WorldWideScience

Sample records for pipeline transportation

  1. Hydrocarbons pipeline transportation risk assessment

    Science.gov (United States)

    Zanin, A. V.; Milke, A. A.; Kvasov, I. N.

    2018-04-01

    The pipeline transportation applying risks assessment issue in the arctic conditions is addressed in the paper. Pipeline quality characteristics in the given environment has been assessed. To achieve the stated objective, the pipelines mathematical model was designed and visualized by using the software product SOLIDWORKS. When developing the mathematical model the obtained results made possible to define the pipeline optimal characteristics for designing on the Arctic sea bottom. In the course of conducting the research the pipe avalanche collapse risks were examined, internal longitudinal and circular loads acting on the pipeline were analyzed, as well as the water impact hydrodynamic force was taken into consideration. The conducted calculation can contribute to the pipeline transport further development under the harsh climate conditions of the Russian Federation Arctic shelf territory.

  2. LNG transport through pipelines

    Energy Technology Data Exchange (ETDEWEB)

    Pfund, P; Philipps, A

    1975-01-01

    LNG pipelines could help solve some peakshaving problems if operated in conjunction with other facilities that could use the LNG cold recovered during regasification. In some areas at present, LNG is delivered by tanker and regasified near the terminal for transmission through conventional gas pipelines. In other places, utilities liquefy natural gas for easy storage for later peakshaving use. The only chance to avoid the second expensive liquefaction step would be to convey imported LNG through a suitable designed LNG pipeline. The technical problems involved in LNG pipeline construction have basically been solved in recent years, but those pipelines actually constructed have been only short ones. To be economically justified, long-distance LNG lines require additional credit, which could be obtained by selling the LNG cold recovered during regasification to industrial users located in or near the points of gas consumption. Technical details presented cover the pipe material, stress relief, steel composition, pressure enthalpy, bellows-type expansion joints, and mechanical and thermal insulation.

  3. Canadian pipeline transportation system : transportation assessment

    International Nuclear Information System (INIS)

    2009-07-01

    In addition to regulating the construction and operation of 70,000 km of oil and natural gas pipelines in Canada, the National Energy Board (NEB) regulates the trade of natural gas, oil and natural gas liquids. This report provided an assessment of the Canadian hydrocarbon transportation system in relation to its ability to provide a robust energy infrastructure. Data was collected from NEB-regulated pipeline companies and a range of publicly available sources to determine if adequate pipeline capacity is in place to transport products to consumers. The NEB also used throughput and capacity information received from pipeline operators as well as members of the investment community. The study examined price differentials compared with firm service tolls for transportation paths, as well as capacity utilization on pipelines and the degree of apportionment on major oil pipelines. This review indicated that in general, the Canadian pipeline transportation system continues to work effectively, with adequate pipeline capacity in place to move products to consumers who need them. 9 tabs., 30 figs., 3 appendices.

  4. PIPELINE TRANSPORTATION PLANNERS

    OpenAIRE

    FREDERICO DOS SANTOS LIPORACE

    2005-01-01

    Oleodutos têm um papel importante no transporte de petróleo e de seus derivados, pois são a maneira mais eficaz de transportar grandes volumes por longas distâncias. A motivação deste trabalho é que uma parte não negligenciável do preço final de um derivado de petróleo é influenciada pelo custo de transporte. Apesar disso, até onde sabemos, apenas alguns autores trabalharam neste problema específico, a maioria utilizando técnicas de programação inteira. Este tr...

  5. Pipelines, inexpensive and safe mode of transport

    Energy Technology Data Exchange (ETDEWEB)

    Grover, D D

    1979-01-01

    Pipelines are the leading bulk commodity transporter and should play an even more important role in the future of energy transportation and distribution. As fossil fuel and low-cost uranium resources become depleted, it will be economical to produce hydrogen by electrolysis and transport it through underground pipelines to points of consumption. The cost would be only two to three times that of transporting natural gas per unit of heat energy and substantially less than the cost of transporting electric energy in overhead, extra-high-voltage transmission lines. Pipeline design, including economic pipe diameter; pipe material; operation by remote control and automation; cathodic protection; pipeline construction; and pipeline maintenance, particularly as regards the 1157 km long Oil India Pipeline, are discussed.

  6. Optimizing pipeline transportation using a fuzzy controller

    Energy Technology Data Exchange (ETDEWEB)

    Aramaki, Thiago L.; Correa, Joao L. L.; Montalvoa, Antonio F. F. [National Control and Operation Center Tranpetro, Rio de Janeiro, (Brazil)

    2010-07-01

    The optimization of pipeline transportation is a big concern for the transporter companies. This paper is the third of a series of three articles which investigated the application of a system to simulate the human ability to operate a pipeline in an optimized way. The present paper presents the development of a proportional integral (PI) fuzzy controller, in order to optimize pipeline transportation capacity. The fuzzy adaptive PI controller system was developed and tested with a hydraulic simulator. On-field data were used from the OSBRA pipeline. The preliminary tests showed that the performance of the software simulation was satisfactory. It varied the set-point of the conventional controller within the limits of flow meters. The transport capacity of the pipe was maximize without compromising the integrity of the commodities transported. The system developed proved that it can be easily deployed as a specialist optimizing system to be added to SCADA systems.

  7. GRAVITY PIPELINE TRANSPORT FOR HARDENING FILLING MIXTURES

    Directory of Open Access Journals (Sweden)

    Leonid KROUPNIK

    2015-12-01

    Full Text Available In underground mining of solid minerals becoming increasingly common development system with stowing hardening mixtures. In this case the natural ore array after it is replaced by an artificial excavation of solidified filling mixture consisting of binder, aggregates and water. Such a mixture is prepared on the surface on special stowing complexes and transported underground at special stowing pipelines. However, it is transported to the horizons of a few kilometers, which requires a sustainable mode of motion of such a mixture in the pipeline. Hardening stowing mixture changes its rheological characteristics over time, which complicates the calculation of the parameters of pipeline transportation. The article suggests a method of determining the initial parameters of such mixtures: the status coefficient, indicator of transportability, coefficient of hydrodynamic resistance to motion of the mixture. These indicators characterize the mixture in terms of the possibility to transport it through pipes. On the basis of these indicators is proposed methodology for calculating the parameters of pipeline transport hardening filling mixtures in drift mode when traffic on the horizontal part of the mixture under pressure column of the mixture in the vertical part of the backfill of the pipeline. This technique allows stable operation is guaranteed to provide pipeline transportation.

  8. Pipesworld : applying planning systems to pipeline transportation

    Energy Technology Data Exchange (ETDEWEB)

    Milidiu, R.L.; Santos Liporace, F. [Pontificia Univ. Catolica, Rio de Janeiro (Brazil). Dept. de Informatica

    2004-07-01

    This paper explored issues facing the complex task of managing pipelines that transport large volumes of petroleum products over long distances. Since oil pipelines are generally a few inches wide and several miles long, reasonable amounts of distinct products can be transported with very small loss due to the mixing at liquid boundaries. Optimizing the transportation through oil pipelines in terms of maintenance and environmental safety is a high priority for pipeline operators. This paper presented the Pipesworld model which takes into account features such as product interface constraints, limited product storage capacities and due dates for product delivery. It has been benchmarked as a start-of-art general purpose artificial planning system. This paper also reported the results derived by general purpose artificial intelligence planning systems when applied to the Pipesworld model. It demonstrated how various modelling techniques can be used to enhance the planners performance. Current work in developing Plumber was also presented. This dedicated solver that addresses operational situations uses both general purpose planning techniques as well as domain specific knowledge. When Plumber was incorporated into Pipesworld, its outperformed Fast-Forward, one of the best available general purpose planning systems, suggesting that improved versions of Plumber have the potential to deal with various problem scenarios in pipeline operations. 11 refs., 2 tabs., 3 figs.

  9. Economic evaluation of CO2 pipeline transport in China

    International Nuclear Information System (INIS)

    Zhang Dongjie; Wang Zhe; Sun Jining; Zhang Lili; Li Zheng

    2012-01-01

    Highlights: ► We build a static hydrodynamic model of CO 2 pipeline for CCS application. ► We study the impact on pressure drop of pipeline by viscosity, density and elevation. ► We point out that density has a bigger impact on pressure drop than viscosity. ► We suggest dense phase transport is preferred than supercritical state. ► We present cost-optimal pipeline diameters for different flowrates and distances. - Abstract: Carbon capture and sequestration (CCS) is an important option for CO 2 mitigation and an optimized CO 2 pipeline transport system is necessary for large scale CCS implementation. In the present work, a hydrodynamic model for CO 2 pipeline transport was built up and the hydrodynamic performances of CO 2 pipeline as well as the impacts of multiple factors on pressure drop behavior along the pipeline were studied. Based on the model, an economic model was established to optimize the CO 2 pipeline transport system economically and to evaluate the unit transport cost of CO 2 pipeline in China. The hydrodynamic model results show that pipe diameter, soil temperature, and pipeline elevation change have significant influence on the pressure drop behavior of CO 2 in the pipeline. The design of pipeline system, including pipeline diameter and number of boosters etc., was optimized to achieve a lowest unit CO 2 transport cost. In regarding to the unit cost, when the transport flow rate and distance are between 1–5 MtCO 2 /year and 100–500 km, respectively, the unit CO 2 transport cost mainly lies between 0.1–0.6 RMB/(tCO 2 km) and electricity consumption cost of the pipeline inlet compressor was found to take more than 60% of the total cost. The present work provides reference for CO 2 transport pipeline design and for feasibility evaluation of potential CCS projects in China.

  10. Pipeline transportation of emerging partially upgraded bitumen

    International Nuclear Information System (INIS)

    Luhning, R.W.; Anand, A.; Blackmore, T.; Lawson, D.S.

    2002-01-01

    The recoverable reserves of Canada's vast oil deposits is estimated to be 335 billion barrels (bbl), most of which are in the Alberta oil sands. Canada was the largest import supplier of crude oil to the United States in 2001, followed by Saudi Arabia. By 2011, the production of oil sands is expected to increase to 50 per cent of Canada's oil, and conventional oil production will decline as more production will be provided by synthetic light oil and bitumen. This paper lists the announced oil sands projects. If all are to proceed, production would reach 3,445,000 bbl per day by 2011. The three main challenges regarding the transportation and marketing of this new production were described. The first is to expand the physical capacity of existing pipelines. The second is the supply of low viscosity diluent (such as natural gas condensate or synthetic diluent) to reduce the viscosity and density of the bitumen as it passes through the pipelines. The current pipeline specifications and procedures to transport partially upgraded products are presented. The final challenge is the projected refinery market constraint to process the bitumen and synthetic light oil into consumer fuel products. These challenges can be addressed by modifying refineries and increasing Canadian access in Petroleum Administration Defense District (PADD) II and IV. The technology for partial upgrading of bitumen to produce pipeline specification oil, reduce diluent requirements and add sales value, is currently under development. The number of existing refineries to potentially accept partially upgraded product is listed. The partially upgraded bitumen will be in demand for additional upgrading to end user products, and new opportunities will be presented as additional pipeline capacity is made available to transport crude to U.S. markets and overseas. The paper describes the following emerging partial upgrading methods: the OrCrude upgrading process, rapid thermal processing, CPJ process for

  11. 18 CFR 284.102 - Transportation by interstate pipelines.

    Science.gov (United States)

    2010-04-01

    ... 18 Conservation of Power and Water Resources 1 2010-04-01 2010-04-01 false Transportation by interstate pipelines. 284.102 Section 284.102 Conservation of Power and Water Resources FEDERAL ENERGY... 1978 AND RELATED AUTHORITIES Certain Transportation by Interstate Pipelines § 284.102 Transportation by...

  12. 18 CFR 284.122 - Transportation by intrastate pipelines.

    Science.gov (United States)

    2010-04-01

    ... 18 Conservation of Power and Water Resources 1 2010-04-01 2010-04-01 false Transportation by intrastate pipelines. 284.122 Section 284.122 Conservation of Power and Water Resources FEDERAL ENERGY... 1978 AND RELATED AUTHORITIES Certain Transportation by Intrastate Pipelines § 284.122 Transportation by...

  13. 77 FR 32631 - Lion Oil Trading & Transportation, Inc., Magnolia Pipeline Company, and El Dorado Pipeline...

    Science.gov (United States)

    2012-06-01

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. OR12-13-000] Lion Oil... of the Commission's Rules of Practice and Procedure, 18 CFR 385.202 (2011), Lion Oil Trading & Transportation, Inc., Magnolia Pipeline Company, and El Dorado Pipeline Company, collectively, Lion Companies...

  14. 18 CFR 284.227 - Certain transportation by intrastate pipelines.

    Science.gov (United States)

    2010-04-01

    ... 18 Conservation of Power and Water Resources 1 2010-04-01 2010-04-01 false Certain transportation by intrastate pipelines. 284.227 Section 284.227 Conservation of Power and Water Resources FEDERAL... Interstate Pipelines on Behalf of Others and Services by Local Distribution Companies § 284.227 Certain...

  15. Efficiency improvements in pipeline transportation systems

    Energy Technology Data Exchange (ETDEWEB)

    Banks, W. F.; Horton, J. F.

    1977-09-09

    This report identifies potential energy-conservative pipeline innovations that are most energy- and cost-effective and formulates recommendations for the R, D, and D programs needed to exploit those opportunities. From a candidate field of over twenty classes of efficiency improvements, eight systems are recommended for pursuit. Most of these possess two highly important attributes: large potential energy savings and broad applicability outside the pipeline industry. The R, D, and D program for each improvement and the recommended immediate next step are described. The eight technologies recommended for R, D, and D are gas-fired combined cycle compressor station; internally cooled internal combustion engine; methanol-coal slurry pipeline; methanol-coal slurry-fired and coal-fired engines; indirect-fired coal-burning combined-cycle pump station; fuel-cell pump station; drag-reducing additives in liquid pipelines; and internal coatings in pipelines.

  16. Natural gas transport with the aid of pipelines

    Energy Technology Data Exchange (ETDEWEB)

    Volk, A

    1978-01-01

    After giving a brief explanation on the term natural gas and the chemical composition of natural gases of different origin, the natural gas supply in the FRG and in Western Europe is discussed. Other discussions are included on: (1) planning, construction, and operation of the pipelines; (2) the equipment for pressure increase and the telecommunication equipment which are urgently necessary for gas transport through pipelines; (3) the problem of safety both in connection with the supply and protection of man and material; and (4) problems of profitability of natural gas transport through pipelines.

  17. 18 CFR 284.267 - Intrastate pipeline emergency transportation rates.

    Science.gov (United States)

    2010-04-01

    ... POLICY ACT OF 1978 AND RELATED AUTHORITIES Emergency Natural Gas Sale, Transportation, and Exchange... 18 Conservation of Power and Water Resources 1 2010-04-01 2010-04-01 false Intrastate pipeline emergency transportation rates. 284.267 Section 284.267 Conservation of Power and Water Resources FEDERAL...

  18. Optimization of pipeline transport for CO2 sequestration

    International Nuclear Information System (INIS)

    Zhang, Z.X.; Wang, G.X.; Massarotto, P.; Rudolph, V.

    2006-01-01

    Coal fired power generation will continue to provide energy to the world for the foreseeable future. However, this energy use is a significant contributor to increased atmospheric CO 2 concentration and, hence, global warming. Capture and disposal of CO 2 has received increased R and D attention in the last decade as the technology promises to be the most cost effective for large scale reductions in CO 2 emissions. This paper addresses CO 2 transport via pipeline from capture site to disposal site, in terms of system optimization, energy efficiency and overall economics. Technically, CO 2 can be transported through pipelines in the form of a gas, a supercritical fluid or in the subcooled liquid state. Operationally, most CO 2 pipelines used for enhanced oil recovery transport CO 2 as a supercritical fluid. In this paper, supercritical fluid and subcooled liquid transport are examined and compared, including their impacts on energy efficiency and cost. Using a commercially available process simulator, ASPEN PLUS 10.1, the results show that subcooled liquid transport maximizes the energy efficiency and minimizes the cost of CO 2 transport over long distances under both isothermal and adiabatic conditions. Pipeline transport of subcooled liquid CO 2 can be ideally used in areas of cold climate or by burying and insulating the pipeline. In very warm climates, periodic refrigeration to cool the CO 2 below its critical point of 31.1 o C, may prove economical. Simulations have been used to determine the maximum safe pipeline distances to subsequent booster stations as a function of inlet pressure, environmental temperature and ground level heat flux conditions

  19. Economic model of pipeline transportation systems

    Energy Technology Data Exchange (ETDEWEB)

    Banks, W. F.

    1977-07-29

    The objective of the work reported here was to develop a model which could be used to assess the economic effects of energy-conservative technological innovations upon the pipeline industry. The model is a dynamic simulator which accepts inputs of two classes: the physical description (design parameters, fluid properties, and financial structures) of the system to be studied, and the postulated market (throughput and price) projection. The model consists of time-independent submodels: the fluidics model which simulates the physical behavior of the system, and the financial model which operates upon the output of the fluidics model to calculate the economics outputs. Any of a number of existing fluidics models can be used in addition to that developed as a part of this study. The financial model, known as the Systems, Science and Software (S/sup 3/) Financial Projection Model, contains user options whereby pipeline-peculiar characteristics can be removed and/or modified, so that the model can be applied to virtually any kind of business enterprise. The several dozen outputs are of two classes: the energetics and the economics. The energetics outputs of primary interest are the energy intensity, also called unit energy consumption, and the total energy consumed. The primary economics outputs are the long-run average cost, profit, cash flow, and return on investment.

  20. Environmental impact of oil transportation by tankers, pipelines, railway

    International Nuclear Information System (INIS)

    Tsitskishvili, M.S.; Chelidze, M.A.; Kaviladze, I.; Chkhartishvili, A.G.; Tsitskishvili, L.B.; Ninua, T.L.; Kordzaxia, G.I.; Gavasheli, L.; Petriashvili, E.T.; Alania, M.L.; Gigolashvili, Sh.Z.; Kordzakhia, M.O.; Chankotadze, P.

    2005-01-01

    Full text : Considering all types of risks (technical, operational, natural hazards (e.g. geo-hazards) and third party intrusion), the underground pipelines constructed in accordance with the international standards are the most safe and reliable system for oil transportation. Statistical data provided by CONCAWE and US Department of Transportation confirms that the pipeline related spills are rare and mainly related to the old pipelines. Georgia's experience yet confirms the general sound guess that the situation in our countries is not the same as in western Europe or USA and accordingly the CONCAWE statistical data can not be applied mechanically. Two spills (although small and manageable), during the recent 4 years and some discovered illegal hot-taps on the Baku-Supsa pipeline indicate that the issue of third party intrusion risks is much higher in the region and well organized security system is required to protect the pipeline from intentional damage. Of course the pipeline system can not function isolated and it is integrated with the other systems of oil transportation, mainly with off-shore terminals and tankers. The most significant of the recorded pollution damages are related to the tanker collisions (like Prestige and Exxon Valdez cases). The basic fact, which we would like to stress, is that the environmental risks related to the tanker collisions are much higher for such confined or semi-confined systems as Black and Caspian seas. The overloading of the Black Sea transportation capacity and especially its limiting narrow point - the Bosporus will inevitably lead in future to the implementation of the restrictive measures limiting transportation of oil by tankers in the Black Sea. Therefore, the role of the BTC pipeline as major transportation system will increase significantly. We consider that responsibility of the scientific society is to facilitate this process as soon as the BTC pipeline is functional. The railway transportation of oil is quite

  1. Reliability analysis of land pipelines for hydrocarbons transportation in Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Leon, D.; Cortes, C. [Inst. Mexicano del Petroleo (Mexico)

    2004-07-01

    The reliability of a land pipeline operated by PEMEX in Mexico was estimated under a range of failure modes. Reliability and safety were evaluated in terms of the pipeline's internal pressure, bending, fracture toughness and its tension failure mode conditions. Loading conditions were applied individually, while bending and tension loads were applied in a combined fashion. The mechanical properties of the steel were also considered along with the degradation effect of internal corrosion resulting from the type of product being transported. A set of internal pressures and mechanical properties were generated randomly using Monte Carlo simulation. Commercial software was used to obtain the pipeline response under each modeled condition. The response analysis was based on the nonlinear finite element method involving a calculation of maximum stresses and stress concentration factors under conditions of corrosion and no corrosion. The margin between maximum stresses due to internal pressure, tension and bending was evaluated along with the margin between stress concentration factor and fracture initiation toughness. The study showed that internal pressure, stress concentration and tension-bending were the critical failure modes. It was suggested that more research should be conducted to improve the modeling of the deteriorating effects of corrosion and to adjust the probability distribution for fracture toughness and the length/depth defect ratio. The consideration of welding geometries along with features of marine pipelines and pipeline products would help to generalize the study to facilitate the creation of codes for the construction, design, inspection and maintenance of pipelines in Mexico. 7 refs., 1 tab., 14 figs.

  2. Technology and equipment to improve reliability of pipeline transport

    Science.gov (United States)

    Suleimanov, D. F.; Shulayev, N. S.; Bondar, K. E.; Laponov, S. V.; Uzinger, A. A.

    2017-10-01

    The article is dedicated to development of technology and hardware design of method pipeline transport reliability improving by improving the isolated coating properties modified by microwave radiation. The article describes the technology of the modification process of the coating and instrumentation production, which allows improving operational properties not only in stationary conditions in the manufacture of the insulation coating, but also during its replacement in the field.

  3. Analysis of pipeline transportation systems for carbon dioxide sequestration

    Directory of Open Access Journals (Sweden)

    Witkowski Andrzej

    2014-03-01

    Full Text Available A commercially available ASPEN PLUS simulation using a pipe model was employed to determine the maximum safe pipeline distances to subsequent booster stations as a function of carbon dioxide (CO2 inlet pressure, ambient temperature and ground level heat flux parameters under three conditions: isothermal, adiabatic and with account of heat transfer. In the paper, the CO2 working area was assumed to be either in the liquid or in the supercritical state and results for these two states were compared. The following power station data were used: a 900 MW pulverized coal-fired power plant with 90% of CO2 recovered (156.43 kg/s and the monothanolamine absorption method for separating CO2 from flue gases. The results show that a subcooled liquid transport maximizes energy efficiency and minimizes the cost of CO2 transport over long distances under isothermal, adiabatic and heat transfer conditions. After CO2 is compressed and boosted to above 9 MPa, its temperature is usually higher than ambient temperature. The thermal insulation layer slows down the CO2 temperature decrease process, increasing the pressure drop in the pipeline. Therefore in Poland, considering the atmospheric conditions, the thermal insulation layer should not be laid on the external surface of the pipeline.

  4. Analysis of pipeline transportation systems for carbon dioxide sequestration

    Science.gov (United States)

    Witkowski, Andrzej; Majkut, Mirosław; Rulik, Sebastian

    2014-03-01

    A commercially available ASPEN PLUS simulation using a pipe model was employed to determine the maximum safe pipeline distances to subsequent booster stations as a function of carbon dioxide (CO2) inlet pressure, ambient temperature and ground level heat flux parameters under three conditions: isothermal, adiabatic and with account of heat transfer. In the paper, the CO2 working area was assumed to be either in the liquid or in the supercritical state and results for these two states were compared. The following power station data were used: a 900 MW pulverized coal-fired power plant with 90% of CO2 recovered (156.43 kg/s) and the monothanolamine absorption method for separating CO2 from flue gases. The results show that a subcooled liquid transport maximizes energy efficiency and minimizes the cost of CO2 transport over long distances under isothermal, adiabatic and heat transfer conditions. After CO2 is compressed and boosted to above 9 MPa, its temperature is usually higher than ambient temperature. The thermal insulation layer slows down the CO2 temperature decrease process, increasing the pressure drop in the pipeline. Therefore in Poland, considering the atmospheric conditions, the thermal insulation layer should not be laid on the external surface of the pipeline.

  5. Invisible transport pathways. How dangerous are pipeline tracks?; Unsichtbare Transportwege. Wie gefaehrlich sind Pipelinetrassen?

    Energy Technology Data Exchange (ETDEWEB)

    Konersmann, Rainer; Kuehl, Christiane; Wilk, Werner [Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin (Germany). Arbeitsgruppe ' Risikomanagement'

    2008-11-15

    Pipelines are usually buried and have the function of long-distance transport. For this, special safety measures are requires. For example, pipelines of the chemical industry have defined locations that must be easily identifiable. Pipelines must be adapted to infrastructural and topographic boundary conditions, in consideration of environmental protection and because the pipeline may be damaged by external influences. Even minor releases of chemical substances may pollute water and soil and cause damage to humans. The contribution discusses the possible damage resulting from a pipeline leak. (orig.)

  6. Logistics aspects of pipeline transport in the supply of petroleum products

    Directory of Open Access Journals (Sweden)

    Wessel Pienaar

    2008-09-01

    Full Text Available The commercial transportation of crude oil and petroleum products by pipeline is receiving increased attention in South Africa. Transnet Pipeline Transport has recently obtained permission from the National Energy Regulator of South Africa (Nersa to construct and operate a new petroleum products pipeline of 60 cm diameter from Durban to Gauteng. At an operating speed of 10 km/h the proposed 60 cm Transnet pipeline would be able to deliver 3,54 million litres of petroleum product per hour. This is equivalent to 89 deliveries per hour using road tank vehicles with an average carrying capacity of 40 000 litres of fuel per vehicle. This pipeline throughput is also equivalent to two trains departing per hour, each consisting of 42 petroleum tank wagons with an average carrying capacity of 42 500 litres of fuel per wagon. Considering that such road trucks and rail wagons return empty to the upstream refineries in Durban, it is clear that there is no tenable long-term alternative to pipeline transport:pipeline transport is substantially cheaper than road and rail transport;pipeline transport is much safer than rail and especially road transport; andpipeline transport frees up alternative road and rail transport capacity.Pipeline transport is a non-containerised bulk mode of transport for the carriage of suitable liquids (for example, petroleum commodities, which include crude oil, refined fuel products and liquid petro-chemicals, gas, slurrified coal and certain water-suspended ores and minerals. InSouth Africa, petroleum products account for the majority of commercial pipeline traffic, followed by crude oil and natural gas. There are three basic types of petroleum pipeline transport systems:Gathering pipeline systemsCrude oil trunk pipeline systemsRefined products pipeline systems Collectively, these systems provide a continuous link between extraction, processing, distribution, and wholesalers’ depots in areas of consumption. The following

  7. Thinking on Sichuan-Chongqing gas pipeline transportation system reform under market-oriented conditions

    Science.gov (United States)

    Duan, Yanzhi

    2017-01-01

    The gas pipeline networks in Sichuan and Chongqing (Sichuan-Chongqing) region have formed a fully-fledged gas pipeline transportation system in China, which supports and promotes the rapid development of gas market in Sichuan-Chongqing region. In the circumstances of further developed market-oriented economy, it is necessary to carry out further the pipeline system reform in the areas of investment/financing system, operation system and pricing system to lay a solid foundation for improving future gas production and marketing capability and adapting itself to the national gas system reform, and to achieve the objectives of multiparty participated pipeline construction, improved pipeline transportation efficiency and fair and rational pipeline transportation prices. In this article, main thinking on reform in the three areas and major deployment are addressed, and corresponding measures on developing shared pipeline economy, providing financial support to pipeline construction, setting up independent regulatory agency to enhance the industrial supervision for gas pipeline transportation, and promoting the construction of regional gas trade market are recommended.

  8. Towards CFD modeling of turbulent pipeline material transportation

    Science.gov (United States)

    Shahirpour, Amir; Herzog, Nicoleta; Egbers, Cristoph

    2013-04-01

    Safe and financially efficient pipeline transportation of carbon dioxide is a critical issue in the developing field of the CCS Technology. In this part of the process, carbon dioxide is transported via pipes with diameter of 1.5 m and entry pressure of 150 bar, with Reynolds number of 107 and viscosity of 8×10(-5) Pa.s as dense fluid [1]. Presence of large and small scale structures in the pipeline, high Reynolds numbers at which CO2 should be transferred, and 3 dimensional turbulence caused by local geometrical modifications, increase the importance of simulation of turbulent material transport through the individual components of the CO2 chain process. In this study, incompressible turbulent channel flow and pipe flow have been modeled using OpenFoam, an open source CFD software. In the first step, simulation of a turbulent channel flow has been considered using LES for shear Reynolds number of 395. A simple geometry has been chosen with cyclic fluid inlet and outlet boundary conditions to simulate a fully developed flow. The mesh is gradually refined towards the wall to provide values close enough to the wall for the wall coordinate (y+). Grid resolution study has been conducted for One-Equation model. The accuracy of the results is analyzed with respect to the grid smoothness in order to reach an optimized resolution for carrying out the next simulations. Furthermore, three LES models, One-Equation, Smagorinsky and Dynamic Smagorinsky are applied for the grid resolution of (60 × 100 × 80) in (x, y, z) directions. The results are then validated with reference to the DNS carried out by Moser et al.[2] for the similar geometry using logarithmic velocity profile (U+) and Reynolds stress tensor components. In the second step the similar flow is modeled using Reynolds averaged method. Several RANS models, like K-epsilon and Launder-Reece-Rodi are applied and validated against DNS and LES results in a similar fashion. In the most recent step, it has been intended

  9. Public perceptions of CO2 transportation in pipelines

    International Nuclear Information System (INIS)

    Gough, Clair; O'Keefe, Laura; Mander, Sarah

    2014-01-01

    This paper explores the response by members of the lay public to the prospect of an onshore CO 2 pipeline through their locality as part of a proposed CCS development and presents results from deliberative Focus Groups held along a proposed pipeline route. Although there is a reasonable level of general knowledge about CO 2 across the lay public, understanding of its specific properties is more limited. The main concerns expressed around pipelines focused on five areas: (i) safe operation of the pipeline; (ii) the risks to people, livestock and vegetation arising from the leakage of CO 2 from the pipeline; (iii) the innovative and ‘first of its kind' nature of the pipeline and the consequent lack of operational CO 2 pipelines in the UK to demonstrate the technology; (iv) impacts on coastal erosion at the landfall site; and (v) the potential disruption to local communities during pipeline construction. Participants expressed scepticism over the motivations of CO 2 pipeline developers. Trust that the developer will minimise risk during the route selection and subsequent construction, operation and maintenance of the pipeline is key; building trust within the local community requires early engagement processes, tailored to deliver a variety of engagement and information approaches. - Highlights: • Lay publics express good general knowledge of CO 2 but not of its specific properties. • Key concerns relate to risk and safety and ‘first of a kind' nature of CO 2 pipeline. • Group participants are sceptical about motivations of CO 2 pipeline developers. • Communities' trust in developer is a major element of their risk assessment

  10. CO2 slurry pipeline to transport solid marketable products to improve CCS economics

    Energy Technology Data Exchange (ETDEWEB)

    Luhning, Richard

    2010-09-15

    Carbon dioxide pipelines are anticipated to be a key element in CCS (Carbon Capture and Sequestration) to transport the carbon dioxide to sequestration sites or to oil fields for use in enhanced oil recovery applications. However the economics of CCS are such that the operations are economically challenged. The concept of using super critical (liquid) carbon dioxide in a slurry pipeline is to use the pipeline constructed for environmental purposes to transport marketable products such as sulphur, petroleum coke, limestone and others to market thereby generating additional income to make CCS carbon dioxide transportation economically attractive.

  11. TePiTri : a screening method for assessing terrorist-related pipeline transport risks

    NARCIS (Netherlands)

    Reniers, G.; Dullaert, W.E.H.

    2012-01-01

    The article proposes an approach to determine relative terrorist-related security risk levels of pipeline transportation. Pipeline routes are divided into smaller route segments. Subsequently, likelihood scores of possible terrorist-related incidents are determined per route segment and per

  12. 18 CFR 284.223 - Transportation by interstate pipelines on behalf of shippers.

    Science.gov (United States)

    2010-04-01

    ... 18 Conservation of Power and Water Resources 1 2010-04-01 2010-04-01 false Transportation by interstate pipelines on behalf of shippers. 284.223 Section 284.223 Conservation of Power and Water Resources... by Interstate Pipelines on Behalf of Others and Services by Local Distribution Companies § 284.223...

  13. Efficiency improvements in pipeline transportation systems. Technical report, Task 3

    Energy Technology Data Exchange (ETDEWEB)

    Banks, W. F.; Horton, J. H.

    1977-01-01

    This report identifies those potential energy-conservative pipeline innovations that are most energy- and cost-effective, and formulates recommendations for the R, D, and D programs needed to exploit those opportunities. From a candidate field of over twenty classes of efficiency improvements, eight systems are recommended for pursuit. Most of these possess two highly important attributes: large potential energy savings and broad applicability outside the pipeline industry. The R, D, and D program for each improvement and the recommended immediate next step are described. The eight programs recommended for pursuit are: gas-fired combined-cycle compressor station; internally cooled internal combustion engine; methanol-coal slurry pipeline; methanol-coal slurry-fired and coal-fired engines; indirect-fired coal-burning combined-cycle pump station; fuel-cycle pump station; internal coatings in pipelines; and drag-reducing additives in liquid pipelines.

  14. Modeling flows of heterogeneous media in pipelines when substantiating operating conditions of hydrocarbon field transportation systems

    Science.gov (United States)

    Dudin, S. M.; Novitskiy, D. V.

    2018-05-01

    The works of researchers at VNIIgaz, Giprovostokneft, Kuibyshev NIINP, Grozny Petroleum Institute, etc., are devoted to modeling heterogeneous medium flows in pipelines under laboratory conditions. In objective consideration, the empirical relationships obtained and the calculation procedures for pipelines transporting multiphase products are a bank of experimental data on the problem of pipeline transportation of multiphase systems. Based on the analysis of the published works, the main design requirements for experimental installations designed to study the flow regimes of gas-liquid flows in pipelines were formulated, which were taken into account by the authors when creating the experimental stand. The article describes the results of experimental studies of the flow regimes of a gas-liquid mixture in a pipeline, and also gives a methodological description of the experimental installation. Also the article describes the software of the experimental scientific and educational stand developed with the participation of the authors.

  15. Risk from transport of gas by pipeline ''kokui-perm''

    International Nuclear Information System (INIS)

    Yelokhin, A.

    1998-01-01

    Full text of publication follows: the length of gas pipelines in Russia is 142 thousands km, 62 % are pipelines of the large diameters. Annually on gas pipelines in Russia there are more than 70 large accidents, more than 50 % from them is accompanied by ignition of gas. The average ecological looses from accident is: destruction arable lands - 78 hectares; removing from consumption agricultural soils - 6,2 hectares; destruction forests - 47,5 hectares. In work the reasons of accidents on gas pipelines of different diameters are analyzed. So, for pipelines a diameter of 1220 mm by the reasons of accidents are: marriage of civil and erection works - 39, 1 %; outside corrosion - 35,9 %; mechanical damages - 9,4 %; defects of pipes - 6,2 %; defects of the factory equipment - 1,6 %; nature disasters and other reasons - 7,8 %. In work the results of risk analysis on a gas pipeline 'Kokui - Perm' are analysed. The gas pipeline 'Kokui - Perm' passes near 22 towns and countries, crosses 15 highways, 2 rail ways, 15 rivers. In work the concrete recommendations for management of risk and safety of the population are given. (author)

  16. A comparison of pipeline versus truck transport of bio-oil.

    Science.gov (United States)

    Pootakham, Thanyakarn; Kumar, Amit

    2010-01-01

    Biomass-based energy and fuels are receiving attention because they are considered carbon neutral; i.e. the amount of CO(2) released during combustion of this biomass is nearly the same as that taken up by the plants during their growth. Bio-oil is a dark viscous liquid consisting of hydrocarbons. These are produced by fast pyrolysis of biomass. "As-is" biomass material has a low energy density (MJ m(-3)), hence, the cost of transporting this energy is high. Bio-oil has a high energy density as compared to "as-is" biomass material, consequently it helps in reducing the cost of energy transport. This study compares the life cycle assessment of transportation of bio-oil by pipeline with that by truck. The scope of the work includes the transportation of bio-oil by truck or pipeline from a centralized plant (supplied with forest biomass) to an end-user. Two cases are studied for pipeline transport of bio-oil: the first case considers a coal-based electricity supply for pumping the bio-oil through a pipeline; the second case considers an electricity supply from a renewable resource. The two cases of pipeline transport are compared to two cases of truck transport (truck trailer and super B-train truck). The life cycle greenhouse gas (GHG) emissions from the pipeline transport of bio-oil for the two cases of electricity supply are 345 and 17 g of CO(2) m(-3) km(-1), respectively. Similar values for transport by trailer (capacity - 30 m(3)) and super B-train truck (capacity - 60 m(3)) are 89 and 60 g of CO(2) m(-3) km(-1), respectively. Energy input for bio-oil transport is 3.95 MJ m(-3) km(-1) by pipeline, 2.59 MJ m(-3) km(-1) by truck and 1.66 MJ m(-3) km(-1) by super B-train truck. The results show that GHG emissions in pipeline transport are largely dependent on the source of electricity (higher for coal-based electricity). Substituting 250 m(3) day(-1) of pipeline-transported bio-oil for coal-based electricity can mitigate about 5.1 million tonnes of CO(2) per year

  17. Pipeline engineering

    CERN Document Server

    Liu, Henry

    2003-01-01

    PART I: PIPE FLOWSINTRODUCTIONDefinition and Scope Brief History of PipelinesExisting Major PipelinesImportance of PipelinesFreight (Solids) Transport by PipelinesTypes of PipelinesComponents of PipelinesAdvantages of PipelinesReferencesSINGLE-PHASE INCOMPRESSIBLE NEWTONIAN FLUIDIntroductionFlow RegimesLocal Mean Velocity and Its Distribution (Velocity Profile)Flow Equations for One-Dimensional AnalysisHydraulic and Energy Grade LinesCavitation in Pipeline SystemsPipe in Series and ParallelInterconnected ReservoirsPipe NetworkUnsteady Flow in PipeSINGLE-PHASE COMPRESSIBLE FLOW IN PIPEFlow Ana

  18. Environmental, public health, and safety assessment of fuel pipelines and other freight transportation modes

    International Nuclear Information System (INIS)

    Strogen, Bret; Bell, Kendon; Breunig, Hanna; Zilberman, David

    2016-01-01

    Highlights: • Externalities are examined for pipelines, truck, rail, and barge. • Safety impact factors include incidences of injuries, illnesses, and fatalities. • Environmental impact factors include CO_2eq emissions and air pollution disease burden. • Externalities are estimated for constructing and operating a large domestic pipeline. • A large pipeline has lower cumulative impacts than other modes within ten years. - Abstract: The construction of pipelines along high-throughput fuel corridors can alleviate demand for rail, barge, and truck transportation. Pipelines have a very different externality profile than other freight transportation modes due to differences in construction, operation, and maintenance requirements; labor, energy, and material input intensity; location and profile of emissions from operations; and frequency and magnitude of environmental and safety incidents. Therefore, public policy makers have a strong justification to influence the economic viability of pipelines. We use data from prior literature and U.S. government statistics to estimate environmental, public health, and safety characterization factors for pipelines and other modes. In 2008, two pipeline companies proposed the construction of an ethanol pipeline from the Midwest to Northeast United States. This proposed project informs our case study of a 2735-km $3.5 billion pipeline (2009 USD), for which we evaluate potential long-term societal impacts including life-cycle costs, greenhouse gas emissions, employment, injuries, fatalities, and public health impacts. Although it may take decades to break even economically, and would result in lower cumulative employment, such a pipeline would likely have fewer safety incidents, pollution emissions, and health damages than the alternative multimodal system in less than ten years; these results stand even if comparing future cleaner ground transport modes to a pipeline that utilizes electricity produced from coal

  19. Transport of solid commodities via freight pipeline: freight pipeline technology. Volume II. First year final report. [Slurry, pneumatic, pneumo-capsule, and hydro-capsule

    Energy Technology Data Exchange (ETDEWEB)

    Zandi, I.; Gimm, K.K.

    1976-07-01

    In order to determine the feasibility of pipeline as an intercity freight transportation mode, it was necessary to examine its technological feasibility and reliability. This report describes the technology of the major generic freight pipelines in terms of both historical and current trends and operations. Additionally, it presents a state-of-the-art review of calculating energy requirements of various generic freight pipelines. It was concluded that slurry and pneumatic pipelines are technologically feasible and reliable. There are many commercial installations of both types operating around the world. Based on European experience with pneumo-capsule pipelines for mail delivery and Russian gravel- and sand-transport installations, it appears that a pneumo-capsule pipeline is a technologically feasible and operationally reliable mode for transport of solids. Since no commercial pneumo-capsule pipeline installations yet exist in the U.S., it seems desirable that a service demonstration of the advantages and feasibility of this mode of transport be undertaken to attract the shippers' confidence. Hydro-capsule pipelines are technologically feasible, but its reliability within a commercial environment remains to be tested.

  20. Comprehensive analysis of pipeline transportation systems for CO2 sequestration. Thermodynamics and safety problems

    International Nuclear Information System (INIS)

    Witkowski, Andrzej; Rusin, Andrzej; Majkut, Mirosław; Rulik, Sebastian; Stolecka, Katarzyna

    2013-01-01

    Highlights: • Comprehensive analysis of the efficiency and safety strategies of transport CO 2 . • Selection of safety zones around pipelines transporting CO 2 . • Optimization of CO 2 pipeline transportation conditions. - Abstract: The aim of this paper is to analyze CO 2 compression and transportation processes with safety issues for post-combustion CO 2 capture applications for basic technological concepts of a 900 MW pulverized coal-fired power plant. Four various types of compressors including a conventional multistage centrifugal compressor, an integrally geared centrifugal compressor, a supersonic shock wave compressor, and pump machines were used. This study emphasizes that total compression power is a strong function of the thermodynamic process and is not only determined by the compressor efficiency. The compressor increases the CO 2 pressure from normal pressure to critical pressure and the boosting pump continues to increase the pressure to the required pressure for the pipeline inlet. Another problem analyzed in this study is the transport of CO 2 by pipeline from the compressor outlet site to the disposal site under heat transfer conditions. Simulations were made to determine maximum safe pipeline distance to subsequent booster stations depending on inlet pressure, environmental temperature, the thermal insulation thickness and the ground level heat transfer conditions. From the point of view of environmental protection, the most important problem is to identify the hazards which indirectly affect CO 2 transportation in a strict and reliable manner. This identification is essential for effective hazard management. A failure of pipelines is usually caused by corrosion, material defects, ground movement or third party interference. After the rupture of the pipeline transporting liquid CO 2 , a large pressure drop will occur. The pressure will continue to fall until the liquid becomes a mixture of saturated vapour/liquid. In the vicinity of the

  1. Research on numerical simulation and protection of transient process in long-distance slurry transportation pipelines

    Science.gov (United States)

    Lan, G.; Jiang, J.; Li, D. D.; Yi, W. S.; Zhao, Z.; Nie, L. N.

    2013-12-01

    The calculation of water-hammer pressure phenomenon of single-phase liquid is already more mature for a pipeline of uniform characteristics, but less research has addressed the calculation of slurry water hammer pressure in complex pipelines with slurry flows carrying solid particles. In this paper, based on the developments of slurry pipelines at home and abroad, the fundamental principle and method of numerical simulation of transient processes are presented, and several boundary conditions are given. Through the numerical simulation and analysis of transient processes of a practical engineering of long-distance slurry transportation pipeline system, effective protection measures and operating suggestions are presented. A model for calculating the water impact of solid and fluid phases is established based on a practical engineering of long-distance slurry pipeline transportation system. After performing a numerical simulation of the transient process, analyzing and comparing the results, effective protection measures and operating advice are recommended, which has guiding significance to the design and operating management of practical engineering of longdistance slurry pipeline transportation system.

  2. Research on numerical simulation and protection of transient process in long-distance slurry transportation pipelines

    International Nuclear Information System (INIS)

    Lan, G; Jiang, J; Li, D D; Yi, W S; Zhao, Z; Nie, L N

    2013-01-01

    The calculation of water-hammer pressure phenomenon of single-phase liquid is already more mature for a pipeline of uniform characteristics, but less research has addressed the calculation of slurry water hammer pressure in complex pipelines with slurry flows carrying solid particles. In this paper, based on the developments of slurry pipelines at home and abroad, the fundamental principle and method of numerical simulation of transient processes are presented, and several boundary conditions are given. Through the numerical simulation and analysis of transient processes of a practical engineering of long-distance slurry transportation pipeline system, effective protection measures and operating suggestions are presented. A model for calculating the water impact of solid and fluid phases is established based on a practical engineering of long-distance slurry pipeline transportation system. After performing a numerical simulation of the transient process, analyzing and comparing the results, effective protection measures and operating advice are recommended, which has guiding significance to the design and operating management of practical engineering of longdistance slurry pipeline transportation system

  3. Applications of ZigBee Technology in the Safety Monitoring System of Low Gas Pipeline Transportation

    Directory of Open Access Journals (Sweden)

    Wei Deyu

    2015-01-01

    Full Text Available The existing safety monitoring system of low gas pipeline transportation establishes a wired communication network monitoring system mainly on the basis of industrial bus. It has problems such as large transmission signal attenuation, complex wiring, high-labor intensity, inconvenient installation and maintenance, high maintenance cost, and so on. Featuring low cost, power-saving, reliability, stability and flexibility, the wireless sensor network established by ZigBee wireless communication technology can realize the real-time all-dimensional dynamic monitoring on parameters of low gas pipeline transportation system and overcome the shortcomings and deficiencies of wired network system.

  4. Characterization of corrosive bacterial consortia isolated from petroleum-product-transporting pipelines

    Energy Technology Data Exchange (ETDEWEB)

    Rajasekar, Aruliah; Ting, Yen-Peng [National Univ. of Singapore (Singapore). Dept. of Chemical and Biomolecular Engineering; Anandkumar, Balakrishnan [Sourashtra Coll., Madurai (India). Dept. of Biotechnology; Maruthamuthu, Sundaram [Central Electrochemical Research Inst., Karaikudi (India). Biocorrosion Group; Rahman, Pattanathu K.S.M. [Teesside Univ., Tees Valley (United Kingdom). Chemical and Bioprocess Engineering Group

    2010-01-15

    Microbiologically influenced corrosion is a problem commonly encountered in facilities in the oil and gas industries. The present study describes bacterial enumeration and identification in diesel and naphtha pipelines located in the northwest and southwest region in India, using traditional cultivation technique and 16S rDNA gene sequencing. Phylogenetic analysis of 16S rRNA sequences of the isolates was carried out, and the samples obtained from the diesel and naphtha-transporting pipelines showed the occurrence of 11 bacterial species namely Serratia marcescens ACE2, Bacillus subtilis AR12, Bacillus cereus ACE4, Pseudomonas aeruginosa AI1, Klebsiella oxytoca ACP, Pseudomonas stutzeri AP2, Bacillus litoralis AN1, Bacillus sp., Bacillus pumilus AR2, Bacillus carboniphilus AR3, and Bacillus megaterium AR4. Sulfate-reducing bacteria were not detected in samples from both pipelines. The dominant bacterial species identified in the petroleum pipeline samples were B. cereus and S. marcescens in the diesel and naphtha pipelines, respectively. Therefore, several types of bacteria may be involved in biocorrosion arising from natural biofilms that develop in industrial facilities. In addition, localized (pitting) corrosion of the pipeline steel in the presence of the consortia was observed by scanning electron microscopy analysis. The potential role of each species in biofilm formation and steel corrosion is discussed. (orig.)

  5. 78 FR 62362 - Revisions to Procedural Regulations Governing Transportation by Intrastate Pipelines; Electronic...

    Science.gov (United States)

    2013-10-21

    ...] Revisions to Procedural Regulations Governing Transportation by Intrastate Pipelines; Electronic Tariff... under the Commission's jurisdiction pursuant to the Natural Gas Policy Act of 1978 or the Natural Gas Act.\\1\\ Take notice that, effective November 12, 2013, the list of available eTariff Type of Filing...

  6. Investing in CO2 transport infrastructure under uncertainty : A comparison between ships and pipelines

    NARCIS (Netherlands)

    Knoope, M. M J; Ramírez, A.; Faaij, A. P C

    2015-01-01

    The aim of this study is to assess whether the value of flexibility can influence the investment decision between CO2 ship and pipeline transport and, therefore, the way the infrastructure develops. For this, the value of a carbon capture and storage project are calculated with the

  7. 18 CFR 284.221 - General rule; transportation by interstate pipelines on behalf of others.

    Science.gov (United States)

    2010-04-01

    ... 18 Conservation of Power and Water Resources 1 2010-04-01 2010-04-01 false General rule; transportation by interstate pipelines on behalf of others. 284.221 Section 284.221 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION, DEPARTMENT OF ENERGY OTHER REGULATIONS UNDER THE...

  8. Integral diagnostic in the failure causes of external corrosion of a natural gas transport pipeline

    Energy Technology Data Exchange (ETDEWEB)

    Mora-Mendoza, J.L.; Saucedo-Robles, L.C.; Rodriguez-Clemente, H. [PEMEX Gas y Petroquimica Basica, Subdireccion de Ductos; Marina Nacional 329, Edificio B-1, Piso 8, Col. Huasteca, D.F., CP 11311 (Mexico); Gonzalez-Nunez, M.A. [Instituto de Investigaciones Electricas, Reforma 113, Col. Palmira, Cuernavaca, Morelos, CP 62490 (Mexico); Zavala-Olivares, G.; Hernandez-Gayosso, M.J. [Instituto Mexicano del Petroleo, Direccion de Exploracion y Produccion, Eje Central Lazaro Cardenas Norte 152, Col. San Bartolo Atepehuacan, D.F., CP 07730 (Mexico)

    2011-08-15

    The objective of this study consisted in investigating the possible causes which give rise to the presence of low wall pipe thicknesses on a 16'' natural gas transport pipeline, even though during the last 12-year period cathodic protection (CP) potentials were kept in the protection range at which external corrosion should not occur. Results from in-line inspection from a 16'' natural gas transport pipeline showed 46 indications with more than 80% wall thickness lost due to external corrosion in the second segment of the pipeline. Direct inspection at the indication locations, review of the CP system performance, pipeline maintenance programs and studies, allowed to make an integral diagnostic where it was found out that the main cause of external corrosion was an inappropriate coating application since the pipeline construction, this situation has originated the increase of CP shielding effects through time. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  9. Impact of the rheological studies in the transport for pipeline of paraffinic crude oils

    International Nuclear Information System (INIS)

    Rodriguez, L; Vidales, H; Castaneda, M; Leal, O; Barrero R; Garzon, J

    2000-01-01

    The results of this applied research contribute fundamental elements for handling paraffinic crude oils (pipeline design and operation) and the optimization of the use of Pour Point Depressor additives. The rheological studies support the fluid-dynamic analyses that accurately predict the pipeline transport operation, unlike traditional parameters such as pour point and cloud point. Evaluations of rheological behavior was carried out at the laboratory level in concentric viscometers and were scaled at the pilot plant level in a fluid-dynamic test circuit in pipes with diameters from 1.27 to 15.24 cm (1/2 to 6 inches), where the laboratory scale was confirmed. The tests were performed under strain rate temperature and conditions similar to those of pipeline and flow line operation in production fields. Also, the viability to restart pumping after a prolonged shutdown with extreme temperatures was calculated, evaluating creep stress. The study has allowed us to transport Cupiagua crude oil without the PPD additive in a segregated manner, showing that despite its high pour point 300K (27 grades Celsius), in dynamic conditions similar to those in the pipeline, the crude oil flows at temperatures near 283K (10 Celsius degrades) without putting the integrity of the pipe in danger and within operational and equipment restrictions for the company operating the pipeline. This has generated significant savings, due to the additive as well as the possibility to segregate the crude oils, which facilitates the operation of the paraffin plant at the Barrancabermeja Industrial Complex

  10. Operational Challenges in Gas-To-Liquid (GTL) Transportation Through Trans Alaska Pipeline System (TAPS)

    Energy Technology Data Exchange (ETDEWEB)

    Godwin A. Chukwu; Santanu Khataniar; Shirish Patil; Abhijit Dandekar

    2006-06-30

    Oil production from Alaskan North Slope oil fields has steadily declined. In the near future, ANS crude oil production will decline to such a level (200,000 to 400,000 bbl/day) that maintaining economic operation of the Trans-Alaska Pipeline System (TAPS) will require pumping alternative products through the system. Heavy oil deposits in the West Sak and Ugnu formations are a potential resource, although transporting these products involves addressing important sedimentation issues. One possibility is the use of Gas-to-Liquid (GTL) technology. Estimated recoverable gas reserves of 38 trillion cubic feet (TCF) on the North Slope of Alaska can be converted to liquid with GTL technology and combined with the heavy oils for a product suitable for pipeline transport. Issues that could affect transport of this such products through TAPS include pumpability of GTL and crude oil blends, cold restart of the pipeline following a prolonged winter shutdown, and solids deposition inside the pipeline. This study examined several key fluid properties of GTL, crude oil and four selected blends under TAPS operating conditions. Key measurements included Reid Vapor Pressure, density and viscosity, PVT properties, and solids deposition. Results showed that gel strength is not a significant factor for the ratios of GTL-crude oil blend mixtures (1:1; 1:2; 1:3; 1:4) tested under TAPS cold re-start conditions at temperatures above - 20 F, although Bingham fluid flow characteristics exhibited by the blends at low temperatures indicate high pumping power requirements following prolonged shutdown. Solids deposition is a major concern for all studied blends. For the commingled flow profile studied, decreased throughput can result in increased and more rapid solid deposition along the pipe wall, resulting in more frequent pigging of the pipeline or, if left unchecked, pipeline corrosion.

  11. Expert system for the reliability assessment of hydro-carbon transporting pipelines

    Energy Technology Data Exchange (ETDEWEB)

    Lukacs, J.; Nagy, G.; Toeroek, I. [Department of Mechanical Technology, University of Miskolc, Miskolc-Egyetemvaros (Hungary)

    1998-12-31

    Safety operation, condition monitoring, periodical inspection and rehabilitation of high-pressure hydro-carbon transporting pipelines are a complex problem. To answer arising questions is inconceivable without technical-critical evaluation of defects - originated during manufacturing or operation - can be found on the pipeline. This evaluation must be in line with requirements of our age, i.e. it has to assert such concept of which basis is not the `possible worst` but the `just happening wrong`. Solving these problems without application of computer resources is inconceivable in our time. The final purpose of the solution is the expert system and among the components of the expert system primarily the development of the knowledge base is needed. The paper demonstrates a possible structure of the knowledge base, furthermore its fundamental elements and their contents (defect types, evaluation possibilities of defects, categorisation of pipelines) and summaries the prospective advantages of its application. (orig.) 27 refs.

  12. Conceptual design of multi-source CCS pipeline transportation network for Polish energy sector

    Science.gov (United States)

    Isoli, Niccolo; Chaczykowski, Maciej

    2017-11-01

    The aim of this study was to identify an optimal CCS transport infrastructure for Polish energy sector in regards of selected European Commission Energy Roadmap 2050 scenario. The work covers identification of the offshore storage site location, CO2 pipeline network design and sizing for deployment at a national scale along with CAPEX analysis. It was conducted for the worst-case scenario, wherein the power plants operate under full-load conditions. The input data for the evaluation of CO2 flow rates (flue gas composition) were taken from the selected cogeneration plant with the maximum electric capacity of 620 MW and the results were extrapolated from these data given the power outputs of the remaining units. A graph search algorithm was employed to estimate pipeline infrastructure costs to transport 95 MT of CO2 annually, which amount to about 612.6 M€. Additional pipeline infrastructure costs will have to be incurred after 9 years of operation of the system due to limited storage site capacity. The results show that CAPEX estimates for CO2 pipeline infrastructure cannot be relied on natural gas infrastructure data, since both systems exhibit differences in pipe wall thickness that affects material cost.

