theoretical desperation caused by the so far unsuccessful hunt for what is beyond the Standard Model, and too little of the necessary interaction of the accelerator, experimenter, and theory communities necessary for a scientific and engineering success. Here, I give my impressions of the problem, its possible solution, and what is needed to have both a scientifically productive and financially viable future.

  10. The Decline of the Atom and the Rise of the Sun as Future Energy Sources

    Science.gov (United States)

    Bockris, J. O'M.

    1973-01-01

    Examines the various energy sources likely to be developed in the near future, and suggests that the only satisfactory solution lies in the development of solar energy and an associated non-polluting "hydrogen economy." Concludes that Australia has ideal conditions and the technical expertise to lead in solar energy research. (JR)

  11. Distributed technologies in California's energy future: A preliminary report. Volume 2

    Energy Technology Data Exchange (ETDEWEB)

    Christensen, M.; Craig, P.; McGuire, C.B.; Simmons, M. (eds.)

    1977-09-01

    The chapters in Volume 2 of Distributed Energy Systems in California's Future are: Environmental Impacts of Alternative Energy Technologies for California; Land Use Configurations and the Utilization of Distributive Energy Technology; Land Use Implications of a Dispersed Energy Path; Belief, Behavior, and Technologies as Driving Forces in Transitional Stages--The People Problem in Dispersed Energy Futures; Development of an Energy Attitude Survey; Interventions to Influence Firms Toward the Adoption of ''Soft'' Energy Technology; The Entry of Small Firms into Distributed Technology Energy Industries; Short-Term Matching of Supply and Demand in Electrical Systems with Renewable Sources; Vulnerability of Renewable Energy Systems; and District Heating for California.

  12. Nuclear energy: what scenarios for the future?; Nucleaire: quels scenarios pour le futur?

    Energy Technology Data Exchange (ETDEWEB)

    Chatelier, Michel; Criqui, Patrick; Heuer, Daniel; Huet, Sylvestre

    2012-01-20

    Because of its energetic, environmental, economical, social, safety, political, and even ideological aspects, the nuclear energy is a major society stake. It is a technical and complex topic as well which merits a democratic, well argued and transparent debate. This book supplies to the reader all the necessary information for a thorough analysis of this much disputed energy source without any bias: why France is one of the most nuclearized country in the world? Can we get out of nuclear energy? How and at what price? Wastes and safety: what can we expect (or not) from the next generations of reactors? Should we have a referendum? In this book, two researchers of the nuclear domain, an economist and a journalist invite us to consider the problem from all angles. (J.S.)

  13. Magnetic Refrigeration – an Energy Efficient Technology for the Future

    DEFF Research Database (Denmark)

    Bahl, Christian Robert Haffenden; Smith, Anders; Pryds, Nini

    2009-01-01

    Magnetic refrigeration is an emerging technology that has the potential to significantly reduce the energy consumption in the refrigeration sector. The technology relies on the heating and cooling of magnetic materials upon the application and removal of a magnetic field, respectively....... This magnetocaloric effect is inherent to all magnetic materials, but manifests itself stronger in some materials. The thermodynamically reversible nature of the magnetocaloric effect holds out the promise of a more energy efficient method of refrigeration compared to conventional compressor technology. Coupling...... this with an absence of ozone depleting and greenhouse contributing gasses gives magnetic refrigeration the potential to become an environmentally sustainable technology. The magnetic refrigeration group at Risø DTU aims to demonstrate the technology in a prototype magnetic refrigeration device. Our work spans a wide...

  14. Magnetic Refrigeration – an Energy Efficient Technology for the Future

    DEFF Research Database (Denmark)

    Bahl, Christian Robert Haffenden; Smith, Anders; Pryds, Nini

    2009-01-01

    Magnetic refrigeration is an emerging technology that has the potential to significantly reduce the energy consumption in the refrigeration sector. The technology relies on the heating and cooling of magnetic materials upon the application and removal of a magnetic field, respectively....... This magnetocaloric effect is inherent to all magnetic materials, but manifests itself stronger in some materials. The thermodynamically reversible nature of the magnetocaloric effect holds out the promise of a more energy efficient method of refrigeration compared to conventional compressor technology. Coupling...... this with an absence of ozone depleting and greenhouse contributing gasses gives magnetic refrigeration the potential to become an environmentally sustainable technology. The magnetic refrigeration group at Risø DTU aims to demonstrate the technology in a prototype magnetic refrigeration device. Our work spans a wide...

  15. Technical challenges for the future of high energy lasers

    Energy Technology Data Exchange (ETDEWEB)

    LaFortune, K N; Hurd, R L; Fochs, S N; Rotter, M D; Pax, P H; Combs, R L; Olivier, S S; Brase, J M; Yamamoto, R M

    2007-01-10

    The Solid-State, Heat-Capacity Laser (SSHCL) program at Lawrence Livermore National Laboratory is a multi-generation laser development effort scalable to the megawatt power levels with current performance approaching 100 kilowatts. This program is one of many designed to harness the power of lasers for use as directed energy weapons. There are many hurdles common to all of these programs that must be overcome to make the technology viable. There will be a in-depth discussion of the general issues facing state-of-the-art high energy lasers and paths to their resolution. Despite the relative simplicity of the SSHCL design, many challenges have been uncovered in the implementation of this particular system. An overview of these and their resolution are discussed. The overall system design of the SSHCL, technological strengths and weaknesses, and most recent experimental results will be presented.

  16. Thermoelectric Energy Conversion: Future Directions and Technology Development Needs

    Science.gov (United States)

    Fleurial, Jean-Pierre

    2007-01-01

    This viewgraph presentation reviews the process of thermoelectric energy conversion along with key technology needs and challenges. The topics include: 1) The Case for Thermoelectrics; 2) Advances in Thermoelectrics: Investment Needed; 3) Current U.S. Investment (FY07); 4) Increasing Thermoelectric Materials Conversion Efficiency Key Science Needs and Challenges; 5) Developing Advanced TE Components & Systems Key Technology Needs and Challenges; 6) Thermoelectrics; 7) 200W Class Lightweight Portable Thermoelectric Generator; 8) Hybrid Absorption Cooling/TE Power Cogeneration System; 9) Major Opportunities in Energy Industry; 10) Automobile Waste Heat Recovery; 11) Thermoelectrics at JPL; 12) Recent Advances at JPL in Thermoelectric Converter Component Technologies; 13) Thermoelectrics Background on Power Generation and Cooling Operational Modes; 14) Thermoelectric Power Generation; and 15) Thermoelectric Cooling.

  17. Tactical Fuel and Energy Strategy for The Future Modular Force

    Science.gov (United States)

    2009-05-18

    available to developing countries, their increasing needs will lead to a greater demand for oil. India and China will see their energy demands rise to “first...destabilize some regions. Nations such as China are already investing billions of dollars into infrastructure to produce alternative fuels such as...within the broad purview of biofuels. To date, biofuels research has focused primarily on large-scale ethanol production from corn grain ( starch ) and

  18. The Blueprint for a Secure Energy Future: Progress Report

    Science.gov (United States)

    2012-03-01

    Americans have jobs as a result. But even with this progress, there is much more work to do. Right now, we’re experiencing yet another painful reminder...completed its comprehensive review of policies for managing the back end of the nuclear fuel cycle, including all alternatives for the storage, processing...developing fuels that can be produced directly from sunlight , improving energy efficient building systems design, and using modeling and simulation

  19. Energy in the future: a series of three lectures

    Energy Technology Data Exchange (ETDEWEB)

    Putnam, P.

    1953-06-01

    Our hypothetical Trustee recognizes that the economic and social pressures directed at finding new sources of abundant low-cost energy are about to become compelling. As a prudent Trustee, he would say the time for action has come. He would urge that the nation's talents, public and private, be released for the development of nuclear furnaces (reactors) capable of furnishing heat for the generation of electricity, for district central heating and for industrial process heating. He would urge that we continue to explore nuclear reactions other than the fission of uranium and thorium. There is hope of domesticating the fusion reaction that makes the hydrogen bomb go. Economical fusion of the hydrogen contained in a cubic mile of sea water would be a source of capital energy equal to all conceivable needs for many hundreds of years. He would be concerned about the vast quantities of metals, some of them already in short supply, that would be required by very large nuclear power programs. He would suggest that we search for these metals by methods yet to be developed, and in novel places, including the sea. Finally, as our ultimate anchor to windward, he would urge the exploration of all ways to obtain income energy from sunlight in more useful forms and at lower costs than now appear possible.

  20. Metro Access Convergence for Broadband Future Low Energy Consumption Networks

    Directory of Open Access Journals (Sweden)

    G. M.T. Beleffi

    2011-01-01

    Full Text Available Problem statement: In study the impact of the optical technologies and infrastructures on the reduction of the carbon footprint maintaining high level of broadband to the end user is discussed. Approach: Authors analyze the main energy consumers in Core, Metro and Access Networks as well as the topology and the performaces of the EU FP7 SARDANA Project, a long reach full optical metro access convergent network. This permit to have a clear and innovative view on the topic of the green networks comparing commercial and on the edge solutions for the critical access segment. Three scenarios have been assumed with different uplink bandwidths: unlimited uplink in the CO, limited uplink of 400 Gbit sec-1 and strong limitation of 100 Gbit sec-1. Additionally, three different sizes of the access network with 100, 1,000 and 10,000 subscribers connected to a single CO have been considered. Results: Increasing the number of users and reducing the uplink bandwidth, the difference in energy efficiency between TDM and PONs and P-t-P FTTH networks increases. Conclusion: Authors conclude that in general, a SARDANA like network provides very good energy efficiency for both limited and unlimited uplink and for small and large networks.

  1. Local Power -- Global Connections: linking the world to a sustainable future through decentralized energy technology

    Energy Technology Data Exchange (ETDEWEB)

    Brent, Richard; Sweet, David

    2007-07-01

    Various international dynamics are converging to increase the attractiveness of decentralized energy as a complement to existing centralized energy infrastructures. Decentralized energy (DE) technologies, including onsite renewables, high efficiency cogeneration and industrial energy recycling, offer considerable benefits to those seeking working alternatives to emerging challenges in the energy sector. DE is ideally suited to provide clean affordable energy to areas where modern energy services are currently lacking. Having smaller generators close to where energy is required ensures a safe, reliable and secure energy supply when the energy is required. Furthermore, because DE is a much cleaner alternative than conventional central power plants and the energy provided comes at a much smaller price tag DE is an increasingly acceptable alternative both in the developed and developing world. DE is sure to play a key role in any plan to build a sustainable energy future. (auth)

  2. Strategy and perspective on future energy systems, technological range potentials for gas cooled reactors

    Energy Technology Data Exchange (ETDEWEB)

    Bouchard, J.; Bernard, P.; Pochon, E. [CEA, Grenoble (France)

    2002-04-15

    Over the past century, energy consumption worldwide has increased more than ten-fold and, by the year 2050, is likely to be twice what it is today. This increase of energy demand seems inescapable, in view of the growth of the world population and the right to energy access and development for all countries around the world. The pursuit of energy production in the current conditions, essentially based on fossil fuels, would result in the depletion of all the known oil and gas sources in the world with the risks of scarcity of supply. The economies of many countries, particularly countries who do not have natural fossil resources, could suffer under hardships and uncertainties relating to the oil and gas prices. Another consequence would be a doubling of the annual emissions of greenhouse gases by the year 2050 with its consequences over climate change. Energy savings and renewable energy sources shall contribute to avoid such risks, however it will not be enough, by far, to meet the energy consumption of 9 billion inhabitants across the planet. Nuclear energy has unique advantages as to sustainable development, and could offer a safe and economic solution, with long-term resources and no greenhouse effect.

  3. Attaining the Photometric Precision Required by Future Dark Energy Projects

    Energy Technology Data Exchange (ETDEWEB)

    Stubbs, Christopher

    2013-01-21

    This report outlines our progress towards achieving the high-precision astronomical measurements needed to derive improved constraints on the nature of the Dark Energy. Our approach to obtaining higher precision flux measurements has two basic components: 1) determination of the optical transmission of the atmosphere, and 2) mapping out the instrumental photon sensitivity function vs. wavelength, calibrated by referencing the measurements to the known sensitivity curve of a high precision silicon photodiode, and 3) using the self-consistency of the spectrum of stars to achieve precise color calibrations.

  4. Future of photovoltaic energy conversion in developing countries

    Energy Technology Data Exchange (ETDEWEB)

    Hogan, S.

    1980-04-01

    Recent studies reveal that photovoltaic energy conversion will be economically viable for usage in developing countries. An overview of programs designed to lower the costs of such conversion systems is presented. Government goals are reviewed, as well as application projects relative to rural usage. A summary of the state-of-the-art in both advanced research and commercially available technology is presented. It is concluded that with the range of the work being done, such systems will be viable for many rural applications within 5 years.

  5. Planet Ocean

    Science.gov (United States)

    Afonso, Isabel

    2014-05-01

    A more adequate name for Planet Earth could be Planet Ocean, seeing that ocean water covers more than seventy percent of the planet's surface and plays a fundamental role in the survival of almost all living species. Actually, oceans are aqueous solutions of extraordinary importance due to its direct implications in the current living conditions of our planet and its potential role on the continuity of life as well, as long as we know how to respect the limits of its immense but finite capacities. We may therefore state that natural aqueous solutions are excellent contexts for the approach and further understanding of many important chemical concepts, whether they be of chemical equilibrium, acid-base reactions, solubility and oxidation-reduction reactions. The topic of the 2014 edition of GIFT ('Our Changing Planet') will explore some of the recent complex changes of our environment, subjects that have been lately included in Chemistry teaching programs. This is particularly relevant on high school programs, with themes such as 'Earth Atmosphere: radiation, matter and structure', 'From Atmosphere to the Ocean: solutions on Earth and to Earth', 'Spring Waters and Public Water Supply: Water acidity and alkalinity'. These are the subjects that I want to develop on my school project with my pupils. Geographically, our school is located near the sea in a region where a stream flows into the sea. Besides that, our school water comes from a borehole which shows that the quality of the water we use is of significant importance. This project will establish and implement several procedures that, supported by physical and chemical analysis, will monitor the quality of water - not only the water used in our school, but also the surrounding waters (stream and beach water). The samples will be collected in the borehole of the school, in the stream near the school and in the beach of Carcavelos. Several physical-chemical characteristics related to the quality of the water will

  6. Priority order in using biomass resources - Energy systems analyses of future scenarios for Denmark

    DEFF Research Database (Denmark)

    Kwon, Pil Seok; Østergaard, Poul Alberg

    2013-01-01

    for the decrease of biomass are made by use of an hourly energy system analysis model, EnergyPLAN. The results are shown in terms of system configuration, biomass fuel efficiency, system cost, and impacts on the export of electricity. It is concluded that the reduction of biomass in the heat sector is better than......According to some future Danish energy scenarios, biomass will become one of the two main pillars of the future energy system accompanied by wind power. The biomass can be used for generating heat and electricity, and as a transportation fuel in a future energy system according to the scenarios....... This article compares the value of using biomass as a heat source and for electricity generation in a 100% renewable energy system context. The comparison is done by assuming an incremental decrease in the biomass available for the electricity and heat sector, respectively. The assumed scenarios...

