WorldWideScience

Sample records for pit viper venoms

  1. Effect of Trimeresurus albolabris (green pit viper) venom on mean ...

    African Journals Online (AJOL)

    An in vitro study was conducted by mixing small amounts of green pit viper venom with blood and observing changes. At a concentration of 10 mg crude venom, red blood cells (RBC) osmotic fragility slightly increased. RBC morphology changed to spherical shape which was compatible with what was observed in scanning ...

  2. Venomics of New World pit vipers: genus-wide comparisons of venom proteomes across Agkistrodon.

    Science.gov (United States)

    Lomonte, Bruno; Tsai, Wan-Chih; Ureña-Diaz, Juan Manuel; Sanz, Libia; Mora-Obando, Diana; Sánchez, Elda E; Fry, Bryan G; Gutiérrez, José María; Gibbs, H Lisle; Sovic, Michael G; Calvete, Juan J

    2014-01-16

    We report a genus-wide comparison of venom proteome variation across New World pit vipers in the genus Agkistrodon. Despite the wide variety of habitats occupied by this genus and that all its taxa feed on diverse species of vertebrates and invertebrate prey, the venom proteomes of copperheads, cottonmouths, and cantils are remarkably similar, both in the type and relative abundance of their different toxin families. The venoms from all the eleven species and subspecies sampled showed relatively similar proteolytic and PLA2 activities. In contrast, quantitative differences were observed in hemorrhagic and myotoxic activities in mice. The highest myotoxic activity was observed with the venoms of A. b. bilineatus, followed by A. p. piscivorus, whereas the venoms of A. c. contortrix and A. p. leucostoma induced the lowest myotoxic activity. The venoms of Agkistrodon bilineatus subspecies showed the highest hemorrhagic activity and A. c. contortrix the lowest. Compositional and toxicological analyses agree with clinical observations of envenomations by Agkistrodon in the USA and Central America. A comparative analysis of Agkistrodon shows that venom divergence tracks phylogeny of this genus to a greater extent than in Sistrurus rattlesnakes, suggesting that the distinct natural histories of Agkistrodon and Sistrurus clades may have played a key role in molding the patterns of evolution of their venom protein genes. A deep understanding of the structural and functional profiles of venoms and of the principles governing the evolution of venomous systems is a goal of venomics. Isolated proteomics analyses have been conducted on venoms from many species of vipers and pit vipers. However, making sense of these large inventories of data requires the integration of this information across multiple species to identify evolutionary and ecological trends. Our genus-wide venomics study provides a comprehensive overview of the toxic arsenal across Agkistrodon and a ground for

  3. Venomics of New World pit vipers: Genus-wide comparisons of venom proteomes across Agkistrodon

    Science.gov (United States)

    Lomonte, Bruno; Tsai, Wan-Chih; Ureña-Diaz, Juan Manuel; Sanz, Libia; Mora-Obando, Diana; Sánchez, Elda E.; Fry, Bryan G.; Gutiérrez, José María; Gibbs, H. Lisle; Sovic, Michael G.; Calvete, Juan J.

    2015-01-01

    We report a genus-wide comparison of venom proteome variation across New World pit vipers in the genus Agkistrodon. Despite the wide variety of habitats occupied by this genus and that all its taxa feed on diverse species of vertebrates and invertebrate prey, the venom proteomes of copperheads, cottonmouths, and cantils are remarkably similar, both in the type and relative abundance of their different toxin families. The venoms from all the eleven species and subspecies sampled showed relatively similar proteolytic and PLA2 activities. In contrast, quantitative differences were observed in hemorrhagic and myotoxic activities in mice. The highest myotoxic activity was observed with the venoms of A. b. bilineatus, followed by A. p. piscivorus, whereas the venoms of A. c. contortrix and A. p. leucostoma induced the lowest myotoxic activity. The venoms of Agkistrodon bilineatus subspecies showed the highest hemorrhagic activity and A. c. contortrix the lowest. Compositional and toxicological analyses agree with clinical observations of envenomations by Agkistrodon in the USA and Central America. A comparative analysis of Agkistrodon shows that venom divergence tracks phylogeny of this genus to a greater extent than in Sistrurus rattlesnakes, suggesting that the distinct natural histories of Agkistrodon and Sistrurus clades may have played a key role in molding the patterns of evolution of their venom protein genes. Biological significance A deep understanding of the structural and functional profiles of venoms and of the principles governing the evolution of venomous systems is a goal of venomics. Isolated proteomics analyses have been conducted on venoms from many species of vipers and pit vipers. However, making sense of these large inventories of data requires the integration of this information across multiple species to identify evolutionary and ecological trends. Our genus-wide venomics study provides a comprehensive overview of the toxic arsenal across

  4. Neutralization of lethality and proteolytic activities of Malayan pit viper (Calloselasma rhodostoma) venom with North American Virginia opossum (Didelphis virginiana) serum.

    Science.gov (United States)

    Pornmanee, Piboon; Sánchez, Elda E; López, Gonzalo; Petsom, Amorn; Khow, Orawan; Pakmanee, Narumol; Chanhome, Lawan; Sangvanich, Polkit; Pérez, John C

    2008-07-01

    Malayan pit viper (Calloselasma rhodostoma) envenomation is a major health problem in South East Asia. During envenomation, venom components mainly affect the hemostatic system. The sera from the North American Virginia opossums (Didelphis virginiana) were able to neutralize the venom of the Malayan pit viper. These natural inhibitors could be explored as potential therapeutics against envenomations of a variety of venomous snake species in different geographical habitats.

  5. Venoms of South Asian hump-nosed pit vipers (Genus: Hypnale cause muscarinic effects in BALB/c mice

    Directory of Open Access Journals (Sweden)

    A Silva

    2014-03-01

    Full Text Available Although clinical, in-vivo and in-vitro studies suggest the necrotic, haemorrhagic, pro-coagulant and nephrotoxic effects of South Asian Hump nosed pit vipers, reports on neurotoxic properties are limited to a single in-vitro study. Using BALB/c mice, for the first time, here we demonstrate the signs of envenoming suggestive of possible muscarinic effects of the venoms of all three Hypnale species. Further, we demonstrate that the muscarinic effects are occurred at lower venom doses by H. hypnale venom, compared to H. nepa and H. zara.

  6. Use of gamma irradiated viper venom as the toxoid against viper venom poisoning in mice and rabbits

    International Nuclear Information System (INIS)

    Hati, A.K.; Mandal, M.; Hati, R.N.; Das, S.

    1995-01-01

    The present paper deals with detoxification of the crude viper (Vipera russelli) venom by gamma irradiation and its effective immunogenic role in Balb/C mice, used as a toxoid. The successful immunization of rabbits with irradiated viper venom toxoid is also reported. Certain biochemical changes of the venom due to radiation exposure and neutralization capacity of the immune sera against phosphodiesterase and protease activity of the crude viper venom have also been studied. The neutralizing potency of Russell's viper venom (RVV) toxoid anti venom (anti venom raised in rabbits against γ-irradiated RVV toxoid adsorbed on aluminium phosphate), in comparison with a commercial bivalent anti venom (as a standard reference) with reference to haemorrhagic, necrotic and lethal effects of Russell's viper envenomation are reported. 25 refs

  7. Protective effects of Mucuna pruriens seed extract pretreatment against cardiovascular and respiratory depressant effects of Calloselasma rhodostoma (Malayan pit viper) venom in rats.

    Science.gov (United States)

    Fung, S Y; Tan, N H; Sim, S M

    2010-12-01

    The protective effects of Mucuna pruriens seed extract (MPE) against the cardio-respiratory depressant and neuromuscular paralytic effects induced by injection of Calloselasma rhodostoma (Malayan pit viper) venom in anaesthetized rats were investigated. While MPE pretreatment did not reverse the inhibitory effect of the venom on the gastrocnemius muscle excitability, it significantly attenuated the venom-induced cardio-respiratory depressant effects (p < 0.05). The protection effects may have an immunological mechanism, as indicated by the presence of several proteins in the venom that are immunoreactive against anti-MPE. However, we cannot rule out the possibility that the pretreatment may exert a direct, non-immunological protective action against the venom.

  8. Molecular cloning, expression and characterization of albolamin: a type P-IIa snake venom metalloproteinase from green pit viper (Cryptelytrops albolabris).

    Science.gov (United States)

    Jangprasert, Panchalee; Rojnuckarin, Ponlapat

    2014-03-01

    Snake venom metalloproteinases (SVMPs) can damage vessel wall, degrade clotting factors, inhibit integrins and block platelet functions. Studying them not only gives us deeper insights in pathogenesis of snakebites, but also potentially yields novel therapeutic agents. Here, we discovered a clone of an RGD-containing SVMP from the green pit viper (Cryptelytrops albolabris) venom gland cDNA library. Sequence analysis revealed that it belonged to the P-IIa subclass of SVMP comprising signal peptide, prodomain, metalloproteinase and disintegrin. Compared with other P-II SVMPs, it contained 2 additional conserved cysteines that were predicted to prevent the release of disintegrin from the metalloproteinase domain in the mature protein. The N-terminal histidine-tagged construct of metalloproteinase and disintegrin domains of albolamin was inserted into the pPICZαA vector and expressed in Pichia pastoris. The recombinant protein molecular weight was approximately 35 kDa on Western blot probed with anti-polyhistidine antibody. The recombinant albolamin could digest human type IV collagen starting within 15 min after incubation. In addition, it dose-dependently inhibited collagen-induced platelet aggregation with the IC50 of 1.8 μM. However, there was no effect on ADP-induced platelet aggregation. Therefore, the inhibition mechanism is probably through blocking collagen receptor(s). Albolamin activities probably contributed to pathology of green pit viper bites. Its disintegrin domain deserves further studies for the potential to be a useful agent affecting platelet functions. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. Identification and functional analysis of a novel bradykinin inhibitory peptide in the venoms of New World Crotalinae pit vipers

    International Nuclear Information System (INIS)

    James Graham, Robert Leslie; Graham, Ciaren; McClean, Stephen; Chen, Tianbao; O'Rourke, Martin; Hirst, David; Theakston, David; Shaw, Chris

    2005-01-01

    A novel undecapeptide has been isolated and structurally characterized from the venoms of three species of New World pit vipers from the subfamily, Crotalinae. These include the Mexican moccasin (Agkistrodon bilineatus), the prairie rattlesnake (Crotalus viridis viridis), and the South American bushmaster (Lachesis muta). The peptide was purified from all three venoms using a combination of gel permeation chromatography and reverse-phase HPLC. Automated Edman degradation sequencing and MALDI-TOF mass spectrometry established its peptide primary structure as: Thr-Pro-Pro-Ala-Gly-Pro-Asp-Val-Gly-Pro-Arg-OH, with a non-protonated molecular mass of 1063.18 Da. A synthetic replicate of the peptide was found to be an antagonist of bradykinin action at the rat vascular B2 receptor. This is the first bradykinin inhibitory peptide isolated from snake venom. Database searching revealed the peptide to be highly structurally related (10/11 residues) with a domain residing between the bradykinin-potentiating peptide and C-type natriuretic peptide domains of a recently cloned precursor from tropical rattlesnake (Crotalus durissus terrificus) venom gland. BIP thus represents a novel biological entity from snake venom

  10. 21 CFR 864.8950 - Russell viper venom reagent.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Russell viper venom reagent. 864.8950 Section 864.8950 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES HEMATOLOGY AND PATHOLOGY DEVICES Hematology Reagents § 864.8950 Russell viper venom...

  11. Comparative in-vivo toxicity of venoms from South Asian hump-nosed pit vipers (Viperidae: Crotalinae: Hypnale

    Directory of Open Access Journals (Sweden)

    Silva Anjana

    2012-08-01

    Full Text Available Abstract Background Envenoming by south Asian hump-nosed pit vipers (Genus: Hypnale is a significant health issue in Sri Lanka and in peninsular India. Bites by these snakes frequently lead to local envenoming, coagulopathy and acute renal failure even resulting in death. Recently the genus was revised and the existence of three species viz H. hypnale, H. nepa and H. zara were recognized. There is, however, a paucity of information on the toxicity of the venoms of these species. Hence, we compared the toxic effects of the three Hypnale venoms using BALB/c mice. Findings Intraperitoneal median lethal doses (LD50 for H. hypnale, H. zara and H. nepa venoms were 1.6, 6.0 and 9.5 μg protein/g respectively. Minimum haemorrhagic doses for venoms of H. hypnale, H. zara and H. nepa were 3.4, 11.0 and 16.6 μg protein/mouse respectively. The minimum necrotic doses for the same venoms were 15.0, 55.1 and 68.2 μg protein/mouse respectively. Severe congestion and petecheal haemorrhages were observed in lungs, kidneys, liver and the alimentary tract. Histopathogical examination of kidneys revealed proximal tubular cell injury and acute tubular necrosis with intact basement membrane indicating possible direct nephrotoxicity. Hypnale venoms caused pulmonary oedema, hepatocellular degeneration and necrosis, focal neuronal degeneration in brain and extramedullary haemopoiesis in spleen. H. hypnale venom caused all above histopathological alterations at lower doses compared to the other two. Conclusion Hypnale venoms cause similar pathological changes with marked differences in the severity of the toxic effects in vivo. Therefore, differences in the severity of the clinical manifestations could possibly be seen among bite victims of the three Hypnale species.

  12. Snake venomics of the pit vipers Porthidium nasutum, Porthidium ophryomegas, and Cerrophidion godmani from Costa Rica: toxicological and taxonomical insights.

    Science.gov (United States)

    Lomonte, Bruno; Rey-Suárez, Paola; Tsai, Wan-Chih; Angulo, Yamileth; Sasa, Mahmood; Gutiérrez, José María; Calvete, Juan J

    2012-02-16

    Within the Neotropical pit vipers, a lineage of primarily Middle American snake species referred to as the "Porthidium group" includes the genera Atropoides, Cerrophidion, and Porthidium. In this study, the venom proteomes of Porthidium nasutum, P. ophryomegas, and Cerrophidion godmani from Costa Rica were analyzed, and correlated to their toxic and enzymatic activities. Their HPLC profiles revealed a higher similarity between the two Porthidium species than between these and C. godmani. Proteins belonging to nine (P. nasutum), eight (P. ophryomegas), and nine (C. godmani) families were identified by mass spectrometry or N-terminal sequencing. Final cataloging of proteins and their relative abundances confirmed the close relationship between venoms of P. nasutum and P. ophryomegas, departing from that of C. godmani. Since the latter species had been taxonomically classified as Porthidium godmani previously, our venomic analyses agree with its current generic status. Venoms of P. nasutum and P. ophryomegas, despite containing abundant metalloproteinases and serine proteinases, lack procoagulant activity on human plasma, in contrast to venom of C. godmani. The latter induced strong myotoxicity in mice, which correlates with its high proportion of phospholipases A(2), whereas venoms from the two Porthidium species, containing lower amounts of these enzymes, induced only mild muscle damage. Copyright © 2011 Elsevier B.V. All rights reserved.

  13. Proteomic and biochemical analyses of short-tailed pit viper (Gloydius brevicaudus) venom: age-related variation and composition-activity correlation.

    Science.gov (United States)

    Gao, Jian-Fang; Wang, Jin; He, Ying; Qu, Yan-Fu; Lin, Long-Hui; Ma, Xiao-Mei; Ji, Xiang

    2014-06-13

    We conducted an in-depth analysis of the proteomic and biochemical profiles of the venom of neonate and adult short-tailed pit vipers (Gloydius brevicaudus). Identified proteins were assigned to a few main toxin families. Disintegrin, phospholipase A2 (PLA2), serine proteinase, cysteine-rich secretory protein, C-type lectin-like protein, l-amino acid oxidase and snake venom metalloproteinase (SVMP) were detected in both venoms, while 5'-nucleotidase was detected only in the adult venom. SVMP was the predominant protein family in both venoms (neonate: 65.7%; adult: 64.4%), followed by PLA2 (neonate: 13.4%; adult: 25.0%). Antivenomic analysis revealed that commercial G. brevicaudus antivenom almost neutralized the chromatographic peaks with medium and high molecular masses in both venoms, but did not completely recognize peaks with low molecular mass. Toxicological and enzymatic activities show remarkable age-related variation in G. brevicaudus venom, probably resulting from variation in venom composition. Our data demonstrate age-related variation across venomics, antivenomics and biochemical profiles of G. brevicaudus venom, and have implications for the management of G. brevicaudus bites, including improving antivenom preparation by combining both venoms. This study investigates the composition and biochemical activity of neonate and adult Gloydius brevicaudus venoms. We found remarkable age-related variation in venom biological activity, likely the result of variation in venom composition. Antivenomics analysis was used to explore difference in neonate and adult G. brevicaudus venoms. Our findings have implications for the diagnosis and clinical management of G. brevicaudus bites, and the design of venom mixtures that will increase the efficacy of commercial antivenom. This article is part of a Special Issue entitled: Proteomics of non-model organisms. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Snake Venom Metalloproteinases and Their Peptide Inhibitors from Myanmar Russell’s Viper Venom

    Directory of Open Access Journals (Sweden)

    Khin Than Yee

    2016-12-01

    Full Text Available Russell’s viper bites are potentially fatal from severe bleeding, renal failure and capillary leakage. Snake venom metalloproteinases (SVMPs are attributed to these effects. In addition to specific antivenom therapy, endogenous inhibitors from snakes are of interest in studies of new treatment modalities for neutralization of the effect of toxins. Two major snake venom metalloproteinases (SVMPs: RVV-X and Daborhagin were purified from Myanmar Russell’s viper venom using a new purification strategy. Using the Next Generation Sequencing (NGS approach to explore the Myanmar RV venom gland transcriptome, mRNAs of novel tripeptide SVMP inhibitors (SVMPIs were discovered. Two novel endogenous tripeptides, pERW and pEKW were identified and isolated from the crude venom. Both purified SVMPs showed caseinolytic activity. Additionally, RVV-X displayed specific proteolytic activity towards gelatin and Daborhagin showed potent fibrinogenolytic activity. These activities were inhibited by metal chelators. Notably, the synthetic peptide inhibitors, pERW and pEKW, completely inhibit the gelatinolytic and fibrinogenolytic activities of respective SVMPs at 5 mM concentration. These complete inhibitory effects suggest that these tripeptides deserve further study for development of a therapeutic candidate for Russell’s viper envenomation.

  15. Tank Riser Pit Decontamination System (Pit Viper) Return on Investment and Break-Even Analysis

    International Nuclear Information System (INIS)

    Young, Joan K.; Weimar, Mark R.; Balducci, Patrick J.; Fassbender, Linda L.; Hernandez, Melissa

    2003-01-01

    This study assessed the cost benefit of Pit Viper deployment for 80 tank farm pits between October 1, 2003 and September 30, 2012 under the technical baseline for applicable double-shell tank (DST) and single-shell tank (SST) projects. After this assessment had been completed, the U.S. Department of Energy (DOE) Richland Operations Office (RL) and Office of River Protection (ORP) published the Hanford Performance Management Plan (August 2003), which accelerated the schedule for SST retrieval. Then, DOE/CH2M HILL contract modification M064 (October 2002) and The Integrated Mission Acceleration Plan (March 2003) further accelerated SST retrieval and closure schedules. Twenty-six to 40 tanks must be retrieved by 2006. Thus the schedule for SST pit entries is accelerated and the number of SST pit entries is increased. This study estimates the return on investment (ROI) and the number of pits where Pit Viper deployment would break even or save money over current manual practices. The results of the analysis indicate a positive return on the federal investment for deployment of the Pit Viper provided it is used on a sufficient number of pits

  16. THE USE OF THE ANTI-VENOM SPECIFIC ANTIBODIES ISOLATED FROM DUCK EGGS FOR INACTIVATION OF THE VIPER VENOM

    Directory of Open Access Journals (Sweden)

    ADRIANA CRISTE

    2008-05-01

    Full Text Available The activity of specific anti-venom can be demonstrated using protection test in laboratory mice. Our study aimed to emphasize the possibility of viper venom inactivation by the antibodies produced and isolated from duck eggs and also to the activation concentration of these antibodies. The venom used for inoculation was harvested from two viper species (Vipera ammodytes and Vipera berus. The immunoglobulin extract had a better activity on the venom from Vipera berus compared to the venom from Vipera ammodytes. This could be the result of a better immunological response, as consequence of the immunization with this type of venom, compared to the response recorded when the Vipera ammodytes venom was used. Besides the advantages of low cost, high productivity and reduced risk of anaphylactic shock, the duck eggs also have high activity up to dilutions of 1/16, 1/32, respectively, with specific activity and 100 surviving in individuals which received 3 x DL50.

  17. Cross-recognition of a pit viper (Crotalinae) polyspecific antivenom explored through high-density peptide microarray epitope mapping

    DEFF Research Database (Denmark)

    Engmark, Mikael; Lomonte, Bruno; Gutiérrez, José María

    2017-01-01

    Snakebite antivenom is a 120 years old invention based on polyclonal mixtures of antibodies purified from the blood of hyper-immunized animals. Knowledge on antibody recognition sites (epitopes) on snake venom proteins is limited, but may be used to provide molecular level explanations...... for antivenom cross-reactivity. In turn, this may help guide antivenom development by elucidating immunological biases in existing antivenoms. In this study, we have identified and characterized linear elements of B-cell epitopes from 870 pit viper venom protein sequences by employing a high......-throughput methodology based on custom designed high-density peptide microarrays. By combining data on antibody-peptide interactions with multiple sequence alignments of homologous toxin sequences and protein modelling, we have determined linear elements of antibody binding sites for snake venom metalloproteases (SVMPs...

  18. Detection of venom after antivenom is not associated with persistent coagulopathy in a prospective cohort of Russell's viper (Daboia russelii envenomings.

    Directory of Open Access Journals (Sweden)

    Kalana Maduwage

    2014-12-01

    Full Text Available Venom recurrence or persistence in the circulation after antivenom treatment has been documented many times in viper envenoming. However, it has not been associated with clinical recurrence for many snakes, including Russell's viper (Daboia spp.. We compare the recovery of coagulopathy to the recurrence or persistence of venom in patients with Russell's viper envenoming.The study included patients with Russell's viper (D. russelii envenoming presenting over a 30 month period who had Russell's viper venom detected by enzyme immunoassay. Demographics, information on the snake bite, and clinical effects were collected for all patients. All patients had serum collected for venom specific enzyme immunoassay and citrate plasma to measure fibrinogen levels and prothrombin time (international normalised ratio; INR. Patients with venom recurrence/persistence were compared to those with no detectable recurrence of venom. There were 55 patients with confirmed Russell's viper envenoming and coagulopathy with low fibrinogen concentrations: 31 with venom recurrence/persistence, and 24 with no venom detected post-antivenom. Fibrinogen concentrations increased and INR decreased after antivenom in both the recurrence and non-recurrence patients. Clinical features, laboratory parameters, antivenom dose and length of hospital were similar for both groups. Pre-antivenom venom concentrations were higher in patients with venom recurrence/persistence with a median venom concentration of 385 ng/mL (16-1521 ng/mL compared to 128 ng/mL (14-1492 ng/mL; p = 0.008.Recurrence of Russell's viper venom was not associated with a recurrence of coagulopathy and length of hospital stay. Further work is required to determine if the detection of venom recurrence is due to the venom specific enzyme immunoassay detecting both venom-antivenom complexes as well as free venom.

  19. Quantitative Proteomic Analysis of Venoms from Russian Vipers of Pelias Group: Phospholipases A₂ are the Main Venom Components.

    Science.gov (United States)

    Kovalchuk, Sergey I; Ziganshin, Rustam H; Starkov, Vladislav G; Tsetlin, Victor I; Utkin, Yuri N

    2016-04-12

    Venoms of most Russian viper species are poorly characterized. Here, by quantitative chromato-mass-spectrometry, we analyzed protein and peptide compositions of venoms from four Vipera species (V. kaznakovi, V. renardi, V. orlovi and V. nikolskii) inhabiting different regions of Russia. In all these species, the main components were phospholipases A₂, their content ranging from 24% in V. orlovi to 65% in V. nikolskii. Altogether, enzyme content in venom of V. nikolskii reached ~85%. Among the non-enzymatic proteins, the most abundant were disintegrins (14%) in the V. renardi venom, C-type lectin like (12.5%) in V. kaznakovi, cysteine-rich venom proteins (12%) in V. orlovi and venom endothelial growth factors (8%) in V. nikolskii. In total, 210 proteins and 512 endogenous peptides were identified in the four viper venoms. They represented 14 snake venom protein families, most of which were found in the venoms of Vipera snakes previously. However, phospholipase B and nucleotide degrading enzymes were reported here for the first time. Compositions of V. kaznakovi and V. orlovi venoms were described for the first time and showed the greatest similarity among the four venoms studied, which probably reflected close relationship between these species within the "kaznakovi" complex.

  20. Lessons Learned from Pit Viper Integration into Hanford Tank Farm Reality

    International Nuclear Information System (INIS)

    Catalan, Michael A.; Bailey, Sharon A.; Alzheimer, James M.; Niebuhr, Daniel P.

    2002-01-01

    The Pit Viper is a tele-operated system intended to enhance worker safety while simultaneously improving the efficiency of pit operations at the Hanford Site. Commercial off-the-shelf (COTS) components were used in an attempt to increase system efficiency. During preparation for initial deployment, the Pit Viper team identified multiple areas where more advanced technology offers substantial improvement in system capabilities. The team also ensured that the system as is, was capable of fulfilling its mission. However, there are valid concerns of the reliability of the technology. Areas where improvement are desired include; operator feedback, manipulator dexterous envelope, and system reliability

  1. Toxicity of venoms from vipers of Pelias group to crickets Gryllus assimilis and its relation to snake entomophagy.

    Science.gov (United States)

    Starkov, Vladislav G; Osipov, Alexey V; Utkin, Yuri N

    2007-06-01

    The existing data indicate that snake venom is most toxic towards the natural vertebrate preys. Several species of snake include arthropods in their food. However, there is no available data on the toxicity of venom from entomophagous snakes towards their prey. We have studied the toxicity of venom from vipers of Pelias group towards crickets Gryllus assimilis. The Pelias group includes several closely related viper species inhabiting mainly the South European part of Russia, and they differ in their feeding preferences. Snakes from the Vipera renardi, Vipera lotievi, Vipera kaznakovi, and Vipera orlovi species feed on wide range of animals including insects, whereas snakes from Vipera berus and Vipera nikolskii species do not include insects in their diet. We have found that the venom from vipers that include insects in their diet possesses greater toxicity towards crickets. The greatest toxicity was observed for the venom from V. lotievi, which displays a preference for insects in its diet. Therefore, based on our data, we suggest that the viper entomophagy is not a result of behavior plasticity, but is probably determined at a genetic level.

  2. Viper and cobra venom neutralization by beta-sitosterol and stigmasterol isolated from the root extract of Pluchea indica Less. (Asteraceae).

    Science.gov (United States)

    Gomes, A; Saha, Archita; Chatterjee, Ipshita; Chakravarty, A K

    2007-09-01

    We reported previously that the methanolic root extract of the Indian medicinal plant Pluchea indica Less. (Asteraceae) could neutralize viper venom-induced action [Alam, M.I., Auddy, B., Gomes, A., 1996. Viper venom neutralization by Indian medicinal plant (Hemidesmus indicus and P. indica) root extracts. Phytother. Res. 10, 58-61]. The present study reports the neutralization of viper and cobra venom by beta-sitosterol and stigmasterol isolated from the root extract of P. indica Less. (Asteraceae). The active fraction (containing the major compound beta-sitosterol and the minor compound stigmasterol) was isolated and purified by silica gel column chromatography and the structure was determined using spectroscopic analysis (EIMS, (1)H NMR, (13)C NMR). Anti-snake venom activity was studied in experimental animals. The active fraction was found to significantly neutralize viper venom-induced lethal, hemorrhagic, defibrinogenation, edema and PLA(2) activity. Cobra venom-induced lethality, cardiotoxicity, neurotoxicity, respiratory changes and PLA(2) activity were also antagonized by the active component. It potentiated commercial snake venom antiserum action against venom-induced lethality in male albino mice. The active fraction could antagonize venom-induced changes in lipid peroxidation and superoxide dismutase activity. This study suggests that beta-sitosterol and stigmasterol may play an important role, along with antiserum, in neutralizing snake venom-induced actions.

  3. Canopy Venom: Proteomic Comparison among New World Arboreal Pit-Viper Venoms.

    Science.gov (United States)

    Debono, Jordan; Cochran, Chip; Kuruppu, Sanjaya; Nouwens, Amanda; Rajapakse, Niwanthi W; Kawasaki, Minami; Wood, Kelly; Dobson, James; Baumann, Kate; Jouiaei, Mahdokht; Jackson, Timothy N W; Koludarov, Ivan; Low, Dolyce; Ali, Syed A; Smith, A Ian; Barnes, Andrew; Fry, Bryan G

    2016-07-08

    Central and South American pitvipers, belonging to the genera Bothrops and Bothriechis, have independently evolved arboreal tendencies. Little is known regarding the composition and activity of their venoms. In order to close this knowledge gap, venom proteomics and toxin activity of species of Bothriechis, and Bothrops (including Bothriopsis) were investigated through established analytical methods. A combination of proteomics and bioactivity techniques was used to demonstrate a similar diversification of venom composition between large and small species within Bothriechis and Bothriopsis. Increasing our understanding of the evolution of complex venom cocktails may facilitate future biodiscoveries.

  4. Venom Concentrations and Clotting Factor Levels in a Prospective Cohort of Russell's Viper Bites with Coagulopathy.

    Directory of Open Access Journals (Sweden)

    Geoffrey K Isbister

    Full Text Available Russell's viper envenoming is a major problem in South Asia and causes venom induced consumption coagulopathy. This study aimed to investigate the kinetics and dynamics of venom and clotting function in Russell's viper envenoming.In a prospective cohort of 146 patients with Russell's viper envenoming, we measured venom concentrations, international normalised ratio [INR], prothrombin time (PT, activated partial thromboplastin time (aPTT, coagulation factors I, II, V, VII, VIII, IX and X, and von Willebrand factor antigen. The median age was 39 y (16-82 y and 111 were male. The median peak INR was 6.8 (interquartile range [IQR]: 3.7 to >13, associated with low fibrinogen [median,3 at 6 h post-antivenom but had reduced to <2, by 24 h. The aPTT had also returned to close to normal (<50 sec at 24 h. Factor VII, VIII and IX levels were unusually high pre-antivenom, median peak concentrations of 393%, 307% and 468% respectively. Pre-antivenom venom concentrations and the INR (r = 0.20, p = 0.02 and aPTT (r = 0.19, p = 0.03 were correlated (non-parametric Spearman analysis.Russell's viper coagulopathy results in prolonged aPTT, INR, low fibrinogen, factors V, VIII and X which recover over 48 h. Severity of clotting abnormalities was associated with venom concentrations.

  5. Pit Viper strikes at the Hanford site. Pit maintenance using robotics at the Hanford Tank Farms

    International Nuclear Information System (INIS)

    Roeder-Smith, Lynne

    2002-01-01

    The Pit Viper--a remote operations waste retrieval system--was developed to replace manual operations in the valve pits of waste storage tanks at the Hanford Site. The system consists of a typical industrial backhoe fitted with a robotic manipulator arm and is operated remotely from a control trailer located outside of the tank farm. Cameras mounted to the arm and within the containment tent allow the operator to view the entire pit area and operate the system using a joystick. The arm's gripper can grasp a variety of tools that allow personnel to perform cleaning, debris removal, and concrete repair tasks--a more efficient and less dose-intensive process than the previous 'long-pole' method. The project team overcame a variety of obstacles during development and testing of the Pit Viper system, and deployment occurred in Hanford Tank C-104 in December 2001

  6. Viperous fangs: development and evolution of the venom canal.

    Science.gov (United States)

    Zahradnicek, Oldrich; Horacek, Ivan; Tucker, Abigail S

    2008-01-01

    Fangs are specialised long teeth that contain either a superficial groove (Gila monster, Beaded lizard, some colubrid snakes), along which the venom runs, or an enclosed canal (viperid, elapid and atractaspid), down which the venom flows inside the tooth. The fangs of viperid snakes are the most effective venom-delivery structures among vertebrates and have been the focus of scientific interests for more than 200 years. Despite this interest the questions of how the canal at the centre of the fang forms remains unresolved. Two different hypotheses have been suggested. The mainstream hypothesis claims that the venom-conducting canal develops by the invagination of the epithelial wall of the developing tooth germ. The sides of this invagination make contact and finally fuse to form the enclosed canal. The second hypothesis, known as the "brick chimney", claims the venom-conducting canal develops directly by successive dentine deposition as the tooth develops. The fang is thus built up from the tip to the base, without any folding of the tooth surface. In an attempt to cast further light on this subject the early development of the fangs was followed in a pit viper, Trimeresurus albolabris, using the expression of Sonic hedgehog (Shh). We demonstrate that the canal is indeed formed by an early folding event, resulting from an invagination of epithelial cells into the dental mesenchyme. The epithelial cells proliferate to enlarge the canal and then the cells die by apoptosis, forming an empty tube through which the poison runs. The entrance and discharge orifices at either end of the canal develop by a similar invagination but the initial width of the invagination is very different from that in the middle of the tooth, and is associated with higher proliferation. The two sides of the invaginating epithelium never come into contact, leaving the orifice open. The mechanism by which the orifices form can be likened to that observed in reptiles with an open groove along

  7. Microangiopathic Hemolytic Anemia Following Three Different Species of Hump-Nosed Pit Viper (Genus: Hypnale) Envenoming in Sri Lanka.

    Science.gov (United States)

    Namal Rathnayaka, Rathnayaka Mudiyanselage M K; Ranathunga, Anusha Nishanthi; Kularatne, Senanayake A M; Rajapakse, Jayanthe; Ranasinghe, Shirani; Jayathunga, Radha

    2018-03-01

    There are 3 species of hump-nosed pit vipers in Sri Lanka: Hypnale hypnale, Hypnale zara, and Hypnale nepa. The latter 2 are endemic to the country. Microangiopathic hemolytic anemia (MAHA) is a known complication of hump-nosed pit viper bites. It was previously documented as a complication of general viper bites and not species specific. We report a series of 3 patients who developed MAHA after being bitten by each species of hump-nosed pit viper. The first patient was bitten by H hypnale and developed a severe form of MAHA associated with acute kidney injury and thrombocytopenia falling into the category of thrombotic microangiopathy. The other 2 developed MAHA that resolved without any complications. Copyright © 2017 Wilderness Medical Society. Published by Elsevier Inc. All rights reserved.

  8. Anti-snake venom activities of ethanolic extract of fruits of Piper longum L. (Piperaceae) against Russell's viper venom: characterization of piperine as active principle.

    Science.gov (United States)

    Shenoy, P A; Nipate, S S; Sonpetkar, J M; Salvi, N C; Waghmare, A B; Chaudhari, P D

    2013-05-20

    Piper longum L. fruits have been traditionally used against snakebites in north-eastern and southern region of India. To examine the ability of ethanolic extract of fruits of Piper longum L., Piperaceae (PLE) and piperine, one of the main active principles of Piper longum, to inhibit the Russell's viper (Doboia russelii, Viperidae) snake venom activities. Anti-snake venom activities of ethanolic extract of fruits of Piper longum L. (Piperaceae) and piperine against Russell's viper venom was studied in embryonated fertile chicken eggs, mice and rats by using various models as follows: inhibition of venom lethal action, inhibition of venom haemorrhagic action (in vitro), inhibition of venom haemorrhagic action (in vivo), inhibition of venom necrotizing action, inhibition of venom defibrinogenating action, inhibition of venom induced paw edema, inhibition of venom induced mast cell degranulation, creatine kinase assay and assay for catalase activity. PLE was found to inhibit the venom induced haemorrhage in embryonated fertile chicken eggs. Administration of PLE and piperine significantly (p<0.01) inhibited venom induced lethality, haemorrhage, necrosis, defibrinogenation and inflammatory paw edema in mice in a dose dependent manner. PLE and piperine also significantly (p<0.01) reduced venom induced mast cell degranulation in rats. Venom induced decrease in catalase enzyme levels in mice kidney tissue and increase in creatine kinase enzyme levels in mice serum were significantly (p<0.01) reversed by administration of both PLE and piperine. PLE possesses good anti-snake venom properties and piperine is one of the compounds responsible for the effective venom neutralizing ability of the plant. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  9. Production of high titre antibody response against Russell's viper venom in mice immunized with ethanolic extract of fruits of Piper longum L. (Piperaceae) and piperine.

    Science.gov (United States)

    Shenoy, P A; Nipate, S S; Sonpetkar, J M; Salvi, N C; Waghmare, A B; Chaudhari, P D

    2014-01-15

    Piper longum L. fruits have been traditionally used against snakebites in north-eastern and southern region of India. The aim of the study was to assess the production of antibody response against Russell's viper venom in mice after prophylactic immunization with ethanolic extract of fruits of Piper longum L. and piperine. The mice sera were tested for the presence of antibodies against Russell's viper venom by in vitro lethality neutralization assay and in vivo lethality neutralization assay. Polyvalent anti-snake venom serum (antivenom) manufactured by Haffkine Bio-Pharmaceutical Corporation Ltd. was used as standard. Further confirmation of presence of antibodies against the venom in sera of mice immunized with PLE and piperine was done using indirect enzyme-linked immunosorbent assay (ELISA) and double immunodiffusion test. Treatment with PLE-treated mice serum and piperine-treated mice serum was found to inhibit the lethal action of venom both in the in vitro lethality neutralization assay and in vivo lethality neutralization assay. ELISA testing indicated that there were significantly high (pPiper longum and piperine produced a high titre antibody response against Russell's viper venom in mice. The antibodies against PLE and piperine could be useful in antivenom therapy of Russell's viper bites. PLE and piperine may also have a potential interest in view of the development of antivenom formulations used as antidote against snake bites. Copyright © 2013 Elsevier GmbH. All rights reserved.

  10. A Review and Database of Snake Venom Proteomes.

    Science.gov (United States)

    Tasoulis, Theo; Isbister, Geoffrey K

    2017-09-18

    Advances in the last decade combining transcriptomics with established proteomics methods have made possible rapid identification and quantification of protein families in snake venoms. Although over 100 studies have been published, the value of this information is increased when it is collated, allowing rapid assimilation and evaluation of evolutionary trends, geographical variation, and possible medical implications. This review brings together all compositional studies of snake venom proteomes published in the last decade. Compositional studies were identified for 132 snake species: 42 from 360 (12%) Elapidae (elapids), 20 from 101 (20%) Viperinae (true vipers), 65 from 239 (27%) Crotalinae (pit vipers), and five species of non-front-fanged snakes. Approximately 90% of their total venom composition consisted of eight protein families for elapids, 11 protein families for viperines and ten protein families for crotalines. There were four dominant protein families: phospholipase A₂s (the most common across all front-fanged snakes), metalloproteases, serine proteases and three-finger toxins. There were six secondary protein families: cysteine-rich secretory proteins, l-amino acid oxidases, kunitz peptides, C-type lectins/snaclecs, disintegrins and natriuretic peptides. Elapid venoms contained mostly three-finger toxins and phospholipase A₂s and viper venoms metalloproteases, phospholipase A₂s and serine proteases. Although 63 protein families were identified, more than half were present in <5% of snake species studied and always in low abundance. The importance of these minor component proteins remains unknown.

  11. Comparative study of anticoagulant and procoagulant properties of 28 snake venoms from families Elapidae, Viperidae, and purified Russell's viper venom-factor X activator (RVV-X).

    Science.gov (United States)

    Suntravat, Montamas; Nuchprayoon, Issarang; Pérez, John C

    2010-09-15

    Snake venoms consist of numerous molecules with diverse biological functions used for capturing prey. Each component of venom has a specific target, and alters the biological function of its target. Once these molecules are identified, characterized, and cloned; they could have medical applications. The activated clotting time (ACT) and clot rate were used for screening procoagulant and anticoagulant properties of 28 snake venoms. Crude venoms from Daboia russellii siamensis, Bothrops asper, Bothrops moojeni, and one Crotalus oreganus helleri from Wrightwood, CA, had procoagulant activity. These venoms induced a significant shortening of the ACT and showed a significant increase in the clot rate when compared to the negative control. Factor X activator activity was also measured in 28 venoms, and D. r. siamensis venom was 5-6 times higher than those of B. asper, B. moojeni, and C. o. helleri from Wrightwood County. Russell's viper venom-factor X activator (RVV-X) was purified from D. r. siamensis venom, and then procoagulant activity was evaluated by the ACT and clot rate. Other venoms, Crotalus atrox and two Naja pallida, had anticoagulant activity. A significant increase in the ACT and a significant decrease in the clot rate were observed after the addition of these venoms; therefore, the venoms were considered to have anticoagulant activity. Venoms from the same species did not always have the same ACT and clot rate profiles, but the profiles were an excellent way to identify procoagulant and anticoagulant activities in snake venoms.

  12. On a meeting between the Horn Viper and a Centipede in the Peloponnese, southern Greece  or the Biter, bit

    DEFF Research Database (Denmark)

    Tan, Kit; Kretzschmar, Horst

    2009-01-01

    Vipera ammodytes L., (the European Horn-Nosed Viper) is a small venomous snake occurring in southern L., (the European Horn-Nosed Viper) is a small venomous snake occurring in southern Europe. It was documented attacking Scolopendra cingulata Latreille (the venomous Mediterranean Banded Centipede...

  13. Snake oil and venoms for medical research

    Science.gov (United States)

    Wolpert, H. D.

    2011-04-01

    Some think that using derivatives of snake venom for medical purposes is the modern version of snake oil but they are seriously misjudging the research potentials of some of these toxins in medicines of the 2000's. Medical trials, using some of the compounds has proven their usefulness. Several venoms have shown the possibilities that could lead to anticoagulants, helpful in heart disease. The blood clotting protein from the taipan snake has been shown to rapidly stop excessive bleeding. The venom from the copperhead may hold an answer to breast cancer. The Malaysian pit viper shows promise in breaking blood clots. Cobra venom may hold keys to finding cures for Parkinson's disease and Alzheimer's. Rattlesnake proteins from certain species have produced blood pressure medicines. Besides snake venoms, venom from the South American dart frog, mollusks (i.e. Cone Shell Snail), lizards (i.e. Gila Monster & Komodo Dragon), some species of spiders and tarantulas, Cephalopods, mammals (i.e. Platypus & Shrews), fish (i.e. sting rays, stone fish, puffer fish, blue bottle fish & box jelly fish), intertidal marine animals (echinoderms)(i.e. Crown of Thorn Star Fish & Flower Urchin) and the Honeybee are being investigated for potential medical benefits.

  14. In Vitro and In Vivo Evaluation of Polyherbal Formulation against Russell's Viper and Cobra Venom and Screening of Bioactive Components by Docking Studies

    Science.gov (United States)

    Sakthivel, G.; Dey, Amitabha; Nongalleima, Kh.; Chavali, Murthy; Rimal Isaac, R. S.; Singh, N. Surjit; Deb, Lokesh

    2013-01-01

    The present study emphasizes to reveal the antivenom activity of Aristolochia bracteolata Lam., Tylophora indica (Burm.f.) Merrill, and Leucas aspera S. which were evaluated against venoms of Daboia russelli russelli (Russell's viper) and Naja naja (Indian cobra). The aqueous extracts of leaves and roots of the above-mentioned plants and their polyherbal (1 : 1 : 1) formulation at a dose of 200 mg/kg showed protection against envenomed mice with LD50 doses of 0.44 mg/kg and 0.28 mg/kg against Russell's viper and cobra venom, respectively. In in vitro antioxidant activities sample extracts showed free radical scavenging effects in dose dependent manner. Computational drug design and docking studies were carried out to predict the neutralizing principles of type I phospholipase A2 (PLA2) from Indian common krait venom. This confirmed that aristolochic acid and leucasin can neutralize type I PLA2 enzyme. Results suggest that these plants could serve as a source of natural antioxidants and common antidote for snake bite. However, further studies are needed to identify the lead molecule responsible for antidote activity. PMID:23533518

  15. Biochemical and pharmacological characterization of Trimersurus malabaricus snake venom.

    Science.gov (United States)

    Gowda, Raghavendra; Rajaiah, Rajesh; Angaswamy, Nataraj; Krishna, Sharath; Bannikuppe Sannanayak, Vishwanath

    2018-03-12

    Trimeresurus malabaricus is a venomous pit viper species endemic to southwestern part of India. In earlier reports, we have shown that envenomation by T. malabaricus venom leading to strong local tissue damage but the mechanism of action is not clearly revealed. Local tissue damage affected by T. malabaricus venom is of great importance since the poison has serious systemic effects including death in the case of multiple attacks. The present study details the major manifestations of T. malabaricus venom and the induction of local tissue damage, which suggests that most toxins are present in the form of hydrolytic enzymes. Hydrolytic activity of the enzymes was measured and the data indicated that protease and phospholipase A 2 activity was high which is responsible for local tissue damage. Furthermore, the role of hydrolytic enzymes in the induction of pathological events such as hemorrhage, edema, myotoxicity, and blood coagulation examination were assessed through animal models. © 2018 Wiley Periodicals, Inc.

  16. Bites by the white-lipped pit viper (Trimeresurus albolabris) and other species in Hong Kong. A survey of 4 years' experience at the Prince of Wales Hospital.

    Science.gov (United States)

    Cockram, C S; Chan, J C; Chow, K Y

    1990-04-01

    The case records of 242 snake bite victims admitted to the Prince of Wales Hospital in Hong Kong between September 1984 and October 1988 were studied retrospectively. When the snake was identified, the White-lipped pit viper (Trimeresurus albolabris) was by far the commonest species involved. In addition to local oedema and inflammation, evidence of a significant blood clotting disturbance was present in at least 10% of cases, defibrination and thrombocytopenia being the commonest findings. Since such abnormality was not always sought the true figure is likely to be higher. Three fatalities occurred, one of which was secondary to a probable White-lipped pit viper bite, one to a bite by Chinese cobra and one to a bite by Russell's viper.

  17. Proteomic Characterization and Comparison of Malaysian Tropidolaemus wagleri and Cryptelytrops purpureomaculatus Venom Using Shotgun-Proteomics

    Directory of Open Access Journals (Sweden)

    Syafiq Asnawi Zainal Abidin

    2016-10-01

    Full Text Available Tropidolaemus wagleri and Cryptelytrops purpureomaculatus are venomous pit viper species commonly found in Malaysia. Tandem mass spectrometry analysis of the crude venoms has detected different proteins in T. wagleri and C. purpureomaculatus. They were classified into 13 venom protein families consisting of enzymatic and nonenzymatic proteins. Enzymatic families detected in T. wagleri and C. purpureomaculatus venom were snake venom metalloproteinase, phospholipase A2, ʟ-amino acid oxidase, serine proteases, 5′-nucleotidase, phosphodiesterase, and phospholipase B. In addition, glutaminyl cyclotransferase was detected in C. purpureomaculatus. C-type lectin-like proteins were common nonenzymatic components in both species. Waglerin was present and unique to T. wagleri—it was not in C. purpureomaculatus venom. In contrast, cysteine-rich secretory protein, bradykinin-potentiating peptide, and C-type natriuretic peptide were present in C. purpureomaculatus venom. Composition of the venom proteome of T. wagleri and C. purpureomaculatus provides useful information to guide production of effective antivenom and identification of proteins with potential therapeutic applications.

  18. Debunking the viper's strike: harmless snakes kill a common assumption.

    Science.gov (United States)

    Penning, David A; Sawvel, Baxter; Moon, Brad R

    2016-03-01

    To survive, organisms must avoid predation and acquire nutrients and energy. Sensory systems must correctly differentiate between potential predators and prey, and elicit behaviours that adjust distances accordingly. For snakes, strikes can serve both purposes. Vipers are thought to have the fastest strikes among snakes. However, strike performance has been measured in very few species, especially non-vipers. We measured defensive strike performance in harmless Texas ratsnakes and two species of vipers, western cottonmouths and western diamond-backed rattlesnakes, using high-speed video recordings. We show that ratsnake strike performance matches or exceeds that of vipers. In contrast with the literature over the past century, vipers do not represent the pinnacle of strike performance in snakes. Both harmless and venomous snakes can strike with very high accelerations that have two key consequences: the accelerations exceed values that can cause loss of consciousness in other animals, such as the accelerations experienced by jet pilots during extreme manoeuvres, and they make the strikes faster than the sensory and motor responses of mammalian prey and predators. Both harmless and venomous snakes can strike faster than the blink of an eye and often reach a target before it can move. © 2016 The Author(s).

  19. Serine Protease Variants Encoded by Echis ocellatus Venom Gland cDNA: Cloning and Sequencing Analysis

    Directory of Open Access Journals (Sweden)

    S. S. Hasson

    2010-01-01

    Full Text Available Envenoming by Echis saw-scaled viper is the leading cause of death and morbidity in Africa due to snake bite. Despite its medical importance, there have been few investigations into the toxin composition of the venom of this viper. Here, we report the cloning of cDNA sequences encoding four groups or isoforms of the haemostasis-disruptive Serine protease proteins (SPs from the venom glands of Echis ocellatus. All these SP sequences encoded the cysteine residues scaffold that form the 6-disulphide bonds responsible for the characteristic tertiary structure of venom serine proteases. All the Echis ocellatus EoSP groups showed varying degrees of sequence similarity to published viper venom SPs. However, these groups also showed marked intercluster sequence conservation across them which were significantly different from that of previously published viper SPs. Because viper venom SPs exhibit a high degree of sequence similarity and yet exert profoundly different effects on the mammalian haemostatic system, no attempt was made to assign functionality to the new Echis ocellatus EoSPs on the basis of sequence alone. The extraordinary level of interspecific and intergeneric sequence conservation exhibited by the Echis ocellatus EoSPs and analogous serine proteases from other viper species leads us to speculate that antibodies to representative molecules should neutralise (that we will exploit, by epidermal DNA immunization the biological function of this important group of venom toxins in vipers that are distributed throughout Africa, the Middle East, and the Indian subcontinent.

  20. Pharmacokinetic behavior of enrofloxacin and its metabolite ciprofloxacin in urutu pit vipers (Bothrops alternatus) after intramuscular administration.

    Science.gov (United States)

    Waxman, Samanta; Prados, Ana Paula; de Lucas, José Julio; San Andrés, Manuel Ignacion; Regner, Pablo; de Oliveira, Vanesa Costa; de Roodt, Adolfo; Rodríguez, Casilda

    2014-03-01

    Enrofloxacin is widely used in veterinary medicine and is an important alternative to treating bacterial infections, which play an important role as causes of disease and death in captive snakes. Its extralabel use in nontraditional species has been related to its excellent pharmacokinetic and antimicrobial characteristics. This can be demonstrated by its activity against gram-negative organisms implicated in serious infectious diseases of reptile species with a rapid and concentration-dependent bactericidal effect and a large volume of distribution. Pharmacokinetic parameters for enrofloxacin were investigated in seven urutu pit vipers (Bothrops alternatus), following intramuscular injections of 10 mg/kg. The plasma concentrations of enrofloxacin and its metabolite, ciprofloxacin, were measured using high-performance liquid chromatography. Blood samples were collected from the ventral coccygeal veins at 0.5, 1, 2, 4, 8, 12, 24, 36, 48, 72, 96, 108, and 168 hr. The kinetic behavior was characterized by a relatively slow absorption (time of maximal plasma concentration = 4.50 +/- 3.45 hr) with peak plasma concentration of 4.81 +/- 1.12 microg/ml. The long half-life during the terminal elimination phase (t1/2 lambda = 27.91 +/- 7.55 hr) of enrofloxacin after intramuscular administration, calculated in the present study, could suggest that the antibiotic is eliminated relatively slowly and/or the presence of a slow absorption in urutu pit vipers. Ciprofloxacin reached a peak plasma concentration of 0.35 microg/ml at 13.45 hr, and the fraction of enrofloxacin metabolized to ciprofloxacin was 13.06%. If enrofloxacin's minimum inhibitory concentration (MIC90) values of 0.5 microg/ml were used, the ratios AUC(e+c): MIC90 (276 +/- 67 hr) and Cmax(e+c): MIC90 (10 +/- 2) reach the proposed threshold values (125 hr and 10, respectively) for optimized efficacy and minimized resistance development when treating infections caused by Pseudomonas. The administration of 10 mg/kg of

  1. Crotaline Fab antivenom appears to be effective in cases of severe North American pit viper envenomation: An integrative review

    Directory of Open Access Journals (Sweden)

    Mlynarchek Sara L

    2009-06-01

    Full Text Available Abstract Background In 2000, the United States Food and Drug Administration approved Crotalidae Polyvalent Immune Fab (Ovine (hereafter, FabAV, "for the management of patients with minimal to moderate North American Crotalid envenomation." Because whole-IgG pit viper antivenom is no longer available in the United States, FabAV is currently the only specific treatment option available to United States clinicians treating snakebite victims of any severity. No clinical trial data are available concerning the effectiveness of FabAV for treatment of severe snakebite, but several published articles describe its use in this setting. Methods We performed a comprehensive review of the English-language medical literature to identify all publications (1996 to July, 2008 containing data about the administration of FabAV. Two trained reviewers separately extracted case-level data concerning the administration of FabAV to patients with severe envenomation by North American crotaline snakes to a standardized form. Descriptive statistics were used. In addition, we hand-searched the US National Poison Data System reports for the years 2000–2006 to identify and describe any reports of death that occurred after FabAV administration. Results The literature review found 147 unique publications regarding FabAV. Twenty-four evaluable cases of severe human envenomation treated with FabAV were identified in 19 publications. Seven cases were described in five cohort studies, and 17 cases were described in 14 single patient case reports or non-cohort case series. Sixty-five specific severe venom effects were reported in these 24 patients, of which 50 effects (77% improved or resolved after FabAV therapy. Initial control of all severe venom effects was achieved in 12 patients (50%. The rate at which initial control was achieved was significantly higher among patients reported in the cohort series than in the case series and non-cohort reports (100% vs. 29%, P = 0

  2. Antipredatory function of head shape for vipers and their mimics.

    Directory of Open Access Journals (Sweden)

    Janne K Valkonen

    Full Text Available Most research into the adaptive significance of warning signals has focused on the colouration and patterns of prey animals. However, behaviour, odour and body shape can also have signal functions and thereby reduce predators' willingness to attack defended prey. European vipers all have a distinctive triangular head shape; and they are all venomous. Several non-venomous snakes, including the subfamily Natricinae, commonly flatten their heads (also known as head triangulation when disturbed. The adaptive significance of this potential behavioural mimicry has never been investigated.We experimentally tested if the triangular head shape typical of vipers offers protection against predation. We compared the predation pressure of free-ranging predators on artificial snakes with triangular-shaped heads against the pressure on replicas with narrow heads. Snakes of both head types had either zigzag patterned bodies, typical of European vipers, or plain (patternless bodies. Plain snakes with narrower Colubrid-like heads suffered significantly higher predation by raptors than snakes with triangular-shaped heads. Head shape did not, however, have an additive effect on survival in zigzag-patterned snakes, suggesting that species which differ from vipers in colouration and pattern would benefit most from behavioural mimicry. Our results demonstrate that the triangular head shape typical of vipers can act as a warning signal to predators. We suggest that head-shape mimicry may be a more common phenomenon among more diverse taxa than is currently recognised.

  3. Effects of snake venom from Saudi cobras and vipers on hormonal levels in peripheral blood.

    Science.gov (United States)

    Abdel-Galil, Khidir A; Al-Hazimi, Awdah M

    2004-08-01

    Knowledge about the effects of snake venoms on endocrine glands in the Kingdom of Saudi Arabia (KSA) is meager. The aim of the present study is to investigate the acute and chronic envenomation from 4 snakes out of 8 species of Saudi Cobras and Vipers on the tissues of endocrine glands and peripheral hormonal levels in male rats. The peripheral blood levels of 4 hormones mainly testosterone, cortisol, insulin and thyroxin were investigated in male Wistar rats following acute and chronic treatment of the rats with poisonous snake venoms at the Department of Physiology, Faculty of Medicine, King Abdul-Aziz University, Jeddah, Kingdom of Saudi Arabia between September 2000 to May 2001. Using radio immunoassay for hormonal analysis, a rise in testosterone levels in peripheral blood was obtained following acute treatment, which is due to the effect of the venoms on vascular permeability and increased blood flow. In contrast, the chronic treatment with venoms resulted in a delayed effect on vascular permeability and testicular degeneration resulting in a decreased blood flow and a significant drop in testosterone concentration. Cortisol levels were no different from the controls during acute treatment but it demonstrates gradual rise following chronic treatment to withstand the stress imposed on the animals. Similar results were obtained for insulin, which showed normal values with acute treatment but decreased levels of chronic treatment suggesting insulin insufficiently. Likewise, the thyroxin levels were decreased with chronic treatment suggesting a toxic effect of the poison on the rich blood supply of the thyroid follicles with a subsequent decrease in blood flow to the tissues and therefore, decreased thyroid hormone levels. The effects of venom toxicity on testosterone levels were either normal or stimulatory with acute treatment or inhibitory with chronic treatment depending on the vascular blood flow and testicular degeneration. Cortisol levels were normal at

  4. Effective equine immunization protocol for production of potent poly-specific antisera against Calloselasma rhodostoma, Cryptelytrops albolabris and Daboia siamensis.

    Directory of Open Access Journals (Sweden)

    Sompong Sapsutthipas

    2015-03-01

    Full Text Available Snake envenomation has been estimated to affect 1.8 million people annually with about 94,000 deaths mostly in poor tropical countries. Specific antivenoms are the only rational and effective therapy for these cases. Efforts are being made to produce effective, affordable and sufficient antivenoms for these victims. The immunization process, which has rarely been described in detail, is one step that needs to be rigorously studied and improved especially with regard to the production of polyspecific antisera. The polyspecific nature of therapeutic antivenom could obviate the need to identify the culprit snake species. The aim of this study was to produce potent polyspecific antisera against 3 medically important vipers of Thailand and its neighboring countries, namely Cryptelytrops albolabris "White lipped pit viper" (CA, Calleoselasma rhodostoma "Malayan pit viper" (CR, and Daboia siamensis "Russell's viper" (DS. Four horses were immunized with a mixture of the 3 viper venoms using the 'low dose, low volume multi-site' immunization protocol. The antisera showed rapid rise in ELISA titers against the 3 venoms and reached plateau at about the 8th week post-immunization. The in vivo neutralization potency (P of the antisera against CA, CR and DS venoms was 10.40, 2.42 and 0.76 mg/ml, respectively and was much higher than the minimal potency limits set by Queen Soavabha Memorial Institute (QSMI. The corresponding potency values for the QSMI monospecific antisera against CA, CR and DS venoms were 7.28, 3.12 and 1.50 mg/ml, respectively. The polyspecific antisera also effectively neutralized the procoagulant, hemorrhagic, necrotic and nephrotoxic activities of the viper venoms. This effective immunization protocol should be useful in the production of potent polyspecific antisera against snake venoms, and equine antisera against tetanus, diphtheria or rabies.

  5. Inhibition of secretary PLA₂--VRV-PL-VIIIa of Russell's viper venom by standard aqueous stem bark extract of Mangifera indica L.

    Science.gov (United States)

    Dhananjaya, B L; Sudarshan, S

    2015-03-01

    The aqueous extract of Mangifera indica is known to possess anti-snake venom activities. However, its inhibitory potency and mechanism of action on multi-toxic phospholipases A2s, which are the most toxic and lethal component of snake venom is still unknown. Therefore, this study was carried out to evaluate the modulatory effect of standard aqueous bark extract of M. indica on VRV-PL-VIIIa of Indian Russells viper venom. Mangifera indica extract dose dependently inhibited the GIIB sPLA2 (VRV-PL-VIIIa) activity with an IC50 value of 6.8±0.3 μg/ml. M. indica extract effectively inhibited the indirect hemolytic activity up to 96% at ~40 μg/ml concentration. Further, M. indica extract at different concentrations (0-50 μg/ml) inhibited the edema formed in a dose dependent manner. It was found that there was no relieve of inhibitory effect of the extract when examined as a function of increased substrate and calcium concentration. The inhibition was irreversible as evident from binding studies. The in vitro inhibition is well correlated with in situ and in vivo edema inducing activities. As the inhibition is independent of substrate, calcium concentration and was irreversible, it can be concluded that M. indica extracts mode of inhibition could be due to direct interaction of components present in the extract with PLA2 enzyme. In conclusion, the aqueous extract of M. indica effectively inhibits svPLA2 (Snake venom phospholipase A2) enzymatic and its associated toxic activities, which substantiate its anti-snake venom properties. Further in-depth studies are interesting to known on the role and mechanism of the principal inhibitory constituents present in the extract, so as to develop them into potent anti-snake venom and as an anti-inflammatory agent.

  6. Novel Apigenin Based Small Molecule that Targets Snake Venom Metalloproteases

    Science.gov (United States)

    Anusha, Sebastian; Hemshekhar, Mahadevappa; Chandra Nayaka, Siddaiah; Kemparaju, Kempaiah; Basappa; Girish, Kesturu S.; Rangappa, Kanchugarakoppal S.

    2014-01-01

    The classical antivenom therapy has appreciably reduced snakebite mortality rate and thus is the only savior drug available. Unfortunately, it considerably fails to shield the viper bite complications like hemorrhage, local tissue degradation and necrosis responsible for severe morbidity. Moreover, the therapy is also tagged with limitations including anaphylaxis, serum sickness and poor availability. Over the last decade, snake venom metalloproteases (SVMPs) are reported to be the primary component responsible for hemorrhage and tissue degradation at bitten site. Thus, antivenom inability to offset viper venom-induced local toxicity has been a basis for an insistent search for SVMP inhibitors. Here we report the inhibitory effect of compound 5d, an apigenin based molecule against SVMPs both in silico and in vivo. Several apigenin analogues are synthesized using multicomponent Ugi reactions. Among them, compound 5d effectively abrogated Echis carinatus (EC) venom-induced local hemorrhage, tissue necrosis and myotoxicity in a dose dependant fashion. The histopathological study further conferred effective inhibition of basement membrane degradation, and accumulation of inflammatory leucocytes at the site of EC venom inoculation. The compound also protected EC venom-induced fibrin and fibrinogen degradation. The molecular docking of compound 5d and bothropasin demonstrated the direct interaction of hydroxyl group of compound with Glu146 present in hydrophobic pocket of active site and does not chelate Zn2+. Hence, it is concluded that compound 5d could be a potent agent in viper bite management. PMID:25184206

  7. Revisiting the Therapeutic Potential of Bothrops jararaca Venom: Screening for Novel Activities Using Connectivity Mapping

    Directory of Open Access Journals (Sweden)

    Carolina Alves Nicolau

    2018-02-01

    Full Text Available Snake venoms are sources of molecules with proven and potential therapeutic applications. However, most activities assayed in venoms (or their components are of hemorrhagic, hypotensive, edematogenic, neurotoxic or myotoxic natures. Thus, other relevant activities might remain unknown. Using functional genomics coupled to the connectivity map (C-map approach, we undertook a wide range indirect search for biological activities within the venom of the South American pit viper Bothrops jararaca. For that effect, venom was incubated with human breast adenocarcinoma cell line (MCF7 followed by RNA extraction and gene expression analysis. A list of 90 differentially expressed genes was submitted to biosimilar drug discovery based on pattern recognition. Among the 100 highest-ranked positively correlated drugs, only the antihypertensive, antimicrobial (both antibiotic and antiparasitic, and antitumor classes had been previously reported for B. jararaca venom. The majority of drug classes identified were related to (1 antimicrobial activity; (2 treatment of neuropsychiatric illnesses (Parkinson’s disease, schizophrenia, depression, and epilepsy; (3 treatment of cardiovascular diseases, and (4 anti-inflammatory action. The C-map results also indicated that B. jararaca venom may have components that target G-protein-coupled receptors (muscarinic, serotonergic, histaminergic, dopaminergic, GABA, and adrenergic and ion channels. Although validation experiments are still necessary, the C-map correlation to drugs with activities previously linked to snake venoms supports the efficacy of this strategy as a broad-spectrum approach for biological activity screening, and rekindles the snake venom-based search for new therapeutic agents.

  8. [Bites of venomous snakes in Switzerland].

    Science.gov (United States)

    Plate, Andreas; Kupferschmidt, Hugo; Schneemann, Markus

    2016-06-08

    Although snake bites are rare in Europe, there are a constant number of snake bites in Switzerland. There are two domestic venomous snakes in Switzerland: the aspic viper (Vipera aspis) and the common European adder (Vipera berus). Bites from venomous snakes are caused either by one of the two domestic venomous snakes or by an exotic venomous snake kept in a terrarium. Snake- bites can cause both a local and/or a systemic envenoming. Potentially fatal systemic complications are related to disturbances of the hemostatic- and cardiovascular system as well as the central or peripheral nervous system. Beside a symptomatic therapy the administration of antivenom is the only causal therapy to neutralize the venomous toxins.

  9. Snake venomics of the Lesser Antillean pit vipers Bothrops caribbaeus and Bothrops lanceolatus: correlation with toxicological activities and immunoreactivity of a heterologous antivenom.

    Science.gov (United States)

    Gutiérrez, José María; Sanz, Libia; Escolano, José; Fernández, Julián; Lomonte, Bruno; Angulo, Yamileth; Rucavado, Alexandra; Warrell, David A; Calvete, Juan J

    2008-10-01

    The venom proteomes of the snakes Bothrops caribbaeus and Bothrops lanceolatus, endemic to the Lesser Antillean islands of Saint Lucia and Martinique, respectively, were characterized by reverse-phase HPLC fractionation, followed by analysis of each chromatographic fraction by SDS-PAGE, N-terminal sequencing, MALDI-TOF mass fingerprinting, and collision-induced dissociation tandem mass spectrometry of tryptic peptides. The venoms contain proteins belonging to seven ( B. caribbaeus) and five ( B. lanceolatus) types of toxins. B. caribbaeus and B. lanceolatus venoms contain phospholipases A 2, serine proteinases, l-amino acid oxidases and zinc-dependent metalloproteinases, whereas a long disintegrin, DC-fragments and a CRISP molecule were present only in the venom of B. caribbaeus, and a C-type lectin-like molecule was characterized in the venom of B. lanceolatus. Compositional differences between venoms among closely related species from different geographic regions may be due to evolutionary environmental pressure acting on isolated populations. The venoms of these two species differed in the composition and the relative abundance of their component toxins, but they exhibited similar toxicological and enzymatic profiles in mice, characterized by lethal, hemorrhagic, edema-forming, phospholipase A 2 and proteolytic activities. The venoms of B. caribbaeus and B. lanceolatus are devoid of coagulant and defibrinogenating effects and induce only mild local myotoxicity in mice. The characteristic thrombotic effect described in human envenomings by these species was not reproduced in the mouse model. The toxicological profile observed is consistent with the abundance of metalloproteinases, PLA 2s and serine proteinases in the venoms. A polyvalent (Crotalinae) antivenom produced in Costa Rica was able to immunodeplete approximately 80% of the proteins from both B. caribbaeus and B. lanceolatus venoms, and was effective in neutralizing the lethal, hemorrhagic, phospholipase

  10. Dilute Russel Viper Venom Time analysis in a Haematology Laboratory: An audit.

    Science.gov (United States)

    Kruger, W; Meyer, P W A; Nel, J G

    2018-04-17

    To determine whether the current set of evaluation criteria used for dilute Russel Viper Venom Time (dRVVT) investigations in the routine laboratory meet expectation and identify possible shortcomings. All dRVVT assays requested from January 2015 to December 2015 were appraised in this cross-sectional study. The raw data panels were compared with the new reference interval, established in 2016, to determine the sequence of assays that should have been performed. The interpretive comments were audited, and false-negative reports identified. Interpretive comments according to three interpretation guidelines were compared. The reagent cost per assay was determined, and reagent cost wastage, due to redundant tests, was calculated. Only ~9% of dRVVT results authorized during 2015 had an interpretive comment included in the report. ~15% of these results were false-negative interpretations. There is a significant statistical difference in interpretive comments between the three interpretation methods. Redundant mixing tests resulted in R 7477.91 (~11%) reagent cost wastage in 2015. We managed to demonstrate very evident deficiencies in our own practice and managed to establish a standardized workflow that will potentially render our service more efficient and cost effective, aiding clinicians in making improved treatment decisions and diagnoses. Furthermore, it is essential that standard operating procedures be kept up to date and executed by all staff in the laboratory. © 2018 John Wiley & Sons Ltd.

  11. Resembling a viper: implications of mimicry for conservation of the endangered smooth snake.

    Science.gov (United States)

    Valkonen, Janne K; Mappes, Johanna

    2014-12-01

    The phenomenon of Batesian mimicry, where a palatable animal gains protection against predation by resembling an unpalatable model, has been a core interest of evolutionary biologists for 150 years. An extensive range of studies has focused on revealing mechanistic aspects of mimicry (shared education and generalization of predators) and the evolutionary dynamics of mimicry systems (co-operation vs. conflict) and revealed that protective mimicry is widespread and is important for individual fitness. However, according to our knowledge, there are no case studies where mimicry theories have been applied to conservation of mimetic species. Theoretically, mimicry affects, for example, frequency dependency of predator avoidance learning and human induced mortality. We examined the case of the protected, endangered, nonvenomous smooth snake (Coronella austriaca) that mimics the nonprotected venomous adder (Vipera berus), both of which occur in the Åland archipelago, Finland. To quantify the added predation risk on smooth snakes caused by the rarity of vipers, we calculated risk estimates from experimental data. Resemblance of vipers enhances survival of smooth snakes against bird predation because many predators avoid touching venomous vipers. Mimetic resemblance is however disadvantageous against human predators, who kill venomous vipers and accidentally kill endangered, protected smooth snakes. We found that the effective population size of the adders in Åland is very low relative to its smooth snake mimic (28.93 and 41.35, respectively).Because Batesian mimicry is advantageous for the mimic only if model species exist in sufficiently high numbers, it is likely that the conservation program for smooth snakes will fail if adders continue to be destroyed. Understanding the population consequences of mimetic species may be crucial to the success of endangered species conservation. We suggest that when a Batesian mimic requires protection, conservation planners should

  12. Quantitative high-throughput profiling of snake venom gland transcriptomes and proteomes (Ovophis okinavensis and Protobothrops flavoviridis)

    Science.gov (United States)

    2013-01-01

    Background Advances in DNA sequencing and proteomics have facilitated quantitative comparisons of snake venom composition. Most studies have employed one approach or the other. Here, both Illumina cDNA sequencing and LC/MS were used to compare the transcriptomes and proteomes of two pit vipers, Protobothrops flavoviridis and Ovophis okinavensis, which differ greatly in their biology. Results Sequencing of venom gland cDNA produced 104,830 transcripts. The Protobothrops transcriptome contained transcripts for 103 venom-related proteins, while the Ovophis transcriptome contained 95. In both, transcript abundances spanned six orders of magnitude. Mass spectrometry identified peptides from 100% of transcripts that occurred at higher than contaminant (e.g. human keratin) levels, including a number of proteins never before sequenced from snakes. These transcriptomes reveal fundamentally different envenomation strategies. Adult Protobothrops venom promotes hemorrhage, hypotension, incoagulable blood, and prey digestion, consistent with mammalian predation. Ovophis venom composition is less readily interpreted, owing to insufficient pharmacological data for venom serine and metalloproteases, which comprise more than 97.3% of Ovophis transcripts, but only 38.0% of Protobothrops transcripts. Ovophis venom apparently represents a hybrid strategy optimized for frogs and small mammals. Conclusions This study illustrates the power of cDNA sequencing combined with MS profiling. The former quantifies transcript composition, allowing detection of novel proteins, but cannot indicate which proteins are actually secreted, as does MS. We show, for the first time, that transcript and peptide abundances are correlated. This means that MS can be used for quantitative, non-invasive venom profiling, which will be beneficial for studies of endangered species. PMID:24224955

  13. Venomous snakes of Costa Rica: biological and medical implications of their venom proteomic profiles analyzed through the strategy of snake venomics.

    Science.gov (United States)

    Lomonte, Bruno; Fernández, Julián; Sanz, Libia; Angulo, Yamileth; Sasa, Mahmood; Gutiérrez, José María; Calvete, Juan J

    2014-06-13

    In spite of its small territory of ~50,000km(2), Costa Rica harbors a remarkably rich biodiversity. Its herpetofauna includes 138 species of snakes, of which sixteen pit vipers (family Viperidae, subfamily Crotalinae), five coral snakes (family Elapidae, subfamily Elapinae), and one sea snake (Family Elapidae, subfamily Hydrophiinae) pose potential hazards to human and animal health. In recent years, knowledge on the composition of snake venoms has expanded dramatically thanks to the development of increasingly fast and sensitive analytical techniques in mass spectrometry and separation science applied to protein characterization. Among several analytical strategies to determine the overall protein/peptide composition of snake venoms, the methodology known as 'snake venomics' has proven particularly well suited and informative, by providing not only a catalog of protein types/families present in a venom, but also a semi-quantitative estimation of their relative abundances. Through a collaborative research initiative between Instituto de Biomedicina de Valencia (IBV) and Instituto Clodomiro Picado (ICP), this strategy has been applied to the study of venoms of Costa Rican snakes, aiming to obtain a deeper knowledge on their composition, geographic and ontogenic variations, relationships to taxonomy, correlation with toxic activities, and discovery of novel components. The proteomic profiles of venoms from sixteen out of the 22 species within the Viperidae and Elapidae families found in Costa Rica have been reported so far, and an integrative view of these studies is hereby presented. In line with other venomic projects by research groups focusing on a wide variety of snakes around the world, these studies contribute to a deeper understanding of the biochemical basis for the diverse toxic profiles evolved by venomous snakes. In addition, these studies provide opportunities to identify novel molecules of potential pharmacological interest. Furthermore, the

  14. Isolation and characterization of a serine proteinase with thrombin-like activity from the venom of the snake Bothrops asper

    Directory of Open Access Journals (Sweden)

    A.V Pérez

    2008-01-01

    Full Text Available A serine proteinase with thrombin-like activity was isolated from the venom of the Central American pit viper Bothrops asper. Isolation was performed by a combination of affinity chromatography on aminobenzamidine-Sepharose and ion-exchange chromatography on DEAE-Sepharose. The enzyme accounts for approximately 0.13% of the venom dry weight and has a molecular mass of 32 kDa as determined by SDS-PAGE, and of 27 kDa as determined by MALDI-TOF mass spectrometry. Its partial amino acid sequence shows high identity with snake venom serine proteinases and a complete identity with a cDNA clone previously sequenced from this species. The N-terminal sequence of the enzyme is VIGGDECNINEHRSLVVLFXSSGFL CAGTLVQDEWVLTAANCDSKNFQ. The enzyme induces clotting of plasma (minimum coagulant dose = 4.1 µg and fibrinogen (minimum coagulant dose = 4.2 µg in vitro, and promotes defibrin(ogenation in vivo (minimum defibrin(ogenating dose = 1.0 µg. In addition, when injected intravenously in mice at doses of 5 and 10 µg, it induces a series of behavioral changes, i.e., loss of the righting reflex, opisthotonus, and intermittent rotations over the long axis of the body, which closely resemble the `gyroxin-like' effect induced by other thrombin-like enzymes from snake venoms.

  15. The ocular complications of an envenomous snakebite

    African Journals Online (AJOL)

    2012-07-10

    Jul 10, 2012 ... Snake venom neurotoxins act mainly on the peripheral nervous system at .... However, there is no single good first aid measure for all snakebites.6 The .... Intermittent exotropia as the presenting sign of pit viper snakebite to.

  16. Radiating sterilization of the venom of snake

    International Nuclear Information System (INIS)

    Abiyev, H.A.; Topchiyeva, Sh.A.; Rustamov, V.R.

    2006-01-01

    Full text: Water solutions of venoms are unstable and they lose toxicity in some day. Snake venoms inactivate under action of some physical factors: the UV-irradiation, x-rays beams. The purpose of the present work was sterilization of venom Vipera lebetina obtusa under influence of small dozes γ-radiations. Object of research was integral venom of adult individuals. Transcaucasian viper, and also the water solutions of venom irradiated with small dozes scale of radiation. An irradiation of venom carried out to radioisotope installation 60NI. For experiment tests of dry venom, and also their water solutions have been taken. Water solutions of venom have been subjected -radiation up to dozes 1.35, 2.7, 4.05, 5.4 kGr simultaneously dry venom of vipers was exposed -radiation before absorption of a doze 5.4 kGr. In comparative aspect action scale of radiation on ultra-violet spectra of absorption of venom was studied. Ultra-violet spectra venom have been taken off on device Specord UV-VIS. In 12 months after an irradiation spectra of absorption of venom have been repeatedly taken off. In spectra irradiated dry and solutions of venom new maxima of absorption have been revealed in the field of 285 nm and 800 nm describing change of toxicity. It is shown, that the increase in absorption of a doze of radiation occurs decrease of intensity of strips of absorption reduction of intensity of absorption.It is revealed at 260 and 300 nm testifying to course of biochemical reactions of separate enzymes zootoxins. It is necessary to note, that at comparison of intensity of absorption of control samples of poison with irradiated up to dozes 1.35 kGr it has not been revealed essential changes. The subsequent increase in a doze scale of radiation up to 2.7, 4.05, 5.4 kGr promotes proportional reduction of intensity of the absorption, describing toxicity of snake venom. At repeated (later 12 months) measurement of the irradiated water solutions of venom are not revealed changes in

  17. Molecular Characterization of Three Novel Phospholipase A2 Proteins from the Venom of Atheris chlorechis, Atheris nitschei and Atheris squamigera

    Directory of Open Access Journals (Sweden)

    He Wang

    2016-06-01

    Full Text Available Secretory phospholipase A2 (sPLA2 is known as a major component of snake venoms and displays higher-order catalytic hydrolysis functions as well as a wide range of pathological effects. Atheris is not a notoriously dangerous genus of snakes although there are some reports of fatal cases after envenomation due to the effects of coagulation disturbances and hemorrhaging. Molecular characterization of Atheris venom enzymes is incomplete and there are only a few reports in the literature. Here, we report, for the first time, the cloning and characterization of three novel cDNAs encoding phospholipase A2 precursors (one each from the venoms of the Western bush viper (Atheris chlorechis, the Great Lakes bush viper (Atheris nitschei and the Variable bush viper (Atheris squamigera, using a “shotgun cloning” strategy. Open-reading frames of respective cloned cDNAs contained putative 16 residue signal peptides and mature proteins composed of 121 to 123 amino acid residues. Alignment of mature protein sequences revealed high degrees of structural conservation and identity with Group II venom PLA2 proteins from other taxa within the Viperidae. Reverse-phase High Performance Liquid Chromatography (HPLC profiles of these three snake venoms were obtained separately and chromatographic fractions were assessed for phospholipase activity using an egg yolk suspension assay. The molecular masses of mature proteins were all identified as approximately 14 kDa. Mass spectrometric analyses of the fractionated oligopeptides arising from tryptic digestion of intact venom proteins, was performed for further structural characterization.

  18. Recombinant snake venom prothrombin activators

    OpenAIRE

    L?vgren, Ann

    2012-01-01

    Three prothrombin activators; ecarin, which was originally isolated from the venom of the saw-scaled viper Echis carinatus, trocarin from the rough-scaled snake Tropidechis carinatus, and oscutarin from the Taipan snake Oxyuranus scutellatus, were expressed in mammalian cells with the purpose to obtain recombinant prothrombin activators that could be used to convert prothrombin to thrombin. We have previously reported that recombinant ecarin can efficiently generate thrombin without the need ...

  19. Analysis of Fang Puncture Wound Patterns in Isfahan Province’s, Iran, Venomous and Non-Venomous Snakes

    Directory of Open Access Journals (Sweden)

    Dehghani R.1 PhD,

    2015-01-01

    Full Text Available Aims Venomous snake bites are public health problems in different parts of the world. The most specific mainstay in the treatment of envenomation is anti-venom. To treat the envenomation, it is very important to identify the offending species. This study was designed to determine the penetrating pattern of fangs and teeth of some viper snakes. Materials & Methods This descriptive study was performed on live venomous and nonvenomous snakes from 2010 till 2011. All 47 sample snakes were collected from different regions of Isfahan province such as Kashan City, Ghamsar, Niasar, Mashhad Ardehal, Taher- Abad and Khozagh. Their mouths were inspected every two weeks and development of their fangs and teeth were recorded by taking clear digital photos. Fangs and teeth patterns of samples were drawn and the results were compared. Findings One or two wounds appeared as typical fang marks at the bite site of venomous snakes while non-venomous snakes had two carved rows of small teeth. Three different teeth and fang patterns were recognized in venomous snakes which were completely different. Conclusion The fang marks of venomous snakes do not always have a common and classic pattern and there are at least 3 different patterns in Isfahan province, Iran.

