WorldWideScience

Sample records for pink tomato fruit

  1. Biochemical and molecular analysis of pink tomatoes: deregulated expression of the gene encoding transcription factor SlMYB12 leads to pink tomato fruit color.

    Science.gov (United States)

    Ballester, Ana-Rosa; Molthoff, Jos; de Vos, Ric; Hekkert, Bas te Lintel; Orzaez, Diego; Fernández-Moreno, Josefina-Patricia; Tripodi, Pasquale; Grandillo, Silvana; Martin, Cathie; Heldens, Jos; Ykema, Marieke; Granell, Antonio; Bovy, Arnaud

    2010-01-01

    The color of tomato fruit is mainly determined by carotenoids and flavonoids. Phenotypic analysis of an introgression line (IL) population derived from a cross between Solanum lycopersicum 'Moneyberg' and the wild species Solanum chmielewskii revealed three ILs with a pink fruit color. These lines had a homozygous S. chmielewskii introgression on the short arm of chromosome 1, consistent with the position of the y (yellow) mutation known to result in colorless epidermis, and hence pink-colored fruit, when combined with a red flesh. Metabolic analysis showed that pink fruit lack the ripening-dependent accumulation of the yellow-colored flavonoid naringenin chalcone in the fruit peel, while carotenoid levels are not affected. The expression of all genes encoding biosynthetic enzymes involved in the production of the flavonol rutin from naringenin chalcone was down-regulated in pink fruit, suggesting that the candidate gene underlying the pink phenotype encodes a regulatory protein such as a transcription factor rather than a biosynthetic enzyme. Of 26 MYB and basic helix-loop-helix transcription factors putatively involved in regulating transcription of genes in the phenylpropanoid and/or flavonoid pathway, only the expression level of the MYB12 gene correlated well with the decrease in the expression of structural flavonoid genes in peel samples of pink- and red-fruited genotypes during ripening. Genetic mapping and segregation analysis showed that MYB12 is located on chromosome 1 and segregates perfectly with the characteristic pink fruit color. Virus-induced gene silencing of SlMYB12 resulted in a decrease in the accumulation of naringenin chalcone, a phenotype consistent with the pink-colored tomato fruit of IL1b. In conclusion, biochemical and molecular data, gene mapping, segregation analysis, and virus-induced gene silencing experiments demonstrate that the MYB12 transcription factor plays an important role in regulating the flavonoid pathway in tomato fruit

  2. Biochemical and molecular analysis of pink tomatoes: deregulated expression of the gene encoding transcription factor SlMYB12 leads to pink tomato fruit colour

    NARCIS (Netherlands)

    Ballester, A.R.; Molthoff, J.W.; Vos, de C.H.; Lintel Hekkert, B.; Orzaez, D.; Fernandez-Moreno, J.P.; Tripodi, S.; Grandillo, S.; Martin, C.; Heldens, J.; Ykema, M.; Granell, A.; Bovy, A.G.

    2010-01-01

    The color of tomato fruit is mainly determined by carotenoids and flavonoids. Phenotypic analysis of an introgression line (IL) population derived from a cross between Solanum lycopersicum 'Moneyberg' and the wild species Solanum chmielewskii revealed three ILs with a pink fruit color. These lines h

  3. Biochemical and molecular analysis of pink tomatoes: deregulated expression of the gene encoding transcription factor SlMYB12 leads to pink tomato fruit colour

    NARCIS (Netherlands)

    Ballester, A.R.; Molthoff, J.W.; Vos, de C.H.; Lintel Hekkert, B.; Orzaez, D.; Fernandez-Moreno, J.P.; Tripodi, S.; Grandillo, S.; Martin, C.; Heldens, J.; Ykema, M.; Granell, A.; Bovy, A.G.

    2010-01-01

    The color of tomato fruit is mainly determined by carotenoids and flavonoids. Phenotypic analysis of an introgression line (IL) population derived from a cross between Solanum lycopersicum 'Moneyberg' and the wild species Solanum chmielewskii revealed three ILs with a pink fruit color. These lines

  4. Tomato chilling injury threshold defined by the volatile profiles of pink harvested tomato fruit

    Science.gov (United States)

    Fresh tomato fruit show visible symptoms of chilling injury (CI) when stored at temperatures lower than the reported chilling threshold of 12.5°C. However, their sensitivity has been reported to decrease as they ripen. Volatile profiles change during ripening and are affected by physiological change...

  5. Characterization of a New Pink-Fruited Tomato Mutant Results in the Identification of a Null Allele of the SlMYB12 Transcription Factor.

    Science.gov (United States)

    Fernandez-Moreno, Josefina-Patricia; Tzfadia, Oren; Forment, Javier; Presa, Silvia; Rogachev, Ilana; Meir, Sagit; Orzaez, Diego; Aharoni, Aspah; Granell, Antonio

    2016-07-01

    The identification and characterization of new tomato (Solanum lycopersicum) mutants affected in fruit pigmentation and nutritional content can provide valuable insights into the underlying biology, as well as a source of new alleles for breeding programs. To date, all characterized pink-pigmented tomato fruit mutants appear to result from low SlMYB12 transcript levels in the fruit skin. Two new mutant lines displaying a pink fruit phenotype (pf1 and pf2) were characterized in this study. In the pf mutants, SlMYB12 transcripts accumulated to wild-type levels but exhibited the same truncation, which resulted in the absence of the essential MYB activation domain coding region. Allelism and complementation tests revealed that both pf mutants were allelic to the y locus and showed the same recessive null allele in homozygosis: Δy A set of molecular and metabolic effects, reminiscent of those observed in the Arabidopsis (Arabidopsis thaliana) myb11 myb12 myb111 triple mutant, were found in the tomato Δy mutants. To our knowledge, these have not been described previously, and our data support the idea of their being null mutants, in contrast to previously described transcriptional hypomorphic pink fruit lines. We detected a reduction in the expression of several flavonol glycosides and some associated glycosyl transferases. Transcriptome analysis further revealed that the effects of the pf mutations extended beyond the flavonoid pathway into the interface between primary and secondary metabolism. Finally, screening for Myb-binding sites in the candidate gene promoter sequences revealed that 141 of the 152 co-down-regulated genes may be direct targets of SlMYB12 regulation.

  6. Hardness Genetic Analysis of Pink Hard-fruit Tomato%硬粉果番茄硬度遗传分析

    Institute of Scientific and Technical Information of China (English)

    尹庆珍; 张立永; 王国华; 尹伟平; 郄丽娟; 赵付江

    2016-01-01

    Hardness genetic laws of pink hard-fruit tomato were studied for breeding new varieties of pink hard-fruit tomato. The change of hardness degree and hereditary characters of tomato was studied with the texture analyzer, with female parents P27, male parents P31 and tomato F1 combination 15# as the test materials. The result showed that transverse hardness was the lowest, followed by longitudinal hardness and the hardness of fruit shoulder was the highest. The average hardness at green fruit stage was higher, the hardness at turning-color period and red ripe stage decreased significantly. The average hardness of P27, P31, F1 combinations 15# at red ripe fruit was 13.27, 10.88, 12.28 N, respectively. The hardness at red fruit stage and green fruit stage had significantly positive correlation. Fruit shape index of F1 combinations 15# at red ripe stage was 0.87. The fruit shape was round with 5-6 ventricles. The pericarp thickness was 0.7-0.8 cm. The single fruit weight was 258 g. It was the ideal bred variety for pink hard-tomato fruit. There was no necessary connection among fruit hardness and fruit size, pericarp thickness, ventricle numbers, single fruit weight. Fruit shape index could be used as indirect selection index of the hardness of tomato%为了选育硬粉果型番茄新品种,研究硬粉果番茄硬度遗传规律问题,选取硬粉果骨干亲本材料母本P27、父本P31及配置的F1组合15#为试材,利用质构仪研究果实硬度变化及遗传特性.结果表明,同一果实横向硬度最低,纵向硬度次之,果肩硬度最高.中青果期果实的平均硬度较高,转色期和红熟期硬度下降明显加快;P27、P31、F1组合15#红熟果平均硬度分别为13.27、10.88、12.28 N;红果期与青果期果实硬度极显著正相关;F1组合15#红熟果的果形指数为0.87,果实圆形,果皮厚度0.7~0.8 cm,5~6个心室,单果重258 g,是硬粉果番茄选育的理想品种.番茄果实硬度与果实大小、果皮厚度、心室

  7. Oxidative stability of pork emulsion containing tomato products and pink guava pulp during refrigerated aerobic storage.

    Science.gov (United States)

    Joseph, Serlene; Chatli, Manish K; Biswas, Ashim K; Sahoo, Jhari

    2014-11-01

    Lipid oxidation-induced quality problems can be minimized with the use of natural antioxidants. Antioxidant potential of tomato puree (10 %; T-1), tomato pulp (12.5 %; T-2), lyophilized tomato peel (6 %; T-3), and pink guava pulp (10 %; T-4) was evaluated in raw pork emulsion during refrigerated storage for 9 days under aerobic packaging. The lycopene and β-carotene content varied in pork emulsion as T-3 > T-1 > T-2 > T-4 and decreased (P pink guava pulp. Furthermore, metmyoglobin formation and lipid oxidation were lower (P pink guava pulp improved the visual colour and odour scores of raw pork emulsion. These results indicated that tomato products and guava pulp can be utilized as sources of natural antioxidants in raw pork products to minimize lipid oxidation, off-odour development, and surface discolouration.

  8. Effect of Edible Coatings, Storage Time and Maturity Stage on Overall Quality of Tomato Fruits

    Directory of Open Access Journals (Sweden)

    Jorge E.J, Davila-Avina

    2011-01-01

    Full Text Available Problem statement: Tomato (Lycopersicon esculentum Mill. is one of the most widely consumed fresh vegetables in the world; however, its highly perishable nature limits its postharvest life. Major losses in tomato quality and quantity occur between harvest and consumption. Therefore, the application of new technologies to extend the postharvest life of this commodity is needed. The use of edible coatings appears to be a good alternative. Approach: We evaluated the effect of carnauba and mineral oil coatings on the postharvest quality of tomato fruits (cv. Grandela. Stafresh 2505 (carnauba and Stafresh 151 (mineral oil coatings were applied on fresh tomatoes at two maturity stages (breaker and pink. The quality of tomatoes was evaluated periodically at 0, 5, 10, 15, 21 and 28 days of storage at 10°C, plus 2 days at 20°C. For respiration rate analysis, tomatoes were kept at 20°C for 16 days. Results: At the beginning of the study, CO2 production was reduced by 38 and 46% when applying the mineral oil coating on breaker and pink tomatoes, respectively. In addition, early during the study, the mineral oil coating showed suppression of ethylene biosynthesis at both maturity stages. Both coatings reduced 30% PG activity of tomato tissue. At the end of storage, mineral oil coatings delayed color changes and reduced weight losses for up 70 and 46% at the breaker and pink stages, respectively. Conclusion/Recommendations: Respiration rate, color, weight loss and enzyme activity were positively affected by mineral oil coating at both maturity stages. No effects on firmness, titratable acidity and pH were found by the coating application. We concluded that mineral oil coating could be a good alternative to preserve the quality and extend the postharvest life of tomato fruit.

  9. Peroxidase gene expression during tomato fruit ripening

    Energy Technology Data Exchange (ETDEWEB)

    Biggs, M.S.; Flurkey, W.H.; Handa, A.K.

    1987-04-01

    Auxin oxidation has been reported to play a critical role in the initiation of pear fruit ripening and a tomato fruit peroxidase (POD) has been shown to have IAA-oxidase activity. However, little is known about changes in the expression of POD mRNA in tomato fruit development. They are investigating the expression of POD mRNA during tomato fruit maturation. Fruit pericarp tissues from six stages of fruit development and ripening (immature green, mature green, breaker, turning, ripe, and red ripe fruits) were used to extract poly (A)/sup +/ RNAs. These RNAs were translated in vitro in a rabbit reticulocyte lysate system using L-/sup 35/S-methionine. The /sup 35/S-labeled products were immunoprecipitated with POD antibodies to determine the relative proportions of POD mRNA. High levels of POD mRNA were present in immature green and mature green pericarp, but declined greatly by the turning stage of fruit ripening. In addition, the distribution of POD mRNA on free vs bound polyribosomes will be presented, as well as the presence or absence of POD mRNA in other tomato tissues.

  10. In silico Transcriptional Regulatory Networks Involved in Tomato Fruit Ripening.

    Science.gov (United States)

    Arhondakis, Stilianos; Bita, Craita E; Perrakis, Andreas; Manioudaki, Maria E; Krokida, Afroditi; Kaloudas, Dimitrios; Kalaitzis, Panagiotis

    2016-01-01

    Tomato fruit ripening is a complex developmental programme partly mediated by transcriptional regulatory networks. Several transcription factors (TFs) which are members of gene families such as MADS-box and ERF were shown to play a significant role in ripening through interconnections into an intricate network. The accumulation of large datasets of expression profiles corresponding to different stages of tomato fruit ripening and the availability of bioinformatics tools for their analysis provide an opportunity to identify TFs which might regulate gene clusters with similar co-expression patterns. We identified two TFs, a SlWRKY22-like and a SlER24 transcriptional activator which were shown to regulate modules by using the LeMoNe algorithm for the analysis of our microarray datasets representing four stages of fruit ripening, breaker, turning, pink and red ripe. The WRKY22-like module comprised a subgroup of six various calcium sensing transcripts with similar to the TF expression patterns according to real time PCR validation. A promoter motif search identified a cis acting element, the W-box, recognized by WRKY TFs that was present in the promoter region of all six calcium sensing genes. Moreover, publicly available microarray datasets of similar ripening stages were also analyzed with LeMoNe resulting in TFs such as SlERF.E1, SlERF.C1, SlERF.B2, SLERF.A2, SlWRKY24, SLWRKY37, and MADS-box/TM29 which might also play an important role in regulation of ripening. These results suggest that the SlWRKY22-like might be involved in the coordinated regulation of expression of the six calcium sensing genes. Conclusively the LeMoNe tool might lead to the identification of putative TF targets for further physiological analysis as regulators of tomato fruit ripening.

  11. Gibberellic acid contribution to tomato fruit size

    Directory of Open Access Journals (Sweden)

    Ricardo Antonio Ayub

    2010-12-01

    Full Text Available With the aim of assessing the behavior of tomato fruits subjected to increasing concentrations of gibberellic acid (GA3, research was carried out in the municipality of Irati, Paraná State, Brazil, within a commercial area of tomato crops, cultivar Fanny, in September under the crossing fence system with a single branch per plant. The adopted treatments were as follows: 0, 30, 60, 90, and 120ppm of GA3, applied whenever the diameter of the fi rst fruits of the second clusters reached roughly 10 mm. At harvest when the fruits had achieved 30 to 50% of reddish color, the fresh mass, length, and longitudinal and transversal diameters were measured. The application of 120ppm of GA3 provided maximum fresh mass and dimensions.

  12. In silico transcriptional regulatory networks involved in tomato fruit ripening

    Directory of Open Access Journals (Sweden)

    Stilianos Arhondakis

    2016-08-01

    Full Text Available ABSTRACTTomato fruit ripening is a complex developmental programme partly mediated by transcriptional regulatory networks. Several transcription factors (TFs which are members of gene families such as MADS-box and ERF were shown to play a significant role in ripening through interconnections into an intricate network. The accumulation of large datasets of expression profiles corresponding to different stages of tomato fruit ripening and the availability of bioinformatics tools for their analysis provide an opportunity to identify TFs which might regulate gene clusters with similar co-expression patterns. We identified two TFs, a SlWRKY22-like and a SlER24 transcriptional activator which were shown to regulate modules by using the LeMoNe algorithm for the analysis of our microarray datasets representing four stages of fruit ripening, breaker, turning, pink and red ripe. The WRKY22-like module comprised a subgroup of six various calcium sensing transcripts with similar to the TF expression patterns according to real time PCR validation. A promoter motif search identified a cis acting element, the W-box, recognized by WRKY TFs that was present in the promoter region of all six calcium sensing genes. Moreover, publicly available microarray datasets of similar ripening stages were also analyzed with LeMoNe resulting in TFs such as SlERF.E1, SlERF.C1, SlERF.B2, SLERF.A2, SlWRKY24, SLWRKY37 and MADS-box/TM29 which might also play an important role in regulation of ripening. These results suggest that the SlWRKY22-like might be involved in the coordinated regulation of expression of the six calcium sensing genes. Conclusively the LeMoNe tool might lead to the identification of putative TF targets for further physiological analysis as regulators of tomato fruit ripening.

  13. Tomato fruit chromoplasts behave as respiratory bioenergetic organelles during ripening

    DEFF Research Database (Denmark)

    Renato, Marta; Pateraki, Irini; Boronat, Albert

    2014-01-01

    During tomato (Solanum lycopersicum) fruit ripening, chloroplasts differentiate into photosynthetically inactive chromoplasts. It was recently reported that tomato chromoplasts can synthesize ATP through a respiratory process called chromorespiration. Here we show that chromoplast oxygen consumpt...

  14. Yeast profilin complements profilin deficiency in transgenic tomato fruits and allows development of hypoallergenic tomato fruits.

    Science.gov (United States)

    Le, Lien Q; Mahler, Vera; Scheurer, Stephan; Foetisch, Kay; Braun, Yvonne; Weigand, Daniela; Enrique, Ernesto; Lidholm, Jonas; Paulus, Kathrin E; Sonnewald, Sophia; Vieths, Stefan; Sonnewald, Uwe

    2010-12-01

    Gene silencing of Lyc e 1 leads to reduced allergenicity of tomato fruits but impaired growth of transgenic tomato plants. The aim of the study was to restore growth of Lyc e 1-deficient tomato plants while retaining reduced allergenicity by simultaneous complementation of profilin deficiency by expression of nonallergenic yeast profilin. Transgenic plants were generated and tested by RT-PCR and immunoblotting; allergenicity of yeast profilin and transgenic fruits was investigated by IgE binding, basophil activation, and skin-prick tests. Lyc e 1 content of transgenic tomato fruits was wild-type plants, causing significantly reduced IgE antibody binding. Simultaneous coexpression of yeast profilin restored growth and biomass production almost to wild-type levels. Yeast profilin, sharing 32.6% amino acid sequence identity with Lyc e 1, displayed low IgE-binding capacity and allergenic potency. Among 16 tomato-allergic patients preselected for sensitization to Lyc e 1, none showed significant reactivity to yeast profilin. Yeast profilin did not induce mediator release, and coexpression of yeast profilin did not enhance the allergenicity of Lyc e 1-reduced fruits. Simultanous coexpression of yeast profilin allows silencing of tomato profilin and generation of viable plants with Lyc e 1-deficient tomato fruits. Therefore, a novel approach to allergen avoidance, genetically modified foods with reduced allergen accumulation, can be generated even if the allergen fulfills an essential cellular function in the plant. In summary, our findings of efficiently complementing profilin-deficient tomato plants by coexpression of low allergenic yeast profilin demonstrate the feasibility of creating low-allergenic food even if the allergen fulfills essential cellular functions.

  15. DNA polymerase activity of tomato fruit chromoplasts.

    Science.gov (United States)

    Serra, E C; Carrillo, N

    1990-11-26

    DNA polymerase activity was measured in chromoplasts of ripening tomato fruits. Plastids isolated from young leaves or mature red fruits showed similar DNA polymerase activities. The same enzyme species was present in either chloroplasts or chromoplasts as judged by pH and temperature profiles, sensitivities towards different inhibitors and relative molecular mass (Mr 88 kDa). The activities analyzed showed the typical behaviour of plastid-type polymerases. The results presented here suggest that chromoplast maintain their DNA synthesis potential in fruit tissue at chloroplast levels. Consequently, the sharp decrease of the plastid chromosome transcription observed at the onset of fruit ripening could not be due to limitations in the availability of template molecules. Other mechanisms must be involved in the inhibition of chromoplast RNA synthesis.

  16. Changing ribulose diphosphate carboxylase/oxygenase activity in ripening tomato fruit.

    Science.gov (United States)

    Bravdo, B A; Palgi, A; Lurie, S

    1977-08-01

    Tomato fruit (Lycopersicum esculentum Mill) from green, pink, and red stages were assayed for changes in the activity of ribulose diphosphate carboxylase and oxygenase, phosphoenolpyruvate carboxylase, changes in the levels of glycolate and respiratory gas exchange. The ribulose diphosphate carboxylase activity decreased as the fruit ripened. By comparison, the ribulose diphosphate oxygenase activity increased during the transition from the green to the pink stage, and declined afterward. The changes in the endogenous glycolate levels and the respiratory gas exchange, as observed at different stages of ripening, resembled the changes in the ribulose diphosphate oxygenase activity. The utilization of glycolate in further metabolic activity may result in the formation of peroxidases required for the onset of ripening.

  17. In vivo measurement of phytochrome in tomato fruit.

    Science.gov (United States)

    Jen, J J

    1977-04-01

    Presence of phytochrome in two kinds of tomatoes (Lycopersicon esculentum Mill.), the yellow lutescent strain and cherry tomatoes (L. esculentum Mill. var. cerasiformecv. Red Cherry), was established by measuring the absorption difference spectra of the whole fruit after irradiation with red and with far red light. Phytochrome content was determined in yellow lutescent tomatoes and decreased gradually during the ripening period.

  18. Clarification of Tomato Juice with Polygalacturonase Obtained from Tomato Fruits Infected by Aspergillus niger.

    Science.gov (United States)

    Ajayi, A A; Peter-Albert, C F; Akeredolu, M; Shokunbi, A A

    2015-02-01

    Two varieties of tomato fruits commonly available in Nigerian markets are the Roma VF and Ibadan local varieties of tomato fruits. The Roma VF fruits are oval in shape. It is a common type of cultivar in the Northern region of Nigeria and it is not susceptible to cracking. The Ibadan local variety of tomato fruits is a local variety commonly found on farmers fields in South-western region of Nigeria. They are highly susceptible to cracking. The Ibadan local variety was employed for this research. There are lots of benefits derived from the consumption of tomato fruits. The fruits can be made into tomato juice clarified with pectinases. Polygalacturonase is one of the pectinases used commercially in the clarification of fruit juice from different fruits. This study examined the production of polygalacturonase during the deterioration of tomato fruits by Aspergillus niger and the role of the purified polygalacturonase in the clarification of tomato juice. Tomato fruits of the Ibadan local variety were inoculated with mycelia discs containing spores of a 96-h-old culture of Aspergillus niger served as the inoculum. The organism from the stock culture was subcultured onto potato dextrose agar plates. The extraction of polygalacturonase after 10 days of incubation at 27 degrees C was carried out by homogenizing the fruits with liquid extractant using the MSE homogenizer after the deteriorated fruits had been chilled for 30 min inside a freezer. Control fruits were similarly treated except that sterile potato dextrose agar served as the inoculum. The effect of different temperature of incubation and different volume of enzyme on the tomato juice from the tomato fruits was investigated. Extracts from the inoculated fruits exhibited appreciable polygalacturonase activity. The juice with polygalacturonase was visually clearer and more voluminous than the juice treated with water for all parameters studied. The highest volume of juice was obtained after an incubation period

  19. Optical and mechanical nondestructive tests for measuring tomato fruit firmness

    Science.gov (United States)

    Manivel-Chávez, Ricardo A.; Garnica-Romo, M. G.; Arroyo-Correa, Gabriel; Aranda-Sánchez, Jorge I.

    2011-08-01

    Ripening is one of the most important processes to occur in fruits which involve changes in color, flavor, and texture. An important goal in quality control of fruits is to substitute traditional sensory testing methods with reliable nondestructive tests (NDT). In this work we study the firmness of tomato fruits by using optical and mechanical NDT. Optical and mechanical parameters, measured along the tomato shelf life, are shown.

  20. Influence of fruit ripening acceleration measures on flowering and fruiting of small-sized tomato

    Directory of Open Access Journals (Sweden)

    Renata Dobromilska

    2012-12-01

    Full Text Available The investigations were carried out in 2001-2003 at the Horticulture Experimental Station, University of Agriculture in Szczecin. The influence of truss cutting and application of Ethrel preparation on the flowering and acceleration of ripening of small-sized tomato fruit was studied. The experiment focused on the following factors: methods of acceleration of tomato fruit ripening (truss cutting, Ethrel preparation, truss cutting + Ethrel preparation and tomato cultivars ('Cheresita F1', 'Favorita F1'. The applied methods had no influence on the number of flowers and germs of the small-sized tomato. The truss cutting increased the percentage of set fruits compared to the number of flowers. The application of Ethrel preparation along with truss cutting significantly increased the early yield of tomato fruits. The Ethrel and truss cutting accelerated the small-sized tomato harvesting by 12 days. Cv. 'Cheresita F1' produced a larger number of flowers, germs and fruits than 'Favorita F1'.

  1. Proteomic analysis of ripening tomato fruit infected by Botrytis cinerea.

    Science.gov (United States)

    Shah, Punit; Powell, Ann L T; Orlando, Ron; Bergmann, Carl; Gutierrez-Sanchez, Gerardo

    2012-04-06

    Botrytis cinerea, a model necrotrophic fungal pathogen that causes gray mold as it infects different organs on more than 200 plant species, is a significant contributor to postharvest rot in fresh fruit and vegetables, including tomatoes. By describing host and pathogen proteomes simultaneously in infected tissues, the plant proteins that provide resistance and allow susceptibility and the pathogen proteins that promote colonization and facilitate quiescence can be identified. This study characterizes fruit and fungal proteins solubilized in the B. cinerea-tomato interaction using shotgun proteomics. Mature green, red ripe wild type and ripening inhibited (rin) mutant tomato fruit were infected with B. cinerea B05.10, and the fruit and fungal proteomes were identified concurrently 3 days postinfection. One hundred eighty-six tomato proteins were identified in common among red ripe and red ripe-equivalent ripening inhibited (rin) mutant tomato fruit infected by B. cinerea. However, the limited infections by B. cinerea of mature green wild type fruit resulted in 25 and 33% fewer defense-related tomato proteins than in red and rin fruit, respectively. In contrast, the ripening stage of genotype of the fruit infected did not affect the secreted proteomes of B. cinerea. The composition of the collected proteins populations and the putative functions of the identified proteins argue for their role in plant-pathogen interactions.

  2. Staining tomato fruit cuticle and exocarp tissues.

    Science.gov (United States)

    Graham, E T

    1997-05-01

    Immature fruit of tomato, Lycopersicon esculentum (Celebrity), was examined to observe the cuticle, its interface with the epidermis, and the general histology of the outer exocarp. Paraffin sections were stained first with Bismarck brown Y. Structures already stained in various hues of brown were stained again with either azure B, aluminum hematoxylin and alcian blue SGX, or the periodic acid-Schiff (PAS) reaction. Bismarck brown-azure B displayed the cuticle in strong contrast with subjacent tissue; however, nuclei were not easily identified at low magnification. Bismarck brown-hematoxylin-alcian blue produced a sharply contrasted combination of yellow cuticle, bright blue cell walls and purple nuclei. Nuclei stained purple with hematoxylin were easily identified at x100. Bismarck brown-PAS stained the cuticle golden brown and subjacent tissues mageta red. Surprisingly, epidermal cells stained specifically and intensely with PAS while pretreatment with an aldehyde blockade and omission of periodic acid prevented staining of all other tissues.

  3. Toward a longer shelf life of tomato fruit

    Science.gov (United States)

    Shelf life of ripe tomato fruit is economically very important, from production to the marketing chain, since it determines the cash returns to the grower and the grocer/processor. Shelf life of horticultural edible produce, including tomato, is regulated through myriad physiological, biochemical an...

  4. Gene expression in three stages of ripening tomato fruit

    NARCIS (Netherlands)

    Maagd, de R.A.; Bovy, A.G.

    2013-01-01

    Gene expression in three stages of ripening tomato fruit (variety Ailsa Craig) was determined with the EUTOM3 Affymetrix array in order to compare with degradrome sequencing data from study GSE42661, treated as RNAseq.

  5. FUNGICIDE APPLICATION FOR MAINTAINING POSTHARVEST QUALITY IN TOMATO FRUITS

    OpenAIRE

    D. M. Vani; S. M. Bonaldo

    2014-01-01

    Tomato fruits are usually consumed soon after harvest, however, as they are mainly comprised of water, and its walls are fragile, facilitates the emergence of diseases, making necessary the use of preventive measures in the field in order to reduce incidence of disease. The objective is then to evaluate the effect of foliar application of fungicides on the final quality of tomato fruits in postharvest. There were 13 applications of foliar fungicides Azoxystrobin+Cyproconazol and Boscalida, 7 ...

  6. Fruit-specific RNAi-mediated suppression of SlNCED1 increases both lycopene and β-carotene contents in tomato fruit.

    Science.gov (United States)

    Sun, Liang; Yuan, Bing; Zhang, Mei; Wang, Ling; Cui, Mengmeng; Wang, Qi; Leng, Ping

    2012-05-01

    Abscisic acid (ABA) plays important roles during tomato fruit ripening. To study the regulation of carotenoid biosynthesis by ABA, the SlNCED1 gene encoding 9-cis-epoxycarotenoid dioxygenase (NCED), a key enzyme in the ABA biosynthesis, was suppressed in tomato plants by transformation with an RNA interference (RNAi) construct driven by a fruit-specific E8 promoter. ABA accumulation and SlNCED1 transcript levels in the transgenic fruit were down-regulated to between 20-50% of that in control fruit. This significant reduction in NCED activity led to the carbon that normally channels to free ABA as well as the ABA metabolite accumulation during ripening to be partially blocked. Therefore, this 'backlogged' carbon transformed into the carotenoid pathway in the RNAi lines resulted in increased assimilation and accumulation of upstream compounds in the pathway, chiefly lycopene and β-carotene. Fruit of all RNAi lines displayed deep red coloration compared with the pink colour of control fruit. The decrease in endogenous ABA in these transgenics resulted in an increase in ethylene, by increasing the transcription of genes related to the synthesis of ethylene during ripening. In conclusion, ABA potentially regulated the degree of pigmentation and carotenoid composition during ripening and could control, at least in part, ethylene production and action in climacteric tomato fruit.

  7. Reduction of polygalacturonase activity in tomato fruit by antisense RNA

    OpenAIRE

    Sheehy, Raymond E.; Kramer, Matthew; Hiatt, William R

    1988-01-01

    Polygalacturonase [PG; poly(1,4-α-D-galacturonide) glycanhydrolase; EC 3.2.1.15] is expressed in tomato only during the ripening stage of fruit development. PG becomes abundant during ripening and has a major role in cell wall degradation and fruit softening. Tomato plants were transformed to produce antisense RNA from a gene construct containing the cauliflower mosaic virus 35S promoter and a full-length PG cDNA in reverse orientation. The construct was integrated into the tomato genome by A...

  8. 粉果番茄新品种粉丽莎的选育%A New Pink Tomato Variety-‘Fenlisha’

    Institute of Scientific and Technical Information of China (English)

    魏家鹏; 桑毅振; 李晓玲

    2014-01-01

    粉丽莎是以自交系 SF02-12为母本,SF98-01为父本配制而成的中熟番茄一代杂种,属无限生长类型;植株生长健壮,叶色浓绿,茎秆粗壮,始花节位为第9~10节,坐果力强;果实扁圆形,果面光滑,粉红色,皮厚,硬度高,可溶性固形物含量4.55%;单果质量165 g,平均每667 m2产量7000 kg;耐贮运,对早疫病和病毒病的抗性优于对照宝冠。适于日光温室或大棚早春栽培。%‘Fenlisha’is a new pink tomato F1 hybrid with middle maturity.It is of indeterminate growth type.The plant grows vigorously and has dark green leaves and stocky stem.The first inflorescence is situated between the 9th and 10th nodes.The fruit setting capacity is strong.Its matured fruit is pink in color and of flat round shape.Its fruit has smooth and thick peel.The fruit peel has good hardness.The soluble solid content is 4.55%.The single fruit weight is about 165 g.The average yield can reach 105 t·hm-2.It is tolerant to storage. Its resistance to early blight and virus disease is stronger than that of the contrast‘Baoguan’.It is suitable for cultivation in sunlight greenhouse or protected shed in early spring.

  9. Expression of ipt gene driven by tomato fruit specific promoter and its effects on fruit development of tomato

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Fruit specific promoter (2A12) from Lycopersicom esculentum and cDNA of isopentenyl-transferase (ipt) from Ti plasmid of Agrobacterium tumerfaciens C58 were cloned by PCR procedure respectively. Two plant expression vectors with 2A12/gus or 2A12/ipt were respectively constructed. These two chimeric genes were transferred into tomato by Agrobacterium mediated procedure. The results of Southern hybridization showed that the fusion genes had been integrated into tomatoes. The result of gus histochemical staining showed that 2A12 had high fruit specific expressive capability in transgenic tomato. The ipt expression resulted in accumulation of high level of cytokinins (CTKs) in fruit lead to developmental changes in fruits and seeds. The fruit of ipt transformed tomato had the hyperplastic placenta with very few seeds or even seedless. The shelf life of transgenic fruits elongated for 1-2 weeks. The ratio of fruit set, the dry weight of fruit and the crude protein content in fruit were increased, while the soluble sugar of fruits decreased.

  10. Metabolite Profiling of Italian Tomato Landraces with Different Fruit Types

    Directory of Open Access Journals (Sweden)

    Svetlana eBaldina

    2016-05-01

    Full Text Available Increased interest towards traditional tomato varieties is fueled by the need to rescue desirable organoleptic traits and to improve the quality of fresh and processed tomatoes in the market. In addition, the phenotypic and genetic variation preserved in tomato landraces represents a means to understand the genetic basis of traits related to health and organoleptic aspects and improve them in modern varieties. To establish a framework for this approach, we studied the content of several metabolites in a panel of Italian tomato landraces categorized into three broad fruit type classes (flattened/ribbed, pear/oxheart, round/elongate. Three modern hybrids, corresponding to the three fruit shape typologies, were included as reference. Red ripe fruits were morphologically characterized and biochemically analyzed for their content in glycoalkaloids, phenols, amino acids and Amadori products. The round/elongate types showed a higher content in glycoalkaloids, whereas flattened types had higher levels of phenolic compounds. Flattened tomatoes were also rich in total amino acids and in particular in glutamic acid. Multivariate analysis of amino acid content clearly separated the three classes of fruit types. Making allowance of the very low number of genotypes, phenotype-marker relationships were analyzed after retrieving single nucleotide polymorphisms (SNPs among the landraces available in the literature. Sixty-six markers were significantly associated with the studied traits. The positions of several of these SNPs showed correspondence with already described genomic regions and QTLs supporting the reliability of the association. Overall the data indicated that significant changes in quality-related metabolites occur depending on the genetic background in traditional tomato germplasm, frequently according to specific fruit shape categories. Such a variability is suitable to harness association mapping for metabolic quality traits using this germplasm

  11. Effect of salinity and calcium on tomato fruit proteome.

    Science.gov (United States)

    Manaa, Arafet; Faurobert, Mireille; Valot, Benoît; Bouchet, Jean-Paul; Grasselly, Dominique; Causse, Mathilde; Ahmed, Hela Ben

    2013-06-01

    Salinity is a major abiotic stress that adversely affects plant growth and productivity. The physiology of the tomato in salty and nonsalty conditions has been extensively studied, providing an invaluable base to understand the responses of the plants to cultural practices. However few data are yet available at the proteomic level looking for the physiological basis of fruit development, under salt stress. Here, we report the effects of salinity and calcium on fruit proteome variations of two tomato genotypes (Cervil and Levovil). Tomato plants were irrigated with a control solution (3 dSm(-1)) or with saline solutions (Na or Ca+Na at 7.6 dSm(-1)). Tomato fruits were harvested at two ripening stages: green (14 days post-anthesis) and red ripe. Total proteins were extracted from pericarp tissue and separated by two-dimensional gel electrophoresis. Among the 600 protein spots reproducibly detected, 53 spots exhibited significant abundance variations between samples and were submitted to mass spectrometry for identification. Most of the identified proteins were involved in carbon and energy metabolism, salt stress, oxidative stress, and proteins associated with ripening process. Overall, there was a large variation on proteins abundance between the two genotypes that can be correlated to salt treatment or/and fruit ripening stage. The results showed a protective effect of calcium that limited the impact of salinization on metabolism, ripening process, and induced plant salt tolerance. Collectively, this work has improved our knowledge about salt and calcium effect on tomato fruit proteome.

  12. Effect of electrical conductivity, fruit pruning, and truss position on quality in greenhouse tomato fruit

    NARCIS (Netherlands)

    Fanasca, S.; Martino, A.; Heuvelink, E.; Stanghellini, C.

    2007-01-01

    The combined effects of electrical conductivity (an EC of 2.5 dS m-1 or 8 dS m-1 in the root zone) and fruit pruning (three or six fruit per truss) on tomato fruit quality were studied in a greenhouse experiment, planted in January 2005. Taste-related attributes [dry matter content (DM), total solub

  13. FUNGICIDE APPLICATION FOR MAINTAINING POSTHARVEST QUALITY IN TOMATO FRUITS

    Directory of Open Access Journals (Sweden)

    D. M. Vani

    2014-07-01

    Full Text Available Tomato fruits are usually consumed soon after harvest, however, as they are mainly comprised of water, and its walls are fragile, facilitates the emergence of diseases, making necessary the use of preventive measures in the field in order to reduce incidence of disease. The objective is then to evaluate the effect of foliar application of fungicides on the final quality of tomato fruits in postharvest. There were 13 applications of foliar fungicides Azoxystrobin+Cyproconazol and Boscalida, 7 applications Tebuconazol+Trifoxistrobin and 17 applications of Propamocarb+Fluopicolide (Control. We analyzed the incidence of Fusarium sp. in fruits, decay percentage of fruit weight (g and Brix. For incidence of Fusarium sp. in fruits, treatments Tebuconazol+Trifoxistrobin and Azoxistrobin+Ciproconazol reduced by 14.3%, the pathogen in fruits. There was a decrease of 82% in the deterioration of fruits treated with Tebuconazol+Trifoxistrobin and 91% in those treated with Azoxistrobin+Ciproconazol. As for the weight gain, treatments Tebuconazol+Trifoxistrobin, Boscalida and Azoxistrobin+Ciproconazol reduced the weight gain in 8.12%, 20.8% and 38.8%, respectively, compared to the control. ° Brix values of fruits treated with Tebuconazol+Trifoxistrobin and Boscalida were higher than those treated with Azoxistrobin+Ciproconazol and Control (Propamocarb+Fluopicolide. It is concluded that the treatment carried out with Tebuconazol+Trifoxistrobin afforded the greatest benefits in maintaining the tomato fruits in harvest.

  14. Suicidal tomato cells : programmed cell death in suspension-cultured tomato cells and ripening fruit

    NARCIS (Netherlands)

    Hoeberichts, F.A.

    2002-01-01

     Tomato fruit ripening involves a series of highly organised biochemical, physiological and structural changes that are under strict genetic control. The plant hormone ethylene (C 2 H 4 ), in synergy with certain developmental cues, regulates fruit ripening b

  15. Fruit preferential activity of the tomato RIP1 gene promoter in transgenic tomato and Arabidopsis.

    Science.gov (United States)

    Agarwal, Priyanka; Kumar, Rahul; Pareek, Amit; Sharma, Arun K

    2017-02-01

    Isolation and functional characterization of tissue- and stage-specific gene promoters is beneficial for genetic improvement of economically important crops. Here, we have characterized a putative promoter of a ripening-induced gene RIP1 (Ripening induced protein 1) in tomato. Quantification of the transcript level of RIP1 showed that its expression is fruit preferential, with maximum accumulation in red ripe fruits. To test the promoter activity, we made a reporter construct by cloning 1450 bp putative RIP1 promoter driving the GUS (ß-glucuronidase) gene expression and generated stable transgenic lines in tomato and Arabidopsis. Histochemical and fluorometric assays validated the fruit-specific expression of RIP1 as the highest GUS activity was found in red ripe tomatoes. Similarly, we detected high levels of GUS activity in the siliques of Arabidopsis. On the contrary, weak GUS activity was found in the flower buds in both tomato and Arabidopsis. To characterize the specific regions of the RIP1 promoter that might be essential for its maximum activity and specificity in fruits, we made stable transgenic lines of tomato and Arabidopsis with 5'-deletion constructs. Characterization of these transgenic plants showed that the full length promoter is essential for its function. Overall, we report the identification and characterization of a ripening-induced promoter of tomato, which would be useful for the controlled manipulation of the ripening-related agronomic traits in genetic manipulation studies in future.

  16. An extensive proteome map of tomato (Solanum lycopersicum) fruit pericarp.

    Science.gov (United States)

    Xu, Jiaxin; Pascual, Laura; Aurand, Rémy; Bouchet, Jean-Paul; Valot, Benoît; Zivy, Michel; Causse, Mathilde; Faurobert, Mireille

    2013-10-01

    Tomato (Solanum lycopersicum) is the model species for studying fleshy fruit development. An extensive proteome map of the fruit pericarp is described in light of the high-quality genome sequence. The proteomes of fruit pericarp from 12 tomato genotypes at two developmental stages (cell expansion and orange-red) were analyzed. The 2DE reference map included 506 spots identified by nano-LC/MS and the International Tomato Annotation Group Database searching. A total of 425 spots corresponded to unique proteins. Thirty-four spots resulted from the transcription of genes belonging to multigene families involving two to six genes. A total of 47 spots corresponded to a mixture of different proteins. The whole protein set was classified according to Gene Ontology annotation. The quantitative protein variation was analyzed in relation to genotype and developmental stage. This tomato fruit proteome dataset is currently the largest available and constitutes a valuable tool for comparative genetic studies of tomato genome expression at the protein level. All MS data have been deposited in the ProteomeXchange with identifier PXD000105. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Identification and diversity of Fusarium species isolated from tomato fruits

    Directory of Open Access Journals (Sweden)

    Murad Nur Baiti Abd

    2016-07-01

    Full Text Available Fruit rot of tomato is a serious disease caused by Fusarium species. Sampling was conducted throughout Selangor, Malaysia and fungal species identification was conducted based on morphological and gene encoding translation elongation factor 1-α (tef1-α sequence analysis. Five species of Fusarium were discovered namely F. oxysporum (including F. oxysporum f. sp. lycopersici, F. solani, F. equiseti, F. proliferatum and F. verticillioides. Our results provide additional information regarding the diversity of Fusarium species associated with fruit rot disease of tomato.