  7. Nuclear energy, energy for the present and the future; Energia nuclear, una energia para el presente y el futuro

    Energy Technology Data Exchange (ETDEWEB)

    Arredondo S, C. [ININ, 52750 La Marquesa, Estado de Mexico (Mexico)]. e-mail: cas@nuclear.inin.mx

    2008-07-01

    In this work we will try to show that nuclear energy can contribute to the generation energy in the present and the future, considering that its effect on the climatic change is relatively low and that the fuels that uses are available a large scale. At the moment it is had already commercial thermal fission reactors , there are also them of fast fission that allow the fuel rearing, although these last ones in much smaller number, with both types of fission nuclear reactors can be obtained a very important contribution to the generation of energy at world-wide level during the time that is necessary so that it is developed, constructs and operates the first commercial fusion reactor. The energy that is generated in the present and future must come from different sources, which require to be reliable, to have little effect on the environment, to have wide reserves of fuels and to be viable from an economic and social point of view, they must be viable and safe. Between possible alternative energies it is counted on the lot, the wind one, the geothermal one, originating of the tides and some others. An energy that must be considered so that it has arrived at his maturity and he is already able to contribute widely to cover the present needs and future it is nuclear energy, as much the originating one of the fission of a heavy centre like obtained when fusing two light centers. On base in the nuclear fuel reserves at world-wide level a simple calculation takes control of the lapse in which energy by means of the nuclear fission in rearing can be generated reactors expresses demonstrating that the time sufficient to finish to the investigation and development of fusion reactors which they generate energy in economic, safe and reliable form. Combining these two options the nuclear energy can be considered the future like for the present and the future with practically null effects in the climatic change. (Author)

  8. Hybrid system- a promising way solving future energy problems

    Institute of Scientific and Technical Information of China (English)

    Dieter Bohn

    2007-01-01

    With the increasing demand for electricity,an efficiency improvement and thereby reduced CO2 emissions of the power plants are expected in order to reach the goals set in the Kyoto protocol.In comparison to conventional systems,the hybrid-systems with the use of synergetic effects offer the possibility to provide a substantial contribution to spare our natural resources and protect our environment.Combined Cycle Power Plants belongs innately hybrid system in the centralized energy market.They can provide large amounts of power and have a quick start-up time.The MGT/FC hybrid system is quite promising in the decentralized energy market.It is widely used in stand-alone applications.Furthermore,the combination of fossil and renewable power plant technologies contains a large synergy potential to increase the efficiency of processes for power plants.New materials,innovative cooling technology,new combustion concepts and optimized production methods are needed to make the potential of these new technologies accessible for a quantum leap in the efficiency.For this it needs considerable research work and good coordinated research projects between the state,industry,research laboratories and universities.

  9. Terrestrial Planets Accreted Dry

    Science.gov (United States)

    Albarede, F.; Blichert-Toft, J.

    2007-12-01

    Plate tectonics shaped the Earth, whereas the Moon is a dry and inactive desert. Mars probably came to rest within the first billion years of its history, and Venus, although internally very active, has a dry inferno for its surface. The strong gravity field of a large planet allows for an enormous amount of gravitational energy to be released, causing the outer part of the planetary body to melt (magma ocean), helps retain water on the planet, and increases the pressure gradient. The weak gravity field and anhydrous conditions prevailing on the Moon stabilized, on top of its magma ocean, a thick buoyant plagioclase lithosphere, which insulated the molten interior. On Earth, the buoyant hydrous phases (serpentines) produced by reactions between the terrestrial magma ocean and the wet impactors received from the outer Solar System isolated the magma and kept it molten for some few tens of million years. The elemental distributions and the range of condensation temperatures show that the planets from the inner Solar System accreted dry. The interior of planets that lost up to 95% of their K cannot contain much water. Foundering of their wet surface material softened the terrestrial mantle and set the scene for the onset of plate tectonics. This very same process may have removed all the water from the surface of Venus 500 My ago and added enough water to its mantle to make its internal dynamics very strong and keep the surface very young. Because of a radius smaller than that of the Earth, not enough water could be drawn into the Martian mantle before it was lost to space and Martian plate tectonics never began. The radius of a planet therefore is the key parameter controlling most of its evolutional features.

  10. Photovoltaic energy mini-generation: Future perspectives for Portugal

    Energy Technology Data Exchange (ETDEWEB)

    Carvalho, Duarte [Physics Department, University of Evora, R. Romao Ramalho, 59, 7000-671 Evora (Portugal); Wemans, Joao [WS Energia SA, Taguspark Edificio Tecnologia II, Pav. 46, 2740-257 Porto Salvo (Portugal); Lima, Joao [Agropower, Moinho de Pisoes, Santana do Campo, 7040-130 Arraiolos (Portugal); Malico, Isabel, E-mail: imbm@uevora.pt [Physics Department, University of Evora, R. Romao Ramalho, 59, 7000-671 Evora (Portugal); IDMEC/IST, Technical University of Lisbon, Mechanical Engineering Department, Av. Rovisco Pais, 1049-001 Lisbon (Portugal)

    2011-09-15

    This paper evaluates the benefits of developing the mini-generation PV market in Portugal. It presents the legal framework and current status of the Portuguese PV electricity sector, and compares the country to other European nations: France, Germany, Greece, Italy, Spain and the United Kingdom. A model that combines PVGIS with a self-developed financial tool is used to assess the feasibility of a 150 kW mini-generation system using five different technologies: fixed mount, single-axis tracking, double-axis tracking, low concentration and medium concentration (MCPV). The profitability of the mini-generation systems in the seven countries studied is calculated and compared. According to this analysis, MCPV and, of the conventional technologies, the single-axis tracking systems are the most profitable technologies. Despite the attractiveness of the current Portuguese feed-in tariffs and of the abundant solar resource, investors are discouraged and the country's PV market is far from mature. Specific mini-generation regulations should focus on a fast and transparent licensing procedure and should promote the access to financing. This would attract new investments, which would result in the growth of the PV electricity produced, and would help Portugal to meet its European Union Renewable Energy targets. - Highlights: > This work promotes the development of a mini-generation PV market in Portugal. > The Portuguese current status and legal framework is compared to other EU countries. > The profitability of 5 different PV technologies is compared for 7 European countries. > The Portuguese growth potential for PV energy is still big. > Portugal, due to its radiation levels, presents excellent investment opportunities.

  11. Can renewable energy sources satiate Slovakia's future energy needs?

    Energy Technology Data Exchange (ETDEWEB)

    Tomis, Igor; Koval, Peter; Janicek, Frantisek; Darula, Ivan

    2010-09-15

    The paper examines the options for replacing the current energy mix of non-renewable, conventional energy sources solely with renewable sources in the long term within the context of the Slovak environment, possibly combined with nuclear energy in the 50-year horizon. Vital needs are outlined in household energy consumption and energy consumption for industrial and transportation purposes to fulfil in order for Slovakia to become independent of foreign sources in energy supplies.

  12. Future of nuclear energy for electricity generation in Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Maiorino, Jose R.; Moreira, Joao M.L.; Carajlescov, Pedro, E-mail: joserubens.maiorino@ufabc.edu.br, E-mail: joao.moreira@ufabc.edu.br, E-mail: pedro.carajlescov@ufabc.edu.br [Universidade Federal do ABC (CECS/UFABC), Santo Andre, SP (Brazil). Centro de Engenharia, Modelagem e Ciencias Aplicadas

    2015-07-01

    We discuss in this paper the medium- and long- terms evolution of nuclear power in Brazil considering official governmental studies and reports prepared by research groups. The documents reviewed include the national energy balance (BEN, 2014), the short-term planning (PDEE, 2023) and long-term planning (PNE-2030) documents emitted by EPE, and studies conducted by independent institutions and researchers. The studies consider different scenarios regarding gross national product growth and institutional development for the country and conclude that nuclear power should increase its role in Brazil. The generation matrix should diversity by 2030 and 2040 with hydropower decreasing its share from today's 70 % to values between 47 and 57 %. Nuclear power is considered a viable alternative for base load electricity generation in Brazil; to reduce generation risks during dry seasons, and to facilitate the operation of the whole power generation system. The share of nuclear power may reach values between 8 % and 15 % by 2040 according to different scenarios. To meet such growth and facilitate new investments, it is necessary to change the legal framework of the sector, and allow private ownership of enterprises to build and operate nuclear power plants in the country. (author)

  13. Distributed technologies in California's energy future. Volume I

    Energy Technology Data Exchange (ETDEWEB)

    Christensen, M.; Craig, P.; McGuire, C.B.; Simmons, M. (eds.)

    1977-09-01

    This interim report contains eight of the eighteen chapters included in the complete report. In Chapter I, pertinent data, facts, and observations are made following an initial summary. Chapter II is an introduction, citing especially the writings of Amory Lovins. The criteria used in defining distributed systems, suggested by Lovins, are that the technologies be renewable, environmentally benign, local, subject to graceful failure, foolproof, flexible, comprehensible, and matched in energy quality. The following chapters are: The Energy Predicament; The California Setting; Energy Resources for California's Future; Alternative Energy Futures for California; Issues and Problems; and Directions for Future Work. Six appendices deal with residential heating loads and air conditioning, allocations, co-generation, population projections, and the California wind energy resource. (MCW)

  14. The importance of the different kinds of energy sources for energy future of Turkey

    Science.gov (United States)

    Kaplan, Yusuf Alper; Aladağ, Canan

    2016-11-01

    Nowadays, the need of energy has been increasing day by day with the population growth and the advancements of technology. In this study, the current state of nuclear, wind and solar energy on the worldwide has been generally investigated. The general assessments have been made based on Turkey's energy potential and the evaluation situation of this potential. The current political structures of countries are generally assessed and under this policy, the last situation and the latest implemented innovations are given. Turkey's energy demand is constantly increasing and Turkey is a country that needs to energy imports. This is a need for new energy sources to meet the growing need for energy. Nuclear, wind and solar energy are the new sources of energy to the fore in our country recently. In this study is given general information on the usage of energy sources of making and some deficiencies were been emphasized by political considerations in this regard.

  15. An open source approach to Sweden's energy system : A review of future energy pathways

    OpenAIRE

    Nawfal, Saadi Failali

    2013-01-01

    This paper discusses the development of an energy systems model for Swedenconsidering electricity, heat and direct fossil fuel consumption in the residential,industrial and transport sectors as well as the energy interaction with the other Nordiccountries and its impact on the Swedish energy system. The model is developed in theOpen source energy modelling system (OSeMOSYS) (Mark Howells 2011) andshowcases potential energy investment options for Sweden in the next four decades(2010-2050). It ...

  16. Electrical energy generation in Europe the current and future role of conventional energy sources in the regional generation of electricity

    CERN Document Server

    Morales Pedraza, Jorge

    2014-01-01

    Maximizing reader insights into the current use of conventional energy sources (such as fossil fuels) in the generation of electricity in the European region, this book addresses several key issues including: potential ways European countries could expand their energy sector in the coming years; the impact on the climate, the level of energy reserves, different efficiency measures that could be adopted to reduce the consumption of fossil fuels in the generation of electricity, and current and future energy production and consumption trends, amongst other topics.   Covering both how the use

  17. Electrodynamics in Giant Planet Atmospheres

    Science.gov (United States)

    Koskinen, T.; Yelle, R. V.; Lavvas, P.; Cho, J.

    2014-12-01

    The atmospheres of close-in extrasolar giant planets such as HD209458b are strongly ionized by the UV flux of their host stars. We show that photoionization on such planets creates a dayside ionosphere that extends from the thermosphere to the 100 mbar level. The resulting peak electron density near the 1 mbar level is higher than that encountered in any planetary ionosphere of the solar system, and the model conductivity is in fact comparable to the atmospheres of Sun-like stars. As a result, the momentum and energy balance in the upper atmosphere of HD209458b and similar planets can be strongly affected by ion drag and resistive heating arising from wind-driven electrodynamics. Despite much weaker ionization, electrodynamics is nevertheless also important on the giant planets of the solar system. We use a generic framework to constrain the conductivity regimes on close-in extrasolar planets, and compare the results with conductivites based on the same approach for Jupiter and Saturn. By using a generalized Ohm's law and assumed magnetic fields, we then demonstrate the basic effects of wind-driven ion drag in giant planet atmospheres. Our results show that ion drag is often significant in the upper atmosphere where it can also substantially alter the energy budget through resistive heating.

  18. The role of Carbon Capture and Storage in a future sustainable energy system

    DEFF Research Database (Denmark)

    Lund, Henrik; Mathiesen, Brian Vad

    2012-01-01

    This paper presents the results of adding a CCS(Carbon Capture and Storage) plant including an underground CO2 storage to a well described and well documented vision of converting the present Danish fossil based energy system into a future sustainable energy system made by the Danish Society...

  19. Physics Results at the LHC and Implications for Future High Energy Physics Programmes

    CERN Document Server

    Heuer, Rolf-Dieter

    2012-01-01

    This paper presents the latest physics results from the LHC and describes high-energy colliders at the energy frontier for the years to come. The contribution also describes the various future directions, all of which have a unique value to add to experimental particle physics, and concludes by outlining key messages for the way forward.

  20. An Update on Planet Nine

    Science.gov (United States)

    Kohler, Susanna

    2016-07-01

    significantly constrains the parameters of Planet Nines orbit as well as where it currently could be within its orbit.Eliminating Hiding SpotsBrown and Batygin have returned, this time with more detailed estimates of Planet Nines potential orbit and location. By performing an enormous suite of simulations and then comparing the outcomes to actual observations of the distribution of KBOs, the authors narrow the allowed range for Planet Nines orbital characteristics.Authors predictions for the location, distance, brightness, and speed of Planet Nine throughout its orbit. Colored regions have been or will be explored by previous or current surveys capable of detecting the planet. Black regions remain places where Planet Nine could lurk. [Brown Batygin 2016]Brown and Batygin find that the allowed orbits for Planet Nine have perihelia of ~150350 AU, semimajor axes of ~380980 AU, and masses of ~520 Earth masses. Using these values and what we know about detection limits of previous and current surveys, we can rule out roughly two thirds of Planet Nines orbit, narrowing its position to be somewhere near aphelion.Planet Nines AtmosphereFinally, Jonathan Fortney (UC Santa Cruz) and collaborators model Planet Nines atmosphere. Rather than assuming the planet behaves like a blackbody, they use the planets predicted orbit as well as a range of plausible masses and interior structures in models that treat the body like the giant planets of our solar system.The authors find Planet Nine is likely quite cold, as expected, with an effective temperature of ~3550 K at most (for reference, Neptune is around 60 K). Because of this cool temperature, the authors speculate that methane may condense out of the atmosphere, changing the planets reflection and emission spectra. This would cause the planet to appear much bluer than planets like Uranus and Neptune in infrared energy bands.The constraints from these studies continue to support the existence of Planet Nine, narrow down the regions in which we

  1. The future 2015 Danish Building Regulations concerning energy performance of multi framed windows

    DEFF Research Database (Denmark)

    Hacksen Kampmann, Thomas

    The future Danish Building Regulation BR 2015 will reduce energy consumption within the overall building stock. Regarding the very important field windows, it seems that BR 2015 will be based on the same rules as today, except for a simple reduction of the limits for energy loss. Since a big part...... of the total amount of energy consumption in buildings is lost through windows, and the regulations concerning multi framed windows are already highly problematic today, there is a risk of the problem getting bigger in the future....

  2. Sustainable energy is a choice for the future; Duurzame energie is kiezen voor de toekomst

    Energy Technology Data Exchange (ETDEWEB)

    Van Kooij, E.

    2012-03-15

    On 7 February, the French 'Syndicat des Energies Renouvelables' (SER) published its white paper on renewable energy in which twelve recommendations are formulated. The aim is to raise the share of renewable energy in the total French energy system from 13% in 2010 to 25% in 2020. Employment, security of energy supply and a better climate are named as the main reasons for this endeavor. [Dutch] Op 7 februari presenteerde het Franse 'syndicat des energies renouvelables' (SER) haar witboek over duurzame energie waarin twaalf aanbevelingen zijn opgenomen. De inzet is om het aandeel van duurzame energie in de totale Franse energievoorziening te verhogen van 13% in 2010 naar 25% in 2020. Werkgelegenheid, energievoorzieningszekerheid en een beter klimaat werden als belangrijkste redenen genoemd.