  20. Relaxation incisions of venomous snake "Japanese mamushi" bites to the hand

    Directory of Open Access Journals (Sweden)

    Sugamata A

    2011-12-01

    Full Text Available Akira Sugamata, Naoki Yoshizawa, Takahiro OkadaDepartment of Plastic and Reconstructive Surgery, Tokyo Medical University Hachioji Medical Center, Tokyo, JapanAbstract: Gloydius blomhoffii, commonly known as Japanese mamushi, is a venomous viper species found widely in Japan. The most frequently bitten regions are the fingers and toes, and severe swelling causes compression of peripheral arteries and/or compartment syndrome of the extremities. We experienced four cases of mamushi bites to the hand, and undertook relaxation incision in the hands of three of these patients. As a result, the patients who underwent relaxation incision did not show any skin necrosis or permanent sensory disturbance in the affected fingers. Relaxation incision can be useful to not only decompress subcutaneous and compartment pressure of the hand, but also to wash out the venom from the bitten region by improving venous and lymphatic drainage.Keywords: mamushi, snakebite, viper, relaxation incision

  1. Processing of Snake Venom Metalloproteinases: Generation of Toxin Diversity and Enzyme Inactivation

    Directory of Open Access Journals (Sweden)

    Ana M. Moura-da-Silva

    2016-06-01

    Full Text Available Snake venom metalloproteinases (SVMPs are abundant in the venoms of vipers and rattlesnakes, playing important roles for the snake adaptation to different environments, and are related to most of the pathological effects of these venoms in human victims. The effectiveness of SVMPs is greatly due to their functional diversity, targeting important physiological proteins or receptors in different tissues and in the coagulation system. Functional diversity is often related to the genetic diversification of the snake venom. In this review, we discuss some published evidence that posit that processing and post-translational modifications are great contributors for the generation of functional diversity and for maintaining latency or inactivation of enzymes belonging to this relevant family of venom toxins.

  2. Combined venomics, venom gland transcriptomics, bioactivities, and antivenomics of two Bothrops jararaca populations from geographic isolated regions within the Brazilian Atlantic rainforest.

    Science.gov (United States)

    Gonçalves-Machado, Larissa; Pla, Davinia; Sanz, Libia; Jorge, Roberta Jeane B; Leitão-De-Araújo, Moema; Alves, Maria Lúcia M; Alvares, Diego Janisch; De Miranda, Joari; Nowatzki, Jenifer; de Morais-Zani, Karen; Fernandes, Wilson; Tanaka-Azevedo, Anita Mitico; Fernández, Julián; Zingali, Russolina B; Gutiérrez, José María; Corrêa-Netto, Carlos; Calvete, Juan J

    2016-03-01

    Bothrops jararaca is a slender and semi-arboreal medically relevant pit viper species endemic to tropical and subtropical forests in southern Brazil, Paraguay, and northern Argentina (Misiones). Within its geographic range, it is often abundant and is an important cause of snakebite. Although no subspecies are currently recognized, geographic analyses have revealed the existence of two well-supported B. jararaca clades that diverged during the Pliocene ~3.8Mya and currently display a southeastern (SE) and a southern (S) Atlantic rainforest (Mata Atlântica) distribution. The spectrum, geographic variability, and ontogenetic changes of the venom proteomes of snakes from these two B. jararaca phylogroups were investigated applying a combined venom gland transcriptomic and venomic analysis. Comparisons of the venom proteomes and transcriptomes of B. jararaca from the SE and S geographic regions revealed notable interpopulational variability that may be due to the different levels of population-specific transcriptional regulation, including, in the case of the southern population, a marked ontogenetic venom compositional change involving the upregulation of the myotoxic PLA2 homolog, bothropstoxin-I. This population-specific marker can be used to estimate the proportion of venom from the southern population present in the B. jararaca venom pool used for the Brazilian soro antibotrópico (SAB) antivenom production. On the other hand, the southeastern population-specific D49-PLA2 molecules, BinTX-I and BinTX-II, lend support to the notion that the mainland ancestor of Bothrops insularis was originated within the same population that gave rise to the current SE B. jararaca phylogroup, and that this insular species endemic to Queimada Grande Island (Brazil) expresses a pedomorphic venom phenotype. Mirroring their compositional divergence, the two geographic B. jararaca venom pools showed distinct bioactivity profiles. However, the SAB antivenom manufactured in Vital Brazil

  3. Influence of radiation on structure of Venom Vipera Lebetina Obtusa

    International Nuclear Information System (INIS)

    Topchiyeva, Sh.A; Abiyev, H.A; Magerramov, A.

    2006-01-01

    Full text: Snake venoms are unique biologically active polymers of an animal origin. Though in the global literature the data are resulted on researching of zoo toxins, however many questions still remain not mentioned and need deep analysis and studying. Many questions on influence of small dozes gamma-radiation and other kinds ionization radiations on an alive organism remain open. These questions are important for technology of radiating sterilization of medical products, finding-out of the mechanism of additively and synergism, estimations of radio-ecological risk at influences of small dozes gamma-radiation on structure and dynamics of development of various biological and organic systems. In connection with special biochemical and preparations of venoms vipers and for an estimation of ecological factors (in particular, biotic, an electromagnetic field, gamma-radiation, solar radiation) on its properties we investigated influence gamma-radiation 6 0Co on structure at low temperatures. At low temperatures researches and at revealing prostrations effects in organic and biological systems of an organism from effective methods is radiotermoluminence.The method of radiotermoluminence will allow to receive data on structural properties of system, on the centers of stabilization of charges of initial products radials venom, about ways of migration of energy absorbed at an irradiation and so on. Samples on venom were irradiated in special a ditch with scales-beams at 77K up to dozes of %5 kGr. Before an irradiation samples were cleared of traces of oxygen. The irradiation was spent on air and in vacuum. Curves lighting registered with a speed gamma 50/1.min. It is shown, that in an interval of temperatures 77-330K the curve lighting radiotermoluminendce venom of vipers irradiated at 77K up to dozes 3 kGr is characterized not by a symmetric maximum at temperature 172K. Warming up to temperatures 320K results in monotonous decrease of intensity of a luminescence. It is

  4. Testing the "toxin hypothesis of allergy": Mast cells, IgE, and innate and acquired immune responses to venoms*

    Science.gov (United States)

    Tsai, Mindy; Starkl, Philipp; Marichal, Thomas; Galli, Stephen J.

    2015-01-01

    Summary Work in mice indicates that innate functions of mast cells, particularly degradation of venom toxins by mast cell-derived proteases, can enhance resistance to certain arthropod or reptile venoms. Recent reports indicate that acquired Th2 immune responses associated with the production of IgE antibodies, induced by Russell’s viper venom or honeybee venom, or by a component of honeybee venom, bee venom phospholipase 2 (bvPLA2), can increase the resistance of mice to challenge with potentially lethal doses of either of the venoms or bvPLA2. These findings support the conclusion that, in contrast to the detrimental effects associated with allergic Th2 immune responses, mast cells and IgE-dependent immune responses to venoms can contribute to innate and adaptive resistance to venom-induced pathology and mortality. PMID:26210895

  5. Asp Viper (Vipera aspis) envenomation: experience of the Marseille Poison Centre from 1996 to 2008.

    Science.gov (United States)

    de Haro, Luc; Glaizal, Mathieu; Tichadou, Lucia; Blanc-Brisset, Ingrid; Hayek-Lanthois, Maryvonne

    2009-12-01

    A retrospective case review study of viper envenomations collected by the Marseille's Poison Centre between 1996 and 2008 was performed. 174 cases were studied (52 grade 1 = G1, 90 G2 and 32 G3). G1 patients received symptomatic treatments (average hospital stay 0.96 day). One hundred and six (106) of the G2/G3 patients were treated with the antivenom Viperfav* (2.1+/-0.9 days in hospital), while 15 of them received symptomatic treatments only (plus one immediate death) (8.1+/-4 days in hospital, 2 of them died). The hospital stay was significantly reduced in the antivenom treated group (p < 0.001), and none of the 106 antivenom treated patients had immediate (anaphylaxis) or delayed (serum sickness) allergic reactions. Viperfav* antivenom was safe and effective for treating asp viper venom-induced toxicity.

  6. Sexual dimorphism in development and venom production of the insular threatened pit viper Bothrops insularism (Serpentes: Viperidae of Queimada Grande Island, Brazil

    Directory of Open Access Journals (Sweden)

    S.R. Travaglia-Cardoso

    2010-09-01

    Full Text Available Bothrops insularis is a threatened snake endemic to Queimada Grande Island, southern coast of São Paulo, Brazil, and the occurrence of sexual abnormalities in females (females with functional ovaries and rudimentary hemipenis has been reported in this population. To date there are few data regarding developmental features of this particular species. The aim of this study was to follow some developmental features in specimens maintained in captivity for seven years in the Herpetology Laboratory at Instituto Butantan, São Paulo, Brazil. We verified a pronounced sexual dimorphism in development and venom production in the specimens analyzed. In this regard, females showed greater length, mass and amount of venom in comparison to males. Our results suggest a possible niche partitioning between the sexes that reduces (or minimizes intraspecific disharmonic interactions (eg. competition on their small living area (Queimada Grande Island. Taken together, our data suggest that males and females probably are divergent in their diets, with females feeding preferentially on endothermic prey (such as migratory birds, while males maintain the juvenile diet (with the major items being ectothermic prey.

  7. Functional Morphology of Venom Apparatus of Euscorpius mingrelicus(Scorpiones: Euscorpiidae)

    OpenAIRE

    YİĞİT, Nazife; BAYRAM, Abdullah; DANIŞMAN, Tarık

    2007-01-01

    The objective of the present study is to describe the functional morphology of venom apparatus of Euscorpius mingrelicus (Kessler, 1874) by using light microscope and scanning electron microscope (SEM). The venom apparatus, situates in the last segment of metasoma (telson), is composed of a pair of venom glands and sting. Telson is covered by cuticular exoskeleton as well as all body, and there are cuticular setae and pits on it as serve sensory organ. The general organization of the venom ap...

  8. Evolutionary trajectories of snake genes and genomes revealed by comparative analyses of five-pacer viper

    Science.gov (United States)

    Yin, Wei; Wang, Zong-ji; Li, Qi-ye; Lian, Jin-ming; Zhou, Yang; Lu, Bing-zheng; Jin, Li-jun; Qiu, Peng-xin; Zhang, Pei; Zhu, Wen-bo; Wen, Bo; Huang, Yi-jun; Lin, Zhi-long; Qiu, Bi-tao; Su, Xing-wen; Yang, Huan-ming; Zhang, Guo-jie; Yan, Guang-mei; Zhou, Qi

    2016-01-01

    Snakes have numerous features distinctive from other tetrapods and a rich history of genome evolution that is still obscure. Here, we report the high-quality genome of the five-pacer viper, Deinagkistrodon acutus, and comparative analyses with other representative snake and lizard genomes. We map the evolutionary trajectories of transposable elements (TEs), developmental genes and sex chromosomes onto the snake phylogeny. TEs exhibit dynamic lineage-specific expansion, and many viper TEs show brain-specific gene expression along with their nearby genes. We detect signatures of adaptive evolution in olfactory, venom and thermal-sensing genes and also functional degeneration of genes associated with vision and hearing. Lineage-specific relaxation of functional constraints on respective Hox and Tbx limb-patterning genes supports fossil evidence for a successive loss of forelimbs then hindlimbs during snake evolution. Finally, we infer that the ZW sex chromosome pair had undergone at least three recombination suppression events in the ancestor of advanced snakes. These results altogether forge a framework for our deep understanding into snakes' history of molecular evolution. PMID:27708285

  9. Combined venomics, venom gland transcriptomics, bioactivities, and antivenomics of two Bothrops jararaca populations from geographic isolated regions within the Brazilian Atlantic rainforest

    OpenAIRE

    Gonçalves Machado, Larissa; Pla, Davinia; Sanz, Libia; Jorge, Roberta Jeane B.; Leitão De Araújo, Moema; Alves, Maria Lúcia M.; Alvares, Diego Janisch; De Miranda, Joari; Nowatzki, Jenifer; de Morais Zani, Karen; Fernandes, Wilson; Tanaka Azevedo, Anita Mitico; Fernández, Julián; Zingali, Russolina B.; Gutiérrez, José María

    2016-01-01

    Bothrops jararaca is a slender and semi-arboreal medically relevant pit viper species endemic to tropical and subtropical forests in southern Brazil, Paraguay, and northern Argentina (Misiones). Within its geographic range, it is often abundant and is an important cause of snakebite. Although no subspecies are currently recognized, geographic analyses have revealed the existence of two well-supported B. jararaca clades that diverged during the Pliocene ~ 3.8 Mya and currently display a southe...

  10. Computational study of some benzamidine-based inhibitors of thrombin-like snake venom proteinases

    Science.gov (United States)

    Henriques, Elsa S.; Nascimento, Marco A. C.; Ramos, Maria João

    Pit viper venoms contain a number of serine proteinases that, despite their observed coagulant thrombin-like action in vitro, exhibit a paradoxical benign defibrinogenating (anticoagulant) action in vivo, with clinical applications in preventing thrombi and improved blood circulation. Considering that several benzamidine-based inhibitors, some highly selective to thrombin, also inhibit the enzymatic activity of such venombins, the modeling of their enzyme-inhibitor interactions could provide valuable information on the topological factors that determine the divergences in activity. The first step, and the object of the present study, was to derive the necessary set of parameters, consistent with the CHARMM force field, and to perform molecular dynamics (MD) simulations on a few selected representatives of the inhibitors in question under physiological conditions. Bonding and van der Waals parameters were derived by analogy to similar ones in the existing force field. Net atomic charges were obtained with a restrained fitting to the molecular electrostatic potential generated at B3LYP/6-31G(d) level. The parameters were refined to reproduce the available experimental geometries and crystal data, and the MD simulations of the free inhibitors in aqueous solution at 298 K provided an insightful description of their available conformational space.

  11. Effect of Trimeresurus albolabris (green pit viper) venom on mean ...

    African Journals Online (AJOL)

    Administrator

    2007-05-02

    May 2, 2007 ... 1Clinical Microscopy Research Unit, Department of Clinical Microscopy, Faculty of Allied Health Sciences,. Chulalongkorn University, Thailand. 2 Snake farm, Thai Red Cross, Thailand. 3Department of Laboratory Medicine, Faculty of Medicine, Chulalongkorn University, Thailand. Accepted 20 April, 2007.

  12. Identification of B cell recognized linear epitopes in a snake venom serine proteinase from the central American bushmaster Lachesis stenophrys.

    Science.gov (United States)

    Madrigal, M; Alape-Girón, A; Barboza-Arguedas, E; Aguilar-Ulloa, W; Flores-Díaz, M

    2017-12-15

    Snake venom serine proteinases are toxins that perturb hemostasis acting on proteins from the blood coagulation cascade, the fibrinolytic or the kallikrein-kinin system. Despite the relevance of these enzymes in envenomations by viper bites, the characterization of the antibody response to these toxins at the molecular level has not been previously addressed. In this work surface-located B cell recognized linear epitopes from a Lachesis stenophrys venom serine proteinase (UniProt accession number Q072L7) were predicted using an artificial neuronal network at the ABCpred server, the corresponding peptides were synthesized and their immunoreactivity was analyzed against a panel of experimental and therapeutic antivenoms. A molecular model of the L. stenophrys enzyme was built using as a template the structure of the D. acutus Dav-PA serine proteinase (Q9I8X1), which displays the highest degree of sequence similarity to the L. stenophrys enzyme among proteins of known 3D structure, and the surface-located epitopes were identified in the protein model using iCn3D. A total of 13 peptides corresponding to the surface exposed predicted epitopes from L. stenophrys serine proteinase were synthesized and, their reactivity with a rabbit antiserum against the recombinant enzyme and a panel of antivenoms was evaluated by a capture ELISA. Some of the epitopes recognized by monospecific and polyspecific antivenoms comprise sequences overlapping motifs conserved in viper venom serine proteinases. The identification and characterization of relevant epitopes recognized by B cells in snake venom toxins may provide valuable information for the preparation of immunogens that help in the production of improved therapeutic antivenoms. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Predator facilitation or interference: a game of vipers and owls.

    Science.gov (United States)

    Embar, Keren; Raveh, Ashael; Hoffmann, Ishai; Kotler, Burt P

    2014-04-01

    In predator-prey foraging games, the prey's reaction to one type of predator may either facilitate or hinder the success of another predator. We ask, do different predator species affect each other's patch selection? If the predators facilitate each other, they should prefer to hunt in the same patch; if they interfere, they should prefer to hunt alone. We performed an experiment in a large outdoor vivarium where we presented barn owls (Tyto alba) with a choice of hunting greater Egyptian gerbils (Gerbillus pyramidum) in patches with or without Saharan horned vipers (Cerastes cerastes). Gerbils foraged on feeding trays set under bushes or in the open. We monitored owl location, activity, and hunting attempts, viper activity and ambush site location, and the foraging behavior of the gerbils in bush and open microhabitats. Owls directed more attacks towards patches with vipers, and vipers were more active in the presence of owls. Owls and vipers facilitated each other's hunting through their combined effect on gerbil behavior, especially on full moon nights when vipers are more active. Owls forced gerbils into the bushes where vipers preferred to ambush, while viper presence chased gerbils into the open where they were exposed to owls. Owls and vipers took advantage of their indirect positive effect on each other. In the foraging game context, they improve each other's patch quality and hunting success.

  14. Mast cells and IgE in defense against venoms: Possible “good side” of allergy?

    Directory of Open Access Journals (Sweden)

    Stephen J. Galli

    2016-01-01

    Full Text Available Physicians think of mast cells and IgE primarily in the context of allergic disorders, including fatal anaphylaxis. This ‘bad side’ of mast cells and IgE is so well accepted that it can be difficult to think of them in other contexts, particularly those in which they may have beneficial functions. However, there is evidence that mast cells and IgE, as well as basophils (circulating granulocytes whose functions partially overlap with those of mast cells, can contribute to host defense as components of adaptive type 2 immune responses to helminths, ticks and certain other parasites. Accordingly, allergies often are conceptualized as “misdirected” type 2 immune responses, in which IgE antibodies are produced against any of a diverse group of apparently harmless antigens, as well as against components of animal venoms. Indeed, certain unfortunate patients who have become sensitized to venoms develop severe IgE-associated allergic reactions, including fatal anaphylaxis, upon subsequent venom exposure. In this review, we will describe evidence that mast cells can enhance innate resistance to reptile or arthropod venoms during a first exposure to such venoms. We also will discuss findings indicating that, in mice which survive an initial encounter with venom, acquired type 2 immune responses, IgE antibodies, the high affinity IgE receptor (FcɛRI, and mast cells can contribute to acquired resistance to the lethal effects of both honeybee venom and Russell's viper venom. These findings support the hypothesis that mast cells and IgE can help protect the host against venoms and perhaps other noxious substances.

  15. Proteomic and functional analyses of the venom of Porthidium lansbergii lansbergii (Lansberg's hognose viper) from the Atlantic Department of Colombia.

    Science.gov (United States)

    Jiménez-Charris, Eliécer; Montealegre-Sanchez, Leonel; Solano-Redondo, Luis; Mora-Obando, Diana; Camacho, Erika; Castro-Herrera, Fernando; Fierro-Pérez, Leonardo; Lomonte, Bruno

    2015-01-30

    The venom of the Lansberg's hognose pitviper, Porthidium lansbergii lansbergii, a species found in the northern region of Colombia, is poorly known. Aiming to increase knowledge on Porthidium species venoms, its proteomic analysis and functional evaluation of in vitro and in vivo activities relevant to its toxicity were undertaken. Out of 51 protein components resolved by a combination of RP-HPLC and SDS-PAGE, 47 were assigned to 12 known protein families. In similarity with two previously characterized venoms from species within this genus, Porthidium nasutum and Porthidium ophryomegas, that of P. lansbergii lansbergii was dominated by metalloproteinases, although in lower proportion. A common feature of the three Porthidium venoms appears to be a high content of disintegrins. Proteins not previously observed in Porthidium venoms belong to the vascular endothelium growth factor, phosphodiesterase, and phospholipase B families. P. lansbergii lansbergii venom showed relatively weak lethal activity to mice, and induced a moderate local myotoxicity, but considerable hemorrhage. Its isolated VEGF component showed potent edema-inducing activity in the mouse footpad assay. Significant thrombocytopenia, but no other major hematological changes, were observed in envenomed mice. In vitro, this venom lacked coagulant effect on human plasma, and induced a potent inhibition of platelet aggregation which was reproduced by its purified disintegrin components. Phospholipase A2 and proteolytic activities were also demonstrated. Overall, the compositional and functional data herein described for the venom of P. lansbergii lansbergii may contribute to a better understanding of envenomings by this pitviper species, for which specific clinical information is lacking. Porthidium lansbergii lansbergii is estimated to be responsible for nearly 20% of snakebite envenoming cases at the Atlantic Department of Colombia, but the identity and functional properties of its venom components are

  16. Understanding Biological Roles of Venoms Among the Caenophidia: The Importance of Rear-Fanged Snakes.

    Science.gov (United States)

    Mackessy, Stephen P; Saviola, Anthony J

    2016-11-01

    Snake venoms represent an adaptive trophic response to the challenges confronting a limbless predator for overcoming combative prey, and this chemical means of subduing prey shows several dominant phenotypes. Many front-fanged snakes, particularly vipers, feed on various vertebrate and invertebrate prey species, and some of their venom components (e.g., metalloproteinases, cobratoxin) appear to have been selected for "broad-brush" incapacitation of different prey taxa. Using proteomic and genomic techniques, the compositional diversity of front-fanged snakes is becoming well characterized; however, this is not the case for most rear-fanged colubroid snakes. Because these species consume a high diversity of prey, and because venoms are primarily a trophic adaptation, important clues for understanding specific selective pressures favoring venom component composition will be found among rear-fanged snake venoms. Rear-fanged snakes typically (but not always) produce venoms with lower complexity than front-fanged snakes, and there are even fewer dominant (and, arguably, biologically most relevant) venom protein families. We have demonstrated taxon-specific toxic effects, where lizards and birds show high susceptibility while mammals are largely unaffected, for both Old World and New World rear-fanged snakes, strongly indicating a causal link between toxin evolution and prey preference. New data are presented on myotoxin a, showing that the extremely rapid paralysis induced by this rattlesnake toxin is specific for rodents, and that myotoxin a is ineffectual against lizards. Relatively few rear-fanged snake venoms have been characterized, and basic natural history data are largely lacking, but directed sampling of specialized species indicates that novel compounds are likely among these specialists, particularly among those species feeding on invertebrate prey such as scorpions and centipedes. Because many of the more than 2200 species of colubroid snakes are rear

  17. Palestine Saw-scaled Vipers hunt disadvantaged avian migrants.

    Science.gov (United States)

    Yosef, Reuven; Zduniak, Piotr

    2015-11-01

    The selection of an ambush-cum-foraging site and proper prey are indispensable for maintaining an adequate energy intake by sit-and-wait predators to optimize survival and future fitness. This is important for snakes, where an ambush site has suitable ambience. We studied the foraging strategy of the Palestine Saw-scaled Viper (Echis coloratus) at an avian migratory stopover site. Following initial observations, we hypothesized that vipers are able to discern the body mass of a perched bird and hunt accordingly. We implemented an experiment where vipers chose between four groups of migratory Blackcaps with different body mass. Prey choice by vipers of both age classes was not random and adults focused on Blackcaps with the lightest body mass. Juveniles displayed a variability of prey choice but selected mainly birds from the lightest categories. We concluded that Saw-scaled Vipers hunt prey based on thermal cues; juveniles practice on different prey groups prior to perfecting their foraging techniques i.e., hunting is a learned process; and that they prefer birds with the lowest body mass. The last because Blackcaps, when on migration, save energy by entering a state of deep torpor in which they sacrifice their vigilance capabilities. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. IgE antibodies, FcεRIα, and IgE-mediated local anaphylaxis can limit snake venom toxicity.

    Science.gov (United States)

    Starkl, Philipp; Marichal, Thomas; Gaudenzio, Nicolas; Reber, Laurent Lionel; Sibilano, Riccardo; Tsai, Mindy; Galli, Stephen Joseph

    2016-01-01

    Type 2 cytokine-related immune responses associated with development of antigen-specific IgE antibodies can contribute to pathology in patients with allergic diseases and to fatal anaphylaxis. However, recent findings in mice indicate that IgE also can enhance defense against honeybee venom. We tested whether IgE antibodies, IgE-dependent effector mechanisms, and a local anaphylactic reaction to an unrelated antigen can enhance defense against Russell viper venom (RVV) and determined whether such responses can be influenced by immunization protocol or mouse strain. We compared the resistance of RVV-immunized wild-type, IgE-deficient, and Fcer1a-deficient mice after injection of a potentially lethal dose of RVV. A single prior exposure to RVV enhanced the ability of wild-type mice, but not mice lacking IgE or functional FcεRI, to survive challenge with a potentially lethal amount of RVV. Moreover, IgE-dependent local passive cutaneous anaphylaxis in response to challenge with an antigen not naturally present in RVV significantly enhanced resistance to the venom. Finally, we observed different effects on resistance to RVV or honeybee venom in BALB/c versus C57BL/6 mice that had received a second exposure to that venom before challenge with a high dose of that venom. These observations illustrate the potential benefit of IgE-dependent effector mechanisms in acquired host defense against venoms. The extent to which type 2 immune responses against venoms can decrease pathology associated with envenomation seems to be influenced by the type of venom, the frequency of venom exposure, and the genetic background of the host. Copyright © 2015 American Academy of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.

  19. Venom Down Under: Dynamic Evolution of Australian Elapid Snake Toxins

    Science.gov (United States)

    Jackson, Timothy N. W.; Sunagar, Kartik; Undheim, Eivind A. B.; Koludarov, Ivan; Chan, Angelo H. C.; Sanders, Kate; Ali, Syed A.; Hendrikx, Iwan; Dunstan, Nathan; Fry, Bryan G.

    2013-01-01

    Despite the unparalleled diversity of venomous snakes in Australia, research has concentrated on a handful of medically significant species and even of these very few toxins have been fully sequenced. In this study, venom gland transcriptomes were sequenced from eleven species of small Australian elapid snakes, from eleven genera, spanning a broad phylogenetic range. The particularly large number of sequences obtained for three-finger toxin (3FTx) peptides allowed for robust reconstructions of their dynamic molecular evolutionary histories. We demonstrated that each species preferentially favoured different types of α-neurotoxic 3FTx, probably as a result of differing feeding ecologies. The three forms of α-neurotoxin [Type I (also known as (aka): short-chain), Type II (aka: long-chain) and Type III] not only adopted differential rates of evolution, but have also conserved a diversity of residues, presumably to potentiate prey-specific toxicity. Despite these differences, the different α-neurotoxin types were shown to accumulate mutations in similar regions of the protein, largely in the loops and structurally unimportant regions, highlighting the significant role of focal mutagenesis. We theorize that this phenomenon not only affects toxin potency or specificity, but also generates necessary variation for preventing/delaying prey animals from acquiring venom-resistance. This study also recovered the first full-length sequences for multimeric phospholipase A2 (PLA2) ‘taipoxin/paradoxin’ subunits from non-Oxyuranus species, confirming the early recruitment of this extremely potent neurotoxin complex to the venom arsenal of Australian elapid snakes. We also recovered the first natriuretic peptides from an elapid that lack the derived C-terminal tail and resemble the plesiotypic form (ancestral character state) found in viper venoms. This provides supporting evidence for a single early recruitment of natriuretic peptides into snake venoms. Novel forms of kunitz

  20. High-throughput epitope identification for snakebite antivenom

    DEFF Research Database (Denmark)

    Engmark, Mikael; De Masi, Federico; Laustsen, Andreas Hougaard

    Insight into the epitopic recognition pattern for polyclonal antivenoms is a strong tool for accurate prediction of antivenom cross-reactivity and provides a basis for design of novel antivenoms. In this work, a high-throughput approach was applied to characterize linear epitopes in 966 individua...... toxins from pit vipers (Crotalidae) using the ICP Crotalidae antivenom. Due to an abundance of snake venom metalloproteinases and phospholipase A2s in the venoms used for production of the investigated antivenom, this study focuses on these toxin families.......Insight into the epitopic recognition pattern for polyclonal antivenoms is a strong tool for accurate prediction of antivenom cross-reactivity and provides a basis for design of novel antivenoms. In this work, a high-throughput approach was applied to characterize linear epitopes in 966 individual...

  1. Neutralisation of Local Haemorrhage Induced by the Saw-Scaled Viper Echis carinatus sochureki Venom Using Ethanolic Extract of Hibiscus aethiopicus L.

    Directory of Open Access Journals (Sweden)

    S. S. Hasson

    2012-01-01

    Full Text Available The objective of the study is to investigate the anti-snake venom activities of a local plant, Hibiscus aethiopicus L. The H. aethiopicus was dried and extracted with ethanol. Different assays were performed according to standard techniques, to evaluate the plant’s acute toxicity and its antivenom activities. The results of evaluating the systemic acute toxicity of the H. aethiopicus extract using “oral and intra-peritoneal” route were normal even at the highest dose (24 g/kg tested. All guinea pigs (n=3 when treated with venoms E. c. sochureki (75 μg alone induced acute skin haemorrhage. In contrast, all guinea pigs (n=18 treated with both venom and the plant extract at a concentration between 500 and 1000 mg/kg showed no signs of haemorrhage. Moreover, all guinea pigs (n=18 treated with venom and the plant extract below 400 mg/kg showed acute skin haemorrhage. All guinea pigs treated with venom E. c. sochureki (75 μg alone induced acute skin haemorrhage after both 24 and 32 hours. In contrast, all guinea pigs treated with both venom and the plant extract (administered independently at concentrations between 500 and 1000 mg/kg showed no signs of haemorrhage after 32 hours. However, after 24 hours all tested guinea pigs showed less inhibition (<60% compared to that obtained after 32 hours. The outcome of this study reflects that the extract of H. aethiopicus plant may contain an endogenous inhibitor of venom induced local haemorrhage.

  2. Hypopituitarism following envenoming by Russell's vipers (Daboia siamensis and D. russelii) resembling Sheehan's syndrome: first case report from Sri Lanka, a review of the literature and recommendations for endocrine management.

    Science.gov (United States)

    Antonypillai, C N; Wass, J A H; Warrell, D A; Rajaratnam, H N

    2011-02-01

    Russell's vipers (Daboia russelii and D. siamensis) inhabit 10 South and South East Asian countries. People envenomed by these snakes suffer coagulopathy, bleeding, shock, neurotoxicity, acute kidney injury and local tissue damage leading to severe morbidity and mortality. An unusual complication of Russell's viper bite envenoming in Burma (D. siamensis) and southern India (D. russelii) is hypopituitarism but until now it has not been reported elsewhere. Here, we describe the first case of hypopituitarism following Russell's viper bite in Sri Lanka, review the literature on this subject and make recommendations for endocrine investigation and management. A 49-year-old man was bitten and seriously envenomed by D. russelii in 2005. He was treated with antivenom but although he recovered from the acute effects he remained feeling unwell. Hypopituitarism, with deficiencies of gonadal, steroid and thyroid axes, was diagnosed 3 years later. He showed marked improvement after replacement of anterior pituitary hormones. We attribute his hypopituitarism to D. russelii envenoming. Russell's viper bite is known to cause acute and chronic hypopituitarism and diabetes insipidus, perhaps through deposition of fibrin microthrombi and haemorrhage in the pituitary gland resulting from the action of venom procoagulant enzymes and haemorrhagins. Forty nine cases of hypopituitarism following Russell's viper bite have been described in the English language literature. Patients with acute hypopituitarism may present with hypoglycaemia and hypotension during the acute phase of envenoming. Those with chronic hypopituitarism seem to have recovered from envenoming but present later with features of hypopituitarism. Over 85% of these patients had suffered acute kidney injury immediately after the bite. Steroid replacement in acute hypopituitarism is life saving. All 11 patients with chronic hypopituitarism in whom the outcome of treatment was reported, showed marked improvement with hormone

  3. In vivo evaluation of homeostatic effects of Echis carinatus snake venom in Iran

    Science.gov (United States)

    2013-01-01

    Background The venom of the family Viperidae, including the saw-scaled viper, is rich in serine proteinases and metalloproteinases, which affect the nervous system, complementary system, blood coagulation, platelet aggregation and blood pressure. One of the most prominent effects of the snake venom of Echis carinatus (Ec) is its coagulation activity, used for killing prey. Materials and methods Subfractions F1A and F1B were isolated from Ec crude venom by a combination of gel chromatography (Sephadex G-75) and ion exchange chromatography on a DEAE-Sepharose (DE-52). These subfractions were then intravenously (IV) injected into NIH male mice. Blood samples were taken before and after the administration of these subfractions. Times for prothrombin, partial thromboplastin and fibrinogen were recorded. Results and conclusions Comparison of the prothrombin time before and after F1A and F1B administrations showed that time for blood coagulation after injection is shorter than that of normal blood coagulation and also reduced coagulation time after Ec crude venom injection. This difference in coagulation time shows the intense coagulation activity of these subfractions that significantly increase the coagulation cascade rate and Causes to quick blood coagulation. The LD50 of the Ec crude venom was also determined to be 11.1 μg/mouse. Different crude venom doses were prepared with physiological serum and injected into four mice. Comparison of the prothrombin times after injection of subfractions F1A and F1B showed that the rate of mouse blood coagulation increases considerably. Comparing the partial thromboplastin times after injecting these subfractions with this normal test time showed that the activity rate of intrinsic blood coagulation system rose sharply in mice. Finally, by comparing the fibrinogen time after subfraction injections and normal test time, we can infer intense activation of coagulation cascade and fibrin production. PMID:23848979

  4. In vivo evaluation of homeostatic effects of Echis carinatus snake venom in Iran

    Directory of Open Access Journals (Sweden)

    Salmanizadeh Hossein

    2013-02-01

    Full Text Available Abstract Background The venom of the family Viperidae, including the saw-scaled viper, is rich in serine proteinases and metalloproteinases, which affect the nervous system, complementary system, blood coagulation, platelet aggregation and blood pressure. One of the most prominent effects of the snake venom of Echis carinatus (Ec is its coagulation activity, used for killing prey. Materials and methods Subfractions F1A and F1B were isolated from Ec crude venom by a combination of gel chromatography (Sephadex G-75 and ion exchange chromatography on a DEAE-Sepharose (DE-52. These subfractions were then intravenously (IV injected into NIH male mice. Blood samples were taken before and after the administration of these subfractions. Times for prothrombin, partial thromboplastin and fibrinogen were recorded. Results and conclusions Comparison of the prothrombin time before and after F1A and F1B administrations showed that time for blood coagulation after injection is shorter than that of normal blood coagulation and also reduced coagulation time after Ec crude venom injection. This difference in coagulation time shows the intense coagulation activity of these subfractions that significantly increase the coagulation cascade rate and Causes to quick blood coagulation. The LD50 of the Ec crude venom was also determined to be 11.1 μg/mouse. Different crude venom doses were prepared with physiological serum and injected into four mice. Comparison of the prothrombin times after injection of subfractions F1A and F1B showed that the rate of mouse blood coagulation increases considerably. Comparing the partial thromboplastin times after injecting these subfractions with this normal test time showed that the activity rate of intrinsic blood coagulation system rose sharply in mice. Finally, by comparing the fibrinogen time after subfraction injections and normal test time, we can infer intense activation of coagulation cascade and fibrin production.

  5. Acute Renal Failure Following the Saharan Horned Viper (Cerastes ...

    African Journals Online (AJOL)

    Introduction: The Saharan horned viper (Cerastes cerastes) is a common snake in the sandy and rocky regions in the south of Morocco. Although nearly all snakes with medical relevance can induce acute renal failure (ARF), it's unusual except with bites by some viper species. ARF has very rarely been reported following ...

  6. Sensitivity of the activated partial thromboplastin time, the dilute Russell's viper venom time, and the kaolin clotting time for the detection of the lupus anticoagulant: a direct comparison using plasma dilutions.

    Science.gov (United States)

    Martin, B A; Branch, D W; Rodgers, G M

    1996-01-01

    Increasing dilutions of lupus anticoagulant (LA) plasmas from twelve patients were used to directly compare the sensitivity of four tests for LA. The tests evaluated were the modified Bell and Alton activated partial thromboplastin time (APTT), an APTT using a commercially prepared partial thromboplastin (Platelin LS APTT), a modified dilute Russell's viper venom time (DRVVT), and a modified kaolin clotting time (KCT). LAs were detected in all twelve plasmas by each of three tests and eleven of twelve plasmas in a fourth test when undiluted patient plasma was used. Repeating the tests after diluting the LA plasmas with normal platelet-free plasma (PFP) showed that the KCT was the most sensitive test for LA, detecting eleven of twelve LAs at a dilution of 10% patient plasma and ten of twelve LAs at a dilution of 5% patient plasma. The modified Bell and Alton APTT and the modified DRVVT had similar sensitivities at a patient plasma concentration of 10%, detecting seven of twelve and eight of twelve LAs, respectively. The Platelin LS APTT detected only four of twelve LAs at a patient plasma concentration of 10%. Our results indicate that the modified KCT is a sensitive method for the detection of LAs. The modified Bell and Alton APTT and the DRVVT were less sensitive.

  7. Association Between Fear and Beauty Evaluation of Snakes: Cross-Cultural Findings

    Science.gov (United States)

    Landová, Eva; Bakhshaliyeva, Natavan; Janovcová, Markéta; Peléšková, Šárka; Suleymanova, Mesma; Polák, Jakub; Guliev, Akif; Frynta, Daniel

    2018-01-01

    According to the fear module theory, humans are evolutionarily predisposed to perceive snakes as prioritized stimuli and exhibit a fast emotional and behavioral response toward them. In Europe, highly dangerous snake species are distributed almost exclusively in the Mediterranean and Caspian areas. While the risk of a snakebite is relatively low in Central Europe, Azerbaijan, on the other hand, has a high occurrence of the deadly venomous Levant viper (Macrovipera lebetina). We hypothesize that co-habitation with this dangerous snake has shaped the way in which humans evaluate snake species resembling it. For that purpose, we asked respondents from the Czech Republic and Azerbaijan to rank photographs depicting 36 snake species according to perceived fear and beauty. The results revealed a high cross-cultural agreement in both evaluations (fear r2 = 0.683, p < 0.0001; beauty: r2 = 0.816, p < 0.0001). Snakes species eliciting higher fear tend to be also perceived as more beautiful, yet people are able to clearly distinguish between these two dimensions. Deadly venomous snakes representing a serious risk are perceived as highly fearful. This is especially true for the vipers and allies (pit vipers) possessing a characteristic body shape with a distinct triangular head and thick body, which was found as the most fear evoking by respondents from both countries. Although the attitude toward snakes is more negative among the respondents from Azerbaijan, their fear evaluation is similar to the Czechs. For instance, despite co-habitation with the Levant viper, it was not rated by the Azerbaijanis as more fearful than other dangerous snakes. In conclusion, agreement in the evaluation of snake fear and beauty is cross-culturally high and relative fear attributed to selected snake species is not directly explainable by the current environmental and cultural differences. This may provide some support for the evolutionary hypothesis of preparedness to fear snakes. PMID:29615942

  8. Alexander Mikhailovich Zakharov and his works on the venom apparatus and venoms of some poisonous snakes

    Directory of Open Access Journals (Sweden)

    Cherlin Vladimir Alexandrovich

    2013-10-01

    main active ingredient – neurotoxin with hyaluronidase. In the 30 - 70 years of the twentieth century, researches were carried out mainly on dried and then diluted in saline poisons. But A.M.Zaharov showed that when drying, the hyaluronidase loses its activity, as well as neurotoxins. Therefore, dried, and then diluted viper venoms when injected to experimental animals, showed only hemotoxic activity, that differs greatly from the action of native poisons, demonstrating also strong neurotoxic effects.

  9. Single Chain Antibody Fragment against Venom from the Snake Daboia russelii formosensis

    Directory of Open Access Journals (Sweden)

    Chi-Hsin Lee

    2017-10-01

    Full Text Available Russell’s vipers containing hemotoxic and neurotoxic venom commonly cause snake envenomation. Horse-derived antivenom is a specific antidote, but its production is expensive and has side effects. Developing a cost-effective and more tolerable therapeutic strategy is favorable. In this study, using glutaraldehyde-attenuated Daboia russelii formosensis (DRF venom proteins to immunize chickens, polyclonal yolk-immunoglobulin (IgY antibodies were generated and showed a specific binding affinity. Phage display technology was used to generate two antibody libraries of single-chain variable fragments (scFvs containing 3.4 × 107 and 5.5 × 107 transformants, respectively. Phage-based ELISA indicated that specific clones were enriched after bio-panning. The nucleotide sequences of scFv-expressing clones were analyzed and classified into six groups in the short linker and four groups in the long linker. These scFv antibodies specifically bound to DRF proteins, but not other venom proteins. Mass spectrometric data suggested that these scFv antibodies may recognize phospholipase A2 RV-4 or RV-7. In vivo studies showed that anti-DRF IgY exhibited complete protective effects and mixed scFv antibodies increased the survival rate and time of mice challenged with a lethal dose of DRF proteins. These antibodies can be potentially applied in a rapid diagnostic method or for treatment in the future.

  10. Single Chain Antibody Fragment against Venom from the Snake Daboia russelii formosensis.

    Science.gov (United States)

    Lee, Chi-Hsin; Lee, Yu-Ching; Lee, Yueh-Lun; Leu, Sy-Jye; Lin, Liang-Tzung; Chen, Chi-Ching; Chiang, Jen-Ron; Mwale, Pharaoh Fellow; Tsai, Bor-Yu; Hung, Ching-Sheng; Yang, Yi-Yuan

    2017-10-27

    Russell's vipers containing hemotoxic and neurotoxic venom commonly cause snake envenomation. Horse-derived antivenom is a specific antidote, but its production is expensive and has side effects. Developing a cost-effective and more tolerable therapeutic strategy is favorable. In this study, using glutaraldehyde-attenuated Daboia russelii formosensis (DRF) venom proteins to immunize chickens, polyclonal yolk-immunoglobulin (IgY) antibodies were generated and showed a specific binding affinity. Phage display technology was used to generate two antibody libraries of single-chain variable fragments (scFvs) containing 3.4 × 10⁷ and 5.5 × 10⁷ transformants, respectively. Phage-based ELISA indicated that specific clones were enriched after bio-panning. The nucleotide sequences of scFv-expressing clones were analyzed and classified into six groups in the short linker and four groups in the long linker. These scFv antibodies specifically bound to DRF proteins, but not other venom proteins. Mass spectrometric data suggested that these scFv antibodies may recognize phospholipase A2 RV-4 or RV-7. In vivo studies showed that anti-DRF IgY exhibited complete protective effects and mixed scFv antibodies increased the survival rate and time of mice challenged with a lethal dose of DRF proteins. These antibodies can be potentially applied in a rapid diagnostic method or for treatment in the future.

  11. Wintering the common viper (Vipera berus with embryos

    Directory of Open Access Journals (Sweden)

    Korosov Andrey Victorovich

    2012-03-01

    Full Text Available For the Vipers from Karelia phenomenon wintering females with embryos and the annual breeding were found. They were very large and heavy females (L.t. > 62 cm, W > 160 g, for which the mass loss due to pregnancy are not significant. Analysis of the size of 1450 individuals in a Kizhi population of viper showed that the proportion of females that can hibernate from embryos amounts to less than 3%.

  12. Assessing the utility of the Oxford Nanopore MinION for snake venom gland cDNA sequencing.

    Science.gov (United States)

    Hargreaves, Adam D; Mulley, John F

    2015-01-01

    Portable DNA sequencers such as the Oxford Nanopore MinION device have the potential to be truly disruptive technologies, facilitating new approaches and analyses and, in some cases, taking sequencing out of the lab and into the field. However, the capabilities of these technologies are still being revealed. Here we show that single-molecule cDNA sequencing using the MinION accurately characterises venom toxin-encoding genes in the painted saw-scaled viper, Echis coloratus. We find the raw sequencing error rate to be around 12%, improved to 0-2% with hybrid error correction and 3% with de novo error correction. Our corrected data provides full coding sequences and 5' and 3' UTRs for 29 of 33 candidate venom toxins detected, far superior to Illumina data (13/40 complete) and Sanger-based ESTs (15/29). We suggest that, should the current pace of improvement continue, the MinION will become the default approach for cDNA sequencing in a variety of species.

  13. Genomic and phylogenetic evidence of VIPER retrotransposon domestication in trypanosomatids

    Directory of Open Access Journals (Sweden)

    Adriana Ludwig

    Full Text Available Transposable elements are important residents of eukaryotic genomes and eventually the host can domesticate them to serve cellular functions. We reported here a possible domestication event of the vestigial interposed retroelement (VIPER in trypanosomatids. We found a large gene in a syntenic location in Leishmania braziliensis, L. panamensis, Leptomanas pyrrhocoris, and Crithidia fasciculata whose products share similarity in the C-terminal portion with the third protein of VIPER. No remnants of other VIPER regions surrounding the gene sequence were found. We hypothesise that the domestication event occurred more than 50 mya and the conservation of this gene suggests it might perform some function in the host species.

  14. NMR structure of bitistatin – a missing piece in the evolutionary pathway of snake venom disintegrins.

    Science.gov (United States)

    Carbajo, Rodrigo J; Sanz, Libia; Perez, Alicia; Calvete, Juan J

    2015-01-01

    Extant disintegrins, as found in the venoms of Viperidae and Crotalidae snakes (vipers and rattlesnakes, represent a family of polypeptides that block the function of β1 and β3 integrin receptors, both potently and with a high degree of selectivity. This toxin family owes its origin to the neofunctionalization of the extracellular region of an ADAM (a disintegrin and metalloprotease) molecule recruited into the snake venom gland proteome in the Jurassic. The evolutionary structural diversification of the disintegrin scaffold, from the ancestral long disintegrins to the more recently evolved medium-sized, dimeric and short disintegrins, involved the stepwise loss of pairs of class-specific disulfide linkages and the processing of the N-terminal region. NMR and crystal structures of medium-sized, dimeric and short disintegrins have been solved. However, the structure of a long disintegrin remained unknown. The present study reports the NMR solution structures of two disulfide bond conformers of the long disintegrin bitistatin from the African puff adder Bitis arietans. The findings provide insight into how a structural domain of the extracellular region of an ADAM molecule, recruited into and selectively expressed in the snake venom gland proteome as a PIII metalloprotease in the Jurassic, has subsequently been tranformed into a family of integrin receptor antagonists. © 2014 FEBS.

  15. In vitro and in vivo delivery of siRNA via VIPER polymer system to lung cells.

    Science.gov (United States)

    Feldmann, Daniel P; Cheng, Yilong; Kandil, Rima; Xie, Yuran; Mohammadi, Mariam; Harz, Hartmann; Sharma, Akhil; Peeler, David J; Moszczynska, Anna; Leonhardt, Heinrich; Pun, Suzie H; Merkel, Olivia M

    2018-04-28

    The block copolymer VIPER (virus-inspired polymer for endosomal release) has been reported to be a promising novel delivery system of DNA plasmids both in vitro and in vivo. VIPER is comprised of a polycation segment for condensation of nucleic acids as well as a pH-sensitive segment that exposes the membrane lytic peptide melittin in acidic environments to facilitate endosomal escape. The objective of this study was to investigate VIPER/siRNA polyplex characteristics, and compare their in vitro and in vivo performance with commercially available transfection reagents and a control version of VIPER lacking melittin. VIPER/siRNA polyplexes were formulated and characterized at various charge ratios and shown to be efficiently internalized in cultured cells. Target mRNA knockdown was confirmed by both flow cytometry and qRT-PCR and the kinetics of knockdown was monitored by live cell spinning disk microscopy, revealing knockdown starting by 4 h post-delivery. Intratracheal instillation of VIPER particles formulated with sequence specific siRNA to the lung of mice resulted in a significantly more efficient knockdown of GAPDH compared to treatment with VIPER particles formulated with scrambled sequence siRNA. We also demonstrated using pH-sensitive labels that VIPER particles experience less acidic environments compared to control polyplexes. In summary, VIPER/siRNA polyplexes efficiently deliver siRNA in vivo resulting in robust gene silencing (>75% knockdown) within the lung. Copyright © 2018 Elsevier B.V. All rights reserved.

  16. Assessing the utility of the Oxford Nanopore MinION for snake venom gland cDNA sequencing

    Directory of Open Access Journals (Sweden)

    Adam D. Hargreaves

    2015-11-01

    Full Text Available Portable DNA sequencers such as the Oxford Nanopore MinION device have the potential to be truly disruptive technologies, facilitating new approaches and analyses and, in some cases, taking sequencing out of the lab and into the field. However, the capabilities of these technologies are still being revealed. Here we show that single-molecule cDNA sequencing using the MinION accurately characterises venom toxin-encoding genes in the painted saw-scaled viper, Echis coloratus. We find the raw sequencing error rate to be around 12%, improved to 0–2% with hybrid error correction and 3% with de novo error correction. Our corrected data provides full coding sequences and 5′ and 3′ UTRs for 29 of 33 candidate venom toxins detected, far superior to Illumina data (13/40 complete and Sanger-based ESTs (15/29. We suggest that, should the current pace of improvement continue, the MinION will become the default approach for cDNA sequencing in a variety of species.

  17. VIPER: a web application for rapid expert review of variant calls.

    Science.gov (United States)

    Wöste, Marius; Dugas, Martin

    2018-01-15

    With the rapid development in next-generation sequencing, cost and time requirements for genomic sequencing are decreasing, enabling applications in many areas such as cancer research. Many tools have been developed to analyze genomic variation ranging from single nucleotide variants to whole chromosomal aberrations. As sequencing throughput increases, the number of variants called by such tools also grows. Often employed manual inspection of such calls is thus becoming a time-consuming procedure. We developed the Variant InsPector and Expert Rating tool (VIPER) to speed up this process by integrating the Integrative Genomics Viewer into a web application. Analysts can then quickly iterate through variants, apply filters and make decisions based on the generated images and variant metadata. VIPER was successfully employed in analyses with manual inspection of more than 10,000 calls. VIPER is implemented in Java and Javascript and is freely available at https://github.com/MarWoes/viper. Marius.Woeste@uni-muenster.de. Supplementary data are available at Bioinformatics online. © The Author (2018). Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com

  18. HYMENOPTERA ALLERGENS: FROM VENOM TO VENOME

    Directory of Open Access Journals (Sweden)

    Edzard eSpillner

    2014-02-01

    Full Text Available In Western Europe hymenoptera venom allergy primarily relates to venoms of the honeybee and the common yellow jacket. In contrast to other allergen sources, only a few major components of hymenoptera venoms had been characterized until recently. Improved expression systems and proteomic detection strategies have allowed the identification and characterization of a wide range of additional allergens. The field of hymenoptera venom allergy research has moved rapidly from focusing on venom extract and single major allergens to a molecular understanding of the entire venome as a system of unique and characteristic components. An increasing number of such components has been identified, characterized regarding function and assessed for allergenic potential. Moreover, advanced expression strategies for recombinant production of venom allergens allow selective modification of molecules and provide insight into different types of IgE reactivities and sensitization patterns. The obtained information contributes to an increased diagnostic precision in hymenoptera venom allergy and may serve for monitoring, reevaluation and improvement of current therapeutic strategies.

  19. The Study on the Snake by TOXICON

    Directory of Open Access Journals (Sweden)

    Sung-wook Kim

    2003-06-01

    Full Text Available The study was carried out to investigate the researches of Snake which was published papers in the TOXICON(1990-2.000, one of the most famous Journal of toxicology. And the results were as follows: 1. The number related with Snake is 195papers. 2. There were great papers related wih Cobra, and next is Tigris, Viper, etc. 3. There were great papers related wih protein in the composition of snake venom. 4. There were great papers related wih neurotoxin in the research of poisonous character. 5. There were great papers related wih Viper according to the anticoagulation. 6. Eight papers were published to study the immune response of snake venom. 7. The papers of molecular study of snake venom were seven. 8. The papers of anti-snake venom study were three.

  20. Identification of snake bradykinin-potentiating peptides (BPPs)-simile sequences in rat brain--Potential BPP-like precursor protein?

    Science.gov (United States)

    Campeiro, Joana D'Arc; Neshich, Izabella P; Sant'Anna, Osvaldo A; Lopes, Robson; Ianzer, Danielle; Assakura, Marina T; Neshich, Goran; Hayashi, Mirian A F

    2015-08-01

    Bradykinin-potentiating peptides (BPPs) from the South American pit viper snake venom were the first natural inhibitors of the human angiotensin I-converting enzyme (ACE) described. The pioneer characterization of the BPPs precursor from the snake venom glands by our group showed for the first time the presence of the C-type natriuretic peptide (CNP) in this same viper precursor protein. The confirmation of the BPP/CNP expression in snake brain regions correlated with neuroendocrine functions stimulated us to pursue the physiological correlates of these vasoactive peptides in mammals. Notably, several snake toxins were shown to have endogenous physiological correlates in mammals. In the present work, we expressed in bacteria the BPPs domain of the snake venom gland precursor protein, and this purified recombinant protein was used to raise specific polyclonal anti-BPPs antibodies. The correspondent single protein band immune-recognized in adult rat brain cytosol was isolated by 2D-SDS/PAGE and/or HPLC, before characterization by MS fingerprint analysis, which identified this protein as superoxide dismutase (SOD, EC 1.15.1.1), a classically known enzyme with antioxidant activity and important roles in the blood pressure modulation. In silico analysis showed the exposition of the BPP-like peptide sequences on the surface of the 3D structure of rat SOD. These peptides were chemically synthesized to show the BPP-like biological activities in ex vivo and in vivo pharmacological bioassays. Taken together, our data suggest that SOD protein have the potential to be a source for putative BPP-like bioactive peptides, which once released may contribute to the blood pressure control in mammals. Copyright © 2015 Elsevier Inc. All rights reserved.

  1. VizieR Online Data Catalog: VIMOS Public Extragalactic Survey (VIPERS) DR1 (Garilli+, 2014)

    Science.gov (United States)

    Garilli, B.; Guzzo, L.; Scodeggio, M.; Bolzonella, M.; Abbas, U.; Adami, C.; Arnouts, S.; Bel, J.; Bottini, D.; Branchini, E.; Cappi, A.; Coupon, J.; Cucciati, O.; Davidzon, I.; de Lucia, G.; de la Torre, S.; Franzetti, P.; Fritz, A.; Fumana, M.; Granett, B. R.; Ilbert, O.; Iovino, A.; Krywult, J.; Le Brun, V.; Le Fevre, O.; Maccagni, D.; Malek, K.; Marulli, F.; McCracken, H. J.; Paioro, L.; Polletta, M.; Pollo, A.; Schlagenhaufer, H.; Tasca, L. A. M.; Tojeiro, R.; Vergani, D.; Zamorani, G.; Zanichelli, A.; Burden, A.; di Porto, C.; Marchetti, A.; Marinoni, C.; Mellier, Y.; Moscardini, L.; Nichol, R. C.; Peacock, J. A.; Percival, W. J.; Phleps, S.; Wolk, M.

    2014-09-01

    We present the first Public Data Release (PDR-1) of the VIMOS Public Extragalactic Survey (VIPERS). It comprises 57204 spectroscopic measurements together with all additional information necessary for optimal scientific exploitation of the data, in particular the associated photometric measurements and quantification of the photometric and survey completeness. VIPERS is an ESO Large Programme designed to build a spectroscopic sample of =~100000 galaxies with iABaccessing the data through the survey database (http://vipers.inaf.it) where all information can be queried interactively. (4 data files).

  2. Venomics-Accelerated Cone Snail Venom Peptide Discovery

    Science.gov (United States)

    Himaya, S. W. A.

    2018-01-01

    Cone snail venoms are considered a treasure trove of bioactive peptides. Despite over 800 species of cone snails being known, each producing over 1000 venom peptides, only about 150 unique venom peptides are structurally and functionally characterized. To overcome the limitations of the traditional low-throughput bio-discovery approaches, multi-omics systems approaches have been introduced to accelerate venom peptide discovery and characterisation. This “venomic” approach is starting to unravel the full complexity of cone snail venoms and to provide new insights into their biology and evolution. The main challenge for venomics is the effective integration of transcriptomics, proteomics, and pharmacological data and the efficient analysis of big datasets. Novel database search tools and visualisation techniques are now being introduced that facilitate data exploration, with ongoing advances in related omics fields being expected to further enhance venomics studies. Despite these challenges and future opportunities, cone snail venomics has already exponentially expanded the number of novel venom peptide sequences identified from the species investigated, although most novel conotoxins remain to be pharmacologically characterised. Therefore, efficient high-throughput peptide production systems and/or banks of miniaturized discovery assays are required to overcome this bottleneck and thus enhance cone snail venom bioprospecting and accelerate the identification of novel drug leads. PMID:29522462

  3. Venomics-Accelerated Cone Snail Venom Peptide Discovery

    Directory of Open Access Journals (Sweden)

    S. W. A. Himaya

    2018-03-01

    Full Text Available Cone snail venoms are considered a treasure trove of bioactive peptides. Despite over 800 species of cone snails being known, each producing over 1000 venom peptides, only about 150 unique venom peptides are structurally and functionally characterized. To overcome the limitations of the traditional low-throughput bio-discovery approaches, multi-omics systems approaches have been introduced to accelerate venom peptide discovery and characterisation. This “venomic” approach is starting to unravel the full complexity of cone snail venoms and to provide new insights into their biology and evolution. The main challenge for venomics is the effective integration of transcriptomics, proteomics, and pharmacological data and the efficient analysis of big datasets. Novel database search tools and visualisation techniques are now being introduced that facilitate data exploration, with ongoing advances in related omics fields being expected to further enhance venomics studies. Despite these challenges and future opportunities, cone snail venomics has already exponentially expanded the number of novel venom peptide sequences identified from the species investigated, although most novel conotoxins remain to be pharmacologically characterised. Therefore, efficient high-throughput peptide production systems and/or banks of miniaturized discovery assays are required to overcome this bottleneck and thus enhance cone snail venom bioprospecting and accelerate the identification of novel drug leads.

  4. Neutralisation of venom-induced haemorrhage by IgG from camels and llamas immunised with viper venom and also by endogenous, non-IgG components in camelid sera

    NARCIS (Netherlands)

    Harrison, R.A.; Hasson, S.S.; Harmsen, M.M.; Laing, G.D.; Theakston, R.D.

    2006-01-01

    Envenoming by snakes results in severe systemic and local pathology. Intravenous administration of antivenom, prepared from IgG of venom immunised horses or sheep, is the only effective treatment of systemic envenoming. Conventional antivenoms, formulated as intact IgG, papain-cleaved (Fab) or

  5. Snake venom poisoning in the Plovdiv region from 2004 to 2012.

    Science.gov (United States)

    Iliev, Yanko T; Tufkova, Stoilka G; Zagorov, Marin Y; Nikolova, Stanka M

    2014-01-01

    Envenomation by poisons of biological origin is very common globally in the tropical and subtropical areas mainly, where the biological diversity of the species clearly leads to evolution of highly toxic species. The weather warming trend in Bulgaria, whether cyclic or permanent, allows for a change in the biological response of reptiles and insects inhabiting the temperate zone by a possible migration of biological species from the subtropical zone towards the temperate zone because of the new environmental conditions. There are very few studies on snake bite envenoming in Bulgaria. The AIM of the study was to find the incidence of the acute accidental intoxication (AAI) caused by snake venom in adult individuals in a large region of Bulgaria between 2004 and 2012 and characterises it by number, type, main clinical features, course and socio-demographic parameters of the victims so that preventive measures can be taken, wherever necessary. We studied retrospectively all 68 cases of AAI caused by snake venom in adult individuals (> 18 years old) hospitalized in the Clinic of Toxicology in St. George University Hospital, Plovdiv over the period from 2004 to 2012 by 23 quantitative and qualitative parameters. We found that the average annual incidence of snake venom AAI in adult population in the region of Plovdiv was relatively low for the specified period (9.5 per 100000 residents); the snake venom AAI increases or decreases every other year, with no clearly delineated trend for now. The prevalence of envenomation by poisons of biological origin increased from 2.3% in 1990-1998 to 9.5-10.33% between 2007 and 2012. The main sociodemographic characteristics of snake bite victims are similar to those in other Balkan and Central European countries. The clinical response to poisons of biological origin is generally identical with the response to the viper (Vipera ammodytes)--mild to medium intensity with predominantly local toxic syndrome. The algorithm of Clinical

  6. A mitochondrial DNA phylogeny of the endangered vipers of the Vipera ursinii complex

    Czech Academy of Sciences Publication Activity Database

    Gvoždík, Václav; Jandzik, D.; Cordos, B.; Řehák, I.; Kotlík, Petr

    2012-01-01

    Roč. 62, č. 3 (2012), s. 1019-1024 ISSN 1055-7903 R&D Projects: GA MŠk LC06073 Institutional research plan: CEZ:AV0Z50450515 Keywords : Conservation * Meadow viper * Phylogeny * Steppe viper * Systematics * Vipera ursinii complex Subject RIV: EH - Ecology, Behaviour Impact factor: 4.066, year: 2012

  7. Quo Vadis Venomics? A Roadmap to Neglected Venomous Invertebrates

    Science.gov (United States)

    von Reumont, Bjoern Marcus; Campbell, Lahcen I.; Jenner, Ronald A.

    2014-01-01

    Venomics research is being revolutionized by the increased use of sensitive -omics techniques to identify venom toxins and their transcripts in both well studied and neglected venomous taxa. The study of neglected venomous taxa is necessary both for understanding the full diversity of venom systems that have evolved in the animal kingdom, and to robustly answer fundamental questions about the biology and evolution of venoms without the distorting effect that can result from the current bias introduced by some heavily studied taxa. In this review we draw the outlines of a roadmap into the diversity of poorly studied and understood venomous and putatively venomous invertebrates, which together represent tens of thousands of unique venoms. The main groups we discuss are crustaceans, flies, centipedes, non-spider and non-scorpion arachnids, annelids, molluscs, platyhelminths, nemerteans, and echinoderms. We review what is known about the morphology of the venom systems in these groups, the composition of their venoms, and the bioactivities of the venoms to provide researchers with an entry into a large and scattered literature. We conclude with a short discussion of some important methodological aspects that have come to light with the recent use of new -omics techniques in the study of venoms. PMID:25533518

  8. Quo Vadis Venomics? A Roadmap to Neglected Venomous Invertebrates

    Directory of Open Access Journals (Sweden)

    Bjoern Marcus von Reumont

    2014-12-01

    Full Text Available Venomics research is being revolutionized by the increased use of sensitive -omics techniques to identify venom toxins and their transcripts in both well studied and neglected venomous taxa. The study of neglected venomous taxa is necessary both for understanding the full diversity of venom systems that have evolved in the animal kingdom, and to robustly answer fundamental questions about the biology and evolution of venoms without the distorting effect that can result from the current bias introduced by some heavily studied taxa. In this review we draw the outlines of a roadmap into the diversity of poorly studied and understood venomous and putatively venomous invertebrates, which together represent tens of thousands of unique venoms. The main groups we discuss are crustaceans, flies, centipedes, non-spider and non-scorpion arachnids, annelids, molluscs, platyhelminths, nemerteans, and echinoderms. We review what is known about the morphology of the venom systems in these groups, the composition of their venoms, and the bioactivities of the venoms to provide researchers with an entry into a large and scattered literature. We conclude with a short discussion of some important methodological aspects that have come to light with the recent use of new -omics techniques in the study of venoms.

  9. A multi-protease, multi-dissociation, bottom-up-to-top-down proteomic view of the Loxosceles intermedia venom

    Science.gov (United States)

    Trevisan-Silva, Dilza; Bednaski, Aline V.; Fischer, Juliana S.G.; Veiga, Silvio S.; Bandeira, Nuno; Guthals, Adrian; Marchini, Fabricio K.; Leprevost, Felipe V.; Barbosa, Valmir C.; Senff-Ribeiro, Andrea; Carvalho, Paulo C.

    2017-01-01

    Venoms are a rich source for the discovery of molecules with biotechnological applications, but their analysis is challenging even for state-of-the-art proteomics. Here we report on a large-scale proteomic assessment of the venom of Loxosceles intermedia, the so-called brown spider. Venom was extracted from 200 spiders and fractioned into two aliquots relative to a 10 kDa cutoff mass. Each of these was further fractioned and digested with trypsin (4 h), trypsin (18 h), pepsin (18 h), and chymotrypsin (18 h), then analyzed by MudPIT on an LTQ-Orbitrap XL ETD mass spectrometer fragmenting precursors by CID, HCD, and ETD. Aliquots of undigested samples were also analyzed. Our experimental design allowed us to apply spectral networks, thus enabling us to obtain meta-contig assemblies, and consequently de novo sequencing of practically complete proteins, culminating in a deep proteome assessment of the venom. Data are available via ProteomeXchange, with identifier PXD005523. PMID:28696408

  10. ADAM and ADAMTS Family Proteins and Snake Venom Metalloproteinases: A Structural Overview

    Directory of Open Access Journals (Sweden)

    Soichi Takeda

    2016-05-01

    Full Text Available A disintegrin and metalloproteinase (ADAM family proteins constitute a major class of membrane-anchored multidomain proteinases that are responsible for the shedding of cell-surface protein ectodomains, including the latent forms of growth factors, cytokines, receptors and other molecules. Snake venom metalloproteinases (SVMPs are major components in most viper venoms. SVMPs are primarily responsible for hemorrhagic activity and may also interfere with the hemostatic system in envenomed animals. SVMPs are phylogenetically most closely related to ADAMs and, together with ADAMs and related ADAM with thrombospondin motifs (ADAMTS family proteinases, constitute adamalysins/reprolysins or the M12B clan (MEROPS database of metalloproteinases. Although the catalytic domain structure is topologically similar to that of other metalloproteinases such as matrix metalloproteinases, the M12B proteinases have a modular structure with multiple non-catalytic ancillary domains that are not found in other proteinases. Notably, crystallographic studies revealed that, in addition to the conserved metalloproteinase domain, M12B members share a hallmark cysteine-rich domain designated as the “ADAM_CR” domain. Despite their name, ADAMTSs lack disintegrin-like structures and instead comprise two ADAM_CR domains. This review highlights the current state of our knowledge on the three-dimensional structures of M12B proteinases, focusing on their unique domains that may collaboratively participate in directing these proteinases to specific substrates.

  11. Individual Growth Rates of Nikolsky’s Viper, Vipera berus nikolskii (Squamata, Viperidae

    Directory of Open Access Journals (Sweden)

    Bondarenko Z. S.

    2016-02-01

    Full Text Available Capture-mark-recapture data was used to infer growth rates of the Nikolsky’s viper, Vipera berus nikolskii (Vedmederja, Grubant et Rudaeva, 1986, in the Eastern Ukraine. We have found that growth rate is negatively correlated with age. The difference in growth rates before maturation is not significant between different sexes. Growth rates decrease rapidly after maturation in males and females, however adult males retain significantly higher average growth rates. There is large dispersion of growth rates in the group of adult females, which is caused, probably, by alteration of complete arrest of growth in the years with reproduction and more intensive growth in the years without it. Asymptotic snout-ventral length estimated after Von Bertalanffy model was 680 mm in females and 630 mm in males. Females mature after fifth and males mature after fourth hibernation. The larger females in vipers can not be the result of higher growth rates in females, but are the outcome of a combination of other factors including different maturation time and size (older and being larger, and, perhaps, longer life span due to lower mortality. Growth rates of the Nikolsky’s viper in the nature are higher than in other species in the group of small Eurasian vipers.

  12. Development of VIPER: a simulator for assessing vision performance of warfighters

    Science.gov (United States)

    Familoni, Jide; Thompson, Roger; Moyer, Steve; Mueller, Gregory; Williams, Tim; Nguyen, Hung-Quang; Espinola, Richard L.; Sia, Rose K.; Ryan, Denise S.; Rivers, Bruce A.

    2016-05-01

    Background: When evaluating vision, it is important to assess not just the ability to read letters on a vision chart, but also how well one sees in real life scenarios. As part of the Warfighter Refractive Eye Surgery Program (WRESP), visual outcomes are assessed before and after refractive surgery. A Warfighter's ability to read signs and detect and identify objects is crucial, not only when deployed in a military setting, but also in their civilian lives. Objective: VIPER, a VIsion PERformance simulator was envisioned as actual video-based simulated driving to test warfighters' functional vision under realistic conditions. Designed to use interactive video image controlled environments at daytime, dusk, night, and with thermal imaging vision, it simulates the experience of viewing and identifying road signs and other objects while driving. We hypothesize that VIPER will facilitate efficient and quantifiable assessment of changes in vision and measurement of functional military performance. Study Design: Video images were recorded on an isolated 1.1 mile stretch of road with separate target sets of six simulated road signs and six objects of military interest, separately. The video footage were integrated with customdesigned C++ based software that presented the simulated drive to an observer on a computer monitor at 10, 20 or 30 miles/hour. VIPER permits the observer to indicate when a target is seen and when it is identified. Distances at which the observer recognizes and identifies targets are automatically logged. Errors in recognition and identification are also recorded. This first report describes VIPER's development and a preliminary study to establish a baseline for its performance. In the study, nine soldiers viewed simulations at 10 miles/hour and 30 miles/hour, run in randomized order for each participant seated at 36 inches from the monitor. Relevance: Ultimately, patients are interested in how their vision will affect their ability to perform daily

  13. Syndromic approach to treatment of snake bite in Sri Lanka based on results of a prospective national hospital-based survey of patients envenomed by identified snakes.

    Science.gov (United States)

    Ariaratnam, Christeine A; Sheriff, Mohamed H Rezvi; Arambepola, Carukshi; Theakston, R David G; Warrell, David A

    2009-10-01

    Of 860 snakes brought to 10 hospitals in Sri Lanka with the patients they had bitten, 762 (89%) were venomous. Russell's vipers (Daboia russelii) and hump-nosed pit vipers (Hypnale hypnale) were the most numerous and H. hypnale was the most widely distributed. Fifty-one (6%) were misidentified by hospital staff, causing inappropriate antivenom treatment of 13 patients. Distinctive clinical syndromes were identified to aid species diagnosis in most cases of snake bite in Sri Lanka where the biting species is unknown. Diagnostic sensitivities and specificities of these syndromes for envenoming were 78% and 96% by Naja naja, 66% and 100% by Bungarus caeruleus, 14% and 100% by Daboia russelii, and 10% and 97% by Hypnale hypnale, respectively. Although only polyspecific antivenoms are used in Sri Lanka, species diagnosis remains important to anticipate life-threatening complications such as local necrosis, hemorrhage and renal and respiratory failure and to identify likely victims of envenoming by H. hypnale who will not benefit from existing antivenoms. The technique of hospital-based collection, labeling and preservation of dead snakes brought by bitten patients is recommended for rapid assessment of a country's medically-important herpetofauna.

  14. Intraspecific venom variation in the medically significant Southern Pacific Rattlesnake (Crotalus oreganus helleri): biodiscovery, clinical and evolutionary implications.

    Science.gov (United States)

    Sunagar, Kartik; Undheim, Eivind A B; Scheib, Holger; Gren, Eric C K; Cochran, Chip; Person, Carl E; Koludarov, Ivan; Kelln, Wayne; Hayes, William K; King, Glenn F; Antunes, Agosthino; Fry, Bryan Grieg

    2014-03-17

    Due to the extreme variation of venom, which consequently results in drastically variable degrees of neutralization by CroFab antivenom, the management and treatment of envenoming by Crotalus oreganus helleri (the Southern Pacific Rattlesnake), one of the most medically significant snake species in all of North America, has been a clinician's nightmare. This snake has also been the subject of sensational news stories regarding supposed rapid (within the last few decades) evolution of its venom. This research demonstrates for the first time that variable evolutionary selection pressures sculpt the intraspecific molecular diversity of venom components in C. o. helleri. We show that myotoxic β-defensin peptides (aka: crotamines/small basic myotoxic peptides) are secreted in large amounts by all populations. However, the mature toxin-encoding nucleotide regions evolve under the constraints of negative selection, likely as a result of their non-specific mode of action which doesn't enforce them to follow the regime of the classic predator-prey chemical arms race. The hemorrhagic and tissue destroying snake venom metalloproteinases (SVMPs) were secreted in larger amounts by the Catalina Island and Phelan rattlesnake populations, in moderate amounts in the Loma Linda population and in only trace levels by the Idyllwild population. Only the Idyllwild population in the San Jacinto Mountains contained potent presynaptic neurotoxic phospholipase A2 complex characteristic of Mohave Rattlesnake (Crotalus scutulatus) and Neotropical Rattlesnake (Crotalus durissus terrificus). The derived heterodimeric lectin toxins characteristic of viper venoms, which exhibit a diversity of biological activities, including anticoagulation, agonism/antagonism of platelet activation, or procoagulation, appear to have evolved under extremely variable selection pressures. While most lectin α- and β-chains evolved rapidly under the influence of positive Darwinian selection, the β-chain lectin of

  15. Purification and functional characterisation of rhiminopeptidase A, a novel aminopeptidase from the venom of Bitis gabonica rhinoceros.

    Directory of Open Access Journals (Sweden)

    Sakthivel Vaiyapuri

    2010-08-01

    Full Text Available Snake bite is a major neglected public health issue within poor communities living in the rural areas of several countries throughout the world. An estimated 2.5 million people are bitten by snakes each year and the cost and lack of efficacy of current anti-venom therapy, together with the lack of detailed knowledge about toxic components of venom and their modes of action, and the unavailability of treatments in rural areas mean that annually there are around 125,000 deaths worldwide. In order to develop cheaper and more effective therapeutics, the toxic components of snake venom and their modes of action need to be clearly understood. One particularly poorly understood component of snake venom is aminopeptidases. These are exo-metalloproteases, which, in mammals, are involved in important physiological functions such as the maintenance of blood pressure and brain function. Although aminopeptidase activities have been reported in some snake venoms, no detailed analysis of any individual snake venom aminopeptidases has been performed so far. As is the case for mammals, snake venom aminopeptidases may also play important roles in altering the physiological functions of victims during envenomation. In order to further understand this important group of snake venom enzymes we have isolated, functionally characterised and analysed the sequence-structure relationships of an aminopeptidase from the venom of the large, highly venomous West African gaboon viper, Bitis gabonica rhinoceros.The venom of B. g. rhinoceros was fractionated by size exclusion chromatography and fractions with aminopeptidase activities were isolated. Fractions with aminopeptidase activities showed a pure protein with a molecular weight of 150 kDa on SDS-PAGE. In the absence of calcium, this purified protein had broad aminopeptidase activities against acidic, basic and neutral amino acids but in the presence of calcium, it had only acidic aminopeptidase activity (APA. Together

  16. Aristolochic acid and its derivatives as inhibitors of snake venom L-amino acid oxidase.

    Science.gov (United States)

    Bhattacharjee, Payel; Bera, Indrani; Chakraborty, Subhamoy; Ghoshal, Nanda; Bhattacharyya, Debasish

    2017-11-01

    Snake venom L-amino acid oxidase (LAAO) exerts toxicity by inducing hemorrhage, pneumorrhagia, pulmonary edema, cardiac edema, liver cell necrosis etc. Being well conserved, inhibitors of the enzyme may be synthesized using the template of the substrate, substrate binding site and features of the catalytic site of the enzyme. Previous findings showed that aristolochic acid (AA), a major constituent of Aristolochia indica, inhibits Russell's viper venom LAAO enzyme activity since, AA interacts with DNA and causes genotoxicity, derivatives of this compound were synthesized by replacing the nitro group to reduce toxicity while retaining the inhibitory potency. The interactions of AA and its derivatives with LAAO were followed by inhibition kinetics and surface plasmon resonance. Similar interactions with DNA were followed by absorption spectroscopy and atomic force microscopy. LAAO-induced cytotoxicity was evaluated by generation of reactive oxygen species (ROS), cell viability assays, confocal and epifluorescence microscopy. The hydroxyl (AA-OH) and chloro (AA-Cl) derivatives acted as inhibitors of LAAO but did not interact with DNA. The derivatives significantly reduced LAAO-induced ROS generation and cytotoxicity in human embryonic kidney (HEK 293) and hepatoma (HepG2) cell lines. Confocal images indicated that AA, AA-OH and AA-Cl interfered with the binding of LAAO to the cell membrane. AA-OH and AA-Cl significantly inhibited LAAO activity and reduced LAAO-induced cytotoxicity. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Bioinformatics and multiepitope DNA immunization to design rational snake antivenom.

    Directory of Open Access Journals (Sweden)

    Simon C Wagstaff

    2006-06-01

    Full Text Available Snake venom is a potentially lethal and complex mixture of hundreds of functionally diverse proteins that are difficult to purify and hence difficult to characterize. These difficulties have inhibited the development of toxin-targeted therapy, and conventional antivenom is still generated from the sera of horses or sheep immunized with whole venom. Although life-saving, antivenoms contain an immunoglobulin pool of unknown antigen specificity and known redundancy, which necessitates the delivery of large volumes of heterologous immunoglobulin to the envenomed victim, thus increasing the risk of anaphylactoid and serum sickness adverse effects. Here we exploit recent molecular sequence analysis and DNA immunization tools to design more rational toxin-targeted antivenom.We developed a novel bioinformatic strategy that identified sequences encoding immunogenic and structurally significant epitopes from an expressed sequence tag database of a venom gland cDNA library of Echis ocellatus, the most medically important viper in Africa. Focusing upon snake venom metalloproteinases (SVMPs that are responsible for the severe and frequently lethal hemorrhage in envenomed victims, we identified seven epitopes that we predicted would be represented in all isomers of this multimeric toxin and that we engineered into a single synthetic multiepitope DNA immunogen (epitope string. We compared the specificity and toxin-neutralizing efficacy of antiserum raised against the string to antisera raised against a single SVMP toxin (or domains or antiserum raised by conventional (whole venom immunization protocols. The SVMP string antiserum, as predicted in silico, contained antibody specificities to numerous SVMPs in E. ocellatus venom and venoms of several other African vipers. More significantly, the antiserum cross-specifically neutralized hemorrhage induced by E. ocellatus and Cerastes cerastes cerastes venoms.These data provide valuable sequence and structure

  18. Neuronal Mechanisms and Bloodflow Control of Infrared Reception in Snakes

    National Research Council Canada - National Science Library

    Goris, Richard

    2004-01-01

    The infrared pit organs of pit vipers and pythons were studied with emphasis on bloodflow in the capillary bed and its possible role as a cooling mechanism for the pit receptors stimulated by infrared (= heat...

  19. The venom optimization hypothesis revisited.

    Science.gov (United States)

    Morgenstern, David; King, Glenn F

    2013-03-01

    Animal venoms are complex chemical mixtures that typically contain hundreds of proteins and non-proteinaceous compounds, resulting in a potent weapon for prey immobilization and predator deterrence. However, because venoms are protein-rich, they come with a high metabolic price tag. The metabolic cost of venom is sufficiently high to result in secondary loss of venom whenever its use becomes non-essential to survival of the animal. The high metabolic cost of venom leads to the prediction that venomous animals may have evolved strategies for minimizing venom expenditure. Indeed, various behaviors have been identified that appear consistent with frugality of venom use. This has led to formulation of the "venom optimization hypothesis" (Wigger et al. (2002) Toxicon 40, 749-752), also known as "venom metering", which postulates that venom is metabolically expensive and therefore used frugally through behavioral control. Here, we review the available data concerning economy of venom use by animals with either ancient or more recently evolved venom systems. We conclude that the convergent nature of the evidence in multiple taxa strongly suggests the existence of evolutionary pressures favoring frugal use of venom. However, there remains an unresolved dichotomy between this economy of venom use and the lavish biochemical complexity of venom, which includes a high degree of functional redundancy. We discuss the evidence for biochemical optimization of venom as a means of resolving this conundrum. Copyright © 2012 Elsevier Ltd. All rights reserved.

  20. Venom On-a-Chip: A Fast and Efficient Method for Comparative Venomics.

    Science.gov (United States)

    Zancolli, Giulia; Sanz, Libia; Calvete, Juan J; Wüster, Wolfgang

    2017-05-28

    Venom research has attracted an increasing interest in disparate fields, from drug development and pharmacology, to evolutionary biology and ecology, and rational antivenom production. Advances in "-omics" technologies have allowed the characterization of an increasing number of animal venoms, but the methodology currently available is suboptimal for large-scale comparisons of venom profiles. Here, we describe a fast, reproducible and semi-automated protocol for investigating snake venom variability, especially at the intraspecific level, using the Agilent Bioanalyzer on-chip technology. Our protocol generated a phenotype matrix which can be used for robust statistical analysis and correlations of venom variation with ecological correlates, or other extrinsic factors. We also demonstrate the ease and utility of combining on-chip technology with previously fractionated venoms for detection of specific individual toxin proteins. Our study describes a novel strategy for rapid venom discrimination and analysis of compositional variation at multiple taxonomic levels, allowing researchers to tackle evolutionary questions and unveiling the drivers of the incredible biodiversity of venoms.