  18. Increasing tomato fruit quality by enhancing fruit chloroplast function. A double-edged sword?

    Science.gov (United States)

    Cocaliadis, Maria Florencia; Fernández-Muñoz, Rafael; Pons, Clara; Orzaez, Diego; Granell, Antonio

    2014-08-01

    Fruits are generally regarded as photosynthate sinks as they rely on energy provided by sugars transported from leaves to carry out the highly demanding processes of development and ripening; eventually these imported photosynthates also contribute to the fruit organoleptic properties. Three recent reports have revealed, however, that transcriptional factors enhancing chloroplast development in fruit may result in higher contents not only of tomato fruit-specialized metabolites but also of sugars. In addition to suggesting new ways to improve fruit quality by fortifying fruit chloroplasts and plastids, these results prompted us to re-evaluate the importance of the contribution of chloroplasts/photosynthesis to fruit development and ripening.

  19. Lycopene fortification on the quality characteristics of beverage formulations developed from pink flesh guava (Psidium guajava L.)

    OpenAIRE

    Pasupuleti, Vijayanand; Kulkarni, Shyamrao Gururao

    2013-01-01

    Pink flesh guava (Psidium guajava L) is an important tropical fruit widely cultivated in different parts of India. The fruit apart from its characteristic pink flesh color is a good source of ascorbic acid, reducing sugars and pectin. Pink color of guava pulp is attributed to the presence of carotenoid pigment lycopene. Incorporation of lycopene in the form of tomato puree to the guava pulp resulted in changes in the quality characteristics of the guava beverage formulations. Lycopene in guav...

  20. Reduction of polygalacturonase activity in tomato fruit by antisense RNA.

    Science.gov (United States)

    Sheehy, R E; Kramer, M; Hiatt, W R

    1988-12-01

    Polygalacturonase [PG; poly(1,4-alpha-D-galacturonide) glycanhydrolase; EC 3.2.1.15] is expressed in tomato only during the ripening stage of fruit development. PG becomes abundant during ripening and has a major role in cell wall degradation and fruit softening. Tomato plants were transformed to produce antisense RNA from a gene construct containing the cauliflower mosaic virus 35S promoter and a full-length PG cDNA in reverse orientation. The construct was integrated into the tomato genome by Agrobacterium-mediated transformation. The constitutive synthesis of PG antisense RNA in transgenic plants resulted in a substantial reduction in the levels of PG mRNA and enzymatic activity in ripening fruit. The steady-state levels of PG antisense RNA in green fruit of transgenic plants were lower than the levels of PG mRNA normally attained during ripening. However, analysis of transcription in isolated nuclei demonstrated that the antisense RNA construct was transcribed at a higher rate than the tomato PG gene(s). Analysis of fruit from transgenic plants demonstrated a reduction in PG mRNA and enzymatic activity of 70-90%. The reduction in PG activity did not prevent the accumulation of the red pigment lycopene.

  1. Interspecific xenia and metaxenia in seeds and fruits of tomato

    Directory of Open Access Journals (Sweden)

    Fernando Angelo Piotto

    2013-04-01

    Full Text Available Xenia, the transmission of traits from the pollinizer to the female's tissues, is a phenomenon hitherto unknown in tomatoes. Here, we describe xenia effects on the seeds and fruits of Solanum lycopersicum, the tomato, elicited by S. galapagense. The wild tomatoes, such as S. galapagense, have highly pilose fruit surface and minute seeds, unlike the domesticated species. Crossings between S. galapagense (pollinizer and two large-seeded, glabrous cultivars of S. lycopersicum (females tested the former's ability to raise the trichome density and trichome-to-1000-cell ratio and to reduce the seed weight in the latter's fruits. Selfed fruits of the two cultivars, Micro-Tom and Pusa Ruby, were compared to the crossed fruits. The pollen of S. galapagense was able to raise pilosity and to reduce seed weight in the crossed fruits of both cultivars, but with different magnitudes: seed reduction was more intense in Pusa Ruby, while pilosity increase was greater in Micro-Tom, both of which characterize xenia. Pilosity increase is not completely dependent on variation in epidermal cell density, which displayed no xenia effect. The difference between the maternal cultivars in the magnitude of pilosity increase may be due to the higher dilution of a putative male chemical signal (either hormone or RNA in the larger fruits of Pusa Ruby. However, one cannot use the signal diffusion hypothesis to explain the xenia effects on seed weight.

  2. Ethylene independent induction of lycopene biosynthesis in tomato fruits by jasmonates

    OpenAIRE

    Liu, Lihong; Wei, Jia; Zhang, Min; Zhang, Liping; Li, Chuanyou; Wang, Qiaomei

    2012-01-01

    One of the main characteristics of tomato (Solanum lycopersicum) fruit ripening is a massive accumulation of carotenoids (mainly lycopene), which may contribute to the nutrient quality of tomato fruit and its role in chemoprevention. Previous studies have shown that ethylene (ET) plays a central role in promoting fruit ripening. In this study, the role of jasmonic acid (JA) in controlling lycopene accumulation in tomato fruits was analysed by measuring fruit lycopene content and the expressio...

  3. Senescence of rin, rin/rin, rin/+ and +/+ tomato fruits

    Directory of Open Access Journals (Sweden)

    Zdravković Jasmina

    2004-01-01

    Full Text Available Ripening inhibitor (rin gene is a spontaneous recessive mutant which changes fruit ripening aspects (most important synthesis of carotene, especially lycopene. It also delays fruit senescence. Tomato is a vegetable crop with specific maturing climax (pik. Tomato genotypes homozygote for rin gene does not have this maturing climax, so the ethyl-ene production and red, lycopene colour does not appear. In order to research the maturing process material from the final tomato selection cycle we used: pure line S-49 (genetic constitution u/u, with uniform ripening, line hom 4 (rin/rin, homozygote with ripening inhibitor and hybrid combination 449 Fl (u/rin, heterozygote for ripening inhibitor. Fruits with uniform ripening and hybrids ripened simultaneously, while homozygote with rin gene did not ripe at all. Ethylene stimulates the appearance of yellow colour in rin fruits and the lycopene production. After treatment with ETEPHONE (0.1% (Ethylene fruits with uniform ripening, senescence more quickly, while hybrids senescence slowly. Rin homozygotes did not change colors, but the fruits senescence more quickly comparing to control. Ethylene treatment speeded the maturing and senescence process in tomato fruits. Extended maturing process as a result influence of rin gene, makes the new created hybrids a late maturing ones. On the other hand, the firmness of fruits is improved as well as the "shelf life", which enables longer transportation and storing, coordinated maturing according to market demands. The aim was to research the maturing according to market demands. The aim was to research the maturing process of rin heteroyzgote, and the reaction of some genotypes to treatment with RT-REL (Ethzlene in order to decrease extremely late maturing.

  4. Effect of salinity and calcium on tomato fruit proteome

    OpenAIRE

    Faurobert, Mireille; Valot, Benoit; Bouchet, Jean-Paul; Grasselly, Dominique; Causse, Mathilde,; Ben Ahmed, Hela

    2013-01-01

    Salinity is a major abiotic stress that adversely affects plant growth and productivity. The physiology of the tomato in salty and nonsalty conditions has been extensively studied, providing an invaluable base to understand the responses of the plants to cultural practices. However few data are yet available at the proteomic level looking for the physiological basis of fruit development, under salt stress. Here, we report the effects of salinity and calcium on fruit proteome variations of two...

  5. Genes from Lycopersicon chmielewskii affecting tomato quality during fruit ripening.

    Science.gov (United States)

    Azanza, F; Kim, D; Tanksley, S D; Juvik, J A

    1995-08-01

    Three chromosomal segments from the wild tomato, L. chmielewskii, introgressed into the L. esculentum genome have been previously mapped to the middle and terminal regions of chromosome 7 (7M, 7T respectively), and to the terminal region of chromosome 10 (10T). The present study was designed to investigate the physiological mechanisms controlled by the 7M and 7T segments on tomato soluble solids (SS) and pH, and their genetic regulation during fruit development. The effects of 7M and 7T were studied in 64 BC2F5 backcross inbred lines (BILs) developed from a cross between LA 1501 (an L. esculentum line containing the 7M and 7T fragments from L. chmielewskii), and VF145B-7879 (a processing cultivar). BILs were classified into four homozygous genotypes with respect to the introgressed segments based on RFLP analysis, and evaluated for fruit chemical characteristics at different harvest stages. Gene(s) in the 7M fragment reduce fruit water uptake during ripening increasing pH, sugars, and SS concentration. Gene(s) in the 7T fragment were found to be associated with higher mature green fruit starch concentration and red ripe fruit weight. Comparisons between tomatoes ripened on or off the vine suggest that the physiological mechanisms influenced by the L. chmielewskii alleles are dependent on the translocation of photosynthates and water during fruit ripening.

  6. Genetics and control of tomato fruit ripening and quality attributes

    Science.gov (United States)

    Tomato ripening is a highly coordinated developmental process coinciding with seed maturation. Regulated expression of thousands of genes controls fruit softening as well as accumulation of pigments, sugars, acids and volatile compounds that increase attraction to animals. A combination of molecular...

  7. [Effects of fruit bag color on the microenvironment, yield and quality of tomato fruits].

    Science.gov (United States)

    Wang, Lei; Gao, Fang-sheng; Xu, Kun; Xu, Ning

    2013-08-01

    In order to clarify the ecological and biological effects of fruit bagging, tomato variety JYK was taken as the test material to study the changes of the microenvironment in different color fruit bags and the effects of these changes on the fruit development, yield and quality, with the treatment without fruit bagging as the control (CK). The results showed that bagging with different color fruit bags had positive effects in decreasing the light intensity of the microenvironment and increasing its temperature and humidity, and thus, increased the single fruit mass and promoted the harvest stage advanced. Black bag had the best effects in increasing microenvironment temperature and fruit mass, with the single fruit mass increased by 27.2% and the harvest period shortened by 10 days, compared with CK. The fruit maturation period in colorless bag, blue bag and red bag was shortened by 8, 3 and 2 days, and the single mass was increased by 11.8%, 6.4% and 4.8%, respectively. Moreover, the coloring and lycopene content of the fruits with different color bags bagging were improved, but the fruit rigidity and fruit soluble solid, soluble protein, and soluble sugar contents were decreased. Therefore, bagging with different color bags could improve the yield of tomato fruits, but decrease the fruit nutritional quality.

  8. Correlation of rutin accumulation with 3-O-glucosyl transferase and phenylalanine ammonia-lyase activities during the ripening of tomato fruit.

    Science.gov (United States)

    Capanoglu, Esra; Beekwilder, Jules; Matros, Andrea; Boyacioglu, Dilek; Hall, Robert D; Mock, Hans Peter

    2012-12-01

    In tomato, the predominant flavonoid is quercetin-3-rutinoside (rutin). In this study, we aim to investigate the phenylalanine ammonia-lyase (PAL) and the quercetin-3-O-glucosyl transferase (3-GT) reactions in the formation of rutin during tomato fruit ripening. Tomatoes of the Moneymaker variety at different development stages (green, breaker, turning, pink, red, and deep red) were divided into flesh and peel fractions. In each sample, both the content of rutin and the enzymatic activities for PAL and 3-GT were recorded. The highest activities of PAL were recorded in the peel of turning fruit (3,000 μkat/mg fresh weight). In fruit flesh, maximal activity was observed in red fruit (917.3 μkat/mg). For both tissues, PAL activity strongly decreased at the final (deep red) fruit stage. The activity of 3-GT in peel peaked in the turning fruit stage (50.7 pkat/mg), while in flesh maximal activity (33.4 pkat/mg) was observed in green fruit, which rapidly declined at the turning stage. Higher levels of rutin were detected in the tomato peel compared to the flesh part with the highest level being found at the green stage. The relation of PAL and 3-GT activities to rutin content is also evaluated.

  9. High light decreases xylem contribution to fruit growth in tomato.

    Science.gov (United States)

    Hanssens, Jochen; DE Swaef, Tom; Steppe, Kathy

    2015-03-01

    Recently, contradicting evidence has been reported on the contribution of xylem and phloem influx into tomato fruits, urging the need for a better understanding of the mechanisms involved in fruit growth. So far, little research has been performed on quantifying the effect of light intensity on the different contributors to the fruit water balance. However, as light intensity affects both transpiration and photosynthesis, it might be expected to induce important changes in the fruit water balance. In this study, tomato plants (Solanum lycopersicum L.) were grown in light and shade conditions and the fruit water balance was studied by measuring fruit growth of girdled and intact fruits with linear variable displacement transducers combined with a model-based approach. Results indicated that the relative xylem contribution significantly increased when shading lowered light intensity. This resulted from both a higher xylem influx and a lower phloem influx during the daytime. Plants from the shade treatment were able to maintain a stronger gradient in total water potential between stem and fruits during daytime, thereby promoting xylem influx. It appeared that the xylem pathway was still functional at 35 days after anthesis and that relative xylem contribution was strongly affected by environmental conditions. © 2014 John Wiley & Sons Ltd.

  10. Aucsia gene silencing causes parthenocarpic fruit development in tomato.

    Science.gov (United States)

    Molesini, Barbara; Pandolfini, Tiziana; Rotino, Giuseppe Leonardo; Dani, Valeria; Spena, Angelo

    2009-01-01

    In angiosperms, auxin phytohormones play a crucial regulatory role in fruit initiation. The expression of auxin biosynthesis genes in ovules and placenta results in uncoupling of tomato (Solanum lycopersicum) fruit development from fertilization with production of parthenocarpic fruits. We have identified two newly described genes, named Aucsia genes, which are differentially expressed in auxin-synthesis (DefH9-iaaM) parthenocarpic tomato flower buds. The two tomato Aucsia genes encode 53-amino-acid-long peptides. We show, by RNA interference-mediated gene suppression, that Aucsia genes are involved in both reproductive and vegetative plant development. Aucsia-silenced tomato plants exhibited auxin-related phenotypes such as parthenocarpic fruit development, leaf fusions, and reflexed leaves. Auxin-induced rhizogenesis in cotyledon explants and polar auxin transport in roots were reduced in Aucsia-silenced plants compared with wild-type plants. In addition, Aucsia-silenced plants showed an increased sensitivity to 1-naphthylphthalamic acid, an inhibitor of polar auxin transport. We further prove that total indole-3-acetic acid content was increased in preanthesis Aucsia-silenced flower buds. Thus, the data presented demonstrate that Aucsia genes encode a novel family of plant peptides that control fruit initiation and affect other auxin-related biological processes in tomato. Aucsia homologous genes are present in both chlorophytes and streptophytes, and the encoded peptides are distinguished by a 16-amino-acid-long (PYSGXSTLALVARXSA) AUCSIA motif, a lysine-rich carboxyl-terminal region, and a conserved tyrosine-based endocytic sorting motif.

  11. Tomato FRUITFULL homologs regulate fruit ripening via ethylene biosynthesis.

    Science.gov (United States)

    Shima, Yoko; Fujisawa, Masaki; Kitagawa, Mamiko; Nakano, Toshitsugu; Kimbara, Junji; Nakamura, Nobutaka; Shiina, Takeo; Sugiyama, Junichi; Nakamura, Toshihide; Kasumi, Takafumi; Ito, Yasuhiro

    2014-01-01

    Certain MADS-box transcription factors play central roles in regulating fruit ripening. RIPENING INHIBITOR (RIN), a tomato MADS-domain protein, acts as a global regulator of ripening, affecting the climacteric rise of ethylene, pigmentation changes, and fruit softening. Previously, we showed that two MADS-domain proteins, the FRUITFULL homologs FUL1 and FUL2, form complexes with RIN. Here, we characterized the FUL1/FUL2 loss-of-function phenotype in co-suppressed plants. The transgenic plants produced ripening-defective fruits accumulating little or no lycopene. Unlike a previous study on FUL1/FUL2 suppressed tomatoes, our transgenic fruits showed very low levels of ethylene production, and this was associated with suppression of the genes for 1-aminocyclopropane-1-carboxylic acid synthase, a rate-limiting enzyme in ethylene synthesis. FUL1/FUL2 suppression also caused the fruit to soften in a manner independent of ripening, possibly due to reduced cuticle thickness in the peel of the suppressed tomatoes.

  12. Association Mapping of Main Tomato Fruit Sugars and Organic Acids

    Science.gov (United States)

    Zhao, Jiantao; Xu, Yao; Ding, Qin; Huang, Xinli; Zhang, Yating; Zou, Zhirong; Li, Mingjun; Cui, Lu; Zhang, Jing

    2016-01-01

    Association mapping has been widely used to map the significant associated loci responsible for natural variation in complex traits and are valuable for crop improvement. Sugars and organic acids are the most important metabolites in tomato fruits. We used a collection of 174 tomato accessions composed of Solanum lycopersicum (123 accessions) and S. lycopersicum var cerasiforme (51 accessions) to detect significantly associated loci controlling the variation of main sugars and organic acids. The accessions were genotyped with 182 SSRs spreading over the tomato genome. Association mapping was conducted on the main sugars and organic acids detected by gas chromatography-mass spectrometer (GC-MS) over 2 years using the mixed linear model (MLM). We detected a total of 58 significantly associated loci (P organic acids, including fructose, glucose, sucrose, citric acid, malic acid. These results not only co-localized with several reported QTLs, including fru9.1/PV, suc9.1/PV, ca2.1/HS, ca3.1/PV, ca4.1/PV, and ca8.1/PV, but also provided a list of candidate significantly associated loci to be functionally validated. These significantly associated loci could be used for deciphering the genetic architecture of tomato fruit sugars and organic acids and for tomato quality breeding. PMID:27617019

  13. Carotenoids and lycopene content in fresh and dried tomato fruits and tomato juice

    Directory of Open Access Journals (Sweden)

    Andrea Mendelová

    2013-01-01

    Full Text Available Important component of the tomato are carotenoid dyes, especially lycopene. The importance of lycopene in the diet of people in recent years has grown mainly for its pharmacological effects due to its ability to reduce the risk of carcinoma diseases and prevention of cardiovascular diseases. The aim of this work was to analyze the content of total carotenoids and lycopene in 8 varieties of tomato and to monitor dynamic changes after their different treatments (heating, drying. The experiment included following tomato varieties: Bambino F1, Darina F1, Diana F1, Denár, Milica F1, Orange F1, Paulína F1, Šejk F1.We found that processing of tomato fruits into juices and dried slices positively affected the presence of carotenoids and lycopene. Processing leads to an increase in the content of carotenoids that can be attributed to better availability of these components in the human body.

  14. Bioactive Compounds, Antioxidant Activity and Color of Hydroponic Tomato Fruits at Different Stages of Ripening

    Directory of Open Access Journals (Sweden)

    Violeta NOUR

    2015-12-01

    Full Text Available This experiment was carried out in order to study the simultaneous effect of on-vine ripening and examined cultivars on fruit quality, color development and antioxidant content in two different types of tomatoes. ‘Admiro’ and ‘Komet’ (normal average fruit weight and ‘Cheramy’ (cherry type cultivars grown in hydroponic culture were used. Dry matter, soluble solids, titratable acidity, ascorbic acid, lycopene, b-carotene, total phenolic, total flavonoid content and hydrophilic antioxidant activity were measured in six ripening stages. Color of fruits was determined by CIELab system. The L*, a*, b* values were used to calculate hue angle (ho, chroma (C* and a* to b* ratio. In all analysed cultivars total phenolic content increased as ripening progressed, reached the maximum at the pink stage and subsequently declined, while the trend of ascorbic acid was cultivar dependent. DPPH radical scavenging activity showed significant moderately strong positive correlations with total phenolics and ascorbic acid. The content of β-carotene increased constantly during ripening while lycopene content registered a sharp rise, especially in the last stage of ripening when 47.2% of the lycopene content was accumulated. During ripening the lightness (L* decreased because tomato fruit colour became darker while the ratio of red to green colour increased as a result of carotenoids synthesis. Among color indexes, hue angle (ho was best correlated with lycopene content (r = −0.758, followed by a* (r = 0.748, C* (r = 0.708 and a*/b* (r = 0.683. Better correlations were established between main carotenoids content (lycopene + b-carotene and each of the color indexes.

  15. Tomato fruits: a good target for iodine biofortification

    Directory of Open Access Journals (Sweden)

    Claudia eKiferle

    2013-06-01

    Full Text Available Iodine is a trace element that is fundamental for human health: its deficiency affects about two billion people worldwide. Fruits and vegetables are usually poor sources of iodine; however plants can accumulate iodine if it is either present or exogenously administered to the soil. The biofortification of crops with iodine has therefore been proposed as a strategy for improving human nutrition. A greenhouse pot experiment was carried out to evaluate the possibility of biofortifying tomato fruits with iodine. Increasing concentrations of iodine supplied as KI or KIO3 were administered to plants as root treatments and the iodine accumulation in fruits was measured. The influences of the soil organic matter content or the nitrate level in the nutritive solution were analyzed. Finally, yield and qualitative properties of the biofortified tomatoes were considered, as well as the possible influence of fruit storage and processing on the iodine content. Results showed that the use of both the iodized salts induced a significant increase in the fruit’s iodine content in doses that did not affect plant growth and development. The final levels ranged from a few mg up to 10 mg iodine kg-1 fruit fresh weight and are more than adequate for a biofortification program, since 150 µg iodine per day is the recommended dietary allowance for adults. In general, the iodine treatments scarcely affected fruit appearance and quality, even with the highest concentrations applied. In contrast, the use of KI in plants fertilized with low doses of nitrate induced moderate phytotoxicity symptoms. Organic matter-rich soils improved the plant’s health and production, with only mild reductions in iodine stored in the fruits. Finally, a short period of storage at room temperature or a 30-minute boiling treatment did not reduce the iodine content in the fruits, if the peel was maintained. All these results suggest that tomato is a particularly suitable crop for iodine

  16. Polyamine content of long-keeping alcobaca tomato fruit.

    Science.gov (United States)

    Dibble, A R; Davies, P J; Mutschler, M A

    1988-02-01

    Fruit of tomato landrace Alcobaca, containing the recessive allele alc, ripen more slowly, with a reduced level of ethylene production, and have prolonged keeping qualities. The levels of polyamines in pericarp tissues of alc and ;wild type' Alc (cv Rutgers and Alcobaca-red) fruit were measured by HPLC in relation to ripening. Putrescine was the predominant polyamine with a lower content of spermidine, while spermine was just detectable. The level of putrescine was high at the immature green stage and declined in the mature green stage. In Alc fruit the decline persisted but in alc fruit the putrescine level increased during ripening to a level similar to that present at the immature green stage. There was no pronounced change or difference in spermidine levels. The enhanced polyamine level in alc fruit may account for their ripening and storage characteristics.

  17. Control of wilt and rot pathogens of tomato by antagonistic pink pigmented facultative methylotrophic Delftia lacustris and Bacillus spp.

    Directory of Open Access Journals (Sweden)

    Veeranan Janahiraman

    2016-11-01

    Full Text Available The studies on the biocontrol potential of pink pigmented facultative methylotrophic (PPFM bacteria other than the genus Methylobacterium are scarce. In the present study, we report three facultative methylotrophic isolates; PPO-1, PPT-1 and PPB-1, respectively identified as Delftia lacustris, Bacillus subtilis and Bacillus cereus by 16S rRNA gene sequence analysis. Hemolytic activity was tested to investigate the potential pathogenicity of isolates to plants and humans, the results indicates that the isolates PPO-1, PPT-1 and PPB-1 are not pathogenic strains. Under in vitro conditions, D. lacustris PPO-1, B. subtilis PPT-1 and B. cereus PPB-1 showed direct antagonistic effect by inhibiting the mycelial growth of fungal pathogens; Fusarium oxysporum f. sp. lycopersici (2.15, 2.05 and 1.95 cm, Sclerotium rolfsii (2.14, 2.04 and1.94 cm, Pythium ultimum (2.12, 2.02 and 1.92cm, and Rhizoctonia solani (2.18, 2.08 and 1.98 cm and also produced volatile inhibitory compounds. Under plant growth chamber condition methylotrophic bacterial isolates; D. lacustris PPO-1, B. subtilis PPT-1 and B. cereus PPB-1 significantly reduced the disease incidence of tomato. Under greenhouse condition, D. lacustris PPO-1, B. subtilis PPT-1 and B. cereus PPB-1 inoculated tomato plants, when challenged with F. oxysporum f. sp. lycopersici, S. rolfsii, P. ultimum and R. solani, increased the pathogenesis related proteins (β-1, 3-glucanase and chitinase and defense enzymes (phenylalanine ammonia lyase, peroxidase, polyphenol oxidase, and catalase on day 5 after inoculation. In the current study, we first report the facultative methylotrophy in pink pigmented Delftia lacustris, B. subtilis, and B. cereus and their antagonistic potential against fungal pathogens. Direct antagonistic and ISR effects of these isolates against fungal pathogens of tomato evidenced their possible use as a biocontrol agent.

  18. Control of Wilt and Rot Pathogens of Tomato by Antagonistic Pink Pigmented Facultative Methylotrophic Delftia lacustris and Bacillus spp.

    Science.gov (United States)

    Janahiraman, Veeranan; Anandham, Rangasamy; Kwon, Soon W.; Sundaram, Subbiah; Karthik Pandi, Veeranan; Krishnamoorthy, Ramasamy; Kim, Kiyoon; Samaddar, Sandipan; Sa, Tongmin

    2016-01-01

    The studies on the biocontrol potential of pink pigmented facultative methylotrophic (PPFM) bacteria other than the genus Methylobacterium are scarce. In the present study, we report three facultative methylotrophic isolates; PPO-1, PPT-1, and PPB-1, respectively, identified as Delftia lacustris, Bacillus subtilis, and Bacillus cereus by 16S rRNA gene sequence analysis. Hemolytic activity was tested to investigate the potential pathogenicity of isolates to plants and humans, the results indicates that the isolates PPO-1, PPT-1, and PPB-1 are not pathogenic strains. Under in vitro conditions, D. lacustris PPO-1, B. subtilis PPT-1, and B. cereus PPB-1 showed direct antagonistic effect by inhibiting the mycelial growth of fungal pathogens; Fusarium oxysporum f. sp. lycopersici (2.15, 2.05, and 1.95 cm), Sclerotium rolfsii (2.14, 2.04, and 1.94 cm), Pythium ultimum (2.12, 2.02, and 1.92 cm), and Rhizoctonia solani (2.18, 2.08, and 1.98 cm) and also produced volatile inhibitory compounds. Under plant growth chamber condition methylotrophic bacterial isolates; D. lacustris PPO-1, B. subtilis PPT-1, and B. cereus PPB-1 significantly reduced the disease incidence of tomato. Under greenhouse condition, D. lacustris PPO-1, B. subtilis PPT-1, and B. cereus PPB-1 inoculated tomato plants, when challenged with F. oxysporum f. sp. lycopersici, S. rolfsii, P. ultimum, and R. solani, increased the pathogenesis related proteins (β-1,3-glucanase and chitinase) and defense enzymes (phenylalanine ammonia lyase, peroxidase, polyphenol oxidase, and catalase) on day 5 after inoculation. In the current study, we first report the facultative methylotrophy in pink pigmented D. lacustris, B. subtilis, and B. cereus and their antagonistic potential against fungal pathogens. Direct antagonistic and ISR effects of these isolates against fungal pathogens of tomato evidenced their possible use as a biocontrol agent. PMID:27872630

  19. Transient silencing of CHALCONE SYNTHASE during fruit ripening modifies tomato epidermal cells and cuticle properties.

    Science.gov (United States)

    España, Laura; Heredia-Guerrero, José A; Reina-Pinto, José J; Fernández-Muñoz, Rafael; Heredia, Antonio; Domínguez, Eva

    2014-11-01

    Tomato (Solanum lycopersicum) fruit ripening is accompanied by an increase in CHALCONE SYNTHASE (CHS) activity and flavonoid biosynthesis. Flavonoids accumulate in the cuticle, giving its characteristic orange color that contributes to the eventual red color of the ripe fruit. Using virus-induced gene silencing in fruits, we have down-regulated the expression of SlCHS during ripening and compared the cuticles derived from silenced and nonsilenced regions. Silenced regions showed a pink color due to the lack of flavonoids incorporated to the cuticle. This change in color was accompanied by several other changes in the cuticle and epidermis. The epidermal cells displayed a decreased tangential cell width; a decrease in the amount of cuticle and its main components, cutin and polysaccharides, was also observed. Flavonoids dramatically altered the cuticle biomechanical properties by stiffening the elastic and viscoelastic phase and by reducing the ability of the cuticle to deform. There seemed to be a negative relation between SlCHS expression and wax accumulation during ripening that could be related to the decreased cuticle permeability to water observed in the regions silencing SlCHS. A reduction in the overall number of ester linkages present in the cutin matrix was also dependent on the presence of flavonoids.

  20. Developmental gene regulation during tomato fruit ripening and in-vitro sepal morphogenesis

    OpenAIRE

    Ishida Betty K; Bartley Glenn E

    2003-01-01

    Abstract Background Red ripe tomatoes are the result of numerous physiological changes controlled by hormonal and developmental signals, causing maturation or differentiation of various fruit tissues simultaneously. These physiological changes affect visual, textural, flavor, and aroma characteristics, making the fruit more appealing to potential consumers for seed dispersal. Developmental regulation of tomato fruit ripening has, until recently, been lacking in rigorous investigation. We prev...

  1. The incorporation gene of tomato fruit firmness (Lycopersicon esculentum Mill.

    Directory of Open Access Journals (Sweden)

    Zdravković Jasmina

    2009-01-01

    Full Text Available Tomato fruit firmness is a polygenetic trait and depends on firmness components pericarp thickness, firmness of epidermis and firmness of flash. The accumulation of favourable traits ratio for each component (towards the increase of expression the fruit firmness can be increased. This paper deals with aspects of increasing fruit firmness by increasing firmness of epidermis and thickness of pericarp. By using genotypes with rin (ripening inhibitor gene, we were able to accomplish great firmness of fruits, especially firmness of flash. The expression of these traits cause the asynchronization of maturing process so the fruits do not over mature or soften. Genetic effects have been evaluated by researching the average values of fruit firmness in six diallel parent lines (D-150, S-49, S-35, H-52, Kg-z and SP-109 and progeny (P1, P2, F1, F2, BC1 and BC2 by applying additive dominant model with three and six parameters (Mather and Jinks, 1982. Mean values of fruit firmness for parents and progeny were significantly different. Firmness of fruits is a trait influenced first of all by additive gene since they were found in all researched combinations. Epystatic gene effect was important in inheriting process for all three two-gene interactions. The stabile duplicate type of epystsase was found, which in this case reduces the unfavourable effects of dominant genes of parents with soft fruits. .

  2. Relationship Between Ca2+-CaM and Ethylene-Induced PG Activity in Tomato Fruit

    Institute of Scientific and Technical Information of China (English)

    GU Cai-qin; XI Yu-fang; GUAN Jun-feng; LI Guang-min

    2003-01-01

    Polygalacturonase (PG) was studied during ripening and senescence of postharvest tomatofruit at pink stage at low and normal temperature. The results showed that the PG activity increased, thendecreased during ripening and senescence of tomato. Low temperature inhibited but ethylene enhanced PGactivity. Ethylene also enhanced caimodulin content, which was dependent on Ca2+ concentration in cell.When EGTA(Ca2+ chelator), verapamil (Vp) and LaCl3 (Ca2+ channel blockers), trifluoperazine and chloro-promaize (two CaM antagonisms) were used to treat tomato fruit at green mature stage with ethylene, theycould reverse ethylene-induced increase in PG activity, but Vp, chloropromaize (CPZ), trifluoperazine(TFP) could not directly influence PG activity, which indirectly indicated that influx of Ca2+ from the ex-tracellular space including the cell wall via the Ca2+ channel localized in plasma membrane and CaM were re-quired for ethylene-induced PG activity increase and that ethylene signal transduction may be related to Ca2+- CaM messenger system.

  3. Changes in color-related compounds in tomato fruit exocarp and mesocarp during ripening using HPLC-APcI(+)-mass Spectrometry.

    Science.gov (United States)

    Carrillo-López, A; Yahia, E M

    2014-10-01

    Tomato is an important agricultural crop world-wide. Their pigments are very important in many ways. They have been associated with health benefits such as lowering the risk of some chronic diseases. Quantification of chlorophylls by spectrophotometry and Identification of carotenoids using liquid chromatography coupled to mass spectrometry, and quantification by HPLC-DAD was carried out in the exocarp and mesocarp of tomato fruit during 6 different ripeness stages (mature-green, breakers, turning, pink, light-red and red). Four carotenoids have been followed during ripening; β-carotene and lycopene were unequivocally identified, whereas γ-carotene and lycopene-epoxide were tentatively identified. Differences between exocarp and mesocarp were as follows: Most of the ripening period, fruit exocarp had higher quantities of both chlorophyll and carotenoids than mesocarp. In both, exocarp and mesocarp, chlorophylls drastically decreased, lycopene significantly increased, while β-carotene, γ-carotene and lycopene-epoxide only increased slightly during fruit ripening.

  4. Inheritance of Cherry Tomato Fruit Color%樱桃番茄果色的遗传分析

    Institute of Scientific and Technical Information of China (English)

    林涛; 李锦泉; 黄青峰; 陈朝文; 林金秀

    2013-01-01

    Various hybrids were generated by crossing among two black ,6 red ,4 pink ,2 orange ,and 2 yellow cherry tomato inbred lines . The visual fruit color classification for the tomatoes was obtained using a Royal Horticultural Society plant color chart .The phenotypic observation of 6 samples was performed on a color difference meter .And ,the major plus multi-gene analysis of quantitative traits in plant was used to study the genetic law of the fruit color in black cherry tomato .The results showed that the black fruit color was a recessive trait .The parents must be of black type in order to achieve the same fruit color in hybrid F1 .The genetic fruit color trait of the combination ,PINK × Z2 ,was determined by additive-dominant-epistemic model of two major genes ,and there was an epistemic effect between the two major genes .%以2个黑色樱桃番茄的自交系Z1、Z2,与红色、粉红色、橙色和黄色樱桃番茄自交系(分别以R、P、O和Y代表各类型)为试材,进行杂交。采取RHS植物色卡比对结合目测进行分类、色彩色差仪测定果色;并利用植物数量性状主基因+多基因的遗传分析方法,对黑色樱桃番茄果色的遗传规律进行研究。结果表明:樱桃番茄果色黑色性状为隐性性状遗传,双亲果色必须都是黑色类型,才能获得同类型果色的杂种一代;组合PINK × Z2果色性状遗传符合2对加性-显性-上位性主基因模型,主基因的遗传力非常高,早期世代就要注意果色性状的选择;果色黑色性状是由基因 R和gf 这2对主基因控制,且它们之间存在着互作效应。

  5. Tomato fruits: a good target for iodine biofortification

    OpenAIRE

    Claudia eKiferle; Silvia eGonzali; Harmen Tjalling Holwerda; Rodrigo eReal Ibaceta; Pierdomenico ePerata

    2013-01-01

    Iodine is a trace element that is fundamental for human health: its deficiency affects about two billion people worldwide. Fruits and vegetables are usually poor sources of iodine; however plants can accumulate iodine if it is either present or exogenously administered to the soil. The biofortification of crops with iodine has therefore been proposed as a strategy for improving human nutrition. A greenhouse pot experiment was carried out to evaluate the possibility of biofortifying tomato fru...

  6. Enzyme activities in mitochondria isolated from ripening tomato fruit.

    Science.gov (United States)

    Jeffery, D; Goodenough, P W; Weitzman, P D

    1986-09-01

    Mitochondria were isolated from tomato (Lycopersicon esculentum L.) fruit at the mature green, orange-green and red stages and from fruit artificially suspended in their ripening stage. The specific activities of citrate synthase (EC 4.1.3.7), malate dehydrogenase (EC 1.1.1.37), NAD-linked isocitrate dehydrogenase (EC 1.1.1.41) and NAD-linked malic enzyme (EC 1.1.1.38) were determined. The specific activities of all these enzymes fell during ipening, although the mitochondria were fully functional as demonstrated by the uptake of oxygen. The fall in activity of mitochondrial malate dehydrogenase was accompanied by a similar fall in the activity of the cytosolic isoenzyme. Percoll-purified mitochondria isolated from mature green fruit remained intact for more than one week and at least one enzyme, citrate synthase, did not exhibit the fall in specific activity found in normal ripening fruit.

  7. Progress Towards the Tomato Fruit Cell Wall Proteome

    Directory of Open Access Journals (Sweden)

    Eliel eRuiz May

    2013-05-01

    Full Text Available The plant cell wall (CW compartment, or apoplast, is host to a highly dynamic proteome, comprising large numbers of both enzymatic and structural proteins. This reflects its importance as the interface between adjacent cells and the external environment, the presence of numerous extracellular metabolic and signaling pathways, and the complex nature of wall structural assembly and remodeling during cell growth and differentiation. Tomato fruit ontogeny, with its distinct phases of rapid growth and ripening, provides a valuable experimental model system for CW proteomic studies, in that it involves substantial wall assembly, remodeling and coordinated disassembly. Moreover, diverse populations of secreted proteins must be deployed to resist microbial infection and protect against abiotic stresses. Tomato fruits also provide substantial amounts of biological material, which is a significant advantage for many types of biochemical analyses, and facilitates the detection of lower abundance proteins. In this review we describe a variety of orthogonal techniques that have been applied to identify CW localized proteins from tomato fruit, including approaches that: target the proteome of the CW and the overlying cuticle; functional ‘secretome’ screens; lectin affinity chromatography; and computational analyses to predict proteins that enter the secretory pathway. Each has its merits and limitations, but collectively they are providing important insights into CW proteome composition and dynamics, as well as some potentially controversial issues, such as the prevalence of non-canonical protein secretion.

  8. Structural investigations and morphology of tomato fruit starch.

    Science.gov (United States)

    Luengwilai, Kietsuda; Beckles, Diane M

    2009-01-14

    The physicochemical properties of starch from tomato (Solanum lycopersicum L.) pericarp and columella of cv. Moneymaker fruit at 28 days post anthesis (DPA) were investigated, providing the first description of the composition and structure of tomato fruit starch. Starch granules from pericarp were mainly polygonal, 13.5-14.3 microm, and increased in size through development, being largest in ripening fruit. Amylopectin content was 81-83% and was of molecular weight 1.01 x 10(8) g/mol; the phosphorus content was 139 ppm, and starch showed a C-type pattern with crystallinity of 30%. Starch characteristics were similar in columella except granule size (16.8-17.8 microm) and crystallinity (40%), although 6-fold more starch accumulated in the pericarp. Solara, a high-sugar tomato cultivar, was also studied to determine if this affects starch granule architecture. There were few differences from Moneymaker, except that Solara columella starch crystallinity was lower (26%), and more starch granule-intrinsic proteins could be extracted by sodium dodecyl sulfate-polyacrylamide gel electrophoresis.

  9. Over-expression ofGhDWF4 gene improved tomato fruit quality and accelerated fruit ripening

    Institute of Scientific and Technical Information of China (English)

    YE Shu-e; LUO Ming; LI Fang; LI Xian-bi; HONG Qi-bin; ZHAI Yun-lan; HU Ming-yu; WEI Ting; DENG Sha-sha; PEI Yan

    2015-01-01

    Brassinosteroids (BRs), a class of steroidal phytohormones are essential for many biological processes in plant. However, little is known about their roles in fruit development. Tomato is a highly valuable vegetable and has been adopted as the model species for studying fruit growth, development, and ripening. To understand the role of endogenous BRs in the de-velopment of tomato fruit, the expression patterns of three homologues ofDWF4 gene were investigated and the transgenic tomato plants were generated in which theGhDWF4 gene from upland cotton (Gossypium hirsutum L.) was ectopicaly expressed. The contents of main quality components were analyzed in fruits of transgenic tomato line and non-transgenic line (control plant, CP) when the fruit was mature.SlCYP90B3 that possesses high homology withGhDWF4 preferentialy expressed in mature fruit. Signiifcantly higher contents of soluble sugar, soluble proteins, and vitamin C were obtained in fruit of transgenic tomato lines compared with those in the CP. Furthermore, overexpressingGhDWF4 promoted fruit growth and ripening. The weight per fruit was increased by about 23% in transgenic lines. In addition, overexpressingGhDWF4 promoted the germination of transgenic tomato seeds and hypocotyl elongation of seedlings. These results indicated that overexpressingGhDWF4 gene in tomato could increase the contents of many nutrients in fruit and accelerate fruit ripening. It is suggested that increased endogenous BRs in fruit affect the growth and development of tomato fruit and therefore improved the nutrient quality of tomato.

  10. HPLC-DAD-ESI-MS analysis of phenolic compounds during ripening in exocarp and mesocarp of tomato fruit.

    Science.gov (United States)

    Carrillo-López, Armando; Yahia, Elhadi

    2013-12-01

    Identification of phenolic compounds was done by means of liquid chromatography (HPLC) coupled to mass spectrometry (MS) using the electrospray ionization interface (ESI). Quantification of phenolic compounds was carried out by using HPLC with diode array detector (DAD) in exocarp and mesocarp of tomato fruit at 6 different ripeness stages (mature-green, breakers, turning, pink, light-red, and red). Several phenolic compounds were identified including chlorogenic acid, caffeic acid, p-coumaric acid, ferulic acid, and rutin and some combined phenolic acids were tentatively identified, mainly glycosides, such as caffeoyl hexose I, caffeoyl hexose II, caffeoylquinic acid isomer, dicaffeoylquinic acid, p-coumaroyl hexose I, p-coumaroyl hexose II, feruloyl hexose I, feruloyl hexose II, siringyl hexose, and caffeoyl deoxyhexose hexose. Fruit exocarp had higher quantities of total soluble phenolics (TSP) compared to mesocarp. During ripening, TSP increased in both exocarp and mesocarp, mainly in exocarp. While rutin increased, chlorogenic acid decreased in both tissues: exocarp and mesocarp.