  13. Auction design for gas pipeline transportation capacity-The case of Nabucco and its open season

    International Nuclear Information System (INIS)

    Pickl, Matthias; Wirl, Franz

    2011-01-01

    As a response to the Russian dominance of the EU's natural gas supplies and the EU's increasing gas demands, major gas pipeline projects are currently under way to enhance the EU's energy supply security. Oftentimes to raise financing and to allocate gas transportation capacities, auctions are carried out to allow gas shippers to book transportation rights. In recent years, auctions have emerged as one of the most successful allocation mechanisms in the microeconomic theory. However, different auction designs can lead to different outcomes making the choice of auction design a decisive one, especially for divisible-good auctions. This paper seeks to give a formulation of an optimal auction design for gas pipeline transportation capacity. Specifically three different mechanisms are tested: (i) NPV allocation; (ii) pro rata allocation; and (iii) optimization. In addition, Nabucco is taken as a case study to empirically show results of such auction designs. Results show that a trade-off between revenue optimization and fair allocation can be observed: allocation per optimization is the favorable auction design when revenue maximization is more important than fair allocation. On the other hand, pro rata allocation is the auction design to be chosen when fairness of allocation is considered most central. - Research highlights: → Auction design for gas pipeline transportation capacity. → Empirical market-survey of Nabucco pipeline project auction as input data. → Testing of three different allocation mechanisms: (i) NPV allocation; (ii) pro rata allocation; and (iii) optimization. → Results show a trade-off between revenue optimization and fair allocation. → Allocation per optimization is the favorable auction design when revenue maximization is more important than fair allocation. → On the other hand, pro rata allocation is the auction design to be chosen when fairness of allocation is considered most central.

  14. Reliability and risk evaluation of a port oil pipeline transportation system in variable operation conditions

    International Nuclear Information System (INIS)

    Soszynska, Joanna

    2010-01-01

    The semi-Markov model of the system operation processes is proposed and its selected characteristics are determined. A system composed on multi-state components is considered and its reliability and risk characteristics are found. Next, the joint model of the system operation process and the system multi-state reliability is applied to the reliability and risk evaluation of the port oil pipeline transportation system. The pipeline system is described and its operation process unknown parameters are identified on the basis of real statistical data. The mean values of the pipeline system operation process unconditional sojourn times in particular operation states are found and applied to determining this process transient probabilities in these states. The piping different reliability structures in various its operation states are fixed and their conditional reliability functions on the basis of data coming from experts are approximately determined. Finally, after applying earlier estimated transient probabilities and system conditional reliability functions in particular operation states the unconditional reliability function, the mean values and standard deviations of the pipeline lifetimes in particular reliability states, risk function and the moment when the risk exceeds a critical value are found.

  15. Reliability and risk evaluation of a port oil pipeline transportation system in variable operation conditions

    Energy Technology Data Exchange (ETDEWEB)

    Soszynska, Joanna, E-mail: joannas@am.gdynia.p [Department of Mathematics, Gdynia Maritime University, ul. Morska 83, 81-225 Gdynia (Poland)

    2010-02-15

    The semi-Markov model of the system operation processes is proposed and its selected characteristics are determined. A system composed on multi-state components is considered and its reliability and risk characteristics are found. Next, the joint model of the system operation process and the system multi-state reliability is applied to the reliability and risk evaluation of the port oil pipeline transportation system. The pipeline system is described and its operation process unknown parameters are identified on the basis of real statistical data. The mean values of the pipeline system operation process unconditional sojourn times in particular operation states are found and applied to determining this process transient probabilities in these states. The piping different reliability structures in various its operation states are fixed and their conditional reliability functions on the basis of data coming from experts are approximately determined. Finally, after applying earlier estimated transient probabilities and system conditional reliability functions in particular operation states the unconditional reliability function, the mean values and standard deviations of the pipeline lifetimes in particular reliability states, risk function and the moment when the risk exceeds a critical value are found.

  16. 78 FR 70623 - Pipeline Safety: Meeting of the Gas Pipeline Advisory Committee and the Liquid Pipeline Advisory...

    Science.gov (United States)

    2013-11-26

    ... DEPARTMENT OF TRANSPORTATION Pipeline and Hazardous Materials Safety Administration [Docket No. PHMSA-2009-0203] Pipeline Safety: Meeting of the Gas Pipeline Advisory Committee and the Liquid Pipeline Advisory Committee AGENCY: Pipeline and Hazardous Materials Safety Administration (PHMSA), DOT. [[Page...

  17. Limits of civil and environmental responsibility in transport through pipelines; Limites da responsabilidade civil e ambiental no transporte por dutos

    Energy Technology Data Exchange (ETDEWEB)

    Leao, Andreia Carneiro [EnviroCompliance Assessoria Ambiental (Brazil); Guilherme Samico, Natalizim Luiz [Webler e Advogados Associados, Macae, RJ (Brazil)

    2003-07-01

    Throughout the historic evolution of the Brazilian legislation, including a brief analysis of the prevailing laws regarding the subject, this paper provides an ample vision of the civil and environmental liability in transport contracts, and, especially, in the transport of oil and gas through pipelines, discussing the present influence of environmental norms and the New Brazilian Civil Code. And what was brought to a conclusion is, if on one hand were kept the liability of the Sender (user company of the transportation service contracted with the Carrier) and Carrier (personal entity operator of the pipeline system), who respond jointly and regardless of fault for damages to third parties and the environment (extendible also to the owner of the product and to financial institutions that participate in some form in the contract), on the other hand the New Civil Code authorizes the National Petroleum Agency - ANP to rule the liabilities between the parties to the transport contract, providing greater safety to the system operators. (author)

  18. Foreign Experience of Applying the Principle of "Pump or Pay" in the Field of Pipeline Transportation

    Directory of Open Access Journals (Sweden)

    Valeriy I. Salygin

    2015-01-01

    Full Text Available This article reveals the practice of "ship or pay" principle in the US, Canada and Europe. The authors analyze the practice of concluding contracts for oil and petroleum products transportation, procedures, terms and conditions stipulated in the contract. The "take or pay" principle is a common practice in developed countries like the US, Canada and the UK. The specific feature of the United States is that the pipelines are not built only for one shipper, but rather for all market, which is caused the "open season" tradition. In Canada, "take or pay" principle applies to cover the capital costs of the carrier. The main reasons for usage of terms "take or pay" are to minimize risks of the carrier, building or expanding his own pipeline network, by guaranteeing shipper's financial benefits after the putting pipeline into operation. "Take or pay" contracts cover the carrier's obligation to provide agreed minimum amount of petroleum to the consignor within a certain period. In turn, the shipper is obliged to accept the minimum amount of petroleum and pay, regardless of the fact of acceptance of oil. "Take or pay" principle is a kind of risk-sharing mechanism, which allows to shift the risks of non-fulfillment of the contract to the shipper. Besides, the "take or pay" principle can be indirect guarantee in the context of project financing, and therefore, financing. The article emphasizes the main advantages of the application of this principle and opportunities for its use in Russia.

  19. Brazil pipelines system crossings; Sistema de dutovias do Brasil - interferencias nos transportes terrestres

    Energy Technology Data Exchange (ETDEWEB)

    David, Roberto; Barbosa, Sylvio [Agencia Nacional de Transportes Terrestres (ANTT), Brasilia, DF (Brazil); Abib, Osvaldo

    2005-07-01

    The Law 10.233/2001 of 2001 designated the National Agency of Land Transportation (ANTT) as responsible for the gathering and organizing of information about Brazilian pipeline infrastructure. In order to fulfill this legal requirement, ANTT is developing the Brazilian Pipeline Catalog System (SISDUT) and is creating a geo referenced database. The priority is to collect information on the critical points, those where the pipelines intersect with road and rail networks. The SISDUT geo processing catalog will store all information required to manage and track critical points, such as: technical construction standards, as built plans, adjustments terms with roads and rail networks, special usage grants, inspection procedures, pictures taken on local visits, ANTT deliberations, usage of soil, etc. The system was designed using the Object Oriented Analysis and Design paradigms, modeled in the Unified Modeling Language. The database will be populated by ANTT and with data imported from partners. The queries for literal and geographic data will be available on the Internet using Web mapping. SISDUT system will allow spatial cross referencing among its many entities, allowing complex analysis and tracking of events in the critical points. (author)

  20. Influence of coal slurry particle composition on pipeline hydraulic transportation behavior

    Science.gov (United States)

    Li-an, Zhao; Ronghuan, Cai; Tieli, Wang

    2018-02-01

    Acting as a new type of energy transportation mode, the coal pipeline hydraulic transmission can reduce the energy transportation cost and the fly ash pollution of the conventional coal transportation. In this study, the effect of average velocity, particle size and pumping time on particle composition of coal particles during hydraulic conveying was investigated by ring tube test. Meanwhile, the effects of particle composition change on slurry viscosity, transmission resistance and critical sedimentation velocity were studied based on the experimental data. The experimental and theoretical analysis indicate that the alter of slurry particle composition can lead to the change of viscosity, resistance and critical velocity of slurry. Moreover, based on the previous studies, the critical velocity calculation model of coal slurry is proposed.

  1. Innovation tube transport using helicopters to minimize the construction risk of Urucu-Manaus pipeline

    Energy Technology Data Exchange (ETDEWEB)

    Barreto, Jean Luis C. [PETROBRAS S.A., Rio de Janeiro, RJ (Brazil); Mendes, Jeane R.; Rodrigues, Jose Alberto S.; Rocha, Katia Rosilene S. [CONCREMAT Engenharia e Tecnologia Ltda., Rio de Janeiro, RJ (Brazil)

    2009-07-01

    Our purpose is to focus on the Safety, Environment and Health (SEH) Management, integrated to pipeline construction and assembly, aiming at minimizing the risks involving the transportation and handling of 20-inch pipes. Please note that peculiar, challenging situations occur when constructing a gas pipeline at the Coari-Anama Section, which leads to some difficulty in the exploitation of oil and gas, where fragile elements represented by the environment and man are faced in this evolution and progress process. Overcoming the severe conditions while streaming 196.6-km-length of pipes in flooded lands no doubt represented a real challenge. State-of-the-art techniques have been implemented such as air transportation of pipes, with two large-sized helicopters being used (Kamov and S64 Skycrane). This has demanded integrated actions to be adopted, involving transportation of concrete pipes, double joints, pipesak, hydraulic excavators, net carrier containing assorted materials, skids and natural gas pressure, measurement and filtering equipment. Nevertheless, we have succeeded in reducing the rate of exposure to the construction and assembly process risks, thus minimizing occurrences and improving the conditions of processes, where, had the conventional method been used, would have led to a great amount of incidents and accidents, resulting mainly from the huge logistic difficulties, which would expose the task force to high potential risks. (author)

  2. Leakage Risk Assessment of CO{sub 2} Transportation by Pipeline at the Illinois Basin Decatur Project, Decatur, Illinois

    Energy Technology Data Exchange (ETDEWEB)

    Mazzoldi, A.; Oldenburg, C. M.

    2013-12-17

    The Illinois Basin Decatur Project (IBDP) is designed to confirm the ability of the Mt. Simon Sandstone, a major regional saline-water-bearing formation in the Illinois Basin, to store 1 million tons of carbon dioxide (CO{sub 2}) injected over a period of three years. The CO{sub 2} will be provided by Archer Daniels Midland (ADM) from its Decatur, Illinois, ethanol plant. In order to transport CO{sub 2} from the capture facility to the injection well (also located within the ADM plant boundaries), a high-pressure pipeline of length 3,200 ft (975 m) has been constructed, running above the ground surface within the ADM plant footprint. We have qualitatively evaluated risks associated with possible pipeline failure scenarios that lead to discharge of CO{sub 2} within the real-world environment of the ADM plant in which there are often workers and visitors in the vicinity of the pipeline. There are several aspects of CO{sub 2} that make its transportation and potential leakage somewhat different from other substances, most notable is its non-flammability and propensity to change to solid (dry ice) upon strong decompression. In this study, we present numerical simulations using Computational Fluid Dynamics (CFD) methods of the release and dispersion of CO{sub 2} from individual hypothetical pipeline failures (i.e., leaks). Failure frequency of the various components of a pipeline transportation system over time are taken from prior work on general pipeline safety and leakage modeling and suggest a 4.65% chance of some kind of pipeline failure over the three-years of operation. Following the Precautionary Principle (see below), we accounted for full-bore leakage scenarios, where the temporal evolution of the mass release rate from the high-pressure pipeline leak locations was simulated using a state-of-the-art Pipe model which considers the thermodynamic effects of decompression in the entire pipeline. Failures have been simulated at four representative locations along

  3. 77 FR 34123 - Pipeline Safety: Public Meeting on Integrity Management of Gas Distribution Pipelines

    Science.gov (United States)

    2012-06-08

    ... DEPARTMENT OF TRANSPORTATION Pipeline and Hazardous Materials Safety Administration [Docket No. PHMSA-2012-0100] Pipeline Safety: Public Meeting on Integrity Management of Gas Distribution Pipelines AGENCY: Office of Pipeline Safety, Pipeline and Hazardous Materials Safety Administration, DOT. ACTION...

  4. 76 FR 29333 - Pipeline Safety: Meetings of the Technical Pipeline Safety Standards Committee and the Technical...

    Science.gov (United States)

    2011-05-20

    ... DEPARTMENT OF TRANSPORTATION Pipeline and Hazardous Materials Safety Administration [Docket No... Technical Hazardous Liquid Pipeline Safety Standards Committee AGENCY: Pipeline and Hazardous Materials... for natural gas pipelines and for hazardous liquid pipelines. Both committees were established under...

  5. Logistic management system for natural gas transportation by pipelines; Sistema de gestao de logistica de transporte de gas por gasodutos

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Sidney Pereira dos; Castro, Antonio Orestes de Salvo [PETROBRAS S.A., Rio de Janeiro, RJ (Brazil); Leal, Jose Eugenio [Pontificia Univ. Catolica do Rio de Janeiro, RJ (Brazil)

    2008-07-01

    An efficient management of the natural gas business chain, based on pipeline transmission network and taking into consideration the interaction between the main players such as shippers, suppliers, transmission companies and local distribution companies, requires the use of decision-making support systems to maximize resources and mitigate contingencies due to gas supply shortfalls, operational contingencies from scheduled and non-scheduled equipment outages as well as market demand shortfalls. This work presents a practical utilization of technologies such as thermohydraulic simulation of gas flow through pipelines, Monte Carlo simulation for compressor station availability studies and economic risk evaluation related to potential revenue losses and contractual penalties and linear programming for maximization and minimization objective function. The proposed system allows the definition of the optimum availability level to be maintained by the Transporter, by means of installing redundancy, to mitigate losses related to revenue and contractual penalties. Identifies, quantifies and justifies economically the installation of stand-by compressor units, mitigating Transporter exposure to losses due to capacity shortfalls as consequence of scheduled and non-scheduled outages. (author)

  6. Proceedings of the Canadian Institute conference on maximizing oil sands growth : improving transportation logistics, labour supply and pipeline availability

    International Nuclear Information System (INIS)

    2005-01-01

    This conference focused on the development of a transportation infrastructure to accommodate oil sands growth, with particular reference to building a pipeline infrastructure to meet the delivery and supply requirements of oil sands producers. The need for transmission system upgrades and additions to meet the electric power requirements of the oil sands industry was also discussed. The transportation options and new proposed pipeline construction projects that will alleviate the current transportation challenges in the oil sands region were identified. These include the implementation of new infrastructure strategies based on current pipeline availability, Kyoto requirements and downstream market demands. The impact of labour shortages on the oil sands industry was reviewed along with solutions to prevent and overcome these shortages. The conference featured 15 presentations, of which 3 have been catalogued separately for inclusion in this database. tabs., figs

  7. Studies on the Exergy Transfer Law for the Irreversible Process in the Waxy Crude Oil Pipeline Transportation

    Directory of Open Access Journals (Sweden)

    Qinglin Cheng

    2018-04-01

    Full Text Available With the increasing demand of oil products in China, the energy consumption of pipeline operation will continue to rise greatly, as well as the cost of oil transportation. In the field of practical engineering, saving energy, reducing energy consumption and adapting to the international oil situation are the development trends and represent difficult problems. Based on the basic principle of non-equilibrium thermodynamics, this paper derives the field equilibrium equations of non-equilibrium thermodynamic process for pipeline transportation. To seek the bilinear form of “force” and “flow” in the non-equilibrium thermodynamics of entropy generation rate, the oil pipeline exergy balance equation and the exergy transfer pipeline dynamic equation of the irreversibility were established. The exergy balance equation was applied to energy balance evaluation system, which makes the system more perfect. The exergy flow transfer law of the waxy oil pipeline were explored deeply from the directions of dynamic exergy, pressure exergy, thermal exergy and diffusion exergy. Taking an oil pipeline as an example, the influence factors of exergy transfer coefficient and exergy flow density were analyzed separately.

  8. A NEW TECHNIQUE OF OIL TRANSPORTATION IN PIPELINE BY STEAM INJECTION

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The direct contact heating of crude oil with steam is promising technique for improving crude oil transportation in pipelines. Crude oil temperature is increased greatly by a small quantity of steam due to the high steam latent heat and direct contact heat transfer. A jet pump was developed for injecting steam into oil in order to get a high efficiency by transferring momentum and energy from a high-velocity jet to ambient fluid. The jet pump was designed based on the free injection principle, which has no rotation parts and no converging mixing chamber, therefore it would not be blocked by the viscous crude oil. The technical feasibility of this method has been tested in the Liaohe Oilfeld, China.

  9. 75 FR 13342 - Pipeline Safety: Workshop on Distribution Pipeline Construction

    Science.gov (United States)

    2010-03-19

    ... DEPARTMENT OF TRANSPORTATION Pipeline and Hazardous Materials Safety Administration [Docket ID... natural gas distribution construction. Natural gas distribution pipelines are subject to a unique subset... distribution pipeline construction practices. This workshop will focus solely on natural gas distribution...

  10. Underground pipeline corrosion

    CERN Document Server

    Orazem, Mark

    2014-01-01

    Underground pipelines transporting liquid petroleum products and natural gas are critical components of civil infrastructure, making corrosion prevention an essential part of asset-protection strategy. Underground Pipeline Corrosion provides a basic understanding of the problems associated with corrosion detection and mitigation, and of the state of the art in corrosion prevention. The topics covered in part one include: basic principles for corrosion in underground pipelines, AC-induced corrosion of underground pipelines, significance of corrosion in onshore oil and gas pipelines, n

  11. The southern corridor for natural gas and the last days of Nabucco. Transport of natural gas and Nabucco pipeline; Der suedliche Gaskorridor und die letzten Tage von Nabucco. Gastransport und Nabucco-Pipeline

    Energy Technology Data Exchange (ETDEWEB)

    Mangott, Gerhard [Innsbruck Univ. (Austria). Fakultaet fuer Politikwissenschaft und Soziologie

    2012-11-12

    As a strategic project management with a transport capacity of 31 billion m{sup 3} per year of natural gas, Nabucco 1.0 should diversify the natural gas suppliers for the EU market and the import pipeline network. Significant amounts of natural gas should be imported from the Caspian and the Middle East region. Nabucco 1.0 failed as a project management. The Nabucco consortium wants to convey natural gas through a small-scale and cheaper Nabucco west pipeline via Bulgaria, Romania and Hungary to Austria. Also the Trans-Adriatic Pipeline will transport the same natural gas reserves into the European Union (EU).

  12. Transportation tolls, services and capacity : report from TransCanada PipeLines Limited on its changing mainline system

    International Nuclear Information System (INIS)

    McPherson, J.

    2003-01-01

    This presentation described the measures that TransCanada PipeLines Limited has taken to change its business model while lowering operating costs. The company is concerned about keeping tolls as low as possible to maintain competitiveness. Demand for pipeline capacity over the next five years is expected to be as high as 1.0 Bcf. Incremental capacity will be required to serve the markets. The market drivers for transportation were described as being reliability, greater price certainty, optionality, and stability in terms of contracts, service and regulations. 1 fig

  13. On the risks of transport of liquid and gaseous energy sources in pipelines; Zu den Risiken des Transports fluessiger und gasfoermiger Energietraeger in Pipelines

    Energy Technology Data Exchange (ETDEWEB)

    Konersmann, Rainer; Kuehl, Christiane; Ludwig, Joerg

    2009-11-30

    The failure of a pipeline depends on many causal factors which cannot be predicted with certainty and which even vary by region. For the purposes of consistent traffic route and land use planning it would therefore be desirable to at least be able to estimate the consequential damages of a pipeline rupture. Publications on pipeline accidents are hardly available, at least not in German speaking regions. Where they are, they are usually fire brigade reports. However, these are not sufficient for a documentation of the whole situation. For this reason the Federal Institute for Materials Testing and Research has evaluated a large number of international inspection reports and publications and compiled them into the present research report giving special consideration to the types of risk and in particular consequential damage.

  14. 76 FR 53086 - Pipeline Safety: Safety of Gas Transmission Pipelines

    Science.gov (United States)

    2011-08-25

    ... DEPARTMENT OF TRANSPORTATION Pipeline and Hazardous Materials Safety Administration 49 CFR Part 192 [Docket No. PHMSA-2011-0023] RIN 2137-AE72 Pipeline Safety: Safety of Gas Transmission Pipelines AGENCY: Pipeline and Hazardous Materials Safety Administration (PHMSA), Department of Transportation (DOT...

  15. Pumping propagation and influence of oil derivatives transport in a pipeline network; Propagacao e influencia de bombeamento no transporte de derivados de petroleo em uma rede de dutos

    Energy Technology Data Exchange (ETDEWEB)

    Borba, Camila Baldissera de [Petroleo Brasileiro S.A. (PETROBRAS), Rio de Janeiro, RJ (Brazil); Kluppel, Liege Bauer; Neves Junior, Flavio [Universidade Tecnologica Federal do Parana (UTFPR), Curitiba, PR (Brazil); Ribas, Paulo Cesar [Petroleo Brasileiro S.A (CENPES/PETROBRAS), Rio de Janeiro, RJ (Brazil). Centro de Pesquisa e Desenvolvimento

    2012-07-01

    This paper presents the work developed on a pipeline network that transports oil derivatives. The transport occurs in batches of a specific product, each one having a defined route: the pumping origin, a destination for its receipt and the pipelines which the product is moved through. The network studied has a total of thirty pipelines connected by fourteen possible areas of pumping and/or receiving, this makes it not trivial to obtain the batches order in the pipeline. In order to obtain the passage of batches ordered list in the pipeline network, was developed an algorithm capable of propagating a batches list that only have route, start time and end time of pumping in the origin. This algorithm is part of a larger project whose goal is to obtain a tool to aid the process of operational decision making in a real pipeline network. The developed module can also generate the entry and exit times of each batch for each pipe through which it passes. With this information, analysis and/or validations can be made. At the end of the process, the result is a list of all the pumped batches in all pipes where it must go by. Thus, it is made a small pos-processing where the list is sorted, first by pipeline and then by start time of entry into the duct, which naturally causes the passage of the batches list in the ducts to be obtained. This work is based on the development presented by Czaikowski et al (2008). (author)

  16. 49 CFR 195.210 - Pipeline location.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 3 2010-10-01 2010-10-01 false Pipeline location. 195.210 Section 195.210 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY... PIPELINE Construction § 195.210 Pipeline location. (a) Pipeline right-of-way must be selected to avoid, as...

  17. The use of the natural-gas pipeline infrastructure for hydrogen transport in a changing market structure

    International Nuclear Information System (INIS)

    Haeseldonckx, Dries; D'haeseleer, William

    2007-01-01

    In this paper, the transport and distribution aspects of hydrogen during the transition period towards a possible full-blown hydrogen economy are carefully looked at. Firstly, the energetic and material aspects of hydrogen transport through the existing natural-gas (NG) pipeline infrastructure is discussed. Hereby, only the use of centrifugal compressors and the short-term security of supply seem to constitute a problem for the NG to hydrogen transition. Subsequently, the possibility of percentwise mixing of hydrogen into the NG bulk is dealt with. Mixtures containing up to 17 vol% of hydrogen should not cause difficulties. As soon as more hydrogen is injected, replacement of end-use applications and some pipelines will be necessary. Finally, the transition towards full-blown hydrogen transport in (previously carrying) NG pipelines is treated. Some policy guidelines are offered, both in a regulated and a liberalised energy (gas) market. As a conclusion, it can be stated that the use of hydrogen-natural gas mixtures seems well suited for the transition from natural gas to hydrogen on a distribution (low pressure) level. However, getting the hydrogen gas to the distribution grid, by means of the transport grid, remains a major issue. In the end, the structure of the market, regulated or liberalised, turns out not to be important. (author)

  18. 75 FR 5244 - Pipeline Safety: Integrity Management Program for Gas Distribution Pipelines; Correction

    Science.gov (United States)

    2010-02-02

    ... Management Program for Gas Distribution Pipelines; Correction AGENCY: Pipeline and Hazardous Materials Safety... DEPARTMENT OF TRANSPORTATION Pipeline and Hazardous Materials Safety Administration 49 CFR Part... Regulations to require operators of gas distribution pipelines to develop and implement integrity management...

  19. 77 FR 2126 - Pipeline Safety: Implementation of the National Registry of Pipeline and Liquefied Natural Gas...

    Science.gov (United States)

    2012-01-13

    ... Natural Gas Operators AGENCY: Pipeline and Hazardous Materials Safety Administration (PHMSA), DOT. ACTION... DEPARTMENT OF TRANSPORTATION Pipeline and Hazardous Materials Safety Administration [Docket No...: ``Pipeline Safety: Updates to Pipeline and Liquefied Natural Gas Reporting Requirements.'' The final rule...

  20. 78 FR 41991 - Pipeline Safety: Potential for Damage to Pipeline Facilities Caused by Flooding

    Science.gov (United States)

    2013-07-12

    ... DEPARTMENT OF TRANSPORTATION Pipeline and Hazardous Materials Safety Administration [Docket No...: Pipeline and Hazardous Materials Safety Administration (PHMSA); DOT. ACTION: Notice; Issuance of Advisory... Gas and Hazardous Liquid Pipeline Systems. Subject: Potential for Damage to Pipeline Facilities Caused...

  1. 78 FR 41496 - Pipeline Safety: Meetings of the Gas and Liquid Pipeline Advisory Committees

    Science.gov (United States)

    2013-07-10

    ... DEPARTMENT OF TRANSPORTATION Pipeline and Hazardous Materials Safety Administration [Docket No. PHMSA-2013-0156] Pipeline Safety: Meetings of the Gas and Liquid Pipeline Advisory Committees AGENCY: Pipeline and Hazardous Materials Safety Administration (PHMSA), DOT. ACTION: Notice of advisory committee...

  2. An integrated multi−period planning of the production and transportation of multiple petroleum products in a single pipeline system

    Directory of Open Access Journals (Sweden)

    Alberto Herrán

    2011-01-01

    Full Text Available A multiproduct pipeline provides an economic way to transport large volumes of refined petroleum products over long distances. In such a pipeline, different products are pumped back−to−back without any separation device between them. The sequence and lengths of such pumping runs must be carefully selected in order to meet market demands while minimizing pipeline operational costs and satisfying several constraints. The production planning and scheduling of the products at the refinery must also be synchronized with the transportation in order to avoid the usage of the system at some peak−hour time intervals. In this paper, we propose a multi−period mixed integer nonlinear programming (MINLP model for an optimal planning and scheduling of the production and transportation of multiple petroleum products from a refinery plant connected to several depots through a single pipeline system. The objective of this work is to generalize the mixed integer linear programming (MILP formulation proposed by Cafaro and Cerdá (2004, Computers and Chemical Engineering where only a single planning period was considered and the production planning and scheduling was not part of the decision process. Numerical examples show how the use of a single period model for a given time period may lead to infeasible solutions when it is used for the upcoming periods. These examples also show how integrating production planning with the transportation and the use of a multi−period model may result in a cost saving compared to using a single−period model for each period, independently.

  3. Time-Varying Hydraulic Gradient Model of Paste-Like Tailings in Long-Distance Pipeline Transportation

    Directory of Open Access Journals (Sweden)

    Li Yang

    2017-01-01

    Full Text Available Paste-like tailings slurry (PTLS is always simplified as a Bingham plastic fluid, leading to excessive computational errors in the calculation of the hydraulic gradient. In the case of paste-like tailings in long-distance pipeline transportation, to explore a high-precision and reliable hydraulic gradient formula, the rheological behavior of paste-like tailings slurry was analyzed, a time-varying hydraulic gradient model was constructed, and a series of laboratory shear tests were conducted. The results indicate that the PTLS shows noticeable shear-thinning characteristics in constant shear tests; the calculated hydraulic gradient declined by about 56%, from 4.44 MPa·km−1 to 1.95 MPa·km−1 within 253 s, and remained constant for the next four hours during the pipeline transportation. Comparing with the balance hydraulic gradient obtained in a semi-industrial loop test, the computational errors of those calculated by using the time-varying hydraulic gradient model, Jinchuan formula, and Shanxi formula are 15%, 78%, and 130%, respectively. Therefore, our model is a feasible and high-precision solution for the calculation of the hydraulic gradient of paste-like tailings in long-distance pipeline transportation.

  4. 76 FR 70953 - Pipeline Safety: Safety of Gas Transmission Pipelines

    Science.gov (United States)

    2011-11-16

    ... DEPARTMENT OF TRANSPORTATION Pipeline and Hazardous Materials Safety Administration 49 CFR Part 192 [Docket ID PHMSA-2011-0023] RIN 2137-AE72 Pipeline Safety: Safety of Gas Transmission Pipelines AGENCY: Pipeline and Hazardous Materials Safety Administration (PHMSA); DOT. ACTION: Advance notice of...

  5. Legal and regulatory possibility of connection between interstate natural gas distribution networks instead of constructing transport pipelines; Possibilidade juridoco-regulatoria da conexao interestadual entre redes de distribuicao de gas natural como alternativa a construcao de gasodutos de transporte

    Energy Technology Data Exchange (ETDEWEB)

    Goncalves, Gustavo Mano [Andrade, Mano - Advogados, Rio de Janeiro, RJ (Brazil)

    2012-07-01

    According to Revista Brasil Energia (2011a), the local natural gas distribution concessionaire in the State of Sao Paulo Gas Brasiliano Distribuidora - GBD, plans to expand its distribution pipeline network in western Sao Paulo up to the border of the State of Minas Gerais, near the region known as Minas Triangle where a connection with the pipeline network of the State of Minas Gerais' natural gas distribution company, Companhia de Gas de Minas Gerais - GASMIG shall be built in order to supply natural gas to an ammonia plant to be built by PETROBRAS in the City of Uberaba. Still according to the publication, the project described above would be an alternative to the construction of a transportation pipeline that, since the enforcement of the Gas Law - Law No. 11.909/09 (Brasil, 2009), should be subject to concession contracts preceded by a complex, and probably delayed, planning and procurement. However, there is a transportation pipeline project, deriving from the Bolivia-Brazil transportation pipeline near the city of Sao Carlos, in Sao Paulo, crossing the Minas Triangle and finishing in the State of Goias. This project is owned by TGBC Company. The existence of two gas pipeline projects with very similar paths to supply virtually the same regions and based on different regulatory frameworks, one consisting of a connection between the distribution networks of different States and another based on the concept of pipeline transportation of gas under the legal and regulatory federal jurisdiction raises the discussion about the possibility of legal and regulatory interstate connections of distribution pipeline networks as an alternative to planning, allocation and construction of a transportation pipelines. This article aims to examine the legal and regulatory foundations of both alternatives and delineate the limits of performance of States and Federal Government on legislation and regulation concerning the movement of natural gas pipeline through the Country

  6. Pipelines : moving biomass and energy

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, A. [Alberta Univ., Edmonton, AB (Canada). Dept. of Mechanical Engineering

    2006-07-01

    Moving biomass and energy through pipelines was presented. Field sourced biomass utilization for fuel was discussed in terms of competing cost factors; economies of scale; and differing fuel plant sizes. The cost versus scale in a bioenergy facility was illustrated in chart format. The transportation cost of biomass was presented as it is a major component of total biomass processing cost and is in the typical range of 25-45 per cent of total processing costs for truck transport of biomass. Issues in large scale biomass utilization, scale effects in transportation, and components of transport cost were identified. Other topics related to transportation issues included approaches to pipeline transport; cost of wood chips in pipeline transport; and distance variable cost of transporting wood chips by pipeline. Practical applications were also offered. In addition, the presentation provided and illustrated a model for an ethanol plant supplied by truck transport as well as a sample configuration for 19 truck based ethanol plants versus one large facility supplied by truck plus 18 pipelines. Last, pipeline transport of bio-oil and pipeline transport of syngas was discussed. It was concluded that pipeline transport can help in reducing congestion issues in large scale biomass utilization and that it can offer a means to achieve large plant size. Some current research at the University of Alberta on pipeline transport of raw biomass, bio-oil and hydrogen production from biomass for oil sands and pipeline transport was also presented. tabs., figs.

  7. Online slug detection in multi-phase transportation pipelines using electrical tomography

    DEFF Research Database (Denmark)

    Pedersen, Simon; Mai, Christian; Hansen, Leif

    2015-01-01

    in the pipelines is a highly investigated topic. To eliminate the slug in an online manner real-time slug detection methods are often required. Traditionally topside pressure transmitters upstream a 3-phase separator have been used as the controlled variable. In this paper Electrical Resistivity Tomography (ERT...

  8. Online Slug Detection in Multi-phase Transportation Pipelines Using Electrical Tomography

    DEFF Research Database (Denmark)

    Pedersen, Simon; Mai, Christian; Hansen, Leif

    2015-01-01

    in the pipelines is a highly investigated topic. To eliminate the slug in an online manner real-time slug detection methods are often required. Traditionally topside pressure transmitters upstream a 3-phase separator have been used as the controlled variable. In this paper Electrical Resistivity Tomography (ERT...

  9. Study on the Effect of Reciprocating Pump Pipeline System Vibration on Oil Transportation Stations

    Directory of Open Access Journals (Sweden)

    Hongfang Lu

    2018-01-01

    Full Text Available Due to the periodic movement of the piston in the reciprocating pump, the fluid will cause a pressure pulsation, and the resulting pipeline vibration may lead to instrument distortion, pipe failure and equipment damage. Therefore, it is necessary to study the vibration phenomena of reciprocating pump pipelines based on pressure pulsation theory. This paper starts from the reciprocating pump pipe pressure pulsation caused by a fluid, pressure pulsation in the pipeline and the unbalanced exciting force is calculated under the action of the reciprocating pump. Then, the numerical simulation model is established based on the pipe beam model, and the rationality of the numerical simulation method is verified by indoor experiments. Finally, a case study is taken as an example to analyze the vibration law of the pipeline system, and vibration reduction measures are proposed. The following main conclusions are drawn from the analysis: (1 unbalanced exciting forces are produced in the elbows or tee joints, and it can also influence the straight pipe to different levels; (2 in actual engineering, it should be possible to prevent the simultaneous settlement of multiple places; (3 the vibration amplitude increases with the pipe thermal stress, and when the oil temperature is higher than 85 °C, it had a greater influence on the vertical vibration amplitude of the pipe.

  10. Stress test performed on gas transport pipelines as a method for quality assurance

    International Nuclear Information System (INIS)

    Kuelzer, J.; Baessler, R.

    1991-01-01

    Modern pipeline construction increasingly uses the stress test as an integral component test while aiming at enhanced safety and availability. The application described by the article highlights the particular fact that expanded and non-expanded pipes of identical material quality will reveal a different behaviour in the stress test. (orig.) [de

  11. Lay Pipeline Abandonment Head during Some

    African Journals Online (AJOL)

    2016-12-01

    Dec 1, 2016 ... is very cruel to the structural integrity of the pipeline structure after ... and properties may be jeopardized should the pipeline structure be used for oil or gas transport when such ... pipelines under bending may alter the material.

  12. Investigations of the transportation characteristics of biomass fuel particles in a horizontal pipeline through CFD modelling and experimental measurement

    International Nuclear Information System (INIS)

    Gubba, S.R.; Ingham, D.B.; Larsen, K.J.; Ma, L.; Pourkashanian, M.; Qian, X.; Williams, A.; Yan, Y.

    2012-01-01

    Recent national and international emission legislations to reduce emissions of carbon dioxide are forcing power generation industries using coal to look at various alternatives, such as biomass and especially by co-firing techniques. Biomass is transported to the burners either mixed with the primary fuel, in general, coal, or used in dedicated pipelines. In both cases, transportation of biomass is difficult due to its composition, size, shape and physical behaviour in comparison to the transportation of coal. This study considers experimental measurements for biomass particle transportation in a pipeline with a transverse elbow and compares the results with those using computation fluid dynamic (CFD) techniques. Various materials: flour, willow, wood, bark and a mixture of flour and willow, have been considered in the present investigation. The experimental work was performed using the dynamic changes in the electrostatic charges of biomass particles in conjunction with correlation signal processing techniques. The CFD simulations were performed by considering the effects of gravity, non-spherical drag (based on estimated shape factor), detailed information of the particle distribution, particle wall collisions and particle–particle interactions. Good quantitative and qualitative agreement was obtained between the CFD simulations and the experimental data. It is concluded that particle–particle interactions are of less importance if the mass loading ratio of particles to air is less than 0.03. -- Highlights: ► Dispersed biomass particle transportation is studied using experiments and CFD. ► Inclusion of asphericity in the drag model clearly demonstrated the improvements. ► Gravity effects are found to be important for correct particle distribution in pipe lines. ► Inter-particle collisions were less important for mass loading ratios <0.05 kg/kg.

  13. 77 FR 51848 - Pipeline Safety: Information Collection Activities

    Science.gov (United States)

    2012-08-27

    ... DEPARTMENT OF TRANSPORTATION Pipeline and Hazardous Materials Safety Administration [Docket No... Program for Gas Distribution Pipelines. DATES: Interested persons are invited to submit comments on or.... These regulations require operators of hazardous liquid pipelines and gas pipelines to develop and...

  14. 78 FR 5866 - Pipeline Safety: Annual Reports and Validation

    Science.gov (United States)

    2013-01-28

    ... DEPARTMENT OF TRANSPORTATION Pipeline and Hazardous Materials Safety Administration [Docket ID PHMSA-2012-0319] Pipeline Safety: Annual Reports and Validation AGENCY: Pipeline and Hazardous Materials... 2012 gas transmission and gathering annual reports, remind pipeline owners and operators to validate...

  15. 77 FR 74275 - Pipeline Safety: Information Collection Activities

    Science.gov (United States)

    2012-12-13

    ... DEPARTMENT OF TRANSPORTATION Pipeline and Hazardous Materials Safety Administration [Docket No.... These regulations require operators of hazardous liquid pipelines and gas pipelines to develop and... control room. Affected Public: Operators of both natural gas and hazardous liquid pipeline systems. Annual...

  16. 77 FR 27279 - Pipeline Safety: Information Collection Activities

    Science.gov (United States)

    2012-05-09

    ... DEPARTMENT OF TRANSPORTATION Pipeline and Hazardous Materials Safety Administration [Docket No... collections relate to the pipeline integrity management requirements for gas transmission pipeline operators... Management in High Consequence Areas Gas Transmission Pipeline Operators. OMB Control Number: 2137-0610...

  17. 78 FR 46560 - Pipeline Safety: Class Location Requirements

    Science.gov (United States)

    2013-08-01

    ... DEPARTMENT OF TRANSPORTATION Pipeline and Hazardous Materials Safety Administration 49 CFR Part... class location requirements for gas transmission pipelines. Section 5 of the Pipeline Safety, Regulatory... and, with respect to gas transmission pipeline facilities, whether applying IMP requirements to...

  18. 75 FR 53733 - Pipeline Safety: Information Collection Activities

    Science.gov (United States)

    2010-09-01

    ... DEPARTMENT OF TRANSPORTATION Pipeline and Hazardous Materials Safety Administration [Docket No. PHMSA-2010-0246] Pipeline Safety: Information Collection Activities AGENCY: Pipeline and Hazardous... liquefied natural gas, hazardous liquid, and gas transmission pipeline systems operated by a company. The...

  19. 77 FR 46155 - Pipeline Safety: Information Collection Activities

    Science.gov (United States)

    2012-08-02

    ... DEPARTMENT OF TRANSPORTATION Pipeline and Hazardous Materials Safety Administration [Docket No... collections relate to the pipeline integrity management requirements for gas transmission pipeline operators... Management in High Consequence Areas Gas Transmission Pipeline Operators. OMB Control Number: 2137-0610...

  20. 77 FR 15453 - Pipeline Safety: Information Collection Activities

    Science.gov (United States)

    2012-03-15

    ... DEPARTMENT OF TRANSPORTATION Pipeline and Hazardous Materials Safety Administration [Docket No... information collection titled, ``Gas Pipeline Safety Program Certification and Hazardous Liquid Pipeline... collection request that PHMSA will be submitting to OMB for renewal titled, ``Gas Pipeline Safety Program...

  1. Biodegradation and corrosion behavior of manganese oxidizer Bacillus cereus ACE4 in diesel transporting pipeline

    International Nuclear Information System (INIS)

    Rajasekar, A.; Ganesh Babu, T.; Karutha Pandian, S.; Maruthamuthu, S.; Palaniswamy, N.; Rajendran, A.

    2007-01-01

    The degradation problem of petroleum products arises since hydrocarbon acts as an excellent food source for a wide variety of microorganisms. Microbial activity leads to unacceptable level of turbidity, corrosion of pipeline and souring of stored product. The present study emphasizes the role of Bacillus cereus ACE4 on degradation of diesel and its influence on corrosion of API 5LX steel. A demonstrating bacterial strain ACE4 was isolated from corrosion products and 16S rRNA gene sequence analysis showed that it has more than 99% similarity with B. cereus. The biodegradation and corrosion studies revealed that B. cereus degraded the aliphatic protons and aromatic protons in diesel and is capable of oxidizing ferrous/manganese into oxides. This is the first report that discloses the involvement of manganese oxidizer B. cereus ACE4 on biodegradation of diesel and its influence on corrosion in a tropical country pipeline

  2. Overview of slurry pipelines

    Energy Technology Data Exchange (ETDEWEB)

    Gandhi, R L

    1982-01-01

    Slurry pipelines have proven to be a technically feasible, environmentally attractive and economic method of transporting finely divided particles over long distances. A pipeline system normally consists of preparation, pipeline and utilization facilities and requires optimization of all three components taken together. A considerable amount of research work has been done to develop hydraulic design of a slurry pipeline. Equipment selection and estimation of corrosion-erosion are considered to be as important as the hydraulic design. Future applications are expected to be for the large-scale transport of coal and for the exploitation of remotely located mineral deposits such as iron ore and copper. Application of slurry pipelines for the exploitation of remotely located mineral deposits is illustrated by the Kudremukh iron concentrate slurry pipeline in India.

  3. Reauthorizations for hazardous materials transportation and pipeline safety. Hearing before the Subcommittee on Surface Transportation of the Committee on Commerce, Science, and Transporation, US Senate, Ninety-Eighth Congress, Second Session, April 24, 1984

    International Nuclear Information System (INIS)

    Anon.

    1984-01-01

    Witnesses from pipeline and trucking companies and state and federal transportation agencies testified at a hearing on the reauthorization of the Hazardous Materials Transportation Act of 1974, the Natural Gas Pipeline Safety Act of 1968, and the Hazardous Liquid Pipeline Safety Act of 1979. Senator Specter spoke in favor of S. 2356, requiring a detailed environmental impact statement for the shipment of radioactive waste material through metropolitan areas. In addition to safety issues, witnesses spoke of tax inequities imposed on gas pipeline property, the need for more uniformity in safety requirements and emergency responses, and the quality of the safety record which the transport industry maintains. Additional articles, letters, and statements submitted for the record follow the testimony of 15 witnesses

  4. 77 FR 45417 - Pipeline Safety: Inspection and Protection of Pipeline Facilities After Railway Accidents

    Science.gov (United States)

    2012-07-31

    ... DEPARTMENT OF TRANSPORTATION Pipeline and Hazardous Materials Safety Administration [Docket No... Accidents AGENCY: Pipeline and Hazardous Materials Safety Administration (PHMSA); DOT. [[Page 45418

  5. The cost of pipelining climate change mitigation: An overview of the economics of CH4, CO2 and H2 transportation

    International Nuclear Information System (INIS)

    Zwaan, B.C.C. van der; Schoots, K.; Rivera-Tinoco, R.; Verbong, G.P.J.

    2011-01-01

    Highlights: → Learning for pipeline construction, if available, is outshadowed by cost variability. → Pipelining is a mature technology, for which much experience has been gained. → Pipeline projects are heterogeneous with widely varying technical and cost specifics. → Pipeline cost components tend to reflect (commodity) market price developments. → Pipeline costs are strongly determined by the properties of the transported gas. -- Abstract: Gases like CH 4 , CO 2 and H 2 may play a key role in establishing a sustainable energy system: CH 4 is the least carbon-intensive fossil energy resource; CO 2 capture and storage can significantly reduce the climate footprint of especially fossil-based electricity generation; and the use of H 2 as energy carrier could enable carbon-free automotive transportation. Yet the construction of large pipeline infrastructures usually constitutes a major and time-consuming undertaking, because of safety and environmental issues, legal and (geo)political siting arguments, technically un-trivial installation processes, and/or high investment cost requirements. In this article we focus on the latter and present an overview of both the total costs and cost components of the distribution of these three gases via pipelines. Possible intricacies and external factors that strongly influence these costs, like the choice of location and terrain, are also included in our analysis. Our distribution cost breakdown estimates are based on transportation data for CH 4 , which we adjust for CO 2 and H 2 in order to account for the specific additional characteristics of these two gases. The overall trend is that pipeline construction is no longer subject to significant cost reductions. For the purpose of designing energy and climate policy we therefore know in principle with reasonable certainty what the minimum distribution cost components of future energy systems are that rely on pipelining these gases. We describe the reasons why we observe

  6. 49 CFR 192.917 - How does an operator identify potential threats to pipeline integrity and use the threat...

    Science.gov (United States)

    2010-10-01

    ... Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) PIPELINE SAFETY TRANSPORTATION OF NATURAL AND OTHER GAS BY PIPELINE: MINIMUM FEDERAL SAFETY STANDARDS Gas Transmission Pipeline Integrity Management § 192...

  7. Slurry pipeline design approach

    Energy Technology Data Exchange (ETDEWEB)

    Betinol, Roy; Navarro R, Luis [Brass Chile S.A., Santiago (Chile)

    2009-12-19

    Compared to other engineering technologies, the design of a commercial long distance Slurry Pipeline design is a relatively new engineering concept which gained more recognition in the mid 1960 's. Slurry pipeline was first introduced to reduce cost in transporting coal to power generating units. Since then this technology has caught-up worldwide to transport other minerals such as limestone, copper, zinc and iron. In South America, the use of pipeline is commonly practiced in the transport of Copper (Chile, Peru and Argentina), Iron (Chile and Brazil), Zinc (Peru) and Bauxite (Brazil). As more mining operations expand and new mine facilities are opened, the design of the long distance slurry pipeline will continuously present a commercially viable option. The intent of this paper is to present the design process and discuss any new techniques and approach used today to ensure a better, safer and economical slurry pipeline. (author)

  8. 76 FR 28326 - Pipeline Safety: National Pipeline Mapping System Data Submissions and Submission Dates for Gas...

    Science.gov (United States)

    2011-05-17

    ... DEPARTMENT OF TRANSPORTATION Pipeline and Hazardous Materials Safety Administration 49 CFR 191... Reports AGENCY: Pipeline and Hazardous Materials Safety Administration (PHMSA), DOT. ACTION: Issuance of... Pipeline and Hazardous Materials Safety Administration (PHMSA) published a final rule on November 26, 2010...

  9. 75 FR 45591 - Pipeline Safety: Notice of Technical Pipeline Safety Advisory Committee Meetings

    Science.gov (United States)

    2010-08-03

    ... DEPARTMENT OF TRANSPORTATION Pipeline and Hazardous Materials Safety Administration 49 CFR Part... Committee Meetings AGENCY: Pipeline and Hazardous Materials Safety Administration (PHMSA); DOT. ACTION... safety standards, risk assessments, and safety policies for natural gas pipelines and for hazardous...

  10. 77 FR 36606 - Pipeline Safety: Government/Industry Pipeline Research and Development Forum, Public Meeting

    Science.gov (United States)

    2012-06-19

    ...: Threat Prevention --Working Group 2: Leak Detection/Mitigation & Storage --Working Group 3: Anomaly... DEPARTMENT OF TRANSPORTATION Pipeline and Hazardous Materials Safety Administration [Docket ID PHMSA-2012-0146] Pipeline Safety: Government/Industry Pipeline Research and Development Forum, Public...

  11. Papers of the Canadian Institute's 3. annual conference : oil sands supply and infrastructure : labour supply, upgraders, transportation, pipelines

    International Nuclear Information System (INIS)

    2005-01-01

    The focus of this conference was on the development of the oil sands industry, with specific reference to issues concerning supply and infrastructure. Energy source development and transmission issues were discussed, as well as transportation systems. The impact of increased oil sands development on pipelines was also examined. Various fuel options were discussed, including the use of hydrogen, natural gas and alternate fuels in manufacturing and processing plants. Economic drivers and the creation of new markets were examined, and various export opportunities were reviewed. The environmental impact of increased oil sands activity was discussed, with specific reference to the Boreal regions. Management challenges in the oil sands industry were also discussed along with issues concerning human resources, labour supply, training and education. The conference featured 15 presentations, of which 13 have been catalogued separately for inclusion in this database. refs., tabs., figs

  12. 78 FR 24309 - Pipeline and Hazardous Materials Safety Administration

    Science.gov (United States)

    2013-04-24

    ... DEPARTMENT OF TRANSPORTATION Pipeline and Hazardous Materials Safety Administration List of Special Permit Applications Delayed AGENCY: Pipeline and Hazardous Materials Safety Administration (PHMSA..., Pipeline and Hazardous Materials Safety Administration, U.S. Department of Transportation, East Building...

  13. 75 FR 13807 - Pipeline Safety: Information Collection Activities

    Science.gov (United States)

    2010-03-23

    ... DEPARTMENT OF TRANSPORTATION Pipeline and Hazardous Materials Safety Administration [Docket No... of Transportation, Pipeline and Hazardous Materials Safety Administration, 1200 New Jersey Avenue, SE...: Updates to Pipeline and Liquefied Natural Gas Reporting Requirements (One Rule). The Notice of Proposed...

  14. 77 FR 16471 - Pipeline Safety: Implementation of the National Registry of Pipeline and Liquefied Natural Gas...

    Science.gov (United States)

    2012-03-21

    ... Registry of Pipeline and Liquefied Natural Gas Operators AGENCY: Pipeline and Hazardous Materials Safety... DEPARTMENT OF TRANSPORTATION Pipeline and Hazardous Materials Safety Administration 49 CFR Parts... Register (75 FR 72878) titled: ``Pipeline Safety: Updates to Pipeline and Liquefied Natural Gas Reporting...

  15. Theoretical study and design of a low-grade heat-driven pilot ejector refrigeration machine operating with butane and isobutane and intended for cooling of gas transported in a gas-main pipeline

    KAUST Repository

    Petrenko, V.O.; Volovyk, O.S.

    2011-01-01

    This paper describes the construction and performance of a novel combined system intended for natural gas transportation and power production, and for cooling of gas transported in a gas-main pipeline. The proposed system includes a gas turbine

  16. The Analysis of Pipeline Transportation Process for CO2 Captured From Reference Coal-Fired 900 MW Power Plant to Sequestration Region

    Directory of Open Access Journals (Sweden)

    Witkowski Andrzej

    2014-12-01

    Full Text Available Three commercially available intercooled compression strategies for compressing CO2 were studied. All of the compression concepts required a final delivery pressure of 153 bar at the inlet to the pipeline. Then, simulations were used to determine the maximum safe pipeline distance to subsequent booster stations as a function of inlet pressure, environmental temperature, thickness of the thermal insulation and ground level heat flux conditions. The results show that subcooled liquid transport increases energy efficiency and minimises the cost of CO2 transport over long distances under heat transfer conditions. The study also found that the thermal insulation layer should not be laid on the external surface of the pipe in atmospheric conditions in Poland. The most important problems from the environmental protection point of view are rigorous and robust hazard identification which indirectly affects CO2 transportation. This paper analyses ways of reducing transport risk by means of safety valves.

  17. National Pipeline Mapping System

    Data.gov (United States)

    Department of Transportation — The NPMS Public Map Viewer allows the general public to view maps of transmission pipelines, LNG plants, and breakout tanks in one selected county. Distribution and...

  18. 49 CFR 192.937 - What is a continual process of evaluation and assessment to maintain a pipeline's integrity?

    Science.gov (United States)

    2010-10-01

    ... Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) PIPELINE SAFETY TRANSPORTATION OF NATURAL AND OTHER GAS BY PIPELINE: MINIMUM FEDERAL SAFETY STANDARDS Gas Transmission Pipeline Integrity Management § 192.937 What is a...

  19. Transportation of hydrogen in pipelines: interaction of NDE and material requirements

    International Nuclear Information System (INIS)

    Thompson, R.B.; Thompson, A.W.; Thompson, D.O.

    1976-01-01

    The role of nondestructive evaluation (NDE) of materials used in H pipelines and storage facilities is examined. NDE techniques are available which detect critical flaws in today's natural gas lines, and which should have some success in hydrogen lines made of resistant materials. However, the critical flaws in a hydrogen line which is built of a steel whose toughness is significantly reduced in hydrogen, or which contains low-toughness defects such as weld hard spots, would be extremely difficult to detect with today's instrumentation. That instrumentation is designed to test efficiently long lengths of line with minimum disruption of service. Technology is available that would be capable of the more detailed inspection required for the smaller defects. However, the equipment might be expensive and time-consuming to operate, and these costs must be included in the overall assessment of a system using existing lines without embrittlement protection. In addition, it is evident that strong motivation exists to construct new facilities from steels with improved resistance to hydrogen

  20. Economic evaluation of pipeline construction and capacity expansion projects; Avaliacao economica dos projetos de construcao e expansao de um gasoduto de transporte

    Energy Technology Data Exchange (ETDEWEB)

    Machado, Leandro Bastos [PETROBRAS, Rio de Janeiro, RJ (Brazil)

    2003-07-01

    In this work, two investment projects that are characteristic of the recent phase of the Brazilian natural gas industry were economically valued, taking into account the government going Thermoelectric Priority Program or PPT: economical design of a gas pipeline, to be built and operated by a Proprietary Carrier, where the interest variable is the transport tariff that will remunerate the investment and pipeline expansion through compressor stations, sponsored by the only shipper in the system, as it aims at selling gas to a thermoelectric plant, where the interest variable is the net present value of the project. In both cases, some sensitive analyses of the interest variable to variables that carry greater uncertainty are presented. Results show that pipeline expansion is viable. (author)

  1. The cost of pipelining climate change mitigation. An overview of the economics of CH4, CO2 and H2 transportation

    Energy Technology Data Exchange (ETDEWEB)

    Van der Zwaan, B.C.C.; Schoots, K.; Rivera-Tinoco, R. [Energy research Center of the Netherlands (ECN), Policy Studies Department, Amsterdam (Netherlands); Verbong, G.P.J. [Eindhoven University of Technology, Department of Industrial Engineering and Innovation Sciences, Eindhoven (Netherlands)

    2011-11-15

    Gases like CH4, CO2 and H2 may play a key role in establishing a sustainable energy system: CH4 is the least carbon-intensive fossil energy resource; CO2 capture and storage can significantly reduce the climate footprint of especially fossil-based electricity generation; and the use of H2 as energy carrier could enable carbon-free automotive transportation. Yet the construction of large pipeline infrastructures usually constitutes a major and time-consuming undertaking, because of safety and environmental issues, legal and (geo)political siting arguments, technically untrivial installation processes, and/or high investment cost requirements. In this article we focus on the latter and present an overview of both the total costs and cost components of the distribution of these three gases via pipelines. Possible intricacies and external factors that strongly influence these costs, like the choice of location and terrain, are also included in our analysis. Our distribution cost breakdown estimates are based on transportation data for CH4, which we adjust for CO2 and H2 in order to account for the specific additional characteristics of these two gases. The overall trend is that pipeline construction is no longer subject to significant cost reductions. For the purpose of designing energy and climate policy we therefore know in principle with reasonable certainty what the minimum distribution cost components of future energy systems are that rely on pipelining these gases. We describe the reasons why we observe limited learning-by-doing and explain why negligible construction cost reductions for future CH4, CO2 and H2 pipeline projects can be expected. Cost data of individual pipeline projects may strongly deviate from the global average because of national or regional effects related to the type of terrain, but also to varying costs of labor and fluctuating market prices of components like steel.