  1. Use of immunoturbidimetry to detect venom-antivenom binding using snake venoms.

    Science.gov (United States)

    O'Leary, M A; Maduwage, K; Isbister, G K

    2013-01-01

    Immunoturbidimetry studies the phenomenon of immunoprecipitation of antigens and antibodies in solution, where there is the formation of large, polymeric insoluble immunocomplexes that increase the turbidity of the solution. We used immunoturbidimetry to investigate the interaction between commercial snake antivenoms and snake venoms, as well as cross-reactivity between different snake venoms. Serial dilutions of commercial snake antivenoms (100μl) in water were placed in the wells of a microtitre plate and 100μl of a venom solution (50μg/ml in water) was added. Absorbance readings were taken at 340nm every minute on a BioTek ELx808 plate reader at 37°C. Limits imposed were a 30minute cut-off and 0.004 as the lowest significant maximum increase. Reactions with rabbit antibodies were carried out similarly, except that antibody dilutions were in PBS. Mixing venom and antivenom/antibodies resulted in an immediate increase in turbidity, which either reached a maximum or continued to increase until a 30minute cut-off. There was a peak in absorbance readings for most Australian snake venoms mixed with the corresponding commercial antivenom, except for Pseudonaja textilis venom and brown snake antivenom. There was cross-reactivity between Naja naja venom from Sri Lanka and tiger snake antivenom indicated by turbidity when they were mixed. Mixing rabbit anti-snake antibodies with snake venoms resulted in increasing turbidity, but there was not a peak suggesting the antibodies were not sufficiently concentrated. The absorbance reading at pre-determined concentrations of rabbit antibodies mixed with different venoms was able to quantify the cross-reactivity between venoms. Indian antivenoms from two manufacturers were tested against four Sri Lankan snake venoms (Daboia russelli, N. naja, Echis carinatus and Bungarus caeruleus) and showed limited formation of immunocomplexes with antivenom from one manufacturer. The turbidity test provides an easy and rapid way to compare

  2. Echidna venom gland transcriptome provides insights into the evolution of monotreme venom.

    Directory of Open Access Journals (Sweden)

    Emily S W Wong

    Full Text Available Monotremes (echidna and platypus are egg-laying mammals. One of their most unique characteristic is that males have venom/crural glands that are seasonally active. Male platypuses produce venom during the breeding season, delivered via spurs, to aid in competition against other males. Echidnas are not able to erect their spurs, but a milky secretion is produced by the gland during the breeding season. The function and molecular composition of echidna venom is as yet unknown. Hence, we compared the deeply sequenced transcriptome of an in-season echidna crural gland to that of a platypus and searched for putative venom genes to provide clues into the function of echidna venom and the evolutionary history of monotreme venom. We found that the echidna venom gland transcriptome was markedly different from the platypus with no correlation between the top 50 most highly expressed genes. Four peptides found in the venom of the platypus were detected in the echidna transcriptome. However, these genes were not highly expressed in echidna, suggesting that they are the remnants of the evolutionary history of the ancestral venom gland. Gene ontology terms associated with the top 100 most highly expressed genes in echidna, showed functional terms associated with steroidal and fatty acid production, suggesting that echidna "venom" may play a role in scent communication during the breeding season. The loss of the ability to erect the spur and other unknown evolutionary forces acting in the echidna lineage resulted in the gradual decay of venom components and the evolution of a new role for the crural gland.

  3. VenomKB, a new knowledge base for facilitating the validation of putative venom therapies.

    Science.gov (United States)

    Romano, Joseph D; Tatonetti, Nicholas P

    2015-11-24

    Animal venoms have been used for therapeutic purposes since the dawn of recorded history. Only a small fraction, however, have been tested for pharmaceutical utility. Modern computational methods enable the systematic exploration of novel therapeutic uses for venom compounds. Unfortunately, there is currently no comprehensive resource describing the clinical effects of venoms to support this computational analysis. We present VenomKB, a new publicly accessible knowledge base and website that aims to act as a repository for emerging and putative venom therapies. Presently, it consists of three database tables: (1) Manually curated records of putative venom therapies supported by scientific literature, (2) automatically parsed MEDLINE articles describing compounds that may be venom derived, and their effects on the human body, and (3) automatically retrieved records from the new Semantic Medline resource that describe the effects of venom compounds on mammalian anatomy. Data from VenomKB may be selectively retrieved in a variety of popular data formats, are open-source, and will be continually updated as venom therapies become better understood.

  4. Bothrops fonsecai snake venom activities and cross-reactivity with commercial bothropic venom.

    Science.gov (United States)

    Collaço, Rita de Cássia O; Randazzo-Moura, Priscila; Tamascia, Mariana L; da Silva, Igor Rapp F; Rocha, Thalita; Cogo, José C; Hyslop, Stephen; Sanny, Charles G; Rodrigues-Simioni, Léa

    2017-01-01

    In this work, we examined some biochemical and biological activities of Bothrops fonsecai venom, a pitviper endemic to southeastern Brazil, and assessed their neutralization by commercial bothropic antivenom (CAv). Cross-reactivity of venom with CAv was also assessed by immunoblotting and size-exclusion high performance chromatography (SE-HPLC). Bothrops fonsecai venom had PLA 2 , proteolytic and esterase activities that were neutralized to varying extents by venom:antivenom ratios of 5:1 and 5:2 (PLA 2 and esterase activities) or not significantly by either venom:antivenom ratio (proteolytic activity). The minimum hemorrhagic dose (69.2μg) was totally neutralized by both ratios. Clotting time in rat citrated plasma was 33±10.5s (mean±SD; n=5) and was completely neutralized by a 5:2 ratio. Edema formation was dose-dependent (1-30μg/site) and significantly inhibited by both ratios. Venom (10-300μg/mL) caused neuromuscular blockade in extensor digitorum longus preparations; this blockade was inhibited best by a 5:2 ratio. Venom caused myonecrosis and creatine kinase release in vivo (gastrocnemius muscle) and in vitro (extensor digitorum longus) that was effectively neutralized by both venom:antivenom ratios. Immunoblotting showed that venom components of ~25-100kDa interacted with CAv. SE-HPLC profiles for venom incubated with CAv or specific anti-B. fonsecai antivenom raised in rabbits (SAv) indicated that CAv had a higher binding capacity than SAv, whereas SAv had higher affinity than CAv. These findings indicate that B. fonsecai venom contains various activities that are neutralized to different extents by CAv and suggest that CAv could be used to treat envenoming by B. fonsecai. Copyright © 2016. Published by Elsevier Inc.

  5. Kinins in ant venoms--a comparison with venoms of related Hymenoptera

    NARCIS (Netherlands)

    Piek, T.; Schmidt, J. O.; de Jong, J. M.; Mantel, P.

    1989-01-01

    1. Venom preparations have been made of six ant, one pompilid wasp, two mutillid wasp, and four social wasp species. 2. The venoms were analysed pharmacologically in order to detect kinin-like activity. 3. Due to the small amounts of venoms available only a cascade of smooth muscle preparation could

  6. Hemostatic properties of Venezuelan Bothrops snake venoms with special reference to Bothrops isabelae venom.

    Science.gov (United States)

    Rodríguez-Acosta, Alexis; Sánchez, Elda E; Márquez, Adriana; Carvajal, Zoila; Salazar, Ana M; Girón, María E; Estrella, Amalid; Gil, Amparo; Guerrero, Belsy

    2010-11-01

    In Venezuela, Bothrops snakes are responsible for more than 80% of all recorded snakebites. This study focuses on the biological and hemostatic characteristics of Bothrops isabelae venom along with its comparative characteristics with two other closely related Bothrops venoms, Bothrops atrox and Bothrops colombiensis. Electrophoretic profiles of crude B. isabelae venom showed protein bands between 14 and 100 kDa with the majority in the range of 14-31 kDa. The molecular exclusion chromatographic profile of this venom contains five fractions (F1-F5). Amidolytic activity evaluation evidenced strong thrombin-like followed by kallikrein-like activities in crude venom and in fractions F1 and F2. The fibrinogenolytic activity of B. isabelae venom at a ratio of 100:1 (fibrinogen/venom) induced a degradation of A alpha and B beta chains at 15 min and 2 h, respectively. At a ratio of 100:10, a total degradation of A alpha and B beta chains at 5 min and of gamma chains at 24 h was apparent. This current study evidences one of rarely reported for Bothrops venoms, which resembles the physiologic effect of plasmin. B. isabelae venom as well as F2 and F3 fractions, contain fibrinolytic activity on fibrin plate of 36, 23.5 and 9.45 mm(2)/microg, respectively using 25 microg of protein. Crude venom and F1 fraction showed gelatinolytic activity. Comparative analysis amongst Venezuelan bothropoid venoms, evidenced that the LD(50) of B. isabelae (5.9 mg/kg) was similar to B. atrox-Puerto Ayacucho 1 (6.1 mg/kg) and B. colombiensis-Caucagua (5.8 mg/kg). B. isabelae venom showed minor hemorrhagic activity, whereas B. atrox-Parguasa (Bolivar state) was the most hemorrhagic. In this study, a relative high thrombin-like activity was observed in B. colombiensis venoms (502-568 mUA/min/mg), and a relative high factor Xa-like activity was found in B. atrox venoms (126-294 mUA/min/mg). Fibrinolytic activity evaluated with 10 microg protein, showed that B. isabelae venom contained higher

  7. The pro-coagulant fibrinogenolytic serine protease isoenzymes purified from Daboia russelii russelii venom coagulate the blood through factor V activation: role of glycosylation on enzymatic activity.

    Directory of Open Access Journals (Sweden)

    Ashis K Mukherjee

    Full Text Available Proteases from Russell's viper venom (RVV induce a variety of toxic effects in victim. Therefore, four new RVV protease isoenzymes of molecular mass 32901.044 Da, 333631.179 Da, 333571.472 Da, and 34594.776 Da, were characterized in this study. The first 10 N-terminal residues of these serine protease isoenzymes showed significant sequence homology with N-terminal sequences of snake venom thrombin-like and factor V-activating serine proteases, which was reconfirmed by peptide mass fingerprinting analysis. These proteases were found to be different from previously reported factor V activators isolated from snake venoms. These proteases showed significantly different fibrinogenolytic, BAEE-esterase and plasma clotting activities but no fibrinolytic, TAME-esterase or amidolytic activity against the chromogenic substrate for trypsin, thrombin, plasmin and factor Xa. Their Km and Vmax values towards fibrinogen were determined in the range of 6.6 to 10.5 µM and 111.0 to 125.5 units/mg protein, respectively. On the basis of fibrinogen degradation pattern, they may be classified as A/B serine proteases isolated from snake venom. These proteases contain ∼ 42% to 44% of N-linked carbohydrates by mass whereas partially deglycosylated enzymes showed significantly less catalytic activity as compared to native enzymes. In vitro these protease isoenzymes induce blood coagulation through factor V activation, whereas in vivo they provoke dose-dependent defibrinogenation and anticoagulant activity in the mouse model. At a dose of 5 mg/kg, none of these protease isoenzymes were found to be lethal in mice or house geckos, suggesting therapeutic application of these anticoagulant peptides for the prevention of thrombosis.

  8. Immunology of Bee Venom.

    Science.gov (United States)

    Elieh Ali Komi, Daniel; Shafaghat, Farzaneh; Zwiener, Ricardo D

    2017-01-20

    Bee venom is a blend of biochemicals ranging from small peptides and enzymes to biogenic amines. It is capable of triggering severe immunologic reactions owing to its allergenic fraction. Venom components are presented to the T cells by antigen-presenting cells within the skin. These Th2 type T cells then release IL-4 and IL-13 which subsequently direct B cells to class switch to production of IgE. Generating venom-specific IgE and crosslinking FcεR1(s) on the surface of mast cells complete the sensitizing stage in allergic individuals who are most likely to experience severe and even fatal allergic reactions after being stung. Specific IgE for bee venom is a double-edged sword as it is a powerful mediator in triggering allergic events but is also applied successfully in diagnosis of the venom allergic patient. The healing capacity of bee venom has been rediscovered under laboratory-controlled conditions using animal models and cell cultures. The potential role of enzymatic fraction of bee venom including phospholipase A2 in the initiation and development of immune responses also has been studied in numerous research settings. Undoubtedly, having insights into immunologic interactions between bee venom components and innate/specific immune cells both locally and systematically will contribute to the development of immunologic strategies in specific and epitope-based immunotherapy especially in individuals with Hymenoptera venom allergy.

  9. Venom-gland transcriptome and venom proteome of the Malaysian king cobra (Ophiophagus hannah).

    Science.gov (United States)

    Tan, Choo Hock; Tan, Kae Yi; Fung, Shin Yee; Tan, Nget Hong

    2015-09-10

    The king cobra (Ophiophagus hannah) is widely distributed throughout many parts of Asia. This study aims to investigate the complexity of Malaysian Ophiophagus hannah (MOh) venom for a better understanding of king cobra venom variation and its envenoming pathophysiology. The venom gland transcriptome was investigated using the Illumina HiSeq™ platform, while the venom proteome was profiled by 1D-SDS-PAGE-nano-ESI-LCMS/MS. Transcriptomic results reveal high redundancy of toxin transcripts (3357.36 FPKM/transcript) despite small cluster numbers, implying gene duplication and diversification within restricted protein families. Among the 23 toxin families identified, three-finger toxins (3FTxs) and snake-venom metalloproteases (SVMPs) have the most diverse isoforms. These 2 toxin families are also the most abundantly transcribed, followed in descending order by phospholipases A2 (PLA2s), cysteine-rich secretory proteins (CRISPs), Kunitz-type inhibitors (KUNs), and L-amino acid oxidases (LAAOs). Seventeen toxin families exhibited low mRNA expression, including hyaluronidase, DPP-IV and 5'-nucleotidase that were not previously reported in the venom-gland transcriptome of a Balinese O. hannah. On the other hand, the MOh proteome includes 3FTxs, the most abundantly expressed proteins in the venom (43 % toxin sbundance). Within this toxin family, there are 6 long-chain, 5 short-chain and 2 non-conventional 3FTx. Neurotoxins comprise the major 3FTxs in the MOh venom, consistent with rapid neuromuscular paralysis reported in systemic envenoming. The presence of toxic enzymes such as LAAOs, SVMPs and PLA2 would explain tissue inflammation and necrotising destruction in local envenoming. Dissimilarities in the subtypes and sequences between the neurotoxins of MOh and Naja kaouthia (monocled cobra) are in agreement with the poor cross-neutralization activity of N. kaouthia antivenom used against MOh venom. Besides, the presence of cobra venom factor, nerve growth factors

  10. Black Bear Reactions to Venomous and Non-venomous Snakes in Eastern North America

    Science.gov (United States)

    Rogers, Lynn L; Mansfield, Susan A; Hornby, Kathleen; Hornby, Stewart; Debruyn, Terry D; Mize, Malvin; Clark, Rulon; Burghardt, Gordon M

    2014-01-01

    Bears are often considered ecological equivalents of large primates, but the latter often respond with fear, avoidance, and alarm calls to snakes, both venomous and non-venomous, there is sparse information on how bears respond to snakes. We videotaped or directly observed natural encounters between black bears (Ursus americanus) and snakes. Inside the range of venomous snakes in Arkansas and West Virginia, adolescent and adult black bears reacted fearfully in seven of seven encounters upon becoming aware of venomous and non-venomous snakes; but in northern Michigan and Minnesota where venomous snakes have been absent for millennia, black bears showed little or no fear in four encounters with non-venomous snakes of three species. The possible roles of experience and evolution in bear reactions to snakes and vice versa are discussed. In all areas studied, black bears had difficulty to recognize non-moving snakes by smell or sight. Bears did not react until snakes moved in 11 of 12 encounters with non-moving timber rattlesnakes (Crotalus horridus) and four species of harmless snakes. However, in additional tests in this study, bears were repulsed by garter snakes that had excreted pungent anal exudates, which may help explain the absence of snakes, both venomous and harmless, in bear diets reported to date. PMID:25635152

  11. Venom evolution widespread in fishes: a phylogenetic road map for the bioprospecting of piscine venoms.

    Science.gov (United States)

    Smith, William Leo; Wheeler, Ward C

    2006-01-01

    Knowledge of evolutionary relationships or phylogeny allows for effective predictions about the unstudied characteristics of species. These include the presence and biological activity of an organism's venoms. To date, most venom bioprospecting has focused on snakes, resulting in six stroke and cancer treatment drugs that are nearing U.S. Food and Drug Administration review. Fishes, however, with thousands of venoms, represent an untapped resource of natural products. The first step involved in the efficient bioprospecting of these compounds is a phylogeny of venomous fishes. Here, we show the results of such an analysis and provide the first explicit suborder-level phylogeny for spiny-rayed fishes. The results, based on approximately 1.1 million aligned base pairs, suggest that, in contrast to previous estimates of 200 venomous fishes, >1,200 fishes in 12 clades should be presumed venomous. This assertion was corroborated by a detailed anatomical study examining potentially venomous structures in >100 species. The results of these studies not only alter our view of the diversity of venomous fishes, now representing >50% of venomous vertebrates, but also provide the predictive phylogeny or "road map" for the efficient search for potential pharmacological agents or physiological tools from the unexplored fish venoms.

  12. Snake venoms are integrated systems, but abundant venom proteins evolve more rapidly.

    Science.gov (United States)

    Aird, Steven D; Aggarwal, Shikha; Villar-Briones, Alejandro; Tin, Mandy Man-Ying; Terada, Kouki; Mikheyev, Alexander S

    2015-08-28

    While many studies have shown that extracellular proteins evolve rapidly, how selection acts on them remains poorly understood. We used snake venoms to understand the interaction between ecology, expression level, and evolutionary rate in secreted protein systems. Venomous snakes employ well-integrated systems of proteins and organic constituents to immobilize prey. Venoms are generally optimized to subdue preferred prey more effectively than non-prey, and many venom protein families manifest positive selection and rapid gene family diversification. Although previous studies have illuminated how individual venom protein families evolve, how selection acts on venoms as integrated systems, is unknown. Using next-generation transcriptome sequencing and mass spectrometry, we examined microevolution in two pitvipers, allopatrically separated for at least 1.6 million years, and their hybrids. Transcriptomes of parental species had generally similar compositions in regard to protein families, but for a given protein family, the homologs present and concentrations thereof sometimes differed dramatically. For instance, a phospholipase A2 transcript comprising 73.4 % of the Protobothrops elegans transcriptome, was barely present in the P. flavoviridis transcriptome (king cobra genome, suggesting that rapid evolution of abundant proteins may be generally true for snake venoms. Looking more broadly at Protobothrops, we show that rapid evolution of the most abundant components is due to positive selection, suggesting an interplay between abundance and adaptation. Given log-scale differences in toxin abundance, which are likely correlated with biosynthetic costs, we hypothesize that as a result of natural selection, snakes optimize return on energetic investment by producing more of venom proteins that increase their fitness. Natural selection then acts on the additive genetic variance of these components, in proportion to their contributions to overall fitness. Adaptive

  13. High-resolution proteomic profiling of spider venom: expanding the toxin diversity of Phoneutria nigriventer venom.

    Science.gov (United States)

    Liberato, Tarcísio; Troncone, Lanfranco Ranieri Paolo; Yamashiro, Edson T; Serrano, Solange M T; Zelanis, André

    2016-03-01

    Here we present a proteomic characterization of Phoneutria nigriventer venom. A shotgun proteomic approach allowed the identification, for the first time, of O-glycosyl hydrolases (chitinases) in P. nigriventer venom. The electrophoretic profiles under nonreducing and reducing conditions, and protein identification by mass spectrometry, indicated the presence of oligomeric toxin structures in the venom. Complementary proteomic approaches allowed for a qualitative and semi-quantitative profiling of P. nigriventer venom complexity, expanding its known venom proteome diversity.

  14. Polymerized soluble venom--human serum albumin

    International Nuclear Information System (INIS)

    Patterson, R.; Suszko, I.M.; Grammer, L.C.

    1985-01-01

    Extensive previous studies have demonstrated that attempts to produce polymers of Hymenoptera venoms for human immunotherapy resulted in insoluble precipitates that could be injected with safety but with very limited immunogenicity in allergic patients. We now report soluble polymers prepared by conjugating bee venom with human serum albumin with glutaraldehyde. The bee venom-albumin polymer (BVAP) preparation was fractionated on Sephacryl S-300 to have a molecular weight range higher than catalase. 125 I-labeled bee venom phospholipase A was almost completely incorporated into BVAP. Rabbit antibody responses to bee venom and bee venom phospholipase A were induced by BVAP. Human antisera against bee venom were absorbed by BVAP. No new antigenic determinants on BVAP were present as evidenced by absorption of antisera against BVAP by bee venom and albumin. BVAP has potential immunotherapeutic value in patients with anaphylactic sensitivity to bee venom

  15. Full-Length Venom Protein cDNA Sequences from Venom-Derived mRNA: Exploring Compositional Variation and Adaptive Multigene Evolution.

    Science.gov (United States)

    Modahl, Cassandra M; Mackessy, Stephen P

    2016-06-01

    Envenomation of humans by snakes is a complex and continuously evolving medical emergency, and treatment is made that much more difficult by the diverse biochemical composition of many venoms. Venomous snakes and their venoms also provide models for the study of molecular evolutionary processes leading to adaptation and genotype-phenotype relationships. To compare venom complexity and protein sequences, venom gland transcriptomes are assembled, which usually requires the sacrifice of snakes for tissue. However, toxin transcripts are also present in venoms, offering the possibility of obtaining cDNA sequences directly from venom. This study provides evidence that unknown full-length venom protein transcripts can be obtained from the venoms of multiple species from all major venomous snake families. These unknown venom protein cDNAs are obtained by the use of primers designed from conserved signal peptide sequences within each venom protein superfamily. This technique was used to assemble a partial venom gland transcriptome for the Middle American Rattlesnake (Crotalus simus tzabcan) by amplifying sequences for phospholipases A2, serine proteases, C-lectins, and metalloproteinases from within venom. Phospholipase A2 sequences were also recovered from the venoms of several rattlesnakes and an elapid snake (Pseudechis porphyriacus), and three-finger toxin sequences were recovered from multiple rear-fanged snake species, demonstrating that the three major clades of advanced snakes (Elapidae, Viperidae, Colubridae) have stable mRNA present in their venoms. These cDNA sequences from venom were then used to explore potential activities derived from protein sequence similarities and evolutionary histories within these large multigene superfamilies. Venom-derived sequences can also be used to aid in characterizing venoms that lack proteomic profiles and identify sequence characteristics indicating specific envenomation profiles. This approach, requiring only venom, provides

  16. Hemostatic interference of Indian king cobra (Ophiophagus hannah) Venom. Comparison with three other snake venoms of the subcontinent.

    Science.gov (United States)

    Gowtham, Yashonandana J; Kumar, M S; Girish, K S; Kemparaju, K

    2012-06-01

    Unlike Naja naja, Bungarus caeruleus, Echis carinatus, and Daboia/Vipera russellii venoms, Ophiophagus hannah venom is medically ignored in the Indian subcontinent. Being the biggest poisonous snake, O. hannah has been presumed to inject several lethal doses of venom in a single bite. Lack of therapeutic antivenom to O. hannah bite in India makes any attempt to save the victim a difficult exercise. This study was initiated to compare O. hannah venom with the above said venoms for possible interference in hemostasis. Ophiophagus hannah venom was found to actively interfere in hemostatic stages such as fibrin clot formation, platelet activation/aggregation, and fibrin clot dissolution. It decreased partial thromboplastin time (aPTT), prothrombin time (PT), and thrombin clotting time (TCT). These activities are similar to that shown by E. carinatus and D. russellii venoms, and thus O. hannah venom was found to exert procoagulant activity through the common pathway of blood coagulation, while N. naja venom increased aPTT and TCT but not PT, and hence it was found to exert anticoagulant activity through the intrinsic pathway. Venoms of O. hannah, E. carinatus, and D. russellii lack plasminogen activation property as they do not hydrolyze azocasein, while they all show plasmin-like activity by degrading the fibrin clot. Although N. naja venom did not degrade azocasein, unlike other venoms, it showed feeble plasmin-like activity on fibrin clot. Venom of E. carinatus induced clotting of human platelet rich plasma (PRP), while the other three venoms interfered in agonist-induced platelet aggregation in PRP. Venom of O. hannah least inhibited the ADP induced platelet aggregation as compared to D. russellii and N. naja venoms. All these three venoms showed complete inhibition of epinephrine-induced aggregation at varied doses. However, O. hannah venom was unique in inhibiting thrombin induced aggregation.

  17. Polymerized soluble venom--human serum albumin

    Energy Technology Data Exchange (ETDEWEB)

    Patterson, R.; Suszko, I.M.; Grammer, L.C.

    1985-03-01

    Extensive previous studies have demonstrated that attempts to produce polymers of Hymenoptera venoms for human immunotherapy resulted in insoluble precipitates that could be injected with safety but with very limited immunogenicity in allergic patients. We now report soluble polymers prepared by conjugating bee venom with human serum albumin with glutaraldehyde. The bee venom-albumin polymer (BVAP) preparation was fractionated on Sephacryl S-300 to have a molecular weight range higher than catalase. /sup 125/I-labeled bee venom phospholipase A was almost completely incorporated into BVAP. Rabbit antibody responses to bee venom and bee venom phospholipase A were induced by BVAP. Human antisera against bee venom were absorbed by BVAP. No new antigenic determinants on BVAP were present as evidenced by absorption of antisera against BVAP by bee venom and albumin. BVAP has potential immunotherapeutic value in patients with anaphylactic sensitivity to bee venom.

  18. Experimental Study on the comparison of antibacterial and antioxidant effects between the Bee Venom and Sweet Bee Venom

    Directory of Open Access Journals (Sweden)

    Joong chul An

    2006-12-01

    Full Text Available Objectives : This study was conducted to compare antibacterial activities and free radical scavenging activity between the Bee Venom and Sweet Bee Venom in which the allergy-causing enzyme is removed. Methods : To evaluate antibacterial activities of the test samples, gram negative E. coli and gram positive St. aureus were compared using the paper disc method. For comparison of the antioxidant effects, DPPH (1,1-diphenyl-2-picrylhydrazyl free radical scavenging assay and Thiobarbituric Acid Reactive Substances (TBARS assay were conducted. Results : 1. Antibacterial activity against gram negative E. coli was greater in the Sweet Bee Venom group than the Bee Venom group. 2. Antibacterial activity against gram positive St. aureus was similar between the Bee Venom and Sweet Bee Venom groups. 3. DPPH free radical scavenging activity of the Bee Venom group showed 2.8 times stronger than that of the Sweet Bee Venom group. 4. Inhibition of lipid peroxidation of the Bee Venom group showed 782 times greater than that of the Sweet Bee Venom group. Conclusions : The Bee Venom group showed outstanding antibacterial activity against gram positive St. aureus, and allergen-removed Sweet Bee Venom group showed outstanding antibacterial activity against both gram negative E. coli and gram positive St. aureus. For antioxidant effects, the Bee Venom was superior over the Sweet Bee Venom and the superiority was far more apparent for lipid peroxidation.

  19. Combined Venom Gland Transcriptomic and Venom Peptidomic Analysis of the Predatory Ant Odontomachus monticola

    Directory of Open Access Journals (Sweden)

    Kohei Kazuma

    2017-10-01

    Full Text Available Ants (hymenoptera: Formicidae have adapted to many different environments and have become some of the most prolific and successful insects. To date, 13,258 ant species have been reported. They have been classified into 333 genera and 17 subfamilies. Except for a few Formicinae, Dolichoderinae, and members of other subfamilies, most ant species have a sting with venom. The venoms are composed of formic acid, alkaloids, hydrocarbons, amines, peptides, and proteins. Unlike the venoms of other animals such as snakes and spiders, ant venoms have seldom been analyzed comprehensively, and their compositions are not yet completely known. In this study, we used both transcriptomic and peptidomic analyses to study the composition of the venom produced by the predatory ant species Odontomachus monticola. The transcriptome analysis yielded 49,639 contigs, of which 92 encoded toxin-like peptides and proteins with 18,106,338 mapped reads. We identified six pilosulin-like peptides by transcriptomic analysis in the venom gland. Further, we found intact pilosulin-like peptide 1 and truncated pilosulin-like peptides 2 and 3 by peptidomic analysis in the venom. Our findings related to ant venom peptides and proteins may lead the way towards development and application of novel pharmaceutical and biopesticidal resources.

  20. Venom Evolution

    Indian Academy of Sciences (India)

    IAS Admin

    Therefore, the platypus sequence was studied to quantify the role of gene duplication in the evolution of venom. ... Platypus venom is present only in males and is used for asserting dominance over com- petitors during the ... Certain toxin gene families are known to re- peatedly evolve through gene duplications. The rapidly ...

  1. Coralsnake Venomics: Analyses of Venom Gland Transcriptomes and Proteomes of Six Brazilian Taxa.

    Science.gov (United States)

    Aird, Steven D; da Silva, Nelson Jorge; Qiu, Lijun; Villar-Briones, Alejandro; Saddi, Vera Aparecida; Pires de Campos Telles, Mariana; Grau, Miguel L; Mikheyev, Alexander S

    2017-06-08

    Venom gland transcriptomes and proteomes of six Micrurus taxa ( M. corallinus , M. lemniscatus carvalhoi , M. lemniscatus lemniscatus , M. paraensis , M. spixii spixii , and M. surinamensis ) were investigated, providing the most comprehensive, quantitative data on Micrurus venom composition to date, and more than tripling the number of Micrurus venom protein sequences previously available. The six venomes differ dramatically. All are dominated by 2-6 toxin classes that account for 91-99% of the toxin transcripts. The M. s. spixii venome is compositionally the simplest. In it, three-finger toxins (3FTxs) and phospholipases A₂ (PLA₂s) comprise >99% of the toxin transcripts, which include only four additional toxin families at levels ≥0.1%. Micrurus l. lemniscatus venom is the most complex, with at least 17 toxin families. However, in each venome, multiple structural subclasses of 3FTXs and PLA₂s are present. These almost certainly differ in pharmacology as well. All venoms also contain phospholipase B and vascular endothelial growth factors. Minor components (0.1-2.0%) are found in all venoms except that of M. s. spixii . Other toxin families are present in all six venoms at trace levels (venom components differ in each venom. Numerous novel toxin chemistries include 3FTxs with previously unknown 8- and 10-cysteine arrangements, resulting in new 3D structures and target specificities. 9-cysteine toxins raise the possibility of covalent, homodimeric 3FTxs or heterodimeric toxins with unknown pharmacologies. Probable muscarinic sequences may be reptile-specific homologs that promote hypotension via vascular mAChRs. The first complete sequences are presented for 3FTxs putatively responsible for liberating glutamate from rat brain synaptosomes. Micrurus C-type lectin-like proteins may have 6-9 cysteine residues and may be monomers, or homo- or heterodimers of unknown pharmacology. Novel KSPIs, 3× longer than any seen previously, appear to have arisen in three

  2. Immunoreactivity between venoms and commercial antiserums in four Chinese snakes and venom identification by species-specific antibody.

    Science.gov (United States)

    Gao, Jian-Fang; Wang, Jin; Qu, Yan-Fu; Ma, Xiao-Mei; Ji, Xiang

    2013-01-31

    We studied the immunoreactivity between venoms and commercial antiserums in four Chinese venomous snakes, Bungarus multicinctus, Naja atra, Deinagkistrodon acutus and Gloydius brevicaudus. Venoms from the four snakes shared common antigenic components, and most venom components expressed antigenicity in the immunological reaction between venoms and antiserums. Antiserums cross-reacted with heterologous venoms. Homologous venom and antiserum expressed the highest reaction activity in all cross-reactions. Species-specific antibodies (SSAbs) were obtained from four antiserums by immunoaffinity chromatography: the whole antiserum against each species was gradually passed through a medium system coated with heterologous venoms, and the cross-reacting components in antiserum were immunoabsorbed by the common antigens in heterologous venoms; the unbound components (i.e., SSAbs) were collected, and passed through Hitrap G protein column and concentrated. The SSAbs were found to have high specificity by western blot and enzyme-linked immunosorbent assay (ELISA). A 6-well ELISA strip coated with SSAbs was used to assign a venom sample and blood and urine samples from the envenomed rats to a given snake species. Our detections could differentiate positive and negative samples, and identify venoms of a snake species in about 35 min. The ELISA strips developed in this study are clinically useful in rapid and reliable identification of venoms from the above four snake species. Copyright © 2012 Elsevier B.V. All rights reserved.

  3. The VIMOS Public Extragalactic Redshift Survey (VIPERS). Full spectroscopic data and auxiliary information release (PDR-2)

    Science.gov (United States)

    Scodeggio, M.; Guzzo, L.; Garilli, B.; Granett, B. R.; Bolzonella, M.; de la Torre, S.; Abbas, U.; Adami, C.; Arnouts, S.; Bottini, D.; Cappi, A.; Coupon, J.; Cucciati, O.; Davidzon, I.; Franzetti, P.; Fritz, A.; Iovino, A.; Krywult, J.; Le Brun, V.; Le Fèvre, O.; Maccagni, D.; Małek, K.; Marchetti, A.; Marulli, F.; Polletta, M.; Pollo, A.; Tasca, L. A. M.; Tojeiro, R.; Vergani, D.; Zanichelli, A.; Bel, J.; Branchini, E.; De Lucia, G.; Ilbert, O.; McCracken, H. J.; Moutard, T.; Peacock, J. A.; Zamorani, G.; Burden, A.; Fumana, M.; Jullo, E.; Marinoni, C.; Mellier, Y.; Moscardini, L.; Percival, W. J.

    2018-01-01

    We present the full public data release (PDR-2) of the VIMOS Public Extragalactic Redshift Survey (VIPERS), performed at the ESO VLT. We release redshifts, spectra, CFHTLS magnitudes and ancillary information (as masks and weights) for a complete sample of 86 775 galaxies (plus 4732 other objects, including stars and serendipitous galaxies); we also include their full photometrically-selected parent catalogue. The sample is magnitude limited to iAB ≤ 22.5, with an additional colour-colour pre-selection devised as to exclude galaxies at z automated pipeline; all redshift determinations were then visually validated and assigned a quality flag. Measurements with a quality flag ≥ 2 are shown to have a confidence level of 96% or larger and make up 88% of all measured galaxy redshifts (76 552 out of 86 775), constituting the VIPERS prime catalogue for statistical investigations. For this sample the rms redshift error, estimated using repeated measurements of about 3000 galaxies, is found to be σz = 0.00054(1 + z). All data are available at http://vipers.inaf.it and on the ESO Archive. Based on observations collected at the European Southern Observatory, Cerro Paranal, Chile, using the Very Large Telescope under programmes 182.A-0886 and partly 070.A-9007. Also based on observations obtained with MegaPrime/MegaCam, a joint project of CFHT and CEA/DAPNIA, at the Canada-France-Hawaii Telescope (CFHT), which is operated by the National Research Council (NRC) of Canada, the Institut National des Sciences de l'Univers of the Centre National de la Recherche Scientifique (CNRS) of France, and the University of Hawaii. This work is based in part on data products produced at TERAPIX and the Canadian Astronomy Data Centre as part of the Canada-France-Hawaii Telescope Legacy Survey, a collaborative project of NRC and CNRS. The VIPERS web site is http://www.vipers.inaf.it/

  4. Population Pharmacokinetics of an Indian F(ab')2 Snake Antivenom in Patients with Russell's Viper (Daboia russelii) Bites

    OpenAIRE

    Isbister, Geoffrey K.; Maduwage, Kalana; Saiao, Ana; Buckley, Nicholas A.; Jayamanne, Shaluka F.; Seyed, Shahmy; Mohamed, Fahim; Chathuranga, Umesh; Alexandre, Mendes; Abeysinghe, Chandana; Karunathilake, Harinda; Gawarammana, Indika; Lalloo, David; Janaka de Silva, H.

    2015-01-01

    Background\\ud \\ud There is limited information on antivenom pharmacokinetics. This study aimed to investigate the pharmacokinetics of an Indian snake antivenom in humans with Russell’s viper bites.\\ud \\ud Methods/Principal Findings\\ud \\ud Patient data and serial blood samples were collected from patients with Russell’s viper (Daboia russelii) envenoming in Sri Lanka. All patients received Indian F(ab’)2 snake antivenom manufactured by VINS Bioproducts Ltd. Antivenom concentrations were measur...

  5. Pharmacokinetics of Snake Venom

    Directory of Open Access Journals (Sweden)

    Suchaya Sanhajariya

    2018-02-01

    Full Text Available Understanding snake venom pharmacokinetics is essential for developing risk assessment strategies and determining the optimal dose and timing of antivenom required to bind all venom in snakebite patients. This review aims to explore the current knowledge of snake venom pharmacokinetics in animals and humans. Literature searches were conducted using EMBASE (1974–present and Medline (1946–present. For animals, 12 out of 520 initially identified studies met the inclusion criteria. In general, the disposition of snake venom was described by a two-compartment model consisting of a rapid distribution phase and a slow elimination phase, with half-lives of 5 to 48 min and 0.8 to 28 h, respectively, following rapid intravenous injection of the venoms or toxins. When the venoms or toxins were administered intramuscularly or subcutaneously, an initial absorption phase and slow elimination phase were observed. The bioavailability of venoms or toxins ranged from 4 to 81.5% following intramuscular administration and 60% following subcutaneous administration. The volume of distribution and the clearance varied between snake species. For humans, 24 out of 666 initially identified publications contained sufficient information and timed venom concentrations in the absence of antivenom therapy for data extraction. The data were extracted and modelled in NONMEM. A one-compartment model provided the best fit, with an elimination half-life of 9.71 ± 1.29 h. It is intended that the quantitative information provided in this review will provide a useful basis for future studies that address the pharmacokinetics of snakebite in humans.

  6. Vintage venoms: proteomic and pharmacological stability of snake venoms stored for up to eight decades.

    Science.gov (United States)

    Jesupret, Clémence; Baumann, Kate; Jackson, Timothy N W; Ali, Syed Abid; Yang, Daryl C; Greisman, Laura; Kern, Larissa; Steuten, Jessica; Jouiaei, Mahdokht; Casewell, Nicholas R; Undheim, Eivind A B; Koludarov, Ivan; Debono, Jordan; Low, Dolyce H W; Rossi, Sarah; Panagides, Nadya; Winter, Kelly; Ignjatovic, Vera; Summerhayes, Robyn; Jones, Alun; Nouwens, Amanda; Dunstan, Nathan; Hodgson, Wayne C; Winkel, Kenneth D; Monagle, Paul; Fry, Bryan Grieg

    2014-06-13

    For over a century, venom samples from wild snakes have been collected and stored around the world. However, the quality of storage conditions for "vintage" venoms has rarely been assessed. The goal of this study was to determine whether such historical venom samples are still biochemically and pharmacologically viable for research purposes, or if new sample efforts are needed. In total, 52 samples spanning 5 genera and 13 species with regional variants of some species (e.g., 14 different populations of Notechis scutatus) were analysed by a combined proteomic and pharmacological approach to determine protein structural stability and bioactivity. When venoms were not exposed to air during storage, the proteomic results were virtually indistinguishable from that of fresh venom and bioactivity was equivalent or only slightly reduced. By contrast, a sample of Acanthophis antarcticus venom that was exposed to air (due to a loss of integrity of the rubber stopper) suffered significant degradation as evidenced by the proteomics profile. Interestingly, the neurotoxicity of this sample was nearly the same as fresh venom, indicating that degradation may have occurred in the free N- or C-terminus chains of the proteins, rather than at the tips of loops where the functional residues are located. These results suggest that these and other vintage venom collections may be of continuing value in toxin research. This is particularly important as many snake species worldwide are declining due to habitat destruction or modification. For some venoms (such as N. scutatus from Babel Island, Flinders Island, King Island and St. Francis Island) these were the first analyses ever conducted and these vintage samples may represent the only venom ever collected from these unique island forms of tiger snakes. Such vintage venoms may therefore represent the last remaining stocks of some local populations and thus are precious resources. These venoms also have significant historical value as

  7. The venom-gland transcriptome of the eastern coral snake (Micrurus fulvius) reveals high venom complexity in the intragenomic evolution of venoms

    Science.gov (United States)

    2013-01-01

    Background Snake venom is shaped by the ecology and evolution of venomous species, and signals of positive selection in toxins have been consistently documented, reflecting the role of venoms as an ecologically critical phenotype. New World coral snakes (Elapidae) are represented by three genera and over 120 species and subspecies that are capable of causing significant human morbidity and mortality, yet coral-snake venom composition is poorly understood in comparison to that of Old World elapids. High-throughput sequencing is capable of identifying thousands of loci, while providing characterizations of expression patterns and the molecular evolutionary forces acting within the venom gland. Results We describe the de novo assembly and analysis of the venom-gland transcriptome of the eastern coral snake (Micrurus fulvius). We identified 1,950 nontoxin transcripts and 116 toxin transcripts. These transcripts accounted for 57.1% of the total reads, with toxins accounting for 45.8% of the total reads. Phospholipases A2 and three-finger toxins dominated expression, accounting for 86.0% of the toxin reads. A total of 15 toxin families were identified, revealing venom complexity previously unknown from New World coral snakes. Toxins exhibited high levels of heterozygosity relative to nontoxins, and overdominance may favor gene duplication leading to the fixation of advantageous alleles. Phospholipase A2 expression was uniformly distributed throughout the class while three-finger toxin expression was dominated by a handful of transcripts, and phylogenetic analyses indicate that toxin divergence may have occurred following speciation. Positive selection was detected in three of the four most diverse toxin classes, suggesting that venom diversification is driven by recurrent directional selection. Conclusions We describe the most complete characterization of an elapid venom gland to date. Toxin gene duplication may be driven by heterozygote advantage, as the frequency of

  8. The venom-gland transcriptome of the eastern coral snake (Micrurus fulvius) reveals high venom complexity in the intragenomic evolution of venoms.

    Science.gov (United States)

    Margres, Mark J; Aronow, Karalyn; Loyacano, Jacob; Rokyta, Darin R

    2013-08-02

    Snake venom is shaped by the ecology and evolution of venomous species, and signals of positive selection in toxins have been consistently documented, reflecting the role of venoms as an ecologically critical phenotype. New World coral snakes (Elapidae) are represented by three genera and over 120 species and subspecies that are capable of causing significant human morbidity and mortality, yet coral-snake venom composition is poorly understood in comparison to that of Old World elapids. High-throughput sequencing is capable of identifying thousands of loci, while providing characterizations of expression patterns and the molecular evolutionary forces acting within the venom gland. We describe the de novo assembly and analysis of the venom-gland transcriptome of the eastern coral snake (Micrurus fulvius). We identified 1,950 nontoxin transcripts and 116 toxin transcripts. These transcripts accounted for 57.1% of the total reads, with toxins accounting for 45.8% of the total reads. Phospholipases A(2) and three-finger toxins dominated expression, accounting for 86.0% of the toxin reads. A total of 15 toxin families were identified, revealing venom complexity previously unknown from New World coral snakes. Toxins exhibited high levels of heterozygosity relative to nontoxins, and overdominance may favor gene duplication leading to the fixation of advantageous alleles. Phospholipase A(2) expression was uniformly distributed throughout the class while three-finger toxin expression was dominated by a handful of transcripts, and phylogenetic analyses indicate that toxin divergence may have occurred following speciation. Positive selection was detected in three of the four most diverse toxin classes, suggesting that venom diversification is driven by recurrent directional selection. We describe the most complete characterization of an elapid venom gland to date. Toxin gene duplication may be driven by heterozygote advantage, as the frequency of polymorphic toxin loci was

  9. Coralsnake Venomics: Analyses of Venom Gland Transcriptomes and Proteomes of Six Brazilian Taxa

    Directory of Open Access Journals (Sweden)

    Steven D. Aird

    2017-06-01

    Full Text Available Venom gland transcriptomes and proteomes of six Micrurus taxa (M. corallinus, M. lemniscatus carvalhoi, M. lemniscatus lemniscatus, M. paraensis, M. spixii spixii, and M. surinamensis were investigated, providing the most comprehensive, quantitative data on Micrurus venom composition to date, and more than tripling the number of Micrurus venom protein sequences previously available. The six venomes differ dramatically. All are dominated by 2–6 toxin classes that account for 91–99% of the toxin transcripts. The M. s. spixii venome is compositionally the simplest. In it, three-finger toxins (3FTxs and phospholipases A2 (PLA2s comprise >99% of the toxin transcripts, which include only four additional toxin families at levels ≥0.1%. Micrurus l. lemniscatus venom is the most complex, with at least 17 toxin families. However, in each venome, multiple structural subclasses of 3FTXs and PLA2s are present. These almost certainly differ in pharmacology as well. All venoms also contain phospholipase B and vascular endothelial growth factors. Minor components (0.1–2.0% are found in all venoms except that of M. s. spixii. Other toxin families are present in all six venoms at trace levels (<0.005%. Minor and trace venom components differ in each venom. Numerous novel toxin chemistries include 3FTxs with previously unknown 8- and 10-cysteine arrangements, resulting in new 3D structures and target specificities. 9-cysteine toxins raise the possibility of covalent, homodimeric 3FTxs or heterodimeric toxins with unknown pharmacologies. Probable muscarinic sequences may be reptile-specific homologs that promote hypotension via vascular mAChRs. The first complete sequences are presented for 3FTxs putatively responsible for liberating glutamate from rat brain synaptosomes. Micrurus C-type lectin-like proteins may have 6–9 cysteine residues and may be monomers, or homo- or heterodimers of unknown pharmacology. Novel KSPIs, 3× longer than any seen

  10. Computational Studies of Snake Venom Toxins

    OpenAIRE

    Paola G. Ojeda; David Ramírez; Jans Alzate-Morales; Julio Caballero; Quentin Kaas; Wendy González

    2017-01-01

    Most snake venom toxins are proteins, and participate to envenomation through a diverse array of bioactivities, such as bleeding, inflammation, and pain, cytotoxic, cardiotoxic or neurotoxic effects. The venom of a single snake species contains hundreds of toxins, and the venoms of the 725 species of venomous snakes represent a large pool of potentially bioactive proteins. Despite considerable discovery efforts, most of the snake venom toxins are still uncharacterized. Modern bioinformatics t...

  11. Functional and proteomic comparison of Bothrops jararaca venom from captive specimens and the Brazilian Bothropic Reference Venom.

    Science.gov (United States)

    Farias, Iasmim Baptista de; Morais-Zani, Karen de; Serino-Silva, Caroline; Sant'Anna, Sávio S; Rocha, Marisa M T da; Grego, Kathleen F; Andrade-Silva, Débora; Serrano, Solange M T; Tanaka-Azevedo, Anita M

    2018-03-01

    Snake venom is a variable phenotypic trait, whose plasticity and evolution are critical for effective antivenom production. A significant reduction of the number of snake donations to Butantan Institute (São Paulo, Brazil) occurred in recent years, and this fact may impair the production of the Brazilian Bothropic Reference Venom (BBRV). Nevertheless, in the last decades a high number of Bothrops jararaca specimens have been raised in captivity in the Laboratory of Herpetology of Butantan Institute. Considering these facts, we compared the biochemical and biological profiles of B. jararaca venom from captive specimens and BBRV in order to understand the potential effects of snake captivity upon the venom composition. Electrophoretic analysis and proteomic profiling revealed few differences in venom protein bands and some differentially abundant toxins. Comparison of enzymatic activities showed minor differences between the two venoms. Similar cross-reactivity recognition pattern of both venoms by the antibothropic antivenom produced by Butantan Institute was observed. Lethality and neutralization of lethality for B. jararaca venom from captive specimens and BBRV showed similar values. Considering these results we suggest that the inclusion of B. jararaca venom from captive specimens in the composition of BBRV would not interfere with the quality of this reference venom. Snakebite envenomation is a neglected tropical pathology whose treatment is based on the use of specific antivenoms. Bothrops jararaca is responsible for the majority of snakebites in South and Southeastern Brazil. Its venom shows individual, sexual, and ontogenetic variability, however, the effect of animal captivity upon venom composition is unknown. Considering the reduced number of wild-caught snakes donated to Butantan Institute in the last decades, and the increased life expectancy of the snakes raised in captivity in the Laboratory of Herpetology, this work focused on the comparative

  12. Anaphylaxis to Insect Venom Allergens

    DEFF Research Database (Denmark)

    Ollert, Markus; Blank, Simon

    2015-01-01

    available for diagnostic measurement of specific IgE in venom-allergic patients. These recombinant venom allergens offer several promising possibilities for an improved diagnostic algorithm. Reviewed here are the current status, recent developments, and future perspectives of molecular diagnostics of venom...

  13. Ecological venomics: How genomics, transcriptomics and proteomics can shed new light on the ecology and evolution of venom.

    Science.gov (United States)

    Sunagar, Kartik; Morgenstern, David; Reitzel, Adam M; Moran, Yehu

    2016-03-01

    Animal venom is a complex cocktail of bioactive chemicals that traditionally drew interest mostly from biochemists and pharmacologists. However, in recent years the evolutionary and ecological importance of venom is realized as this trait has direct and strong influence on interactions between species. Moreover, venom content can be modulated by environmental factors. Like many other fields of biology, venom research has been revolutionized in recent years by the introduction of systems biology approaches, i.e., genomics, transcriptomics and proteomics. The employment of these methods in venom research is known as 'venomics'. In this review we describe the history and recent advancements of venomics and discuss how they are employed in studying venom in general and in particular in the context of evolutionary ecology. We also discuss the pitfalls and challenges of venomics and what the future may hold for this emerging scientific field. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. The effects of Bee Venom and Sweet Bee Venom to the preadipocyte proliferation and lipolysis of adipocyte, localized fat accumulation

    Directory of Open Access Journals (Sweden)

    Min-Ki Kim

    2007-12-01

    Full Text Available Objectives : The purpose of this study was to investigate the effects of Bee Venom and Sweet Bee Venom to the primary cultured preadipocyte, adipocytes, and localized fat tissue. Methods : Decreased preadipocyte proliferation and decreased lipogenesis are mechanisms to reduce obesity. So, preadipocytes and adipocytes were performed on cell cultures using Sprague-Dawley Rats and treated with 0.01-1mg/㎖ Bee Venom and Sweet Bee Venom. And porcine skin including fat tissue after treated Bee Venom and Sweet Bee Venom according to the dosage dependent variation are investigated the histologic changes after injection of these Pharmacopuncture. Result : Following results were obtained from the preadipocyte proliferation and lipolysis of adipocyte and histologic investigation of fat tissue. 1. Bee Venom and Sweet Bee Venom showed the effect of decreased preadipocyte proliferation depend on concentration. 2. Bee Venom and Sweet Bee Venom showed the effect of decreased the activity of glycerol-3-phosphate dehydrogenase(GPDH significantly. 3. Bee Venom was not showed the effect of lipolysis, but Sweet Bee Venom was increased in low dosage and decreased in high dosage. 4. Investigated the histologic changes in porcine fat tissue after treated Bee Venom and Sweet Bee Venom, we knew that these Pharmacopuncture was activated nonspecific lysis of cell membranes depend on concentration. Conclusion : These results suggest that Bee Venom and Sweet Bee Venom efficiently induces decreased proliferation of preadipocyte and lipolysis in adipose tissue

  15. BEE VENOM TRAP DESIGN FOR PRODUCE BEE VENOM OF APIS MELLIFERA L. HONEY BEES

    OpenAIRE

    Budiaman

    2015-01-01

    Bee venom is one honey bee products are very expensive and are required in the pharmaceutical industry and as an anti-cancer known as nanobee, but the production technique is still done in the traditional way. The purpose of this study was to design a bee venom trap to produce bee venom of Apis mellifera L honey bees. The method used is to design several models of bee venom apparatus equipped weak current (DC current) with 3 variations of voltage, ie 12 volts, 15 volts and 18 volts coupled...

  16. Colubrid Venom Composition: An -Omics Perspective.

    Science.gov (United States)

    Junqueira-de-Azevedo, Inácio L M; Campos, Pollyanna F; Ching, Ana T C; Mackessy, Stephen P

    2016-07-23

    Snake venoms have been subjected to increasingly sensitive analyses for well over 100 years, but most research has been restricted to front-fanged snakes, which actually represent a relatively small proportion of extant species of advanced snakes. Because rear-fanged snakes are a diverse and distinct radiation of the advanced snakes, understanding venom composition among "colubrids" is critical to understanding the evolution of venom among snakes. Here we review the state of knowledge concerning rear-fanged snake venom composition, emphasizing those toxins for which protein or transcript sequences are available. We have also added new transcriptome-based data on venoms of three species of rear-fanged snakes. Based on this compilation, it is apparent that several components, including cysteine-rich secretory proteins (CRiSPs), C-type lectins (CTLs), CTLs-like proteins and snake venom metalloproteinases (SVMPs), are broadly distributed among "colubrid" venoms, while others, notably three-finger toxins (3FTxs), appear nearly restricted to the Colubridae (sensu stricto). Some putative new toxins, such as snake venom matrix metalloproteinases, are in fact present in several colubrid venoms, while others are only transcribed, at lower levels. This work provides insights into the evolution of these toxin classes, but because only a small number of species have been explored, generalizations are still rather limited. It is likely that new venom protein families await discovery, particularly among those species with highly specialized diets.

  17. Expression of venom gene homologs in diverse python tissues suggests a new model for the evolution of snake venom.

    Science.gov (United States)

    Reyes-Velasco, Jacobo; Card, Daren C; Andrew, Audra L; Shaney, Kyle J; Adams, Richard H; Schield, Drew R; Casewell, Nicholas R; Mackessy, Stephen P; Castoe, Todd A

    2015-01-01

    Snake venom gene evolution has been studied intensively over the past several decades, yet most previous studies have lacked the context of complete snake genomes and the full context of gene expression across diverse snake tissues. We took a novel approach to studying snake venom evolution by leveraging the complete genome of the Burmese python, including information from tissue-specific patterns of gene expression. We identified the orthologs of snake venom genes in the python genome, and conducted detailed analysis of gene expression of these venom homologs to identify patterns that differ between snake venom gene families and all other genes. We found that venom gene homologs in the python are expressed in many different tissues outside of oral glands, which illustrates the pitfalls of using transcriptomic data alone to define "venom toxins." We hypothesize that the python may represent an ancestral state prior to major venom development, which is supported by our finding that the expansion of venom gene families is largely restricted to highly venomous caenophidian snakes. Therefore, the python provides insight into biases in which genes were recruited for snake venom systems. Python venom homologs are generally expressed at lower levels, have higher variance among tissues, and are expressed in fewer organs compared with all other python genes. We propose a model for the evolution of snake venoms in which venom genes are recruited preferentially from genes with particular expression profile characteristics, which facilitate a nearly neutral transition toward specialized venom system expression. © The Author 2014. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  18. Toxin synergism in snake venoms

    DEFF Research Database (Denmark)

    Laustsen, Andreas Hougaard

    2016-01-01

    Synergism between venom toxins exists for a range of snake species. Synergism can be derived from both intermolecular interactions and supramolecular interactions between venom components, and can be the result of toxins targeting the same protein, biochemical pathway or physiological process. Few...... simple systematic tools and methods for determining the presence of synergism exist, but include co-administration of venom components and assessment of Accumulated Toxicity Scores. A better understanding of how to investigate synergism in snake venoms may help unravel strategies for developing novel...

  19. Allergen-specific immunotherapy of Hymenoptera venom allergy

    DEFF Research Database (Denmark)

    Schiener, Maximilian; Graessel, Anke; Ollert, Markus

    2017-01-01

    Stings of hymenoptera can induce IgE-mediated hypersensitivity reactions in venom-allergic patients, ranging from local up to severe systemic reactions and even fatal anaphylaxis. Allergic patients' quality of life can be mainly improved by altering their immune response to tolerate the venoms...... by injecting increasing venom doses over years. This venom-specific immunotherapy is highly effective and well tolerated. However, component-resolved information about the venoms has increased in the last years. This knowledge is not only able to improve diagnostics as basis for an accurate therapy......, but was additionally used to create tools which enable the analysis of therapeutic venom extracts on a molecular level. Therefore, during the last decade the detailed knowledge of the allergen composition of hymenoptera venoms has substantially improved diagnosis and therapy of venom allergy. This review focuses...

  20. Pharmacokinetics of Snake Venom

    OpenAIRE

    Suchaya Sanhajariya; Stephen B. Duffull; Geoffrey K. Isbister

    2018-01-01

    Understanding snake venom pharmacokinetics is essential for developing risk assessment strategies and determining the optimal dose and timing of antivenom required to bind all venom in snakebite patients. This review aims to explore the current knowledge of snake venom pharmacokinetics in animals and humans. Literature searches were conducted using EMBASE (1974–present) and Medline (1946–present). For animals, 12 out of 520 initially identified studies met the inclusion criteria. In general, ...

  1. Snake venomics across genus Lachesis. Ontogenetic changes in the venom composition of Lachesis stenophrys and comparative proteomics of the venoms of adult Lachesis melanocephala and Lachesis acrochorda.

    Science.gov (United States)

    Madrigal, Marvin; Sanz, Libia; Flores-Díaz, Marietta; Sasa, Mahmood; Núñez, Vitelbina; Alape-Girón, Alberto; Calvete, Juan J

    2012-12-21

    We report the proteomic analysis of ontogenetic changes in venom composition of the Central American bushmaster, Lachesis stenophrys, and the characterization of the venom proteomes of two congeneric pitvipers, Lachesis melanocephala (black-headed bushmaster) and Lachesis acrochorda (Chochoan bushmaster). Along with the previous characterization of the venom proteome of Lachesis muta muta (from Bolivia), our present outcome enables a comparative overview of the composition and distribution of the toxic proteins across genus Lachesis. Comparative venomics revealed the close kinship of Central American L. stenophrys and L. melanocephala and support the elevation of L. acrochorda to species status. Major ontogenetic changes in the toxin composition of L. stenophrys venom involves quantitative changes in the concentration of vasoactive peptides and serine proteinases, which steadily decrease from birth to adulthood, and age-dependent de novo biosynthesis of Gal-lectin and snake venom metalloproteinases (SVMPs). The net result is a shift from a bradykinin-potentiating and C-type natriuretic peptide (BPP/C-NP)-rich and serine proteinase-rich venom in newborns and 2-years-old juveniles to a (PI>PIII) SVMP-rich venom in adults. Notwithstanding minor qualitative and quantitative differences, the venom arsenals of L. melanocephala and L. acrochorda are broadly similar between themselves and also closely mirror those of adult L. stenophrys and L. muta venoms. The high conservation of the overall composition of Central and South American bushmaster venoms provides the ground for rationalizing the "Lachesis syndrome", characterized by vagal syntomatology, sensorial disorders, hematologic, and cardiovascular manifestations, documented in envenomings by different species of this wide-ranging genus. This finding let us predict that monospecific Lachesic antivenoms may exhibit paraspecificity against all congeneric species. Copyright © 2012 Elsevier B.V. All rights reserved.

  2. Snake Envenomation Causing Distant Tracheal Myonecrosis

    Directory of Open Access Journals (Sweden)

    Amina Khimani

    2013-01-01

    Full Text Available Snakebites are often believed to be poisonous. However, this is not always the case. In fact, each bite differs from snake to snake, depending on if the snake is poisonous and if there is envenomation. Venom in pit viper snakebites is often associated with local necrosis. The abundant literature selections and research articles justify local myonecrosis due to envenomation, but there is not much in the literature regarding myonecrosis at a site distant from the snakebite. We hereby present a case of a 42-year-old man who was transferred to our emergency department after a rattlesnake bit him twice. The patient, besides developing local myonecrosis at the site of the snakebite, developed necrosis of the scrotum as well as tracheal pressure myonecrosis at the site of the endotracheal tube balloon. In this review, we will attempt to discuss the myonecrosis pathophysiology and management related to the rattle snakebite.

  3. Bioactive Components in Fish Venoms

    Science.gov (United States)

    Ziegman, Rebekah; Alewood, Paul

    2015-01-01

    Animal venoms are widely recognized excellent resources for the discovery of novel drug leads and physiological tools. Most are comprised of a large number of components, of which the enzymes, small peptides, and proteins are studied for their important bioactivities. However, in spite of there being over 2000 venomous fish species, piscine venoms have been relatively underrepresented in the literature thus far. Most studies have explored whole or partially fractioned venom, revealing broad pharmacology, which includes cardiovascular, neuromuscular, cytotoxic, inflammatory, and nociceptive activities. Several large proteinaceous toxins, such as stonustoxin, verrucotoxin, and Sp-CTx, have been isolated from scorpaenoid fish. These form pores in cell membranes, resulting in cell death and creating a cascade of reactions that result in many, but not all, of the physiological symptoms observed from envenomation. Additionally, Natterins, a novel family of toxins possessing kininogenase activity have been found in toadfish venom. A variety of smaller protein toxins, as well as a small number of peptides, enzymes, and non-proteinaceous molecules have also been isolated from a range of fish venoms, but most remain poorly characterized. Many other bioactive fish venom components remain to be discovered and investigated. These represent an untapped treasure of potentially useful molecules. PMID:25941767

  4. Venomic Analysis of the Poorly Studied Desert Coral Snake, Micrurus tschudii tschudii, Supports the 3FTx/PLA₂ Dichotomy across Micrurus Venoms.

    Science.gov (United States)

    Sanz, Libia; Pla, Davinia; Pérez, Alicia; Rodríguez, Yania; Zavaleta, Alfonso; Salas, Maria; Lomonte, Bruno; Calvete, Juan J

    2016-06-07

    The venom proteome of the poorly studied desert coral snake Micrurus tschudii tschudii was unveiled using a venomic approach, which identified ≥38 proteins belonging to only four snake venom protein families. The three-finger toxins (3FTxs) constitute, both in number of isoforms (~30) and total abundance (93.6% of the venom proteome), the major protein family of the desert coral snake venom. Phospholipases A₂ (PLA₂s; seven isoforms, 4.1% of the venom proteome), 1-3 Kunitz-type proteins (1.6%), and 1-2 l-amino acid oxidases (LAO, 0.7%) complete the toxin arsenal of M. t. tschudii. Our results add to the growing evidence that the occurrence of two divergent venom phenotypes, i.e., 3FTx- and PLA₂-predominant venom proteomes, may constitute a general trend across the cladogenesis of Micrurus. The occurrence of a similar pattern of venom phenotypic variability among true sea snake (Hydrophiinae) venoms suggests that the 3FTx/PLA₂ dichotomy may be widely distributed among Elapidae venoms.

  5. Black Bear Reactions to Venomous and Non-venomous Snakes in Eastern North America

    OpenAIRE

    Rogers, Lynn L; Mansfield, Susan A; Hornby, Kathleen; Hornby, Stewart; Debruyn, Terry D; Mize, Malvin; Clark, Rulon; Burghardt, Gordon M

    2014-01-01

    Bears are often considered ecological equivalents of large primates, but the latter often respond with fear, avoidance, and alarm calls to snakes, both venomous and non-venomous, there is sparse information on how bears respond to snakes. We videotaped or directly observed natural encounters between black bears (Ursus americanus) and snakes. Inside the range of venomous snakes in Arkansas and West Virginia, adolescent and adult black bears reacted fearfully in seven of seven encounters upon b...

  6. Single venom-based immunotherapy effectively protects patients with double positive tests to honey bee and Vespula venom

    Science.gov (United States)

    2013-01-01

    Background Referring to individuals with reactivity to honey bee and Vespula venom in diagnostic tests, the umbrella terms “double sensitization” or “double positivity” cover patients with true clinical double allergy and those allergic to a single venom with asymptomatic sensitization to the other. There is no international consensus on whether immunotherapy regimens should generally include both venoms in double sensitized patients. Objective We investigated the long-term outcome of single venom-based immunotherapy with regard to potential risk factors for treatment failure and specifically compared the risk of relapse in mono sensitized and double sensitized patients. Methods Re-sting data were obtained from 635 patients who had completed at least 3 years of immunotherapy between 1988 and 2008. The adequate venom for immunotherapy was selected using an algorithm based on clinical details and the results of diagnostic tests. Results Of 635 patients, 351 (55.3%) were double sensitized to both venoms. The overall re-exposure rate to Hymenoptera stings during and after immunotherapy was 62.4%; the relapse rate was 7.1% (6.0% in mono sensitized, 7.8% in double sensitized patients). Recurring anaphylaxis was statistically less severe than the index sting reaction (P = 0.004). Double sensitization was not significantly related to relapsing anaphylaxis (P = 0.56), but there was a tendency towards an increased risk of relapse in a subgroup of patients with equal reactivity to both venoms in diagnostic tests (P = 0.15). Conclusions Single venom-based immunotherapy over 3 to 5 years effectively and long-lastingly protects the vast majority of both mono sensitized and double sensitized Hymenoptera venom allergic patients. Double venom immunotherapy is indicated in clinically double allergic patients reporting systemic reactions to stings of both Hymenoptera and in those with equal reactivity to both venoms in diagnostic tests who have not reliably identified the

  7. Fossilized venom: the unusually conserved venom profiles of Heloderma species (beaded lizards and gila monsters).

    Science.gov (United States)

    Koludarov, Ivan; Jackson, Timothy N W; Sunagar, Kartik; Nouwens, Amanda; Hendrikx, Iwan; Fry, Bryan G

    2014-12-22

    Research into snake venoms has revealed extensive variation at all taxonomic levels. Lizard venoms, however, have received scant research attention in general, and no studies of intraclade variation in lizard venom composition have been attempted to date. Despite their iconic status and proven usefulness in drug design and discovery, highly venomous helodermatid lizards (gila monsters and beaded lizards) have remained neglected by toxinological research. Proteomic comparisons of venoms of three helodermatid lizards in this study has unravelled an unusual similarity in venom-composition, despite the long evolutionary time (~30 million years) separating H. suspectum from the other two species included in this study (H. exasperatum and H. horridum). Moreover, several genes encoding the major helodermatid toxins appeared to be extremely well-conserved under the influence of negative selection (but with these results regarded as preliminary due to the scarcity of available sequences). While the feeding ecologies of all species of helodermatid lizard are broadly similar, there are significant morphological differences between species, which impact upon relative niche occupation.

  8. Fossilized Venom: The Unusually Conserved Venom Profiles of Heloderma Species (Beaded Lizards and Gila Monsters)

    Science.gov (United States)

    Koludarov, Ivan; Jackson, Timothy N. W.; Sunagar, Kartik; Nouwens, Amanda; Hendrikx, Iwan; Fry, Bryan G.

    2014-01-01

    Research into snake venoms has revealed extensive variation at all taxonomic levels. Lizard venoms, however, have received scant research attention in general, and no studies of intraclade variation in lizard venom composition have been attempted to date. Despite their iconic status and proven usefulness in drug design and discovery, highly venomous helodermatid lizards (gila monsters and beaded lizards) have remained neglected by toxinological research. Proteomic comparisons of venoms of three helodermatid lizards in this study has unravelled an unusual similarity in venom-composition, despite the long evolutionary time (~30 million years) separating H. suspectum from the other two species included in this study (H. exasperatum and H. horridum). Moreover, several genes encoding the major helodermatid toxins appeared to be extremely well-conserved under the influence of negative selection (but with these results regarded as preliminary due to the scarcity of available sequences). While the feeding ecologies of all species of helodermatid lizard are broadly similar, there are significant morphological differences between species, which impact upon relative niche occupation. PMID:25533521

  9. On the issue of taxonomical status of steppe viper (Vipera renardi in Right-bank Ukraine

    Directory of Open Access Journals (Sweden)

    A. L. Baybuz

    2011-07-01

    Full Text Available Data on morphologic variability of the steppe viper in the Kirovograd region (Right-bank Ukraine are given firstly. Tentative estimation of the similaritylevel of the local population and the populations from the Left-bank Ukraine and the Crimea was carried out using methods of the multivariate statistics. Morphological data in line with the results of mitochondrial DNA analysis show that the population in the Kirovograd region belongs to widespread Eurasian species Vipera renardiand morphologically most close to the original populations of the lowland Crimea, Sivash and Forest-Steppe of the Left-bank Ukraine. This could indicate the complicated history of the Right-bank Ukraine colonization by the steppe viper and possible influence of environmental conditions on the vipers’ morphology

  10. Enzymatic analysis of Hemiscorpius lepturus scorpion venom using zymography and venom-specific antivenin.

    Science.gov (United States)

    Seyedian, Ramin; Pipelzadeh, Mohammad Hassan; Jalali, Amir; Kim, Euikyung; Lee, Hyunkyoung; Kang, Changkeun; Cha, Mijin; Sohn, Eun-Tae; Jung, Eun-Sun; Rahmani, Ali Hassan; Mirakabady, Abbas Zare

    2010-09-15

    Hemiscorpius lepturus envenomation exhibits various pathological changes in the affected tissues, including skin, blood cells, cardiovascular and central nervous systems. The enzymatic activity and protein component of the venom have not been described previously. In the present study, the electrophoretic profile of H. lepturus venom was determined by SDS-PAGE (12 and 15%), resulting in major protein bands at 3.5-5, 30-35 and 50-60 kDa. The enzymatic activities of the venom was, for the first time, investigated using various zymography techniques, which showed the gelatinolytic, caseinolytic, and hyaluronidase activities mainly at around 50-60 kDa, 30-40 kDa, and 40-50 kDa, respectively. Among these, the proteolytic activities was almost completely disappeared in the presence of a matrix metalloproteinase inhibitor, 1, 10-phenanthroline. Antigen-antibody interactions between the venom and its Iranian antivenin was observed by Western blotting, and it showed several antigenic proteins in the range of 30-160 kDa. This strong antigen-antibody reaction was also demonstrated through an enzyme-linked immunosorbent assay (ELISA). The gelatinase activity of the venom was suppressed by Razi institute polyvalent antivenin, suggesting the inhibitory effect of the antivenin against H. lepturus venom protease activities. Prudently, more extensive clinical studies are necessary for validation of its use in envenomed patients. Copyright 2010 Elsevier Ltd. All rights reserved.

  11. In-vitro diagnostics of Hymenoptera venom allergy

    NARCIS (Netherlands)

    Rueff, F.; Vos, B.; Przybilla, B.

    In-vitro diagnostics of Hymenoptera venom allergy Patients with a history of anaphylactic sting reactions require an allergological work-up (history, in-vitro tests, and skin tests) to clarify indications on venom immunotherapy and on the type of venom to be used. To demonstrate a venom

  12. Computational Studies of Snake Venom Toxins.

    Science.gov (United States)

    Ojeda, Paola G; Ramírez, David; Alzate-Morales, Jans; Caballero, Julio; Kaas, Quentin; González, Wendy

    2017-12-22

    Most snake venom toxins are proteins, and participate to envenomation through a diverse array of bioactivities, such as bleeding, inflammation, and pain, cytotoxic, cardiotoxic or neurotoxic effects. The venom of a single snake species contains hundreds of toxins, and the venoms of the 725 species of venomous snakes represent a large pool of potentially bioactive proteins. Despite considerable discovery efforts, most of the snake venom toxins are still uncharacterized. Modern bioinformatics tools have been recently developed to mine snake venoms, helping focus experimental research on the most potentially interesting toxins. Some computational techniques predict toxin molecular targets, and the binding mode to these targets. This review gives an overview of current knowledge on the ~2200 sequences, and more than 400 three-dimensional structures of snake toxins deposited in public repositories, as well as of molecular modeling studies of the interaction between these toxins and their molecular targets. We also describe how modern bioinformatics have been used to study the snake venom protein phospholipase A2, the small basic myotoxin Crotamine, and the three-finger peptide Mambalgin.

  13. Cardiovascular-Active Venom Toxins: An Overview.

    Science.gov (United States)

    Rebello Horta, Carolina Campolina; Chatzaki, Maria; Rezende, Bruno Almeida; Magalhães, Bárbara de Freitas; Duarte, Clara Guerra; Felicori, Liza Figueiredo; Ribeiro Oliveira-Mendes, Bárbara Bruna; do Carmo, Anderson Oliveira; Chávez-Olórtegui, Carlos; Kalapothakis, Evanguedes

    2016-01-01

    Animal venoms are a mixture of bioactive compounds produced as weapons and used primarily to immobilize and kill preys. As a result of the high potency and specificity for various physiological targets, many toxins from animal venoms have emerged as possible drugs for the medication of diverse disorders, including cardiovascular diseases. Captopril, which inhibits the angiotensin-converting enzyme (ACE), was the first successful venom-based drug and a notable example of rational drug design. Since captopril was developed, many studies have discovered novel bradykinin-potentiating peptides (BPPs) with actions on the cardiovascular system. Natriuretic peptides (NPs) have also been found in animal venoms and used as template to design new drugs with applications in cardiovascular diseases. Among the anti-arrhythmic peptides, GsMTx-4 was discovered to be a toxin that selectively inhibits the stretch-activated cation channels (SACs), which are involved in atrial fibrillation. The present review describes the main components isolated from animal venoms that act on the cardiovascular system and presents a brief summary of venomous animals and their venom apparatuses.

  14. Computational Studies of Snake Venom Toxins

    Directory of Open Access Journals (Sweden)

    Paola G. Ojeda

    2017-12-01

    Full Text Available Most snake venom toxins are proteins, and participate to envenomation through a diverse array of bioactivities, such as bleeding, inflammation, and pain, cytotoxic, cardiotoxic or neurotoxic effects. The venom of a single snake species contains hundreds of toxins, and the venoms of the 725 species of venomous snakes represent a large pool of potentially bioactive proteins. Despite considerable discovery efforts, most of the snake venom toxins are still uncharacterized. Modern bioinformatics tools have been recently developed to mine snake venoms, helping focus experimental research on the most potentially interesting toxins. Some computational techniques predict toxin molecular targets, and the binding mode to these targets. This review gives an overview of current knowledge on the ~2200 sequences, and more than 400 three-dimensional structures of snake toxins deposited in public repositories, as well as of molecular modeling studies of the interaction between these toxins and their molecular targets. We also describe how modern bioinformatics have been used to study the snake venom protein phospholipase A2, the small basic myotoxin Crotamine, and the three-finger peptide Mambalgin.

  15. Why do Pit-Hours outlive the Pit?

    NARCIS (Netherlands)

    S.R. Ozturk (Sait); M. van der Wel (Michel); D.J.C. van Dijk (Dick)

    2015-01-01

    markdownabstract__Abstract__ We study why a majority of trades still happen during the pit hours, i.e. when the trading pit is open, even after the pit ceased to be a liquid and informative venue. We investigate the case of 30-year U.S. Treasury futures using a ten-years-long intraday data set

  16. Mastocytosis and insect venom allergy.

    Science.gov (United States)

    Bonadonna, Patrizia; Zanotti, Roberta; Müller, Ulrich

    2010-08-01

    To analyse the association of systemic allergic hymenoptera sting reactions with mastocytosis and elevated baseline serum tryptase and to discuss diagnosis and treatment in patients with both diseases. In recent large studies on patients with mastocytosis a much higher incidence of severe anaphylaxis following hymenoptera stings than in the normal population was documented. In patients with hymenoptera venom allergy, elevated baseline tryptase is strongly associated with severe anaphylaxis. Fatal sting reactions were reported in patients with mastocytosis, notably after stopping venom immunotherapy. During venom immunotherapy most patients with mastocytosis are protected from further sting reactions. Based on these observations immunotherapy for life is recommended for patients with mastocytosis and venom allergy. The incidence of allergic side-effects is increased in patients with mastocytosis and elevated baseline tryptase, especially in those allergic to Vespula venom. Premedication with antihistamines, or omalizumab in cases with recurrent severe side-effects, can be helpful. In all patients with anaphylaxis following hymenoptera stings, baseline serum tryptase should be determined. A value above 11.4 microg/l is often due to mastocytosis and indicates a high risk of very severe anaphylaxis following re-stings. Venom immunotherapy is safe and effective in this situation.

  17. Optic Nerve Pit

    Science.gov (United States)

    ... Conditions Frequently Asked Questions Español Condiciones Chinese Conditions Optic Nerve Pit What is optic nerve pit? An optic nerve pit is a ... may be seen in both eyes. How is optic pit diagnosed? If the pit is not affecting ...

  18. Label-Free (XIC) Quantification of Venom Procoagulant and Neurotoxin Expression in Related Australian Elapid Snakes Gives Insight into Venom Toxicity Evolution.

    Science.gov (United States)

    Skejic, Jure; Steer, David L; Dunstan, Nathan; Hodgson, Wayne C

    2015-11-06

    This study demonstrates a direct role of venom protein expression alteration in the evolution of snake venom toxicity. Avian skeletal muscle contractile response to exogenously administered acetylcholine is completely inhibited upon exposure to South Australian and largely preserved following exposure to Queensland eastern brown snake Pseudonaja textilis venom, indicating potent postsynaptic neurotoxicity of the former and lack thereof of the latter venom. Label-free quantitative proteomics reveals extremely large differences in the expression of postsynaptic three-finger α-neurotoxins in these venoms, explaining the difference in the muscle contractile response and suggesting that the type of toxicity induced by venom can be modified by altered expression of venom proteins. Furthermore, the onset of neuromuscular paralysis in the rat phrenic nerve-diaphragm preparation occurs sooner upon exposure to the venom (10 μg/mL) with high expression of α-neurotoxins than the venoms containing predominately presynaptic β-neurotoxins. The study also finds that the onset of rat plasma coagulation is faster following exposure to the venoms with higher expression of venom prothrombin activator subunits. This is the first quantitative proteomic study that uses extracted ion chromatogram peak areas (MS1 XIC) of distinct homologous tryptic peptides to directly show the differences in the expression of venom proteins.

  19. Assessment of immunogenic characteristics of Hemiscorpius lepturus venom and its cross-reactivity with venoms from Androctonus crassicauda and Mesobuthus eupeus.

    Science.gov (United States)

    Khanbashi, Shahin; Khodadadi, Ali; Assarehzadegan, Mohammad-Ali; Pipelzadeh, Mohammad Hassan; Vazirianzadeh, Babak; Hosseinzadeh, Mohsen; Rahmani, Ali Hassan; Asmar, Akbar

    2015-01-01

    Hemiscorpius lepturus (H. lepturus), one of the most venomous scorpions in tropical and sub-tropical areas, belongs to the Hemiscorpiidae family. Studies of antibodies in sera against the protein component of the venom from this organism can be of great use for the development of engineered variants of proteins for eventual use in the diagnosis/treatment of, and prevention of reactions to, stings. In the present in vitro study, the proteins of H. lepturus venom, which could specifically activate the production of immunoglobulin G (IgG) in victims accidently exposed to the venom from this scorpion, were evaluated and their cross-reactivity with venoms from two other important scorpion species including Androctonus crassicauda and Mesobuthus eupeus assessed. H. lepturus venom was analyzed with respect to its protein composition and its antigenic properties against antibodies found in sera collected from victims exposed to the venom of this scorpion within a previous 2-month period. The cross-reactivity of the H. lepturus venom with those from A. crassicauda and M. eupeus was assessed using ELISA and immunoblotting. Electrophoretic analysis of the venom of H. lepturus revealed several protein bands with weights of 8-116 KDa. The most frequent IgG-reactive bands in the test sera had weights of 34, 50, and 116 kDa. A weak cross-reactivity H. lepturus of venom with venoms from A. crassicauda and M. eupeus was detected. The results of immunoblotting and ELISA experiments revealed that H. lepturus venom activated the host immune response, leading to the production of a high titer of antibodies. Clearly, a determination of the major immunogenic components of H. lepturus venom could be valuable for future studies and ultimately of great importance for the potential production of recombinant or hypo-venom variants of these proteins.

  20. The Biochemical Toxin Arsenal from Ant Venoms

    Directory of Open Access Journals (Sweden)

    Axel Touchard

    2016-01-01

    Full Text Available Ants (Formicidae represent a taxonomically diverse group of hymenopterans with over 13,000 extant species, the majority of which inject or spray secretions from a venom gland. The evolutionary success of ants is mostly due to their unique eusociality that has permitted them to develop complex collaborative strategies, partly involving their venom secretions, to defend their nest against predators, microbial pathogens, ant competitors, and to hunt prey. Activities of ant venom include paralytic, cytolytic, haemolytic, allergenic, pro-inflammatory, insecticidal, antimicrobial, and pain-producing pharmacologic activities, while non-toxic functions include roles in chemical communication involving trail and sex pheromones, deterrents, and aggregators. While these diverse activities in ant venoms have until now been largely understudied due to the small venom yield from ants, modern analytical and venomic techniques are beginning to reveal the diversity of toxin structure and function. As such, ant venoms are distinct from other venomous animals, not only rich in linear, dimeric and disulfide-bonded peptides and bioactive proteins, but also other volatile and non-volatile compounds such as alkaloids and hydrocarbons. The present review details the unique structures and pharmacologies of known ant venom proteinaceous and alkaloidal toxins and their potential as a source of novel bioinsecticides and therapeutic agents.

  1. The Biochemical Toxin Arsenal from Ant Venoms

    Science.gov (United States)

    Touchard, Axel; Aili, Samira R.; Fox, Eduardo Gonçalves Paterson; Escoubas, Pierre; Orivel, Jérôme; Nicholson, Graham M.; Dejean, Alain

    2016-01-01

    Ants (Formicidae) represent a taxonomically diverse group of hymenopterans with over 13,000 extant species, the majority of which inject or spray secretions from a venom gland. The evolutionary success of ants is mostly due to their unique eusociality that has permitted them to develop complex collaborative strategies, partly involving their venom secretions, to defend their nest against predators, microbial pathogens, ant competitors, and to hunt prey. Activities of ant venom include paralytic, cytolytic, haemolytic, allergenic, pro-inflammatory, insecticidal, antimicrobial, and pain-producing pharmacologic activities, while non-toxic functions include roles in chemical communication involving trail and sex pheromones, deterrents, and aggregators. While these diverse activities in ant venoms have until now been largely understudied due to the small venom yield from ants, modern analytical and venomic techniques are beginning to reveal the diversity of toxin structure and function. As such, ant venoms are distinct from other venomous animals, not only rich in linear, dimeric and disulfide-bonded peptides and bioactive proteins, but also other volatile and non-volatile compounds such as alkaloids and hydrocarbons. The present review details the unique structures and pharmacologies of known ant venom proteinaceous and alkaloidal toxins and their potential as a source of novel bioinsecticides and therapeutic agents. PMID:26805882

  2. Effects of venom immunotherapy on serum level of CCL5/RANTES in patients with Hymenoptera venom allergy.

    Science.gov (United States)

    Gawlik, Radoslaw; Glück, Joanna; Jawor, Barbara; Rogala, Barbara

    2015-01-01

    Hymenoptera venoms are known to cause life-threatening IgE-mediated anaphylactic reactions in allergic individuals. Venom immunotherapy is a recommended treatment of insect allergy with still the mechanism not being completely understood. We decided to assess the serum CCL5/RANTES level in patients who experienced severe anaphylactic reaction to Hymenoptera venom and to find out changes in the course of immunotherapy. Twenty patients (9 men, 11 women, mean age: 31.91 ± 7.63 years) with history of anaphylactic reaction after insect sting were included into the study. Diagnosis was made according to sIgE and skin tests. All of them were enrolled into rush venom immunotherapy with bee or wasp venom extracts (Pharmalgen, ALK-Abello, Horsholm, Denmark). Serum levels of CCL5/RANTES were measured using a commercially available ELISA kit (R&D Systems, Minneapolis, MN). CCL5/RANTES serum concentration are higher in insect venom allergic patients than in healthy controls (887.5 ± 322.77 versus 387.27 ± 85.11 pg/ml). Serum concentration of CCL5/RANTES in insect venom allergic patient was significantly reduced in the course of allergen immunotherapy already after 6 days of vaccination (887.5 ± 322.77 versus 567.32 ± 92.16 pg/ml). CCL5/RANTES serum doesn't correlate with specific IgE. Chemokine CCL5/RANTES participates in allergic inflammation induced by Hymenoptera venom allergens. Specific immunotherapy reduces chemokine CCL5/RANTES serum level already after initial days of venom immunotherapy.