  11. Tomato fruit chromoplasts behave as respiratory bioenergetic organelles during ripening.

    Science.gov (United States)

    Renato, Marta; Pateraki, Irini; Boronat, Albert; Azcón-Bieto, Joaquín

    2014-10-01

    During tomato (Solanum lycopersicum) fruit ripening, chloroplasts differentiate into photosynthetically inactive chromoplasts. It was recently reported that tomato chromoplasts can synthesize ATP through a respiratory process called chromorespiration. Here we show that chromoplast oxygen consumption is stimulated by the electron donors NADH and NADPH and is sensitive to octyl gallate (Ogal), a plastidial terminal oxidase inhibitor. The ATP synthesis rate of isolated chromoplasts was dependent on the supply of NAD(P)H and was fully inhibited by Ogal. It was also inhibited by the proton uncoupler carbonylcyanide m-chlorophenylhydrazone, suggesting the involvement of a chemiosmotic gradient. In addition, ATP synthesis was sensitive to 2,5-dibromo-3-methyl-6-isopropyl-p-benzoquinone, a cytochrome b6f complex inhibitor. The possible participation of this complex in chromorespiration was supported by the detection of one of its components (cytochrome f) in chromoplasts using immunoblot and immunocytochemical techniques. The observed increased expression of cytochrome c6 during ripening suggests that it could act as electron acceptor of the cytochrome b6f complex in chromorespiration. The effects of Ogal on respiration and ATP levels were also studied in tissue samples. Oxygen uptake of mature green fruit and leaf tissues was not affected by Ogal, but was inhibited increasingly in fruit pericarp throughout ripening (up to 26% in red fruit). Similarly, Ogal caused a significant decrease in ATP content of red fruit pericarp. The number of energized mitochondria, as determined by confocal microscopy, strongly decreased in fruit tissue during ripening. Therefore, the contribution of chromoplasts to total fruit respiration appears to increase in late ripening stages.

  12. The inhibition of tomato fruit ripening by silver.

    Science.gov (United States)

    Hobson, G E; Nichols, R; Davies, J N; Atkey, P T

    1984-08-01

    Mature green tomato fruit, infiltrated with STS (up to 10 μmol) while still attached to the plant, ripened unevenly to give extensive green areas on an otherwise red background. Pericarp wall tissue from the two contrasting areas was analysed for various organic constituents. Both the green and, to a certain extent, the red tissue from treated fruit showed differences from normal in AIS, acidity, and PE activity. PG activity, which usually increases rapidly as tomatoes ripen, was low in the green but not significantly different from normal in the red tissue from STS-treated fruit. TEM examination revealed that electron-dense particles were present in the cell walls of phloem elements in vascular bundles of the green tissue, but these deposits were not found in the red tissue from the same fruit. X-ray microanalysis of the particles suggested that they contained concentrations of silver and sulphur. The results are interpreted as suggesting that silver is affecting those sites in the cell that would subsequently be involved in promoting the synthesis of PG.

  13. SRNAome parsing yields insights into tomato fruit ripening control.

    Science.gov (United States)

    Zuo, Jinhua; Fu, Daqi; Zhu, Yi; Qu, Guiqin; Tian, Huiqin; Zhai, Baiqiang; Ju, Zheng; Gao, Chao; Wang, Yunxiang; Luo, Yunbo; Zhu, Benzhong

    2013-12-01

    Small RNAs have emerged as critical regulators in the expression and function of eukaryotic genomes at the post-transcriptional level. To elucidate the functions of microRNA (miRNAs) and endogenous small-interfering RNAs (siRNAs) in tomato fruit ripening process, the deep sequencing and bioinformatics methods were combined to parse the small RNAs landscape in three fruit-ripening stages (mature green, breaker and red-ripe) on a whole genome. Two species-specific miRNAs and two members of TAS3 family were identified, 590 putative phased small RNAs and 125 cis-natural antisense (nat-siRNAs) were also found in our results which enriched the tomato small RNAs repository and all of them showed differential expression patterns during fruit ripening. A large amount of the targets of the small RNAs were predicted to be involved in fruit ripening and ethylene pathway. Furthermore, the promoters of the conserved and novel miRNAs were found to contain the conserved motifs of TATA-box and CT microsatellites which were also found in Arabidopsis and rice, and several species-specific motifs were found in parallel.

  14. Developmental gene regulation during tomato fruit ripening and in-vitro sepal morphogenesis

    Directory of Open Access Journals (Sweden)

    Ishida Betty K

    2003-08-01

    Full Text Available Abstract Background Red ripe tomatoes are the result of numerous physiological changes controlled by hormonal and developmental signals, causing maturation or differentiation of various fruit tissues simultaneously. These physiological changes affect visual, textural, flavor, and aroma characteristics, making the fruit more appealing to potential consumers for seed dispersal. Developmental regulation of tomato fruit ripening has, until recently, been lacking in rigorous investigation. We previously indicated the presence of up-regulated transcription factors in ripening tomato fruit by data mining in TIGR Tomato Gene Index. In our in-vitro system, green tomato sepals cultured at 16 to 22°C turn red and swell like ripening tomato fruit while those at 28°C remain green. Results Here, we have further examined regulation of putative developmental genes possibly involved in tomato fruit ripening and development. Using molecular biological methods, we have determined the relative abundance of various transcripts of genes during in vitro sepal ripening and in tomato fruit pericarp at three stages of development. A number of transcripts show similar expression in fruits to RIN and PSY1, ripening-associated genes, and others show quite different expression. Conclusions Our investigation has resulted in confirmation of some of our previous database mining results and has revealed differences in gene expression that may be important for tomato cultivar variation. We present new and intriguing information on genes that should now be studied in a more focused fashion.

  15. Plastid Proteomic Analysis in Tomato Fruit Development.

    Directory of Open Access Journals (Sweden)

    Miho Suzuki

    Full Text Available To better understand the mechanism of plastid differentiation from chloroplast to chromoplast, we examined proteome and plastid changes over four distinct developmental stages of 'Micro-Tom' fruit. Additionally, to discover more about the relationship between fruit color and plastid differentiation, we also analyzed and compared 'Micro-Tom' results with those from two other varieties, 'Black' and 'White Beauty'. We confirmed that proteins related to photosynthesis remain through the orange maturity stage of 'Micro-Tom', and also learned that thylakoids no longer exist at this stage. These results suggest that at a minimum there are changes in plastid morphology occurring before all related proteins change. We also compared 'Micro-Tom' fruits with 'Black' and 'White Beauty' using two-dimensional gel electrophoresis. We found a decrease of CHRC (plastid-lipid-associated protein and HrBP1 (harpin binding protein-1 in the 'Black' and 'White Beauty' varieties. CHRC is involved in carotenoid accumulation and stabilization. HrBP1 in Arabidopsis has a sequence similar to proteins in the PAP/fibrillin family. These proteins have characteristics and functions similar to lipocalin, an example of which is the transport of hydrophobic molecules. We detected spots of TIL (temperature-induced lipocalin in 2D-PAGE results, however the number of spots and their isoelectric points differed between 'Micro-Tom' and 'Black'/'White Beauty'. Lipocalin has various functions including those related to environmental stress response, apoptosis induction, membrane formation and fixation, regulation of immune response, cell growth, and metabolism adjustment. Lipocalin related proteins such as TIL and HrBP1 could be related to the accumulation of carotenoids, fruit color and the differentiation of chromoplast.

  16. Plastid Proteomic Analysis in Tomato Fruit Development.

    Science.gov (United States)

    Suzuki, Miho; Takahashi, Sachiko; Kondo, Takanori; Dohra, Hideo; Ito, Yumihiko; Kiriiwa, Yoshikazu; Hayashi, Marina; Kamiya, Shiori; Kato, Masaya; Fujiwara, Masayuki; Fukao, Yoichiro; Kobayashi, Megumi; Nagata, Noriko; Motohashi, Reiko

    2015-01-01

    To better understand the mechanism of plastid differentiation from chloroplast to chromoplast, we examined proteome and plastid changes over four distinct developmental stages of 'Micro-Tom' fruit. Additionally, to discover more about the relationship between fruit color and plastid differentiation, we also analyzed and compared 'Micro-Tom' results with those from two other varieties, 'Black' and 'White Beauty'. We confirmed that proteins related to photosynthesis remain through the orange maturity stage of 'Micro-Tom', and also learned that thylakoids no longer exist at this stage. These results suggest that at a minimum there are changes in plastid morphology occurring before all related proteins change. We also compared 'Micro-Tom' fruits with 'Black' and 'White Beauty' using two-dimensional gel electrophoresis. We found a decrease of CHRC (plastid-lipid-associated protein) and HrBP1 (harpin binding protein-1) in the 'Black' and 'White Beauty' varieties. CHRC is involved in carotenoid accumulation and stabilization. HrBP1 in Arabidopsis has a sequence similar to proteins in the PAP/fibrillin family. These proteins have characteristics and functions similar to lipocalin, an example of which is the transport of hydrophobic molecules. We detected spots of TIL (temperature-induced lipocalin) in 2D-PAGE results, however the number of spots and their isoelectric points differed between 'Micro-Tom' and 'Black'/'White Beauty'. Lipocalin has various functions including those related to environmental stress response, apoptosis induction, membrane formation and fixation, regulation of immune response, cell growth, and metabolism adjustment. Lipocalin related proteins such as TIL and HrBP1 could be related to the accumulation of carotenoids, fruit color and the differentiation of chromoplast.

  17. Plastid gene expression during fruit ripening in tomato.

    Science.gov (United States)

    Piechulla, B; Imlay, K R; Gruissem, W

    1985-11-01

    A tomato chloroplast genome map has been constructed with the restriction enzymes Hpa I, Pvu II, and Sal I. Twelve plastid genes have been located on the tomato plastid genome (159 kb).The expression of plastid genes during tomato fruit ripening has been studied. The levels of transcripts of various genes coding for proteins of the photosystem I (psaA), photosystem II (psbA, psbB, psbC, psbD) and the stroma (rbcL) decrease when plastids differentiate from chloroplasts to chromoplasts. The amount of plastid ribosomal RNA also decreases. Transcripts of the genes for the P700 reaction center protein (psaA), for the photosystem II-associated proteins (psbC, psbD) and for the large subunit of ribulose-1,5-bisphosphate carboxylase (rbcL) cannot be detected in chromoplasts. In contrast, a relatively high level of mRNA is present for the 32 kD protein ('herbicide-binding protein', psbA) in red fruit.

  18. Tomato yellow leaf curl virus can be acquired and transmitted by Bemisia tabaci (Gennadius) from tomato fruits

    NARCIS (Netherlands)

    Delatte, H.; Dalmon, A.; Rist, D.; Soustrade, I.; Wuster, G.; Lett, J.M.; Goldbach, R.W.; Peterschmitt, M.; Reynaud, B.

    2003-01-01

    The whitefly Bemisia tabaci is an insect pest causing worldwide economic losses, especially as a vector of geminiviruses such as Tomato yellow leaf curl virus (TYLCV). Currently, imported and exported tomato fruit are not monitored for TYLCV infection because they are not considered to represent a

  19. Tomato Fruits Show Wide Phenomic Diversity but Fruit Developmental Genes Show Low Genomic Diversity.

    Science.gov (United States)

    Mohan, Vijee; Gupta, Soni; Thomas, Sherinmol; Mickey, Hanjabam; Charakana, Chaitanya; Chauhan, Vineeta Singh; Sharma, Kapil; Kumar, Rakesh; Tyagi, Kamal; Sarma, Supriya; Gupta, Suresh Kumar; Kilambi, Himabindu Vasuki; Nongmaithem, Sapana; Kumari, Alka; Gupta, Prateek; Sreelakshmi, Yellamaraju; Sharma, Rameshwar

    2016-01-01

    Domestication of tomato has resulted in large diversity in fruit phenotypes. An intensive phenotyping of 127 tomato accessions from 20 countries revealed extensive morphological diversity in fruit traits. The diversity in fruit traits clustered the accessions into nine classes and identified certain promising lines having desirable traits pertaining to total soluble salts (TSS), carotenoids, ripening index, weight and shape. Factor analysis of the morphometric data from Tomato Analyzer showed that the fruit shape is a complex trait shared by several factors. The 100% variance between round and flat fruit shapes was explained by one discriminant function having a canonical correlation of 0.874 by stepwise discriminant analysis. A set of 10 genes (ACS2, COP1, CYC-B, RIN, MSH2, NAC-NOR, PHOT1, PHYA, PHYB and PSY1) involved in various plant developmental processes were screened for SNP polymorphism by EcoTILLING. The genetic diversity in these genes revealed a total of 36 non-synonymous and 18 synonymous changes leading to the identification of 28 haplotypes. The average frequency of polymorphism across the genes was 0.038/Kb. Significant negative Tajima'D statistic in two of the genes, ACS2 and PHOT1 indicated the presence of rare alleles in low frequency. Our study indicates that while there is low polymorphic diversity in the genes regulating plant development, the population shows wider phenotype diversity. Nonetheless, morphological and genetic diversity of the present collection can be further exploited as potential resources in future.

  20. A DEMETER-like DNA demethylase governs tomato fruit ripening.

    Science.gov (United States)

    Liu, Ruie; How-Kit, Alexandre; Stammitti, Linda; Teyssier, Emeline; Rolin, Dominique; Mortain-Bertrand, Anne; Halle, Stefanie; Liu, Mingchun; Kong, Junhua; Wu, Chaoqun; Degraeve-Guibault, Charlotte; Chapman, Natalie H; Maucourt, Mickael; Hodgman, T Charlie; Tost, Jörg; Bouzayen, Mondher; Hong, Yiguo; Seymour, Graham B; Giovannoni, James J; Gallusci, Philippe

    2015-08-25

    In plants, genomic DNA methylation which contributes to development and stress responses can be actively removed by DEMETER-like DNA demethylases (DMLs). Indeed, in Arabidopsis DMLs are important for maternal imprinting and endosperm demethylation, but only a few studies demonstrate the developmental roles of active DNA demethylation conclusively in this plant. Here, we show a direct cause and effect relationship between active DNA demethylation mainly mediated by the tomato DML, SlDML2, and fruit ripening- an important developmental process unique to plants. RNAi SlDML2 knockdown results in ripening inhibition via hypermethylation and repression of the expression of genes encoding ripening transcription factors and rate-limiting enzymes of key biochemical processes such as carotenoid synthesis. Our data demonstrate that active DNA demethylation is central to the control of ripening in tomato.

  1. The Influence of salinity and nitrogen on tomato fruit quality and micronutrients concentration in hydroponic culture

    Directory of Open Access Journals (Sweden)

    S. Safarzadeh Shirazi

    2010-12-01

    Full Text Available Salinity plays an important role in the reduction of tomato growth, especially in arid and semi-arid regions. Nitrogen (N may increase tomato tolerance to salt stress by increasing plant growth. In order to investigate the interaction effect of salinity and nitrogen on tomato growth, fruit quality, and micronutrient concentration in tomato plants, a hydroponic experiment was conducted in a completely randomized design with three replications. Treatments included 3 salinity levels (0, 30 and 60 mM, and 3 nitrogen rates (0, 1.5, and 3 mM. Results indicated that salinity decreased tomato height, shoot and fruit fresh weight, and increased citric acid in tomato fruit and consequently caused blossom-end rot in tomato fruit. However, salinity improved fruit quality (flavor. The use of N increased plant height, shoot, and fruit fresh weight compared to control. By application of N to saline nutrient solution, plant height increased. Salinity increased concentration of iron (Fe, manganese (Mn, zinc (Zn, and copper (Cu in roots, as`well as Fe and Cu in fruit. Increasing N rates in nutrient solution increased micronutrients concentration in tomato roots. Interaction of 60 mM salinity and N decreased micronutrients concentration in root, compared to control. Our tentative conclusion shows that the addition of N to the nutrient solution may decrease detrimental effect of salinity on the growth of tomato plants.

  2. Characteristics of fruit ripening in tomato mutant epi

    Institute of Scientific and Technical Information of China (English)

    WANG Zhong-feng; YING Tie-jin; BAO Bi-li; HUANG Xiao-dan

    2005-01-01

    The characteristics of fruit ripening and expression of ripening-related genes were investigated in epi, an ethylene overproduction mutant of tomato (Lycopersicon esculentum Mill.). The epi produces apparently more ethylene than its wild type VFN8 at every stage of vegetative and fruit growth and ripening; compared to VFN8, the epi fruit showed higher CO2 evolution,faster descending of chlorophyll, slightly quicker increase of carotenoid and lycopene, and faster reduction in pericarp firmness during maturation and ripening; and the mRNAs of three ripening-related genes including E8, pTOM5 andpTOM6 were at higher levels in epi. The ripening-related characteristics changing of the fruit are consistent with the increase of ethylene production and ripening-related genes expression. These results suggest that epi mutation possibly did not affect the ethylene perception and signaling during fruit ripening, and that the modified characteristics of fruit ripening possibly resulted from the ethylene overproduction and increased expression of ripening-related genes.

  3. Investigation on the cause of tomato fruit discoloration and damage under chilling condition using external antioxidants and hot water treatment

    OpenAIRE

    Nardos Tadesse, T.; Farneti, B.; Woltering, E.J.

    2012-01-01

    The color of tomato fruit turns to red from green during ripening. The accumulated lycopene content of red tomato fruits is reduced when the fruits stored in the refrigerator. Therefore, this study was conducted in order to investigate the reason why red color tomato turns to light red when the fruit is stored at chilling temperature. A tomato variety (cv Rotarno) grown under greenhouse condition and harvested at red stage was used to assess color and firmness. Before storage at these tempera...

  4. The Tomato Fruit Cell Wall : II. Polyuronide Metabolism in a Nonsoftening Tomato Mutant.

    Science.gov (United States)

    Koch, J L; Nevins, D J

    1990-03-01

    A nonsoftening tomato (Lycopersicon esculentum L.) variety, dg, was examined to assess the physiological basis for its inability to soften during ripening. Total uronic acid levels, 18 milligrams uronic acid/100 milligrams wall, and the extent of pectin esterification, 60 mole%, remained constant throughout fruit development in this mutant. The proportion of uronic acid susceptible to polygalacturonase in vitro also remained constant. Pretreatment of heat-inactivated dg fruit cell walls with tomato pectinmethylesterase enhances polygalacturonase susceptibility at all ripening stages. Pectinesterase activity of cell wall protein extracts from red ripe dg fruit was half that in extracts from analogous tissue of VF145B. Polygalacturonase activities of cell wall extracts, however, were similar in both varieties. Diffusion of uronic acid from tissue discs of both varieties increased beginning at the turning stage to a maximum of 2.0 milligrams uronic acid released/gram fresh weight at the ripe stage. The increased quantity of hydrolytic products released during ripening suggests the presence of in situ polygalacturonase activity. Low speed centrifugation was employed to induce efflux of uronide components from the cell wall tree space. In normal fruit, at the turning stage, 2.1 micrograms uronic acid/gram fresh weight was present in the eluant after 1 hour, and this value increased to a maximum of 8.2 micrograms uronic acid/gram fresh weight at the red ripe stage. However, centrifuge-aided extraction of hydrolytic products failed to provide evidence for in situ polygalacturonase activity in dg fruit. We conclude that pectinesterase and polygalacturonase enzymes are not active in situ during the ripening of dg fruit. This could account for the maintenance of firmness in ripe fruit tissue.

  5. Effect of Ethylene on Polygalacturonase,Lipoxygenase and Expansin in Ripening of Tomato Fruits

    Institute of Scientific and Technical Information of China (English)

    XUE Zhaohui; KOU Xiaohong; LUO Yunbo; ZHU Benzhong; XU Wentao

    2009-01-01

    Fruit ripening is a complex process and is regulated by many factors.Ethylene and polygalacturonase (PG),lipoxygenase (LOX),expansin (EXP) are all critical regulating factors in fruit ripening and softening process.With antisense,ACS tomato,Nr mutant tomato and cultivated tomato as materials,Northern blot hybridization showed that PG,LeEXP1 and LOX expressed differently in different parts of cultivated tomato fruit during ripening,which was related to fruit ripening.The ripening process of columella and radial pericarp was faster than pericarp.In both Nr mutant and antisense ACS transgenic tomato fruit,expression levels of PG,LeEXP1 and LOX were generally lower than those in cultivated fruit but still related to fruit ripening.The expression levels of PG,LeEXP1 and LOX increased in the mature green tomato fruits after 0.5 h treatment with ethylene ( 100 μL/L).These results indicate that gene expression of PG,LeEXP1 and LOXwere positively regulated by ethylene.The time and cumulative effect of the concentration exists in the expression of PG regulated by ethylene.The regulation of LOX expression mainly depended on the fruit development after great amount of ethylene was produced.PG played a major role in ripening and softening of tomato fruit,and cooperated with the regulation of EXP and LOX.

  6. Investigation on the cause of tomato fruit discoloration and damage under chilling condition using external antioxidants and hot water treatment

    NARCIS (Netherlands)

    Nardos Tadesse, T.; Farneti, B.; Woltering, E.J.

    2012-01-01

    The color of tomato fruit turns to red from green during ripening. The accumulated lycopene content of red tomato fruits is reduced when the fruits stored in the refrigerator. Therefore, this study was conducted in order to investigate the reason why red color tomato turns to light red when the frui

  7. Investigation on the cause of tomato fruit discoloration and damage under chilling condition using external antioxidants and hot water treatment

    NARCIS (Netherlands)

    Nardos Tadesse, T.; Farneti, B.; Woltering, E.J.

    2012-01-01

    The color of tomato fruit turns to red from green during ripening. The accumulated lycopene content of red tomato fruits is reduced when the fruits stored in the refrigerator. Therefore, this study was conducted in order to investigate the reason why red color tomato turns to light red when the

  8. Rheological Properties of Enzymatically Isolated Tomato Fruit Cuticle.

    Science.gov (United States)

    Petracek, P. D.; Bukovac, M. J.

    1995-10-01

    Rheological properties were determined for cuticular membranes (CMs) enzymatically isolated from mature tomato (Lycopersicon esculentum Mill. cv Pik Red) fruit. The cuticle responded as a viscoelastic polymer in stress-strain studies. Both CM and dewaxed CM expanded and became more elastic and susceptible to fracture when hydrated, suggesting that water plasticized the cuticle. Dewaxing of the CM caused similar changes in elasticity and fracturing, indicating that wax may serve as a supporting filler in the cutin matrix. Exposure of the cuticle to the surfactant Triton X-100 did not significantly affect its rheological properties.

  9. Carotenoid profile, antioxidant capacity, and chromoplasts of pink guava (Psidium guajava L. cv. ´Criolla´) during fruit ripening.

    Science.gov (United States)

    Rojas-Garbanzo, Carolina; Gleichenhagen, Maike; Heller, Annerose; Esquivel, Patricia; Schulze-Kaysers, Nadine; Schieber, Andreas

    2017-03-16

    Pigments of pericarp and pulp of pink guava (Psidium guajava L. cv. ´Criolla´) were investigated to elucidate the profile and the accumulation of main carotenoids during four stages of fruit ripening by using HPLC-DAD and APCI-MS/MS analysis. Seventeen carotenoids were identified and changes in their profile during fruit ripening were observed. The carotenoids all-trans-β-carotene, 15-cis-lycopene, and all-trans-lycopene were present in all ripening stages, but all-trans-lycopene was found to be predominant (from 63 % to 92 % of total carotenoids) and responsible for the high lipophilic antioxidant capacity determined by spectrophotometric assays. By using light- and transmission electron microscopy, the development of chromoplasts in pericarp and pulp could be demonstrated. The accumulation of all-trans-lycopene and all-trans-β-carotene coincided with the development of large crystals; the chromoplasts of pink guava belong, therefore, to the crystalline type.

  10. 77 FR 3433 - Notice of Request for Extension of Approval of an Information Collection; Importation of Tomatoes...

    Science.gov (United States)

    2012-01-24

    ...--Fruits and Vegetables'' (7 CFR 319.56-1 through 319.56-54). Under these regulations, pink or red tomatoes... Collection; Importation of Tomatoes From Certain Central American Countries AGENCY: Animal and Plant Health... collection associated with regulations for the importation of tomatoes from certain Central...

  11. Macromolecular components of tomato fruit pectin.

    Science.gov (United States)

    Fishman, M L; Gross, K C; Gillespie, D T; Sondey, S M

    1989-10-01

    Chelate and alkaline-soluble pectin extracted from cell walls of pericarp tissue from mature green, turning, and red ripe (Lycopersicon esculentum Mill.) fruit (cv. Rutgers), were studied by high-performance size-exclusion chromatography. Computer-aided curve fitting of the chromatograms to a series of Gaussian-shaped components revealed that pectin from all fractions was composed of a linear combination of five macromolecular-sized species. The relative sizes of these macromolecules as obtained from their radii of gyration were 1:2:4:8:16. Dialysis against 0.05 M NaCl induced partial dissociation of the biopolymers. Apparently, the weight fraction of smaller sized species increased at the expense of larger ones. Also, the dissociation produced low-molecular-weight fragments. Behavior in the presence of 0.05 M NaCl led to the conclusion that cell wall pectin acted as if it were an aggregated mosaic, held together at least partially through noncovalent interactions.

  12. Single-base resolution methylomes of tomato fruit development reveal epigenome modifications associated with ripening

    Science.gov (United States)

    Fruits are differentiated floral tissues evolved to aid seed dispersal, and have become an important part of human diets. Ethylene triggers tomato fruit ripening, but its effect is restricted to matured fruits with viable seeds by an unknown developmental cue. We show that fruits ripen prematurely w...

  13. Tomato fruit growth : integrating cell division, cell growth and endoreduplication by experimentation and modelling

    NARCIS (Netherlands)

    Fanwoua, J.

    2012-01-01

    Keywords: cell division, cell growth, cell endoreduplication, fruit growth, genotype, G×E interaction, model, tomato. Fruit size is a major component of fruit yield and quality of many crops. Variations in fruit size can be tremendous due to genotypic and environmental factors. The mechanisms

  14. Tomato fruit continues growing while ripening, affecting cuticle properties and cracking.

    Science.gov (United States)

    Domínguez, Eva; Fernández, María Dolores; Hernández, Juan Carlos López; Parra, Jerónimo Pérez; España, Laura; Heredia, Antonio; Cuartero, Jesús

    2012-12-01

    Fruit cuticle composition and their mechanical performance have a special role during ripening because internal pressure is no longer sustained by the degraded cell walls of the pericarp but is directly transmitted to epidermis and cuticle which could eventually crack. We have studied fruit growth, cuticle modifications and its biomechanics, and fruit cracking in tomato; tomato has been considered a model system for studying fleshy fruit growth and ripening. Tomato fruit cracking is a major disorder that causes severe economic losses and, in cherry tomato, crack appearance is limited to the ripening process. As environmental conditions play a crucial role in fruit growing, ripening and cracking, we grow two cherry tomato cultivars in four conditions of radiation and relative humidity (RH). High RH and low radiation decreased the amount of cuticle and cuticle components accumulated. No effect of RH in cuticle biomechanics was detected. However, cracked fruits had a significantly less deformable (lower maximum strain) cuticle than non-cracked fruits. A significant and continuous fruit growth from mature green to overripe has been detected with special displacement sensors. This growth rate varied among genotypes, with cracking-sensitive genotypes showing higher growth rates than cracking-resistant ones. Environmental conditions modified this growth rate during ripening, with higher growing rates under high RH and radiation. These conditions corresponded to those that favored fruit cracking. Fruit growth rate during ripening, probably sustained by an internal turgor pressure, is a key parameter in fruit cracking, because fruits that ripened detached from the vine did not crack.

  15. Tomato Fruit Development and Ripening Are Altered by the Silencing of LeEIN2 Gene

    Institute of Scientific and Technical Information of China (English)

    Hong-Liang Zhu; Ben-Zhong Zhu; Yi Shao; Xiao-Guang Wang; Xi-Jin Lin; Yuan-Hong Xie; Ying-Cong Li; Hong-Yan Gao; Yun-Bo Luo

    2006-01-01

    Loss-of-function ethylene insensitive 2 (EIN2) mutations showed ethylene insensitivity in Arabidopsis,which indicated an essential role of EIN2 in ethylene signaling. However, the function of EIN2 in fruit ripening has not been investigated. To gain a better understanding of EIN2, the temporal regulation of LeEIN2 expression during tomato fruit development was analyzed. The expression of LeEIN2 was constant at different stages of fruit development, and was not regulated by ethylene. Moreover, LeEIN2-silenced tomato fruits were developed using a virus-induced gene silencing fruit system to study the role of LeEIN2 in tomato fruit ripening. Silenced fruits had a delay in fruit development and ripening, related to greatly descended expression of ethylene-related and ripening-related genes in comparison with those of control fruits. These results suggested LeEIN2 positively mediated ethylene signals during tomato development. In addition,there were fewer seeds and Iocules in the silenced fruit than those in the control fruit, like the phenotype of parthenocarpic tomato fruit. The content of auxin and the expression of auxin-regulated gene were declined in silenced fruit, which indicated that EIN2 might be important for crosstalk between ethylene and auxin hormones.

  16. A multilevel analysis of fruit growth of two tomato cultivars in response to fruit temperature.

    Science.gov (United States)

    Okello, Robert C O; de Visser, Pieter H B; Heuvelink, Ep; Lammers, Michiel; de Maagd, Ruud A; Struik, Paul C; Marcelis, Leo F M

    2015-03-01

    Fruit phenotype is a resultant of inherent genetic potential in interaction with impact of environment experienced during crop and fruit growth. The aim of this study was to analyze the genetic and physiological basis for the difference in fruit size between a small ('Brioso') and intermediate ('Cappricia') sized tomato cultivar exposed to different fruit temperatures. It was hypothesized that fruit heating enhances expression of cell cycle and expansion genes, rates of carbon import, cell division and expansion, and shortens growth duration, whereas increase in cell number intensifies competition for assimilates among cells. Unlike previous studies in which whole-plant and fruit responses cannot be separated, we investigated the temperature response by varying fruit temperature using climate-controlled cuvettes, while keeping plant temperature the same. Fruit phenotype was assessed at different levels of aggregation (whole fruit, cell and gene) between anthesis and breaker stage. We showed that: (1) final fruit fresh weight was larger in 'Cappricia' owing to more and larger pericarp cells, (2) heated fruits were smaller because their mesocarp cells were smaller than those of control fruits and (3) no significant differences in pericarp carbohydrate concentration were detected between heated and control fruits nor between cultivars at breaker stage. At the gene level, expression of cell division promoters (CDKB2, CycA1 and E2Fe-like) was higher while that of the inhibitory fw2.2 was lower in 'Cappricia'. Fruit heating increased expression of fw2.2 and three cell division promoters (CDKB1, CDKB2 and CycA1). Expression of cell expansion genes did not corroborate cell size observations.

  17. Molecular cloning of tomato fruit polygalacturonase: Analysis of polygalacturonase mRNA levels during ripening

    OpenAIRE

    DellaPenna, Dean; Alexander, Danny C.; Bennett, Alan B

    1986-01-01

    The expression of a gene encoding the cell wall-degrading enzyme polygalacturonase [poly(1,4-α-D-galacturonide) glucanohydrolase, EC 3.2.1.15] was characterized during tomato fruit ripening. Polygalacturonase was purified from ripe tomato fruit and used to produce highly specific antiserum. Immunoblot analyses detected a 45- and a 46-kDa protein in ripe fruit but immunoprecipitation of in vitro translation products of mRNA from ripe tomato fruit yielded a single 54-kDa polypeptide, suggesting...

  18. Altered cell wall disassembly during ripening of Cnr tomato fruit : implications for cell wall adhesion and fruit softening

    NARCIS (Netherlands)

    Orfila, C.; Huisman, M.M.H.; Willats, W.G.T.; Alebeek, van G.J.W.M.; Schols, H.A.; Seymour, G.B.; Knox, J.P.

    2002-01-01

    The Cnr (Colourless non-ripening) tomato (Lycopersicon esculentum Mill.) mutant has an aberrant fruit-ripening phenotype in which fruit do not soften and have reduced cell adhesion between pericarp cells. Cell walls from Cnr fruit were analysed in order to assess the possible contribution of pectic

  19. A New Pink Tomato F1 Hybrid-‘Zhengfan 1037’%粉果番茄新品种郑番1037的选育

    Institute of Scientific and Technical Information of China (English)

    应芳卿; 黄文; 李自娟; 黄晓燕

    2015-01-01

    郑番1037是以自交系10A9青茎为母本、10Y153-混1为父本配制而成的早熟番茄一代杂种,无限生长类型,植株生长势强;叶量中等,叶色深绿、平展;始花节位为第6节,花序间隔3片叶,每花序着花5~6朵;果实大小均匀,连续结果能力强,幼果微具绿果肩,成熟果粉红色,圆形;平均单果质量150 g,可溶性固形物含量4.9%,平均每667 m2产量6230 kg;田间对TMV和叶霉病的抗性强于对照东农712。适合春秋保护地和露地种植。%‘Zhengfan 1037’is a new tomato F1 hybrid developed by crossing inbred line 10A9 qingjing stem as female parent and 10Y153-hun 1 as male parent. It is of early maturity,and belongs to unlimited growth type. It grows vigorously,and has mideum leaf number. Its leaf is dark green in color and flat in shape. The first flower sets at the 6th node,and the inflorescence interval is 3 leaves. Each inflorescence has 5-6 flowers. It has continues fruit setting ability. The tender fruit has light green shoulder,the mature fruit is of round shape with pink color. Its single fruit weight is 150 g with 4.9%soluble solid content. It can yield 93.45 t·hm-2. It has higher resistant to TMV and leaf mold than the control‘Dongnong 712’in field. It is suitable to be planted in protected and open fields in spring and autumn.

  20. Influence of magnetically-treated water on some nutritional qualities of irrigated tomato fruits

    Directory of Open Access Journals (Sweden)

    K. O. Yusuf

    2017-04-01

    Full Text Available This study assessed the effect of magnetically-treated water on some nutritional qualities of irrigated tomato fruits in term of vitamins A and C contents and concentration of Lead in the tomato fruits. The irrigation water was treated with three magnetic flux densities 124, 319 and 719 gauss (G produced from electromagnet. The tomato seed (variety UC82B was planted in 28 buckets in a transparent garden shed for 130 days and irrigated with either magnetically-treated water (MTW or non-magnetically-treated water (NMTW as the control experiment. Vitamin A, Vitamin C and Lead (Pb concentration were analyzed from the tomato fruits. The values of vitamin A from tomato fruits irrigated with MTW treated by 124 (T1, 319 (T2 and 719 G (T3 were 0.68 mg/kg, 0.74 mg/kg and 0.80 mg/kg, respectively while vitamin A from tomato fruits for NMTW (Tc was 0.73 mg/kg. The mean values of vitamin C of tomato fruits irrigated with MTW treated by 124 G, 319 G and 719 G were 117.30 mg/kg, 114.03 mg/kg and 115.10 mg/kg, respectively while vitamin C for NMTW was 113.93 mg/kg. The mean values of Lead concentration in the tomato for MTW were 0.083, 0.090 and 0.083 mg/kg while that of NMTW was 0.07 mg/kg. The values of Lead concentration in the tomato fruits were below the Food and Agriculture Organisation/World Health Organisation (FAO/WHO, 2011 permissible limits (0.1 mg/kg. MTW increased uptake of lead by tomato fruit from the soil by 18.57 to 28.57 %. This uptake of Pb could make the tomato unsuitable for consumption if the concentration of Pb above the WHO permissible limits.

  1. Effect Of 1-MCP Treatment On Storage Potential Of Tomato Fruit

    Directory of Open Access Journals (Sweden)

    Wrzodak Anna

    2015-12-01

    Full Text Available Tomato fruit cv. ’Faustine’ F1 were harvested at mature green and full-red stages and treated with 1 or 2 µl·l−1 of 1-methylcyclopropene (1-MCP at 20 °C and 85-90% RH, for 21 hours to investigate the ability to delay ripening. Treated and control fruit were stored at 12.5 and 20 °C and 85-90% RH. Ethylene production, rate of respiration, weight loss, market value and storage life were determined after 4-week storage. Exposure of tomato fruit to 1-MCP reduced ethylene production and respiration rate of the fruit harvested at mature-green and full-red stages of maturity. Storage life and market value of tomato fruit depended on the treatment with 1-MCP, stage of maturity and storage temperature. Untreated fruits were characterized by the shortest storage life in comparison with the fruit treated with 1-MCP. The lowest market value was observed for tomato fruit harvested as a mature green, untreated with 1-MCP and stored at 20 °C. Treatment of tomato fruit with 1-MCP resulted in the reduction of natural weight loss during storage. These results suggest that 1-MCP treatment can be used in a commercial storage and trading system for tomatoes due to its ability to delay fruit ripening.

  2. Assessment of chemical composition of tomato fruits depending on the cultivar and 1-MCP treatment

    Directory of Open Access Journals (Sweden)

    Anna Wrzodak

    2016-09-01

    Full Text Available The experiments on influence of 1-MCP treatment on the content of some chemical compounds in tomato fruits were performed. For the experiments two greenhouse cultivars of tomato were selected: ‘Faustine F1’ and ‘Habana F1’ (LSL type – long shelf life. Both tomato cultivars were grown on stakes in the field. Tomato fruits were harvested in mature green and full-red stages of maturity. Tomato fruit were treated with 1-MCP at the concentrations of 1.0 or 2.0 μl·l-1 and then stored at the temperature of 12.5°C or 20°C, and 85–90% of relative humidity in ambient atmosphere. Immediately after harvest and after 4 weeks of storage chemical analyses were carried out. The results showed some significant differences in the content of determined compounds depending on 1-MCP treatment, stage of maturity and storage temperature. Fruits of both cultivars showed a higher content of phenolics and dry matter in the case of fruits treated with 1-MCP. The highest content of lycopene was found in tomato fruits of both cultivars harvested in full-red stage, after storage at 20°C. Tomato fruits treated with 1-MCP were characterized by a lower content of lycopene and vitamin C compared to the untreated fruits.

  3. Fruit illumination stimulates cell division but has no detectable effect on fruit size in tomato (Solanum lycopersicum)

    NARCIS (Netherlands)

    Okello, R.C.; Heuvelink, E.; Visser, de P.H.B.; Lammers, M.; Maagd, de R.A.; Marcelis, L.F.M.; Struik, P.C.

    2015-01-01

    Light affects plant growth through assimilate availability and signals regulating development. The effects of light on growth of tomato fruit were studied using cuvettes with light-emitting diodes providing white, red or blue light to individual tomato trusses for different periods during daytime.

  4. Tomato fruit antioxidants in relation to salinity and greenhouse climate.

    Science.gov (United States)

    Ehret, David L; Usher, Kevin; Helmer, Tom; Block, Glenn; Steinke, Dan; Frey, Brenda; Kuang, Tallie; Diarra, Moussa

    2013-02-06

    A two-year study of antioxidants in greenhouse tomato was conducted. Plants were treated continuously with nutrient solution electrical conductivities (EC) of 2, 4, or 6 dS m⁻¹. Increasing EC reduced yield per plant and fruit size. Oxygen radical absorbance capacity (ORAC), lutein, β-carotene, lycopene, and vitamin C concentrations were evaluated in harvested fruit. ORAC and all antioxidants with the exception of lutein increased with EC. None of the 10 genes involved in antioxidant metabolism were affected by salinity in ripe fruit, but the expression of three of them (ZDS, CrtR-b1, and NCED1) varied with the stage of fruit development. Antioxidant concentrations were related to greenhouse climatic conditions. β-Carotene, lycopene, lutein, and vitamin C responded negatively to light and positively to temperature, whereas ORAC was unresponsive. Multiple regressions of antioxidants in relation to EC and climatic factors showed that antioxidants responded more strongly to light and temperature than to EC.

  5. Molecular cloning of tomato fruit polygalacturonase: Analysis of polygalacturonase mRNA levels during ripening.

    Science.gov (United States)

    Dellapenna, D; Alexander, D C; Bennett, A B

    1986-09-01

    The expression of a gene encoding the cell wall-degrading enzyme polygalacturonase [poly(1,4-alpha-D-galacturonide) glucanohydrolase, EC 3.2.1.15] was characterized during tomato fruit ripening. Polygalacturonase was purified from ripe tomato fruit and used to produce highly specific antiserum. Immunoblot analyses detected a 45- and a 46-kDa protein in ripe fruit but immunoprecipitation of in vitro translation products of mRNA from ripe tomato fruit yielded a single 54-kDa polypeptide, suggesting post-translational processing. A plasmid cDNA library was prepared from poly(A)(+) RNA isolated from ripe tomato fruit. The cDNA library was inserted into a lambda-based expression vector, and polygalacturonase cDNA clones were identified by immunological screening. Hybrid-select translation experiments indicated that the cDNAs encode a 54-kDa in vitro translation product that is specifically immunoprecipitated with polygalacturonase antiserum. RNA-blot analysis indicated that the 1.9-kilobase polygalacturonase mRNA was virtually absent from immature-green fruit, accumulated steadily during the ripening process, and was at its highest level in red-ripe fruit. There was at least a 2000-fold increase in the level of polygalacturonase mRNA between immature-green and red-ripe tomato fruit. These studies show that the levels of polygalacturonase mRNA are developmentally regulated during tomato fruit ripening.