  3. Towards a More Energy Efficient Future: Applying indicators to enhance energy policy

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2009-07-01

    Improving energy efficiency is a shared policy goal of many governments around the world. The benefits of more efficient use of energy are well known. Not only does it reduce energy costs and investments in energy infrastructure, it also lowers fossil fuel dependency and CO2 emissions, while at the same time increasing competitiveness and improving consumer welfare. Yet many questions remain unanswered. What are the latest trends in global energy use and CO2 emissions? How do factors such as demography, economic structure, income, lifestyle and climate affect these trends? Where are the greatest potentials to further improve energy efficiency, and which data are required to support energy efficiency policy development? This publication answers these questions using the latest insights from the IEA energy indicators work. The goal is to show policy makers how in-depth indicators can be used to track the progress in efficiency and identify new opportunities for improvements.

  4. Viva la revolucion energetica : in two short years, energy-smart Cuba has bolted past every country on the planet

    Energy Technology Data Exchange (ETDEWEB)

    Guevara-Stone, L. [Solar Energy International, Carbondale, CO (United States)

    2008-07-01

    The World Wildlife Fund (WWF) recently declared Cuba to be the only country in the world that is approaching sustainable development. The assessment was based on the United Nations Development Programme's Human Development Index (HDI) which is calculated using life expectancy, literacy and education per capita GDP. In the mid-1990s Cuba embarked on a campaign to save energy and use more renewables, including wind and solar energy. Equipping off-grid public schools, health clinics and social centres with solar energy panels made lights, computers and educational television programs accessible to all students. An effort in 2005 to decentralize energy involved generating electricity in smaller substations. More than 3,000 MW of power is now produced in 110 municipalities and blackouts have been essentially eliminated. In 2006, Cuba launched its Revolucion Energetica, an energy conservation plan to upgrade its 11 antiquated and inefficient thermoelectric plants. The country now consumes 34 per cent less kerosene, 37 per cent less liquefied petroleum gas and 80 per cent less gasoline. The five main aspects of the energy conservation plan are energy efficiency and conservation; increasing the availability and reliability of the national grid; incorporating more renewable energy technologies into its energy portfolio; increasing the exploration and production of local oil and gas; and international cooperation. In 2 years, nearly 2 million refrigerators, 1 million fans, 182,000 air conditions and 260,000 water pumps were replaced with more energy efficient models and compact fluorescent light bulbs were handed out for free until all incandescent bulbs were replaced. Cuba's per capita energy consumption is one-eighth that of the United States, while its access to health services, education levels and life expectancy match those of the United States. A new residential electricity tariff gives a favourable rate to residents who consume less than 100 kWh per month

  5. Current Status and Future Scenarios of Residential Building Energy Consumption in China

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Nan; Nishida, Masaru; Gao, Weijun

    2008-12-01

    China's rapid economic expansion has propelled it into the ranks of the largest energy consuming nation in the world, with energy demand growth continuing at a pace commensurate with its economic growth. Even though the rapid growth is largely attributable to heavy industry, this in turn is driven by rapid urbanization process, by construction materials and equipment produced for use in buildings. Residential energy is mostly used in urban areas, where rising incomes have allowed acquisition of home appliances, as well as increased use of heating in southern China. The urban population is expected to grow by 20 million every year, accompanied by construction of 2 billion square meters of buildings every year through 2020. Thus residential energy use is very likely to continue its very rapid growth. Understanding the underlying drivers of this growth helps to identify the key areas to analyze energy efficiency potential, appropriate policies to reduce energy use, as well as to understand future energy in the building sector. This paper provides a detailed, bottom-up analysis of residential building energy consumption in China using data from a wide variety of sources and a modeling effort that relies on a very detailed characterization of China's energy demand. It assesses the current energy situation with consideration of end use, intensity, and efficiency etc, and forecast the future outlook for the critical period extending to 2020, based on assumptions of likely patterns of economic activity, availability of energy services, technology improvement and energy intensities.

  6. Planning the Future of U.S. Particle Physics (Snowmass 2013): Chapter 3: Energy Frontier

    CERN Document Server

    Brock, R; Agashe, K; Artuso, M; Campbell, J; Dawson, S; Erbacher, R; Gerber, C; Gershtein, Y; Gritsan, A; Hatakeyama, K; Huston, J; Kotwal, A; Logan, H; Luty, M; Melnikov, K; Narain, M; Papucci, M; Petriello, F; Prell, S; Qian, J; Schwienhorst, R; Tully, C; Van Kooten, R; Wackeroth, D; Wang, L; Whiteson, D

    2014-01-01

    These reports present the results of the 2013 Community Summer Study of the APS Division of Particles and Fields ("Snowmass 2013") on the future program of particle physics in the U.S. Chapter 3, on the Energy Frontier, discusses the program of research with high-energy colliders. This area includes experiments on the Higgs boson, the electroweak and strong interactions, and the top quark. It also encompasses direct searches for new particles and interactions at high energy.

  7. Planning the Future of U.S. Particle Physics (Snowmass 2013): Chapter 3: Energy Frontier

    Energy Technology Data Exchange (ETDEWEB)

    Brock, R.; et al.

    2014-01-23

    These reports present the results of the 2013 Community Summer Study of the APS Division of Particles and Fields ("Snowmass 2013") on the future program of particle physics in the U.S. Chapter 3, on the Energy Frontier, discusses the program of research with high-energy colliders. This area includes experiments on the Higgs boson, the electroweak and strong interactions, and the top quark. It also encompasses direct searches for new particles and interactions at high energy.

  8. Impacts of Renewable Energy Quota System on China's Future Power Sector

    OpenAIRE

    Xiong, Weiming; Zhang, Da; Mischke, Peggy; Zhang, Xiliang

    2014-01-01

    As the biggest carbon emitting sector which produces 44% of current national carbon emission in China, the coal-dominated power sector has a tremendous potential for CO2 mitigation in the next two decades. Renewable energy quota system is currently discussed as a potential future policy instrument for the power sector, which requires certain fraction of renewable energy in total power generation for each province and grid zone. The quantitative studies on renewable energy quota for China are ...

  9. Straw bale houses in a moderate climate: adaptable to meet future energy performance requirements?

    OpenAIRE

    Verbeeck, Griet; Ponet, Jolien

    2012-01-01

    The energy performance regulations for buildings, introduced in many countries during the last decade, will be tightened in the future, even up to zero energy level. Apart from that, ancient building techniques that use renewable materials, such as straw bales, have a revival, inspired by concerns about the environmental impact of building materials. However, straw bale construction related organisations are concerned whether this building technique will survive the upcoming severe energy per...

  10. Roraima State: energy and alternatives to the future; Roraima: energia e alternativas para o futuro

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1993-10-01

    Report made by the Conselho Indigena de Roraima by and large with the Comissao Pro-Indio of Sao Paulo, addressed to the indigenous populations who lives near from the hydroelectric power plant on the state of Roraima, giving information about damns construction, energy electric uses, description of Hydroelectric and thermoelectric functioning, the energy program, electric energy landscape now and in the future, are presented. The work, was developed as support to meetings with the indigenous leaders. 7 figs.

  11. Impacts of Renewable Energy Quota System on China's Future Power Sector

    DEFF Research Database (Denmark)

    Xiong, Weiming; Zhang, Da; Mischke, Peggy

    2014-01-01

    As the biggest carbon emitting sector which produces 44% of current national carbon emission in China, the coal-dominated power sector has a tremendous potential for CO2 mitigation in the next two decades. Renewable energy quota system is currently discussed as a potential future policy instrument...... for the power sector, which requires certain fraction of renewable energy in total power generation for each province and grid zone. The quantitative studies on renewable energy quota for China are still very limited. Based on a least-cost and technology-rich power generation and transmission expansion model...... for China, this study examines the impacts of renewable energy quota system and carbon cap policy instruments on the future Chinese power sector. Various scenarios are examined toward 2030 and their future power generation mix, capacity installations and carbon emission are discussed. This study concludes...

  12. Promising future energy storage systems: Nanomaterial based systems, Zn-air, and electromechanical batteries

    Science.gov (United States)

    Koopman, R.; Richardson, J.

    1993-10-01

    Future energy storage systems will require longer shelf life, higher duty cycles, higher efficiency, higher energy and power densities, and be fabricated in an environmentally conscious process. This paper describes several possible future systems which have the potential of providing stored energy for future electric and hybrid vehicles. Three of the systems have their origin in the control of material structure at the molecular level and the subsequent nanoengineering into useful device and components: aerocapacitors, nanostructure multilayer capacitors, and the lithium ion battery. The zinc-air battery is a high energy density battery which can provide vehicles with long range (400 km in autos) and be rapidly refueled with a slurry of zinc particles and electrolyte. The electromechanical battery is a battery-sized module containing a high-speed rotor integrated with an iron-less generator mounted on magnetic bearings and housed in an evacuated chamber.

  13. Cities for smart environmental and energy futures. Impacts on architecture and technology

    Energy Technology Data Exchange (ETDEWEB)

    Rassia, Stamatina T. [ETH Zuerich (Switzerland). Inst. of Technology in Architecture; Pardalos, Panos M. (eds.) [Florida Univ., Gainesville, FL (United States). Dept. of Industrial and Systems Engneering

    2014-07-01

    Strategies for energy conservation in smart cities. Up-to-date presentation of on-going research. Innovative ideas for sustainable design. Cities for Smart Environmental and Energy Futures presents works written by eminent international experts from a variety of disciplines including architecture, engineering and related fields. Due to the ever-increasing focus on sustainable technologies, alternative energy sources, and global social and urban issues, interest in the energy systems for cities of the future has grown in a wealth of disciplines. Some of the special features of this book include new findings on the city of the future from the macro to the micro level. These range from urban sustainability to indoor urbanism, and from strategies for cities and global climate change to material properties. The book is intended for graduate students and researchers active in architecture, engineering, the social and computational sciences, building physics and related fields.

  14. Preparation of human resources for future nuclear energy using FBNR as the instrument of learning

    Energy Technology Data Exchange (ETDEWEB)

    Sefidvash, Farhang; Espinoza, Patricio; Guerrero, Victor Hugo [Escuela Politecnica Nacional (EPN), Quito (Ecuador); and others

    2015-11-15

    An increasing number of developing countries are showing interest to become the emerging countries to nuclear energy. Most of these countries lack human resources and adequate infrastructures to enter such a venture. The principle objective of activities of FBNR Group is to train human resources for the countries that at the present lack the necessary conditions, but aim at the future clean and safe nuclear energy through the fourth generation and INPRO compatible nuclear reactors. The preparation for the future nuclear energy is done through development of innovative nuclear reactor that meets the INPRO philosophies and criteria. These countries may or may not have decided as yet to utilize nuclear energy, but are interested to gain a strong educational foundation for their future. The research and development of a small innovative nuclear reactor FBNR is used as the instrument for learning. The young scientists will learn how to be innovative with the vision of INPRO philosophy and criteria.

  15. Confronting dark energy models mimicking {Lambda}CDM epoch with observational constraints: Future cosmological perturbations decay or future Rip?

    Energy Technology Data Exchange (ETDEWEB)

    Astashenok, Artyom V., E-mail: artyom.art@gmail.com [Baltic Federal University of I. Kant, Department of Theoretical Physics, 236041, 14, Nevsky st., Kaliningrad (Russian Federation); Odintsov, Sergei D. [Institucio Catalana de Recerca i Estudis Avancats (ICREA), Barcelona (Spain); Institut de Ciencies de l' Espai (CSIC-IEEC), Campus UAB, Torre C5-Par-2a pl, E-08193 Bellaterra (Barcelona) (Spain); Eurasian International Center for Theor. Physics, Eurasian National University, Astana 010008 (Kazakhstan); Tomsk State Pedagogical University, Tomsk (Russian Federation)

    2013-01-29

    We confront dark energy models which are currently similar to {Lambda}CDM theory with observational data which include the SNe data, matter density perturbations and baryon acoustic oscillations data. DE cosmology under consideration may evolve to Big Rip, type II or type III future singularity, or to Little Rip or Pseudo-Rip universe. It is shown that matter perturbations data define more precisely the possible deviation from {Lambda}CDM model than consideration of SNe data only. The combined data analysis proves that DE models under consideration are as consistent as {Lambda}CDM model. We demonstrate that growth of matter density perturbations may occur at sufficiently small background density but still before the possible disintegration of bound objects (like clusters of galaxies, galaxies, etc.) in Big Rip, type III singularity, Little Rip or Pseudo-Rip universe. This new effect may bring the future universe to chaotic state well before disintegration or Rip.

  16. Energy and information: The future stable combination. Energie en informatie: De toekomstvaste combinatie

    Energy Technology Data Exchange (ETDEWEB)

    Versmissen, A.G.P. (Unit Procesautomatisering en Informatietechnologie, KEMA, Arnhem (Netherlands)); Schouten, A.J. (Afdeling Produktie en Transport, Energiebedrijf IJsselmij, Zwolle (Netherlands)); Been-Roosma, R.G. (BSO/AT, Zwolle (Netherlands))

    1993-05-01

    In three articles an overview is given of the developments within the energy utilities in the Netherlands concerning information technology (IT). Attention is paid to the use of IT as a trigger for internal and external policy, energy and information as a new product-market combination, and energy and information towards an integral planning. 14 figs., 3 tabs., 3 refs.

  17. Energy and ethics. Ethical aspects of a future global power generation; Energie und Ethik. Ethische Aspekte zukuenftiger globaler Stromerzeugung

    Energy Technology Data Exchange (ETDEWEB)

    Gethmann, C.F. [Duisburg-Essen Univ. (Germany). Inst. fuer Philosophie; Europaeische Akademie Bad Neuenahr-Ahrweiler GmbH, Essen (Germany)

    2008-07-01

    The article deals with ethical questions regarding a future global energy supply by considering the normative aspects of economic efficiency, long-term liabilities, environmental sustainability, social acceptability and distributive equity. Regarding the ethical issues dealt with in the debate on the global energy supply, in particular two postulates arise: Both an improvement in knowledge and an improvement in the categories and procedures of ethical reflection are required. (orig.)

  18. Energy for future - What shall we and what can we do?; Energie fuer unsere Zukunft - Was sollen und was koennen wir tun?

    Energy Technology Data Exchange (ETDEWEB)

    Heinloth, K. [Universitaet Bonn (Germany). Physikalisches Inst.

    2004-07-01

    Looking at the natural fluxes of energy on planet Earth exhibits what energy is, which effects energy has and how much of the natural fluxes of energy are already in use by mankind. Furthermore this look exhibits too, how the meanwhile excessive consumption of coal, natural oil and natural gas - for providing any kind of technical energy like electricity, heat and fuels for the transportation sector - does influence natural energy fluxes: emission of carbon dioxide by burning fossil fuels leads to an increase of the concentration of carbon dioxide in the atmosphere. This leads to an additional greenhouse warming on Earth, endangering for instance the present climate stability. This threat can be reduced by realizing a manifold of improved and new energy technologies to provide electricity, room- and process heating, fuels and propulsion in the traffic sector, and furthermore drinking water and food. These technologies can be based on the largely extended use of renewable energy (solar light, biomass, hydro-, wind-and geothermal energy) and on nuclear energy (fission and possibly fusion). Altogether we should furthermore treat our planet Earth already cultivated by large in a sustainable way. This calls for a sustainable use of the natural as well as of all the technical fluxes of energy. (orig.)