  2. Chaperone turns gatekeeper: PCBP2 and DMT1 form an iron-transport pipeline.

    Science.gov (United States)

    Lane, Darius J R; Richardson, Des R

    2014-08-15

    How is cellular iron (Fe) uptake and efflux regulated in mammalian cells? In this issue of the Biochemical Journal, Yanatori et al. report for the first time that a member of the emerging PCBP [poly(rC)-binding protein] Fe-chaperone family, PCBP2, physically interacts with the major Fe importer DMT1 (divalent metal transporter 1) and the Fe exporter FPN1 (ferroportin 1). In both cases, the interaction of the Fe transporter with PCBP2 is Fe-dependent. Interestingly, another PCBP Fe-chaperone, PCBP1, does not appear to bind to DMT1. Strikingly, the PCBP2-DMT1 interaction is required for DMT1-dependent cellular Fe uptake, suggesting that, in addition to functioning as an intracellular Fe chaperone, PCBP2 may be a molecular 'gate- keeper' for transmembrane Fe transport. These new data hint at the possibility that PCBP2 may be a component of a yet-to-be-described Fe-transport metabolon that engages in Fe channelling to and from Fe transporters and intracellular sites.

  3. Pipelines. Economy's veins; Pipelines. Adern der Wirtschaft

    Energy Technology Data Exchange (ETDEWEB)

    Feizlmayr, Adolf; Goestl, Stefan [ILF Beratende Ingenieure, Muenchen (Germany)

    2011-02-15

    According to the existing prognoses more than 1 million km of gas pipelines, oil pipelines and water pipelines are built up to the year 2030. The predominant portion is from gas pipelines. The safe continued utilization of the aging pipelines is a large challenge. In addition, the diagnostic technology, the evaluation and risk assessment have to be developed further. With the design of new oil pipelines and gas pipelines, aspects of environmental protection, the energy efficiency of transport and thus the emission reduction of carbon dioxide, the public acceptance and the market strategy of the exporters gain in importance. With the offshore pipelines one soon will exceed the present border of 2,000 m depth of water and penetrate into larger sea depths.

  4. 49 CFR 192.513 - Test requirements for plastic pipelines.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 3 2010-10-01 2010-10-01 false Test requirements for plastic pipelines. 192.513 Section 192.513 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND... Test requirements for plastic pipelines. (a) Each segment of a plastic pipeline must be tested in...

  5. Network transportation model with capacity restrictions for the Bolivia Brazil gas pipeline influence area; Modelo de transporte em rede com restricoes de capacidade para a area de influencia do Gasoduto Bolivia Brasil

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Patricia Mannarino; Carpio, Lucio Guido Tapia [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Coordenacao dos Programas de Pos-graduacao de Engenharia (COPPE). Programa de Planejamento Energetico

    2004-07-01

    We present the application of a network transportation model, with capacity restrictions, to determine the minimal cost of supply of a group of markets at the Bolivia Brazil Gas Pipeline influence area, as a function of city gate price. We consider the potential of integration of pipeline transportation at the South Cone, looking forward to supply the Brazilian market. The city gate price consists of the sum of commodity price plus transportation tariffs over every gas pipeline through which the gas passes (except distribution pipelines). There is no distinction related to product quality (e.g. heating value) among suppliers, or among end uses (thermal, thermoelectric or chemical). The model is numerically solved by linear programming. Flow direction alternatives and transportation tariffs alternatives (postal and by zone) are proposed. The model allows, among other applications: identification of the lowest cost supply strategy, identification of network flow capacity bottlenecks, determination of operation and expansion marginal costs using dual solution analysis, investigation of alternative sceneries through sensibility analysis and appreciation of non-optimal solutions that might be attractive. (author)

  6. Analysis of CO2 Separation from Flue Gas, Pipeline Transportation, and Sequestration in Coal

    Energy Technology Data Exchange (ETDEWEB)

    Eric P. Robertson

    2007-09-01

    This report was written to satisfy a milestone of the Enhanced Coal Bed Methane Recovery and CO2 Sequestration task of the Big Sky Carbon Sequestration project. The report begins to assess the costs associated with separating the CO2 from flue gas and then injecting it into an unminable coal seam. The technical challenges and costs associated with CO2 separation from flue gas and transportation of the separated CO2 from the point source to an appropriate sequestration target was analyzed. The report includes the selection of a specific coal-fired power plant for the application of CO2 separation technology. An appropriate CO2 separation technology was identified from existing commercial technologies. The report also includes a process design for the chosen technology tailored to the selected power plant that used to obtain accurate costs of separating the CO2 from the flue gas. In addition, an analysis of the costs for compression and transportation of the CO2 from the point-source to an appropriate coal bed sequestration site was included in the report.

  7. A deceleration system for near-diameter spheres in pipeline transportation in a pebble bed reactor based on the resistance of a pneumatic cushion

    International Nuclear Information System (INIS)

    Liu, Hongbing; He, Ayada; Du, Dong; Wang, Xin; Zhang, Haiquan

    2014-01-01

    Highlights: • A deceleration system for fuel transportation in a pebble bed reactor is designed. • Dynamic analysis and motion analysis of the deceleration process are conducted. • The effectiveness of the system is verified by the analysis and the experiment. • Some key design parameters are studied to achieve effective deceleration. • This research provides a guide for the design of a pebble bed reactor. - Abstract: The fuel elements cycle occurring inside and outside the core of a pebble bed reactor is carried out by pneumatic conveying. In some processes of conveyance, it is necessary to reduce the velocity of the moving fuel element in a short time to avoid damage to the fuel elements and the equipment. In this research, a deceleration system for near-diameter spheres in pipeline transportation based on the resistance of a pneumatic cushion is designed to achieve an effective and reliable deceleration process. Dynamic analysis and motion analysis of the deceleration process are conducted. The results show that when the fuel element is moving in the deceleration pipeline, the gas in the pipeline is compressed to create a pneumatic cushion which resists the movement of the fuel element. In this way, the velocity of the fuel element is decreased to below the target value. During this process, the deceleration is steady and reliable. On this basis some key design parameters are studied, such as the deceleration pipeline length, the ratio of the diameter of the fuel element to the internal diameter of the pipeline, etc. The experimental results are generally consistent with the analysis and demonstrate the considerable effectiveness of the deceleration process as well. This research provides a guide for the design of the fuel elements cycling system in a pebble bed reactor along with the optimization of its control

  8. 75 FR 32836 - Pipeline Safety: Workshop on Public Awareness Programs

    Science.gov (United States)

    2010-06-09

    ... DEPARTMENT OF TRANSPORTATION Pipeline and Hazardous Materials Safety Administration [Docket ID... American Public Gas Association Association of Oil Pipelines American Petroleum Institute Interstate... the pipeline industry). Hazardous Liquid Gas Transmission/Gathering Natural Gas Distribution (10...

  9. 75 FR 67807 - Pipeline Safety: Emergency Preparedness Communications

    Science.gov (United States)

    2010-11-03

    ... DEPARTMENT OF TRANSPORTATION Pipeline and Hazardous Materials Safety Administration [Docket No... is issuing an Advisory Bulletin to remind operators of gas and hazardous liquid pipeline facilities... Gas Pipeline Systems. Subject: Emergency Preparedness Communications. Advisory: To further enhance the...

  10. 76 FR 65778 - Pipeline Safety: Information Collection Activities

    Science.gov (United States)

    2011-10-24

    ... DEPARTMENT OF TRANSPORTATION Pipeline and Hazardous Materials Safety Administration [Docket No...: 12,120. Frequency of Collection: On occasion. 2. Title: Recordkeeping for Natural Gas Pipeline... investigating incidents. Affected Public: Operators of natural gas pipeline systems. Annual Reporting and...

  11. 77 FR 61826 - Pipeline Safety: Communication During Emergency Situations

    Science.gov (United States)

    2012-10-11

    ... DEPARTMENT OF TRANSPORTATION Pipeline and Hazardous Materials Safety Administration [Docket No... liquefied natural gas pipeline facilities that operators should immediately and directly notify the Public.... Background Federal regulations for gas, liquefied natural gas (LNG), and hazardous liquid pipeline facilities...

  12. 77 FR 34457 - Pipeline Safety: Mechanical Fitting Failure Reports

    Science.gov (United States)

    2012-06-11

    ... DEPARTMENT OF TRANSPORTATION Pipeline and Hazardous Materials Safety Administration [Docket No... notice provides clarification to owners and operators of gas distribution pipeline facilities when... of a gas distribution pipeline facility to file a written report for any mechanical fitting failure...

  13. Slurry pipeline technology: an overview

    Energy Technology Data Exchange (ETDEWEB)

    Chapman, Jay P. [Pipeline Systems Incorporated (PSI), Belo Horizonte, MG (Brazil); Lima, Rafael; Pinto, Daniel; Vidal, Alisson [Ausenco do Brasil Engenharia Ltda., Nova Lima, MG (Brazil). PSI Div.

    2009-12-19

    Slurry pipelines represent an economical and environmentally friendly transportation means for many solid materials. This paper provides an over-view of the technology, its evolution and current Brazilian activity. Mineral resources are increasingly moving farther away from ports, processing plants and end use points, and slurry pipelines are an important mode of solids transport. Application guidelines are discussed. State-of-the-Art technical solutions such as pipeline system simulation, pipe materials, pumps, valves, automation, telecommunications, and construction techniques that have made the technology successful are presented. A discussion of where long distant slurry pipelines fit in a picture that also includes thickened and paste materials pipe lining is included. (author)

  14. PRODUT - a pipeline technological program to face the challenges in the oil and gas transportation in Brazil; PRODUT - um programa tecnologico de dutos para enfrentar os desafios do transporte de oleo e gas no Brasil

    Energy Technology Data Exchange (ETDEWEB)

    Passos, Ney Goncalves [PETROBRAS S.A., Rio de Janeiro, RJ (Brazil). Centro de Pesquisas

    2003-07-01

    Following the international tendency of the pipeline companies, PETROBRAS has been investing relevant resources in new technologies, with the objective of increasing reliability and life span, and decreasing the cost and the risk of leakage. PETROBRAS created in 1998 the pipeline technological program, PRODUT, to be responsible for coordinating the development of the company R and D projects. This paper will present PRODUT and the good results obtained in order to increase reliability and competitiveness of transportation systems, essential for global performance of the petroleum industry. (author)

  15. Logistics aspects of petroleum pipeline operations

    Directory of Open Access Journals (Sweden)

    W. J. Pienaar

    2010-11-01

    Full Text Available The paper identifies, assesses and describes the logistics aspects of the commercial operation of petroleum pipelines. The nature of petroleum-product supply chains, in which pipelines play a role, is outlined and the types of petroleum pipeline systems are described. An outline is presented of the nature of the logistics activities of petroleum pipeline operations. The reasons for the cost efficiency of petroleum pipeline operations are given. The relative modal service effectiveness of petroleum pipeline transport, based on the most pertinent service performance measures, is offered. The segments in the petroleum-products supply chain where pipelines can play an efficient and effective role are identified.

  16. 75 FR 63774 - Pipeline Safety: Safety of On-Shore Hazardous Liquid Pipelines

    Science.gov (United States)

    2010-10-18

    ... DEPARTMENT OF TRANSPORTATION Pipeline and Hazardous Materials Safety Administration 49 CFR Part... Pipelines AGENCY: Pipeline and Hazardous Materials Safety Administration (PHMSA), Department of... Gas Pipeline Safety Act of 1968, Public Law 90-481, delegated to DOT the authority to develop...

  17. 77 FR 61825 - Pipeline Safety: Notice of Public Meeting on Pipeline Data

    Science.gov (United States)

    2012-10-11

    ... DEPARTMENT OF TRANSPORTATION Pipeline and Hazardous Materials Safety Administration [Docket ID... program performance measures for gas distribution, gas transmission, and hazardous liquids pipelines. The... distribution pipelines (49 CFR 192.1007(e)), gas transmission pipelines (49 CFR 192.945) and hazardous liquids...

  18. 77 FR 22387 - Pipeline Safety: Information Collection Activities, Revision to Gas Transmission and Gathering...

    Science.gov (United States)

    2012-04-13

    ... DEPARTMENT OF TRANSPORTATION Pipeline and Hazardous Materials Safety Administration [Docket No. PHMSA-2012-0024] Pipeline Safety: Information Collection Activities, Revision to Gas Transmission and Gathering Pipeline Systems Annual Report, Gas Transmission and Gathering Pipeline Systems Incident Report...

  19. 75 FR 5640 - Pipeline Safety: Implementation of Revised Incident/Accident Report Forms for Distribution...

    Science.gov (United States)

    2010-02-03

    ... DEPARTMENT OF TRANSPORTATION Pipeline and Hazardous Materials Safety Administration [Docket No... Distribution Systems, Gas Transmission and Gathering Systems, and Hazardous Liquid Systems AGENCY: Pipeline and.... SUMMARY: This notice advises owners and operators of gas pipeline facilities and hazardous liquid pipeline...

  20. 75 FR 2926 - Pipeline Safety: Reporting Drug and Alcohol Test Results for Contractors and Multiple Operator...

    Science.gov (United States)

    2010-01-19

    ... DEPARTMENT OF TRANSPORTATION Pipeline and Hazardous Materials Safety Administration [Docket No... Operator Identification Numbers AGENCY: Pipeline and Hazardous Materials Safety Administration (PHMSA), DOT... liquid, and carbon dioxide pipelines and liquefied natural gas facilities that the Pipeline and Hazardous...

  1. 78 FR 65427 - Pipeline Safety: Reminder of Requirements for Liquefied Petroleum Gas and Utility Liquefied...

    Science.gov (United States)

    2013-10-31

    ... DEPARTMENT OF TRANSPORTATION Pipeline and Hazardous Materials Safety Administration [Docket No. PHMSA-2013-0097] Pipeline Safety: Reminder of Requirements for Liquefied Petroleum Gas and Utility Liquefied Petroleum Gas Pipeline Systems AGENCY: Pipeline and Hazardous Materials Safety Administration...

  2. 78 FR 38803 - Pipeline Safety: Information Collection Activities, Revisions to Incident and Annual Reports for...

    Science.gov (United States)

    2013-06-27

    ... Reports for Gas Pipeline Operators AGENCY: Pipeline and Hazardous Materials Safety Administration (PHMSA... DEPARTMENT OF TRANSPORTATION Pipeline and Hazardous Materials Safety Administration [Docket No... (OMB) Control No. 2137-0522, titled ``Incident and Annual Reports for Gas Pipeline Operators.'' PHMSA...

  3. 77 FR 58616 - Pipeline Safety: Information Collection Activities, Revision to Gas Transmission and Gathering...

    Science.gov (United States)

    2012-09-21

    ... DEPARTMENT OF TRANSPORTATION Pipeline and Hazardous Materials Safety Administration [Docket No. PHMSA-2012-0024] Pipeline Safety: Information Collection Activities, Revision to Gas Transmission and Gathering Pipeline Systems Annual Report, Gas Transmission and Gathering Pipeline Systems Incident Report...

  4. 75 FR 58014 - Pipeline Safety: Information Collection Activity; Request for Comments

    Science.gov (United States)

    2010-09-23

    ..., supports pipeline safety by ensuring the proper functioning of CPM leak detection systems. Affected Public...-phase hazardous liquid pipeline facilities that use computational pipeline monitoring (CPM) leak... DEPARTMENT OF TRANSPORTATION Pipeline and Hazardous Materials Safety Administration [Docket No...

  5. Pipeline Drag Reducers

    International Nuclear Information System (INIS)

    Marawan, H.

    2004-01-01

    Pipeline drag reducers have proven to be an extremely powerful tool in fluid transportation. High molecular weight polymers are used to reduce the frictional pressure loss ratio in crude oil pipelines, refined fuel and aqueous pipelines. Chemical structure of the main used pipeline drag reducers is one of the following polymers and copolymers classified according to the type of fluid to ; low density polyethylene, copolymer of I-hexane cross linked with divinyl benzene, polyacrylamide, polyalkylene oxide polymers and their copolymers, fluorocarbons, polyalkyl methacrylates and terpolymer of styrene, alkyl acrylate and acrylic acid. Drag reduction is the increase in pump ability of a fluid caused by the addition of small amounts of an additive to the fluid. The effectiveness of a drag reducer is normally expressed in terms of percent drag reduction. Frictional pressure loss in a pipeline system is a waste of energy and it costly. The drag reducing additive minimizes the flow turbulence, increases throughput and reduces the energy costs. The Flow can be increased by more than 80 % with existing assets. The effectiveness of the injected drag reducer in Mostorod to Tanta crude oil pipeline achieved 35.4 % drag reduction and 23.2 % flow increase of the actual performance The experimental application of DRA on Arab Petroleum Pipeline Company (Summed) achieved a flow increase ranging from 9-32 %

  6. Pollution from pipelines

    International Nuclear Information System (INIS)

    1991-01-01

    During the 1980s, over 3,900 spills from land-based pipelines released nearly 20 million gallons of oil into U.S. waters-almost twice as much as was released by the March 1989 Exxon Valdez oil spill. Although the Department of Transportation is responsible for preventing water pollution from petroleum pipelines, GAO found that it has not established a program to prevent such pollution. DOT has instead delegated this responsibility to the Coast Guard, which has a program to stop water pollution from ships, but not from pipelines. This paper reports that, in the absence of any federal program to prevent water pollution from pipelines, both the Coast Guard and the Environmental Protection Agency have taken steps to plan for and respond to oil spills, including those from pipelines, as required by the Clean Water Act. The Coast Guard cannot, however, adequately plan for or ensure a timely response to pipeline spills because it generally is unaware of specific locations and operators of pipelines

  7. Chechnya: the pipeline front

    Energy Technology Data Exchange (ETDEWEB)

    Anon,

    1999-11-01

    This article examines the impact of the Russian campaign against Chechnya on projects for oil and gas pipelines from the new Caspian republics, which are seeking financial support. Topics discussed include the pipeline transport of oil from Azerbaijan through Chechnya to the Black Sea, the use of oil money to finance the war, the push for non-Russian export routes, the financing of pipelines, the impact of the war on the supply of Russian and Turkmenistan gas to Turkey, the proposed construction of the Trans Caspian pipeline, the weakening of trust between Russia and its neighbours, and the potential for trans Caucasus republics to look to western backers due to the instability of the North Caucasus. (UK)

  8. Multi-dimensional rheology-based two-phase model for sediment transport and applications to sheet flow and pipeline scour

    International Nuclear Information System (INIS)

    Lee, Cheng-Hsien; Low, Ying Min; Chiew, Yee-Meng

    2016-01-01

    Sediment transport is fundamentally a two-phase phenomenon involving fluid and sediments; however, many existing numerical models are one-phase approaches, which are unable to capture the complex fluid-particle and inter-particle interactions. In the last decade, two-phase models have gained traction; however, there are still many limitations in these models. For example, several existing two-phase models are confined to one-dimensional problems; in addition, the existing two-dimensional models simulate only the region outside the sand bed. This paper develops a new three-dimensional two-phase model for simulating sediment transport in the sheet flow condition, incorporating recently published rheological characteristics of sediments. The enduring-contact, inertial, and fluid viscosity effects are considered in determining sediment pressure and stresses, enabling the model to be applicable to a wide range of particle Reynolds number. A k − ε turbulence model is adopted to compute the Reynolds stresses. In addition, a novel numerical scheme is proposed, thus avoiding numerical instability caused by high sediment concentration and allowing the sediment dynamics to be computed both within and outside the sand bed. The present model is applied to two classical problems, namely, sheet flow and scour under a pipeline with favorable results. For sheet flow, the computed velocity is consistent with measured data reported in the literature. For pipeline scour, the computed scour rate beneath the pipeline agrees with previous experimental observations. However, the present model is unable to capture vortex shedding; consequently, the sediment deposition behind the pipeline is overestimated. Sensitivity analyses reveal that model parameters associated with turbulence have strong influence on the computed results.

  9. High temperature pipeline design

    Energy Technology Data Exchange (ETDEWEB)

    Greenslade, J.G. [Colt Engineering, Calgary, AB (Canada). Pipelines Dept.; Nixon, J.F. [Nixon Geotech Ltd., Calgary, AB (Canada); Dyck, D.W. [Stress Tech Engineering Inc., Calgary, AB (Canada)

    2004-07-01

    It is impractical to transport bitumen and heavy oil by pipelines at ambient temperature unless diluents are added to reduce the viscosity. A diluted bitumen pipeline is commonly referred to as a dilbit pipeline. The diluent routinely used is natural gas condensate. Since natural gas condensate is limited in supply, it must be recovered and reused at high cost. This paper presented an alternative to the use of diluent to reduce the viscosity of heavy oil or bitumen. The following two basic design issues for a hot bitumen (hotbit) pipeline were presented: (1) modelling the restart problem, and, (2) establishing the maximum practical operating temperature. The transient behaviour during restart of a high temperature pipeline carrying viscous fluids was modelled using the concept of flow capacity. Although the design conditions were hypothetical, they could be encountered in the Athabasca oilsands. It was shown that environmental disturbances occur when the fluid is cooled during shut down because the ground temperature near the pipeline rises. This can change growing conditions, even near deeply buried insulated pipelines. Axial thermal loads also constrain the design and operation of a buried pipeline as higher operating temperatures are considered. As such, strain based design provides the opportunity to design for higher operating temperature than allowable stress based design methods. Expansion loops can partially relieve the thermal stress at a given temperature. As the design temperature increase, there is a point at which above grade pipelines become attractive options, although the materials and welding procedures must be suitable for low temperature service. 3 refs., 1 tab., 10 figs.

  10. Transport of Tank 241-SY-101 Waste Slurry: Effects of Dilution and Temperature on Critical Pipeline Velocity

    International Nuclear Information System (INIS)

    KP Recknagle; Y Onishi

    1999-01-01

    This report presents the methods and results of calculations performed to predict the critical velocity and pressure drop required for the two-inch pipeline transfer of solid/liquid waste slurry from underground waste storage Tank 241-SY-101 to Tank 241-SY- 102 at the Hanford Site. The effects of temperature and dilution on the critical velocity were included in the analysis. These analyses show that Tank 241-SY-101 slurry should be diluted with water prior to delivery to Tank 241-SY-102. A dilution ratio of 1:1 is desirable and would allow the waste to be delivered at a critical velocity of 1.5 ft/sec. The system will be operated at a flow velocity of 6 ft/sec or greater therefore, this velocity will be sufficient to maintain a stable slurry delivery through the pipeline. The effect of temperature on the critical velocity is not a limiting factor when the slurry is diluted 1:1 with water. Pressure drop at the critical velocity would be approximately two feet for a 125-ft pipeline (or 250-ft equivalent straight pipeline). At 6 ft/sec, the pressure drop would be 20 feet over a 250-ft equivalent straight pipeline

  11. United States petroleum pipelines: An empirical analysis of pipeline sizing

    Science.gov (United States)

    Coburn, L. L.

    1980-12-01

    The undersizing theory hypothesizes that integrated oil companies have a strong economic incentive to size the petroleum pipelines they own and ship over in a way that means that some of the demand must utilize higher cost alternatives. The DOJ theory posits that excess or monopoly profits are earned due to the natural monopoly characteristics of petroleum pipelines and the existence of market power in some pipelines at either the upstream or downstream market. The theory holds that independent petroleum pipelines owned by companies not otherwise affiliated with the petroleum industry (independent pipelines) do not have these incentives and all the efficiencies of pipeline transportation are passed to the ultimate consumer. Integrated oil companies on the other hand, keep these cost efficiencies for themselves in the form of excess profits.

  12. Leadership Pipeline

    DEFF Research Database (Denmark)

    Elmholdt, Claus Westergård

    2012-01-01

    Artiklen analyserer grundlaget for Leadership Pipeline modellen med henblik på en vurdering af substansen bag modellen, og perspektiverne for generalisering af modellen til en dansk organisatorisk kontekst.......Artiklen analyserer grundlaget for Leadership Pipeline modellen med henblik på en vurdering af substansen bag modellen, og perspektiverne for generalisering af modellen til en dansk organisatorisk kontekst....

  13. Pipelines in power plants

    International Nuclear Information System (INIS)

    Oude-Hengel, H.H.

    1978-01-01

    Since the end of the Sixties, steam-transporting pipelines are given great attention, as pipeline components often fail, partially even long before their designed operation time is over. Thus, experts must increasingly deal with questions of pipelines and their components. Design and calculation, production and operation of pipelines are included in the discussion. Within the frame of this discussion, planners, producers, operators, and technical surveillance personnel must be able to offer a homogenous 'plan for assuring the quality of pipelines' in fossil and nuclear power plants. This book tries to make a contribution to this topic. 'Quality assuring' means efforts made for meeting the demands of quality (reliability). The book does not intend to complete with well-known manuals, as for as a complete covering of the topic is concerned. A substantial part of its sections serves to show how quality assurance of pipelines can be at least partially obtained by surveillance measures beginning with the planning, covering the production, and finally accompanying the operation. There is hardly need to mention that the sort of planning, production, and operation has an important influence on the quality. This is why another part of the sections contain process aspects from the view of the planners, producers, and operators. (orig.) [de

  14. Pipelines to eastern Canada

    International Nuclear Information System (INIS)

    Otsason, J.

    1998-01-01

    This presentation focused on four main topics: (1) the existing path of pipelines to eastern Canada, (2) the Chicago hub, (3) transport alternatives, and (4) the Vector Pipeline' expansion plans. In the eastern Canadian market, TransCanada Pipelines dominates 96 per cent of the market share and is effectively immune to expansion costs. Issues regarding the attractiveness of the Chicago hub were addressed. One attractive feature is that the Chicago hub has access to multiple supply basins including western Canada, the Gulf Coast, the mid-continent, and the Rockies. Regarding Vector Pipelines' future plans, the company proposes to construct 343 miles of pipeline from Joliet, Illinois to Dawn, Ontario. Project description included discussion of some of the perceived advantages of this route, namely, extensive storage in Michigan and south-western Ontario, the fact that the proposed pipeline traverses major markets which would mitigate excess capacity concerns, arbitrage opportunities, cost effective expansion capability reducing tolls, and likely lower landed costs in Ontario. Project schedule, costs, rates and tariffs are also discussed. tabs., figs

  15. 75 FR 5536 - Pipeline Safety: Control Room Management/Human Factors, Correction

    Science.gov (United States)

    2010-02-03

    ... DEPARTMENT OF TRANSPORTATION Pipeline and Hazardous Materials Safety Administration 49 CFR Parts...: Control Room Management/Human Factors, Correction AGENCY: Pipeline and Hazardous Materials Safety... following correcting amendments: PART 192--TRANSPORTATION OF NATURAL AND OTHER GAS BY PIPELINE: MINIMUM...

  16. A state-of-the-art review of techno-economic models predicting the costs of CO2 pipeline transport

    NARCIS (Netherlands)

    Knoope, M.M.J.; Ramirez, C.A.; Faaij, A.P.C.

    This study aims to provide a systematic overview and comparison of capital and O&M costs models for CO2 pipelines and booster stations currently available in literature. Our findings indicate significantly large cost ranges for the results provided by the different cost models. Two main types of

  17. Coal-slurry pipelines. Hearing before the Subcommittee on Commerce, Transportation, and Tourism of the Committee on Energy and Commerce, House of Representatives, Ninety-Seventh Congress, Second Session, August 6, 1982

    Energy Technology Data Exchange (ETDEWEB)

    1983-01-01

    Railroad opposition to competition from coal-slurry pipelines dominated the hearing, although other concerns focused on competition for construction capital, environmental impacts, and the economic impact of duplicating rail routes. The 13 witnesses spoke for the coal, rail, and pipeline industries and for the Department of Interior. Material submitted by the Railroad Labor Executives' Association and the Slurry Transport Association follows the testimony. (DCK)

  18. Oil transport scheduling in a pipeline with a characteristic operation; Otimizacao das operacoes de transporte de derivados em um poliduto com multiplas sangrias

    Energy Technology Data Exchange (ETDEWEB)

    Kira, Guilherme; Magatao, Leandro; Arruda, Lucia Valeria Ramos; Silva, Marcos Henrique da [Universidade Tecnologica Federal do Parana (UTFPR), Curitiba, PR (Brazil); Lara, Lucas El Ghoz [Petroleo Brasileiro S.A (PETROBRAS), Rio de Janeiro, RJ (Brazil); Ribas, Paulo Cesar [Petroleo Brasileiro S.A (CENPES/PETROBRAS), Rio de Janeiro, RJ (Brazil). Centro de Pesquisa e Desenvolvimento

    2012-07-01

    This work presents an optimization structure to support the operational decision making of scheduling activities in a multi product pipeline with multiple deliveries. This pipeline connects, in sequence, 6 operational areas: one is the main refinery, and the 5 remaining are distribution centers, each one with specific capacity of storage. Basically, the refinery pumps derivatives, such as diesel and gasoline, in a unidirectional flow to distribution centers, in a way to supply their demands. The solution kernel is underlined in a hybrid structure, using heuristics and Mixed Integer Linear Programming (MILP) modeling, executed iteratively. Details of storage curves and flow rate of pipelines are obtained in the proposed approach, expanding the results of Kira et al. (2010). Additionally, the proposed approach is able to deal with discrete demands along the scheduling horizon. Thus, this hybrid structure makes possible to obtain operational scheduling solutions at a low CPU times (few minutes), using real data scenarios, whose horizon length has at least 30 days. (author)

  19. Pressure Prediction of Coal Slurry Transportation Pipeline Based on Particle Swarm Optimization Kernel Function Extreme Learning Machine

    Directory of Open Access Journals (Sweden)

    Xue-cun Yang

    2015-01-01

    Full Text Available For coal slurry pipeline blockage prediction problem, through the analysis of actual scene, it is determined that the pressure prediction from each measuring point is the premise of pipeline blockage prediction. Kernel function of support vector machine is introduced into extreme learning machine, the parameters are optimized by particle swarm algorithm, and blockage prediction method based on particle swarm optimization kernel function extreme learning machine (PSOKELM is put forward. The actual test data from HuangLing coal gangue power plant are used for simulation experiments and compared with support vector machine prediction model optimized by particle swarm algorithm (PSOSVM and kernel function extreme learning machine prediction model (KELM. The results prove that mean square error (MSE for the prediction model based on PSOKELM is 0.0038 and the correlation coefficient is 0.9955, which is superior to prediction model based on PSOSVM in speed and accuracy and superior to KELM prediction model in accuracy.

  20. Study of risk in gasoline and diesel transportation pipelines in Mexico; Estudio del riesgo en ductos de transporte de gasolinas y diesel en Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Olivera Villasenor, Ruperto Enrique [Universidad Nacional Autonoma Mexico, Mexico D.F. (Mexico); Rodriguez Castellanos, Alejandro [Instituto Mexicano del Petroleo, Mexico D.F. (Mexico)

    2005-10-15

    A methodology of risk operative analysis for damages, which are derived from theft of gasoline in Petroleos Mexicanos (Pemex) pipelines by third parts (clandestine pipes) is proposed. Originally, the problematic is studied from the global perspective of pipelines accidents happened in the world, in United States of America and in Mexico, and later it approaches specifically the environment that the industry of Pemex-Refinery pipelines. When the results are obtained, it is concluded that the factor of risk with more occurrence probability of pipelines, is due to damages for third parts, in first term, and followed by the damages originated by corrosion in second term. So a diagnostic is made of the physical vulnerability degree on the rights of way of Pemex. [Spanish] Se propone una metodologia de analisis de riesgo operativo en poliductos debido a danos por terceras partes (tomas clandestinas), originados del hurto de gasolinas en ductos de Petroleos Mexicanos (Pemex). La problematica se aborda desde una perspectiva global de accidentes en los ductos de Pemex-Refinacion. Del analisis y resultados obtenidos, se concluye que el factor de riesgo con mayor probabilidad de ocurrencia en poliductos, es debido a danos por terceras partes, en primer termino, seguido de los danos originados por corrosion. Asimismo se hace un diagnostico del grado de vulnerabilidad fisica de los derechos de via de Pemex.

  1. 49 CFR 192.627 - Tapping pipelines under pressure.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 3 2010-10-01 2010-10-01 false Tapping pipelines under pressure. 192.627 Section... NATURAL AND OTHER GAS BY PIPELINE: MINIMUM FEDERAL SAFETY STANDARDS Operations § 192.627 Tapping pipelines under pressure. Each tap made on a pipeline under pressure must be performed by a crew qualified to make...

  2. 76 FR 21423 - Pipeline Safety: Request for Special Permit

    Science.gov (United States)

    2011-04-15

    ... DEPARTMENT OF TRANSPORTATION Pipeline and Hazardous Materials Safety Administration [Docket No. PHMSA-2011-0063] Pipeline Safety: Request for Special Permit AGENCY: Pipeline and Hazardous Materials... application is for two 30-inch segments, segments 3 and 4, of the TPL 330 natural gas pipeline located in St...

  3. 77 FR 2606 - Pipeline Safety: Random Drug Testing Rate

    Science.gov (United States)

    2012-01-18

    ... DEPARTMENT OF TRANSPORTATION Pipeline and Hazardous Materials Safety Administration [Docket ID PHMSA-2012-0004] Pipeline Safety: Random Drug Testing Rate AGENCY: Pipeline and Hazardous Materials... pipelines and operators of liquefied natural gas facilities must select and test a percentage of covered...

  4. 75 FR 35516 - Pipeline Safety: Request for Special Permit

    Science.gov (United States)

    2010-06-22

    ... DEPARTMENT OF TRANSPORTATION Pipeline and Hazardous Materials Safety Administration [Docket No. PHMSA-2010-0147] Pipeline Safety: Request for Special Permit AGENCY: Pipeline and Hazardous Materials... with the Class 1 location portion of a 7.4 mile natural gas pipeline to be constructed in Alaska. This...

  5. 77 FR 26822 - Pipeline Safety: Verification of Records

    Science.gov (United States)

    2012-05-07

    ... DEPARTMENT OF TRANSPORTATION Pipeline and Hazardous Materials Safety Administration [Docket No. PHMSA-2012-0068] Pipeline Safety: Verification of Records AGENCY: Pipeline and Hazardous Materials... issuing an Advisory Bulletin to remind operators of gas and hazardous liquid pipeline facilities to verify...

  6. 75 FR 73160 - Pipeline Safety: Information Collection Activities

    Science.gov (United States)

    2010-11-29

    ... DEPARTMENT OF TRANSPORTATION Pipeline and Hazardous Materials Safety Administration [Docket No...-Related Conditions on Gas, Hazardous Liquid, and Carbon Dioxide Pipelines and Liquefied Natural Gas... Pipelines and Liquefied Natural Gas Facilities.'' The Pipeline Safety Laws (49 U.S.C. 60132) require each...

  7. 75 FR 9018 - Pipeline Safety: Random Drug Testing Rate

    Science.gov (United States)

    2010-02-26

    ... DEPARTMENT OF TRANSPORTATION Pipeline and Hazardous Materials Safety Administration [Docket ID PHMSA-2010-0034] Pipeline Safety: Random Drug Testing Rate AGENCY: Pipeline and Hazardous Materials... pipelines and operators of liquefied natural gas facilities must select and test a percentage of covered...

  8. 75 FR 4136 - Pipeline Safety: Request To Modify Special Permit

    Science.gov (United States)

    2010-01-26

    ... DEPARTMENT OF TRANSPORTATION Pipeline and Hazardous Materials Safety Administration [Docket No. PHMSA-2009-0377] Pipeline Safety: Request To Modify Special Permit AGENCY: Pipeline and Hazardous... coating on its gas pipeline. DATES: Submit any comments regarding this special permit modification request...

  9. 76 FR 11853 - Pipeline Safety: Request for Special Permit

    Science.gov (United States)

    2011-03-03

    ... DEPARTMENT OF TRANSPORTATION Pipeline and Hazardous Materials Safety Administration [Docket No. PHMSA-2011-0027] Pipeline Safety: Request for Special Permit AGENCY: Pipeline and Hazardous Materials... a 24-inch mainline natural gas pipeline, 595 feet in length. The first segment of the special permit...

  10. 77 FR 34458 - Pipeline Safety: Requests for Special Permit

    Science.gov (United States)

    2012-06-11

    ... DEPARTMENT OF TRANSPORTATION Pipeline and Hazardous Materials Safety Administration [Docket No. PHMSA-2012-0112] Pipeline Safety: Requests for Special Permit AGENCY: Pipeline and Hazardous Materials... BreitBurn Energy Company LP, two natural gas pipeline operators, seeking relief from compliance with...

  11. 78 FR 14877 - Pipeline Safety: Incident and Accident Reports

    Science.gov (United States)

    2013-03-07

    ... DEPARTMENT OF TRANSPORTATION Pipeline and Hazardous Materials Safety Administration [Docket ID PHMSA-2013-0028] Pipeline Safety: Incident and Accident Reports AGENCY: Pipeline and Hazardous Materials... PHMSA F 7100.2--Incident Report--Natural and Other Gas Transmission and Gathering Pipeline Systems and...

  12. 78 FR 65429 - Pipeline Safety: Request for Special Permit

    Science.gov (United States)

    2013-10-31

    ... DEPARTMENT OF TRANSPORTATION Pipeline and Hazardous Materials Safety Administration [Docket No. PHMSA-2010-0041] Pipeline Safety: Request for Special Permit AGENCY: Pipeline and Hazardous Materials...-0041 Williams Gas Pipeline 49 CFR 192.150........ To authorize the extension Company, LLC (WGP). of a...

  13. 78 FR 53190 - Pipeline Safety: Notice to Operators of Hazardous Liquid and Natural Gas Pipelines of a Recall on...

    Science.gov (United States)

    2013-08-28

    ... DEPARTMENT OF TRANSPORTATION Pipeline and Hazardous Materials Safety Administration [Docket No. PHMSA-2013-0185] Pipeline Safety: Notice to Operators of Hazardous Liquid and Natural Gas Pipelines of a Recall on Leak Repair Clamps Due to Defective Seal AGENCY: Pipeline and Hazardous Materials Safety...

  14. 78 FR 42889 - Pipeline Safety: Reminder of Requirements for Utility LP-Gas and LPG Pipeline Systems

    Science.gov (United States)

    2013-07-18

    ... DEPARTMENT OF TRANSPORTATION Pipeline and Hazardous Materials Safety Administration 49 CFR Part 192 [Docket No. PHMSA-2013-0097] Pipeline Safety: Reminder of Requirements for Utility LP-Gas and LPG Pipeline Systems AGENCY: Pipeline and Hazardous Materials Safety Administration (PHMSA), DOT. ACTION...

  15. 77 FR 6857 - Pipeline Safety: Notice of Public Meetings on Improving Pipeline Leak Detection System...

    Science.gov (United States)

    2012-02-09

    ... DEPARTMENT OF TRANSPORTATION Pipeline and Hazardous Materials Safety Administration [Docket ID... installed to lessen the volume of natural gas and hazardous liquid released during catastrophic pipeline... p.m. Panel 3: Considerations for Natural Gas Pipeline Leak Detection Systems 3:30 p.m. Break 3:45 p...

  16. 76 FR 303 - Pipeline Safety: Safety of On-Shore Hazardous Liquid Pipelines

    Science.gov (United States)

    2011-01-04

    ... leak detection requirements for all pipelines; whether to require the installation of emergency flow... DEPARTMENT OF TRANSPORTATION Pipeline and Hazardous Materials Safety Administration 49 CFR Part 195 [Docket ID PHMSA-2010-0229] RIN 2137-AE66 Pipeline Safety: Safety of On-Shore Hazardous Liquid...

  17. Leadership Pipeline

    DEFF Research Database (Denmark)

    Elmholdt, Claus Westergård

    2013-01-01

    I artiklen undersøges det empiriske grundlag for Leader- ship Pipeline. Først beskrives Leadership Pipeline modellen om le- delsesbaner og skilleveje i opadgående transitioner mellem orga- nisatoriske ledelsesniveauer (Freedman, 1998; Charan, Drotter and Noel, 2001). Dernæst sættes fokus på det...... forholdet mellem kontinuitet- og diskontinuitet i ledel- seskompetencer på tværs af organisatoriske niveauer præsenteres og diskuteres. Afslutningsvis diskuteres begrænsningerne i en kompetencebaseret tilgang til Leadership Pipeline, og det foreslås, at succesfuld ledelse i ligeså høj grad afhænger af...

  18. Open access to natural gas pipeline transportation in North America: Lessons for the European internal energy market

    International Nuclear Information System (INIS)

    Dreyfus, D.A.; Koklauner, A.B.

    1991-01-01

    The North American natural gas industry's experience with deregulation is described, with emphasis on the transition to competition and the conditions for viability under open access. Lessons learned from the North American experience are then examined for relevance to the European situation, which is emphasizing greater access to transmission systems. It is found likely that the European proposal will frequently operate only to facilitate negotiations among players already active in the gas market, and is less likely to introduce a large number of independent transactions or new merchants. Challenges for the system will include: government assurance of reliability to domestic gas users who have made arrangements with foreign suppliers; administration of pipeline grids; resolution of competing claims on available transmission services; planning for future suppliers; and impact on investment. 8 refs., 1 fig

  19. Integration of Wind Energy, Hydrogen and Natural Gas Pipeline Systems to Meet Community and Transportation Energy Needs: A Parametric Study

    Directory of Open Access Journals (Sweden)

    Shahryar Garmsiri

    2014-04-01

    Full Text Available The potential benefits are examined of the “Power-to-Gas” (P2G scheme to utilize excess wind power capacity by generating hydrogen (or potentially methane for use in the natural gas distribution grid. A parametric analysis is used to determine the feasibility and size of systems producing hydrogen that would be injected into the natural gas grid. Specifically, wind farms located in southwestern Ontario, Canada are considered. Infrastructure requirements, wind farm size, pipeline capacity, geographical dispersion, hydrogen production rate, capital and operating costs are used as performance measures. The model takes into account the potential production rate of hydrogen and the rate that it can be injected into the local gas grid. “Straw man” systems are examined, centered on a wind farm size of 100 MW integrating a 16-MW capacity electrolysis system typically producing 4700 kg of hydrogen per day.

  20. Oil pipeline valve automation for spill reduction

    Energy Technology Data Exchange (ETDEWEB)

    Mohitpour, Mo; Trefanenko, Bill [Enbridge Technology Inc, Calgary (Canada); Tolmasquim, Sueli Tiomno; Kossatz, Helmut [TRANSPETRO - PETROBRAS Transporte S.A., Rio de Janeiro, RJ (Brazil)

    2003-07-01

    Liquid pipeline codes generally stipulate placement of block valves along liquid transmission pipelines such as on each side of major river crossings where environmental hazards could cause or are foreseen to potentially cause serious consequences. Codes, however, do not stipulate any requirement for block valve spacing for low vapour pressure petroleum transportation, nor for remote pipeline valve operations to reduce spills. A review of pipeline codes for valve requirement and spill limitation in high consequence areas is thus presented along with a criteria for an acceptable spill volume that could be caused by pipeline leak/full rupture. A technique for deciding economically and technically effective pipeline block valve automation for remote operation to reduce oil spilled and control of hazards is also provided. In this review, industry practice is highlighted and application of the criteria for maximum permissible oil spill and the technique for deciding valve automation thus developed, as applied to ORSUB pipeline is presented. ORSUB is one of the three initially selected pipelines that have been studied. These pipelines represent about 14% of the total length of petroleum transmission lines operated by PETROBRAS Transporte S.A. (TRANSPETRO) in Brazil. Based on the implementation of valve motorization on these three pipeline, motorization of block valves for remote operation on the remaining pipelines is intended, depending on the success of these implementations, on historical records of failure and appropriate ranking. (author)

  1. 75 FR 15485 - Pipeline Safety: Workshop on Guidelines for Integrity Assessment of Cased Pipe

    Science.gov (United States)

    2010-03-29

    ... DEPARTMENT OF TRANSPORTATION Pipeline and Hazardous Materials Safety Administration [Docket ID...: Pipeline and Hazardous Materials Safety Administration (PHMSA), DOT. ACTION: Notice of workshop. SUMMARY... ``Guidelines for Integrity Assessment of Cased Pipe in Gas Transmission Pipelines'' and related Frequently...

  2. 75 FR 14243 - Pipeline Safety: Girth Weld Quality Issues Due to Improper Transitioning, Misalignment, and...

    Science.gov (United States)

    2010-03-24

    ... DEPARTMENT OF TRANSPORTATION Pipeline and Hazardous Materials Safety Administration [Docket No..., and Welding Practices of Large Diameter Line Pipe AGENCY: Pipeline and Hazardous Materials Safety... bulletin to notify owners and operators of recently constructed large diameter natural gas pipeline and...

  3. 78 FR 34703 - Pipeline Safety: Information Collection Activities, Revision to Gas Distribution Annual Report

    Science.gov (United States)

    2013-06-10

    ... DEPARTMENT OF TRANSPORTATION Pipeline and Hazardous Materials Safety Administration [Docket No. PHMSA-2013-0004] Pipeline Safety: Information Collection Activities, Revision to Gas Distribution Annual Report AGENCY: Pipeline and Hazardous Materials Safety Administration, DOT. ACTION: Notice and request...

  4. 76 FR 1504 - Pipeline Safety: Establishing Maximum Allowable Operating Pressure or Maximum Operating Pressure...

    Science.gov (United States)

    2011-01-10

    ... DEPARTMENT OF TRANSPORTATION Pipeline and Hazardous Materials Safety Administration [Docket No... Mitigation AGENCY: Pipeline and Hazardous Materials Safety Administration (PHMSA); DOT. ACTION: Notice... system. To that end, the Hazardous Liquid and Gas Transmission Pipeline Integrity Management (IM...

  5. 77 FR 75699 - Pipeline Safety: Reporting of Exceedances of Maximum Allowable Operating Pressure

    Science.gov (United States)

    2012-12-21

    ... DEPARTMENT OF TRANSPORTATION Pipeline and Hazardous Materials Safety Administration [Docket No... AGENCY: Pipeline and Hazardous Materials Safety Administration (PHMSA); DOT. ACTION: Notice; Issuance of... occurs. This reporting requirement is applicable to all gas transmission pipeline facility owners and...

  6. 75 FR 22678 - Pipeline Safety: Implementation of Electronic Filing for Recently Revised Incident/Accident...

    Science.gov (United States)

    2010-04-29

    ... DEPARTMENT OF TRANSPORTATION Pipeline and Hazardous Materials Safety Administration [Docket No... Liquid Systems AGENCY: Pipeline and Hazardous Materials Safety Administration (PHMSA), DOT. ACTION: Notice; Issuance of Advisory Bulletin. SUMMARY: This notice advises owners and operators of gas pipeline...

  7. 76 FR 45904 - Pipeline Safety: Information Collection Activities

    Science.gov (United States)

    2011-08-01

    ... DEPARTMENT OF TRANSPORTATION Pipeline and Hazardous Materials Safety Administration [Docket No... at U.S. Department of Transportation, Pipeline and Hazardous Materials Safety Administration, 1200...: On Occasion. Title: Record Keeping for Natural Gas Pipeline Operators. OMB Control Number: 2137-0049...

  8. Nitrate dosage system in a reclaimed wastewater pipeline for the inhibition of sulfide build-up; Sistema de dosificacion de nitrato en una conduccion de transporte de agua depurada para evitar la generacion de sulfuro

    Energy Technology Data Exchange (ETDEWEB)

    Monteagudo Perez-Machado, T.; Rodriguez Gomez, L. E.; Alvarez Diaz, M.

    2007-07-01

    During reclaimed wastewater transportation under anaerobic conditions sulfide generation may take place, which should be avoided due to the numerous problems related to it. This is the case of the reclaimed wastewater reuse scheme of Tenerife, one of whose elements is a completely filled 61 km long gravity pipeline, 0,60 m in diameter. In order to avoid the appearance of anaerobic conditions a controlled nitrate dosage system has been designed to be installed at the pipeline inlet, with nitrate dosage to be controlled by the organic matter content of the reclaimed wastewater, using turbidity as an indicator of it. (Author) 26 refs.

  9. 76 FR 45332 - Pipeline and Hazardous Materials Safety Administration

    Science.gov (United States)

    2011-07-28

    ... DEPARTMENT OF TRANSPORTATION Pipeline and Hazardous Materials Safety Administration Office of... Hazardous Materials Safety Administration (PHMSA), DOT. ACTION: List of Applications for Modification of..., 2011. ADDRESSES: Record Center, Pipeline and Hazardous Materials Safety Administration, U.S. Department...

  10. The petroleum and its products pipeline network as articulate axle of the social-environmental transformation; A malha dutoviaria de transporte de petroleo e derivados como eixo articulador de transformacao socio-ambiental

    Energy Technology Data Exchange (ETDEWEB)

    Ferreira Filho, Aluisio Teles [TRANSPETRO - PETROBRAS Transportes, Rio de Janeiro, RJ (Brazil). Gerencia de Seguranca, Meio Ambiente e Saude; Dias, Janice; Vieira, Roberto Gomes [PETROBRAS, Rio de Janeiro, RJ (Brazil)

    2003-07-01

    The article describes the experience of the area of Social Responsibility in TRANSPETRO, a wholly Brazilian Subsidiary of PETROBRAS, which operates in the field of transport of petroleum, its by-products and gas, by way of oil and gas pipeline networks. Pipeline is the safety option for the transport of these products, but requires monitoring and the permanent management of the use and occupation of the soil and surrounding area. This care does not only depend on the Company as responsibility is much wider. Active participation by the communities affected by the operations is essential, principally in incorporating the rules of occupation and the use of the soil in the land surrounding the strips and the terminals. This participation is justified given that the action of third parties represents a significant proportion (70%) of the irregular situations registered by the Company. Community Relationship Management is one of the principal strategies to increase the safety of the pipelines integrated into the Company's programs of maintenance and operational control. Therefore, a plan of Community Relations has been implanted, focusing on the transformation of values to construct a community culture of co-habitation and co-responsibility for the pipeline land. (author)

  11. The petroleum and its products pipeline network as articulate axle of the social-environmental transformation; A malha dutoviaria de transporte de petroleo e derivados como eixo articulador de transformacao socio-ambiental

    Energy Technology Data Exchange (ETDEWEB)

    Ferreira Filho, Aluisio Teles [TRANSPETRO - PETROBRAS Transportes, Rio de Janeiro, RJ (Brazil). Gerencia de Seguranca, Meio Ambiente e Saude; Dias, Janice; Vieira, Roberto Gomes [PETROBRAS, Rio de Janeiro, RJ (Brazil)

    2003-07-01

    The article describes the experience of the area of Social Responsibility in TRANSPETRO, a wholly Brazilian Subsidiary of PETROBRAS, which operates in the field of transport of petroleum, its by-products and gas, by way of oil and gas pipeline networks. Pipeline is the safety option for the transport of these products, but requires monitoring and the permanent management of the use and occupation of the soil and surrounding area. This care does not only depend on the Company as responsibility is much wider. Active participation by the communities affected by the operations is essential, principally in incorporating the rules of occupation and the use of the soil in the land surrounding the strips and the terminals. This participation is justified given that the action of third parties represents a significant proportion (70%) of the irregular situations registered by the Company. Community Relationship Management is one of the principal strategies to increase the safety of the pipelines integrated into the Company's programs of maintenance and operational control. Therefore, a plan of Community Relations has been implanted, focusing on the transformation of values to construct a community culture of co-habitation and co-responsibility for the pipeline land. (author)

  12. Evaluation of methane fugitive emissions in systems of natural gas transportation. The Bolivia-Brazil pipeline case; Avaliacao das emissoes fugitivas de metano em sistemas de transporte de gas natural. O caso do gasoduto Bolivia-Brasil

    Energy Technology Data Exchange (ETDEWEB)

    Costa, Daniele Mesquita Bordalo da; La Rovere, Emilio Lebre [Universidade Federal do Rio de Janeiro (PPE/COPPE/UFRJ), RJ (Brazil). Coordenacao dos Programas de Pos-Graduacao de Engenharia. Programa de Planejamento Energetico], Emails: danielembc@poli.ufrj.br, emilio@ppe.ufrj.br; Sarno, Ruy Alberto Campos [Transportadora Brasileira Gasoduto Bolivia-Brasil S.A., Rio de Janeiro, RJ (Brazil)], E-mail: ruy@tbg.com.br

    2010-07-01

    This paper verifies the total annual of fugitive emissions of methane from the Bolivia-Brazil pipeline, presently the largest pipeline in operation in Brazil, beside to estimate the financial loss associated to those emissions.

  13. Emergency preparedness of OSBRA Pipeline

    Energy Technology Data Exchange (ETDEWEB)

    Magalhaes, Milton P.; Torres, Carlos A.R.; Almeida, Francisco J.C. [TRANSPETRO, Rio de Janeiro, RJ (Brazil)

    2009-07-01

    This paper presents the experience of PETROBRAS Transporte S. A. - TRANSPETRO in the preparation for emergencies in the OSBRA pipeline, showing specific aspects and solutions developed. The company has a standardized approach for the emergency management, based on risk analysis studies, risk management plan and contingency plans. To cover almost 1,000 km of pipeline, the Company avails of Emergency Response Centers and Environmental Defense Center, located at strategic points. In order to achieve preparation, fire fighting training and oil leakage elimination training are provided. Additionally, simulation exercises are performed, following a schedule worked out according to specific criteria and guidelines. As a conclusion, a picture is presented of the evolution of the preparation for emergencies in the OSBRA System which bears the enormous responsibility of transporting flammable products for almost 1,000 km of pipeline, crossing 40 municipalities, 3 states and the Federal District. (author)

  14. Pipeline network and environment

    International Nuclear Information System (INIS)

    Oliveira Nascimento, I.; Wagner, J.; Silveira, T.

    2012-01-01

    The Rio de Janeiro is one of 27 units of Brazil. It is located in the eastern portion of the Southeast and occupies an area of 43 696.054 km², being effectively the 3rd smallest state in Brazil. This state in recent years has suffered from erosion problems caused by the deployment of the network pipeline. The deployment pipeline is part of the activities related to the oil industry has caused a more intense conflict between the environment and economic activities, modifying the soil structure and distribution of surface and subsurface flows. This study aimed to analyze the erosion caused by the removal of soil for the deployment of pipeline transportation, with the consequences of the emergence of numerous gullies, landslides and silting of rivers. For the development of this study were performed bibliographic research, field work, mapping and digital preparation of the initial diagnosis of active processes and what the consequent environmental impacts. For these reasons, we conclude that the problems could be avoided or mitigated if there was a prior geological risk management. (author)

  15. Regulatory assessment with regulatory flexibility analysis : draft regulatory evaluation - Notice of Proposed Rulemaking -- Pipeline Safety : safety standards for increasing the maximum allowable operating pressure for natural gas transmission pipelines.

    Science.gov (United States)

    2008-02-01

    The Pipeline and Hazardous Materials Safety Administration (PHMSA) is proposing changes to the Federal pipeline safety regulations in 49 CFR Part 192, which cover the transportation of natural gas by pipeline. Specifically, PHMSA proposes allowing na...

  16. PIPELINE CORROSION CONTROL IN OIL AND GAS INDUSTRY: A ...

    African Journals Online (AJOL)

    Corrosion in pipelines is one of the major challenges faced by oil and gas industries all over the world. This has made corrosion control or management a major factor to consider before setting up any industry that will transport products via pipelines. In this study the types of corrosion found on system 2A pipeline were; ...

  17. 75 FR 45696 - Pipeline Safety: Personal Electronic Device Related Distractions

    Science.gov (United States)

    2010-08-03

    ... DEPARTMENT OF TRANSPORTATION Pipeline and Hazardous Materials Safety Administration [Docket No... and operators of natural gas and hazardous liquid pipeline facilities are required to have and follow.... Advisory Bulletin (ADB-10-06) To: Owners and Operators of Hazardous Liquid and Natural Gas Pipeline Systems...