  6. Do nymphs and adults of three Neotropical zoophytophagous mirids damage leaves and fruits of tomato?

    Science.gov (United States)

    Silva, D B; Bueno, V H P; Calvo, F J; van Lenteren, J C

    2017-04-01

    The predators Macrolophus basicornis (Stal), Engytatus varians (Distant) and Campyloneuropsis infumatus (Carvalho) consume large numbers of tomato pests such as Bemisia tabaci (Gennadius) and Tuta absoluta (Meyrick). However, they are zoophytophagous and feed on plant parts as well. We evaluated the type and effect of injury caused by nymphs and adults of these mirids on tomato seedlings and fruit in the absence of prey. For each mirid species, seedlings were exposed to groups of 20 nymphs or adults for 72 h, and fruits were exposed for 48 h to groups of four nymphs or adults. Type and the number of injury on stems, petioles and leaflets of tomato seedlings and fruits were recorded after removal of insects. Nymphs and adults of these mirids caused necrotic rings on the leaflets, but no injury was observed on stem and petioles. The necrotic rings on leaflets consisted of blemishes, characterized by feeding punctures surrounded by a yellowish, bleached area. The number of necrotic rings did not exceed one per individual mirid and seedlings developed normally. Nymphs also caused feeding punctures on tomato fruit, but in even lower numbers than on leaflets. Two weeks after the start of the experiment the tomato fruit still looked fresh and feeding punctures had disappeared. Adults did not cause any injury to tomato fruit. The results indicate that nymphs and adults of these zoophytophagous mirids cause little injury to tomato seedlings and fruit, even when present in high densities and in the absence of prey, making them interesting candidates for biological control.

  7. Spermidine affects the transcriptome responses to high temperature stress in ripening tomato fruit

    Institute of Scientific and Technical Information of China (English)

    Lin CHENG; Rong-rong SUN; Fei-yan WANG; Zhen PENG; Fu-ling KONG; Jian WU; Jia-shu CAO; Gang LU

    2012-01-01

    Objective:High temperature adversely affects quality and yield of tomato fruit.Polyamine can alleviate heat injury in plants.This study is aimed to investigate the effects of polyamine and high temperature on transcriptional profiles in ripening tomato fruit.Methods:An Affymetrix tomato microarray was used to evaluate changes in gene expression in response to exogenous spermidine (Spd,1 mmol/L) and high temperature (33/27 ℃) treatments in tomato fruits at mature green stage.Results:Of the 10101 tomato probe sets represented on the array,127 loci were differentially expressed in high temperature-treated fruits,compared with those under normal conditions,functionally characterized by their involvement in signal transduction,defense responses,oxidation reduction,and hormone responses.However,only 34 genes were up-regulated in Spd-treated fruits as compared with non-treated fruits,which were involved in primary metabolism,signal transduction,hormone responses,transcription factors,and stress responses.Meanwhile,55 genes involved in energy metabolism,cell wall metabolism,and photosynthesis were down-regulated in Spd-treated fruits.Conclusions:Our results demonstrated that Spd might play an important role in regulation of tomato fruit response to high temperature during ripening stage.

  8. Polyamine levels and tomato fruit development: possible interaction with ethylene.

    Science.gov (United States)

    Saftner, R A; Baldi, B G

    1990-02-01

    Fruits of tomato, Lycopersicon esculentum Mill. cv Liberty, ripen slowly and have a prolonged keeping quality. Ethylene production and the levels of polyamines in pericarp of cv Liberty, Pik Red, and Rutgers were measured in relation to fruit development. Depending on the stage of fruit development, Liberty produced between 16 and 38% of the ethylene produced by Pik Red and Rutgers. The polyamines putrescine, spermidine, and spermine were present in all cultivars. Cadaverine was detected only in Rutgers. Levels of putrescine and spermidine declined between the immature and mature green stages of development and prior to the onset of climacteric ethylene production. In Pik Red and Rutgers, the decline persisted, whereas in Liberty, the putrescine level increased during ripening. Ripe pericarp of Liberty contained about three and six times more free (unconjugated) polyamines than Pik Red and Rutgers, respectively. No pronounced changes in spermidine or cadaverine occurred during ripening. The increase in the free polyamine level in ripe pericarp of Liberty may account for the reduction of climacteric ethylene production, and prolonged storage life.

  9. A dynamic model of tomato fruit growth integrating cell division, cell growth and endoreduplication

    NARCIS (Netherlands)

    Fanwoua, J.; Visser, de P.H.B.; Heuvelink, E.; Yin, X.; Struik, P.C.; Marcelis, L.F.M.

    2013-01-01

    In this study, we developed a model of tomato (Solanum lycopersicum L.) fruit growth integrating cell division, cell growth and endoreduplication. The fruit was considered as a population of cells grouped in cell classes differing in their initial cell age and cell mass. The model describes fruit gr

  10. Occurrence of Candida orthopsilosis in Brazilian tomato fruits (Lycopersicum esculentum Mill.

    Directory of Open Access Journals (Sweden)

    D. Robl

    2014-01-01

    Full Text Available We aimed to isolate and identify yeasts found in the tomato fruit in order to obtain isolates with biotechnological potential, such as in control of fungal diseases that damage postharvest fruits. We identified Candida orthopsilosis strains LT18 and LT24. This is the first report of this yeast on Lycopersicum esculentum fruits in Brazil.

  11. Occurrence of Candida orthopsilosis in Brazilian tomato fruits (Lycopersicum esculentum Mill.)

    OpenAIRE

    Robl, D.; Thimoteo, S.S.; de Souza, G.C.C.F.; M.R. Beux; Dalzoto,P.R.; Pinheiro, R L; PIMENTEL, I. C.

    2014-01-01

    We aimed to isolate and identify yeasts found in the tomato fruit in order to obtain isolates with biotechnological potential, such as in control of fungal diseases that damage postharvest fruits. We identified Candida orthopsilosis strains LT18 and LT24. This is the first report of this yeast on Lycopersicum esculentum fruits in Brazil.

  12. Occurrence of Candida orthopsilosis in Brazilian tomato fruits (Lycopersicum esculentum Mill.).

    Science.gov (United States)

    Robl, D; Thimoteo, S S; de Souza, G C C F; Beux, M R; Dalzoto, P R; Pinheiro, R L; Pimentel, I C

    2014-01-01

    We aimed to isolate and identify yeasts found in the tomato fruit in order to obtain isolates with biotechnological potential, such as in control of fungal diseases that damage postharvest fruits. We identified Candida orthopsilosis strains LT18 and LT24. This is the first report of this yeast on Lycopersicum esculentum fruits in Brazil.

  13. Carotenoids in fresh and processed tomato (Solanum lycopersicum) fruits protect cells from oxidative stress injury.

    Science.gov (United States)

    Del Giudice, Rita; Petruk, Ganna; Raiola, Assunta; Barone, Amalia; Monti, Daria Maria; Rigano, Maria Manuela

    2017-03-01

    Lipophilic antioxidants in tomato (Solanum lycopersicum) fruits exert important functions in reducing the risk of human diseases. Here the effect of thermal processing on the antioxidant activity of lipophilic extracts from the commercial tomato hybrid 'Zebrino' was analysed. Carotenoid content and lipophilic antioxidant activity were determined and the ability of tomato extracts in rescuing cells from oxidative stress was assessed. Lipophilic antioxidant activity was completely retained after heat treatment and extracts were able to mitigate the detrimental effect induced by oxidative stress on different cell lines. Lycopene alone was able to rescue cells from oxidative stress, even if to a lower extent compared with tomato extracts. These results were probably due to the synergistic effect of tomato compounds in protecting cells from oxidative stress injury. The current study provides valuable insights into the health effect of the dietary carotenoids present in fresh and processed tomato fruits. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  14. Effects of seasonal variations on antioxidant activity of pink guava fruits

    Science.gov (United States)

    Ahmad, Haniza; Abdullah, Aminah

    2014-09-01

    This study aimed to evaluate the effects of seasonal variations during rainy and hot season on antioxidant activity of pink guava fruits in approximately one year duration specifically on November 2012, December 2012, January 2013, March 2013, April 2013, May 2013, July 2013, August 2013 and November 2013. Fruit samples (Sungkai and Semenyih variants) were collected from Sime Darby Beverages plantation located in Sitiawan. The fruits were samples for 9 times from Nov 2012 to Nov 2013 except Feb 2013, Jun 2013, Sept 2013 and Oct 2013. Fruits were peeled, seeded and blended into uniform puree. Samples were then extracted for its antioxidant activity determination using 50% acetone. Antioxidant activity was evaluated using total phenolic compounds (TPC) assay, ferric-reducing antioxidant power assay (FRAP) and 1,1-diphenyl1-2-picrylhydrazyl free radical-scavenging capacity (DPPH). Analysis was conducted using 96-well microplate spectrophotometer UV. The highest TPC result was Semenyih var recorded 2192.80 mg GAE/100g FW whilst Sungkai var 1595.98 mg GAE/100g FW both on July 2013 with rainfall was at the least (45mm) and the lowest for Sungkai var was 792.75 mg GAE/100g FW and 1032.41 mg GAE/100g FW for Semenyih var, both on Nov 2012 with 185mm rainfall. There were significant negative correlation between TPC and rainfall (mm) for both Semenyih var (r = - 0.699, p<0.005, r2 = 0.489) and Sungkai var (r = -0.72, p<0.05, r2 = 0.531). The highest FRAP result (mg TE/100g FW) was 1677.74 for Semenyih var (Aug 2013, rainfall = 160.5mm) and the highest FRAP for Sungkai var was 1104.60 (Jul 2013, rainfall = 45.0mm) whereas the lowest for Semenyih and Sungkai var was 1090.22 (Mar 2013, rainfall = 97.5mm) and 767.88 (Nov 2012, rainfall = 185.50) respectively. There was weak negative correlation between FRAP and rainfall(mm) for both Sungkai var (r = - 0.324, p<0.05, r2 = 0.105) and Semenyih var (r = - 0.362, p<0.05, r2 = 0.132). The highest DPPH for Semenyih var was 88.40% (Aug

  15. The role of alternative oxidase in tomato fruit ripening and its regulatory interaction with ethylene.

    Science.gov (United States)

    Xu, Fei; Yuan, Shu; Zhang, Da-Wei; Lv, Xin; Lin, Hong-Hui

    2012-09-01

    Although the alternative oxidase (AOX) has been proposed to play a role in fruit development, the function of AOX in fruit ripening is unclear. To gain further insight into the role of AOX in tomato fruit ripening, transgenic tomato plants 35S-AOX1a and 35S-AOX-RNAi were generated. Tomato plants with reduced LeAOX levels exhibited retarded ripening; reduced carotenoids, respiration, and ethylene production; and the down-regulation of ripening-associated genes. Moreover, no apparent respiratory climacteric occurred in the AOX-reduced tomato fruit, indicating that AOX might play an important role in climacteric respiration. In contrast, the fruit that overexpressed LeAOX1a accumulated more lycopene, though they displayed a similar pattern of ripening to wild-type fruit. Ethylene application promoted fruit ripening and anticipated ethylene production and respiration, including the alternative pathway respiration. Interestingly, the transgenic plants with reduced LeAOX levels failed to ripen after 1-methylcyclopropene (1-MCP) treatment, while such inhibition was notably less effective in 35S-AOX1a fruit. These findings indicate that AOX is involved in respiratory climacteric and ethylene-mediated fruit ripening of tomato.

  16. Difference in volatile profile between pericarp tissue and locular gel in tomato fruit

    Science.gov (United States)

    Aroma, a complex mixture of volatile compounds, plays an important role in the perception and acceptability of tomato products by consumers. Numerous studies have reported volatile profiles in tomatoes based on measurement of the whole fruit or pericarp tissue, however, little is understood regardin...

  17. Tomato fruit quality as affected by ripening on- and off-vine

    OpenAIRE

    Koukounaras, A.; Makridou, C.; Siomos, A.S.

    2010-01-01

    Proceedings of the International Conference “Environmentally friendly and safe technologies for quality of fruit and vegetables”, held in Universidade do Algarve, Faro, Portugal, on January 14-16, 2009. This Conference was a join activity with COST Action 924. In order to extend postharvest life and marketable period, tomato fruits are mainly harvested at the mature green stage and they ripen off vine. However, most of the consumers are convinced that on vine ripened tomatoes a...

  18. Effect of endogenously synthesized and exogenously applied ethanol on tomato fruit ripening

    Energy Technology Data Exchange (ETDEWEB)

    Kelly, M.O.; Saltveit, M.E. Jr.

    1988-09-01

    Tomato (Lycopersicon esculentum Mill. var Castlemart) fruit ripening was inhibited by tissue concentrations of ethanol that were produced by either exposure to exogenous ethanol vapors or synthesis under anaerobic atmospheres. Ethanol was not detected in aerobically ripened tomato fruit. Ripening was not inhibited by exposure to methanol at an equivalent molar concentration to inhibitory concentrations of ethanol, while ripening was slightly more inhibited by n-propanol than by equivalent molar concentrations of ethanol. The mottled appearance of a few ripened ethanol-treated fruit was not observed in n-propanol-treated fruit.

  19. Functional characterization of a tomato COBRA-like gene functioning in fruit development and ripening

    Directory of Open Access Journals (Sweden)

    Cao Ying

    2012-11-01

    Full Text Available Abstract Background Extensive studies have demonstrated that the COBRA gene is critical for biosynthesis of cell wall constituents comprising structural tissues of roots, stalks, leaves and other vegetative organs, however, its role in fruit development and ripening remains largely unknown. Results We identified a tomato gene (SlCOBRA-like homologous to Arabidopsis COBRA, and determined its role in fleshy fruit biology. The SlCOBRA-like gene is highly expressed in vegetative organs and in early fruit development, but its expression in fruit declines dramatically during ripening stages, implying a primary role in early fruit development. Fruit-specific suppression of SlCOBRA-like resulted in impaired cell wall integrity and up-regulation of genes encoding proteins involved in cell wall degradation during early fruit development. In contrast, fruit-specific overexpression of SlCOBRA-like resulted in increased wall thickness of fruit epidermal cells, more collenchymatous cells beneath the epidermis, elevated levels of cellulose and reduced pectin solubilization in the pericarp cells of red ripe fruits. Moreover, transgenic tomato fruits overexpressing SlCOBRA-like exhibited desirable early development phenotypes including enhanced firmness and a prolonged shelf life. Conclusions Our results suggest that SlCOBRA-like plays an important role in fruit cell wall architecture and provides a potential genetic tool for extending the shelf life of tomato and potentially additional fruits.

  20. Unraveling the protein network of tomato fruit in response to necrotrophic phytopathogenic Rhizopus nigricans.

    Directory of Open Access Journals (Sweden)

    Xiaoqi Pan

    Full Text Available Plants are endowed with a sophisticated defense mechanism that gives signals to plant cells about the immediate danger from surroundings and protects them from pathogen invasion. In the search for the particular proteins involved in fruit defense responses, we report here a comparative analysis of tomato fruit (Solanum lycopersicum cv. Ailsa Craig infected by Rhizopus nigricans Ehrenb, which is a significant contributor to postharvest rot disease in fresh tomato fruits. In total, four hundred forty-five tomato proteins were detected in common between the non-infected group and infected tomato fruit of mature green. Forty-nine differentially expressed spots in 2-D gels were identified, and were sorted into fifteen functional groups. Most of these proteins participate directly in the stress response process, while others were found to be involved in several equally important biological processes: protein metabolic process, carbohydrate metabolic process, ethylene biosynthesis, and cell death and so on. These responses occur in different cellular components, both intra- and extracellular spaces. The differentially expressed proteins were integrated into several pathways to show the regulation style existing in tomato fruit host. The composition of the collected proteins populations and the putative functions of the identified proteins argue for their roles in pathogen-plant interactions. Collectively results provide evidence that several regulatory pathways contribute to the resistance of tomato fruit to pathogen.

  1. Identification of Two New Mechanisms That Regulate Fruit Growth by Cell Expansion in Tomato

    Directory of Open Access Journals (Sweden)

    Constance Musseau

    2017-06-01

    Full Text Available Key mechanisms controlling fruit weight and shape at the levels of meristem, ovary or very young fruit have already been identified using natural tomato diversity. We reasoned that new developmental modules prominent at later stages of fruit growth could be discovered by using new genetic and phenotypic diversity generated by saturated mutagenesis. Twelve fruit weight and tissue morphology mutants likely affected in late fruit growth were selected among thousands of fruit size and shape EMS mutants available in our tomato EMS mutant collection. Their thorough characterization at organ, tissue and cellular levels revealed two major clusters controlling fruit growth and tissue morphogenesis either through (i the growth of all fruit tissues through isotropic cell expansion or (ii only the growth of the pericarp through anisotropic cell expansion. These likely correspond to new cell expansion modules controlling fruit growth and tissue morphogenesis in tomato. Our study therefore opens the way for the identification of new gene regulatory networks controlling tomato fruit growth and morphology.

  2. Changes in oxidative stress in transgenic RNAi ACO1 tomato fruit during ripening

    Science.gov (United States)

    Eglous, Najat Mohamed; Ali, Zainon Mohd; Hassan, Maizom; Zainal, Zamri

    2013-11-01

    Tomato (Solanum Lycopersicum L.) is the second most cultivated vegetable in the world and widely used as a system for studying the role of ethylene during fruit ripening. Our objective was to study the oxidative stress and antioxidative metabolism during ripening of non transgenic tomato and transgenic line-21 tomato which reduced ethylene. The line-21 of transgenic tomato plants (RNAi ACO1) had lower ethylene production and longer shelf-life more than 32 days as compared to the wild-type fruits which have very short shelf-life. In this study, tomato fruit were divided into five different stages (MG: mature green 5%, B: breaker 25%, T: turning 50%, O: orange75%, RR: red ripe100%). The activity of lipoxygenase (LOX) and lipid peroxidation (MDA) were measured to assess changes in oxidative stress. The LOX activity and MDA content decreased significantly obtaining 2.6-fold and 1.2-fold, respectively, as compared to the wild type fruit. However, superoxide dismutase (SOD) and catalase (CAT) activities were increased to 1.9 and 1.2 folds from the mature green to the fully ripe stage in transgenic tomatoes. Furthermore, the wild type tomato increases 1.3 in SOD and 1.6 in CAT activities. The overall results indicate that the wild type tomato fruit showed a faster rate of ripening, parallel to decline in the rate of enzymatic antioxidative systems as compared to the transgenic line-21 tomato fruit. In addition, the results show that the antioxidant capacity is improved during the ripening process and is accompanied by an increase in the oxidative stress.

  3. Effect of edible coatings on bioactive compounds and antioxidant capacity of tomatoes at different maturity stages.

    Science.gov (United States)

    Dávila-Aviña, Jorge E; Villa-Rodríguez, José A; Villegas-Ochoa, Mónica A; Tortoledo-Ortiz, Orlando; Olivas, Guadalupe I; Ayala-Zavala, J Fernando; González-Aguilar, Gustavo A

    2014-10-01

    This work evaluated the effect of carnauba and mineral oil coatings on the bioactive compounds and antioxidant capacity of tomato fruits (cv. "Grandela"). Carnauba and mineral oil coatings were applied on fresh tomatoes at two maturity stages (breaker and pink) over 28 day of storage at 10 °C was evaluated. Bioactive compound and antioxidant activity assays included total phenols, total flavonoids, ascorbic acid (ASA), lycopene, DPPH radical scavenging activity (%RSA), trolox equivalent antioxidant capacity (TEAC) and oxygen radical absorbance capacity assay (ORAC). The total phenolic, flavonoid and lycopene contents were significantly lower for coated fruit than control fruits. However, ascorbic acid content was highest in fruits treated with carnauba, followed by mineral oil coating and control fruits. The ORAC values were highest in breaker tomatoes coated with carnauba wax, followed by mineral oil-coated fruits and controls. No significant differences in ORAC values were observed in pink tomatoes. % RSA and TEAC values were higher for controls than for coated fruit. Edible coatings preserve the overall quality of tomatoes during storage without affecting the nutritional quality of fruit. We found that the physiological response to the coatings is in function of the maturity stage of tomatoes. The information obtained in this study support to use of edible coating as a safe and good alternative to preserve tomato quality, and that the changes of bioactive compounds and antioxidant activity of tomato fruits, was not negatively affected. This approach can be used by producers to preserve tomato quality.

  4. Antioxidant and Antiplatelet Activities in Extracts from Green and Fully Ripe Tomato Fruits (Solanum lycopersicum) and Pomace from Industrial Tomato Processing

    OpenAIRE

    Eduardo Fuentes; Reinhold Carle; Luis Astudillo; Luis Guzmán; Margarita Gutiérrez; Gilda Carrasco; Iván Palomo

    2013-01-01

    The consumption of fruits and vegetables is accepted to be one of the strategies to reduce risk factors for these diseases. The aim of this study was to examine potential relationships between the antioxidant and the antiplatelet activities in green mature and fully ripe (red) tomatoes and of lycopene-rich byproducts of tomato paste processing such as pomace. The total phenol content of tomato components was the highest in peels, pulp, and in the mucilaginous myxotesta covering the tomato see...

  5. Acetaldehyde stimulation of net gluconeogenic carbon movement from applied malic acid in tomato fruit pericarp tissue

    Energy Technology Data Exchange (ETDEWEB)

    Halinska, A.; Frenkel, C. (Rutgers, The State Univ. of New Jersey, New Brunswick (United States))

    1991-03-01

    Applied acetaldehyde is known to lead to sugar accumulation in fruit including tomatoes (Lycopersicon esculentum) presumably due to stimulation of gluconeogenesis. This conjecture was examined using tomato fruit pericarp discs as a test system and applied l-(U-{sup 14}C)malic acid as the source for gluconeogenic carbon mobilization. Results indicate that malic and perhaps other organic acids are carbon sources for gluconeogenesis occurring normally in ripening tomatoes. The process is stimulated by acetaldehyde apparently by attenuating the fructose-2,6-biphosphate levels. The mode of the acetaldehyde regulation of fructose-2,6-biphosphate metabolism awaits clarification.

  6. Melatonin content of pepper and tomato fruits: effects of cultivar and solar radiation.

    Science.gov (United States)

    Riga, Patrick; Medina, Sonia; García-Flores, Libia Alejandra; Gil-Izquierdo, Ángel

    2014-08-01

    We evaluated the effect of cultivar and solar radiation on the melatonin content of Capsicum annuum (pepper) and Solanum lycopersicum (tomato) fruits. The melatonin content of red pepper fruits ranged from 31 to 93ngg(-1) (dry weight). The melatonin content of tomato ranged from 7.5 to 250ngg(-1) (dry weight). We also studied the effect of ripeness on melatonin content and identified one group of pepper cultivars in which the melatonin content increased as the fruit ripened and another in which it decreased as the fruit ripened. Under shade conditions, the melatonin content in most of tomato cultivars tended to increase (up to 135%), whereas that of most pepper cultivars decreased (to 64%). Overall, the results also demonstrated that the melatonin content of the fruits was not related to carbon fluxes from leaves.

  7. Yield and quality of tomato (Lycopersicon esculentum Mill. fruit harvested from plants grown in mulched soil

    Directory of Open Access Journals (Sweden)

    Joanna Majkowska-Gadomska

    2012-12-01

    Full Text Available A study investigating the yield of field-grown tomatoes was conducted in 2007–2009 in the Garden of the Research and Experimental Station of the University of Warmia and Mazury in Olsztyn. The experimental materials comprised two tomato cultivars, 'Bawole Serce' and 'Złoty Ożarowski'. Tomato plants were grown in bare soil and in soil mulched with black non-woven PP 50 fabric. Cultivar selection had a significant effect only on average early yield of 'Bawole Serce'. The highest average early yield for three years of the study was recorded for 'Bawole Serce' grown in mulched soil, while the lowest one for 'Złoty Ożarowski' grown in mulched plots. Tomato marketable yield was significantly higher in both treatments where 'Bawole Serce' plants were grown. Fruits harvested from tomato plants 'Złoty Ożarowski' had a higher dry matter content. Soil mulching significantly increased the dry matter content of 'Złoty Ożarowski' tomato fruit. The experimental factors had no influence on the concentrations of L-ascorbic acid, total sugars, and organic acids. Nitrate levels in tomato fruit were within permissible limits, and they were significantly affected by the cultivation method and the method x cultivar interaction. Nitrate accumulation was reduced in tomato plants 'Złoty Ożarowski' grown in mulched soil.

  8. Fleshy fruit expansion and ripening are regulated by the Tomato SHATTERPROOF gene TAGL1.

    Science.gov (United States)

    Vrebalov, Julia; Pan, Irvin L; Arroyo, Antonio Javier Matas; McQuinn, Ryan; Chung, Miyoung; Poole, Mervin; Rose, Jocelyn; Seymour, Graham; Grandillo, Silvana; Giovannoni, James; Irish, Vivian F

    2009-10-01

    The maturation and ripening of fleshy fruits is a developmental program that synchronizes seed maturation with metabolism, rendering fruit tissues desirable to seed dispersing organisms. Through RNA interference repression, we show that Tomato AGAMOUS-LIKE1 (TAGL1), the tomato (Solanum lycopersicum) ortholog of the duplicated SHATTERPROOF (SHP) MADS box genes of Arabidopsis thaliana, is necessary for fruit ripening. Tomato plants with reduced TAGL1 mRNA produced yellow-orange fruit with reduced carotenoids and thin pericarps. These fruit are also decreased in ethylene, indicating a comprehensive inhibition of maturation mediated through reduced ACC Synthase 2 expression. Furthermore, ectopic expression of TAGL1 in tomato resulted in expansion of sepals and accumulation of lycopene, supporting the role of TAGL1 in ripening. In Arabidopsis, the duplicate SHP1 and SHP2 MADS box genes regulate the development of separation layers essential for pod shatter. Expression of TAGL1 in Arabidopsis failed to completely rescue the shp1 shp2 mutant phenotypes, indicating that TAGL1 has evolved distinct molecular functions compared with its Arabidopsis counterparts. These analyses demonstrate that TAGL1 plays an important role in regulating both fleshy fruit expansion and the ripening process that together are necessary to promote seed dispersal of fleshy fruit. From this broad perspective, SHP1/2 and TAGL1, while distinct in molecular function, regulate similar activities via their necessity for seed dispersal in Arabidopsis and tomato, respectively.

  9. Enhancing the Health-Promoting Effects of Tomato Fruit for Biofortified Food

    Directory of Open Access Journals (Sweden)

    Assunta Raiola

    2014-01-01

    Full Text Available Consumption of tomato fruits, like those of many other plant species that are part of the human diet, is considered to be associated with several positive effects on health. Indeed, tomato fruits are an important source of bioactive compounds with known beneficial effects including vitamins, antioxidants, and anticancer substances. In particular, antioxidant metabolites are a group of vitamins, carotenoids, phenolic compounds, and phenolic acid that can provide effective protection by neutralizing free radicals, which are unstable molecules linked to the development of a number of degenerative diseases and conditions. In this review, we will summarize the recent progress on tomatoes nutritional importance and mechanisms of action of different phytochemicals against inflammation processes and prevention of chronic noncommunicable diseases (e.g., obesity, diabetes, coronary heart disease, and hypertension. In addition, we will summarize the significant progress recently made to improve the nutritional quality of tomato fruits through metabolic engineering and/or breeding.

  10. Metabolite profiling of Italian tomato landraces with different fruit types

    NARCIS (Netherlands)

    Baldina, Svetlana; Picarella, Maurizio E.; Troise, Antonio D.; Pucci, Anna; Ruggieri, Valentino; Ferracane, Rosalia; Barone, Amalia; Fogliano, Vincenzo; Mazzucato, Andrea

    2016-01-01

    Increased interest toward traditional tomato varieties is fueled by the need to rescue desirable organoleptic traits and to improve the quality of fresh and processed tomatoes in the market. In addition, the phenotypic and genetic variation preserved in tomato landraces represents a means to unde

  11. Induced mutations in tomato SlExp1 alter cell wall metabolism and delay fruit softening.

    Science.gov (United States)

    Minoia, Silvia; Boualem, Adnane; Marcel, Fabien; Troadec, Christelle; Quemener, Bernard; Cellini, Francesco; Petrozza, Angelo; Vigouroux, Jacqueline; Lahaye, Marc; Carriero, Filomena; Bendahmane, Abdelhafid

    2016-01-01

    Fruit ripening and softening are key traits for many fleshy fruit. Since cell walls play a key role in the softening process, expansins have been investigated to control fruit over ripening and deterioration. In tomato, expression of Expansin 1 gene, SlExp1, during fruit ripening was associated with fruit softening. To engineer tomato plants with long shelf life, we screened for mutant plants impaired in SlExp1 function. Characterization of two induced mutations, Slexp1-6_W211S, and Slexp1-7_Q213Stop, showed that SlExp1 loss of function leads to enhanced fruit firmness and delayed fruit ripening. Analysis of cell wall polysaccharide composition of Slexp1-7_Q213Stop mutant pointed out significant differences for uronic acid, neutral sugar and total sugar contents. Hemicelluloses chemistry analysis by endo-β-1,4-d-glucanase hydrolysis and MALDI-TOF spectrometry revealed that xyloglucan structures were affected in the fruit pericarp of Slexp1-7_Q213Stop mutant. Altogether, these results demonstrated that SlExp1 loss of function mutants yield firmer and late ripening fruits through modification of hemicellulose structure. These SlExp1 mutants represent good tools for breeding long shelf life tomato lines with contrasted fruit texture as well as for the understanding of the cell wall polysaccharide assembly dynamics in fleshy fruits.

  12. Distribution of xylem hydraulic resistance in fruiting truss of tomato influenced by water stress

    NARCIS (Netherlands)

    Ieperen, van W.; Volkov, V.S.; Meeteren, van U.

    2003-01-01

    In this study xylem hydraulic resistances of peduncles (truss stalk), pedicels (fruit stalk) and the future abscission zone (AZ) halfway along the pedicel of tomato (Lycopersicon esculentum L.) plants were directly measured at different stages of fruit development, in plants grown under two levels o

  13. Members of the tomato FRUITFULL MADS-box family regulate style abscission and fruit ripening.

    Science.gov (United States)

    Wang, Shufen; Lu, Gang; Hou, Zheng; Luo, Zhidan; Wang, Taotao; Li, Hanxia; Zhang, Junhong; Ye, Zhibiao

    2014-07-01

    The tomato (Solanum lycopersicum) protein MADS-RIN plays important roles in fruit ripening. In this study, the functions of two homologous tomato proteins, FUL1 and FUL2, which contain conserved MIKC domains that typify plant MADS-box proteins, and which interact with MADS-RIN, were analysed. Transgenic functional analysis showed that FUL1 and FUL2 function redundantly in fruit ripening regulation, but exhibit distinct roles in the regulation of cellular differentiation and expansion. Over-expression of FUL2 in tomato resulted in a pointed tip at the blossom end of the fruit, together with a thinner pericarp, reduced stem diameter, and smaller leaves, but no obvious phenotypes resulted from FUL1 over-expression. Dual suppression of FUL1 and FUL2 substantially inhibited fruit ripening by blocking ethylene biosynthesis and decreasing carotenoid accumulation. In addition, the levels of transcript corresponding to ACC SYNTHASE2 (ACS2), which plays a key role in ethylene biosynthesis, were significantly decreased in the FUL1/FUL2 knock-down tomato fruits. Overall, our results suggest that FUL proteins can regulate tomato fruit ripening through fine-tuning ethylene biosynthesis and the expression of ripening-related genes.

  14. How and why does tomato accumulate a large amount of GABA in the fruit?

    Directory of Open Access Journals (Sweden)

    Mariko eTakayama

    2015-08-01

    Full Text Available γ-Aminobutyric acid (GABA has received much attention as a health-promoting functional compound, and several GABA-enriched foods have been commercialized. In higher plants, GABA is primarily metabolized via a short pathway called the GABA shunt. The GABA shunt bypasses two steps (the oxidation of α-ketoglutarate to succinate of the tricarboxylic acid (TCA cycle via reactions catalysed by three enzymes: glutamate decarboxylase (GAD, GABA transaminase (GABA-T and succinic semialdehyde dehydrogenase (SSADH. The GABA shunt plays a major role in primary carbon and nitrogen metabolism and is an integral part of the TCA cycle under stress and non-stress conditions. Tomato is one of the major crops that accumulate a relatively high level of GABA in its fruits. The GABA levels in tomato fruits dramatically change during fruit development; the GABA levels increase from flowering to the mature green stage and then rapidly decrease during the ripening stage. Although GABA constitutes up to 50% of the free amino acids at the mature green stage, the molecular mechanism of GABA accumulation and the physiological function of GABA during tomato fruit development remain unclear. In this review, we summarize recent studies of GABA accumulation in tomato fruits and discuss the potential biological roles of GABA in tomato fruit development.

  15. Bacterial community diversity and variation in spray water sources and the tomato fruit surface

    Directory of Open Access Journals (Sweden)

    Ottesen Andrea R

    2011-04-01

    Full Text Available Abstract Background Tomato (Solanum lycopersicum consumption has been one of the most common causes of produce-associated salmonellosis in the United States. Contamination may originate from animal waste, insects, soil or water. Current guidelines for fresh tomato production recommend the use of potable water for applications coming in direct contact with the fruit, but due to high demand, water from other sources is frequently used. We sought to describe the overall bacterial diversity on the surface of tomato fruit and the effect of two different water sources (ground and surface water when used for direct crop applications by generating a 454-pyrosequencing 16S rRNA dataset of these different environments. This study represents the first in depth characterization of bacterial communities in the tomato fruit surface and the water sources commonly used in commercial vegetable production. Results The two water sources tested had a significantly different bacterial composition. Proteobacteria was predominant in groundwater samples, whereas in the significantly more diverse surface water, abundant phyla also included Firmicutes, Actinobacteria and Verrucomicrobia. The fruit surface bacterial communities on tomatoes sprayed with both water sources could not be differentiated using various statistical methods. Both fruit surface environments had a high representation of Gammaproteobacteria, and within this class the genera Pantoea and Enterobacter were the most abundant. Conclusions Despite the major differences observed in the bacterial composition of ground and surface water, the season long use of these very different water sources did not have a significant impact on the bacterial composition of the tomato fruit surface. This study has provided the first next-generation sequencing database describing the bacterial communities living in the fruit surface of a tomato crop under two different spray water regimes, and therefore represents an

  16. Suppression of tomato SlNAC1 transcription factor delays fruit ripening.

    Science.gov (United States)

    Meng, Chen; Yang, Dongyue; Ma, Xiaocui; Zhao, Weiyang; Liang, Xiaoqing; Ma, Nana; Meng, Qingwei

    2016-04-01

    Fruit ripening is a complex process involving many physiological and biochemical changes, including those for ethylene, carotenoid, and cell wall metabolism. Tomato (Solanum lycopersicum) serves as a research model for fruit development and ripening because it possesses numerous favorable genetic features. In this study, SlNAC1 was cloned. An antisense (AS) vector was constructed and transferred to tomato to further explore the function of SlNAC1. The results showed that AS fruits exhibited delayed ripening and a deeper red appearance when these fruits were fully ripened. Fully ripened AS fruits also produced higher total carotenoid and lycopene contents than those of the wild-type (WT) line. Ethylene production of AS fruits was delayed but occurred to a higher extent than that of WT fruits. The softening of AS fruits was slower than that of WT fruits. Endogenous abscisic acid (ABA) level in AS-4 fruits was lower than that in WT fruits. Exogenous ABA accelerated the softening of AS fruits. Furthermore, AS fruits demonstrated up-regulated expression of genes related to lycopene and ethylene biosynthesis but down-regulated expression of genes related to cell wall metabolism and ABA synthesis. Therefore, SlNAC1 is likely implicated in fruit ripening.

  17. Changes in Gene Expression during Tomato Fruit Ripening.

    Science.gov (United States)

    Biggs, M S; Harriman, R W; Handa, A K

    1986-06-01

    Total proteins from pericarp tissue of different chronological ages from normally ripening tomato (Lycopersicon esculentum Mill. cv Rutgers) fruits and from fruits of the isogenic ripening-impaired mutants rin, nor, and Nr were extracted and separated by sodium dodecylsulfate-polyacrylamide gel electrophoresis. Analysis of the stained bands revealed increases in 5 polypeptides (94, 44, 34, 20, and 12 kilodaltons), decreases in 12 polypeptides (106, 98, 88, 76, 64, 52, 48, 45, 36, 28, 25, and 15 kilodaltons), and fluctuations in 5 polypeptides (85, 60, 26, 21, and 16 kilodaltons) as normal ripening proceeded. Several polypeptides present in ripening normal pericarp exhibited very low or undetectable levels in developing mutant pericarp. Total RNAs extracted from various stages of Rutgers pericarp and from 60 to 65 days old rin, nor, and Nr pericarp were fractionated into poly(A)(+) and poly(A)(-) RNAs. Peak levels of total RNA, poly(A)(+) RNA, and poly(A)(+) RNA as percent of total RNA occurred between the mature green to breaker stages of normal pericarp. In vitro translation of poly(A)(+) RNAs from normal pericarp in rabbit reticulocyte lysates revealed increases in mRNAs for 9 polypeptides (116, 89, 70, 42, 38, 33, 31, 29, and 26 kilodaltons), decreases in mRNAs for 2 polypeptides (41 and 35 kilodaltons), and fluctuations in mRNAs for 5 polypeptides (156, 53, 39, 30, and 14 kilodaltons) during normal ripening. Analysis of two-dimensional separation of in vitro translated polypeptides from poly(A)(+) RNAs isolated from different developmental stages revealed even more extensive changes in mRNA populations during ripening. In addition, a polygalacturonase precursor (54 kilodaltons) was immunoprecipitated from breaker, turning, red ripe, and 65 days old Nr in vitro translation products.

  18. Hormonal and metabolic regulation of tomato fruit sink activity and yield under salinity

    DEFF Research Database (Denmark)

    Albacete, Alfonso; Cantero-Navarro, Elena; Balibrea, María E.

    2014-01-01

    Salinization of water and soil has a negative impact on tomato (Solanum lycopersicum L.) productivity by reducing growth of sink organs and by inducing senescence in source leaves. It has been hypothesized that yield stability implies the maintenance or increase of sink activity in the reproductive...... on tomato fruit sink activity, growth, and yield: (i) exogenous hormones were applied to plants, and (ii) transgenic plants overexpressing the cell wall invertase (cwInv) gene CIN1 in the fruits and de novo cytokinin (CK) biosynthesis gene IPT in the roots were constructed. Although salinity reduces fruit...

  19. Effect Of 1-MCP Treatment On Storage Potential Of Tomato Fruit

    OpenAIRE

    Wrzodak Anna; Gajewski Marek

    2015-01-01

    Tomato fruit cv. ’Faustine’ F1 were harvested at mature green and full-red stages and treated with 1 or 2 µl·l−1 of 1-methylcyclopropene (1-MCP) at 20 °C and 85-90% RH, for 21 hours to investigate the ability to delay ripening. Treated and control fruit were stored at 12.5 and 20 °C and 85-90% RH. Ethylene production, rate of respiration, weight loss, market value and storage life were determined after 4-week storage. Exposure of tomato fruit to 1-MCP reduced ethylene production and respirati...

  20. Effect of tomato post-harvest fungicide treatment and storage conditions on the quality of fruits, and biological value of tomato pulp and concentrated pulp

    Directory of Open Access Journals (Sweden)

    H. Parynow

    2013-12-01

    Full Text Available The influence of storage conditions on the quality of tomato fruits was tested. The rate of ripening was established in normal air, where tomatoes ripen quickly, under controlled atmosphere where they ripen more slowly and under low pressure, where they ripen slowest. The influence of post-harvest benomyl or methylthiophanate treatment on tomato rot, ripening, and biological value were examined. Post-harvest tomato treatment did not reduce fruit rot. The color of fruits and the processed products depended on the fungicide treatment. Concentrated tomato pulp made of fruits treated with methylthiophanate was redder than the others. The fungicide treatment increased or decreased the level of some chemical substances in the fruits in dependence on the applied fungicide, storage conditions and the length of storage, e.g. tomatoes treated with benomyl and stored for 14 days contained the highest level of vitamin C under 0% CO2:3%O2 and tomatoes treated with methylthiophanate contained the highest level of vitamin C under 38 mm Hg. Degradation of vitamin C in pulp was faster than in the concentrated pulp. Tomato pulp made of tomatoes treated with methylthiophanate contained the lowest level of vitamin C.

  1. Altered Levels of Aroma and Volatiles by Metabolic Engineering of Shikimate Pathway Genes in Tomato Fruits

    Directory of Open Access Journals (Sweden)

    Vered Tzin

    2015-06-01

    Full Text Available The tomato (Solanum lycopersicum fruit is an excellent source of antioxidants, dietary fibers, minerals and vitamins and therefore has been referred to as a “functional food”. Ripe tomato fruits produce a large number of specialized metabolites including volatile organic compounds. These volatiles serve as key components of the tomato fruit flavor, participate in plant pathogen and herbivore defense, and are used to attract seed dispersers. A major class of specialized metabolites is derived from the shikimate pathway followed by aromatic amino acid biosynthesis of phenylalanine, tyrosine and tryptophan. We attempted to modify tomato fruit flavor by overexpressing key regulatory genes in the shikimate pathway. Bacterial genes encoding feedback-insensitive variants of 3-Deoxy-D-Arabino-Heptulosonate 7-Phosphate Synthase (DAHPS; AroG209-9 and bi-functional Chorismate Mutase/Prephenate Dehydratase (CM/PDT; PheA12 were expressed under the control of a fruit-specific promoter. We crossed these transgenes to generate tomato plants expressing both the AroG209 and PheA12 genes. Overexpression of the AroG209-9 gene had a dramatic effect on the overall metabolic profile of the fruit, including enhanced levels of multiple volatile and non-volatile metabolites. In contrast, the PheA12 overexpression line exhibited minor metabolic effects compared to the wild type fruit. Co-expression of both the AroG209-9 and PheA12 genes in tomato resulted overall in a similar metabolic effect to that of expressing only the AroG209-9 gene. However, the aroma ranking attributes of the tomato fruits from PheA12//AroG209-9 were unique and different from those of the lines expressing a single gene, suggesting a contribution of the PheA12 gene to the overall metabolic profile. We suggest that expression of bacterial genes encoding feedback-insensitive enzymes of the shikimate pathway in tomato fruits provides a useful metabolic engineering tool for the modification of

  2. Influence of short anoxia treatment and maturity on quality and storage life of tomatoes

    Directory of Open Access Journals (Sweden)

    Mojević Mirjana V.