  19. All for the Planet, the Planet for everyone!

    Science.gov (United States)

    Drndarski, Marina

    2014-05-01

    The Eco-Musketeers are unique voluntary group of students. They have been established in Belgrade, in Primary school 'Drinka Pavlović'. Since the founding in year 2000, Eco-Musketeers have been involved in peer and citizens education guided by motto: All for the planet, the planet for all! Main goals of this group are spreading and popularization of environmental approach as well as gaining knowledge through collaborative projects and research. A great number of students from other schools in Serbia have joined Eco-Musketeers in observations aiming to better understand the problem of global climate change. In the past several years Eco-Musketeers have also participated in many national and international projects related to the active citizenship and rising the awareness of the importance of biodiversity and environment for sustainable development of society. In this presentation we will show some of the main activities, eco-performances and actions of our organization related to the environment, biodiversity, conservation and recycling, such as: spring cleaning the streets of Belgrade, cleaning the Sava and the Danube river banks, removing insect moth pupae in the area of Lipovica forest near Belgrade. Also, Eco-Musketeers worked on education of employees of Coca-Cola HBC Serbia about energy efficiency. All the time, we have working on raising public awareness of the harmful effects of plastic bags on the environment, too. In order to draw attention on rare and endangered species in Serbia and around the globe, there were several performing street-plays about biodiversity and also the plays about the water ecological footprint. Eco-Musketeers also participated in international projects Greenwave-signs of spring (Fibonacci project), European Schools For A Living Planet (WWF Austria and Erste stiftung) and Eco Schools. The eco dream of Eco-Musketeers is to influence the Government of the Republic of Serbia to determine and declare a 'green habits week'. This should

  20. Futurism.

    Science.gov (United States)

    Foy, Jane Loring

    The objectives of this research report are to gain insight into the main problems of the future and to ascertain the attitudes that the general population has toward the treatment of these problems. In the first section of this report the future is explored socially, psychologically, and environmentally. The second section describes the techniques…

  1. Cloud formation in giant planets

    CERN Document Server

    Helling, Christiane

    2007-01-01

    We calculate the formation of dust clouds in atmospheres of giant gas-planets. The chemical structure and the evolution of the grain size distribution in the dust cloud layer is discussed based on a consistent treatment of seed formation, growth/evaporation and gravitational settling. Future developments are shortly addressed.

  2. Current and future industrial energy service characterizations. Volume II. Energy data on the US manufacturing subsector

    Energy Technology Data Exchange (ETDEWEB)

    Krawiec, F.; Thomas, T.; Jackson, F.; Limaye, D.R.; Isser, S.; Karnofsky, K.; Davis, T.D.

    1980-10-01

    In order to characterize industrial energy service, current energy demand, its end uses, and cost of typical energy applications and resultant services in the industrial sector were examined and a projection of state industrial energy demands and prices to 1990 was developed. Volume II presents in Section 2 data on the US manufacturing subsector energy demand, intensity, growth rates, and cost for 1971, 1974, and 1976. These energy data are disaggregated not only by fuel type but also by user classifications, including the 2-digit SIC industry groups, 3-digit subgroups, and 4-digit SIC individual industries. These data characterize typical energy applications and the resultant services in this subsector. The quantities of fuel and electric energy purchased by the US manufacturing subsector were converted to British thermal units and reported in billions of Btu. The conversion factors are presented in Table 4-1 of Volume I. To facilitate the descriptive analysis, all energy cost and intensity data were expressed in constant 1976 dollars. The specific US industrial energy service characteristics developed and used in the descriptive analysis are presented in Volume I. Section 3 presents the computer program used to produce the tabulated data.

  3. Homeland security: safeguarding America's future with energy efficiency and renewable energy technologies

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2002-08-01

    The State Energy Advisory Board (STEAB) presents this 10th annual report following the one-year anniversary of the September 11, 2001 terrorist attacks on the World Trade Center and the Pentagon. This event has had profound impacts on all segments of American society, not the least of which is this country’s energy sector. Long before September 11, a number of energy issues grabbed the nation’s attention, including opening the Arctic National Wildlife Refuge to oil and natural gas exploration, the power crisis in California, nationwide natural gas and gasoline price increases, and the administration’s May 2001 National Energy Policy. However, the events of September 11 refocused attention on the prominent role energy plays in the country’s homeland security. For the most part, the energy aspects of homeland security have focused on the physical security of critical energy emergency planning and energy infrastructure, such as power plants, refineries, and power and fuel transmission systems. While STEAB recognizes the importance of protecting our existing energy infrastructure, this should not be the sole focus of homeland security as it relates to energy.

  4. Radio Search For Extrasolar Planets

    Science.gov (United States)

    Zarka, P.

    Theoretical justification and ongoing observational efforts in view of detecting radio emissions from extrasolar planets will be presented. On the "prediction" side, a heuris- tic scaling law has been established relating the radio output of any magnetized flow- obstacle system to the incident magnetic energy flux on the obstacle. Its confirmation by the observation of radio emission from extrasolar planets would help to understand the energy budget of such a system. On the "detection" side, specific procedures have been developed for interference mitigation and weak burst detection.

  5. Confronting the sound speed of dark energy with future cluster surveys

    DEFF Research Database (Denmark)

    Basse, Tobias; Eggers Bjaelde, Ole; Hannestad, Steen;

    2012-01-01

    Future cluster surveys will observe galaxy clusters numbering in the hundred thousands. We consider this work how these surveys can be used to constrain dark energy parameters: in particular, the equation of state parameter w and the non-adiabatic sound speed c_s^2. We demonstrate that, in combin......Future cluster surveys will observe galaxy clusters numbering in the hundred thousands. We consider this work how these surveys can be used to constrain dark energy parameters: in particular, the equation of state parameter w and the non-adiabatic sound speed c_s^2. We demonstrate that......, then c_s^2 can be pinned down to within an order of magnitude. In the course of this work, we also investigate the process of dark energy virialisation in the presence of an arbitrary sound speed. We find that dark energy clustering and virialisation can lead to dark energy contributing to the total...

  6. IEA Wind Task 26: The Past and Future Cost of Wind Energy, Work Package 2

    Energy Technology Data Exchange (ETDEWEB)

    Lantz, E.; Wiser, R.; Hand, M.

    2012-05-01

    Over the past 30 years, wind power has become a mainstream source of electricity generation around the world. However, the future of wind power will depend a great deal on the ability of the industry to continue to achieve cost of energy reductions. In this summary report, developed as part of the International Energy Agency Wind Implementing Agreement Task 26, titled 'The Cost of Wind Energy,' we provide a review of historical costs, evaluate near-term market trends, review the methods used to estimate long-term cost trajectories, and summarize the range of costs projected for onshore wind energy across an array of forward-looking studies and scenarios. We also highlight the influence of high-level market variables on both past and future wind energy costs.

  7. Application and Development of Energy System Optimisation Models to Meet Challenges of the Future

    DEFF Research Database (Denmark)

    Balyk, Olexandr

    Climate change, security of supply and local air pollution are among the challenges that are shaping the future of energy systems worldwide. In response to these challenges, various goals are set nationally and internationally that energy systems are supposed to fulfil. These include e.g. EU 20...... them. The challenges of climate change, security of supply, and local air pollution are addressed in the papers by focusing on renewable energy systems, demand side management options, climate change mitigation and resource potentials. In the process of the study the energy system optimisation models...... energy, and an increased climate change mitigation potential.Other results highlight among others, the possible future roles of individual technologies (i.e. wind power in Denmark and carbon capture and storage in China) in the climate constrained world, the difficulty to achieve the 2°C target agreed...

  8. The nuclear energy of the future: the researches and the objectives; L'energie nucleaire du futur: quelles recherches pour quels objectifs?

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2005-07-01

    Today energy problems are global problems. That is why the new generation of energy production by nuclear power must be realized basely on serious forecasts at a world scale. The nuclear energy presents many trumps for an energetic answer, at long-dated, concerning the environment and the resources. This will be for two main conditions: the ability to answer the public opinion anxiety and the development of new systems more high- performance in terms of safety and economy in the framework of the sustainable development and the non proliferation policy. These subjects are at the earth of the CEA missions. This document proposes a detailed presentation of the nuclear origins, the fuel and its cycle, the radioactive wastes and their management,the dismantling and the decommissioning of the nuclear installations, the challenges of the nuclear safety, the energy in the world, the nuclear economy, the nuclear in the world, the researches of the future, the third generation reactors, the research on radioactive wastes, the fuel cycle of the nuclear systems of the future, the uranium resources, the generation four forum, the gas coolant reactors, the thorium, hybrid systems and the thermonuclear fusion. (A.L.B.)

  9. Exploring the diversity of Jupiter-class planets.

    Science.gov (United States)

    Fletcher, Leigh N; Irwin, Patrick G J; Barstow, Joanna K; de Kok, Remco J; Lee, Jae-Min; Aigrain, Suzanne

    2014-04-28

    Of the 900+ confirmed exoplanets discovered since 1995 for which we have constraints on their mass (i.e. not including Kepler candidates), 75% have masses larger than Saturn (0.3 MJ), 53% are more massive than Jupiter and 67% are within 1 AU of their host stars. When Kepler candidates are included, Neptune-sized giant planets could form the majority of the planetary population. And yet the term 'hot Jupiter' fails to account for the incredible diversity of this class of astrophysical object, which exists on a continuum of giant planets from the cool jovians of our own Solar System to the highly irradiated, tidally locked hot roasters. We review theoretical expectations for the temperatures, molecular composition and cloud properties of hydrogen-dominated Jupiter-class objects under a variety of different conditions. We discuss the classification schemes for these Jupiter-class planets proposed to date, including the implications for our own Solar System giant planets and the pitfalls associated with compositional classification at this early stage of exoplanetary spectroscopy. We discuss the range of planetary types described by previous authors, accounting for (i) thermochemical equilibrium expectations for cloud condensation and favoured chemical stability fields; (ii) the metallicity and formation mechanism for these giant planets; (iii) the importance of optical absorbers for energy partitioning and the generation of a temperature inversion; (iv) the favoured photochemical pathways and expectations for minor species (e.g. saturated hydrocarbons and nitriles); (v) the unexpected presence of molecules owing to vertical mixing of species above their quench levels; and (vi) methods for energy and material redistribution throughout the atmosphere (e.g. away from the highly irradiated daysides of close-in giants). Finally, we discuss the benefits and potential flaws of retrieval techniques for establishing a family of atmospheric solutions that reproduce the

  10. Zero Energy Schools: Designing for the Future: Zero Energy Ready K-12 Schools

    Energy Technology Data Exchange (ETDEWEB)

    Torcellini, Paul A [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-09-29

    Designing, building, and operating zero energy ready K-12 schools provides benefits for districts, students, and teachers. Optimizing energy efficiency is important in any building, but it's particularly important in K-12 schools. Many U.S. school districts struggle for funding, and improving a school building's energy efficiency can free up operational funds that may then be available for educational and other purposes.

  11. Designing a sustainable energy system for future slagelse city heat supply using energy planner web application

    OpenAIRE

    BoorBOOr, Marjan

    2013-01-01

    Currently, many activities and efforts are taking placed in different municipalities in Denmark in order to contribute to the national target,to phase out fossil fuel in the heat supply by 2030 and in the entire energy system in Denmark by 2050. However energy transition is a complex process and involved many section and include many inter relations. Any form of changes in one part can effects others which is one the biggest challege in energy transition and including these effects require...

  12. Educating Future Energy Engineers for Sustainability: Case Study in Energy Economy

    Directory of Open Access Journals (Sweden)

    Şiir Kilkiş

    2015-03-01

    Full Text Available This paper analyzes the case study of an interdisciplinary course in Energy Economy that was developed at the Energy Engineering Graduate Program at Başkent University. The course integrated several unique pedagogical features to satisfy the aim of developing a working knowledge in energy economy with an energy systems perspective. The novel aspects of the course thematically led to a capstone research project where 5 teams of 17 course participants analyzed their prioritized solutions towards improving the energy self-sufficiency of the campus based on the practice of energy economy. The results of the teams’ solutions towards a net-zero energy/exergy campus included electric buses for city-campus transport, poly-generation for the new Arts Center, LED/OLED lighting for campus lighting, dynamo driven/piezoelectric sports center, biofuels from the university-owned dairy products farm, and an energy efficient technology incubation center. This unique course with participatory learning is compared with others before concluding that the case study is a useful international example for energy economy.

  13. A National Plan for Energy Research, Development and Demonstration: Creating Energy Choices for the Future (1976)

    Energy Technology Data Exchange (ETDEWEB)

    Seamans, Jr., Robert C. [Energy Research and Development Administration (ERDA), Washington, DC (United States)

    1976-04-15

    This is the first annual update of the initial report submitted to you in June 1975 (ERDA-48), and complies with the requirements of Section 15 of the Federal Nonnuclear Energy Research and Development Act of 1974. This report represents an evolution in approach over the previous document. ERDA's proposed National Plan has been expanded in scope and depth of coverage and the basic goals and strategy are refined, but remain essentially intact. The Plan summarizes ERDA's current views on the energy technologies the Nation will need to achieve longer-term energy independence, specifically: The paramount role of the private sector in the development and commercialization of new energy technologies is addressed; Conservation (energy efficiency) technologies are singled out for increased attention and are now ranked with several supply technologies as being of the highest priority for national action; The President's 1977 budget requests a large increase - 30% over 1976 - in funding for energy RD&D with particular emphasis on accelerating energy RD&D programs directed at achieving greater long-term energy independence, encouraging cost-sharing with private industry and avoiding the undertaking of RD&D more appropriately the responsibility of the private sector, and supporting the commercial demonstration of synthetic fuel production by providing loan guarantees beginning in FY 76; Federal programs to assist industry in accelerating the market penetration of energy technologies with near-term potential are a key element of the Plan.

  14. Current Status and Future Potential of Energy Derived from Chinese Agricultural Land: A Review

    Directory of Open Access Journals (Sweden)

    Ningning Zhai

    2015-01-01

    Full Text Available Energy crisis is receiving attention with regard to the global economy and environmental sustainable development. Developing new energy resources to optimize the energy supply structure has become an important measure to prevent energy shortage as well as achieving energy conservation and emission reduction in China. This study proposed the concept of energy agriculture and constructed an energy agricultural technical support system based on the analysis of energy supply and demand and China’s foreign dependence on energy resources, combined with the function of agriculture in the energy field. Manufacturing technology equipment and agricultural and forestry energy, including crop or forestry plants and animal feces, were used in the system. The current status and future potential of China’s marginal land resources, energy crop germplasm resources, and agricultural and forestry waste energy-oriented resources were analyzed. Developing the function of traditional agriculture in food production may promote China’s social, economic, and environmental sustainable development and achieve energy saving and emission reduction.

  15. Catastrophic Evaporation of Rocky Planets

    CERN Document Server

    Perez-Becker, Daniel

    2013-01-01

    Short-period exoplanets can have dayside surface temperatures surpassing 2000 K, hot enough to vaporize rock and drive a thermal wind. Small enough planets evaporate completely. We construct a radiative-hydrodynamic model of atmospheric escape from strongly irradiated, low-mass rocky planets, accounting for dust-gas energy exchange in the wind. Rocky planets with masses 2000 K are found to disintegrate entirely in 0.1 M_Earth/Gyr --- our model yields a present-day planet mass of < 0.02 M_Earth or less than about twice the mass of the Moon. Mass loss rates depend so strongly on planet mass that bodies can reside on close-in orbits for Gyrs with initial masses comparable to or less than that of Mercury, before entering a final short-lived phase of catastrophic mass loss (which KIC 12557548b has entered). Because this catastrophic stage lasts only up to a few percent of the planet's life, we estimate that for every object like KIC 12557548b, there should be 10--100 close-in quiescent progenitors with sub-da...

  16. A review of the bandwidth and environmental discourses of future energy scenarios : Shades of green and gray

    NARCIS (Netherlands)

    Laugs, Gideon A. H.; Moll, Henri C.

    2017-01-01

    Energy scenarios are often used to investigate various possible energy futures and reduce the uncertainty that surrounds energy transition. However, scenario construction lacks consistent and adequate methodological standards, resulting in limited insight into the actual bandwidth covered by current

  17. A review of the bandwidth and environmental discourses of future energy scenarios : Shades of green and gray

    NARCIS (Netherlands)

    Laugs, Gideon A. H.; Moll, Henri C.