  3. Venomics, lethality and neutralization of Naja kaouthia (monocled cobra) venoms from three different geographical regions of Southeast Asia.

    Science.gov (United States)

    Tan, Kae Yi; Tan, Choo Hock; Fung, Shin Yee; Tan, Nget Hong

    2015-04-29

    Previous studies showed that venoms of the monocled cobra, Naja kaouthia from Thailand and Malaysia are substantially different in their median lethal doses. The intraspecific venom variations of N. kaouthia, however, have not been fully elucidated. Here we investigated the venom proteomes of N. kaouthia from Malaysia (NK-M), Thailand (NK-T) and Vietnam (NK-V) through reverse-phase HPLC, SDS-PAGE and tandem mass spectrometry. The venom proteins comprise 13 toxin families, with three-finger toxins being the most abundant (63-77%) and the most varied (11-18 isoforms) among the three populations. NK-T has the highest content of neurotoxins (50%, predominantly long neurotoxins), followed by NK-V (29%, predominantly weak neurotoxins and some short neurotoxins), while NK-M has the least (18%, some weak neurotoxins but less short and long neurotoxins). On the other hand, cytotoxins constitute the main bulk of toxins in NK-M and NK-V venoms (up to 45% each), but less in NK-T venom (27%). The three venoms show different lethal potencies that generally reflect the proteomic findings. Despite the proteomic variations, the use of Thai monovalent and Neuro polyvalent antivenoms for N. kaouthia envenomation in the three regions is appropriate as the different venoms were neutralized by the antivenoms albeit at different degrees of effectiveness. Biogeographical variations were observed in the venom proteome of monocled cobra (Naja kaouthia) from Malaysia, Thailand and Vietnam. The Thai N. kaouthia venom is particularly rich in long neurotoxins, while the Malaysian and Vietnamese specimens were predominated with cytotoxins. The differentially expressed toxin profile accounts for the discrepancy in the lethal dose of the venom from different populations. Commercially available Thai antivenoms (monovalent and polyvalent) were able to neutralize the three venoms at different effective doses, hence supporting their uses in the three regions. While dose adjustment according to

  4. Snake venom instability | Willemse | African Zoology

    African Journals Online (AJOL)

    Egyptian cobra Naja haje haje) and puffadder (Bills arietans). Considerable differences in electrophoretic characteristics were found between fresh venom and commercial venom samples from the same species of snake. These differences could be attributed partly to the instability of snake venom under conditions of drying ...

  5. Snake venomics of Crotalus tigris: the minimalist toxin arsenal of the deadliest Nearctic rattlesnake venom. Evolutionary Clues for generating a pan-specific antivenom against crotalid type II venoms [corrected].

    Science.gov (United States)

    Calvete, Juan J; Pérez, Alicia; Lomonte, Bruno; Sánchez, Elda E; Sanz, Libia

    2012-02-03

    We report the proteomic and antivenomic characterization of Crotalus tigris venom. This venom exhibits the highest lethality for mice among rattlesnakes and the simplest toxin proteome reported to date. The venom proteome of C. tigris comprises 7-8 gene products from 6 toxin families; the presynaptic β-neurotoxic heterodimeric PLA(2), Mojave toxin, and two serine proteinases comprise, respectively, 66 and 27% of the C. tigris toxin arsenal, whereas a VEGF-like protein, a CRISP molecule, a medium-sized disintegrin, and 1-2 PIII-SVMPs each represent 0.1-5% of the total venom proteome. This toxin profile really explains the systemic neuro- and myotoxic effects observed in envenomated animals. In addition, we found that venom lethality of C. tigris and other North American rattlesnake type II venoms correlates with the concentration of Mojave toxin A-subunit, supporting the view that the neurotoxic venom phenotype of crotalid type II venoms may be described as a single-allele adaptation. Our data suggest that the evolutionary trend toward neurotoxicity, which has been also reported for the South American rattlesnakes, may have resulted by pedomorphism. The ability of an experimental antivenom to effectively immunodeplete proteins from the type II venoms of C. tigris, Crotalus horridus , Crotalus oreganus helleri, Crotalus scutulatus scutulatus, and Sistrurus catenatus catenatus indicated the feasibility of generating a pan-American anti-Crotalus type II antivenom, suggested by the identification of shared evolutionary trends among South and North American Crotalus species.

  6. Low cost venom extractor based on Arduino(®) board for electrical venom extraction from arthropods and other small animals.

    Science.gov (United States)

    Besson, Thomas; Debayle, Delphine; Diochot, Sylvie; Salinas, Miguel; Lingueglia, Eric

    2016-08-01

    Extracting venom from small species is usually challenging. We describe here an affordable and versatile electrical venom extractor based on the Arduino(®) Mega 2560 Board, which is designed to extract venom from arthropods and other small animals. The device includes fine tuning of stimulation time and voltage. It was used to collect venom without apparent deleterious effects, and characterized for the first time the venom of Zoropsis spinimana, a common spider in French Mediterranean regions. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Identification of potent inhibitors against snake venom metalloproteinase (SVMP) using molecular docking and molecular dynamics studies.

    Science.gov (United States)

    Chinnasamy, Sathishkumar; Chinnasamy, Selvakkumar; Nagamani, Selvaraman; Muthusamy, Karthikeyan

    2015-01-01

    Snake venom metalloproteinase (SVMP) (Echis coloratus (Carpet viper) is a multifunctional enzyme that is involved in producing several symptoms that follow a snakebite, such as severe local hemorrhage, nervous system effects and tissue necrosis. Because the three-dimensional (3D) structure of SVMP is not known, models were constructed, and the best model was selected based on its stereo-chemical quality. The stability of the modeled protein was analyzed through molecular dynamics (MD) simulation studies. Structure-based virtual screening was performed, and 15 potential molecules with the highest binding energies were selected. Further analysis was carried out with induced fit docking, Prime/MM-GBSA (ΔGBind calculations), quantum-polarized ligand docking, and density functional theory calculations. Further, the stability of the lead molecules in the SVMP-active site was examined using MD simulation. The results showed that the selected lead molecules were highly stable in the active site of SVMP. Hence, these molecules could potentially be selective inhibitors of SVMP. These lead molecules can be experimentally validated, and their backbone structural scaffold could serve as building blocks in designing drug-like molecules for snake antivenom.

  8. Treating autoimmune disorders with venom-derived peptides.

    Science.gov (United States)

    Shen, Bingzheng; Cao, Zhijian; Li, Wenxin; Sabatier, Jean-Marc; Wu, Yingliang

    2017-09-01

    The effective treatment of autoimmune diseases remains a challenge. Voltage-gated potassium Kv1.3 channels, which are expressed in lymphocytes, are a new therapeutic target for treating autoimmune disease. Consequently, Kv1.3 channel-inhibiting venom-derived peptides are a prospective resource for new drug discovery and clinical application. Area covered: Preclinical and clinical studies have produced a wealth of information on Kv1.3 channel-inhibiting venom-derived peptides, especially from venomous scorpions and sea anemones. This review highlights the advances in screening and design of these peptides with diverse structures and potencies. It focuses on representative strategies for improving peptide selectivity and discusses the preclinical research on those venom-derived peptides as well as their clinical developmental status. Expert opinion: Encouraging results indicate that peptides isolated from the venom of venomous animals are a large resource for discovering immunomodulators that act on Kv1.3 channels. Since the structural diversity of venom-derived peptides determines the variety of their pharmacological activities, the design and optimization of venom-peptides for improved Kv1.3 channel-specificity has been advanced through some representative strategies, such as peptide chemical modification, amino acid residue truncation and binding interface modulation. These advances should further accelerate research, development and the future clinical application of venom-derived peptides selectively targeting Kv1.3 channels.

  9. Transcriptome analysis of the venom gland of the scorpion Scorpiops jendeki: implication for the evolution of the scorpion venom arsenal

    Directory of Open Access Journals (Sweden)

    Wu Yingliang

    2009-07-01

    Full Text Available Abstract Background The family Euscorpiidae, which covers Europe, Asia, Africa, and America, is one of the most widely distributed scorpion groups. However, no studies have been conducted on the venom of a Euscorpiidae species yet. In this work, we performed a transcriptomic approach for characterizing the venom components from a Euscorpiidae scorpion, Scorpiops jendeki. Results There are ten known types of venom peptides and proteins obtained from Scorpiops jendeki. Great diversity is observed in primary sequences of most highly expressed types. The most highly expressed types are cytolytic peptides and serine proteases. Neurotoxins specific for sodium channels, which are major groups of venom components from Buthidae scorpions, are not detected in this study. In addition to those known types of venom peptides and proteins, we also obtain nine atypical types of venom molecules which haven't been observed in any other scorpion species studied to date. Conclusion This work provides the first set of cDNAs from Scorpiops jendeki, and one of the few transcriptomic analyses from a scorpion. This allows the characterization of a large number of venom molecules, belonging to either known or atypical types of scorpion venom peptides and proteins. Besides, our work could provide some clues to the evolution of the scorpion venom arsenal by comparison with venom data from other scorpion lineages.

  10. The first venomous crustacean revealed by transcriptomics and functional morphology: remipede venom glands express a unique toxin cocktail dominated by enzymes and a neurotoxin.

    Science.gov (United States)

    von Reumont, Björn M; Blanke, Alexander; Richter, Sandy; Alvarez, Fernando; Bleidorn, Christoph; Jenner, Ronald A

    2014-01-01

    Animal venoms have evolved many times. Venomous species are especially common in three of the four main groups of arthropods (Chelicerata, Myriapoda, and Hexapoda), which together represent tens of thousands of species of venomous spiders, scorpions, centipedes, and hymenopterans. Surprisingly, despite their great diversity of body plans, there is no unambiguous evidence that any crustacean is venomous. We provide the first conclusive evidence that the aquatic, blind, and cave-dwelling remipede crustaceans are venomous and that venoms evolved in all four major arthropod groups. We produced a three-dimensional reconstruction of the venom delivery apparatus of the remipede Speleonectes tulumensis, showing that remipedes can inject venom in a controlled manner. A transcriptomic profile of its venom glands shows that they express a unique cocktail of transcripts coding for known venom toxins, including a diversity of enzymes and a probable paralytic neurotoxin very similar to one described from spider venom. We screened a transcriptomic library obtained from whole animals and identified a nontoxin paralog of the remipede neurotoxin that is not expressed in the venom glands. This allowed us to reconstruct its probable evolutionary origin and underlines the importance of incorporating data derived from nonvenom gland tissue to elucidate the evolution of candidate venom proteins. This first glimpse into the venom of a crustacean and primitively aquatic arthropod reveals conspicuous differences from the venoms of other predatory arthropods such as centipedes, scorpions, and spiders and contributes valuable information for ultimately disentangling the many factors shaping the biology and evolution of venoms and venomous species.

  11. Animal venoms as antimicrobial agents.

    Science.gov (United States)

    Perumal Samy, Ramar; Stiles, Bradley G; Franco, Octavio L; Sethi, Gautam; Lim, Lina H K

    2017-06-15

    Hospitals are breeding grounds for many life-threatening bacteria worldwide. Clinically associated gram-positive bacteria such as Staphylococcus aureus/methicillin-resistant S. aureus and many others increase the risk of severe mortality and morbidity. The failure of antibiotics to kill various pathogens due to bacterial resistance highlights the urgent need to develop novel, potent, and less toxic agents from natural sources against various infectious agents. Currently, several promising classes of natural molecules from snake (terrestrial and sea), scorpion, spider, honey bee and wasp venoms hold promise as rich sources of chemotherapeutics against infectious pathogens. Interestingly, snake venom-derived synthetic peptide/snake cathelicidin not only has potent antimicrobial and wound-repair activity but is highly stable and safe. Such molecules are promising candidates for novel venom-based drugs against S. aureus infections. The structure of animal venom proteins/peptides (cysteine rich) consists of hydrophobic α-helices or β-sheets that produce lethal pores and membrane-damaging effects on bacteria. All these antimicrobial peptides are under early experimental or pre-clinical stages of development. It is therefore important to employ novel tools for the design and the development of new antibiotics from the untapped animal venoms of snake, scorpion, and spider for treating resistant pathogens. To date, snail venom toxins have shown little antibiotic potency against human pathogens. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Pharmacological screening technologies for venom peptide discovery.

    Science.gov (United States)

    Prashanth, Jutty Rajan; Hasaballah, Nojod; Vetter, Irina

    2017-12-01

    Venomous animals occupy one of the most successful evolutionary niches and occur on nearly every continent. They deliver venoms via biting and stinging apparatuses with the aim to rapidly incapacitate prey and deter predators. This has led to the evolution of venom components that act at a number of biological targets - including ion channels, G-protein coupled receptors, transporters and enzymes - with exquisite selectivity and potency, making venom-derived components attractive pharmacological tool compounds and drug leads. In recent years, plate-based pharmacological screening approaches have been introduced to accelerate venom-derived drug discovery. A range of assays are amenable to this purpose, including high-throughput electrophysiology, fluorescence-based functional and binding assays. However, despite these technological advances, the traditional activity-guided fractionation approach is time-consuming and resource-intensive. The combination of screening techniques suitable for miniaturization with sequence-based discovery approaches - supported by advanced proteomics, mass spectrometry, chromatography as well as synthesis and expression techniques - promises to further improve venom peptide discovery. Here, we discuss practical aspects of establishing a pipeline for venom peptide drug discovery with a particular emphasis on pharmacology and pharmacological screening approaches. This article is part of the Special Issue entitled 'Venom-derived Peptides as Pharmacological Tools.' Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Immunochemical studies of yellowjacket venom proteins.

    Science.gov (United States)

    King, T P; Alagon, A C; Kuan, J; Sobotka, A K; Lichtenstein, L M

    1983-03-01

    The major proteins of yellowjacket venoms have been isolated and characterized immuno-chemically. They consist of hyaluronidase, phospholipase, and antigen 5. Venoms from three species of yellowjacket were studied. Vespula germanica, V. maculifrons, and V. vulgaris. The phospholipases could be isolated in good yield only when affinity chromatography was used to minimize limited proteolysis. A kallikrein-like peptidase was found present in the yellowjacket venom. Phospholipases from these three species were immunochemically indistinguishable from each other, as were their antigen 5s. Sera from individuals sensitive to yellowjacket venom contained IgE and IgG specific for antigen 5 and phospholipase.

  14. Inactivation of complement by Loxosceles reclusa spider venom.

    Science.gov (United States)

    Gebel, H M; Finke, J H; Elgert, K D; Cambell, B J; Barrett, J T

    1979-07-01

    Zymosan depletion of serum complement in guinea pigs rendered them highly resistant to lesion by Loxosceles reclusa spider venom. Guinea pigs deficient in C4 of the complement system are as sensitive to the venom as normal guinea pigs. The injection of 35 micrograms of whole recluse venom intradermally into guinea pigs lowered their complement level by 35.7%. Brown recluse spider venom in concentrations as slight as 0.02 micrograms protein/ml can totally inactivate one CH50 of guinea pig complement in vitro. Bee, scorpion, and other spider venoms had no influence on the hemolytic titer of complement. Fractionation of recluse spider venom by Sephadex G-200 filtration separated the complement-inactivating property of the venom into three major regions which could be distinguished on the basis of heat stability as well as size. None was neutralized by antivenom. Polyacrylamide gel electrophoresis of venom resolved the complement inactivators into five fractions. Complement inactivated by whole venom or the Sephadex fractions could be restored to hemolytic activity by supplements of fresh serum but not by heat-inactivated serum, pure C3, pure C5, or C3 and C5 in combination.

  15. Comparison of Vespula germanica venoms obtained from different sources.

    Science.gov (United States)

    Sanchez, F; Blanca, M; Miranda, A; Carmona, M J; Garcia, J; Fernandez, J; Torres, M J; Rondon, M C; Juarez, C

    1994-08-01

    This study was carried out to compare the allergenic potency of Vespula germanica (VG) venoms extracted by different methods and commercially available venoms from Vespula species currently used for in vivo and in vitro studies including immunotherapy. Pure VG venom was used as the reference material. Protein content and enzymatic and allergenic properties of all venoms studied were determined by dye stain reagent, hyaluronidase and phospholipase A1B enzyme activities, and radioallergosorbent test inhibition studies, respectively. Radioallergosorbent test discs sensitized with commercial and pure VG venom were compared using specific IgE antibodies from subjects allergic to VG venom. The data obtained indicate that there were important differences in the allergenic potency between the Vespula species venoms employed for in vivo and/or in vitro assays, VG venom obtained by sac dissection, and pure VG venom. These results indicate that venoms from Vespula species used for in vitro and in vivo tests have a lower concentration of allergens and contain nonvenom proteins. These data should be taken into account when these vespid venoms are used for diagnostic purposes and also when evaluating immunotherapy studies.

  16. Bioinformatics-Aided Venomics

    Directory of Open Access Journals (Sweden)

    Quentin Kaas

    2015-06-01

    Full Text Available Venomics is a modern approach that combines transcriptomics and proteomics to explore the toxin content of venoms. This review will give an overview of computational approaches that have been created to classify and consolidate venomics data, as well as algorithms that have helped discovery and analysis of toxin nucleic acid and protein sequences, toxin three-dimensional structures and toxin functions. Bioinformatics is used to tackle specific challenges associated with the identification and annotations of toxins. Recognizing toxin transcript sequences among second generation sequencing data cannot rely only on basic sequence similarity because toxins are highly divergent. Mass spectrometry sequencing of mature toxins is challenging because toxins can display a large number of post-translational modifications. Identifying the mature toxin region in toxin precursor sequences requires the prediction of the cleavage sites of proprotein convertases, most of which are unknown or not well characterized. Tracing the evolutionary relationships between toxins should consider specific mechanisms of rapid evolution as well as interactions between predatory animals and prey. Rapidly determining the activity of toxins is the main bottleneck in venomics discovery, but some recent bioinformatics and molecular modeling approaches give hope that accurate predictions of toxin specificity could be made in the near future.

  17. Studies on Bee Venom and Its Medical Uses

    Science.gov (United States)

    Ali, Mahmoud Abdu Al-Samie Mohamed

    2012-07-01

    Use of honey and other bee products in human treatments traced back thousands of years and healing properties are included in many religious texts including the Veda, Bible and Quran. Apitherapy is the use of honey bee products for medical purposes, this include bee venom, raw honey, royal jelly, pollen, propolis, and beeswax. Whereas bee venom therapy is the use of live bee stings (or injectable venom) to treat various diseases such as arthritis, rheumatoid arthritis, multiple sclerosis (MS), lupus, sciatica, low back pain, and tennis elbow to name a few. It refers to any use of venom to assist the body in healing itself. Bee venom contains at least 18 pharmacologically active components including various enzymes, peptides and amines. Sulfur is believed to be the main element in inducing the release of cortisol from the adrenal glands and in protecting the body from infections. Contact with bee venom produces a complex cascade of reactions in the human body. The bee venom is safe for human treatments, the median lethal dose (LD50) for an adult human is 2.8 mg of venom per kg of body weight, i.e. a person weighing 60 kg has a 50% chance of surviving injections totaling 168 mg of bee venom. Assuming each bee injects all its venom and no stings are quickly removed at a maximum of 0.3 mg venom per sting, 560 stings could well be lethal for such a person. For a child weighing 10 kg, as little as 93.33 stings could be fatal. However, most human deaths result from one or few bee stings due to allergic reactions, heart failure or suffocation from swelling around the neck or the mouth. As compare with other human diseases, accidents and other unusual cases, the bee venom is very safe for human treatments.

  18. Tears of Venom: Hydrodynamics of Reptilian Envenomation

    Science.gov (United States)

    Young, Bruce A.; Herzog, Florian; Friedel, Paul; Rammensee, Sebastian; Bausch, Andreas; van Hemmen, J. Leo

    2011-05-01

    In the majority of venomous snakes, and in many other reptiles, venom is conveyed from the animal’s gland to the prey’s tissue through an open groove on the surface of the teeth and not through a tubular fang. Here we focus on two key aspects of the grooved delivery system: the hydrodynamics of venom as it interacts with the groove geometry, and the efficiency of the tooth-groove-venom complex as the tooth penetrates the prey’s tissue. We show that the surface tension of the venom is the driving force underlying the envenomation dynamics. In so doing, we explain not only the efficacy of the open groove, but also the prevalence of this mechanism among reptiles.

  19. Allergen-specific immunotherapy of Hymenoptera venom allergy

    DEFF Research Database (Denmark)

    Schiener, Maximilian; Graessel, Anke; Ollert, Markus

    2017-01-01

    by injecting increasing venom doses over years. This venom-specific immunotherapy is highly effective and well tolerated. However, component-resolved information about the venoms has increased in the last years. This knowledge is not only able to improve diagnostics as basis for an accurate therapy...

  20. Optimization of antiscorpion venom production

    Directory of Open Access Journals (Sweden)

    O. Ozkan

    2006-01-01

    Full Text Available The present study was carried out to produce highly efficient antivenom from a small number of telsons in a short time. Venom solution was prepared through maceration of telsons from Androctonus crassicauda (Olivier, 1807 collected in the Southeastern Anatolia Region, Turkey. Lethal dose 50% (LD50 of the venom solution injected into mice was 1 ml/kg (95% confidence interval; 0.8-1.3, according to probit analysis. Different adjuvants (Freund's Complete Adjuvant, Freund's Incomplete Adjuvant, and 0.4% aluminium phosphate, at increasing doses and combined with venom, were subcutaneously injected into horses on days 0, 14, 21, 28, 35, and 42 of the experiment. Antivenom was collected from the immunized horses on days 45, 48, and 51 using the pepsin digestive method. The antivenom effective dose 50% (ED50 in mice was 0.5 ml (95% confidence interval; 0.40-0.58, according to probit analysis. It was concluded that 0.5 ml antivenom neutralized a venom dose 35-fold higher than the venom LD50. Thus, highly potent antivenom could be produced from about 238 telsons in 51 days.

  1. Snake Venom Metalloproteinases

    OpenAIRE

    Gâz Florea Şerban Andrei; Gâz Florea Adriana; Kelemen Hajnal; Muntean Daniela-Lucia

    2016-01-01

    As more data are generated from proteome and transcriptome analysis revealing that metalloproteinases represent most of the Viperid and Colubrid venom components authors decided to describe in a short review a classification and some of the multiple activities of snake venom metalloproteinases. SVMPs are classified in three major classes (P-I, P-II and P-III classes) based on the presence of various domain structures and according to their domain organization. Furthermore, P-II and P-III clas...

  2. Tracing Monotreme Venom Evolution in the Genomics Era

    Directory of Open Access Journals (Sweden)

    Camilla M. Whittington

    2014-04-01

    Full Text Available The monotremes (platypuses and echidnas represent one of only four extant venomous mammalian lineages. Until recently, monotreme venom was poorly understood. However, the availability of the platypus genome and increasingly sophisticated genomic tools has allowed us to characterize platypus toxins, and provides a means of reconstructing the evolutionary history of monotreme venom. Here we review the physiology of platypus and echidna crural (venom systems as well as pharmacological and genomic studies of monotreme toxins. Further, we synthesize current ideas about the evolution of the venom system, which in the platypus is likely to have been retained from a venomous ancestor, whilst being lost in the echidnas. We also outline several research directions and outstanding questions that would be productive to address in future research. An improved characterization of mammalian venoms will not only yield new toxins with potential therapeutic uses, but will also aid in our understanding of the way that this unusual trait evolves.

  3. Tracing monotreme venom evolution in the genomics era.

    Science.gov (United States)

    Whittington, Camilla M; Belov, Katherine

    2014-04-02

    The monotremes (platypuses and echidnas) represent one of only four extant venomous mammalian lineages. Until recently, monotreme venom was poorly understood. However, the availability of the platypus genome and increasingly sophisticated genomic tools has allowed us to characterize platypus toxins, and provides a means of reconstructing the evolutionary history of monotreme venom. Here we review the physiology of platypus and echidna crural (venom) systems as well as pharmacological and genomic studies of monotreme toxins. Further, we synthesize current ideas about the evolution of the venom system, which in the platypus is likely to have been retained from a venomous ancestor, whilst being lost in the echidnas. We also outline several research directions and outstanding questions that would be productive to address in future research. An improved characterization of mammalian venoms will not only yield new toxins with potential therapeutic uses, but will also aid in our understanding of the way that this unusual trait evolves.

  4. The Snake Venom Rhodocytin from Calloselasma rhodostoma—A Clinically Important Toxin and a Useful Experimental Tool for Studies of C-Type Lectin-Like Receptor 2 (CLEC-2)

    Science.gov (United States)

    Bruserud, Øyvind

    2013-01-01

    The snake venom, rhodocytin, from the Malayan viper, Calloselasma rhodostoma, and the endogenous podoplanin are identified as ligands for the C-type lectin-like receptor 2 (CLEC-2). The snakebites caused by Calloselasma rhodostoma cause a local reaction with swelling, bleeding and eventually necrosis, together with a systemic effect on blood coagulation with distant bleedings that can occur in many different organs. This clinical picture suggests that toxins in the venom have effects on endothelial cells and vessel permeability, extravasation and, possibly, activation of immunocompetent cells, as well as effects on platelets and the coagulation cascade. Based on the available biological studies, it seems likely that ligation of CLEC-2 contributes to local extravasation, inflammation and, possibly, local necrosis, due to microthrombi and ischemia, whereas other toxins may be more important for the distant hemorrhagic complications. However, the venom contains several toxins and both local, as well as distant, symptoms are probably complex reactions that cannot be explained by the effects of rhodocytin and CLEC-2 alone. The in vivo reactions to rhodocytin are thus examples of toxin-induced crosstalk between coagulation (platelets), endothelium and inflammation (immunocompetent cells). Very few studies have addressed this crosstalk as a part of the pathogenesis behind local and systemic reactions to Calloselasma rhodostoma bites. The author suggests that detailed biological studies based on an up-to-date methodology of local and systemic reactions to Calloselasma rhodostoma bites should be used as a hypothesis-generating basis for future functional studies of the CLEC-2 receptor. It will not be possible to study the effects of purified toxins in humans, but the development of animal models (e.g., cutaneous injections of rhodocytin to mimic snakebites) would supplement studies in humans. PMID:23594438

  5. Tc 99m - scorpion venom: labelling, biodistribution and scintiimaging

    International Nuclear Information System (INIS)

    Murugesan, S.; Noronha, O.P.D.; Samuel, A.M.; Murthy, K. Radha Krishna

    1999-01-01

    Labelling of scorpion (Mesobuthus tamulus concanesis Pocock) venom was successfully achieved with Tc 99m using direct tin reduction procedure. Biodistribution studies were carried out in Wistar rats at different time intervals after i.v. administration of the labelled venom. Scintiimages were obtained after scorpion envenoming using a large field of view gamma camera to ascertain the pharmacological action of venom in the body. Within 5 min of administration, labelled venom was found in the blood (27.7%), muscle (30.11%), bone (13.3%), kidneys (11.5%), liver (10.4%) and other organs. The level of venom in the kidneys was higher than in the liver. The labelled venom was excreted through renal and hepatobiliary pathways. An immunoreactivity study was carried out in rabbits after i.v. injection of labelled scorpion venom followed by the injection of the species specific antivenom. A threefold increase in uptake by the kidneys ss was observed compared with that seen with scorpion venom alone. the neutralisation of the venom in the kidneys was higher than in the liver. (author)

  6. The effects of hybridization on divergent venom phenotypes: Characterization of venom from Crotalus scutulatus scutulatus × Crotalus oreganus helleri hybrids.

    Science.gov (United States)

    Smith, Cara Francesca; Mackessy, Stephen P

    2016-09-15

    Hybridization between divergent species can be analyzed to elucidate expression patterns of distinct parental characteristics, as well as to provide information about the extent of reproductive isolation between species. A known hybrid cross between two rattlesnakes with highly divergent venom phenotypes provided the opportunity to examine occurrence of parental venom characteristics in the F1 hybrids as well as ontogenetic shifts in the expression of these characters as the hybrids aged. Although venom phenotypes of adult rattlesnake venoms are known for many species, the effect of hybridization on phenotype inheritance is not well understood, and effects of hybridization on venom ontogeny have not yet been investigated. The current study investigates both phenomena resulting from the hybridization of a male snake with type I degradative venom, Crotalus oreganus helleri (Southern Pacific Rattlesnake), and a female snake with type II highly toxic venom, Crotalus scutulatus scutulatus (Mojave Rattlesnake). SDS-PAGE, enzymology, Western blot and reversed phase HPLC (RP-HPLC) were used to characterize the venom of the C. o. helleri male, the C. s. scutulatus female and their two hybrid offspring as they aged. In general, Crotalus o. helleri × C. s. scutulatus hybrid venoms appeared to exhibit overlapping parental venom profiles, and several different enzyme activity patterns. Both hybrids expressed C. o. helleri father-specific myotoxins as well as C. s. scutulatus mother-specific Mojave toxin. Snake venom metalloprotease activity displayed apparent sex-influenced expression patterns, while hybrid serine protease activities were intermediate to parental activities. The C. s. scutulatus × C. o. helleri hybrid male's venom profile provided the strongest evidence that type I and type II venom characteristics are expressed simultaneously in hybrid venoms, as this snake contained distinctive characteristics of both parental species. However, the possibility of

  7. Human antibody fragments specific for Bothrops jararacussu venom reduce the toxicity of other Bothrops sp. venoms.

    Science.gov (United States)

    Roncolato, Eduardo Crosara; Pucca, Manuela Berto; Funayama, Jaqueline Carlos; Bertolini, Thaís Barboza; Campos, Lucas Benício; Barbosa, José Elpidio

    2013-01-01

    Approximately 20,000 snakebites are registered each year in Brazil. The classical treatment for venomous snakebite involves the administration of sera obtained from immunized horses. Moreover, the production and care of horses is costly, and the use of heterologous sera can cause hypersensitivity reactions. The production of human antibody fragments by phage display technology is seen as a means of overcoming some of these disadvantages. The studies here attempted to test human monoclonal antibodies specific to Bothrops jararacussu against other Bothrops sp. venoms, using the Griffin.1 library of human single-chain fragment-variable (scFv) phage antibodies. Using the Griffin.1 phage antibody library, this laboratory previously produced scFvs capable of inhibiting the phospholipase and myotoxic activities of Bothrops jararacussu venom. The structural and functional similarities of the various forms of phospholipase A2 (PLA₂) in Bothrops venom served as the basis for the present study wherein the effectiveness of those same scFvs were evaluated against B. jararaca, B. neuwiedi, and B. moojeni venoms. Each clone was found to recognize all three Bothrops venoms, and purified scFvs partially inhibited their in vitro phospholipase activity. In vivo assays demonstrated that the scFv clone P2B7 reduced myotoxicity and increased the survival of animals that received the test venoms. The results here indicate that the scFv P2B7 is a candidate for inclusion in a mixture of specific antibodies to produce a human anti-bothropic sera. This data demonstrates that the human scFv P2B7 represents an alternative therapeutic approach to heterologous anti-bothropic sera available today.

  8. An overview of Bothrops erythromelas venom

    OpenAIRE

    Nery,Neriane Monteiro; Luna,Karla Patrícia; Fernandes,Carla Freire Celedônio; Zuliani,Juliana Pavan

    2016-01-01

    Abstract This review discusses studies on the venom of Bothrops erythromelas published over the past 36 years. During this period, many contributions have been made to understand the venomous snake, its venom, and its experimental and clinical effects better. The following chronological overview is based on 29 articles that were published between 1979 and 2015, with emphasis on diverse areas. The complexity of this task demands an integration of multidisciplinary research tools to study toxin...

  9. Snake Venom Metalloproteinases

    Directory of Open Access Journals (Sweden)

    Gâz Florea Şerban Andrei

    2016-03-01

    Full Text Available As more data are generated from proteome and transcriptome analysis revealing that metalloproteinases represent most of the Viperid and Colubrid venom components authors decided to describe in a short review a classification and some of the multiple activities of snake venom metalloproteinases. SVMPs are classified in three major classes (P-I, P-II and P-III classes based on the presence of various domain structures and according to their domain organization. Furthermore, P-II and P-III classes were separated in subclasses based on distinctive post-translational modifications. SVMPs are synthesized in a latent form, being activated through a Cys-switch mechanism similar to matrix metalloproteinases. Most of the metalloproteinases of the snake venom are responsible for the hemorrhagic events but also have fibrinogenolytic activity, poses apoptotic activity, activate blood coagulation factor II and X, inhibit platelet aggregation, demonstrating that SVMPs have multiple functions in addition to well-known hemorrhagic function.

  10. Tityus serrulatus venom--A lethal cocktail.

    Science.gov (United States)

    Pucca, Manuela Berto; Cerni, Felipe Augusto; Pinheiro Junior, Ernesto Lopes; Bordon, Karla de Castro Figueiredo; Amorim, Fernanda Gobbi; Cordeiro, Francielle Almeida; Longhim, Heloisa Tavoni; Cremonez, Caroline Marroni; Oliveira, Guilherme Honda; Arantes, Eliane Candiani

    2015-12-15

    Tityus serrulatus (Ts) is the main scorpion species of medical importance in Brazil. Ts venom is composed of several compounds such as mucus, inorganic salts, lipids, amines, nucleotides, enzymes, kallikrein inhibitor, natriuretic peptide, proteins with high molecular mass, peptides, free amino acids and neurotoxins. Neurotoxins are considered the most responsible for the envenoming syndrome due to their pharmacological action on ion channels such as voltage-gated sodium (Nav) and potassium (Kv) channels. The major goal of this review is to present important advances in Ts envenoming research, correlating both the crude Ts venom and isolated toxins with alterations observed in all human systems. The most remarkable event lies in the Ts induced massive releasing of neurotransmitters influencing, directly or indirectly, the entire body. Ts venom proved to extremely affect nervous and muscular systems, to modulate the immune system, to induce cardiac disorders, to cause pulmonary edema, to decrease urinary flow and to alter endocrine, exocrine, reproductive, integumentary, skeletal and digestive functions. Therefore, Ts venom possesses toxins affecting all anatomic systems, making it a lethal cocktail. However, its low lethality may be due to the low venom mass injected, to the different venom compositions, the body characteristics and health conditions of the victim and the local of Ts sting. Furthermore, we also described the different treatments employed during envenoming cases. In particular, throughout the review, an effort will be made to provide information from an extensive documented studies concerning Ts venom in vitro, in animals and in humans (a total of 151 references). Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Fibrin(ogen)olytic activity of bumblebee venom serine protease

    International Nuclear Information System (INIS)

    Qiu Yuling; Choo, Young Moo; Yoon, Hyung Joo; Jia Jingming; Cui Zheng; Wang Dong; Kim, Doh Hoon; Sohn, Hung Dae; Jin, Byung Rae

    2011-01-01

    Bee venom is a rich source of pharmacologically active components; it has been used as an immunotherapy to treat bee venom hypersensitivity, and venom therapy has been applied as an alternative medicine. Here, we present evidence that the serine protease found in bumblebee venom exhibits fibrin(ogen)olytic activity. Compared to honeybee venom, bumblebee venom contains a higher content of serine protease, which is one of its major components. Venom serine proteases from bumblebees did not cross-react with antibodies against the honeybee venom serine protease. We provide functional evidence indicating that bumblebee (Bombus terrestris) venom serine protease (Bt-VSP) acts as a fibrin(ogen)olytic enzyme. Bt-VSP activates prothrombin and directly degrades fibrinogen into fibrin degradation products. However, Bt-VSP is not a plasminogen activator, and its fibrinolytic activity is less than that of plasmin. Taken together, our results define roles for Bt-VSP as a prothrombin activator, a thrombin-like protease, and a plasmin-like protease. These findings offer significant insight into the allergic reaction sequence that is initiated by bee venom serine protease and its potential usefulness as a clinical agent in the field of hemostasis and thrombosis. - Graphical abstract: Display Omitted Highlights: → Bumblebee venom serine protease (Bt-VSP) is a fibrin(ogen)olytic enzyme. → Bt-VSP activates prothrombin. → Bt-VSP directly degrades fibrinogen into fibrin degradation products. → Bt-VSP is a hemostatically active protein that is a potent clinical agent.

  12. The effects of Bee Venom and Sweet Bee Venom to the preadipocyte proliferation and lipolysis of adipocyte, localized fat accumulation

    OpenAIRE

    Min-Ki Kim; Si Hyeong, Lee; Jo Young Shin; Kang San Kim; Nam Guen Cho; Ki Rok Kwon; Tae Jin Rhim

    2007-01-01

    Objectives : The purpose of this study was to investigate the effects of Bee Venom and Sweet Bee Venom to the primary cultured preadipocyte, adipocytes, and localized fat tissue. Methods : Decreased preadipocyte proliferation and decreased lipogenesis are mechanisms to reduce obesity. So, preadipocytes and adipocytes were performed on cell cultures using Sprague-Dawley Rats and treated with 0.01-1mg/㎖ Bee Venom and Sweet Bee Venom. And porcine skin including fat tissue after treated Bee Ve...

  13. Improved sensitivity to venom specific-immunoglobulin E by spiking with the allergen component in Japanese patients suspected of Hymenoptera venom allergy.

    Science.gov (United States)

    Yoshida, Naruo; Hirata, Hirokuni; Watanabe, Mineaki; Sugiyama, Kumiya; Arima, Masafumi; Fukushima, Yasutsugu; Ishii, Yoshiki

    2015-07-01

    Ves v 5 and Pol d 5, which constitute antigen 5, are recognized as the major, most potent allergens of family Vespidae. Several studies have reported the diagnostic sensitivity of the novel recombinant (r)Ves v 5 and rPol d 5 allergens in routine clinical laboratory settings by analyzing a group of Vespula and Polistes venom-allergic patients. In this study, we analyzed the sensitivity to venom specific (s)IgE by spiking with rVes v 5 and rPol d 5 in Japanese patients suspected of Hymenoptera venom allergy. Subjects were 41 patients who had experienced systemic reactions to hornet and/or paper wasp stings. Levels of serum sIgE against hornet and paper wasp venom by spiking with rVes v 5 and rPold d 5, respectively, as improvement testing, compared with hornet and paper wasp venom, as conventional testing, were measured by ImmunoCAP. Of the 41 patients, 33 (80.5%) were positive (≥0.35 UA/ml) for hornet and/or paper wasp venom in conventional sIgE testing. sIgE levels correlated significantly (P venom (R = 0.78) in improvement testing and conventional testing. To determine specificity, 20 volunteers who had never experienced a Hymenoptera sting were all negative for sIgE against these venoms in both improvement and conventional testing. Improved sensitivity was seen in 8 patients negative for sIgE against both venoms in conventional testing, while improvement testing revealed sIgE against hornet or paper wasp venom in 5 (total 38 (92.7%)) patients. The measurement of sIgE following spiking of rVes v 5 and rPol d 5 by conventional testing in Japanese subjects with sIgE against hornet and paper wasp venom, respectively, improved the sensitivity for detecting Hymenoptera venom allergy. Improvement testing for measuring sIgE levels against hornet and paper wasp venom has potential for serologically elucidating Hymenoptera allergy in Japan. Copyright © 2015 Japanese Society of Allergology. Production and hosting by Elsevier B.V. All rights reserved.

  14. Snake antivenom for snake venom induced consumption coagulopathy

    OpenAIRE

    Maduwage, Kalana; Buckley, Nick A.; Janaka de Silva, H.; Lalloo, David; Isbister, Geoffrey K.

    2015-01-01

    Background\\ud \\ud Snake venom induced consumption coagulopathy is a major systemic effect of envenoming. Observational studies suggest that antivenom improves outcomes for venom induced consumption coagulopathy in some snakebites and not others. However, the effectiveness of snake antivenom in all cases of venom induced consumption coagulopathy is controversial.\\ud \\ud Objectives\\ud \\ud To assess the effect of snake antivenom as a treatment for venom induced consumption coagulopathy in people...

  15. The prevalence ofantiphospholipid antibodies in women with ...

    African Journals Online (AJOL)

    patients. PTT, APTT, kaolin clotting time (KCT),. Russell viper venom time CRvvn were measured in all the subjects, who were also assessed for the presence of anticardiolipin antibodies. Blood was taken by venepuncture into a 0,1 volume of 3,8% trisodium citrate. Platelet-rich plasma (PRP) was prepared by centrifuging of ...

  16. Centipede Venoms and Their Components: Resources for Potential Therapeutic Applications

    Directory of Open Access Journals (Sweden)

    Md Abdul Hakim

    2015-11-01

    Full Text Available Venomous animals have evolved with sophisticated bio-chemical strategies to arrest prey and defend themselves from natural predators. In recent years, peptide toxins from venomous animals have drawn considerable attention from researchers due to their surprising chemical, biochemical, and pharmacological diversity. Similar to other venomous animals, centipedes are one of the crucial venomous arthropods that have been used in traditional medicine for hundreds of years in China. Despite signifying pharmacological importance, very little is known about the active components of centipede venoms. More than 500 peptide sequences have been reported in centipede venomous glands by transcriptome analysis, but only a small number of peptide toxins from centipede has been functionally described. Like other venomous animals such as snakes, scorpions, and spiders, the venom of centipedes could be an excellent source of peptides for developing drugs for treatments as well as bio-insecticides for agrochemical applications. Although centipede venoms are yet to be adequately studied, the venom of centipedes as well as their components described to date, should be compiled to help further research. Therefore, based on previous reports, this review focusses on findings and possible therapeutic applications of centipede venoms as well as their components.

  17. Analyses of venom spitting in African cobras (Elapidae: Serpentes ...

    African Journals Online (AJOL)

    ... all four species. The low levels of variation in venom volume, coupled with the variation in venom dispersal pattern, suggests a complexity to the regulation of venom flow in spitting cobras beyond simply neuromuscular control of the extrinsic venom gland. Keywords: defensive behaviour, snake, teeth, Naja, Hemachatus ...

  18. Radioactive elements definition in composition of snake venom

    International Nuclear Information System (INIS)

    Mekhrabova, M.A.; Topchieva, Sh.F.; Abiev, G.A.; Nagiev, Dj.A.

    2010-11-01

    Full text: The given article presents questions concerned to usage of snake venom in medicine and pharmacy for medicinal drugs production, zootoxin base antidotes, thorough treatment of many deseases, especially onkological, also have a widespread in biology as a specific test-material for biological sistem analises. It is experimentally proved that certain amount of snake venom can replace morphine drugs, taking into acount that snake venom solutions make longer prolonged influence than other drugs, vithout causing an accustoming. It is also marked about possibility of usage of snake venom for cancer treatment. Many expeditions had been conducted with the purpose to research snake venom crytals on the territory of Azerbaijan. During these expeditions snakes capturing had been made with the purpose of taking the venom and also soil samples had been taken in order to research the quantity of radioactive elements. Measurements made with the help of electronic microscope C anberra . Revealed uranium activity in spectrum of venom as a result of radiation background, which appears under influence of ionizing radiation on the environment. On the base of analises data it can be ascertained that snake venom can be used for production of medicinal and also other necessary drugs. [ru

  19. Guillain-Barré syndrome following bee venom acupuncture.

    Science.gov (United States)

    Lee, Hyun Jo; Park, In Seok; Lee, Jon-In; Kim, Joong-Seok

    2015-01-01

    Bee venom acupuncture has been widely used in Oriental medicine with limited evidence of effectiveness. Most of the complications due to bee venom acupuncture are local or systemic allergic reactions. However, serious medical and neurological complications have also been reported. We herein describe the treatment of a 68-year-old woman who developed progressive quadriplegia 10 days after receiving multiple honeybee venom sting acupuncture treatments. The electrophysiological findings were consistent with Guillain-Barré syndrome (GBS). The temporal relationship between the development of GBS and honeybee venom sting acupuncture is suggestive of a cause-and-effect relationship, although the precise pathophysiology and causative components in honeybee venom need to be verified.

  20. Snake venomics and antivenomics of Bothrops atrox venoms from Colombia and the Amazon regions of Brazil, Perú and Ecuador suggest the occurrence of geographic variation of venom phenotype by a trend towards paedomorphism.

    Science.gov (United States)

    Núñez, Vitelbina; Cid, Pedro; Sanz, Libia; De La Torre, Pilar; Angulo, Yamileth; Lomonte, Bruno; Gutiérrez, José María; Calvete, Juan J

    2009-11-02

    The venom proteomes of Bothrops atrox from Colombia, Brazil, Ecuador, and Perú were characterized using venomic and antivenomic strategies. Our results evidence the existence of two geographically differentiated venom phenotypes. The venom from Colombia comprises at least 26 different proteins belonging to 9 different groups of toxins. PI-metalloproteinases and K49-PLA(2) molecules represent the most abundant toxins. On the other hand, the venoms from Brazilian, Ecuadorian, and Peruvian B. atrox contain predominantly PIII-metalloproteinases. These toxin profiles correlate with the venom phenotypes of adult and juvenile B. asper from Costa Rica, respectively, suggesting that paedomorphism represented a selective trend during the trans-Amazonian southward expansion of B. atrox through the Andean Corridor. The high degree of crossreactivity of a Costa Rican polyvalent (Bothrops asper, Lachesis stenophrys, Crotalus simus) antivenom against B. atrox venoms further evidenced the close evolutionary kinship between B. asper and B. atrox. This antivenom was more efficient immunodepleting proteins from the venoms of B. atrox from Brazil, Ecuador, and Perú than from Colombia. Such behaviour may be rationalized taking into account the lower content of poorly immunogenic toxins, such as PLA(2) molecules and PI-SVMPs in the paedomorphic venoms. The immunological profile of the Costa Rican antivenom strongly suggests the possibility of using this antivenom for the management of snakebites by B. atrox in Colombia and the Amazon regions of Ecuador, Perú and Brazil.

  1. Viper's bugloss (Echium spp. honey typing and establishing the pollen threshold for monofloral honey.

    Directory of Open Access Journals (Sweden)

    Tomás Martín Arroyo

    Full Text Available Honey samples (n = 126 from Castilla-La Mancha (Central Spain were characterized based on their physicochemical properties and a melissopalynological analysis. The latter showed that Echium pollen type was the dominant palynomorph in most samples, representing at least 30% of the pollen in each sample. As anticipated, a relationship was observed between the proportion of this pollen and the properties of the honey. One goal of this study was to set a threshold that defines the percentage of pollen necessary for Viper's bugloss honey to be considered monofloral or multifloral. This is a mandatory requirement in light of the publication of the European Directive 2014/63/EU establishing the regulations governing the labelling and control of honey to eradicate fraud (BOE n° 147, June 2015. By analyzing how the proportions of Echium pollen type affected the physicochemical and sensory parameters of the honey, the honeys analyzed could be segregated into multifloral and monofloral honeys. The data indicates that the proportion of pollen necessary to discriminate monofloral Viper's bugloss honey lies at 70%.

  2. Simplification of intradermal skin testing in Hymenoptera venom allergic children.

    Science.gov (United States)

    Cichocka-Jarosz, Ewa; Stobiecki, Marcin; Brzyski, Piotr; Rogatko, Iwona; Nittner-Marszalska, Marita; Sztefko, Krystyna; Czarnobilska, Ewa; Lis, Grzegorz; Nowak-Węgrzyn, Anna

    2017-03-01

    The direct comparison between children and adults with Hymenoptera venom anaphylaxis (HVA) has never been extensively reported. Severe HVA with IgE-documented mechanism is the recommendation for venom immunotherapy, regardless of age. To determine the differences in the basic diagnostic profile between children and adults with severe HVA and its practical implications. We reviewed the medical records of 91 children and 121 adults. Bee venom allergy was exposure dependent, regardless of age (P bee venom allergic group, specific IgE levels were significantly higher in children (29.5 kU A /L; interquartile range, 11.30-66.30 kU A /L) compared with adults (5.10 kU A /L; interquartile range, 2.03-8.30 kU A /L) (P venom were higher in bee venom allergic children compared with the wasp venom allergic children (P venom. At concentrations lower than 0.1 μg/mL, 16% of wasp venom allergic children and 39% of bee venom allergic children had positive intradermal test results. The median tryptase level was significantly higher in adults than in children for the entire study group (P = .002), as well as in bee (P = .002) and wasp venom allergic groups (P = .049). The basic diagnostic profile in severe HVA reactors is age dependent. Lower skin test reactivity to culprit venom in children may have practical application in starting the intradermal test procedure with higher venom concentrations. Copyright © 2016 American College of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.

  3. Cysteine-free peptides in scorpion venom: geographical distribution ...

    African Journals Online (AJOL)

    GRACE

    2006-12-29

    Dec 29, 2006 ... In 1993, the first cysteine-free peptide was isolated from scorpion venom. ..... Venom is produced by 2 venom glands in the tail and stored in 2 ... The resistance of a variety of bacterial micro-organisms .... Biopolymers 55: 4-30.

  4. Connectivity maps for biosimilar drug discovery in venoms: the case of Gila monster venom and the anti-diabetes drug Byetta®.

    Science.gov (United States)

    Aramadhaka, Lavakumar Reddy; Prorock, Alyson; Dragulev, Bojan; Bao, Yongde; Fox, Jay W

    2013-07-01

    Like most natural product libraries animal venoms have long been recognized as potentially rich source of biologically active molecules with the potential to be mined for the discovery of drugs, drug leads and/or biosimilars. In this work we demonstrate as a proof of concept a novel approach to explore venoms for potential biosimilarity to other drugs based on their ability to alter the transcriptomes of test cell lines followed by informatic searches and Connectivity Mapping to match the action of the venom on the cell gene expression to that of other drugs in the Connectivity Map (C-Map) database. As our test animal venom we chose Heloderma suspectum venom (Gila monster) since exendin-4, a glucagon-like peptide 1 receptor agonist, isolated from the venom is currently on the market to treat type 2 diabetes. The action of Byetta(®) (exentide, synthetic exendin-4), was also used in transcriptome studies. Analysis of transcriptomes from cells treated with the venom or the drug showed similarities as well as differences. The former case was primarily attributed to the fact that Gila monster venom likely contains a variety of biologically active molecules that could alter the MCF7 cell transcriptome compared to that of the single perturbant Byetta(®). Using Ingenuity Pathway Analysis software, insulin-like growth factor 1 signaling was identified in the category of "Top Canonical Pathways" for both the venom and Byetta(®). In the category of "Top Molecules" up-regulated, both venom and Byetta(®) shared IL-8, cyclic AMP-dependent transcription factor 3 (ATF-3), neuron-derived orphan receptor 1 (NR4A3), dexamethasone-induced Ras-related protein 1 (RASD1) and early growth response protein 1, (EGR-1) all with potential relevance in diabetes. Using Connectivity Mapping, Gila monster venom showed positive correlation with 1732 instances and negative correlation with 793 instances in the Connectivity database whereas Byetta(®) showed positive correlation with 1692

  5. Accelerated proteomic visualization of individual predatory venoms of Conus purpurascens reveals separately evolved predation-evoked venom cabals.

    Science.gov (United States)

    Himaya, S W A; Marí, Frank; Lewis, Richard J

    2018-01-10

    Cone snail venoms have separately evolved for predation and defense. Despite remarkable inter- and intra-species variability, defined sets of synergistic venom peptides (cabals) are considered essential for prey capture by cone snails. To better understand the role of predatory cabals in cone snails, we used a high-throughput proteomic data mining and visualisation approach. Using this approach, the relationship between the predatory venom peptides from nine C. purpurascens was systematically analysed. Surprisingly, potentially synergistic levels of κ-PVIIA and δ-PVIA were only identified in five of nine specimens. In contrast, the remaining four specimens lacked significant levels of these known excitotoxins and instead contained high levels of the muscle nAChR blockers ψ-PIIIE and αA-PIVA. Interestingly, one of nine specimens expressed both cabals, suggesting that these sub-groups might represent inter-breeding sub-species of C. purpurascens. High throughput cluster analysis also revealed these two cabals clustered with distinct groups of venom peptides that are presently uncharacterised. This is the first report showing that the cone snails of the same species can deploy two separate and distinct predatory cabals for prey capture and shows that the cabals deployed by this species can be more complex than presently realized. Our semi-automated proteomic analysis facilitates the deconvolution of complex venoms to identify co-evolved families of peptides and help unravel their evolutionary relationships in complex venoms.

  6. Effects of gamma radiation on bee venom: preliminary studies

    International Nuclear Information System (INIS)

    Costa, H.; Boni-Mitake, M.; Souza, C.F.; Rogero, J.R.

    1999-01-01

    Africanized honeybees are very common insects in Brazil and frequently cause accidents followed by important immunological reactions and even deaths. Their venoms are composed of a complex mixture of substances of general biological actions. several works utilizing ionizing radiation showed that it is able to modify protein structures, and successfully detoxify snake venoms toxins, although maintaining its immunological properties. The main objective of this paper was to study the effects of gamma radiation on bee venom, regarding some biochemical and toxicological aspects. Africanized Apis melllifera whole venom (2 mg/ml) in 0.15 M Na Cl solution was irradiated with 2 kGy in a 60 Co source. Preliminary studies has been carried out in order to identify some biochemical changes after irradiation. Concerning this, irradiated and native venom were submitted to a molecular exclusion chromatography (Sephadex G-100), UV absorption spectrum and protein concentration analysis. It could be seen that irradiated bee venom spectrum presented differences when compared to native bee venom, suggesting that some structural alterations has occurred. Protein concentration and chromatography profiles were not changes after irradiation. In order to evaluate the toxicity a lethality assay (L D 50 ) has been performed with both venoms, and irradiated venom showed to be less toxic than native one. (author)

  7. Irradiated cobra (Naja naja) venom for biomedical applications

    International Nuclear Information System (INIS)

    Kankonkar, S.R.; Kankonkar, R.C.; Gaitonde, B.B.

    1975-01-01

    Ionizing radiation is known to cause damage to proteins in aqueous solutions in a selective manner, thereby producing remarkable changes in their properties. Since venoms are very rich in proteins, it was felt that they would also show such changes upon irradiation. It was of interest to know if one could get rid of the toxicity and retain the immunogenicity of the venom by suitable choice of radiation dose and strength of venom solution. If so, the method could be profitably exploited for the rapid preparation of venom toxoid and this could be expected to have many applications in the biological sciences. Accordingly, laboratory investigations were undertaken on the effect of gamma radiation on cobra (Naja naja) venom. To avoid drastic changes, solutions of cobra venom having low protein content were irradiated with gamma radiation from a cobalt-60 source. The results obtained with 0.01 to 1.0% venom solutions are found to be encouraging. The solutions did not manifest any toxicity in mice. For the immunogenicity test, guinea pigs were immunized with varying doses of the irradiated cobra venom and the immunized guinea pigs were found to survive when challenged with as big a dose as 10 MLD (i.e. minimum lethal dose, approximately 1 mg). The paper describes the experimental details and the results of the observations. (author)

  8. Pharmacological evaluation of bee venom and melittin

    Directory of Open Access Journals (Sweden)

    Camila G. Dantas

    Full Text Available The objective of this study was to identify the pharmacological effects of bee venom and its major component, melittin, on the nervous system of mice. For the pharmacological analysis, mice were treated once with saline, 0.1 or 1.2 mg/kg of bee venom and 0.1 mg/kg of melittin, subcutaneously, 30 min before being submitted to behavioral tests: locomotor activity and grooming (open-field, catalepsy, anxiety (elevated plus-maze, depression (forced swimming test and apomorphine-induced stereotypy. Haloperidol, imipramine and diazepam were administered alone (positive control or as a pre-treatment (haloperidol.The bee venom reduced motor activity and promoted cataleptic effect, in a similar manner to haloperidol.These effects were decreased by the pretreatment with haloperidol. Both melittin and bee venom decreased the apomorphine-induced stereotypies. The data indicated the antipsychotic activity of bee venom and melittin in a murine model.

  9. Role of the inflammasome in defense against venoms

    Science.gov (United States)

    Palm, Noah W.; Medzhitov, Ruslan

    2013-01-01

    Venoms consist of a complex mixture of toxic components that are used by a variety of animal species for defense and predation. Envenomation of mammalian species leads to an acute inflammatory response and can lead to the development of IgE-dependent venom allergy. However, the mechanisms by which the innate immune system detects envenomation and initiates inflammatory and allergic responses to venoms remain largely unknown. Here we show that bee venom is detected by the NOD-like receptor family, pyrin domain-containing 3 inflammasome and can trigger activation of caspase-1 and the subsequent processing and unconventional secretion of the leaderless proinflammatory cytokine IL-1β in macrophages. Whereas activation of the inflammasome by bee venom induces a caspase-1–dependent inflammatory response, characterized by recruitment of neutrophils to the site or envenomation, the inflammasome is dispensable for the allergic response to bee venom. Finally, we find that caspase-1–deficient mice are more susceptible to the noxious effects of bee and snake venoms, suggesting that a caspase-1–dependent immune response can protect against the damaging effects of envenomation. PMID:23297192

  10. Important biological activities induced by Thalassophryne maculosa fish venom.

    Science.gov (United States)

    Sosa-Rosales, Josefina Ines; Piran-Soares, Ana Amélia; Farsky, Sandra H P; Takehara, Harumi Ando; Lima, Carla; Lopes-Ferreira, Mônica

    2005-02-01

    The accidents caused by Thalassophryne maculosa fish venoms are frequent and represent a public health problem in some regions of Venezuela. Most accidents occur in the fishing communities and tourists. The clinical picture is characterized by severe pain, dizziness, fever, edema, and necrosis. Due to the lack of efficient therapy it may take weeks, or even months for complete recovery of the victims. The investigations presented here were undertaken to assess the eletrophoretical profile and principal biological properties of the T. maculosa venom. Venom obtained from fresh captured specimens of this fish was tested in vitro or in animal models for a better characterization of its toxic activities. In contrast to other fish venoms, T. maculosa venom showed relative low LD50. The injection of venom in the footpad of mice reproduced a local inflammatory lesion similar to that described in humans. Significant increase of the nociceptive and edematogenic responses was observed followed within 48 h by necrosis. Pronounced alterations on microvascular hemodynamics were visualized after venom application. These alterations were represented by fibrin depots and thrombus formation followed by complete venular stasis and transient arteriolar contraction. T. maculosa venom is devoid of phospholipase A2 activity, but the venom showed proteolytic and myotoxic activities. SDS-Page analysis of the crude venom showed important bands: one band located above 97 M(w), one band between 68 and 97 M(w), one major band between 29 and 43 M(w) and the last one located below 18.4 M(w) Then, the results presented here support that T. maculosa venom present a mixture of bioactive toxins involved in a local inflammatory lesion.

  11. Bee venom therapy: Potential mechanisms and therapeutic applications.

    Science.gov (United States)

    Zhang, Shuai; Liu, Yi; Ye, Yang; Wang, Xue-Rui; Lin, Li-Ting; Xiao, Ling-Yong; Zhou, Ping; Shi, Guang-Xia; Liu, Cun-Zhi

    2018-04-11

    Bee venom is a very complex mixture of natural products extracted from honey bee which contains various pharmaceutical properties such as peptides, enzymes, biologically active amines and nonpeptide components. The use of bee venom into the specific points is so called bee venom therapy, which is widely used as a complementary and alternative therapy for 3000 years. A growing number of evidence has demonstrated the anti-inflammation, the anti-apoptosis, the anti-fibrosis and the anti-arthrosclerosis effects of bee venom therapy. With these pharmaceutical characteristics, bee venom therapy has also been used as the therapeutic method in treating rheumatoid arthritis, amyotrophic lateral sclerosis, Parkinson's disease, Alzheimer's disease, liver fibrosis, atherosclerosis, pain and others. Although widely used, several cases still reported that bee venom therapy might cause some adverse effects, such as local itching or swelling. In this review, we summarize its potential mechanisms, therapeutic applications, and discuss its existing problems. Copyright © 2018 Elsevier Ltd. All rights reserved.

  12. Venom ophthalmia caused by venoms of spitting elapid and other snakes: Report of ten cases with review of epidemiology, clinical features, pathophysiology and management.

    Science.gov (United States)

    Chu, Edward R; Weinstein, Scott A; White, Julian; Warrell, David A

    2010-09-01

    Venom ophthalmia caused by venoms of spitting elapid and other snakes: report of ten cases with review of epidemiology, clinical features, pathophysiology and management. Chu, ER, Weinstein, SA, White, J and Warrell, DA. Toxicon XX:xxx-xxx. We present ten cases of ocular injury following instillation into the eye of snake venoms or toxins by spitting elapids and other snakes. The natural history of spitting elapids and the toxinology of their venoms are reviewed together with the medical effects and management of venom ophthalmia in humans and domestic animals including both direct and allergic effects of venoms. Although the clinical features and management of envenoming following bites by spitting elapids (genera Naja and Hemachatus) are well documented, these snakes are also capable of "spraying" venom towards the eyes of predators, a defensive strategy that causes painful and potentially blinding ocular envenoming (venom ophthalmia). Little attention has been given to the detailed clinical description, clinical evolution and efficacy of treatment of venom ophthalmia and no clear management guidelines have been formulated. Knowledge of the pathophysiology of ocular envenoming is based largely on animal studies and a limited body of clinical information. A few cases of ocular exposure to venoms from crotaline viperids have also been described. Venom ophthalmia often presents with pain, hyperemia, blepharitis, blepharospasm and corneal erosions. Delay or lack of treatment may result in corneal opacity, hypopyon and/or blindness. When venom is "spat" into the eye, cranial nerve VII may be affected by local spread of venom but systemic envenoming has not been documented in human patients. Management of venom ophthalmia consists of: 1) urgent decontamination by copious irrigation 2) analgesia by vasoconstrictors with weak mydriatic activity (e.g. epinephrine) and limited topical administration of local anesthetics (e.g. tetracaine) 3) exclusion of corneal abrasions

  13. In vitro neutralization of the scorpion, Buthus tamulus venom toxicity.

    Science.gov (United States)

    Venkateswarlu, Y; Janakiram, B; Reddy, G R

    1988-01-01

    Scorpion (Buthus tamulus) venom was subjected to neutralization by treating the venom with various chemicals such as hydrochloric acid, sodium hydroxide, thiourea, formaldehyde, zinc sulphate, acetic acid and trichloroacetic acid. The venom was also subjected to heat treatment. The levels of total protein, free amino acids and protease activity in neutralized venom decreased significantly. The decrease in venom protein and free amino acids was in proportion to the duration of the heat treatment and the concentration of chemicals used except zinc sulphate, sodium hydroxide and thiourea. Protease activity of neutralized venom samples also showed a decrease except with zinc sulphate which enhanced the enzyme activity. Intramuscular injection of formaldehyde, trichlcroacetic acid and heat treated venoms into albino rats produced low mortality while thiourea and zinc sulphate were not effective in reducing the mortality. Hydrochloric acid and acetic acid treated venoms reduced the mortality by 50% with a decrease in the symptoms of envenomation. The changes were attributed to the denaturing of venom protein by chemical and heat treatments.

  14. Pitting corrosion as a mixed system: coupled deterministic-probabilistic simulation of pit growth

    Science.gov (United States)

    Ibrahim, Israr B. M.; Fonna, S.; Pidaparti, R.

    2018-05-01

    Stochastic behavior of pitting corrosion poses a unique challenge in its computational analysis. However, it also stems from electrochemical activity causing general corrosion. In this paper, a framework for corrosion pit growth simulation based on the coupling of the Cellular Automaton (CA) and Boundary Element Methods (BEM) is presented. The framework assumes that pitting corrosion is controlled by electrochemical activity inside the pit cavity. The BEM provides the prediction of electrochemical activity given the geometrical data and polarization curves, while the CA is used to simulate the evolution of pit shapes based on electrochemical activity provided by BEM. To demonstrate the methodology, a sample case of local corrosion cells formed in pitting corrosion with varied dimensions and polarization functions is considered. Results show certain shapes tend to grow in certain types of environments. Some pit shapes appear to pose a higher risk by being potentially significant stress raisers or potentially increasing the rate of corrosion under the surface. Furthermore, these pits are comparable to commonly observed pit shapes in general corrosion environments.

  15. Is Playing in the Pit Really the Pits?: Pain, Strength, Music Performance Anxiety, and Workplace Satisfaction in Professional Musicians in Stage, Pit, and Combined Stage/Pit Orchestras.

    Science.gov (United States)

    Kenny, Dianna T; Driscoll, Tim; Ackermann, Bronwen J

    2016-03-01

    Typically, Australian orchestral musicians perform on stage, in an orchestra pit, or in a combination of both workplaces. This study explored a range of physical and mental health indicators in musicians who played in these different orchestra types to ascertain whether orchestra environment was a risk factor affecting musician wellbeing. Participants comprised 380 full-time orchestral musicians from the eight major state orchestras in Australia comprised of two dedicated pit orchestras, three stage-only symphonic orchestras, and three mixed stage/pit orchestras. Participants completed a physical assessment and a range of self-report measures assessing performance-related musculoskeletal disorders (PRMD), physical characteristics including strength and perceived exertion, and psychological health, including music performance anxiety (MPA), workplace satisfaction, and bullying. Physical characteristics and performance-related musculoskeletal profiles were similar for most factors on the detailed survey completed by orchestra members. The exceptions were that pit musicians demonstrated greater shoulder and elbow strength, while mixed-workload orchestra musicians had greater flexibility Significantly more exertion was reported by pit musicians when rehearsing and performing. Stage/pit musicians reported less physical exertion when performing in the pit compared with performing on stage. Severity of MPA was significantly greater in pit musicians than mixed orchestra musicians. Pit musicians also reported more frequent bullying and lower job satisfaction compared with stage musicians. There were few differences in the objective physical measures between musicians in the different orchestra types. However, pit musicians appear more psychologically vulnerable and less satisfied with their work than musicians from the other two orchestra types. The physical and psychological characteristics of musicians who perform in different orchestra types have not been adequately

  16. Cross reactivity between European hornet and yellow jacket venoms.

    Science.gov (United States)

    Severino, M G; Caruso, B; Bonadonna, P; Labardi, D; Macchia, D; Campi, P; Passalacqua, G

    2010-08-01

    Cross-reactions between venoms may be responsible for multiple diagnostic positivities in hymenoptera allergy. There is limited data on the cross-reactivity between Vespula spp and Vespa crabro, which is an important cause of severe reactions in some parts of Europe. We studied by CAP-inhibition assays and immunoblotting the cross-reactivity between the two venoms. Sera from patients with non discriminative skin/CAP positivity to both Vespula and Vespa crabro were collected for the analyses. Inhibition assays were carried out with a CAP method, incubating the sera separately with both venoms and subsequently measuring the specific IgE to venoms themselves. Immunoblotting was performed on sera with ambiguous results at the CAP-inhibition. Seventeen patients had a severe reaction after Vespa crabro sting and proved skin and CAP positive also to vespula. In 11/17 patients, Vespula venom completely inhibited IgE binding to VC venom, whereas VC venom inhibited binding to Vespula venom only partially (Vespula germanica, thus indicating a true sensitisation to crabro. In the case of multiple positivities to Vespa crabro and Vespula spp the CAP inhibition is helpful in detecting the cross-reactivities.

  17. Wasp venom proteins: phospholipase A1 and B.

    Science.gov (United States)

    King, T P; Kochoumian, L; Joslyn, A

    1984-04-01

    Three major venom proteins from different species of wasps have been isolated and characterized. They are hyaluronidase, phospholipase, and antigen 5 of as yet unknown biochemical function. These three proteins are allergens in wasp venom-sensitive persons. The species of wasps studied, of the genus Polistes, were annularis, carolina, exclamans, fuscatus, and instabilis. Antigen 5 and phospholipase from wasp venoms were shown to be antigenically distinct from homologous proteins of yellowjacket venoms. The venom phospholipase from wasp, as well as that from yellowjacket (Vespula germanica), appears to have dual enzymatic specificities of the A1 and B types. That is, hydrolysis takes place at the 1-acyl residue of phosphatidylcholine and at the 1- or 2-acyl residue of lysophosphatidylcholine.

  18. Effects of gamma radiation on bee venom: preliminary studies

    Energy Technology Data Exchange (ETDEWEB)

    Costa, H.; Boni-Mitake, M.; Souza, C.F.; Rogero, J.R. [Instituto de Pesquisas Energeticas e Nucleares (IPEN), Sao Paulo, SP (Brazil). Div. de Radiobiologia

    1999-11-01

    Africanized honeybees are very common insects in Brazil and frequently cause accidents followed by important immunological reactions and even deaths. Their venoms are composed of a complex mixture of substances of general biological actions. several works utilizing ionizing radiation showed that it is able to modify protein structures, and successfully detoxify snake venoms toxins, although maintaining its immunological properties. The main objective of this paper was to study the effects of gamma radiation on bee venom, regarding some biochemical and toxicological aspects. Africanized Apis melllifera whole venom (2 mg/ml) in 0.15 M Na Cl solution was irradiated with 2 kGy in a {sup 60} Co source. Preliminary studies has been carried out in order to identify some biochemical changes after irradiation. Concerning this, irradiated and native venom were submitted to a molecular exclusion chromatography (Sephadex G-100), UV absorption spectrum and protein concentration analysis. It could be seen that irradiated bee venom spectrum presented differences when compared to native bee venom, suggesting that some structural alterations has occurred. Protein concentration and chromatography profiles were not changes after irradiation. In order to evaluate the toxicity a lethality assay (L D{sub 50}) has been performed with both venoms, and irradiated venom showed to be less toxic than native one. (author) 23 refs., 3 figs., 1 tab.

  19. Snake Venom As An Effective Tool Against Colorectal Cancer.

    Science.gov (United States)

    Uzair, Bushra; Atlas, Nagina; Malik, Sidra Batool; Jamil, Nazia; Salaam, Temitope Ojuolape; Rehman, Mujaddad Ur; Khan, Barkat Ali

    2018-06-13

    Cancer is considered one of the most predominant causes of morbidity and mortality all over the world and colorectal cancer is the most common fatal cancers, triggering the second cancer related death. Despite progress in understanding carcinogenesis and development in chemotherapeutics, there is an essential need to search for improved treatment. More than the half a century, cytotoxic and cytostatic agents have been examined as a potential treatment of cancer, among these agents; remarkable progresses have been reported by the use of the snake venom. Snake venoms are secreting materials of lethal snakes are store in venomous glands. Venoms are composite combinations of various protein, peptides, enzymes, toxins and non proteinaceous secretions. Snake venom possesses immense valuable mixtures of proteins and enzymes. Venoms have potential to combat with the cancerous cells and produce positive effect. Besides the toxicological effects of venoms, several proteins of snake venom e.g. disintegrins, phospholipases A2, metalloproteinases, and L-amino acid oxidases and peptides e.g. bradykinin potentiators, natriuretic, and analgesic peptides have shown potential as pharmaceutical agents, including areas of diagnosis and cancer treatment. In this review we have discussed recent remarkable research that has involved the dynamic snake venoms compounds, having anticancer bustle especially in case of colorectal cancer. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  20. Pharmacological Aspects of Vipera xantina palestinae Venom

    Science.gov (United States)

    Momic, Tatjana; Arlinghaus, Franziska T.; Arien-Zakay, Hadar; Katzhendler, Jeoshua; Eble, Johannes A.; Marcinkiewicz, Cezary; Lazarovici, Philip

    2011-01-01

    In Israel, Vipera xantina palestinae (V.x.p.) is the most common venomous snake, accounting for several hundred cases of envenomation in humans and domestic animals every year, with a mortality rate of 0.5 to 2%. In this review we will briefly address the research developments relevant to our present understanding of the structure and function of V.x.p. venom with emphasis on venom disintegrins. Venom proteomics indicated the presence of four families of pharmacologically active compounds: (i) neurotoxins; (ii) hemorrhagins; (iii) angioneurin growth factors; and (iv) different types of integrin inhibitors. Viperistatin, a α1β1selective KTS disintegrin and VP12, a α2β1 selective C-type lectin were discovered. These snake venom proteins represent promising tools for research and development of novel collagen receptor selective drugs. These discoveries are also relevant for future improvement of antivenom therapy towards V.x.p. envenomation. PMID:22174978

  1. Hymenoptera venom review focusing on Apis mellifera

    Directory of Open Access Journals (Sweden)

    P. R. de Lima

    2003-01-01

    Full Text Available Hymenoptera venoms are complex mixtures containing simple organic molecules, proteins, peptides, and other bioactive elements. Several of these components have been isolated and characterized, and their primary structures determined by biochemical techniques. These compounds are responsible for many toxic or allergic reactions in different organisms, such as local pain, inflammation, itching, irritation, and moderate or severe allergic reactions. The most extensively characterized Hymenoptera venoms are bee venoms, mainly from the Apis genus and also from social wasps and ant species. However, there is little information about other Hymenoptera groups. The Apis venom presents high molecular weight molecules - enzymes with a molecular weight higher than 10.0 kDa - and peptides. The best studied enzymes are phospholipase A2, responsible for cleaving the membrane phospholipids, hyaluronidase, which degrades the matrix component hyaluronic acid into non-viscous segments and acid phosphatase acting on organic phosphates. The main peptide compounds of bee venom are lytic peptide melittin, apamin (neurotoxic, and mastocyte degranulating peptide (MCD.

  2. Bee Venom Phospholipase A2: Yesterday's Enemy Becomes Today's Friend.

    Science.gov (United States)

    Lee, Gihyun; Bae, Hyunsu

    2016-02-22

    Bee venom therapy has been used to treat immune-related diseases such as arthritis for a long time. Recently, it has revealed that group III secretory phospholipase A2 from bee venom (bee venom group III sPLA2) has in vitro and in vivo immunomodulatory effects. A growing number of reports have demonstrated the therapeutic effects of bee venom group III sPLA2. Notably, new experimental data have shown protective immune responses of bee venom group III sPLA2 against a wide range of diseases including asthma, Parkinson's disease, and drug-induced organ inflammation. It is critical to evaluate the beneficial and adverse effects of bee venom group III sPLA2 because this enzyme is known to be the major allergen of bee venom that can cause anaphylactic shock. For many decades, efforts have been made to avoid its adverse effects. At high concentrations, exposure to bee venom group III sPLA2 can result in damage to cellular membranes and necrotic cell death. In this review, we summarized the current knowledge about the therapeutic effects of bee venom group III sPLA2 on several immunological diseases and described the detailed mechanisms of bee venom group III sPLA2 in regulating various immune responses and physiopathological changes.

  3. Snake population venomics and antivenomics of Bothrops atrox: Paedomorphism along its transamazonian dispersal and implications of geographic venom variability on snakebite management

    OpenAIRE

    Calvete, Juan J.; Sanz, Libia; Pérez, Alicia; Borges, Adolfo; Vargas, Alba M.; Lomonte, Bruno; Angulo, Yamileth; Gutiérrez, José María; Chalkidis, Hipócrates M.; Mourão, Rosa H.V.; Furtado, María de Fátima; Moura Da Silva, Ana M.

    2011-01-01

    We describe two geographically differentiated venom phenotypes across the wide distribution range of Bothrops atrox, from the Colombian Magdalena Medio Valley through Puerto Ayacucho and El Paují, in the Venezuelan States of Amazonas and Orinoquia, respectively, and São Bento in the Brazilian State of Maranhão. Colombian and Venezuelan venoms show an ontogenetic toxin profile phenotype whereas Brazilian venoms exhibit paedomorphic phenotypes. Venoms from each of the 16 localities sampled cont...

  4. Management of Poisonous Snake Bites in Southern Taiwan

    Directory of Open Access Journals (Sweden)

    Kao-Ping Chang

    2007-10-01

    Full Text Available Snake bite envenomation is not uncommon in Taiwan. This study focuses on the pattern of poisonous snake bites and their management in southern Taiwan over a 5-year period. The case histories of 37 patients with poisonous snake bites admitted to the Kaohsiung Medical University Hospital between June 2001 and July 2005 were analyzed retrospectively. Three patients, bitten by unknown species of venomous snakes, were excluded from this study. The frequency of snake bites from each species of snake, the local and systemic manifestations of snake bite, treatment of complications and final outcomes were analyzed. Of the remaining 34 patients, 11 (32.4% were bitten by bamboo vipers, 10 (29.4% by Russell's pit vipers, 8 (23.5% by Taiwan cobras and 5 (14.7% by Taiwan Habu. The majority of snake bites (28 occurred between May and November. Those affected were mainly outdoor hikers (14 and workers (9. The antivenin requirements for treatment in the emergency room were in accordance with standard procedures. No mortality was noted among those envenomed by poisonous snakes. Although poisonous snake bite is not a common life-threatening emergency in the study area, we observed both an environmental risk and a seasonal incidence of snake bite. Keeping the varied clinical manifestations of snake bite in mind is important for effective management. Ready availability and appropriate use of antivenin, close monitoring of patients, institution of ventilatory support and early referral to a larger hospital when required, all help reduce mortality.

  5. Antigenic Cross-Reactivity Anti-Birtoxin Antibody against Androctonus crassicauda Venom

    Directory of Open Access Journals (Sweden)

    SuhandanAdigüzel Van-Zoelen

    2015-10-01

    Full Text Available Background: Antivenom is still widely used in the treatment of envenomation as there are no vaccines or other effective agents available against animal venoms. Recently, neurotoxins named birtoxin family have been described from Parabuthus transvaalicus and Androctonus crassicauda. The aim of the present study was to test the antibirtoxinantibodies for their ability to neutralize the lethal effects of A. crassicauda scorpion venom.Methods: SDS-PAGE and Western blotting used the presence of components from A. crassicauda and P.transvaalicus scorpion venoms and to determine the degree of cross-reactivity. The Minimum Lethal Dose (MLD of venom was assessed by subcutaneously (sc injections in mice.Results: The MLD of the A. crassicauda venom was 35 μg/ 20g mouse by sc injection route. Western blotting showed the presence of components from A. crassicauda and P. transvaalicus scorpion venoms strongly cross react with the A. crassicauda antivenom. However, Western blotting of the A. crassicauda scorpion venom using the Refik Saydam Public Health Agency (RSPHA generated antibody showed that not all the venom components cross reacted with the anti-birtoxin antibody. The antibodies only cross reacted with components falling under the 19 kDa protein size of A. crassicauda venom.Conclusion: The bioassays and Western blotting of A. crassicauda venom with the anti-birtoxin antibodies produced against a synthetic peptide showed that these antibodies cross reacted but did not neutralize the venom of A. crassicauda.

  6. Venom-related transcripts from Bothrops jararaca tissues provide novel molecular insights into the production and evolution of snake venom.

    Science.gov (United States)

    Junqueira-de-Azevedo, Inácio L M; Bastos, Carolina Mancini Val; Ho, Paulo Lee; Luna, Milene Schmidt; Yamanouye, Norma; Casewell, Nicholas R

    2015-03-01

    Attempts to reconstruct the evolutionary history of snake toxins in the context of their co-option to the venom gland rarely account for nonvenom snake genes that are paralogous to toxins, and which therefore represent important connectors to ancestral genes. In order to reevaluate this process, we conducted a comparative transcriptomic survey on body tissues from a venomous snake. A nonredundant set of 33,000 unigenes (assembled transcripts of reference genes) was independently assembled from six organs of the medically important viperid snake Bothrops jararaca, providing a reference list of 82 full-length toxins from the venom gland and specific products from other tissues, such as pancreatic digestive enzymes. Unigenes were then screened for nontoxin transcripts paralogous to toxins revealing 1) low level coexpression of approximately 20% of toxin genes (e.g., bradykinin-potentiating peptide, C-type lectin, snake venom metalloproteinase, snake venom nerve growth factor) in body tissues, 2) the identity of the closest paralogs to toxin genes in eight classes of toxins, 3) the location and level of paralog expression, indicating that, in general, co-expression occurs in a higher number of tissues and at lower levels than observed for toxin genes, and 4) strong evidence of a toxin gene reverting back to selective expression in a body tissue. In addition, our differential gene expression analyses identify specific cellular processes that make the venom gland a highly specialized secretory tissue. Our results demonstrate that the evolution and production of venom in snakes is a complex process that can only be understood in the context of comparative data from other snake tissues, including the identification of genes paralogous to venom toxins. © The Author 2014. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  7. Mast cell chymase reduces the toxicity of Gila monster venom, scorpion venom, and vasoactive intestinal polypeptide in mice

    Science.gov (United States)

    Akahoshi, Mitsuteru; Song, Chang Ho; Piliponsky, Adrian M.; Metz, Martin; Guzzetta, Andrew; Åbrink, Magnus; Schlenner, Susan M.; Feyerabend, Thorsten B.; Rodewald, Hans-Reimer; Pejler, Gunnar; Tsai, Mindy; Galli, Stephen J.