    2011-01-01

    Full Text Available The influence of short anoxia treatment on physical, chemical and sensory attributes of mature green and pink red tomatoes during storage was investigated. Matured green and pink red fruits were kept for 24 hrs under humidified pure N2, while the control was not treated. Subsequently, the fruits were stored at 12°C and 20°C for 14 days. Quality parameters including weight loss, firmness, total soluble solids, colour, sensory and decay were analyzed. Generally, weight loss increased after 14 days of storage and depending on anoxia treatment, maturity and storage temperature. Tomato fruit treated with anoxia and kept at 12°C showed a minimal deterioration of the quality attributes and could be stored for longer periods compared to those stored at 20°C. Results for TSS were higher in tomato fruit treated with anoxia. However, pink red fruit stored at 20°C showed lower TSS than untreated fruit. Untreated and anoxia-pretreated mature green tomatoes showed higher sourness and off-flavour scores than those stored at 20°C. However, mature green and pink red tomatoes kept at 20°C showed higher acceptance (% than those stored at 12°C. Therefore, combined effect of anoxia and low temperature could have delayed the ripening of the tomatoes.

  3. Transient expression of organophosphorus hydrolase to enhance the degrading activity of tomato fruit on coumaphos

    Institute of Scientific and Technical Information of China (English)

    Jie-hong ZHAO; De-gang ZHAO

    2009-01-01

    We constructed an expression cassette of the organophosphorus pesticide degrading (opd)gene under the control of the E8 promoter.Then opd was transformed into tomato fruit using an agroinfiltration transient expression system.β-Glueuronidase (GUS) staining,reverse transcription-polymerase chain reaction (RT-PCR),wavelength scanning,and fluorescent reaction were performed to examine the expression of the opd gene and the hydrolysis activity on eoumaphos of organophosphorus hydrolase (OPH) in tomato fruit.The results show that the agroinfiltrated tomato fruit-expressed OPH had the maximum hydrolysis activity of about 11.59 U/mg total soluble protein.These results will allow us to focus on breeding transgenie plants that could not only enhance the degrading capability of fruit and but also hold no negative effects on pest control when spraying organophosphorus pesticides onto the seedlings in fields.

  4. Effects of Al3+ and La3+ Trivalent Metal Ions on Tomato Fruit Proteomes

    Directory of Open Access Journals (Sweden)

    Sasikiran Sangireddy

    2017-02-01

    Full Text Available The tomato (Solanum lycopersicum ripening process from mature green (MG to turning and then to red stages is accompanied by the occurrences of physiological and biochemical reactions, which ultimately result in the formation of the flavor, color and texture of ripe fruits. The two trivalent metal ions Al3+ and La3+ are known to induce different levels of phytotoxicity in suppressing root growth. This paper aims to understand the impacts of these two metal ions on tomato fruit proteomes. Tomato ‘Micro-Tom’ plants were grown in a hydroponic culture system supplemented with 50 μM aluminum sulfate (Al2 (SO43.18H2O for Al3+ or La2(SO43 for La3+. Quantitative proteomics analysis, using isobaric tags for relative and absolute quantitation, were performed for fruits at MG, turning and red stages. Results show that in MG tomatoes, proteins involved in protein biosynthesis, photosynthesis and primary carbohydrate metabolisms were at a significantly lower level in Al-treated compared to La-treated plants. For the turning and red tomatoes, only a few proteins of significant differences between the two metal treatments were identified. Results from this study indicate that compared to La3+, Al3+ had a greater influence on the basic biological activities in green tomatoes, but such an impact became indistinguishable as tomatoes matured into the late ripening stages.

  5. Tomato GOLDEN2-LIKE transcription factors reveal molecular gradients that function during fruit development and ripening.

    Science.gov (United States)

    Nguyen, Cuong V; Vrebalov, Julia T; Gapper, Nigel E; Zheng, Yi; Zhong, Silin; Fei, Zhangjun; Giovannoni, James J

    2014-02-01

    Fruit ripening is the summation of changes rendering fleshy fruit tissues attractive and palatable to seed dispersing organisms. For example, sugar content is influenced by plastid numbers and photosynthetic activity in unripe fruit and later by starch and sugar catabolism during ripening. Tomato fruit are sinks of photosynthate, yet unripe green fruit contribute significantly to the sugars that ultimately accumulate in the ripe fruit. Plastid numbers and chlorophyll content are influenced by numerous environmental and genetic factors and are positively correlated with photosynthesis and photosynthate accumulation. GOLDEN2-LIKE (GLK) transcription factors regulate plastid and chlorophyll levels. Tomato (Solanum lycopersicum), like most plants, contains two GLKs (i.e., GLK1 and GLK2/UNIFORM). Mutant and transgene analysis demonstrated that these genes encode functionally similar peptides, though differential expression renders GLK1 more important in leaves, while GLK2 is predominant in fruit. A latitudinal gradient of GLK2 expression influences the typical uneven coloration of green and ripe wild-type fruit. Transcriptome profiling revealed a broader fruit gene expression gradient throughout development. The gradient influenced general ripening activities beyond plastid development and was consistent with the easily observed yet poorly studied ripening gradient present in tomato and many fleshy fruits.

  6. Expression of alternative oxidase in tomato

    Energy Technology Data Exchange (ETDEWEB)

    Kakefuda, M.; McIntosh, L. (Michigan State Univ., East Lansing (USA))

    1990-05-01

    Tomato fruit ripening is characterized by an increase in ethylene biosynthesis, a burst in respiration (i.e. the climacteric), fruit softening and pigmentation. As whole tomatoes ripened from mature green to red, there was an increase in the alternative oxidase capacity. Aging pink tomato slices for 24 and 48 hrs also showed an increase of alternative oxidase and cytochrome oxidase capacities. Monoclonal antibodies prepared to the Sauromatum guttatum alternative oxidase were used to follow the appearance of alternative oxidase in tomato fruits. There is a corresponding increase in a 36kDa protein with an increase in alternative oxidase capacity. Effects of ethylene and norbornadiene on alternative oxidase capacity were also studied. We are using an alternative oxidase cDNA clone from potato to study the expression of mRNA in ripening and wounded tomatoes to determine if the gene is transcriptionally regulated.

  7. Involvement of ethylene in the accumulation of esculeoside A during fruit ripening of tomato (Solanum lycopersicum).

    Science.gov (United States)

    Iijima, Yoko; Fujiwara, Yukio; Tokita, Takeaki; Ikeda, Tsuyoshi; Nohara, Toshihiro; Aoki, Koh; Shibata, Daisuke

    2009-04-22

    The composition of glycoalkaloids in tomato fruit changes with ripening. However, it has not been clarified whether the accumulation of glycoalkaloids is controlled by the ripening-inducing phytohormone, ethylene. Here, we report the effect of ethylene on the accumulation of tomato fruit glycoalkaloids. We investigated the effect of exogenously applied ethylene. In response to ethylene treatment, the content of alpha-tomatine decreased, whereas the content of esculeoside A increased. Next, we analyzed the fruits of ripening mutants, rin, nor, and Nr. In fruits of these mutant lines, the level of accumulation of esculeoside A decreased, whereas alpha-tomatine accumulated to higher levels than in wild-type fruit. These results demonstrated that the esculeoside A accumulation was associated with production and perception of ethylene. Additionally, the accumulation profiles of the intermediate metabolites of esculeoside A biosynthesis in ripening mutant fruits suggest that a glycosylation step in the putative pathway from alpha-tomatine to esculeoside A depends on ethylene.

  8. 番茄粉色酸奶的研制及其营养价值分析%Processing of pink yogurt from tomatoes and it's nutritional value analysis

    Institute of Scientific and Technical Information of China (English)

    常敬华; 何志明; 吴静; 孙鹏雷

    2012-01-01

    选择番茄为天然色素来源,优化粉色酸奶的加工工艺,探讨了番茄粉色酸奶在发酵过程中主要营养成分的变化规律.结果表明:番茄粉色酸奶的pH值和含酸量与普通酸奶相比变化不显著;还原糖质量分数极显著增加;游离氨基酸质量分数显著增加;增加了Vc的质量分数;总氮和脂肪质量分数均低于普通酸奶.番茄粉色酸奶色彩柔和,口感润滑,具有番茄的香味,其营养成分具有互补和促进吸收的作用,增加了抗氧化成分,因此具有更高的食用和商品价值.%Tomato was chosed as a natural pigment source, optimizing the processing of pink yogurt and exploring the variation of the main nutrients of tomato pink yogurt during the fermentation process. The results showed that: there was no significant difference between tomato pink yogurt and common yogurt in pH and acid content. Reducing sugar content was significantly increased. Free amino acid content was significant increased. Amount of Vc was added. Total nitrogen and fat content were lower than common yogurt. Tomato pink yogurt had soft colors, taste lubrication and the flavor of the tomatoes. Tomato pink yogurt had double nutrition and was easy absorbed, so it had higher food and commodity value.

  9. Reduction of Chilling Injury and Ultrastructural Damage in Cherry Tomato Fruits After Hot Water Treatment

    Institute of Scientific and Technical Information of China (English)

    YANG Jing; FU Mao-run; ZHAO Yu-ying; MAO Lin-chun

    2009-01-01

    The effects of hot water treatment in alleviating chilling injury and reducing ultrastructural damage of mature-green cherry tomatoes (Lycopersicun esculentum cv. cerasiform Alef) were investigated. Mature-green cherry tomato fruits were treated in water at 40℃ or 45℃ for 5 rain or 15 rain, and then stored at 5℃ for 19 days followed by ripening at 20℃. Water treatment at 40℃ for 15 rain increased tolerance of cherry tomato fruits to chilling stress, indicating as low outbreak of skin lesion, high color a* value, and low electrolyte leakage. Treated fi'uits showed typical climacteric respiration and developed normal red color with chlorophyll degradation and lyeopene accumulation during ripening, while fruits without treatment failed to develop red color and suffered skin lesion. After 19 days of chilling, heated fruits showed the conversion of chloroplast to ehromoplast with the disappearance of thylakoids. Mitochondria and other cell organelles were not adversely affected in treated fruits. However, ultrastruetures in periearp cells in control fruits severely damaged with extensive disorganization of cytoplasm, swelled chloroplasts, distorted and unstacked thylakoids. Chloroplast was the first and most severely impacted organelle by chilling stress. Hot water treatment (40℃ for 15 min) before storage alleviated chilling injury in cherry tomato fruits. The results suggest that chilling injury is related with the damage of cell structure under chilling stress.

  10. Expression profile analysis of early fruit development in iaaM-parthenocarpic tomato plants

    Directory of Open Access Journals (Sweden)

    Spena Angelo

    2009-07-01

    Full Text Available Abstract Background Fruit normally develops from the ovary after pollination and fertilization. However, the ovary can also generate seedless fruit without fertilization by parthenocarpy. Parthenocarpic fruit development has been obtained in tomato (Solanum lycopersicum by genetic modification using auxin-synthesising gene(s (DefH9-iaaM; DefH9-RI-iaaM expressed specifically in the placenta and ovules. Findings We have performed a cDNA Amplified Fragment Length Polymorphism (cDNA-AFLP analysis on pre-anthesis tomato flower buds (0.5 cm long collected from DefH9-iaaM and DefH9-RI-iaaM parthenocarpic and wild-type plants, with the aim to identify genes involved in very early phases of tomato fruit development. We detected 212 transcripts differentially expressed in auxin-ipersynthesising pre-anthesis flower buds, 65 of them (31% have unknown function. Several differentially expressed genes show homology to genes involved in protein trafficking and protein degradation via proteasome. These processes are crucial for auxin cellular transport and signaling, respectively. Conclusion The data presented might contribute to elucidate the molecular basis of the fruiting process and to develop new methods to confer parthenocarpy to species of agronomic interest. In a recently published work, we have demonstrated that one of the genes identified in this screening, corresponding to #109 cDNA clone, regulates auxin-dependent fruit initiation and its suppression causes parthenocarpic fruit development in tomato.

  11. Effects on Sucrose Metabolism,Dry Matter Distribution and Fruit Quality of Tomato Under Water Deficit

    Institute of Scientific and Technical Information of China (English)

    QI Hong-yan; LI Tian-lai; ZHANG Jie; WANG Lei; CHEN Yuan-hong

    2003-01-01

    Four irrigation treatments were designed with 2, 4, 6 and 8 d intervals to irrigate, respectively. Watering was stopped when the reading of the moisture tension sensor reached zero. The results indicated that glucose and fructose content of tomato's fruit were increased but sucrose content was decreased with fruit growth and development. In different stages, carbohydrate content of tomato fruit in the treatment 3 was the highest, in the treatment 2 was higher, and in the other treatments was the lowest. SS(sucrose synthase) activity was decreased but SPS(sucrose phosphate synthase) activity was increased with development of tomato. SS and SPS activity were increased but acid invertase and neutral invertase activity of ripe stage were decreased under deficit irrigation. Glucose and fructose content were increased in leaves of tomato under water deficit.Soluble sugars, organic acid and the ratio of sugar/acid in tomato fruits were increased and dry matter accumulation of plant was enhanced under water deficit. But the growth of fruits upside the plant and its dry matter accumulation were badly affected under water stress.

  12. Alleviation of chilling injury in postharvest tomato fruit by preconditioning with ultraviolet irradiation.

    Science.gov (United States)

    Liu, Changhong; Jahangir, Muhammad Muzammil; Ying, Tiejin

    2012-12-01

    Tomato fruit is usually stored at low temperatures for delayed ripening and extended shelf life. However, tomato fruit is susceptible to chilling injury when exposed to low temperatures. In this study, the potential effects of preconditioning with UV-C or UV-B irradiation on chilling injury of postharvest tomato fruit were investigated. Mature-green tomato fruit were exposed to 4 kJ m(-2) UV-C or 20 kJ m(-2) UV-B irradiation and stored for 20 days at 2 °C and subsequently 10 days at 20 °C. UV irradiation was effective in reducing chilling injury index and delaying ethylene peak. Furthermore, UV irradiation preserved storage quality as manifested by reduced weight loss, better retention of firmness, and higher contents of total soluble solids, soluble protein and soluble sugar during subsequent storage at 20 °C. UV-C irradiation significantly delayed the development of the red colour after 10 days of storage at 20 °C. On the other hand, UV irradiation decreased total phenolics content and antioxidant capacity, suggesting possibly reduced stress response to low temperature resulted from enhanced physiological adaptation by UV preconditioning. Our results suggest that preconditioning with UV-C or UV-B irradiation in appropriate doses had a positive effect on alleviating chilling injury in postharvest tomato fruit. Copyright © 2012 Society of Chemical Industry.

  13. Tomato fruit carotenoid biosynthesis is adjusted to actual ripening progression by a light-dependent mechanism.

    Science.gov (United States)

    Llorente, Briardo; D'Andrea, Lucio; Ruiz-Sola, M Aguila; Botterweg, Esther; Pulido, Pablo; Andilla, Jordi; Loza-Alvarez, Pablo; Rodriguez-Concepcion, Manuel

    2016-01-01

    Carotenoids are isoprenoid compounds that are essential for plants to protect the photosynthetic apparatus against excess light. They also function as health-promoting natural pigments that provide colors to ripe fruit, promoting seed dispersal by animals. Work in Arabidopsis thaliana unveiled that transcription factors of the phytochrome-interacting factor (PIF) family regulate carotenoid gene expression in response to environmental signals (i.e. light and temperature), including those created when sunlight reflects from or passes though nearby vegetation or canopy (referred to as shade). Here we show that PIFs use a virtually identical mechanism to modulate carotenoid biosynthesis during fruit ripening in tomato (Solanum lycopersicum). However, instead of integrating environmental information, PIF-mediated signaling pathways appear to fulfill a completely new function in the fruit. As tomatoes ripen, they turn from green to red due to chlorophyll breakdown and carotenoid accumulation. When sunlight passes through the flesh of green fruit, a self-shading effect within the tissue maintains high levels of PIFs that directly repress the master gene of the fruit carotenoid pathway, preventing undue production of carotenoids. This effect is attenuated as chlorophyll degrades, causing degradation of PIF proteins and boosting carotenoid biosynthesis as ripening progresses. Thus, shade signaling components may have been co-opted in tomato fruit to provide information on the actual stage of ripening (based on the pigment profile of the fruit at each moment) and thus finely coordinate fruit color change. We show how this mechanism may be manipulated to obtain carotenoid-enriched fruits.

  14. Under-expression of the Auxin Response Factor Sl-ARF4 improves postharvest behavior of tomato fruits.

    Science.gov (United States)

    Sagar, Maha; Chervin, Christian; Roustant, Jean-Paul; Bouzayen, Mondher; Zouine, Mohamed

    2013-10-01

    Auxin is one of the most prominent phytohormones regulating many aspects of fleshy fruit development including fruit set, fruit size through the control of cell division and cell expansion, and fruit ripening. To shed light on the role of auxin fruit ripening, we have previously shown that Sl-ARF4 is a major player in mediating the auxin control of sugar metabolism in tomato fruit (cv MicroTom). Further extending this study, we show here that down-regulation of Sl-ARF4 in tomato alters some ripening-related fruit quality traits including enhanced fruit density at mature stage, increased firmness, prolonged shelf-life and reduced water (weight) loss at red ripe stage. These findings suggest that Sl-ARF4 plays a role in determining fruit cell wall architecture and thus providing a potential genetic marker for improving post-harvest handling and shelf life of tomato fruits.

  15. Biosynthesis of 1-aminocyclopropane-1-carboxylic acid and ethylene from delta-aminolevulinic acid in ripening tomato fruits

    Energy Technology Data Exchange (ETDEWEB)

    El-Rayes, D.E.D.A.

    1987-01-01

    A new pathway for ethylene (C/sub 2/H/sub 4/) biosynthesis, which utilizes delta-aminolevulinic acid (ALA) as a precursor of 1-aminocyclopropane-1-carboxylic acid (ACC), the immediate precursor of C/sub 2/H/sub 4/, is presented. ALA enhanced ACC accumulation to 410% and C/sub 2/H/sub 4/ production to 232% of the control. The C/sub 2/H/sub 4/ production rate varied with the ALA concentration and the stage of tomato fruit development. As the ALA concentration increased from zero to 40 mM, the C/sub 2/H/sub 4/ production rate increased. Both treated and untreated pericarp discs from fruits at the pink stage of development yielded the largest C/sub 2/H/sub 4/ production rate. Radioactivity from (2,3-/sup 3/H)ALA was detected in both ACC and C/sub 2/H/sub 4/, and radioactivity from (4-/sup 14/C)ALA was detected in ACC and CO/sub 2/ but not in C/sub 2/H/sub 4/. However, radioactivity from (5-/sup 14/C)ALA was detected in CO/sub 2/, and its amount was greater than that obtained from (4-/sup 14/C)ALA. Neither ACC nor C/sub 2/H/sub 4/ showed any radioactivity when (5-/sup 14/C)ALA was supplied to the fruit discs. In addition, when (2,3-/sup 3/H)ALA or (4-/sup 14/C)ALA was supplied to the fruit discs, radioactivity was detected in other metabolites such as fumarate, succinate, malate, glutamate, glutamine, ..cap alpha..-ketoglutarate, and methionine, but the amount of radioactivity was insignificant as compared with the amount of radioactivity found in C/sub 2/H/sub 4/ and ACC.

  16. The transcription factor AREB1 regulates primary metabolic pathways in tomato fruits.

    Science.gov (United States)

    Bastías, Adriana; Yañez, Mónica; Osorio, Sonia; Arbona, Vicent; Gómez-Cadenas, Aurelio; Fernie, Alisdair R; Casaretto, José A

    2014-06-01

    Tomato fruit development is regulated both by the action of plant hormones and by tight genetic control. Recent studies suggest that abscisic acid (ABA) signalling may affect different aspects of fruit maturation. Previously, it was shown that SlAREB1, an ABA-regulated transcription factor involved in stress-induced responses, is expressed in seeds and in fruit tissues in tomato. Here, the role of SlAREB1 in regulating the expression of genes relevant for primary metabolic pathways and affecting the metabolic profile of the fruit was investigated using transgenic tomato lines. Metabolite profiling using gas chromatography-time of flight mass spectrometry (GC-TOF-MS) and non-targeted liquid chromatography-mass spectrometry (LC-MS) was performed on pericarp tissue from fruits harvested at three stages of fruit development. Principal component analysis of the data could distinguish the metabolite profiles of non-transgenic fruits from those that overexpress and down-regulate SlAREB1. Overexpression of SlAREB1 resulted in increased content of organic acids, hexoses, hexose-phosphates, and amino acids in immature green, mature green, and red ripe fruits, and these modifications correlated with the up-regulation of enzyme-encoding genes involved in primary carbohydrate and amino acid metabolism. A non-targeted LC-MS analysis indicated that the composition of secondary metabolites is also affected in transgenic lines. In addition, gene expression data revealed that some genes associated with fruit ripening are also up-regulated in SlAREB1-overexpressing lines compared with wild-type and antisense lines. Taken together, the results suggest that SlAREB1 participates in the regulation of the metabolic programming that takes place during fruit ripening and that may explain part of the role of ABA in fruit development in tomato.

  17. Tomato fruit cell wall : I. Use of purified tomato polygalacturonase and pectinmethylesterase to identify developmental changes in pectins.

    Science.gov (United States)

    Koch, J L; Nevins, D J

    1989-11-01

    Cell wall isolation procedures were evaluated to determine their effect on the total pectin content and the degree of methylesterification of tomato (Lycopersicon esculentum L.) fruit cell walls. Water homogenates liberate substantial amounts of buffer soluble uronic acid, 5.2 milligrams uronic acid/100 milligrams wall. Solubilization appears to be a consequence of autohydrolysis mediated by polygalacturonase II, isoenzymes A and B, since the uronic acid release from the wall residue can be suppressed by homogenization in the presence of 50% ethanol followed by heating. The extent of methylesterification in heat-inactivated cell walls, 94 mole%, was significantly greater than with water homogenates, 56 mole%. The results suggest that autohydrolysis, mediated by cell wall-associated enzymes, accounts for the solubilization of tomato fruit pectin in vitro. Endogenous enzymes also account for a decrease in the methylesterification during the cell wall preparation. The heat-inactivated cell wall preparation was superior to the other methods studied since it reduces beta-elimination during heating and inactivates constitutive enzymes that may modify pectin structure. This heat-inactivated cell wall preparation was used in subsequent enzymatic analysis of the pectin structure. Purified tomato fruit polygalacturonase and partially purified pectinmethylesterase were used to assess changes in constitutive substrates during tomato fruit ripening. Polygalacturonase treatment of heat-inactivated cell walls from mature green and breaker stages released 14% of the uronic acid. The extent of the release of polyuronides by polygalacturonase was fruit development stage dependent. At the turning stage, 21% of the pectin fraction was released, a value which increased to a maximum of 28% of the uronides at the red ripe stage. Pretreatment of the walls with purified tomato pectinesterase rendered walls from all ripening stages equally susceptible to polygalacturonase. Quantitatively

  18. Radial basis network analysis of color parameters to estimate lycopene content on tomato fruits.

    Science.gov (United States)

    Fernández-Ruiz, Virginia; Torrecilla, José S; Cámara, Montaña; Mata, Ma Cortes Sánchez; Shoemaker, Charles

    2010-11-15

    With the purpose of estimating the lycopene concentration in tomato food samples, in an non-destructive way, several types of linear models of color parameters have been tested using individual values of L*, a* and b* values, (a*/b*), (a*(2)/b*(2)) and chroma parameters from tomato juice and fresh tomato fruits obtained with two different apparatus (Minolta CR-200b triestimulus colorimeter and HunterLab LabScan XE). Lycopene concentrations of fresh tomato and tomato juice (used as an input) were analyzed by UV-Vis spectroscopy. For all linear methods applied, the best one to estimate the lycopene concentration in tomato was the L*, a* and b* values of tomato juice measured with Hunter colorimeters (adjusted correlation coefficient, R(a)(2)>0.86 and mean prediction error, MPEcolor parameters (L*, a* and b*) designated as "Lab case", and secondly individually by the (a*/b*), (a*(2)/b*(2)) and chroma parameters. The lycopene concentration estimations were carried out with the lowest MPE and highest R(a)(2) values possible. In order to test the reliability of the non-linear models, external validation process was also performed. From the testing of the all non-linear models applied, the RBEF Lab case model was the best to estimate lycopene content from color parameters (L*, a* and b*) using Minolta or Hunter equipments (MPE lower than 0.009 and R(a)(2) higher than 0.997). This was a simple non-destructive method for predicting lycopene concentration in tomato fruits and tomato juice, which was reproducible and accurate enough to substitute chemical extraction determinations, and may be a useful tool for tomato industry.

  19. DNA Methylation Occurred around Lowly Expressed Genes of Plastid DNA during Tomato Fruit Development.

    Science.gov (United States)

    Ngernprasirtsiri, J; Kobayashi, H; Akazawa, T

    1988-09-01

    We have analyzed DNA methylation of plastid DNA from fully ripened red fruits, green mature fruits, and green leaves of tomato (Lycopersicon esculentum var. Firstmore). Essentially identical restriction profiles were obtained between chromoplast and chloroplast DNAs by EcoRI digestion. BstNI/EcoRII and HpaII/MspI are pairs of isoschizomers that can discriminate between methylated and unmethylated DNAs. These endonucleases produced different restriction patterns of plastid DNAs from tomato fruits compared to tomato leaves. Moreover, we have found from Southern blots that methylation was not detected in DNA fragments containing certain genes that are actively expressed in chromoplasts, whereas DNA fragments bearing genes that are barely transcribed in chromoplasts are methylated.

  20. Pericarp polypeptides and SRAP markers associated with fruit quality traits in an interspecific tomato backcross.

    Science.gov (United States)

    Pereira da Costa, J H; Rodríguez, G R; Pratta, G R; Picardi, L A; Zorzoli, R

    2014-01-24

    The aim of this study was to detect polypeptides and genomic regions associated with fruit quality traits in a backcross generation using as parent the Argentinean cultivated tomato Caimanta of Solanum lycopersicum and the wild accession LA722 of S. pimpinellifolium. We tested two types of molecular marker: polypeptide profile (at two ripening stages, mature green and red ripe) and SRAP (sequence-related amplified polymorphism). A polypeptide of 45 kDa present in the wild parents at the mature green stage was associated with larger fruit and long shelf life. Some amplification fragments from SRAP markers were associated with more than one quality trait such as fruit color, firmness, titratable acidity, and fruit soluble solids content. This study demonstrated for the first time the usefulness of the polypeptide profiles of pericarp and SRAP markers in finding associations with quality fruit traits in a tomato backcross generation.

  1. Preharvest L-arginine treatment induced postharvest disease resistance to Botrysis cinerea in tomato fruits.

    Science.gov (United States)

    Zheng, Yang; Sheng, Jiping; Zhao, Ruirui; Zhang, Jian; Lv, Shengnan; Liu, Lingyi; Shen, Lin

    2011-06-22

    L-arginine is the precursor of nitric oxide (NO). In order to examine the influence of L-arginine on tomato fruit resistance, preharvest green mature tomato fruits (Solanum lycopersicum cv. No. 4 Zhongshu) were treated with 0.5, 1, and 5 mM L-arginine. The reduced lesion size (in diameter) on fruit caused by Botrytis cinerea, as well as activities of phenylalanine ammonia-lyase (PAL), Chitinase (CHI), β-1,3-glucanase (GLU), and polyphenoloxidase (PPO), was compared between L-arginine treated fruits and untreated fruits. We found that induced resistance increased and reached the highest level at 3-6 days after treatment. Endogenous NO concentrations were positively correlated with PAL, PPO, CHI, and GLU activities after treatment with Pearson coefficients of 0.71, 0.94, 0.97, and 0.87, respectively. These results indicate that arginine induces disease resistance via its effects on NO biosynthesis and defensive enzyme activity.

  2. The cell size distribution of tomato fruit can be changed by overexpression of CDKA1.

    Science.gov (United States)

    Czerednik, Anna; Busscher, Marco; Angenent, Gerco C; de Maagd, Ruud A

    2015-02-01

    Tomato is one of the most cultivated vegetables in the world and an important ingredient of the human diet. Tomato breeders and growers face a continuous challenge of combining high quantity (production volume) with high quality (appearance, taste and perception for the consumers, processing quality for the processing industry). To improve the quality of tomato, it is important to understand the regulation of fruit development and of fruit cellular structure, which is in part determined by the sizes and numbers of cells within a tissue. The role of the cell cycle therein is poorly understood. Plant cyclin-dependent kinases (CDKs) are homologues of yeast cdc2, an important cell cycle regulator conserved throughout all eukaryotes. CDKA1 is constitutively expressed during the cell cycle and has dual functions in S- and M-phase progression. We have produced transgenic tomato plants with increased expression of CDKA1 under the control of the fruit-specific TPRP promoter, which despite a reduced number of seeds and diminished amount of jelly, developed fruits with weight and shape comparable to that of wild-type fruits. However, the phenotypic changes with regard to the pericarp thickness and placenta area were remarkable. Fruits of tomato plants with the highest expression of CDKA1 had larger septa and columella (placenta), compared with wild-type fruits. Our data demonstrate the possibility of manipulating the ratio between cell division and expansion by changing the expression of a key cell cycle regulator and probably its activity with substantial effects on structural traits of the harvested fruit.

  3. Complex and shifting interactions of phytochromes regulate fruit development in tomato.

    Science.gov (United States)

    Gupta, Suresh Kumar; Sharma, Sulabha; Santisree, Parankusam; Kilambi, Himabindu Vasuki; Appenroth, Klaus; Sreelakshmi, Yellamaraju; Sharma, Rameshwar

    2014-07-01

    Tomato fruit ripening is a complex metabolic process regulated by a genetical hierarchy. A subset of this process is also modulated by light signalling, as mutants encoding negative regulators of phytochrome signal transduction show higher accumulation of carotenoids. In tomato, phytochromes are encoded by a multi-gene family, namely PHYA, PHYB1, PHYB2, PHYE and PHYF; however, their contribution to fruit development and ripening has not been examined. Using single phytochrome mutants phyA, phyB1 and phyB2 and multiple mutants phyAB1, phyB1B2 and phyAB1B2, we compared the on-vine transitory phases of ripening until fruit abscission. The phyAB1B2 mutant showed accelerated transitions during ripening, with shortest time to fruit abscission. Comparison of transition intervals in mutants indicated a phase-specific influence of different phytochrome species either singly or in combination on the ripening process. Examination of off-vine ripened fruits indicated that ripening-specific carotenoid accumulation was not obligatorily dependent upon light and even dark-incubated fruits accumulated carotenoids. The accumulation of transcripts and carotenoids in off-vine and on-vine ripened mutant fruits indicated a complex and shifting phase-dependent modulation by phytochromes. Our results indicate that, in addition to regulating carotenoid levels in tomato fruits, phytochromes also regulate the time required for phase transitions during ripening.

  4. Fruit illumination stimulates cell division but has no detectable effect on fruit size in tomato (Solanum lycopersicum).

    Science.gov (United States)

    Okello, Robert C O; Heuvelink, Ep; de Visser, Pieter H B; Lammers, Michiel; de Maagd, Ruud A; Marcelis, Leo F M; Struik, Paul C

    2015-05-01

    Light affects plant growth through assimilate availability and signals regulating development. The effects of light on growth of tomato fruit were studied using cuvettes with light-emitting diodes providing white, red or blue light to individual tomato trusses for different periods during daytime. Hypotheses tested were as follows: (1) light-grown fruits have stronger assimilate sinks than dark-grown fruits, and (2) responses depend on light treatment provided, and fruit development stage. Seven light treatments [dark, 12-h white, 24-h white, 24-h red and 24-h blue light, dark in the first 24 days after anthesis (DAA) followed by 24-h white light until breaker stage, and its reverse] were applied. Observations were made between anthesis and breaker stage at fruit, cell and gene levels. Fruit size and carbohydrate content did not respond to light treatments while cell division was strongly stimulated at the expense of cell expansion by light. The effects of light on cell number and volume were independent of the combination of light color and intensity. Increased cell division and decreased cell volume when fruits were grown in the presence of light were not clearly corroborated by the expression pattern of promoters and inhibitors of cell division and expansion analyzed in this study, implying a strong effect of posttranscriptional regulation. Results suggest the existence of a complex homeostatic regulatory system for fruit growth in which reduced cell division is compensated by enhanced cell expansion.

  5. Altered cell wall disassembly during ripening of Cnr tomato fruit: implications for cell adhesion and fruit softening

    DEFF Research Database (Denmark)

    Orfila, C.; Huisman, M.M.H.; Willats, William George Tycho

    2002-01-01

    polysaccharides to the non-softening and altered cell adhesion phenotype. Cell wall material (CWM) and solubilised fractions of mature green and red ripe fruit were analysed by chemical, enzymatic and immunochemical techniques. No major differences in CWM sugar composition were detected although differences were...... that was chelator-soluble was 50% less in Cnr cell walls at both the mature green and red ripe stages. Chelator-soluble material from ripe-stage Cnr was more susceptible to endo-polygalacturonase degradation than the corresponding material from wild-type fruit. In addition, cell walls from Cnr fruit contained......The Cnr (Colourless non-ripening) tomato (Lycopersicon esculentum Mill.) mutant has an aberrant fruit-ripening phenotype in which fruit do not soften and have reduced cell adhesion between pericarp cells. Cell walls from Cnr fruit were analysed in order to assess the possible contribution of pectic...

  6. Ethylene suppresses tomato (Solanum lycopersicum) fruit set through modification of gibberellin metabolism.

    Science.gov (United States)

    Shinozaki, Yoshihito; Hao, Shuhei; Kojima, Mikiko; Sakakibara, Hitoshi; Ozeki-Iida, Yuko; Zheng, Yi; Fei, Zhangjun; Zhong, Silin; Giovannoni, James J; Rose, Jocelyn K C; Okabe, Yoshihiro; Heta, Yumi; Ezura, Hiroshi; Ariizumi, Tohru

    2015-07-01

    Fruit set in angiosperms marks the transition from flowering to fruit production and a commitment to seed dispersal. Studies with Solanum lycopersicum (tomato) fruit have shown that pollination and subsequent fertilization induce the biosynthesis of several hormones, including auxin and gibberellins (GAs), which stimulate fruit set. Circumstantial evidence suggests that the gaseous hormone ethylene may also influence fruit set, but this has yet to be substantiated with molecular or mechanistic data. Here, we examined fruit set at the biochemical and genetic levels, using hormone and inhibitor treatments, and mutants that affect auxin or ethylene signaling. The expression of system-1 ethylene biosynthetic genes and the production of ethylene decreased during pollination-dependent fruit set in wild-type tomato and during pollination-independent fruit set in the auxin hypersensitive mutant iaa9-3. Blocking ethylene perception in emasculated flowers, using either the ethylene-insensitive Sletr1-1 mutation or 1-methylcyclopropene (1-MCP), resulted in elongated parthenocarpic fruit and increased cell expansion, whereas simultaneous treatment with the GA biosynthesis inhibitor paclobutrazol (PAC) inhibited parthenocarpy. Additionally, the application of the ethylene precursor 1-aminocyclopropane-1-carboxylic acid (ACC) to pollinated ovaries reduced fruit set. Furthermore, Sletr1-1 parthenocarpic fruits did not exhibit increased auxin accumulation, but rather had elevated levels of bioactive GAs, most likely reflecting an increase in transcripts encoding the GA-biosynthetic enzyme SlGA20ox3, as well as a reduction in the levels of transcripts encoding the GA-inactivating enzymes SlGA2ox4 and SlGA2ox5. Taken together, our results suggest that ethylene plays a role in tomato fruit set by suppressing GA metabolism. © 2015 The Authors The Plant Journal © 2015 John Wiley & Sons Ltd.

  7. Xyloglucan endotransglucosylase/hydrolases (XTHs) during tomato fruit growth and ripening.

    Science.gov (United States)

    Miedes, Eva; Lorences, Ester P

    2009-03-15

    Depolymerization of cell wall xyloglucan has been proposed to be involved in tomato fruit softening, along with the xyloglucan modifying enzymes. Xyloglucan endotransglucosylase/hydrolases (XTHs: EC 2.4.1.207 and/or EC 3.2.1.151) have been proposed to have a dual role integrating newly secreted xyloglucan chains into an existing wall-bound xyloglucan, or restructuring the existing cell wall material by catalyzing transglucosylation between previously wall-bound xyloglucan molecules. Here, 10 tomato (Solanum lycopersicum) SlXTHs were studied and grouped into three phylogenetic groups to determine which members of each family were expressed during fruit growth and fruit ripening, and the ways in which the expression of different SlXTHs contributed to the total XET and XEH activities. Our results showed that all of the SlXTHs studied were expressed during fruit growth and ripening, and that the expression of all the SlXTHs in Group 1 was clearly related to fruit growth, as were SlXTH12 in Group 2 and SlXTH6 in Group 3-B. Only the expression of SlXTH5 and SlXTH8 from Group 3-A was clearly associated with fruit ripening, although all 10 of the different SlXTHs were expressed at the red ripe stage. Both total XET and XEH activities were higher during fruit growth, and decreased during fruit ripening. Ethylene production during tomato fruit growth was low and experienced a significant increase during fruit ripening, which was not correlated either with SlXTH expression or with XET and XEH activities. We suggest that the role of XTH during fruit development could be related to the maintenance of the structural integrity of the cell wall, and the decrease in XTHs expression, and the subsequent decrease in activity during ripening may contribute to fruit softening, with this process being regulated through different XTH genes.

  8. Characterization and content of flavonoid glycosides in genetically modified tomato (Lycopersicon esculentum) fruits.

    Science.gov (United States)

    Le Gall, Gwénaëlle; DuPont, M Susan; Mellon, Fred A; Davis, Adrienne L; Collins, Geoff J; Verhoeyen, Martine E; Colquhoun, Ian J

    2003-04-23

    There is a growing interest in producing food plants with increased amounts of flavonoids because of their potential health benefits. Tomatoes contain small amounts of flavonoids, most of which are located in the peel of the fruit. It has been shown that flavonoid accumulation in tomato flesh, and hence an overall increase in flavonoid levels in tomato fruit, can be achieved by means of simultaneous overexpression of the maize transcription factors LC and C1. Fruit from progeny of two modified lines (2027 and 2059) was selected for a detailed analysis and individual identification of flavonoids, at different stages of maturity. Nine major flavonoids were detected in the flesh of transgenic ripe tomatoes. LC/NMR, LC/MS, and LC/MS/MS enabled us to identify these as kaempferol-3,7-di-O-glucoside (1), kaempferol-3-O-rutinoside-7-O-glucoside (2), two dihydrokaempferol-O-hexosides (3 and 4), rutin (5), kaempferol-3-O-rutinoside (6), kaempferol-3-O-glucoside (7), naringenin-7-O-glucoside (8) and naringenin chalcone (9), which were quantified by HPLC/DAD. All but 5, 6, and 9 were detected in tomato for the first time. The total flavonoid glycoside content of ripe transgenic tomatoes of line 2059 was about 10-fold higher than that of the controls, and kaempferol glycosides accounted for 60% of this. Kaempferol glycosides comprised around 5% of the flavonoid glycoside content of ripe control tomatoes (the rest was rutin and naringenin chalcone). The rutin concentration in both transgenic and control fruits was similar.

  9. Metabolic Fingerprinting to Assess the Impact of Salinity on Carotenoid Content in Developing Tomato Fruits

    Directory of Open Access Journals (Sweden)

    Lieven Van Meulebroek

    2016-05-01

    Full Text Available As the presence of health-promoting substances has become a significant aspect of tomato fruit appreciation, this study investigated nutrient solution salinity as a tool to enhance carotenoid accumulation in cherry tomato fruit (Solanum lycopersicum L. cv. Juanita. Hereby, a key objective was to uncover the underlying mechanisms of carotenoid metabolism, moving away from typical black box research strategies. To this end, a greenhouse experiment with five salinity treatments (ranging from 2.0 to 5.0 decisiemens (dS m−1 was carried out and a metabolomic fingerprinting approach was applied to obtain valuable insights on the complicated interactions between salinity treatments, environmental conditions, and the plant’s genetic background. Hereby, several hundreds of metabolites were attributed a role in the plant’s salinity response (at the fruit level, whereby the overall impact turned out to be highly depending on the developmental stage. In addition, 46 of these metabolites embraced a dual significance as they were ascribed a prominent role in carotenoid metabolism as well. Based on the specific mediating actions of the retained metabolites, it could be determined that altered salinity had only marginal potential to enhance carotenoid accumulation in the concerned tomato fruit cultivar. This study invigorates the usefulness of metabolomics in modern agriculture, for instance in modeling tomato fruit quality. Moreover, the metabolome changes that were caused by the different salinity levels may enclose valuable information towards other salinity-related plant processes as well.

  10. Tomato fruit and seed colonization by Clavibacter michiganensis subsp. michiganensis through external and internal routes.