    2017-01-01

    Energy scenarios are often used to investigate various possible energy futures and reduce the uncertainty that surrounds energy transition. However, scenario construction lacks consistent and adequate methodological standards, resulting in limited insight into the actual bandwidth covered by current

  18. Observations of Extrasolar Planet Transits: What's next?

    Science.gov (United States)

    Rauer, H.

    2014-03-01

    Transits of extrasolar planets are a goldmine for our understanding of the physical nature of planets beyond the Solar System. Measurements of radii from transit observations combined with mass determinations from radial velocity spectroscopy, or transit timing variations, have provided the first indications to the planetary composition and interior structure. It turns out that planets show a much richer diversity than found in our own planetary system, considering e.g. the so-called 'super-Earths', 'mini-Neptunes', and inflated giant planets. Transiting exoplanets also allow for spectroscopic observations of their atmospheres, either during transit or near secondary eclipse. Exoplanets showing transits have therefore been identified as key observables, not only for planet detection, but in particular for investigating further planetary nature. As a result, a new generation of instruments (space- and groundbased) for exoplanet transit observations is already in the construction phase and is planned for the near future. Most of these target specifically stars bright enough for spectroscopic follow-up observations, a èlesson learned' from past transit surveys. A clear goal for future investigations of habitable planets is the detection and characterization of terrestrial planets which potentially could harbor life. This talk will review the status and in particular the future of transit observations, with a focus on rocky planets in the habitable zone of their host stars.

  19. Sustainable energy for the future. Modelling transitions to renewable and clean energy in rapidly developing countries.

    NARCIS (Netherlands)

    Urban, Frauke

    2009-01-01

    The main objective of this thesis is first to adapt energy models for the use in developing countries and second to model sustainable energy transitions and their effects in rapidly developing countries like China and India. The focus of this thesis is three-fold: a) to elaborate the differences

  20. USVI Energy Road Map: Charting the Course to a Clean Energy Future (Brochure)

    Energy Technology Data Exchange (ETDEWEB)

    2011-07-01

    This brochure provides an overview of the integrated clean energy deployment process and progress of the Energy Development in Island Nations U.S. Virgin Islands pilot project road map, including over-arching goals, organization, strategy, technology-specific goals and accomplishments, challenges, solutions, and upcoming milestones.

  1. Sustainable energy for the future. Modelling transitions to renewable and clean energy in rapidly developing countries.

    NARCIS (Netherlands)

    Urban, Frauke

    2009-01-01

    The main objective of this thesis is first to adapt energy models for the use in developing countries and second to model sustainable energy transitions and their effects in rapidly developing countries like China and India. The focus of this thesis is three-fold: a) to elaborate the differences bet

  2. Sustainable energy for the future. Modelling transitions to renewable and clean energy in rapidly developing countries.

    NARCIS (Netherlands)

    Urban, Frauke

    2009-01-01

    The main objective of this thesis is first to adapt energy models for the use in developing countries and second to model sustainable energy transitions and their effects in rapidly developing countries like China and India. The focus of this thesis is three-fold: a) to elaborate the differences bet

  3. Energy Frontier Research Centers: Science for Our Nation's Energy Future, September 2016

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2016-09-01

    As world demand for energy rapidly expands, transforming the way energy is collected, stored, and used has become a defining challenge of the 21st century. At its heart, this challenge is a scientific one, inspiring the U.S. Department of Energy’s (DOE) Office of Basic Energy Sciences (BES) to establish the Energy Frontier Research Center (EFRC) program in 2009. The EFRCs represent a unique approach, bringing together creative, multidisciplinary scientific teams to perform energy-relevant basic research with a complexity beyond the scope of single-investigator projects. These centers take full advantage of powerful new tools for characterizing, understanding, modeling, and manipulating matter from atomic to macroscopic length scales. They also train the next-generation scientific workforce by attracting talented students and postdoctoral researchers interested in energy science. The EFRCs have collectively demonstrated the potential to substantially advance the scientific understanding underpinning transformational energy technologies. Both a BES Committee of Visitors and a Secretary of Energy Advisory Board Task Force have found the EFRC program to be highly successful in meeting its goals. The scientific output from the EFRCs is impressive, and many centers have reported that their results are already impacting both technology research and industry. This report on the EFRC program includes selected highlights from the initial 46 EFRCs and the current 36 EFRCs.

  4. Renewable Energy Requirements for Future Building Codes: Energy Generation and Economic Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Russo, Bryan J.; Weimar, Mark R.; Dillon, Heather E.

    2011-09-30

    As the model energy codes are improved to reach efficiency levels 50 percent greater than current codes, installation of on-site renewable energy generation is likely to become a code requirement. This requirement will be needed because traditional mechanisms for code improvement, including the building envelope, mechanical systems, and lighting, have been maximized at the most cost-effective limit.

  5. A novel flexible and modular energy storage system for near future Energy Banks

    CERN Document Server

    Fargion, Daniele

    2016-01-01

    We considered a novel energy storage system based on the compression of air through pumped water. Differently from CAES on trial, the proposed indirect compression leaves the opportunity to choose the kind of compression from adiabatic to isothermal. The energy storage process could be both fast or slow leading to different configuration and applications. These novel storage system are modular and could be applied in different scales for different locations and applications, being very flexible in charge and discharge process. The system may offer an ideal energy buffer for wind and solar storage with no (or negligible) environment hazard. The main features of this novel energy storage system will be showed together with overall energy and power data.

  6. 35 Years of Innovation - Leading the Way to a Clean Energy Future (Brochure)

    Energy Technology Data Exchange (ETDEWEB)

    2014-12-01

    The U.S. Department of Energy (DOE) National Wind Technology Center (NWTC) at the National Renewable Energy Laboratory (NREL) is at the forefront of energy innovation. For more than three decades, our researchers have built unparalleled expertise in renewable energy technologies while supporting the nation's vision that wind and water can provide clean, reliable, and cost-effective electricity. The NWTC strives to be an essential partner to companies, other DOE laboratories, government agencies, and universities around the world seeking to create a better, more sustainable future.

  7. The biogas: a future energy alternative; Biogas: a alternativa energetica do futuro

    Energy Technology Data Exchange (ETDEWEB)

    Paixao, Carla Marques [Faculdade de Tecnologia e Ciencias, Salvador, BA (Brazil)]. E-mail: paixao_cm@yahoo.com.br; Anjos, Jose Angelo Sebastiao Araujo dos [Universidade de Salvador, BA (Brazil). Lab. de Pesquisa Ambiental e Geotecnologias (LAGEO)]. E-mail: jangello@unifacs.br; Mascarenhas, Artur Jose Santos [Universidade Federal da Bahia (UFBA), Salvador, BA (Brazil)]. E-mail: ajsmascarenhas@yahoo.com.br

    2006-01-15

    The biogas is one of the principal factors. During the last years the biogas use are intensifying himself which can make the energy alternative of the future. The methane, present in these gas, can be converted into energy, for his combustion generates a large quantity of thermal energy, which can be concerted into electrical ou mechanical energy. Being so, it is important that we aware that the caloric power of the biogas varies between 5000 to 7000 kcal/m{sup 3}, depending on the methane concentrations. Besides, the biogas purification through the removal of the carbonic gas can rising his calorific to values larger than 8700 kcal/m{sup 3}.

  8. Comparative analysis of hourly and dynamic power balancing models for validating future energy scenarios

    DEFF Research Database (Denmark)

    Pillai, Jayakrishnan R.; Heussen, Kai; Østergaard, Poul Alberg

    2011-01-01

    Energy system analyses on the basis of fast and simple tools have proven particularly useful for interdisciplinary planning projects with frequent iterations and re-evaluation of alternative scenarios. As such, the tool “EnergyPLAN” is used for hourly balanced and spatially aggregate annual......, the model is verified on the basis of the existing energy mix on Bornholm as an islanded energy system. Future energy scenarios for the year 2030 are analysed to study a feasible technology mix for a higher share of wind power. Finally, the results of the hourly simulations are compared to dynamic frequency...... simulations incorporating the Vehicle-to-grid technology. The results indicate how the EnergyPLAN model may be improved in terms of intra-hour variability, stability and ancillary services to achieve a better reflection of energy and power capacity requirements....

  9. Perspective on the energy future of the Northeast United States. [Reduce demand and develop diversified supplies

    Energy Technology Data Exchange (ETDEWEB)

    Brainard, J.; Davitian, H.; Goettle, R. IV; Palmedo, P.F.

    1976-06-01

    This study was undertaken to examine the implications of alternative energy futures for the northeastern U.S. First, the past and present energy supply and demand patterns for the U.S. and the northeast region are reviewed. Then, on the basis of detailed analyses of present and possible future supply and demand activities, scenarios for the years 1985 and 2000 are constructed and compared to examine the implications of various policies that will affect future supply and demand activities. Economic and environmental consequences are also discussed. The principal findings of the study are these: (1) conservation measures can reduce fuel and resource requirements in the northeast by over 30 percent; (2) oil imports are likely to continue to be a major energy resource for the northeast since only if strong conservation measures are combined with large increases in U.S. energy supplies is there apt to be a substantial decline in oil imports to the region; (3) a shift to coal and other alternate energy supplies, coupled with increased conservation, could compensate for a curtailment in the use of nuclear power in the region; (4) new resource technologies are capable of supplying up to 20 percent of the region's energy requirements in 2000; (5) no single supply technology or single conservation strategy taken alone can reduce the region's increasing dependence on foreign oil. Rather, the creation of an acceptable energy system for the region will require efforts in many directions in terms both of reducing demand and developing reliable, diversified supplies.

  10. Safeguarding our energy future. Investing Oil Overcharge funds in energy efficiency

    Energy Technology Data Exchange (ETDEWEB)

    1993-06-01

    Throughout the past several years, States have been receiving settlement monies distributed from escrow accounts maintained by the Department of Energy and various courts. These monies are paid by oil companies for alleged violations of the petroleum pricing regulations of the 1970`s. These funds, commonly referred to as Petroleum Violation Escrow (PVE) or Oil Overcharge funds, have been an important tool in supporting energy efficiency programs and technologies at the State level. The aim of this publication is to highlight some of the many interesting, replicable projects funded with PVE monies and to serve as a resource for successful, energy efficiency programs in planning, technology application and education. By capturing a number of these innovative State-level programs, this document will expand the information network on renewable energy and energy efficiency and serve as a point of departure for others pursuing similar goals. Projects referenced throughout this publication reflect some of the program areas in which the Department of Energy takes an active interest, and fall into the following categories: (1) Alternative fuels; (2) Industrial efficiency and waste minimization; (3) Electric power production from renewable resources; (4) Building efficiency; (5) Integrated resource planning; and (6) Energy education.

  11. Comparison of strategies for model predictive control for home heating in future energy systems

    DEFF Research Database (Denmark)

    Vogler-Finck, Pierre Jacques Camille; Popovski, Petar; Wisniewski, Rafal

    2017-01-01

    Model predictive control is seen as one of the key future enabler in increasing energy efficiency in buildings. This paper presents a comparison of the performance of the control for different formulations of the objective function. This comparison is made in a simulation study on a single building...... using historical weather and power system data from Denmark. Trade-offs between energy consumption, comfort and incurred CO2 emissions depending on the chosen objective function are quantified, highlighting the need to carefully select the strategy used in future design and implementation, rather than...

  12. Can Terrestrial Planets Form in Hot-Jupiter Systems?

    CERN Document Server

    Fogg, Martyn J

    2007-01-01

    Models of terrestrial planet formation in the presence of a migrating giant planet have challenged the notion that hot-Jupiter systems lack terrestrial planets. We briefly review this issue and suggest that hot-Jupiter systems should be prime targets for future observational missions designed to detect Earth-sized and potentially habitable worlds.

  13. Quantifying Change in Buildings in a Future Climate and Their Effect on Energy Systems

    Directory of Open Access Journals (Sweden)

    David P. Jenkins

    2015-08-01

    Full Text Available Projected climate change is likely to have a significant impact on a range of energy systems. When a building is the centre of that system, a changing climate will affect the energy system in several ways. Firstly, the energy demand of the building will be altered. Taken across the entire building stock, and placed in context of technological and behavioural changes over the same timescale, this can have implications for important parameters such as peak demand and load factors of energy requirement. The performance of demand-side, distribution/transmission and supply-side technologies can also alter as a result of changing temperatures. With such uncertainty, a flexible approach is required for ensuring that this whole energy system is robust for a wide range of future scenarios. Therefore, building design must have a standardised and systematic approach for integrating climate change into the overall energy assessment of a building (or buildings, understanding the implications for the larger energy network. Based on the work of the Low Carbon Futures (LCF and Adaptation and Resilience In Energy Systems (ARIES projects, this paper overviews some of the risks that might be linked to a changing climate in relation to provision and use of energy in buildings. The UK is used as a case-study but the outputs are demonstrated to be of relevance, and the tools applicable, to other countries.

  14. Balancing Fiscal, Energy, and Environmental Concerns: Analyzing the Policy Options for California’s Energy and Economic Future

    Directory of Open Access Journals (Sweden)

    Edward Manderson

    2013-03-01

    Full Text Available This study estimates the fiscal, energy, and environmental tradeoffs involved in supplying California’s future energy needs. An integrated framework is developed whereby an econometric forecasting system of California energy demand is coupled with engineering-economic models of energy supply, and economic impacts are estimated using input-output models of the California economy. A baseline scenario in which California relies on imported electricity to meet future demand is then compared against various energy supply development scenarios over the forecast horizon (2012–2035. The results indicate that if California implements its renewable portfolio standard (RPS, there will be a substantial net cost in terms of value added, employment, and state tax revenues because the economic benefits of building capacity are outweighed by higher energy prices. Although carbon emissions fall, the cost per ton of avoided emissions is well above market prices. Building out natural gas fired generation capacity also leads to losses compared to the baseline, although the impacts are relatively minor. Meanwhile, a strategy of replacing imported crude oil and natural gas with domestic production using indigenous resources increases gross state product, employment, and tax revenues, with minimal impact on carbon emissions. This option could, therefore, help mitigate the costs of California meeting its RPS commitment.

  15. Transportation Energy Futures Series. Effects of the Built Environment on Transportation. Energy Use, Greenhouse Gas Emissions, and Other Factors

    Energy Technology Data Exchange (ETDEWEB)

    Porter, C. D. [National Renewable Energy Lab. (NREL) and Cambridge Systematics, Inc., Golden, CO (United States); Brown, A. [National Renewable Energy Lab. (NREL) and Cambridge Systematics, Inc., Golden, CO (United States); Dunphy, R. T. [National Renewable Energy Lab. (NREL) and Cambridge Systematics, Inc., Golden, CO (United States); Vimmerstedt, L. [National Renewable Energy Lab. (NREL) and Cambridge Systematics, Inc., Golden, CO (United States)

    2013-03-15

    Planning initiatives in many regions and communities aim to reduce transportation energy use, decrease emissions, and achieve related environmental benefits by changing land use. This report reviews and summarizes findings from existing literature on the relationship between the built environment and transportation energy use and greenhouse gas emissions, identifying results trends as well as potential future actions. The indirect influence of federal transportation and housing policies, as well as the direct impact of municipal regulation on land use are examined for their effect on transportation patterns and energy use. Special attention is given to the 'four D' factors of density, diversity, design and accessibility. The report concludes that policy-driven changes to the built environment could reduce transportation energy and GHG emissions from less than 1% to as much as 10% by 2050, the equivalent of 16%-18% of present-day urban light-duty-vehicle travel. This is one of a series of reports produced as a result of the Transportation Energy Futures (TEF) project, a Department of Energy-sponsored multi-agency project initiated to pinpoint underexplored strategies for abating GHGs and reducing petroleum dependence related to transportation.