    2011-01-01

    Mast cell degranulation is important in the pathogenesis of anaphylaxis and allergic disorders. Many animal venoms contain components that can induce mast cell degranulation, and this has been thought to contribute to the pathology and mortality caused by envenomation. However, we recently reported evidence that mast cells can enhance the resistance of mice to the venoms of certain snakes and that mouse mast cell–derived carboxypeptidase A3 (CPA3) can contribute to this effect. Here, we investigated whether mast cells can enhance resistance to the venom of the Gila monster, a toxic component of that venom (helodermin), and the structurally similar mammalian peptide, vasoactive intestinal polypeptide (VIP). Using 2 types of mast cell–deficient mice, as well as mice selectively lacking CPA3 activity or the chymase mouse mast cell protease-4 (MCPT4), we found that mast cells and MCPT4, which can degrade helodermin, can enhance host resistance to the toxicity of Gila monster venom. Mast cells and MCPT4 also can limit the toxicity associated with high concentrations of VIP and can reduce the morbidity and mortality induced by venoms from 2 species of scorpions. Our findings support the notion that mast cells can enhance innate defense by degradation of diverse animal toxins and that release of MCPT4, in addition to CPA3, can contribute to this mast cell function. PMID:21926462

  8. Moving pieces in a venomic puzzle

    DEFF Research Database (Denmark)

    Verano-Braga, Thiago; Dutra, Alexandre A A; León, Ileana R

    2013-01-01

    Besides being a public health problem, scorpion venoms have a potential biotechnological application since they contain peptides that may be used as drug leads and/or to reveal novel pharmacological targets. A comprehensive Tityus serrulatus venom proteome study with emphasis on the phosphoproteo...

  9. Comparison of the effect of Crotalus simus and Crotalus durissus ruruima venoms on the equine antibody response towards Bothrops asper venom: implications for the production of polyspecific snake antivenoms.

    Science.gov (United States)

    Dos-Santos, Maria Cristina; Arroyo, Cynthia; Solano, Sergio; Herrera, María; Villalta, Mauren; Segura, Alvaro; Estrada, Ricardo; Gutiérrez, José María; León, Guillermo

    2011-02-01

    Antivenoms are preparations of immunoglobulins purified from the plasma of animals immunized with snake venoms. Depending on the number of venoms used during the immunization, antivenoms can be monospecific (if venom from a single species is used) or polyspecific (if venoms from several species are used). In turn, polyspecific antivenoms can be prepared by purifying antibodies from the plasma of animals immunized with a mixture of venoms, or by mixing antibodies purified from the plasma of animals immunized separately with single venom. The suitability of these strategies to produce polyspecific antibothropic-crotalic antivenoms was assessed using as models the venoms of Bothrops asper, Crotalus simus and Crotalus durissus ruruima. It was demonstrated that, when used as co-immunogen, C. simus and C. durissus ruruima venoms exert a deleterious effect on the antibody response towards different components of B. asper venom and in the neutralization of hemorrhagic and coagulant effect of this venom when compared with a monospecific B. asper antivenom. Polyspecific antivenoms produced by purifying immunoglobulins from the plasma of animals immunized with venom mixtures showed higher antibody titers and neutralizing capacity than those produced by mixing antibodies purified from the plasma of animals immunized separately with single venom. Thus, despite the deleterious effect of Crotalus sp venoms on the immune response against B. asper venom, the use of venom mixtures is more effective than the immunization with separate venoms for the preparation of polyspecific bothropic-crotalic antivenoms. Copyright © 2010 Elsevier Ltd. All rights reserved.

  10. An in-depth snake venom proteopeptidome characterization: Benchmarking Bothrops jararaca.

    Science.gov (United States)

    Nicolau, Carolina A; Carvalho, Paulo C; Junqueira-de-Azevedo, Inácio L M; Teixeira-Ferreira, André; Junqueira, Magno; Perales, Jonas; Neves-Ferreira, Ana Gisele C; Valente, Richard H

    2017-01-16

    A large-scale proteomic approach was devised to advance the understanding of venom composition. Bothrops jararaca venom was fractionated by OFFGEL followed by chromatography, generating peptidic and proteic fractions. The latter was submitted to trypsin digestion. Both fractions were separately analyzed by reversed-phase nanochromatography coupled to high resolution mass spectrometry. This strategy allowed deeper and joint characterizations of the peptidome and proteome (proteopeptidome) of this venom. Our results lead to the identification of 46 protein classes (with several uniquely assigned proteins per class) comprising eight high-abundance bona fide venom components, and 38 additional classes in smaller quantities. This last category included previously described B. jararaca venom proteins, common Elapidae venom constituents (cobra venom factor and three-finger toxin), and proteins typically encountered in lysosomes, cellular membranes and blood plasma. Furthermore, this report is the most complete snake venom peptidome described so far, both in number of peptides and in variety of unique proteins that could have originated them. It is hypothesized that such diversity could enclose cryptides, whose bioactivities would contribute to envenomation in yet undetermined ways. Finally, we propose that the broad range screening of B. jararaca peptidome will facilitate the discovery of bioactive molecules, eventually leading to valuable therapeutical agents. Our proteopeptidomic strategy yielded unprecedented insights into the remarkable diversity of B. jararaca venom composition, both at the peptide and protein levels. These results bring a substantial contribution to the actual pursuit of large-scale protein-level assignment in snake venomics. The detection of typical elapidic venom components, in a Viperidae venom, reinforces our view that the use of this approach (hand-in-hand with transcriptomic and genomic data) for venom proteomic analysis, at the specimen

  11. Intraspecific Variation of Centruroides Edwardsii Venom from Two Regions of Colombia

    Directory of Open Access Journals (Sweden)

    Sebastián Estrada-Gómez

    2014-07-01

    Full Text Available We report the first description studies, partial characterization, and intraspecific difference of Centruroides edwardsii, Gervais 1843, venom. C. edwardsii from two Colombian regions (Antioquia and Tolima were evaluated. Both venoms showed hemolytic activity, possibly dependent of enzymatic active phospholipases, and neither coagulant nor proteolytic activities were observed. Venom electrophoretic profile showed significant differences between C. edwardsii venom from both regions. A high concentration of proteins with molecular masses between 31 kDa and 97.4 kDa, and an important concentration close or below 14.4 kDa were detected. RP-HPLC retention times between 38.2 min and 42.1 min, showed bands close to 14.4 kDa, which may correspond to phospholipases. RP-HPLC venom profile showed a well conserved region in both venoms between 7 and 17 min, after this, significant differences were detected. From Tolima region venom, 50 well-defined peaks were detected, while in the Antioquia region venom, 55 well-defined peaks were detected. Larvicidal activity was only detected in the C. edwardsii venom from Antioquia. No antimicrobial activity was observed using complete venom or RP-HPLC collected fractions of both venoms. Lethally activity (carried out on female albino swiss mice was detected at doses over 19.2 mg/kg of crude venom. Toxic effects included distress, excitability, eye irritation and secretions, hyperventilation, ataxia, paralysis, and salivation.

  12. CHerenkov detectors In mine PitS (CHIPS) Letter of Intent to FNAL

    Energy Technology Data Exchange (ETDEWEB)

    Adamson, P. [Fermi National Accelerator Laboratory (FNAL), Batavia, IL (United States); Austin, J. [Univ. of Minnesota, Duluth, MN (United States); Cao, S. V. [Univ. of Texas, Austin, TX (United States); Coelho, J. A. B. [Tufts Univ., Medford, MA (United States); Davies, G. S. [Iowa State Univ., Ames, IA (United States); Evans, J. J. [Univ. of Manchester (United Kingdom); Guzowski, P. [Univ. of Manchester (United Kingdom); Habig, A. [Univ. of Minnesota, Duluth, MN (United States); Holin, A. [Univ. College London, London (United Kingdom); Huang, J. [Univ. of Texas, Austin, TX (United States); Johnson, R. [Univ. of Cincinnati, OH (United States); St. John, J. [Univ. of Cincinnati, OH (United States); Kreymer, A. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Kordosky, M. [College of William and Mary, Williamsburg, VA (United States); Lang, K. [Univ. of Texas, Austin, TX (United States); Marshak, M. L. [Univ. of Minnesota, Minneapolis, MN (United States); Mehdiyev, R. [Univ. of Texas, Austin, TX (United States); Meier, J. [Univ. of Minnesota, Minneapolis, MN (United States); Miller, W. [Univ. of Minnesota, Minneapolis, MN (United States); Naples, D. [Univ. of Pittsburgh, PA (United States); Nelson, J. K. [College of William and Mary, Williamsburg, VA (United States); Nichol, R. J. [Univ. College London, London (United Kingdom); Patterson, R. B. [California Inst. of Technology (CalTech), Pasadena, CA (United States); Paolone, V. [Univ. of Pittsburgh, PA (United States); Pawloski, G. [Univ. of Minnesota, Minneapolis, MN (United States); Perch, A. [Univ. College London, London (United Kingdom); Pfutzner, M. [Univ. College London, London (United Kingdom); Proga, M. [Univ. of Texas, Austin, TX (United States); Qian, X. [Brookhaven National Lab. (BNL), Upton, NY (United States); Radovic, A. [Univ. College London, London (United Kingdom); Sanchez, M. C. [Iowa State Univ., Ames, IA (United States); Schreiner, S. [Univ. of Minnesota, Minneapolis, MN (United States); Soldner-Rembold, S. [Univ. of Manchester (United Kingdom); Sousa, A. [Univ. of Cincinnati, OH (United States); Thomas, J. [Univ. College London, London (United Kingdom); Vahle, P. [College of William and Mary, Williamsburg, VA (United States); Wendt, C. [Univ. of Wisconsin, Madison, WI (United States); Whitehead, L. H. [Univ. College London, London (United Kingdom); Wojcicki, S. [Stanford Univ., CA (United States)

    2013-12-30

    This Letter of Intent outlines a proposal to build a large, yet cost-effective, 100 kton fiducial mass water Cherenkov detector that will initially run in the NuMI beam line. The CHIPS detector (CHerenkov detector In Mine PitS) will be deployed in a flooded mine pit, removing the necessity and expense of a substantial external structure capable of supporting a large detector mass. There are a number of mine pits in northern Minnesota along the NuMI beam that could be used to deploy such a detector. In particular, the Wentworth Pit 2W is at the ideal off-axis angle to contribute to the measurement of the CP violating phase. The detector is designed so that it can be moved to a mine pit in the LBNE beam line once that becomes operational.

  13. Proteomic Characterization of the Venom of Five Bombus (Thoracobombus) Species

    OpenAIRE

    Barkan, Nezahat Pınar; Bayazit, Mustafa Bilal; Ozel Demiralp, Duygu

    2017-01-01

    Venomous animals use venom, a complex biofluid composed of unique mixtures of proteins and peptides, to act on vital systems of the prey or predator. In bees, venom is solely used for defense against predators. However, the venom composition of bumble bees (Bombus sp.) is largely unknown. The Thoracobombus subgenus of Bombus sp. is a diverse subgenus represented by 14 members across Turkey. In this study, we sought out to proteomically characterize the venom of five Thoracobombus species by u...

  14. Harvesting Venom Toxins from Assassin Bugs and Other Heteropteran Insects.

    Science.gov (United States)

    Walker, Andrew Allan; Rosenthal, Max; Undheim, Eivind E A; King, Glenn F

    2018-04-21

    Heteropteran insects such as assassin bugs (Reduviidae) and giant water bugs (Belostomatidae) descended from a common predaceous and venomous ancestor, and the majority of extant heteropterans retain this trophic strategy. Some heteropterans have transitioned to feeding on vertebrate blood (such as the kissing bugs, Triatominae; and bed bugs, Cimicidae) while others have reverted to feeding on plants (most Pentatomomorpha). However, with the exception of saliva used by kissing bugs to facilitate blood-feeding, little is known about heteropteran venoms compared to the venoms of spiders, scorpions and snakes. One obstacle to the characterization of heteropteran venom toxins is the structure and function of the venom/labial glands, which are both morphologically complex and perform multiple biological roles (defense, prey capture, and extra-oral digestion). In this article, we describe three methods we have successfully used to collect heteropteran venoms. First, we present electrostimulation as a convenient way to collect venom that is often lethal when injected into prey animals, and which obviates contamination by glandular tissue. Second, we show that gentle harassment of animals is sufficient to produce venom extrusion from the proboscis and/or venom spitting in some groups of heteropterans. Third, we describe methods to harvest venom toxins by dissection of anaesthetized animals to obtain the venom glands. This method is complementary to other methods, as it may allow harvesting of toxins from taxa in which electrostimulation and harassment are ineffective. These protocols will enable researchers to harvest toxins from heteropteran insects for structure-function characterization and possible applications in medicine and agriculture.

  15. Stochastic modeling of pitting corrosion: A new model for initiation and growth of multiple corrosion pits

    International Nuclear Information System (INIS)

    Valor, A.; Caleyo, F.; Alfonso, L.; Rivas, D.; Hallen, J.M.

    2007-01-01

    In this work, a new stochastic model capable of simulating pitting corrosion is developed and validated. Pitting corrosion is modeled as the combination of two stochastic processes: pit initiation and pit growth. Pit generation is modeled as a nonhomogeneous Poisson process, in which induction time for pit initiation is simulated as the realization of a Weibull process. In this way, the exponential and Weibull distributions can be considered as the possible distributions for pit initiation time. Pit growth is simulated using a nonhomogeneous Markov process. Extreme value statistics is used to find the distribution of maximum pit depths resulting from the combination of the initiation and growth processes for multiple pits. The proposed model is validated using several published experiments on pitting corrosion. It is capable of reproducing the experimental observations with higher quality than the stochastic models available in the literature for pitting corrosion

  16. Stochastic modeling of pitting corrosion: A new model for initiation and growth of multiple corrosion pits

    Energy Technology Data Exchange (ETDEWEB)

    Valor, A. [Facultad de Fisica, Universidad de La Habana, San Lazaro y L, Vedado, 10400 Havana (Cuba); Caleyo, F. [Departamento de Ingenieria, Metalurgica, IPN-ESIQIE, UPALM Edif. 7, Zacatenco, Mexico DF 07738 (Mexico)]. E-mail: fcaleyo@gmail.com; Alfonso, L. [Departamento de Ingenieria, Metalurgica, IPN-ESIQIE, UPALM Edif. 7, Zacatenco, Mexico DF 07738 (Mexico); Rivas, D. [Departamento de Ingenieria, Metalurgica, IPN-ESIQIE, UPALM Edif. 7, Zacatenco, Mexico DF 07738 (Mexico); Hallen, J.M. [Departamento de Ingenieria, Metalurgica, IPN-ESIQIE, UPALM Edif. 7, Zacatenco, Mexico DF 07738 (Mexico)

    2007-02-15

    In this work, a new stochastic model capable of simulating pitting corrosion is developed and validated. Pitting corrosion is modeled as the combination of two stochastic processes: pit initiation and pit growth. Pit generation is modeled as a nonhomogeneous Poisson process, in which induction time for pit initiation is simulated as the realization of a Weibull process. In this way, the exponential and Weibull distributions can be considered as the possible distributions for pit initiation time. Pit growth is simulated using a nonhomogeneous Markov process. Extreme value statistics is used to find the distribution of maximum pit depths resulting from the combination of the initiation and growth processes for multiple pits. The proposed model is validated using several published experiments on pitting corrosion. It is capable of reproducing the experimental observations with higher quality than the stochastic models available in the literature for pitting corrosion.

  17. Analysis of the intersexual variation in Thalassophryne maculosa fish venoms.

    Science.gov (United States)

    Lopes-Ferreira, Mônica; Sosa-Rosales, Ines; Bruni, Fernanda M; Ramos, Anderson D; Vieira Portaro, Fernanda Calheta; Conceição, Katia; Lima, Carla

    2016-06-01

    Gender related variation in the molecular composition of venoms and secretions have been described for some animal species, and there are some evidences that the difference in the toxin (s) profile among males and females may be related to different physiopathological effects caused by the envenomation by either gender. In order to investigate whether this same phenomenon occurs to the toadfish Thalassophryne maculosa, we have compared some biological and biochemical properties of female and male venoms. Twenty females and males were collected in deep waters of the La Restinga lagoon (Venezuela) and, after protein concentration assessed, the induction of toxic activities in mice and the biochemical properties were analyzed. Protein content is higher in males than in females, which may be associated to a higher size and weight of the male body. In vivo studies showed that mice injected with male venoms presented higher nociception when compared to those injected with female venoms, and both venoms induced migration of macrophages into the paw of mice. On the other hand, mice injected with female venoms had more paw edema and extravasation of Evans blue in peritoneal cavity than mice injected with male venoms. We observed that the female venoms had more capacity for necrosis induction when compared with male venoms. The female samples present a higher proteolytic activity then the male venom when gelatin, casein and FRETs were used as substrates. Evaluation of the venoms of females and males by SDS-PAGE and chromatographic profile showed that, at least three components (present in two peaks) are only present in males. Although the severity of the lesion, characterized by necrosis development, is related with the poisoning by female specimens, the presence of exclusive toxins in the male venoms could be associated with the largest capacity of nociception induction by this sample. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Proteomic Characterization of the Venom of Five Bombus (Thoracobombus) Species.

    Science.gov (United States)

    Barkan, Nezahat Pınar; Bayazit, Mustafa Bilal; Ozel Demiralp, Duygu

    2017-11-11

    Venomous animals use venom, a complex biofluid composed of unique mixtures of proteins and peptides, to act on vital systems of the prey or predator. In bees, venom is solely used for defense against predators. However, the venom composition of bumble bees ( Bombus sp.) is largely unknown. The Thoracobombus subgenus of Bombus sp. is a diverse subgenus represented by 14 members across Turkey. In this study, we sought out to proteomically characterize the venom of five Thoracobombus species by using bottom-up proteomic techniques. We have obtained two-dimensional polyacrylamide gel (2D-PAGE) images of each species' venom sample. We have subsequently identified the protein spots by using matrix assisted laser desorption ionization/time-of-flight mass spectrometry (MALDI-TOF MS). We have identified 47 proteins for Bombus humilis , 32 for B. pascuorum , 60 for B. ruderarius , 39 for B. sylvarum , and 35 for B. zonatus . Moreover, we illustrated that intensities of 2DE protein spots corresponding to putative venom toxins vary in a species-specific manner. Our analyses provide the primary proteomic characterization of five bumble bee species' venom composition.

  19. Daboxin P, a Major Phospholipase A2 Enzyme from the Indian Daboia russelii russelii Venom Targets Factor X and Factor Xa for Its Anticoagulant Activity.

    Directory of Open Access Journals (Sweden)

    Maitreyee Sharma

    Full Text Available In the present study a major protein has been purified from the venom of Indian Daboia russelii russelii using gel filtration, ion exchange and Rp-HPLC techniques. The purified protein, named daboxin P accounts for ~24% of the total protein of the crude venom and has a molecular mass of 13.597 kDa. It exhibits strong anticoagulant and phospholipase A2 activity but is devoid of any cytotoxic effect on the tested normal or cancerous cell lines. Its primary structure was deduced by N-terminal sequencing and chemical cleavage using Edman degradation and tandem mass spectrometry. It is composed of 121 amino acids with 14 cysteine residues and catalytically active His48 -Asp49 pair. The secondary structure of daboxin P constitutes 42.73% of α-helix and 12.36% of β-sheet. It is found to be stable at acidic (pH 3.0 and neutral pH (pH 7.0 and has a Tm value of 71.59 ± 0.46°C. Daboxin P exhibits anticoagulant effect under in-vitro and in-vivo conditions. It does not inhibit the catalytic activity of the serine proteases but inhibits the activation of factor X to factor Xa by the tenase complexes both in the presence and absence of phospholipids. It also inhibits the tenase complexes when active site residue (His48 was alkylated suggesting its non-enzymatic mode of anticoagulant activity. Moreover, it also inhibits prothrombinase complex when pre-incubated with factor Xa prior to factor Va addition. Fluorescence emission spectroscopy and affinity chromatography suggest the probable interaction of daboxin P with factor X and factor Xa. Molecular docking analysis reveals the interaction of the Ca+2 binding loop; helix C; anticoagulant region and C-terminal region of daboxin P with the heavy chain of factor Xa. This is the first report of a phospholipase A2 enzyme from Indian viper venom which targets both factor X and factor Xa for its anticoagulant activity.

  20. Peptidomic and transcriptomic profiling of four distinct spider venoms.

    Directory of Open Access Journals (Sweden)

    Vera Oldrati

    Full Text Available Venom based research is exploited to find novel candidates for the development of innovative pharmacological tools, drug candidates and new ingredients for cosmetic and agrochemical industries. Moreover, venomics, as a well-established approach in systems biology, helps to elucidate the genetic mechanisms of the production of such a great molecular biodiversity. Today the advances made in the proteomics, transcriptomics and bioinformatics fields, favor venomics, allowing the in depth study of complex matrices and the elucidation even of minor compounds present in minute biological samples. The present study illustrates a rapid and efficient method developed for the elucidation of venom composition based on NextGen mRNA sequencing of venom glands and LC-MS/MS venom proteome profiling. The analysis of the comprehensive data obtained was focused on cysteine rich peptide toxins from four spider species originating from phylogenetically distant families for comparison purposes. The studied species were Heteropoda davidbowie (Sparassidae, Poecilotheria formosa (Theraphosidae, Viridasius fasciatus (Viridasiidae and Latrodectus mactans (Theridiidae. This led to a high resolution profiling of 284 characterized cysteine rich peptides, 111 of which belong to the Inhibitor Cysteine Knot (ICK structural motif. The analysis of H. davidbowie venom revealed a high richness in term of venom diversity: 95 peptide sequences were identified; out of these, 32 peptides presented the ICK structural motif and could be classified in six distinct families. The profiling of P. formosa venom highlighted the presence of 126 peptide sequences, with 52 ICK toxins belonging to three structural distinct families. V. fasciatus venom was shown to contain 49 peptide sequences, out of which 22 presented the ICK structural motif and were attributed to five families. The venom of L. mactans, until now studied for its large neurotoxins (Latrotoxins, revealed the presence of 14

  1. Anti-arthritic effects of microneedling with bee venom gel

    OpenAIRE

    Mengdi Zhao; Jie Bai; Yang Lu; Shouying Du; Kexin Shang; Pengyue Li; Liu Yang; Boyu Dong; Ning Tan

    2016-01-01

    Objective: To combine with transdermal drug delivery using microneedle to simulate the bee venom therapy to evaluate the permeation of bee venom gel. Methods: In this study, the sodium urate and LPS were used on rats and mice to construct the model. Bee venom gel–microneedle combination effect on the model is to determine the role of microneedle gel permeation by observing inflammation factors. Results: Compared with the model group, the bee venom gel–microneedle combination group can r...

  2. Analysis of Brazilian snake venoms by neutron activation analysis

    International Nuclear Information System (INIS)

    Saiki, M.; Vasconcellos, M.B.A.; Rogero, J.R.; Cruz, M.C.G.

    1991-01-01

    Instrumental neutron activation analysis (INAA) has been applied to multielemental determinations of Brazilian snake venoms from the species: Bothrops jararacussu, Crotalus durissus terrificus and Bothrops jararaca. Concentrations of Br, Ca, Cl, Cs, K, Mg, Na, Rb, Sb, Se and Zn have been determined in lyophilized venoms by using short and long irradiations in the IEA-RI nuclear reactor under a thermal neutron flux of 10 11 to 10 13 n · cm -2 · s -1 . The reference materials NIST Bovine Liver 1577 and IUPAC Bowen's Kale were also analyzed simultaneously with the venoms to evaluate the accuracy and the reproducibility of the method. The concentrations of the elements found in snake venoms from different species were compared. The Crotalus durissus terrificus venoms presented high concentration of Se but low concentrations of Zn when these results are compared with those obtained from genera Bothrops venoms. (author) 9 refs.; 2 tabs

  3. Snake population venomics and antivenomics of Bothrops atrox: Paedomorphism along its transamazonian dispersal and implications of geographic venom variability on snakebite management.

    Science.gov (United States)

    Calvete, Juan J; Sanz, Libia; Pérez, Alicia; Borges, Adolfo; Vargas, Alba M; Lomonte, Bruno; Angulo, Yamileth; Gutiérrez, José María; Chalkidis, Hipócrates M; Mourão, Rosa H V; Furtado, M Fatima D; Moura-Da-Silva, Ana M

    2011-04-01

    We describe two geographically differentiated venom phenotypes across the wide distribution range of Bothrops atrox, from the Colombian Magdalena Medio Valley through Puerto Ayacucho and El Paují, in the Venezuelan States of Amazonas and Orinoquia, respectively, and São Bento in the Brazilian State of Maranhão. Colombian and Venezuelan venoms show an ontogenetic toxin profile phenotype whereas Brazilian venoms exhibit paedomorphic phenotypes. Venoms from each of the 16 localities sampled contain both population-specific toxins and proteins shared by neighboring B. atrox populations. Mapping the molecular similarity between conspecific populations onto a physical map of B. atrox range provides clues for tracing dispersal routes that account for the current biogeographic distribution of the species. The proteomic pattern is consistent with a model of southeast and southwest dispersal and allopatric fragmentation northern of the Amazon Basin, and trans-Amazonian expansion through the Andean Corridor and across the Amazon river between Monte Alegre and Santarém. An antivenomic approach applied to assess the efficacy towards B. atrox venoms of two antivenoms raised in Costa Rica and Brazil using Bothrops venoms different than B. atrox in the immunization mixtures showed that both antivenoms immunodepleted very efficiently the major toxins (PIII-SVMPs, serine proteinases, CRISP, LAO) of paedomorphic venoms from Puerto Ayacucho (Venezuelan Amazonia) through São Bento, but had impaired reactivity towards PLA(2) and P-I SVMP molecules abundantly present in ontogenetic venoms. The degree of immunodepletion achieved suggests that each of these antivenoms may be effective against envenomations by paedomorphic, and some ontogenetic, B. atrox venoms. Copyright © 2010 Elsevier B.V. All rights reserved.

  4. Hormone-like peptides in the venoms of marine cone snails

    Science.gov (United States)

    Robinson, Samuel D.; Li, Qing; Bandyopadhyay, Pradip K.; Gajewiak, Joanna; Yandell, Mark; Papenfuss, Anthony T.; Purcell, Anthony W.; Norton, Raymond S.; Safavi-Hemami, Helena

    2015-01-01

    The venoms of cone snails (genus Conus) are remarkably complex, consisting of hundreds of typically short, disulfide-rich peptides termed conotoxins. These peptides have diverse pharmacological targets, with injection of venom eliciting a range of physiological responses, including sedation, paralysis and sensory overload. Most conotoxins target the prey’s nervous system but evidence of venom peptides targeting neuroendocrine processes is emerging. Examples include vasopressin, RFamide neuropeptides and recently also insulin. To investigate the diversity of hormone/neuropeptide-like molecules in the venoms of cone snails we systematically mined the venom gland transcriptomes of several cone snail species and examined secreted venom peptides in dissected and injected venom of the Australian cone snail Conus victoriae. Using this approach we identified several novel hormone/neuropeptide-like toxins, including peptides similar to the bee brain hormone prohormone-4, the mollusc ganglia neuropeptide elevenin, and thyrostimulin, a member of the glycoprotein hormone family, and confirmed the presence of insulin. We confirmed that at least two of these peptides are not only expressed in the venom gland but also form part of the injected venom cocktail, unambiguously demonstrating their role in envenomation. Our findings suggest that hormone/neuropeptide-like toxins are a diverse and integral part of the complex envenomation strategy of Conus. Exploration of this group of venom components offers an exciting new avenue for the discovery of novel pharmacological tools and drug candidates, complementary to conotoxins. PMID:26301480

  5. Hormone-like peptides in the venoms of marine cone snails.

    Science.gov (United States)

    Robinson, Samuel D; Li, Qing; Bandyopadhyay, Pradip K; Gajewiak, Joanna; Yandell, Mark; Papenfuss, Anthony T; Purcell, Anthony W; Norton, Raymond S; Safavi-Hemami, Helena

    2017-04-01

    The venoms of cone snails (genus Conus) are remarkably complex, consisting of hundreds of typically short, disulfide-rich peptides termed conotoxins. These peptides have diverse pharmacological targets, with injection of venom eliciting a range of physiological responses, including sedation, paralysis and sensory overload. Most conotoxins target the prey's nervous system but evidence of venom peptides targeting neuroendocrine processes is emerging. Examples include vasopressin, RFamide neuropeptides and recently also insulin. To investigate the diversity of hormone/neuropeptide-like molecules in the venoms of cone snails we systematically mined the venom gland transcriptomes of several cone snail species and examined secreted venom peptides in dissected and injected venom of the Australian cone snail Conus victoriae. Using this approach we identified several novel hormone/neuropeptide-like toxins, including peptides similar to the bee brain hormone prohormone-4, the mollusc ganglia neuropeptide elevenin, and thyrostimulin, a member of the glycoprotein hormone family, and confirmed the presence of insulin. We confirmed that at least two of these peptides are not only expressed in the venom gland but also form part of the injected venom cocktail, unambiguously demonstrating their role in envenomation. Our findings suggest that hormone/neuropeptide-like toxins are a diverse and integral part of the complex envenomation strategy of Conus. Exploration of this group of venom components offers an exciting new avenue for the discovery of novel pharmacological tools and drug candidates, complementary to conotoxins. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. Proteomic identification of gender molecular markers in Bothrops jararaca venom.

    Science.gov (United States)

    Zelanis, André; Menezes, Milene C; Kitano, Eduardo S; Liberato, Tarcísio; Tashima, Alexandre K; Pinto, Antonio F M; Sherman, Nicholas E; Ho, Paulo L; Fox, Jay W; Serrano, Solange M T

    2016-04-29

    Variation in the snake venom proteome is a well-documented phenomenon; however, sex-based variation in the venom proteome/peptidome is poorly understood. Bothrops jararaca shows significant sexual size dimorphism and here we report a comparative proteomic/peptidomic analysis of venoms from male and female specimens and correlate it with the evaluation of important venom features. We demonstrate that adult male and female venoms have distinct profiles of proteolytic activity upon fibrinogen and gelatin. These differences were clearly reflected in their different profiles of SDS-PAGE, two-dimensional electrophoresis and glycosylated proteins. Identification of differential protein bands and spots between male or female venoms revealed gender-specific molecular markers. However, the proteome comparison by in-solution trypsin digestion and label-free quantification analysis showed that the overall profiles of male and female venoms are similar at the polypeptide chain level but show striking variation regarding their attached carbohydrate moieties. The analysis of the peptidomes of male and female venoms revealed different contents of peptides, while the bradykinin potentiating peptides (BPPs) showed rather similar profiles. Furthermore we confirmed the ubiquitous presence of four BPPs that lack the C-terminal Q-I-P-P sequence only in the female venom as gender molecular markers. As a result of these studies we demonstrate that the sexual size dimorphism is associated with differences in the venom proteome/peptidome in B. jararaca species. Moreover, gender-based variations contributed by different glycosylation levels in toxins impact venom complexity. Bothrops jararaca is primarily a nocturnal and generalist snake species, however, it exhibits a notable ontogenetic shift in diet and in venom proteome upon neonate to adult transition. As is common in the Bothrops genus, B. jararaca shows significant sexual dimorphism in snout-vent length and weight, with females being

  7. Crystal structure of the disintegrin heterodimer from saw-scaled viper (Echis carinatus) at 1.9 A resolution.

    Science.gov (United States)

    Bilgrami, Sameeta; Yadav, Savita; Kaur, Punit; Sharma, Sujata; Perbandt, Markus; Betzel, Christian; Singh, Tej P

    2005-08-23

    Disintegrins constitute a family of potent polypeptide inhibitors of integrins. Integrins are transmembrane heterodimeric molecules involved in cell-cell and cell-extracellular matrix interactions. They are involved in many diseases such as cancer and thrombosis. Thus, disintegrins have a great potential as anticancer and antithrombotic agents. A novel heterodimeric disintegrin was isolated from the venom of saw-scaled viper (Echis carinatus) and was crystallized. The crystals diffracted to 1.9 A resolution and belonged to space group P4(3)2(1)2. The data indicated the presence of a pseudosymmetry. The structure was solved by applying origin shifts to the disintegrin homodimer schistatin solved in space group I4(1)22 with similar cell dimensions. The structure refined to the final R(cryst)/R(free) factors of 0.213/0.253. The notable differences are observed between the loops, (Gln39-Asp48) containing the important Arg42-Gly43-Asp44, of the present heterodimer and schistatin. These differences are presumably due to the presence of two glycines at positions 43 and 46 that allow the molecule to adopt variable conformations. A comparative analysis of the surface-charge distributions of various disintegrins showed that the charge distribution on monomeric disintegrins occurred uniformly over the whole surface of the molecule, while in the dimeric disintegrins, the charge is distributed only on one face. Such a feature may be important in the binding of two integrins to a single dimeric disintegrin. The phylogenetic analysis developed on the basis of amino acid sequence and three-dimensional structures indicates that the protein diversification and evolution presumably took place from the medium disintegrins and both the dimeric and short disintegrins evolved from them.

  8. Snake venomics of monocled cobra (Naja kaouthia) and investigation of human IgG response against venom toxins

    DEFF Research Database (Denmark)

    Laustsen, Andreas Hougaard; Gutiérrez, José María; Lohse, Brian

    2015-01-01

    /cardiotoxins. IgGs isolated from a person who had repeatedly self-immunized with a variety of snake venoms were immunoprofiled by ELISA against all venom fractions. Stronger responses against larger toxins, but lower against the most critical α-neurotoxins were obtained. As expected, no neutralization potential...

  9. Mechanisms of bee venom-induced acute renal failure.

    Science.gov (United States)

    Grisotto, Luciana S D; Mendes, Glória E; Castro, Isac; Baptista, Maria A S F; Alves, Venancio A; Yu, Luis; Burdmann, Emmanuel A

    2006-07-01

    The spread of Africanized bees in the American continent has increased the number of severe envenomation after swarm attacks. Acute renal failure (ARF) is one of the major hazards in surviving patients. To assess the mechanisms of bee venom-induced ARF, rats were evaluated before, up to 70 min and 24h after 0.5mg/kg of venom injection. Control rats received saline. Bee venom caused an early and significant reduction in glomerular filtration rate (GFR, inulin clearance, 0.84+/-0.05 to 0.40+/-0.08 ml/min/100g, pbee venom-induced ARF that may occur even without hemolysis or hypotension.

  10. Effects of Animal Venoms and Toxins on Hallmarks of Cancer

    Science.gov (United States)

    Chaisakul, Janeyuth; Hodgson, Wayne C.; Kuruppu, Sanjaya; Prasongsook, Naiyarat

    2016-01-01

    Animal venoms are a cocktail of proteins and peptides, targeting vital physiological processes. Venoms have evolved to assist in the capture and digestion of prey. Key venom components often include neurotoxins, myotoxins, cardiotoxins, hematoxins and catalytic enzymes. The pharmacological activities of venom components have been investigated as a source of potential therapeutic agents. Interestingly, a number of animal toxins display profound anticancer effects. These include toxins purified from snake, bee and scorpion venoms effecting cancer cell proliferation, migration, invasion, apoptotic activity and neovascularization. Indeed, the mechanism behind the anticancer effect of certain toxins is similar to that of agents currently used in chemotherapy. For example, Lebein is a snake venom disintegrin which generates anti-angiogenic effects by inhibiting vascular endothelial growth factors (VEGF). In this review article, we highlight the biological activities of animal toxins on the multiple steps of tumour formation or hallmarks of cancer. We also discuss recent progress in the discovery of lead compounds for anticancer drug development from venom components. PMID:27471574

  11. The Comparison of Effectiveness between Bee Venom and Sweet Bee Venom Therapy on Low back pain with Radiating pain

    OpenAIRE

    Lee Tae-ho; Hwang Hee-sang; Chang So-young; Cha Jung-ho; Jung Ki-hoon; Lee Eun-young; Roh Jeongdu

    2007-01-01

    Objective : The aim of this study is to investigate if Sweet Bee Venom therapy has the equal effect in comparison with Bee Venom Therapy on Low back pain with Radiation pain. Methods : Clinical studies were done 24 patients who were treated low back pain with radiation pain to Dept. of Acupuncture & Moxibusition, of Oriental Medicine Se-Myung University from April 1, 2007 to September 30, 2007. Subjects were randomly divided into two groups ; Bee Venom treated group(Group A, n=10), Sweet B...

  12. The use of ecological niche modeling to infer potential risk areas of snakebite in the Mexican state of Veracruz.

    Directory of Open Access Journals (Sweden)

    Carlos Yañez-Arenas

    Full Text Available Many authors have claimed that snakebite risk is associated with human population density, human activities, and snake behavior. Here we analyzed whether environmental suitability of vipers can be used as an indicator of snakebite risk. We tested several hypotheses to explain snakebite incidence, through the construction of models incorporating both environmental suitability and socioeconomic variables in Veracruz, Mexico.Ecological niche modeling (ENM was used to estimate potential geographic and ecological distributions of nine viper species' in Veracruz. We calculated the distance to the species' niche centroid (DNC; this distance may be associated with a prediction of abundance. We found significant inverse relationships between snakebites and DNCs of common vipers (Crotalus simus and Bothrops asper, explaining respectively 15% and almost 35% of variation in snakebite incidence. Additionally, DNCs for these two vipers, in combination with marginalization of human populations, accounted for 76% of variation in incidence.Our results suggest that niche modeling and niche-centroid distance approaches can be used to mapping distributions of environmental suitability for venomous snakes; combining this ecological information with socioeconomic factors may help with inferring potential risk areas for snakebites, since hospital data are often biased (especially when incidences are low.

  13. The use of ecological niche modeling to infer potential risk areas of snakebite in the Mexican state of Veracruz.

    Science.gov (United States)

    Yañez-Arenas, Carlos; Peterson, A Townsend; Mokondoko, Pierre; Rojas-Soto, Octavio; Martínez-Meyer, Enrique

    2014-01-01

    Many authors have claimed that snakebite risk is associated with human population density, human activities, and snake behavior. Here we analyzed whether environmental suitability of vipers can be used as an indicator of snakebite risk. We tested several hypotheses to explain snakebite incidence, through the construction of models incorporating both environmental suitability and socioeconomic variables in Veracruz, Mexico. Ecological niche modeling (ENM) was used to estimate potential geographic and ecological distributions of nine viper species' in Veracruz. We calculated the distance to the species' niche centroid (DNC); this distance may be associated with a prediction of abundance. We found significant inverse relationships between snakebites and DNCs of common vipers (Crotalus simus and Bothrops asper), explaining respectively 15% and almost 35% of variation in snakebite incidence. Additionally, DNCs for these two vipers, in combination with marginalization of human populations, accounted for 76% of variation in incidence. Our results suggest that niche modeling and niche-centroid distance approaches can be used to mapping distributions of environmental suitability for venomous snakes; combining this ecological information with socioeconomic factors may help with inferring potential risk areas for snakebites, since hospital data are often biased (especially when incidences are low).

  14. Proteomic Characterization of the Venom of Five Bombus (Thoracobombus Species

    Directory of Open Access Journals (Sweden)

    Nezahat Pınar Barkan

    2017-11-01

    Full Text Available Venomous animals use venom, a complex biofluid composed of unique mixtures of proteins and peptides, to act on vital systems of the prey or predator. In bees, venom is solely used for defense against predators. However, the venom composition of bumble bees (Bombus sp. is largely unknown. The Thoracobombus subgenus of Bombus sp. is a diverse subgenus represented by 14 members across Turkey. In this study, we sought out to proteomically characterize the venom of five Thoracobombus species by using bottom-up proteomic techniques. We have obtained two-dimensional polyacrylamide gel (2D-PAGE images of each species’ venom sample. We have subsequently identified the protein spots by using matrix assisted laser desorption ionization/time-of-flight mass spectrometry (MALDI-TOF MS. We have identified 47 proteins for Bombus humilis, 32 for B. pascuorum, 60 for B. ruderarius, 39 for B. sylvarum, and 35 for B. zonatus. Moreover, we illustrated that intensities of 2DE protein spots corresponding to putative venom toxins vary in a species-specific manner. Our analyses provide the primary proteomic characterization of five bumble bee species’ venom composition.

  15. Individual variability in the venom proteome of juvenile Bothrops jararaca specimens.

    Science.gov (United States)

    Dias, Gabriela S; Kitano, Eduardo S; Pagotto, Ana H; Sant'anna, Sávio S; Rocha, Marisa M T; Zelanis, André; Serrano, Solange M T

    2013-10-04

    Snake venom proteomes/peptidomes are highly complex and subject to ontogenetic changes. Individual variation in the venom proteome of juvenile snakes is poorly known. We report the proteomic analysis of venoms from 21 juvenile specimens of Bothrops jararaca of different geographical origins and correlate it with the evaluation of important venom features. Individual venoms showed similar caseinolytic activities; however, their amidolytic activities were significantly different. Rather intriguingly, plasma coagulant activity showed remarkable variability among the venoms but not the prothrombin-activating activity. LC-MS analysis showed significant differences between venoms; however, an interesting finding was the ubiquitous presence of the tripeptide ZKW, an endogenous inhibitor of metalloproteinases. Electrophoretic profiles of proteins submitted to reduction showed significant variability in total proteins, glycoproteins, and in the subproteomes of proteinases. Moreover, identification of differential bands revealed variation in most B. jararaca toxin classes. Profiles of venoms analyzed under nonreducing conditions showed less individual variability and identification of proteins in a conserved band revealed the presence of metalloproteinases and l-amino acid oxidase as common components of these venoms. Taken together, our findings suggest that individual venom proteome variability in B. jararaca exists from a very early animal age and is not a result of ontogenetic and diet changes.

  16. What killed Karl Patterson Schmidt? Combined venom gland transcriptomic, venomic and antivenomic analysis of the South African green tree snake (the boomslang), Dispholidus typus.

    Science.gov (United States)

    Pla, Davinia; Sanz, Libia; Whiteley, Gareth; Wagstaff, Simon C; Harrison, Robert A; Casewell, Nicholas R; Calvete, Juan J

    2017-04-01

    Non-front-fanged colubroid snakes comprise about two-thirds of extant ophidian species. The medical significance of the majority of these snakes is unknown, but at least five species have caused life-threatening or fatal human envenomings. However, the venoms of only a small number of species have been explored. A combined venomic and venom gland transcriptomic approach was employed to characterise of venom of Dispholidus typus (boomslang), the snake that caused the tragic death of Professor Karl Patterson Schmidt. The ability of CroFab™ antivenom to immunocapture boomslang venom proteins was investigated using antivenomics. Transcriptomic-assisted proteomic analysis identified venom proteins belonging to seven protein families: three-finger toxin (3FTx); phospholipase A 2 (PLA 2 ); cysteine-rich secretory proteins (CRISP); snake venom (SV) serine proteinase (SP); C-type lectin-like (CTL); SV metalloproteinases (SVMPs); and disintegrin-like/cysteine-rich (DC) proteolytic fragments. CroFab™ antivenom efficiently immunodepleted some boomslang SVMPs. The present work is the first to address the overall proteomic profile of D. typus venom. This study allowed us to correlate the toxin composition with the toxic activities of the venom. The antivenomic analysis suggested that the antivenom available at the time of the unfortunate accident could have exhibited at least some immunoreactivity against the boomslang SVMPs responsible for the disseminated intravascular coagulation syndrome that caused K.P. Schmidt's fatal outcome. This study may stimulate further research on other non-front-fanged colubroid snake venoms capable of causing life-threatening envenomings to humans, which in turn should contribute to prevent fatal human accidents, such as that unfortunately suffered by K.P. Schmidt. Copyright © 2017 The Author(s). Published by Elsevier B.V. All rights reserved.

  17. A Study on Major Components of Bee Venom Using Electrophoresis

    Directory of Open Access Journals (Sweden)

    Lee, Jin-Seon

    2000-12-01

    Full Text Available This study was designed to study on major components of various Bee Venom(Bee Venom by electrical stimulation in Korea; K-BV I, Bee Venom by Microwave stimulation in Korea; K -BV II, 0.5rng/ml, Fu Yu Pharmaceutical Factory, China; C-BV, 1mg /ml, Monmouth Pain Institute, Inc., U.S.A.; A-BV using Electrophoresis. The results were summarized as follows: 1. In 1:4000 Bee Venom solution rate, the band was not displayed distinctly usmg Electrophoresis. But in 1: 1000, the band showed clearly. 2. The results of Electrophoresis at solution rate 1:1000, K-BV I and K-BVII showed similar band. 3. The molecular weight of Phospholipase A2 was known as 19,000 but its band was seen at 17,000 in Electrophoresis. 4. Protein concentration of Bee Venom by Lowry method was different at solution rate 1:4000 ; C-BV was 250μg/ml, K-BV I was 190μg/ml, K-BV Ⅱ was 160μg/ml and C-BV was 45μg/ml. 5. Electrophoresis method was unuseful for analysis of Bee Venom when solution rate is above 1:4000 but Protein concentration of Bee Venom by Lowry method was possible. These data from the study can be applied to establish the standard measurement of Bee Venom and prevent pure bee venom from mixing of another components. I think it is desirable to study more about safety of Bee Venom as time goes by.

  18. Brown Spider (Loxosceles genus Venom Toxins: Tools for Biological Purposes

    Directory of Open Access Journals (Sweden)

    Andrea Senff-Ribeiro

    2011-03-01

    Full Text Available Venomous animals use their venoms as tools for defense or predation. These venoms are complex mixtures, mainly enriched of proteic toxins or peptides with several, and different, biological activities. In general, spider venom is rich in biologically active molecules that are useful in experimental protocols for pharmacology, biochemistry, cell biology and immunology, as well as putative tools for biotechnology and industries. Spider venoms have recently garnered much attention from several research groups worldwide. Brown spider (Loxosceles genus venom is enriched in low molecular mass proteins (5–40 kDa. Although their venom is produced in minute volumes (a few microliters, and contain only tens of micrograms of protein, the use of techniques based on molecular biology and proteomic analysis has afforded rational projects in the area and permitted the discovery and identification of a great number of novel toxins. The brown spider phospholipase-D family is undoubtedly the most investigated and characterized, although other important toxins, such as low molecular mass insecticidal peptides, metalloproteases and hyaluronidases have also been identified and featured in literature. The molecular pathways of the action of these toxins have been reported and brought new insights in the field of biotechnology. Herein, we shall see how recent reports describing discoveries in the area of brown spider venom have expanded biotechnological uses of molecules identified in these venoms, with special emphasis on the construction of a cDNA library for venom glands, transcriptome analysis, proteomic projects, recombinant expression of different proteic toxins, and finally structural descriptions based on crystallography of toxins.

  19. Hemolytic potency and phospholipase activity of some bee and wasp venoms.

    Science.gov (United States)

    Watala, C; Kowalczyk, J K

    1990-01-01

    1. The action of crude venoms of four aculeate species: Apis mellifera, Vespa crabro, Vespula germanica and Vespula vulgaris on human erythrocytes was investigated in order to determine the lytic and phospholipase activity of different aculeate venoms and their ability to induce red blood cell hemolysis. 2. Bee venom was the only extract to completely lyse red blood cells at the concentration of 2-3 micrograms/ml. 3. Phospholipase activity in all of the examined vespid venoms was similar and the highest value was recorded in V. germanica. 4. Vespid venoms exhibited phospholipase B activity, which is lacking in honeybee venom. 5. In all membrane phospholipids but lecithin, lysophospholipase activity of vespid venoms was 2-6 times lower than the relevant phospholipase activity. 6. The incubation of red blood cells with purified bee venom phospholipase A2 was not accompanied by lysis and, when supplemented with purified melittin, the increase of red blood cell lysis was approximately 30%.

  20. Mast Cells Can Enhance Resistance to Snake and Honeybee Venoms

    Science.gov (United States)

    Metz, Martin; Piliponsky, Adrian M.; Chen, Ching-Cheng; Lammel, Verena; Åbrink, Magnus; Pejler, Gunnar; Tsai, Mindy; Galli, Stephen J.

    2006-07-01

    Snake or honeybee envenomation can cause substantial morbidity and mortality, and it has been proposed that the activation of mast cells by snake or insect venoms can contribute to these effects. We show, in contrast, that mast cells can significantly reduce snake-venom-induced pathology in mice, at least in part by releasing carboxypeptidase A and possibly other proteases, which can degrade venom components. Mast cells also significantly reduced the morbidity and mortality induced by honeybee venom. These findings identify a new biological function for mast cells in enhancing resistance to the morbidity and mortality induced by animal venoms.

  1. Improved sensitivity to venom specific-immunoglobulin E by spiking with the allergen component in Japanese patients suspected of Hymenoptera venom allergy

    Directory of Open Access Journals (Sweden)

    Naruo Yoshida

    2015-07-01

    Conclusions: The measurement of sIgE following spiking of rVes v 5 and rPol d 5 by conventional testing in Japanese subjects with sIgE against hornet and paper wasp venom, respectively, improved the sensitivity for detecting Hymenoptera venom allergy. Improvement testing for measuring sIgE levels against hornet and paper wasp venom has potential for serologically elucidating Hymenoptera allergy in Japan.

  2. Characterization of the gila monster (Heloderma suspectum suspectum) venom proteome.

    Science.gov (United States)

    Sanggaard, Kristian W; Dyrlund, Thomas F; Thomsen, Line R; Nielsen, Tania A; Brøndum, Lars; Wang, Tobias; Thøgersen, Ida B; Enghild, Jan J

    2015-03-18

    The archetypical venomous lizard species are the helodermatids, the gila monsters (Heloderma suspectum) and the beaded lizards (Heloderma horridum). In the present study, the gila monster venom proteome was characterized using 2D-gel electrophoresis and tandem mass spectrometry-based de novo peptide sequencing followed by protein identification based on sequence homology. A total of 39 different proteins were identified out of the 58 selected spots that represent the major constituents of venom. Of these proteins, 19 have not previously been identified in helodermatid venom. The data showed that helodermatid venom is complex and that this complexity is caused by genetic isoforms and post-translational modifications including proteolytic processing. In addition, the venom proteome analysis revealed that the major constituents of the gila monster venom are kallikrein-like serine proteinases (EC 3.4.21) and phospholipase A2 (type III) enzymes (EC 3.1.1.4). A neuroendocrine convertase 1 homolog that most likely converts the proforms of the previously identified bioactive exendins into the mature and active forms was identified suggesting that these peptide toxins are secreted as proforms that are activated by proteolytic cleavage following secretion as opposed to being activated intracellularly. The presented global protein identification-analysis provides the first overview of the helodermatid venom composition. The helodermatid lizards are the classical venomous lizards, and the pharmacological potential of the venom from these species has been known for years; best illustrated by the identification of exendin-4, which is now used in the treatment of type 2 diabetes. Despite the potential, no global analyses of the protein components in the venom exist. A hindrance is the lack of a genome sequence because it prevents protein identification using a conventional approach where MS data are searched against predicted protein sequences based on the genome sequence

  3. Some Neuropharmacological Effects of the Crude Venom Extract of ...

    African Journals Online (AJOL)

    This study reports some neuropharmacological effects of the crude venom extract of Conus musicus (family Conidae) in mice using various experimental models. The crude venom was found to significantly increase tail flick reaction time in mice. The effects of the venom on the central nervous system were studied by ...

  4. Chem I Supplement: Bee Sting: The Chemistry of an Insect Venom.

    Science.gov (United States)

    O'Connor, Rod; Peck, Larry

    1980-01-01

    Considers various aspects of bee stings including the physical mechanism of the venom apparatus in the bee, categorization of physiological responses of nonprotected individuals to bee sting, chemical composition of bee venom and the mechanisms of venom action, and areas of interest in the synthesis of bee venom. (CS)

  5. Proteomic comparisons of venoms of long-term captive and recently wild-caught Eastern brown snakes (Pseudonaja textilis) indicate venom does not change due to captivity.

    Science.gov (United States)

    McCleary, Ryan J R; Sridharan, Sindhuja; Dunstan, Nathan L; Mirtschin, Peter J; Kini, R Manjunatha

    2016-07-20

    Snake venom is a highly variable phenotypic character, and its variation and rapid evolution are important because of human health implications. Because much snake antivenom is produced from captive animals, understanding the effects of captivity on venom composition is important. Here, we have evaluated toxin profiles from six long-term (LT) captive and six recently wild-caught (RC) eastern brown snakes, Pseudonaja textilis, utilizing gel electrophoresis, HPLC-MS, and shotgun proteomics. We identified proteins belonging to the three-finger toxins, group C prothrombin activators, Kunitz-type serine protease inhibitors, and phospholipases A2, among others. Although crude venom HPLC analysis showed LT snakes to be higher in some small molecular weight toxins, presence/absence patterns showed no correlation with time in captivity. Shotgun proteomics indicated the presence of similar toxin families among individuals but with variation in protein species. Although no venom sample contained all the phospholipase A2 subunits that form the textilotoxin, all did contain both prothrombin activator subunits. This study indicates that captivity has limited effects on venom composition, that venom variation is high, and that venom composition may be correlated to geographic distribution. Through proteomic comparisons, we show that protein variation within LT and RC groups of snakes (Pseudonaja textilis) is high, thereby resulting in no discernible differences in venom composition between groups. We utilize complementary techniques to characterize the venom proteomes of 12 individual snakes from our study area, and indicate that individuals captured close to one another have more similar venom gel electrophoresis patterns than those captured at more distant locations. These data are important for understanding natural variation in and potential effects of captivity on venom composition. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Utility of laboratory testing for the diagnosis of Hymenoptera venom allergy.

    Science.gov (United States)

    Vachová, Martina; Panzner, Petr; Malkusová, Ivana; Hanzlíková, Jana; Vlas, Tomáš

    2016-05-01

    A diagnosis of Hymenoptera venom allergy is based on clinical history and the results of skin tests and/or laboratory methods. To analyze the utility of available laboratory tests in diagnosing Hymenoptera venom allergy. Ninety-five patients with Hymenoptera venom allergy with a history of bee (35) or wasp (60) anaphylactic sting reaction and positive skin test with bee or wasp venom were included in this analysis. Specific immunoglobulin E (to bee venom extract, wasp venom extract, available recombinant molecules, and a basophil activation test with venom extracts were assessed in all the patients. Test sensitivity and specificity were calculated by using standard threshold values; then, receiver operating characteristic curve analysis was performed to compute optimal threshold values. Also, statistical analysis of the utility of different combinations of laboratory tests was performed. The optimal threshold values were revealed to be the following: 1.0 kIU/L for bee venom extract (sensitivity, 97.14%; specificity, 100%), 0.35 kIU/L for rApi m 1 (sensitivity, 68.57%; specificity, 100%), 1.22 kIU/L for wasp venom extract (sensitivity, 88.33%; specificity, 95.45%), 0.7 kIU/L for rVes v 5 (sensitivity, 86.67%; specificity, 95.45%), 1.0 kIU/L for rVes v 1 (sensitivity, 56.67%; specificity, 95.45%), 6.5% for basophil activation test with bee venom extract (sensitivity, 80%; specificity, 95.45%), and 4.5% for basophil activation test with wasp venom extract (sensitivity, 91.53%; specificity, 95.45%). The best test combinations were found to be the following: bee venom extract plus rApi m 1 (sensitivity, 97.14%; specificity, 95.45%) in bee and either wasp venom extract plus rVes v 5, or rVes v 5 plus rVes v 1 (both sensitivity, 98.33%; specificity, 95.45%) in patients with wasp venom allergy. Our analysis confirmed that currently used laboratory tests represent effective tools in diagnosing Hymenoptera venom allergy. Moreover, our probabilistic approach offered another

  7. The protective effect of Mucuna pruriens seeds against snake venom poisoning.

    Science.gov (United States)

    Tan, Nget Hong; Fung, Shin Yee; Sim, Si Mui; Marinello, Enrico; Guerranti, Roberto; Aguiyi, John C

    2009-06-22

    The seed, leaf and root of Mucuna pruriens have been used in traditional medicine for treatments of various diseases. In Nigeria, the seed is used as oral prophylactics for snakebite. To study the protective effects of Mucuna pruriens seed extract against the lethalities of various snake venoms. Rats were pre-treated with Mucuna pruriens seed extract and challenged with various snake venoms. The effectiveness of anti-Mucuna pruriens (anti-MPE) antibody to neutralize the lethalities of snake venoms was investigated by in vitro neutralization. In rats, MPE pre-treatment conferred effective protection against lethality of Naja sputatrix venom and moderate protection against Calloselasma rhodostoma venom. Indirect ELISA and immunoblotting studies showed that there were extensive cross-reactions between anti-MPE IgG and venoms from many different genera of poisonous snakes, suggesting the involvement of immunological neutralization in the protective effect of MPE pre-treatment against snake venom poisoning. In vitro neutralization experiments showed that the anti-MPE antibodies effectively neutralized the lethalities of Asiatic cobra (Naja) venoms, but were not very effective against other venoms tested. The anti-MPE antibodies could be used in the antiserum therapy of Asiatic cobra (Naja) bites.

  8. Pain-Causing Venom Peptides: Insights into Sensory Neuron Pharmacology

    Directory of Open Access Journals (Sweden)

    Sina Jami

    2017-12-01

    Full Text Available Venoms are produced by a wide variety of species including spiders, scorpions, reptiles, cnidarians, and fish for the purpose of harming or incapacitating predators or prey. While some venoms are of relatively simple composition, many contain hundreds to thousands of individual components with distinct pharmacological activity. Pain-inducing or “algesic” venom compounds have proven invaluable to our understanding of how physiological nociceptive neural networks operate. In this review, we present an overview of some of the diverse nociceptive pathways that can be modulated by specific venom components to evoke pain.

  9. A probability distribution model of tooth pits for evaluating time-varying mesh stiffness of pitting gears

    Science.gov (United States)

    Lei, Yaguo; Liu, Zongyao; Wang, Delong; Yang, Xiao; Liu, Huan; Lin, Jing

    2018-06-01

    Tooth damage often causes a reduction in gear mesh stiffness. Thus time-varying mesh stiffness (TVMS) can be treated as an indication of gear health conditions. This study is devoted to investigating the mesh stiffness variations of a pair of external spur gears with tooth pitting, and proposes a new model for describing tooth pitting based on probability distribution. In the model, considering the appearance and development process of tooth pitting, we model the pitting on the surface of spur gear teeth as a series of pits with a uniform distribution in the direction of tooth width and a normal distribution in the direction of tooth height, respectively. In addition, four pitting degrees, from no pitting to severe pitting, are modeled. Finally, influences of tooth pitting on TVMS are analyzed in details and the proposed model is validated by comparing with a finite element model. The comparison results show that the proposed model is effective for the TVMS evaluations of pitting gears.

  10. Minor snake venom proteins: Structure, function and potential applications.

    Science.gov (United States)

    Boldrini-França, Johara; Cologna, Camila Takeno; Pucca, Manuela Berto; Bordon, Karla de Castro Figueiredo; Amorim, Fernanda Gobbi; Anjolette, Fernando Antonio Pino; Cordeiro, Francielle Almeida; Wiezel, Gisele Adriano; Cerni, Felipe Augusto; Pinheiro-Junior, Ernesto Lopes; Shibao, Priscila Yumi Tanaka; Ferreira, Isabela Gobbo; de Oliveira, Isadora Sousa; Cardoso, Iara Aimê; Arantes, Eliane Candiani

    2017-04-01

    Snake venoms present a great diversity of pharmacologically active compounds that may be applied as research and biotechnological tools, as well as in drug development and diagnostic tests for certain diseases. The most abundant toxins have been extensively studied in the last decades and some of them have already been used for different purposes. Nevertheless, most of the minor snake venom protein classes remain poorly explored, even presenting potential application in diverse areas. The main difficulty in studying these proteins lies on the impossibility of obtaining sufficient amounts of them for a comprehensive investigation. The advent of more sensitive techniques in the last few years allowed the discovery of new venom components and the in-depth study of some already known minor proteins. This review summarizes information regarding some structural and functional aspects of low abundant snake venom proteins classes, such as growth factors, hyaluronidases, cysteine-rich secretory proteins, nucleases and nucleotidases, cobra venom factors, vespryns, protease inhibitors, antimicrobial peptides, among others. Some potential applications of these molecules are discussed herein in order to encourage researchers to explore the full venom repertoire and to discover new molecules or applications for the already known venom components. Copyright © 2016. Published by Elsevier B.V.

  11. Venom-derived peptides inhibiting Kir channels: Past, present, and future.

    Science.gov (United States)

    Doupnik, Craig A

    2017-12-01

    Inwardly rectifying K + (Kir) channels play a significant role in vertebrate and invertebrate biology by regulating the movement of K + ions involved in membrane transport and excitability. Yet unlike other ion channels including their ancestral K + -selective homologs, there are very few venom toxins known to target and inhibit Kir channels with the potency and selectivity found for the Ca 2+ -activated and voltage-gated K + channel families. It is unclear whether this is simply due to a lack of discovery, or instead a consequence of the evolutionary processes that drive the development of venom components towards their targets based on a collective efficacy to 1) elicit pain for defensive purposes, 2) promote paralysis for prey capture, or 3) facilitate delivery of venom components into the circulation. The past two decades of venom screening has yielded three venom peptides with inhibitory activity towards mammalian Kir channels, including the discovery of tertiapin, a high-affinity pore blocker from the venom of the European honey bee Apis mellifera. Venomics and structure-based computational approaches represent exciting new frontiers for venom peptide development, where re-engineering peptide 'scaffolds' such as tertiapin may aid in the quest to expand the palette of potent and selective Kir channel blockers for future research and potentially new therapeutics. This article is part of the Special Issue entitled 'Venom-derived Peptides as Pharmacological Tools.' Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Embriotoxic effects of maternal exposure to Tityus serrulatus scorpion venom

    Directory of Open Access Journals (Sweden)

    A. A. S. Barão

    2008-01-01

    Full Text Available Tityus serrulatus is the most venomous scorpion in Brazil; however, it is not known whether its venom causes any harm to the offspring whose mothers have received it. This study investigates whether the venom of T. serrulatus may lead to deleterious effects in the offspring, when once administered to pregnant rats at a dose that causes moderate envenomation (3mg/kg. The venom effects were studied on the 5th and on the 10th gestation day (GD5 and GD10. The maternal reproductive parameters of the group that received the venom on GD5 showed no alteration. The group that received the venom on GD10 presented an increase in post-implantation losses. In this group, an increase in the liver weight was also observed and one-third of the fetuses presented incomplete ossification of skull bones. None of the groups that received the venom had any visceral malformation or delay in the fetal development of their offspring. The histopathological analysis revealed not only placentas and lungs but also hearts, livers and kidneys in perfect state. Even having caused little effect on the dams, the venom may act in a more incisive way on the offspring, whether by stress generation or by a direct action.

  13. [Influence of electromagnetic radiation on toxicity of Vipera lebetina obtusa venom].

    Science.gov (United States)

    Abiev, G A; Babaev, E I; Topchieva, Sh A; Chumburidze, T B; Nemsitsveridze, N G

    2009-11-01

    The aim of the article was to study the effect of electromagnetic radiation on toxicity of Vipera lebetina obtusa venom. It was found that mice intoxicated with snake venom, with moderate to high exposure to electromagnetic radiation and mice intoxicated with venom, which had not been exposed to the radiation showed the same symptoms of intoxication and death. At the same time, the longevity of mice intoxicated with venom exposed to electromagnetic radiation was higher. The longevity of mice in control group was 25+/-5 min. The longevity of mice intoxicated with exposed to electromagnetic radiation snake venom was from 29 to 60 min. The research showed that the longevity of mice intoxicated with snake venom rose with the level of electromagnetic radiation intensity the snake was exposed to. Accordingly, snake venom, with exposure to high intensity electromagnetic radiation is less toxic.

  14. Comparison of the venom immunogenicity of various species of yellow jackets (genus Vespula).

    Science.gov (United States)

    Wicher, K; Reisman, R E; Wypych, J; Elliott, W; Steger, R; Mathews, R S; Arbesman, C E

    1980-09-01

    Venoms from various yellow jacket species were examined by two-dimensional thin-layer chromatography (TDTLC), double-diffusion gel precipitation (DDGP) using rabbit antisera, and the radioallergosorbent test (RAST). Comparison of representative venoms by the TDTLC showed that the venoms of V. vulgaris and V. maculifrons have a larger number of Ninhydrin (triketohydrindene hydrate)-positive substances than the venom of V. squamosa. The results of the DDGP confirmed the differences; venoms of V. vulgaris, V. maculifrons, V. flavopilosa, and V. germanica have one or more major components with immunogenic identity. The venom of V. squamosa has a species-specific major component and some minor components immunologically identical to the other venoms examined. Sera from 21 patients with a history of anaphylaxis following yellow jacket stings were examined by the RAST. Using the venoms of V. maculifrons, V. vulgaris, V. flavopilosa, and V. germanica as coupling antigens, most sera reacted similarly. The sera did not react with V. squamosa. These results suggest that the major component in venom obtained from the four yellow jacket species has immunogenic identity. Venom of V. squamosa differs from the remaining venoms. As a practical corollary, with the exception of venom from V. squamosa, common sensitivity appears to exist among the yellow jacket venoms examined.

  15. Neutralization of Apis mellifera bee venom activities by suramin.

    Science.gov (United States)

    El-Kik, Camila Z; Fernandes, Fabrício F A; Tomaz, Marcelo Amorim; Gaban, Glauco A; Fonseca, Tatiane F; Calil-Elias, Sabrina; Oliveira, Suellen D S; Silva, Claudia L M; Martinez, Ana Maria Blanco; Melo, Paulo A

    2013-06-01

    In this work we evaluated the ability of suramin, a polysulfonated naphthylurea derivative, to antagonize the cytotoxic and enzymatic effects of the crude venom of Apis mellifera. Suramin was efficient to decrease the lethality in a dose-dependent way. The hemoconcentration caused by lethal dose injection of bee venom was abolished by suramin (30 μg/g). The edematogenic activity of the venom (0.3 μg/g) was antagonized by suramin (10 μg/g) in all treatment protocols. The changes in the vascular permeability caused by A. mellifera (1 μg/g) venom were inhibited by suramin (30 μg/g) in the pre- and posttreatment as well as when the venom was preincubated with suramin. In addition, suramin also inhibited cultured endothelial cell lesion, as well as in vitro myotoxicity, evaluated in mouse extensor digitorum longus muscle, which was inhibited by suramin (10 and 25 μM), decreasing the rate of CK release, showing that suramin protected the sarcolemma against damage induced by components of bee venom (2.5 μg/mL). Moreover, suramin inhibited the in vivo myotoxicity induced by i.m. injection of A. mellifera venom in mice (0.5 μg/g). The analysis of the area under the plasma CK vs. time curve showed that preincubation, pre- and posttreatment with suramin (30 μg/g) inhibited bee venom myotoxic activity in mice by about 89%, 45% and 40%, respectively. Suramin markedly inhibited the PLA2 activity in a concentration-dependent way (1-30 μM). Being suramin a polyanion molecule, the effects observed may be due to the interaction of its charges with the polycation components present in A. mellifera bee venom. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. Lipase and phospholipase activities of Hymenoptera venoms ...

    African Journals Online (AJOL)

    native gel), Polistes flavis venom has four major protein bands, one of which has lipase activity; with sodium dodecyl sulfate (SDS-PAGE), the venom had eighteen bands with molecular weights ranging from a maximum of 94 kD and a minimum of ...

  17. Identification of snake venom allergens by two-dimensional electrophoresis followed by immunoblotting.

    Science.gov (United States)

    Hu, Yujing; Yang, Liming; Yang, Haiwei; He, Shaoheng; Wei, Ji-Fu

    2017-01-01

    This allergic reaction to snake venom was described to occur in patients after recurrent exposure through bites in amateur and professional snake handlers, which might be underestimated and contribute to fatal snakebites in victim, independently from the toxicity of the venom itself. Few allergens were identified from snake venoms by normal SDS-PAGE, which cannot separate the snake venom completely. In the present study, we identified nine potential allergens by two-dimensional (2D) electrophoresis followed by immunoblotting (named as allergenomics) in Protobothrops mucrosquamatus venom. By multidimensional liquid chromatography-ion trap mass spectrometry (MDLC-ESI-LTQ-MS/MS) analysis, six allergens showed sequence similarity to snake venom serine proteinases. Other allergens showed sequence similarity to snake venom metalloproteinase. These allergic reactions to snake venom allergens might contribute to fatal snakebites in victim, independently. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. [Insect venom allergies : Update 2016 for otorhinolaryngologists].

    Science.gov (United States)

    Klimek, L; Dippold, N; Sperl, A

    2016-12-01

    Due to the increasing incidence of hymenoptera venom allergies and the potentially life-threatening reactions, it is important for otolaryngologists working in allergology to have an understanding of modern diagnostic and treatment standards for this allergic disease. Molecular diagnosis with recombinant single allergens from bee and wasp venom components improves the diagnostics of insect venom allergies, particularly in patients with double-positive extract-based test results. Detection of specific sensitizations to bee or wasp venom enables double sensitizations to be better distinguished from cross-reactivity. Based on patient history and test results, the patient is initially advised on avoidance strategies and prescribed an emergency medication kit. Then, the indication for allergen-specific immunotherapy (AIT) is evaluated. The dose-increase phase can be performed using conventional, cluster, rush, or ultra-rush schedules, whereby rapid desensitization (rush AIT) performed in the clinic seems to be particularly effective as initial treatment.

  19. The VIMOS Public Extragalactic Redshift Survey (VIPERS). Star formation history of passive red galaxies

    Science.gov (United States)

    Siudek, M.; Małek, K.; Scodeggio, M.; Garilli, B.; Pollo, A.; Haines, C. P.; Fritz, A.; Bolzonella, M.; de la Torre, S.; Granett, B. R.; Guzzo, L.; Abbas, U.; Adami, C.; Bottini, D.; Cappi, A.; Cucciati, O.; De Lucia, G.; Davidzon, I.; Franzetti, P.; Iovino, A.; Krywult, J.; Le Brun, V.; Le Fèvre, O.; Maccagni, D.; Marchetti, A.; Marulli, F.; Polletta, M.; Tasca, L. A. M.; Tojeiro, R.; Vergani, D.; Zanichelli, A.; Arnouts, S.; Bel, J.; Branchini, E.; Ilbert, O.; Gargiulo, A.; Moscardini, L.; Takeuchi, T. T.; Zamorani, G.

    2017-01-01

    Aims: We trace the evolution and the star formation history of passive red galaxies, using a subset of the VIMOS Public Extragalactic Redshift Survey (VIPERS). The detailed spectral analysis of stellar populations of intermediate-redshift passive red galaxies allows the build up of their stellar content to be followed over the last 8 billion years. Methods: We extracted a sample of passive red galaxies in the redshift range 0.4 quality. The spectra of passive red galaxies were stacked in narrow bins of stellar mass and redshift. We use the stacked spectra to measure the 4000 Å break (D4000) and the Hδ Lick index (HδA) with high precision. These spectral features are used as indicators of the star formation history of passive red galaxies. We compare the results with a grid of synthetic spectra to constrain the star formation epochs of these galaxies. We characterize the formation redshift-stellar mass relation for intermediate-redshift passive red galaxies. Results: We find that at z 1 stellar populations in low-mass passive red galaxies are younger than in high-mass passive red galaxies, similar to what is observed at the present epoch. Over the full analyzed redshift range 0.4 web site is http://www.vipers.inaf.it/

  20. Hymenoptera venom allergy: analysis of double positivity to honey bee and Vespula venom by estimation of IgE antibodies to species-specific major allergens Api m1 and Ves v5.

    Science.gov (United States)

    Müller, U R; Johansen, N; Petersen, A B; Fromberg-Nielsen, J; Haeberli, G

    2009-04-01

    In patients with hymenoptera venom allergy diagnostic tests are often positive with honey bee and Vespula venom causing problems in selection of venoms for immunotherapy. 100 patients each with allergic reactions to Vespula or honey bee stings and positive i.e. skin tests to the respective venom, were analysed for serum IgE to bee venom, Vespula venom and crossreacting carbohydrate determinants (CCDs) by UNICAP (CAP) and ADVIA Centaur (ADVIA). IgE-antibodies to species specific recombinant major allergens (SSMA) Api m1 for bee venom and Ves v5 for Vespula venom, were determined by ADVIA. 30 history and skin test negative patients served as controls. By CAP sensitivity was 1.0 for bee and 0.91 for Vespula venom, by ADVIA 0.99 for bee and 0.91 for Vespula venom. None of the controls were positive with either test. Double positivity was observed in 59% of allergic patients by CAP, in 32% by ADVIA. slgE to Api m1 was detected in 97% of bee and 17% of Vespula venom allergic patients, slgE to Ves v5 in 87% of Vespula and 17% of bee venom allergic patients. slgE to CCDs were present in 37% of all allergic patients and in 56% of those with double positivity and were more frequent in bee than in Vespula venom allergic patients. Double positivity of IgE to bee and Vespula venom is often caused by crossreactions, especially to CCDs. IgE to both Api m1 and Ves v5 indicates true double sensitization and immunotherapy with both venoms.

  1. Pit Water Storage Ottrupgaard

    DEFF Research Database (Denmark)

    Heller, Alfred

    2000-01-01

    The pit water storage, a seasonal thermal storage, was built in 1993 with floating lid and hybrid clay-polymer for pit lining. The storage was leaking severe and solutions were to be found. In the paper solutions for pit lining and floating lids are discussed, cost estimations given and coming...

  2. Coral snake venoms: mode of action and pathophysiology of experimental envenomation

    Directory of Open Access Journals (Sweden)

    Oswald Vital Brazil

    1987-06-01

    Full Text Available Coral snakes, the New World Elapidae, are included in the genera Micniroides and Micrurus. The genus Mlcrurus comprises nearly all coral snake species and those which are responsible for human snake-bite accidents. The following generalizations concerning the effects induced by their venoms, and their venom-properties can be made. Coral snake venoms are neurotoxic, producing loss of muscle strenght and death by respiratory paralysis. Local edema and necrosis are not induced nor blood coagulation or hemorrhages. Proteolysis activity is absent or of very low grade. They display phospholipase A2 activity. Nephrotoxic effects are not evoked. The main toxins from elapid venoms are postsynaptic and presynaptic neurotoxins and cardiotoxins. Phospholipases A2 endowed with myonecrotic or cardiotoxin-like properties are important toxic components from some elapid venoms. The mode of action of Micrurus frontalis, M. lemniscatus, M. corallinus and M. fulvius venoms has been investigated in isolated muscle preparations and is here discussed. It is shown that while M. frontalis and M. lemniscatus venoms must contain only neurotoxins that act at the cholinergic end-plate receptor (postsynaptic neurotoxins, M. corallinus venom also inhibits evoked acetylcholine release by the motor nerve endings (presynaptic neurotoxin-like effect and M. fulvius induces muscle fiber membrane depolarization (cardiotoxin-like effect. The effects produced by M. corallinus and M. fulvius venoms in vivo in dogs and M. frontalis venom in dogs and monkeys are also reported.

  3. Intraspecies variation in the venom of the rattlesnake Crotalus simus from Mexico: different expression of crotoxin results in highly variable toxicity in the venoms of three subspecies.

    Science.gov (United States)

    Castro, Edgar Neri; Lomonte, Bruno; del Carmen Gutiérrez, María; Alagón, Alejandro; Gutiérrez, José María

    2013-07-11

    The composition and toxicological profile of the venom of the rattlesnake Crotalus simus in Mexico was analyzed at the subspecies and individual levels. Venoms of the subspecies C. s. simus, C. s. culminatus and C. s. tzabcan greatly differ in the expression of the heterodimeric neurotoxin complex 'crotoxin', with highest concentrations in C. s. simus, followed by C. s. tzabcan, whereas the venom of C. s. culminatus is almost devoid of this neurotoxic PLA2. This explains the large variation in lethality (highest in C. s. simus, which also exerts higher myotoxicity). Coagulant activity on plasma and fibrinogen occurs with the venoms of C. s. simus and C. s. tzabcan, being absent in C. s. culminatus which, in turn, presents higher crotamine-like activity. Proteomic analysis closely correlates with toxicological profiles, since the venom of C. s. simus has high amounts of crotoxin and of serine proteinases, whereas the venom of C. s. culminatus presents higher amounts of metalloproteinases and crotamine. This complex pattern of intraspecies venom variation provides valuable information for the diagnosis and clinical management of envenoming by this species in Mexico, as well as for the preparation of venom pools for the production and quality control of antivenoms. This study describes the variation in venom composition and activities of the three subspecies of Crotalus simus from Mexico. Results demonstrate that there is a notorious difference in these venoms, particularly regarding the content of the potent neurotoxic phospholipase A2 complex 'crotoxin'. In addition, other differences were observed regarding myotoxic and coagulant activities, and expression of the myotoxin 'crotamine'. These findings have implications in, at least, three levels: (a) the adaptive role of variations in venom composition; (b) the possible differences in the clinical manifestations of envenomings by these subspecies in Mexico; and (c) the design of venom mixtures for the preparation of

  4. Addiction to Snake Venom.

    Science.gov (United States)

    Das, Saibal; Barnwal, Preeti; Maiti, Tanay; Ramasamy, Anand; Mondal, Somnath; Babu, Dinesh

    2017-07-03

    The nature of addiction depends on various factors. The tendency to have already used several addictive substances and to seek high sensation experiences as a result of specific personality traits may lead to extreme and peculiar forms of addictions. Even belonging to specific social and cultural background may lead to such forms of addiction such as intentional snake bite and willful envenomation. In this article, we have discussed the peculiarities and practical insight of such addiction to snake venom. The possible molecular mechanism behind such venom-mediated reinforcement has also been highlighted. Finally, we have stressed upon the treatment and de-addiction measures.

  5. Proteomic characterization of venom of the medically important Southeast Asian Naja sumatrana (Equatorial spitting cobra).

    Science.gov (United States)

    Yap, Michelle Khai Khun; Fung, Shin Yee; Tan, Kae Yi; Tan, Nget Hong

    2014-05-01

    The proteome of Naja sumatrana (Equatorial spitting cobra) venom was investigated by shotgun analysis and a combination of ion-exchange chromatography and reverse phase HPLC. Shotgun analysis revealed the presence of 39 proteins in the venom while the chromatographic approach identified 37 venom proteins. The results indicated that, like other Asiatic cobra venoms, N. sumatrana contains large number of three finger toxins and phospholipases A2, which together constitute 92.1% by weight of venom protein. However, only eight of the toxins can be considered as major venom toxins. These include two phospholipases A2, three neurotoxins (two long neurotoxins and a short neurotoxin) and three cardiotoxins. The eight major toxins have relative abundance of 1.6-27.2% venom proteins and together account for 89.8% (by weight) of total venom protein. Other venom proteins identified include Zn-metalloproteinase-disintegrin, Thaicobrin, CRISP, natriuretic peptide, complement depleting factors, cobra venom factors, venom nerve growth factor and cobra serum albumin. The proteome of N. sumatrana venom is similar to proteome of other Asiatic cobra venoms but differs from that of African spitting cobra venom. Our results confirm that the main toxic action of N. sumatrana venom is neurotoxic but the large amount of cardiotoxins and phospholipases A2 are likely to contribute significantly to the overall pathophysiological action of the venom. The differences in toxin distribution between N. sumatrana venom and African spitting cobra venoms suggest possible differences in the pathophysiological actions of N. sumatrana venom and the African spitting cobra venoms, and explain why antivenom raised against Asiatic cobra venom is not effective against African spitting cobra venoms. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Bee Venom Pharmacopuncture Responses According to Sasang Constitution and Gender

    Directory of Open Access Journals (Sweden)

    Kim Chaeweon

    2013-12-01

    Full Text Available Objectives: The current study was performed to compare the bee venom pharmacopuncture skin test reactions among groups with different sexes and Sasang constitutions. Methods: Between July 2012 and June 2013, all 76 patients who underwent bee venom pharmacopuncture skin tests and Sasang constitution diagnoses at Oriental Medicine Hospital of Sangji University were included in this study. The skin test was performed on the patient’s forearm intracutaneously with 0.05 ml of sweet bee venom (SBV on their first visit. If the patients showed a positive response, the test was discontinued. On the other hand, if the patient showed a negative response, the test was performed on the opposite forearm intracutaneously with 0.05 ml of bee venom pharmacopuncture 25% on the next day or the next visit. Three groups were made to compare the differences in the bee venom pharmacopuncture skin tests according to sexual difference and Sasang constitution: group A showed a positive response to SBV, group B showed a positive response to bee venom pharmacopuncture 25%, and group C showed a negative response on all bee venom pharmacopuncture skin tests. Fisher’s exact test was performed to evaluate the differences statistically. Results: The results of the bee venom pharmacopuncture skin tests showed no significant differences according to Sasang constitution (P = 0.300 or sexual difference (P = 0.163. Conclusion: No significant differences on the results of bee venom pharmacopuncture skin tests were observed according to two factors, Sasang constitution and the sexual difference.