    Science.gov (United States)

    Tancos, Matthew A; Chalupowicz, Laura; Barash, Isaac; Manulis-Sasson, Shulamit; Smart, Christine D

    2013-11-01

    The Gram-positive bacterium Clavibacter michiganensis subsp. michiganensis, causal agent of bacterial wilt and canker of tomato, is an economically devastating pathogen that inflicts considerable damage throughout all major tomato-producing regions. Annual outbreaks continue to occur in New York, where C. michiganensis subsp. michiganensis spreads via infected transplants, trellising stakes, tools, and/or soil. Globally, new outbreaks can be accompanied by the introduction of contaminated seed stock; however, the route of seed infection, especially the role of fruit lesions, remains undefined. In order to investigate the modes of seed infection, New York C. michiganensis subsp. michiganensis field strains were stably transformed with a gene encoding enhanced green fluorescent protein (eGFP). A constitutively eGFP-expressing virulent C. michiganensis subsp. michiganensis isolate, GCMM-22, was used to demonstrate that C. michiganensis subsp. michiganensis could not only access seeds systemically through the xylem but also externally through tomato fruit lesions, which harbored high intra- and intercellular populations. Active movement and expansion of bacteria into the fruit mesocarp and nearby xylem vessels followed, once the fruits began to ripen. These results highlight the ability of C. michiganensis subsp. michiganensis to invade tomato fruits and seeds through multiple entry routes.

  11. Metabolic Fingerprinting to Assess the Impact of Salinity on Carotenoid Content in Developing Tomato Fruits.

    Science.gov (United States)

    Van Meulebroek, Lieven; Hanssens, Jochen; Steppe, Kathy; Vanhaecke, Lynn

    2016-05-26

    As the presence of health-promoting substances has become a significant aspect of tomato fruit appreciation, this study investigated nutrient solution salinity as a tool to enhance carotenoid accumulation in cherry tomato fruit (Solanum lycopersicum L. cv. Juanita). Hereby, a key objective was to uncover the underlying mechanisms of carotenoid metabolism, moving away from typical black box research strategies. To this end, a greenhouse experiment with five salinity treatments (ranging from 2.0 to 5.0 decisiemens (dS) m(-1)) was carried out and a metabolomic fingerprinting approach was applied to obtain valuable insights on the complicated interactions between salinity treatments, environmental conditions, and the plant's genetic background. Hereby, several hundreds of metabolites were attributed a role in the plant's salinity response (at the fruit level), whereby the overall impact turned out to be highly depending on the developmental stage. In addition, 46 of these metabolites embraced a dual significance as they were ascribed a prominent role in carotenoid metabolism as well. Based on the specific mediating actions of the retained metabolites, it could be determined that altered salinity had only marginal potential to enhance carotenoid accumulation in the concerned tomato fruit cultivar. This study invigorates the usefulness of metabolomics in modern agriculture, for instance in modeling tomato fruit quality. Moreover, the metabolome changes that were caused by the different salinity levels may enclose valuable information towards other salinity-related plant processes as well.

  12. Functional diversification of AGAMOUS lineage genes in regulating tomato flower and fruit development.

    Science.gov (United States)

    Pan, Irvin L; McQuinn, Ryan; Giovannoni, James J; Irish, Vivian F

    2010-06-01

    AGAMOUS clade genes encode MADS box transcription factors that have been shown to play critical roles in many aspects of flower and fruit development in angiosperms. Tomato possesses two representatives of this lineage, TOMATO AGAMOUS (TAG1) and TOMATO AGAMOUS-LIKE1 (TAGL1), allowing for an analysis of diversification of function after gene duplication. Using RNAi (RNA interference) silencing, transgenic tomato lines that specifically down-regulate either TAGL1 or TAG1 transcript accumulation have been produced. TAGL1 RNAi lines show no defects in stamen or carpel identity, but show defects in fruit ripening. In contrast TAG1 RNAi lines show defects in stamen and carpel development. In addition TAG1 RNAi lines produce red ripe fruit, although they are defective in determinacy and produce ectopic internal fruit structures. e2814, an EMS- (ethyl methane sulphonate) induced mutation that is temperature sensitive and produces fruit phenotypes similar to that of TAG1 RNAi lines, was also characterized. Neither TAG1 nor TAGL1 expression is disrupted in the e2814 mutant, suggesting that the gene corresponding to the e2814 mutant represents a distinct locus that is likely to be functionally downstream of TAG1 and TAGL1. Based on these analyses, possible modes by which these gene duplicates have diversified in terms of their functions and regulatory roles are discussed.

  13. Carotenoid accumulation during tomato fruit ripening is modulated by the auxin-ethylene balance.

    Science.gov (United States)

    Su, Liyan; Diretto, Gianfranco; Purgatto, Eduardo; Danoun, Saïda; Zouine, Mohamed; Li, Zhengguo; Roustan, Jean-Paul; Bouzayen, Mondher; Giuliano, Giovanni; Chervin, Christian

    2015-05-08

    Tomato fruit ripening is controlled by ethylene and is characterized by a shift in color from green to red, a strong accumulation of lycopene, and a decrease in β-xanthophylls and chlorophylls. The role of other hormones, such as auxin, has been less studied. Auxin is retarding the fruit ripening. In tomato, there is no study of the carotenoid content and related transcript after treatment with auxin. We followed the effects of application of various hormone-like substances to "Mature-Green" fruits. Application of an ethylene precursor (ACC) or of an auxin antagonist (PCIB) to tomato fruits accelerated the color shift, the accumulation of lycopene, α-, β-, and δ-carotenes and the disappearance of β-xanthophylls and chlorophyll b. By contrast, application of auxin (IAA) delayed the color shift, the lycopene accumulation and the decrease of chlorophyll a. Combined application of IAA + ACC led to an intermediate phenotype. The levels of transcripts coding for carotenoid biosynthesis enzymes, for the ripening regulator Rin, for chlorophyllase, and the levels of ethylene and abscisic acid (ABA) were monitored in the treated fruits. Correlation network analyses suggest that ABA, may also be a key regulator of several responses to auxin and ethylene treatments. The results suggest that IAA retards tomato ripening by affecting a set of (i) key regulators, such as Rin, ethylene and ABA, and (ii) key effectors, such as genes for lycopene and β-xanthophyll biosynthesis and for chlorophyll degradation.

  14. Polyamine metabolism in ripening tomato fruit. II. Polyamine metabolism and synthesis in relation to enhanced putrescine content and storage life of alc tomato fruit

    Energy Technology Data Exchange (ETDEWEB)

    Rastogi, R.; Davies, P.J. (Cornell Univ., Ithaca, NY (United States))

    1991-01-01

    The fruit of the Alcobaca landrace of tomato (Lycopersicon esculentum Mill.) have prolonged keeping qualities (determined by the allele alc) and contain three times as much putrescine as the standard Rutgers variety (Alc) at the ripe stage. Polyamine metabolism and biosynthesis were compared in fruit from Rutgers and Rutgers-alc-a near isogenic line possessing the allele alc, at four different stages of ripening. The levels of soluble polyamine conjugates as well as wall bound polyamines in the pericarp tissue and jelly were very low or nondetectable in both genotypes. The increase in putrescine content in alc pericarp is not related to normal ripening as it occurred with time and whether or not the fruit ripened. Pericarp discs of both normal and alc fruit showed a decrease in the metabolism of (1,4-{sup 14}C)putrescine and (terminal labeled-{sup 3}H)spermidine with ripening, but there were no significant differences between the two genotypes. The activity of ornithine decarboxylase was similar in the fruit pericarp of the two lines. Arginine decarboxylase activity decreased during ripening in Rutgers but decreased and rose again in Rutgers-alc fruit, and as a result it was significantly higher in alc fruit than in the normal fruit at the ripe stage. The elevated putrescine levels in alc fruit appear, therefore, to be due to an increase in the activity of arginine decarboxylase.

  15. Studies on the role of polygalacturonase isoenzymes in tomato fruit softening and ripening

    OpenAIRE

    Harman, Jane Elizabeth

    1984-01-01

    Changes in the activity of polygalacturonase during the development and/or ripening of tomato fruit of a wide range of genotypes have been followed. Normal commercial cultivars have three forms of the enzyme; the isoenzyme having the highest molecular weight, PG1, appeared as fruit began to change colour, and its rate of accumulation was reflected in the rate of fruit softening.This early rate of softening was closely related to the eventual degree of softness shown by the fully ripe fruit.PG...

  16. Regulation of tomato (Lycopersicon esculentum Mill.) fruit setting ...

    African Journals Online (AJOL)

    Dandena

    2012-06-26

    Jun 26, 2012 ... In general, the study indicated that 2, 4-D is important in tomato ..... Research Experience and Production. Prospects. Research Report 43. Ethiopian Agricultural Research. Organization Addis Ababa, Ethiopia. p. 48.

  17. Regulatory specialization of xyloglucan (XG) and glucuronoarabinoxylan (GAX) in pericarp cell walls during fruit ripening in tomato (Solanum lycopersicum).

    Science.gov (United States)

    Takizawa, Ayami; Hyodo, Hiromi; Wada, Kanako; Ishii, Tadashi; Satoh, Shinobu; Iwai, Hiroaki

    2014-01-01

    Disassembly of cell wall polysaccharides by various cell wall hydrolases during fruit softening causes structural changes in hemicellulose and pectin that affect the physical properties and softening of tomato fruit. In a previous study, we showed that the changes in pectin during tomato fruit ripening were unique in each fruit tissue. In this study, to clarify the changes in hemicellulose in tissues during tomato fruit ripening, we focused on glucuronoarabinoxylan (GAX) and xyloglucan (XG). GAX was detected only in the skin and inner epidermis of the pericarp using LM11 antibodies, whereas a large increase in XG was detected in all fruit tissues using LM15 antibodies. The activity of hemicellulose degradation enzymes, such as β-xylosidase and α-arabinofuranosidase, decreased gradually during fruit ripening, although the tomato fruits continued to soften. In contrast, GAX and XG biosynthesis-related genes were expressed in all tomato fruit tissues even during ripening, indicating that XG was synthesized throughout the fruit and that GAX may be synthesized only in the vascular bundles and the inner epidermis. Our results suggest that changes in the cell wall architecture and tissue-specific distribution of XG and GAX might be required for the regulation of fruit softening and the maintenance of fruit shape.

  18. Regulatory specialization of xyloglucan (XG and glucuronoarabinoxylan (GAX in pericarp cell walls during fruit ripening in tomato (Solanum lycopersicum.

    Directory of Open Access Journals (Sweden)

    Ayami Takizawa

    Full Text Available Disassembly of cell wall polysaccharides by various cell wall hydrolases during fruit softening causes structural changes in hemicellulose and pectin that affect the physical properties and softening of tomato fruit. In a previous study, we showed that the changes in pectin during tomato fruit ripening were unique in each fruit tissue. In this study, to clarify the changes in hemicellulose in tissues during tomato fruit ripening, we focused on glucuronoarabinoxylan (GAX and xyloglucan (XG. GAX was detected only in the skin and inner epidermis of the pericarp using LM11 antibodies, whereas a large increase in XG was detected in all fruit tissues using LM15 antibodies. The activity of hemicellulose degradation enzymes, such as β-xylosidase and α-arabinofuranosidase, decreased gradually during fruit ripening, although the tomato fruits continued to soften. In contrast, GAX and XG biosynthesis-related genes were expressed in all tomato fruit tissues even during ripening, indicating that XG was synthesized throughout the fruit and that GAX may be synthesized only in the vascular bundles and the inner epidermis. Our results suggest that changes in the cell wall architecture and tissue-specific distribution of XG and GAX might be required for the regulation of fruit softening and the maintenance of fruit shape.

  19. Genetic improvement of tomato by targeted control of fruit softening

    KAUST Repository

    Uluisik, Selman

    2016-07-25

    Controlling the rate of softening to extend shelf life was a key target for researchers engineering genetically modified (GM) tomatoes in the 1990s, but only modest improvements were achieved. Hybrids grown nowadays contain \\'non-ripening mutations\\' that slow ripening and improve shelf life, but adversely affect flavor and color. We report substantial, targeted control of tomato softening, without affecting other aspects of ripening, by silencing a gene encoding a pectate lyase. © 2016 Nature America, Inc. All rights reserved.

  20. Stored human urine supplemented with wood ash as fertilizer in tomato (Solanum lycopersicum) cultivation and its impacts on fruit yield and quality.

    Science.gov (United States)

    Pradhan, Surendra K; Holopainen, Jarmo K; Heinonen-Tanski, Helvi

    2009-08-26

    This study evaluates the use of human urine and wood ash as fertilizers for tomato cultivation in a greenhouse. Tomatoes were cultivated in pots and treated with 135 kg of N/ha applied as mineral fertilizer, urine + ash, urine only, and control (no fertilization). The urine fertilized plants produced equal amounts of tomato fruits as mineral fertilized plants and 4.2 times more fruits than nonfertilized plants. The levels of lycopene were similar in tomato fruits from all fertilization treatments, but the amount of soluble sugars was lower and Cl(-) was higher in urine + ash fertilized tomato fruits. The beta-carotene content was greater and the NO(3)(-) content was lower in urine fertilized tomato fruits. No enteric indicator microorganisms were detected in any tomato fruits. The results suggest that urine with/without wood ash can be used as a substitute for mineral fertilizer to increase the yields of tomato without posing any microbial or chemical risks.

  1. Open field trial of genetically modified parthenocarpic tomato: seedlessness and fruit quality

    Directory of Open Access Journals (Sweden)

    Pandolfini Tiziana

    2005-12-01

    Full Text Available Abstract Background Parthenocarpic tomato lines transgenic for the DefH9-RI-iaaM gene have been cultivated under open field conditions to address some aspects of the equivalence of genetically modified (GM fruit in comparison to controls (non-GM. Results Under open field cultivation conditions, two tomato lines (UC 82 transgenic for the DefH9-RI-iaaM gene produced parthenocarpic fruits. DefH9-RI-iaaM fruits were either seedless or contained very few seeds. GM fruit quality, with the exception of a higher β-carotene level, did not show any difference, neither technological (colour, firmness, dry matter, °Brix, pH nor chemical (titratable acidity, organic acids, lycopene, tomatine, total polyphenols and antioxidant capacity – TEAC, when compared to that of fruits from control line. Highly significant differences in quality traits exist between the tomato F1 commercial hybrid Allflesh and the three UC 82 genotypes tested, regardless of whether or not they are GM. Total yield per plant did not differ between GM and parental line UC 82. Fruit number was increased in GM lines, and GM fruit weight was decreased. Conclusion The use in the diet of fruits from a new line or variety introduces much greater changes than the consumption of GM fruits in comparison to its genetic background. Parthenocarpic fruits, produced under open field conditions, contained 10-fold less seeds than control fruits. Thus parthenocarpy caused by DefH9-RI-iaaM gene represents also a tool for mitigating GM seeds dispersal in the environment.

  2. Tomato Fruit Cell Wall Synthesis during Development and Senescence : In Vivo Radiolabeling of Wall Fractions Using [C]Sucrose.

    Science.gov (United States)

    Mitcham, E J; Gross, K C; Ng, T J

    1989-02-01

    The pedicel of tomato fruit (Lycopersicon esculentum Mill., cv ;Rutgers') of different developmental stages from immature-green (IG) to red was injected on the vine with 7 microcuries [(14)C(U)]sucrose and harvested after 18 hours. Cell walls were isolated from outer pericarp and further fractionated yielding ionically associated pectin, covalently bound pectin, hemicellulosic fraction I, hemicellulosic fraction II, and cellulosic fraction II. The dry weight of the total cell wall and of each cell wall fraction per gram fresh weight of pericarp tissue decreased after the mature-green (MG) stage of development. Incorporation of radiolabeled sugars into each fraction decreased from the IG to MG3 (locules jellied but still green) stage. Incorporation in all fractions increased from MG3 to breaker and turning (T) and then decreased from T to red. Data indicate that cell wall synthesis continues throughout ripening and increases transiently from MG4 (locules jellied and yellow to pink in color) to T, corresponding to the peak in respiration and ethylene synthesis during the climacteric. Synthesis continued at a time when total cell wall fraction dry weight decreased indicating the occurrence of cell wall turnover. Synthesis and insertion of a modified polymer with removal of other polymers may produce a less rigid cell wall and allow softening of the tissue integrity during ripening.

  3. Radiation preservation of foods of plant origin. Part VI. Mushrooms, tomatoes, minor fruits and vegetables, dried fruits, and nuts

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, P.

    1988-01-01

    In this concluding article in the series on the technological feasibility of ionizing radiation treatment for shelf life improvement of fruits and vegetables, the present status of research on several commodities that have not been dealt with earlier is discussed. The commodities include mushrooms, tomatoes, pineapples, lychees, longans, rambutans, mangostenes, guavas, sapotas, loquats, ber, soursops, passion fruits, persimmons, figs, melons, cucumbers, aubergines, globe artichokes, endives, lettuce, ginger, carrots, beet roots, turnips, olives, dates, chestnuts, almonds, pistachios, and other dried fruits and nuts. Changes induced by irradiation on metabolism, chemical constituents, and organoleptic qualities are considered while evaluating the shelf life. The commodities have been grouped into those showing potential benefits and those not showing any clear advantages from radiation treatment. Shelf life improvement of mushrooms and insect disinfestation in dried fruits, nuts, and certain fresh fruits appears to have immediate potential for commercial application. 194 references.

  4. Melatonin promotes ripening and improves quality of tomato fruit during postharvest life.

    Science.gov (United States)

    Sun, Qianqian; Zhang, Na; Wang, Jinfang; Zhang, Haijun; Li, Dianbo; Shi, Jin; Li, Ren; Weeda, Sarah; Zhao, Bing; Ren, Shuxin; Guo, Yang-Dong

    2015-02-01

    In this study, the effect of melatonin on the postharvest ripening and quality improvement of tomato fruit was carried out. The tomatoes were immersed in exogenous melatonin for 2h, and then the related physiological indicators and the expression of genes during post-harvest life were evaluated. Compared with control check (CK), the 50 µM melatonin treatment significantly increased lycopene levels by 5.8-fold. Meanwhile, the key genes involved in fruit colour development, including phytoene synthase1 (PSY1) and carotenoid isomerase (CRTISO), showed a 2-fold increase in expression levels. The rate of water loss from tomato fruit also increased 8.3%, and the expression of aquaporin genes, such as SlPIP12Q, SlPIPQ, SlPIP21Q, and SlPIP22, was up-regulated 2- to 3-fold under 50 µM melatonin treatment. In addition, 50 µM melatonin treatment enhanced fruit softening, increased water-soluble pectin by 22.5%, and decreased protopectin by 19.5%. The expression of the cell wall modifying proteins polygalacturonase (PG), pectin esterase1 (PE1), β-galactosidase (TBG4), and expansin1 (Exp1) was up-regulated under 50 µM melatonin treatment. Melatonin increased ethylene production by 27.1%, accelerated the climacteric phase, and influenced the ethylene signalling pathway. Alteration of ethylene production correlated with altered 1-aminocyclopropane-1-carboxylic acid (ACC) synthase (ACS4) expression. The expression of ethylene signal transduction-related genes such as NR, SlETR4, SlEIL1, SlEIL3, and SlERF2, was enhanced by 50 µM melatonin. The effect of melatonin on ethylene biosynthesis, ethylene perception, and ethylene signalling may contribute to fruit ripening and quality improvement in tomato. This research may promote the application of melatonin on postharvest ripening and quality improvement of tomato fruit as well as other horticultural productions in the future.

  5. Cloning of tomato (Lycopersicon esculentum Mill.) arginine decarboxylase gene and its expression during fruit ripening.

    Science.gov (United States)

    Rastogi, R; Dulson, J; Rothstein, S J

    1993-11-01

    Arginine decarboxylase (ADC) is the first enzyme in one of the two pathways of putrescine biosynthesis in plants. The genes encoding ADC have previously been cloned from oat and Escherichia coli. Degenerate oligonucleotides corresponding to two conserved regions of ADC were used as primers in polymerase chain reaction amplification of tomato (Lycopersicon esculentum Mill.) genomic DNA, and a 1.05-kb fragment was obtained. This genomic DNA fragment encodes an open reading frame of 350 amino acids showing about 50% identity with the oat ADC protein. Using this fragment as a probe, we isolated several partial ADC cDNA clones from a tomato pericarp cDNA library. The 5' end of the coding region was subsequently obtained from a genomic clone containing the entire ADC gene. The tomato ADC gene contains an open reading frame encoding a polypeptide of 502 amino acids and a predicted molecular mass of about 55 kD. The predicted amino acid sequence exhibits 47 and 38% identify with oat and E. coli ADCs, respectively. Gel blot hybridization experiments show that, in tomato, ADC is encoded by a single gene and is expressed as a transcript of approximately 2.2 kb in the fruit pericarp and leaf tissues. During fruit ripening the amount of ADC transcript appeared to peak at the breaker stage. No significant differences were seen when steady-state ADC mRNA levels were compared between normal versus long-keeping Alcobaca (alc) fruit, although alc fruit contain elevated putrescine levels and ADC activity at the ripe stage. The lack of correlation between ADC activity and steady-state mRNA levels in alc fruit suggests a translational and/or posttranslational regulation of ADC gene expression during tomato fruit ripening.

  6. Effect of silver ions on ethylene biosynthesis by tomato fruit tissue.

    Science.gov (United States)

    Atta-Aly, M A; Saltveit, M E; Hobson, G E

    1987-01-01

    Mature-green tomato fruit (Lycopersicon esculentum Mill.) were treated asymmetrically with 2 millimolar silver thiosulfate (STS) through a cut portion of the peduncle while still attached to the plant. One-half of the fruit received silver and remained green while the other half ripened normally and was silver-free (less than 0.01 parts per billion). Harvested mature-green fruit were also treated with STS through the cut pedicel. Green tissue from silver-treated fruit had levels of 1-aminocyclopropane-1-carboxylic acid (ACC, the immediate ethylene precursor) slightly less or similar to that of turning or red-ripe tissue from the same fruit, and similar to that of mature-green tissue from control fruit. Ethylene production was higher in green tissue from silver-treated fruit than from either red tissue from the same fruit, or mature-green tissue from control fruit. By inhibiting ACC synthesis with aminoethoxyvinyl glycine, and by applying ACC +/- silver to excised disks of pericarp tissue from control or silver-treated tomatoes, we showed that short-term silver treatment did not affect the biological conversion of ACC to ethylene, while long-term treatment stimulated both the conversion of ACC to ethylene and the synthesis of ACC.

  7. Basic Study on Color Sorting of Fresh Market Tomatoes

    OpenAIRE

    Mohri, Kentaro; UMEDA, Shigeo; TSURUMI, Gaku

    1987-01-01

    The surface colors of tomatoes are one of decision factor for the ripeness rate of fruits, and that is mainly graded by the human sense in fact. The color sorting based on the surface colors of tomatoes was attemped by using an opto-electronic system consisting of the color sensors. The sample tomatoes of each ripeness rate were prepared and tested by the color sorting system. As the ripeness rate of tomatoes develops from unripe to ripe, the surface colors change from green to pink or red. W...

  8. Steroidal glycoalkaloid profiling and structures of glycoalkaloids in wild tomato fruit.

    Science.gov (United States)

    Iijima, Yoko; Watanabe, Bunta; Sasaki, Ryosuke; Takenaka, Makiko; Ono, Hiroshi; Sakurai, Nozomu; Umemoto, Naoyuki; Suzuki, Hideyuki; Shibata, Daisuke; Aoki, Koh

    2013-11-01

    Steroidal glycoalkaloids (SGAs) constitute one of the main groups of secondary metabolites in tomato fruit. However, the detailed composition of SGAs other than α-tomatine, dehydrotomatine and esculeoside A, remains unclear. Comparative SGA profiling was performed in eight tomato accessions, including wild tomato species by HPLC-Fourier transform ion cyclotron resonance mass spectrometry (HPLC-FTICR/MS). On the basis of molecular formulae obtained from accurate m/z and fragmentation patterns by multistage MS/ MS (MS(n)), 123 glycoalkaloids in total were screened. Detailed MS(n) analysis showed that the observed structural diversity was derived from various chemical modifications, such as glycosylation, acetylation, hydroxylation and isomerization. Total SGA content in each tomato accession was in the range of 121-1986 nmol/gfr.wt. Furthermore, the compositional variety of SGA structures was distinctive in some tomato accessions. While most tomato accessions were basically categorized as α-tomatine-rich or esculeoside A-rich group, other specific SGAs also accumulated at high levels in wild tomato. Here, five such SGAs were isolated and their structures were determined by NMR spectroscopic analysis, indicating three of them were presumably synthesized during α-tomatine metabolism.

  9. Off-the-Vine Ripening of Tomato Fruit Causes Alteration in the Primary Metabolite Composition

    Directory of Open Access Journals (Sweden)

    Silvana B. Boggio

    2013-10-01

    Full Text Available The influence of postharvest fruit ripening in the composition of metabolites, transcripts and enzymes in tomato (Solanum lycopersicum L. is poorly understood. The goal of this work was to study the changes in the metabolite composition of the tomato fruit ripened off-the-vine using the cultivar Micro-Tom as model system. Proton nuclear magnetic resonance (1H NMR was used for analysis of the metabolic profile of tomato fruits ripened on- and off-the-vine. Significant differences under both ripening conditions were observed principally in the contents of fructose, glucose, aspartate and glutamate. Transcript levels and enzyme activities of -amino butyrate transaminase (EC 2.6.1.19 and glutamate decarboxylase (EC 4.1.1.15 showed differences in fruits ripened under these two conditions. These data indicate that the contents of metabolites involved in primary metabolism, and conferring the palatable properties of fruits, are altered when fruits are ripened off-the-vine.

  10. Effect of silencing the two major tomato fruit pectin methylesterase isoforms on cell wall pectin metabolism.

    Science.gov (United States)

    Wen, B; Ström, A; Tasker, A; West, G; Tucker, G A

    2013-11-01

    Post-harvest storage is largely limited by fruit softening, a result of cell wall degradation. Pectin methylesterase (PE) (EC 3.1.1.11) is a major hydrolase responsible for pectin de-esterification in the cell wall, a response to fruit ripening. Two major PE isoforms, PE1 and PE2, have been isolated from tomato (Solanum lycopersicon) pericarp tissue and both have previously been down-regulated using antisense suppression. In this paper, PE1 and PE2 double antisense tomato plants were successfully generated through crossing the two single antisense lines. In the double antisense fruit, approximately 10% of normal PE activity remained and ripening associated pectin de-esterification was almost completely blocked. However, double antisense fruit softened normally during ripening. In tomato fruit, the PE1 isoform was found to contribute little to total PE activity and have little effect on the degree of esterification of pectin. In contrast, the other dominant fruit isoform, PE2, has a major impact on de-esterification of total pectin. PE2 appears to act on non-CDTA-soluble pectin during ripening and on CDTA-soluble pectin before the start of ripening in a potentially block-wise fashion.

  11. Expression of thymosin alpha1 concatemer in transgenic tomato (Solanum lycopersicum) fruits.

    Science.gov (United States)

    Chen, Yuhui; Wang, Aoxue; Zhao, Lingxia; Shen, Guoan; Cui, Lijie; Tang, Kexuan

    2009-04-01

    Talpha1 (thymosin alpha1), an immune booster, plays an important role in the maturation, differentiation and function of T-cells. It can also activate the production of cytokines in dendritic cells. Talpha1 is one of two thymosin proteins that have potential future clinical applications. In order to express Talpha1 protein in plants, we designed and synthesized the Talpha1 gene according to the plant codon usage bias and created a novel 4 x Talpha1 concatemer (four copies of the Talpha1 gene arranged end-to-end in tandem, designated 4 x Talpha1). Subsequently, a plant binary expression vector, PG-pRD12-4 x Talpha1, was constructed and introduced into tomato via Agrobacterium tumefaciens-mediated transformation. Through selection, 54 regenerated tomato plants resistant to kanamycin were obtained, and four transgenic tomato plants were further confirmed by PCR and Southern blotting. RT-PCR (reverse transcription-PCR) analysis showed that the 4 x Talpha1 gene was transcribed specifically in tomato [Solanum lycopersicum (formerly Lycopersicon esculentum)] fruits. ELISA analysis showed that the content of the 4 x Talpha1 protein reached a maximum of 6.098 microg/g fresh weight in mature tomato fruit. Western-blot analysis further confirmed the expression of 4xTalpha1 protein in transgenic tomato fruits. The MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide] assay showed the 4 x Talpha1 protein derived from transgenic tomatoes exhibited bioactivity that can stimulate the proliferation of mice splenic lymphocytes in vitro, and the specific activity of Talpha1 protein from the artificial system was higher than that from the synthetic Escherichia coli system. This study is the first to report successful expression of bioactive Talpha1 in plants, and also it will provide the basis for further development of the plant system to produce Talpha1.

  12. Alternate partial root-zone drying irrigation improves fruit quality in tomatoes

    DEFF Research Database (Denmark)

    Sun, Y.; Holm, Peter Engelund; Liu, Fulai

    2014-01-01

    Alternate partial root-zone drying (PRD) irrigation and deficit irrigation (DI) are water-saving irrigation strategies. Here, comparative effects of PRD and DI on fruit quality of tomato (Solanum lycopersicum L.) were investigated. The results showed that the irrigation treatments had no effect...

  13. Mechanisms involved in calcium deficiency development in tomato fruit in response to gibberellins

    Science.gov (United States)

    Although gibberellins (GAs) have been shown to induce the calcium deficiency disorder, blossom-end rot (BER), development in tomato fruit (Solanum lycopersicum), the mechanisms involved remain largely unexplored. Our objectives were to better understand how GAs and a GA biosynthesis inhibitor affect...

  14. Gr and hp-1 tomato mutants unveil unprecedented interactions between arbuscular mycorrhizal symbiosis and fruit ripening.

    Science.gov (United States)

    Chialva, Matteo; Zouari, Inès; Salvioli, Alessandra; Novero, Mara; Vrebalov, Julia; Giovannoni, James J; Bonfante, Paola

    2016-07-01

    Systemic responses to an arbuscular mycorrhizal fungus reveal opposite phenological patterns in two tomato ripening mutants depending whether ethylene or light reception is involved. The availability of tomato ripening mutants has revealed many aspects of the genetics behind fleshy fruit ripening, plant hormones and light signal reception. Since previous analyses revealed that arbuscular mycorrhizal symbiosis influences tomato berry ripening, we wanted to test the hypothesis that an interplay might occur between root symbiosis and fruit ripening. With this aim, we screened seven tomato mutants affected in the ripening process for their responsiveness to the arbuscular mycorrhizal fungus Funneliformis mosseae. Following their phenological responses we selected two mutants for a deeper analysis: Green ripe (Gr), deficient in fruit ethylene perception and high-pigment-1 (hp-1), displaying enhanced light signal perception throughout the plant. We investigated the putative interactions between ripening processes, mycorrhizal establishment and systemic effects using biochemical and gene expression tools. Our experiments showed that both mutants, notwithstanding a normal mycorrhizal phenotype at root level, exhibit altered arbuscule functionality. Furthermore, in contrast to wild type, mycorrhization did not lead to a higher phosphate concentration in berries of both mutants. These results suggest that the mutations considered interfere with arbuscular mycorrhiza inducing systemic changes in plant phenology and fruits metabolism. We hypothesize a cross talk mechanism between AM and ripening processes that involves genes related to ethylene and light signaling.

  15. Effects of storage temperature and fruit ripening on firmness of fresh cut tomatoes

    NARCIS (Netherlands)

    Moreira Lana, M.; Tijskens, L.M.M.; Kooten, van O.

    2005-01-01

    Tomato fruit (cultivar Belissimo) were harvested at three different stages of ripening, sliced and stored at at 2, 5, 8, 12 and 16 °C. Firmness was measured as the force necessary to cause a deformation of 3 mm, in the outer and the radial pericarp, daily or every two days, depending on the combinat

  16. Constitutively expressed DHAR and MDHAR influence fruit, but not foliar ascorbate levels in tomato.

    Science.gov (United States)

    Haroldsen, Victor M; Chi-Ham, Cecilia L; Kulkarni, Shashank; Lorence, Argelia; Bennett, Alan B

    2011-10-01

    Vitamin C (L-ascorbate, AsA) is an essential nutrient required in key metabolic functions in humans and must be obtained from the diet, mainly from fruits and vegetables. Given its importance in human health and plant physiology we sought to examine the role of the ascorbate recycling enzymes monodehydroascorbate reductase (MDHAR) and dehydroascorbate reductase (DHAR) in tomato (Solanum lycopersicum), an economically important fruit crop. Cytosolic-targeted tomato genes Mdhar and Dhar were cloned and over-expressed under a constitutive promoter in tomato var. Micro-Tom. Lines with increased protein levels and enzymatic activity were identified and examined. Mature green and red ripe fruit from DHAR over-expressing lines had a 1.6 fold increase in AsA content in plants grown under relatively low light conditions (150 μmol m(-2) s(-1)). Conversely, MDHAR over-expressers had significantly reduced AsA levels in mature green fruits by 0.7 fold. Neither over-expressing line had altered levels of AsA in foliar tissues. These results underscore a complex regulation of the AsA pool size in tomato.

  17. Alternate partial root-zone drying irrigation improves fruit quality in tomatoes

    DEFF Research Database (Denmark)

    Sun, Y.; Holm, Peter Engelund; Liu, Fulai

    2014-01-01

    Alternate partial root-zone drying (PRD) irrigation and deficit irrigation (DI) are water-saving irrigation strategies. Here, comparative effects of PRD and DI on fruit quality of tomato (Solanum lycopersicum L.) were investigated. The results showed that the irrigation treatments had no effect...

  18. Gr and hp-1 tomato mutants unveil unprecedented interactions between arbuscular mycorrhizal symbiosis and fruit ripening

    Science.gov (United States)

    The roots of plants interact with soil mycorrhizal fungi to facilitate soil nutrient acquisition by the plant and carbon transfer to the fungus. Here we use tomato fruit ripening mutations to demonstrate that this root interaction communicates with and supports genetic mechanisms associated with th...

  19. Isolation, Characterization, and Surfactant Properties of the Major Triterpenoid Glycosides from Unripe Tomato Fruits

    NARCIS (Netherlands)

    Yamanaka, T.; Vincken, J.P.; Waard, de P.; Sanders, M.G.; Takada, N.; Gruppen, H.

    2008-01-01

    Various triterpenoid glycosides were extracted from whole unripe tomato fruits (Lycopersicon esculentum cv. Cedrico), using aqueous 70% (v/v) ethanol to study their surfactant properties. Cation-exchange chromatography using a Source 15S column and subsequent semipreparative HPLC using an XTerra RP1

  20. First report of Colletotrichum nigrum causing anthracnose disease on tomato fruit in New Jersey

    Science.gov (United States)

    Anthracnose fruit rot is one of the most serious diseases affecting the production of tomato (Solanum lycopersicum L.) in the United States and is typically incited by Colletotrichum coccodes, C. gloeosporioides or C. dematium (Farr and Rossman 2016). During the summer of 2013, symptoms characteris...

  1. Isolation, Characterization, and Surfactant Properties of the Major Triterpenoid Glycosides from Unripe Tomato Fruits

    NARCIS (Netherlands)

    Yamanaka, T.; Vincken, J.P.; Waard, de P.; Sanders, M.G.; Takada, N.; Gruppen, H.

    2008-01-01

    Various triterpenoid glycosides were extracted from whole unripe tomato fruits (Lycopersicon esculentum cv. Cedrico), using aqueous 70% (v/v) ethanol to study their surfactant properties. Cation-exchange chromatography using a Source 15S column and subsequent semipreparative HPLC using an XTerra

  2. Network inference analysis identifies an APRR2-like gene linked to pigment accumulation in tomato and pepper fruits.

    Science.gov (United States)

    Pan, Yu; Bradley, Glyn; Pyke, Kevin; Ball, Graham; Lu, Chungui; Fray, Rupert; Marshall, Alexandra; Jayasuta, Subhalai; Baxter, Charles; van Wijk, Rik; Boyden, Laurie; Cade, Rebecca; Chapman, Natalie H; Fraser, Paul D; Hodgman, Charlie; Seymour, Graham B

    2013-03-01

    Carotenoids represent some of the most important secondary metabolites in the human diet, and tomato (Solanum lycopersicum) is a rich source of these health-promoting compounds. In this work, a novel and fruit-related regulator of pigment accumulation in tomato has been identified by artificial neural network inference analysis and its function validated in transgenic plants. A tomato fruit gene regulatory network was generated using artificial neural network inference analysis and transcription factor gene expression profiles derived from fruits sampled at various points during development and ripening. One of the transcription factor gene expression profiles with a sequence related to an Arabidopsis (Arabidopsis thaliana) ARABIDOPSIS PSEUDO RESPONSE REGULATOR2-LIKE gene (APRR2-Like) was up-regulated at the breaker stage in wild-type tomato fruits and, when overexpressed in transgenic lines, increased plastid number, area, and pigment content, enhancing the levels of chlorophyll in immature unripe fruits and carotenoids in red ripe fruits. Analysis of the transcriptome of transgenic lines overexpressing the tomato APPR2-Like gene revealed up-regulation of several ripening-related genes in the overexpression lines, providing a link between the expression of this tomato gene and the ripening process. A putative ortholog of the tomato APPR2-Like gene in sweet pepper (Capsicum annuum) was associated with pigment accumulation in fruit tissues. We conclude that the function of this gene is conserved across taxa and that it encodes a protein that has an important role in ripening.

  3. Effectiveness of Neutral Electrolyzed Water on Incidence of Fungal Rot on Tomato Fruits ( Solanum lycopersicum L.).

    Science.gov (United States)

    Vásquez-López, Alfonso; Villarreal-Barajas, Tania; Rodríguez-Ortiz, Gerardo

    2016-10-01

    We assessed the effect of neutral electrolyzed water (NEW) on the incidence of rot on tomato ( Solanum lycopersicum L.) fruits inoculated with Fusarium oxysporum , Galactomyces geotrichum , and Alternaria sp. at sites with lesions. The inoculated fruits were treated with NEW at 10, 30, and 60 mg liter(-1) active chlorine, with copper oxychloride fungicide, and with sterile distilled water (control) for 3, 5, and 10 min. In the experiment with F. oxysporum , 50 to 80% of the control fruits and 50 to 60% of the fruits treated with the fungicide exhibited symptoms of rot at the inoculated sites. The lowest incidence recorded was 30% for fruits treated with NEW at 60 mg liter(-1) active chlorine with an immersion time of 5 min. In the experiment with G. geotrichum , incidence of rot on control fruits was 70 to 90%, and for treatment with fungicide rot incidence was 50 to 90%. NEW at 60 mg liter(-1) active chlorine significantly reduced incidence of symptomatic fruit: only 30% of the inoculated fruits washed for 5 min had damage from rot. In the experiment with Alternaria sp., 60 to 90% of the fruits in the control group and 60 to 70% of the fruits in the fungicide group were symptomatic. The lowest incidence was recorded for the treatment in which the fruits were submerged in NEW with 60 mg liter(-1) active chlorine for 3 min. In this group, 40 to 50% of the fruits exhibited symptoms of rot. These results were obtained 8 days after inoculation. NEW, with 60 mg liter(-1) active chlorine, significantly reduced incidence of rot symptoms on fruits inoculated with one of the experimental fungi relative to the control (P ≤ 0.05). NEW at 60 mg liter(-1) is effective in the control of fungal rot in tomatoes.

  4. Maturity and ripening-stage specific modulation of tomato (Solanum lycopersicum) fruit transcriptome.

    Science.gov (United States)

    Srivastava, Alka; Gupta, Aditya K; Datsenka, Tatsiana; Mattoo, Autar K; Handa, Avtar K

    2010-01-01

    Tomato (Solanum lycopersicum) fruit is a model to study molecular basis of fleshy fruit development and ripening. We profiled gene expression during fruit development (immature green and mature green fruit) and ripening (breaker stage onwards) program to obtain a global perspective of genes whose expression is modulated at each stage of fruit development and ripening. A custom made cDNA macroarray containing cDNAs representing various metabolic pathways, defense, signaling, transcription, transport, cell structure and cell wall related functions was developed and used to quantify changes in the abundance of different transcripts. About 34 % of 1066 unique expressed sequence tags (ESTs) printed on the macroarray were differentially expressed during tomato fruit ripening. Out of these, 25 % genes classify under metabolism and protein biosynthesis/degradation related processes, while a significant proportion represented stress-responsive genes and about 44 % represented genes with unknown functions. RNA gel blot analysis validated changes in a few representative genes. Although the mature green fruit was found transcriptionally quiescent, the K-means cluster analysis highlighted coordinated up or down regulation of genes during progressive ripening; emphasizing that ripening is a transcriptionally active process. Many stress-related genes were found up-regulated, suggesting their role in the fruit ripening program.

  5. Distribution of xylem hydraulic resistance in fruiting truss of tomato influenced by water stress.

    Science.gov (United States)

    Van Ieperen, W; Volkov, V S; Van Meeteren, U

    2003-01-01

    In this study xylem hydraulic resistances of peduncles (truss stalk), pedicels (fruit stalk) and the future abscission zone (AZ) halfway along the pedicel of tomato (Lycopersicon esculentum L.) plants were directly measured at different stages of fruit development, in plants grown under two levels of water availability in the root environment. The xylem hydraulic connection between shoot and fruits has previously been investigated, but contradictory conclusions were drawn about the presence of a flow resistance barrier in the pedicel. These conclusions were all based on indirect functional measurements and anatomical observations of water-conducting tissue in the pedicel. In the present study, by far the largest resistances were measured in the AZ where most individual vessels ended. Plants grown at low water availability in the root environment had xylem with higher hydraulic resistances in the peduncle and pedicel segments on both sides of the AZ, while the largest increase in hydraulic resistance was measured in the AZ. During fruit development hydraulic resistances in peduncle and pedicel segments decreased on both sides of the AZ, but tended to increase in the AZ. The overall xylem hydraulic resistance between the shoot and fruit tended to increase with fruit development because of the dominating role of the hydraulic resistance in the AZ. It is discussed whether the xylem hydraulic resistance in the AZ of tomato pedicels in response to water stress and during fruit development contributes to the hydraulic isolation of fruits from diurnal cycles of water stress in the shoot.