  18. 77 FR 72905 - Pipeline Safety: Random Drug Testing Rate; Contractor MIS Reporting; and Obtaining DAMIS Sign-In...

    Science.gov (United States)

    2012-12-06

    ... DEPARTMENT OF TRANSPORTATION Pipeline and Hazardous Materials Safety Administration [Docket ID... DAMIS Sign-In Information AGENCY: Pipeline and Hazardous Materials Safety Administration (PHMSA), DOT..., hazardous liquid, and carbon dioxide pipelines and operators of liquefied natural gas facilities must...

  19. 76 FR 54531 - Pipeline Safety: Potential for Damage to Pipeline Facilities Caused by the Passage of Hurricanes

    Science.gov (United States)

    2011-09-01

    ... prescribed in Sec. 195.452(h).'' Operators of shallow-water gas and hazardous liquid pipelines in the Gulf of... pipeline safety: 1. Identify persons who normally engage in shallow-water commercial fishing, shrimping... DEPARTMENT OF TRANSPORTATION Pipeline and Hazardous Materials Safety Administration [Docket No...

  20. Gathering pipeline methane emissions in Fayetteville shale pipelines and scoping guidelines for future pipeline measurement campaigns

    Directory of Open Access Journals (Sweden)

    Daniel J. Zimmerle

    2017-11-01

    Full Text Available Gathering pipelines, which transport gas from well pads to downstream processing, are a sector of the natural gas supply chain for which little measured methane emissions data are available. This study performed leak detection and measurement on 96 km of gathering pipeline and the associated 56 pigging facilities and 39 block valves. The study found one underground leak accounting for 83% (4.0 kg CH4/hr of total measured emissions. Methane emissions for the 4684 km of gathering pipeline in the study area were estimated at 402 kg CH4/hr [95 to 1065 kg CH4/hr, 95% CI], or 1% [0.2% to 2.6%] of all methane emissions measured during a prior aircraft study of the same area. Emissions estimated by this study fall within the uncertainty range of emissions estimated using emission factors from EPA’s 2015 Greenhouse Inventory and study activity estimates. While EPA’s current inventory is based upon emission factors from distribution mains measured in the 1990s, this study indicates that using emission factors from more recent distribution studies could significantly underestimate emissions from gathering pipelines. To guide broader studies of pipeline emissions, we also estimate the fraction of the pipeline length within a basin that must be measured to constrain uncertainty of pipeline emissions estimates to within 1% of total basin emissions. The study provides both substantial insight into the mix of emission sources and guidance for future gathering pipeline studies, but since measurements were made in a single basin, the results are not sufficiently representative to provide methane emission factors at the regional or national level.

  1. FUZZY INFERENCE BASED LEAK ESTIMATION IN WATER PIPELINES SYSTEM

    OpenAIRE

    N. Lavanya; G. Anand; S. Srinivasan

    2015-01-01

    Pipeline networks are the most widely used mode for transporting fluids and gases around the world. Leakage in this pipeline causes harmful effects when the flowing fluid/gas is hazardous. Hence the detection of leak becomes essential to avoid/minimize such undesirable effects. This paper presents the leak detection by spectral analysis methods in a laboratory pipeline system. Transient in the pressure signal in the pipeline is created by opening and closing the exit valve. These pressure var...

  2. Prospects for coal slurry pipelines in California

    Science.gov (United States)

    Lynch, J. F.

    1978-01-01

    The coal slurry pipeline segment of the transport industry is emerging in the United States. If accepted it will play a vital role in meeting America's urgent energy requirements without public subsidy, tax relief, or federal grants. It is proven technology, ideally suited for transport of an abundant energy resource over thousands of miles to energy short industrial centers and at more than competitive costs. Briefly discussed are the following: (1) history of pipelines; (2) California market potential; (3) slurry technology; (4) environmental benefits; (5) market competition; and (6) a proposed pipeline.

  3. Removable pipeline plug

    International Nuclear Information System (INIS)

    Vassalotti, M.; Anastasi, F.

    1984-01-01

    A removable plugging device for a pipeline, and particularly for pressure testing a steam pipeline in a boiling water reactor, wherein an inflatable annular sealing member seals off the pipeline and characterized by radially movable shoes for holding the plug in place, each shoe being pivotally mounted for self-adjusting engagement with even an out-of-round pipeline interior

  4. Pipeline integrity management

    Energy Technology Data Exchange (ETDEWEB)

    Guyt, J.; Macara, C.

    1997-12-31

    This paper focuses on some of the issues necessary for pipeline operators to consider when addressing the challenge of managing the integrity of their systems. Topics are: Definition; business justification; creation and safeguarding of technical integrity; control and deviation from technical integrity; pipelines; pipeline failure assessment; pipeline integrity assessment; leak detection; emergency response. 6 figs., 3 tabs.

  5. 49 CFR 195.452 - Pipeline integrity management in high consequence areas.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 3 2010-10-01 2010-10-01 false Pipeline integrity management in high consequence... Management § 195.452 Pipeline integrity management in high consequence areas. (a) Which pipelines are covered... that could affect a high consequence area, including any pipeline located in a high consequence area...

  6. Quantitative risk analysis in two pipelines operated by TRANSPETRO

    Energy Technology Data Exchange (ETDEWEB)

    Garcia, Claudio B. [PETROBRAS Transporte S/A (TRANSPETRO), Rio de Janeiro, RJ (Brazil); Pinho, Edson [Universidade Federal Rural do Rio de Janeiro (UFRRJ), Seropedica, RJ (Brazil); Bittencourt, Euclides [Centro Universitario FIB, Salvador , BA (Brazil)

    2009-07-01

    Transportation risk analysis techniques were used to study two pipelines operated by TRANSPETRO. The Pipeline A is for the simultaneous transportation of diesel, gasoline and LPG and comprises three parts, all of them crossing rural areas. The Pipeline B is for oil transportation and one of its ends is located in an area of a high density population. Both pipelines had their risk studied using the PHAST RISK{sup R} software and the individual risk measures, the only considered measures for license purposes for this type of studies, presented level far below the maximum tolerable levels considered. (author)

  7. Worldwide natural gas pipeline situation. Sekai no tennen gas pipeline jokyo

    Energy Technology Data Exchange (ETDEWEB)

    Arimoto, T [Osaka Gas Co. Ltd., Osaka (Japan)

    1993-03-01

    Constructing natural gas pipelines in wide areas requires investments of a huge amount. Many countries are building natural gas supply infrastructures under public support as nations' basic policy of promoting use of natural gas. This paper describes the present conditions of building pipelines in Western Europe, the U.S.A., Korea and Taiwan. In Western Europe, transporting companies established in line with the national policy own trunk pipelines and storage facilities, and import and distribute natural gas. The U.S.A. has 2300 small and large pipeline companies bearing transportation business. Pipelines extend about 1.9 million kilometers in total, with trunk pipelines accounting for about 440,000 kilometers. The companies are given eminent domain for the right of way. Korea has a plan to build a pipeline network with a distance of 1600 kilometers in around 2000. Taiwan has completed trunk pipelines extending 330 kilometers in two years. In Japan, the industry is preparing draft plans for wide area pipeline construction. 5 figs., 1 tab.

  8. Pipeline monitoring with unmanned aerial vehicles

    Science.gov (United States)

    Kochetkova, L. I.

    2018-05-01

    Pipeline leakage during transportation of combustible substances leads to explosion and fire thus causing death of people and destruction of production and accommodation facilities. Continuous pipeline monitoring allows identifying leaks in due time and quickly taking measures for their elimination. The paper describes the solution of identification of pipeline leakage using unmanned aerial vehicles. It is recommended to apply the spectral analysis with input RGB signal to identify pipeline damages. The application of multi-zone digital images allows defining potential spill of oil hydrocarbons as well as possible soil pollution. The method of multi-temporal digital images within the visible region makes it possible to define changes in soil morphology for its subsequent analysis. The given solution is cost efficient and reliable thus allowing reducing timing and labor resources in comparison with other methods of pipeline monitoring.

  9. Gas-liquid two-phase flow behavior in terrain-inclined pipelines for gathering transport system of wet natural gas

    DEFF Research Database (Denmark)

    Yang, Yan; Li, Jingbo; Wang, Shuli

    2018-01-01

    The Volume of Fluid method and Re-Normalisation Group (RNG) k-ε turbulence model were employed to predict the gas-liquid two-phase flow in a terrain-inclined pipeline with deposited liquids. The simulation was carried out in a 22.5 m terrain-inclined pipeline with a 150 mm internal diameter...... on the liquid level under the suction force which caused by the negative pressure around the elbow, and then it touched to the top of the pipe. When the liquid blocked the pipe, the pressure drop between the upstream and downstream of the elbow increased with the increase of the gas velocity. At larger gas...

  10. Improved cost models for optimizing CO2 pipeline configuration for point-to-point pipelines and simple networks

    NARCIS (Netherlands)

    Knoope, M. M. J.|info:eu-repo/dai/nl/364248149; Guijt, W.; Ramirez, A.|info:eu-repo/dai/nl/284852414; Faaij, A. P. C.

    In this study, a new cost model is developed for CO2 pipeline transport, which starts with the physical properties of CO2 transport and includes different kinds of steel grades and up-to-date material and construction costs. This pipeline cost model is used for a new developed tool to determine the

  11. Optimal hub location in pipeline networks

    Energy Technology Data Exchange (ETDEWEB)

    Dott, D.R.; Wirasinghe, S.C.; Chakma, A. [Univ. of Calgary, Alberta (Canada)

    1996-12-31

    This paper discusses optimization strategies and techniques for the location of natural gas marketing hubs in the North American gas pipeline network. A hub is a facility at which inbound and outbound network links meet and freight is redirected towards their destinations. Common examples of hubs used in the gas pipeline industry include gas plants, interconnects and market centers. Characteristics of the gas pipeline industry which are relevant to the optimization of transportation costs using hubs are presented. Allocation techniques for solving location-allocation problems are discussed. An outline of the research in process by the authors in the field of optimal gas hub location concludes the paper.

  12. Knotted pipeline

    International Nuclear Information System (INIS)

    Beer, G.; Slovak, K.

    2006-01-01

    It is too early to speculate on where the Transpetrol shares will end up. The bankruptcy trustee of Yukos, Eduard Rebgun, has so far received three offers from Gazprom, the Rusneft oil company and the Penta private equity group via its Cyprian company. All three would like to gain control over the Slovak oil transporting company. As yet, no formal request from the Slovak Republic has been delivered to Moscow. By Trend's deadline, President Ivan Gasparovic and the Minister of Economy, Lubomir Jahnatek, were still negotiating in Moscow with the Russian President, Vladimir Putin. One of the topics on the agenda was the future of the company which transports Russian oil to Europe. Both Slovakia and Russia aim to gain control over the stock and the situation is locked in stalemate The stock in question is owned by the Dutch company, Yukos Finance. And although this company is owned by the bankrupt Yukos, the property rights are in the hands of foundation, Stichting Administratiekantoor Yukos International. Yukos Finance is not in bankruptcy and it is therefore difficult to detach the Yukos shares from the company assets. (authors)

  13. Design of Submarine Pipeline With Respect to Corrosion and Material Selection

    OpenAIRE

    El-Mogi, Hossam

    2016-01-01

    Master's thesis in Offshore technology : subsea technology Pipelines are an essential part of the oil and gas industry as they are the main means of transportation. As the offshore technology advances, subsea pipelines are being operated in more demanding environments. For the pipelines to operate efficiently, they have to be carefully designed. One of the main threats to the integrity of the pipeline is corrosion, which has caused many failures. Corrosion in subsea pipelines has different...

  14. Regulatory assessment with regulatory flexibility analysis and paperwork reduction act analysis : draft regulatory evaluation : Notice of Proposed Rulemaking -- Pipeline Safety : Polyamide-11 (PA-11) plastic pipe design pressures

    Science.gov (United States)

    2007-06-01

    The Pipeline and Hazardous Materials Safety Administration (PHMSA) is proposing changes to the Federal pipeline safety regulations in 49 CFR Part 192, which cover the transportation of natural gas by pipeline. Specifically, PHMSA is proposing to chan...

  15. Regular pipeline maintenance of gas pipeline using technical operational diagnostics methods

    Energy Technology Data Exchange (ETDEWEB)

    Volentic, J [Gas Transportation Department, Slovensky plynarensky priemysel, Slovak Gas Industry, Bratislava (Slovakia)

    1998-12-31

    Slovensky plynarensky priemysel (SPP) has operated 17 487 km of gas pipelines in 1995. The length of the long-line pipelines reached 5 191 km, distribution network was 12 296 km. The international transit system of long-line gas pipelines ranged 1 939 km of pipelines of various dimensions. The described scale of transport and distribution system represents a multibillion investments stored in the ground, which are exposed to the environmental influences and to pipeline operational stresses. In spite of all technical and maintenance arrangements, which have to be performed upon operating gas pipelines, the gradual ageing takes place anyway, expressed in degradation process both in steel tube, as well as in the anti-corrosion coating. Within a certain time horizon, a consistent and regular application of methods and means of in-service technical diagnostics and rehabilitation of existing pipeline systems make it possible to save substantial investment funds, postponing the need in funds for a complex or partial reconstruction or a new construction of a specific gas section. The purpose of this presentation is to report on the implementation of the programme of in-service technical diagnostics of gas pipelines within the framework of regular maintenance of SPP s.p. Bratislava high pressure gas pipelines. (orig.) 6 refs.

  16. Regular pipeline maintenance of gas pipeline using technical operational diagnostics methods

    Energy Technology Data Exchange (ETDEWEB)

    Volentic, J. [Gas Transportation Department, Slovensky plynarensky priemysel, Slovak Gas Industry, Bratislava (Slovakia)

    1997-12-31

    Slovensky plynarensky priemysel (SPP) has operated 17 487 km of gas pipelines in 1995. The length of the long-line pipelines reached 5 191 km, distribution network was 12 296 km. The international transit system of long-line gas pipelines ranged 1 939 km of pipelines of various dimensions. The described scale of transport and distribution system represents a multibillion investments stored in the ground, which are exposed to the environmental influences and to pipeline operational stresses. In spite of all technical and maintenance arrangements, which have to be performed upon operating gas pipelines, the gradual ageing takes place anyway, expressed in degradation process both in steel tube, as well as in the anti-corrosion coating. Within a certain time horizon, a consistent and regular application of methods and means of in-service technical diagnostics and rehabilitation of existing pipeline systems make it possible to save substantial investment funds, postponing the need in funds for a complex or partial reconstruction or a new construction of a specific gas section. The purpose of this presentation is to report on the implementation of the programme of in-service technical diagnostics of gas pipelines within the framework of regular maintenance of SPP s.p. Bratislava high pressure gas pipelines. (orig.) 6 refs.

  17. 49 CFR 192.619 - Maximum allowable operating pressure: Steel or plastic pipelines.

    Science.gov (United States)

    2010-10-01

    ... plastic pipelines. 192.619 Section 192.619 Transportation Other Regulations Relating to Transportation... Operations § 192.619 Maximum allowable operating pressure: Steel or plastic pipelines. (a) No person may operate a segment of steel or plastic pipeline at a pressure that exceeds a maximum allowable operating...

  18. North America pipeline map

    International Nuclear Information System (INIS)

    Anon.

    2005-01-01

    This map presents details of pipelines currently in place throughout North America. Fifty-nine natural gas pipelines are presented, as well as 16 oil pipelines. The map also identifies six proposed natural gas pipelines. Major cities, roads and highways are included as well as state and provincial boundaries. The National Petroleum Reserve is identified, as well as the Arctic National Wildlife Refuge. The following companies placed advertisements on the map with details of the services they provide relating to pipeline management and construction: Ferus Gas Industries Trust; Proline; SulfaTreat Direct Oxidation; and TransGas. 1 map

  19. Theoretical study and design of a low-grade heat-driven pilot ejector refrigeration machine operating with butane and isobutane and intended for cooling of gas transported in a gas-main pipeline

    KAUST Repository

    Petrenko, V.O.

    2011-11-01

    This paper describes the construction and performance of a novel combined system intended for natural gas transportation and power production, and for cooling of gas transported in a gas-main pipeline. The proposed system includes a gas turbine compressor, a combined electrogenerating plant and an ejector refrigeration unit operating with a hydrocarbon refrigerant. The combined electrogenerating plant consists of a high-temperature steam-power cycle and a low-temperature hydrocarbon vapor power cycle, which together comprise a binary vapor system. The combined system is designed for the highest possible effectiveness of power generation and could find wide application in gas-transmission systems of gas-main pipelines. Application of the proposed system would enable year-round power generation and provide cooling of natural gas during periods of high ambient temperature operation. This paper presents the main results of a theoretical study and design performance specifications of a low-grade heat-driven pilot ejector refrigeration machine operating with butane and isobutane. © 2010 Elsevier Ltd and IIR. All rights reserved.

  20. Scheduling optimization of a real-world multi product pipeline network; Otimizacao das operacoes de transporte de derivados de petroleo em redes de dutos

    Energy Technology Data Exchange (ETDEWEB)

    Boschetto, Suelen N.; Felizari, Luiz C.; Magatao, Leandro; Stebel, Sergio L.; Neves Junior, Flavio; Lueders, Ricardo; Arruda, Lucia V.R. de [Universidade Tecnologica Federal do Parana (UTFPR), Curitiba, PR (Brazil); Ribas, Paulo Cesar; Bernardo, Luiz F.J. [PETROBRAS S.A., Rio de Janeiro, RJ (Brazil). Centro de Pesquisas (CENPES)

    2008-07-01

    This work develops an optimization structure to aid the operational decision-making of scheduling activities in a real world pipeline network. The proposed approach is based on a decomposition method to address complex problems with high computational burden. The Pre-analysis makes a previous evaluation of a batch sequencing, getting information to be entered into optimization block. The continuous time Mixed Integer Linear Program (MILP) model gets such information and calculates the scheduling. The models are applied to a pipeline network that connects different areas including refineries, terminals, and final clients. Many oil derivatives (e.g. gasoline, liquefied petroleum gas, naphtha) can be sent or received in this network. The computational burden to determine a short-term scheduling within the considered scenario is a relevant issue. Many insights have been derived from the obtained solutions, which are given in a reduced computational time for oil industrial-size scenarios. (author)

  1. Transport diphasique de gaz et de condensat. Aspects techniques et économiques Technical and Economic Aspects of Two-Phase Pipelining of Gas and Condensate

    Directory of Open Access Journals (Sweden)

    Bourgeois T.

    2006-11-01

    Full Text Available L'évacuation diphasique de la production d'un gisement de gaz à condensat présente des avantages importants, en particulier sur le plan économique. Les caractéristiques des écoulements diphasiques sont exposées, avec les conséquences principales sur la définition d'un schéma d'exploitation. Une comparaison économique est ensuite présentée, pour illustrer la réduction des investissements qui peut être apportée par l'évacuation diphasique de la production. Enfin, les recherches françaises sur les écoulements diphasiques dans les conduites pétrolières sont brièvement décrites, ainsi qu'un exemple de calcul sur une conduite de gaz à condensat en exploitation diphasique. The two-phase pipelining of a wet gas field production presents many advantages, especially from an economic point of view. The characteristics of two-phase flow are described, together with their main consequences on the operational scheme. Then an economic comparison is made to illustrate the reduction in investment costs that can by achieved with two-phase pipelining. Research in France on two-phase flow in gas and condensate pipelines is briefly described, and an example is given of the designing of a wet-gas pipeline currently being operated in the two-phase mode.

  2. Application of risk assessment techniques to 'major hazard' pipelines

    Energy Technology Data Exchange (ETDEWEB)

    Cox, R A

    1982-12-01

    A risk analysis for a hazardous-material pipeline (carrying LPG, ammonia, or high-pressure gas) is presented. The analysis gives results in a form that will assist the decisionmaker in pipeline planning and route selection. The large inventory of hazardous materials in such pipelines means that risks exist even though the accident record of pipeline transportation compares favorably with that for competing modes of transport. Risk analysis techniques - commonly used in the civil aviation, nuclear, and process industries - can be equally well applied to pipelines and can produce results that not only give a measure of the risk but also indicate the principal sources of risk and possible areas for improvement. A number of pipeline risk analyses have demonstrated the viability of the technique and its usefulness as an aid to practical engineering in design, planning, and maintenance/repair phases.

  3. Customer service drives pipelines' reorganization

    International Nuclear Information System (INIS)

    Share, J.

    1997-01-01

    The concept behind formation of Enron Transportation and Storage tells plenty about this new gas industry. When executives at the Enron Gas Pipeline Group considered plans last year to streamline operations by merging the support functions of Transwestern Pipeline and their other wholly owned pipeline company, Northern Natural Gas, seamless customer service was foremost on their agenda. Instead of worrying about whether employees would favor one pipeline over the other, perhaps to the detriment of customers, they simply created a new organization that everyone would swear the same allegiance to. The 17,000-mile, 4.1 Bcf/d Northern system serves the upper Midwest market and two major expansion projects were completed there last year. Transwestern is a 2,700-mile system with an eastward capacity of 1 Bcf/d and westward of 1.5 Bcf/, that traditionally served California markets. It also ties into Texas intrastate markets and, thanks to expansion of the San Juan lateral, to southern Rocky Mountain supplies. Although Enron Corp. continues to position itself as a full-service energy company, the Gas Pipeline Group continues to fuel much of corporate's net income, which was $584 million last year. With ET and S comprising a significant portion of GPG's income, it was vital that the merger of Northern's 950 employees with Transwestern's 250 indeed be a seamless one. It was not easy either psychologically or geographically with main offices in Omaha, NE and Houston as well as operations centers in Minneapolis, MN; Amarillo, TX; W. Des Moines, IA; and Albuquerque, NM. But the results have been gratifying, according to William R. Cordes, President of ET and S and Nancy L. Gardner, Executive Vice President of Strategic Initiatives

  4. Pipelines 'R' us

    International Nuclear Information System (INIS)

    Thomas, P.

    1997-01-01

    The geopolitical background to the export of oil and gas from Kazakhstan by pipeline is explored with particular reference to the sensitivities of the USA. There are now a number of pipeline proposals which would enable Kazakhstan to get its hydrocarbons to world markets. The construction of two of these formed part of a major oil deal signed recently with China in the face of stiff competition from major US companies. The most convenient and cost effective route, connecting up with Iran's existing pipeline network to the Gulf, is unlikely to be developed given continuing US sanctions against Iran. Equally unlikely seems to be the Turkmenistan to Pakistan pipeline in the light of the political volatility of Afghanistan. US companies continue to face limits on export capacity via the existing Russian pipelines from Kazakhstan. A temporary solution could be to carry some oil in the existing pipeline from Azerbaijan to Georgia which has been upgraded and is due to become operational soon, and later in a second proposed pipeline on this route. The Caspian Pipeline Consortium, consisting of three countries and eleven international companies, is building a 1500 km pipeline from the Tergiz field to Novorossiysk on the Black Sea with a view to completion in 2000. An undersea pipeline crossing the Caspian from Azerbaijan is being promoted by Turkey. There is an international perception that within the next five years Kazakhstan could be in a position to export its oil via as many as half a dozen different routes. (UK)

  5. Simplified Technique for Predicting Offshore Pipeline Expansion

    Science.gov (United States)

    Seo, J. H.; Kim, D. K.; Choi, H. S.; Yu, S. Y.; Park, K. S.

    2018-06-01

    In this study, we propose a method for estimating the amount of expansion that occurs in subsea pipelines, which could be applied in the design of robust structures that transport oil and gas from offshore wells. We begin with a literature review and general discussion of existing estimation methods and terminologies with respect to subsea pipelines. Due to the effects of high pressure and high temperature, the production of fluid from offshore wells is typically caused by physical deformation of subsea structures, e.g., expansion and contraction during the transportation process. In severe cases, vertical and lateral buckling occurs, which causes a significant negative impact on structural safety, and which is related to on-bottom stability, free-span, structural collapse, and many other factors. In addition, these factors may affect the production rate with respect to flow assurance, wax, and hydration, to name a few. In this study, we developed a simple and efficient method for generating a reliable pipe expansion design in the early stage, which can lead to savings in both cost and computation time. As such, in this paper, we propose an applicable diagram, which we call the standard dimensionless ratio (SDR) versus virtual anchor length (L A ) diagram, that utilizes an efficient procedure for estimating subsea pipeline expansion based on applied reliable scenarios. With this user guideline, offshore pipeline structural designers can reliably determine the amount of subsea pipeline expansion and the obtained results will also be useful for the installation, design, and maintenance of the subsea pipeline.

  6. Leak detection systems as a central component of pipeline safety concepts; Leckueberwachungssysteme als zentrale Bestandteile von Pipeline-Sicherheitskonzepten

    Energy Technology Data Exchange (ETDEWEB)

    Vogt, Daniel [KROHNE Oil and Gas B.V., Breda (Netherlands)

    2013-03-15

    The transport of materials in pipelines is continuously increasing worldwide. Pipelines are one of the most economic and safe transport systems in all directions. In order to ensure this, not only new pipelines but also existing pipelines have to be kept up to date technically. Leakages are a possible safety risk. Leaks are manifold and range from earth quakes, corrosion or material fatigue up to open-up by drilling by thieves. A specific leakage detection often is used in order to limit the risks. The minimization of the consequences of accidents, downtimes and product losses as well as regulatory procedures is the reason for the detection of leakages. Leaks in pipelines can be detected on different kinds - from a simple visual inspection during the inspection up to computer-assisted systems monitoring certain states also in underground and submarine pipeline.

  7. Research on Connection and Function Reliability of the Oil&Gas Pipeline System

    Directory of Open Access Journals (Sweden)

    Xu Bo

    2017-01-01

    Full Text Available Pipeline transportation is the optimal way for energy delivery in terms of safety, efficiency and environmental protection. Because of the complexity of pipeline external system including geological hazards, social and cultural influence, it is a great challenge to operate the pipeline safely and reliable. Therefore, the pipeline reliability becomes an important issue. Based on the classical reliability theory, the analysis of pipeline system is carried out, then the reliability model of the pipeline system is built, and the calculation is addressed thereafter. Further the connection and function reliability model is applied to a practical active pipeline system, with the use of the proposed methodology of the pipeline system; the connection reliability and function reliability are obtained. This paper firstly presented to considerate the connection and function reliability separately and obtain significant contribution to establish the mathematical reliability model of pipeline system, hence provide fundamental groundwork for the pipeline reliability research in the future.

  8. Living and working near pipelines : Landowner guide 2002

    International Nuclear Information System (INIS)

    Anon

    2002-01-01

    The transportation of natural gas, oil and other commodities is effected by pipelines throughout most of the country. Safety in the vicinity of a pipeline is very important because damage to a pipeline could result in adverse conditions to public safety and/or the environment. Before digging, written approval must be obtained from the pipeline company. If a landowner is having difficulty negotiating an agreement with the pipeline company, they should call the National Energy Board. It is illegal to construct or excavate without authorization, and approval or denial of a request must be granted within 10 business days by the pipeline company. Three days are allowed to the pipeline company to locate its pipeline. A section dealing with pipeline right-of-way is included, as well as the safety zone and the restricted area. A 10-step checklist of safety tips assists the landowner in taking the appropriate measures in the vicinity of a pipeline. A brief overview of the responsibilities of the National Energy Board is provided, followed by a list of the main pipelines regulated by the National Energy Board. 2 figs

  9. 75 FR 35366 - Pipeline Safety: Applying Safety Regulation to All Rural Onshore Hazardous Liquid Low-Stress Lines

    Science.gov (United States)

    2010-06-22

    ... DEPARTMENT OF TRANSPORTATION Pipeline and Hazardous Materials Safety Administration 49 CFR Part... Onshore Hazardous Liquid Low-Stress Lines AGENCY: Pipeline and Hazardous Materials Safety Administration... to the risks that hazardous liquid and natural gas pipelines pose to the environment. In the Pipeline...

  10. Decontamination device for pipeline

    International Nuclear Information System (INIS)

    Harashina, Heihachi.

    1994-01-01

    Pipelines to be decontaminated are parts of pipelines contaminated with radioactive materials, and they are connected to a fluid transfer means (for example, a bladeless pump) and a ball collector by way of a connector. The fluid of a mixture of chemical decontaminating liquid and spheres is sent into pipelines to be decontaminated. The spheres are, for example, heat resistant porous hard or soft rubber spheres. The fluid discharged from the pipelines to be decontaminated are circulated by way of bypassing means. The inner surface of the pipelines is decontaminated by the circulation of the fluid. When the bypass means is closed, the fluid discharged from the pipelines to be decontaminated is sent to the ball collector, and the spheres are captured by a hopper. Further, the liquid is sent to the filtrating means to filter the chemical contaminating liquid, and sludges contained in the liquid are captured. (I.N.)

  11. Overview of interstate hydrogen pipeline systems

    International Nuclear Information System (INIS)

    Gillette, J.L.; Kolpa, R.L.

    2008-01-01

    The use of hydrogen in the energy sector of the United States is projected to increase significantly in the future. Current uses are predominantly in the petroleum refining sector, with hydrogen also being used in the manufacture of chemicals and other specialized products. Growth in hydrogen consumption is likely to appear in the refining sector, where greater quantities of hydrogen will be required as the quality of the raw crude decreases, and in the mining and processing of tar sands and other energy resources that are not currently used at a significant level. Furthermore, the use of hydrogen as a transportation fuel has been proposed both by automobile manufacturers and the federal government. Assuming that the use of hydrogen will significantly increase in the future, there would be a corresponding need to transport this material. A variety of production technologies are available for making hydrogen, and there are equally varied raw materials. Potential raw materials include natural gas, coal, nuclear fuel, and renewables such as solar, wind, or wave energy. As these raw materials are not uniformly distributed throughout the United States, it would be necessary to transport either the raw materials or the hydrogen long distances to the appropriate markets. While hydrogen may be transported in a number of possible forms, pipelines currently appear to be the most economical means of moving it in large quantities over great distances. One means of controlling hydrogen pipeline costs is to use common rights-of-way (ROWs) whenever feasible. For that reason, information on hydrogen pipelines is the focus of this document. Many of the features of hydrogen pipelines are similar to those of natural gas pipelines. Furthermore, as hydrogen pipeline networks expand, many of the same construction and operating features of natural gas networks would be replicated. As a result, the description of hydrogen pipelines will be very similar to that of natural gas pipelines

  12. Overview of interstate hydrogen pipeline systems.

    Energy Technology Data Exchange (ETDEWEB)

    Gillette, J .L.; Kolpa, R. L

    2008-02-01

    The use of hydrogen in the energy sector of the United States is projected to increase significantly in the future. Current uses are predominantly in the petroleum refining sector, with hydrogen also being used in the manufacture of chemicals and other specialized products. Growth in hydrogen consumption is likely to appear in the refining sector, where greater quantities of hydrogen will be required as the quality of the raw crude decreases, and in the mining and processing of tar sands and other energy resources that are not currently used at a significant level. Furthermore, the use of hydrogen as a transportation fuel has been proposed both by automobile manufacturers and the federal government. Assuming that the use of hydrogen will significantly increase in the future, there would be a corresponding need to transport this material. A variety of production technologies are available for making hydrogen, and there are equally varied raw materials. Potential raw materials include natural gas, coal, nuclear fuel, and renewables such as solar, wind, or wave energy. As these raw materials are not uniformly distributed throughout the United States, it would be necessary to transport either the raw materials or the hydrogen long distances to the appropriate markets. While hydrogen may be transported in a number of possible forms, pipelines currently appear to be the most economical means of moving it in large quantities over great distances. One means of controlling hydrogen pipeline costs is to use common rights-of-way (ROWs) whenever feasible. For that reason, information on hydrogen pipelines is the focus of this document. Many of the features of hydrogen pipelines are similar to those of natural gas pipelines. Furthermore, as hydrogen pipeline networks expand, many of the same construction and operating features of natural gas networks would be replicated. As a result, the description of hydrogen pipelines will be very similar to that of natural gas pipelines

  13. Methods of increasing efficiency and maintainability of pipeline systems

    Science.gov (United States)

    Ivanov, V. A.; Sokolov, S. M.; Ogudova, E. V.

    2018-05-01

    This study is dedicated to the issue of pipeline transportation system maintenance. The article identifies two classes of technical-and-economic indices, which are used to select an optimal pipeline transportation system structure. Further, the article determines various system maintenance strategies and strategy selection criteria. Meanwhile, the maintenance strategies turn out to be not sufficiently effective due to non-optimal values of maintenance intervals. This problem could be solved by running the adaptive maintenance system, which includes a pipeline transportation system reliability improvement algorithm, especially an equipment degradation computer model. In conclusion, three model building approaches for determining optimal technical systems verification inspections duration were considered.

  14. 75 FR 66046 - Capacity Transfers on Intrastate Natural Gas Pipelines

    Science.gov (United States)

    2010-10-27

    ...] Capacity Transfers on Intrastate Natural Gas Pipelines October 21, 2010. AGENCY: Federal Energy Regulatory... comments on whether and how holders of firm capacity on intrastate natural gas pipelines providing interstate transportation and storage services under section 311 of the Natural Gas Policy Act of 1978 and...

  15. 18 CFR 284.142 - Sales by intrastate pipelines.

    Science.gov (United States)

    2010-04-01

    ... 18 Conservation of Power and Water Resources 1 2010-04-01 2010-04-01 false Sales by intrastate... AUTHORITIES CERTAIN SALES AND TRANSPORTATION OF NATURAL GAS UNDER THE NATURAL GAS POLICY ACT OF 1978 AND RELATED AUTHORITIES Certain Sales by Intrastate Pipelines § 284.142 Sales by intrastate pipelines. Any...

  16. Analytical modeling of pipeline failure in multiphase flow due to ...

    African Journals Online (AJOL)

    Pipeline could be said to be the safest and the most economical means of transportation of hydrocarbon fluids. Pipelines carrying oil and gas may suffer from internal corrosion when water is present. The corrosivity varies due to several factors such as; temperature, total pressure, CO2 and H2S content in the gas, pH of the ...

  17. Pipeline operators training and certification using thermohydraulic simulators

    Energy Technology Data Exchange (ETDEWEB)

    Barreto, Claudio V.; Plasencia C, Jose [Pontificia Universidade Catolica (PUC-Rio), Rio de Janeiro, RJ (Brazil). Nucleo de Simulacao Termohidraulica de Dutos (SIMDUT); Montalvao, Filipe; Costa, Luciano [TRANSPETRO - PETROBRAS Transporte S.A., Rio de Janeiro, RJ (Brazil)

    2009-07-01

    The continuous pipeline operators training and certification of the TRANSPETRO's Pipeline National Operations Control Center (CNCO) is an essential task aiming the efficiency and safety of the oil and derivatives transport operations through the Brazilian pipeline network. For this objective, a hydraulic simulator is considered an excellent tool that allows the creation of different operational scenarios for training the pipeline hydraulic behavior as well as for testing the operator's responses to normal and abnormal real time operational conditions. The hydraulic simulator is developed based on a pipeline simulation software that supplies the hydraulic responses normally acquired from the pipeline remote units in the field. The pipeline simulation software has a communication interface system that sends and receives data to the SCADA supervisory system database. Using the SCADA graphical interface to create and to customize human machine interfaces (HMI) from which the operator/instructor has total control of the pipeline/system and instrumentation by sending commands. Therefore, it is possible to have realistic training outside of the real production systems, while acquiring experience during training hours with the operation of a real pipeline. A pilot Project was initiated at TRANSPETRO - CNCO targeting to evaluate the hydraulic simulators advantages in pipeline operators training and certification programs. The first part of the project was the development of three simulators for different pipelines. The excellent results permitted the project expansion for a total of twenty different pipelines, being implemented in training programs for pipelines presently operated by CNCO as well as for the new ones that are being migrated. The main objective of this paper is to present an overview of the implementation process and the development of a training environment through a pipe simulation environment using commercial software. This paper also presents

  18. Pipeline system operability review

    Energy Technology Data Exchange (ETDEWEB)

    Eriksson, Kjell [Det Norske Veritas (Norway); Davies, Ray [CC Technologies, Dublin, OH (United States)

    2005-07-01

    Pipeline operators are continuously working to improve the safety of their systems and operations. In the US both liquid and gas pipeline operators have worked with the regulators over many years to develop more systematic approaches to pipeline integrity management. To successfully manage pipeline integrity, vast amounts of data from different sources needs to be collected, overlaid and analyzed in order to assess the current condition and predict future degradation. The efforts undertaken by the operators has had a significant impact on pipeline safety, nevertheless, during recent years we have seen a number of major high profile accidents. One can therefore ask how effective the pipeline integrity management systems and processes are. This paper will present one methodology 'The Pipeline System Operability Review' that can evaluate and rate the effectiveness of both the management systems and procedures, as well as the technical condition of the hardware. The result from the review can be used to compare the performance of different pipelines within one operating company, as well as benchmark with international best practices. (author)

  19. Pipeline system operability review

    Energy Technology Data Exchange (ETDEWEB)

    Eriksson, Kjell [Det Norske Veritas (Norway); Davies, Ray [CC Technologies, Dublin, OH (United States)

    2005-07-01

    Pipeline operators are continuously working to improve the safety of their systems and operations. In the US both liquid and gas pipeline operators have worked with the regulators over many years to develop more systematic approaches to pipeline integrity management. To successfully manage pipeline integrity, vast amounts of data from different sources needs to be collected, overlaid and analyzed in order to assess the current condition and predict future degradation. The efforts undertaken by the operators has had a significant impact on pipeline safety, nevertheless, during recent years we have seen a number of major high profile accidents. One can therefore ask how effective the pipeline integrity management systems and processes are. This paper will present one methodology 'The Pipeline System Operability Review' that can evaluate and rate the effectiveness of both the management systems and procedures, as well as the technical condition of the hardware. The result from the review can be used to compare the performance of different pipelines within one operating company, as well as benchmark with international best practices. (author)

  20. Seismic vulnerability of natural gas pipelines

    International Nuclear Information System (INIS)

    Lanzano, Giovanni; Salzano, Ernesto; Santucci de Magistris, Filippo; Fabbrocino, Giovanni

    2013-01-01

    This work deals with the analysis of the interaction of earthquakes with pipelines transporting and distributing natural gas for industrial and civil use. To this aim, a new large data-set of seismic information classified on the basis of selected seismological, geotechnical and structural parameters is presented and analyzed. Particular attention is devoted to continuous pipelines under strong ground shaking, which is the geotechnical effect due to passage of waves in soil. Results are provided in terms of the likelihood of the loss of containment with respect to Peak Ground Velocity (PGV), a seismic intensity parameter which may be easily retrieved either from local authorities and public databases or from site dependent hazard analysis. Fragility functions and seismic intensity threshold values for the failure and for the loss of containment of gas from pipeline systems are also given. The obtained functions can be easily implemented in existing codes and guidelines for industrial risk assessment, land-use planning, and for the design of public distribution network, with specific reference to Natural—Technological interaction (Na-Tech). -- Highlights: • The seismic vulnerability of natural gas pipelines is analyzed. • A collection of data for pipelines damaged by earthquake is given. • Damage states and risk states for pipelines are defined. • Consequence-based fragility formulations for the loss of containment are given • Seismic threshold values for public authority, risk assessment and gas distribution are shown

  1. Pipeline developments 1998 and beyond : more choices, more difficult decisions

    International Nuclear Information System (INIS)

    VanderSchee, K.

    1998-01-01

    Some of the basic economic principles that drive gas prices and gas flows across North America, and the pressures these have placed on the pipeline sector, are reviewed. Of pressing importance to the natural gas industry in Western Canada is the prospect that in the near future industrial gas users in eastern Canada will have a wider array of pipeline choices available to them than ever before. This will mean that the users will face more offerings from more pipeline providers, forcing pipeline owners to make more difficult decisions regarding new pipeline capacity. Variables such as price, terms and conditions will become increasingly negotiable. Market power concerns also remain an important issue. As a result, there is increasing call for market-based financial regulation of pipelines. 'Market gaming' a condition where a firm manipulates the market to its own market advantage is also receiving considerable attention. The latter is of particular concern in the United States. Against this background, the nature of competition (or the lack of it) in natural gas transport, the influence of short-term service revenues for pipelines, pipeline commitments through subsidiaries, and concerns over short term pipeline valuations skewing investment decisions, are issues that will continue to invite much attention. Regarding market outlook, it was noted that significantly increased export capacity from Alberta could raise the costs of Alberta supplies to eastern Canadian end-users relative to other supply/transport options which may now be viable economic alternatives. figs

  2. Pipeline developments 1998 and beyond : more choices, more difficult decisions

    Energy Technology Data Exchange (ETDEWEB)

    VanderSchee, K. [EnergyERA (Canada)

    1998-12-31

    Some of the basic economic principles that drive gas prices and gas flows across North America, and the pressures these have placed on the pipeline sector, are reviewed. Of pressing importance to the natural gas industry in Western Canada is the prospect that in the near future industrial gas users in eastern Canada will have a wider array of pipeline choices available to them than ever before. This will mean that the users will face more offerings from more pipeline providers, forcing pipeline owners to make more difficult decisions regarding new pipeline capacity. Variables such as price, terms and conditions will become increasingly negotiable. Market power concerns also remain an important issue. As a result, there is increasing call for market-based financial regulation of pipelines. `Market gaming` a condition where a firm manipulates the market to its own market advantage is also receiving considerable attention. The latter is of particular concern in the United States. Against this background, the nature of competition (or the lack of it) in natural gas transport, the influence of short-term service revenues for pipelines, pipeline commitments through subsidiaries, and concerns over short term pipeline valuations skewing investment decisions, are issues that will continue to invite much attention. Regarding market outlook, it was noted that significantly increased export capacity from Alberta could raise the costs of Alberta supplies to eastern Canadian end-users relative to other supply/transport options which may now be viable economic alternatives. figs.

  3. Managing changes of location classes of gas pipelines

    Energy Technology Data Exchange (ETDEWEB)

    Cunha, Sergio B; Sousa, Antonio Geraldo de [PETROBRAS Transporte S.A. (TRANSPETRO), Rio de Janeiro, RJ (Brazil)

    2009-12-19

    Most of the gas pipeline design codes utilize a class location system, where the design safety factor and the hydrostatic test factor are determined according to the population density in the vicinities of the pipeline route. Consequently, if an operator is requested or desires to maintain an existing gas pipeline in compliance with its design code, it will reduce the operational pressure or replace pipe sections to increase the wall thickness whenever a change in location class takes place. This article introduces an alternative methodology to deal with changes in location classes of gas pipelines. Initially, selected codes that utilize location class systems are reviewed. Afterwards, a model for the area affected by an ignition following a natural gas pipeline leak is described. Finally, a methodology to determine the MAOP and third part damage mitigation measures for gas transport pipelines that underwent changes in location class is presented. (author)

  4. Influence of Anchoring on Burial Depth of Submarine Pipelines.

    Directory of Open Access Journals (Sweden)

    Yuan Zhuang

    Full Text Available Since the beginning of the twenty-first century, there has been widespread construction of submarine oil-gas transmission pipelines due to an increase in offshore oil exploration. Vessel anchoring operations are causing more damage to submarine pipelines due to shipping transportation also increasing. Therefore, it is essential that the influence of anchoring on the required burial depth of submarine pipelines is determined. In this paper, mathematical models for ordinary anchoring and emergency anchoring have been established to derive an anchor impact energy equation for each condition. The required effective burial depth for submarine pipelines has then been calculated via an energy absorption equation for the protection layer covering the submarine pipelines. Finally, the results of the model calculation have been verified by accident case analysis, and the impact of the anchoring height, anchoring water depth and the anchor weight on the required burial depth of submarine pipelines has been further analyzed.

  5. Influence of Anchoring on Burial Depth of Submarine Pipelines.

    Science.gov (United States)

    Zhuang, Yuan; Li, Yang; Su, Wei

    2016-01-01

    Since the beginning of the twenty-first century, there has been widespread construction of submarine oil-gas transmission pipelines due to an increase in offshore oil exploration. Vessel anchoring operations are causing more damage to submarine pipelines due to shipping transportation also increasing. Therefore, it is essential that the influence of anchoring on the required burial depth of submarine pipelines is determined. In this paper, mathematical models for ordinary anchoring and emergency anchoring have been established to derive an anchor impact energy equation for each condition. The required effective burial depth for submarine pipelines has then been calculated via an energy absorption equation for the protection layer covering the submarine pipelines. Finally, the results of the model calculation have been verified by accident case analysis, and the impact of the anchoring height, anchoring water depth and the anchor weight on the required burial depth of submarine pipelines has been further analyzed.

  6. Pipelines and salmon in northern British Columbia : potential impacts

    International Nuclear Information System (INIS)

    Levy, D.A.

    2009-10-01

    Four pipeline projects have been proposed for northern British Columbia that could threaten the health of the Fraser, Skeena, and Kitimat watersheds. The pipelines will expose salmon to risks on several fronts. Enbridge's Northern Gateway pipeline project has generated the most concern for a several reasons, including the risks to salmon and freshwater habitat from pipeline failures, notably leaks or ruptures. This paper reviewed the salmon resources in affected watersheds; salmon and BC's economy; salmon diversity and abundance; impacts on fish from pipeline construction, operations and failures; behaviours of different petroleum products in fresh water; hydrocarbon toxicity; history of pipeline failures; sabotage and natural disasters; and Canadian case studies. Salmon are already experiencing stresses from forestry, hydro-electricity, transportation, agriculture, mining, mountain pine beetle, climate change and coalbed methane development. Their cumulative impact will dictate the long-term health and viability of salmon. It was concluded that if all of the proposed pipelines were built, they would extend over 4,000 km, crossing more than 1,000 rivers and streams in some of Canada's most productive salmon habitat. During construction, pipeline stream crossings are vulnerable to increased sedimentation, which can degrade salmon habitat. In the event of a spill, the condensate and oil sands products carried in the pipelines are highly toxic to salmon, with serious and lasting adverse impacts on salmon and their habitat. Any decision to approve such a pipeline should be made in recognition of these risks. 73 refs., 5 tabs., 15 figs., 2 appendices.

  7. Canadian hydrocarbon transportation system : transportation assessment

    International Nuclear Information System (INIS)

    2006-06-01

    This document provided an assessment of the Canadian hydrocarbon transportation system. In addition to regulating the construction and operation of Canada's 45,000 km of pipeline that cross international and provincial borders, Canada's National Energy Board (NEB) regulates the trade of natural gas, oil and natural gas liquids. The ability of pipelines to delivery this energy is critical to the country's economic prosperity. The pipeline system includes large-diameter, cross-country, high-pressure natural gas pipelines, low-pressure crude oil and oil products pipelines and small-diameter pipelines. In order to assess the hydrocarbon transportation system, staff at the NEB collected data from pipeline companies and a range of publicly available sources. The Board also held discussions with members of the investment community regarding capital markets and emerging issues. The assessment focused largely on evaluating whether Canadians benefit from an efficient energy infrastructure and markets. The safety and environmental integrity of the pipeline system was also evaluated. The current adequacy of pipeline capacity was assessed based on price differentials compared with firm service tolls for major transportation paths; capacity utilization on pipelines; and, the degree of apportionment on major oil pipelines. The NEB concluded that the Canadian hydrocarbon transportation system is working effectively, with an adequate capacity in place on existing natural gas pipelines, but with a tight capacity on oil pipelines. It was noted that shippers continue to indicate that they are reasonably satisfied with the services provided by pipeline companies and that the NEB-regulated pipeline companies are financially stable. 14 refs, 11 tabs., 28 figs., 4 appendices

  8. Transient leak detection in crude oil pipelines

    Energy Technology Data Exchange (ETDEWEB)

    Beushausen, R.; Tornow, S.; Borchers, H. [Nord-West Oelleitung, Wilhelmshaven (Germany); Murphy, K.; Zhang, J. [Atmos International Ltd., Manchester (United Kingdom)

    2004-07-01

    Nord-West Oelleitung (NWO) operates 2 crude oil pipelines from Wilhemshaven to Koln and Hamburg respectively. German regulations for transporting flammable substances stipulate that 2 independent continuously working procedures be used to detect leaks. Leak detection pigs are used routinely to complement the surveillance system. This paper described the specific issues of transient leak detection in crude oil pipelines. It was noted that traditional methods have failed to detect leaks that occur immediately after pumps are turned on or off because the pressure wave generated by the transient dominates the pressure wave that results from the leak. Frequent operational changes in a pipeline are often accompanied by an increased number of false alarms and failure to detect leaks due to unsteady operations. NWO therefore decided to have the Atmos statistical pipeline leak detection (SPLD) system installed on their pipelines. The key to the SPLD system is the sequential probability ratio test. Comprehensive data validation is performed following reception of pipeline data from the supervisory control and data acquisition (SCADA) system. The validated data is then used to calculate the corrected flow imbalance, which is fed into the SPRT to determine if there is an increase in the flow imbalance. Pattern recognition is then used to distinguish a leak from operational changes. The SPLD is unique because it uses 3 computational pipeline monitoring methods simultaneously, namely modified volume balance, statistical analysis, and pressure and flow monitoring. The successful installation and testing of the SPLD in 2 crude oil pipelines was described along with the main difficulties associated with transient leaks. Field results were presented for both steady-state and transient conditions. 5 refs., 2 tabs., 16 figs.

  9. 75 FR 36615 - Pipeline Safety: Information Collection Gas Distribution Annual Report Form

    Science.gov (United States)

    2010-06-28

    ... DEPARTMENT OF TRANSPORTATION Pipeline and Hazardous Materials Safety Administration 49 CFR Part 192 [Docket No. PHMSA-RSPA-2004-19854] Pipeline Safety: Information Collection Gas Distribution Annual Report Form AGENCY: Pipeline and Hazardous Materials Safety Administration (PHMSA), DOT. ACTION: Request...

  10. 78 FR 6402 - Pipeline Safety: Accident and Incident Notification Time Limit

    Science.gov (United States)

    2013-01-30

    ... DEPARTMENT OF TRANSPORTATION Pipeline and Hazardous Materials Safety Administration [Docket No.... SUMMARY: Owners and operators of gas and hazardous liquid pipeline systems and liquefied natural gas (LNG... operators of gas and hazardous liquids pipeline systems and LNG facilities that, ``at the earliest...

  11. 77 FR 17119 - Pipeline Safety: Cast Iron Pipe (Supplementary Advisory Bulletin)

    Science.gov (United States)

    2012-03-23

    ... DEPARTMENT OF TRANSPORTATION Pipeline and Hazardous Materials Safety Administration [Docket No... national attention and highlight the need for continued safety improvements to aging gas pipeline systems... 26, 1992) covering the continued use of cast iron pipe in natural gas distribution pipeline systems...

  12. Storage analysis of steel pipes used in pipelines; Analise do sistema de estocagem de tubos de aco para dutos de transporte

    Energy Technology Data Exchange (ETDEWEB)

    Provenzano, Carlos E.C.; Silva, Breno S.; Fernandes, Lincoln F.; Santos Junior, Sergio J.F. [PETROBRAS S.A., Rio de Janeiro, RJ (Brazil); Louzada, Carlos H.C.M.

    2005-07-01

    New pipelines, request the use of great amount of tubes stored during its construction. Therefore, the cost generated by the storage areas motivates the reconsideration of the stockpiling system. Large areas demand high costs related to its acquisition or rent. The use of small areas can reduce the immediate cost with rent, but also can increase the total cost due to damage of the tubes or increase the risk at the storage conditions. The same considerations could be made for inadequate use of support materials on the stockpiling piles, regarding the quality or amount used. This work presents the modelling of the pyramidal stockpiling system of steel tubes and evaluations to a better configuration. (author)

  13. Expert systems for integrity management in a crude oil pipeline; Sistemas expertos para gestion de integridad en sistemas de transporte de petroleo

    Energy Technology Data Exchange (ETDEWEB)

    Martinez, M.P.; Pini, J. [Oldelval S.A., General Roca RN (Argentina)]. E-mail: mmartine@oldelval.com.ar; jpini@oldelval.com.ar; Rossi, J.P.; Pellicano, A. [Sintec S.A., Mar del Plata, Buenos Aires (Argentina)]. E-mail: icesing@infovia.com.ar

    2003-07-01

    The study and modeling of corrosion processes aim at the accomplishment of three primary objectives: to increase safety operation margins, to reduce maintenance costs and to optimize available resources. The Integrity Expert System is based on a statistical propagation model of defects reported by high resolution magnetic inspection tool (MFL), fed with the information provided by corrosion sensors, repair interventions, field surveys and future inspections. As model results, defect depth, remaining strength and failure probability distributions were obtained. From the analysis, feasible courses of action were established: a medium term repair plan, an internal inspection program and both monitoring and mitigation technologies. System implementation in OLDELVAL was translated into two major effects of importance for the company integrity program: reduction in the pipeline probability of failure by corrosion by means of programmed repairs and optimization of the internal inspection investment plan by mans of an alternative programming. (author)

  14. Weld Design, Testing, and Assessment Procedures for High Strength Pipelines

    Science.gov (United States)

    2011-12-20

    Long-distance high-strength pipelines are increasingly being constructed for the efficient transportation of energy products. While the high-strength linepipe steels and high productivity welding processes are being applied, the procedures employed f...

  15. Integrated diagnostics of northern gas pipelines; Diagnostic integre des gazoducs septentrionaux

    Energy Technology Data Exchange (ETDEWEB)

    Volsky, E.; Dedikov, E.; Ananenkov, A.; Salchov, Z.; Yakupov, Z. [Joint-Stock Company, Gazprom (Russian Federation)

    2000-07-01

    The main part of gas joint - stock company 'Gazprom' extracts from the northern deposits, which are situated in the permafrost zone. Ensuring of gas transporting pipeline's safety operation is a very complex and priority problem. On the basis of usage of this complex of methods the problem to ensure the safety operation is solved systematically: gas-mine - plant IV - derivation pipelines (condensate pipeline Yamburg Novy Urengoy, gas pipeline IV - GCS with negative temperature of transported products) taking into account 'co-ordination' dynamics of changes in pipeline GTS and technological modes of equipment operation. All researches was executed on the high professional level. (authors)

  16. Trouble in the pipeline?

    Energy Technology Data Exchange (ETDEWEB)

    Snieckus, Darius

    2002-10-01

    The author provides a commentary on the political, economic, environmental and social problems facing the proposed 3 billion US dollars Baku-Ceyhan-Tbilisi export pipeline. The 1760 km long pipeline has been designed to carry 1 million b/d of crude oil from the Caspian Sea to Turkey's Mediterranean coast. The pipeline is being constructed by a BP-led consortium made up of Socar, Statoil, Unocal, TPAO, Eni, Itochu, Amerada Hess, TotalFinaElf and BP. (UK)

  17. Compensated Mass Balance Method For Oil Pipeline Leakage Detection using SCADA

    OpenAIRE

    Mohamed Zaid A. Karim; Amr A. Aziz Gaafar Alrasheedy

    2015-01-01

    Having extracting oil from reservoir below the ground surface, and after processing, the products are transported through a network of oil pipelines to oil terminals. Thus, oil pipelines play a major role of the economic structure. However, oil pipelines could be subjected to damage due to many reasons like (i) Pipeline corrosion or wear, (ii) Operation outside the design limits, (iii) Unintentional third-party damage and (iv) Intentional damage. As a result of this damage, oil would leak fro...

  18. Simulation of high consequence areas for gas pipelines

    OpenAIRE

    Orlando Díaz-Parra; Enrique Vera-López

    2018-01-01

    The gas pipeline is used for the transport of natural gas at a great distance. Risks derived from the handling of a combustible material transported under high pressure, by pipelines that pass close to where people live, makes it necessary to adopt prevention, mitigation and control measures to reduce the effect in case of ignition of a gas leak. This work shows the development of a new mathematical model to determine areas of high consequence and their application, using widely available and...

  19. Survey of state water laws affecting coal slurry pipeline development

    Energy Technology Data Exchange (ETDEWEB)

    Rogozen, M.B.