  7. Snake venoms components with antitumor activity in murine melanoma cells

    International Nuclear Information System (INIS)

    Queiroz, Rodrigo Guimaraes

    2012-01-01

    Despite the constant advances in the treatment of cancer, this disease remains one of the main causes of mortality worldwide. So, the development of new treatment modalities is imperative. Snake venom causes a variety of biological effects because they constitute a complex mixture of substances as disintegrins, proteases (serine and metalo), phospholipases A2, L-amino acid oxidases and others. The goal of the present work is to evaluate a anti-tumor activity of some snake venoms fractions. There are several studies of components derived from snake venoms with this kind of activity. After fractionation of snake venoms of the families Viperidae and Elapidae, the fractions were assayed towards murine melanoma cell line B16-F10 and fibroblasts L929. The results showed that the fractions of venom of the snake Notechis ater niger had higher specificity and potential antitumor activity on B16-F10 cell line than the other studied venoms. Since the components of this venom are not explored yet coupled with the potential activity showed in this work, we decided to choose this venom to develop further studies. The cytotoxic fractions were evaluated to identify and characterize the components that showed antitumoral activity. Western blot assays and zymography suggests that these proteins do not belong to the class of metallo and serine proteinases. (author)

  8. Anti-arthritic effects of microneedling with bee venom gel

    Directory of Open Access Journals (Sweden)

    Mengdi Zhao

    2016-10-01

    Conclusions: Bee venom can significantly suppress the occurrence of gouty arthritis inflammation in rats and mice LPS inflammatory reaction. Choose the 750 μm microneedle with 10N force on skin about 3 minutes, bee venom can play the optimal role, and the anti-inflammatory effect is obvious. Microneedles can promote the percutaneous absorption of the active macromolecules bee venom gel.

  9. A Study on the Stability of Diluted Bee Venom Solution

    Directory of Open Access Journals (Sweden)

    Mi-Suk Kang

    2003-06-01

    Full Text Available Objective : The purpose of this study was to investigate the stability of bee venom according to the keeping method and period. Method : The author observed microbial contamination of bee venom in nutrient agar, broth, YPD agar and YPD media and antibacterial activity for S. aureus, E. coli manufactured 12, 6 and 3 months ago as the two type of room temperature and 4℃ cold storage. Result : 1. 1:3,000 and 1:4,000 diluted bee venom solution did not show microbial contamination both room temperature and cold storage within twelve months. 2. There was antibacterial activity of diluted bee venom for S. aureus in cold storage within twelve months and there was no antibacterial activity of diluted bee venom for S. aureus in twelve months, room temperature storage. 3. We could not observe the zone of inhibition around paper disc of all for E.coli. in 1:3,000, 1:30,000 and 1:3,000,000 diluted bee venom solution, respectively. According to results, we expect that diluted bee venom solution is stable both cold and room temperature storage within twelve months.

  10. Factors underlying the natural resistance of animals against snake venoms

    Directory of Open Access Journals (Sweden)

    H. Moussatché

    1989-01-01

    Full Text Available The existence of mammals and reptilia with a natural resistance to snake venoms is known since a long time. This fact has been subjected to the study by several research workers. Our experiments showed us that in the marsupial Didelphis marsupialis, a mammal highly resistant to the venom of Bothrops jararaca, and other Bothrops venoms, has a genetically origin protein, a alpha-1, acid glycoprotein, now highly purified, with protective action in mice against the jararaca snake venom.

  11. Molecular barcoding, DNA from snake venom, and toxinological research: Considerations and concerns.

    Science.gov (United States)

    Powell, Randy L; Reyes, Steven R; Lannutti, Dominic I

    2006-12-15

    The problem of species identification in toxinological research and solutions such as molecular barcoding and DNA extraction from venom samples are addressed. Molecular barcoding is controversial with both perceived advantages and inherent problems. A method of species identification utilizing mitochondrial DNA from venom has been identified. This method could result in deemphasizing the importance of obtaining detailed information on the venom source prior to analysis. Additional concerns include; a cost prohibitive factor, intraspecific venom variation, and venom processing issues. As researchers demand more stringent records and verification, venom suppliers may be prompted to implement improved methods and controls.

  12. Irradiation of the Crude Venom of Bothrops jararacussu to Obtain Toxoid

    International Nuclear Information System (INIS)

    Ferreira, Camila G.; Avalloni, Tania M.; Oshima-Franco, Yoko; Oliveira, Sara de J; Oliveira, Jose M. Jr. de; Cogo, Jose C.

    2011-01-01

    The aim of this work was to reduce the toxicity of Bothrops jararacussu venom using gamma-rays of low-energy coming from a source of Americium-241 (E = 59.6 keV and 3.7x10 9 Bq of activity) in order to obtain a toxoid. The radiation dose that each sample received was controlled by exposure time of the venom to the radiation beam. Mouse nerve phrenic-diaphragm preparation was used for testing the loss of venom toxicity, since the venom causes an irreversible neuromuscular blockade. In this condition, the several samples of irradiated venom, when assayed in neuromuscular preparation showed that with a dose of 0.051 Gy the paralysis caused by the irradiated venom was of 91%, at 0.360 Gy was of 79%, at 1.662 Gy was of 50% and at 2.448 Gy was of 42%. Therefore, it can be concluded that the irradiation model was able to induce a progressive loss of the venom toxicity.

  13. Irradiation of the Crude Venom of Bothrops jararacussu to Obtain Toxoid

    Science.gov (United States)

    Ferreira, Camila G.; Avalloni, Tânia M.; Oshima-Franco, Yoko; de J. Oliveira, Sara; de Oliveira, José M.; Cogo, José C.

    2011-08-01

    The aim of this work was to reduce the toxicity of Bothrops jararacussu venom using gamma-rays of low-energy coming from a source of Americium-241 (E = 59.6 keV and 3.7×109 Bq of activity) in order to obtain a toxoid. The radiation dose that each sample received was controlled by exposure time of the venom to the radiation beam. Mouse nerve phrenic-diaphragm preparation was used for testing the loss of venom toxicity, since the venom causes an irreversible neuromuscular blockade. In this condition, the several samples of irradiated venom, when assayed in neuromuscular preparation showed that with a dose of 0.051 Gy the paralysis caused by the irradiated venom was of 91%, at 0.360 Gy was of 79%, at 1.662 Gy was of 50% and at 2.448 Gy was of 42%. Therefore, it can be concluded that the irradiation model was able to induce a progressive loss of the venom toxicity.

  14. Snake venoms: A brief treatise on etymology, origins of terminology, and definitions.

    Science.gov (United States)

    Weinstein, Scott A

    2015-09-01

    The ancient perceptions of "venomous" and "poisonous snakes", as well as the Indo-European (IE) etymological origins of the term "venom" specifically associated with snakes are considered. Although several ancient cultures perceived snakes as symbols of fecundity and renewal, concurrent beliefs also associated venomous snakes with undesirable human characteristics or as portending non-propitious events. The respective IE roots of the terms "venom" and "poison", "wen" and "poi" refer to desire or the act of ingesting liquids. The origin of the term, "venom", is associated with polytheistic cults that emphasized attainment of desires sometimes assisted by "love potions", a term later interpolated with the word, "poison". Specific interpretation of the term, venom, has varied since its first probable use in the mid-Thirteenth Century. The definition of snake venom has long been contended, and interpretations have often reflected emphasis on the pharmacological or experimental toxicity of medically relevant snake venoms with less regard for the basic biological bases of these venoms, as well as those from snakes with no known medical significance. Several definitions of "snake venom" and their defining criteria are reviewed, and critical consideration is given to traditional criteria that might facilitate the future establishment of a biologically accurate definition. Crown Copyright © 2015. Published by Elsevier Ltd. All rights reserved.

  15. [Effects of venom from Sclerodermus sichuanensis Xiao on pupa of Tenebrio molitor].

    Science.gov (United States)

    Zhuo, Zhi-Hang; Yang, Wei; Qin, Huan; Yang, Chun-Ping; Yang, Hua; Xu, Dan-Ping

    2013-11-01

    To explore the regulatory mechanisms of parasitism of Sclerodermus sichuanensis on Tenebrio molitor, the methods of natural parasitism and venom injection were adopted to investigate the effects of the venom from S. sichuanensis on the pupa of T. molitor in the parasitic process. Under venom injection, the paralytic degree of the pupa had a positive correlation with the concentration of injected venom, and the number of recovered pupa had a negative correlation with the injected venom concentration. The T. molitor pupa was in slight and reversible paralysis when injected with 0.01 VRE (venom reservoir equivalent) of venom, and in non-reversible and complete paralysis when 0.2 VRE was injected. The pupa died massively and appeared a wide range of melanization when injected with soil bacterial suspension alone, but the melanization delayed and the mortality declined significantly when the mixed liquor of bacterium and venom was injected. The bacteriostasis of the venom on Staphylococcus aureus was significantly stronger than that on Escherichia coli. Within a definite range of temperature, the paralytic activity decreased significantly with increasing temperature, the bacteriostasis on S. aureus increased significantly, while that on E. coli was opposite. This study showed that the venom from S. sichuanensis had the effects of paralysis, bacteriostasis, inhibiting exuviations, and delaying melanization.

  16. Preparation and characterization of bee venom-loaded PLGA particles for sustained release.

    Science.gov (United States)

    Park, Min-Ho; Jun, Hye-Suk; Jeon, Jong-Woon; Park, Jin-Kyu; Lee, Bong-Joo; Suh, Guk-Hyun; Park, Jeong-Sook; Cho, Cheong-Weon

    2016-12-14

    Bee venom-loaded poly(lactic-co-glycolic acid) (PLGA) particles were prepared by double emulsion-solvent evaporation, and characterized for a sustained-release system. Factors such as the type of organic solvent, the amount of bee venom and PLGA, the type of PLGA, the type of polyvinyl alcohol, and the emulsification method were considered. Physicochemical properties, including the encapsulation efficiency, drug loading, particle size, zeta-potential and surface morphology were examined by Fourier transform infrared (FT-IR) spectroscopy, differential scanning calorimetry (DSC), and X-ray diffraction (XRD). The size of the bee venom-loaded PLGA particles was 500 nm (measured using sonication). Zeta-potentials of the bee venom-loaded PLGA particles were negative owing to the PLGA. FT-IR results demonstrated that the bee venom was completely encapsulated in the PLGA particles, indicated by the disappearance of the amine and amide peaks. In addition, sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) analysis indicated that the bee venom in the bee venom-loaded PLGA particles was intact. In vitro release of the bee venom from the bee venom-loaded PLGA particles showed a sustained-release profile over 1 month. Bee venom-loaded PLGA particles can help improve patients' quality of life by reducing the number of injections required.

  17. Open Pit Water Control Safety A Case Of Nchanga Open Pit Mine Zambia

    Directory of Open Access Journals (Sweden)

    Silwamba C

    2015-08-01

    Full Text Available Abstract Mining in Chingola Zambia started underground in 1931 and was catastrophically flooded and closed. The present Nchanga Underground Mine NUG started in 1937. The Nchanga Open Pit NOP mine started in 1955 situated to the west of NUG and partially overlying it. Open pit water control safety operations in the Nchanga-Chingola area have successfully enabled the safe extraction of millions of tonnes of copper ore annually over the past 60 years from NUG mining as well as the NOP. At the start Nchanga mining license surface already had NUG and many watershed divides with the Nchanga and Chingola streams being the main streams feeding into Zambias second largest river Kafue river and 42 of the year was characterised by heavy rains ranging between 800mm to 1300mm per annum. In this paper the presence of very significant amounts of seasonal rain and subsurface water in the mining area was identified as both a curse and a blessing. An excess in seasonal rain and subsurface water would disrupt both open pit and underground mining operations. In order for NOP to be operated successfully stable and free from flooding coping water management tactics were adopted from 1955 to 2015 including 1. Underground mine pump chamber pumping system 2. Piezometer instrumented boreholes 3. Underground mine 1500-ft sub-haulage east borehole dewatering beneath the open pit 4. Nchanga and Chingola stream diversionary tunnel and open drains 5. Nchanga stream causeway and embankment dam in the Matero School Golf Club area 6. Pit perimeter borehole pumping 7. Outer and inner pit perimeter drains and bund walls 8. In-pit ramp side drains 9. In-pit sub-horizontal borehole geo-drains and water and 10. Pit bottom sump pumps. Application of grout curtains along the Vistula River Poland was noted as a possibility in the right circumstances although it had never been used at Nchanga Open Pit. An additional conclusion was that forward health safety and environmental end

  18. [Therapy control of specific hymenoptera venom allergy].

    Science.gov (United States)

    Aust, W; Wichmann, G; Dietz, A

    2010-12-01

    In Germany anaphylactic reactions after insect stings are mostly caused by honey bee (Apis mellifera) and wasp (Vespula vulgaris, Vespula germanica). In the majority of cases venom immunotherapy is a successful therapy and protects patients from recurrent systemic anaphylactic reaction. In some patients persistent severe reactions after insect sting can even occur in spite of venom therapy, as a sign of therapy failure. It is important to identify these patients, who do not benefit from venom immunotherapy, in an early stage of therapy. In this case dose rate of venom immunotherapy must be adjusted for a successful therapy outcome. Up to now skin prick tests, specific IgE-antibodies and in vitro diagnostics are not suitable for detecting therapy failure. Patients with treatment failure can be diagnosed by insect sting test and almost all of them will become fully protected by increasing the maintenance dose. © Georg Thieme Verlag KG Stuttgart · New York.

  19. Pathophysiological significance and therapeutic applications of snake venom protease inhibitors.

    Science.gov (United States)

    Thakur, Rupamoni; Mukherjee, Ashis K

    2017-06-01

    Protease inhibitors are important constituents of snake venom and play important roles in the pathophysiology of snakebite. Recently, research on snake venom protease inhibitors has provided valuable information to decipher the molecular details of various biological processes and offer insight for the development of some therapeutically important molecules from snake venom. The process of blood coagulation and fibrinolysis, in addition to affecting platelet function, are well known as the major targets of several snake venom protease inhibitors. This review summarizes the structure-functional aspects of snake venom protease inhibitors that have been described to date. Because diverse biological functions have been demonstrated by protease inhibitors, a comparative overview of their pharmacological and pathophysiological properties is also highlighted. In addition, since most snake venom protease inhibitors are non-toxic on their own, this review evaluates the different roles of individual protease inhibitors that could lead to the identification of drug candidates and diagnostic molecules. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Venoms of Heteropteran Insects: A Treasure Trove of Diverse Pharmacological Toolkits

    Science.gov (United States)

    Walker, Andrew A.; Weirauch, Christiane; Fry, Bryan G.; King, Glenn F.

    2016-01-01

    The piercing-sucking mouthparts of the true bugs (Insecta: Hemiptera: Heteroptera) have allowed diversification from a plant-feeding ancestor into a wide range of trophic strategies that include predation and blood-feeding. Crucial to the success of each of these strategies is the injection of venom. Here we review the current state of knowledge with regard to heteropteran venoms. Predaceous species produce venoms that induce rapid paralysis and liquefaction. These venoms are powerfully insecticidal, and may cause paralysis or death when injected into vertebrates. Disulfide-rich peptides, bioactive phospholipids, small molecules such as N,N-dimethylaniline and 1,2,5-trithiepane, and toxic enzymes such as phospholipase A2, have been reported in predatory venoms. However, the detailed composition and molecular targets of predatory venoms are largely unknown. In contrast, recent research into blood-feeding heteropterans has revealed the structure and function of many protein and non-protein components that facilitate acquisition of blood meals. Blood-feeding venoms lack paralytic or liquefying activity but instead are cocktails of pharmacological modulators that disable the host haemostatic systems simultaneously at multiple points. The multiple ways venom is used by heteropterans suggests that further study will reveal heteropteran venom components with a wide range of bioactivities that may be recruited for use as bioinsecticides, human therapeutics, and pharmacological tools. PMID:26907342

  1. Venoms of Heteropteran Insects: A Treasure Trove of Diverse Pharmacological Toolkits.

    Science.gov (United States)

    Walker, Andrew A; Weirauch, Christiane; Fry, Bryan G; King, Glenn F

    2016-02-12

    The piercing-sucking mouthparts of the true bugs (Insecta: Hemiptera: Heteroptera) have allowed diversification from a plant-feeding ancestor into a wide range of trophic strategies that include predation and blood-feeding. Crucial to the success of each of these strategies is the injection of venom. Here we review the current state of knowledge with regard to heteropteran venoms. Predaceous species produce venoms that induce rapid paralysis and liquefaction. These venoms are powerfully insecticidal, and may cause paralysis or death when injected into vertebrates. Disulfide-rich peptides, bioactive phospholipids, small molecules such as N,N-dimethylaniline and 1,2,5-trithiepane, and toxic enzymes such as phospholipase A2, have been reported in predatory venoms. However, the detailed composition and molecular targets of predatory venoms are largely unknown. In contrast, recent research into blood-feeding heteropterans has revealed the structure and function of many protein and non-protein components that facilitate acquisition of blood meals. Blood-feeding venoms lack paralytic or liquefying activity but instead are cocktails of pharmacological modulators that disable the host haemostatic systems simultaneously at multiple points. The multiple ways venom is used by heteropterans suggests that further study will reveal heteropteran venom components with a wide range of bioactivities that may be recruited for use as bioinsecticides, human therapeutics, and pharmacological tools.

  2. Venoms of Heteropteran Insects: A Treasure Trove of Diverse Pharmacological Toolkits

    Directory of Open Access Journals (Sweden)

    Andrew A. Walker

    2016-02-01

    Full Text Available The piercing-sucking mouthparts of the true bugs (Insecta: Hemiptera: Heteroptera have allowed diversification from a plant-feeding ancestor into a wide range of trophic strategies that include predation and blood-feeding. Crucial to the success of each of these strategies is the injection of venom. Here we review the current state of knowledge with regard to heteropteran venoms. Predaceous species produce venoms that induce rapid paralysis and liquefaction. These venoms are powerfully insecticidal, and may cause paralysis or death when injected into vertebrates. Disulfide-rich peptides, bioactive phospholipids, small molecules such as N,N-dimethylaniline and 1,2,5-trithiepane, and toxic enzymes such as phospholipase A2, have been reported in predatory venoms. However, the detailed composition and molecular targets of predatory venoms are largely unknown. In contrast, recent research into blood-feeding heteropterans has revealed the structure and function of many protein and non-protein components that facilitate acquisition of blood meals. Blood-feeding venoms lack paralytic or liquefying activity but instead are cocktails of pharmacological modulators that disable the host haemostatic systems simultaneously at multiple points. The multiple ways venom is used by heteropterans suggests that further study will reveal heteropteran venom components with a wide range of bioactivities that may be recruited for use as bioinsecticides, human therapeutics, and pharmacological tools.

  3. Effect of gamma irradiation on toxicity and immunogenicity of Androctonus australis hector venom

    International Nuclear Information System (INIS)

    Abib, L.; Laraba-Djebari, F.

    2003-01-01

    An investigation was made of the radiosensitivity of the toxic and immunological properties of Androctonus australis hector venom. This venom was irradiated with two doses of gamma rays (1 and 2 kGy) from a 60 Co source. The results showed that venom toxicity was abolished for the two radiation doses (1 and 2 kGy) with, respectively, 10 and 25 times its initial LD50 value. However, irradiated venoms were immunogenic, and the antibodies elicited by them were able to recognize the native venom by enzyme-linked immunosorbent assay. Antisera raised against these toxoids (1 and 2 kGy) had a higher neutralizing capacity and immunoreactivity against all components of native venom than did the antiserum produced against the native venom. The antiserum of rabbits immunized with 2-kGy-irradiated venom was more efficient than 1-kGy-irradiated toxoid antiserum. Indeed, in vivo protection assays showed that the mice immunized with 2-kGy-irradiated venom resisted lethal doses (i.p.) of A. australis hector venom. (author)

  4. Study on Bee venom and Pain

    Directory of Open Access Journals (Sweden)

    Hyoung-Seok Yun

    2000-07-01

    Full Text Available In order to study Bee venom and Pain, We searched Journals and Internet. The results were as follows: 1. The domestic papers were total 13. 4 papers were published at The journal of korean acupuncture & moxibustion society, 3 papers were published at The journal of korean oriental medical society, Each The journal of KyoungHee University Oriental Medicine and The journal of korean sports oriental medical society published 1 papers and Unpublished desertations were 3. The clinical studies were 4 and the experimental studies were 9. 2. The domestic clinical studies reported that Bee venom Herbal Acupuncture therapy was effective on HIVD, Subacute arthritis of Knee Joint and Sequale of sprain. In the domestic experimental studies, 5 were related to analgesic effect of Bee vnom and 4 were related to mechanism of analgesia. 3. The journals searched by PubMed were total 18. 5 papers were published at Pain, Each 2 papers were published at Neurosci Lett. and Br J Pharmacol, and Each Eur J Pain, J Rheumatol, Brain Res, Neuroscience, Nature and Toxicon et al published 1 paper. 4. In the journals searched by PubMed, Only the experimental studies were existed. 8 papers used Bee Venom as pain induction substance and 1 paper was related to analgesic effects of Bee venom. 5. 15 webpage were searched by internet related to Bee Venom and pain. 11 were the introduction related to arthritis, 1 was the advertisement, 1 was the patient's experience, 1 was the case report on RA, 1 was review article.

  5. SNAKE VENOM INSTABILITY • Department of Physiology, Medical ...

    African Journals Online (AJOL)

    preferable to desiccated samples for use in snake venom research (Bjork ... experimental results suggest that dried venom samples may be influenced by different ..... true for the commercial samples, as these are collectively pooled before ...

  6. Differential Properties of Venom Peptides and Proteins in Solitary vs. Social Hunting Wasps

    Science.gov (United States)

    Lee, Si Hyeock; Baek, Ji Hyeong; Yoon, Kyungjae Andrew

    2016-01-01

    The primary functions of venoms from solitary and social wasps are different. Whereas most solitary wasps sting their prey to paralyze and preserve it, without killing, as the provisions for their progeny, social wasps usually sting to defend their colonies from vertebrate predators. Such distinctive venom properties of solitary and social wasps suggest that the main venom components are likely to be different depending on the wasps’ sociality. The present paper reviews venom components and properties of the Aculeata hunting wasps, with a particular emphasis on the comparative aspects of venom compositions and properties between solitary and social wasps. Common components in both solitary and social wasp venoms include hyaluronidase, phospholipase A2, metalloendopeptidase, etc. Although it has been expected that more diverse bioactive components with the functions of prey inactivation and physiology manipulation are present in solitary wasps, available studies on venom compositions of solitary wasps are simply too scarce to generalize this notion. Nevertheless, some neurotoxic peptides (e.g., pompilidotoxin and dendrotoxin-like peptide) and proteins (e.g., insulin-like peptide binding protein) appear to be specific to solitary wasp venom. In contrast, several proteins, such as venom allergen 5 protein, venom acid phosphatase, and various phospholipases, appear to be relatively more specific to social wasp venom. Finally, putative functions of main venom components and their application are also discussed. PMID:26805885

  7. Changes in gene expression caused by insect venom immunotherapy responsible for the long-term protection of insect venom-allergic patients

    NARCIS (Netherlands)

    Niedoszytko, Marek; Bruinenberg, Marcel; de Monchy, Jan; Weersma, Rinse K.; Wijmenga, Cisca; Jassem, Ewa; Oude Elberink, Joanne N. G.

    Background: Insect venom immunotherapy (VIT) is the only causative treatment of insect venom allergy (IVA). The immunological mechanism(s) responsible for long-term protection achieved by VIT are largely unknown. A better understanding is relevant for improving the diagnosis, prediction of

  8. The VIMOS Public Extragalactic Redshift Survey (VIPERS). Downsizing of the blue cloud and the influence of galaxy size on mass quenching over the last eight billion years

    Science.gov (United States)

    Haines, C. P.; Iovino, A.; Krywult, J.; Guzzo, L.; Davidzon, I.; Bolzonella, M.; Garilli, B.; Scodeggio, M.; Granett, B. R.; de la Torre, S.; De Lucia, G.; Abbas, U.; Adami, C.; Arnouts, S.; Bottini, D.; Cappi, A.; Cucciati, O.; Franzetti, P.; Fritz, A.; Gargiulo, A.; Le Brun, V.; Le Fèvre, O.; Maccagni, D.; Małek, K.; Marulli, F.; Moutard, T.; Polletta, M.; Pollo, A.; Tasca, L. A. M.; Tojeiro, R.; Vergani, D.; Zanichelli, A.; Zamorani, G.; Bel, J.; Branchini, E.; Coupon, J.; Ilbert, O.; Moscardini, L.; Peacock, J. A.; Siudek, M.

    2017-08-01

    We use the full VIPERS redshift survey in combination with SDSS-DR7 to explore the relationships between star-formation history (using d4000), stellar mass and galaxy structure, and how these relationships have evolved since z 1. We trace the extents and evolutions of both the blue cloud and red sequence by fitting double Gaussians to the d4000 distribution of galaxies in narrow stellar mass bins, for four redshift intervals over 0 1011M⊙, d4000 web site is http://www.vipers.inaf.it/

  9. Antioxidant activity and irritation property of venoms from Apis species.

    Science.gov (United States)

    Somwongin, Suvimol; Chantawannakul, Panuwan; Chaiyana, Wantida

    2018-04-01

    Pharmacological effects of bee venom has been reported, however, it has been restricted to the bee venom collected from European honey bee (Apis mellifera). The aim of the present study was to compare the antioxidant activities and irritation properties of venoms collected from four different Apis species in Thailand, which includes Apis cerena (Asian cavity nesting honeybee), Apis florea (dwarf honeybee), Apis dorsata (giant honeybee), and A. mellifera. Melittin content of each bee venom extracts was investigated by using high-performance liquid chromatography. Ferric reducing antioxidant power, 2, 2'-azinobis (3-ethylbenzothiazoline-6-sulfonic acid), and 1, 1-diphenyl-2-picrylhydrazyl assay were used to determine the antioxidant activity, whereas, hen's egg test chorioallantoic membrane assay was used to determine the irritation property of each bee venom extracts. Melittin was the major constituent in all bee venom extracts. The melittin content in A. dorsata, A. mellifera, A. florea, and A. cerena were 95.8 ± 3.2%, 76.5 ± 1.9%, 66.3 ± 8.6%, and 56.8 ± 1.8%, respectively. Bee venom extract from A. dorsata possessed the highest antioxidant activity with the inhibition of 41.1 ± 2.2% against DPPH, Trolox equivalent antioxidant capacity of 10.21 ± 0.74 mM Trolox/mg and equivalent concentration (EC 1 ) of 0.35 ± 0.02 mM FeSO 4 /mg. Bee venom extract from A. mellifera exhibited the highest irritation, followed by A. cerena, A. dorsata, and A. florea, respectively. Melittin was the compound responsible for the irritation property of bee venom extracts since it could induce severe irritation (irritation score was 13.7 ± 0.5, at the concentration of 2 mg/ml). The extract from A. dorsata which possessed the highest antioxidant activity showed no irritation up to the concentration of 0.1 mg/ml. Therefore, bee venom extract from A. dorsata at the concentration not more than 0.1 mg/ml would be suggested for using

  10. A study of bacterial contamination of rattlesnake venom

    Directory of Open Access Journals (Sweden)

    E. Garcia-Lima

    1987-03-01

    Full Text Available The authors studied the bacterial contamination of rattlesnake venom isolated from snakes in captivity and wild snakes caught recently. The captive snakes showed a relatively high incidence of bacterial contamination of their venom.

  11. Neuromuscular activity of Bothrops fonsecai snake venom in vertebrate preparations

    Science.gov (United States)

    Fernandes, Carla T; Giaretta, Vânia MA; Prudêncio, Luiz S; Toledo, Edvana O; da Silva, Igor RF; Collaço, Rita CO; Barbosa, Ana M; Hyslop, Stephen; Rodrigues-Simioni, Léa; Cogo, José C

    2014-01-01

    The neuromuscular activity of venom from Bothrops fonsecai, a lancehead endemic to southeastern Brazil, was investigated. Chick biventer cervicis (CBC) and mouse phrenic nerve-diaphragm (PND) preparations were used for myographic recordings and mouse diaphragm muscle was used for membrane resting potential (RP) and miniature end-plate potential (MEPP) recordings. Creatine kinase release and muscle damage were also assessed. In CBC, venom (40, 80 and 160μg/ml) produced concentration- and time-dependent neuromuscular blockade (50% blockade in 85±9 min and 73±8 min with 80 and 160μg/ml, respectively) and attenuated the contractures to 110μM ACh (78–100% inhibition) and 40mM KCl (45–90% inhibition). The venom-induced decrease in twitch-tension in curarized, directly-stimulated preparations was similar to that in indirectly stimulated preparations. Venom (100 and 200μg/ml) also caused blockade in PND preparations (50% blockade in 94±13 min and 49±8 min with 100 and 200μg/ml, respectively) but did not alter the RP or MEPP amplitude. In CBC, venom caused creatine kinase release and myonecrosis. The venom-induced decrease in twitch-tension and in the contractures to ACh and K+ were abolished by preincubating venom with commercial antivenom. These findings indicate that Bothrops fonsecai venom interferes with neuromuscular transmission essentially through postsynaptic muscle damage that affects responses to ACh and KCl. These actions are effectively prevented by commercial antivenom. PMID:25028603

  12. Diversity of peptidic and proteinaceous toxins from social Hymenoptera venoms.

    Science.gov (United States)

    Dos Santos-Pinto, José Roberto Aparecido; Perez-Riverol, Amilcar; Lasa, Alexis Musacchio; Palma, Mario Sergio

    2018-06-15

    Among venomous animals, Hymenoptera have been suggested as a rich source of natural toxins. Due to their broad ecological diversity, venom from Hymenoptera insects (bees, wasps and ants) have evolved differentially thus widening the types and biological functions of their components. To date, insect toxinology analysis have scarcely uncovered the complex composition of bee, wasp and ant venoms which include low molecular weight compounds, highly abundant peptides and proteins, including several allergens. In Hymenoptera, these complex mixtures of toxins represent a potent arsenal of biological weapons that are used for self-defense, to repel intruders and to capture prey. Consequently, Hymenoptera venom components have a broad range of pharmacological targets and have been extensively studied, as promising sources of new drugs and biopesticides. In addition, the identification and molecular characterization of Hymenoptera venom allergens have allowed for the rational design of component-resolved diagnosis of allergy, finally improving the outcome of venom immunotherapy (VIT). Until recently, a limited number of Hymenoptera venoms had been unveiled due to the technical limitations of the approaches used to date. Nevertheless, the application of novel techniques with high dynamic range has significantly increased the number of identified peptidic and proteinaceous toxins. Considering this, the present review summarizes the current knowledge about the most representative Hymenoptera venom peptides and proteins which are under study for a better understanding of the insect-caused envenoming process and the development of new drugs and biopesticides. Copyright © 2018 Elsevier Ltd. All rights reserved.

  13. Bee Venom Phospholipase A2: Yesterday’s Enemy Becomes Today’s Friend

    Science.gov (United States)

    Lee, Gihyun; Bae, Hyunsu

    2016-01-01

    Bee venom therapy has been used to treat immune-related diseases such as arthritis for a long time. Recently, it has revealed that group III secretory phospholipase A2 from bee venom (bee venom group III sPLA2) has in vitro and in vivo immunomodulatory effects. A growing number of reports have demonstrated the therapeutic effects of bee venom group III sPLA2. Notably, new experimental data have shown protective immune responses of bee venom group III sPLA2 against a wide range of diseases including asthma, Parkinson’s disease, and drug-induced organ inflammation. It is critical to evaluate the beneficial and adverse effects of bee venom group III sPLA2 because this enzyme is known to be the major allergen of bee venom that can cause anaphylactic shock. For many decades, efforts have been made to avoid its adverse effects. At high concentrations, exposure to bee venom group III sPLA2 can result in damage to cellular membranes and necrotic cell death. In this review, we summarized the current knowledge about the therapeutic effects of bee venom group III sPLA2 on several immunological diseases and described the detailed mechanisms of bee venom group III sPLA2 in regulating various immune responses and physiopathological changes. PMID:26907347

  14. Secreted Phospholipases A₂ from Animal Venoms in Pain and Analgesia.

    Science.gov (United States)

    Zambelli, Vanessa O; Picolo, Gisele; Fernandes, Carlos A H; Fontes, Marcos R M; Cury, Yara

    2017-12-19

    Animal venoms comprise a complex mixture of components that affect several biological systems. Based on the high selectivity for their molecular targets, these components are also a rich source of potential therapeutic agents. Among the main components of animal venoms are the secreted phospholipases A₂ (sPLA₂s). These PLA₂ belong to distinct PLA₂s groups. For example, snake venom sPLA₂s from Elapidae and Viperidae families, the most important families when considering envenomation, belong, respectively, to the IA and IIA/IIB groups, whereas bee venom PLA₂ belongs to group III of sPLA₂s. It is well known that PLA₂, due to its hydrolytic activity on phospholipids, takes part in many pathophysiological processes, including inflammation and pain. Therefore, secreted PLA₂s obtained from animal venoms have been widely used as tools to (a) modulate inflammation and pain, uncovering molecular targets that are implicated in the control of inflammatory (including painful) and neurodegenerative diseases; (b) shed light on the pathophysiology of inflammation and pain observed in human envenomation by poisonous animals; and, (c) characterize molecular mechanisms involved in inflammatory diseases. The present review summarizes the knowledge on the nociceptive and antinociceptive actions of sPLA₂s from animal venoms, particularly snake venoms.

  15. Embryotoxicity following repetitive maternal exposure to scorpion venom

    Directory of Open Access Journals (Sweden)

    BN Hmed

    2012-01-01

    Full Text Available Although it is a frequent accident in a few countries, scorpion envenomation during pregnancy remains scarcely studied. In the present study, the effects of repetitive maternal exposure to Buthus occitanus tunetanus venom are investigated and its possible embryotoxic consequences on rats. Primigravid rats received a daily intraperitoneal dose of 1 mL/kg of saline solution or 300 µg/kg of crude scorpion venom, from the 7th to the 13th day of gestation. On the 21st day, the animals were deeply anesthetized using diethyl-ether. Then, blood was collected for chemical parameter analysis. Following euthanasia, morphometric measurements were carried out. The results showed a significant increase in maternal heart and lung absolute weights following venom treatment. However, the mean placental weight per rat was significantly diminished. Furthermore, blood urea concentration was higher in exposed rats (6.97 ± 0.62 mmol/L than in those receiving saline solution (4.94 ± 0.90 mmol/L. Many organs of venom-treated rat fetuses (brain, liver, kidney and spleen were smaller than those of controls. On the contrary, fetal lungs were significantly heavier in fetuses exposed to venom (3.2 ± 0.4 g than in the others (3.0 ± 0.2 g. Subcutaneous blood clots, microphthalmia and total body and tail shortening were also observed in venom-treated fetuses. It is concluded that scorpion envenomation during pregnancy potentially causes intrauterine fetal alterations and growth impairment.

  16. Structures and Functions of Snake Venom Metalloproteinases (SVMP) from Protobothrops venom Collected in Japan.

    Science.gov (United States)

    Oyama, Etsuko; Takahashi, Hidenobu

    2017-08-04

    Snake venom metalloproteinases (SVMP) are widely distributed among the venoms of Crotalinae and Viperidae, and are organized into three classes (P-I, P-II and P-III) according to their size and domain structure. P-I SVMP are the smallest SVMP, as they only have a metalloproteinase (M) domain. P-II SVMP contain a disintegrin-like (D) domain, which is connected by a short spacer region to the carboxyl terminus of the M domain. P-III SVMP contain a cysteine-rich (C) domain, which is attached to the carboxyl terminus of the D domain. Some SVMP exhibit hemorrhagic activity, whereas others do not. In addition, SVMP display fibrinolytic/fibrinogenolytic (FL) activity, and the physiological functions of SVMP are controlled by their structures. Furthermore, these proteinases also demonstrate fibrinogenolytic and proteolytic activity against synthetic substrates for matrix metalloproteinases and ADAM (a disintegrin and metalloproteinase). This article describes the structures and FL, hemorrhagic, and platelet aggregation-inhibiting activity of SVMP derived from Protobothrops snake venom that was collected in Japan.

  17. Unveiling the nature of black mamba (Dendroaspis polylepis) venom through venomics and antivenom immunoprofiling: Identification of key toxin targets for antivenom development

    DEFF Research Database (Denmark)

    Laustsen, Andreas Hougaard; Lomonte, Bruno; Lohse, Brian

    2015-01-01

    The venom proteome of the black mamba, Dendroaspis polylepis, from Eastern Africa, was, for the first time, characterized. Forty- different proteins and one nucleoside were identified or assigned to protein families. The most abundant proteins were Kunitz-type proteinase inhibitors, which include...... the unique mamba venom components ‘dendrotoxins’, and α-neurotoxins and other representatives of the three-finger toxin family. In addition, the venom contains lower percentages of proteins from other families, including metalloproteinase, hyaluronidase, prokineticin, nerve growth factor, vascular...... to toxicity by influencing the toxin biodistribution. ELISA immunoprofiling and preclinical assessment of neutralization showed that polyspecific antivenoms manufactured in South Africa and India were effective in the neutralization of D. polylepis venom, albeit showing different potencies. Antivenoms had...

  18. Medically important differences in snake venom composition are dictated by distinct postgenomic mechanisms.

    Science.gov (United States)

    Casewell, Nicholas R; Wagstaff, Simon C; Wüster, Wolfgang; Cook, Darren A N; Bolton, Fiona M S; King, Sarah I; Pla, Davinia; Sanz, Libia; Calvete, Juan J; Harrison, Robert A

    2014-06-24

    Variation in venom composition is a ubiquitous phenomenon in snakes and occurs both interspecifically and intraspecifically. Venom variation can have severe outcomes for snakebite victims by rendering the specific antibodies found in antivenoms ineffective against heterologous toxins found in different venoms. The rapid evolutionary expansion of different toxin-encoding gene families in different snake lineages is widely perceived as the main cause of venom variation. However, this view is simplistic and disregards the understudied influence that processes acting on gene transcription and translation may have on the production of the venom proteome. Here, we assess the venom composition of six related viperid snakes and compare interspecific changes in the number of toxin genes, their transcription in the venom gland, and their translation into proteins secreted in venom. Our results reveal that multiple levels of regulation are responsible for generating variation in venom composition between related snake species. We demonstrate that differential levels of toxin transcription, translation, and their posttranslational modification have a substantial impact upon the resulting venom protein mixture. Notably, these processes act to varying extents on different toxin paralogs found in different snakes and are therefore likely to be as important as ancestral gene duplication events for generating compositionally distinct venom proteomes. Our results suggest that these processes may also contribute to altering the toxicity of snake venoms, and we demonstrate how this variability can undermine the treatment of a neglected tropical disease, snakebite.

  19. Component Analysis of Bee Venom from lune to September

    Directory of Open Access Journals (Sweden)

    Ki Rok Kwon

    2007-06-01

    Full Text Available Objectives : The aim of this study was to observe variation of Bee Venom content from the collection period. Methods : Content analysis of Bee Venom was rendered using HPLC method by standard melittin Results : Analyzing melittin content using HPLC, 478.97mg/g at june , 493.89mg/g at july, 468.18mg/g at August and 482.15mg/g was containing in Bee Venom at september. So the change of melittin contents was no significance from June to September. Conclusion : Above these results, we concluded carefully that collecting time was not important factor for the quality control of Bee Venom, restricted the period from June to September.

  20. Characterization of the gila monster (Heloderma suspectum suspectum) venom proteome

    DEFF Research Database (Denmark)

    Sanggaard, Kristian Wejse; Dyrlund, Thomas Franck; Thomsen, Line Rold

    2015-01-01

    of venom. Of these proteins, 19 have not previously been identified in helodermatid venom. The data showed that helodermatid venom is complex and that this complexity is caused by genetic isoforms and post-translational modifications including proteolytic processing. In addition, the venom proteome...... analysis revealed that the major constituents of the gila monster venom are kallikrein-like serine proteinases (EC 3.4.21) and phospholipase A2 (type III) enzymes (EC 3.1.1.4). A neuroendocrine convertase 1 homolog that most likely converts the proforms of the previously identified bioactive exendins...... into the mature and active forms was identified suggesting that these peptide toxins are secreted as proforms that are activated by proteolytic cleavage following secretion as opposed to being activated intracellularly. The presented global protein identification-analysis provides the first overview...

  1. Ampulexins: A New Family of Peptides in Venom of the Emerald Jewel Wasp, Ampulex compressa.

    Science.gov (United States)

    Moore, Eugene L; Arvidson, Ryan; Banks, Christopher; Urenda, Jean Paul; Duong, Elizabeth; Mohammed, Haroun; Adams, Michael E

    2018-03-27

    The parasitoid wasp Ampulex compressa injects venom directly into the brain and subesophageal ganglion of the cockroach Periplaneta americana, inducing a 7 to 10 day lethargy termed hypokinesia. Hypokinesia presents as a significant reduction in both escape response and spontaneous walking. We examined aminergic and peptidergic components of milked venom with HPLC and MALDI-TOF mass spectrometry. HPLC coupled with electrochemical detection confirmed the presence of dopamine in milked venom, while mass spectrometry revealed that the venom gland and venom sac have distinct peptide profiles, with milked venom predominantly composed of venom sac peptides. We isolated and characterized novel α-helical, amphipathic venom sac peptides that constitute a new family of venom toxins termed ampulexins. Injection of the most abundant venom peptide, ampulexin 1, into the subesophageal ganglion of cockroaches resulted in a short-term increase in escape threshold. Neither milked venom nor venom peptides interfered with growth of Escherichia coli or Bacillus thuringiensis on agar plates, and exposure to ampulexins or milked venom did not induce cell death in Chinese hamster ovary cells (CHO-K1) or Hi5 cells ( Trichoplusia ni).

  2. Comparison of Treatment Effects and Allergic responses to stiff neck between Sweet Bee Venom and Bee Venom Pharmacopuncture (A pilot study, Double blind, Randomized Controlled Clinical Trail

    Directory of Open Access Journals (Sweden)

    Kyoung-hee Lee

    2008-12-01

    Full Text Available Objective : The purpose of this study is to investigate the difference of treatment effects and allergic responses to stiff neck between Bee Venom Pharmacopuncture and Sweet Bee Venom Pharmacopuncture. Methods : Forty one patients who felt stiff neck were randomly divided into two groups, a Bee Venom Pharmacopuncture group(group Ⅰ and a Sweet Bee Venom Pharmacopuncture group(group Ⅱ. Evaluations of the treatment effects were made before and after a treatment using Visual Analog Scale(VAS, Neck Disability Index(NDI, Clinical Evaluation Grade(CEG. The comparison of allergic responses was measured with VAS. The obtained data were analyzed and compared with SPSS. Results : The group Ⅰ and group Ⅱ showed significant improvement(p<0.05 according to the VAS, NDI, CEG. And the differences between the two groups were insignificant according to VAS, NDI, CEG. But allergic responses such as localized edema, localized itching were significantly lower in group Ⅱ than group Ⅰ. Conclusions : It seems that there are no big different treatment effects between the two groups. Sweet Bee Venom Pharmacopuncture appears to be more effective measurement against allergic reactions than the Bee Venom Pharmacopuncture. Further studies are needed for the comparison of Bee Venom Pharmacopuncture and Sweet Bee Venom Pharmacopuncture.

  3. Mycobacterium chelonae infections associated with bee venom acupuncture.

    Science.gov (United States)

    Cho, Sun Young; Peck, Kyong Ran; Kim, Jungok; Ha, Young Eun; Kang, Cheol-In; Chung, Doo Ryeon; Lee, Nam Yong; Song, Jae-Hoon

    2014-03-01

    We report 3 cases of Mycobacterium chelonae infections after bee venom acupuncture. All were treated with antibiotics and surgery. Mycobacterium chelonae infections should be included in the differential diagnosis of chronic skin and soft tissue infections following bee venom acupuncture.

  4. Immunological assessment of mice hyperimmunized with native and Cobalt-60-irradiated Bothrops venoms

    International Nuclear Information System (INIS)

    Ferreira Junior, R.S.; Meira, D.A.; Martinez, J.C.

    2005-01-01

    ELISA was used to evaluate, accompany, and compare the humoral immune response of Swiss mice during hyperimmunization with native and Cobalt-60-irradiated ( 60 Co) venoms of Bothrops jararaca, Bothrops jararacussu and Bothrops moojeni. Potency and neutralization were evaluated by in vitro challenges. After hyperimmunization, immunity was observed by in vivo challenge, and the side effects were assessed. The animals immunization with one LD50 of each venom occurred on days 1, 15, 21, 30, and 45, when blood samples were collected; challenges happened on the 60th day. Results showed that ELISA was efficient in evaluating, accompanying and comparing mouse immune response during hyperimmunization. Serum titers produced with natural venom were similar to those produced with irradiated venom. Immunogenic capacity was maintained after 60 Co-irradiation. The sera produced with native venom showed neutralizing potency and capacity similar to those of the sera produced with irradiated venom. All antibodies were able to neutralize five LD50 from these venoms. Clinical alterations were minimum during hyperimmunization with irradiated venom, however, necrosis and death occurred in animals inoculated with native venom. (author)

  5. Expermental Studies of quantitative evaluation using HPLC and safety of Sweet Bee Venom

    Directory of Open Access Journals (Sweden)

    Ki Rok Kwon

    2007-06-01

    Full Text Available Objectives : This study was conducted to carry out quantitative evaluation and safety of Sweet Bee Venom. Methods : Content analysis was done using HPLC, measurement of LD50 was conducted intravenous, subcutaneous, and intra-muscular injection to the ICR mice. Results : 1. According to HPLC analysis, removal of the enzymes containing phospholipase A2 was successfully rendered on Sweet Bee Venom. And analyzing melittin content, Sweet Bee Venom contained 12% more melittin than Bee Venom. 2. LD50 of ICR mice with Sweet Bee Venom was more than 20mg/kg in subcutaneous injection and intravenous injection, between 15mg/kg and 20mg/kg in muscular injection. 3. LD50 of ICR mice with Bee Venom was between 6 and 9mg/kg in subcutaneous injection and intravenous injection, and more than 9mg/kg in muscular injection. Conclusion : Above results indicate that Sweet Bee Venom was more safe than Bee Venom and the process of removing enzymes was well rendered in Sweet Bee Venom.

  6. The North-South divide in snake bite envenomation in India

    Directory of Open Access Journals (Sweden)

    Vivek Chauhan

    2016-01-01

    Full Text Available Snake bite envenomations are common in rural areas and the incidence peaks during monsoons in India. Prominent venomous species have been traditionally labeled as the ′big four′ that includes Cobra, Krait, Russel′s viper and Saw scaled viper. Systematic attempts for identification and classification of prevalent snakes in various states of India are missing till now and there is no concrete data on this aspect. The published literature however shows that some species of snakes are more prevalent in a particular region than the other parts of India e.g. Saw scaled vipers in Rajasthan. We reviewed the published literature from various parts of India and found that there is a North-South divide in the snake bite profile from India. Neurotoxic envenomations are significantly higher in North India compared to South India where Hematotoxic envenomations are prevalent. Russel′s viper causes local necrosis, gangrene and compartment syndrome. These manifestations have never been reported in North Indian snake bite profile in the published literature. Early morning neuroparalysis caused by Krait is a common problem in North India leading to high mortality after snake bite. This review presents supporting evidence for the North-South divide and proposes a way forward in formulation and revision of guidelines for snake bite in India.

  7. NELL-1 increases pre-osteoblast mineralization using both phosphate transporter Pit1 and Pit2

    Energy Technology Data Exchange (ETDEWEB)

    Cowan, Catherine M. [Department of Bioengineering, University of California, Los Angeles, 420 Westwood Plaza,7523 Boelter Hall, Los Angeles, CA 90095 (United States); Dental and Craniofacial Research Institute and Section of Orthodontics, School of Dentistry, University of California, Los Angeles, 40833 Le Conte Ave, Los Angeles, CA 90095 (United States); Zhang, Xinli; James, Aaron W.; Mari Kim, T.; Sun, Nichole [Dental and Craniofacial Research Institute and Section of Orthodontics, School of Dentistry, University of California, Los Angeles, 40833 Le Conte Ave, Los Angeles, CA 90095 (United States); Wu, Benjamin [Department of Bioengineering, University of California, Los Angeles, 420 Westwood Plaza,7523 Boelter Hall, Los Angeles, CA 90095 (United States); Dental and Craniofacial Research Institute and Section of Orthodontics, School of Dentistry, University of California, Los Angeles, 40833 Le Conte Ave, Los Angeles, CA 90095 (United States); Ting, Kang [Dental and Craniofacial Research Institute and Section of Orthodontics, School of Dentistry, University of California, Los Angeles, 40833 Le Conte Ave, Los Angeles, CA 90095 (United States); Soo, Chia, E-mail: bsoo@ucla.edu [UCLA and Orthopaedic Hospital Department of Orthopaedic Surgery and the Orthopaedic, Hospital Research Center, University of California, Los Angeles, 2641 Charles E. Young Dr. South, Los Angeles, CA 90095 (United States)

    2012-06-08

    Highlights: Black-Right-Pointing-Pointer NELL-1 accelerates extracellular matrix mineralization in MC3T3-E1 pre-osteoblasts. Black-Right-Pointing-Pointer NELL-1 significantly increases intracellular inorganic phosphate levels. Black-Right-Pointing-Pointer NELL-1 positively regulates osteogenesis but not proliferation in MC3T3-E1 cells. Black-Right-Pointing-Pointer NELL-1 regulates inorganic phosphate transporter activity. -- Abstract: NELL-1 is a potent osteoinductive molecule that enhances bone formation in multiple animal models through currently unidentified pathways. In the present manuscript, we hypothesized that NELL-1 may regulate osteogenic differentiation accompanied by alteration of inorganic phosphate (Pi) entry into the osteoblast via sodium dependent phosphate (NaPi) transporters. To determine this, MC3T3-E1 pre-osteoblasts were cultured in the presence of recombinant human (rh)NELL-1 or rhBMP-2. Analysis was performed for intracellular Pi levels through malachite green staining, Pit-1 and Pit-2 expression, and forced upregulation of Pit-1 and Pit-2. Results showed rhNELL-1 to increase MC3T3-E1 matrix mineralization and Pi influx associated with activation of both Pit-1 and Pit-2 channels, with significantly increased Pit-2 production. In contrast, Pi transport elicited by rhBMP-2 showed to be associated with increased Pit-1 production only. Next, neutralizing antibodies against Pit-1 and Pit-2 completely abrogated the Pi influx effect of rhNELL-1, suggesting rhNELL-1 is dependent on both transporters. These results identify one potential mechanism of action for rhNELL-1 induced osteogenesis and highlight a fundamental difference between NELL-1 and BMP-2 signaling.

  8. NELL-1 increases pre-osteoblast mineralization using both phosphate transporter Pit1 and Pit2

    International Nuclear Information System (INIS)

    Cowan, Catherine M.; Zhang, Xinli; James, Aaron W.; Mari Kim, T.; Sun, Nichole; Wu, Benjamin; Ting, Kang; Soo, Chia

    2012-01-01

    Highlights: ► NELL-1 accelerates extracellular matrix mineralization in MC3T3-E1 pre-osteoblasts. ► NELL-1 significantly increases intracellular inorganic phosphate levels. ► NELL-1 positively regulates osteogenesis but not proliferation in MC3T3-E1 cells. ► NELL-1 regulates inorganic phosphate transporter activity. -- Abstract: NELL-1 is a potent osteoinductive molecule that enhances bone formation in multiple animal models through currently unidentified pathways. In the present manuscript, we hypothesized that NELL-1 may regulate osteogenic differentiation accompanied by alteration of inorganic phosphate (Pi) entry into the osteoblast via sodium dependent phosphate (NaPi) transporters. To determine this, MC3T3-E1 pre-osteoblasts were cultured in the presence of recombinant human (rh)NELL-1 or rhBMP-2. Analysis was performed for intracellular Pi levels through malachite green staining, Pit-1 and Pit-2 expression, and forced upregulation of Pit-1 and Pit-2. Results showed rhNELL-1 to increase MC3T3-E1 matrix mineralization and Pi influx associated with activation of both Pit-1 and Pit-2 channels, with significantly increased Pit-2 production. In contrast, Pi transport elicited by rhBMP-2 showed to be associated with increased Pit-1 production only. Next, neutralizing antibodies against Pit-1 and Pit-2 completely abrogated the Pi influx effect of rhNELL-1, suggesting rhNELL-1 is dependent on both transporters. These results identify one potential mechanism of action for rhNELL-1 induced osteogenesis and highlight a fundamental difference between NELL-1 and BMP-2 signaling.

  9. Bee Venom Phospholipase A2: Yesterday’s Enemy Becomes Today’s Friend

    OpenAIRE

    Gihyun Lee; Hyunsu Bae

    2016-01-01

    Bee venom therapy has been used to treat immune-related diseases such as arthritis for a long time. Recently, it has revealed that group III secretory phospholipase A2 from bee venom (bee venom group III sPLA2) has in vitro and in vivo immunomodulatory effects. A growing number of reports have demonstrated the therapeutic effects of bee venom group III sPLA2. Notably, new experimental data have shown protective immune responses of bee venom group III sPLA2 against a wide range of diseases inc...

  10. Single pit propagation on austenitic stainless steel

    International Nuclear Information System (INIS)

    Heurtault, Stephane

    2016-01-01

    The electrochemical characterization of metastable events such as pitting corrosion of stainless steel in chloride electrolyte remains complex because many individual processes may occur simultaneously on the alloy surface. To overcome these difficulties, an experimental setup, the flow micro-device, has been developed to achieve the initiation of a single pit and to propagate the single pit in three dimensions. In this work, we take advantage of such a device in order to revisit the pitting process on a 316L stainless steel in a chloride - sulphate bulk. In a first step, the time evolution of the pit geometry (depth, radius) and the chemical evolution of the pit solution investigated using in situ Raman spectroscopy have shown that the pit depth propagation depends on the formation of a metal chloride and sulphate gel in the pit solution, and is controlled by the metallic cations diffusion from the pit bottom to the pit mouth. The pit radius growth is defined by the initial surface de-passivation, by the presence of a pit cover and by the gel development in the solution. all of these phenomena are function of applied potential and chemical composition of the solution. In a last step, it was demonstrated that a critical chloride concentration is needed in order to maintain the pit propagation. This critical concentration slightly increases with the pit depth. From statistical analysis performed on identical experiments, a zone diagram showing the pit stability as a function of the chloride concentration and the pit dimensions was built. (author) [fr

  11. The protective effect of bee venom on fibrosis causing inflammatory diseases.

    Science.gov (United States)

    Lee, Woo-Ram; Pak, Sok Cheon; Park, Kwan-Kyu

    2015-11-16

    Bee venom therapy is a treatment modality that may be thousands of years old and involves the application of live bee stings to the patient's skin or, in more recent years, the injection of bee venom into the skin with a hypodermic needle. Studies have proven the effectiveness of bee venom in treating pathological conditions such as arthritis, pain and cancerous tumors. However, there has not been sufficient review to fully elucidate the cellular mechanisms of the anti-inflammatory effects of bee venom and its components. In this respect, the present study reviews current understanding of the mechanisms of the anti-inflammatory properties of bee venom and its components in the treatment of liver fibrosis, atherosclerosis and skin disease.

  12. First extensive characterization of the venom gland from an egg parasitoid

    NARCIS (Netherlands)

    Cusumano, Antonino; Duvic, Bernard; Jouan, Véronique; Ravallec, Marc; Legeai, Fabrice; Peri, Ezio; Colazza, Stefano; Volkoff, Anne Nathalie

    2018-01-01

    The venom gland is a ubiquitous organ in Hymenoptera. In insect parasitoids, the venom gland has been shown to have multiple functions including regulation of host immune response, host paralysis, host castration and developmental alteration. However, the role played by the venom gland has been

  13. Bee venom treatment for refractory postherpetic neuralgia: a case report.

    Science.gov (United States)

    Lee, Seung Min; Lim, Jinwoong; Lee, Jae-Dong; Choi, Do-Young; Lee, Sanghoon

    2014-03-01

    Bee venom has been reported to have antinociceptive and anti-inflammatory effects in experimental studies. However, questions still remain regarding the clinical use of bee venom. This report describes the successful outcome of bee venom treatment for refractory postherpetic neuralgia. A 72-year-old Korean man had severe pain and hypersensitivity in the region where he had developed a herpes zoster rash 2 years earlier. He was treated with antivirals, painkillers, steroids, and analgesic patches, all to no effect. The patient visited the East-West Pain Clinic, Kyung Hee University Medical Center, to receive collaborative treatment. After being evaluated for bee venom compatibility, he was treated with bee venom injections. A 1:30,000 diluted solution of bee venom was injected subcutaneously along the margins of the rash once per week for 4 weeks. Pain levels were evaluated before every treatment, and by his fifth visit, his pain had decreased from 8 to 2 on a 10-point numerical rating scale. He experienced no adverse effects, and this improvement was maintained at the 3-month, 6-month, and 1-year phone follow-up evaluations. Bee venom treatment demonstrates the potential to become an effective treatment for postherpetic neuralgia. Further large-sample clinical trials should be conducted to evaluate the overall safety and efficacy of this treatment.

  14. Biological and Proteolytic Variation in the Venom of Crotalus scutulatus scutulatus from Mexico

    Directory of Open Access Journals (Sweden)

    Miguel Borja

    2018-01-01

    Full Text Available Rattlesnake venoms may be classified according to the presence/absence and relative abundance of the neurotoxic phospholipases A 2 s (PLA 2 s, such as Mojave toxin, and snake venom metalloproteinases (SVMPs. In Mexico, studies to determine venom variation in Mojave Rattlesnakes (Crotalus scutulatus scutulatus are limited and little is known about the biological and proteolytic activities in this species. Tissue (34 and venom (29 samples were obtained from C. s. scutulatus from different locations within their distribution in Mexico. Mojave toxin detection was carried out at the genomic (by PCR and protein (by ELISA levels for all tissue and venom samples. Biological activity was tested on representative venoms by measuring LD 50 and hemorrhagic activity. To determine the approximate amount of SVMPs, 15 venoms were separated by RP-HPLC and variation in protein profile and proteolytic activity was evaluated by SDS-PAGE (n = 28 and Hide Powder Azure proteolytic analysis (n = 27. Three types of venom were identified in Mexico which is comparable to the intraspecific venom diversity observed in the Sonoran Desert of Arizona, USA: Venom Type A (∼Type II, with Mojave toxin, highly toxic, lacking hemorrhagic activity, and with scarce proteolytic activity; Type B (∼Type I, without Mojave toxin, less toxic than Type A, highly hemorrhagic and proteolytic; and Type A + B, containing Mojave toxin, as toxic as venom Type A, variable in hemorrhagic activity and with intermediate proteolytic activity. We also detected a positive correlation between SVMP abundance and hemorrhagic and proteolytic activities. Although more sampling is necessary, our results suggest that venoms containing Mojave toxin and venom lacking this toxin are distributed in the northwest and southeast portions of the distribution in Mexico, respectively, while an intergradation in the middle of both zones is present.

  15. The dielectric properties of neutron irradiated snake venom and its pathological impact

    International Nuclear Information System (INIS)

    Hanafy, M.S.; Rahmy, N.A.; Abd El-Khalek, M.M.

    1999-01-01

    The changes in the dielectric properties of a saline solution of Cerastes cerastes snake venom after irradiation with low-level doses of fast neutrons from a Cf-252 source, were investigated. The pathological changes in the internal organs such as liver, kidney spleen, lung and heart of the rats injected with unirradiated and irradiated venom were also studied. The changes in the molecular structure of a diluted saline solution of snake venom were measured through dielectric relaxation studies in the frequency range 0.1-10 MHz at 4±0.5 deg C. The absorption spectra of the venom solution were measured in the wavelength range 200 to 600 nm. The results indicated remarkable changes in the molecular radii, shape, relaxation time and dielectric increment of the venom molecules as a result of irradiation. Also, the intensities of the absorption bands of the venom solution decreased as a result of the irradiation process. Furthermore, the pathological examination results indicated that the toxicity of the irradiated venom decreased as compared with that of unirradiated venom, hence increasing the chance of repair of the affected organs. (author)

  16. Interacting Effects Induced by Two Neighboring Pits Considering Relative Position Parameters and Pit Depth

    Directory of Open Access Journals (Sweden)

    Yongfang Huang

    2017-04-01

    Full Text Available For pre-corroded aluminum alloy 7075-T6, the interacting effects of two neighboring pits on the stress concentration are comprehensively analyzed by considering various relative position parameters (inclination angle θ and dimensionless spacing parameter λ and pit depth (d with the finite element method. According to the severity of the stress concentration, the critical corrosion regions, bearing high susceptibility to fatigue damage, are determined for intersecting and adjacent pits, respectively. A straightforward approach is accordingly proposed to conservatively estimate the combined stress concentration factor induced by two neighboring pits, and a concrete application example is presented. It is found that for intersecting pits, the normalized stress concentration factor Ktnor increases with the increase of θ and λ and always reaches its maximum at θ = 90°, yet for adjacent pits, Ktnor decreases with the increase of λ and the maximum value appears at a slight asymmetric location. The simulations reveal that Ktnor follows a linear and an exponential relationship with the dimensionless depth parameter Rd for intersecting and adjacent cases, respectively.

  17. Venom toxicity and composition in three Pseudomyrmex ant species having different nesting modes.

    Science.gov (United States)

    Touchard, Axel; Labrière, Nicolas; Roux, Olivier; Petitclerc, Frédéric; Orivel, Jérôme; Escoubas, Pierre; Koh, Jennifer M S; Nicholson, Graham M; Dejean, Alain

    2014-09-01

    We aimed to determine whether the nesting habits of ants have influenced their venom toxicity and composition. We focused on the genus Pseudomyrmex (Pseudomyrmecinae) comprising terrestrial and arboreal species, and, among the latter, plant-ants that are obligate inhabitants of myrmecophytes (i.e., plants sheltering ants in hollow structures). Contrary to our hypothesis, the venom of the ground-dwelling species, Pseudomyrmex termitarius, was as efficacious in paralyzing prey as the venoms of the arboreal and the plant-ant species, Pseudomyrmex penetrator and Pseudomyrmex gracilis. The lethal potency of P. termitarius venom was equipotent with that of P. gracilis whereas the venom of P. penetrator was less potent. The MALDI-TOF MS analysis of each HPLC fraction of the venoms showed that P. termitarius venom is composed of 87 linear peptides, while both P. gracilis and P. penetrator venoms (23 and 26 peptides, respectively) possess peptides with disulfide bonds. Furthermore, P. penetrator venom contains three hetero- and homodimeric peptides consisting of two short peptidic chains linked together by two interchain disulfide bonds. The large number of peptides in P. termitarius venom is likely related to the large diversity of potential prey plus the antibacterial peptides required for nesting in the ground. Whereas predation involves only the prey and predator, P. penetrator venom has evolved in an environment where trees, defoliating insects, browsing mammals and ants live in equilibrium, likely explaining the diversity of the peptide structures. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Snake Venom: From Deadly Toxins to Life-saving Therapeutics.

    Science.gov (United States)

    Waheed, Humera; Moin, Syed F; Choudhary, M I

    2017-01-01

    Snakes are fascinating creatures and have been residents of this planet well before ancient humans dwelled the earth. Venomous snakes have been a figure of fear, and cause notable mortality throughout the world. The venom constitutes families of proteins and peptides with various isoforms that make it a cocktail of diverse molecules. These biomolecules are responsible for the disturbance in fundamental physiological systems of the envenomed victim, leading to morbidity which can lead to death if left untreated. Researchers have turned these life-threatening toxins into life-saving therapeutics via technological advancements. Since the development of captopril, the first drug that was derived from bradykininpotentiating peptide of Bothrops jararaca, to the disintegrins that have potent activity against certain types of cancers, snake venom components have shown great potential for the development of lead compounds for new drugs. There is a continuous development of new drugs from snake venom for coagulopathy and hemostasis to anti-cancer agents. In this review, we have focused on different snake venom proteins / peptides derived drugs that are in clinical use or in developmental stages till to date. Also, some commonly used snake venom derived diagnostic tools along with the recent updates in this exciting field are discussed. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  19. Bee venom suppresses methamphetamine-induced conditioned place preference in mice.

    Science.gov (United States)

    Kwon, Young Bae; Li, Jing; Kook, Ji Ae; Kim, Tae Wan; Jeong, Young Chan; Son, Ji Seon; Lee, Hyejung; Kim, Kee Won; Lee, Jang Hern

    2010-02-01

    Although acupuncture is most commonly used for its analgesic effect, it has also been used to treat various drug addictions including cocaine and morphine in humans. This study was designed to investigate the effect of bee venom injection on methamphetamine-induced addictive behaviors including conditioned place preference and hyperlocomotion in mice. Methamphetamine (1 mg/kg) was subcutaneously treated on days 1, 3 and 5 and the acquisition of addictive behaviors was assessed on day 7. After confirming extinction of addictive behaviors on day 17, addictive behaviors reinstated by priming dose of methamphetamine (0.1 mg/kg) was evaluated on day 18. Bee venom (20 microl of 1 mg/ml in saline) was injected to the acupuncture point ST36 on days 1, 3 and 5. Repeated bee venom injections completely blocked development of methamphetamine-induced acquisition and subsequent reinstatement. Single bee venom acupuncture 30 minutes before acquisition and reinstatement test completely inhibited methamphetamine-induced acquisition and reinstatement. Repeated bee venom acupunctures from day 8 to day 12 after methamphetamine-induced acquisition partially but significantly suppressed reinstatement. These findings suggest that bee venom acupuncture has a preventive and therapeutic effect on methamphetamine-induced addiction.

  20. Cross-reactivity and phospholipase A2 neutralization of anti-irradiated Bothrops jararaca venom antibodies

    International Nuclear Information System (INIS)

    Spencer, P.J.; Nascimento, N. do; Paula, R.A. de; Cardi, B.A.; Rogero, J.R.

    1995-01-01

    The detoxified Bothrops jararaca venom, immunized rabbits with the toxoid obtained and investigated cross-reactivity of the antibodies obtained against autologous and heterelogous venoms was presented. It was also investigated the ability of the IgGs, purified by affinity chromatography, from those sera to neutralize phospholipase. A 2 , an ubiquous enzyme in animal venoms. Results indicate that venom irradiation leads to an attenuation of toxicity of 84%. Cross-reactivity was investigated by ELISA and Western blot and all venoms were reactive to the antibodies. On what refers to phospholipase A 2 activity neutralization, the antibodies neutralized autologous venoms efficiently and, curiously, other venoms from the same genus were not neutralized, while Lachesis muta venom, a remote related specier, was neutralized by this serum. These data suggest that irradiation preserve important epitopes for induction of neutralizing antibodies and that these epitopes are not shared by all venoms assayed. (author). 8 refs, 2 figs, 3 tabs

  1. Therapeutic potential of snake venom in cancer therapy: current perspectives

    Science.gov (United States)

    Vyas, Vivek Kumar; Brahmbhatt, Keyur; Bhatt, Hardik; Parmar, Utsav

    2013-01-01

    Many active secretions produced by animals have been employed in the development of new drugs to treat diseases such as hypertension and cancer. Snake venom toxins contributed significantly to the treatment of many medical conditions. There are many published studies describing and elucidating the anti-cancer potential of snake venom. Cancer therapy is one of the main areas for the use of protein peptides and enzymes originating from animals of different species. Some of these proteins or peptides and enzymes from snake venom when isolated and evaluated may bind specifically to cancer cell membranes, affecting the migration and proliferation of these cells. Some of substances found in the snake venom present a great potential as anti-tumor agent. In this review, we presented the main results of recent years of research involving the active compounds of snake venom that have anticancer activity. PMID:23593597

  2. Circus Venomous: an interactive tool for toxinology education.

    Science.gov (United States)

    Vohra, Rais; Spano, Susanne

    2013-07-01

    Clinical education about envenomations and their treatment may convey clinical and zoological details inadequately or flatly. In recent years, the widespread availability of models and videos of venomous species have created unique opportunities for toxinology education. We share our experiences using a new toolkit for educating a diverse array of clinicians, students, and wilderness medicine enthusiasts. We examined the cost, number of participants, and satisfaction data since the initiation of a portable workshop featuring high-fidelity exhibits of venomous species. Termed the "Circus Venomous," this educational toolkit consists of several boxes of props, such as plastic models, photos, and preserved specimens of injurious species. The workshop consists of three phases: 1.) participants view all exhibits and answer clinical questions regarding venomous injuries; 2.) short video clips from television, internet, and cinema are viewed together, and myths about envenomation injuries are debunked; 3.) debriefing session and wrap-up. We have utilized the Circus Venomous to teach medical students, residents, practicing community clinicians, nurses, PAs, national and regional parkmedics, and wilderness enthusiasts. The major cost (about $800) was spent on the purchase of highly durable, lifelike models and well preserved real reptile and arachnid specimens. When formal feedback was solicited, the participants expressed high levels of satisfaction, scoring an average of 4.3, 4.4, and 4.3 out of 5 points in the respective areas of content, presentation, and practical value of the activity. Since we have used this exhibit with approximately 250 participants over 2 years, we estimate the materials cost per participant is approximately $3. The Circus Venomous is a novel, interactive, flexible, and cost-effective teaching tool about envenomation emergencies. We hope that this concept will encourage other clinical educators toward further innovation. Future directions for our

  3. The Antinociceptive Effects of Iranian Cobra Snake Venom using Formalin Test

    Directory of Open Access Journals (Sweden)

    Zahra Hadi Chegeni

    2015-06-01

    Full Text Available Abstract Background: There have been numerous reports of snake venoms being employed as analgesics in attempts to relieve severe pain associated with cancer, immune dysfunction and viral infections. This study investigates the antinociceptive effects of iranian cobra snake venom (Naja naja oxiana in comparison with morphine and lidocain on laboratorial femal mice. Materials and Methods: This study has been done on 48 NMRI female mice of 18-20 g in weight. Antinociceptive activeity of snake venom was evaluated by formalin test. In this test, the animals were divided into 6 groups (each group consisting of 8 mice: Sham, positive Control (receiving morphine at dose of 5 mg/kg, and receiving lidocain at dose of 20 mg/kg, and experimental groups receiving venom at doses of 1, 3 and 4/5 µg/mice. In all groups, the formalin test was recorded for 60 min after administration of venom and drugs in mice. Data were analyzed using one-way ANOVA and Tukey test. Results: The results showed that the venom of Naja naja oxiana decreased nociception meaningfully in both acute and chronic phases. We also showed that this venom revealed even a better analgesic activity in comparison with morphine and lidocain. Conclusion: This study showed that the antinociceptive effect of the venom was mediated through central nervous system and peripheral mechanisms. Although details of the mechanism remain unclear, and further studies should be considered to demonstrate its therapeutic effects.

  4. Secreted Phospholipases A2 from Animal Venoms in Pain and Analgesia

    Science.gov (United States)

    Zambelli, Vanessa O.; Picolo, Gisele; Fernandes, Carlos A. H.

    2017-01-01

    Animal venoms comprise a complex mixture of components that affect several biological systems. Based on the high selectivity for their molecular targets, these components are also a rich source of potential therapeutic agents. Among the main components of animal venoms are the secreted phospholipases A2 (sPLA2s). These PLA2 belong to distinct PLA2s groups. For example, snake venom sPLA2s from Elapidae and Viperidae families, the most important families when considering envenomation, belong, respectively, to the IA and IIA/IIB groups, whereas bee venom PLA2 belongs to group III of sPLA2s. It is well known that PLA2, due to its hydrolytic activity on phospholipids, takes part in many pathophysiological processes, including inflammation and pain. Therefore, secreted PLA2s obtained from animal venoms have been widely used as tools to (a) modulate inflammation and pain, uncovering molecular targets that are implicated in the control of inflammatory (including painful) and neurodegenerative diseases; (b) shed light on the pathophysiology of inflammation and pain observed in human envenomation by poisonous animals; and, (c) characterize molecular mechanisms involved in inflammatory diseases. The present review summarizes the knowledge on the nociceptive and antinociceptive actions of sPLA2s from animal venoms, particularly snake venoms. PMID:29311537

  5. The toxicogenomic multiverse: convergent recruitment of proteins into animal venoms.

    Science.gov (United States)

    Fry, Bryan G; Roelants, Kim; Champagne, Donald E; Scheib, Holger; Tyndall, Joel D A; King, Glenn F; Nevalainen, Timo J; Norman, Janette A; Lewis, Richard J; Norton, Raymond S; Renjifo, Camila; de la Vega, Ricardo C Rodríguez

    2009-01-01

    Throughout evolution, numerous proteins have been convergently recruited into the venoms of various animals, including centipedes, cephalopods, cone snails, fish, insects (several independent venom systems), platypus, scorpions, shrews, spiders, toxicoferan reptiles (lizards and snakes), and sea anemones. The protein scaffolds utilized convergently have included AVIT/colipase/prokineticin, CAP, chitinase, cystatin, defensins, hyaluronidase, Kunitz, lectin, lipocalin, natriuretic peptide, peptidase S1, phospholipase A(2), sphingomyelinase D, and SPRY. Many of these same venom protein types have also been convergently recruited for use in the hematophagous gland secretions of invertebrates (e.g., fleas, leeches, kissing bugs, mosquitoes, and ticks) and vertebrates (e.g., vampire bats). Here, we discuss a number of overarching structural, functional, and evolutionary generalities of the protein families from which these toxins have been frequently recruited and propose a revised and expanded working definition for venom. Given the large number of striking similarities between the protein compositions of conventional venoms and hematophagous secretions, we argue that the latter should also fall under the same definition.

  6. Allergen immunotherapy for insect venom allergy

    DEFF Research Database (Denmark)

    Dhami, S; Zaman, H; Varga, E-M

    2016-01-01

    BACKGROUND: The European Academy of Allergy and Clinical Immunology (EAACI) is in the process of developing the EAACI Guidelines on Allergen Immunotherapy (AIT) for the management of insect venom allergy. To inform this process, we sought to assess the effectiveness, cost-effectiveness and safety...... of AIT in the management of insect venom allergy. METHODS: We undertook a systematic review, which involved searching 15 international biomedical databases for published and unpublished evidence. Studies were independently screened and critically appraised using established instruments. Data were...

  7. Biochemical and immunological alterations of 60 Co irradiated Bothrops jararacussu venom

    International Nuclear Information System (INIS)

    Spencer, Patrick J.

    1995-01-01

    Proteins irradiation leads to structural alterations resulting in activity and function loss. This process has been useful to detoxify animal venoms and toxins, resulting in low toxicity products which increased immunogenicity. The Bothrops jararacussu venom behaves as a weak immunogen and its lethal activity in not neutralized by either autologous, heterologous or bothropic polyvalent antisera. This venom is markedly myotoxic and and the commercial bothropic antiserum does not neutralize this activity, because of this low immunogenicity of the myotoxins. This present work was done in order to evaluate the possibility of irradiating Bothrops jararacussu, intending to increase the immunogenicity of the myotoxic components, leading to productions of myotoxins neutralizing antibodies. Bothrops jararacussu venom samples were irradiated with 500, 1000 and 2000 Gy of 60 Co gamma rays. A 2.3 folds decrease of toxicity was observed for the 1000 Gy irradiated samples while the 2000 Gy irradiated sample was at least 3.7 folds attenuated. On the other hand, the 500 Gy did not promote any detoxification. Electrophoresis and HPLC data indicate that the irradiation lead to the formation of high molecular weight products (aggregates). The proteolytic and phospholipasic activities decreased in a dose dependent manner, the phospholipases being more resistant than the proteases. Both the animals (rabbit) immunized with either native or 2000 Gy irradiated venom produced native venom binding antibodies, a slightly higher titer being obtained in the serum of the rabbit immunized with the irradiated samples. Western blot data indicate that the anti-irradiated venom Ig Gs recognised a greater amount of either autologous or heterologous venom bands, both sera behaving as genus specific. The anti-native serum did not neutralize the myotoxic activity of native venom, while the anti-irradiated one was able to neutralize this activity. (author)

  8. Proteomic analysis of venom variability and ontogeny across the arboreal palm-pitvipers (genus Bothriechis).

    Science.gov (United States)

    Pla, Davinia; Sanz, Libia; Sasa, Mahmood; Acevedo, Manuel E; Dwyer, Quetzal; Durban, Jordi; Pérez, Alicia; Rodriguez, Yania; Lomonte, Bruno; Calvete, Juan J

    2017-01-30

    Bothriechis is a genus of eleven currently recognized slender and arboreal venomous snakes, commonly called palm-pitvipers that range from southern Mexico to northern South America. Despite dietary studies suggesting that palm-pitvipers are generalists with an ontogenetic shift toward endothermic prey, venom proteomic analyses have revealed remarkable divergence between the venoms of the Costa Rican species, B. lateralis, B. schlegelii, B. supraciliaris, and B. nigroviridis. To achieve a more complete picture of the venomic landscape across Bothriechis, the venom proteomes of biodiversity of the northern Middle American highland palm-pitvipers, B. thalassinus, B. aurifer, and B. bicolor from Guatemala, B. marchi from Honduras, and neonate Costa Rican B. lateralis and B. schlegelii, were investigated. B. thalassinus and B. aurifer venoms are comprised by similar toxin arsenals dominated by SVMPs (33-39% of the venom proteome), CTLs (11-16%), BPP-like molecules (10-13%), and CRISPs (5-10%), and are characterized by the absence of PLA 2 proteins. Conversely, the predominant (35%) components of B. bicolor are D49-PLA 2 molecules. The venom proteome of B. marchi is similar to B. aurifer and B. thalassinus in that it is rich in SVMPs and BPPs, but also contains appreciable amounts (14.3%) of PLA 2 s. The major toxin family found in the venoms of both neonate B. lateralis and B. schlegelii, is serine proteinase (SVSP), comprising about 20% of their toxin arsenals. The venom of neonate B. schlegelii is the only palm-pitviper venom where relative high amounts of Kunitz-type (6.3%) and γPLA 2 (5.2%) inhibitors have been identified. Despite notable differences between their proteomes, neonate venoms are more similar to each other than to adults of their respective species. However, the ontogenetic changes taking place in the venom of B. lateralis strongly differ from those that occur in the venom of B. schlegelii. Thus, the ontogenetic change in B. lateralis produces a SVMP

  9. A Study on the Effects of Bee Venom Aqua-Acupuncture on Writhing Reflex

    Directory of Open Access Journals (Sweden)

    Jeong Sun-Hee

    2000-07-01

    Full Text Available Introduction:In spite of the use of Bee Venom aqua-acupuncture in the clinics, the scientific evaluation on effects is not enough. Bee Venom aqua-acupuncture is used according to the stimulation of acupuncture point and the chemical effects of Bee Venom. The aims of this study is to investigate the analgegic effects of the Bee Venom aqua-acupuncture, through the change of writhing reflex Materials and Methods:Pain animal model was used acetic acid method. The changes of writhing reflex of the mice which were derived pain by injecting acetic acid into the abdomen, after stimulating Bee Venom aqua-acupuncture on Chungwan(CV12 and non acupuncture point on the backside were measured. Results:1. It showed that the writhing reflex were appeared on the groups which injected acetic acid only, and saline-acetic acid group(sample I, but not on the group bee venom-saline group(sample II. 2. The change of writhing reflex by Chungwan(CV12 Bee Venom aqua-acupuncture showed significant decrease in the order of Chungwan(CV12 Bee Venom aqua-acupuncture group III(2.5×10-3g/kg, II(2.5×10-4g/kg, and I(2.5×10-5g/kg, compared with control group. There were significant decrease of number of writhing reflex in 5~10, 10~15 and 15~20 minutes intervals of Chung wan(CV12 Bee Venom aqua-acupuncture group I, and in 0~5, 5~10, 10~15 and 15~20 minutes intervals of II and III, compared with control group. 3. The change of writhing reflex by non acupuncture point Bee Venom aqua-acupuncture showed significant decrease in the 0~5 and 5~10 minutes intervals and the total number of writhing reflex in 2.5×10-4g/kg group, compared with control group 4. The effects of writhing reflex of Chungwan(CV12 Bee Venom aqua-acupuncture group showed significant decrease, compared with non acupuncture point Bee Venom aqua-acupuncture group. Conclusion:This study shows that the Bee Venom aqua-acupuncture on Chungwan(CV12 decreases the numbers of writhing reflex. As the

  10. Tetracycline Reduces Kidney Damage Induced by Loxosceles Spider Venom

    Directory of Open Access Journals (Sweden)

    Cinthya Kimori Okamoto

    2017-03-01

    Full Text Available Envenomation by Loxosceles spider can result in two clinical manifestations: cutaneous and systemic loxoscelism, the latter of which includes renal failure. Although incidence of renal failure is low, it is the main cause of death, occurring mainly in children. The sphingomyelinase D (SMase D is the main component in Loxosceles spider venom responsible for local and systemic manifestations. This study aimed to investigate the toxicity of L. intermedia venom and SMase D on kidney cells, using both In vitro and in vivo models, and the possible involvement of endogenous metalloproteinases (MMP. Results demonstrated that venom and SMase D are able to cause death of human kidney cells by apoptosis, concomitant with activation and secretion of extracellular matrix metalloproteases, MMP-2 and MMP-9. Furthermore, cell death and MMP synthesis and secretion can be prevented by tetracycline. In a mouse model of systemic loxoscelism, Loxosceles venom-induced kidney failure was observed, which was abrogated by administration of tetracycline. These results indicate that MMPs may play an important role in Loxosceles venom-induced kidney injury and that tetracycline administration may be useful in the treatment of human systemic loxoscelism.