  6. A Tomato Vacuolar Invertase Inhibitor Mediates Sucrose Metabolism and Influences Fruit Ripening.

    Science.gov (United States)

    Qin, Guozheng; Zhu, Zhu; Wang, Weihao; Cai, Jianghua; Chen, Yong; Li, Li; Tian, Shiping

    2016-11-01

    Fruit ripening is a complex process that involves a series of physiological and biochemical changes that ultimately influence fruit quality traits, such as color and flavor. Sugar metabolism is an important factor in ripening, and there is evidence that it influences various aspects of ripening, although the associated mechanism is not well understood. In this study, we identified and analyzed the expression of 36 genes involved in Suc metabolism in ripening tomato (Solanum lycopersicum) fruit. Chromatin immunoprecipitation and gel mobility shift assays indicated that SlVIF, which encodes a vacuolar invertase inhibitor, and SlVI, encoding a vacuolar invertase, are directly regulated by the global fruit ripening regulator RIPENING INHIBITOR (RIN). Moreover, we showed that SlVIF physically interacts with SlVI to control Suc metabolism. Repression of SlVIF by RNA interference delayed tomato fruit ripening, while overexpression of SlVIF accelerated ripening, with concomitant changes in lycopene production and ethylene biosynthesis. An isobaric tags for relative and absolute quantification-based quantitative proteomic analysis further indicated that the abundance of a set of proteins involved in fruit ripening was altered by suppressing SlVIF expression, including proteins associated with lycopene generation and ethylene synthesis. These findings provide evidence for the role of Suc in promoting fruit ripening and establish that SlVIF contributes to fruit quality and the RIN-mediated ripening regulatory mechanisms, which are of significant agricultural value. © 2016 American Society of Plant Biologists. All Rights Reserved.

  7. Fruit size QTLs affect in a major proportion the yield in tomato

    Directory of Open Access Journals (Sweden)

    Aurelio Hernández-Bautista

    2015-12-01

    Full Text Available Yield is a complex trait that is affected by several genetic and environmental factors. Yield is defined as the amount of the part of interest that is harvested from a crop plant in a given area. We investigated the genetic basis of yield in an F2 population derived from a cross between Solatium lycopersicum L. and its most closely related wild species S. pimpinellifolium L. We found that average fruit weight, fruit diameter, and fruit length had a strong effect on yield. In addition, small effects on yield due to soluble solids content and locule number were also observed. A total of 25 different significant quantitative trait locus (QTLs were detected for six traits (fruit length and diameter, fruit weight, yield, locule number, and Brix degrees. The percentage of phenotypic variation associated with single QTLs ranged from 4.19% to 12.67%. A strong co-location of QTLs among yield and fruit size traits was observed, suggesting that these QTLs play a role in the same expression process controlling yield. We also realized that the effects of soluble solids content on yield could be due to direct effects of fruit size QTLs linked to genes controlling soluble solids content. This result then may suggest that yield in tomato is mainly formed by fruit size QTLs, whereas the remaining factors may play a complementary role in the expression of tomato yield.

  8. Effect of carbon dioxide enrichment on health-promoting compounds and organoleptic properties of tomato fruits grown in greenhouse.

    Science.gov (United States)

    Zhang, Zhiming; Liu, Lihong; Zhang, Min; Zhang, Yongsong; Wang, Qiaomei

    2014-06-15

    The objective of the present study was to evaluate the effect of carbon dioxide (CO2) enrichment on the main health-promoting compounds and organoleptic characteristics of tomato (Solanum lycopersicum) fruits grown in greenhouse. The contents of health-promoting compounds, including lycopene, β-carotene, and ascorbic acid, as well as the flavour, indicated by sugars, titrable acidity, and sugar/acid ratio, were markedly increased in CO2 enrichment fruits. Furthermore, CO2 enrichment significantly enhanced other organoleptic characteristics, including colour, firmness, aroma, and sensory attributes in tomato fruits. The results indicated that CO2 enrichment has potential in promoting the nutritional value and organoleptic characteristics of tomatoes.

  9. The genetic basis of fruit morphology in horticultural crops: lessons from tomato and melon.

    Science.gov (United States)

    Monforte, Antonio J; Diaz, Aurora; Caño-Delgado, Ana; van der Knaap, Esther

    2014-08-01

    Fruits represent an important part of the human diet and show extensive variation in size and shape between and within cultivated species. The genetic basis of such variation has been studied most extensively in tomato, where currently six quantitative trait loci (QTLs) involving these traits have been fine-mapped and the genes underlying the QTLs identified. The genes responsible for the cloned QTLs belong to families with a few to many members. FASCIATED is encoded by a member of the YABBY family, CNR/FW2.2 by a member of the Cell Number Regulator family, SlKLUH/FW3.2 by a cytochrome P450 of the 78A class (CYP78A), LOCULE NUMBER by a member of the WOX family including WUSCHEL, OVATE by a member of the Ovate Family Proteins (OFP), and SUN by a member of the IQ domain family. A high portion of the history and current diversity in fruit morphology among tomato cultivars can be explained by modifications at four of these cloned QTLs. In melon, a number of QTLs involved in fruit morphology have been mapped, but the molecular basis for these QTLs is unknown. In the present review, we examine the current knowledge on the molecular basis of fruit morphology in tomato and transfer that information in order to define candidate genes of melon fruit shape and size QTLs. We hypothesize that different members of the gene families identified in tomato may have a role in the regulation of fruit morphology in other species. We anchored the published melon QTL map on the genome sequence and identified the melon family members of the six cloned tomato QTLs in the genome. We investigated the co-localization of melon fruit morphology QTLs and the candidate genes. We found that QTLs for fruit weight co-localized frequently with members of the CNR/FW2.2 and KLUH/FW3.2 families, as well as co-localizations between OFP family members and fruit-shape QTLs, making this family the most suitable to explain fruit shape variation among melon accessions.

  10. Comparison of ripening processes in intact tomato fruit and excised pericarp discs.

    Science.gov (United States)

    Campbell, A D; Huysamer, M; Stotz, H U; Greve, L C; Labavitch, J M

    1990-12-01

    Physiological processes characteristic of ripening in tissues of intact tomato fruit (Lycopersicon esculentum Mill.) were examined in excised pericarp discs. Pericarp discs were prepared from mature-green tomato fruit and stored in 24-well culture plates, in which individual discs could be monitored for color change, ethylene biosynthesis, and respiration, and selected for cell wall analysis. Within the context of these preparation and handling procedures, most whole fruit ripening processes were maintained in pericarp discs. Pericarp discs and matched intact fruit passed through the same skin color stages at similar rates, as expressed in the L(*)a(*)b(*) color space, changing from green (a(*) red (a(*) > 15) in about 6 days. Individual tissues of the pericarp discs changed color in the same sequence seen in intact fruit (exocarp, endocarp, then vascular parenchyma). Discs from different areas changed in the same spatial sequence seen in intact fruit (bottom, middle, top). Pericarp discs exhibited climacteric increases in ethylene biosynthesis and CO(2) production comparable with those seen in intact fruit, but these were more tightly linked to rate of color change, reaching a peak around a(*) = 5. Tomato pericarp discs decreased in firmness as color changed. Cell wall carbohydrate composition changed with color as in intact fruit: the quantity of water-soluble pectin eluted from the starch-free alcohol insoluble substances steadily increased and more tightly bound, water-insoluble, pectin decreased in inverse relationship. The cell wall content of the neutral sugars arabinose, rhamnose, and galactose steadily decreased as color changed. The extractable activity of specific cell wall hydrolases changed as in intact fruit: polygalacturonase activity, not detectable in green discs (a(*) = -5), appeared as discs turned yellow-red (a(*) = 5), and increased another eight-fold as discs became full red (a(*) value +20). Carboxymethyl-cellulase activity, low in extracts

  11. The expression of tin gene in prolongated tomato fruit ripening - Lycopersicom esculentum Mill.

    Directory of Open Access Journals (Sweden)

    Zdravković Jasmina

    2003-01-01

    Full Text Available Tomato selection programme, aiming to create a tomato hybrid with better fruit firmness, has been based on adding rin gene in perspective selection material. The fruit firmness has been based on decelerated ripening which prolongs the shelf life. Heterozygote genotypes (rin/+ have considerably longer shelf life that genotypes with uniform ripening (+/+. The effects of rin gene on shelf life have been examined on four experimental hybrids (K 56S K - 18, K - 64 and K -15 - rin/+ genetic configuration compared with Atina Fl genotype (uniform ripening +/+ K - 91 selected, line (rin/rin and Fino F1 (DRS unknown genetic construction and very good fruit firmness. The parameter for shelf life has been the fruit weight loss during the preservation - from harvest till the fading. The weight loss has been recorded every 7th day during two months. The experimental hybrids showed good agro technical characteristics of mid early tomato intended for production in the open field. During the shelf life, the genotype K - 15 faded the most slowly, both in the group of green and mature fruits.

  12. Portable Raman spectroscopy for an in-situ monitoring the ripening of tomato (Solanum lycopersicum) fruits

    Science.gov (United States)

    Trebolazabala, Josu; Maguregui, Maite; Morillas, Héctor; de Diego, Alberto; Madariaga, Juan Manuel

    2017-06-01

    Ripening is one of the most important transformations that fruits and vegetables suffer, from an unripe to a ripe stage. In this study, it was followed up and analyzed the variations in the composition of tomato fruits at different ripening stages (green or unripe, orange or middle ripe, red or ripe and brown or overripe). The results obtained from the Raman measurements carried out showed a change in the composition of tomato fruits in the transit from green to brown. The analysis confirmed an increase of carotenoids from an unripe to a ripe stage of these fruits, being lycopene the characteristic carotenoid of the optimum ripe stage. The presence of chlorophyll and cuticular waxes decrease from the unripe to the ripe stage. Moreover, the relative intensity of phytofluene, a transition compound in the carotenoid biosynthetic pathway, is higher in the orange or middle ripening stage. The results obtained in-situ, without cutting and handling the tomato fruits, by means of a portable Raman spectrometer offered the same information that can be achieved using a more expensive and sophisticated confocal Raman microscope.

  13. Tuning LeSPL-CNR expression by SlymiR157 affects tomato fruit ripening.

    Science.gov (United States)

    Chen, Weiwei; Kong, Junhua; Lai, Tongfei; Manning, Kenneth; Wu, Chaoqun; Wang, Ying; Qin, Cheng; Li, Bin; Yu, Zhiming; Zhang, Xian; He, Meiling; Zhang, Pengcheng; Gu, Mei; Yang, Xin; Mahammed, Atef; Li, Chunyang; Osman, Toba; Shi, Nongnong; Wang, Huizhong; Jackson, Stephen; Liu, Yule; Gallusci, Philippe; Hong, Yiguo

    2015-01-19

    In plants, microRNAs (miRNAs) play essential roles in growth, development, yield, stress response and interactions with pathogens. However no miRNA has been experimentally documented to be functionally involved in fruit ripening although many miRNAs have been profiled in fruits. Here we show that SlymiR157 and SlymiR156 differentially modulate ripening and softening in tomato (Solanum lycopersicum). SlymiR157 is expressed and developmentally regulated in normal tomato fruits and in those of the Colourless non-ripening (Cnr) epimutant. It regulates expression of the key ripening gene LeSPL-CNR in a likely dose-dependent manner through miRNA-induced mRNA degradation and translation repression. Viral delivery of either pre-SlymiR157 or mature SlymiR157 results in delayed ripening. Furthermore, qRT-PCR profiling of key ripening regulatory genes indicates that the SlymiR157-target LeSPL-CNR may affect expression of LeMADS-RIN, LeHB1, SlAP2a and SlTAGL1. However SlymiR156 does not affect the onset of ripening, but it impacts fruit softening after the red ripe stage. Our findings reveal that working together with a ripening network of transcription factors, SlymiR157 and SlymiR156 form a critical additional layer of regulatory control over the fruit ripening process in tomato.

  14. Effect of postharvest UV-B irradiation on nutraceutical quality and physical properties of tomato fruits.

    Science.gov (United States)

    Castagna, Antonella; Chiavaro, Emma; Dall'asta, Chiara; Rinaldi, Massimiliano; Galaverna, Gianni; Ranieri, Annamaria

    2013-04-15

    Nutraceutical (ascorbic acid and carotenoids) and physical (colour and firmness) parameters were evaluated in two tomato genotypes (Money maker and high pigment-1) subjected to post harvest UV-B irradiation at different ripening stages (mature green and turning). UV-B treatment increased the concentration of ascorbic acid and carotenoids in Money maker flesh and peel, while high pigment-1 fruits underwent only minor changes, suggesting that hp-1 mutation decreased the fruit ability to respond to UV-B radiation. Colour parameters appeared to be more influenced by harvesting stages than UV-B with the exception of redness (a∗), which in Money maker was found to increase in both flesh and peel of irradiated fruits at turning stage, although not significantly, while control was more red than treated at mature green stage. Firmness was negatively influenced by UV-B, as tomatoes were found to soften after the treatment, although this aspect needs further studies to be clarified.

  15. Confocal laser scanning microscopy detection of chlorophylls and carotenoids in chloroplasts and chromoplasts of tomato fruit.

    Science.gov (United States)

    D'Andrea, Lucio; Amenós, Montse; Rodríguez-Concepción, Manuel

    2014-01-01

    Plant cells are unique among eukaryotic cells because of the presence of plastids, including chloroplasts and chromoplasts. Chloroplasts are found in green tissues and harbor the photosynthetic machinery (including chlorophyll molecules), while chromoplasts are present in non-photosynthetic tissues and accumulate large amounts of carotenoids. During tomato fruit development, chloroplasts are converted into chromoplasts that accumulate high levels of lycopene, a linear carotenoid responsible for the characteristic red color of ripe fruit. Here, we describe a simple and fast method to detect both types of fully differentiated plastids (chloroplasts and chromoplasts), as well as intermediate stages, in fresh tomato fruits. The method is based on the differential autofluorescence of chlorophylls and carotenoids (lycopene) detected by Confocal Laser Scanning Microscopy.

  16. Mode of inheritance for fruit firmness in tomato hybrids of F1 generation (Lycoperscum esculentum Mill.

    Directory of Open Access Journals (Sweden)

    Sušić Zoran

    2000-01-01

    Full Text Available Present day program for tomato selection are aimed at creating the genotypes with firm fruit. The fruits with this quality surfer from minor injuries while being harvested and transported, which directly affects their better consumption purpose. By crossing seven divergent tomato genotypes that differed among themselves in fruit firmness, and by applying the method of full diallel without reciprocal crossings, we obtained 21 hybrids of F1 generation. Upon analyzing the components of the genetic variance we found out that dominant genes prevailed in inheriting this feature. Considering all the crossing combinations together, it could be concluded that super dominance was the mode of inheritance recorded in Fl generation. The hybrid combination obtained by crossing the two hybrids with the best general combining ability (V-100 x No-10 was characterized by the best specific combining ability. .

  17. Characterization of polyphenolic constituents and radical scavenging ability of ripe tomato and red pepper fruits

    Directory of Open Access Journals (Sweden)

    Seun F. Akomolafe

    2015-03-01

    Full Text Available Objective: Characterization of polyphenolic contents and the inhibitory effects of aqueous extracts of ripe tomato (Lycopersicon esculentum and red pepper (Capsicum annuum fruits on the sodium nitroprusside (SNP and iron(II (Fe2+-induced lipid peroxidation in rat liver were examined in this study. Methods: Various experimental models such as the ABTS and #8226; (2,2-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid scavenging ability and ferric reducing power were used to characterize the antioxidant activity of the extracts. High-performance liquid chromatography (HPLC was used to determine the phenolic content of the extracts. Malondialdehyde (MDA was used as a measure of oxidative stress in the rat and #8217;s liver tissue. Results: The ABTS and #8226; scavenging ability and ferric reducing power of the aqueous extract of ripe red pepper were significantly higher than that of ripe tomato. Ripe red pepper and tomato fruits extracts inhibited NO and #8226; in a concentration dependent manner. Furthermore, the introduction of extracts of ripe red pepper and tomato caused a significant concentration-dependent decrease in the MDA content of the SNP and Fe2+-stressed liver homogenates. In addition, HPLC analyses of the extracts revealed the presence of different phenolic compounds. Conclusion: With respect to the results of the current study, ripe tomato and red pepper could be considered to be potential sources of natural antioxidants. [J Exp Integr Med 2015; 5(1.000: 61-67

  18. Alleviation of chilling injury in tomato fruit by exogenous application of oxalic acid.

    Science.gov (United States)

    Li, Peiyan; Yin, Fei; Song, Lijun; Zheng, Xiaolin

    2016-07-01

    The effects of oxalic acid on the development of chilling injury (CI), energy metabolism and lycopene metabolism in tomato fruit (Solanum lycopersicum L.) were investigated. Mature green tomatoes were dipped in 10mmoll(-1) oxalic acid (OA) solution for 10min at 25°C. Tomatoes were subsequently stored at 4±0.5°C for 20days before being transferred to 25°C for 12days. Oxalic acid treatment apparently alleviated CI development and membrane damage; maintained higher levels of ATP and ADP; increased activities of succinic dehydrogenase (SDH), Ca(2+)-adenosine triphosphatase (Ca(2+)-ATPase) and H(+)-adenosine triphosphatase (H(+)-ATPase); and elevated lycopene accumulation associated with the upregulation of PSY1 and ZDS expression in tomatoes during a period at room temperature following exposure to chilling stress. Thus, oxalic acid treatment benefited the control of CI and the maintenance of fruit quality in tomatoes stored for long periods (approximately 32days). Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. fw 2.2:a major QTL controlling fruit weight is common to both red- and green-fruited tomato species.

    Science.gov (United States)

    Alpert, K B; Grandillo, S; Tanksley, S D

    1995-11-01

    We have shown that a major QTL for fruit weight (fw2.2) maps to the same position on chromosome 2 in the green-fruited wild tomato species, Lycopersicon pennellii and in the red-fruited wild tomato species, L. pimpinellifolium. An introgression line F2 derived from L. esculentum (tomato) x L. pennellii and a backcross 1 (BC1) population derived from L. esculentum x L. pimpinellifolium both place fw2.2 near TG91 and TG167 on chromosome 2 of the tomato highdensity linkage map. fw2.2 accounts for 30% and 47% of the total phenotypic variance in the L. pimpinellifolium and L. pennellii populations, respectively, indicating that this is a major QTL controlling fruit weight in both species. Partial dominance (d/a of 0.44) was observed for the L. pennellii allele of fw 2.2 as compared with the L. esculentum allele. A QTL with very similar phenotypic affects and gene action has also been identified and mapped to the same chromosomal region in other wild tomato accessions: L. cheesmanii and L. pimpinellifolium. Together, these data suggest that fw2.2 represents an orthologous QTL (i.e., derived by speciation as opposed to duplication) common to most, if not all, wild tomato species. High-resolution mapping may ultimately lead to the cloning of this key locus controlling fruit development in tomato.

  20. Tomato GDSL1 is required for cutin deposition in the fruit cuticle.

    Science.gov (United States)

    Girard, Anne-Laure; Mounet, Fabien; Lemaire-Chamley, Martine; Gaillard, Cédric; Elmorjani, Khalil; Vivancos, Julien; Runavot, Jean-Luc; Quemener, Bernard; Petit, Johann; Germain, Véronique; Rothan, Christophe; Marion, Didier; Bakan, Bénédicte

    2012-07-01

    The plant cuticle consists of cutin, a polyester of glycerol, hydroxyl, and epoxy fatty acids, covered and filled by waxes. While the biosynthesis of cutin building blocks is well documented, the mechanisms underlining their extracellular deposition remain unknown. Among the proteins extracted from dewaxed tomato (Solanum lycopersicum) peels, we identified GDSL1, a member of the GDSL esterase/acylhydrolase family of plant proteins. GDSL1 is strongly expressed in the epidermis of growing fruit. In GDSL1-silenced tomato lines, we observed a significant reduction in fruit cuticle thickness and a decrease in cutin monomer content proportional to the level of GDSL1 silencing. A significant decrease of wax load was observed only for cuticles of the severely silenced transgenic line. Fourier transform infrared (FTIR) analysis of isolated cutins revealed a reduction in cutin density in silenced lines. Indeed, FTIR-attenuated total reflectance spectroscopy and atomic force microscopy imaging showed that drastic GDSL1 silencing leads to a reduction in ester bond cross-links and to the appearance of nanopores in tomato cutins. Furthermore, immunolabeling experiments attested that GDSL1 is essentially entrapped in the cuticle proper and cuticle layer. These results suggest that GDSL1 is specifically involved in the extracellular deposition of the cutin polyester in the tomato fruit cuticle.

  1. RNA sequencing and functional analysis implicate the regulatory role of long non-coding RNAs in tomato fruit ripening.

    Science.gov (United States)

    Zhu, Benzhong; Yang, Yongfang; Li, Ran; Fu, Daqi; Wen, Liwei; Luo, Yunbo; Zhu, Hongliang

    2015-08-01

    Recently, long non-coding RNAs (lncRNAs) have been shown to play critical regulatory roles in model plants, such as Arabidopsis, rice, and maize. However, the presence of lncRNAs and how they function in fleshy fruit ripening are still largely unknown because fleshy fruit ripening is not present in the above model plants. Tomato is the model system for fruit ripening studies due to its dramatic ripening process. To investigate further the role of lncRNAs in fruit ripening, it is necessary and urgent to discover and identify novel lncRNAs and understand the function of lncRNAs in tomato fruit ripening. Here it is reported that 3679 lncRNAs were discovered from wild-type tomato and ripening mutant fruit. The lncRNAs are transcribed from all tomato chromosomes, 85.1% of which came from intergenic regions. Tomato lncRNAs are shorter and have fewer exons than protein-coding genes, a situation reminiscent of lncRNAs from other model plants. It was also observed that 490 lncRNAs were significantly up-regulated in ripening mutant fruits, and 187 lncRNAs were down-regulated, indicating that lncRNAs could be involved in the regulation of fruit ripening. In line with this, silencing of two novel tomato intergenic lncRNAs, lncRNA1459 and lncRNA1840, resulted in an obvious delay of ripening of wild-type fruit. Overall, the results indicated that lncRNAs might be essential regulators of tomato fruit ripening, which sheds new light on the regulation of fruit ripening.

  2. Antioxidant and Antiplatelet Activities in Extracts from Green and Fully Ripe Tomato Fruits (Solanum lycopersicum) and Pomace from Industrial Tomato Processing

    Science.gov (United States)

    Fuentes, Eduardo; Carle, Reinhold; Astudillo, Luis; Guzmán, Luis; Gutiérrez, Margarita; Carrasco, Gilda; Palomo, Iván

    2013-01-01

    The consumption of fruits and vegetables is accepted to be one of the strategies to reduce risk factors for these diseases. The aim of this study was to examine potential relationships between the antioxidant and the antiplatelet activities in green mature and fully ripe (red) tomatoes and of lycopene-rich byproducts of tomato paste processing such as pomace. The total phenol content of tomato components was the highest in peels, pulp, and in the mucilaginous myxotesta covering the tomato seeds with values 36.9 ± 0.8, 33.3 ± 00.5, and 17.6 ± 0.9 mg GAE/100 g, respectively (P < 0.05). Tomato peels had the highest antioxidant activity, both, as measured by the FRAP (46.9 ± 0.9 μmol Fe+2/g, P < 0.05) and the DPPH assays (97.4 ± 0.2%, 1000 μg/mL, P < 0.05). Pomace extracts showed the highest antiplatelet activity induced by ADP, collagen, TRAP-6, and arachidonic acid. While the maturation stage of the tomato fruit affected the antioxidant effect, antiplatelet activity was independent of fruit ripeness. Finally, based on the present results, tomato and its byproducts may be considered as a valuable source of antioxidant and antiplatelet activities. PMID:23476707

  3. Antioxidant and Antiplatelet Activities in Extracts from Green and Fully Ripe Tomato Fruits (Solanum lycopersicum and Pomace from Industrial Tomato Processing

    Directory of Open Access Journals (Sweden)

    Eduardo Fuentes

    2013-01-01

    Full Text Available The consumption of fruits and vegetables is accepted to be one of the strategies to reduce risk factors for these diseases. The aim of this study was to examine potential relationships between the antioxidant and the antiplatelet activities in green mature and fully ripe (red tomatoes and of lycopene-rich byproducts of tomato paste processing such as pomace. The total phenol content of tomato components was the highest in peels, pulp, and in the mucilaginous myxotesta covering the tomato seeds with values 36.9±0.8, 33.3±00.5, and 17.6±0.9 mg GAE/100 g, respectively (P<0.05. Tomato peels had the highest antioxidant activity, both, as measured by the FRAP (46.9±0.9 μmol Fe+2/g, P<0.05 and the DPPH assays (97.4±0.2%, 1000 μg/mL, P<0.05. Pomace extracts showed the highest antiplatelet activity induced by ADP, collagen, TRAP-6, and arachidonic acid. While the maturation stage of the tomato fruit affected the antioxidant effect, antiplatelet activity was independent of fruit ripeness. Finally, based on the present results, tomato and its byproducts may be considered as a valuable source of antioxidant and antiplatelet activities.

  4. The tomato SlSHINE3 transcription factor regulates fruit cuticle formation and epidermal patterning.

    Science.gov (United States)

    Shi, Jian Xin; Adato, Avital; Alkan, Noam; He, Yonghua; Lashbrooke, Justin; Matas, Antonio J; Meir, Sagit; Malitsky, Sergey; Isaacson, Tal; Prusky, Dov; Leshkowitz, Dena; Schreiber, Lukas; Granell, Antonio R; Widemann, Emilie; Grausem, Bernard; Pinot, Franck; Rose, Jocelyn K C; Rogachev, Ilana; Rothan, Christophe; Aharoni, Asaph

    2013-01-01

    Fleshy tomato fruit typically lacks stomata; therefore, a proper cuticle is particularly vital for fruit development and interaction with the surroundings. Here, we characterized the tomato SlSHINE3 (SlSHN3) transcription factor to extend our limited knowledge regarding the regulation of cuticle formation in fleshy fruits. We created SlSHN3 overexpressing and silenced plants, and used them for detailed analysis of cuticular lipid compositions, phenotypic characterization, and the study on the mode of SlSHN3 action. Heterologous expression of SlSHN3 in Arabidopsis phenocopied overexpression of the Arabidopsis SHNs. Silencing of SlSHN3 results in profound morphological alterations of the fruit epidermis and significant reduction in cuticular lipids. We demonstrated that SlSHN3 activity is mediated by control of genes associated with cutin metabolism and epidermal cell patterning. As with SlSHN3 RNAi lines, mutation in the SlSHN3 target gene, SlCYP86A69, resulted in severe cutin deficiency and altered fruit surface architecture. In vitro activity assays demonstrated that SlCYP86A69 possesses NADPH-dependent ω-hydroxylation activity, particularly of C18:1 fatty acid to the 18-hydroxyoleic acid cutin monomer. This study provided insights into transcriptional mechanisms mediating fleshy fruit cuticle formation and highlighted the link between cutin metabolism and the process of fruit epidermal cell patterning.

  5. Elastic stresses and plastic deformations in 'Santa Clara' tomato fruits caused by package dependent compression

    Directory of Open Access Journals (Sweden)

    PEREIRA ADRIANA VARGAS

    2000-01-01

    Full Text Available The objective of this work was to study the fruit compression behavior aiming to develop new tomato packages. Deformations caused by compression forces were observed inside packages and in individual 'Santa Clara' tomato fruit. The forces applied by a transparent acrylic lever to the fruit surface caused pericarp deformation and the flattened area was proportional to the force magnitude. The deformation was associated to the reduction in the gas volume (Vg, caused by expulsion of the air from the loculus cavity and reduction in the intercellular air volume of the pericarp. As ripening advanced, smaller fractions of the Vg reduced by the compressive force were restored after the stress was relieved. The lack of complete Vg restoration was an indication of permanent plastic deformations of the stressed cells. Vg regeneration (elastic recovery was larger in green fruits than in the red ones. The ratio between the applied force and the flattened area (flattening pressure, which depends on cell turgidity, decreased during ripening. Fruit movements associated with its depth in the container were observed during storage in a transparent glass container (495 x 355 x 220 mm. The downward movement of the fruits was larger in the top layers because these movements seem to be driven by a summation of the deformation of many fruits in all layers.

  6. Different mechanisms are responsible for chlorophyll dephytylation during fruit ripening and leaf senescence in tomato.

    Science.gov (United States)

    Guyer, Luzia; Hofstetter, Silvia Schelbert; Christ, Bastien; Lira, Bruno Silvestre; Rossi, Magdalena; Hörtensteiner, Stefan

    2014-09-01

    Chlorophyll breakdown occurs in different green plant tissues (e.g. during leaf senescence and in ripening fruits). For different plant species, the PHEOPHORBIDE A OXYGENASE (PAO)/phyllobilin pathway has been described to be the major chlorophyll catabolic pathway. In this pathway, pheophorbide (i.e. magnesium- and phytol-free chlorophyll) occurs as a core intermediate. Most of the enzymes involved in the PAO/phyllobilin pathway are known; however, the mechanism of dephytylation remains uncertain. During Arabidopsis (Arabidopsis thaliana) leaf senescence, phytol hydrolysis is catalyzed by PHEOPHYTINASE (PPH), which is specific for pheophytin (i.e. magnesium-free chlorophyll). By contrast, in fruits of different Citrus spp., chlorophyllase, hydrolyzing phytol from chlorophyll, was shown to be active. Here, we enlighten the process of chlorophyll breakdown in tomato (Solanum lycopersicum), both in leaves and fruits. We demonstrate the activity of the PAO/phyllobilin pathway and identify tomato PPH (SlPPH), which, like its Arabidopsis ortholog, was specifically active on pheophytin. SlPPH localized to chloroplasts and was transcriptionally up-regulated during leaf senescence and fruit ripening. SlPPH-silencing tomato lines were impaired in chlorophyll breakdown and accumulated pheophytin during leaf senescence. However, although pheophytin transiently accumulated in ripening fruits of SlPPH-silencing lines, ultimately these fruits were able to degrade chlorophyll like the wild type. We conclude that PPH is the core phytol-hydrolytic enzyme during leaf senescence in different plant species; however, fruit ripening involves other hydrolases, which are active in parallel to PPH or are the core hydrolases in fruits. These hydrolases remain unidentified, and we discuss the question of whether chlorophyllases might be involved.

  7. Molecular characterization of fruit-specific class III peroxidase genes in tomato (Solanum lycopersicum).

    Science.gov (United States)

    Wang, Chii-Jeng; Chan, Yuan-Li; Shien, Chin Hui; Yeh, Kai-Wun

    2015-04-01

    In this study, expression of four peroxidase genes, LePrx09, LePrx17, LePrx35 and LePrxA, was identified in immature tomato fruits, and the function in the regulation of fruit growth was characterized. Analysis of amino acid sequences revealed that these genes code for class III peroxidases, containing B, D and F conserved domains, which bind heme groups, and a buried salt bridge motif. LePrx35 and LePrxA were identified as novel peroxidase genes in Solanum lycopersicum (L.). The temporal expression patterns at various fruit growth stages revealed that LePrx35 and LePrxA were expressed only in immature green (IMG) fruits, whereas LePrx17 and LePrx09 were expressed in both immature and mature green fruits. Tissue-specific expression profiles indicated that only LePrx09 was expressed in the mesocarp but not the inner tissue of immature fruits. The effects of hormone treatments and stresses on the four genes were examined; only the expression levels of LePrx17 and LePrx09 were altered. Transcription of LePrx17 was up-regulated by jasmonic acid (JA) and pathogen infection and expression of LePrx09 was induced by ethephon, salicylic acid (SA) and JA, in particular, as well as wounding, pathogen infection and H2O2 stress. Tomato plants over-expressing LePrx09 displayed enhanced resistance to H2O2 stress, suggesting that LePrx09 may participate in the H2O2 signaling pathway to regulate fruit growth and disease resistance in tomato fruits. Copyright © 2015 Elsevier GmbH. All rights reserved.

  8. Cell Wall Microstructure Analysis Implicates Hemicellulose Polysaccharides in Cell Adhesion in Tomato Fruit Pericarp Parenchyma

    Institute of Scientific and Technical Information of China (English)

    Jose J. Ordaz-Ortiz; Susan E. Marcus; J. Paul Knox

    2009-01-01

    Methods developed to isolate intact cells from both unripe and ripe tomato fruit pericarp parenchyma have allowed the cell biological analysis of polysaccharide epitopes at the surface of separated cells. The LM7 pectic homoga-lacturonan epitope is a marker of the junctions of adhesion planes and intercellular spaces in parenchyma systems. The LM7 epitope persistently marked the former edge of adhesion planes at the surface of cells separated from unripe and ripened tomato fruit and also from fruits with the Cnr mutation. The LM 11 xylan epitope was associated, in sections, with cell walls lining intercellular space but the epitope was not detected at the surface of isolated cells, being lost during cell isolation. The LM15 xyloglucan epitope was present at the surface of cells isolated from unripe fruit in a pattern reflecting the former edge of cell adhesion planes/intercellular space but with gaps and apparent breaks, An equivalent pattern ofLM15 epitope occurrence was revealed at the surface of cells isolated by pectate lyase action but was not present in cells isolated from ripe fruit or from Cnr fruit. In contrast to wild-type cells, the LM5 galactan and LM21 mannan epitopes oc-curred predominantly in positions reflecting intercellular space in Cnr, suggesting a concerted alteration in cell wall mi-crostructure in response to this mutation. Galactanase and mannanase, along with pectic homogalacturonan-degrading enzymes, were capable of releasing cells from unripe fruit parenchyma. These observations indicate that hemicellulose polymers are present in architectural contexts reflecting cell adhesion and that several cell wall polysaccharide classes are likely to contribute to cell adhesion/cell separation in tomato fruit pericarp parenchyma.

  9. Profiling microRNAs and their targets in an important fleshy fruit: tomato (Solanum lycopersicum).

    Science.gov (United States)

    Din, Muhammad; Barozai, Muhammad Younas Khan

    2014-02-10

    Tomato (Solanum lycopersicum) is an important and the most useful plant based diet. It is widely used for its antioxidant property. Presently, only two digits, tomato microRNAs (miRNAs) are reported in miRBase: a miRNA database. This study is aimed to profile and characterize more miRNAs and their targets in tomato. A comprehensive comparative genomic approach is applied and a total of 109 new miRNAs belonging to 106 families are identified and characterized from the tomato expressed sequence tags (ESTs). All these potential miRNAs are profiled for the first time in tomato. The profiled miRNAs are also observed with stable stem-loop structures (Precursor-miRNAs), whose length ranges from 45 to 329 nucleotides (nt) with an average of 125 nt. The mature miRNAs are found in the stem of pre-miRNAs and their length ranges from 19 to 24 nt with an average of 21 nt. Furthermore, twelve miRNAs are randomly selected and experimentally validated through RT-PCR. A total of 406 putative targets are also predicted for the newly 109 tomato miRNAs. These targets are involved in structural protein, metabolism, transcription factor, growth & development, stress related, signaling pathways, storage proteins and other vital processes. Some important proteins like; 9-cisepoxycarotenoid dioxygenase (NCED), transcription factor MYB, ATP-binding cassette transporters, terpen synthase, 14-3-3 and TIR-NBS proteins are also predicted as putative targets for tomato miRNAs. These findings improve a baseline data of miRNAs and their targets in tomato. This baseline data can be utilized to fine tune this important fleshy fruit for nutritional & antioxidant properties and also under biotic & abiotic stresses. Copyright © 2013 Elsevier B.V. All rights reserved.

  10. [Effects of day and night temperature difference on growth, development, yield and fruit quality of tomatoes].

    Science.gov (United States)

    Li, Li; Li, Jia; Gao, Qing; Chen, Jin-xing

    2015-09-01

    Abstract: The effects of day and night temperature difference (DIF) on tomato's growth were studied in three precisely controlled units in phytotron. Set DIF as 6 °C (25/19 C), 8 °C (26/18 °C), 10 °C (27/17 °C) respectively, with the same diurnal mean temperature as 22 °C. The results showed that, different tomato varieties needed different suitable DIF at different growth stages. Before flouring, compared with DIF 6 °C , DIF 8 °C could significantly improve the growth and development of the wild currant tomato LA1781, increasing the plant height by 23.1%, fastening leaf development by 1-2 leaves, advancing flowers by 7 d. DIF 10 °C had similar effects with DIF 8 °C on LA1781. As to the cultured ordinary tomatoes LA2397 and LA0490, DIF 6 °C made the seedlings grow well, DIF 8 °C had no significant improved effects on seedlings, DIF 10 °C depressed the seedling's growth and flouring, decreasing the plant height by 12.0%-18.3%, lowering the leaf development by 2-3 leaves, delaying flouring by 2-4 d. But DIF 10 °C increased the dry aboveground mass of these three varieties by 25.2%-44.2%. After flouring, compared with DIF 6 °C, DIF 10 °C could significantly improve the yield and fruit quality of LA1781, increasing fruit number by 34.7%, yield per plant by 92.1%, single fruit mass by 40.0%, soluble sugar content by 16.3%, lycopene content by 95.6%. Compared with DIF 6 °C, LA2397 and LA0490 had higher yields and better fruit quality under DIF 8 °C, and lycopene content increased more than twice as that under DIF 6 °C. Under DIF 10 °C, yields of LA2397 and LA0490 slightly decreased (5.0%), soluble sugar contents of fruit decreased, but fruit size and lycopene content increased. The results showed that, DIF should not be very great in the seedling period of tomatoes, and a moderate DIF in flower and fruit periods could improve the yield and fruit quality, but a too high DIF would result in poor growth and yield reduction.

  11. Regulation of auxin responses in tomato fruit development

    NARCIS (Netherlands)

    Jong, M. de

    2010-01-01

    The transformation from an ovary to a rapidly growing fruit includes molecular, biochemical and structural changes that must be tightly coordinated. Depending on the phase of fruit development, the temporal and spatial organization of these changes is mediated by phytohormones, such as auxin, gibber

  12. A tonoplast Glu/Asp/GABA exchanger that affects tomato fruit amino acid composition.

    Science.gov (United States)

    Snowden, Christopher J; Thomas, Benjamin; Baxter, Charles J; Smith, J Andrew C; Sweetlove, Lee J

    2015-03-01

    Vacuolar accumulation of acidic metabolites is an important aspect of tomato fruit flavour and nutritional quality. The amino acids Asp and Glu accumulate to high concentrations during ripening, while γ-aminobutyrate (GABA) shows an approximately stoichiometric decline. Given that GABA can be catabolised to form Glu and subsequently Asp, and the requirement for the fruit to maintain osmotic homeostasis during ripening, we hypothesised the existence of a tonoplast transporter that exports GABA from the vacuole in exchange for import of either Asp or Glu. We show here that the tomato vacuolar membrane possesses such a transport property: transport of Glu across isolated tonoplast vesicle membranes was trans-stimulated in counterexchange mode by GABA, Glu and Asp. We identified SlCAT9 as a candidate protein for this exchanger using quantitative proteomics of a tonoplast-enriched membrane fraction. Transient expression of a SlCAT9-YFP fusion in tobacco confirmed a tonoplast localisation. The function of the protein was examined by overexpression of SlCAT9 in transgenic tomato plants. Tonoplast vesicles isolated from transgenic plants showed higher rates of Glu and GABA transport than wild-type (WT) only when assayed in counterexchange mode with Glu, Asp, or GABA. Moreover, there were substantial increases in the content of all three cognate amino acids in ripe fruit from the transgenic plants. We conclude that SlCAT9 is a tonoplast Glu/Asp/GABA exchanger that strongly influences the accumulation of these amino acids during fruit development.

  13. Cartography of cell morphology in tomato pericarp at the fruit scale.

    Science.gov (United States)

    Legland, D; Devaux, M-F; Bouchet, B; Guillon, F; Lahaye, M

    2012-07-01

    In fleshy fruits, the variability of cell morphology at the fruit scale is largely unknown. It presents both a huge variability and a high level of organization. Better knowledge of cell morphology heterogeneity within the fruit is necessary to understand fruit development, to model fruit mechanical behaviour, or to investigate variations of physico-chemical measurements. A generic approach is proposed to build cartographies of cell morphology at the fruit scale, which depict regions corresponding to different cell morphologies. The approach is based on: (1) sampling the whole fruit at known positions; (2) imaging and quantifying local cell morphology; (3) pooling measurements to take biological variability into account and (4) projecting results in a morphology model of the whole fruit. The result is a synthetic representation of cell morphology variations within the whole fruit. The method was applied to the characterization of cell morphology in tomato pericarp. Two different imaging scales that provided complementary descriptions were used: 3D confocal microscopy and macroscopy. The approach is generic and can be adapted to other fruits or other products. © 2012 The Authors Journal of Microscopy © 2012 Royal Microscopical Society.

  14. Functional Characterization of SlSAHH2 in Tomato Fruit Ripening

    Directory of Open Access Journals (Sweden)

    Lu Yang

    2017-07-01

    Full Text Available S-adenosylhomocysteine hydrolase (SAHH functions as an enzyme catalyzing the reversible hydrolysis of S-adenosylhomocysteine to homocysteine and adenosine. In the present work we have investigated its role in the ripening process of tomato fruit. Among the three SlSAHH genes we demonstrated that SlSAHH2 was highly accumulated during fruit ripening and strongly responded to ethylene treatment. Over-expression of SlSAHH2 enhanced SAHH enzymatic activity in tomato fruit development and ripening stages and resulted in a major phenotypic change of reduced ripening time from anthesis to breaker. Consistent with this, the content of lycopene was higher in SlSAHH2 over-expression lines than in wild-type at the same developmental stage. The expression of two ethylene inducible genes (E4 and E8 and three ethylene biosynthesis genes (SlACO1, SlACO3 and SlACS2 increased to a higher level in SlSAHH2 over-expression lines at breaker stage, and one transgenic line even produced much more ethylene than wild-type. Although inconsistency in gene expression and ethylene production existed between the two transgenic lines, the transcriptional changes of several important ripening regulators such as RIN, AP2a, TAGL1, CNR and NOR showed a consistent pattern. It was speculated that the influence of SlSAHH2 on ethylene production was downstream of the regulation of SlSAHH2 on these ripening regulator genes. The over-expressing lines displayed higher sensitivity to ethylene in both fruit and non-fruit tissues. Ethylene precursor 1-aminocyclopropane-1-carboxylic acid (ACC treatment accelerated ripening faster in SlSAHH2 over-expressing fruit than in wild-type. Additionally, seedlings of transgenic lines displayed shorter hypocotyls and roots in ethylene triple response assay. In conclusion, SlSAHH2 played an important role in tomato fruit ripening.