    1980-11-01

    This report summarizes state water laws likely to affect the development of coal slurry pipelines. It was prepared as part of a project to analyze environmental issues related to energy transportation systems. Coal slurry pipelines have been proposed as a means to expand the existing transportation system to handle the increasing coal shipments that will be required in the future. The availability of water for use in coal slurry systems in the coal-producing states is an issue of major concern.

  20. 49 CFR 192.65 - Transportation of pipe.

    Science.gov (United States)

    2010-10-01

    ... Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) PIPELINE SAFETY TRANSPORTATION OF NATURAL AND OTHER GAS BY PIPELINE: MINIMUM FEDERAL SAFETY STANDARDS Materials § 192.65 Transportation of pipe. (a) Railroad...

  1. A Review of Fatigue Crack Growth for Pipeline Steels Exposed to Hydrogen.

    Science.gov (United States)

    Nanninga, N; Slifka, A; Levy, Y; White, C

    2010-01-01

    Hydrogen pipeline systems offer an economical means of storing and transporting energy in the form of hydrogen gas. Pipelines can be used to transport hydrogen that has been generated at solar and wind farms to and from salt cavern storage locations. In addition, pipeline transportation systems will be essential before widespread hydrogen fuel cell vehicle technology becomes a reality. Since hydrogen pipeline use is expected to grow, the mechanical integrity of these pipelines will need to be validated under the presence of pressurized hydrogen. This paper focuses on a review of the fatigue crack growth response of pipeline steels when exposed to gaseous hydrogen environments. Because of defect-tolerant design principles in pipeline structures, it is essential that designers consider hydrogen-assisted fatigue crack growth behavior in these applications.

  2. The Winfrith effluent pipeline

    International Nuclear Information System (INIS)

    Palmer, G.H.

    1959-11-01

    The paper describes the preparatory work leading up to the design of the Winfrith pipeline. Details of the existing system are given and some information on the predicted safe levels of radio-active discharge. (author)

  3. The pipeline service obligation under changing LDC purchasing practices

    International Nuclear Information System (INIS)

    Neff, S.J.

    1990-01-01

    Historically, interstate natural gas pipelines served as aggregators and transporters of gas supplies from the producing fields to the city-gate. In turn, local distribution companies (LDCs) bought gas from pipelines at the city-gate under long-term sales contracts and resold the gas to retail customers. Once a pipeline/LDC sales relationship was established through a regulated certificate process, the LDC was assured of gas supply up to the level of its contract demand (CD) at just and reasonable rates until abandonment of the pipeline's sales service obligation was granted by the Federal Energy Regulatory Commission (FERC). During the years of regulated wellhead pricing and limited gas deliverability, pipelines signed long-term take-or-pay contracts with producers to induce them to develop and commit new gas supplies. Those supply cost obligations were reflected in tariff minimum bill provisions. For years, this pipeline/LDC arrangement was mutually beneficial and provided assured firm service. With the load diversity on large interstate pipeline systems and the make-up provisions under take-or-pay clauses, these gas purchase contracts provided supply reliability without negative economic consequence to the pipelines. Then, with the issuance of FERC Order Nos. 380, 436, and 500, LDCs' obligations to purchase gas from pipeline suppliers according to the terms of those long term sales agreements were irrevocably altered. The impacts of those long term sales agreements were irrevocably altered. The impacts of those orders the elimination of minimum bills and the advent of open access transportation caused a serious erosion of the mutual obligations between pipelines and their LDC customers. The result has been a significant loss of pipeline sales markets as LDC customers have chosen alternative supplied, often at the urging of state public utility commissions (PUCs) to lower short-term costs

  4. Impedance Method for Leak Detection in Zigzag Pipelines

    Science.gov (United States)

    Lay-Ekuakille, A.; Vergallo, P.; Trotta, A.

    2010-01-01

    Transportation of liquids is a primary aspect of human life. The most important infrastructure used accordingly is the pipeline. It serves as an asset for transporting different liquids and strategic goods. The latter are for example: chemical substances, oil, gas and water. Thus, it is necessary to monitor such infrastructures by means of specific tools. Leakage detection methods are used to reveal liquid leaks in pipelines for many applications, namely, waterworks, oil pipelines, industry heat exchangers, etc. The configuration of pipelines is a key issue because it impacts on the effectiveness of the method to be used and, consequently, on the results to be counterchecked. This research illustrated an improvement of the impedance method for zigzag pipeline by carrying out an experimental frequency analysis that has been compared with other methods based on frequency response. Hence, the impedance method is generally used for simple (straight) pipeline configurations because complicated pipelines with many curves introduce difficulties and major uncertainties in the calculation of characteristic impedance and in the statement of boundary conditions. The paper illustrates the case of a water pipeline where the leakage is acquired thanks to pressure transducers.

  5. Safety installation for preventing pollution by pipelines

    Energy Technology Data Exchange (ETDEWEB)

    Wittgenstein, G F

    1972-10-25

    A safety installation for preventing pollution by pipelines, particularly those used for transporting liquid hydrocarbons, is described. It is applicable to any pipeline, but particularly to underground or submarine pipelines, whether made of steel, plastics, or any other material. The 4 essential objects of the invention are to insure reliable prevention of pollution of the environment due to leakage of a hydrocarbon through cracks in the pipe; to evacuate the leakage flow without delay to a vessel; to signal almost instantaneously the existence of a leak; and to effect remote control of operations by which the dynamic pressure in the pipe is cancelled. Each equipped section consists of a fluid-type jacket of plastic material which surrounds the pipe, which at its ends is sealed off. It is these seals which delimit the sections. (7 claims)

  6. Design Against Propagating Shear Failure in Pipelines

    Science.gov (United States)

    Leis, B. N.; Gray, J. Malcolm

    Propagating shear failure can occur in gas and certain hazardous liquid transmission pipelines, potentially leading to a large long-burning fire and/or widespread pollution, depending on the transported product. Such consequences require that the design of the pipeline and specification of the steel effectively preclude the chance of propagating shear failure. Because the phenomenology of such failures is complex, design against such occurrences historically has relied on full-scale demonstration experiments coupled with empirically calibrated analytical models. However, as economic drivers have pushed toward larger diameter higher pressure pipelines made of tough higher-strength grades, the design basis to ensure arrest has been severely compromised. Accordingly, for applications where the design basis becomes less certain, as has occurred increasing as steel grade and toughness has increased, it has become necessary to place greater reliance on the use and role of full-scale testing.

  7. Engineering critical assessment of PETROBRAS Camarupim pipeline

    Energy Technology Data Exchange (ETDEWEB)

    Gordon, J.R. [Microalloying International, Houston, TX (United States); Gatlin, R.W. [Global Industries, Rio de Janeiro, RJ (Brazil); Zumpano Junior, P.; Kaspary, T. [PETROBRAS S.A., Rio de Janeiro, RJ (Brazil)

    2009-12-19

    This paper presents details of an Engineering Critical Assessment (ECA) performed to develop girth weld flaw acceptance criteria for the PETROBRAS Camarupim Pipeline which was installed in Espirito Santo Basin, ES, offshore Brazil in May 2008 by Global Industries. The pipeline was constructed using 24-inch diameter API Grade X65 pipe with wall thicknesses of 0.875-inch (22.2 mm) and 1.00 inch (25.4 mm). Although the Camarupim pipeline will initially transport sweet gas there is the potential for mildly sour service operation in mid to late life. To assess the effect of sour service on the material toughness properties a series of slow strain rate fracture toughness tests were performed in a Project representative sour service environment. In addition the results of sour service fatigue crack growth tests were analyzed to develop a conservative sour service fatigue crack growth law for the ECA analysis. (author)

  8. Pipeline capacity and heavy oil markets

    International Nuclear Information System (INIS)

    Scott, G.R.

    1993-01-01

    Aspects of transporting heavy crude to markets from Canadian sources are discussed, with reference to pipeline expansion, western Canadian crude supply, and exports to various Petroleum Administration for Defense Districts (PADDs) in the USA. Pipeline expansions have been proposed by Interprovincial Pipeline, Trans Mountain Pipeline, Rangeland, and Wascana, and some of these proposals are in the review stage. Western Canadian crude supply is expected to peak at 1.9 million bbl/d in 1996. An increase in heavy crude supply is expected but this increase will not be sufficient to offset a decline in light crude supply. Adequate pipeline capacity should exist with the Interprovincial expansion volume of 170,000 bbl/d and the Trans Mountain expansion of 38,000 bbl/d forecast to be in place by 1995. Canadian crude exports to the USA have steadily increased since 1989, and heavy crude exports have grown an average of 20,000 bbl/d each year. In PADD Region IV, oil production is declining and ca 20,000 bbl/d of heavy crude will be needed by the year 2000; additional pipeline capacity will be required. In PADD Region II, Canadian heavy crude imports are ca 390,000 bbl/d and further market opportunities exist, after the Interprovincial expansion is complete. When the various combinations of possible pipeline expansions or reversals are considered, a range of heavy crude near-term growth potentials is obtained in which Canadian heavy oil would displace offshore heavy oil supplied to USA refineries. This potential is seen to range from 35,000 bbl/d to 200,000 bbl/d. 7 refs., 20 figs., 3 tabs

  9. Recovery Act: 'Carbonsheds' as a Framework for Optimizing United States Carbon Capture and Storage (CCS) Pipeline Transport on a Regional to National Scale

    Energy Technology Data Exchange (ETDEWEB)

    Pratson, Lincoln

    2012-11-30

    Carbonsheds are regions in which the estimated cost of transporting CO{sub 2} from any (plant) location in the region to the storage site it encompasses is cheaper than piping the CO{sub 2} to a storage site outside the region. We use carbonsheds to analyze the cost of transport and storage of CO{sub 2} in deploying CCS on land and offshore of the continental U.S. We find that onshore the average cost of transport and storage within carbonsheds is roughly $10/t when sources cooperate to reduce transport costs, with the costs increasing as storage options are depleted over time. Offshore transport and storage costs by comparison are found to be roughly twice as expensive but t may still be attractive because of easier access to property rights for sub-seafloor storage as well as a simpler regulatory system, and possibly lower MMV requirements, at least in the deep-ocean where pressures and temperatures would keep the CO{sub 2} negatively buoyant. Agent-based modeling of CCS deployment within carbonsheds under various policy scenarios suggests that the most cost-effective strategy at this point in time is to focus detailed geology characterization of storage potential on only the largest onshore reservoirs where the potential for mitigating emissions is greatest and the cost of storage appears that it will be among the cheapest.

  10. Diagnostics and reliability of pipeline systems

    CERN Document Server

    Timashev, Sviatoslav

    2016-01-01

    The book contains solutions to fundamental problems which arise due to the logic of development of specific branches of science, which are related to pipeline safety, but mainly are subordinate to the needs of pipeline transportation.          The book deploys important but not yet solved aspects of reliability and safety assurance of pipeline systems, which are vital aspects not only for the oil and gas industry and, in general, fuel and energy industries , but also to virtually all contemporary industries and technologies. The volume will be useful to specialists and experts in the field of diagnostics/ inspection, monitoring, reliability and safety of critical infrastructures. First and foremost, it will be useful to the decision making persons —operators of different types of pipelines, pipeline diagnostics/inspection vendors, and designers of in-line –inspection (ILI) tools, industrial and ecological safety specialists, as well as to researchers and graduate students.

  11. Putting the coal slurry pipelines to the test

    Energy Technology Data Exchange (ETDEWEB)

    Sauermann, H B

    1978-03-01

    This paper deals with the advantages and disadvantages of coal slurry pipelines and describes coal slurry tests undertaken in three test circuits with 100, 200 and 250 mm diameter pipes. The test results from the test circuits were used to scale-up pressure gradients to larger pipe diameters. The construction and installation of hydraulic transport pipelines is simple and requires a minimum of space. The crossing of rivers, roads, railways or any other obstacles is comparatively easy. The operation, supervision and maintenance of a pipeline is simple since any pipeline can be easily adapted for fully automatic control. For this reason manpower requirements are small resulting in only small increases in operating costs during the life of a pipeline. This is an attractive feature in any economy troubled by inflationary trends. In transporting a commodity such as coal the quantities handled are usually large and the distances are long. The profitability of hydraulic transportation systems benefits from such operating conditions. Even though the various components of a slurry transport system, such as the slurrying facilities at the mine end and the dewatering facilities at the utilization end, are complex, their reliability is high. Against the advantages, the following limitations can be visualized: It is practically impossible to transport solids other than those for which the pipeline was designed; in this regard, road and rail transportation is more versatile. The solids throughput through a pipeline cannot be economically increased beyond its design throughput. Pipelining involves the use of fluids, in most cases water, which in some instances may not be readily available.

  12. Architecture of a corporate system to aid the scheduling of a oil derivatives transport in a pipeline network; Arquitetura de um sistema corporativo para auxilio a programacao do transporte de derivados de petroleo em redes dutoviarias

    Energy Technology Data Exchange (ETDEWEB)

    Lara, Guilherme R.; Polli, Helton L.; Esser, Eduardo M.; Lueders, Ricardo; Neves Junior, Flavio; Magatao, Leandro; Stebel, Sergio L. [Universidade Tecnologica Federal do Parana (UTFPR), Curitiba, PR (Brazil); Ribas, Paulo C. [PETROBRAS S.A., Rio de Janeiro, RJ (Brazil). Centro de Pesquisas (CENPES)

    2008-07-01

    This paper addresses the development and the architecture of a corporative package to aid the operational decision-making of the scheduling activities in a real-world pipeline network for oil derivatives. The system was developed based on a service-oriented architecture, allowing the development of Web applications to define the network scheduling, as well as graphic display of the movements. The solution of the scheduling is generated by an optimization block as a service of this application. However, this paper emphasizes the description of the architecture and its functionalities, which was defined with the help of experienced programmers. (author)

  13. 50 CFR 29.21-9 - Rights-of-way for pipelines for the transportation of oil, natural gas, synthetic liquid or...

    Science.gov (United States)

    2010-10-01

    ... consumers within the State or municipality. (ii) Where natural gas not subject to state regulatory or... Act of 1920, except such crude oil which is either exchanged in similar quantity for convenience or... is temporarily exported for convenience or increased efficiency of transportation across parts of an...

  14. An analysis of perceptions and awareness of risk associated with energy pipelines in South Africa

    Directory of Open Access Journals (Sweden)

    Tatenda Mbara

    2011-11-01

    Full Text Available Worldwide, there has been a rapid growth in the use of pipelines to transport energy products. Due to the strategic nature of energy products that are transported by pipelines, the importance of risk awareness, assessment and management cannot be over-emphasised. With the risk of pipeline disruptions increasing globally, energy pipeline organisations are compelled to incorporate measures that should help to identify and address areas that can lead to energy pipeline disruptions. The incorporation of such measures for any organisation is premised on an understanding and appreciation of the risks involved. Given the strategic importance of energy pipelines, the main purpose of this paper is to establish whether the South African energy pipeline sector and the public at large appreciate the risks associated with energy pipelines. Thus, the paper seeks to ascertain awareness of the risks associated with the energy pipeline's physical environment, not only from the energy pipeline operators, but also from communities who are exposed to such risks. Data for the study was collected from energy pipeline operators and from a selected residential area in Johannesburg using both structured and unstructured questionnaires. The findings show that the corporate energy sector in South Africa is aware of risks associated with energy pipeline supply chains while the general public's awareness is very low.

  15. Improved, Low-Stress Economical Submerged Pipeline

    Science.gov (United States)

    Jones, Jack A.; Chao, Yi

    2011-01-01

    A preliminary study has shown that the use of a high-strength composite fiber cloth material may greatly reduce fabrication and deployment costs of a subsea offshore pipeline. The problem is to develop an inexpensive submerged pipeline that can safely and economically transport large quantities of fresh water, oil, and natural gas underwater for long distances. Above-water pipelines are often not feasible due to safety, cost, and environmental problems, and present, fixed-wall, submerged pipelines are often very expensive. The solution is to have a submerged, compliant-walled tube that when filled, is lighter than the surrounding medium. Some examples include compliant tubes for transporting fresh water under the ocean, for transporting crude oil underneath salt or fresh water, and for transporting high-pressure natural gas from offshore to onshore. In each case, the fluid transported is lighter than its surrounding fluid, and thus the flexible tube will tend to float. The tube should be ballasted to the ocean floor so as to limit the motion of the tube in the horizontal and vertical directions. The tube should be placed below 100-m depth to minimize biofouling and turbulence from surface storms. The tube may also have periodic pumps to maintain flow without over-pressurizing, or it can have a single pump at the beginning. The tube may have periodic valves that allow sections of the tube to be repaired or maintained. Some examples of tube materials that may be particularly suited for these applications are non-porous composite tubes made of high-performance fibers such as Kevlar, Spectra, PBO, Aramid, carbon fibers, or high-strength glass. Above-ground pipes for transporting water, oil, and natural gas have typically been fabricated from fiber-reinforced plastic or from more costly high-strength steel. Also, previous suggested subsea pipeline designs have only included heavy fixed-wall pipes that can be very expensive initially, and can be difficult and expensive

  16. Alliance Pipeline - The new kid on the block

    International Nuclear Information System (INIS)

    Edgeworth, A.

    1998-01-01

    Alliance Pipeline has taken on as its primary role to improve the competitive position of the Western Canadian Sedimentary Basin (WCSB), to increase market access for WCSB production, to provide a link for North American gas pricing, and to increase the total gas supply available across North America to serve current and future requirements. A summary of the company's partnership structure and construction program is presented. Also discussed were issues facing Canadian transporters and producers such as: pricing dynamics, gas supplies, regulatory change, competition, convergence, pipeline integrity, land issues, environmental issues, aboriginal issues, cost structures and taxes. The potential impact of the Alliance Pipeline coming on-stream in October 2000 on existing pipelines, possible future pipelines and on the existing supply scene is also assessed. tabs., figs

  17. Security of pipeline facilities

    Energy Technology Data Exchange (ETDEWEB)

    Lee, S.C. [Alberta Energy and Utilities Board, Calgary, AB (Canada); Van Egmond, C.; Duquette, L. [National Energy Board, Calgary, AB (Canada); Revie, W. [Canada Centre for Mineral and Energy Technology, Ottawa, ON (Canada)

    2005-07-01

    This working group provided an update on provincial, federal and industry directions regarding the security of pipeline facilities. The decision to include security issues in the NEB Act was discussed as well as the Pipeline Security Management Assessment Project, which was created to establish a better understanding of existing security management programs as well as to assist the NEB in the development and implementation of security management regulations and initiatives. Amendments to the NEB were also discussed. Areas of pipeline security management assessment include physical safety management; cyber and information security management; and personnel security. Security management regulations were discussed, as well as implementation policies. Details of the Enbridge Liquids Pipelines Security Plan were examined. It was noted that the plan incorporates flexibility for operations and is integrated with Emergency Response and Crisis Management. Asset characterization and vulnerability assessments were discussed, as well as security and terrorist threats. It was noted that corporate security threat assessment and auditing are based on threat information from the United States intelligence community. It was concluded that the oil and gas industry is a leader in security in North America. The Trans Alaska Pipeline Incident was discussed as a reminder of how costly accidents can be. Issues of concern for the future included geographic and climate issues. It was concluded that limited resources are an ongoing concern, and that the regulatory environment is becoming increasingly prescriptive. Other concerns included the threat of not taking international terrorism seriously, and open media reporting of vulnerability of critical assets, including maps. tabs., figs.

  18. Water level detection pipeline

    International Nuclear Information System (INIS)

    Koshikawa, Yukinobu; Imanishi, Masatoshi; Niizato, Masaru; Takagi, Masahiro

    1998-01-01

    In the present invention, water levels of a feedwater heater and a drain tank in a nuclear power plant are detected at high accuracy. Detection pipeline headers connected to the upper and lower portions of a feedwater heater or a drain tank are connected with each other. The connection line is branched at appropriate two positions and an upper detection pipeline and a lower detection pipeline are connected thereto, and a gauge entrance valve is disposed to each of the detection pipelines. A diaphragm of a pressure difference generator is connected to a flange formed to the end portion. When detecting the change of water level in the feedwater heater or the drain tank as a change of pressure difference, gauge entrance valves on the exit side of the upper and lower detection pipelines are connected by a connection pipe. The gauge entrance valve is closed, a tube is connected to the lower detection pipe to inject water to the diaphragm of the pressure difference generator passing through the connection pipe thereby enabling to calibrate the pressure difference generator. The accuracy of the calibration of instruments is improved and workability thereof upon flange maintenance is also improved. (I.S.)

  19. Estimation of efficiency of hydrotransport pipelines polyurethane coating application in comparison with steel pipelines

    Science.gov (United States)

    Aleksandrov, V. I.; Vasilyeva, M. A.; Pomeranets, I. B.

    2017-10-01

    The paper presents analytical calculations of specific pressure loss in hydraulic transport of the Kachkanarsky GOK iron ore processing tailing slurry. The calculations are based on the results of the experimental studies on specific pressure loss dependence upon hydraulic roughness of pipelines internal surface lined with polyurethane coating. The experiments proved that hydraulic roughness of polyurethane coating is by the factor of four smaller than that of steel pipelines, resulting in a decrease of hydraulic resistance coefficients entered into calculating formula of specific pressure loss - the Darcy-Weisbach formula. Relative and equivalent roughness coefficients are calculated for pipelines with polyurethane coating and without it. Comparative calculations show that hydrotransport pipelines polyurethane coating application is conductive to a specific energy consumption decrease in hydraulic transport of the Kachkanarsky GOC iron ore processing tailings slurry by the factor of 1.5. The experiments were performed on a laboratory hydraulic test rig with a view to estimate the character and rate of physical roughness change in pipe samples with polyurethane coating. The experiments showed that during the following 484 hours of operation, roughness changed in all pipe samples inappreciably. As a result of processing of the experimental data by the mathematical statistics methods, an empirical formula was obtained for the calculation of operating roughness of polyurethane coating surface, depending on the pipeline operating duration with iron ore processing tailings slurry.

  20. Pipeline rehabilitation planning

    Energy Technology Data Exchange (ETDEWEB)

    Palmer-Jones, Roland; Hopkins, Phil; Eyre, David [PENSPEN (United Kingdom)

    2005-07-01

    An operator faced with an onshore pipeline that has extensive damage must consider the need for rehabilitation, the sort of rehabilitation to be used, and the rehabilitation schedule. This paper will consider pipeline rehabilitation based on the authors' experiences from recent projects, and recommend a simple strategy for planning pipeline rehabilitation. It will also consider rehabilitation options: external re-coating; internal lining; internal painting; programmed repairs. The main focus will be external re-coating. Consideration will be given to rehabilitation coating types, including tape wraps, epoxy, and polyurethane. Finally it will discuss different options for scheduling the rehabilitation of corrosion damage including: the statistical comparison of signals from inspection pigs; statistical comparison of selected measurements from inspection pigs and other inspections; the use of corrosion rates estimated for the mechanisms and conditions; expert judgement. (author)

  1. Beyond the pipeline

    Energy Technology Data Exchange (ETDEWEB)

    Barnsley, J.; Ellis, D.; McIntosh, J.

    1979-12-01

    A study was conducted on the lives of women and their families in Fort Nelson, British Columbia, and Whitehorse, Yukon Territory, two communities which are to be affected by the proposed construction of the Alaska Highway gas pipeline. The womens' socio-economic concerns resulting from the proposed construction were examined by means of interviews with samples of women living in the two communities. Results from the study include descriptions of the communities and their basic services, community planning and housing, women's work in the home and for wages, and the perceived impact of the pipeline on such matters as employment, social services, living costs, business, housing, crime, and the overall community. Recommendations are made to improve the planning process for the pipeline to include the taking into account of womens' needs in such areas as training, health care, housing, and community services. 213 refs., 4 figs., 2 tabs.

  2. CPL: Common Pipeline Library

    Science.gov (United States)

    ESO CPL Development Team

    2014-02-01

    The Common Pipeline Library (CPL) is a set of ISO-C libraries that provide a comprehensive, efficient and robust software toolkit to create automated astronomical data reduction pipelines. Though initially developed as a standardized way to build VLT instrument pipelines, the CPL may be more generally applied to any similar application. The code also provides a variety of general purpose image- and signal-processing functions, making it an excellent framework for the creation of more generic data handling packages. The CPL handles low-level data types (images, tables, matrices, strings, property lists, etc.) and medium-level data access methods (a simple data abstraction layer for FITS files). It also provides table organization and manipulation, keyword/value handling and management, and support for dynamic loading of recipe modules using programs such as EsoRex (ascl:1504.003).

  3. Northern pipelines : backgrounder

    International Nuclear Information System (INIS)

    2002-04-01

    Most analysts agree that demand for natural gas in North America will continue to grow. Favourable market conditions created by rising demand and declining production have sparked renewed interest in northern natural gas development. The 2002 Annual Energy Outlook forecasted U.S. consumption to increase at an annual average rate of 2 per cent from 22.8 trillion cubic feet to 33.8 TCF by 2020, mostly due to rapid growth in demand for electric power generation. Natural gas prices are also expected to increase at an annual average rate of 1.6 per cent, reaching $3.26 per thousand cubic feet in 2020. There are currently 3 proposals for pipelines to move northern gas to US markets. They include a stand-alone Mackenzie Delta Project, the Alaska Highway Pipeline Project, and an offshore route that would combine Alaskan and Canadian gas in a pipeline across the floor of the Beaufort Sea. Current market conditions and demand suggest that the projects are not mutually exclusive, but complimentary. The factors that differentiate northern pipeline proposals are reserves, preparedness for market, costs, engineering, and environmental differences. Canada has affirmed its role to provide the regulatory and fiscal certainty needed by industry to make investment decisions. The Government of the Yukon does not believe that the Alaska Highway Project will shut in Mackenzie Delta gas, but will instead pave the way for development of a new northern natural gas industry. The Alaska Highway Pipeline Project will bring significant benefits for the Yukon, the Northwest Territories and the rest of Canada. Unresolved land claims are one of the challenges that has to be addressed for both Yukon and the Northwest Territories, as the proposed Alaska Highway Pipeline will travel through traditional territories of several Yukon first Nations. 1 tab., 4 figs

  4. Energy and Environmental Policy Trends: The Invisible Cost of Pipeline Constraints

    Directory of Open Access Journals (Sweden)

    G. Kent Fellows

    2018-03-01

    Full Text Available THE INVISIBLE COST OF PIPELINE CONSTRAINTS Over much of the last decade pipeline constraints and the resulting apportionment of pipeline capacity have meant reduced returns on Alberta’s Oil Exports. There is a natural price discount between the US benchmark West Texas Intermediate (WTI Crude oil price and the Canadian benchmark Western Canada Select (WCS price. This differential reflects the lower quality of WCS relative to WTI and the costs associated with pipeline tolls to transport this oil from Alberta to US refining hubs. However, at present western Canada is experiencing significant pipeline capacity constraints which have dramatically increased this discount relative to historical levels.

  5. Also deputies will say something to new pipeline of Slovnaft

    International Nuclear Information System (INIS)

    Marcan, P.

    2005-01-01

    The oil transit company, Transpetrol, expects the new Bratislava-Schwechat pipeline connecting the OMV refinery to the Druzba pipeline to increase the use of the pipeline and improve company revenues by 20%. The Austrian project partner, OMV, looks to the project to decrease transportation costs for Russian oil. One sixth of the 60 km pipeline will be built in Slovakia, but there is a problem - the Slovak Ministry of Environment and the City of Bratislava have not approved the route proposed by Transpetrol. In their opinion, the propose route would endanger the protected area, Zitny ostrov, that provides drinking water to the capital. Slovnaft also plans a new pipeline to replace the old obsolete one used to transport its products to the mineral oils transhipment centre at Bratislava docks. One of the alternatives proposed by Slovnaft is the construction of a pipeline and transhipment centre on Zitny ostrov. Unlike the Transpetrol project, this has already received approval from the Ministry of Environment. Before construction work on the pipeline to Schwechat can start. OMV will have resolve issues related to the supply of oil from Russia. According to the original plans, Yukos, which owns a 49% stake in Transpetrol, was to supply the oil. But due to tax problems in Russia, Yukos lost its main drilling division, Juganskneftgaz

  6. Design and Operation of the World's First Long Distance Bauxite Slurry Pipeline

    Science.gov (United States)

    Gandhi, Ramesh; Weston, Mike; Talavera, Maru; Brittes, Geraldo Pereira; Barbosa, Eder

    Mineracão Bauxita Paragominas (MBP) is the first long distance slurry pipeline transporting bauxite slurry. Bauxite had developed a reputation for being difficult to hydraulically transport using long distance pipelines. This myth has now been proven wrong. The 245-km- long, 13.5 MTPY capacity MBP pipeline was designed and commissioned by PSI for CVRD. The pipeline is located in the State of Para, Brazil. The Miltonia bauxite mine is in a remote location with no other efficient means of transport. The bauxite slurry is delivered to Alunorte Alumina refinery located near Barcarena. This first of its kind pipeline required significant development work in order to assure technical and economic feasibility. This paper describes the technical aspects of design of the pipeline. It also summarizes the operating experience gained during the first year of operation.

  7. 78 FR 77484 - Extension of Agency Information Collection Activity Under OMB Review: Pipeline System Operator...

    Science.gov (United States)

    2013-12-23

    ... Officer, Office of Information Technology (OIT), TSA-11, Transportation Security Administration, 601 South... Information Collection Activity Under OMB Review: Pipeline System Operator Security Information AGENCY... Transportation Security Administration (TSA) has forwarded the Information Collection Request (ICR), Office of...

  8. 75 FR 49943 - New Agency Information Collection Activity Under OMB Review: Pipeline System Operator Security...

    Science.gov (United States)

    2010-08-16

    ... INFORMATION CONTACT: Joanna Johnson, Office of Information Technology, TSA-11, Transportation Security... Collection Activity Under OMB Review: Pipeline System Operator Security Information AGENCY: Transportation... System Operator Security Information. Type of Request: New collection. OMB Control Number: Not yet...

  9. Diagnosing in building main pipelines

    Energy Technology Data Exchange (ETDEWEB)

    Telegin, L.G.; Gorelov, A.S.; Kurepin, B.N.; Orekhov, V.I.; Vasil' yev, G.G.; Yakovlev, Ye. I.

    1984-01-01

    General principles are examined for technical diagnosis in building main pipelines. A technique is presented for diagnosis during construction, as well as diagnosis of the technical state of the pipeline-construction machines and mechanisms. The survey materials could be used to set up construction of main pipelines.

  10. Gazprom looks for means to finance its gas pipelines

    International Nuclear Information System (INIS)

    Anon.

    1997-01-01

    The Russian Gazprom natural gas company wants to solve its short range problems in order to develop its activities in Western Europe rapidly. The transportation capacities remain the main problem of Gazprom which is looking for new financing for the development and maintenance of its pipelines network. Several pipeline projects are under study but the occidental banks remain suspicious and wait for the settlement of internal lawsuits between Gazprom and the Russian state. Short paper. (J.S.)

  11. Reasons for decision in the matter of Coral Energy Canada Inc. : application for approval of modifications to the Firm Transportation Risk Alleviation Mechanism (FT-RAM) pilot for the TransCanada PipeLines Limited Mainline

    International Nuclear Information System (INIS)

    2006-01-01

    Coral Energy Canada Inc. (Coral) is one of the largest wholesale energy marketers and traders in North America whose customers include utilities, gas distribution companies, municipalities, rural electrical cooperatives, independent power producers, industrial customers and commercial customers. As such, it is one of the largest shippers on the TransCanada Mainline Natural Gas Transmission System operated by TransCanada PipeLines Limited. As part of its 2001 and 2002 tolls and tariff applications, TransCanada proposed a new service enhancement called the Firm Transportation (FT) Make-up credits, which has proven to be flawed. A modified service enhancement known as the Firm Transportation Risk Alleviation Mechanism (FT-RAM) was subsequently proposed so that credits could be applied against a shipper's monthly interruptible transportation (IT) service account, based on any unused demand charges from the shippers FT contracts. In order to promote long haul service, the credits are only given for long-haul contracts, primarily for points originating in Alberta and Saskatchewan. On September 30, 2005, Coral applied to the Alberta Energy and Utilities Board for approval of modifications to the (FT-RAM) pilot to be effective on November 1, 2005. Coral proposed that the existing pilot be expanded to include short-haul FT contracts in limited circumstances where the same shipper holds a long-haul contract that delivers to the same location as the receipt point of the short-haul FT contract. The Board sought views from interested party of the appropriate process and associated timelines that should be used to deal with the application. Certain parties suggested that it would be inappropriate for the Board to approve any modifications to the existing FT-RAM pilot until the terms and conditions underlying certain Toll Task Force Resolutions were fulfilled. This document presented the positions of the interested parties, Coral's response to the positions of parties, views of

  12. Richards Bay effluent pipeline

    CSIR Research Space (South Africa)

    Lord, DA

    1986-07-01

    Full Text Available of major concern identified in the effluent are the large volume of byproduct calcium sulphate (phosphogypsum) which would smother marine life, high concentrations of fluoride highly toxic to marine life, heavy metals, chlorinated organic material... ........................ 9 THE RICHARDS BAY PIPELINE ........................................ 16 Environmental considerations ................................... 16 - Phosphogypsum disposal ................................... 16 - Effects of fluoride on locally occurring...

  13. Central oxygen pipeline failure

    African Journals Online (AJOL)

    surgical intensive care unit (ICU), with two patients on full ventilation and ... uncertainty around the cause of the failure and the restoration, .... soon as its level also falls below three tons. Should ... (properly checked and closed prior to each anaesthetic). ... in use at the time of the central oxygen pipeline failure at Tygerberg.

  14. Characteristics of operating pipelines

    Energy Technology Data Exchange (ETDEWEB)

    Gallyamov, A K; Armenskii, E A; Gimaev, R G; Mastobaev, B N; Shammazov, A M

    1977-04-01

    The interval in pressure changes according to operational data for the Kamennyi Log--Perm oil pipeline was determined with the aid of the pattern identification method. This has made it possible to determine pressure changes in the operational process. 2 references, 1 table.

  15. Transient cavitation in pipelines

    NARCIS (Netherlands)

    Kranenburg, C.

    1974-01-01

    The aim of the present study is to set up a one-dimensional mathematical model, which describes the transient flow in pipelines, taking into account the influence of cavitation and free gas. The flow will be conceived of as a three-phase flow of the liquid, its vapour and non-condensible gas. The

  16. 76 FR 25576 - Pipeline Safety: Applying Safety Regulations to All Rural Onshore Hazardous Liquid Low-Stress Lines

    Science.gov (United States)

    2011-05-05

    ... DEPARTMENT OF TRANSPORTATION Pipeline and Hazardous Materials Safety Administration 49 CFR Part... to All Rural Onshore Hazardous Liquid Low-Stress Lines AGENCY: Pipeline and Hazardous Materials..., suggested that the scope should include low-stress gas pipelines such as those associated with coal bed...

  17. 78 FR 62323 - MarkWest Liberty Ethane Pipeline L.L.C.; Notice of Petition for Declaratory Order

    Science.gov (United States)

    2013-10-16

    ... Ethane Pipeline L.L.C.; Notice of Petition for Declaratory Order Take notice that on October 3, 2013...), MarkWest Liberty Ethane Pipeline L.L.C. (MarkWest) filed a petition requesting a declaratory order approving the overall tariff and rate structure for a new ethane pipeline system that will transport ethane...

  18. Health, safety and environment risk assessment in gas pipelines by indexing method:case of Kermanshah Sanandaj oil pipeline

    OpenAIRE

    Y. Hamidi; I. Mohamadfam; M. Motamedzadeh

    2009-01-01

    Background and AimsUsing pipelines for oil products transportation involves ranges of safety, health and environmental risks, this option however, is dominant with numerous  advantages. The purpose of this study was; relative risk assessment of abovementioned risk in Kermanshah-Sanandaj Oil Pipeline.MethodsThe method used in this study was Kent Muhlbauer method in which relative risk was assessed using third-party damage, corrosion, design, incorrect operations and leak impact  factor.Results...

  19. Bears and pipeline construction in Alaska

    Energy Technology Data Exchange (ETDEWEB)

    Follmann, E.H.; Hechtel, J.L. (Univ. of Alaska Fairbanks, AK (USA))

    1990-06-01

    Serious problems were encountered with bears during construction of the 1274-km trans-Alaska oil pipeline between Prudhoe Bay and Valdez. This multi-billion-dollar project traversed both black bear (Ursus americanus Pallas) and grizzly bear (U. arctos L.) habitat throughtout its entire length. Plans for dealing with anticipated problems with bears were often inadequate. Most (71%) problems occurred north of the Yukon River in a previously roadless wilderness where inadequate refuse disposal and widespread animal feeding created dangerous situations. Of the 192 officially reported bear problems associated with the Trans-Alaska Pipeline System (TAPS) (1971-1979), about 65% involved the presence of bears in camps or dumps, 13% the feeding of bears on garbage or handouts, 10% property damage or economic loss, 7% bears under and in buildings, and only 5% charges by bears. Remarkably, no bear-related injuries were reported, suggesting that bears became accustomed to people and did not regard them as a threat. Following construction of the TAPS there have been proposals for pipelines to transport natural gas from Prudhoe Bay to southern and Pacific-rim markets. Based on past experience, some animal control measures were developed during the planning phase for the authorized gas pipeline route in Alaska. Fences installed around 100-person survey camps were found to be effective in deterring bears in two traditionally troublesome areas. 16 refs., 7 figs., 1 tab.

  20. Halifax Lateral Pipeline Project : comprehensive study report

    International Nuclear Information System (INIS)

    1998-12-01

    The National Energy Board has requested the preparation of a comprehensive study report (CSR) for the proposed Halifax Lateral Pipeline Project in support of Maritimes and Northeast Pipeline Company's proposal to construct the lateral pipeline to transport natural gas produced in offshore Nova Scotia to the Tufts Cove electric generating station in the Halifax Regional Municipality. The project will also enhance the access of natural gas to potential markets located along the pipeline route. This CSR was prepared according to guidelines of the Canadian Environmental Assessment Agency. The report presents: (1) an overview of the project, (2) a summary of the regulatory requirements for assessment, (3) a description of the environmental assessment and regulatory process to date, (4) a summary of the predicted residual environmental and socio-economic effects associated with the project, and (5) a summary of the public consultation process. The environmental and socio-economic assessment focused on these eleven issues: groundwater resources, surface water resources, wetlands, soils, air quality, fish habitat, rare herpetiles, mammals, avifauna, rare plants and archaeological heritage resources. The report identified potential interactions between the project and valued socio-economic and environmental components. These were addressed in combination with recommended mitigative measures to reduce potential adverse effects. It was concluded that the overall environmental effects from the proposed project are likely to be minimal and can be effectively managed with good environmental management methods. 14 refs., 5 tabs., 5 figs., 2 appendices

  1. Development and optimization of an advanced process for non-dig installation of pipelines transporting energy and raw materials; Entwicklung und Optimierung eines neuen Verfahrens zur grabenlosen Verlegung von Rohrleitungen fuer den Energie- und Rohstofftransport

    Energy Technology Data Exchange (ETDEWEB)

    Koegler, Ruediger

    2008-04-07

    Controllable horizontal drilling is a method established worldwide for laying pipelines under natural or artificial obstacles without trenches. In 2002 an 18'' gas pipeline was laid under the river Rhone under the most difficult topographical and geological conditions for the French energy supplier Gaz de France by means of horizontal drilling technology. In this thesis the Easy pipe procedure has been developed derived from MT (Mircrotunneling) engineering. The procedure is stepwise as a pilot process introduced and furtheron developed and installed for pipeline laying. (orig./GL)

  2. Hydrogeological considerations in northern pipeline development. [Permafrost affected by hot or chilled pipeline

    Energy Technology Data Exchange (ETDEWEB)

    Harlan, R L

    1974-11-01

    Some of the hydrogeological implications of construction and operation of oil and gas pipelines in northern regions of Canada are considered in relation to their potential environmental impacts and those factors affecting the security of the pipeline itself. Although the extent to which water in permafrost participates in the subsurface flow regime has not been fully demonstrated, the role of liquid as well as vapor transport in frozen earth materials can be shown from theory to be highly significant; water movement rates in frozen soil are on the same order as those in unsaturated, unfrozen soil. Below 0/sup 0/C, the unfrozen water content in a fine-grained porous medium is dependent on temperature but independent of the total water content. The thermal gradient controls the rate and direction of water movement in permafrost. The groundwater stabilizes the streamflow and in the absence of large lakes provides the main source of flow during the winter. As groundwater is frequently confined by the permafrost, degradation of the permafrost can have significant consequences. The thaw bulb formed around a hot oil pipeline can induce liquefactioned flow of the thawed material. A chilled pipeline could restrict groundwater movement, resulting in buildup of artesian conditions and icings. The liberation and absorption of latent heat on freezing and thawing affects the thermal regime in the ground surface. Recommendations are given for pipeline construction and areas for further study pointed out. (DLC)

  3. Effect of the welding process on the microstructure and microhardness of API 5L X80 steel welded joint used for oil transportation pipeline; Efeito do processo de soldagem sobre a microestrutura e a microdureza de juntas soldadas de aco API 5L X80 usado em tubulacoes para transporte de petroleo

    Energy Technology Data Exchange (ETDEWEB)

    Alves, R.T.P.; Albuquerque, S.F. [Universidade Federal de Campina Grande (UFCG), PB (Brazil); Maciel, T.M.; Almeida, D.M.; Santos, M.A.

    2008-07-01

    This study had as objective to evaluate the microstructure and microhardness of API 5L X80 steel welded joints, used for pipelines to transport oil and gas, using the Shield Metal Arc Welding process with pre- heating temperature of 200 deg C and 400 deg C and the AWS E8010G electrode as filler metal. For this, besides the microhardness of the welded joint, the weld metals percentiles of micro-constituents and of columnar and regenerated grains and the medium size and extension of the heat affected zone were evaluated. The percentage of acicular ferrite in weld metal ranged from 13% to 33% which generated values of microhardness from 114 HV to 309 HV. (author)

  4. Deliverability on the interstate natural gas pipeline system

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-05-01

    Deliverability on the Interstate Natural Gas Pipeline System examines the capability of the national pipeline grid to transport natural gas to various US markets. The report quantifies the capacity levels and utilization rates of major interstate pipeline companies in 1996 and the changes since 1990, as well as changes in markets and end-use consumption patterns. It also discusses the effects of proposed capacity expansions on capacity levels. The report consists of five chapters, several appendices, and a glossary. Chapter 1 discusses some of the operational and regulatory features of the US interstate pipeline system and how they affect overall system design, system utilization, and capacity expansions. Chapter 2 looks at how the exploration, development, and production of natural gas within North America is linked to the national pipeline grid. Chapter 3 examines the capability of the interstate natural gas pipeline network to link production areas to market areas, on the basis of capacity and usage levels along 10 corridors. The chapter also examines capacity expansions that have occurred since 1990 along each corridor and the potential impact of proposed new capacity. Chapter 4 discusses the last step in the transportation chain, that is, deliverability to the ultimate end user. Flow patterns into and out of each market region are discussed, as well as the movement of natural gas between States in each region. Chapter 5 examines how shippers reserve interstate pipeline capacity in the current transportation marketplace and how pipeline companies are handling the secondary market for short-term unused capacity. Four appendices provide supporting data and additional detail on the methodology used to estimate capacity. 32 figs., 15 tabs.

  5. On-Shore Pipeline Emergency Repair Center; Centro de Reparos Emergenciais de Dutos Terrestres

    Energy Technology Data Exchange (ETDEWEB)

    Souza Filho, Byron Goncalves de [TRANSPETRO - PETROBRAS Transportes, Rio de Janeiro, RJ (Brazil)

    2003-07-01

    After the accidents happened on years 2000 and 2001, in TRANSPETRO's operated pipelines, appeared a common conscientiousness about the necessity for the creation of a basic infrastructure for emergency and contingency pipeline repair that centralize equipment, procedures and technologies applied to pipeline maintenance. Then, it was planned the creation of the On-Shore Pipeline Emergency Center (CRE-DUT), following the model of the Off-Shore Pipelines Repair Group from PETROBRAS/EP, (Exploration and Production) and other similar centers of pipeline transport companies worldwide (Canada, Colombia, Mexico, Argentina). The CRE-DUT has the Mission of offering contingency; emergency and specials on-shore pipelines repair services, with safety, quality and at the less possible time, seeking for the leadership on applying new technologies and the excellency in repair activities. (author)

  6. Pipeline corridors through wetlands

    International Nuclear Information System (INIS)

    Zimmerman, R.E.; Wilkey, P.L.; Isaacson, H.R.

    1992-01-01

    This paper presents preliminary findings from six vegetational surveys of gas pipeline rights-of-way (ROW) through wetlands and quantifies the impacts of a 20-year-old pipeline ROW through a boreal forest wetland. Six sites of various ages were surveyed in ecosystems ranging from coastal marsh to forested wetland. At all sites except one, both the number and the percentage of wetland species on the Row approximated or exceeded those in the adjacent natural area. The boreal forest study showed that (1) adjacent natural wetland areas were not altered in type; (2) water sheet flow restriction had been reversed by nature; (3) no nonnative plant species invaded the natural area; (4) three-quarters of the ROW area was a wetland, and (5) the ROW increased diversity

  7. Global offshore pipeline markets

    International Nuclear Information System (INIS)

    Knight, R.; Parsons, B.

    2001-01-01

    In this article, two experts forecast a recovery in the offshore pipeline market followed by accelerating growth. A number of clearly definable macro trends are affecting the world offshore oil and gas industry and will be of considerable significance to the offshore pipelines industry. The authors' view is of markets that show every chance of enjoying long-term growth prospects driven by the fundamentals of a continuing increase in demand for offshore oil and gas. The offshore industry however has a highly cyclical nature, due to the impact of variations in oil and gas prices and the differing state of maturity of individual regions. Therefore those companies that are able to offer the widest range of pipe types and diameters and methods of installation across the greatest range of geographic markets are likely to prosper most. Thus, this continues to be a market best suited to those able to operate on a global scale and make a corporate commitment measured in decades

  8. Instrumented Pipeline Initiative

    Energy Technology Data Exchange (ETDEWEB)

    Thomas Piro; Michael Ream

    2010-07-31

    This report summarizes technical progress achieved during the cooperative agreement between Concurrent Technologies Corporation (CTC) and U.S. Department of Energy to address the need for a for low-cost monitoring and inspection sensor system as identified in the Department of Energy (DOE) National Gas Infrastructure Research & Development (R&D) Delivery Reliability Program Roadmap.. The Instrumented Pipeline Initiative (IPI) achieved the objective by researching technologies for the monitoring of pipeline delivery integrity, through a ubiquitous network of sensors and controllers to detect and diagnose incipient defects, leaks, and failures. This report is organized by tasks as detailed in the Statement of Project Objectives (SOPO). The sections all state the objective and approach before detailing results of work.

  9. Russia: the pipeline diplomacy

    International Nuclear Information System (INIS)

    Bourdillon, Y.

    2005-01-01

    First world producer of oil and gas, Russia wishes to use its mastery of energy distribution to recover its great power status. The oil and gas pipelines network is the basement used by Russia to build up its hegemony in Europe. The Russian oil and gas companies are also carrying out a long-term strategy of international expansion, in particular thanks to investments in the neighboring countries for the building of new infrastructures or the purchase of oil refineries. (J.S.)

  10. Pipeline Optimization Program (PLOP)

    Science.gov (United States)

    2006-08-01

    the framework of the Dredging Operations Decision Support System (DODSS, https://dodss.wes.army.mil/wiki/0). PLOP compiles industry standards and...efficiency point ( BEP ). In the interest of acceptable wear rate on the pump, industrial standards dictate that the flow Figure 2. Pump class as a function of...percentage of the flow rate corresponding to the BEP . Pump Acceptability Rules. The facts for pump performance, industrial standards and pipeline and

  11. PLUGGING AND UNPLUGGING OF WASTE TRANSFER PIPELINES

    International Nuclear Information System (INIS)

    Ebadian, M.A.

    1999-01-01

    This project, which began in FY97, involves both the flow loop research on plugging and unplugging of waste transfer pipelines, and the large-scale industrial equipment test of plugging locating and unplugging technologies. In FY98, the related work was performed under the project name ''Mixing, Settling, and Pipe Unplugging of Waste Transfer Lines.'' The mixing, settling, and pipeline plugging and unplugging are critical to the design and maintenance of a waste transfer pipeline system, especially for the High-Level Waste (HLW) pipeline transfer. The major objective of this work is to recreate pipeline plugging conditions for equipment testing of plug locating and removal and to provide systematic operating data for modification of equipment design and enhancement of performance of waste transfer lines used at DOE sites. As the waste tank clean-out and decommissioning program becomes active at the DOE sites, there is an increasing potential that the waste slurry transfer lines will become plugged and unable to transport waste slurry from one tank to another or from the mixing tank to processing facilities. Transfer systems may potentially become plugged if the solids concentration of the material being transferred increases beyond the capability of the prime mover or if upstream mixing is inadequately performed. Plugging can occur due to the solids' settling in either the mixing tank, the pumping system, or the transfer lines. In order to enhance and optimize the slurry's removal and transfer, refined and reliable data on the mixing, sampling, and pipe unplugging systems must be obtained based on both laboratory-scale and simulated in-situ operating conditions

  12. Energy cost reduction in oil pipeline

    Energy Technology Data Exchange (ETDEWEB)

    Limeira, Fabio Machado; Correa, Joao Luiz Lavoura; Costa, Luciano Macedo Josino da; Silva, Jose Luiz da; Henriques, Fausto Metzger Pessanha [Petrobras Transporte S.A. (TRANSPETRO), Rio de Janeiro, RJ (Brazil)

    2012-07-01

    One of the key questions of modern society consists on the rational use of the planet's natural resources and energy. Due to the lack of energy, many companies are forced to reduce their workload, especially during peak hours, because residential demand reaches its top and there is not enough energy to fulfill the needs of all users, which affects major industries. Therefore, using energy more wisely has become a strategic issue for any company, due to the limited supply and also for the excessive cost it represents. With the objective of saving energy and reducing costs for oil pipelines, it has been identified that the increase in energy consumption is primordially related to pumping stations and also by the way many facilities are operated, that is, differently from what was originally designed. Realizing this opportunity, in order to optimize the process, this article intends to examine the possibility of gains evaluating alternatives regarding changes in the pump scheme configuration and non-use of pump stations at peak hours. Initially, an oil pipeline with potential to reduce energy costs was chosen being followed by a history analysis, in order to confirm if there was sufficient room to change the operation mode. After confirming the pipeline choice, the system is briefly described and the literature is reviewed, explaining how the energy cost is calculated and also the main characteristics of a pumping system in series and in parallel. In that sequence, technically feasible alternatives are studied in order to operate and also to negotiate the energy demand contract. Finally, costs are calculated to identify the most economical alternative, that is, for a scenario with no increase in the actual transported volume of the pipeline and for another scenario that considers an increase of about 20%. The conclusion of this study indicates that the chosen pipeline can achieve a reduction on energy costs of up to 25% without the need for investments in new

  13. US DOE Pipeline Unplugging Requirements Development

    International Nuclear Information System (INIS)

    Rivera, J.; McDaniel, D.

    2009-01-01

    Department of Energy (DOE) sites around the country have an ongoing effort to transport and process several tons of radioactive waste in the form of slurry (liquids and solids) from storage tanks to processing facilities. The system of pipes used for the transportation of this waste needs technology for maintenance and for the prevention (and correction) of pipeline plugging. The unplugging technologies that have been tested and evaluated at Florida International University include ones from NuVision Engineering, AIMM and AquaMiser. NuVision's technology acts as an ocean wave does on beach erosion. It can operate on a long pipeline that has drained down below a blockage. AIMM Technology's Hydrokinetic TM process uses a sonic resonance with a cleaning water stream. This sonic resonance travels through the water stream and transfers vibration to both the pipe and the blockage. The AquaMiser line of water blasting equipment combines 15,000- to 40,000-psi water injection technology to unplug pipelines. Some sites cannot allow this level of pressure in their pipes. After reviewing the results of every test, including the benefits, advantages and disadvantages of each technology, requirements were developed for pressure, personnel training, environmental concerns, safety, and compatibility with current systems, operability, reliability, maintainability and cost. (authors)

  14. Simulation of high consequence areas for gas pipelines

    Directory of Open Access Journals (Sweden)

    Orlando Díaz-Parra

    2018-01-01

    Full Text Available The gas pipeline is used for the transport of natural gas at a great distance. Risks derived from the handling of a combustible material transported under high pressure, by pipelines that pass close to where people live, makes it necessary to adopt prevention, mitigation and control measures to reduce the effect in case of ignition of a gas leak. This work shows the development of a new mathematical model to determine areas of high consequence and their application, using widely available and easy to use software, such as Google Earth and Excel, to determine and visualize the area up to which the level of radiation can affect the integrity of people and buildings. The model takes into account the pressure drop into the gas pipeline from the compression station, the gas leakage rate and possible forms of gas ignition. This development is an alternative to the use of specialized software and highly trained personnel. The simulation is applied to a traced of the Miraflores-Tunja gas pipeline, using a macro developed in Excel to determine the impact area and compare it with the coordinates of the vulnerable areas. The zones where these areas intersect are constituted in high consequence areas and are identified along with the sections of the pipeline that affect them, to provide the operator with a risk analysis tool for the determination and visualization of the gas pipeline and its environment.

  15. Hollow-core fiber sensing technique for pipeline leak detection

    Science.gov (United States)

    Challener, W. A.; Kasten, Matthias A.; Karp, Jason; Choudhury, Niloy

    2018-02-01

    Recently there has been increased interest on the part of federal and state regulators to detect and quantify emissions of methane, an important greenhouse gas, from various parts of the oil and gas infrastructure including well pads and pipelines. Pressure and/or flow anomalies are typically used to detect leaks along natural gas pipelines, but are generally very insensitive and subject to false alarms. We have developed a system to detect and localize methane leaks along gas pipelines that is an order of magnitude more sensitive by combining tunable diode laser spectroscopy (TDLAS) with conventional sensor tube technology. This technique can potentially localize leaks along pipelines up to 100 km lengths with an accuracy of +/-50 m or less. A sensor tube buried along the pipeline with a gas-permeable membrane collects leaking gas during a soak period. The leak plume within the tube is then carried to the nearest sensor node along the tube in a purge cycle. The time-to-detection is used to determine leak location. Multiple sensor nodes are situated along the pipeline to minimize the time to detection, and each node is composed of a short segment of hollow core fiber (HCF) into which leaking gas is transported quickly through a small pressure differential. The HCF sensing node is spliced to standard telecom solid core fiber which transports the laser light for spectroscopy to a remote interrogator. The interrogator is multiplexed across the sensor nodes to minimize equipment cost and complexity.

  16. Health, safety and environment risk assessment in gas pipelines by indexing method:case of Kermanshah Sanandaj oil pipeline

    Directory of Open Access Journals (Sweden)

    Y. Hamidi

    2009-10-01

    Full Text Available Background and AimsUsing pipelines for oil products transportation involves ranges of safety, health and environmental risks, this option however, is dominant with numerous  advantages. The purpose of this study was; relative risk assessment of abovementioned risk in Kermanshah-Sanandaj Oil Pipeline.MethodsThe method used in this study was Kent Muhlbauer method in which relative risk was assessed using third-party damage, corrosion, design, incorrect operations and leak impact  factor.ResultsOnce applying this method, collection of required data and performing needed experiments, scoring results showed 96 risk segments along the pipeline length in which lengths 100+860, 101+384 and 103+670 had relative risk scores 9.74, 9.82 and 9.91 respectively and therefore these segments were identified as focal risk points and priority for improvement actions.ConclusionRegarding importance of pipeline failure, inspection and regular patrol along the pipeline route, precise control of cathodic protection of pipeline and using communication technologies such as SCADA or optical fibers along the pipeline route were amongst the mostimportant control action suggested by the study.