  16. Transportation Energy Futures Series: Effects of the Built Environment on Transportation: Energy Use, Greenhouse Gas Emissions, and Other Factors

    Energy Technology Data Exchange (ETDEWEB)

    Porter, C. D.; Brown, A.; Dunphy, R. T.; Vimmerstedt, L.

    2013-03-01

    Planning initiatives in many regions and communities aim to reduce transportation energy use, decrease emissions, and achieve related environmental benefits by changing land use. This report reviews and summarizes findings from existing literature on the relationship between the built environment and transportation energy use and greenhouse gas emissions, identifying results trends as well as potential future actions. The indirect influence of federal transportation and housing policies, as well as the direct impact of municipal regulation on land use are examined for their effect on transportation patterns and energy use. Special attention is given to the 'four D' factors of density, diversity, design and accessibility. The report concludes that policy-driven changes to the built environment could reduce transportation energy and GHG emissions from less than 1% to as much as 10% by 2050, the equivalent of 16%-18% of present-day urban light-duty-vehicle travel. This is one of a series of reports produced as a result of the Transportation Energy Futures (TEF) project, a Department of Energy-sponsored multi-agency project initiated to pinpoint underexplored strategies for abating GHGs and reducing petroleum dependence related to transportation.

  17. Detection of Extrasolar Planets by Transit Photometry

    Science.gov (United States)

    Borucki, William; Koch, David; Webster, Larry; Dunham, Edward; Witteborn, Fred; Jenkins, Jon; Caldwell, Douglas; Showen, Robert; DeVincenzi, Donald L. (Technical Monitor)

    2000-01-01

    A knowledge of other planetary systems that includes information on the number, size, mass, and spacing of the planets around a variety of star types is needed to deepen our understanding of planetary system formation and processes that give rise to their final configurations. Recent discoveries show that many planetary systems are quite different from the solar system in that they often possess giant planets in short period orbits. The inferred evolution of these planets and their orbital characteristics imply the absence of Earth-like planets near the habitable zone. Information on the properties of the giant-inner planets is now being obtained by both the Doppler velocity and the transit photometry techniques. The combination of the two techniques provides the mass, size, and density of the planets. For the planet orbiting star HD209458, transit photometry provided the first independent confirmation and measurement of the diameter of an extrasolar planet. The observations indicate a planet 1.27 the diameter of Jupiter with 0.63 of its mass (Charbonneau et al. 1999). The results are in excellent agreement with the theory of planetary atmospheres for a planet of the indicated mass and distance from a solar-like star. The observation of the November 23, 1999 transit of that planet made by the Ames Vulcan photometer at Lick Observatory is presented. In the future, the combination of the two techniques will greatly increase the number of discoveries and the richness of the science yield. Small rocky planets at orbital distances from 0.9 to 1.2 AU are more likely to harbor life than the gas giant planets that are now being discovered. However, new technology is needed to find smaller, Earth-like planets, which are about three hundred times less massive than Jupiter-like planets. The Kepler project is a space craft mission designed to discover hundreds of Earth-size planets in and near the habitable zone around a wide variety of stars. To demonstrate that the

  18. Energy and climate. A vision of the future; Energie und Klima. Ein Blick in die Zukunft

    Energy Technology Data Exchange (ETDEWEB)

    Brand, Hans; Hosemann, Gerhard; Riedle, Klaus (eds.)

    2013-07-01

    This book contains five lectures from the symposium of 8 November 2012. The topics and speakers were: 1. The energy turnaround in Germany - Chances and risks (DIETHARD MAGER); 2. The power supply from renewable sources and their constraints (GERHARD HEROLD); 3. What really contributes CO{sub 2} to global warming? (HERMANN HARDE); 4. Sun and greenhouse gas - causes of climate change (FRITZ VAHRENHOLT); 5. The hydrocarbon-cycle management - secure energy and resource supply from renewable energy sources (DOMINIK ROHRMUS). [German] Dieses Buch enthaelt fuenf Vortraege aus dem Symposium vom 8. November 2012. Die Themen und Referenten waren: 1. Die Energiewende in Deutschland - Chancen und Risiken (DIETHARD MAGER); 2. Die Stromversorgung aus regenerativen Quellen und ihre Zwaenge (GERHARD HEROLD); 3. Was traegt CO{sub 2} wirklich zur globalen Erwaermung bei? (HERMANN HARDE); 4. Sonne und Treibhausgase - Ursachen des Klimawandels (FRITZ VAHRENHOLT); 5. Die Kohlenwasserstoff-Kreislaufwirtschaft - sichere Energie- und Ressourcenversorgung mittels erneuerbarer Energien (DOMINIK ROHRMUS).

  19. The future of transportation in sustainable energy systems: Opportunities and barriers in a clean energy transition

    DEFF Research Database (Denmark)

    Dominkovic, Dominik Franjo; Bačeković, Ivan; Pedersen, Allan Schrøder

    2017-01-01

    Energy demand of a transport sector has constantly been increasing in the recent years, consuming one third of the total final energy demand in the European Union (EU) over the last decade. A transition of this sector towards sustainable one is facing many challenges in terms of suitable technology...... and energy resources. Especially challenging transition is envisaged for heavy-weight, long-range vehicles and airplanes. A detailed literature review was carried out in order to detect the current state of the research on clean transport sector, as well as to point out the gaps in the research. In order...... demand for energy resources exists, i.e. 3069 TWh of additional biomass was needed in the case of biofuels utilization scenario while 2775 TWh of electricity and 925 TWh of heat were needed in the case of renewable electrofuels produced using solid oxide electrolysis scenario....

  20. Energy for the future - with Risoe from nuclear power to sustainable energy

    Energy Technology Data Exchange (ETDEWEB)

    Jastrup, M. (ed.)

    2008-07-01

    The title of the book is inspired by Risoe's mission which, at the time of its 50th anniversary, remains uncannily close to that given to Risoe when it was inaugurated in 1958. First and foremost, then as now, Risoe is engaged in the development of tomorrow's energy technologies. In 1958, it was nuclear power. On the occasion of its 50th anniversary, Risoe is working with a palette of sustainable energy sources. (author)

  1. Energy Security: The Pathway to a Cost-Effective, Efficient, and Reliable Energy Future

    Science.gov (United States)

    2010-03-12

    reducing its dependence on oil. Many of these sources are already proven, or hold great promise. NUCLEAR ENERGY Chernobyl . Three-Mile Island. Any...energy sector, even though deaths from the Chernobyl "disaster" have yet to reach fifty. 96 Facts about the industry, and not nervous innuendo spurred by...both government and industry should look to expand where economically and socially feasible. BIOMASS Biomass uses plant, animal manure, or

  2. Energy of the future: final report; Energias do futuro: relatorio final

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2008-07-01

    This report presents the analysis of the main factors that may restrict the future energy demand and preferences for technology choices and types of fuels. The work is based on a literature review on the state of the art of leading energy technologies. In addition, information is gathered to assist the characterization of amounts and forms of energy that will be important in the period 2030-2050, as well as major consuming sectors. At the end of a presentation is made a summary diagram that indicates the degree of effort in R and D that may be necessary taking into consideration the state of the art technologies, an array of challenges and demand and future energy matrix.

  3. Comparative Analysis of Modeling Studies on China's Future Energy and Emissions Outlook

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Nina; Zhou, Nan; Fridley, David

    2010-09-01

    The past decade has seen the development of various scenarios describing long-term patterns of future Greenhouse Gas (GHG) emissions, with each new approach adding insights to our understanding of the changing dynamics of energy consumption and aggregate future energy trends. With the recent growing focus on China's energy use and emission mitigation potential, a range of Chinese outlook models have been developed across different institutions including in China's Energy Research Institute's 2050 China Energy and CO2 Emissions Report, McKinsey & Co's China's Green Revolution report, the UK Sussex Energy Group and Tyndall Centre's China's Energy Transition report, and the China-specific section of the IEA World Energy Outlook 2009. At the same time, the China Energy Group at Lawrence Berkeley National Laboratory (LBNL) has developed a bottom-up, end-use energy model for China with scenario analysis of energy and emission pathways out to 2050. A robust and credible energy and emission model will play a key role in informing policymakers by assessing efficiency policy impacts and understanding the dynamics of future energy consumption and energy saving and emission reduction potential. This is especially true for developing countries such as China, where uncertainties are greater while the economy continues to undergo rapid growth and industrialization. A slightly different assumption or storyline could result in significant discrepancies among different model results. Therefore, it is necessary to understand the key models in terms of their scope, methodologies, key driver assumptions and the associated findings. A comparative analysis of LBNL's energy end-use model scenarios with the five above studies was thus conducted to examine similarities and divergences in methodologies, scenario storylines, macroeconomic drivers and assumptions as well as aggregate energy and emission scenario results. Besides directly tracing

  4. GIS-Based Planning and Modeling for Renewable Energy: Challenges and Future Research Avenues

    Directory of Open Access Journals (Sweden)

    Bernd Resch

    2014-05-01

    Full Text Available In the face of the broad political call for an “energy turnaround”, we are currently witnessing three essential trends with regard to energy infrastructure planning, energy generation and storage: from planned production towards fluctuating production on the basis of renewable energy sources, from centralized generation towards decentralized generation and from expensive energy carriers towards cost-free energy carriers. These changes necessitate considerable modifications of the energy infrastructure. Even though most of these modifications are inherently motivated by geospatial questions and challenges, the integration of energy system models and Geographic Information Systems (GIS is still in its infancy. This paper analyzes the shortcomings of previous approaches in using GIS in renewable energy-related projects, extracts distinct challenges from these previous efforts and, finally, defines a set of core future research avenues for GIS-based energy infrastructure planning with a focus on the use of renewable energy. These future research avenues comprise the availability base data and their “geospatial awareness”, the development of a generic and unified data model, the usage of volunteered geographic information (VGI and crowdsourced data in analysis processes, the integration of 3D building models and 3D data analysis, the incorporation of network topologies into GIS, the harmonization of the heterogeneous views on aggregation issues in the fields of energy and GIS, fine-grained energy demand estimation from freely-available data sources, decentralized storage facility planning, the investigation of GIS-based public participation mechanisms, the transition from purely structural to operational planning, data privacy aspects and, finally, the development of a new dynamic power market design.

  5. Energy use in the U.S. steel industry: An historical perspective and future opportunities

    Energy Technology Data Exchange (ETDEWEB)

    Stubbles, John [Steel Industry Consultant, Mason, OH (United States)

    2000-09-01

    Renowned industry expert Dr. John Stubbles has projected the energy savings that the U.S. steel industry could reasonably expect to achieve in the report, Energy Use in the U.S. Steel Industry: Historical Perspective and Future Opportunities (PDF 432 KB). The report examines the potential impacts of state-of-the-art technologies and operating practices, as well as structural changes in the industry itself.

  6. Choosing an electrical energy future for the Pacific Northwest: an alternative scenario

    Energy Technology Data Exchange (ETDEWEB)

    Beers, J.R.; Cavanagh, R.C.; Lash, T.R.; Mott, L.

    1980-05-19

    A strategy is presented for averting the short-term energy supply uncertainties that undermine prospects for stable economic development in the Pacific Northwest. This strategy is based on: an analysis of the present electric power consumption by various end-use sectors; comparison of incentives to promote energy conservation and lower demand growth; analysis of alternatives to current dependency on hydro power; and a study of the cost of planning and implementing future power supply programs. (LCL)

  7. Role of nuclear energy to a future society of shortage of energy resources and global warming

    Science.gov (United States)

    Saito, Shinzo

    2010-03-01

    Human society entered into the society of large energy consumption since the industrial revolution and consumes more than 10 billion tons of oil equivalent energy a year in the world in the present time, in which over 80% is provided by fossil fuels such as coal, oil and natural gas. Total energy consumption is foreseen to increase year by year from now on due to significant economical and population growth in the developing countries such as China and India. However, fossil fuel resources are limited with conventional crude oil estimated to last about 40 years, and it is said that the peak oil production time has come now. On the other hand, global warming due to green house gases (GHG) emissions, especially carbon dioxide, has become a serious issue. Nuclear energy plays an important role as means to resolve energy security and global warming issues. Four hundred twenty-nine nuclear power plants are operating world widely producing 16% of the total electric power with total plant capacity of 386 GWe without emission of CO 2 as of 2006. It is estimated that another 250 GWe nuclear power is needed to keep the same level contribution of electricity generation in 2030. On the other hand, the Japan Atomic Energy Research Institute (JAERI) developed the very high temperature gas-cooled reactor (HTGR) named high temperature gas-cooled engineering test reactor (HTTR) and carbon free hydrogen production process (IS process). Nuclear energy utilization will surely widen in, not only electricity generation, but also various industries such as steel making, chemical industries, together with hydrogen production for transportation by introduction of HTGRs. The details of development of the HTTR and IS process are also described.

  8. Role of nuclear energy to a future society of shortage of energy resources and global warming

    Energy Technology Data Exchange (ETDEWEB)

    Saito, Shinzo, E-mail: saito.shinzo@jaea.go.j [Japan Atomic Energy Research Institute (Japan)

    2010-03-15

    Human society entered into the society of large energy consumption since the industrial revolution and consumes more than 10 billion tons of oil equivalent energy a year in the world in the present time, in which over 80% is provided by fossil fuels such as coal, oil and natural gas. Total energy consumption is foreseen to increase year by year from now on due to significant economical and population growth in the developing countries such as China and India. However, fossil fuel resources are limited with conventional crude oil estimated to last about 40 years, and it is said that the peak oil production time has come now. On the other hand, global warming due to green house gases (GHG) emissions, especially carbon dioxide, has become a serious issue. Nuclear energy plays an important role as means to resolve energy security and global warming issues. Four hundred twenty-nine nuclear power plants are operating world widely producing 16% of the total electric power with total plant capacity of 386 GWe without emission of CO{sub 2} as of 2006. It is estimated that another 250 GWe nuclear power is needed to keep the same level contribution of electricity generation in 2030. On the other hand, the Japan Atomic Energy Research Institute (JAERI) developed the very high temperature gas-cooled reactor (HTGR) named high temperature gas-cooled engineering test reactor (HTTR) and carbon free hydrogen production process (IS process). Nuclear energy utilization will surely widen in, not only electricity generation, but also various industries such as steel making, chemical industries, together with hydrogen production for transportation by introduction of HTGRs. The details of development of the HTTR and IS process are also described.

  9. Top quark pair production and calorimeter energy resolution studies at a future collider experiment

    CERN Document Server

    Seidel, Katja

    This thesis is focused on detector concepts and analyses investigated at a future linear electron positron collider. For precision measurements at such a collider, the CALICE collaboration develops imaging calorimeters, which are characterized by a fine granularity. CALICE has constructed prototypes of several design options for electromagnetic and hadronic calorimeters and has successfully operated these detectors during combined test beam programs at DESY, CERN and Fermilab. To improve the hadronic energy reconstruction and energy resolution of a hadron calorimeter prototype with analog readout three software compensation techniques are presented in this thesis, of which one is a local and two are global software compensation approaches. One method is based on a neural network to optimize the energy reconstruction, while two are energy weighting techniques, depending on the energy density. Weight factors are extracted from and applied to simulated and test beam data and result in an average energy resolutio...

  10. The role of biosolar technologies in future energy supply making scenarios for the Netherlands: Energy port and energy farm

    NARCIS (Netherlands)

    Hanssen, L.; Vriend, H.; Gremmen, B.

    2014-01-01

    This paper assesses the possible roles of biosolar energy systems in the Netherlands in the coming years. The appraisal is made in the light of EU Directives on renewable energy and reduction of CO2 emissions, and the new Dutch Energy Agreement for Sustainable Growth. The assessment is made within

  11. The role of biosolar technologies in future energy supply making scenarios for the Netherlands: Energy port and energy farm

    NARCIS (Netherlands)

    Hanssen, L.; Vriend, H.; Gremmen, B.