  11. Safety and efficacy of venom immunotherapy: a real life study.

    Science.gov (United States)

    Kołaczek, Agnieszka; Skorupa, Dawid; Antczak-Marczak, Monika; Kuna, Piotr; Kupczyk, Maciej

    2017-04-01

    Venom immunotherapy (VIT) is recommended as the first-line treatment for patients allergic to Hymenoptera venom. To analyze the safety and efficacy of VIT in a real life setting. One hundred and eighty patients undergoing VIT were studied to evaluate the safety, efficacy, incidence and nature of symptoms after field stings and adverse reactions to VIT. Significantly more patients were allergic to wasp than bee venom (146 vs. 34, p bees, and were not associated with angiotensin convertase inhibitors (ACEi) or β-adrenergic antagonists use. Systemic reactions were observed in 4 individuals on wasp VIT (2.7%) and in 6 patients allergic to bees (17.65%). The VIT was efficacious as most patients reported no reactions (50%) or reported only mild local reactions (43.75%) to field stings. The decrease in sIgE at completion of VIT correlated with the dose of vaccine received ( r = 0.53, p = 0.004). Beekeeping (RR = 29.54, p venom allergy. Venom immunotherapy is highly efficacious and safe as most of the adverse events during the induction and maintenance phase are mild and local. Side effects of VIT are more common in subjects on bee VIT. Beekeeping and female sex are associated with a higher risk of allergy to Hymenoptera venom.

  12. Comparison of venoms from wild and long-term captive Bothrops atrox snakes and characterization of Batroxrhagin, the predominant class PIII metalloproteinase from the venom of this species.

    Science.gov (United States)

    Freitas-de-Sousa, L A; Amazonas, D R; Sousa, L F; Sant'Anna, S S; Nishiyama, M Y; Serrano, S M T; Junqueira-de-Azevedo, I L M; Chalkidis, H M; Moura-da-Silva, A M; Mourão, R H V

    2015-11-01

    Comparisons between venoms from snakes kept under captivity or collected at the natural environment are of fundamental importance in order to obtain effective antivenoms to treat human victims of snakebites. In this study, we compared composition and biological activities of Bothrops atrox venom from snakes collected at Tapajós National Forest (Pará State, Brazil) or maintained for more than 10 years under captivity at Instituto Butantan herpetarium after have been collected mostly at Maranhão State, Brazil. Venoms from captive or wild snakes were similar except for small quantitative differences detected in peaks correspondent to phospholipases A2 (PLA2), snake venom metalloproteinases (SVMP) class PI and serine proteinases (SVSP), which did not correlate with fibrinolytic and coagulant activities (induced by PI-SVMPs and SVSPs). In both pools, the major toxic component corresponded to PIII-SVMPs, which were isolated and characterized. The characterization by mass spectrometry of both samples identified peptides that matched with a single PIII-SVMP cDNA characterized by transcriptomics, named Batroxrhagin. Sequence alignments show a strong similarity between Batroxrhagin and Jararhagin (96%). Batroxrhagin samples isolated from venoms of wild or captive snakes were not pro-coagulant, but inhibited collagen-induced platelet-aggregation, and induced hemorrhage and fibrin lysis with similar doses. Results suggest that in spite of environmental differences, venom variability was detected only among the less abundant components. In opposition, the most abundant toxin, which is a PIII-SVMP related to the key effects of the venom, is structurally conserved in the venoms. This observation is relevant for explaining the efficacy of antivenoms produced with venoms from captive snakes in human accidents inflicted at distinct natural environments. Copyright © 2015 Elsevier B.V. and Société Française de Biochimie et Biologie Moléculaire (SFBBM). All rights reserved.

  13. [New drug developments of snake venom polypeptides and progress].

    Science.gov (United States)

    Fu, Sihai; Feng, Mei; Xiong, Yan

    2017-11-28

    The value of snake venom polypeptides in clinical application has drawn extensive attention, and the development of snake polypeptides into new drugs with anti-tumor, anti-inflammatory, antithrombotic, analgesic or antihypertensive properties has become the recent research hotspot. With the rapid development of molecular biology and biotechnology, the mechanisms of snake venom polypeptides are also gradually clarified. Numerous studies have demonstrated that snake venom polypeptides exert their pharmacological effects by regulating ion channels, cell proliferation, apoptosis, intracellular signaling pathway, and expression of cytokine as well as binding to relevant active sites or receptors.

  14. Bee Venom (Apis Mellifera an Effective Potential Alternative to Gentamicin for Specific Bacteria Strains Bee Venom an Effective Potential for Bacteria

    Directory of Open Access Journals (Sweden)

    Hossein Zolfagharian

    2016-09-01

    Full Text Available Objectives: Mellitine, a major component of bee venom (BV, Apis mellifera, is more active against gram positive than gram negative bacteria. Moreover, BV has been reported to have multiple effects, including antibacterial, antivirus, and anti-inflammation effects, in various types of cells. In addition, wasp venom has bee

  15. Histology of the venom gland of the puff-adder (Bitis arietans)

    African Journals Online (AJOL)

    state. No accessory venom gland was found to be associated with the main venom gland or duct in the same position as has been reported for other snakes. In the resting state the parenchyma of the venom gland was found to consist of tubules lined by a single layer of tall columnar secretory cells. After being stimulated to ...

  16. Experimental Study on the comparison of antibacterial and antioxidant effects between the Bee Venom and Sweet Bee Venom

    OpenAIRE

    Joong chul An; Ki Rok Kwon; Eun Hee Lee; Bae Chun Cha

    2006-01-01

    Objectives : This study was conducted to compare antibacterial activities and free radical scavenging activity between the Bee Venom and Sweet Bee Venom in which the allergy-causing enzyme is removed. Methods : To evaluate antibacterial activities of the test samples, gram negative E. coli and gram positive St. aureus were compared using the paper disc method. For comparison of the antioxidant effects, DPPH (1,1-diphenyl-2-picrylhydrazyl) free radical scavenging assay and Thiobarbituric Ac...

  17. Expression of Enzymatically Inactive Wasp Venom Phospholipase A1 in Pichia pastoris

    DEFF Research Database (Denmark)

    Borodina, Irina; Jensen, Bettina M.; Wagner, Tim

    2011-01-01

    Wasp venom allergy is the most common insect venom allergy in Europe. It is manifested by large local reaction or anaphylactic shock occurring after a wasp sting. The allergy can be treated by specific immunotherapy with whole venom extracts. Wasp venom is difficult and costly to obtain...... and is a subject to composition variation, therefore it can be advantageous to substitute it with a cocktail of recombinant allergens. One of the major venom allergens is phospholipase A1, which so far has been expressed in Escherichia coli and in insect cells. Our aim was to produce the protein in secreted form...... in yeast Pichia pastoris, which can give high yields of correctly folded protein on defined minimal medium and secretes relatively few native proteins simplifying purification.Residual amounts of enzymatically active phospholipase A1 could be expressed, but the venom protein had a deleterious effect...

  18. Expression of enzymatically inactive wasp venom phospholipase A1 in Pichia pastoris

    DEFF Research Database (Denmark)

    Borodina, Irina; Jensen, Bettina M.; Wagner, Tim

    Wasp venom allergy is the most common insect venom allergy in Europe. It is manifested by large local reaction or anaphylactic shock occurring after a wasp sting. The allergy can be treated by specific immunotherapy with whole venom extracts. Wasp venom is difficult and costly to obtain...... and is a subject to composition variation, therefore it can be advantageous to substitute it with a cocktail of recombinant allergens. One of the major venom allergens is phospholipase A1, which so far has been expressed in Escherichia coli and in insect cells. Our aim was to produce the protein in secreted form...... in yeast Pichia pastoris, which can give high yields of correctly folded protein on defined minimal medium and secretes relatively few native proteins simplifying purification. Residual amounts of enzymatically active phospholipase A1 could be expressed, but the venom protein had a deleterious effect...

  19. Expression of enzymatically inactive wasp venom phospholipase A1 in Pichia pastoris

    DEFF Research Database (Denmark)

    Borodina, Irina; Jensen, Bettina M; Wagner, Tim

    2011-01-01

    Wasp venom allergy is the most common insect venom allergy in Europe. It is manifested by large local reaction or anaphylactic shock occurring after a wasp sting. The allergy can be treated by specific immunotherapy with whole venom extracts. Wasp venom is difficult and costly to obtain...... and is a subject to composition variation, therefore it can be advantageous to substitute it with a cocktail of recombinant allergens. One of the major venom allergens is phospholipase A1, which so far has been expressed in Escherichia coli and in insect cells. Our aim was to produce the protein in secreted form...... in yeast Pichia pastoris, which can give high yields of correctly folded protein on defined minimal medium and secretes relatively few native proteins simplifying purification.Residual amounts of enzymatically active phospholipase A1 could be expressed, but the venom protein had a deleterious effect...

  20. Local and hematological alterations induced by Philodryas olfersii snake venom in mice.

    Science.gov (United States)

    Oliveira, Juliana S; Sant'Anna, Luciana B; Oliveira Junior, Manoel C; Souza, Pamella R M; Andrade Souza, Adilson S; Ribeiro, Wellington; Vieira, Rodolfo P; Hyslop, Stephen; Cogo, José C

    2017-06-15

    Envenomation by the South American opisthoglyphous snake Philodryas olfersii causes local pain, edema, erythema and ecchymosis; systemic envenomation is rare. In this work, we examined the inflammatory activity of P. olfersii venom (10, 30 and 60 μg) in mouse gastrocnemius muscle 6 h after venom injection. Intramuscular injection of venom did not affect hematological parameters such as red cell count, hemoglobin, hematocrit, mean corpuscular volume, mean corpuscular hemoglobin and mean corpuscular hemoglobin concentration. The venom caused thrombocytopenia (at all three doses), leukopenia and lymphopenia (both at the two highest doses), as well as neutrophilia (30 μg), monocytosis (30 μg) and basophilia (10 μg). Of the cytokines that were screened [IL-1β, IL-6, IL-10, IL-13, IL-17, TNF-α, IFN-γ, MIP-2 and KC] and IGF-1, only IGF-1 showed a significant increase in its circulating concentration, seen with 60 μg of venom; there were no significant changes in the cytokines compared to control mice. Histological analysis revealed the presence of edema, an inflammatory infiltrate and progressive myonecrosis. Edema and myonecrosis were greatest with 60 μg of venom, while the inflammatory infiltrate was greatest with 10 μg of venom. All venom doses caused the migration of polymorphonuclear and mononuclear leukocytes into muscle, but with no significant dose-dependence in the response. These findings show that, at the doses tested, P. olfersii venom does not cause hematological alterations and has limited effect on circulating cytokine concentrations. These data also confirm that the principal effects of the venom in mice are local edema, inflammatory cell infiltration and myonecrosis. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Risk associated with bee venom therapy: a systematic review and meta-analysis.

    Science.gov (United States)

    Park, Jeong Hwan; Yim, Bo Kyung; Lee, Jun-Hwan; Lee, Sanghun; Kim, Tae-Hun

    2015-01-01

    The safety of bee venom as a therapeutic compound has been extensively studied, resulting in the identification of potential adverse events, which range from trivial skin reactions that usually resolve over several days to life-threating severe immunological responses such as anaphylaxis. In this systematic review, we provide a summary of the types and prevalence of adverse events associated with bee venom therapy. We searched the literature using 12 databases from their inception to June 2014, without language restrictions. We included all types of clinical studies in which bee venom was used as a key intervention and adverse events that may have been causally related to bee venom therapy were reported. A total of 145 studies, including 20 randomized controlled trials, 79 audits and cohort studies, 33 single-case studies, and 13 case series, were evaluated in this review. The median frequency of patients who experienced adverse events related to venom immunotherapy was 28.87% (interquartile range, 14.57-39.74) in the audit studies. Compared with normal saline injection, bee venom acupuncture showed a 261% increased relative risk for the occurrence of adverse events (relative risk, 3.61; 95% confidence interval, 2.10 to 6.20) in the randomized controlled trials, which might be overestimated or underestimated owing to the poor reporting quality of the included studies. Adverse events related to bee venom therapy are frequent; therefore, practitioners of bee venom therapy should be cautious when applying it in daily clinical practice, and the practitioner's education and qualifications regarding the use of bee venom therapy should be ensured.

  2. Virus-like particles in venom of Meteorus pulchricornis induce host hemocyte apoptosis.

    Science.gov (United States)

    Suzuki, M; Tanaka, T

    2006-06-01

    Ultrastructural studies on the reproductive tract and venom apparatus of a female braconid, Meteorus pulchricornis, revealed that the parasitoid lacks the calyx region in its oviduct, but possesses a venom gland with two venom gland filaments and a venom reservoir filled with white and cloudy fluid. Its venom gland cell is concaved and has a lumen filled with numerous granules. Transmisson electron microscopic (TEM) observation revealed that virus-like particles (VLPs) were produced in venom gland cells. The virus-like particle observed in M. pulchricornis (MpVLP) is composed of membranous envelopes with two different parts: a high-density core and a whitish low-density part. The VLPs of M. pulchricornis is also found assembling ultimately in the lumen of venom gland cell. Microvilli were found thrusting into the lumen of the venom gland cell and seem to aid in driving the matured MpVLPs to the common duct of the venom gland filament. Injection of MpVLPs into non-parasitized Pseudaletia separata hosts induced apoptosis in hemocytes, particularly granulocytes (GRs). Rate of apoptosis induced in GRs peaked 48h after VLP injection. While a large part of the GR population collapsed due to apoptosis caused by MpVLPs, the plasmatocyte population was minimally affected. The capacity of MpVLPs to cause apoptosis in host's hemocytes was further demonstrated by a decrease ( approximately 10-fold) in ability of host hemocytes to encapsulate fluorescent latex beads when MpVLPs were present. Apparently, the reduced encapsulation ability was due to a decrease in the GR population resulting from MpVLP-induced apoptosis.

  3. Risk associated with bee venom therapy: a systematic review and meta-analysis.

    Directory of Open Access Journals (Sweden)

    Jeong Hwan Park

    Full Text Available The safety of bee venom as a therapeutic compound has been extensively studied, resulting in the identification of potential adverse events, which range from trivial skin reactions that usually resolve over several days to life-threating severe immunological responses such as anaphylaxis. In this systematic review, we provide a summary of the types and prevalence of adverse events associated with bee venom therapy.We searched the literature using 12 databases from their inception to June 2014, without language restrictions. We included all types of clinical studies in which bee venom was used as a key intervention and adverse events that may have been causally related to bee venom therapy were reported.A total of 145 studies, including 20 randomized controlled trials, 79 audits and cohort studies, 33 single-case studies, and 13 case series, were evaluated in this review. The median frequency of patients who experienced adverse events related to venom immunotherapy was 28.87% (interquartile range, 14.57-39.74 in the audit studies. Compared with normal saline injection, bee venom acupuncture showed a 261% increased relative risk for the occurrence of adverse events (relative risk, 3.61; 95% confidence interval, 2.10 to 6.20 in the randomized controlled trials, which might be overestimated or underestimated owing to the poor reporting quality of the included studies.Adverse events related to bee venom therapy are frequent; therefore, practitioners of bee venom therapy should be cautious when applying it in daily clinical practice, and the practitioner's education and qualifications regarding the use of bee venom therapy should be ensured.

  4. Micrurus snake venoms activate human complement system and generate anaphylatoxins

    Directory of Open Access Journals (Sweden)

    Tanaka Gabriela D

    2012-01-01

    Full Text Available Abstract Background The genus Micrurus, coral snakes (Serpentes, Elapidae, comprises more than 120 species and subspecies distributed from the south United States to the south of South America. Micrurus snake bites can cause death by muscle paralysis and further respiratory arrest within a few hours after envenomation. Clinical observations show mainly neurotoxic symptoms, although other biological activities have also been experimentally observed, including cardiotoxicity, hemolysis, edema and myotoxicity. Results In the present study we have investigated the action of venoms from seven species of snakes from the genus Micrurus on the complement system in in vitro studies. Several of the Micrurus species could consume the classical and/or the lectin pathways, but not the alternative pathway, and C3a, C4a and C5a were generated in sera treated with the venoms as result of this complement activation. Micrurus venoms were also able to directly cleave the α chain of the component C3, but not of the C4, which was inhibited by 1,10 Phenanthroline, suggesting the presence of a C3α chain specific metalloprotease in Micrurus spp venoms. Furthermore, complement activation was in part associated with the cleavage of C1-Inhibitor by protease(s present in the venoms, which disrupts complement activation control. Conclusion Micrurus venoms can activate the complement system, generating a significant amount of anaphylatoxins, which may assist due to their vasodilatory effects, to enhance the spreading of other venom components during the envenomation process.

  5. Biological and immunological characteristics of the poison of Bothrops cotiara (Serpentes: Viperidae)

    International Nuclear Information System (INIS)

    Roodt, Adolfo Rafael de; Dolab, Jorge Adrian; Manzanelli, Marcelo Victor; Pineiro, Nicolas; Estevez, Judith; Paniagua, Jorge Francisco; Urs Vogt, Alejandro

    2006-01-01

    Bothrops cotiara is a venomous snake sporadically found in the province of Misiones in Argentina, South of Brazil and Paraguay. Data on the clinics of the poisoning produced by its bite and on its venom are scarce. There is no information on the neutralizing capacity of the antivenoms available. In this study, the lethal potency, hemorrhagic, necrotizing, coagulant and thrombin-like, defibrinogenasing, indirect hemolytic and fibrinolytic activities of the venom of B. cotiara specimens from the province of Misiones were determined. The toxic activities were within the range of those described for the other Bothrops species from Argentina, and the electrophoretic and chromatographic studies showed similarities with those described for the other bothropic venoms. The immunochemical reactivity of six South American anti Viper antivenoms (ELISA) have a strong reactivity with all the antivenoms studied. The neutralizing capacity of three of these therapeutic antivenoms against the lethal potency and hemorrhagic, necrotizing, coagulant, thrombin-like and hemolytic activities showed a very close neutralizing capacity. Our data strongly suggest that the antivenoms for therapeutic use available in this area of South America are useful to neutralize the toxic and enzymatic activities of the venom of this uncommon specie of Bothrops. (author) [es

  6. Preparation of cobra (Naja naja) venom toxoid using gamma-radiations. Part I

    International Nuclear Information System (INIS)

    Gaitonde, B.B.; Kankonkar, S.R.

    1975-01-01

    Detoxification of venom by radiation was investigated. Two concentrations i.e. 0.01% of venom solution were irradiated with different doses of gamma-radiations from cobalt-60 source. The results obtained indicate that the toxicity of venom is markedly attenuated by gamma-radiation. (author)

  7. Keeping venomous snakes in the Netherlands: a harmless hobby or a public health threat?

    Science.gov (United States)

    van Genderen, P J J; Slobbe, L; Koene, H; Mastenbroek, R D L; Overbosch, D

    2013-10-01

    To describe the incidence of venomous snakebites and the hospital treatment thereof (if any) amongst private individuals who keep venomous snakes as a hobby. Descriptive study. Private keepers of venomous snakes were invited via the social media Facebook, Hyves, Twitter, Google Plus, Linked In and two large discussion forums to fill in an online questionnaire on a purely voluntary and anonymous basis. In the period from 1 September 2012 to 31 December 2012, 86 questionnaires were completed by individuals who keep venomous snakes as a hobby. One-third of the venomous snake keepers stated that they had at some point been bitten by a venomous snake. Out of those, two-thirds needed hospital treatment and one-third of those bitten required at least one, sometimes more, doses of antiserum. The chances of being bitten increased the more venomous snakes a person kept. An inventory of the collections of venomous snakes being kept further revealed that no antiserum exists for 16 of the species, including for the most commonly held venomous snake, the coral cobra. Keeping venomous snakes as a hobby is not without danger. Although in the majority of snakebite cases no antiserum had to be administered, there is nevertheless a significant risk of morbidity and sequelae. Preventing snakebites in the first place remains the most important safety measure since there are no antiserums available for a substantial number of venomous snakes.

  8. Antivenom potential of ethanolic extract of Cordia macleodii bark against Naja venom.

    Science.gov (United States)

    Soni, Pranay; Bodakhe, Surendra H

    2014-05-01

    To evaluate the antivenom potential of ethanolic extract of bark of Cordia macleodii against Naja venom induced pharmacological effects such as lethality, hemorrhagic lesion, necrotizing lesion, edema, cardiotoxicity and neurotoxicity. Wistar strain rats were challenged with Naja venom and treated with the ethanolic extract of Cordia macleodii bark. The effectiveness of the extract to neutralize the lethalities of Naja venom was investigated as recommended by WHO. At the dose of 400 and 800 mg/kg ethanolic extract of Cordia macleodii bark significantly inhibited the Naja venom induced lethality, hemorrhagic lesion, necrotizing lesion and edema in rats. Ethanolic extract of Cordia macleodii bark was effective in neutralizing the coagulant and defibrinogenating activity of Naja venom. The cardiotoxic effects in isolated frog heart and neurotoxic activity studies on frog rectus abdominus muscle were also antagonized by ethanolic extract of Cordia macleodii bark. It is concluded that the protective effect of extract of Cordia macleodii against Naja venom poisoning may be mediated by the cardiotonic, proteolysin neutralization, anti-inflammatory, antiserotonic and antihistaminic activity. It is possible that the protective effect may also be due to precipitation of active venom constituents.

  9. Allergies to Insect Venom

    Science.gov (United States)

    ... insects (as might be the case when a nest is disturbed, or when Africanized honeybees are involved); ... test with the five commercially available venoms; honey bee, paper wasp, yellow jacket, yellow hornet and white- ...

  10. A Rare Case Series of Ischemic Stroke Following Russell’s Viper Snake Bite in India

    Directory of Open Access Journals (Sweden)

    Venkata Krishna Pothukuchi

    2018-01-01

    Full Text Available Snakebite is an important medical problem in India. Among their various manifestations, cerebral complications are uncommonly found in literature. Moreover, Ischemic stroke following snake bite is quite rare. Here we report a case series of two such cases that developed neurological manifestations following Russell’s viper bite. On computerized tomography (CT scan of brain; cerebral infarcts were revealed. Their likely mechanisms are discussed in present study which include disseminated intravascular coagulation, toxin induced vasculitis and endothelial damage.

  11. Spider genomes provide insight into composition and evolution of venom and silk

    Science.gov (United States)

    Sanggaard, Kristian W.; Bechsgaard, Jesper S.; Fang, Xiaodong; Duan, Jinjie; Dyrlund, Thomas F.; Gupta, Vikas; Jiang, Xuanting; Cheng, Ling; Fan, Dingding; Feng, Yue; Han, Lijuan; Huang, Zhiyong; Wu, Zongze; Liao, Li; Settepani, Virginia; Thøgersen, Ida B.; Vanthournout, Bram; Wang, Tobias; Zhu, Yabing; Funch, Peter; Enghild, Jan J.; Schauser, Leif; Andersen, Stig U.; Villesen, Palle; Schierup, Mikkel H; Bilde, Trine; Wang, Jun

    2014-01-01

    Spiders are ecologically important predators with complex venom and extraordinarily tough silk that enables capture of large prey. Here we present the assembled genome of the social velvet spider and a draft assembly of the tarantula genome that represent two major taxonomic groups of spiders. The spider genomes are large with short exons and long introns, reminiscent of mammalian genomes. Phylogenetic analyses place spiders and ticks as sister groups supporting polyphyly of the Acari. Complex sets of venom and silk genes/proteins are identified. We find that venom genes evolved by sequential duplication, and that the toxic effect of venom is most likely activated by proteases present in the venom. The set of silk genes reveals a highly dynamic gene evolution, new types of silk genes and proteins, and a novel use of aciniform silk. These insights create new opportunities for pharmacological applications of venom and biomaterial applications of silk. PMID:24801114

  12. Hyaluronidase and hyaluronan in insect venom allergy.

    Science.gov (United States)

    King, Te Piao; Wittkowski, Knut M

    2011-01-01

    Insect venoms contain an allergen hyaluronidase that catalyzes the hydrolysis of hyaluronan (HA), a polymer of disaccharide GlcUA-GlcNAc in skin. HAs depending on their size have variable function in inflammation and immunity. This paper reports on whether hyaluronidase, HA polymers and oligomers can promote antibody response in mice. HA oligomers (8- to 50-mer; 3-20 kDa) were obtained by bee venom hyaluronidase digestion of HA polymers (750- to 5,000-mer; 300-2,000 kDa). Antibody responses in mice were compared following 3 biweekly subcutaneous injection of ovalbumin (OVA) with or without test adjuvant. OVA-specific IgG1 levels were approximately 2 times higher in BALB/c and C3H/HeJ mice receiving OVA and HA oligomer or polymer than those treated with OVA alone, and no increase in total IgE level was observed. In C57Bl/6 mice, observed increases in IgG1 and IgE were 3.5- and 1.7-fold, respectively, for the oligomer and 16- and 5-fold (p Insect venoms also have cytolytic peptides and phospholipases with inflammatory roles. These activities found in mice may contribute to venom allergenicity in susceptible people. Copyright © 2011 S. Karger AG, Basel.

  13. Adaptive evolution of the venom-targeted vWF protein in opossums that eat pitvipers.

    Directory of Open Access Journals (Sweden)

    Sharon A Jansa

    Full Text Available The rapid evolution of venom toxin genes is often explained as the result of a biochemical arms race between venomous animals and their prey. However, it is not clear that an arms race analogy is appropriate in this context because there is no published evidence for rapid evolution in genes that might confer toxin resistance among routinely envenomed species. Here we report such evidence from an unusual predator-prey relationship between opossums (Marsupialia: Didelphidae and pitvipers (Serpentes: Crotalinae. In particular, we found high ratios of replacement to silent substitutions in the gene encoding von Willebrand Factor (vWF, a venom-targeted hemostatic blood protein, in a clade of opossums known to eat pitvipers and to be resistant to their hemorrhagic venom. Observed amino-acid substitutions in venom-resistant opossums include changes in net charge and hydrophobicity that are hypothesized to weaken the bond between vWF and one of its toxic snake-venom ligands, the C-type lectin-like protein botrocetin. Our results provide the first example of rapid adaptive evolution in any venom-targeted molecule, and they support the notion that an evolutionary arms race might be driving the rapid evolution of snake venoms. However, in the arms race implied by our results, venomous snakes are prey, and their venom has a correspondingly defensive function in addition to its usual trophic role.

  14. Analysis of scorpion venom composition by Raman Spectroscopy

    Science.gov (United States)

    Martínez-Zérega, Brenda E.; González-Solís, José L.

    2015-01-01

    In this work we study the venom of two Centruroides scorpion species using Raman spectroscopy. The spectra analysis allows to determine the venoms chemical composition and to establish the main differences and similarities among the species. It is also shown that the use of Principal Component Analysis may help to tell apart between the scorpion species.

  15. Comparison of Phylogeny, Venom Composition and Neutralization by Antivenom in Diverse Species of Bothrops Complex

    Science.gov (United States)

    Peixoto, Pedro S.; Bernardoni, Juliana L.; Oliveira, Sâmella S.; Portes-Junior, José Antonio; Mourão, Rosa Helena V.; Lima-dos-Santos, Isa; Sano-Martins, Ida S.; Chalkidis, Hipócrates M.; Valente, Richard H.; Moura-da-Silva, Ana M.

    2013-01-01

    In Latin America, Bothrops snakes account for most snake bites in humans, and the recommended treatment is administration of multispecific Bothrops antivenom (SAB – soro antibotrópico). However, Bothrops snakes are very diverse with regard to their venom composition, which raises the issue of which venoms should be used as immunizing antigens for the production of pan-specific Bothrops antivenoms. In this study, we simultaneously compared the composition and reactivity with SAB of venoms collected from six species of snakes, distributed in pairs from three distinct phylogenetic clades: Bothrops, Bothropoides and Rhinocerophis. We also evaluated the neutralization of Bothrops atrox venom, which is the species responsible for most snake bites in the Amazon region, but not included in the immunization antigen mixture used to produce SAB. Using mass spectrometric and chromatographic approaches, we observed a lack of similarity in protein composition between the venoms from closely related snakes and a high similarity between the venoms of phylogenetically more distant snakes, suggesting little connection between taxonomic position and venom composition. P-III snake venom metalloproteinases (SVMPs) are the most antigenic toxins in the venoms of snakes from the Bothrops complex, whereas class P-I SVMPs, snake venom serine proteinases and phospholipases A2 reacted with antibodies in lower levels. Low molecular size toxins, such as disintegrins and bradykinin-potentiating peptides, were poorly antigenic. Toxins from the same protein family showed antigenic cross-reactivity among venoms from different species; SAB was efficient in neutralizing the B. atrox venom major toxins. Thus, we suggest that it is possible to obtain pan-specific effective antivenoms for Bothrops envenomations through immunization with venoms from only a few species of snakes, if these venoms contain protein classes that are representative of all species to which the antivenom is targeted. PMID

  16. Baseline Risk Assessment for the F-Area Burning/Rubble Pits and Rubble Pit

    Energy Technology Data Exchange (ETDEWEB)

    Palmer, E. [Westinghouse Savannah River Company, AIKEN, SC (United States)

    1996-03-01

    This document provides an overview of the Savannah River Site (SRS) and a description of the F-Area Burning/Rubble Pits (BRPs) and Rubble Pit (RP) unit. It also describes the objectives and scope of the baseline risk assessment (BRA).

  17. Marine snail venoms: use and trends in receptor and channel neuropharmacology.

    Science.gov (United States)

    Favreau, Philippe; Stöcklin, Reto

    2009-10-01

    Venoms are rich mixtures of mainly peptides and proteins evolved by nature to catch and digest preys or for protection against predators. They represent extensive sources of potent and selective bioactive compounds that can lead to original active ingredients, for use as drugs, as pharmacological tools in research and for the biotechnology industry. Among the most fascinating venomous animals, marine snails offer a unique set of pharmacologically active components, targeting a wide diversity of receptors and ion channels. Recent advances still continue to demonstrate their huge neuropharmacological potential. In the quest for interesting pharmacological profiles, researchers face a vast number of venom components to investigate within time and technological constraints. A brief perspective on marine snail venom's complexity and features is given followed by the different discovery strategies and pharmacological approaches, exemplified with some recent developments. These advances will hopefully help further uncovering new pharmacologically important venom molecules.

  18. Epidemiology, diagnosis, and treatment of Hymenoptera venom allergy in mastocytosis patients.

    Science.gov (United States)

    Niedoszytko, Marek; Bonadonna, Patrizia; Oude Elberink, Joanne N G; Golden, David B K

    2014-05-01

    Hymenoptera venom allergy is a typical IgE-mediated reaction caused by sensitization to 1 or more allergens of the venom, and accounts for 1.5% to 34% of all cases of anaphylaxis. Patients suffering from mastocytosis are more susceptible to the anaphylactic reactions to an insect sting. This article aims to answer the most important clinical questions raised by the diagnosis and treatment of insect venom allergy in mastocytosis patients. Total avoidance of Hymenoptera is not feasible, and there is no preventive pharmacologic treatment available, although venom immunotherapy reduces the risk of subsequent systemic reactions. Copyright © 2014 Elsevier Inc. All rights reserved.

  19. Revisiting Notechis scutatus venom: on shotgun proteomics and neutralization by the "bivalent" Sea Snake Antivenom.

    Science.gov (United States)

    Tan, Choo Hock; Tan, Kae Yi; Tan, Nget Hong

    2016-07-20

    Recent advances in proteomics enable deep profiling of the compositional details of snake venoms for improved understanding on envenomation pathophysiology and immunological neutralization. In this study, the venom of Australian tiger snake (Notechis scutatus) was trypsin-digested in solution and subjected to nano-ESI-LCMS/MS. Applying a relative quantitative proteomic approach, the findings revealed a proteome comprising 42 toxin subtypes clustered into 12 protein families. Phospholipases A2 constitute the most abundant toxins (74.5% of total venom proteins) followed by Kunitz serine protease inhibitors (6.9%), snake venom serine proteases (5.9%), alpha-neurotoxins (5.6%) and several toxins of lower abundance. The proteome correlates with N. scutatus envenoming effects including pre-synaptic and post-synaptic neurotoxicity and consumptive coagulopathy. The venom is highly lethal in mice (intravenous median lethal dose=0.09μg/g). BioCSL Sea Snake Antivenom, raised against the venoms of beaked sea snake (Hydrophis schistosus) and N. scutatus (added for enhanced immunogenicity), neutralized the lethal effect of N. scutatus venom (potency=2.95mg/ml) much more effectively than the targeted H.schistosus venom (potency=0.48mg/ml). The combined venom immunogen may have improved the neutralization against phospholipases A2 which are abundant in both venoms, but not short-neurotoxins which are predominant only in H. schistosus venom. A shotgun proteomic approach adopted in this study revealed the compositional details of the venom of common tiger snake from Australia, Notechis scutatus. The proteomic findings provided additional information on the relative abundances of toxins and the detection of proteins of minor expression unreported previously. The potent lethal effect of the venom was neutralized by bioCSL Sea Snake Antivenom, an anticipated finding due to the fact that the Sea Snake Antivenom is actually bivalent in nature, being raised against a mix of venoms of the

  20. Comparative thermometric coagulation studies of plasmas from normal outbred Swiss Webster mice and persons.

    Science.gov (United States)

    Tsang, V C; Wyatt, C R; Damian, R T

    1979-06-01

    The functional capabilities of a thermometric clot-timer have been demonstrated in a comparative study of human and mouse plasma coagulation. The influence of some variables on coagulation times of mouse and human plasmas were examined in activated partial thromboplastin time, one-stage prothrombin time, and Russell's viper venom time assays. Mouse plasma coagulation times were generally shorter and more reproducible than those of human plasma. Optimal assay conditions are also described.

  1. Snakebite poisoning in Spain.

    Science.gov (United States)

    Martín-Sierra, Cristina; Nogué-Xarau, Santiago; Pinillos Echeverría, Miguel Ángel; Rey Pecharromán, José Miguel

    2018-01-01

    Emergencies due to snakebites, although unusual in Spain, are potentially serious. Of the 13 species native to the Iberian peninsula, only 5 are poisonous: 2 belong to the Colubridae family and 3 to the Viperidae family. Bites from these venemous snakes can be life-threatening, but the venomous species can be easily identified by attending to certain physical traits. Signs denoting poisoning from vipers, and the appropriate treatment to follow, have changed in recent years.

  2. Hematological alterations and splenic T lymphocyte polarization at the crest of snake venom induced acute kidney injury in adult male mice.

    Science.gov (United States)

    Nasim, Farhat; Das, Sreyasi; Mishra, Roshnara; Mishra, Raghwendra

    2017-08-01

    Snake venom induced acute kidney injury (SAKI) is of great clinical relevance in tropical countries. Involvement of T cell, a key mediator of AKI and its remission, is least explored in SAKI. In the present study the in vivo hematological alterations and associated splenic T cell polarization is probed in order to investigate the immune response at the crest of Russell's viper venom (RVV) induced AKI in experimental murine model. Based on a dose and time kinetic study intra muscular injection dose of 20 μg RVV/100 gm body weight of mice and incubation period of 60 h was selected for induction of SAKI. Renal involvement in SAKI group was confirmed from oliguria, significantly elevated urinary microprotein (p < 0.001), decreased urinary creatinine (p = 0.003) and creatinine clearance (p < 0.001) compared to control. Hematological analyses revealed a significant neutrophilic leukocytosis (p < 0.001) associated with a reduced lymphocyte percentage (p < 0.001) favoring a state of acute inflammation in SAKI group. Immunophenotyping study of splenocytes showed a significant decrease in CD4 + /CD8 + ratio (p < 0.001) with a significant increase in regulatory (CD25 + FoxP3 + ) helper and cytotoxic subset of T cell (p < 0.001). Significant increase in IL-10+ regulatory helper and cytotoxic T cell (p < 0.001) further confirmed the internal milieu favoring immunosuppression. Apart from these the CD25 - FoxP3 + reservoir regulatory T cells were also found to be significantly elevated in SAKI group compared to that of control (p < 0.001). Taken together, the results of the present study clearly indicated a state of acute inflammation and splenic T cell polarization towards regulatory subset at the crest of SAKI. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Honeybee Venom Proteome Profile of Queens and Winter Bees as Determined by a Mass Spectrometric Approach

    Science.gov (United States)

    Danneels, Ellen L.; Van Vaerenbergh, Matthias; Debyser, Griet; Devreese, Bart; de Graaf, Dirk C.

    2015-01-01

    Venoms of invertebrates contain an enormous diversity of proteins, peptides, and other classes of substances. Insect venoms are characterized by a large interspecific variation resulting in extended lists of venom compounds. The venom composition of several hymenopterans also shows different intraspecific variation. For instance, venom from different honeybee castes, more specifically queens and workers, shows quantitative and qualitative variation, while the environment, like seasonal changes, also proves to be an important factor. The present study aimed at an in-depth analysis of the intraspecific variation in the honeybee venom proteome. In summer workers, the recent list of venom proteins resulted from merging combinatorial peptide ligand library sample pretreatment and targeted tandem mass spectrometry realized with a Fourier transform ion cyclotron resonance mass spectrometer (FT-ICR MS/MS). Now, the same technique was used to determine the venom proteome of queens and winter bees, enabling us to compare it with that of summer bees. In total, 34 putative venom toxins were found, of which two were never described in honeybee venoms before. Venom from winter workers did not contain toxins that were not present in queens or summer workers, while winter worker venom lacked the allergen Api m 12, also known as vitellogenin. Venom from queen bees, on the other hand, was lacking six of the 34 venom toxins compared to worker bees, while it contained two new venom toxins, in particularly serine proteinase stubble and antithrombin-III. Although people are hardly stung by honeybees during winter or by queen bees, these newly identified toxins should be taken into account in the characterization of a putative allergic response against Apis mellifera stings. PMID:26529016

  4. Honeybee venom proteome profile of queens and winter bees as determined by a mass spectrometric approach.

    Science.gov (United States)

    Danneels, Ellen L; Van Vaerenbergh, Matthias; Debyser, Griet; Devreese, Bart; de Graaf, Dirk C

    2015-10-30

    Venoms of invertebrates contain an enormous diversity of proteins, peptides, and other classes of substances. Insect venoms are characterized by a large interspecific variation resulting in extended lists of venom compounds. The venom composition of several hymenopterans also shows different intraspecific variation. For instance, venom from different honeybee castes, more specifically queens and workers, shows quantitative and qualitative variation, while the environment, like seasonal changes, also proves to be an important factor. The present study aimed at an in-depth analysis of the intraspecific variation in the honeybee venom proteome. In summer workers, the recent list of venom proteins resulted from merging combinatorial peptide ligand library sample pretreatment and targeted tandem mass spectrometry realized with a Fourier transform ion cyclotron resonance mass spectrometer (FT-ICR MS/MS). Now, the same technique was used to determine the venom proteome of queens and winter bees, enabling us to compare it with that of summer bees. In total, 34 putative venom toxins were found, of which two were never described in honeybee venoms before. Venom from winter workers did not contain toxins that were not present in queens or summer workers, while winter worker venom lacked the allergen Api m 12, also known as vitellogenin. Venom from queen bees, on the other hand, was lacking six of the 34 venom toxins compared to worker bees, while it contained two new venom toxins, in particularly serine proteinase stubble and antithrombin-III. Although people are hardly stung by honeybees during winter or by queen bees, these newly identified toxins should be taken into account in the characterization of a putative allergic response against Apis mellifera stings.

  5. Burn Pit Emissions Exposure and Respiratory and Cardiovascular Conditions Among Airborne Hazards and Open Burn Pit Registry Participants.

    Science.gov (United States)

    Liu, Jason; Lezama, Nicholas; Gasper, Joseph; Kawata, Jennifer; Morley, Sybil; Helmer, Drew; Ciminera, Paul

    2016-07-01

    The aim of this study was to determine how burn pit emissions exposure is associated with the incidence of respiratory and cardiovascular conditions. We examined the associations between assumed geographic and self-reported burn pit emissions exposure and respiratory and cardiovascular outcomes in participants of the Airborne Hazards and Open Burn Pit Registry. We found significant dose-response associations for higher risk of self-reported emphysema, chronic bronchitis, or chronic obstructive pulmonary disease with increased days of deployment within 2 miles of selected burn pits (P-trend = 0.01) and self-reported burn pit smoke exposure (P-trend = 0.0005). We found associations between burn pit emissions exposure and higher incidence of post-deployment self-reported respiratory and cardiovascular conditions, but these findings should be interpreted with caution because the surrogate measurements of burn pit emissions exposure in this analysis may not reflect individual exposure levels.

  6. Hormone-like peptides in the venoms of marine cone snails

    DEFF Research Database (Denmark)

    Robinson, Samuel D.; Li, Qing; Bandyopadhyay, Pradip K.

    2017-01-01

    , paralysis and sensory overload. Most conotoxins target the prey's nervous system but evidence of venom peptides targeting neuroendocrine processes is emerging. Examples include vasopressin, RFamide neuropeptides and recently also insulin. To investigate the diversity of hormone/neuropeptide-like molecules...... but also form part of the injected venom cocktail, unambiguously demonstrating their role in envenomation. Our findings suggest that hormone/neuropeptide-like toxins are a diverse and integral part of the complex envenomation strategy of Conus. Exploration of this group of venom components offers...

  7. Distribution of 131 I- labeled Bothrops erythromelas venom in mice

    International Nuclear Information System (INIS)

    Vasconcelos, C.M.L.; Valenca, R.C.; Araujo, E.A.; Modesto, J.C.A.; Pontes, M.M.; Guarnieri, M.C.; Brazil, T.K.

    1998-01-01

    Bothrops erythromelas is responsible for many snake bites in northeastern Brazil. In the present study we determined the in vivo distribution of the venom following its subcutaneous injection into mice. B. erythromelas venom and albumin were labeled individually with 131 I by the chloramine T method, and separated in a Sephacryl S-200 column. The efficiency of labeling was 68%.Male Swiss mice (40-45 g), which had been provided with drinking water containing 0.05% KI over a period of 10 days prior to the experiment, were inoculated dorsally (sc) with 0.3 ml (2.35 x 10 5 cpm/mouse) of 131 I-venom (N = 42), 131 -albumin or 131 I (controls, N = 28 each). Thirty minutes and 1,3, 6, 12, 18 and 24 h after inoculation, the animals were perfused with 0.85% Na Cl and skin and various organs were collected in order to determine radioactivity content. There was a high rate of venom absorption int he skin (51%) within the first 30 min compared to albumin (20.1%) and free iodine (8.2%). Up to the third hour after injection there was a tendency for venom and albumin to concentrate in the stomach ( 3 rd h),small intestine (3 rd h) and large intestine (6th h). Both control groups had more radioactivity in the digestive tract, especially in the stomach, but these levels decreased essentially to baseline by 12-18 h postinjection. In the kidneys, the distribution profiles of venom, albumin and iodine were similar. Counts at 30 min postinjection were low in all three groups (1.37, 1.86 and 0.77, respectively), and diminished to essentially 0% by 12-18 h. Albumin tended to concentrate in muscle until the 3 rd h postinjection (1.98%).There was a low binding of labeled venom in the liver (B. erythromelas venom does not specifically target most internal organs. That is, the systemic effects of envenomation ar mainly due to an indirect action. (author)

  8. The Triterpenoid Betulin Protects against the Neuromuscular Effects of Bothrops jararacussu Snake Venom In Vivo

    Directory of Open Access Journals (Sweden)

    Miriéle Cristina Ferraz

    2015-01-01

    Full Text Available We confirmed the ability of the triterpenoid betulin to protect against neurotoxicity caused by Bothrops jararacussu snake venom in vitro in mouse isolated phrenic nerve-diaphragm (PND preparations and examined its capability of in vivo protection using the rat external popliteal/sciatic nerve-tibialis anterior (EPSTA preparation. Venom caused complete, irreversible blockade in PND (40 μg/mL, but only partial blockade (~30% in EPSTA (3.6 mg/kg, i.m. after 120 min. In PND, preincubation of venom with commercial bothropic antivenom (CBA attenuated the venom-induced blockade, and, in EPSTA, CBA given i.v. 15 min after venom also attenuated the blockade (by ~70% in both preparations. Preincubation of venom with betulin (200 μg/mL markedly attenuated the venom-induced blockade in PND; similarly, a single dose of betulin (20 mg, i.p., 15 min after venom virtually abolished the venom-induced decrease in contractility. Plasma creatine kinase activity was significantly elevated 120 min after venom injection in the EPSTA but was attenuated by CBA and betulin. These results indicate that betulin given i.p. has a similar efficacy as CBA given i.v. in attenuating the neuromuscular effects of B. jararacussu venom in vivo and could be a useful complementary measure to antivenom therapy for treating snakebite.

  9. The Triterpenoid Betulin Protects against the Neuromuscular Effects of Bothrops jararacussu Snake Venom In Vivo

    Science.gov (United States)

    Ferraz, Miriéle Cristina; de Oliveira, Jhones Luiz; de Oliveira Junior, Joel Reis; Cogo, José Carlos; dos Santos, Márcio Galdino; Franco, Luiz Madaleno; Puebla, Pilar; Ferraz, Helena Onishi; Ferraz, Humberto Gomes; da Rocha, Marisa Maria Teixeira; Hyslop, Stephen

    2015-01-01

    We confirmed the ability of the triterpenoid betulin to protect against neurotoxicity caused by Bothrops jararacussu snake venom in vitro in mouse isolated phrenic nerve-diaphragm (PND) preparations and examined its capability of in vivo protection using the rat external popliteal/sciatic nerve-tibialis anterior (EPSTA) preparation. Venom caused complete, irreversible blockade in PND (40 μg/mL), but only partial blockade (~30%) in EPSTA (3.6 mg/kg, i.m.) after 120 min. In PND, preincubation of venom with commercial bothropic antivenom (CBA) attenuated the venom-induced blockade, and, in EPSTA, CBA given i.v. 15 min after venom also attenuated the blockade (by ~70% in both preparations). Preincubation of venom with betulin (200 μg/mL) markedly attenuated the venom-induced blockade in PND; similarly, a single dose of betulin (20 mg, i.p., 15 min after venom) virtually abolished the venom-induced decrease in contractility. Plasma creatine kinase activity was significantly elevated 120 min after venom injection in the EPSTA but was attenuated by CBA and betulin. These results indicate that betulin given i.p. has a similar efficacy as CBA given i.v. in attenuating the neuromuscular effects of B. jararacussu venom in vivo and could be a useful complementary measure to antivenom therapy for treating snakebite. PMID:26633987

  10. Stabilising the Integrity of Snake Venom mRNA Stored under Tropical Field Conditions Expands Research Horizons.

    Directory of Open Access Journals (Sweden)

    Gareth Whiteley

    2016-06-01

    Full Text Available Snake venoms contain many proteinaceous toxins that can cause severe pathology and mortality in snakebite victims. Interestingly, mRNA encoding such toxins can be recovered directly from venom, although yields are low and quality is unknown. It also remains unclear whether such RNA contains information about toxin isoforms and whether it is representative of mRNA recovered from conventional sources, such as the venom gland. Answering these questions will address the feasibility of using venom-derived RNA for future research relevant to biomedical and antivenom applications.Venom was extracted from several species of snake, including both members of the Viperidae and Elapidae, and either lyophilized or immediately added to TRIzol reagent. TRIzol-treated venom was incubated at a range of temperatures (4-37°C for a range of durations (0-48 hours, followed by subsequent RNA isolation and assessments of RNA quantity and quality. Subsequently, full-length toxin transcripts were targeted for PCR amplification and Sanger sequencing. TRIzol-treated venom yielded total RNA of greater quantity and quality than lyophilized venom, and with quality comparable to venom gland-derived RNA. Full-length sequences from multiple Viperidae and Elapidae toxin families were successfully PCR amplified from TRIzol-treated venom RNA. We demonstrated that venom can be stored in TRIzol for 48 hours at 4-19°C, and 8 hours at 37°C, at minimal cost to RNA quality, and found that venom RNA encoded multiple toxin isoforms that seemed homologous (98-99% identity to those found in the venom gland.The non-invasive experimental modifications we propose will facilitate the future investigation of venom composition by using venom as an alternative source to venom gland tissue for RNA-based studies, thus obviating the undesirable need to sacrifice snakes for such research purposes. In addition, they expand research horizons to rare, endangered or protected snake species and provide

  11. Good vibrations: Assessing the stability of snake venom composition after researcher-induced disturbance in the laboratory.

    Science.gov (United States)

    Claunch, Natalie M; Holding, Matthew L; Escallón, Camilo; Vernasco, Ben; Moore, Ignacio T; Taylor, Emily N

    2017-07-01

    Phenotypic plasticity contributes to intraspecific variation in traits of many animal species. Venom is an integral trait to the success and survival of many snake species, and potential plasticity in venom composition is important to account for in the context of basic research as well as in human medicine for treating the various symptoms of snakebite and producing effective anti-venoms. Researchers may unknowingly induce changes in venom variation by subjecting snakes to novel disturbances and potential stressors. We explored phenotypic plasticity in snake venom composition over time in captive Pacific rattlesnakes (Crotalus oreganus) exposed to vibration treatment, compared to an undisturbed control group. Venom composition did not change significantly in response to vibration, nor was there a detectable effect of overall time in captivity, even though snakes re-synthesized venom stores while subjected to novel disturbance in the laboratory. This result indicates that venom composition is a highly repeatable phenotype over short time spans and that the composition of venom within adult individuals may be resistant to or unaffected by researcher-induced disturbance. On the other hand, the change in venom composition, measured as movement along the first principle component of venom phenotype space, was associated with baseline corticosterone (CORT) levels in the snakes. While differential forms of researcher-induced disturbance may not affect venom composition, significant changes in baseline CORT, or chronic stress, may affect the venom phenotype, and further investigations will be necessary to assess the nature of the relationship between CORT and venom protein expression. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Venom gland components of the ectoparasitoid wasp, Anisopteromalus calandrae

    Science.gov (United States)

    The wasp Anisopteromalus calandrae is a small ectoparasitoid that attacks stored product pest beetle larvae that develop inside grain kernels, and is thus a potential insect control tool. The components of the venom have not been studied, but venom peptides from other organisms have been identified ...

  13. Burning/Rubble Pits: Environmental information document

    International Nuclear Information System (INIS)

    Huber, L.A.; Johnson, W.F.; Marine, I.W.

    1987-03-01

    The Burning/Rubble Pits, located near each of the major operating areas at the Savannah River Plant (SRP), began collecting burnable waste in 1951. The waste was incinerated monthly. All Burning/Rubble Pits are currently closed except for Burning/Rubble Pit 131-1R, which has not been backfilled but is inactive. No soil cores from the Burning/Rubble Pits have been analyzed. There are four groundwater monitoring wells located around each of the pits, which have been sampled quarterly since 1984. The closure options considered for the Burning/Rubble Pits are waste removal and closure, no waste removal and closure, and no action. Modeling calculations were made to determine the risks to human population for the three postulated closure options. An ecological assessment was conducted to predict the environmental impacts on aquatic and terrestrial biota. The relative costs for each of the closure options were estimated. An evaluation of the environmental impacts from the Burning/Rubble Pits indicates that the relative risks to human health and ecosystems for the postulated closure options are low. The ecological assessment shows that the effects of any closure activities on river water quality and wildlife would be insignificant. The cost estimates show the waste removal and closure option to be the most expensive for all of the pits. 38 refs., 35 figs., 47 tabs

  14. Expermental Studies of quantitative evaluation using HPLC and safety of Sweet Bee Venom

    OpenAIRE

    Ki Rok Kwon; Ching Seng Chu; Hee Soo Park; Min Ki Kim; Bae Chun Cha; Eun Lee

    2007-01-01

    Objectives : This study was conducted to carry out quantitative evaluation and safety of Sweet Bee Venom. Methods : Content analysis was done using HPLC, measurement of LD50 was conducted intravenous, subcutaneous, and intra-muscular injection to the ICR mice. Results : 1. According to HPLC analysis, removal of the enzymes containing phospholipase A2 was successfully rendered on Sweet Bee Venom. And analyzing melittin content, Sweet Bee Venom contained 12% more melittin than Bee Venom. ...

  15. Expression of enzymatically inactive wasp venom phospholipase A1 in Pichia pastoris.

    Directory of Open Access Journals (Sweden)

    Irina Borodina

    Full Text Available Wasp venom allergy is the most common insect venom allergy in Europe. It is manifested by large local reaction or anaphylactic shock occurring after a wasp sting. The allergy can be treated by specific immunotherapy with whole venom extracts. Wasp venom is difficult and costly to obtain and is a subject to composition variation, therefore it can be advantageous to substitute it with a cocktail of recombinant allergens. One of the major venom allergens is phospholipase A1, which so far has been expressed in Escherichia coli and in insect cells. Our aim was to produce the protein in secreted form in yeast Pichia pastoris, which can give high yields of correctly folded protein on defined minimal medium and secretes relatively few native proteins simplifying purification.Residual amounts of enzymatically active phospholipase A1 could be expressed, but the venom protein had a deleterious effect on growth of the yeast cells. To overcome the problem we introduced three different point mutations at the critical points of the active site, where serine137, aspartate165 or histidine229 were replaced by alanine (S137A, D165A and H229A. All the three mutated forms could be expressed in P. pastoris. The H229A mutant did not have any detectable phospholipase A1 activity and was secreted at the level of several mg/L in shake flask culture. The protein was purified by nickel-affinity chromatography and its identity was confirmed by MALDI-TOF mass spectrometry. The protein could bind IgE antibodies from wasp venom allergic patients and could inhibit the binding of wasp venom to IgE antibodies specific for phospholipase A1 as shown by Enzyme Allergo-Sorbent Test (EAST. Moreover, the recombinant protein was allergenic in a biological assay as demonstrated by its capability to induce histamine release of wasp venom-sensitive basophils.The recombinant phospholipase A1 presents a good candidate for wasp venom immunotherapy.

  16. Mastocytosis and insect venom allergy : diagnosis, safety and efficacy of venom immunotherapy

    NARCIS (Netherlands)

    Niedoszytko, M.; de Monchy, J.; van Doormaal, J. J.; Jassem, E.; Oude Elberink, J. N. G.

    The most important causative factor for anaphylaxis in mastocytosis are insect stings. The purpose of this review is to analyse the available data concerning prevalence, diagnosis, safety and effectiveness of venom immunotherapy (VIT) in mastocytosis patients. If data were unclear, authors were

  17. Standardization of anti-lethal toxin potency test of antivenoms prepared from two different Agkistrodon halys venoms

    Directory of Open Access Journals (Sweden)

    K. H. Lee

    2006-01-01

    Full Text Available In Korea, antivenoms for the treatment of patients bitten by venomous snakes have been imported from Japan or China. Although there is cross-reactivity between these antibodies and venoms from snakes indigenous to Korea (e.g. Agkistrodon genus, protection is not optimal. Antivenoms specifically prepared to neutralize Korean snake venoms could be more effective, with fewer side effects. To this end, we established an infrastructure to develop national standards and created a standardized method to evaluate the efficacy of two horse-derived antivenoms using mouse lethal toxin test. Additionally, we determined the antivenoms neutralizing activity against lethal doses (LD50 of Agkistrodon halys (from Japan and Jiangzhe Agkistrodon halys (from China venoms. We also performed cross-neutralization tests using probit analysis on each pairing of venom and antivenom in order to check the possibility of using Jiangzhe A. halys venom as a substitute for A. halys venom, the current standard. Slope of A. halys venom with A. halys antivenom was 10.2 and that of A. halys venom with Jiangzhe A. halys antivenom was 9.6. However, Slope of Jiangzhe A. halys venom with A. halys antivenom was 4.7 while that of Jiangzhe A. halys venom with Jiangzhe A. halys antivenom was 11.5. Therefore, the significant difference in slope patterns suggests that Jiangzhe A. halys venom cannot be used as a substitute for the standard venom to test the anti-lethal toxin activity of antivenoms (p<0.05.

  18. Labeling of scorpion venom with 99mTc and its biodistribution

    International Nuclear Information System (INIS)

    Amin, A.M.

    2013-01-01

    Labeling of scorpion venom (SV) was successfully achieved with 99m Tc using direct chelating method. Venom was labeled with 99m Tc using stannous chloride as reducing agent. Preliminary studies were done to establish the optimum conditions for obtaining the highest yield of the labeled venom. The labeling technique is effective, as a maximum labeling yield (97 %) was obtained after 30-min reaction time by using 80 μg SV in phosphate buffer of pH 7 and 25 μg Sncl 2 ·2H 2 O at room temperature. Venom was injected into normal mice to determine the excretion pathway. Biodistribution studies in normal mice with SV shows rapid clearance of the venom from blood and tissue except for kidneys. The improvement of the immunotherapeutic treatment of envenomation requires a better knowledge of the biological actions of the SV since tissue distribution studies are very important for clinical purpose. (author)

  19. Cytotoxicity of Cerastes cerastes snake venom: Involvement of imbalanced redox status.

    Science.gov (United States)

    Kebir-Chelghoum, Hayet; Laraba-Djebari, Fatima

    2017-09-01

    Envenomation caused by Cerastes cerastes snake venom is characterized by a local and a systemic tissue damage due to myonecrosis, hemorrhage, edema and acute muscle damage. The present study aimed to evaluate the relationship between the pro/anti-oxidants status and the cytotoxicity of C. cerastes snake venom. The in vivo cytotoxicity analysis was undertaken by the injection of C. cerastes venom (48μg/20g body weight) by i.p. route, mice were then sacrificed at 3, 24 and 48h post injection, organs were collected for further analysis. In vitro cytotoxicity analysis was investigated on cultured PBMC, hepatocytes and isolated liver. The obtained results showed a significant cell infiltration characterized by a significant increase of myeloperoxidase (MPO) and eosinoperoxidase (EPO) activities. These results showed also a potent oxidative activity of C. cerastes venom characterized by increased levels of residual nitrites and lipid peroxidation associated with a significant decrease of glutathione and catalase activity in sera and tissues (heart, lungs, liver and kidneys). The in vitro cytotoxicity of C. cerastes venom on PBMC seems to be dose-dependent (IC50 of 21μg/ml/10 6 cells) and correlated with an imbalanced redox status at high doses of venom. However, in the case of cultured hepatocytes, the LDH release and oxidative stress were observed only at high doses of the venom. The obtained results of in vivo study were confirmed by the culture of isolated liver. Therefore, these results suggest that the venom induces a direct cytotoxic effect which alters the membrane integrity causing a leakage of the cellular contents. This cytotoxic effect can lead indirectly to inflammatory response and oxidative stress. These data suggest that an early anti-inflammatory and antioxidant treatment could be useful in the management of envenomed victims. Copyright © 2017. Published by Elsevier B.V.

  20. Snake-venom resistance as a mammalian trophic adaptation: lessons from didelphid marsupials.

    Science.gov (United States)

    Voss, Robert S; Jansa, Sharon A

    2012-11-01

    Mammals that prey on venomous snakes include several opossums (Didelphidae), at least two hedgehogs (Erinaceidae), several mongooses (Herpestidae), several mustelids, and some skunks (Mephitidae). As a group, these taxa do not share any distinctive morphological traits. Instead, mammalian adaptations for ophiophagy seem to consist only in the ability to resist the toxic effects of snake venom. Molecular mechanisms of venom resistance (as indicated by biochemical research on opossums, mongooses, and hedgehogs) include toxin-neutralizing serum factors and adaptive changes in venom-targeted molecules. Of these, toxin-neutralizing serum factors have received the most research attention to date. All of the toxin-neutralizing serum proteins discovered so far in both opossums and mongooses are human α1B-glycoprotein homologs that inhibit either snake-venom metalloproteinases or phospholipase A(2) myotoxins. By contrast, adaptive changes in venom-targeted molecules have received far less attention. The best-documented examples include amino-acid substitutions in mongoose nicotinic acetylcholine receptor that inhibit binding by α-neurotoxins, and amino-acid substitutions in opossum von Willebrand factor (vWF) that are hypothesized to weaken the bond between vWF and coagulopathic C-type lectins. Although multiple mechanisms of venom resistance are known from some species, the proteomic complexity of most snake venoms suggests that the evolved biochemical defences of ophiophagous mammals are likely to be far more numerous than currently recognized. Whereas most previous research in this field has been motivated by the potential for medical applications, venom resistance in ophiophagous mammals is a complex adaptation that merits attention from comparative biologists. Unfortunately, evolutionary inference is currently limited by ignorance about many relevant facts that can only be provided by future research. © 2012 The Authors. Biological Reviews © 2012 Cambridge

  1. Snake evolution and prospecting of snake venom

    OpenAIRE

    Vonk, Freek Jacobus

    2012-01-01

    in this thesis I have shown that snakes have undergone multiple changes in their genome and embryonic development that has provided them with the variation to which natural selection could act. This thesis provides evidence for the variable mechanisms of venom gene evolution, which presumably is much more flexible than previously thought. But it also underscores the potential use of the many different types of snake venom toxins that could be screened for use against human disorders. And most...

  2. The anti snake venom crisis in Africa: a suggested manufacturers product guide.

    Science.gov (United States)

    Simpson, Ian D; Blaylock, Roger S M

    2009-01-01

    Considerable attention has been given to the shortage of anti snake venom in Africa. The current supply is reported to rest at crisis levels, and considerable attention has been given to reporting the crisis. What has been absent is a recommended list of anti snake venoms that suppliers can produce in order to alleviate the problem. Suppliers who may want to enter the market and provide new anti snake venoms are hampered by a lack of knowledge of which to provide, where to source the venoms necessary for production, and the likely volume levels required. Snakebite epidemiology is recognized as being poor, particularly in estimating the number of envenomations. Snakebite authorities and organizations such as the World Health Organisation have provided lists of medically significant species, but these are inadequate as a guide to production. This paper proposes a list of anti snake venoms that could be produced by suppliers and crucially lists relevant species by geographical area, venom sources for the target species, and likely production volumes to enable suppliers to develop a confident forecast of demand to ensure sustainability.

  3. Ontogenesis, gender, and molting influence the venom yield in the spider Coremiocnemis tropix (Araneae, Theraphosidae)

    OpenAIRE

    Herzig, Volker

    2010-01-01

    The demand for spider venom increases along with the growing popularity of venoms-based research. A deeper understanding of factors that influence the venom yield in spiders would therefore be of interest to both commercial venom suppliers and research facilities. The present study addresses the influence of several factors on the venom yield by systematically analyzing the data obtained from 1773 electrical milkings of the Australian theraphosid spider Coremiocnemis tropix. Gender and ontoge...

  4. Technetium-99m labeling of tityustoxin and venom from the scorpion Tityus serrulatus

    International Nuclear Information System (INIS)

    Nunan, E.A.; Cardoso, V.N.; Moraes-Santos, T.

    2002-01-01

    The tityustoxin, the most toxic fraction from scorpion Tityus serrulatus venom, has been used as a tool in several neurochemical and neuropharmacological studies. Biological activities of labeled and unlabeled tityustoxin and venom were compared. The samples were labeled in the presence of stannous chloride and sodium borohydride with a yield of 60-70% for the venom and 75-85% for tityustoxin and then chromatographed in Sephadex G-10. Biological activities of tityustoxin and venom were preserved after labeling

  5. Which immunotherapy product is better for patients allergic to Polistes venom? A laboratory and clinical study.

    Directory of Open Access Journals (Sweden)

    Eleonora Savi

    Full Text Available Venom immunotherapy (VIT is highly effective in preventing allergic reactions to insect stings, but the appropriate venom must be used to achieve clinical protection. In patients with multiple positive results to venoms, molecular allergy diagnostics or CAP-inhibition may identify the causative venom. Concerning allergy to venom from Polistes spp. it has been proposed that only the European species P. dominulus should be used for VIT. However, this recommendation is not present in any international guideline. Using both laboratory and clinical data, we aimed to evaluate the reliability of this proposal.We performed an in vitro study using CAP-inhibition to determine sensitization of 19 patients allergic to Polistes venom. The clinical study included 191 patients with positive tests to Polistes treated with VIT, 102 were treated with P. dominulus and 89 were treated with a mix of American Polistes (mAP.The difference in % of inhibition was significant concerning inhibition of P. dominulus sIgE by P. dominulus venom (79.8% compared with inhibition by mAP venom (64.2% and not significant concerning the inhibition of mAP sIgE by P. dominulus venom (80.1% and by mAP venom (73.6%. Instead, the clinical protection from stings was not statistically different between the two kinds of venom.The data from CAP inhibition would suggest that the choice of either P. dominulus venom or mAP venom for VIT is appropriate in patients with CAP inhibition higher than 70%, but the clinical data show the same odds of protection from stings using for VIT P. dominulus or mAP venom.

  6. Which immunotherapy product is better for patients allergic to Polistes venom? A laboratory and clinical study.

    Science.gov (United States)

    Savi, Eleonora; Incorvaia, Cristoforo; Boni, Elisa; Mauro, Marina; Peveri, Silvia; Pravettoni, Valerio; Quercia, Oliviero; Reccardini, Federico; Montagni, Marcello; Pessina, Laura; Ridolo, Erminia

    2017-01-01

    Venom immunotherapy (VIT) is highly effective in preventing allergic reactions to insect stings, but the appropriate venom must be used to achieve clinical protection. In patients with multiple positive results to venoms, molecular allergy diagnostics or CAP-inhibition may identify the causative venom. Concerning allergy to venom from Polistes spp. it has been proposed that only the European species P. dominulus should be used for VIT. However, this recommendation is not present in any international guideline. Using both laboratory and clinical data, we aimed to evaluate the reliability of this proposal. We performed an in vitro study using CAP-inhibition to determine sensitization of 19 patients allergic to Polistes venom. The clinical study included 191 patients with positive tests to Polistes treated with VIT, 102 were treated with P. dominulus and 89 were treated with a mix of American Polistes (mAP). The difference in % of inhibition was significant concerning inhibition of P. dominulus sIgE by P. dominulus venom (79.8%) compared with inhibition by mAP venom (64.2%) and not significant concerning the inhibition of mAP sIgE by P. dominulus venom (80.1%) and by mAP venom (73.6%). Instead, the clinical protection from stings was not statistically different between the two kinds of venom. The data from CAP inhibition would suggest that the choice of either P. dominulus venom or mAP venom for VIT is appropriate in patients with CAP inhibition higher than 70%, but the clinical data show the same odds of protection from stings using for VIT P. dominulus or mAP venom.

  7. Chemical profiling and cytotoxicity assay of bufadienolides in toad venom and toad skin.

    Science.gov (United States)

    Meng, Qiong; Yau, Lee-Fong; Lu, Jing-Guang; Wu, Zhen-Zhen; Zhang, Bao-Xian; Wang, Jing-Rong; Jiang, Zhi-Hong

    2016-07-01

    Toad venom and toad skin have been widely used for treating various cancers in China. Bufadienolides are regarded as the main anticancer components of toad venom, but the difference on composition and anticancer activities of bufadienolides between toad venom and toad skin remains unclear. Fractions enriched with free and conjugated bufadienolides were prepared from toad venom and toad skin. Bufadienolides in each fraction were comprehensively profiled by using a versatile UHPLC-TOF-MS method. Relative contents of major bufadienolides were determined by using three bufogenins and one bufotoxin as marker compounds with validated UHPLC-TOF-MS method. Furthermore, cytotoxicity of the fractions was examined by MTT assay. Two fractions, i.e., bufogenin and bufotoxin fractions (TV-F and TV-C) were isolated from toad venom, and one bufotoxin fraction (TS-C) was isolated from toad skin. Totally 56 bufadienolides in these three fractions were identified, and 29 were quantified or semi-quantified. Bufotoxins were identified in both toad venom and toad skin, whereas bufogenins exist only in toad venom. Bufalin-3-conjugated bufotoxins are major components in toad venom, whereas cinobufotalin and cinobufagin-3-conjugated bufotoxins are main bufotoxins in toad skin. MTT assay revealed potent cytotoxicity of all the fractions in an order of TV-F>TV-C>TS-C. Our study represents the most comprehensive investigation on the chemical profiles of toad venom and toad skin from both qualitative and quantitative aspects. Eight bufotoxins were identified in toad skin responsible for the cytotoxicity for the first time. Our research provides valuable chemical evidence for the appropriate processing method, quality control and rational exploration of toad skin and toad venom for the development of anticancer medicines. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  8. Proteomic analysis of africanized bee venom: a comparison of protein extraction methods

    Directory of Open Access Journals (Sweden)

    Yessica Pineda Guerra

    2016-09-01

    Full Text Available The Africanised bee is the most common type of bee in Colombia, and therapeutic properties for different diseases have been attributed to its venom, without much scientific support. A literature search of reports on the proteomic analysis of honeybee venom yielded four different methods for extracting proteins from bee venom. The first method consists in resuspending the venom in 7 M Urea, followed by precipitation with acetone and finally resuspending the pellet in 7 M Urea and 4 % CHAPS. For the second method, the venom is resuspended in lysis buffer, precipitated with trichloroacetic acid, and then resuspended in 7 M Urea and 4 % CHAPS. The third method is similar to the previous one, except that the precipitation step is performed with acetone instead of trichloroacetic acid. Finally, the fourth method is to resuspend the venom in distilled water, precipitate with acetone and resuspend in 7 M Urea and 4 % CHAPS. This work focused on comparing the performance of these four extraction methods, in order to determine the method with the best results in terms of concentration and integrity of the proteins obtained. Of the four methods evaluated, the best results in terms of protein concentration and yield were obtained by resuspending the bee venom in lysis buffer followed by precipitation with acetone (method 3, and by resuspending in distilled water followed by precipitation with acetone (method 4. Of these, the method that maintained protein integrity and yielded the best proteomic profile was that in which the bee venom was resuspended in lysis buffer followed by precipitation with acetone (method 3.

  9. A study of ribonuclease activity in venom of vietnam cobra

    Directory of Open Access Journals (Sweden)

    Thiet Van Nguyen

    2017-09-01

    Full Text Available Abstract Background Ribonuclease (RNase is one of the few toxic proteins that are present constantly in snake venoms of all types. However, to date this RNase is still poorly studied in comparison not only with other toxic proteins of snake venom, but also with the enzymes of RNase group. The objective of this paper was to investigate some properties of RNase from venom of Vietnam cobra Naja atra. Methods Kinetic methods and gel filtration chromatography were used to investigate RNase from venom of Vietnam cobra. Results RNase from venom of Vietnam cobra Naja atra has some characteristic properties. This RNase is a thermostable enzyme and has high conformational stability. This is the only acidic enzyme of the RNase A superfamily exhibiting a high catalytic activity in the pH range of 1–4, with pHopt = 2.58 ± 0.35. Its activity is considerably reduced with increasing ionic strength of reaction mixture. Venom proteins are separated by gel filtration into four peaks with ribonucleolytic activity, which is abnormally distributed among the isoforms: only a small part of the RNase activity is present in fractions of proteins with molecular weights of 12–15 kDa and more than 30 kDa, but most of the enzyme activity is detected in fractions of polypeptides, having molecular weights of less than 9 kDa, that is unexpected. Conclusions RNase from the venom of Vietnam cobra is a unique member of RNase A superfamily according to its acidic optimum pH (pHopt = 2.58 ± 0.35 and extremely low molecular weights of its major isoforms (approximately 8.95 kDa for RNase III and 5.93 kDa for RNase IV.

  10. Antitoxin activity of aqueous extract of Cyclea peltata root against Naja naja venom.

    Science.gov (United States)

    Sivaraman, Thulasi; Sreedevi, N S; Meenatchisundaram, S; Vadivelan, R

    2017-01-01

    Snakebites are a significant and severe global health problem. Till date, anti-snake venom serum is the only beneficial remedy existing on treating the snakebite victims. As antivenom was reported to induce early or late adverse reactions to human beings, snake venom neutralizing potential for Cyclea peltata root extract was tested for the present research by ex vivo and in vivo approaches on Naja naja toxin. Ex vivo evaluation of venom toxicity and neutralization assays was carried out. The root extracts from C. peltata were used to evaluate the Ex vivo neutralization tests such as acetylcholinesterase, protease, direct hemolysis assay, phospholipase activity, and procoagulant activity. Gas chromatography-mass spectrometry (GC-MS) analysis from root extracts of C. peltata was done to investigate the bioactive compounds. The in vivo calculation of venom toxicity (LD 50 ) of N. naja venom remained to be 0.301 μg. C. peltata root extracts were efficiently deactivated the venom lethality, and effective dose (ED 50 ) remained to be 7.24 mg/3LD 50 of N. naja venom. C. peltata root extract was found effective in counteracting all the lethal effects of venom. GC-MS analysis of the plant extract revealed the presence of antivenom compounds such as tetradecanoic and octadecadienoic acid which have neutralizing properties on N. naja venom. The result from the ex vivo and in vivo analysis indicates that C. peltata plant root extract possesses significant compounds such as tetradecanoic acid hexadecanoic acid, heptadecanoic acid, and octadecadienoic acid which can counteract the toxins present in N. naja .

  11. Parturition pit: the bony imprint of vaginal birth

    International Nuclear Information System (INIS)

    McArthur, Tatum A.; Meyer, Isuzu; Jackson, Bradford; Pitt, Michael J.; Larrison, Matthew C.

    2016-01-01

    To retrospectively evaluate for pits along the dorsum of the pubic body in females and compare the presence/absence of these pits to vaginal birth data. We retrospectively reviewed females with vaginal birth data who underwent pelvic CT. The presence of pits along the dorsum of the pubic body, pit grade (0 = not present; 1 = faintly imperceptible; 2 = present; 3 = prominent), and the presence of osteitis condensans ilii, preauricular sulcus, and sacroiliac joint vacuum phenomenon were assessed on imaging. Musculoskeletal radiologists who were blinded to the birth data evaluated the CTs. 48 males were also evaluated for the presence of pits. 482 female patients underwent CT pelvis and 171 were excluded due to lack of vaginal birth data. Of the 311 study patients, 262 had prior vaginal birth(s) and 194 had pits on CT. Only 7 of the 49 patients without prior vaginal birth had pits. There was a statistically significant association between vaginal birth and presence of pits (p < 0.0001). Patients with more prominent pits (grades 2/3) had a greater number of vaginal births. As vaginal deliveries increased, the odds of having parturition pits greatly increased, adjusting for age and race at CT (p < 0.0001). No males had pits. Our study indicates that parturition pits are associated with prior vaginal birth and should be considered a characteristic of the female pelvis. The lytic appearance of prominent pits on imaging can simulate disease and create a diagnostic dilemma for interpreting radiologists. (orig.)

  12. Immune and clinical response to honeybee venom in beekeepers

    Directory of Open Access Journals (Sweden)

    Jan Matysiak

    2016-03-01

    The differences in the immune response to a bee sting between the beekeepers and individuals not exposed to bees were probably due to the high exposure of the beekeepers to honeybee venom allergens. This may suggest a different approach to the bee venom allergy diagnostic tests in this occupational group.

  13. Dramatic expansion of the black widow toxin arsenal uncovered by multi-tissue transcriptomics and venom proteomics.

    Science.gov (United States)

    Haney, Robert A; Ayoub, Nadia A; Clarke, Thomas H; Hayashi, Cheryl Y; Garb, Jessica E

    2014-06-11

    Animal venoms attract enormous interest given their potential for pharmacological discovery and understanding the evolution of natural chemistries. Next-generation transcriptomics and proteomics provide unparalleled, but underexploited, capabilities for venom characterization. We combined multi-tissue RNA-Seq with mass spectrometry and bioinformatic analyses to determine venom gland specific transcripts and venom proteins from the Western black widow spider (Latrodectus hesperus) and investigated their evolution. We estimated expression of 97,217 L. hesperus transcripts in venom glands relative to silk and cephalothorax tissues. We identified 695 venom gland specific transcripts (VSTs), many of which BLAST and GO term analyses indicate may function as toxins or their delivery agents. ~38% of VSTs had BLAST hits, including latrotoxins, inhibitor cystine knot toxins, CRISPs, hyaluronidases, chitinase, and proteases, and 59% of VSTs had predicted protein domains. Latrotoxins are venom toxins that cause massive neurotransmitter release from vertebrate or invertebrate neurons. We discovered ≥ 20 divergent latrotoxin paralogs expressed in L. hesperus venom glands, significantly increasing this biomedically important family. Mass spectrometry of L. hesperus venom identified 49 proteins from VSTs, 24 of which BLAST to toxins. Phylogenetic analyses showed venom gland specific gene family expansions and shifts in tissue expression. Quantitative expression analyses comparing multiple tissues are necessary to identify venom gland specific transcripts. We present a black widow venom specific exome that uncovers a trove of diverse toxins and associated proteins, suggesting a dynamic evolutionary history. This justifies a reevaluation of the functional activities of black widow venom in light of its emerging complexity.

  14. Consequences of Androctonus mauretanicus and Buthus occitanus scorpion venoms on electrolyte levels in rabbits

    Directory of Open Access Journals (Sweden)

    Khadija Daoudi

    2017-01-01

    Full Text Available Androctonus mauretanicus (A. mauretanicus and Buthus occitanus (B. occitanus scorpions, which belong to the Buthidae family, are the most venomous scorpions in Morocco. For the first time, we investigated the effects of such scorpion venoms on serum electrolytes in subcutaneously injected rabbits. For this purpose, 3 groups of 6 albinos adult male rabbits (New Zealand were used in this experiment. Two of the groups were given a single subcutaneous injection of either crude Am venom (5 μg/kg or Bo venom (8 μg/kg whereas the third group (control group only received physiological saline solution (NaCl 0.9%. The blood samples were collected from injected rabbits via the marginal vein at time intervals of 30 min, 1 h, 2 h, 4 h, 6 h and 24 h after venom injection. The concentrations of electrolytes in the serum samples were measured. Our study indicates that scorpion envenomation in vivo, rabbit animal model, caused severe and persistent hypomagnesaemia and hypochloremia, which are accompanied of hypernatremia, hyperkalemia and hypercalcaemia. The intensity of electrolytes imbalance was clearly superior in the case of A. mauretanicus scorpion venom (although a lower quantity of venom was injected. This is coherent with the experimental data which indicate that A. mauretanicus venom is more toxic than B. occitanus venom.

  15. Biochemical and hematological study of goats envenomed with natural and 60Co-irradiated bothropic venom

    International Nuclear Information System (INIS)

    Lucas de Oliveira, P.C.; Madruga, R.A.; Barbosa, N.P.U.; Sakate, M.

    2007-01-01

    Venoms from snakes of the Bothrops genus are proteolytic, coagulant, hemorrhagic and nephrotoxic, causing edema, necrosis, hemorrhage and intense pain at the bite site, besides systemic alterations. Many adjuvants have been added to the venom used in the sensitization of antiserum-producer animals to increase antigenic induction and reduce the envenomation pathological effects. Gamma radiation from 60 Co has been used as an attenuating agent of the venoms toxic properties. The main objective was to study, comparatively, clinical and laboratory aspects of goats inoculated with bothropic (Bothrops jararaca) venom, natural and irradiated from a 60 Co source. Twelve goats were divided into two groups of six animals: GINV, inoculated with 0.5 mg/kg of natural venom; and GIIV, inoculated with 0.5 mg/kg of irradiated venom. Blood samples were collected immediately before and one, two, seven, and thirty days after venom injection. Local lesions were daily evaluated. The following exams were carried out: blood tests; biochemical tests of urea, creatinine, creatine kinase, aspartate amino-transferase and alanine amino-transferase; clotting time; platelets count; and total serum immunoglobulin measurement. In the conditions of the present experiment, irradiated venom was less aggressive and more immunogenic than natural venom. (author)

  16. Post-pit optimization strategic alignment

    OpenAIRE

    Breed, M.F.; van Heerden, D.

    2016-01-01

    Successful development of projects or life-of-mine strategies requires an understanding of the relative sensitivity of value drivers such as grade, tonnage, energy costs, direct operational costs, and recoveries. For example, the results could vary significantly depending on the grade strategy, given a specific orebody amenable to open pitting. Pit optimization is a very powerful tool widely used in the industry to determine the pit shell with the most attractive value potential. Based on the...

  17. Restriction and Recruitment—Gene Duplication and the Origin and Evolution of Snake Venom Toxins

    Science.gov (United States)

    Hargreaves, Adam D.; Swain, Martin T.; Hegarty, Matthew J.; Logan, Darren W.; Mulley, John F.

    2014-01-01

    Snake venom has been hypothesized to have originated and diversified through a process that involves duplication of genes encoding body proteins with subsequent recruitment of the copy to the venom gland, where natural selection acts to develop or increase toxicity. However, gene duplication is known to be a rare event in vertebrate genomes, and the recruitment of duplicated genes to a novel expression domain (neofunctionalization) is an even rarer process that requires the evolution of novel combinations of transcription factor binding sites in upstream regulatory regions. Therefore, although this hypothesis concerning the evolution of snake venom is very unlikely and should be regarded with caution, it is nonetheless often assumed to be established fact, hindering research into the true origins of snake venom toxins. To critically evaluate this hypothesis, we have generated transcriptomic data for body tissues and salivary and venom glands from five species of venomous and nonvenomous reptiles. Our comparative transcriptomic analysis of these data reveals that snake venom does not evolve through the hypothesized process of duplication and recruitment of genes encoding body proteins. Indeed, our results show that many proposed venom toxins are in fact expressed in a wide variety of body tissues, including the salivary gland of nonvenomous reptiles and that these genes have therefore been restricted to the venom gland following duplication, not recruited. Thus, snake venom evolves through the duplication and subfunctionalization of genes encoding existing salivary proteins. These results highlight the danger of the elegant and intuitive “just-so story” in evolutionary biology. PMID:25079342

  18. Venom Resistance as a Model for Understanding the Molecular Basis of Complex Coevolutionary Adaptations.

    Science.gov (United States)

    Holding, Matthew L; Drabeck, Danielle H; Jansa, Sharon A; Gibbs, H Lisle

    2016-11-01

    SynopsisVenom and venom resistance are molecular phenotypes widely considered to have diversified through coevolution between predators and prey. However, while evolutionary and functional studies on venom have been extensive, little is known about the molecular basis, variation, and complexity of venom resistance. We review known mechanisms of venom resistance and relate these mechanisms to their predicted impact on coevolutionary dynamics with venomous enemies. We then describe two conceptual approaches which can be used to examine venom/resistance systems. At the intraspecific level, tests of local adaptation in venom and resistance phenotypes can identify the functional mechanisms governing the outcomes of coevolution. At deeper evolutionary timescales, the combination of phylogenetically informed analyses of protein evolution coupled with studies of protein function promise to elucidate the mode and tempo of evolutionary change on potentially coevolving genes. We highlight case studies that use each approach to extend our knowledge of these systems as well as address larger questions about coevolutionary dynamics. We argue that resistance and venom are phenotypic traits which hold exceptional promise for investigating the mechanisms, dynamics, and outcomes of coevolution at the molecular level. Furthermore, extending the understanding of single gene-for-gene interactions to the whole resistance and venom phenotypes may provide a model system for examining the molecular and evolutionary dynamics of complex multi-gene interactions. © The Author 2016. Published by Oxford University Press on behalf of the Society for Integrative and Comparative Biology. All rights reserved. For permissions please email: journals.permissions@oup.com.