  17. Review of Detection and Monitoring Systems for Buried High Pressure Pipelines: Final Report

    OpenAIRE

    Asadollahi Dolatabad, Saeid; Doree, Andries G.; olde Scholtenhuis, Léon Luc; Vahdatikhaki, Faridaddin

    2017-01-01

    The Netherlands has approximately two million kilometers of underground cables and pipelines. One specific type of buried infrastructure is the distribution network of hazardous material such as gas, oil, and chemicals (‘transportleiding gevaarlijke stoffen’). This network comprises 22.000 kilometers of high-pressure transportation pipelines. Because they are located under the ground, these pipelines are subject to excavation damages. Incidents in them Belgian Gellingen (2004) and German Ludw...

  18. Failure Assessment for the High-Strength Pipelines with Constant-Depth Circumferential Surface Cracks

    OpenAIRE

    X. Liu; Z. X. Lu; Y. Chen; Y. L. Sui; L. H. Dai

    2018-01-01

    In the oil and gas transportation system over long distance, application of high-strength pipeline steels can efficiently reduce construction and operation cost by increasing operational pressure and reducing the pipe wall thickness. Failure assessment is an important issue in the design, construction, and maintenance of the pipelines. The small circumferential surface cracks with constant depth in the welded pipelines are of practical interest. This work provides an engineering estimation pr...

  19. Pipeline flow of heavy oil with temperature-dependent viscosity

    Energy Technology Data Exchange (ETDEWEB)

    Maza Quinones, Danmer; Carvalho, Marcio da Silveira [Pontifical Catholic University of Rio de Janeiro (PUC-Rio), RJ (Brazil). Dept. of Mechanical Engineering], E-mail: msc@puc-rio.br

    2010-07-01

    The heavy oil produced offshore needs to be transported through pipelines between different facilities. The pipelines are usually laid down on the seabed and are submitted to low temperatures. Although heavy oils usually present Newtonian behavior, its viscosity is a strong function of temperature. Therefore, the prediction of pressure drops along the pipelines should include the solution of the energy equation and the dependence of viscosity to temperature. In this work, an asymptotic model is developed to study this problem. The flow is considered laminar and the viscosity varies exponentially with temperature. The model includes one-dimensional equations for the temperature and pressure distribution along the pipeline at a prescribed flow rate. The solution of the coupled differential equation is obtained by second-order finite difference. Results show a nonlinear behavior as a result of coupled interaction between the velocity, temperature, and temperature dependent material properties. (author)

  20. Distributed fiber optic sensing enhances pipeline safety and security

    Energy Technology Data Exchange (ETDEWEB)

    Frings, Jochen; Walk, Tobias [ILF Consulting Engineers, Munich (Germany)

    2011-09-15

    Pipelines are efficient, highly reliable and safe means of transportation. However, despite intensive right of way surveillance by foot, car and out of the air, pipeline leaks and illegal tappings are a reality - sometimes with catastrophic results. These events show a gap in real-time monitoring caused by the highly distributed nature of pipelines. Parts of this gap now can be closed with distributed fiber optic sensing technology. Using various physical effects this technology is apt to detect temperature, strain, vibrations and sound with very good localization over spans up to 50 km with a single sensor cable. Various field tested applications like leakage detection, third party activity monitoring and intrusion detection or ground movement detection as well as integrity monitoring proof that distributed fiber optic sensing can enhance pipeline safety and security. (orig.)

  1. Installation Capacity Assessment of Damaged Deepwater Pipelines

    Directory of Open Access Journals (Sweden)

    Ramasamy R.

    2014-07-01

    Full Text Available The worldwide exploration and development of subsea and deepwater reservoirs has laid down some new and old engineering challenges to the offshore pipeline industry. This requires large D/t pipelines to be installed at water depths in the vicinity of up to 2700m. The deepwater collapse and buckle propagation event is almost unavoidable as the pipe wall thickness cannot be always determined from the codes and standards due to the limit state criteria. These codes also do not consider any fabrication imperfections and sustained damages emanating from transportation and handling. The objective of this paper is to present the Finite Element Analysis (FEA of dented pipes with D/t ratio more than 45, which is outside the applicability of current design codes, and to investigate the effects on installation capacity of these various damage sizes in terms of collapse and buckle propagation.

  2. Pipelines to power South East Asia

    Energy Technology Data Exchange (ETDEWEB)

    Scholes, W

    1994-07-01

    European, North American and Australian pipeline companies are busy building pipelines to transport natural gas to power stations throughout South East Asia. Many countries, such as Thailand, Malaysia, Singapore and Indonesia, have economies expanding at more than eight percent a year. Cambodia and Laos are awaiting energy development. Myanmar will not only benefit from the global economic expansion but from the flourishing economies of nearby Thailand and Malaysia which are now investing in neighbouring countries, while their national petroleum companies are starting to operate worldwide. It is the ever expanding rush of industrialisation, urbanisation and the move to raise living standards throughout the region that is accelerating the need for more power stations, both gas and coal-fired, throughout South East Asia. (author)

  3. Pipelines to power South East Asia

    International Nuclear Information System (INIS)

    Scholes, W.

    1994-01-01

    European, North American and Australian pipeline companies are busy building pipelines to transport natural gas to power stations throughout South East Asia. Many countries, such as Thailand, Malaysia, Singapore and Indonesia, have economies expanding at more than eight percent a year. Cambodia and Laos are awaiting energy development. Myanmar will not only benefit from the global economic expansion but from the flourishing economies of nearby Thailand and Malaysia which are now investing in neighbouring countries, while their national petroleum companies are starting to operate worldwide. It is the ever expanding rush of industrialisation, urbanisation and the move to raise living standards throughout the region that is accelerating the need for more power stations, both gas and coal-fired, throughout South East Asia. (author)

  4. 49 CFR 195.207 - Transportation of pipe.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 3 2010-10-01 2010-10-01 false Transportation of pipe. 195.207 Section 195.207 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) PIPELINE SAFETY TRANSPORTATION OF HAZARDOUS LIQUIDS BY...

  5. Oil pipeline performance review 1995, 1996, 1997, 1998 : Technical/statistical report

    International Nuclear Information System (INIS)

    2000-12-01

    This document provides a summary of the pipeline performance and reportable pipeline failures of liquid hydrocarbon pipelines in Canada, for the years 1995 through 1998. The year 1994 was the last one for which the Oil Pipeline Performance Review (OPPR) was published on an annual basis. The OPPR will continue to be published until such time as the Pipeline Risk Assesment Sub-Committee (PRASC) has obtained enough pipeline failure data to be aggregated into a meaningful report. The shifts in the mix of reporting pipeline companies is apparent in the data presented, comparing the volumes transported and the traffic volume during the previous ten-year period. Another table presents a summary of the failures which occurred during the period under consideration, 1995-1998, allowing for a comparison with the data for the previous ten-year period. From the current perspective and from an historical context, this document provides a statistical review of the performance of the pipelines, covering refined petroleum product pipelines, clean oil pipelines and High Vapour Pressure (HVP) pipelines downstream of battery limits. Classified as reportable are spills of 1.5 cubic metre or more of liquid hydrocarbons, any amount of HVP material, any incident involving an injury, a death, a fire, or an explosion. For those companies that responded to the survey, the major items, including number of failures and volumes released are accurate. Samples of the forms used for collecting the information are provided within the document. 6 tabs., 1 fig

  6. Determination of heat losses in the Cerro Prieto, Baja California, geothermal field steam transportation network based on the thermal insulation condition of the steam pipelines; Determinacion de perdidas de calor en la red de transporte de vapor del campo geotermico de Cerro Prieto, Baja California, con base en el estado fisico del aislamiento termico de vaporductos

    Energy Technology Data Exchange (ETDEWEB)

    Ovando Castelar, Rosember; Garcia Gutierrez, Alfonso; Martinez Estrella, Juan Ignacio [Instituto de Investigaciones Electricas, Cuernavaca, Morelos (Mexico)]. E-mail: rovando@iie.org.mx; Canchola Felix, Ismael; Jacobo Galvan, Paul; Miranda Herrera, Carlos; Mora Perez, Othon [Comision Federal de Electricidad, Gerencia de Proyectos Geotermoelectricos, Residencia General de Cerro Prieto, Mexicali, B.C. (Mexico)

    2011-07-15

    In Cerro Prieto Geothermal Field (CPGF), the steam from producing wells is transported to power plants through a large and complex system of pipes thermally insulated with a 2 inches thick mineral wool or a fiber glass layer and an external aluminum or iron cover. The insulation material has been exposed to weather conditions during the field operation and has suffered density and thickness changes. In some cases the insulation has been lost completely, increasing heat transfer from the pipes to the environment. This paper analyzes the impact of the conditions of thermal insulation on heat losses in the CPGF steam-pipeline network. The heat losses are calculated by applying an iterative method to determine the surface temperature based on a heat balance calculated from the three basic mechanisms of heat transfer: conduction, convection, and radiation. Finally, using length and diameter data corresponding to the condition of the thermal insulation of each pipeline-and field operation data, the overall heat losses are quantified for steam lines throughout the pipeline network in the field. The results allow us to evaluate the magnitude of the heat losses in comparison with the overall energy losses occurring during steam transport from wells to the power plants. [Spanish] En el Campo Geotermico de Cerro Prieto (CGCP), BC, el transporte de vapor desde los pozos hasta las plantas generadoras de electricidad se lleva a cabo mediante un extenso y complejo sistema de tuberias que tipicamente se encuentran aisladas termicamente con una capa de 2 pulgadas de material aislante a base de lana mineral o fibra de vidrio, y una proteccion mecanica de aluminio o hierro galvanizado. Debido a la exposicion a las condiciones meteorologicas a traves del tiempo de operacion del campo, el aislamiento ha experimentado cambios en su densidad y espesor y en ocasiones se ha perdido por completo, lo cual repercute en una mayor transferencia de calor de las tuberias hacia el medio ambiente

  7. Planned and proposed pipeline regulations

    International Nuclear Information System (INIS)

    De Leon, C.

    1992-01-01

    The Research and Special Programs Administration administers the Natural Gas Pipeline Safety Act of 1968 (NGPSA) and the Hazardous Liquid Pipeline Safety Act of 1979 (HLPSA). The RSPA issues and enforces design, construction, operation and maintenance regulations for natural gas pipelines and hazardous liquid pipelines. This paper discusses a number of proposed and pending safety regulations and legislative initiatives currently being considered by the RSPA and the US Congress. Some new regulations have been enacted. The next few years will see a great deal of regulatory activity regarding natural gas and hazardous liquid pipelines, much of it resulting from legislative requirements. The office of Pipeline Safety is currently conducting a study to streamline its operations. This study is analyzing the office's business, social and technical operations with the goal of improving overall efficiency, effectiveness, productivity and job satisfaction to meet the challenges of the future

  8. Incidental electric heating of pipelines

    Energy Technology Data Exchange (ETDEWEB)

    Sonninskii, A V; Sirotin, A M; Vasiliev, Y N

    1981-04-01

    VNIIgaz has improved the conventional Japanese SECT pipeline-heating system, which uses a small steel tube that contains an insulated heater/conductor and is welded to the top of the pipeline. The improved version has two insulated electric heaters - one on the top and the other on the bottom of the pipeline - located inside steel angle irons that are welded to the pipeline. A comparison of experimental results from heating a 200-ft pipeline with both systems at currents of up to 470 A clearly demonstrated the better heating efficiency of the VNIIgaz unit. The improved SECT system would be suitable for various types of pipelines, including gas lines, in the USSR's far north regions.

  9. Pipeline oil fire detection with MODIS active fire products

    Science.gov (United States)

    Ogungbuyi, M. G.; Martinez, P.; Eckardt, F. D.

    2017-12-01

    We investigate 85 129 MODIS satellite active fire events from 2007 to 2015 in the Niger Delta of Nigeria. The region is the oil base for Nigerian economy and the hub of oil exploration where oil facilities (i.e. flowlines, flow stations, trunklines, oil wells and oil fields) are domiciled, and from where crude oil and refined products are transported to different Nigerian locations through a network of pipeline systems. Pipeline and other oil facilities are consistently susceptible to oil leaks due to operational or maintenance error, and by acts of deliberate sabotage of the pipeline equipment which often result in explosions and fire outbreaks. We used ground oil spill reports obtained from the National Oil Spill Detection and Response Agency (NOSDRA) database (see www.oilspillmonitor.ng) to validate MODIS satellite data. NOSDRA database shows an estimate of 10 000 spill events from 2007 - 2015. The spill events were filtered to include largest spills by volume and events occurring only in the Niger Delta (i.e. 386 spills). By projecting both MODIS fire and spill as `input vector' layers with `Points' geometry, and the Nigerian pipeline networks as `from vector' layers with `LineString' geometry in a geographical information system, we extracted the nearest MODIS events (i.e. 2192) closed to the pipelines by 1000m distance in spatial vector analysis. The extraction process that defined the nearest distance to the pipelines is based on the global practices of the Right of Way (ROW) in pipeline management that earmarked 30m strip of land to the pipeline. The KML files of the extracted fires in a Google map validated their source origin to be from oil facilities. Land cover mapping confirmed fire anomalies. The aim of the study is to propose a near-real-time monitoring of spill events along pipeline routes using 250 m spatial resolution of MODIS active fire detection sensor when such spills are accompanied by fire events in the study location.

  10. Historical analysis of US pipeline accidents triggered by natural hazards

    Science.gov (United States)

    Girgin, Serkan; Krausmann, Elisabeth

    2015-04-01

    Natural hazards, such as earthquakes, floods, landslides, or lightning, can initiate accidents in oil and gas pipelines with potentially major consequences on the population or the environment due to toxic releases, fires and explosions. Accidents of this type are also referred to as Natech events. Many major accidents highlight the risk associated with natural-hazard impact on pipelines transporting dangerous substances. For instance, in the USA in 1994, flooding of the San Jacinto River caused the rupture of 8 and the undermining of 29 pipelines by the floodwaters. About 5.5 million litres of petroleum and related products were spilled into the river and ignited. As a results, 547 people were injured and significant environmental damage occurred. Post-incident analysis is a valuable tool for better understanding the causes, dynamics and impacts of pipeline Natech accidents in support of future accident prevention and mitigation. Therefore, data on onshore hazardous-liquid pipeline accidents collected by the US Pipeline and Hazardous Materials Safety Administration (PHMSA) was analysed. For this purpose, a database-driven incident data analysis system was developed to aid the rapid review and categorization of PHMSA incident reports. Using an automated data-mining process followed by a peer review of the incident records and supported by natural hazard databases and external information sources, the pipeline Natechs were identified. As a by-product of the data-collection process, the database now includes over 800,000 incidents from all causes in industrial and transportation activities, which are automatically classified in the same way as the PHMSA record. This presentation describes the data collection and reviewing steps conducted during the study, provides information on the developed database and data analysis tools, and reports the findings of a statistical analysis of the identified hazardous liquid pipeline incidents in terms of accident dynamics and

  11. Viability of using different types of main oil pipelines pump drives

    Science.gov (United States)

    Zakirzakov, A. G.; Zemenkov, Yu D.; Akulov, K. A.

    2018-05-01

    The choice of the pumping units' drive of main oil pipelines is of great importance both for design of pipelines and for modernization of existing ones. At the beginning of oil pipeline transport development, due to the limited number and types of energy sources, the choice was not difficult. The combustion energy of the pumped product was often the only available energy resource for its transportation. In this regard, the pipelines that had autonomous energy sources favorably differed from other energy consumers in the sector. With the passage of time, with the development of the country's electricity supply system, the electric drive for power-line equipment of oil pipelines becomes the dominant type of a pumping station drive. Nowadays, the traditional component is an essential factor when choosing some type of the drive. For many years, oil companies have been using electric drives for pumps, while gas transport enterprises prefer self-contained gas turbines.

  12. 76 FR 44985 - Pipeline Safety: Potential for Damage to Pipeline Facilities Caused by Flooding

    Science.gov (United States)

    2011-07-27

    .... PHMSA-2011-0177] Pipeline Safety: Potential for Damage to Pipeline Facilities Caused by Flooding AGENCY... liquid pipelines to communicate the potential for damage to pipeline facilities caused by severe flooding... pipelines in case of flooding. ADDRESSES: This document can be viewed on the Office of Pipeline Safety home...

  13. 77 FR 19799 - Pipeline Safety: Pipeline Damage Prevention Programs

    Science.gov (United States)

    2012-04-02

    ... noted ``when the oil pipeline industry developed the survey for its voluntary spill reporting system...) [cir] The American Public Gas Association (APGA) [cir] The Association of Oil Pipelines (AOPL) [cir... the contrary, all 50 states in the United States have a law designed to prevent excavation damage to...

  14. Numerical Analysis of Damage Iinitiation and Development in Bends of Steel Pipelines

    NARCIS (Netherlands)

    Swart, A.E.

    2010-01-01

    Gasses and fluids are transported via an extensive infrastructure of steel pipelines. In the design of pipeline systems the use of elbows (pipe bends) is important because their flexibility makes them able to sustain significant deformations. These bends can be subjected to permanent deformations

  15. 78 FR 32090 - Filing, Indexing, and Service Requirements for Oil Pipelines

    Science.gov (United States)

    2013-05-29

    ... Web site in addition to tariffs. 68. Consistent with existing policy, the Commission will not require... transportation of products. However, if the oil pipeline references the policies and manuals in its tariff, then... that all tariffs and tariff revisions and rate change applications for oil pipelines and other...

  16. Energy intensity, life-cycle greenhouse gas emissions, and economic assessment of liquid biofuel pipelines.

    Science.gov (United States)

    Strogen, Bret; Horvath, Arpad; Zilberman, David

    2013-12-01

    Petroleum fuels are predominantly transported domestically by pipelines, whereas biofuels are almost exclusively transported by rail, barge, and truck. As biofuel production increases, new pipelines may become economically attractive. Location-specific variables impacting pipeline viability include construction costs, availability and costs of alternative transportation modes, electricity prices and emissions (if priced), throughput, and subsurface temperature. When transporting alcohol or diesel-like fuels, pipelines have a lower direct energy intensity than rail, barge, and trucks if fluid velocity is under 1 m/s for 4-inch diameter pipelines and 2 m/s for 8-inch or larger pipelines. Across multiple hypothetical state-specific scenarios, profit-maximizing design velocities range from 1.2 to 1.9 m/s. In costs and GHG emissions, optimized pipelines outperform trucks in each state and rail and barge in most states, if projected throughput exceeds four billion liters/year. If emissions are priced, optimum design diameters typically increase to reduce pumping energy demands, increasing the cost-effectiveness of pipeline projects. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. The influence of risk mitigation measures on the risks, costs and routing of CO2 pipelines

    NARCIS (Netherlands)

    Knoope, M. M J|info:eu-repo/dai/nl/364248149; Raben, I. M E; Ramírez, A.|info:eu-repo/dai/nl/284852414; Spruijt, M. P N; Faaij, A. P C|info:eu-repo/dai/nl/10685903X

    2014-01-01

    The aim of this study was to analyze whether, and if so, in what way risks would influence the design, costs and routing of CO2 pipelines. This article assesses locational and societal risks of CO2 pipeline transport and analyses whether rerouting or implementing additional risk mitigation measures

  18. Pipeline Processing for VISTA

    Science.gov (United States)

    Lewis, J. R.; Irwin, M.; Bunclark, P.

    2010-12-01

    The VISTA telescope is a 4 metre instrument which has recently been commissioned at Paranal, Chile. Equipped with an infrared camera, 16 2Kx2K Raytheon detectors and a 1.7 square degree field of view, VISTA represents a huge leap in infrared survey capability in the southern hemisphere. Pipeline processing of IR data is far more technically challenging than for optical data. IR detectors are inherently more unstable, while the sky emission is over 100 times brighter than most objects of interest, and varies in a complex spatial and temporal manner. To compensate for this, exposure times are kept short, leading to high nightly data rates. VISTA is expected to generate an average of 250 GB of data per night over the next 5-10 years, which far exceeds the current total data rate of all 8m-class telescopes. In this presentation we discuss the pipelines that have been developed to deal with IR imaging data from VISTA and discuss the primary issues involved in an end-to-end system capable of: robustly removing instrument and night sky signatures; monitoring data quality and system integrity; providing astrometric and photometric calibration; and generating photon noise-limited images and science-ready astronomical catalogues.

  19. Corrosion behavior of API 5L-X80 Pipeline steel for natural gas pipeline

    International Nuclear Information System (INIS)

    Mohd Asyadi Azam Mohd Abid; Imai, Hachiro

    2007-01-01

    Natural energy problem, including the environmental aspects had changes into certain circumstances in recent years and natural gas has been a focus of constant attention from the viewpoint of energy efficiency and pollution free. From that kind of background, pipeline construction for petroleum and natural gas were considerate as energy infrastructure maintenance plan. Based on the clarification of Asian Pipeline Project (1997-2007) centered in Japan, international pipeline is needed as the natural gas is mainly transported from gas field in Russia and Middle East to consumer country such as Japan etc. It used in severe condition such as cold district and sea. In the meantime, pipeline steel is not just received damages by earth crust fluctuation and corrosion, but also suffered from the corrosion caused by anions that were dissolved in sea and groundwater. The diversification of dispersion and consumption structure of natural gas supply acceptance base are seen regarding, that made the needs of the storing are rising and dealt with the quantitative spatial expansion of the demand. By that, corrosion resistance, not only the hardness, tough, weldability, corrosiveness gas environment is extremely required. (author)

  20. Development Of A Centrifugal Hydrogen Pipeline Gas Compressor

    Energy Technology Data Exchange (ETDEWEB)

    Di Bella, Francis A. [Concepts NREC, White River Junction, VY (United States)

    2015-04-16

    Concepts NREC (CN) has completed a Department of Energy (DOE) sponsored project to analyze, design, and fabricate a pipeline capacity hydrogen compressor. The pipeline compressor is a critical component in the DOE strategy to provide sufficient quantities of hydrogen to support the expected shift in transportation fuels from liquid and natural gas to hydrogen. The hydrogen would be generated by renewable energy (solar, wind, and perhaps even tidal or ocean), and would be electrolyzed from water. The hydrogen would then be transported to the population centers in the U.S., where fuel-cell vehicles are expected to become popular and necessary to relieve dependency on fossil fuels. The specifications for the required pipeline hydrogen compressor indicates a need for a small package that is efficient, less costly, and more reliable than what is available in the form of a multi-cylinder, reciprocating (positive displacement) compressor for compressing hydrogen in the gas industry.

  1. Simulation of pipeline in the area of the underwater crossing

    International Nuclear Information System (INIS)

    Burkov, P; Chernyavskiy, D; Burkova, S; Konan, E C

    2014-01-01

    The article studies stress-strain behavior of the main oil-pipeline section Alexandrovskoye-Anzhero-Sudzhensk using software system Ansys. This method of examination and assessment of technical conditions of objects of pipeline transport studies the objects and the processes that affect the technical condition of these facilities, including the research on the basis of computer simulation. Such approach allows to develop the theory, methods of calculations and designing of objects of pipeline transport, units and parts of machines, regardless of their industry and destination with a view to improve the existing constructions and create new structures, machines of high performance, durability and reliability, maintainability, low material capacity and cost, which have competitiveness on the world market

  2. Midwest gas and power markets, hubs, pipelines, and interconnects

    International Nuclear Information System (INIS)

    Wirick, J.

    2001-01-01

    The existing interstate pipelines and proposed pipeline projects for the Chicago hub area were illustrated. The presentation explained why energy suppliers in the current competitive market need to balance and manage energy and transportation services for gas-fired power generators in terms of hourly winter and summer peaking services. The new infrastructure of the energy market will include new pipelines, storage and balancing to meet the ever increasing power demand. One of the options to meet power demand is to increase natural gas supply, transportation, storage, and hourly balancing capabilities. Other options are to build nuclear or coal-fired power generating facilities, or to go with renewables such as solar and wind power. Energy conservation and the reduction of natural gas usage per capita is another option to eliminate blackouts. This presentation also addressed the role that local distribution companies (LDC) and unbundling will play in the choice of these options. tabs., figs

  3. Accuracy Limitations of Pipelined ADCs

    NARCIS (Netherlands)

    Quinn, P.J.; Roermund, van A.H.M.

    2005-01-01

    In this paper, the key characteristics of the main errors which affect the performance of a switched capacitor pipelined ADC are presented and their effects on the ADC transfer characteristics demonstrated. Clear and concise relationships are developed to aid optimized design of the pipeline ADC and

  4. Black powder in gas pipelines

    Energy Technology Data Exchange (ETDEWEB)

    Sherik, Abdelmounam [Saudi Aramco, Dhahran (Saudi Arabia)

    2009-07-01

    Despite its common occurrence in the gas industry, black powder is a problem that is not well understood across the industry, in terms of its chemical and physical properties, source, formation, prevention or management of its impacts. In order to prevent or effectively manage the impacts of black powder, it is essential to have knowledge of its chemical and physical properties, formation mechanisms and sources. The present paper is divided into three parts. The first part of this paper is a synopsis of published literature. The second part reviews the recent laboratory and field work conducted at Saudi Aramco Research and Development Center to determine the compositions, properties, sources and formation mechanisms of black powder in gas transmission systems. Microhardness, nano-indentation, X-ray Diffraction (XRD), X-ray Fluorescence (XRF) and Scanning Electron Microscopy (SEM) techniques were used to analyze a large number of black powder samples collected from the field. Our findings showed that black powder is generated inside pipelines due to internal corrosion and that the composition of black powder is dependent on the composition of transported gas. The final part presents a summary and brief discussion of various black powder management methods. (author)

  5. Recent developments in pipeline welding practice

    Energy Technology Data Exchange (ETDEWEB)

    1979-01-01

    Fourteen chapters are included: overview of pipeline welding systems and quality assurance, CRC automatic welding system, H.C. Price Co. automatic welding system, semi-automatic MIG-welding process, partial penetration welding of steel pipes for gas distribution, construction procedures and quality control in offshore pipeline construction, welding in repair and maintenance of gas transmission pipelines, British Gas studies of welding on pressurized gas transmission pipelines, hot tapping pipelines, underwater welding for offshore pipelines and associated equipment, radial friction welding, material composition vs weld properties, review of NDT of pipeline welds, and safety assurance in pipeline construction. A bibliography of approximately 150 references is included, arranged according to subject and year.

  6. Facilitating major additions to gas pipeline capacity: innovative approaches to financing, contracting, and regulation

    International Nuclear Information System (INIS)

    Schlesinger, B.; George, R.

    1997-01-01

    The North American gas pipeline industry is in the process of changing from a highly regulated merchant business to a less-regulated, more competitive, transportation industry. This has changed the risk profiles of many companies. This study examined various innovative approaches to successfully financing major pipeline projects emphasizing pipeline capacity financing, contractual terms between shippers and pipelines, and regulatory developments. Besides suggesting options to enhance prospects for financing major pipeline expansion projects, the study also aimed at creating a better understanding of the regulatory market and commercial changes in the pipeline industry and their financing implications. The study also includes a review of the evolution in gas markets and a record of consultations with lenders, producers, marketers and users. Innovative financing, contracting and regulatory solutions are identified and assessed. 25 refs., 17 tabs., 16 figs

  7. Necessary calorific energy during the in-service welding of pipelines for petroleum transport; Energia calorifica necesaria durante la soldadura en servicio de tuberias para el transporte de petroleo

    Energy Technology Data Exchange (ETDEWEB)

    Ramos Morales, Felix; Scott, Alejandro Duffus; Rodriguez Perez, Manuel; Diza Cedre, Eduardo; Pozo Morejon, Juan A. [Universidad Central Marta Abreu de las Villas, Santa Clara, Villa Clara (Cuba). Centro de Investigaciones de Soldadura

    2009-01-15

    The thermal behavior during in service repair welding of oil transportation pipes was studied by finite element analysis in the present paper. Regression equations that relate peak temperature at the inner surface of the pipe and cooling time between 800 and 500 deg C in the heat affected zone to the welding heat input, preheat temperature, and convection heat transfer coefficient were obtained. The former parameters govern, respectively, the possibility of burn through and cold cracking, and the latter parameters define the thermal behavior during welding. The existence of conditions that simultaneously satisfy the obtained equations, for different combinations of related variables, was proved. Graphical representations of relevant practical importance that were developed from the solution of obtained equations are presented. (author)

  8. Transportation

    National Research Council Canada - National Science Library

    Adams, James; Carr, Ron; Chebl, Maroun; Coleman, Robert; Costantini, William; Cox, Robert; Dial, William; Jenkins, Robert; McGovern, James; Mueller, Peter

    2006-01-01

    ...., trains, ships, etc.) and maximizing intermodal efficiency. A healthy balance must be achieved between the flow of international commerce and security requirements regardless of transportation mode...

  9. 76 FR 73011 - Pipeline and Hazardous Materials Safety Administration

    Science.gov (United States)

    2011-11-28

    ... DEPARTMENT OF TRANSPORTATION Pipeline and Hazardous Materials Safety Administration Office of... Safety Administration (PHMSA), DOT. ACTION: Notice of actions on Special Permit Applications. SUMMARY: In... reissue the Nuclear 173.56(b)(3)(i special permit Security ). originally issued Administration on an...

  10. 18 CFR 284.265 - Cost recovery by interstate pipeline.

    Science.gov (United States)

    2010-04-01

    ... 1978 AND RELATED AUTHORITIES Emergency Natural Gas Sale, Transportation, and Exchange Transactions... 18 Conservation of Power and Water Resources 1 2010-04-01 2010-04-01 false Cost recovery by interstate pipeline. 284.265 Section 284.265 Conservation of Power and Water Resources FEDERAL ENERGY...

  11. Towards a federated infrastructure for the global data pipeline

    NARCIS (Netherlands)

    Hofman, W.J.

    2015-01-01

    Interoperability in logistics is a prerequisite for realizing data pipelines and the Physical Internet. Forecasting data, real time data, and actual positions of shipments, containers, and transport means shared via events have to be harmonized and are expected to improve all types of processes,

  12. Radio-frequency slurry-density measurement for dredging pipelines

    NARCIS (Netherlands)

    van Eeten, M.J.C.

    2011-01-01

    Hydraulic dredgers make use of a density meter to measure the instantaneous density in the slurry transport pipeline, primarily for process control and production calculation. the current ‘golden’ standard for slurry density measurement is the radioactive density meter. It is based on a slurry

  13. Tariff Policy Applied in the Adriatic Oil Pipeline

    International Nuclear Information System (INIS)

    Skodlar, Z.; Poljak, J.

    1995-01-01

    The policy of energy costs of crude oil transportation by pipeline strongly encourages an operational regime which results in poor pump efficiency. Oil is being unnecessarily and for too long time retained in oil storage tanks, thus increasing evaporation losses. (author). 3 figs., 2 tabs

  14. Cavitation in horizontal pipelines due to water hammer

    NARCIS (Netherlands)

    Kalkwijk, J.P.T.; Kranenburg, C.

    1971-01-01

    When designing a pipeline for the transport of a liquid one of the problems to be considered is the provision of a device to guard against low pressures. These low pressures can be caused, for example, by a sudden pump failure. The failure creates a negative pressure wave which travels in the

  15. Optimal Energy Consumption Analysis of Natural Gas Pipeline

    Science.gov (United States)

    Liu, Enbin; Li, Changjun; Yang, Yi

    2014-01-01

    There are many compressor stations along long-distance natural gas pipelines. Natural gas can be transported using different boot programs and import pressures, combined with temperature control parameters. Moreover, different transport methods have correspondingly different energy consumptions. At present, the operating parameters of many pipelines are determined empirically by dispatchers, resulting in high energy consumption. This practice does not abide by energy reduction policies. Therefore, based on a full understanding of the actual needs of pipeline companies, we introduce production unit consumption indicators to establish an objective function for achieving the goal of lowering energy consumption. By using a dynamic programming method for solving the model and preparing calculation software, we can ensure that the solution process is quick and efficient. Using established optimization methods, we analyzed the energy savings for the XQ gas pipeline. By optimizing the boot program, the import station pressure, and the temperature parameters, we achieved the optimal energy consumption. By comparison with the measured energy consumption, the pipeline now has the potential to reduce energy consumption by 11 to 16 percent. PMID:24955410

  16. Maglev crude oil pipeline

    Science.gov (United States)

    Knolle, Ernst G.

    1994-01-01

    This maglev crude oil pipeline consists of two conduits guiding an endless stream of long containers. One conduit carries loaded containers and the other empty returns. The containers are levitated by permanent magnets in repulsion and propelled by stationary linear induction motors. The containers are linked to each other in a manner that allows them, while in continuous motion, to be folded into side by side position at loading and unloading points. This folding causes a speed reduction in proportion to the ratio of container diameter to container length. While in side by side position, containers are opened at their ends to be filled or emptied. Container size and speed are elected to produce a desired carrying capacity.

  17. Shipping Information Pipeline

    DEFF Research Database (Denmark)

    Jensen, Thomas

    to creating a more efficient shipping industry, and a number of critical issues are identified. These include that shipments depend on shipping information, that shipments often are delayed due to issues with documentation, that EDI messages account for only a minor part of the needed information......This thesis applies theoretical perspectives from the Information Systems (IS) research field to propose how Information Technology (IT) can improve containerized shipping. This question is addressed by developing a set of design principles for an information infrastructure for sharing shipping...... information named the Shipping Information Pipeline (SIP). Review of the literature revealed that IS research prescribed a set of meta-design principles, including digitalization and digital collaboration by implementation of Inter-Organizational Systems based on Electronic Data Interchange (EDI) messages...

  18. The Leaking Pipeline

    DEFF Research Database (Denmark)

    Henningsen, Inge; Højgaard, Lis

    2002-01-01

    negotiations of cultural prescriptions of gendered subjectivity and identities, organizational understandings and procedures embedded in specific university cultures, traditional of different science disciplines, and the systemic logic and political rationale of the education and research system....... these positions, and one that maintains that a closer look at the statistics does not support this optimism because women’s percentage in recruitment positions is not increasing as the pool of potential female researchers increases, or to put it metaphorically, “the pipeline is leaking women all along” (Alper...... it identifies and describes a Danish verion of ‘the leaky pipeline’ from analyses of the ratios of women in science from high school through tenured positions. Finally it illustrates the cultural mechanisms at play in this process, based on the results of three studies. The first two analyze the educational...

  19. Pipeline crossing across Manori Creek, Bombay; advantages of marine acoustic techniques in route selection

    Digital Repository Service at National Institute of Oceanography (India)

    Vora, K.H.; Moraes, C.

    The National Institute of Oceanography (NIO) had carried out such survey in Bombay for obtaining geological informations in order to plan and design a pipeline route crossing Manori Creek to transport fresh water. The survey comprising...

  20. Some technological aspects of the functioning of the Thessalonica-OKTA oil pipeline

    International Nuclear Information System (INIS)

    Zikovski, Toni

    2004-01-01

    Crude oil pipeline Solun-Okta was built according to international technical, ecological and safety standards and enables quick, optimal and continuity supply of OKTA Refinery with crude oil. The building of the pipeline began in 1999, and finished in 2002 with official start-up operation by pumping of first quantity crude oil. After the activation, human environment protection has an important place. A lot of instructions and procedures are prepared especial for this purpose. With a total length about 212 km, pipeline enables transport of crude oil from ECO Refinery to OKTA with a capacity of 2.5 million tons per year. Pipeline is designed for a transport of few types crude oil and their mixtures. Pipeline system has been equipped with sophistic and modern equipment, which will enable quality of the work by controlling and monitoring of the system. (Author)

  1. Some technological aspects for functioning of crude oil pipeline Solun-OKTA

    International Nuclear Information System (INIS)

    Zikovski, Toni

    2005-01-01

    Crude oil pipeline Solun-Okta was built according to international technical, ecological and safety standards and enables quick, optimal and continuity supply of OKTA Refinery with crude oil. The building of the pipeline began in 1999 and finished in 2002 with official start-up operation by pumping of first quantity crude oil. After the activation, human environment protection has an important place. A lot of instructions and procedures are prepared specially for this purpose. With a total length about 212 km, pipeline enables transport of crude oil from ECO Refinery to OKTA with a capacity of 2.5 million tons per year. The pipeline is designed for transport of few types crude oil and their mixtures. The pipeline system has been equipped with sophisticated and modern equipment, which will enable quality of the work by controlling and monitoring of the system. (Author)

  2. Some technological aspects for functioning of crude oil pipeline Solun-Okta

    International Nuclear Information System (INIS)

    Zikovski, Toni

    2005-01-01

    Crude oil pipeline Solun-Okta was built according to international technical, ecological and safety standards and enables quick, optimal and continuity supply of OKTA Refinery with crude oil. The building of the pipeline began in 1999 and finished in 2002 with official start-up operation by pumping of first quantity crude oil. After the activation, human environment protection has an important place. A lot of instructions and procedures are prepared specially for this purpose. With a total length about 212 km, pipeline enables transport of crude oil from ECO Refinery to OKTA with a capacity of 2.5 million tons per year. The pipeline is designed for transport of few types crude oil and their mixtures. The pipeline system has been equipped with sophisticated and modern equipment, which will enable quality of the work by controlling and monitoring of the system. (Author)

  3. Transient flow assurance for determination of operational control of heavy oil pipelines

    Energy Technology Data Exchange (ETDEWEB)

    Cabrejo, Victor [TransCanada Pipelines Ltd, (Canada); Mohitpour, Mo [Tempsys Pipeline Solutions Inc., (Canada)

    2010-07-01

    Pipeline transmission systems have been designed traditionally using steady state simulations. Steady state simulation provided sufficient values for simple systems, but is limited in dealing with surges in flow rates, loss of facilities and facility operation. A dynamic approach is required to test the capacity of a system for various fluids. This paper investigated the use of transient analysis of liquid pipelines in order to improve the design of these pipelines and to achieve operational benefits. The transient method and its use are discussed. Dynamic analysis was applied to the Keystone Pipeline Project. The purpose of the study was first to determine the system capacity and data for transportation of Heavy DilBit, and then to implement batch transportation of a volume of synthetic crude oil. It was found that the use of transient modeling in design and operational assessment of a liquid pipeline ensures system capability, control, safety and integrity.

  4. Development of Protective Coatings for Co-Sequestration Processes and Pipelines

    Energy Technology Data Exchange (ETDEWEB)

    Bierwagen, Gordon; Huang, Yaping

    2011-11-30

    The program, entitled Development of Protective Coatings for Co-Sequestration Processes and Pipelines, examined the sensitivity of existing coating systems to supercritical carbon dioxide (SCCO2) exposure and developed new coating system to protect pipelines from their corrosion under SCCO2 exposure. A literature review was also conducted regarding pipeline corrosion sensors to monitor pipes used in handling co-sequestration fluids. Research was to ensure safety and reliability for a pipeline involving transport of SCCO2 from the power plant to the sequestration site to mitigate the greenhouse gas effect. Results showed that one commercial coating and one designed formulation can both be supplied as potential candidates for internal pipeline coating to transport SCCO2.

  5. Statistical analyses of incidents on onshore gas transmission pipelines based on PHMSA database

    International Nuclear Information System (INIS)

    Lam, Chio; Zhou, Wenxing

    2016-01-01

    This article reports statistical analyses of the mileage and pipe-related incidents data corresponding to the onshore gas transmission pipelines in the US between 2002 and 2013 collected by the Pipeline Hazardous Material Safety Administration of the US Department of Transportation. The analysis indicates that there are approximately 480,000 km of gas transmission pipelines in the US, approximately 60% of them more than 45 years old as of 2013. Eighty percent of the pipelines are Class 1 pipelines, and about 20% of the pipelines are Classes 2 and 3 pipelines. It is found that the third-party excavation, external corrosion, material failure and internal corrosion are the four leading failure causes, responsible for more than 75% of the total incidents. The 12-year average rate of rupture equals 3.1 × 10"−"5 per km-year due to all failure causes combined. External corrosion is the leading cause for ruptures: the 12-year average rupture rate due to external corrosion equals 1.0 × 10"−"5 per km-year and is twice the rupture rate due to the third-party excavation or material failure. The study provides insights into the current state of gas transmission pipelines in the US and baseline failure statistics for the quantitative risk assessments of such pipelines. - Highlights: • Analyze PHMSA pipeline mileage and incident data between 2002 and 2013. • Focus on gas transmission pipelines. • Leading causes for pipeline failures are identified. • Provide baseline failure statistics for risk assessments of gas transmission pipelines.

  6. Transportation

    International Nuclear Information System (INIS)

    Anon.

    1998-01-01

    Here is the decree of the thirtieth of July 1998 relative to road transportation, to trade and brokerage of wastes. It requires to firms which carry out a road transportation as well as to traders and to brokers of wastes to declare their operations to the prefect. The declaration has to be renewed every five years. (O.M.)

  7. Northern pipelines : challenges and needs

    Energy Technology Data Exchange (ETDEWEB)

    Dean, D.; Brownie, D. [ProLog Canada Inc., Calgary, AB (Canada); Fafara, R. [TransCanada PipeLines Ltd., Calgary, AB (Canada)

    2007-07-01

    Working Group 10 presented experiences acquired from the operation of pipeline systems in a northern environment. There are currently 3 pipelines operating north of 60, notably the Shiha gas pipeline near Fort Liard, the Ikhil gas pipeline in Inuvik and the Norman Wells oil pipeline. Each has its unique commissioning, operating and maintenance challenges, as well as specific training and logistical support requirements for the use of in-line inspection tools and other forms of integrity assessment. The effectiveness of cathodic protection systems in a permafrost northern environment was also discussed. It was noted that the delay of the Mackenzie Gas Pipeline Project by two to three years due to joint regulatory review may lead to resource constraints for the project as well as competition for already scarce human resources. The issue of a potential timing conflict with the Alaskan Pipeline Project was also addressed as well as land use issues for routing of supply roads. Integrity monitoring and assessment issues were outlined with reference to pipe soil interaction monitoring in discontinuous permafrost; south facing denuded slope stability; base lining projects; and reclamation issues. It was noted that automatic welding and inspection will increase productivity, while reducing the need for manual labour. In response to anticipated training needs, companies are planning to involve and train Aboriginal labour and will provide camp living conditions that will attract labour. tabs., figs.

  8. Maritimes and Northeast Pipeline : from pipe dream to reality

    International Nuclear Information System (INIS)

    Langan, P.T.

    1998-01-01

    A general project description and time schedule of the Maritimes and Northeast Pipeline project was presented. The pipeline project is a component of the Sable Offshore Energy Project which involves the development of six separate gas fields near Sable Island on the Scotian Shelf about 250 km off the south coast of Nova Scotia. The six fields under development represent about 3.5 trillion cubic feet of proven gas supply. Another 2 trillion cubic feet of gas has been discovered in nearby pools. There is an estimated additional 13 trillion cubic feet of potential gas reserve in the Scotian Shelf region. The 2 billion-dollar offshore project involves twenty-eight production wells, construction and installation of six platforms and a 225-km long two-phase pipeline from the central platform that will transport the product to shore. A gas plant will be constructed on-shore at Goldboro at which point the liquids will be stripped from the gas stream and transported by an onshore pipeline to Point Tupper, Cape Breton Island, to a fractionation facility for further market processing. The Maritimes and Northeast Pipeline will transport the gas product to markets in Nova Scotia, New Brunswick and New England. A number of unique challenges associated with the Maritimes and Northeast Pipeline project such as the problems of serving a new market, the highly competitive anchor market in the U.S., supply and operating characteristics, the regulatory process, and various competing projects were also reviewed. Sable offshore gas is scheduled to flow by late 1999

  9. Natural gas pipeline technology overview.

    Energy Technology Data Exchange (ETDEWEB)

    Folga, S. M.; Decision and Information Sciences

    2007-11-01

    The United States relies on natural gas for one-quarter of its energy needs. In 2001 alone, the nation consumed 21.5 trillion cubic feet of natural gas. A large portion of natural gas pipeline capacity within the United States is directed from major production areas in Texas and Louisiana, Wyoming, and other states to markets in the western, eastern, and midwestern regions of the country. In the past 10 years, increasing levels of gas from Canada have also been brought into these markets (EIA 2007). The United States has several major natural gas production basins and an extensive natural gas pipeline network, with almost 95% of U.S. natural gas imports coming from Canada. At present, the gas pipeline infrastructure is more developed between Canada and the United States than between Mexico and the United States. Gas flows from Canada to the United States through several major pipelines feeding U.S. markets in the Midwest, Northeast, Pacific Northwest, and California. Some key examples are the Alliance Pipeline, the Northern Border Pipeline, the Maritimes & Northeast Pipeline, the TransCanada Pipeline System, and Westcoast Energy pipelines. Major connections join Texas and northeastern Mexico, with additional connections to Arizona and between California and Baja California, Mexico (INGAA 2007). Of the natural gas consumed in the United States, 85% is produced domestically. Figure 1.1-1 shows the complex North American natural gas network. The pipeline transmission system--the 'interstate highway' for natural gas--consists of 180,000 miles of high-strength steel pipe varying in diameter, normally between 30 and 36 inches in diameter. The primary function of the transmission pipeline company is to move huge amounts of natural gas thousands of miles from producing regions to local natural gas utility delivery points. These delivery points, called 'city gate stations', are usually owned by distribution companies, although some are owned by

  10. Effort problem of chemical pipelines

    Energy Technology Data Exchange (ETDEWEB)

    Okrajni, J.; Ciesla, M.; Mutwil, K. [Silesian Technical University, Katowice (Poland)

    1998-12-31

    The problem of the technical state assessment of the chemical pipelines working under mechanical and thermal loading has been shown in the paper. The pipelines effort after the long time operating period has been analysed. Material geometrical and loading conditions of the crack initiation and crack growth process in the chosen object has been discussed. Areas of the maximal effort have been determined. The material structure charges after the long time operating period have been described. Mechanisms of the crack initiation and crack growth in the pipeline elements have been analysed and mutual relations between the chemical and mechanical influences have been shown. (orig.) 16 refs.

  11. MATHEMATICAL MODEL OF POWER CONSUMPTION FOR SOME OIL PIPE-LINE SECTIONS WITH POOR OPERATIONAL STABILITY

    Directory of Open Access Journals (Sweden)

    J. N. Kolesnik

    2005-01-01

    Full Text Available Mathematical model of power consumption for technologically completed and non-completed oil pipe-line sections with poor operational stability has been developed on the basis of daily indices concerning oil transportation regimes. The model permits to take into account tendencies in power consumption under various time prediction cycles and ranges of oil freight turnover, changes in the bulk and characteristics of the transported oil, configuration and design parameters of oil pipe-line.

  12. Pipeline technology. Petroleum oil - long-distance pipelines. Pipelinetechnik. Mineraloelfernleitungen

    Energy Technology Data Exchange (ETDEWEB)

    Krass, W; Kittel, A; Uhde, A

    1979-01-01

    All questions and concerns of pipeline technique are dealt with in detail. Some chapters can be applied for petroleum pipelines only or partly, for example the importance of petroleum pipelines, projecting, calculation, and operation. The sections of pipes and formings, laying, rights of way, and corrosion protection, accessories and remote effect technique, however, are of general interest, for example also for gas pipelines. In the chapter on working material, a very good summary of today's pipe working material including the thermomechanically treated steels is given. Besides methods of improving the toughness, the problems of the corrosion caused by strain cracking and the ways of avoiding it are pointed out. The pipe producing methods and, in the end of the chapter, the tests in the factory are explained. The section of laying deals with the laying methods being applied for years in pipeline construction, a big part referring to welding methods and tests. Active and passive corrosion protection are explained with all details. In addition to the solidity calculation presented with special regard to concerns of petroleum pipelines, theoretical fundaments and calculation methods for pressure are dealt with. Beside general questions of pumps, accessories, and drives, there is a section dealing with measurement and control techniques. Furthermore, remote effect and transmission techniques and news systems are explained in detail. Here, problems are referred to which are applicable not only to the operation of mineral oil pipelines. The book is completed by indications as to pipeline operation emphasizing general operation control, maintenance, repair methods and damage and their elimination. The last chapter contains a collection of the legal fundaments and the technical rules.

  13. Fishing intensity around the BBL pipeline

    NARCIS (Netherlands)

    Hintzen, Niels

    2016-01-01

    Wageningen Marine Research was requested by ACRB B.V. to investigate the fishing activities around the BBL pipeline. This gas pipeline crosses the southern North Sea from Balgzand (near Den Helder) in the Netherlands to Bacton in the UK (230km). This pipeline is abbreviated as the BBL pipeline. Part

  14. Planning international transit oil pipeline projects in Croatia

    International Nuclear Information System (INIS)

    Sekulic, G.; Vrbic, D.

    2004-01-01

    Planning and development of international oil pipeline projects are aimed primarily at enhancing the safety of crude oil supply. Pipeline development is affected by a variety of overlapping factors, such as energy - and environment-protection-related factors, as well as political, economic, legislative, social, technical and technological ones. The success of any pipeline planning, construction and operation in the present conditions will depend upon the degree to which the above factors have been brought in line with global trends. The government should create stable political, economic and legislative frameworks that will meet the global requirements of crude oil transport development. As regards (new) transportation companies, their function is to secure safe transport by providing competitive tariffs and granting environmental protection. A prerequisite for the pipeline planning is to have both major crude oil consumers and producers (as well as their economic and political integrations) consider any state or company as potential partners for crude oil transport and transit, respectively. Croatia and the JANAF transport company have been 'chosen' as one of priority routes for European supply with crude oil from the Caspian region and Russia and one of the directions for Russian crude oil export due to a number of advantages, opportunities and prospects for a successful development. Two international oil pipeline projects - the Druzba Adria Project and the Constanta-Pancevo-Omisalj-Trieste Project - are currently under consideration. The government commitment towards these projects has been documented by the Croatian Energy Development Strategy (April 2002) and by the Programme for its implementation (March 2004). JANAF has assumed the responsibility for carrying out the project preparation activities assigned to it by the Croatian Government and the pertinent ministries. Cooperation between JANAF and government institutions is an integral part of the procedure

  15. Transportation

    National Research Council Canada - National Science Library

    Allshouse, Michael; Armstrong, Frederick Henry; Burns, Stephen; Courts, Michael; Denn, Douglas; Fortunato, Paul; Gettings, Daniel; Hansen, David; Hoffman, D. W; Jones, Robert

    2007-01-01

    .... The ability of the global transportation industry to rapidly move passengers and products from one corner of the globe to another continues to amaze even those wise to the dynamics of such operations...

  16. Pipeline integrity handbook risk management and evaluation

    CERN Document Server

    Singh, Ramesh

    2013-01-01

    Based on over 40 years of experience in the field, Ramesh Singh goes beyond corrosion control, providing techniques for addressing present and future integrity issues. Pipeline Integrity Handbook provides pipeline engineers with the tools to evaluate and inspect pipelines, safeguard the life cycle of their pipeline asset and ensure that they are optimizing delivery and capability. Presented in easy-to-use, step-by-step order, Pipeline Integrity Handbook is a quick reference for day-to-day use in identifying key pipeline degradation mechanisms and threats to pipeline integrity. The book begins

  17. Pipelines programming paradigms: Prefab plumbing

    International Nuclear Information System (INIS)

    Boeheim, C.

    1991-08-01

    Mastery of CMS Pipelines is a process of learning increasingly sophisticated tools and techniques that can be applied to your problem. This paper presents a compilation of techniques that can be used as a reference for solving similar problems

  18. Economic evaluation: wood stave pipelines

    Energy Technology Data Exchange (ETDEWEB)

    Rook, M.E.

    The spray of leakage from the wood stave water supply pipeline serving the New England Power Company's (NEPCO) Searsburg hydroelectric development had caused this facility to be dubbed ''The Searsburg Car Wash.'' In July, 1982, excessive leakage from this pipeline prompted NEPCO to perform a technical inspection which would inform the company's decision to replace, repair, or abandon the pipeline. The inspection indicated that a combination of interrelated factors has led to rapid deterioration. The feasibility study, which included a benefit -cost analysis of a times replacement with a continued repair program weighed annually by a risk factor representing the probability of pipeline failure during the replacement period, determined that direct replacement was most advantageous. 4 figures, 1 figures.

  19. Pipeline network expansion crucial to economic development in India

    Energy Technology Data Exchange (ETDEWEB)

    Jha, Kiran Kumar; Tandon, Anil; Sati, Vipin Chandra [Indian Oil Corporation Ltd., Sadiq Nagar, New Delhi (India)

    2008-07-01

    Oil Sector plays a crucial role in the development of a country and provides the required balance and stability to the economy. Though traditionally coal has had the largest share in the energy basket in India, oil and gas as a source of energy have gradually gained importance and it is expected that oil and gas will continue to command a significant share in the years to come. Transportation of oil and gas by pipelines, which are recognized worldwide as the most reliable and cost effective mode for transportation is a developing business in India. With the increasing demand for oil and gas, a necessity has arisen for according priority attention to develop a well-spread out pipeline network throughout the country so as to facilitate efficient transportation to various consumption centres. The country has already opened its doors to private sector within the country as well as to multinationals. Thus, considerable scope exists not only for making investments but also for consultants, equipment and material manufacturers/suppliers and contractors for providing their services to the Indian pipeline industry. With growth of the economy, the opportunities for investment in the Indian pipeline industry are likely to improve further. (author)

  20. Pipeline robots with elastic elements

    Directory of Open Access Journals (Sweden)

    A. Matuliauskas

    2002-10-01

    Full Text Available In the article constructions of the pipeline robots with elastic elements are reviewed and the scheme of new original construction is presented. The mathematical models of a robot with one-dimensional vibration exciter with two degrees of freedom were developed and the equations of movement were formed and written. The mathematical model of the pipeline robot with circular elements is formed and its motion equations are presented.

  1. Optimal valve location in long oil pipelines

    OpenAIRE

    Grigoriev, A.; Grigorieva, N.V.

    2007-01-01

    We address the valve location problem, one of the basic problems in design of long oil pipelines. Whenever a pipeline is depressurized, the shutoff valves block the oil flow and seal the damaged part of the pipeline. Thus, the quantity of oil possibly contaminating the area around the pipeline is determined by the volume of the damaged section of the pipeline between two consecutive valves. Then, ecologic damage can be quantified by the amount of leaked oil and the environmental characteristi...

  2. Pipeline for Contraceptive Development

    Science.gov (United States)

    Blithe, Diana L.

    2016-01-01

    The high rates of unplanned pregnancy reflect unmet need for effective contraceptive methods for women, especially for individuals with health risks such as obesity, diabetes, hypertension, and other conditions that may contraindicate use of an estrogen-containing product. Improvements in safety, user convenience, acceptability and availability of products remain important goals of the contraceptive development program. Another important goal is to minimize the impact of the products on the environment. Development of new methods for male contraception has the potential to address many of these issues with regard to safety for women who have contraindications to effective contraceptive methods but want to protect against pregnancy. It also will address a huge unmet need for men who want to control their fertility. Products under development for men would not introduce eco-toxic hormones in the waste water. Investment in contraceptive research to identify new products for women has been limited in the pharmaceutical industry relative to investment in drug development for other indications. Pharmaceutical R&D for male contraception was active in the 1990’s but was abandoned over a decade ago. The Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD) has supported a contraceptive development program since 1969. Through a variety of programs including research grants and contracts, NICHD has developed a pipeline of new targets/products for male and female contraception. A number of lead candidates are under evaluation in the NICHD Contraceptive Clinical Trials Network (CCTN) (1–3). PMID:27523300

  3. Crude oil pipeline expansion summary

    International Nuclear Information System (INIS)

    2005-02-01

    The Canadian Association of Petroleum Producers has been working with producers to address issues associated with the development of new pipeline capacity from western Canada. This document presents an assessment of the need for additional oil pipeline capacity given the changing mix of crude oil types and forecasted supply growth. It is of particular interest to crude oil producers and contributes to current available information for market participants. While detailed, the underlying analysis does not account for all the factors that may come into play when individual market participants make choices about which expansions they may support. The key focus is on the importance of timely expansion. It was emphasized that if pipeline expansions lags the crude supply growth, then the consequences would be both significant and unacceptable. Obstacles to timely expansion are also discussed. The report reviews the production and supply forecasts, the existing crude oil pipeline infrastructure, opportunities for new market development, requirements for new pipeline capacity and tolling options for pipeline development. tabs., figs., 1 appendix

  4. Solving an unpiggable pipeline challenge

    Energy Technology Data Exchange (ETDEWEB)

    Walker, James R. [GE Oil and Gas, PII Pipeline Solutions, Cramlington Northumberland (United Kingdom); Kern, Michael [National Grid, New Hampshire (United Kingdom)

    2009-07-01

    Technically, any pipeline can be retrofitted to enable in line inspection. Sensibly however, the expense of excavations and construction of permanent facilities have been, in many cases, exceedingly prohibitive. Even where traditional modifications are feasible from engineering perspectives, flow interruption may not be an option - either because they are critical supply lines or because the associated lost revenues could be nearly insurmountable. Savvy pipeline integrity managers know the safety issue that is at stake over the long term. They are also well aware of the accuracy benefits that high-quality in-line inspection data offer over potentially supply disruptive alternatives such as hydrostatic testing. To complicate matters further, many operators, particularly in the US, now face regulatory pressure to assess the integrity of their yet-uninspected pipelines located in highly populated areas. This paper describes an important project National Grid undertook that made use of a unique pipeline access method that did not require permanent installation of expensive facilities required for in line inspection of a pipeline previously considered 'unpiggable'. Since the pipeline was located in an urban area, flow disruption had to be minimized. This paper will define the project background, its challenges, outcomes and lessons learned for the future. (author)

  5. Proceedings of the 5. biennial international pipeline conference, IPC 2004 : the power of technology

    International Nuclear Information System (INIS)

    Paulson, K.; Kraft, H.; Hopkins, P.