    2014-01-01

    This paper assesses the possible roles of biosolar energy systems in the Netherlands in the coming years. The appraisal is made in the light of EU Directives on renewable energy and reduction of CO2 emissions, and the new Dutch Energy Agreement for Sustainable Growth. The assessment is made within t

  12. Modelling the energy future of Switzerland after the phase out of nuclear power plants

    Science.gov (United States)

    Diaz, Paula; Van Vliet, Oscar

    2015-04-01

    In September 2013, the Swiss Federal Office of Energy (SFOE) published the final report of the proposed measures in the context of the Energy Strategy 2050 (ES2050). The ES2050 draws an energy scenario where the nuclear must be substituted by alternative sources. This implies a fundamental change in the energy system that has already been questioned by experts, e.g. [Piot, 2014]. Therefore, we must analyse in depth the technical implications of change in the Swiss energy mix from a robust baseload power such as nuclear, to an electricity mix where intermittent sources account for higher rates. Accomplishing the ES2050 imply difficult challenges, since nowadays nuclear power is the second most consumed energy source in Switzerland. According to the SFOE, nuclear accounts for a 23.3% of the gross production, only surpassed by crude oil products (43.3%). Hydropower is the third source more consumed, representing approximately the half of the nuclear (12.2%). Considering that Switzerland has almost reached the maximum of its hydropower capacity, renewables are more likely to be the alternative when the nuclear phase out takes place. Hence, solar and wind power will play an important role in the future Swiss energy mix, even though currently new renewables account for only 1.9% of the gross energy consumption. In this study we look for realistic and efficient combinations of energy resources to substitute nuclear power. Energy modelling is a powerful tool to design an energy system with high energy security that avoids problems of intermittency [Mathiesen & Lund, 2009]. In Switzerland, energy modelling has been used by the government [Abt et. al., 2012] and also has significant relevance in academia [Mathys, 2012]. Nevertheless, we detected a gap in the study of the security in energy scenarios [Busser, 2013]. This study examines the future electricity production of Switzerland using Calliope, a multi-scale energy systems model, developed at Imperial College, London and

  13. Building a Sustainable Energy Future for Africa - Acting Now and Together

    Energy Technology Data Exchange (ETDEWEB)

    Fall, L.

    2007-07-01

    The key energy challenges Africa is facing are: low level of access to commercial energy, low per capita energy consumption, weak development of energy infrastructure and lack of investment and financing for energy projects. Addressing these challenges is critical for sustainable economic and social development, and assured access to secure, affordable and reliable energy. In spite of these daunting challenges, Africa is well endowed in energy resources, but these resources are largely untapped and concentrated in a few countries. In addition, there are numerous 'rooms' for opportunities that could be seized concretely to overcome the main obstacles to the Sustainable Energy Development of the Continent. Thus, right actions must be taken to overcome these obstacles, including: financing the huge needed investments, technological development, private-public partnerships, energy market reform and effective regulation, sound and sustainable energy policies, and economic and social measures. Subsequently, from priority areas, the related stakeholders should 'act now' and 'act together', through effective collaboration and partnership and making proper alliances, to initiate effective and concrete actions to support Africa aspirations in order to build a Sustainable Energy Future for Africa, in a cost-effective and timely manner. (auth)

  14. The implications of future building scenarios for long-term building energy research and development

    Energy Technology Data Exchange (ETDEWEB)

    Flynn, W.T.

    1986-12-01

    This report presents a discussion of alternative future scenarios of the building environment to the year 2010 and assesses the implications these scenarios present for long-term building energy R and D. The scenarios and energy R and D implications derived from them are intended to serve as the basis from which a strategic plan can be developed for the management of R and D programs conducted by the Office of Buildings and Community Systems, US Department of Energy. The scenarios and analysis presented here have relevance not only for government R and D programs; on the contrary, it is hoped that the results of this effort will be of interest and useful to researchers in both private and public sector organizations that deal with building energy R and D. Making R and D decisions today based on an analysis that attempts to delineate the nexus of events 25 years in the future are clearly decisions made in the face of uncertainty. Yet, the effective management of R and D programs requires a future-directed understanding of markets, technological developments, and environmental factors, as well as their interactions. The analysis presented in this report is designed to serve that need. Although the probability of any particular scenario actually occurring is uncertain, the scenarios to be presented are sufficiently robust to set bounds within which to examine the interaction of forces that will shape the future building environment.

  15. An Econometric Analysis of ETF and ETF Futures in Financial and Energy Markets Using Generated Regressors

    NARCIS (Netherlands)

    C-L. Chang (Chia-Lin); M.J. McAleer (Michael); C-H. Wang (Chien-Hsun)

    2016-01-01

    textabstractIt is well known that that there is an intrinsic link between the financial and energy sectors, which can be analyzed through their spillover effects, which are measures of how the shocks to returns in different assets affect each other’s subsequent volatility in both spot and futures ma

  16. Prospects for wind energy in the future: Energy scenario of Pakistan

    Energy Technology Data Exchange (ETDEWEB)

    Qureshi, Q. A. [Sustainable Development Policy Institute, Islamabad (Pakistan)

    1999-07-01

    Current Pakistani policy on wind energy is reviewed, including research and development, survey and assessment of wind resources, development of cost-effective capability for manufacture of components, capacity for local operation and maintenance of installations, investigation of technology transfer opportunities, development of promotional policies, and the development of institutional and socio-economic infrastructure. Actions that the government might take to promote wind energy are also reviewed. Among these actions are providing tax incentives, funding research on wind resources, creating demonstration projects in remote communities, taxing fossil fuels to reflect their true social costs, form private sector partnerships, encouraging demand for green energy through public education programs, and facilitating ready access for owners of wind energy facilities to the country's electrical grid system. Project objectives and relevant financial details of a 15 MW wind power plant currently in the planning stage for the harbor town of Balochistan Province on the Arabian Sea, and a number of smaller projects in the northern part of the country are also summarized.

  17. Jordanian industrial sector future energy consumption: Potential savings and environmental impact

    Science.gov (United States)

    Abdallat, Yousef; Al-Ghandoor, Ahmed; Salaymah, Mohammad

    2012-11-01

    This paper analyzes and evaluates impacts of introducing some efficient measures on the future fuel and electricity demands and associated reduction in GHG emissions. Without employing most effective energy conservation measures, energy demand is expected to rise by approximately 38% within 12 years time. Consequently, associated GHG emissions resulting from activities within the industrial sector are predicted to rise by 33% for the same period. However, if recommended energy management measures are implemented on a gradual basis, electricity and fuel consumptions as well as GHG emissions are forecasted to increase at a lower rate.

  18. Far-UV spectroscopy of the planet-hosting star WASP-13: high-energy irradiance, distance, age, planetary mass-loss rate, and circumstellar environment

    CERN Document Server

    Fossati, L; Koskinen, T; Juvan, I G; Haswell, C A; Lendl, M

    2015-01-01

    Several transiting hot Jupiters orbit relatively inactive main-sequence stars. For some of those, the logR'HK activity parameter lies below the basal level (-5.1). Two explanations have been proposed so far: (i) the planet affects the stellar dynamo, (ii) the logR'HK measurements are biased by extrinsic absorption, either by the interstellar medium (ISM) or by material local to the system. We present here Hubble Space Telescope/COS far-UV spectra of WASP-13, which hosts an inflated hot Jupiter and has a measured logR'HK value (-5.26), well below the basal level. From the star's spectral energy distribution we obtain an extinction E(B-V) = 0.045+/-0.025 mag and a distance d = 232+/-8 pc. We detect at >4 sigma lines belonging to three different ionization states of carbon (C1, C2, and C4) and the Si4 doublet at ~3 sigma. Using far-UV spectra of nearby early G-type stars of known age, we derive a C4/C1 flux ratio-age relation, from which we estimate WASP-13's age to be 5.1+/-2.0 Gyr. We rescale the solar irradia...

  19. Renewable (alternative) energies. Theoretical potentials, realistic future of the energy supply; Erneuerbare (alternative) Energien. Theoretische Potentiale, reale Zukunft der Energieversorgung

    Energy Technology Data Exchange (ETDEWEB)

    Mueller, K.H. [Hochschule fuer Technik Suedwestfalen (Germany)]|[Institut fuer Technologie- und Wissenstransfer an der Hochschulabteilung Soest (Germany); Giber, J. [TU Budapest (Hungary). Inst. fuer Atomphysik

    2007-07-01

    The depletion of fossil fuels and the accumulation of greenhouse gases, whose effects are already making themselves felt, are impacting not only on technical but also on societal and political developments around the globe. The human demand for energy from fossil fuels is growing worldwide, and the depletion of these reserves can already be clearly perceived. This is incidentally also true of nuclear fuels, at least for those reserves that are exploitable with currently available technology. The use of renewable energies such as wind power, solar energy, geothermal energy, hydropower and biomass - to name just a few - appears at present to offer a solution to the future problems relating to energy supply and environment (global warming and follow-on effects). The technologies required for this are already well-advanced today. Over a period of several years the authors have collected data and facts on global energy scenarios, evaluated countless studies, studied the technologies required for tapping renewable energy potentials and performed their own calculations on the topic.

  20. A Perspective of Energy Codes and Regulations for the Buildings of the Future

    Energy Technology Data Exchange (ETDEWEB)

    Rosenberg, Michael [Pacific Northwest National Laboratory,2032 Todd Street,Eugene, OR 97405e-mail: michael.rosenberg@pnnl.gov; Jonlin, Duane [Seattle Department ofConstruction and Inspections,P.O. Box 34019,Seattle, WA 98124e-mail: duane.jonlin@seattle.gov; Nadel, Steven [American Council for anEnergy-Efficient Economy,529 14th Street NW #600,Washington, DC 20045e-mail: snadel@aceee.org

    2016-10-13

    Today’s building energy codes focus on prescriptive requirements for features of buildings that are directly controlled by the design and construction teams and verifiable by municipal inspectors. Although these code requirements have had a significant impact, they fail to influence a large slice of the building energy use pie – including not only miscellaneous plug loads, cooking equipment and commercial/industrial processes, but the maintenance and optimization of the code-mandated systems as well. Currently, code compliance is verified only through the end of construction, and there are no limits or consequences for the actual energy use in an occupied building. In the future, our suite of energy regulations will likely expand to include building efficiency, energy use or carbon emission budgets over their full life cycle. Intelligent building systems, extensive renewable energy, and a transition from fossil fuel to electric heating systems will likely be required to meet ultra-low-energy targets. This paper lays out the authors’ perspectives on how buildings may evolve over the course of the 21st century and the roles that codes and regulations will play in shaping those buildings of the future.

  1. Urban Planning for a Renewable Energy Future: Methodological Challenges and Opportunities from a Design Perspective

    Directory of Open Access Journals (Sweden)

    Han Vandevyvere

    2012-06-01

    Full Text Available Urban planning for a renewable energy future requires the collaboration of different disciplines both in research and practice. In the present article, the planning of a renewable energy future is approached from a designer’s perspective. A framework for analysis of the planning questions at hand is first proposed. The framework considers two levels of inquiry: the technical environmental aspect, and its wider embedding in sustainable development. Furthermore, life cycle analysis and exergy studies are discussed for their application potential in design. An altered trias energetica as proposed in earlier publications appears to remain a robust concept for low exergy, renewable energy based urban design. When considering sustainable development, environmental assessments shall be completed by an inquiry of the socio-cultural, economical, juridical, aesthetical and ethical aspects characterizing the planning or decision process. The article then presents a number of practical design principles that can help envisioning a built environment that can be sustained on the basis of renewable energy sources. In accordance with the altered trias energetica concept, elements of passive urban energy design, exergetic optimization of energy provision systems and the sourcing of renewable energy are identified, and their respective potentials assessed.

  2. The Present and Future Energy Performance of the First Passivhaus Project in the Gulf Region

    Directory of Open Access Journals (Sweden)

    May Khalfan

    2016-02-01

    Full Text Available With voluntary and mandatory energy performance standards now becoming more common around the world, schemes to develop low energy buildings have become more apparent in developed countries. The Passivhaus standard, established 25 years ago in Germany, is one the most stringent and promising low energy building standards in Europe. It started as a construction concept applied to residential buildings, but has since spread as a voluntary ultra-low energy efficient standard to different parts of the world. Qatar, a member of the Gulf Cooperation Council (GCC states, announced in 2013 the completion of the first Passivhaus project in the Gulf Region. The current and future performance of the Passivhaus project in Qatar was investigated in this study using current and future climate scenarios. Computer modelling was used to simulate the energy performance of the house and the thermal comfort of the occupants. In addition, on-site measurements were made to corroborate the modelling outcomes. Further, the impacts of climate change on the Passivhaus project was examined, and comparative analyses were undertaken. The findings suggested that the Passivhaus performs well under the current and the future weather data sets. Furthermore, the modelling indicates that the Qatar house is close to achieving the Passivhaus standard.

  3. Episodic future thinking reduces delay discounting and energy intake in children.

    Science.gov (United States)

    Daniel, Tinuke Oluyomi; Said, Michele; Stanton, Christina M; Epstein, Leonard H

    2015-08-01

    Discounting of larger future rewards in favor of smaller immediate rewards is known as delay discounting. High delay discounting or a bias towards immediate gratification impedes self-regulation and is associated with maladaptive eating behaviors. Children in general show greater delay discounting than adults. Obese children in particular, have greater difficulty delaying gratification for edible rewards. Episodic future thinking (EFT) which is mental self-projection to pre-experience future events reduces delay discounting and reduces energy intake in overweight/obese adults. However, these EFT effects have not been examined in children. We evaluated the effects of EFT versus control episodic recent thinking (ERT) on delay discounting and ad libitum energy intake while thinking about episodic cues in 42 overweight/obese 9 to 14year olds. Results showed that EFT led to less delay discounting and lowered energy intake, and EFT had the greatest effect on reducing energy intake in children with a higher desire to restrict food intake. This suggests that EFT may be useful in pediatric obesity treatment programs to help children regulate energy intake. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Leapfrog to the future: Energy scenarios and strategies for Suriname to 2050

    Energy Technology Data Exchange (ETDEWEB)

    Lachman, Daniel A., E-mail: danny_lachman@yahoo.com [Institute of Graduate Studies and Research, University of Suriname, Suriname, South America (Suriname)

    2011-09-15

    This paper formulates energy strategies for Suriname. A conceptual model, identifying relationships in the energy sector, is conceived. One of the striking characteristics is that various relationships inhibit significant uncertainty; our contemporary age is characterized by more complex becoming relations, decreasing predictability and increasing chaos. Simple extrapolation of past events is therefore futile, since deviations from anticipated outcomes have significant impacts. The Scenario Planning methodology has been used to deal with this uncertainty. The most uncertain high-impact driving forces that shape the future of the energy sector in Suriname have been identified and are used to create energy scenarios to 2050. Next, robust strategies have been formulated which primarily focus on institutionalization, renewable resources, cost-reflecting tariffs, decentralization of energy supply, and energy efficiency and savings. Leading indicators have been identified that identify towards which scenario the present develops, and hence which set of strategies need to be applied. - Highlights: > The Scenario Planning methodology is advocated, in particular in developing countries. > Using energy scenarios, energy strategies for Suriname to 2050 are conceived. > First, the current state of energy security is assessed. > Next, critical uncertainties are identified to create the scenario logic. > The scenarios (with robustness analysis) are used to create energy strategies.

  5. The role of district heating in the future Danish energy system

    DEFF Research Database (Denmark)

    Münster, Marie; Morthorst, Poul Erik; Larsen, Helge V.