  19. Report on the changes of LD50 of Bee venom Herbal Acupuncture

    Directory of Open Access Journals (Sweden)

    Ki Rok Kwon

    2005-02-01

    Full Text Available Objectives : This experiment was conducted to reevaluate LD50 of Korean bee venom acupuncture as many changes have occurred over the years. Methods : ICR mice were used as the experiment animals and bee venom acupuncture was manufactured under the protocols of Korean Institute of herbal Acupuncture. Based on the previous reports, experiment was divided into pre and main sections. Results : 1. Presumed LD50 value is at 5.25mg/kg. 2. Deaths of experiment animals occurred within 48 hours. 3. Reduced toxicity of the bee venom acupuncture is likely to be the results of more refined manufacturing process and production. Conclusion : Comparing with the values of the previous results, toxicity of the bee venom acupuncture showed significant changes and more accurate findings on LD50 value must be accomplished to lead further studies on the bee venom acupuncture.

  20. Local inflammation, lethality and cytokine release in mice injected with Bothrops atrox venom

    Directory of Open Access Journals (Sweden)

    S. F. Barros

    1998-01-01

    Full Text Available We have provided evidence that: (a lethality of mice to crude Bothrops venom varies according the isogenic strain (A/J > C57Bl/6 > A/Sn > BALB/c > C3H/ HePas > DBA/2 > C3H/He; (bBALB/c mice (LD50=100.0 μg were injected i.p. with 50 μg of venom produced IL-6, IL-10, INF-γ, TNF-α and NO in the serum. In vitro the cells from the mice injected and challenged with the venom only released IL-10 while peritoneal macrophages released IL-10, INF-γ and less amounts of IL-6; (c establishment of local inflammation and necrosis induced by the venom, coincides with the peaks of TNF-α, IFN-γ and NO and the damage was neutralized when the venom was incubated with a monoclonal antibody against a 60 kDa haemorrhagic factor. These results suggest that susceptibility to Bothrops a trox venom is genetically dependent but MHC independent; that IL-6, IL10, TNF-α, IFN-γ and NO can be involved in the mediation of tissue damage; and that the major venom component inducers of the lesions are haemorrhagins.

  1. Adrenergic and cholinergic activity contributes to the cardiovascular effects of lionfish (Pterois volitans) venom.

    Science.gov (United States)

    Church, Jarrod E; Hodgson, Wayne C

    2002-06-01

    The aim of the present study was to further investigate the cardiovascular activity of Pterois volitans crude venom. Venom (0.6-18 microg protein/ml) produced dose- and endothelium-dependent relaxation in porcine coronary arteries that was potentiated by atropine (10nM), but significantly attenuated by the nitric oxide synthase inhibitor N(omega)-nitro-L-arginine (NOLA; 0.1mM), by prior exposure of the tissue to stonefish antivenom (SFAV, 3 units/ml, 10 min), or by removal of extracellular Ca(2+). In rat paced left atria, venom (10 microg protein/ml) produced a decrease, followed by an increase, in contractile force. Atropine (0.5 microM) abolished the decrease in force and potentiated the increase. Propranolol (5 microM) did not affect the decrease in force but significantly attenuated the increase. In spontaneously beating right atria, venom (10 microg protein/ml) produced an increase in rate that was significantly attenuated by propranolol (5 microM). Prior incubation with SFAV (0.3 units/microg protein, 10 min) abolished both the inotropic and chronotropic responses to venom. In the anaesthetised rat, venom (100 micro protein/kg, i.v.) produced a pressor response, followed by a sustained depressor response. Atropine (1mg/kg, i.v.) potentiated the pressor response. The further addition of prazosin (50 microg/kg, i.v.) restored the original response to venom. Prior administration of SFAV (100 units/kg, i.v., 10 min) significantly attenuated the in vivo response to venom. It is concluded that P. volitans venom produces its cardiovascular effects primarily by acting on muscarinic cholinergic receptors and adrenoceptors. As SFAV neutralised many of the effects of P. volitans venom, we suggest that the two venoms share a similar component(s). Copright 2002 Elsevier Science Ltd.

  2. Isolation of biologically active peptides from the venom of Japanese carpenter bee, Xylocopa appendiculata.

    Science.gov (United States)

    Kawakami, Hiroko; Goto, Shin G; Murata, Kazuya; Matsuda, Hideaki; Shigeri, Yasushi; Imura, Tomohiro; Inagaki, Hidetoshi; Shinada, Tetsuro

    2017-01-01

    Mass spectrometry-guided venom peptide profiling is a powerful tool to explore novel substances from venomous animals in a highly sensitive manner. In this study, this peptide profiling approach is successfully applied to explore the venom peptides of a Japanese solitary carpenter bee, Xylocopa appendiculata (Hymenoptera: Apoidea: Apidae: Anthophila: Xylocopinae: Xylocopini). Although interesting biological effects of the crude venom of carpenter bees have been reported, the structure and biological function of the venom peptides have not been elucidated yet. The venom peptide profiling of the crude venom of X. appendiculata was performed by matrix-assisted laser desorption/ionization-time of flight mass spectroscopy. The venom was purified by a reverse-phase HPLC. The purified peptides were subjected to the Edman degradation, MS/MS analysis, and/or molecular cloning methods for peptide sequencing. Biological and functional characterization was performed by circular dichroism analysis, liposome leakage assay, and antimicrobial, histamine releasing and hemolytic activity tests. Three novel peptides with m / z 16508, 1939.3, and 1900.3 were isolated from the venom of X. appendiculata . The peptide with m / z 16508 was characterized as a secretory phospholipase A 2 (PLA 2 ) homolog in which the characteristic cysteine residues as well as the active site residues found in bee PLA 2 s are highly conserved. Two novel peptides with m/z 1939.3 and m/z 1900.3 were named as Xac-1 and Xac-2, respectively. These peptides are found to be amphiphilic and displayed antimicrobial and hemolytic activities. The potency was almost the same as that of mastoparan isolated from the wasp venom. We found three novel biologically active peptides in the venom of X. appendiculata and analyzed their molecular functions, and compared their sequential homology to discuss their molecular diversity. Highly sensitive mass analysis plays an important role in this study.

  3. A Study on the Effects of Bee Venom Aqua-Acupuncture on Writhing Reflex

    OpenAIRE

    Jeong Sun-Hee; Koh Hyung-kyun; Park Dong-Suk

    2000-01-01

    Introduction:In spite of the use of Bee Venom aqua-acupuncture in the clinics, the scientific evaluation on effects is not enough. Bee Venom aqua-acupuncture is used according to the stimulation of acupuncture point and the chemical effects of Bee Venom. The aims of this study is to investigate the analgegic effects of the Bee Venom aqua-acupuncture, through the change of writhing reflex Materials and Methods:Pain animal model was used acetic acid method. The changes of writhing reflex of ...

  4. STUDY ON ANTIBACTERIAL ACTIVITY OF BEE VENOM.

    OpenAIRE

    Yeon Jo Ha; Chi Won Noh; Woo Young Bang; Sam Woong Kim; Sang Wan Gal.

    2018-01-01

    The purpose of this study was to investigate the antimicrobial activity against Salmonella infection which causes intestinal diseases from bee venom which is one of the social insects, and to find a way which use ghost vaccine. The minimum inhibitory concentration (MIC) of bee venom against Salmonella Typhimurium χ3339 was 101.81 ug/ml. Based on the result of MIC, the antimicrobial activity according to amount of the cells showed strong activities below 106 CFU/ml, but exhibited no and low ac...

  5. Snake venom neutralization by Indian medicinal plants (Vitex negundo and Emblica officinalis) root extracts.

    Science.gov (United States)

    Alam, M I; Gomes, A

    2003-05-01

    The methanolic root extracts of Vitex negundo Linn. and Emblica officinalis Gaertn. were explored for the first time for antisnake venom activity. The plant (V. negundo and E. officinalis) extracts significantly antagonized the Vipera russellii and Naja kaouthia venom induced lethal activity both in in vitro and in vivo studies. V. russellii venom-induced haemorrhage, coagulant, defibrinogenating and inflammatory activity was significantly neutralized by both plant extracts. No precipitating bands were observed between the plant extract and snake venom. The above observations confirmed that the plant extracts possess potent snake venom neutralizing capacity and need further investigation.

  6. Influence of Pitting Corrosion on Fatigue and Corrosion Fatigue of Ship and Offshore Structures, Part II: Load - Pit - Crack Interaction

    Directory of Open Access Journals (Sweden)

    Jakubowski Marek

    2015-09-01

    Full Text Available In the paper has been discussed influence of stresses on general corrosion rate and corrosion pit nucleation rate and growth , whose presence has been questioned by some authors but accepted by most of them. Influence of roughness of pit walls on fatigue life of a plate suffering pit corrosion and presence of the so called „ non-damaging” pits which never lead to initiation of fatigue crack, has been presented. Possibility of prediction of pit-to-crack transition moment by two different ways, i.e. considering a pit a stress concentrator or an equivalent crack, has been analyzed. Also, influence of statistical distribution of depth of corrosion pits as well as anticorrosion protection on fatigue and corrosion fatigue has been described.

  7. Comparative studies of the venom of a new Taipan species, Oxyuranus temporalis, with other members of its genus.

    Science.gov (United States)

    Barber, Carmel M; Madaras, Frank; Turnbull, Richard K; Morley, Terry; Dunstan, Nathan; Allen, Luke; Kuchel, Tim; Mirtschin, Peter; Hodgson, Wayne C

    2014-07-02

    Taipans are highly venomous Australo-Papuan elapids. A new species of taipan, the Western Desert Taipan (Oxyuranus temporalis), has been discovered with two specimens housed in captivity at the Adelaide Zoo. This study is the first investigation of O. temporalis venom and seeks to characterise and compare the neurotoxicity, lethality and biochemical properties of O. temporalis venom with other taipan venoms. Analysis of O. temporalis venom using size-exclusion and reverse-phase HPLC indicated a markedly simplified "profile" compared to other taipan venoms. SDS-PAGE and agarose gel electrophoresis analysis also indicated a relatively simple composition. Murine LD50 studies showed that O. temporalis venom is less lethal than O. microlepidotus venom. Venoms were tested in vitro, using the chick biventer cervicis nerve-muscle preparation. Based on t90 values, O. temporalis venom is highly neurotoxic abolishing indirect twitches far more rapidly than other taipan venoms. O. temporalis venom also abolished responses to exogenous acetylcholine and carbachol, indicating the presence of postsynaptic neurotoxins. Prior administration of CSL Taipan antivenom (CSL Limited) neutralised the inhibitory effects of all taipan venoms. The results of this study suggest that the venom of the O. temporalis is highly neurotoxic in vitro and may contain procoagulant toxins, making this snake potentially dangerous to humans.

  8. pitting corrosion susceptibility pitting corrosion susceptibility of aisi

    African Journals Online (AJOL)

    eobe

    2DEPARTMENT OF MECHANICAL ENGINEERING, UNIVERSITY OF BENIN, BENIN- CITY, EDO STATE, NIGERIA. E-mail addresses: ... fluids and aggressive chemicals. Pitting corrosion ... the kitchen, food manufacturing and dispensing and.

  9. Comparative venomics of the Prairie Rattlesnake (Crotalus viridis viridis) from Colorado: Identification of a novel pattern of ontogenetic changes in venom composition and assessment of the immunoreactivity of the commercial antivenom CroFab®.

    Science.gov (United States)

    Saviola, Anthony J; Pla, Davinia; Sanz, Libia; Castoe, Todd A; Calvete, Juan J; Mackessy, Stephen P

    2015-05-21

    Here we describe and compare the venomic and antivenomic characteristics of both neonate and adult Prairie Rattlesnake (Crotalus viridis viridis) venoms. Although both neonate and adult venoms contain unique components, similarities among protein family content were seen. Both neonate and adult venoms consisted of myotoxin, bradykinin-potentiating peptide (BPP), phospholipase A2 (PLA2), Zn(2+)-dependent metalloproteinase (SVMP), serine proteinase, L-amino acid oxidase (LAAO), cysteine-rich secretory protein (CRISP) and disintegrin families. Quantitative differences, however, were observed, with venoms of adults containing significantly higher concentrations of the non-enzymatic toxic compounds and venoms of neonates containing higher concentrations of pre-digestive enzymatic proteins such as SVMPs. To assess the relevance of this venom variation in the context of snakebite and snakebite treatment, we tested the efficacy of the common antivenom CroFab® for recognition of both adult and neonate venoms in vitro. This comparison revealed that many of the major protein families (SVMPs, CRISP, PLA2, serine proteases, and LAAO) in both neonate and adult venoms were immunodepleted by the antivenom, whereas myotoxins, one of the major toxic components of C. v. viridis venom, in addition to many of the small peptides, were not efficiently depleted by CroFab®. These results therefore provide a comprehensive catalog of the venom compounds present in C. v. viridis venom and new molecular insight into the potential efficacy of CroFab® against human envenomations by one of the most widely distributed rattlesnake species in North America. Comparative proteomic analysis of venoms of neonate and adult Prairie Rattlesnake (Crotalus viridis viridis) from a discrete population in Colorado revealed a novel pattern of ontogenetic shifts in toxin composition for viperid snakes. The observed stage-dependent decrease of the relative content of disintegrins, catalytically active D49-PLA2s

  10. Evaluation of the effect of gamma rays on the venom of Vipera lebetina by biochemical study

    International Nuclear Information System (INIS)

    Bennacef-Heffar, N.; Laraba-Djebari, F.

    2003-01-01

    Snake bites represent a serious public health problem in many areas of the world. In Algeria, two widespread snakes are Vipera lebetina and Cerastes cerastes. Vipera lebetina venom causes local hemorrhage and necrosis, and it may lead to permanent limb loss. The principal causes of mortality after snakebites are acute renal failure and hemorrhage, which occur not only locally, at the site of the bite, but also systemically, contributing to the cardiovascular shock characteristic of severe envenomation. Gamma radiation has been shown to be effective for attenuating venom toxicity. Vipera lebetina venom was irradiated with two doses of gamma rays (1 and 2 kGy) from a 60 Co source, and the venom's toxic, enzymatic, and structural properties were analyzed. Intraperitoneal injection of the irradiated venoms (100-500 μg/20 g mouse body mass) revealed a significant decrease of the toxicity. Irradiated venoms with 1 and 2 kGy doses were four and nine times less toxic, respectively, than the native venom. A biochemical characterization of in vitro enzymatic activities was performed. Vipera lebetina displayed in vitro caseinolytic, amidolytic, esterasic, coagulant, and phospholipase A 2 activities. Caseinolytic, amidolytic, esterasic, and coagulative activities were reduced for the irradiated venoms; only phospholipase A 2 activity was abolished in the irradiated venom with a dose of 2 kGy. The native and irradiated venoms were separated by gel filtration and electrophoresis. Chromatographic and electrophoretic profiles were drastically changed as compared with the native venom. Vipera lebetina venom detoxified by gamma rays was used for active immunization, and the presence of antibody in the immune sera was detected by ELISA. The immunogenic properties were preserved and the antisera obtained with the irradiated venoms could cross-react. Antisera were able to neutralize the toxic effect of V. lebetina native venom. These results indicate that irradiation of V. lebetina

  11. Isolation of biologically active peptides from the venom of Japanese carpenter bee, Xylocopa appendiculata

    OpenAIRE

    Kawakami, Hiroko; Goto, Shin G.; Murata, Kazuya; Matsuda, Hideaki; Shigeri, Yasushi; Imura, Tomohiro; Inagaki, Hidetoshi; Shinada, Tetsuro

    2017-01-01

    Background Mass spectrometry-guided venom peptide profiling is a powerful tool to explore novel substances from venomous animals in a highly sensitive manner. In this study, this peptide profiling approach is successfully applied to explore the venom peptides of a Japanese solitary carpenter bee, Xylocopa appendiculata (Hymenoptera: Apoidea: Apidae: Anthophila: Xylocopinae: Xylocopini). Although interesting biological effects of the crude venom of carpenter bees have been reported, the struct...

  12. Purification of the Immunogenic Fractions and Determination of Toxicity in Mesobuthus eupeus (Scorpionida: Buthidae Venom.

    Directory of Open Access Journals (Sweden)

    Mehdi Khoobdel

    2013-12-01

    Full Text Available Scorpions stings are a health problem in many parts of the world. Mesobuthus eupeus (Buthidae is the most prevalent species in the Middle East and Central Asia. Definition of toxicogenic and immunogenic characteristics of the venom is necessary to produce antidote. In this study, the noted properties of M. eupeus venom were evaluated.Venom was obtained by milking M. eupeus scorpions for lyophilization. Toxicity was determined after injecting the venom to albino mice and calculating LD50. Polyclonal antibodies against M. eupeus venom were obtained from immunized rabbits. The CH-Sepharose 4B column was used for isolating the specific antibodies. 10 mg of the affinity-purified antibodies were conjugated with a CH-Sepharose 4B column and M. eupeus venom was applied to the column. The bound fragments were eluted using hydrogen chloride (pH: 2.5. Crude venom and affinity-purified fractions of the venom were analyzed by SDS-PAGE technique.Lethal dose (LD was 8.75, 11.5 and 4.5 mg/kg for IP, SC and IV respectively. The LD50 of M. eupeus venom was 6.95 mg/kg. The crude venom had 12 detectable bands with molecular weights of 140, 70, 50, 33, 30, 27, 22, 18, 14, 10 kDa and two bands less than 5 kDa. The affinity-purified venom presented eight bands. The 27 kDa band was clearly sharper than other bands but 70, 18, 10 and one of the less than 5 kDa bands were not observed.Contrary to popular belief, which know scorpion venom as non-immunogenic composition, the current study was shown that the most fractions of the M. eupeus are immunogenic.

  13. Profiling the venom gland transcriptomes of Costa Rican snakes by 454 pyrosequencing

    Directory of Open Access Journals (Sweden)

    Sanz Libia

    2011-05-01

    Full Text Available Abstract Background A long term research goal of venomics, of applied importance for improving current antivenom therapy, but also for drug discovery, is to understand the pharmacological potential of venoms. Individually or combined, proteomic and transcriptomic studies have demonstrated their feasibility to explore in depth the molecular diversity of venoms. In the absence of genome sequence, transcriptomes represent also valuable searchable databases for proteomic projects. Results The venom gland transcriptomes of 8 Costa Rican taxa from 5 genera (Crotalus, Bothrops, Atropoides, Cerrophidion, and Bothriechis of pitvipers were investigated using high-throughput 454 pyrosequencing. 100,394 out of 330,010 masked reads produced significant hits in the available databases. 5.165,220 nucleotides (8.27% were masked by RepeatMasker, the vast majority of which corresponding to class I (retroelements and class II (DNA transposons mobile elements. BLAST hits included 79,991 matches to entries of the taxonomic suborder Serpentes, of which 62,433 displayed similarity to documented venom proteins. Strong discrepancies between the transcriptome-computed and the proteome-gathered toxin compositions were obvious at first sight. Although the reasons underlaying this discrepancy are elusive, since no clear trend within or between species is apparent, the data indicate that individual mRNA species may be translationally controlled in a species-dependent manner. The minimum number of genes from each toxin family transcribed into the venom gland transcriptome of each species was calculated from multiple alignments of reads matched to a full-length reference sequence of each toxin family. Reads encoding ORF regions of Kazal-type inhibitor-like proteins were uniquely found in Bothriechis schlegelii and B. lateralis transcriptomes, suggesting a genus-specific recruitment event during the early-Middle Miocene. A transcriptome-based cladogram supports the large

  14. Functional proteomic analyses of Bothrops atrox venom reveals phenotypes associated with habitat variation in the Amazon.

    Science.gov (United States)

    Sousa, Leijiane F; Portes-Junior, José A; Nicolau, Carolina A; Bernardoni, Juliana L; Nishiyama, Milton Y; Amazonas, Diana R; Freitas-de-Sousa, Luciana A; Mourão, Rosa Hv; Chalkidis, Hipócrates M; Valente, Richard H; Moura-da-Silva, Ana M

    2017-04-21

    Venom variability is commonly reported for venomous snakes including Bothrops atrox. Here, we compared the composition of venoms from B. atrox snakes collected at Amazonian conserved habitats (terra-firme upland forest and várzea) and human modified areas (pasture and degraded areas). Venom samples were submitted to shotgun proteomic analysis as a whole or compared after fractionation by reversed-phase chromatography. Whole venom proteomes revealed a similar composition among the venoms with predominance of SVMPs, CTLs, and SVSPs and intermediate amounts of PLA 2 s and LAAOs. However, when distribution of particular isoforms was analyzed by either method, the venom from várzea snakes showed a decrease in hemorrhagic SVMPs and an increase in SVSPs, and procoagulant SVMPs and PLA 2 s. These differences were validated by experimental approaches including both enzymatic and in vivo assays, and indicated restrictions in respect to antivenom efficacy to variable components. Thus, proteomic analysis at the isoform level combined to in silico prediction of functional properties may indicate venom biological activity. These results also suggest that the prevalence of functionally distinct isoforms contributes to the variability of the venoms and could reflect the adaptation of B. atrox to distinct prey communities in different Amazon habitats. In this report, we compared isoforms present in venoms from snakes collected at different Amazonian habitats. By means of a species venom gland transcriptome and the in silico functional prediction of each isoform, we were able to predict the principal venom activities in vitro and in animal models. We also showed remarkable differences in the venom pools from snakes collected at the floodplain (várzea habitat) compared to other habitats. Not only was this venom less hemorrhagic and more procoagulant, when compared to the venom pools from the other three habitats studied, but also this enhanced procoagulant activity was not

  15. Bee venom processes human skin lipids for presentation by CD1a.

    Science.gov (United States)

    Bourgeois, Elvire A; Subramaniam, Sumithra; Cheng, Tan-Yun; De Jong, Annemieke; Layre, Emilie; Ly, Dalam; Salimi, Maryam; Legaspi, Annaliza; Modlin, Robert L; Salio, Mariolina; Cerundolo, Vincenzo; Moody, D Branch; Ogg, Graham

    2015-02-09

    Venoms frequently co-opt host immune responses, so study of their mode of action can provide insight into novel inflammatory pathways. Using bee and wasp venom responses as a model system, we investigated whether venoms contain CD1-presented antigens. Here, we show that venoms activate human T cells via CD1a proteins. Whereas CD1 proteins typically present lipids, chromatographic separation of venoms unexpectedly showed that stimulatory factors partition into protein-containing fractions. This finding was explained by demonstrating that bee venom-derived phospholipase A2 (PLA2) activates T cells through generation of small neoantigens, such as free fatty acids and lysophospholipids, from common phosphodiacylglycerides. Patient studies showed that injected PLA2 generates lysophospholipids within human skin in vivo, and polyclonal T cell responses are dependent on CD1a protein and PLA2. These findings support a previously unknown skin immune response based on T cell recognition of CD1a proteins and lipid neoantigen generated in vivo by phospholipases. The findings have implications for skin barrier sensing by T cells and mechanisms underlying phospholipase-dependent inflammatory skin disease. © 2015 Bourgeois et al.

  16. Biological and Pathological Studies of Rosmarinic Acid as an Inhibitor of Hemorrhagic Trimeresurus flavoviridis (habu Venom

    Directory of Open Access Journals (Sweden)

    Masatake Niwa

    2010-10-01

    Full Text Available In our previous report, rosmarinic acid (RA was revealed to be an antidote active compound in Argusia argentea (family: Boraginaceae. The plant is locally used in Okinawa in Japan as an antidote for poisoning from snake venom, Trimeresurus flavoviridis (habu. This article presents mechanistic evidence of RA’s neutralization of the hemorrhagic effects of snake venom. Anti-hemorrhagic activity was assayed by using several kinds of snake venom. Inhibition against fibrinogen hydrolytic and collagen hydrolytic activities of T. flavoviridis venom were examined by SDS-PAGE. A histopathological study was done by microscopy after administration of venom in the presence or absence of RA. RA was found to markedly neutralize venom-induced hemorrhage, fibrinogenolysis, cytotoxicity and digestion of type IV collagen activity. Moreover, RA inhibited both hemorrhage and neutrophil infiltrations caused by T. flavoviridis venom in pathology sections. These results demonstrate that RA inhibited most of the hemorrhage effects of venom. These findings indicate that rosmarinic acid can be expected to provide therapeutic benefits in neutralization of snake venom accompanied by heat stability.

  17. Comparative analysis of methods for concentrating venom from jellyfish Rhopilema esculentum Kishinouye

    Science.gov (United States)

    Li, Cuiping; Yu, Huahua; Feng, Jinhua; Chen, Xiaolin; Li, Pengcheng

    2009-02-01

    In this study, several methods were compared for the efficiency to concentrate venom from the tentacles of jellyfish Rhopilema esculentum Kishinouye. The results show that the methods using either freezing-dry or gel absorption to remove water to concentrate venom are not applicable due to the low concentration of the compounds dissolved. Although the recovery efficiency and the total venom obtained using the dialysis dehydration method are high, some proteins can be lost during the concentrating process. Comparing to the lyophilization method, ultrafiltration is a simple way to concentrate the compounds at high percentage but the hemolytic activities of the proteins obtained by ultrafiltration appear to be lower. Our results suggest that overall lyophilization is the best and recommended method to concentrate venom from the tentacles of jellyfish. It shows not only the high recovery efficiency for the venoms but high hemolytic activities as well.

  18. Tentacle Transcriptome and Venom Proteome of the Pacific Sea Nettle, Chrysaora fuscescens (Cnidaria: Scyphozoa

    Directory of Open Access Journals (Sweden)

    Dalia Ponce

    2016-04-01

    Full Text Available Jellyfish venoms are rich sources of toxins designed to capture prey or deter predators, but they can also elicit harmful effects in humans. In this study, an integrated transcriptomic and proteomic approach was used to identify putative toxins and their potential role in the venom of the scyphozoan jellyfish Chrysaora fuscescens. A de novo tentacle transcriptome, containing more than 23,000 contigs, was constructed and used in proteomic analysis of C. fuscescens venom to identify potential toxins. From a total of 163 proteins identified in the venom proteome, 27 were classified as putative toxins and grouped into six protein families: proteinases, venom allergens, C-type lectins, pore-forming toxins, glycoside hydrolases and enzyme inhibitors. Other putative toxins identified in the transcriptome, but not the proteome, included additional proteinases as well as lipases and deoxyribonucleases. Sequence analysis also revealed the presence of ShKT domains in two putative venom proteins from the proteome and an additional 15 from the transcriptome, suggesting potential ion channel blockade or modulatory activities. Comparison of these potential toxins to those from other cnidarians provided insight into their possible roles in C. fuscescens venom and an overview of the diversity of potential toxin families in cnidarian venoms.

  19. Tentacle Transcriptome and Venom Proteome of the Pacific Sea Nettle, Chrysaora fuscescens (Cnidaria: Scyphozoa)

    Science.gov (United States)

    Ponce, Dalia; Brinkman, Diane L.; Potriquet, Jeremy; Mulvenna, Jason

    2016-01-01

    Jellyfish venoms are rich sources of toxins designed to capture prey or deter predators, but they can also elicit harmful effects in humans. In this study, an integrated transcriptomic and proteomic approach was used to identify putative toxins and their potential role in the venom of the scyphozoan jellyfish Chrysaora fuscescens. A de novo tentacle transcriptome, containing more than 23,000 contigs, was constructed and used in proteomic analysis of C. fuscescens venom to identify potential toxins. From a total of 163 proteins identified in the venom proteome, 27 were classified as putative toxins and grouped into six protein families: proteinases, venom allergens, C-type lectins, pore-forming toxins, glycoside hydrolases and enzyme inhibitors. Other putative toxins identified in the transcriptome, but not the proteome, included additional proteinases as well as lipases and deoxyribonucleases. Sequence analysis also revealed the presence of ShKT domains in two putative venom proteins from the proteome and an additional 15 from the transcriptome, suggesting potential ion channel blockade or modulatory activities. Comparison of these potential toxins to those from other cnidarians provided insight into their possible roles in C. fuscescens venom and an overview of the diversity of potential toxin families in cnidarian venoms. PMID:27058558

  20. Bee Venom Promotes Hair Growth in Association with Inhibiting 5α-Reductase Expression.

    Science.gov (United States)

    Park, Seeun; Erdogan, Sedef; Hwang, Dahyun; Hwang, Seonwook; Han, Eun Hye; Lim, Young-Hee

    2016-06-01

    Alopecia is an important issue that can occur in people of all ages. Recent studies show that bee venom can be used to treat certain diseases including rheumatoid arthritis, neuralgia, and multiple sclerosis. In this study, we investigated the preventive effect of bee venom on alopecia, which was measured by applying bee venom (0.001, 0.005, 0.01%) or minoxidil (2%) as a positive control to the dorsal skin of female C57BL/6 mice for 19 d. Growth factors responsible for hair growth were analyzed by quantitative real-time PCR and Western blot analysis using mice skins and human dermal papilla cells (hDPCs). Bee venom promoted hair growth and inhibited transition from the anagen to catagen phase. In both anagen phase mice and dexamethasone-induced catagen phase mice, hair growth was increased dose dependently compared with controls. Bee venom inhibited the expression of SRD5A2, which encodes a type II 5α-reductase that plays a major role in the conversion of testosterone into dihydrotestosterone. Moreover, bee venom stimulated proliferation of hDPCs and several growth factors (insulin-like growth factor 1 receptor (IGF-1R), vascular endothelial growth factor (VEGF), fibroblast growth factor (FGF)2 and 7) in bee venom-treated hDPCs dose dependently compared with the control group. In conclusion, bee venom is a potentially potent 5α-reductase inhibitor and hair growth promoter.

  1. Molecular components and toxicity of the venom of the solitary wasp, Anoplius samariensis

    International Nuclear Information System (INIS)

    Hisada, Miki; Satake, Honoo; Masuda, Katsuyoshi; Aoyama, Masato; Murata, Kazuya; Shinada, Testuro; Iwashita, Takashi; Ohfune, Yasufumi; Nakajima, Terumi

    2005-01-01

    The solitary spider wasp, Anoplius samariensis, is known to exhibit a unique long-term, non-lethal paralysis in spiders that it uses as a food source for its larvae. However, neither detailed venom components nor paralytic compounds have ever been characterized. In this study, we examined the components in the low molecular weight fraction of the venom and the paralytic activity of the high molecular weight fraction. The major low molecular weight components of the venom were identified as γ-aminobutyric acid and glutamic acid by micro-liquid chromatography/electrospray ionization mass spectrometry and nuclear magnetic resonance spectrometry analysis. The sodium dodecyl sulfate-polyacrylamide gel electrophoresis and mass analysis revealed that the A. samariensis venom contained the various proteins with weights of 4-100 kDa. A biological assay using Joro spiders (Nephila clavata) clearly showed that the high molecular weight fraction of the venom prepared by ultrafiltration exerted as potent non-lethal long-term paralysis as the whole venom, whereas the low molecular weight fraction was devoid of any paralytic activity. These results indicated that several venomous proteins in the high molecular weight fraction are responsible for the paralytic activity. Furthermore, we determined the primary structure of one component designated As-fr-19, which was a novel multiple-cysteine peptide with high sequence similarity to several sea anemone and snake toxins including dendrotoxins, rather than any insect toxic peptides identified so far. Taken together, our data showed the unprecedented molecular and toxicological profiles of wasp venoms

  2. Partial characterization of the venom of the Peruvian rattlesnake Crotalus durissus terrificus

    Directory of Open Access Journals (Sweden)

    César Remuzgo

    2014-06-01

    Full Text Available The venom of the rattlesnake Crotalus durissus terrificus from the region of Sandia, Puno, has been investigated for its protein content and some enzymatic activities, using for it the whole venom as well as the fractions obtained by gel filtration chromatography in Sephadex G-100. The protein percentage calculated by the method of Lowry was of 68,6% for the whole venom; 3 peaks were obtained during the fractionation; the first showed proteolytic activity, the second, amidolytic, clotting and phospholipase A2 activities, while the third, another proteolytic activity. Acetylcholinesterase activity was not found while L-aminoacid oxidase activity was found only in the whole venom.

  3. Biochemical and hematological study of goats envenomed with natural and 60Co-irradiated bothropic venom

    Energy Technology Data Exchange (ETDEWEB)

    Lucas de Oliveira, P.C.; Madruga, R.A.; Barbosa, N.P.U. [Uberaba School of Veterinary Medicine (UNIUBE), MG (Brazil)]. E-mail: pedrolucaso@uol.com.br; Sakate, M. [UNESP, Botucatu, SP (Brazil). School of Veterinary Medicine and Animal Husbandry

    2007-07-01

    Venoms from snakes of the Bothrops genus are proteolytic, coagulant, hemorrhagic and nephrotoxic, causing edema, necrosis, hemorrhage and intense pain at the bite site, besides systemic alterations. Many adjuvants have been added to the venom used in the sensitization of antiserum-producer animals to increase antigenic induction and reduce the envenomation pathological effects. Gamma radiation from {sup 60}Co has been used as an attenuating agent of the venoms toxic properties. The main objective was to study, comparatively, clinical and laboratory aspects of goats inoculated with bothropic (Bothrops jararaca) venom, natural and irradiated from a {sup 60}Co source. Twelve goats were divided into two groups of six animals: GINV, inoculated with 0.5 mg/kg of natural venom; and GIIV, inoculated with 0.5 mg/kg of irradiated venom. Blood samples were collected immediately before and one, two, seven, and thirty days after venom injection. Local lesions were daily evaluated. The following exams were carried out: blood tests; biochemical tests of urea, creatinine, creatine kinase, aspartate amino-transferase and alanine amino-transferase; clotting time; platelets count; and total serum immunoglobulin measurement. In the conditions of the present experiment, irradiated venom was less aggressive and more immunogenic than natural venom. (author)

  4. Biological and molecular properties of yellow venom of the Amazonian coral snake Micrurus surinamensis.

    Science.gov (United States)

    Oliveira, Fabiana da Rocha; Noronha, Maria das Dores Nogueira; Lozano, Jorge Luis Lopez

    2017-01-01

    The coral snake Micrurus surinamensis, which is widely distributed throughout Amazonia, has a neurotoxic venom. It is important to characterize the biological and molecular properties of this venom in order to develop effective antitoxins. Toxins from the venom of M. surinamensis were analyzed by two-dimensional polyacrylamide gel electrophoresis and their neurotoxic effects in vivo were evaluated. Most proteins in the venom had masses < 14kDa, low phospholipase A2 activity, and no proteolytic activity. The toxins inhibited the coagulation cascade. The venom had neurotoxic effects in mice, with a median lethal dose upon intravenous administration of 700 µg/kg. Immunogenic studies revealed abundant cross-reactivity of antielapidic serum with 14kDa toxins and limited cross-reactivity with toxins < 10kDa. These results indicate that antielapidic serum against M. surinamensis venom has weak potency (0.35mg/ml) in mice.

  5. Oxygen pitting failure of a bagasse boiler tube

    CSIR Research Space (South Africa)

    Heyes, AM

    2001-04-01

    Full Text Available Examination of a failed roof tube from a bagasse boiler showed transverse through-cracks and extensive pitting. The pitting was typically oxygen induced pitting and numerous fatigue cracks had started within these pits. It is highly probable...

  6. Accountability Quality Shuffler Measurements on Pits

    International Nuclear Information System (INIS)

    Rinard, P.M.

    2000-01-01

    Pits have generally been treated as accountable units that are intact if merely present and they are excluded from the more demanding nondestructive assay requirements. As pits begin to flow into disposition streams, there may be more incentive to measure the masses of their fissile components for accountability purposes. This Department of Energy Office of Safeguards and Security (OSS) Lifecycle Project has explored some ways in which such measurements may be done successfully. The active neutron instrument called a shuffler has been used to measure a variety of actual pits, and a calculational technique has been developed to accurately predict such count rates. Passive multiplicity counting has previously been applied to pits for determining their plutonium contents. This combination of measurement and calculational techniques provide powerful and accurate tools for determining the fissile contents of pits with the quality needed for accountability purposes

  7. Venom Apparatus Structure and Conutoxins Granules formation in Cone Snail (Conus coronatus of Persian Gulf

    Directory of Open Access Journals (Sweden)

    Ferial Monsef

    2014-05-01

    Full Text Available Background: Today use conotoxin as a neurotoxin and cytotoxin in medical science is obvious. These compounds are produced by venomous cone snails. Toxins produced by the venom apparatus of this snail and injected into the prey. To obtain and identification of these toxins, study of venom apparatus and the manufacture formation is necessary. Materials and Methods: In order to study the organ, specimens of C. coronatus were collected from the Coast of Gheshm Island. After dissection were fixed in Bouin's for 48 hours and transferred to laboratory into 70% ethanol. After dehydration and Paraffin embedded were cutted by microtome and then collected on glass slides and stained then photographed and studied. Results: Observation showed that, the venom bulb was muscular and in their middle part a channel with epithelial cells was observable that secreted some material. Venom duct walls composed of 3 parts including the outer layer of connective tissue with muscle an inner layer of columnar epithelial cells with basal nucleus and the inner lumens which filled by the. Departed nucleus by secretion exist in all 3 part of venom duct. In radula sac sections, lots growing radula were observed. Conclusion: Venom bulb was a weak secretion role and venom duct near the pharynx have a more mature granule than the other part. Holocrine secretion happened in all part of venom duct. Most suitable part for extract the conotoxin was the venom bulb end part.

  8. [Assessment of hypersensitivity to honey-bee venom in beekeepers by skin tests].

    Science.gov (United States)

    Becerril-Ángeles, Martín; Núñez-Velázquez, Marco; Marín-Martínez, Javier

    2013-01-01

    Beekeepers are exposed to frequent honey-bee stings, and have the risk to develop hypersensitivity to bee venom, but long-term exposure can induce immune tolerance in them. Up to 30% of beekeepers show positive skin tests with honey-bee venom. The prevalence of systemic reactions to bee stings in beekeepers is from 14% to 42%. To know the prevalence of hypersensitivity to honeybee venom in Mexican beekeepers and non-beekeepers by the use of skin tests. A group of 139 beekeepers and a group of 60 non-beekeeper volunteers had a history and physical related to age, sex, family and personal atopic history and time of exposure to bee stings. Both groups received intradermal skin tests with honey-bee venom, 0.1 mcg/mL and 1 mcg/mL, and histamine sulphate 0.1 mg/mL and Evans solution as controls. The skin tests results of both groups were compared by chi-squared test. Of the group of beekeepers, 116 were men (83%) and 23 women, average age was 39.3 years, had atopic family history 28% and personal atopy 13%, average time of exposure to bee stings was 10.9 years, skin tests with honey-bee venom were positive in 16.5% and 11% at 1 mcg/mL and 0.1 mcg/mL, respectively. In the non-beekeepers group venom skin tests were positive in 13.3% and 6.7% at 1 mcg/mL and 0.1 mcg/mL. We did not find significant differences between the two venom concentrations tested in both groups, neither in the number of positive skin tests between the two groups. We found hypersensivity to honey-bee venom slightly higher in the beekeepers than in the group apparently not exposed. Both honey-bee venom concentrations used did not show difference in the results of the skin tests. The similarity of skin tests positivity between both groups could be explained by immune tolerance due to continued exposure of beekeepers.

  9. Wasp venom is appropriate for immunotherapy of patients with allergic reaction to the European hornet sting.

    Science.gov (United States)

    Kosnik, Mitja; Korosec, Peter; Silar, Mira; Music, Ema; Erzen, Renato

    2002-02-01

    To identify whether it is the yellow jacket (Vespula germanica) or European hornet (Vespa crabro) venom that induces sensitization in patients with IgE-mediated allergic reaction to the venom from the sting of a European hornet. Since these patients usually have positive skin tests and specific IgE to all vespid venoms, it would be useful to distinguish cross-reactors from non-cross-reactors to perform immunotherapy with the venom that induced the sensitization. We performed inhibition tests in 24 patients who had experienced anaphylactic reaction after being stung by a European hornet. Of 24 patients with allergic reaction after Vespa crabro sting, 17 were sensitized only to epitopes of Vespula germanica venom. Only 4 out of 24 patients were sensitized to epitopes completely cross-reactive with Dolichovespula arenaria venom. In Slovenia, the vast majority of patients with anaphylactic reaction to Vespa crabro sting seem to be sensitized to Vespula germanica venom. We consider wasp venom an appropriate immunotherapeutic agent for such patients, except for those with proven primary sensitization to specific epitopes of Vespa crabro venom. Fluorescence enzyme immunoassay inhibition should be considered a convenient tool for the identification of primary sensitization in patients allergic to vespid venoms.

  10. Mad, bad and dangerous to know: the biochemistry, ecology and evolution of slow loris venom.

    Science.gov (United States)

    Nekaris, K Anne-Isola; Moore, Richard S; Rode, E Johanna; Fry, Bryan G

    2013-09-27

    Only seven types of mammals are known to be venomous, including slow lorises (Nycticebus spp.). Despite the evolutionary significance of this unique adaptation amongst Nycticebus, the structure and function of slow loris venom is only just beginning to be understood. Here we review what is known about the chemical structure of slow loris venom. Research on a handful of captive samples from three of eight slow loris species reveals that the protein within slow loris venom resembles the disulphide-bridged heterodimeric structure of Fel-d1, more commonly known as cat allergen. In a comparison of N. pygmaeus and N. coucang, 212 and 68 compounds were found, respectively. Venom is activated by combining the oil from the brachial arm gland with saliva, and can cause death in small mammals and anaphylactic shock and death in humans. We examine four hypotheses for the function of slow loris venom. The least evidence is found for the hypothesis that loris venom evolved to kill prey. Although the venom's primary function in nature seems to be as a defense against parasites and conspecifics, it may also serve to thwart olfactory-orientated predators. Combined with numerous other serpentine features of slow lorises, including extra vertebra in the spine leading to snake-like movement, serpentine aggressive vocalisations, a long dark dorsal stripe and the venom itself, we propose that venom may have evolved to mimic cobras (Naja sp.). During the Miocene when both slow lorises and cobras migrated throughout Southeast Asia, the evolution of venom may have been an adaptive strategy against predators used by slow lorises as a form of Müllerian mimicry with spectacled cobras.

  11. Bee Venom for the Treatment of Parkinson Disease - A Randomized Controlled Clinical Trial.

    Directory of Open Access Journals (Sweden)

    Andreas Hartmann

    Full Text Available In the present study, we examined the potential symptomatic and/or disease-modifying effects of monthly bee venom injections compared to placebo in moderatly affected Parkinson disease patients. We conducted a prospective, randomized double-blind study in 40 Parkinson disease patients at Hoehn & Yahr stages 1.5 to 3 who were either assigned to monthly bee venom injections or equivalent volumes of saline (treatment/placebo group: n = 20/20. The primary objective of this study was to assess a potential symptomatic effect of s.c. bee venom injections (100 μg compared to placebo 11 months after initiation of therapy on United Parkinson’s Disease Rating Scale (UPDRS III scores in the « off » condition pre-and post-injection at a 60 minute interval. Secondary objectives included the evolution of UPDRS III scores over the study period and [123I]-FP-CIT scans to evaluate disease progression. Finally, safety was assessed by monitoring specific IgE against bee venom and skin tests when necessary. After an 11 month period of monthly administration, bee venom did not significantly decrease UPDRS III scores in the « off » condition. Also, UPDRS III scores over the study course, and nuclear imaging, did not differ significantly between treatment groups. Four patients were excluded during the trial due to positive skin tests but no systemic allergic reaction was recorded. After an initial increase, specific IgE against bee venom decreased in all patients completing the trial. This study did not evidence any clear symptomatic or disease-modifying effects of monthly bee venom injections over an 11 month period compared to placebo using a standard bee venom allergy desensitization protocol in Parkinson disease patients. However, bee venom administration appeared safe in non-allergic subjects. Thus, we suggest that higher administration frequency and possibly higher individual doses of bee venom may reveal its potency in treating Parkinson disease

  12. Bee Venom for the Treatment of Parkinson Disease - A Randomized Controlled Clinical Trial.

    Science.gov (United States)

    Hartmann, Andreas; Müllner, Julia; Meier, Niklaus; Hesekamp, Helke; van Meerbeeck, Priscilla; Habert, Marie-Odile; Kas, Aurélie; Tanguy, Marie-Laure; Mazmanian, Merry; Oya, Hervé; Abuaf, Nissen; Gaouar, Hafida; Salhi, Sabrina; Charbonnier-Beaupel, Fanny; Fievet, Marie-Hélène; Galanaud, Damien; Arguillere, Sophie; Roze, Emmanuel; Degos, Bertrand; Grabli, David; Lacomblez, Lucette; Hubsch, Cécile; Vidailhet, Marie; Bonnet, Anne-Marie; Corvol, Jean-Christophe; Schüpbach, Michael

    2016-01-01

    In the present study, we examined the potential symptomatic and/or disease-modifying effects of monthly bee venom injections compared to placebo in moderatly affected Parkinson disease patients. We conducted a prospective, randomized double-blind study in 40 Parkinson disease patients at Hoehn & Yahr stages 1.5 to 3 who were either assigned to monthly bee venom injections or equivalent volumes of saline (treatment/placebo group: n = 20/20). The primary objective of this study was to assess a potential symptomatic effect of s.c. bee venom injections (100 μg) compared to placebo 11 months after initiation of therapy on United Parkinson’s Disease Rating Scale (UPDRS) III scores in the « off » condition pre-and post-injection at a 60 minute interval. Secondary objectives included the evolution of UPDRS III scores over the study period and [123I]-FP-CIT scans to evaluate disease progression. Finally, safety was assessed by monitoring specific IgE against bee venom and skin tests when necessary. After an 11 month period of monthly administration, bee venom did not significantly decrease UPDRS III scores in the « off » condition. Also, UPDRS III scores over the study course, and nuclear imaging, did not differ significantly between treatment groups. Four patients were excluded during the trial due to positive skin tests but no systemic allergic reaction was recorded. After an initial increase, specific IgE against bee venom decreased in all patients completing the trial. This study did not evidence any clear symptomatic or disease-modifying effects of monthly bee venom injections over an 11 month period compared to placebo using a standard bee venom allergy desensitization protocol in Parkinson disease patients. However, bee venom administration appeared safe in non-allergic subjects. Thus, we suggest that higher administration frequency and possibly higher individual doses of bee venom may reveal its potency in treating Parkinson disease. ClinicalTrials.gov NCT

  13. Enzymatic and biochemical characterization of Bungarus sindanus snake venom acetylcholinesterase

    Directory of Open Access Journals (Sweden)

    M Ahmed

    2012-01-01

    Full Text Available This study analyses venom from the elapid krait snake Bungarus sindanus, which contains a high level of acetylcholinesterase (AChE activity. The enzyme showed optimum activity at alkaline pH (8.5 and 45ºC. Krait venom AChE was inhibited by substrate. Inhibition was significantly reduced by using a high ionic strength buffer; low ionic strength buffer (10 mM PO4 pH 7.5 inhibited the enzyme by 1. 5mM AcSCh, while high ionic strength buffer (62 mM PO4 pH 7.5 inhibited it by 1 mM AcSCh. Venom acetylcholinesterase was also found to be thermally stable at 45ºC; it only lost 5% of its activity after incubation at 45ºC for 40 minutes. The Michaelis-Menten constant (Km for acetylthiocholine iodide hydrolysis was found to be 0.068 mM. Krait venom acetylcholinesterase was also inhibited by ZnCl2, CdCl2, and HgCl2 in a concentrationdependent manner. Due to the elevated levels of AChE with high catalytic activity and because it is more stable than any other sources, Bungarus sindanus venom is highly valuable for biochemical studies of this enzyme.

  14. Characterization of Fibrinolytic Proteases from Gloydius blomhoffii siniticus Venom

    Directory of Open Access Journals (Sweden)

    Suk Ho Choi

    2011-09-01

    Full Text Available Objectives : This study was undertaken to identify fibrinolytic proteases from Gloydius blomhoffii siniticus venom and to characterize a major fibrinolytic protease purified from the venom. Methods: The venom was subjected to chromatography using columns of Q-Sepharose and Sephadex G-75. The molecular weights of fibrinolytic proteases showing fibrinolytic zone in fibrin plate assay were determined in SDS-PAGE (Sodium dodecyl sulfate-polyacrylamide gel electrophoresis The effects of inhibitors and metal ions on fibrinolytic protease and the proteolysis patterns of fibrinogen, gelatin, and bovine serum albumin were investigated. Results : 1 The fibrinolytic fractions of the three peaks isolated from Gloydius blomhoffii siniticus venom contained two polypeptides of 46 and 59 kDa and three polypeptides of 32, 18, and 15 kDa and a major polypeptide of 54 kDa, respectively. 2 The fibrinolytic activity of the purified protease of 54 kDA was inhibited by metal chelators, such as EDTA, EGTA, and 1,10-phenanthroline, and disulfhydryl-reducing compounds, such as dithiothreitol and cysteine. 3 Calcium chloride promoted the fibrinolytic activity of the protease, but mercuric chloride and cobalt(II chloride inhibited it. 4 The fibrinolytic protease cleaved preferentially A-chain and slowly B-chain of fibrinogen. It also hydrolyzed gelatin but not bovine serum albumin. Conclusions: The Gloydius blomhoffii siniticus venom contained more than three fibrinolytic proteases. The major fibrinolytic protease was a metalloprotease which hydrolyzed both fibrinogen and gelatin, but not bovine serum albumin.

  15. Sex Differences in Defensive Behavior and Venom of The Striped Bark Scorpion Centruroides vittatus (Scorpiones: Buthidae).

    Science.gov (United States)

    Miller, D W; Jones, A D; Goldston, J S; Rowe, M P; Rowe, A H

    2016-11-01

    Studies of venom variability have advanced from describing the mechanisms of action and relative potency of medically important toxins to understanding the ecological and evolutionary causes of the variability itself. While most studies have focused on differences in venoms among taxa, populations, or age-classes, there may be intersexual effects as well. Striped bark scorpions (Centruroides vittatus) provide a good model for examining sex differences in venom composition and efficacy, as this species exhibits dramatic sexual dimorphism in both size and defensive behavior; when threatened by an enemy, larger, slower females stand and fight while smaller, fleeter males prefer to run. We here add evidence suggesting that male and female C. vittatus indeed have different defensive propensities; when threatened via an electrical stimulus, females were more likely to sting than were males. We reasoned that intersexual differences in defensive phenotypes would select for venoms with different functions in the two sexes; female venoms should be effective at predator deterrence, whereas male venoms, less utilized defensively, might be better suited to capturing prey or courting females. This rationale led to our predictions that females would inject more venom and/or possess more painful venom than males. We were wrong. While females do inject more venom than males in a defensive sting, females are also larger; when adjusted for body size, male and female C. vittatus commit equal masses of venom in a sting to a potential enemy. Additionally, house mice (Mus musculus) find an injection of male venom more irritating than an equal amount of female venom, likely because male venom contains more of the toxins that induce pain. Taken together, our results suggest that identifying the ultimate causes of venom variability will, as we move beyond adaptive storytelling, be hard-won. © The Author 2016. Published by Oxford University Press on behalf of the Society for Integrative and

  16. A Pharmacological Examination of the Cardiovascular Effects of Malayan Krait (Bungarus candidus Venoms

    Directory of Open Access Journals (Sweden)

    Janeyuth Chaisakul

    2017-03-01

    Full Text Available Cardiovascular effects (e.g., tachycardia, hypo- and/or hypertension are often clinical outcomes of snake envenoming. Malayan krait (Bungarus candidus envenoming has been reported to cause cardiovascular effects that may be related to abnormalities in parasympathetic activity. However, the exact mechanism for this effect has yet to be determined. In the present study, we investigated the in vivo and in vitro cardiovascular effects of B. candidus venoms from Southern (BC-S and Northeastern (BC-NE Thailand. SDS-PAGE analysis of venoms showed some differences in the protein profile of the venoms. B. candidus venoms (50 µg/kg–100 µg/kg, i.v. caused dose-dependent hypotension in anaesthetised rats. The highest dose caused sudden hypotension (phase I followed by a return of mean arterial pressure to baseline levels and a decrease in heart rate with transient hypertension (phase II prior to a small decrease in blood pressure (phase III. Prior administration of monovalent antivenom significantly attenuated the hypotension induced by venoms (100 µg/kg, i.v.. The sudden hypotensive effect of BC-NE venom was abolished by prior administration of hexamethonium (10 mg/kg, i.v. or atropine (5 mg/kg, i.v.. BC-S and BC-NE venoms (0.1 µg/kg–100 µg/ml induced concentration-dependent relaxation (EC50 = 8 ± 1 and 13 ± 3 µg/mL, respectively in endothelium-intact aorta. The concentration–response curves were markedly shifted to the right by pre-incubation with L-NAME (0.2 mM, or removal of the endothelium, suggesting that endothelium-derived nitric oxide (NO is likely to be responsible for venom-induced aortic relaxation. Our data indicate that the cardiovascular effects caused by B. candidus venoms may be due to a combination of vascular mediators (i.e., NO and autonomic adaptation via nicotinic and muscarinic acetylcholine receptors.

  17. Cabinet of Curiosities: Venom Systems and Their Ecological Function in Mammals, with a Focus on Primates.

    Science.gov (United States)

    Rode-Margono, Johanna E; Nekaris, K Anne-Isola

    2015-07-17

    Venom delivery systems (VDS) are common in the animal kingdom, but rare amongst mammals. New definitions of venom allow us to reconsider its diversity amongst mammals by reviewing the VDS of Chiroptera, Eulipotyphla, Monotremata, and Primates. All orders use modified anterior dentition as the venom delivery apparatus, except Monotremata, which possesses a crural system. The venom gland in most taxa is a modified submaxillary salivary gland. In Primates, the saliva is activated when combined with brachial gland exudate. In Monotremata, the crural spur contains the venom duct. Venom functions include feeding, intraspecific competition, anti-predator defense and parasite defense. Including mammals in discussion of venom evolution could prove vital in our understanding protein functioning in mammals and provide a new avenue for biomedical and therapeutic applications and drug discovery.

  18. Evolution of the toxoglossa venom apparatus as inferred by molecular phylogeny of the Terebridae

    OpenAIRE

    Holford, M.; Puillandre, N.; Terryn, Y.; Cruaud, C.; Olivera, B.; Bouchet, P.

    2009-01-01

    Toxoglossate marine gastropods, traditionally assigned to the families Conidae, Terebridae, and Turridae, are one of the most populous animal groups that use venom to capture their prey. These marine animals are generally characterized by a venom apparatus that consists of a muscular venom bulb and a tubular venom gland. The toxoglossan radula, often compared with a hypodermic needle for its use as a conduit to inject toxins into prey, is considered a major anatomical breakthrough that assist...

  19. Applications of snake venom components to modulate integrin activities in cell-matrix interactions

    Science.gov (United States)

    Marcinkiewicz, Cezary

    2013-01-01

    Snake venom proteins are broadly investigated in the different areas of life science. Direct interaction of these compounds with cells may involve a variety of mechanisms that result in diverse cellular responses leading to the activation or blocking of physiological functions of the cell. In this review, the snake venom components interacting with integrins will be characterized in context of their effect on cellular response. Currently, two major families of snake venom proteins are considered as integrin-binding molecules. The most attention has been devoted to the disintegrin family, which binds certain types of integrins through specific motifs recognized as a tri-peptide structurally localized on an integrin-binding loop. Other snake venom integrin-binding proteins belong to the C-type lectin family. Snake venom molecules bind to the cellular integrins resulting in a modulation of cell signaling and in consequence, the regulation of cell proliferation, migration and apoptosis. Therefore, snake venom research on the integrin-binding molecules may have significance in biomedicine and basic cell biology. PMID:23811033

  20. The VIMOS Public Extragalactic Redshift Survey (VIPERS). An unprecedented view of galaxies and large-scale structure at 0.5 < z < 1.2

    Science.gov (United States)

    Guzzo, L.; Scodeggio, M.; Garilli, B.; Granett, B. R.; Fritz, A.; Abbas, U.; Adami, C.; Arnouts, S.; Bel, J.; Bolzonella, M.; Bottini, D.; Branchini, E.; Cappi, A.; Coupon, J.; Cucciati, O.; Davidzon, I.; De Lucia, G.; de la Torre, S.; Franzetti, P.; Fumana, M.; Hudelot, P.; Ilbert, O.; Iovino, A.; Krywult, J.; Le Brun, V.; Le Fèvre, O.; Maccagni, D.; Małek, K.; Marulli, F.; McCracken, H. J.; Paioro, L.; Peacock, J. A.; Polletta, M.; Pollo, A.; Schlagenhaufer, H.; Tasca, L. A. M.; Tojeiro, R.; Vergani, D.; Zamorani, G.; Zanichelli, A.; Burden, A.; Di Porto, C.; Marchetti, A.; Marinoni, C.; Mellier, Y.; Moscardini, L.; Nichol, R. C.; Percival, W. J.; Phleps, S.; Wolk, M.

    2014-06-01

    We describe the construction and general features of VIPERS, the VIMOS Public Extragalactic Redshift Survey. This ESO Large Programme is using the Very Large Telescope with the aim of building a spectroscopic sample of ~ 100 000 galaxies with iABcontamination is found to be only 3.2%, endorsing the quality of the star-galaxy separation process and fully confirming the original estimates based on the VVDS data, which also indicate a galaxy incompleteness from this process of only 1.4%. Using a set of 1215 repeated observations, we estimate an rms redshift error σz/ (1 + z) = 4.7 × 10-4 and calibrate the internal spectral quality grading. Benefiting from the combination of size and detailed sampling of this dataset, we conclude by presenting a map showing in unprecedented detail the large-scale distribution of galaxies between 5 and 8 billion years ago. Based on observations collected at the European Southern Observatory, Cerro Paranal, Chile, using the Very Large Telescope under programmes 182.A-0886 and partly 070.A-9007. Also based on observations obtained with MegaPrime/MegaCam, a joint project of CFHT and CEA/DAPNIA, at the Canada-France-Hawaii Telescope (CFHT), which is operated by the National Research Council (NRC) of Canada, the Institut National des Sciences de l'Univers of the Centre National de la Recherche Scientifique (CNRS) of France, and the University of Hawaii. This work is based in part on data products produced at TERAPIX and the Canadian Astronomy Data Centre as part of the Canada-France-Hawaii Telescope Legacy Survey, a collaborative project of NRC and CNRS. The VIPERS website is http://www.vipers.inaf.it/

  1. Antivenom potential of ethanolic extract of Cordia macleodii bark against Naja venom

    OpenAIRE

    Pranay Soni; Surendra H. Bodakhe

    2014-01-01

    Objective: To evaluate the antivenom potential of ethanolic extract of bark of Cordia macleodii against Naja venom induced pharmacological effects such as lethality, hemorrhagic lesion, necrotizing lesion, edema, cardiotoxicity and neurotoxicity. Methods: Wistar strain rats were challenged with Naja venom and treated with the ethanolic extract of Cordia macleodii bark. The effectiveness of the extract to neutralize the lethalities of Naja venom was investigated as recommended by WHO. Re...

  2. Ontogenetic variations in the venom proteome of the Amazonian snake Bothrops atrox

    Directory of Open Access Journals (Sweden)

    Sousa Marcelo V

    2006-05-01

    Full Text Available Abstract Background Bothrops atrox is responsible for the majority of snakebite accidents in the Brazilian Amazon region. Previous studies have demonstrated that the biological and pharmacological activities of B. atrox venom alter with the age of the animal. Here, we present a comparative proteome analysis of B. atrox venom collected from specimens of three different stages of maturation: juveniles, sub-adults and adults. Results Optimized conditions for two-dimensional gel electrophoresis (2-DE of pooled venom samples were achieved using immobilized pH gradient (IPG gels of non-linear 3–10 pH range during the isoelectric focusing step and 10–20% gradient polyacrylamide gels in the second dimension. Software-assisted analysis of the 2-DE gels images demonstrated differences in the number and intensity of spots in juvenile, sub-adult and adult venoms. Although peptide mass fingerprinting (PMF failed to identify even a minor fraction of spots, it allowed us to group spots that displayed similar peptide maps. The spots were subjected to a combination of tandem mass spectrometry and Mascot and MS BLAST database searches that identified several classes of proteins, including metalloproteinases, serine proteinases, lectins, phospholipases A2, L-amino oxidases, nerve growth factors, vascular endothelial growth factors and cysteine-rich secretory proteins. Conclusion The analysis of B. atrox samples from specimens of different ages by 2-DE and mass spectrometry suggested that venom proteome alters upon ontogenetic development. We identified stage specific and differentially expressed polypeptides that may be responsible for the activities of the venom in each developmental stage. The results provide insight into the molecular basis of the relation between symptomatology of snakebite accidents in humans and the venom composition. Our findings underscore the importance of the use of venoms from individual specimen at various stages of maturation for

  3. Inhibition of [3H]nitrendipine binding by phospholipase A2

    International Nuclear Information System (INIS)

    Goldman, M.E.; Pisano, J.J.

    1985-01-01

    Phospholipase A 2 from several sources inhibited [ 3 H]nitrendipine binding to membranes from brain, heart and ileal longitudinal muscle. The enzymes from bee venom and Russell's viper venom were most potent, having IC 50 values of approximately 5 and 14 ng/ml, respectively, in all three membrane preparations. Inhibition of binding by bee venom phospholipase A 2 was time- and dose-dependent. Mastoparan, a known facilitator of phospholipase A 2 enzymatic activity, shifted the bee venom phospholipase A 2 dose-response curve to the left. Pretreatment of brain membranes with bee venom phospholipase A 2 (10 ng/ml) for 15 min caused a 2-fold increase in the K/sub d/ without changing the B/sub max/ compared with untreated membranes. Extension of the preincubation period to 30 min caused no further increase in the K/sub d/ but significantly decreased the B/sub max/ to 71% the value for untreated membranes. [ 3 H]Nitrendipine, preincubated with bee venom phospholipase A 2 , was recovered and found to be fully active, indicating that the phospholipase A 2 did not modify the ligand. It is concluded that phospholipase A 2 acts on the membrane at or near the [ 3 H]nitrendipine binding site and that phospholipids play a key role in the interactions of 1,4 dihydropyridine calcium channel antagonists with the dihydropyridine binding site. 33 references, 3 figures, 1 table

  4. Are ticks venomous animals?

    Czech Academy of Sciences Publication Activity Database

    Cabezas-Cruz, A.; Valdés, James J.

    2014-01-01

    Roč. 11, JUL 2014 (2014), s. 47 ISSN 1742-9994 R&D Projects: GA MŠk(CZ) EE2.3.30.0032 Institutional support: RVO:60077344 Keywords : ticks * venom * secreted proteins * toxicoses * pathogens * convergence Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 3.051, year: 2014

  5. Biochemical and histopathological effects of the stonefish (Synanceia verrucosa) venom in rats.

    Science.gov (United States)

    Khalil, Ahmad M; Wahsha, Mohammad A; Abu Khadra, Khalid M; Khalaf, Maroof A; Al-Najjar, Tariq H

    2018-02-01

    The Reef Stonefish (Synanceia verrucosa) is one of the most dangerous venomous fish known, and has caused occasional human fatalities. The present study was designed to examine some of the pathological effects of the venom from this fish in Sprague Dawley rats. Crude venom was extracted from venom glands of the dorsal spines of stonefish specimens collected from coral reefs in the Gulf of Aqaba (in the northeastern branch of the Red Sea). The rats were given intramuscular injections of the venom and acute toxicity and effect on selected serum marker enzymes as well as normal architecture of vital organs were evaluated. The rat 24 h LD50 was 38 μg/kg body weight. The serum biochemical markers; alanine transaminase (ALT), lactate dehydrogenase (LDH) and creatine kinase (CK) increased after 6 h of administration of a sub lethal dose of the venom and remained significantly raised at 24 h. Amylase levels also significantly increased after venom injection. The venom caused histological damage manifested as an interstitial hemorrhage, inflammatory cell infiltration, and necrosis. The demonstrated rises in the levels of different critical biochemical parameters in the serum may have led to the observed abnormal morphological changes in these organs. These results may account for some of the clinical manifestations observed in victims of stonefish envenomation. Thus, the presented data provide further in vivo evidence of the stonefish toxic effects that may threaten human life and call for the need for special measures to be considered. Copyright © 2018 Elsevier Ltd. All rights reserved.

  6. Demonstration of In-Situ Stabilization of Buried Waste at Pit G-11 at the Brookhaven National laboratory Glass Pits Disposal Site

    International Nuclear Information System (INIS)

    Dwyer, B.P.; Gilbert, J.; Heiser, J.

    1999-01-01

    In 1989 BNL was added to the EPAs National Priorities List. The site is divided into seven operable units (OU). OU-I includes the former landfill area. The field task site is noted as the AOC 2C Glass Holes location. Beginning in the 1960s and continuing into the 1980s, BNL disposed of laboratory waste (glassware, chemicals and animal carcasses) in numerous shallow pits. The drivers for remediating the pits are; historical records that indicate hazardous materials may have been disposed of in the pits; ground water contamination down gradient of the pits; a test excavation of one of the glass holes that unearthed laboratory glass bottles with unidentified liquids still contained; and the fact that BNL rests atop an EPA designated sole-source aquifer. The specific site chosen for this demonstration was pit G-11. The requirements that lead to choosing this pit were; a well characterized pit and a relatively isolated pit where our construction operations would not impact on adjacent pits. The glass holes area, including pit G-11, was comprehensively surveyed using a suite of geophysical techniques (e.g., EM-31, EM-61, GPR). Prior to stabilizing the waste form a subsurface barrier was constructed to contain the entire waste pit. The pit contents were then stabilized using a cement grout applied via jet grouting. The stabilization was performed to make removal of the waste from the pit easier and safer in terms of worker exposure. The grouting process would mix and masticate the waste and grout and form a single monolithic waste form. This large monolith would then be subdivided into smaller 4 foot by 4 foot by 10-12 foot block using a demolition grout. The smaller blocks would then be easily removed from the site and disposed of in a CERCLA waste site

  7. Experimental Stress Analysis at Railway Inspection Pit

    Directory of Open Access Journals (Sweden)

    Nicuşor Laurentiu Zaharia

    2008-10-01

    Full Text Available Railway inspection pits are used in railway halls. The purpose of inspection pits is to allow the working under the vehicle. Inspection pits can be found in locomotive depots, factories etc. The new design for a inspection pit in a railway hall involve tests in purpose of homologations the railway infrastructure. Before the homologation committee meeting, tests are made; after the test, a testing report is made which it will be part at homologation documents.

  8. The status of taxonomy and venom in sea snakes

    DEFF Research Database (Denmark)

    Redsted Rasmussen, Arne; Sanders, Kate L.

    2017-01-01

    The status of taxonomy and venom in sea snakesArne R Rasmussen1, Kate L Sanders21 The Royal Danish Academy of Fine Arts, School of Architecture, Design & Conservation, Copenhagen, Denmark2 School of Earth and Environmental Sciences, University of Adelaide, Adelaide, South Australia 5000, Australia......, the Aipysurus group was separated from the other viviparous sea snakes at around 5.8 million years before present and in the Hydrophis lineage the Hydrophis group was separated from the three semi-marine lineages at around 4.4 million years before present. The venoms of sea snakes are rather simple, typically...... containing a-neurotoxins and phospholipases A2 (PLA2s), and in terms of lethality are known to be more potent than the venoms from terrestrial snakes....

  9. Treatment of Reflex sympathetic dystrophy with Bee venom -Using Digital Infrared Thermographic Imaging-

    Directory of Open Access Journals (Sweden)

    Myung-jang Lim

    2006-12-01

    Full Text Available Objectives : The purpose of this case is to report the patient with Reflex sympathetic dystrophy, who is improved by Bee venom. Method : We treated the patient with Bee venom who was suffering from Reflex sympathetic dystrophy, using Digital Infrared Thermographic Imaging and Verbal Numerical Rating Scale(VNRS to evaluate the therapeutic effects. We compared the temperature of the patient body before and after treatment. Result and Conclusion : We found that Bee venom had excellent outcome to relieve pain, atrophy and ankle joint ROM, and that Bee venom also had clinical effect on hypothermia on the Digital Infrared Thermographic Imaging.

  10. Pelagia noctiluca (Scyphozoa Crude Venom Injection Elicits Oxidative Stress and Inflammatory Response in Rats

    Directory of Open Access Journals (Sweden)

    Giuseppe Bruschetta

    2014-04-01

    Full Text Available Cnidarian toxins represent a rich source of biologically active compounds. Since they may act via oxidative stress events, the aim of the present study was to verify whether crude venom, extracted from the jellyfish Pelagia noctiluca, elicits inflammation and oxidative stress processes, known to be mediated by Reactive Oxygen Species (ROS production, in rats. In a first set of experiments, the animals were injected with crude venom (at three different doses 6, 30 and 60 µg/kg, suspended in saline solution, i.v. to test the mortality and possible blood pressure changes. In a second set of experiments, to confirm that Pelagia noctiluca crude venom enhances ROS formation and may contribute to the pathophysiology of inflammation, crude venom-injected animals (30 µg/kg were also treated with tempol, a powerful antioxidant (100 mg/kg i.p., 30 and 60 min after crude venom. Administration of tempol after crude venom challenge, caused a significant reduction of each parameter related to inflammation. The potential effect of Pelagia noctiluca crude venom in the systemic inflammation process has been here demonstrated, adding novel information about its biological activity.

  11. Pits on Ascraeus

    Science.gov (United States)

    2005-01-01

    24 September 2005 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows collapse pits and troughs on the lower northeast flank of the giant martian volcano, Ascraeus Mons. Layers of volcanic rock are evident in some of the pit and valley walls, and boulders the size of houses and trucks that were liberated from these walls by gravity can be seen on the floors of the depressions. Location near: 13.6oN, 102.6oW Image width: width: 3 km (1.9 mi) Illumination from: lower left Season: Northern Autumn

  12. Inactivation and fragmentation of lectin from Bothrops leucurus snake venom by gamma irradiation

    International Nuclear Information System (INIS)

    Nunes, E.S.; Souza, M.A.A.; Vaz, A.F.M.; Coelho, L.C.B.B.; Aguiar, J.S.; Silva, T.G.; Guarnieri, M.C.; Melo, A.M.M.A.; Oliva, M.L.V.; Correia, M.T.S.

    2012-01-01

    Gamma radiation alters the molecular structure of biomolecules and is able to mitigate the action of snake venoms and their isolated toxins. The effect of γ-radiation on the folding of Bothrops lecurus venom lectin was measured by a hemagglutinating assay, intrinsic and bis-ANS fluorescence. Intrinsic and bis-ANS fluorescence analyses indicated that irradiation caused unfolding followed by aggregation of the lectin. Our results suggest that irradiation can lead to significant changes in the protein structure, which may promote the loss of its binding property and toxic action. - Highlights: ► Gamma radiation alters the molecular structure of biomolecules. ► The radiation has been able to mitigate snake venoms and its isolated toxins. ► Our aim was to evaluate the effects of radiation in Bothrops lecurus venom lectin. ► The irradiation acts as a detoxification strategy in snake venoms.

  13. Public health aspects of snakebite care in West Africa: perspectives from Nigeria.

    Science.gov (United States)

    Habib, Abdulrazaq G

    2013-10-17

    Snakebite envenoming is a major public health problem among rural communities of the Nigerian savanna. The saw-scaled or carpet viper (Echis ocellatus) and, to a lesser extent, the African cobras (Naja spp.) and puff adders (Bitis arietans) have proved to be the most important cause of mortality and morbidity. The main clinical features of E. ocellatus envenoming are systemic hemorrhage, incoagulable blood, shock, local swelling, bleeding and, occasionally, necrosis. Bites may be complicated by amputation, blindness, disability, disfigurement, mutilation, tissue destruction and psychological consequences. Antivenom remains the hallmark and mainstay of envenoming management while studies in Nigeria confirm its protection of over 80% against mortality from carpet-viper bites. However, the availability, distribution and utilization of antivenom remain challenging although two new antivenoms (monospecific EchiTab G and trispecific EchiTab ICP-Plus) derived from Nigerian snake venoms have proven very effective and safe in clinical trials. A hub-and-spoke strategy is suggested for broadening antivenom access to endemic rural areas together with instituting quality assurance, standardization and manpower training. With the advent of antivenomics, national health authorities must be aided in selecting and purchasing antivenoms appropriate to their national needs while manufacturers should be helped in practical ways to improve the safety, efficacy and potential coverage against snake venoms and pricing of their products.

  14. Screening of Bothrops snake venoms for L-amino acid oxidase activity

    Energy Technology Data Exchange (ETDEWEB)

    Pessati, M.L.; Fontana, J.D.; Guimaraes, M.F. [Federal Univ. of Parana, Curitiba (Brazil)

    1995-12-31

    Toxins, enzymes, and biologically active peptides are the main components of snake venoms from the genus Bothrops. Following the venom inoculation, the local effects are hemorrhage, edema, and myonecrosis. Nineteen different species of Brazilian Bothrops were screened for protein content and L-amino acid oxidase activity. B. cotiara, formerly found in the South of Brazil, is now threatened with extinction. Its venom contains a highly hemorrhagic fraction and, as expected from the deep yellow color of the corresponding lyophilized powder, a high L-amino acid oxidase (LAO) activity was also characterized. Flavin adenine dinucleotide (FAD) is its associate coenzyme. B. cotiara venom LAO catalyzed the oxidative deamination of several L-amino acids, and the best substrates were methionine, leucine, tryptophan, and phenylalanine, hence, its potential application for the use in biosensors for aspartame determination and for the removal of amino acids from plasma. High levels for LAO were also found in other species than B. cotiara. In addition, the technique of isoelectric focusing (IEF) was employed as a powerful tool to study the iso- or multi-enzyme distribution for LAO activity in the B. cotiara snake venom.

  15. Partial Characterization of Venom from the Colombian Spider Phoneutria Boliviensis (Aranae:Ctenidae)

    OpenAIRE

    Estrada-Gomez, Sebastian; Muñoz, Leidy; Lanchero, Paula; Latorre, Cesar

    2015-01-01

    We report on the first studies on the characterization of venom from Phoneutria boliviensis (Aranae:Ctenidae) (F. O. Pickard-Cambridge, 1897), done with Colombian species. After the electrostimulation extraction process, the venom showed physicochemical properties corresponding to a colorless and water-soluble liquid with a density of 0.86 mg/mL and 87% aqueous content. P. boliviensis venom and RP-HPLC fractions showed hemolytic activity and hydrolyzed the synthetic substrate 4-nitro-3-octano...

  16. Delayed polymorphonuclear leukocyte infiltration is an important component of Thalassophryne maculosa venom pathogenesis.

    Science.gov (United States)

    Pareja-Santos, Alessandra; Oliveira Souza, Valdênia Maria; Bruni, Fernanda M; Sosa-Rosales, Josefina Ines; Lopes-Ferreira, Mônica; Lima, Carla

    2008-07-01

    Thalassophryne maculosa fish envenomation is characterized by severe pain, dizziness, fever, edema and necrosis. Here, the dynamic of cellular influx, activation status of phagocytic cells, and inflammatory modulator production in the acute inflammatory response to T. maculosa venom was studied using an experimental model. Leukocyte counting was performed (2 h to 21 days) after venom injection in BALB/c mice footpads. Our results showed an uncommon leukocyte migration kinetic after venom injection, with early mononuclear cell recruitment followed by elevated and delayed neutrophil influx. The pattern of chemokine expression is consistent with the delay in neutrophil recruitment to the footpad: T. maculosa venom stimulated an early production of IL-1beta, IL-6, and MCP-1, but was unable to induce an effective early TNF-alpha and KC release. Complementary to these observations, we detected a marked increase in soluble KC and TNF-alpha in footpad at 7 days post-venom injection when a prominent influx of neutrophils was also detected. In addition, we demonstrated that bone marrow-derived macrophages and dendritic cells were strongly stimulated by the venom, showing up-regulated ability to capture FITC-dextran. Thus, the reduced levels of KC and TNF-alpha in footpad of mice concomitant with a defective accumulation of neutrophils at earlier times provide an important clue to uncovering the mechanism by which T. maculosa venom regulates neutrophil movement.

  17. A Clinical Study of Bee Venom Acupuncture Therapy on External Epicondylitis

    Directory of Open Access Journals (Sweden)

    Kyung-Tae Kim

    2006-06-01

    Full Text Available Objective : This study was to evaluate the effectiveness of Bee Venom acupuncture therapy on external epicondylitis. Methods : We divided chronic arthritis of ankle patient into 2 groups; one group combined bee venom acupuncture therapy and acupuncture therapy, another group was only acupuncture therapy. To estimate the effectiveness of treatment that applied for two groups, we used visual analog scale(VAS. We compared the VAS score of two groups statistically. Results : 1. As a result of evaluation by using visual analog scale(VAS, treatment score at final was marked more higher than score before treatment on each groups. 2. treatment at final, acupuncture and bee venom acupuncture therapy group had significant result on visual analog scale(VAS compared with acupuncture therapy group. Conclusion : Bee Venom acupuncture therapy can be used with acupuncture therapy for highly effective treatment for external epicondylitis.

  18. A new scenario of bioprospecting of Hymenoptera venoms through proteomic approach

    Directory of Open Access Journals (Sweden)

    LD Santos

    2011-01-01

    Full Text Available Venoms represent a huge and essentially unexplored reservoir of bioactive components that may cure diseases that do not respond to currently available therapies. This review select advances reported in the literature from 2000 to the present about the new scenario of Hymenoptera venom composition. On account of new technologies in the proteomic approach, which presents high resolution and sensitivity, the combination of developments in new instruments, fragmentation methods, strategic analysis, and mass spectrometry have become indispensable tools for interrogation of protein expression, molecule interaction, and post- translational modifications. Thus, the biochemical characterization of Hymenoptera venom has become a major subject of research in the area of allergy and immunology, in which proteomics has been an excellent alternative to assist the development of more specific extracts for diagnosis and treatment of hypersensitive patients to Hymenoptera venoms.

  19. In vitro assessment of cytotoxic activities of Lachesis muta muta snake venom.

    Directory of Open Access Journals (Sweden)

    Stephanie Stransky

    2018-04-01

    Full Text Available Envenomation by the bushmaster snake Lachesis muta muta is considered severe, characterized by local effects including necrosis, the main cause of permanent disability. However, cellular mechanisms related to cell death and tissue destruction, triggered by snake venoms, are poorly explored. The purpose of this study was to investigate the cytotoxic effect caused by L. m. muta venom in normal human keratinocytes and to identify the cellular processes involved in in cellulo envenomation. In order to investigate venom effect on different cell types, Alamar Blue assay was performed to quantify levels of cellular metabolism as a readout of cell viability. Apoptosis, necrosis and changes in mitochondrial membrane potential were evaluated by flow cytometry, while induction of autophagy was assessed by expression of GFP-LC3 and analyzed using fluorescence microscopy. The cytotoxic potential of the venom is shown by reduced cell viability in a concentration-dependent manner. It was also observed the sequential appearance of cells undergoing autophagy (by 6 hours, apoptosis and necrosis (12 and 24 hours. Morphologically, incubation with L. m. muta venom led to a significant cellular retraction and formation of cellular aggregates. These results indicate that L. m. muta venom is cytotoxic to normal human keratinocytes and other cell lines, and this toxicity involves the integration of distinct modes of cell death. Autophagy as a cell death mechanism, in addition to apoptosis and necrosis, can help to unravel cellular pathways and mechanisms triggered by the venom. Understanding the mechanisms that underlie cellular damage and tissue destruction will be useful in the development of alternative therapies against snakebites.

  20. In vitro screening of snake venom against multidrug-resistant tuberculosis

    Directory of Open Access Journals (Sweden)

    Sujay Kumar Bhunia

    2015-12-01

    Full Text Available The re-emergence of multidrug-resistant tuberculosis (MDR-TB has brought to light the importance of screening effective novel drugs. In the present study, in vitro activities of different snake (Naja naja, Bungarus fasciatus, Daboia russelli russelli, Naja kaouthia venoms have been investigated against clinical isolate of MDR-TB strains. The treatment with all the venoms inhibited the mycobacterial growth for at least a week in common and two of them (Naja naja and Naja kaouthia showed significantly longer inhibition up to two weeks against the MDR-TB strain with single dose and a repetition of those two venoms exhibited inhibition up to more than four weeks.