    2004-01-01

    The fifth international pipeline conference provided a forum for experts in the pipeline industry, academia and governments to discuss new technologies and approaches to pipeline transport. Presentations focused on a wide range of issues related to pipeline engineering. The conference was divided into 16 main sessions: (1) compression and pump technologies, (2) corrosion protection and analysis techniques, (3) pipeline design and construction, (4) environmental issues, (5) database development, (6) emerging issues and innovative projects, (7) inspection techniques, (8) integrity management, (9) joining, (10) materials, (11) offshore issues, (12) operations and maintenance, (13) pipeline automation and measurement, (14) pipelining in northern environments, (15) risk and reliability, (16) standards and regulations. The presentations provided up-to-date information related to future technology trends as well as recent innovations and practices. Pipeline design standards and new pipeline materials using high strength steels and reinforced composite plastic coatings were also reviewed. Other sessions discussed emerging technologies for inspection, quality control, ultrasonic testing, and the use of remote sensors. The conference also included a student paper competition. A total of 339 peer reviewed presentations were given at the conference, all of which were indexed separately for inclusion in this database. refs., tabs., fig.

  6. Special signalizing of the Grande River crossing with the OSBRA pipeline

    Energy Technology Data Exchange (ETDEWEB)

    Araujo, Adriano C.; Luz, Marcelo Pedroso da; Castro, Newton C. de; Spagnolo, Rodrigo A. [TRANSPETRO, Rio de Janeiro, RJ (Brazil); Silva Junior, Fernando C. Carneiro da [PETROBRAS, Rio de Janeiro, RJ (Brazil)

    2009-07-01

    This paper presents the experience acquired by PETROBRAS Transporte S.A., TRANSPETRO, signaling the crossing of Sao Paulo - Brasilia Pipeline, OSBRA, with the Grande River, important brazilian river that has in this cross section 400 m in width and 10 m of average depth. In sub aquatic inspections carried through by divers to confirm the pipeline's silting condition, evidences of basin format dredging near the pipeline have been identified and, even though it was not sufficient to expose de pipeline, has reduced its covering significantly. This site is an important area of sand extraction, and although the intense works of awareness of local dredging companies to not operate in the pipeline area, TRANSPETRO was surprised by the evidences. In testimonials, local dredge operators complained about difficulties in identifying the pipeline position in nightly operations. Expecting to improve the operational security in the pipeline crossing, a joint project was developed by TRANSPETRO, Brazilian Navy and the dredging companies, with the intention to signal safe area around the submerged pipeline, avoiding dredge operations with the installation of polyethylene floating buoys equipped with night signaling kits and fixed by concrete anchors. Although it was technically simple, the unprecedented proposal in Brazil increased safety in the pipeline operations and made them much safer for the local population and for the environment, in one of the biggest water resources of the Southeastern region of Brazil. (author)

  7. The vulnerability of oil collection pipelines to corrosion under conditions of stratified oil-water emulsion

    Energy Technology Data Exchange (ETDEWEB)

    Marichev, F N; Chernobay, L A; Teterina, O P; Yarmizin, V G

    1980-01-01

    Problems with oil industry equipment and pipeline corrosion have recently highlighted the problems of increased water content in oil and the presence of biogenic hydrogen sulphide in petroleum matter. These findings underscore the importance of taking these problems into consideration when formulating long-term production plans. A study of pipeline corrosion and its causes, as well as other factors, has permitted researchers to correlate hydrodynamic parameters for gas-fluid transportability and structural contour flows. The water phase simultaneously carries corrosion-active ions of dissolved hydrogen sulphide and material which interact to corrode metal in the lower sections of pipelines. In order to determine the susceptibility of pipelines to corrosion, it is necessary to establish the presence of stratified fluids in oil and water as well as the gas-fluid flow. Analysis has shown that those sections with stratified emulsion could be identified and that it is necessary to disclose the pipeline's ability to withstand such conditions. The proper selection of transport parameters permits the technological protection of the oil collection pipelines. Partially as a result of the increased flow speed guaranteeing an emulsion flow regime for the gas-water-oil flow, it was found that the operational service-life of pipelines could be prolonged by a reduction of corrosion in oil collection pipelines.

  8. Pigging the unpiggable: a total integrated maintenance approach of the Progreso Process Pipelines in Yucatan, Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez Graciano, Luis [PEMEX Refinacion, Mexico, MX (Mexico); Gonzalez, Oscar L. [NDT Systems and Services, Stutensee (Germany)

    2009-07-01

    Pemex Refinacion and NDT Systems and Services, executed a Total Integrated Maintenance Program of the Process Pipeline System in the Yucatan Peninsula in Mexico, in order to modernize, enhance and bring the pipeline system up to the best industry standards and ensure the integrity, reliability and safe operation of the system. This approach consisted in using multi-diameter ultrasonic inspection technology to determine the current status of the pipelines, repair every 'integrity diminishing' feature present on the system and establish a Certified Maintenance Program to ensure the future reliability and safety of the pipelines. Due to the complex nature of the pipeline construction, dated from 1984, several special modifications, integrations and solutions were necessary to improve the in line inspection survey as for all traditionally unpiggable systems. The Progreso Pipeline System consists in 3 major pipelines which transport diesel, jet fuel and gasoline respectively. The outside diameter of two pipelines varies along its length between 12 inches - 14 inches - 16 inches, making the inspection survey more difficult and particularly demanding an Inspection Tool solution. It is located on the coast of the Yucatan Peninsula, at the Mexican Caribbean, and its main purpose is to transport the product from the docked tanker ships to the Pemex Storage and Distribution Terminal. (author)

  9. Pipeline drying using dehumidified air with low dew point temperature

    Energy Technology Data Exchange (ETDEWEB)

    Ahmed, Syed Younus; Gandhidasan, P.; Al-Farayedhi, A.A. [King Fahd Univ. of Petroleum and Minerals, Mechanical Engineering Dept., Dhahran (Saudi Arabia)

    1998-05-01

    The presence of humidity may be detrimental to the operation of pipelines transporting natural gas or other petroleum products. In particular conditions water solidifies or reacts chemically with hydrocarbons, forming hydrates. Such crystalline substances may cause obstruction of the lines and damage the equipment of the relevant facilities. A procedure for predicting the performance of drying a pipeline using dehumidified air with a low dew point is described in this paper. The mathematical model estimates the time required for the complete removal of moisture in the pipeline for the given operating conditions with simplified assumptions. The governing equations are solved analytically as well as numerically and the results are briefly discussed in the paper. (Author)

  10. Environmental hazards for pipelines in coastal regions/shore approaches

    International Nuclear Information System (INIS)

    Jinsi, B.K.

    1995-01-01

    Often oil/gas and other hydrocarbons discovered and produced offshore are transported to onshore facilities via submarine pipelines. The route of such pipelines traverses through coastal/shore approach regions. For a rational/economic design, safe installation and subsequent operation it is of utmost importance to review, evaluate and finalize various environmental hazard such as winds, waves, currents, seabed topography, seabed and sub-bottom soils, seabed erosion and soil accretion. This paper addresses the above described environmental hazards, their assessment and techniques to prepare design parameters which must be used for stability analysis, installation methods, long term operation and maintenance for the shore approaches. Additionally, various proven pipeline installation and stabilization techniques for the shore approach region are detailed. As case histories, three approaches installed in the Dutch North Sea are described

  11. GASVOL 18'' gas pipeline - risk based inspection study

    Energy Technology Data Exchange (ETDEWEB)

    Bjoernoey, Ola H.; Etterdal, Birger A. [Det Norske Veritas (DNV), Oslo (Norway); Guarize, Rosimar; Oliveira, Luiz F.S. [Det Norske Veritas (DNV) (Brazil); Faertes, Denise; Dias, Ricardo [TRANSPETRO - PETROBRAS Transporte S.A., Rio de Janeiro, RJ (Brazil)

    2003-07-01

    This paper describes a risk based approach and inspection planning as part of the Pipeline Integrity Management (PIM) system for the 95.5 km long 18'' GASVOL gas pipeline in the South eastern region of Brazil transporting circa 5 000 000 m3 dry gas per day. Pipeline systems can be subject to several degradation mechanisms and inspection and monitoring are used to ensure system integrity. Modern pipeline regulations and codes are normally based on a core safety or risk philosophy. The detailed design requirements presented in design codes are practical interpretations established so as to fulfill these core objectives. A given pipeline, designed, constructed and installed according to a pipeline code is therefore the realization of a structure, which, along its whole length, meets the applicable safety objectives of that code. The main objective of Pipeline Integrity Management (PIM) is to control and document the integrity of the pipeline for its whole service life, and to do this in a cost-effective manner. DNV has a specific approach to RBI planning, starting with an initial qualitative assessment where pipelines and damage type are ranked according to risk and potential risk reduction by an inspection and then carried forward to a quantitative detailed assessment where the level of complexity and accuracy can vary based on availability of information and owner needs. Detailed assessment requires significant effort in data gathering. The findings are dependent upon the accuracy of the inspection data, and on DNV's interpretation of the pipeline reference system and simplifications in the inspection data reported. The following specific failure mechanisms were investigated: internal corrosion, external corrosion, third party interference, landslides and black powder. RBI planning, in general words, is a 'living process'. In order to optimize future inspections, it is essential that the analyses utilize the most recent information regarding

  12. Risk Analysis on Leakage Failure of Natural Gas Pipelines by Fuzzy Bayesian Network with a Bow-Tie Model

    OpenAIRE

    Shan, Xian; Liu, Kang; Sun, Pei-Liang

    2017-01-01

    Pipeline is the major mode of natural gas transportation. Leakage of natural gas pipelines may cause explosions and fires, resulting in casualties, environmental damage, and material loss. Efficient risk analysis is of great significance for preventing and mitigating such potential accidents. The objective of this study is to present a practical risk assessment method based on Bow-tie model and Bayesian network for risk analysis of natural gas pipeline leakage. Firstly, identify the potential...

  13. TGS pipeline primed for Argentine growth, CEO says

    International Nuclear Information System (INIS)

    Share, J.

    1997-01-01

    Nowhere in Latin America has the privatization process been more aggressively pursued than in Argentina where President Carlos Menem has successfully turned over the bulk of state companies to the private sector. In the energy sector, that meant the divestiture in 1992 of Gas del Estado, the state-owned integrated gas transportation and distribution company. It was split in two transportation companies: Transportadora de Gas del Sur (TGS) and Transportadora de Gas del Norte (TGN), and eight distribution companies. TGS is the largest transporter of natural gas in Argentina, delivering more than 60 percent of that nation's total gas consumption with a capacity of 1.9 Bcf/d. This is the second in a series of Pipeline and Gas Journal special reports that discuss the evolving strategies of the natural gas industry as it continues to restructure amid deregulation. The article focuses on TGS, the Argentine pipeline system in which Enron Corp. is a key participant

  14. Fitting partially upgraded oils into pipelines and refinery markets

    International Nuclear Information System (INIS)

    Flaherty, G.

    2000-01-01

    The logistics of transporting partially upgraded crudes in feeder and trunk pipeline systems is discussed. Logistic alternatives are evaluated against economic drivers for partial upgrading, and the impact of crude transportation logistics on the quality of crude that reaches refinery gates is assessed. The potential advantages of partial upgrading in the field are reviewed (including reduction of diluent required to meet pipeline density and viscosity specifications, cost and availability of diluent, limitations in diluent transportation infrastructure, increased chemical stability, increased attractiveness to refineries, shortage of refinery coking capacity, higher market value). The pros and cons of various upgrading processes, and the implications of each for producers and refiners are explained. The advantages of moving to large common streams, as opposed to the concept of 'boutique' crudes, are stressed as the surest way for producers to realize the maximum value of partially upgraded crudes

  15. FUZZY INFERENCE BASED LEAK ESTIMATION IN WATER PIPELINES SYSTEM

    Directory of Open Access Journals (Sweden)

    N. Lavanya

    2015-01-01

    Full Text Available Pipeline networks are the most widely used mode for transporting fluids and gases around the world. Leakage in this pipeline causes harmful effects when the flowing fluid/gas is hazardous. Hence the detection of leak becomes essential to avoid/minimize such undesirable effects. This paper presents the leak detection by spectral analysis methods in a laboratory pipeline system. Transient in the pressure signal in the pipeline is created by opening and closing the exit valve. These pressure variations are captured and power spectrum is obtained by using Fast Fourier Transform (FFT method and Filter Diagonalization Method (FDM. The leaks at various positions are simulated and located using these methods and the results are compared. In order to determine the quantity of leak a 2 × 1 fuzzy inference system is created using the upstream and downstream pressure as input and the leak size as the output. Thus a complete leak detection, localization and quantification are done by using only the pressure variations in the pipeline.

  16. Alliance Pipeline : the new kid on the block

    International Nuclear Information System (INIS)

    Cornelson, D.

    1998-01-01

    An update on progress of Alliance Pipelines, comments on issues facing gas transporters from western Canada, some discussion of gas supply in general, and the prospects for future expansion of the natural gas industry are provided. According to industry insiders, North American gas demand is expected to increase by 1.5 per cent per year. In order for Canadian gas to participate in this growth additional pipeline capacity is needed. The Alliance Pipeline capacity represents about 20 per cent of this demand growth over the next 5 years. The Alliance Pipeline development will create an opportunity to deliver western Canadian gas to Chicago, a point where North American market competition exists and the market volume and liquidity is large. This presentation also provides an update on the current regulatory status and construction timing. Currently, Alliance has over C$8 billion in firm shipping commitments and up to C$5 billion in financing in place. Pipeline construction will begin in the spring of 1999; it is expected to be operational by the fall of 2000. tabs., figs

  17. Development of a design methodology for hydraulic pipelines carrying rectangular capsules

    International Nuclear Information System (INIS)

    Asim, Taimoor; Mishra, Rakesh; Abushaala, Sufyan; Jain, Anuj

    2016-01-01

    The scarcity of fossil fuels is affecting the efficiency of established modes of cargo transport within the transportation industry. Efforts have been made to develop innovative modes of transport that can be adopted for economic and environmental friendly operating systems. Solid material, for instance, can be packed in rectangular containers (commonly known as capsules), which can then be transported in different concentrations very effectively using the fluid energy in pipelines. For economical and efficient design of such systems, both the local flow characteristics and the global performance parameters need to be carefully investigated. Published literature is severely limited in establishing the effects of local flow features on system characteristics of Hydraulic Capsule Pipelines (HCPs). The present study focuses on using a well validated Computational Fluid Dynamics (CFD) tool to numerically simulate the solid-liquid mixture flow in both on-shore and off-shore HCPs applications including bends. Discrete Phase Modelling (DPM) has been employed to calculate the velocity of the rectangular capsules. Numerical predictions have been used to develop novel semi-empirical prediction models for pressure drop in HCPs, which have then been embedded into a robust and user-friendly pipeline optimisation methodology based on Least-Cost Principle. - Highlights: • Local flow characteristics in a pipeline transporting rectangular capsules. • Development of prediction models for the pressure drop contribution of capsules. • Methodology developed for sizing of Hydraulic Capsule Pipelines. • Implementation of the developed methodology to obtain optimal pipeline diameter.

  18. Mathematical modeling of non-stationary gas flow in gas pipeline

    Science.gov (United States)

    Fetisov, V. G.; Nikolaev, A. K.; Lykov, Y. V.; Duchnevich, L. N.

    2018-03-01

    An analysis of the operation of the gas transportation system shows that for a considerable part of time pipelines operate in an unsettled regime of gas movement. Its pressure and flow rate vary along the length of pipeline and over time as a result of uneven consumption and selection, switching on and off compressor units, shutting off stop valves, emergence of emergency leaks. The operational management of such regimes is associated with difficulty of reconciling the operating modes of individual sections of gas pipeline with each other, as well as with compressor stations. Determining the grounds that cause change in the operating mode of the pipeline system and revealing patterns of these changes determine the choice of its parameters. Therefore, knowledge of the laws of changing the main technological parameters of gas pumping through pipelines in conditions of non-stationary motion is of great importance for practice.

  19. Modelling the pressurization induced by solar radiation on above ground installations of LPG pipeline systems

    Science.gov (United States)

    Leporini, M.; Terenzi, A.; Marchetti, B.; Giacchetta, G.; Polonara, F.; Corvaro, F.; Cocci Grifoni, R.

    2017-11-01

    Pipelining Liquefied Petroleum Gas (LPG) is a mode of LPG transportation more environmentally-friendly than others due to the lower energy consumption and exhaust emissions. Worldwide, there are over 20000 kilometers of LPG pipelines. There are a number of codes that industry follows for the design, fabrication, construction and operation of liquid LPG pipelines. However, no standards exist to modelling particular critical phenomena which can occur on these lines due to external environmental conditions like the solar radiation pressurization. In fact, the solar radiation can expose above ground pipeline sections at pressure values above the maximum Design Pressure with resulting risks and problems. The present work presents an innovative practice suitable for the Oil & Gas industry to modelling the pressurization induced by the solar radiation on above ground LPG pipeline sections with the application to a real case.

  20. New territory for NGL pipelines

    International Nuclear Information System (INIS)

    Turner, C.L.; Billings, F.E.

    1994-01-01

    Even though the NGL pipeline industry appears mature, new geographic territory exists for expansion of NGL pipelines. However, the most fertile territory that must be pursued is the collective opportunities to better link the existing NGL industry. Associations like the Gas Processors Association can not perform the role demanded by a need to share information between the links of the chain on a more real time basis. The Association can not substitute for picking up the phone or calling a meeting of industry participants to discuss proposed changes in policies and procedures. All stakeholders must participate in squeezing out the inefficiencies of the industry. Some expansion and extension of NGL pipelines will occur in the future without ownership participation or commitments from the supply and demand businesses. However, significant expansions linking new supply sources and demand markets will only be made as the supply and demand businesses share long-term strategies and help define the pipeline opportunity. The successful industries of the twenty-first century will not be dominated by a single profitable sector, but rather by those industries which foster cooperation as well as competition. A healthy NGL industry will be comprised of profitable supply businesses and profitable demand businesses, linked together by profitable pipeline businesses

  1. Transportation

    Science.gov (United States)

    2007-01-01

    Faculty ii INDUSTRY TRAVEL Domestic Assistant Deputy Under Secretary of Defense (Transportation Policy), Washington, DC Department of...developed between the railroad and trucking industries. Railroads: Today’s seven Class I freight railroad systems move 42% of the nation’s intercity ...has been successfully employed in London to reduce congestion and observed by this industry study during its travels . It is currently being

  2. REMOTE DETECTION OF INTERNAL PIPELINE CORROSION USING FLUIDIZED SENSORS

    Energy Technology Data Exchange (ETDEWEB)

    Narasi Sridhar; Garth Tormoen; Ashok Sabata

    2005-10-31

    Pipelines present a unique challenge to monitoring because of the great geographical distances they cover, their burial depth, their age, and the need to keep the product flowing without much interruption. Most other engineering structures that require monitoring do not pose such combined challenges. In this regard, a pipeline system can be considered analogous to the blood vessels in the human body. The human body has an extensive ''pipeline'' through which blood and other fluids are transported. The brain can generally sense damage to the system at any location and alert the body to provide temporary repair, unless the damage is severe. This is accomplished through a vast network of fixed and floating sensors combined with a vast and extremely complex communication/decision making system. The project described in this report mimics the distributed sensor system of our body, albeit in a much more rudimentary fashion. Internal corrosion is an important factor in pipeline integrity management. At present, the methods to assess internal corrosion in pipelines all have certain limitations. In-line inspection tools are costly and cannot be used in all pipelines. Because there is a significant time interval between inspections, any impact due to upsets in pipeline operations can be missed. Internal Corrosion Direct Assessment (ICDA) is a procedure that can be used to identify locations of possible internal corrosion. However, the uncertainties in the procedure require excavation and location of damage using more detailed inspection tools. Non-intrusive monitoring techniques can be used to monitor internal corrosion, but these tools also require pipeline excavation and are limited in the spatial extent of corrosion they can examine. Therefore, a floating sensor system that can deposit at locations of water accumulation and communicate the corrosion information to an external location is needed. To accomplish this, the project is divided into four main

  3. 49 CFR 195.581 - Which pipelines must I protect against atmospheric corrosion and what coating material may I use?

    Science.gov (United States)

    2010-10-01

    ... corrosion and what coating material may I use? 195.581 Section 195.581 Transportation Other Regulations... Corrosion Control § 195.581 Which pipelines must I protect against atmospheric corrosion and what coating... atmosphere, except pipelines under paragraph (c) of this section. (b) Coating material must be suitable for...

  4. 77 FR 5472 - Pipeline Safety: Expanding the Use of Excess Flow Valves in Gas Distribution Systems to...

    Science.gov (United States)

    2012-02-03

    ..., Regulatory Certainty, and Job Creation Act of 2011 (PL112-90), have imposed additional demands on their... DEPARTMENT OF TRANSPORTATION Pipeline and Hazardous Materials Safety Administration 49 CFR Part 192 [Docket ID PHMSA-2011-0009] RIN 2137-AE71 Pipeline Safety: Expanding the Use of Excess Flow Valves...

  5. Use of pipe saks on pipeline construction

    Energy Technology Data Exchange (ETDEWEB)

    Ghio, Alberto F.M.; Caciatori, Angelo [Galvao Engenharia S.A., Sao Paulo, SP (Brazil); Ruschi, Allan A.; Santos, Felipe A. dos; Barros, Horacio B. de; Loureiro, Regis R. [PETROBRAS S.A., Rio de Janeiro, RJ (Brazil)

    2009-07-01

    The use of new technologies applied to pipeline construction and assembling, aimed at enhancing productivity has been searched by PETROBRAS, throughout its subcontractors, assemblers, by transference in the mentioned constructions. Along the construction of Cacimbas Catu Pipeline, Spread 1 A, placed between the Cacimbas Gas Treatment Station (Linhares, ES) and the future Compression Station of Sao Mateus (ES), one, by means of surveys, noticed that the length of flooded or prone to flooding areas was way superior to the ones foreseen in the basic design. One of the broadly used methods for assuring buoyancy control is concreting the pipes. Such method deeply impacts work's logistics in for instance, the pipe stringing work; in this one, a maximum load of two pipes can be transported until the area to applied, what leads to lower productivity and higher risk due to the increase of trips by heavy load trucks. As an alternative to regular concrete, the Pipe Sak System was adopted and such method improved productivity and decreased discontinuities. (author)

  6. Using Tracer Technology to Characterize Contaminated Pipelines

    Energy Technology Data Exchange (ETDEWEB)

    Maresca, Joseph, W., Jr., Ph.D.; Bratton, Wesley, L., Ph.D., P.E.; Dickerson, Wilhelmina; Hales, Rochelle

    2005-12-30

    The Pipeline Characterization Using Tracers (PCUT) technique uses conservative and partitioning, reactive or other interactive tracers to remotely determine the amount of contaminant within a run of piping or ductwork. The PCUT system was motivated by a method that has been successfully used to characterize subsurface soil contaminants and is similar in operation to that of a gas chromatography column. By injecting a ?slug? of both conservative and partitioning tracers at one end (or section) of the piping and measuring the time history of the concentration of the tracers at the other end (or another section) of the pipe, the presence, location, and amount of contaminant within the pipe or duct can be determined. The tracers are transported along the pipe or duct by a gas flow field, typically air or nitrogen, which has a velocity that is slow enough so that the partitioning tracer has time to interact with the contaminant before the tracer slug completely passes over the contaminate region. PCUT not only identifies the presence of contamination, it also can locate the contamination along the pipeline and quantify the amount of residual. PCUT can be used in support of deactivation and decommissioning (D&D) of piping and ducts that may have been contaminated with hazardous chemicals such as chlorinated solvents, petroleum products, radioactive materials, or heavy metals, such as mercury.

  7. Environmental audit guidelines for pipelines

    International Nuclear Information System (INIS)

    1991-01-01

    Environmental auditing is a form of management control which provides an objective basis by which a company can measure the degree of compliance with environmental regulations. Other benefits of this type of auditing include improved environmental management, furthering communication on environmental issues of concern within the company, and provision of documentation on environmental diligence. A series of environmental audit guidelines for pipelines is presented in the form of lists of questions to be asked during an environmental audit followed by recommended actions in response to those questions. The questions are organized into seven main categories: environmental management and planning; operating procedures; spill prevention; management of wastes and hazardous materials; environmental monitoring; construction of pipelines; and pipeline abandonment, decommissioning and site reclamation

  8. Operational maneuvers and pipelines activities repairs for the 32 inches scraper tool recovering

    Energy Technology Data Exchange (ETDEWEB)

    Valdivia, Jose; Salguero, Luis; Villanueva, Pedro [Compania Operadora del Gas Amazonas, Lima (Peru)

    2009-07-01

    Transportadora de Gas del Peru and the Compania Operadora de Gas del Amazonas, responsible companies of the transport, operation and maintenance of the pipelines who transport natural gas and natural gas liquids respectively of the Camisea Project - Peru, following the internal policies and the maintenance plan of the pipeline transportation system was planned the activities for the internal pipeline inspection of these activities for 729.3 Km of natural gas pipeline covering diameters of 32 inches, 24 inches and 18 inches. After the first run of the cleaning tool, was scheduled the launch of the dummy scraper (scraper tool) along to the first 210 Km of the 32 inches natural gas pipeline , given changes in elevation along the trace and the low flow of transport. This scraper tool could not reach the final destination. After many series operational maneuvers as venting, creation of differential pressure in valves, the scraper tool only reach the first 75 Km of the trace. After an exhaustive analysis of trending pressure variations, it was concluded that this scraper showed intermittent progress of short durations, concluding that this scraper had not reach the next check point. In this way was decided to conduct operational maneuvers in order to locate, relocated and retrieve the scrapper tool from de 32 inches natural gas pipeline. (author)

  9. Analysis of oil-pipeline distribution of multiple products subject to delivery time-windows

    Science.gov (United States)

    Jittamai, Phongchai

    This dissertation defines the operational problems of, and develops solution methodologies for, a distribution of multiple products into oil pipeline subject to delivery time-windows constraints. A multiple-product oil pipeline is a pipeline system composing of pipes, pumps, valves and storage facilities used to transport different types of liquids. Typically, products delivered by pipelines are petroleum of different grades moving either from production facilities to refineries or from refineries to distributors. Time-windows, which are generally used in logistics and scheduling areas, are incorporated in this study. The distribution of multiple products into oil pipeline subject to delivery time-windows is modeled as multicommodity network flow structure and mathematically formulated. The main focus of this dissertation is the investigation of operating issues and problem complexity of single-source pipeline problems and also providing solution methodology to compute input schedule that yields minimum total time violation from due delivery time-windows. The problem is proved to be NP-complete. The heuristic approach, a reversed-flow algorithm, is developed based on pipeline flow reversibility to compute input schedule for the pipeline problem. This algorithm is implemented in no longer than O(T·E) time. This dissertation also extends the study to examine some operating attributes and problem complexity of multiple-source pipelines. The multiple-source pipeline problem is also NP-complete. A heuristic algorithm modified from the one used in single-source pipeline problems is introduced. This algorithm can also be implemented in no longer than O(T·E) time. Computational results are presented for both methodologies on randomly generated problem sets. The computational experience indicates that reversed-flow algorithms provide good solutions in comparison with the optimal solutions. Only 25% of the problems tested were more than 30% greater than optimal values and

  10. Slovakia should be more active in pipeline projects

    International Nuclear Information System (INIS)

    Hirman, K.

    2004-01-01

    European Union is interested also like USA to lower its own dependence on oil distributors from problematic region of Persian Gulf. Therefore the attention is turning on to Russia and to region of Caspian Sea. However except political and safety problems the import of oil from these territories meets also the lack of transport capacities. Slovakia can become the important transit territory, where could flow more Russian or Caspian oil to the European market. After a break-up of Soviet Union Russia lost oil export terminals on the coast of Baltic Sea. These terminals became a part of territories of three independent Baltic countries. The frequent storms in the region of Novorossiysk are disadvantage of Black Sea's ports Novorossiysk and Tuapse. The overloading of Turkish straits Bospor and Dardanely, which connect Black Sea and Mediterranean Sea, is becoming a new and more serious problem. In the present time up to 500 tankers swim over through these straits annually, which transport together around 70 million tones of oil and of oil products. Owing to the rising mining of oil the only one way out is the circumvention of these straits. New pipeline from Baku through Georgia to Turkish terminal Ceyhan on the coast of Mediterranean Sea is the only one but not sufficient solution. Therefore Russia promotes the project of integration of pipelines Druzba and Adria. The intensions is to open the continuous export pipeline way through Belarus, Ukraine, Slovakia and Hungary into Croatian terminal Omisajl on the coast of Adriatic Sea. Other possibility how to rise the oil transit through Slovakia is the construction of pipeline to the refinery OMW in Schweechat near Vienna. In the end of the last year the representatives of Transpetrol, Yukos and OMW signed the contract of its construction in Bratislava. Annual capacity of this pipeline is 2 million tonnes of oil. Other possibility how to transport the Caspian oil is pipeline Odessa-Brody. More then 600 km of this pipeline

  11. Analysis of integrity and risk for onshore pipelines; Analise de integridade e risco para dutos onshore

    Energy Technology Data Exchange (ETDEWEB)

    Lima, Marco Aurelio [Det Norske Veritas (DNV), Rio de Janeiro, RJ (Brazil)

    2008-07-01

    The increasing expansion of the oil and gas industry in Brazil, the current legal requirements relating to security, health and environment in the industrial installations, is necessary that the companies, responsible by the operation of pipelines for oil and gas transport, adopt efficient techniques to assure the operational continuity of these of trustworthy form and insurance. To fulfill this important function it is important that the companies implement a management program to control and register the integrity of the pipelines during the all operational life cycle. Inside of this context of management of the integrity of pipelines, the DNV developed the software ORBIT Pipeline with the intention to serve as an important tool to monitor the technique and security condition of the pipeline, to define the frequency and content technician of the inspection program and to recommend the work of intervention or repair in pipeline when necessary. Additionally to these activities that are carried through directly in the ORBIT Pipeline, also an evaluation of the activity of third part and the land/soil movement is made inside of the systematic for analysis of integrity and risk for onshore pipelines performed by DNV. (author)

  12. Residual stresses evaluation in a gas-pipeline crossing

    Energy Technology Data Exchange (ETDEWEB)

    Fonseca, Maria Cindra [Universidade Federal Fluminense (UFF), Niteroi, RJ (Brazil); Almeida, Manoel Messias [COMPAGAS, Curitiba, PR (Brazil); Rebello, Joao Marcos Alcoforado [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil); Souza Filho, Byron Goncalves de [PETROBRAS, Rio de Janeiro, RJ (Brazil)

    2009-07-01

    The X-rays diffraction technique is a well established and effectiveness method in the determination of the residual and applied stresses in fine grained crystalline materials. It allows to characterize and to quantify the magnitude and direction of the existing surface stresses in the studied point of the material. The objective of this work is the evaluation of the surface stresses in a 10 in diameter Natural Gas Distribution Pipeline manufactured from API 5 L Gr B steel of COMPAGAS company, in a crossing with a Natural Gas Transportation Pipeline, in Araucaria-PR. This kind of evaluation is important to establish weather you have to perform a repositioning of one of the pipeline or not. The measurements had been made in two transversal sections of the pipe, the one upstream (170 mm of the external wall of the pipeline) and another one downstream (840 mm of the external wall of the pipeline). Each transversal section measurements where carried out in 3 points: 9 hours, 12 hours and 3 hours. In each measured point of the pipe surface, the longitudinal and transversal stresses had been measured. The magnitude of the surface residual stresses in the pipe varied of +180 MPa at the -210 MPa. The residual stress state on the surface of the points 12 hours region is characterized by tensile stresses and by compressive stresses in the points of 3 and 9 hours region. The surface residual stresses in gas-pipeline have been measured using X-ray diffraction method, by double exposure technique, using a portable apparatus, with Cr-K-alpha radiation. (author)

  13. pipelines cathodic protection design methodologies for impressed

    African Journals Online (AJOL)

    HOD

    oil and gas pipelines corrosion in the United State of. American alone ... or preventing external corrosion of pipeline steels and other metallic .... 2.1 Materials and Impressed Current Design. Carbon steel ..... Research Analysis, Vol. 2, pp 2277 ...

  14. Natural disasters and the gas pipeline system.

    Science.gov (United States)

    1996-11-01

    Episodic descriptions are provided of the effects of the Loma Prieta earthquake (1989) on the gas pipeline systems of Pacific Gas & Electric Company and the Cit of Palo Alto and of the Northridge earthquake (1994) on Southern California Gas' pipeline...

  15. ANALYSIS ON TECHNOLOGICAL PROCESSES CLEANING OIL PIPELINES

    Directory of Open Access Journals (Sweden)

    Mariana PǍTRAŞCU

    2015-05-01

    Full Text Available In this paper the researches are presented concerning the technological processes of oil pipelines.We know several technologies and materials used for cleaning the sludge deposits, iron and manganese oxides, dross, stone, etc.de on the inner walls of drinking water pipes or industries.For the oil industry, methods of removal of waste materials and waste pipes and liquid and gas transport networks are operations known long, tedious and expensive. The main methods and associated problems can be summarized as follows: 1 Blowing with compressed air.2 manual or mechanical brushing, sanding with water or dry.3 Wash with water jet of high pressure, solvent or chemical solution to remove the stone and hard deposits.4 The combined methods of cleaning machines that use water jets, cutters, chains, rotary heads cutters, etc.

  16. Better US energy policy in pipeline

    Energy Technology Data Exchange (ETDEWEB)

    1979-11-01

    The article points out that criticism from fellow industrialized nations as well as criticism from oil-producing nations is leading America to a steady rationalization of its energy policy. The Carter Administration's decontrol programs which will alter the prices for domestic oil are applauded. Another good sign is the pipeline to transport gas from Alaskan fields, through Canada, directly to major US market areas. Gas is mentioned as the major alternative to oil available to the US and Canada, but there are many environmental issues and pressure groups to contend with before the project can be begun. Carter appointments to the Federal Reserve and the Treasury are viewed as the sound money brigade taking control - namely those who believe that a major stimulant to the growth of inflation is the growth of money stock without an equivalent growth in goods or services. Finally, the symbiotic relationship between America's inflation troubles and its trade deficit is analyzed.

  17. Relationship between Pipeline Wall Thickness (Gr. X60) and Water Depth towards Avoiding Failure during Installation

    Science.gov (United States)

    Razak, K. Abdul; Othman, M. I. H.; Mat Yusuf, S.; Fuad, M. F. I. Ahmad; yahaya, Effah

    2018-05-01

    Oil and gas today being developed at different water depth characterized as shallow, deep and ultra-deep waters. Among the major components involved during the offshore installation is pipelines. Pipelines are a transportation method of material through a pipe. In oil and gas industry, pipeline come from a bunch of line pipe that welded together to become a long pipeline and can be divided into two which is gas pipeline and oil pipeline. In order to perform pipeline installation, we need pipe laying barge or pipe laying vessel. However, pipe laying vessel can be divided into two types: S-lay vessel and J-lay vessel. The function of pipe lay vessel is not only to perform pipeline installation. It also performed installation of umbilical or electrical cables. In the simple words, pipe lay vessel is performing the installation of subsea in all the connecting infrastructures. Besides that, the installation processes of pipelines require special focus to make the installation succeed. For instance, the heavy pipelines may exceed the lay vessel’s tension capacities in certain kind of water depth. Pipeline have their own characteristic and we can group it or differentiate it by certain parameters such as grade of material, type of material, size of diameter, size of wall thickness and the strength. For instances, wall thickness parameter studies indicate that if use the higher steel grade of the pipelines will have a significant contribution in pipeline wall thickness reduction. When running the process of pipe lay, water depth is the most critical thing that we need to monitor and concern about because of course we cannot control the water depth but we can control the characteristic of the pipe like apply line pipe that have wall thickness suitable with current water depth in order to avoid failure during the installation. This research will analyse whether the pipeline parameter meet the requirements limit and minimum yield stress. It will overlook to simulate pipe

  18. California Natural Gas Pipelines: A Brief Guide

    Energy Technology Data Exchange (ETDEWEB)

    Neuscamman, Stephanie [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Price, Don [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Pezzola, Genny [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Glascoe, Lee [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2013-01-22

    The purpose of this document is to familiarize the reader with the general configuration and operation of the natural gas pipelines in California and to discuss potential LLNL contributions that would support the Partnership for the 21st Century collaboration. First, pipeline infrastructure will be reviewed. Then, recent pipeline events will be examined. Selected current pipeline industry research will be summarized. Finally, industry acronyms are listed for reference.

  19. Seismic-safe conditions of blasting near pressure pipe-lines during power installation construction

    International Nuclear Information System (INIS)

    Smolij, N.I.; Nikitin, A.S.

    1980-01-01

    Seismic-safe conditions for performing drill-blasting operations in the vicinity of underground gas pipelines when constructing thermal- or nuclear power plants are discussed. It is shown that, for the determination of seismic-safe parameters, of drill-blasting operations, the maximum permissible level of seismic loads should be specified taking into account the mechanical properties of the pipeline.metal, structural parameters of the gas pipeline and the pressure of the medium transported. Besides, the seismic effect of the blast should be considered with regard to particular conditions of blasting and rock properties. The equations and diagrams used in the calculation are given

  20. Oil Transport Networks in Europe

    Directory of Open Access Journals (Sweden)

    Igbal Guliyev

    2014-01-01

    Full Text Available The author examines the problems and prospects of crude oil and petroleum products transportation market on the European continent. Particular attention is paid to the possibilities of the planned pipeline routes and new supplies of oil and petroleum products. European Union countries have large reserves of hydrocarbons, but it is not enough to fully satisfy domestic consumption. Improved pipeline infrastructure both within the EU and oil pipelines from other countries is an important economic and social factor. Recent developments of this year especially emphasize the importance of strengthening the energy security in the foreign policy of the state. For transporting fuel energy in Europe used the following types of transport: marine (sea and river, truck, railway, and pipeline. It seems necessary to mention the fact that the role of pipeline transport is particularly high in the oil and gas industry. Pipeline transport has an important impact on the formation and developmen t of the fuel and energy complex of the state, as well as regions, as its integral part. An effective system of crude oil and petroleum products pipelines is an important tool for the implementation of public policies, policies at the EU level, allowing the country to regulate the supply of crude oil and petroleum products to the overseas and domestic markets.

  1. Fishing activity near offshore pipelines, 2017

    NARCIS (Netherlands)

    Machiels, Marcel

    2018-01-01

    On the North Sea bottom lie numerous pipelines to link oil- or gas offshore drilling units, - platforms and processing stations on land. Although pipeline tubes are coated and covered with protective layers, the pipelines risk being damaged through man-made hazards like anchor dropping and fishing

  2. Technical Aspect on Procedure of Gamma-Ray Pipeline Inspection

    International Nuclear Information System (INIS)

    Rasif Mohd Zain; Ainul Mardhiah Terry; Norman Shah Dahing

    2015-01-01

    The main problems happen in industrial pipelines are deposit build-up, blockage, corrosion and erosion. These effects will give a constraint in transporting refined products to process or production points and cause a major problem in production. One of the techniques to inspect the problem is using gamma-ray pipe scans. The principle of the technique is gamma-ray absorption technique. In this paper describes on the technical aspect to perform the pipe inspection in laboratory work. (author)

  3. Government Support for Synthetic Pipeline Gas Uncertain and Needs Attention.

    Science.gov (United States)

    1982-05-14

    coal gas. Tear Sheetii RECOMMENDATIONS GAO recommends that the Secretary of Energy - --establish a plan to guide future support of high-Btu coal...recognizes that there are basic dif- ferences expected from large and small scale research projects, GAO believes that the report recognizes these...transportation, including the pipeline system. In its price-setting, or ratemaking function, it represents the interests of gas customers, sometimes

  4. Analysis of underground concrete pipelines subjected to seismic high-frequency loads

    OpenAIRE

    Abbasiverki, Roghayeh

    2016-01-01

    Buried pipelines are tubular structures that are used for transportation of important liquid materials and gas in order to provide safety for human life. During an earthquake, imposed loads from soil deformations on concrete pipelines may cause severe damages, possibly causing disturbance in vital systems, such as cooling of nuclear power facilities. The high level of safety has caused a demand for reliable seismic analyses, also for structures built in the regions that have not traditionally...

  5. Risk assessment in gas and oil pipelines based on the fuzzy Bow-tie technique

    OpenAIRE

    P. Heyrani; A. Baghaei

    2016-01-01

    Introduction: Nowadays, gas and oil account for 60 percent of world energy resources. Transporting crude oil and its products are accomplished through a number of ways among which pipelines are of the utmost significance. Considering the extent of pipelines in installation and residential areas and also high potential for damage, the safety of these pipes and application of risk management principles have undeniable importance. Bow-tie risk assessment method is one of the ways to determine sa...

  6. Detecting and correcting pipeline leaks before they become a big problem

    OpenAIRE

    Cramer, R; Shaw, D; Tulalian, R; Angelo, P; van Stuijvenberg, M

    2015-01-01

    Timely pipeline leak detection is a significant business issue in view of a long history of catastrophic incidents and growing intolerance for such events. It is vital to flag containment loss and location quickly, credibly, and reliably for all green or brown field critical lines in order to shut down the line safely and isolate the leak. Pipelines are designed to transport hydrocarbons safely; however, leaks have severe safety, economic, environmental, and reputational effects. This paper w...

  7. Gas pipeline Opon - Barrancabermeja. Consumption at low cost with environmental cleaning

    International Nuclear Information System (INIS)

    Carta Petrolera

    1997-01-01

    The gas pipeline Opon-Barrancabermeja, is part of a project to produce hydrocarbons in the Carare Region. For this line will be transported natural gas of the Opon Field, in Simitarra (Colombia). The benefits that it brings the presence of the gas pipeline for the community have to see from the same construction of the net, joined with diverse programs that link to communities of the influence areas, in aspects related with health, education, environmental reparation and agricultural diversification

  8. Z662-96: oil and gas pipeline systems; 2. ed.

    Energy Technology Data Exchange (ETDEWEB)

    Ko, S; Burford, G; Martin, A; Adragna, M [eds.

    1997-12-31

    This Standard is part of the pipeline systems and materials segment of the Canadian Standards Association (CSA)`s Transportation program. It covers the design, construction, operation and maintenance of oil and gas industry pipeline systems that carry (1) liquid hydrocarbons, including crude oil, multiphase fluids, condensate, liquid petroleum products, natural gas liquids, and liquefied petroleum gas, (2) oilfield water, (3) oilfield steam, (4) carbon dioxide used in oilfield enhanced recovery schemes, or (5) natural gas, manufactured gas, or synthetic gas. tabs. figs.

  9. Elasticplastic dynamic analysis of pipelines

    International Nuclear Information System (INIS)

    Veloso Filho, D.; Loula, A.F.D.; Guerreiro, J.N.C.

    1982-01-01

    A model for structural analysis of spatial pipelines constituted by material with perfect elastoplastic behavior and submmited to time dependence stress is presented. The spatial discretization is done using the Finite Element method, and for the time integration of movement equations an stable finite difference algorithm is used. (E.G.) [pt

  10. The case history of the first pipeline installed in the Arctic and subsequent developments

    International Nuclear Information System (INIS)

    Brown, R.J.

    1990-01-01

    Large reserves of gas and oil have been discovered in Arctic areas which have led various companies to initiate research and development in ways to produce and transport these resources to market. The primary mode of transportation is by pipelines. The main problem is that these areas are remote and transportation systems are long and expensive, especially when considering conventional methods of pipeline construction. The reserves in Canada's Arctic areas are large but, at this time, gas cannot be delivered to market at prices competitive with other gas supplies being completed. This, however, is changing as gas and oil reserves in the lower Arctic have increased, and the combining of a transportation system for both, improves the economics for their development. This paper discusses some of the initial works which have been completed to the stage of an actual pipeline installation, and the planned techniques envisioned for future field developments and for long distance transmission systems

  11. Calculation of NPP pipeline seismic stability

    International Nuclear Information System (INIS)

    Kirillov, A.P.; Ambriashvili, Yu.K.; Kaliberda, I.V.

    1982-01-01

    A simplified design procedure of seismic pipeline stability of NPP at WWER reactor is described. The simplified design procedure envisages during the selection and arrangement of pipeline saddle and hydraulic shock absorbers use of method of introduction of resilient mountings of very high rigidity into the calculated scheme of the pipeline and performance of calculations with step-by-step method. It is concluded that the application of the design procedure considered permits to determine strains due to seismic loads, to analyze stressed state in pipeline elements and supporting power of pipe-line saddle with provision for seismic loads to plan measures on seismic protection

  12. Saudi Aramco experience towards establishing Pipelines Integrity Management Systems (PIMS)

    Energy Technology Data Exchange (ETDEWEB)

    AlAhmari, Saad A. [Saudi Aramco, Dhahran (Saudi Arabia)

    2009-12-19

    Saudi Aramco pipelines network transports hydrocarbons to export terminals, processing plants and domestic users. This network faced several safety and operational-related challenges that require having a more effective Pipelines Integrity Management System (PIMS). Therefore Saudi Aramco decided to develop its PIMS on the basis of geographical information system (GIS) support through different phases, i.e., establishing the integrity management framework, risk calculation approach, conducting a gap analysis toward the envisioned PIMS, establishing the required scope of work, screening the PIMS applications market, and selecting suitable tools that satisfy expected deliverables, and implement PIMS applications. Saudi Aramco expects great benefits from implementing PIMS, e.g., enhancing safety, enhancing pipeline network robustness, optimizing inspection and maintenance expenditures, and facilitating pipeline management and the decision-making process. Saudi Aramco's new experience in adopting PIMS includes many challenges and lessons-learned associated with all of the PIMS development phases. These challenges include performing the gap analysis, conducting QA/QC sensitivity analysis for the acquired data, establishing the scope of work, selecting the appropriate applications and implementing PIMS. (author)

  13. Saudi Aramco experience towards establishing Pipelines Integrity Management System (PIMS)

    Energy Technology Data Exchange (ETDEWEB)

    Al-Ahmari, Saad A. [Saudi Aramco, Dhahran (Saudi Arabia)

    2009-07-01

    Saudi Aramco pipelines network transports hydrocarbons to export terminals, processing plants and domestic users. This network faced several safety and operational-related challenges that require having a more effective Pipelines Integrity Management System (PIMS). Therefore Saudi Aramco decided to develop its PIMS on the basis of geographical information system (GIS) support through different phases, i.e., establishing the integrity management framework, risk calculation approach, conducting a gap analysis toward the envisioned PIMS, establishing the required scope of work, screening the PIMS applications market, and selecting suitable tools that satisfy expected deliverables, and implement PIMS applications. Saudi Aramco expects great benefits from implementing PIMS, e.g., enhancing safety, enhancing pipeline network robustness, optimizing inspection and maintenance expenditures, and facilitating pipeline management and the decision-making process. Saudi Aramco's new experience in adopting PIMS includes many challenges and lessons-learned associated with all of the PIMS development phases. These challenges include performing the gap analysis, conducting QA/QC sensitivity analysis for the acquired data, establishing the scope of work, selecting the appropriate applications and implementing PIMS. (author)

  14. Field sludge characterization obtained from inner of pipelines

    Energy Technology Data Exchange (ETDEWEB)

    Nava, N.; Sosa, E.; Alamilla, J.L. [Instituto Mexicano del Petroleo, Programa de Integridad de Ductos, Eje Central Lazaro Cardenas Norte 152, San Bartolo Atepehuacan, C.P. 07730 (Mexico); Knigth, C. [PEMEX Refinacion, Avenida Marina Nacional 329, Edificio B-2, Piso 11, C.P. 11311 (Mexico); Contreras, A. [Instituto Mexicano del Petroleo, Programa de Integridad de Ductos, Eje Central Lazaro Cardenas Norte 152, San Bartolo Atepehuacan, C.P. 07730 (Mexico)], E-mail: acontrer@imp.mx

    2009-11-15

    Physicochemical characterization of sludge obtained from refined hydrocarbons transmission pipeline was carried out through Moessbauer spectroscopy and X-ray diffraction. The Moessbauer and X-ray patterns indicate the presence of corrosion products composed of different iron oxide and sulfide phases. Hematite ({alpha}-Fe{sub 2}O{sub 3}), magnetite (Fe{sub 3}O{sub 4}), maghemite ({gamma}-Fe{sub 2}O{sub 3}), magnetic and superparamagnetic goethite ({alpha}-FeOOH), pyrrhotite (Fe{sub 1-x}S), akaganeite ({beta}-FeOOH), and lepidocrocite ({gamma}-FeOOH) were identified as corrosion products in samples obtained from pipeline transporting Magna and Premium gasoline. For diesel transmission pipeline, hematite, magnetite, and magnetic goethite were identified. Corrosion products follow a simple reaction mechanism of steel dissolution in aerated aqueous media at a near-neutral pH. Chemical composition of the corrosion products depends on H{sub 2}O and sulfur inherent in fluids (traces). These results can be useful for decision-making with regard to pipeline corrosion control.

  15. Freezing around a pipeline carrying cooled gas in flooded areas

    Energy Technology Data Exchange (ETDEWEB)

    Koval' kov, V P; Krivoshein, B L

    1978-12-01

    The USSR's NIPIESUneftegazstroi mathematically analyzed the problem of ice formation around a subcooled-gas pipeline submerged in water in cold regions and derived charts for determining heat-transfer coefficients and the rate of ice formation for various water and gas temperatures. Because the ice halo that forms around these pipelines necessitates additional anchoring of the line, NIPIESUneftegazstroi sought to quantify the weight required in order to minimize the cost and material needed. The differential heat-transfer equations given can be used to calculate heat-transfer coefficients and the specific heat flux from the water to the ice halo, as well as the radius of the ice halo. Values of the ice-halo radius are plotted graphically as parabolic function of time (to 15,000 h) for pipeline surface temperatures of 30.2, 27.5, 23, 18.5, and 14/sup 0/F. An equation indicates the limiting value of the temperature of the transported gas at which icing of an insulated pipeline will not occur.

  16. Reliability evaluation of oil pipelines operating in aggressive environment

    Science.gov (United States)

    Magomedov, R. M.; Paizulaev, M. M.; Gebel, E. S.

    2017-08-01

    In connection with modern increased requirements for ecology and safety, the development of diagnostic services complex is obligatory and necessary enabling to ensure the reliable operation of the gas transportation infrastructure. Estimation of oil pipelines technical condition should be carried out not only to establish the current values of the equipment technological parameters in operation, but also to predict the dynamics of changes in the physical and mechanical characteristics of the material, the appearance of defects, etc. to ensure reliable and safe operation. In the paper, existing Russian and foreign methods for evaluation of the oil pipelines reliability are considered, taking into account one of the main factors leading to the appearance of crevice in the pipeline material, i.e. change the shape of its cross-section, - corrosion. Without compromising the generality of the reasoning, the assumption of uniform corrosion wear for the initial rectangular cross section has been made. As a result a formula for calculation the probability of failure-free operation was formulated. The proposed mathematical model makes it possible to predict emergency situations, as well as to determine optimal operating conditions for oil pipelines.

  17. Assessing fugitive emissions of CH4 from high-pressure gas pipelines

    Science.gov (United States)

    Worrall, Fred; Boothroyd, Ian; Davies, Richard

    2017-04-01

    The impact of unconventional natural gas production using hydraulic fracturing methods from shale gas basins has been assessed using life-cycle emissions inventories, covering areas such as pre-production, production and transmission processes. The transmission of natural gas from well pad to processing plants and its transport to domestic sites is an important source of fugitive CH4, yet emissions factors and fluxes from transmission processes are often based upon ver out of date measurements. It is important to determine accurate measurements of natural gas losses when compressed and transported between production and processing facilities so as to accurately determine life-cycle CH4 emissions. This study considers CH4 emissions from the UK National Transmission System (NTS) of high pressure natural gas pipelines. Mobile surveys of CH4 emissions using a Picarro Surveyor cavity-ring-down spectrometer were conducted across four areas in the UK, with routes bisecting high pressure pipelines and separate control routes away from the pipelines. A manual survey of soil gas measurements was also conducted along one of the high pressure pipelines using a tunable diode laser. When wind adjusted 92 km of high pressure pipeline and 72 km of control route were drive over a 10 day period. When wind and distance adjusted CH4 fluxes were significantly greater on routes with a pipeline than those without. The smallest leak detectable was 3% above ambient (1.03 relative concentration) with any leaks below 3% above ambient assumed ambient. The number of leaks detected along the pipelines correlate to the estimated length of pipe joints, inferring that there are constant fugitive CH4 emissions from these joints. When scaled up to the UK's National Transmission System pipeline length of 7600 km gives a fugitive CH4 flux of 4700 ± 2864 kt CH4/yr - this fugitive emission from high pressure pipelines is 0.016% of the annual gas supply.

  18. Russia: the pipeline diplomacy; Russie: la diplomatie du pipeline

    Energy Technology Data Exchange (ETDEWEB)

    Bourdillon, Y

    2005-01-15

    First world producer of oil and gas, Russia wishes to use its mastery of energy distribution to recover its great power status. The oil and gas pipelines network is the basement used by Russia to build up its hegemony in Europe. The Russian oil and gas companies are also carrying out a long-term strategy of international expansion, in particular thanks to investments in the neighboring countries for the building of new infrastructures or the purchase of oil refineries. (J.S.)

  19. Arctic pipeline planning design, construction, and equipment

    CERN Document Server

    Singh, Ramesh

    2013-01-01

    Utilize the most recent developments to combat challenges such as ice mechanics. The perfect companion for engineers wishing to learn state-of-the-art methods or further develop their knowledge of best practice techniques, Arctic Pipeline Planning provides a working knowledge of the technology and techniques for laying pipelines in the coldest regions of the world. Arctic Pipeline Planning provides must-have elements that can be utilized through all phases of arctic pipeline planning and construction. This includes information on how to: Solve challenges in designing arctic pipelines Protect pipelines from everyday threats such as ice gouging and permafrost Maintain safety and communication for construction workers while supporting typical codes and standards Covers such issues as land survey, trenching or above ground, environmental impact of construction Provides on-site problem-solving techniques utilized through all phases of arctic pipeline planning and construction Is packed with easy-to-read and under...