    2012-01-01

    In the EU and in Denmark, the aim is to reduce dependence on fossil fuels and to use energy more efficiently. District heating and combined heat and power have significant potential with regard to achieving this aim. New technologies may make individual solutions such as electric heating, heat...... pumps and micro-CHP more attractive than previously. Therefore, the competitive conditions between district heating and other types of heating may change in the future. The question is therefore whether district heating can contribute to ensuring the sustainability of future energy systems? Denmark...... is used as a case as the country has a high share of district heating and produces 20% of the electricity with wind power. The analyses are carried out using the electricity market model Balmorel, which facilitates cost optimization of operation and investments in energy production plants as well...

  6. Geothermics - energy for the future. Proceedings; Geothermie - Energie der Zukunft. Tagungsband

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-12-01

    The proceedings volume of the 4th Geothermal Congress, held in Constance in 1996, comprises 74 papers on the following subjects: 1. Practical applications of hydrogeothermal resources; 2. Hot dry rock; 3. Geothermal heat pumps; 4; Economic aspects of geothermal energy. (AKF) [Deutsch] Der Tagungsband zur 4. Geothermischen Fachtagung 1996 in Konstanz enthaelt 74 Beitraege, die sich mit den folgenden Schwerpunkten befassen: 1. Praktische Anwendungen der Hydrogeothermie; 2. Hot-dry-rock; 3. Oberflaechennahe/untiefe Geothermie; 4. Geothermie und wirtschaftliche Fragen. (AKF)

  7. The Integration of Sustainable Transport into Future Renewable Energy Systems in China

    DEFF Research Database (Denmark)

    Liu, Wen

    The transport sector has been recognised as one of the most challenging sectors with regard to ensuring energy security and combating climate change due to its high dependence on oil products and the lack of mature alternatives with low-carbon emissions. Such challenges of the energy use...... in transport have been clearly observed in China. Strategies in relation to sustainable transport development need to both stabilise the energy demand and replace the oil use by alternatives with low-carbon emissions. Electricity, hydrogen and biofuels derived from biomass are three potential alternative...... vehicle fuels to replace the oil use and possibly introduce renewable energy into transport. Biomass resources are limited and can hardly cover the expected future transport energy demand on their own. The benefits of oil independence and low carbon emissions in transport due to electricity and hydrogen...

  8. Smart bioenergy technologies and concepts for a more flexible bioenergy provision in future energy systems

    CERN Document Server

    2015-01-01

    Biomass is a vital source of renewable energy, because it offers a wide range of established and potential methods for energy generation. It is also an important facet of the progression toward a sustainable energy future. The need for further development in the provision of bioenergy is underlined by challenges affecting the biomass resource base, including rising demand for biomass for food, feed, materials and fuel. This is underlined by significant concerns over factors relating to land, such as soil, nutrients and biodiversity. This book examines and analyzes Germany's decade-long initiative toward implementation of an active policy for the transition of the energy system to make greater use of renewable energy sources, which has resulted in a significant increase in the amount of biomass used for electricity, heat and transport fuel. The book begins with a review of market and resource base issues, and moves on to analyze the technical options for a more integrated bioenergy use. The analysis spans the ...

  9. Nuclear fusion and its large potential for the future world energy supply

    Directory of Open Access Journals (Sweden)

    Ongena Jef

    2016-12-01

    Full Text Available An overview of the energy problem in the world is presented. The colossal task of ‘decarbonizing’ the current energy system, with ~85% of the primary energy produced from fossil sources is discussed. There are at the moment only two options that can contribute to a solution: renewable energy (sun, wind, hydro, etc. or nuclear fission. Their contributions, ~2% for sun and wind, ~6% for hydro and ~5% for fission, will need to be enormously increased in a relatively short time, to meet the targets set by policy makers. The possible role and large potential for fusion to contribute to a solution in the future as a safe, nearly inexhaustible and environmentally compatible energy source is discussed. The principles of magnetic and inertial confinement are outlined, and the two main options for magnetic confinement, tokamak and stellarator, are explained. The status of magnetic fusion is summarized and the next steps in fusion research, ITER and DEMO, briefly presented.

  10. EASETECH Energy: Life Cycle Assessment of current and future Danish power systems

    DEFF Research Database (Denmark)

    Turconi, Roberto; Damgaard, Anders; Bisinella, Valentina

    A new life cycle assessment (LCA) model software has been developed by DTU Environment, to facilitate detailed LCA of energy technologies. The model, EASETECH Energy, is dedicated to the specific technologies needed to assess energy production and energy systems and provides an unprecedented...... flexibility with respect to LCA modeling of these technologies. To illustrate the functionality of the model, preliminary results from a LCA of the Danish power system in 2010 as well as two future scenarios for 2030 are presented. In addition to providing a general overview of the environmental profile...... of a renewable based power system, specific focus is placed on the typical challenges encountered when performing an LCA of a power system. Further, the key characteristics of EASETECH Energy that can expedite the set-up of multiple scenarios and enhance transparency in the modelling are explained....

  11. Transportation Energy Futures: Key Opportunities and Tools for Decision Makers (Brochure)

    Energy Technology Data Exchange (ETDEWEB)

    2012-12-01

    The Transportation Energy Futures (TEF) project examines underexplored greenhouse gas-abatement and oil-savings opportunities by consolidating transportation energy knowledge, conducting advanced analysis, and exploring additional opportunities for sound strategic action. Led by NREL, in collaboration with Argonne National Laboratory, the project's primary goal is to provide analysis to accompany DOE-EERE's long-term transportation energy planning by addressing high-priority questions, informing domestic decisions about transportation energy strategies, priorities, and investments. Research and analysis were conducted with an eye toward short-term actions that support long-term energy goals The project looks beyond technology to examine each key question in the context of the marketplace, consumer behavior, industry capabilities, and infrastructure. This updated fact sheet includes a new section on initial project findings.

  12. EASETECH Energy: Life Cycle Assessment of current and future Danish power systems

    DEFF Research Database (Denmark)

    Turconi, Roberto; Damgaard, Anders; Bisinella, Valentina

    A new life cycle assessment (LCA) model software has been developed by DTU Environment, to facilitate detailed LCA of energy technologies. The model, EASETECH Energy, is dedicated to the specific technologies needed to assess energy production and energy systems and provides an unprecedented...... flexibility with respect to LCA modeling of these technologies. To illustrate the functionality of the model, preliminary results from a LCA of the Danish power system in 2010 as well as two future scenarios for 2030 are presented. In addition to providing a general overview of the environmental profile...... of a renewable based power system, specific focus is placed on the typical challenges encountered when performing an LCA of a power system. Further, the key characteristics of EASETECH Energy that can expedite the set-up of multiple scenarios and enhance transparency in the modelling are explained....

  13. A word from Frédérick Bordry: Energy for future science

    CERN Multimedia

    2013-01-01

    With the second workshop on Energy for Sustainable Science wrapping up in the CERN Main Auditorium, Chairman Frédérick Bordry takes this opportunity to discuss how CERN is contributing to the Sustainable Science conversation.   The second workshop on energy for sustainable science ended with a clear conclusion: energy is a key parameter in future projects. When we design scientific experiments and the related infrastructures it is imperative to think ahead about how energy will be managed. At the same time, we can’t forget that our Organization, like other leading laboratories, was created when the climate was significantly different and when the concept of ‘sustainability’ hadn’t yet been coined! This means that existing facilities have to adopt an energy policy that informs new projects but can also gradually implement changes in existing operations. This is what is happening at CERN and in many other research facilities, as pre...

  14. Energy efficiency policy in Vienna: analysis, evaluation and recommendations for the future

    Energy Technology Data Exchange (ETDEWEB)

    Mader, Silke; Jamek, Andrea (Austrian Energy Agency, Vienna (Austria))

    2009-07-01

    The challenge of achieving international and national energy targets (e.g. 20% less energy consumption by 2020, Austrian Kyoto target, etc.) also increases the relevance of local and regional energy policy. Therefore, Vienna, both the capital of Austria and one of the 9 Austrian provinces, with its 1.66 million inhabitants has a special responsibility in implementing effective energy efficiency policy instruments. Very well developed Viennese energy programmes such as the 'Climate Protection Programme', the 'Urban Energy Efficiency Programme' or the 'Urban Development Plan' represent the cornerstones for the realisation of energy efficiency measures. An international comparison of the existing local policy instruments led to very positive results: it shows that the wide spectrum of measures implemented in Vienna can hardly be found in any other European city. Further evaluations in respect of the Viennese energy efficiency targets and energy efficiency potentials bring interesting results. Besides that interviews with experts (from administrations, industry associations, companies etc.) have been conducted for elaborating recommendations for future policy activities. Vienna is also a good example for showing the economic relevance of energy policy: today around 300 companies are working in the field of energy efficiency and renewable energy sources in Vienna. That means an annual turnover of 5.3 billion Euro and a number of employees of 22,800. As the region has high energy efficiency and renewable energy technologies potentials, it can be expected that more companies working in that field will settle in Vienna.

  15. Basic research needs to assure a secure energy future. A report from the Basic Energy Sciences Advisory Committee

    Energy Technology Data Exchange (ETDEWEB)

    None

    2003-02-01

    This report has highlighted many of the possible fundamental research areas that will help our country avoid a future energy crisis. The report may not have adequately captured the atmosphere of concern that permeated the discussions at the workshop. The difficulties facing our nation and the world in meeting our energy needs over the next several decades are very challenging. It was generally felt that traditional solutions and approaches will not solve the total energy problem. Knowledge that does not exist must be obtained to address both the quantity of energy needed to increase the standard of living world-wide and the quality of energy generation needed to preserve the environment. In terms of investments, it was clear that there is no single research area that will secure the future energy supply. A diverse range of economic energy sources will be required--and a broad range of fundamental research is needed to enable these. Many of the issues fall into the traditional materials and chemical sciences research areas, but with specific emphasis on understanding mechanisms, energy related phenomena, and pursuing novel directions in, for example, nanoscience and integrated modeling. An important result from the discussions, which is hopefully apparent from the brief presentations above, is that the problems that must be dealt with are truly multidisciplinary. This means that they require the participation of investigators with different skill sets. Basic science skills have to be complemented by awareness of the overall nature of the problem in a national and world context, and with knowledge of the engineering, design, and control issues in any eventual solution. It is necessary to find ways in which this can be done while still preserving the ability to do first-class basic science. The traditional structure of research, with specific disciplinary groupings, will not be sufficient. This presents great challenges and opportunities for the funders of the

  16. Spectral fingerprints of Earth-like planets around FGK stars.

    Science.gov (United States)

    Rugheimer, Sarah; Kaltenegger, Lisa; Zsom, Andras; Segura, Antígona; Sasselov, Dimitar

    2013-03-01

    We present model atmospheres for an Earth-like planet orbiting the entire grid of main sequence FGK stars with effective temperatures ranging from Teff=4250 K to Teff=7000 K in 250 K intervals. We have modeled the remotely detectable spectra of Earth-like planets for clear and cloudy atmospheres at the 1 AU equivalent distance from the VIS to IR (0.4 to 20 μm) to compare detectability of features in different wavelength ranges in accordance with the James Webb Space Telescope and future design concepts to characterize exo-Earths. We have also explored the effect of the stellar UV levels as well as spectral energy distribution on a terrestrial atmosphere, concentrating on detectable atmospheric features that indicate habitability on Earth, namely, H2O, O3, CH4, N2O, and CH3Cl. The increase in UV dominates changes of O3, OH, CH4, N2O, and CH3Cl, whereas the increase in stellar temperature dominates changes in H2O. The overall effect as stellar effective temperatures and corresponding UV increase is a lower surface temperature of the planet due to a bigger part of the stellar flux being reflected at short wavelengths, as well as increased photolysis. Earth-like atmosphere models show more O3 and OH but less stratospheric CH4, N2O, CH3Cl, and tropospheric H2O (but more stratospheric H2O) with increasing effective temperature of main sequence stars. The corresponding detectable spectral features, on the other hand, show different detectability depending on the wavelength observed. We concentrate on directly imaged planets here as a framework to interpret future light curves, direct imaging, and secondary eclipse measurements of atmospheres of terrestrial planets in the habitable zone at varying orbital positions.

  17. Diversification of the energy mix and renewable energy sources in Slovenia for ensuring sustainable, competitive and secure energy in the future

    Energy Technology Data Exchange (ETDEWEB)

    Podlogar, Sasa; Raner, Damjana; Zebeljan, Djordje

    2007-07-01

    The European Union is facing major challenges in the energy field - growing import dependency, the need for substantial investment and lack of competitive energy market. It has adopted binding legislation and non-binding recommendations, but they do not suffice. The latest Green paper identifies diversification of energy mix as one of the key areas, where further action is needed, if Europe is to overcome this crisis. Renewable energy is recognised as a relevant factor in improving security of energy supply, since it increases the share of indigenous energy and thus provides a more balanced and diversified energy mix. Slovenia's energy mix includes 11 % of renewables. In our electricity mix the share of renewables is higher, 27,6 %.The estimations show that by 2015 13,3 % of primary energy use will come from renewable sources. Our current strategy in the field of renewable energy sources is to increase their share in overall energy balance sheet to 12 % in 2010 and to increase their share in electricity production to 33,6 % in 2010. But Slovenia will have to take into account new ambitious targets the European Commission recommended recently, while trying to determine the optimally balanced diversification of energy sources in the future. (auth)

  18. Creatures on Other Planets

    Institute of Scientific and Technical Information of China (English)

    罗汉中; 张静

    2000-01-01

    People often discuss whether there are creatures on other planets .Some people say “yes” while others say “no” This is because they haven't seen any real creatures or flying objects from other planets.

  19. Comparing World Economic and Net Energy Metrics, Part 3: Macroeconomic Historical and Future Perspectives

    Directory of Open Access Journals (Sweden)

    Carey W. King

    2015-11-01

    Full Text Available I use energy cost share to characterize the role of energy in the economy. Specifically, I use an estimate of monetary expenditures for primary energy on an annualized basis for forty-four countries from 1978 to 2010 for natural gas, coal, petroleum, and electricity. I show that global energy cost share is significantly correlated to a one-year lag in the change in gross domestic product as well as measures of total factor productivity. Given the historical reduction in the relative cost of energy (including food and fodder for animate power since the start of the Industrial Revolution, combined with a global energy cost share estimate, I conclude that the turn of the 21st Century represents the time period with the cheapest energy in the history of human civilization (to date. This potential historical nadir for energy expenditures around 2000 has important ramifications for strategies to solve future social, economic, and environmental problems such as reducing annual emissions of greenhouse gases (GHGs. Rapidly decreasing annual GHG emissions while internalizing their costs into the economy might feedback to increase energy expenditures to such a degree as to prevent economic growth during that transition.

  20. Energy: options for the future. Curriculum development project for high school teachers. Final report. [Packet

    Energy Technology Data Exchange (ETDEWEB)

    Carroll, T.O.

    1978-04-01

    Recent state and regional energy crises demonstrate the delicate balance between energy systems, the environment, and the economy. Indeed, the interaction between these three elements of society is very complex. This project develops curriculum materials that would better provide students with an understanding and awareness of fundamental principles of energy supply, conversion processes, and utilization now and in the future. The project had two specific objectives: to transfer knowledge of energy systems, analysis techniques, and advanced technologies from the energy analyst community to the teacher participants; and to involve teachers in the preparation of modular case studies on energy issues for use within the classroom. These curriculum modules are intended to enhance the teacher's ability to provide energy-related education to students within his or her own academic setting. The project is organized as a three-week summer program, as noted in the flyer (Appendix A). Mornings are spent in seminars with energy and environmental specialists (their handout lecture notes are included as Appendix B); afternoons are devoted to high school curriculum development based on the seminar discussions. The curriculum development is limited to five areas: conservation, electricity demand scheduling, energy in the food system, new technologies (solar, wind, biomass), and environment. Appendix C consists of one-day lession plans in these areas.