  20. Canadian pipeline contractors in holding pattern

    Energy Technology Data Exchange (ETDEWEB)

    Caron, G [Pe Ben Pipelines Ltd.; Osadchuk, V; Sharp, M; Stabback, J G

    1979-05-21

    A discussion of papers presented at a Pipe Line Contractors Association of Canada convention includes comments by G. Caron (Pe Ben Pipelines Ltd.) on the continued slack in big-inch pipeline construction into 1980 owing mainly to delayed U.S. and Canadian decisions on outstanding Alaska Highway gas pipeline issues and associated gas export bids and on the use of automatic welding for expeditious construction of the northern sections of the Alaska Highway pipeline; by V. Osadchuk (Majestic Wiley Contract. Ltd.) on the liquidation of surplus construction equipment because of these delays; by M. Sharp (Can. North. Pipeline Agency) on the need for close U.S. and Canadian governmental and industrial cooperation to permit an early 1980 start for construction of the prebuild sections of the Alaska pipeline; and by J. G. Stabback (Can. Natl. Energy Board) on the Alaska oil pipeline applications by Foothills Pipe Lines Ltd., Trans Mountain Pipe Line Co. Ltd., and Kitimat Pipe Line Ltd.

  1. 18 CFR 250.16 - Format of compliance plan for transportation services and affiliate transactions.

    Science.gov (United States)

    2010-04-01

    ... affiliate's role in the transportation transaction (i.e., shipper, marketer, supplier, seller); the duration... distribution company, an interstate pipeline, an intrastate pipeline, an end-user, a producer, a marketer, or a...

  2. Pipeline system for gas centrifuge

    International Nuclear Information System (INIS)

    Masumoto, Tsutomu; Umezawa, Sadao.

    1977-01-01

    Purpose: To enable effective operation for the gas centrifuge cascade system upon failures in the system not by interrupting the operation of all of the centrifuges in the system but by excluding only the failed centrifuges. Constitution: A plurality of gas centrifuges are connected by way of a pipeline and an abnormal detector for the automatic detection of abnormality such as destruction in a vacuum barrel and loss of vacuum is provided to each of the centrifuges. Bypass lines for short-circuitting adjacent centrifuges are provided in the pipelines connecting the centrifuges. Upon generation of abnormality in a centrifuge, a valve disposed in the corresponding bypass is automatically closed or opened by a signal from the abnormal detector to change the gas flow to thereby exclude the centrifuge in abnormality out of the system. This enables to effectively operate the system without interrupting the operation for the entire system. (Moriyama, K.)

  3. Oil pipeline performance review, 1990

    International Nuclear Information System (INIS)

    1990-01-01

    This paper reviews the environmental performance of Canadian oil pipelines in spill prevention and control in 1990 and compares it with that in 1989. In 1990, in-service length of the systems reporting increased to 34,907 km. Traffic volume was 235 million m 3 . Failures dropped 16% from 1989 to 36. Equipment failures accounted for 47%, corrosion for 22% and operational error for 19% of the failures. Repair, damage and clean-up costs were considerably higher at $5,302,000, of which one external corrosion failure contributed $4,500,000. The average spill size was 130 m 3 with 72 m 3 recovered for a 55.4% recovery rate. No injuries resulted from the failures. An 11 year statistical summary of oil pipeline performance data is included. 3 figs., 5 tabs

  4. Nova Gas's pipeline to Asia

    International Nuclear Information System (INIS)

    Lea, N.

    1996-01-01

    The involvement of the Calgary-based company NOVA Gas International (NGI) in Malaysia's peninsular gas utilization (PGU) project, was described. Phase I and II of the project involved linking onshore gas processing plants with a natural gas transmission system. Phase III of the PGU project was a gas transmission pipeline that began midway up the west coast of peninsular Malaysia to the Malaysia-Thailand border. The complex 549 km pipeline included route selection, survey and soil investigation, archaeological study, environmental impact assessment, land acquisition, meter-station construction, telecommunication systems and office buildings. NGI was the prime contractor on the project through a joint venture with OGP Technical Services, jointly owned by NGI and Petronas, the Thai state oil company. Much of NGI's success was attributed to excellent interpersonal skills, particularly NGI's ability to build confidence and credibility with its Thai partners

  5. Essays on the economics of natural gas pipelines

    Science.gov (United States)

    Oliver, Matthew E.

    The natural gas pipeline transportation industry is comprised of a primary market and a secondary market. In the primary market, pipelines sell 'firm' transport capacity contracts to gas traders, local distribution companies, and other parties. The (per unit) secondary market value of transport is rarely comparable to the regulated primary market two-part tariff. When and where available capacity in the secondary market is scarce, its value can far exceed the primary market tariffs paid by firm contract holders, generating scarcity rents. The following essays demonstrate that this phenomenon has predictable effects on natural gas spot prices, firm capacity reservations, the pipeline's capacity construction and expansion decisions, and the economic welfare of producers and consumers at the market hubs connected by the pipeline. Chapter 1 provides a theoretical framework for understanding how pipeline congestion affects natural gas spot prices within the context of the current regulatory environment, and empirically quantifies this effect over a specific regional pipeline network. As available pipeline capacity over a given route connecting two hubs becomes scarce, the spot prices for gas at the hubs are driven apart---a phenomenon indicative of some market friction that inhibits the ability of spot price arbitrage to fully integrate the two prices, undermining economic efficiency. The theoretical component of Chapter 1 illuminates a potential source of this friction: the deregulated structure of the secondary market for gas transportation services. To support and quantify the predictions of the theoretical model, the empirical component demonstrates that the effect of congestion on the secondary market value of transport---the key factor in driving apart spot prices---can be quite strong. Coefficient estimates indicate that dramatic increases in transport costs are likely to result from marginal increases in congestion. This result has important implications because

  6. Pipeline Bending Strain Measurement and Compensation Technology Based on Wavelet Neural Network

    Directory of Open Access Journals (Sweden)

    Rui Li

    2016-01-01

    Full Text Available The bending strain of long distance oil and gas pipelines may lead to instability of the pipeline and failure of materials, which seriously deteriorates the transportation security of oil and gas. To locate the position of the bending strain for maintenance, an Inertial Measurement Unit (IMU is usually adopted in a Pipeline Inspection Gauge (PIG. The attitude data of the IMU is usually acquired to calculate the bending strain in the pipe. However, because of the vibrations in the pipeline and other system noises, the resulting bending strain calculations may be incorrect. To improve the measurement precision, a method, based on wavelet neural network, was proposed. To test the proposed method experimentally, a PIG with the proposed method is used to detect a straight pipeline. It can be obtained that the proposed method has a better repeatability and convergence than the original method. Furthermore, the new method is more accurate than the original method and the accuracy of bending strain is raised by about 23% compared to original method. This paper provides a novel method for precisely inspecting bending strain of long distance oil and gas pipelines and lays a foundation for improving the precision of inspection of bending strain of long distance oil and gas pipelines.

  7. Rehabilitation of underwater pipeline with liner; Reabilitacao de aqueduto submarino com liner: multiplas vantagens e aplicacoes

    Energy Technology Data Exchange (ETDEWEB)

    Aquino, Roberto S.; Oliveira, Jose N. de; Urtiga, Rogerio L.; Witt, R. [PETROBRAS S.A., Rio de Janeiro, RJ (Brazil)

    2008-07-01

    The system of water injection in XAREU oil production field has an water pipeline sizing 4'' of diameter, between the offshore platform PXA-1 and another PXA-2, that it transfers 165 m{sup 3}/d of salt water for pressurization of the reservoir through the injection well Xareu-23. This water pipeline always presented high degree of corrosion needing frequently installation of cramps to eliminate leakages. After evaluating the costs we conclude that the more attractive it would be the installation of a liner than the launching of a new water pipeline. For the installation of a new water pipeline we would need the approval of IBAMA and of a great number of resources for the substitution of that pipeline. In spite of treating of an unpublished service between two offshore platforms we chose for the installation of a liner, because we had a great technological domain in this service in onshore oil production facilities with many pipelines recovered with this technique. We had to revise all of the procedures so that there was not any surprise to make unfeasible this service. The installation of the system liner, consisted of an internal coating 'in situ' through the insert of plastic tubes(high density polyethylene-HDPE), that it forms a barrier between the pipeline and the transported fluid. (author)

  8. Shore approach of Camarupim pipeline

    Energy Technology Data Exchange (ETDEWEB)

    Bernardi, Tiaraju P.; Oliveira Neto, Vasco A. de; Siqueira, Jakson [Petroleo Brasileiro S.A. (PETROBRAS), Rio de Janeiro, RJ (Brazil)

    2009-07-01

    Camarupim Field is located in the northern portion of Espirito Santo Basin and was discovered from the drilling of the well 1-ESS-164 in 2006. It is a gas field which start of the production is in mid of 2009. The production unit will be a FPSO (Floating Production, Storage and Offloading) and the gas will flow through a pipeline with diameter ranging from 12 inches and 24 inches with approximately 60 km long, from the FPSO Cidade de Sao Mateus to UTGC (Unit for Treatment of Gas Cacimbas-Linhares-ES). The FPSO will have processing capacity of 10MMm3/day of gas. Due to the approach of the pipeline in the continental portion, located in an environmental protection area and place of spawning of sea turtles, the connection between the stretch of sea and land pipeline running through a shore approach, known and proven technique of horizontal directional drilling about 950m in length. This paper will be shown the assumptions adopted, the technique employed, the challenges faced by the team and the lessons learned to build the directional hole. (author)

  9. Magnetic Flux Leakage and Principal Component Analysis for metal loss approximation in a pipeline

    International Nuclear Information System (INIS)

    Ruiz, M; Mujica, L E; Quintero, M; Florez, J; Quintero, S

    2015-01-01

    Safety and reliability of hydrocarbon transportation pipelines represent a critical aspect for the Oil an Gas industry. Pipeline failures caused by corrosion, external agents, among others, can develop leaks or even rupture, which can negatively impact on population, natural environment, infrastructure and economy. It is imperative to have accurate inspection tools traveling through the pipeline to diagnose the integrity. In this way, over the last few years, different techniques under the concept of structural health monitoring (SHM) have continuously been in development.This work is based on a hybrid methodology that combines the Magnetic Flux Leakage (MFL) and Principal Components Analysis (PCA) approaches. The MFL technique induces a magnetic field in the pipeline's walls. The data are recorded by sensors measuring leakage magnetic field in segments with loss of metal, such as cracking, corrosion, among others. The data provide information of a pipeline with 15 years of operation approximately, which transports gas, has a diameter of 20 inches and a total length of 110 km (with several changes in the topography). On the other hand, PCA is a well-known technique that compresses the information and extracts the most relevant information facilitating the detection of damage in several structures. At this point, the goal of this work is to detect and localize critical loss of metal of a pipeline that are currently working. (paper)

  10. Magnetic Flux Leakage and Principal Component Analysis for metal loss approximation in a pipeline

    Science.gov (United States)

    Ruiz, M.; Mujica, L. E.; Quintero, M.; Florez, J.; Quintero, S.

    2015-07-01

    Safety and reliability of hydrocarbon transportation pipelines represent a critical aspect for the Oil an Gas industry. Pipeline failures caused by corrosion, external agents, among others, can develop leaks or even rupture, which can negatively impact on population, natural environment, infrastructure and economy. It is imperative to have accurate inspection tools traveling through the pipeline to diagnose the integrity. In this way, over the last few years, different techniques under the concept of structural health monitoring (SHM) have continuously been in development. This work is based on a hybrid methodology that combines the Magnetic Flux Leakage (MFL) and Principal Components Analysis (PCA) approaches. The MFL technique induces a magnetic field in the pipeline's walls. The data are recorded by sensors measuring leakage magnetic field in segments with loss of metal, such as cracking, corrosion, among others. The data provide information of a pipeline with 15 years of operation approximately, which transports gas, has a diameter of 20 inches and a total length of 110 km (with several changes in the topography). On the other hand, PCA is a well-known technique that compresses the information and extracts the most relevant information facilitating the detection of damage in several structures. At this point, the goal of this work is to detect and localize critical loss of metal of a pipeline that are currently working.

  11. Assessing fugitive emissions of CH4 from high-pressure gas pipelines in the UK

    Science.gov (United States)

    Clancy, S.; Worrall, F.; Davies, R. J.; Almond, S.; Boothroyd, I.

    2016-12-01

    Concern over the greenhouse gas impact of the exploitation of unconventional natural gas from shale deposits has caused a spotlight to be shone on to the entire hydrocarbon industry. Numerous studies have developed life-cycle emissions inventories to assess the impact that hydraulic fracturing has upon greenhouse gas emissions. Incorporated within life-cycle assessments are transmission and distribution losses, including infrastructure such as pipelines and compressor stations that pressurise natural gas for transport along pipelines. Estimates of fugitive emissions from transmission, storage and distribution have been criticized for reliance on old data from inappropriate sources (1970s Russian gas pipelines). In this study, we investigate fugitive emissions of CH4 from the UK high pressure national transmission system. The study took two approaches. Firstly, CH4 concentration is detected by driving along roads bisecting high pressure gas pipelines and also along an equivalent distance along a route where no high pressure gas pipeline was nearby. Five pipelines and five equivalent control routes were driven and the test was that CH4 measurements, when adjusted for distance and wind speed, should be greater on any route with a pipe than any route without a pipe. Secondly, 5 km of a high pressure gas pipeline and 5 km of equivalent farmland, were walked and soil gas (above the pipeline where present) was analysed every 7 m using a tunable diode laser. When wind adjusted 92 km of high pressure pipeline and 72 km of control route were drive over a 10 day period. When wind and distance adjusted CH4 fluxes were significantly greater on routes with a pipeline than those without. The smallest leak detectable was 3% above ambient (1.03 relative concentration) with any leaks below 3% above ambient assumed ambient. The number of leaks detected along the pipelines correlate to the estimated length of pipe joints, inferring that there are constant fugitive CH4 emissions from

  12. Ultrasonic testing standard of fusion joint for polythylene(PE) pipeline

    International Nuclear Information System (INIS)

    Lee, Euy Jong; Hur, Sam Suk; Chae, Gug Byeong

    2006-01-01

    The polyethylene(PE) pipes are widely used to transport city gas worldwide with steel pipes. Generally, Steel pipe are used for high pressure line and PE pipe for low pressure line whose pressure is less than 4 kg/m 2 . The steel pipe line are subject to 100 percent Radiographic Testing(RT) during installation stage, on the contrary, there has been no the established testing method for the welding fusion joint of polyethylene pipes, so all quality control is limited only Visual Testing(VT) or management of Fusion welding equipment. Even though PE pipeline is exposed to lower pressure than steel pipeline, the gas leakage from PE pipe may result in almost the same serious consequence from steel pipeline. So, it is necessary to develop the reliable testing standard for PE pipeline from the point of view of NDT engineers.

  13. Integer programming formulation and variable neighborhood search metaheuristic for the multiproduct pipeline scheduling problem

    Energy Technology Data Exchange (ETDEWEB)

    Souza Filho, Erito M.; Bahiense, Laura; Ferreira Filho, Virgilio J.M. [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Coordenacao dos Programas de Pos-graduacao de Engenharia (COPPE); Lima, Leonardo [Centro Federal de Educacao Tecnologica Celso Sukow da Fonseca (CEFET-RJ), Rio de Janeiro, RJ (Brazil)

    2008-07-01

    Pipeline are known as the most reliable and economical mode of transportation for petroleum and its derivatives, especially when large amounts of products have to be pumped for large distances. In this work we address the short-term schedule of a pipeline system comprising the distribution of several petroleum derivatives from a single oil refinery to several depots, connected to local consumer markets, through a single multi-product pipeline. We propose an integer linear programming formulation and a variable neighborhood search meta-heuristic in order to compare the performances of the exact and heuristic approaches to the problem. Computational tests in C language and MOSEL/XPRESS-MP language are performed over a real Brazilian pipeline system. (author)

  14. A comprehensive probabilistic analysis model of oil pipelines network based on Bayesian network

    Science.gov (United States)

    Zhang, C.; Qin, T. X.; Jiang, B.; Huang, C.

    2018-02-01

    Oil pipelines network is one of the most important facilities of energy transportation. But oil pipelines network accident may result in serious disasters. Some analysis models for these accidents have been established mainly based on three methods, including event-tree, accident simulation and Bayesian network. Among these methods, Bayesian network is suitable for probabilistic analysis. But not all the important influencing factors are considered and the deployment rule of the factors has not been established. This paper proposed a probabilistic analysis model of oil pipelines network based on Bayesian network. Most of the important influencing factors, including the key environment condition and emergency response are considered in this model. Moreover, the paper also introduces a deployment rule for these factors. The model can be used in probabilistic analysis and sensitive analysis of oil pipelines network accident.

  15. Opening up Brazil's hydrocarbon sector - the Bolivia-Brazil pipeline

    International Nuclear Information System (INIS)

    Law, P.

    2000-01-01

    The Bolivia-Brazil natural gas pipeline, which transports natural gas more than 3000 km from Bolivia to Brazil, cost US$2.1 billion to construct. Despite the substantial benefits for both Bolivia and Brazil and the involvement of reputable private partners, the perceived risks and complexities of this large project made financing it major challenge. neither of these countries has had a tradition of independent regulation or economic fuel pricing, and the pipeline was the first major gas infrastructure project involving the private sector in Brazil. The presentation explains the historical features of the project and how the project was used to open up Brazilian oil and gas sector to private investment and competition. (author)

  16. Implications of generator siting for CO2 pipeline infrastructure

    International Nuclear Information System (INIS)

    Newcomer, Adam; Apt, Jay

    2008-01-01

    The location of a new electric power generation system with carbon capture and sequestration (CCS) affects the profitability of the facility and determines the amount of infrastructure required to connect the plant to the larger world. Using a probabilistic analysis, we examine where a profit-maximizing power producer would locate a new generator with carbon capture in relation to a fuel source, electric load, and CO 2 sequestration site. Based on models of costs for transmission lines, CO 2 pipelines, and fuel transportation, we find that it is always preferable to locate a CCS power facility nearest the electric load, reducing the losses and costs of bulk electricity transmission. This result suggests that a power system with significant amounts of CCS requires a very large CO 2 pipeline infrastructure

  17. Practical approach on gas pipeline compression system availability analysis

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Sidney Pereira dos [PETROBRAS S.A., Rio de Janeiro, RJ (Brazil); Kurz, Rainer; Lubomirsky, Matvey [Solar Turbines, San Diego, CA (United States)

    2009-12-19

    Gas pipeline projects traditionally have been designed based on load factor and steady state flow. This approach exposes project sponsors to project sustainability risks due to potential losses of revenues and transportation contract penalties related to pipeline capacity shortage as consequence of compressor unit's unavailability. Such unavailability should previously be quantified during the design phase. This paper presents a case study and a methodology that highlights the practical benefits of applying Monte Carlo simulation for the compression system availability analysis in conjunction with quantitative risk analysis and economic feasibility study. Project economics main variables and their impacts on the project NPV (Net Present Value) are evaluated with their respective statistics distribution to quantify risk and support decision makers to adopt mitigating measures to guarantee competitiveness while protecting project sponsors from otherwise unpredictable risks. This practical approach is compared to load factor approach and the results are presented and evaluated. (author)

  18. Reliable pipeline repair system for very large pipe size

    Energy Technology Data Exchange (ETDEWEB)

    Charalambides, John N.; Sousa, Alexandre Barreto de [Oceaneering International, Inc., Houston, TX (United States)

    2004-07-01

    The oil and gas industry worldwide has been mainly depending on the long-term reliability of rigid pipelines to ensure the transportation of hydrocarbons, crude oil, gas, fuel, etc. Many other methods are also utilized onshore and offshore (e.g. flexible lines, FPSO's, etc.), but when it comes to the underwater transportation of very high volumes of oil and gas, the industry commonly uses large size rigid pipelines (i.e. steel pipes). Oil and gas operators learned to depend on the long-lasting integrity of these very large pipelines and many times they forget or disregard that even steel pipelines degrade over time and more often that that, they are also susceptible to various forms of damage (minor or major, environmental or external, etc.). Over the recent years the industry had recognized the need of implementing an 'emergency repair plan' to account for such unforeseen events and the oil and gas operators have become 'smarter' by being 'pro-active' in order to ensure 'flow assurance'. When we consider very large diameter steel pipelines such as 42' and 48' nominal pipe size (NPS), the industry worldwide does not provide 'ready-made', 'off-the-shelf' repair hardware that can be easily shipped to the offshore location and effect a major repair within acceptable time frames and avoid substantial profit losses due to 'down-time' in production. The typical time required to establish a solid repair system for large pipe diameters could be as long as six or more months (depending on the availability of raw materials). This paper will present in detail the Emergency Pipeline Repair Systems (EPRS) that Oceaneering successfully designed, manufactured, tested and provided to two major oil and gas operators, located in two different continents (Gulf of Mexico, U.S.A. and Arabian Gulf, U.A.E.), for two different very large pipe sizes (42'' and 48'' Nominal Pipe Sizes

  19. The Use of Biobased Surfactant Obtained by Enzymatic Syntheses for Wax Deposition Inhibition and Drag Reduction in Crude Oil Pipelines

    Directory of Open Access Journals (Sweden)

    Zhihua Wang

    2016-04-01

    Full Text Available Crude oil plays an important role in providing the energy supply of the world, and pipelines have long been recognized as the safest and most efficient means of transporting oil and its products. However, the transportation process also faces the challenges of asphaltene-paraffin structural interactions, pipeline pressure losses and energy consumption. In order to determine the role of drag-reducing surfactant additives in the transportation of crude oils, experiments of wax deposition inhibition and drag reduction of different oil in pipelines with a biobased surfactant obtained by enzymatic syntheses were carried out. The results indicated that heavy oil transportation in the pipeline is remarkably enhanced by creating stable oil-in-water (O/W emulsion with the surfactant additive. The wax appearance temperature (WAT and pour point were modified, and the formation of a space-filling network of interlocking wax crystals was prevented at low temperature by adding a small concentration of the surfactant additive. A maximum viscosity reduction of 70% and a drag reduction of 40% for light crude oil flows in pipelines were obtained with the surfactant additive at a concentration of 100 mg/L. Furthermore, a successful field application of the drag-reducing surfactant in a light crude oil pipeline in Daqing Oilfield was demonstrated. Hence, the use of biobased surfactant obtained by enzymatic syntheses in oil transportation is a potential method to address the current challenges, which could result in a significant energy savings and a considerable reduction of the operating cost.

  20. Development of high productivity pipeline girth welding

    International Nuclear Information System (INIS)

    Yapp, David; Liratzis, Theocharis

    2010-01-01

    The trend for increased oil and gas consumption implies a growth of long-distance pipeline installations. Welding is a critical factor in the installation of pipelines, both onshore and offshore, and the rate at which the pipeline can be laid is generally determined by the speed of welding. This has resulted in substantial developments in pipeline welding techniques. Arc welding is still the dominant process used in practice, and forge welding processes have had limited successful application to date, in spite of large investments in process development. Power beam processes have also been investigated in detail and the latest laser systems now show promise for practical application. In recent years the use of high strength steels has substantially reduced the cost of pipeline installation, with X70 and X80 being commonly used. This use of high strength pipeline produced by thermomechanical processing has also been researched. They must all meet three requirments, high productivity, satisfactory weld properties, and weld quality

  1. Submarine pipelines and the North Sea environment

    International Nuclear Information System (INIS)

    Haldane, D.; Paul, M.A.; Reuben, R.L.; Side, J.C.

    1992-01-01

    The function and design of pipelines for use on the United Kingdom continental shelf are described. Environmental influences which can threaten the integrity of seabed pipelines in the North Sea include hydrodynamic forces due to residual, tidal and wave currents, the nature of seabed sediments and corrosion by seawater. Damage may be caused to pipelines by interaction with vessel anchors and with fishing gear. Special care has to be taken over the selection of the general area for the landfall of a pipeline and the engineering of the installation where the pipeline comes ashore. Trenching and other protection techniques for pipelines are discussed together with hydrostatic testing and commissioning and subsequent inspection, maintenance and repair. (UK)

  2. Sea water pipeline for nuclear power plant

    International Nuclear Information System (INIS)

    Ueno, Ken-ichi.

    1992-01-01

    Heating coils, for example, are wound around sea water pipelines as a heater. The outer wall surface of the sea water pipelines is heated by the heating coils. The inner wall surfaces of the sea water pipelines can be warmed to higher than a predetermined temperature by heating the outer wall surfaces to die out marine organisms deposited at the inner surfaces. Further, thermocouples for the external wall and the internal wall are disposed so that the temperature at the inner wall surface of the sea water pipelines can be controlled. Further, a temperature keeping material is disposed at the external surface of the sea water system pipelines. With such a constitution, the marine organisms deposited on the internal wall surface of the sea water system pipelines are died out to suppress the deposition amount of the marine organisms. Accordingly, the maintenance and the operation reliability is improved after maintenance. (I.N.)

  3. Review of the Factors that Influence the Condition of Wax Deposition in Subsea Pipelines

    Directory of Open Access Journals (Sweden)

    Koh Junyi

    2018-03-01

    Full Text Available When crude oil is transported via sub-sea pipeline, the temperature of the pipeline decreases at a deep depth which causes a difference in temperature with the crude oil inside. This causes the crude oil to dissipate its heat to the surrounding until thermal equilibrium is achieved. This is also known as the cloud point where wax begins to precipitate and solidifies at the walls of the pipeline which obstruct the flow of fluid. The main objective of this review is to quantify the factors that influence wax deposition such as temperature difference between the wall of the pipeline and the fluid flowing within, the flow rate of the fluid in the pipeline and residence time of the fluid in the pipeline. It is found the main factor that causes wax deposition in the pipeline is the difference in temperature between the petroleum pipeline and the fluid flowing within. Most Literature deduces that decreasing temperature difference results in lower wax content deposited on the wall of the pipeline. The wax content increases with rising flow rate. As for the residence time, the amount of deposited wax initially increases when residence time increases until it reaches a peak value and gradually decreases. Flow-loop system and cold finger apparatus were used in literature investigations to determine the trends above. Three new models are generated through a regression analysis based on the results from other authors. These new models form a relationship between temperature difference, flow rate, residence time and Reynolds number with wax deposition. These models have high values of R-square and adjusted R-square which demonstrate the reliability of these models.

  4. Comparison of carbon footprints of steel versus concrete pipelines for water transmission.

    Science.gov (United States)

    Chilana, Lalit; Bhatt, Arpita H; Najafi, Mohammad; Sattler, Melanie

    2016-05-01

    The global demand for water transmission and service pipelines is expected to more than double between 2012 and 2022. This study compared the carbon footprint of the two most common materials used for large-diameter water transmission pipelines, steel pipe (SP) and prestressed concrete cylinder pipe (PCCP). A planned water transmission pipeline in Texas was used as a case study. Four life-cycle phases for each material were considered: material production and pipeline fabrication, pipe transportation to the job site, pipe installation in the trench, and operation of the pipeline. In each phase, the energy consumed and the CO2-equivalent emissions were quantified. It was found that pipe manufacturing consumed a large amount of energy, and thus contributed more than 90% of life cycle carbon emissions for both kinds of pipe. Steel pipe had 64% larger CO2-eq emissions from manufacturing compared to PCCP. For the transportation phase, PCCP consumed more fuel due to its heavy weight, and therefore had larger CO2-eq emissions. Fuel consumption by construction equipment for installation of pipe was found to be similar for steel pipe and PCCP. Overall, steel had a 32% larger footprint due to greater energy used during manufacturing. This study compared the carbon footprint of two large-diameter water transmission pipeline materials, steel and prestressed concrete cylinder, considering four life-cycle phases for each. The study provides information that project managers can incorporate into their decision-making process concerning pipeline materials. It also provides information concerning the most important phases of the pipeline life cycle to target for emission reductions.

  5. Selected legal and regulatory concerns affecting domestic energy transportation systems

    International Nuclear Information System (INIS)

    Schuller, C.R.

    1979-07-01

    This report provides assessments of eight legal and regulatory concerns that may affect energy material transportation in the US during the rest of the century: state authority to regulate nuclear materials transport, divestiture of petroleum pipelines from major integrated oil companies, problems affecting the natural gas transportation system, capabilities of energy transportation systems during emergencies, Federal coal pipeline legislation, ability of Federal agencies to anticipate railroad difficulties, abandonment of uneconomic railroad lines, and impact of the Panama Canal treaty upon US energy transportation

  6. Development and Applications of Pipeline Steel in Long-Distance Gas Pipeline of China

    Science.gov (United States)

    Chunyong, Huo; Yang, Li; Lingkang, Ji

    In past decades, with widely utilizing of Microalloying and Thermal Mechanical Control Processing (TMCP) technology, the good matching of strength, toughness, plasticity and weldability on pipeline steel has been reached so that oil and gas pipeline has been greatly developed in China to meet the demand of strong domestic consumption of energy. In this paper, development history of pipeline steel and gas pipeline in china is briefly reviewed. The microstructure characteristic and mechanical performance of pipeline steel used in some representative gas pipelines of china built in different stage are summarized. Through the analysis on the evolution of pipeline service environment, some prospective development trend of application of pipeline steel in China is also presented.

  7. Measures for security and supervision of pipelines; Massnahmen zur Pipeline-Sicherheit und -Ueberwachung

    Energy Technology Data Exchange (ETDEWEB)

    Horlacher, Hans-Burkhard [TU Dresden (Germany). Inst. fuer Wasserbau und Technische Hydromechanik; Giesecke, Juergen [Stuttgart Univ. (Germany). Inst. fuer Wasserbau

    2010-07-01

    In a previous publication, the two authors dealt with the hydraulic problems as regards mineral oil pipelines. The present report describes the measures mainly used to guarantee the safety of such pipelines. (orig.)

  8. Lessons Learned from Developing and Operating the Kepler Science Pipeline and Building the TESS Science Pipeline

    Science.gov (United States)

    Jenkins, Jon M.

    2017-01-01

    The experience acquired through development, implementation and operation of the KeplerK2 science pipelines can provide lessons learned for the development of science pipelines for other missions such as NASA's Transiting Exoplanet Survey Satellite, and ESA's PLATO mission.

  9. Strength analysis of copper gas pipeline span

    OpenAIRE

    Ianevski, Philipp

    2016-01-01

    The purpose of the study was to analyze the stresses in a gas pipeline. While analyzing piping systems located inside building were used. Calculation of the strength of a gas pipeline is done by using information of the thickness of pipe walls, by choosing the suitable material, inner and outer diameter for the pipeline. Data for this thesis was collected through various internet sources and different books. From the study and research, the final results were reached and calculations were ...

  10. Preliminary results from the hierarchical glitch pipeline

    International Nuclear Information System (INIS)

    Mukherjee, Soma

    2007-01-01

    This paper reports on the preliminary results obtained from the hierarchical glitch classification pipeline on LIGO data. The pipeline that has been under construction for the past year is now complete and end-to-end tested. It is ready to generate analysis results on a daily basis. The details of the pipeline, the classification algorithms employed and the results obtained with one days analysis on the gravitational wave and several auxiliary and environmental channels from all three LIGO detectors are discussed

  11. Pipeline dreams face up to reality

    International Nuclear Information System (INIS)

    Ryan, Orla

    1999-01-01

    This article gives details of two gas pipelines which are expected to be built in Turkey to meet the estimated demand for gas. The Bluestream joint ENI/Gasprom project pipeline will convey Russian gas across the Black Sea to Turkey, and the PSG joint Bechtel/General Electric venture will bring gas from Turkmenistan to Turkey across the Caspian Sea. Construction of the pipelines and financing aspects are discussed. (uk)

  12. Chile's pipelines - who's out in the cold?

    International Nuclear Information System (INIS)

    Bellhouse, G.

    1998-01-01

    There is a battle on in Northern Chile to supply the region with gas and electricity. Two pipelines and a transmission line are being built, but there is insufficient demand to merit the construction of all of these projects. It is widely believed that the first pipeline to be finished will be the overall winner, but the situation is not that simple. A more sensible conclusion could be the merger of the two pipeline projects, rationalising supply of gas to the region. (Author)

  13. Thermal expansion absorbing structure for pipeline

    International Nuclear Information System (INIS)

    Nagata, Takashi; Yamashita, Takuya.

    1995-01-01

    A thermal expansion absorbing structure for a pipeline is disposed to the end of pipelines to form a U-shaped cross section connecting a semi-circular torus shell and a short double-walled cylindrical tube. The U-shaped longitudinal cross-section is deformed in accordance with the shrinking deformation of the pipeline and absorbs thermal expansion. Namely, since the central lines of the outer and inner tubes of the double-walled cylindrical tube deform so as to incline, when the pipeline is deformed by thermal expansion, thermal expansion can be absorbed by a simple configuration thereby enabling to contribute to ensure the safety. Then, the entire length of the pipeline can greatly be shortened by applying it to the pipeline disposed in a high temperature state compared with a method of laying around a pipeline using only elbows, which has been conducted so far. Especially, when it is applied to a pipeline for an FBR-type reactor, the cost for the construction of a facility of a primary systems can greater be reduced. In addition, it can be applied to a pipeline for usual chemical plants and any other structures requiring absorption of deformation. (N.H.)

  14. Transmission pipeline calculations and simulations manual

    CERN Document Server

    Menon, E Shashi

    2014-01-01

    Transmission Pipeline Calculations and Simulations Manual is a valuable time- and money-saving tool to quickly pinpoint the essential formulae, equations, and calculations needed for transmission pipeline routing and construction decisions. The manual's three-part treatment starts with gas and petroleum data tables, followed by self-contained chapters concerning applications. Case studies at the end of each chapter provide practical experience for problem solving. Topics in this book include pressure and temperature profile of natural gas pipelines, how to size pipelines for specified f

  15. Acoustic system for communication in pipelines

    Science.gov (United States)

    Martin, II, Louis Peter; Cooper, John F [Oakland, CA

    2008-09-09

    A system for communication in a pipe, or pipeline, or network of pipes containing a fluid. The system includes an encoding and transmitting sub-system connected to the pipe, or pipeline, or network of pipes that transmits a signal in the frequency range of 3-100 kHz into the pipe, or pipeline, or network of pipes containing a fluid, and a receiver and processor sub-system connected to the pipe, or pipeline, or network of pipes containing a fluid that receives said signal and uses said signal for a desired application.

  16. Tubular lining material for pipelines having bends

    Energy Technology Data Exchange (ETDEWEB)

    Moringa, A.; Sakaguchi, Y.; Hyodo, M.; Yagi, I.

    1987-03-24

    A tubular lining material for pipelines having bends or curved portions comprises a tubular textile jacket made of warps and wefts woven in a tubular form overlaid with a coating of a flexible synthetic resin. It is applicable onto the inner surface of a pipeline having bends or curved portions in such manner that the tubular lining material with a binder onto the inner surface thereof is inserted into the pipeline and allowed to advance within the pipeline, with or without the aid of a leading rope-like elongated element, while turning the tubular lining material inside out under fluid pressure. In this manner the tubular lining material is applied onto the inner surface of the pipeline with the binder being interposed between the pipeline and the tubular lining material. The lining material is characterized in that a part of all of the warps are comprised of an elastic yarn around which, over the full length thereof, a synthetic fiber yarn or yarns have been left-and/or right-handedly coiled. This tubular lining material is particularly suitable for lining a pipeline having an inner diameter of 25-200 mm and a plurality of bends, such as gas service pipelines or house pipelines, without occurrence of wrinkles in the lining material in a bend.

  17. A quick guide to pipeline engineering

    CERN Document Server

    Alkazraji, D

    2008-01-01

    Pipeline engineering requires an understanding of a wide range of topics. Operators must take into account numerous pipeline codes and standards, calculation approaches, and reference materials in order to make accurate and informed decisions.A Quick Guide to Pipeline Engineering provides concise, easy-to-use, and accessible information on onshore and offshore pipeline engineering. Topics covered include: design; construction; testing; operation and maintenance; and decommissioning.Basic principles are discussed and clear guidance on regulations is provided, in a way that will

  18. East, West German gas pipeline grids linked

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    This paper reports that Ruhrgas AG, Essen, has started up the first large diameter gas pipeline linking the gas grids of former East and West Germany. Ruhrgas last month placed in service a 40 in., 70 km line at Vitzeroda, near Eisenach, linking a new Ruhrgas pipeline in Hesse state with a 330 km gas pipeline built last year in Thuringia and Saxony states by Erdgasversorgungs GmbH (EVG), Leipzig. The new link enables pipeline operator EVG to receive 70 bcf/year of western European gas via Ruhrgas, complementing the 35 bcf/year of gas coming from the Commonwealth of Independent States via Verbundnetz Gas AG (VNG), Leipzig

  19. Research of processes of heat exchange in horizontal pipeline

    Science.gov (United States)

    Nikolaev, A. K.; Dokoukin, V. P.; Lykov, Y. V.; Fetisov, V. G.

    2018-03-01

    The energy crisis, which becomes more evident in Russia, stems in many respects from unjustified high consumption of energy resources. Development and exploitation of principal oil and gas deposits located in remote areas with severe climatic conditions require considerable investments increasing essentially the cost of power generation. Account should be taken also of the fact that oil and gas resources are nonrenewable. An alternative fuel for heat and power generation is coal, the reserves of which in Russia are quite substantial. For this reason the coal extraction by 2020 will amount to 450-550 million tons. The use of coal, as a solid fuel for heat power plants and heating plants, is complicated by its transportation from extraction to processing and consumption sites. Remoteness of the principal coal mining areas (Kuzbass, Kansk-Achinsk field, Vorkuta) from the main centers of its consumption in the European part of the country, Siberia and Far East makes the problem of coal transportation urgent. Of all possible transportation methods (railway, conveyor, pipeline), the most efficient is hydrotransport which provides continuous transportation at comparatively low capital and working costs, as confirmed by construction and operation of extended coal pipelines in many countries.

  20. Contemporary methods of emergency repair works on transit pipelines. Repair works on in-service pipelines

    International Nuclear Information System (INIS)

    Olma, T.; Winckowski, J.

    2007-01-01

    The paper presents modern methods and relevant technologies of pipeline failure repairs, basing on TD Williamson technique for hermetic plugging of gas pipelines without interrupting service. Rules for management of emergency situations on the Polish Section of Yamal - Europe Transit Gas Pipeline are being discussed as well. (author)

  1. PipelineDog: a simple and flexible graphic pipeline construction and maintenance tool.

    Science.gov (United States)

    Zhou, Anbo; Zhang, Yeting; Sun, Yazhou; Xing, Jinchuan

    2018-05-01

    Analysis pipelines are an essential part of bioinformatics research, and ad hoc pipelines are frequently created by researchers for prototyping and proof-of-concept purposes. However, most existing pipeline management system or workflow engines are too complex for rapid prototyping or learning the pipeline concept. A lightweight, user-friendly and flexible solution is thus desirable. In this study, we developed a new pipeline construction and maintenance tool, PipelineDog. This is a web-based integrated development environment with a modern web graphical user interface. It offers cross-platform compatibility, project management capabilities, code formatting and error checking functions and an online repository. It uses an easy-to-read/write script system that encourages code reuse. With the online repository, it also encourages sharing of pipelines, which enhances analysis reproducibility and accountability. For most users, PipelineDog requires no software installation. Overall, this web application provides a way to rapidly create and easily manage pipelines. PipelineDog web app is freely available at http://web.pipeline.dog. The command line version is available at http://www.npmjs.com/package/pipelinedog and online repository at http://repo.pipeline.dog. ysun@kean.edu or xing@biology.rutgers.edu or ysun@diagnoa.com. Supplementary data are available at Bioinformatics online.

  2. A discrete event simulation model for evaluating time delays in a pipeline network

    Energy Technology Data Exchange (ETDEWEB)

    Spricigo, Deisi; Muggiati, Filipe V.; Lueders, Ricardo; Neves Junior, Flavio [Federal University of Technology of Parana (UTFPR), Curitiba, PR (Brazil)

    2009-07-01

    Currently in the oil industry the logistic chain stands out as a strong candidate to obtain highest profit, since recent studies have pointed out to a cost reduction by adoption of better policies for distribution of oil derivatives, particularly those where pipelines are used to transport products. Although there are models to represent transfers of oil derivatives in pipelines, they are quite complex and computationally burden. In this paper, we are interested on models that are less detailed in terms of fluid dynamics but provide more information about operational decisions in a pipeline network. We propose a discrete event simulation model in ARENA that allows simulating a pipeline network based on average historical data. Time delays for transferring different products can be evaluated through different routes. It is considered that transport operations follow a historical behavior and average time delays can thus be estimated within certain bounds. Due to its stochastic nature, time quantities are characterized by average and dispersion measures. This allows comparing different operational scenarios for product transportation. Simulation results are compared to data obtained from a real world pipeline network and different scenarios of production and demand are analyzed. (author)

  3. Addressing the workforce pipeline challenge

    Energy Technology Data Exchange (ETDEWEB)

    Leonard Bond; Kevin Kostelnik; Richard Holman

    2006-11-01

    A secure and affordable energy supply is essential for achieving U.S. national security, in continuing U.S. prosperity and in laying the foundations to enable future economic growth. To meet this goal the next generation energy workforce in the U.S., in particular those needed to support instrumentation, controls and advanced operations and maintenance, is a critical element. The workforce is aging and a new workforce pipeline, to support both current generation and new build has yet to be established. The paper reviews the challenges and some actions being taken to address this need.

  4. Maritimes and northeast pipeline update

    International Nuclear Information System (INIS)

    Langan, P.

    1998-01-01

    Efforts made by Maritimes and Northeast Pipelines to bring the benefits of natural gas to the Maritime's economy was discussed. Some background on the developments that have brought the company to where they are today and an update on all their activities were presented. These activities and operations are expected to impact and affect the region's economy in a positive way. Particular attention was paid to the company's policy on laterals and the positive effects of that policy on the development of natural gas service and future natural gas distribution business in the Maritimes

  5. experimental investigation of sand minimum transport velocity

    African Journals Online (AJOL)

    user

    The production of reservoir fluid through long tiebacks/pipelines has emerged as one of ... transport in multiphase flows, the investigation of the ... Nigerian Journal of Technology ... associated with water-gas-oil-solid flow in pipeline in ... The mixture was well agitated using a .... operational conditions the limit deposit velocity.

  6. Flow assurance studies for CO2 transport

    NARCIS (Netherlands)

    Veltin, J.; Belfroid, S.P.C.

    2013-01-01

    In order to compensate for the relative lack of experience of the CCTS community, Flow Assurance studies of new CO2 pipelines and networks are a very important step toward reliable operation. This report details a typical approach for Flow Assurance study of CO2 transport pipeline. Considerations to

  7. 49 CFR 192.505 - Strength test requirements for steel pipeline to operate at a hoop stress of 30 percent or more...

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 3 2010-10-01 2010-10-01 false Strength test requirements for steel pipeline to...: MINIMUM FEDERAL SAFETY STANDARDS Test Requirements § 192.505 Strength test requirements for steel pipeline... as provided in paragraph (e) of this section, the strength test must be conducted by maintaining the...

  8. 49 CFR Appendix B to Part 195 - Risk-Based Alternative to Pressure Testing Older Hazardous Liquid and Carbon Dioxide Pipelines

    Science.gov (United States)

    2010-10-01

    ... pressure tested, based on the inherent risk of a given pipeline segment. The first step is to determine the... test requirements depending on the inherent risk of a given pipeline segment. The overall risk... 49 Transportation 3 2010-10-01 2010-10-01 false Risk-Based Alternative to Pressure Testing Older...

  9. Internal corrosion control of northern pipelines

    Energy Technology Data Exchange (ETDEWEB)

    Papavinasam, S.

    2005-02-01

    The general causes of internal corrosion in pipelines were discussed along with the methods to control them. Efficient methods are needed to determine chemical efficiency for mitigating internal corrosion in transmission pipelines, particularly those used in environmentally sensitive regions in the Arctic where harsh environmental conditions prevail. According to the Office of Pipeline Safety, 15 per cent of pipeline failures in the United States from 1994 to 2000 were caused by internal corrosion. Since pipelines in the United States are slightly older than Canadian pipelines, internal corrosion is a significant issue from a Canadian perspective. There are 306,618 km of energy-related pipelines in western Canada. Between April 2001 and March 2002 there were 808 failures, of which 425 failures resulted from internal corrosion. The approach to control internal corrosion comprises of dehydrating the gases at production facilities; controlling the quality of corrosive gases such as carbon dioxide and hydrogen sulphide; and, using internal coatings. The approaches to control internal corrosion are appropriate, when supplemented by adequate integrity management program to ensure that corrosive liquids do not collect, over the operational lifetime of the pipelines, at localized areas. It was suggested that modeling of pipeline operations may need improvement. This paper described the causes, prediction and control of internal pitting corrosion. It was concluded that carbon steel equipment can continue to be used reliably and safely as pipeline materials for northern pipelines if the causes that lead to internal corrosion are scientifically and accurately predicted, and if corrosion inhibitors are properly evaluated and applied. 5 figs.

  10. Oil and Natural Gas Pipelines, North America, 2010, Platts

    Data.gov (United States)

    U.S. Environmental Protection Agency — The Oil and Natural Gas Pipeline geospatial data layer contains gathering, interstate, and intrastate natural gas pipelines, crude and product oil pipelines, and...

  11. Software for pipeline integrity administration

    Energy Technology Data Exchange (ETDEWEB)

    Soula, Gerardo; Perona, Lucas Fernandez [Gie SA., Buenos Aires (Argentina); Martinich, Carlos [Refinaria do Norte S. A. (REFINOR), Tartagal, Provincia de Salta (Argentina)

    2009-07-01

    A Software for 'pipeline integrity management' was developed. It allows to deal with Geographical Information and a PODS database (Pipeline Open database Standard) simultaneously, in a simple and reliable way. The premises for the design were the following: didactic, geo referenced, multiple reference systems. Program skills: 1.PODS+GIS: the PODS database in which the software is based on is completely integrated with the GIS module. 2 Management of different kinds of information: it allows to manage information on facilities, repairs, interventions, physical inspections, geographical characteristics, compliance with regulations, training, offline events, operation measures, O and M information treatment and importing specific data and studies in a massive way. It also assures the integrity of the loaded information. 3 Right of way survey: it allows to verify the class location, ROW occupation, sensitive areas identification and to manage landowners. 4 Risk analysis: it is done in a qualitative way, depending on the entered data, allowing the user to identify the riskiest stretches of the system. Either results from risk analysis, data and consultations made about the database, can be exported to standard formats. (author)

  12. Electrical fingerprint of pipeline defects

    International Nuclear Information System (INIS)

    Mica, Isabella; Polignano, Maria Luisa; Marco, Cinzia De

    2004-01-01

    Pipeline defects are dislocations that connect the source region of the transistor with the drain region. They were widely reported to occur in CMOS, BiCMOS devices and recently in SOI technologies. They can reduce device yield either by affecting the devices functionality or by increasing the current consumption under stand-by conditions. In this work the electrical fingerprint of these dislocations is studied, its purpose is to enable us to identify these defects as the ones responsible for device failure. It is shown that the pipeline defects are responsible for a leakage current from source to drain in the transistors. This leakage has a resistive characteristic and it is lightly modulated by the body bias. It is not sensitive to temperature; vice versa the off-current of a good transistor exhibits the well-known exponential dependence on 1/T. The emission spectrum of these defects was studied and compared with the spectrum of a good transistor. The paper aims to show that the spectrum of a defective transistor is quite peculiar; it shows well defined peaks, whereas the spectrum of a good transistor under saturation conditions is characterized by a broad spectral light emission distribution. Finally the deep-level transient spectroscopy (DLTS) is tried on defective diodes

  13. System reliability of corroding pipelines

    International Nuclear Information System (INIS)

    Zhou Wenxing

    2010-01-01

    A methodology is presented in this paper to evaluate the time-dependent system reliability of a pipeline segment that contains multiple active corrosion defects and is subjected to stochastic internal pressure loading. The pipeline segment is modeled as a series system with three distinctive failure modes due to corrosion, namely small leak, large leak and rupture. The internal pressure is characterized as a simple discrete stochastic process that consists of a sequence of independent and identically distributed random variables each acting over a period of one year. The magnitude of a given sequence follows the annual maximum pressure distribution. The methodology is illustrated through a hypothetical example. Furthermore, the impact of the spatial variability of the pressure loading and pipe resistances associated with different defects on the system reliability is investigated. The analysis results suggest that the spatial variability of pipe properties has a negligible impact on the system reliability. On the other hand, the spatial variability of the internal pressure, initial defect sizes and defect growth rates can have a significant impact on the system reliability.

  14. Increase of ecological safety of the pipeline

    International Nuclear Information System (INIS)

    Dr Movsumov, Sh.N.; Prof Aliyev, F.G.

    2005-01-01

    Full text : For increase of ecological safety of the pipeline, necessary decrease of damage (risk) rendered by the pipeline on surrounding natural environment which depends: on the frequency of damage of the pipeline; on the volume poured oil; on the factor of sensitivity of an environment where flood of oil was. Frequency of damage of the pipeline depends on physico-chemical properties of a material of the pipeline, from its technical characteristics (thickness of a wall, length of a pipe, working pressure), on the seismic area of the district where the pipeline passed and also on the way of lining of the pipeline (underground or overground). The volume poured oil depends on diameter of the received damage, from stability of the pipeline mechanical and other external actions, from an ambient temperature, from capacity of the pipeline, from distance between the latches established in the pipeline, and also from time, necessary for their full closing. The factor of sensitivity of environment depends on geological structure and landscapes of district (mountain, the river, settlements) where passed the pipeline. At designing the pipeline, in report is shown questions of increase of ecological safety of the pipeline are considered at his construction and exploitation. For improvement of ecological safety of the pipeline is necessary to hold the following actions: Ecological education of the public, living near along a line of the oil pipeline; carrying out ecological monitoring; working of the public plan of response to oil spills; For ecological education of the public is necessary: carrying out informing of the public for all (technical, ecological, social and economic and legal) questions connected to an oil pipeline, and also on methods of protection of the rights at participation in acceptance of ecological significant decisions; Creation of public groups for realization of activity on observance of the legislation and to prevention of risks; Exposure of hot

  15. The main causes of in situ internal pipeline painting failures; Fatores que podem implicar em falhas prematuras de pintura interna in situ de dutos

    Energy Technology Data Exchange (ETDEWEB)

    Quintela, Joaquim P.; Vieira, Magda M.; Vieira, Gerson V. [PETROBRAS, Rio de Janeiro, RJ (Brazil). Centro de Pesquisas; Fragata, Fernando de L.; Amorim, Cristina da C. [Centro de Pesquisas de Energia Eletrica (CEPEL), Rio de Janeiro, RJ (Brazil)

    2005-07-01

    Resources in coating technology have been used to increase the useful life of pipelines, to guarantee the carried product quality, to increase the operational trustworthiness, to reduce the maintenance costs, the personal and patrimonial risks and environmental damages. Parallel, in virtue of the pipelines natural ageing and operational problems, more advanced technologies, as the internal coating process in situ, have become an important method of pipelines rehabilitation. The aim of this work is to study the main factors that may influence the performance of an internal coating project, allowing the premature damages occurrence in pipelines, used in gas, oil and derivatives transport. (author)

  16. Dynamic pressure measures for long pipeline leak detection

    Energy Technology Data Exchange (ETDEWEB)

    Likun Wang; Hongchao Wang; Min Xiong; Bin Xu; Dongjie Tan; Hengzhang Zhou [PetroChina Pipeline Company, Langfang (China). R and D Center

    2009-07-01

    Pipeline leak detection method based on dynamic pressure is studied. The feature of dynamic pressure which is generated by the leakage of pipeline is analyzed. The dynamic pressure method is compared with the static pressure method for the advantages and disadvantages in pipeline leak detection. The dynamic pressure signal is suitable for pipeline leak detection for quick-change of pipeline internal pressure. Field tests show that the dynamic pressure method detects pipeline leak rapidly and precisely. (author)

  17. Remedial investigation report on the abandoned nitric acid pipeline at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    1993-12-01

    Upper East Fork Poplar Creek OU-2 consists of the Abandoned Nitric Acid Pipeline. This pipeline was installed in 1951 to transport liquid wastes {approximately} 4,800 ft from Buildings 9212, 9215, and 9206 to the S-3 Ponds. Materials known to have been discharged through the pipeline include nitric acid, depleted and enriched uranium, various metal nitrates, salts, and lead skimmings. A total of nineteen locations were chosen to be investigated along the pipeline for the first phase of this Remedial Investigation. Sampling consisted of drilling down to obtain a soil sample at a depth immediately below the pipeline. Additional samples were obtained deeper in the subsurface depending upon the depth of the pipeline, the depth of the water table, and the point of auger refusal. The nineteen samples collected below the pipeline were analyzed by the Y-12 Plant laboratory for metals, nitrate/nitrite, and isotopic uranium. Samples collected from three boreholes were also analyzed for volatile organic compounds because these samples produced a response with organic vapor monitoring equipment. The results of the baseline human health risk assessment for the Abandoned Nitric Acid Pipeline contaminants of potential concern show no unacceptable risks to human health via incidental ingestion of soil, inhalation of dust, dermal contact with the soil, or external exposure to radionuclides in the ANAP soils, under the construction worker and/or the residential land-use scenarios.

  18. Remedial investigation report on the abandoned nitric acid pipeline at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1993-12-01

    Upper East Fork Poplar Creek OU-2 consists of the Abandoned Nitric Acid Pipeline. This pipeline was installed in 1951 to transport liquid wastes ∼ 4,800 ft from Buildings 9212, 9215, and 9206 to the S-3 Ponds. Materials known to have been discharged through the pipeline include nitric acid, depleted and enriched uranium, various metal nitrates, salts, and lead skimmings. A total of nineteen locations were chosen to be investigated along the pipeline for the first phase of this Remedial Investigation. Sampling consisted of drilling down to obtain a soil sample at a depth immediately below the pipeline. Additional samples were obtained deeper in the subsurface depending upon the depth of the pipeline, the depth of the water table, and the point of auger refusal. The nineteen samples collected below the pipeline were analyzed by the Y-12 Plant laboratory for metals, nitrate/nitrite, and isotopic uranium. Samples collected from three boreholes were also analyzed for volatile organic compounds because these samples produced a response with organic vapor monitoring equipment. The results of the baseline human health risk assessment for the Abandoned Nitric Acid Pipeline contaminants of potential concern show no unacceptable risks to human health via incidental ingestion of soil, inhalation of dust, dermal contact with the soil, or external exposure to radionuclides in the ANAP soils, under the construction worker and/or the residential land-use scenarios

  19. Best practices for the abandonment of pipelines

    Energy Technology Data Exchange (ETDEWEB)

    Mackean, M; Reed, R; Snow, B [Nabors Canada, Calgary, AB (Canada). Abandonrite Service

    2006-07-01

    Pipeline regulations implemented in 2006 require that licensees register all pipelines. Training must also be provided for ground disturbance supervisors. In addition, signage must be maintained on abandoned pipelines, and discontinued pipelines must be properly isolated. Corrosion control and internal inhibition is required for discontinued lines. However, pipelines are often neglected during the well abandonment process. This presentation provided recommendations for coordinating well and pipeline abandonment processes. Pipeline ends can be located, depressurized, flushed and purged while wells are being abandoned. Contaminated soils around the wells can also be identified prior to reclamation activities. Administrative reviews must be conducted in order to provide accurate information on pipeline location, reclamation certification, and line break history. Field operation files must be reviewed before preliminary field work is conducted. Site inspections should be used to determine if all ends of the line are accessible. Landowners and occupants near the line must also be notified, and relevant documentation must be obtained. Skilled technicians must be used to assess the lines for obstructions as well as to cut and cap the lines after removing risers. The presentation also examined issues related to pressure change, movement, cold tapping, and live dead legs. tabs., figs.

  20. The MIRI Medium Resolution Spectrometer calibration pipeline

    NARCIS (Netherlands)

    Labiano, A.; Azzollini, R.; Bailey, J.; Beard, S.; Dicken, D.; García-Marín, M.; Geers, V.; Glasse, A.; Glauser, A.; Gordon, K.; Justtanont, K.; Klaassen, P.; Lahuis, F.; Law, D.; Morrison, J.; Müller, M.; Rieke, G.; Vandenbussche, B.; Wright, G.

    2016-01-01

    The Mid-Infrared Instrument (MIRI) Medium Resolution Spectrometer (MRS) is the only mid-IR Integral Field Spectrometer on board James Webb Space Telescope. The complexity of the MRS requires a very specialized pipeline, with some specific steps not present in other pipelines of JWST instruments,