  15. Solanum lycopersicum AUXIN RESPONSE FACTOR 9 regulates cell division activity during early tomato fruit development

    Science.gov (United States)

    de Jong, Maaike; Wolters-Arts, Mieke; Schimmel, Bernardus C. J.; Stultiens, Catharina L. M.; de Groot, Peter F. M.; Powers, Stephen J.; Tikunov, Yury M.; Bovy, Arnoud G.; Mariani, Celestina; Vriezen, Wim H.; Rieu, Ivo

    2015-01-01

    The transformation of the ovary into a fruit after successful completion of pollination and fertilization has been associated with many changes at transcriptomic level. These changes are part of a dynamic and complex regulatory network that is controlled by phytohormones, with a major role for auxin. One of the auxin-related genes differentially expressed upon fruit set and early fruit development in tomato is Solanum lycopersicum AUXIN RESPONSE FACTOR 9 (SlARF9). Here, the functional analysis of this ARF is described. SlARF9 expression was found to be auxin-responsive and SlARF9 mRNA levels were high in the ovules, placenta, and pericarp of pollinated ovaries, but also in other plant tissues with high cell division activity, such as the axillary meristems and root meristems. Transgenic plants with increased SlARF9 mRNA levels formed fruits that were smaller than wild-type fruits because of reduced cell division activity, whereas transgenic lines in which SlARF9 mRNA levels were reduced showed the opposite phenotype. The expression analysis, together with the phenotype of the transgenic lines, suggests that, in tomato, ARF9 negatively controls cell division during early fruit development. PMID:25883382

  16. Solanum lycopersicum AUXIN RESPONSE FACTOR 9 regulates cell division activity during early tomato fruit development.

    Science.gov (United States)

    de Jong, Maaike; Wolters-Arts, Mieke; Schimmel, Bernardus C J; Stultiens, Catharina L M; de Groot, Peter F M; Powers, Stephen J; Tikunov, Yury M; Bovy, Arnoud G; Mariani, Celestina; Vriezen, Wim H; Rieu, Ivo

    2015-06-01

    The transformation of the ovary into a fruit after successful completion of pollination and fertilization has been associated with many changes at transcriptomic level. These changes are part of a dynamic and complex regulatory network that is controlled by phytohormones, with a major role for auxin. One of the auxin-related genes differentially expressed upon fruit set and early fruit development in tomato is Solanum lycopersicum AUXIN RESPONSE FACTOR 9 (SlARF9). Here, the functional analysis of this ARF is described. SlARF9 expression was found to be auxin-responsive and SlARF9 mRNA levels were high in the ovules, placenta, and pericarp of pollinated ovaries, but also in other plant tissues with high cell division activity, such as the axillary meristems and root meristems. Transgenic plants with increased SlARF9 mRNA levels formed fruits that were smaller than wild-type fruits because of reduced cell division activity, whereas transgenic lines in which SlARF9 mRNA levels were reduced showed the opposite phenotype. The expression analysis, together with the phenotype of the transgenic lines, suggests that, in tomato, ARF9 negatively controls cell division during early fruit development. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  17. Low temperature storage affects the ascorbic acid metabolism of cherry tomato fruits.

    Science.gov (United States)

    Tsaniklidis, Georgios; Delis, Costas; Nikoloudakis, Nikolaos; Katinakis, Panagiotis; Aivalakis, Georgios

    2014-11-01

    Tomato fruits are an important source of l-Ascorbic acid, which is an essential compound of human diet. The effect of the widespread practice of cold storing (5-10 °C) tomato fruits was monitored to determine its impact on the concentration and redox status of l-Ascorbic acid. Total l-Ascorbic acid levels were well maintained in both attached fruits and cold treated fruits, while in other treatments its levels were considerably reduced. However, low temperature storage conditions enhanced the expression of most genes coding for enzymes involved in l-Ascorbic acid biosynthesis and redox reactions. The findings suggest that the transcriptional up-regulation under chilling stress conditions of most genes coding for l-Ascorbic acid biosynthetic genes galactono-1,4-lactone dehydrogenase, GDP-d-mannose 3,5-epimerase but also for the isoenzymes of ascorbate peroxidase, monodehydroascorbate reductase, dehydroascorbate reductase enzyme, glutathione reductase that are strongly correlated to the l-Ascorbic redox status. Moreover, fruits stored at 10 °C exhibited higher levels of transcript accumulation of MDHAR2, DHAR1, DHAR2, GR1 and GR2 genes, pointing to a better ability to manage chilling stress in comparison to fruits stored at 5 °C.

  18. Western flower thrips can transmit Tomato spotted wilt virus from infected tomato fruits

    Science.gov (United States)

    Tomato spotted wilt virus (TSWV) has long been known to spread via plant propagation materials including transplants. Global dissemination of TSWV has also been linked to transport of thrips-infested and virus-infected horticultural and floricultural products through trade and commerce. However, th...

  19. Integration of tomato reproductive developmental landmarks and expression profiles, and the effect of SUN on fruit shape

    Directory of Open Access Journals (Sweden)

    Li Dongmei

    2009-05-01

    Full Text Available Abstract Background Universally accepted landmark stages are necessary to highlight key events in plant reproductive development and to facilitate comparisons among species. Domestication and selection of tomato resulted in many varieties that differ in fruit shape and size. This diversity is useful to unravel underlying molecular and developmental mechanisms that control organ morphology and patterning. The tomato fruit shape gene SUN controls fruit elongation. The most dramatic effect of SUN on fruit shape occurs after pollination and fertilization although a detailed investigation into the timing of the fruit shape change as well as gene expression profiles during critical developmental stages has not been conducted. Results We provide a description of floral and fruit development in a red-fruited closely related wild relative of tomato, Solanum pimpinellifolium accession LA1589. We use established and propose new floral and fruit landmarks to present a framework for tomato developmental studies. In addition, gene expression profiles of three key stages in floral and fruit development are presented, namely floral buds 10 days before anthesis (floral landmark 7, anthesis-stage flowers (floral landmark 10 and fruit landmark 1, and 5 days post anthesis fruit (fruit landmark 3. To demonstrate the utility of the landmarks, we characterize the tomato shape gene SUN in fruit development. SUN controls fruit shape predominantly after fertilization and its effect reaches a maximum at 8 days post-anthesis coinciding with fruit landmark 4 representing the globular embryo stage of seed development. The expression profiles of the NILs that differ at sun show that only 34 genes were differentially expressed and most of them at a less than 2-fold difference. Conclusion The landmarks for flower and fruit development in tomato were outlined and integrated with the effect of SUN on fruit shape. Although we did not identify many genes differentially expressed in

  20. Integration of tomato reproductive developmental landmarks and expression profiles, and the effect of SUN on fruit shape

    Science.gov (United States)

    Xiao, Han; Radovich, Cheryll; Welty, Nicholas; Hsu, Jason; Li, Dongmei; Meulia, Tea; van der Knaap, Esther

    2009-01-01

    Background Universally accepted landmark stages are necessary to highlight key events in plant reproductive development and to facilitate comparisons among species. Domestication and selection of tomato resulted in many varieties that differ in fruit shape and size. This diversity is useful to unravel underlying molecular and developmental mechanisms that control organ morphology and patterning. The tomato fruit shape gene SUN controls fruit elongation. The most dramatic effect of SUN on fruit shape occurs after pollination and fertilization although a detailed investigation into the timing of the fruit shape change as well as gene expression profiles during critical developmental stages has not been conducted. Results We provide a description of floral and fruit development in a red-fruited closely related wild relative of tomato, Solanum pimpinellifolium accession LA1589. We use established and propose new floral and fruit landmarks to present a framework for tomato developmental studies. In addition, gene expression profiles of three key stages in floral and fruit development are presented, namely floral buds 10 days before anthesis (floral landmark 7), anthesis-stage flowers (floral landmark 10 and fruit landmark 1), and 5 days post anthesis fruit (fruit landmark 3). To demonstrate the utility of the landmarks, we characterize the tomato shape gene SUN in fruit development. SUN controls fruit shape predominantly after fertilization and its effect reaches a maximum at 8 days post-anthesis coinciding with fruit landmark 4 representing the globular embryo stage of seed development. The expression profiles of the NILs that differ at sun show that only 34 genes were differentially expressed and most of them at a less than 2-fold difference. Conclusion The landmarks for flower and fruit development in tomato were outlined and integrated with the effect of SUN on fruit shape. Although we did not identify many genes differentially expressed in the NILs that differ at

  1. Specific responses of Salmonella enterica to tomato varieties and fruit ripeness identified by in vivo expression technology.

    Directory of Open Access Journals (Sweden)

    Jason T Noel

    Full Text Available BACKGROUND: Recent outbreaks of vegetable-associated gastroenteritis suggest that enteric pathogens colonize, multiply and persist in plants for extended periods of time, eventually infecting people. Genetic and physiological pathways, by which enterics colonize plants, are still poorly understood. METHODOLOGY/PRINCIPAL FINDINGS: To better understand interactions between Salmonella enterica sv. Typhimurium and tomatoes, a gfp-tagged Salmonella promoter library was screened inside red ripe fruits. Fifty-one unique constructs that were potentially differentially regulated in tomato relative to in vitro growth were identified. The expression of a subset of these promoters was tested in planta using recombinase-based in vivo expression technology (RIVET and fitness of the corresponding mutants was tested. Gene expression in Salmonella was affected by fruit maturity and tomato cultivar. A putative fadH promoter was upregulated most strongly in immature tomatoes. Expression of the fadH construct depended on the presence of linoleic acid, which is consistent with the reduced accumulation of this compound in mature tomato fruits. The cysB construct was activated in the fruit of cv. Hawaii 7997 (resistant to a race of Ralstonia solanacearum more strongly than in the universally susceptible tomato cv. Bonny Best. Known Salmonella motility and animal virulence genes (hilA, flhDC, fliF and those encoded on the pSLT virulence plasmid did not contribute significantly to fitness of the bacteria inside tomatoes, even though deletions of sirA and motA modestly increased fitness of Salmonella inside tomatoes. CONCLUSIONS/SIGNIFICANCE: This study reveals the genetic basis of the interactions of Salmonella with plant hosts. Salmonella relies on a distinct set of metabolic and regulatory genes, which are differentially regulated in planta in response to host genotype and fruit maturity. This enteric pathogen colonizes tissues of tomatoes differently than plant

  2. Ripening Physiology of Fruit from Transgenic Tomato (Lycopersicon esculentum) Plants with Reduced Ethylene Synthesis.

    Science.gov (United States)

    Klee, H. J.

    1993-07-01

    The physiological effects of reduced ethylene synthesis in a transgenic tomato (Lycopersicon esculentum) line expressing 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase enzyme have been examined. Fruit from the transgenic line 5673 ripen significantly slower than control fruit when removed from the vine early in ripening. In contrast, fruit that remain attached to the plants ripen much more rapidly, exhibiting little delay relative to the control. Ethylene determinations on attached fruit revealed that there was significantly more internal ethylene in attached than detached fruit. The higher ethylene content can fully account for the observed faster on-the-vine ripening. All of the data are consistent with a catalytic role for ethylene in promoting many, although not all, aspects of fruit ripening. Biochemical analyses of transgenic fruit indicated no significant differences from controls in the levels of ACC oxidase or polygalacturonase. Because transgenic fruit are significantly firmer than controls, this last result indicates that other enzymes may have a significant role in fruit softening.

  3. On plant detection of intact tomato fruits using image analysis and machine learning methods.

    Science.gov (United States)

    Yamamoto, Kyosuke; Guo, Wei; Yoshioka, Yosuke; Ninomiya, Seishi

    2014-07-09

    Fully automated yield estimation of intact fruits prior to harvesting provides various benefits to farmers. Until now, several studies have been conducted to estimate fruit yield using image-processing technologies. However, most of these techniques require thresholds for features such as color, shape and size. In addition, their performance strongly depends on the thresholds used, although optimal thresholds tend to vary with images. Furthermore, most of these techniques have attempted to detect only mature and immature fruits, although the number of young fruits is more important for the prediction of long-term fluctuations in yield. In this study, we aimed to develop a method to accurately detect individual intact tomato fruits including mature, immature and young fruits on a plant using a conventional RGB digital camera in conjunction with machine learning approaches. The developed method did not require an adjustment of threshold values for fruit detection from each image because image segmentation was conducted based on classification models generated in accordance with the color, shape, texture and size of the images. The results of fruit detection in the test images showed that the developed method achieved a recall of 0.80, while the precision was 0.88. The recall values of mature, immature and young fruits were 1.00, 0.80 and 0.78, respectively.

  4. On Plant Detection of Intact Tomato Fruits Using Image Analysis and Machine Learning Methods

    Directory of Open Access Journals (Sweden)

    Kyosuke Yamamoto

    2014-07-01

    Full Text Available Fully automated yield estimation of intact fruits prior to harvesting provides various benefits to farmers. Until now, several studies have been conducted to estimate fruit yield using image-processing technologies. However, most of these techniques require thresholds for features such as color, shape and size. In addition, their performance strongly depends on the thresholds used, although optimal thresholds tend to vary with images. Furthermore, most of these techniques have attempted to detect only mature and immature fruits, although the number of young fruits is more important for the prediction of long-term fluctuations in yield. In this study, we aimed to develop a method to accurately detect individual intact tomato fruits including mature, immature and young fruits on a plant using a conventional RGB digital camera in conjunction with machine learning approaches. The developed method did not require an adjustment of threshold values for fruit detection from each image because image segmentation was conducted based on classification models generated in accordance with the color, shape, texture and size of the images. The results of fruit detection in the test images showed that the developed method achieved a recall of 0.80, while the precision was 0.88. The recall values of mature, immature and young fruits were 1.00, 0.80 and 0.78, respectively.

  5. Sorption and interaction of the flavonoid naringenin on tomato fruit cuticles.

    Science.gov (United States)

    Domínguez, Eva; Luque, Patricia; Heredia, Antonio

    2009-08-26

    The flavonoid naringenin accumulates in tomato fruit epidermis during ripening. The sorption of this flavonoid to enzymatically isolated cuticles of Solanum lycopersicum was studied as a function of the temperature and naringenin concentration at two stages of fruit growth. The selected stages were mature green, without flavonoids in the cuticle, and ripe tomato, with significant amounts of flavonoids in the cuticle. Sorption isotherms showed different behaviors that could be explained in terms of different affinities of the sorbed flavonoid for the cuticular matrix. The partition coefficient of naringenin in the system cuticle/water solution was a function of temperature and concentration. Changes in the free energy, enthalpy, and entropy for the phase transfer of naringenin to cuticle were also calculated, indicating the existence of naringenin-naringenin interactions replacing naringenin-cuticular matrix interactions at high concentrations with the final result of solid precipitations in the form of clusters within the cutin matrix.

  6. Peptides interfering with protein-protein interactions in the ethylene signaling pathway delay tomato fruit ripening

    Science.gov (United States)

    Bisson, Melanie M. A.; Kessenbrock, Mareike; Müller, Lena; Hofmann, Alexander; Schmitz, Florian; Cristescu, Simona M.; Groth, Georg

    2016-08-01

    The plant hormone ethylene is involved in the regulation of several processes with high importance for agricultural applications, e.g. ripening, aging and senescence. Previous work in our group has identified a small peptide (NOP-1) derived from the nuclear localization signal of the Arabidopsis ethylene regulator ETHYLENE INSENSITIVE-2 (EIN2) C-terminal part as efficient inhibitor of ethylene responses. Here, we show that NOP-1 is also able to efficiently disrupt EIN2-ETR1 complex formation in tomato, indicating that the NOP-1 inhibition mode is conserved across plant species. Surface application of NOP-1 on green tomato fruits delays ripening similar to known inhibitors of ethylene perception (MCP) and ethylene biosynthesis (AVG). Fruits treated with NOP-1 showed similar ethylene production as untreated controls underlining that NOP-1 blocks ethylene signaling by targeting an essential interaction in this pathway, while having no effect on ethylene biosynthesis.

  7. Small heat shock proteins and the postharvest chilling tolerance of tomato fruit.

    Science.gov (United States)

    Ré, Martín D; Gonzalez, Carla; Escobar, Mariela R; Sossi, María Laura; Valle, Estela M; Boggio, Silvana B

    2017-02-01

    Plants have the largest number of small heat shock proteins (sHsps) (15-42 kDa) among eukaryotes, but little is known about their function in vivo. They accumulate in response to different stresses, and specific sHsps are also expressed during developmental processes such as seed development, germination, and ripening. The presence of organelle-specific sHsps appears to be unique to plants. The sHsps expression is regulated by heat stress transcription factors (Hsfs). In this work, it was explored the role of sHsps in the chilling injury of tomato fruit. The level of transcripts and proteins of cytoplasmic and organellar sHsps was monitored in fruit during ripening and after cold storage (4 weeks at 4°C). Expression of HsfA1, HsfA2, HsfA3, and HsfB1 was also examined. Two cultivars of tomato (Solanum lycopersicum) contrasting in chilling tolerance were assayed: Micro-Tom (chilling-tolerant) and Minitomato (chilling-sensitive). Results showed that sHsps were induced during ripening in fruit from both cultivars. However, sHsps were induced in Micro-Tom fruit but not in Minitomato fruit after storage at a low temperature. In particular, sHsp 17.4-CII and sHsp23.8-M transcripts strongly accumulated in Micro-Tom fruit and HsfA3 transcript diminished after cold storage. These data suggest that sHsps may be involved in the protection mechanisms against chilling stress and substantiate the hypothesis that sHsps may participate in the mechanism of tomato genotype chilling tolerance. © 2016 Scandinavian Plant Physiology Society.

  8. Hormonal and metabolic regulation of tomato fruit sink activity and yield under salinity.

    Science.gov (United States)

    Albacete, Alfonso; Cantero-Navarro, Elena; Balibrea, María E; Großkinsky, Dominik K; de la Cruz González, María; Martínez-Andújar, Cristina; Smigocki, Ann C; Roitsch, Thomas; Pérez-Alfocea, Francisco

    2014-11-01

    Salinization of water and soil has a negative impact on tomato (Solanum lycopersicum L.) productivity by reducing growth of sink organs and by inducing senescence in source leaves. It has been hypothesized that yield stability implies the maintenance or increase of sink activity in the reproductive structures, thus contributing to the transport of assimilates from the source leaves through changes in sucrolytic enzymes and their regulation by phytohormones. In this study, classical and functional physiological approaches have been integrated to study the influence of metabolic and hormonal factors on tomato fruit sink activity, growth, and yield: (i) exogenous hormones were applied to plants, and (ii) transgenic plants overexpressing the cell wall invertase (cwInv) gene CIN1 in the fruits and de novo cytokinin (CK) biosynthesis gene IPT in the roots were constructed. Although salinity reduces fruit growth, sink activity, and trans-zeatin (tZ) concentrations, it increases the ethylene precursor 1-aminocyclopropane-1-carboxylic acid (ACC) during the actively growing period (25 days after anthesis). Indeed, exogenous application of the CK analogue kinetin to salinized actively growing fruits recovered sucrolytic activities (mainly cwInv and sucrose synthase), sink strength, and fruit weight, whereas the ethylene-releasing compound ethephon had a negative effect in equivalent non-stressed fruits. Fruit yield was increased by both the constitutive expression of CIN1 in the fruits (up to 4-fold) or IPT in the root (up to 30%), owing to an increase in the fruit number (lower flower abortion) and in fruit weight. This is possibly related to a recovery of sink activity in reproductive tissues due to both (i) increase in sucrolytic activities (cwInv, sucrose synthase, and vacuolar and cytoplasmic invertases) and tZ concentration, and (ii) a decrease in the ACC levels and the activity of the invertase inhibitor. This study provides new functional evidences about the role of

  9. Characterization of polyphenolic constituents and radical scavenging ability of ripe tomato and red pepper fruits

    OpenAIRE

    Akomolafe, Seun F.; Ganiyu Oboh

    2015-01-01

    Objective: Characterization of polyphenolic contents and the inhibitory effects of aqueous extracts of ripe tomato (Lycopersicon esculentum) and red pepper (Capsicum annuum) fruits on the sodium nitroprusside (SNP) and iron(II) (Fe2+)-induced lipid peroxidation in rat liver were examined in this study. Methods: Various experimental models such as the ABTS and #8226; (2,2-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid)) scavenging ability and ferric reducing power were used to character...

  10. Wound-regulated accumulation of specific transcripts in tomato fruit: interactions with fruit development, ethylene and light.

    Science.gov (United States)

    Parsons, B L; Mattoo, A K

    1991-09-01

    Regulation of three cDNA clones (pT52, pT53, and pT58) was analyzed in terms of wounding alone and wounding in conjunction with developmental and environmental cues (ripening, ethylene, and light) in tomato fruit tissue. The pT52-specific transcript level is induced by wounding in early-red and red stage fruit and by ethylene. The pT58-specific transcript level is also induced by wounding and ethylene in early-red stage fruit but is not induced by wounding in red fruit. The pT53-specific transcript level is repressed by wounding in early-red and red stage fruit. Like the pT52- and pT58-specific transcripts, the pT53-specific transcript is induced by ethylene. Furthermore, the level of the pT52-specific transcript is regulated by light. Analysis of unwounded tissue showed that the abundance of each cDNA-specific transcript changes during fruit ripening and that each of the transcripts is present in other plant organs as well. This analysis provides information about the interactions between developmental and environmental factors affecting these genes.

  11. Over-expression of mouse ornithine decarboxylase gene under the control of fruit-specific promoter enhances fruit quality in tomato.

    Science.gov (United States)

    Pandey, Roopali; Gupta, Aarti; Chowdhary, Anuj; Pal, Ram Krishna; Rajam, Manchikatla Venkat

    2015-02-01

    Diamine putrescine (Put) and polyamines; spermidine (Spd) and spermine (Spm) are essential component of every cell because of their involvement in the regulation of cell division, growth and development. The aim of this study is to enhance the levels of Put during fruit development and see its implications in ripening and quality of tomato fruits. Transgenic tomato plants over-expressing mouse ornithine decarboxylase gene under the control of fruit-specific promoter (2A11) were developed. Transgenic fruits exhibited enhanced levels of Put, Spd and Spm, with a concomitant reduction in ethylene levels, rate of respiration and physiological loss of water. Consequently such fruits displayed significant delay of on-vine ripening and prolonged shelf life over untransformed fruits. The activation of Put biosynthetic pathway at the onset of ripening in transgenic fruits is also consistent with the improvement of qualitative traits such as total soluble solids, titratable acids and total sugars. Such changes were associated with alteration in expression pattern of ripening specific genes. Transgenic fruits were also fortified with important nutraceuticals like lycopene, ascorbate and antioxidants. Therefore, these transgenic tomatoes would be useful for the improvement of tomato cultivars through breeding approaches.

  12. Gamma irradiation as a quarantine treatment for Neoleucinodes elegantalis in tomato fruit

    Energy Technology Data Exchange (ETDEWEB)

    Costa, Helbert S.F.; Fanaro, Gustavo B.; Araujo, Michel M.; Santillo, Amanda G.; Villavicencio, Anna Lucia C.H. [Instituto de Pesquisas Energeticas e Nucleares (IPEN-CNEN/SP), Sao Paulo, SP (Brazil)], e-mail: villavic@ipen.br; Faria, Jose Tadeu de [Ministerio da Agricultura Pecuaria e Abastecimento (MAPA), Sao Paulo, SP (Brazil)], e-mail: dt-sp@agricultura.gov.br; Arthur, Valter [Centro de Energia Nuclear na Agricultura (CENA/USP), Piracicaba, SP (Brazil). Lab. de Radibiologia e Ambiente], e-mail: arthur@cena.usp.br

    2009-07-01

    In Brazil the tomato-fruit-borer is responsible up to 45% for the loss of the production. The objective of the present report is evaluate the effects of gamma radiation ({sup 60}Co) on life cycle (eggs and larvae) of Neoleucinodes elegantalis in tomato fruits. The insects were irradiated at doses of 0 (control), 50, 100, 150, 200, 250, 300 and 400 Gy, in a Gammacell 220 source at dose rate of 1.4 kGy/h. Each treatment consists of four repetitions containing 10 insects, totaling 50 insects. After irradiation, the insects were maintained under controlled conditions of 25{+-}3 deg C and relative humidity from 65 to 75%. The evaluations were done daily, counted the number of died insects, eggs and emerged larvae. With the obtained results, we could determine the lethal and sterilizing doses for all phases of cycle life in N. elegantalis for a possible quarantine treatment to export tomato fruits. These results permit conclude that the dose capable to avoid further development of stage of eggs and larvae were doses of 100 and 200 Gy. (author)

  13. Identification of Solanum habrochaites loci that quantitatively influence tomato fruit ripening-associated ethylene emissions.

    Science.gov (United States)

    Dal Cin, Valeriano; Kevany, Brian; Fei, Zhangjun; Klee, Harry J

    2009-11-01

    The phytohormone ethylene is essential for ripening of climacteric fruits such as tomato. While many of the genes responsible for ethylene synthesis and perception have been identified, the regulatory network controlling autocatalytic climacteric ethylene synthesis is not well understood. In order to better understand the regulation of ripening-associated ethylene, we have exploited the genetic variation within Solanum Sect. Lycopersicon. In particular, we have used a near-isogenic population of S. habrochaites introgression lines to identify chromosome segments affecting ethylene emissions during ripening. S. habrochaites fruits produce much larger quantities of ethylene during ripening than do cultivated S. lycopersicum tomatoes. A total of 17 segments were identified; 3 had emissions more than twice the level of the tomato parent, 11 had less than a twofold increase and 3 had significantly reduced emissions at one or more ripening stages. While several of these segments co-segregate with known ethylene-related genes, many do not correspond to known genes. Thus, they may identify novel modes of regulation. These results illustrate the utility of wild relatives and their introgression lines to understand regulation of fruit ripening-related processes.

  14. Flavour compounds in tomato fruits: identification of loci and potential pathways affecting volatile composition.

    Science.gov (United States)

    Mathieu, Sandrine; Cin, Valeriano Dal; Fei, Zhangjun; Li, Hua; Bliss, Peter; Taylor, Mark G; Klee, Harry J; Tieman, Denise M

    2009-01-01

    The unique flavour of a tomato fruit is the sum of a complex interaction among sugars, acids, and a large set of volatile compounds. While it is generally acknowledged that the flavour of commercially produced tomatoes is inferior, the biochemical and genetic complexity of the trait has made breeding for improved flavour extremely difficult. The volatiles, in particular, present a major challenge for flavour improvement, being generated from a diverse set of lipid, amino acid, and carotenoid precursors. Very few genes controlling their biosynthesis have been identified. New quantitative trait loci (QTLs) that affect the volatile emissions of red-ripe fruits are described here. A population of introgression lines derived from a cross between the cultivated tomato Solanum lycopersicum and its wild relative, S. habrochaites, was characterized over multiple seasons and locations. A total of 30 QTLs affecting the emission of one or more volatiles were mapped. The data from this mapping project, combined with previously collected data on an IL population derived from a cross between S. lycopersicum and S. pennellii populations, were used to construct a correlational database. A metabolite tree derived from these data provides new insights into the pathways for the synthesis of several of these volatiles. One QTL is a novel locus affecting fruit carotenoid content on chromosome 2. Volatile emissions from this and other lines indicate that the linear and cyclic apocarotenoid volatiles are probably derived from separate carotenoid pools.

  15. Feasibility in multispectral imaging for predicting the content of bioactive compounds in intact tomato fruit.

    Science.gov (United States)

    Liu, Changhong; Liu, Wei; Chen, Wei; Yang, Jianbo; Zheng, Lei

    2015-04-15

    Tomato is an important health-stimulating fruit because of the antioxidant properties of its main bioactive compounds, dominantly lycopene and phenolic compounds. Nowadays, product differentiation in the fruit market requires an accurate evaluation of these value-added compounds. An experiment was conducted to simultaneously and non-destructively measure lycopene and phenolic compounds content in intact tomatoes using multispectral imaging combined with chemometric methods. Partial least squares (PLS), least squares-support vector machines (LS-SVM) and back propagation neural network (BPNN) were applied to develop quantitative models. Compared with PLS and LS-SVM, BPNN model considerably improved the performance with coefficient of determination in prediction (RP(2))=0.938 and 0.965, residual predictive deviation (RPD)=4.590 and 9.335 for lycopene and total phenolics content prediction, respectively. It is concluded that multispectral imaging is an attractive alternative to the standard methods for determination of bioactive compounds content in intact tomatoes, providing a useful platform for infield fruit sorting/grading.

  16. Deciphering genetic diversity and inheritance of tomato fruit weight and composition through a systems biology approach.

    Science.gov (United States)

    Pascual, Laura; Xu, Jiaxin; Biais, Benoît; Maucourt, Mickaël; Ballias, Patricia; Bernillon, Stéphane; Deborde, Catherine; Jacob, Daniel; Desgroux, Aurore; Faurobert, Mireille; Bouchet, Jean-Paul; Gibon, Yves; Moing, Annick; Causse, Mathilde

    2013-12-01

    Integrative systems biology proposes new approaches to decipher the variation of phenotypic traits. In an effort to link the genetic variation and the physiological and molecular bases of fruit composition, the proteome (424 protein spots), metabolome (26 compounds), enzymatic profile (26 enzymes), and phenotypes of eight tomato accessions, covering the genetic diversity of the species, and four of their F1 hybrids, were characterized at two fruit developmental stages (cell expansion and orange-red). The contents of metabolites varied among the genetic backgrounds, while enzyme profiles were less variable, particularly at the cell expansion stage. Frequent genotype by stage interactions suggested that the trends observed for one accession at a physiological level may change in another accession. In agreement with this, the inheritance modes varied between crosses and stages. Although additivity was predominant, 40% of the traits were non-additively inherited. Relationships among traits revealed associations between different levels of expression and provided information on several key proteins. Notably, the role of frucktokinase, invertase, and cysteine synthase in the variation of metabolites was highlighted. Several stress-related proteins also appeared related to fruit weight differences. These key proteins might be targets for improving metabolite contents of the fruit. This systems biology approach provides better understanding of networks controlling the genetic variation of tomato fruit composition. In addition, the wide data sets generated provide an ideal framework to develop innovative integrated hypothesis and will be highly valuable for the research community.

  17. In-depth characterization of the tomato fruit pericarp proteome.

    Science.gov (United States)

    Mata, Clara I; Fabre, Bertrand; Hertog, Maarten L A T M; Parsons, Harriet T; Deery, Michael J; Lilley, Kathryn S; Nicolaï, Bart M

    2017-01-01

    Since the genome of Solanum lycopersicum L. was published in 2012, some studies have explored its proteome although with a limited depth. In this work, we present an extended characterization of the proteome of the tomato pericarp at its ripe red stage. Fractionation of tryptic peptides generated from pericarp proteins by off-line high-pH reverse-phase phase chromatography in combination with LC-MS/MS analysis on a Fisher Scientific Q Exactive and a Sciex Triple-TOF 6600 resulted in the identification of 8588 proteins with a 1% FDR both at the peptide and protein levels. Proteins were mapped through GO and KEGG databases and a large number of the identified proteins were associated with cytoplasmic organelles and metabolic pathways categories. These results constitute one of the most extensive proteome datasets of tomato so far and provide an experimental confirmation of the existence of a high number of theoretically predicted proteins. All MS data are available in the ProteomeXchange repository with the dataset identifiers PXD004947 and PXD004932. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. 番茄果实成熟过程中番茄红素含量及合成相关基因表达的分析%Analysis of Lycopene Content and Biosynthetic Related Gene Expression during Maturation of Tomato Fruit

    Institute of Scientific and Technical Information of China (English)

    刘英明; 姜晶; 王晶; 杨艳丽; 孟昭娟

    2013-01-01

    以2个高代自交系粉果番茄MLK1和红果番茄FL1为材料,利用实时荧光定量PCR技术及色差仪法,对果实成熟过程中4个时期的番茄红素含量分析及八氢番茄红素合成酶(Psy1和Psy2)和番茄红素环化酶(Lcy)基因的表达进行研究.结果表明,在番茄果实成熟的过程中,番茄红素的含量也逐渐增高,在完熟期达到最高,且红果中的含量高于粉果中的.在2个番茄品种果实不同部位中,Psy1、Psy2和Lcy基因在果实逐渐成熟的过程中转录水平均逐渐增加,在完熟期表达量最高,且红果FL1中的表达量高于粉果MLK1表达量,果实中Psy基因的表达量高于Lcy基因的表达量.%Two tomato cultivars red fruit FL1 and pink fruit MLK1 with significant difference in lycopene content were used for the study of the lycopene content and the gene expression of phytoene synthase (Psy1and Psy2) and lycopene cyclase (Lcy) in different organs and at four development stages of fruits. The results showed that the content of lycopene gradually increased in tomato fruit ripening process and was the highest in the ripe stage, the content of lycopene in red fruit FL1 was higher than that in pink fruit MLK1 tomato. Three genes were expressed in different parts of the two varieties tomato fruits in the transcription level and the expression levels were the highest at the ripe stage. The genes expression of red fruit FL1 was higher than those in pink fruit MLK1. Psy gene expression level was higher than the expression levels of Lcy gene in the same varieties of fruit.

  19. Auxin-induced fruit-set in tomato is mediated in part by gibberellins.

    Science.gov (United States)

    Serrani, Juan Carlos; Ruiz-Rivero, Omar; Fos, Mariano; García-Martínez, José Luis

    2008-12-01

    Tomato (Solanum lycopersicum L.) fruit-set and growth depend on gibberellins (GAs). Auxins, another kind of hormone, can also induce parthenocarpic fruit growth in tomato, although their possible interaction with GAs is unknown. We showed that fruit development induced by the auxins indole-3-acetic acid and 2,4-dichlorophenoxyacetic acid (2,4-D) were significantly reduced by the simultaneous application of inhibitors of GA biosynthesis, and that this effect was reversed by the application of GA(3). This suggested that the effect of auxin was mediated by GA. Parthenocarpic fruits induced by 2,4-D had higher levels of the active GA(1), its precursors and metabolites, than unpollinated non-treated ovaries, but similar levels as those found in pollinated ovaries. Application experiments of radioactive-labelled GAs to unpollinated ovaries showed than 2,4-D altered GA metabolism (both biosynthesis and catabolism) in vivo. Transcript levels of genes encoding copalyldiphosphate synthase (SlCPS), SlGA20ox1, SlGA20ox2 and SlGA20ox3, and SlGA3ox1 were higher in unpollinated ovaries treated with 2,4-D. In contrast, transcript levels of SlGA2ox2 (out of the five SlGA2ox genes known to encode this kind of GA-inactivating enzyme) were lower in ovaries treated with 2,4-D. Our results support the idea that auxins induce fruit-set and growth in tomato, at least partially, by enhancing GA biosynthesis (GA 20-oxidase, GA 3-oxidase and CPS), and probably by decreasing GA inactivation (GA2ox2) activity, thereby leading to higher levels of GA(1). The expression of diverse Aux/indole-3-acetic acid (IAA) and auxin response factors, which may be involved in this effect of auxin, was also altered in 2,4-D-induced ovaries.

  20. Metabolic engineering of tomato fruit organic acid content guided by biochemical analysis of an introgression line.

    Science.gov (United States)

    Morgan, Megan J; Osorio, Sonia; Gehl, Bernadette; Baxter, Charles J; Kruger, Nicholas J; Ratcliffe, R George; Fernie, Alisdair R; Sweetlove, Lee J

    2013-01-01

    Organic acid content is regarded as one of the most important quality traits of fresh tomato (Solanum lycopersicum). However, the complexity of carboxylic acid metabolism and storage means that it is difficult to predict the best way to engineer altered carboxylic acid levels. Here, we used a biochemical analysis of a tomato introgression line with increased levels of fruit citrate and malate at breaker stage to identify a metabolic engineering target that was subsequently tested in transgenic plants. Increased carboxylic acid levels in introgression line 2-5 were not accompanied by changes in the pattern of carbohydrate oxidation by pericarp discs or the catalytic capacity of tricarboxylic acid cycle enzymes measured in isolated mitochondria. However, there was a significant decrease in the maximum catalytic activity of aconitase in total tissue extracts, suggesting that a cytosolic isoform of aconitase was affected. To test the role of cytosolic aconitase in controlling fruit citrate levels, we analyzed fruit of transgenic lines expressing an antisense construct against SlAco3b, one of the two tomato genes encoding aconitase. A green fluorescent protein fusion of SlAco3b was dual targeted to cytosol and mitochondria, while the other aconitase, SlAco3a, was exclusively mitochondrial when transiently expressed in tobacco (Nicotiana tabacum) leaves. Both aconitase transcripts were decreased in fruit from transgenic lines, and aconitase activity was reduced by about 30% in the transgenic lines. Other measured enzymes of carboxylic acid metabolism were not significantly altered. Both citrate and malate levels were increased in ripe fruit of the transgenic plants, and as a consequence, total carboxylic acid content was increased by 50% at maturity.

  1. The Quality of Fresh Tomato Fruit Produced by Hydroponic

    Directory of Open Access Journals (Sweden)

    Nadica Dobričević

    2007-12-01

    Full Text Available The quality of fresh tomatoes (Lycopersicon esculentum Mill. planted in rockwool in hydroponic system is defined by their internal parameters: contents of dry matter and soluble dry matter (°Bx, total acidity (% citric acid, pH, % NaCl and L-ascorbic acid. Research was carried out during 2003 and included 21 cultivars. Tomato plants were planted into rockwool slabs 100 cm x 15 cm x 7.5 cm. Three plants were planted 33 cm apart in 11.25 L of substrate. The trial was laid out according to the randomized complete block design with four replications, and sampling was carried out during three harvests in: June, July and August. The dry matter content was 4.29% (cultivar ΄Syta΄ to 6.21% (cultivar ΄Delfine΄, and content of soluble dry matter was 3.0% (cultivar ΄Brooklyn΄ to 4.5% (΄Lustro΄ and ΄72-503΄. Total acidity amounted from 0.19% (cultivar ΄Syta΄ to 0.45% (cultivar ΄Lustro΄, and pH values ranged from 4.20 (cultivar ΄20377΄ to 4.68 (cultivar ΄Syta΄. Salt content ranged from 0.08% (΄Campeon΄ and ΄F 18402΄ to 0.13% (΄Brooklyn΄ and ΄E 27.31299΄, and L-ascorbic acid content ranged from 260.40 (cultivar ΄Antinea΄ to 458.30 mg/dry matter (cultivar ΄F 18402΄. By studying the basic chemical composition of selected cultivars, significant differences in their soluble dry matter and pH were revealed but only at the first sampling.

  2. RNA interference silencing of chalcone synthase, the first step in the flavonoid biosynthesis pathway, leads to parthenocarpic tomato fruits

    NARCIS (Netherlands)

    Schijlen, E.G.W.M.; Vos, de C.H.; Martens, S.; Jonker, H.H.; Rosin, F.M.A.; Molthoff, J.W.; Tikunov, Y.M.; Angenent, G.C.; Tunen, van A.J.; Bovy, A.G.

    2007-01-01

    Parthenocarpy, the formation of seedless fruits in the absence of functional fertilization, is a desirable trait for several important crop plants, including tomato (Solanum lycopersicum). Seedless fruits can be of great value for consumers, the processing industry, and breeding companies. In this a

  3. Analysis of softening in air- and ethylene-treated rin, nor and wild-type tomato fruit

    Science.gov (United States)

    Rin; ripening-inhibitor and nor; non-ripening are previously identified spontaneous mutations that affect the primary regulation of tomato fruit ripening. Mutations at these loci result in fruit that are either partially or completely inhibited in their ability to ripen. Both internal and whole frui...

  4. Differences in regulation of carbohydrate metabolism during early fruit development between domesticated tomato and two wild relatives

    NARCIS (Netherlands)

    Kortstee, A.J.; Appeldoorn, N.J.G.; Oortwijn, M.E.P.; Visser, R.G.F.

    2007-01-01

    Early development and growth of fruit in the domesticated tomato Solanum lycopersicum cultivar Money Maker and two of its wild relatives, S. peruvianum LA0385 and S. habrochaites LA1777, were studied. Although small differences exist, the processes involved and the sequence of events in fruit

  5. RNA interference silencing of chalcone synthase, the first step in the flavonoid biosynthesis pathway, leads to parthenocarpic tomato fruits

    NARCIS (Netherlands)

    Schijlen, E.G.W.M.; Vos, de C.H.; Martens, S.; Jonker, H.H.; Rosin, F.M.A.; Molthoff, J.W.; Tikunov, Y.M.; Angenent, G.C.; Tunen, van A.J.; Bovy, A.G.

    2007-01-01

    Parthenocarpy, the formation of seedless fruits in the absence of functional fertilization, is a desirable trait for several important crop plants, including tomato (Solanum lycopersicum). Seedless fruits can be of great value for consumers, the processing industry, and breeding companies. In this

  6. A tomato (Solanum lycopersicum) APETALA2/ERF gene, SlAP2a, is a negative regulator of fruit ripening

    Science.gov (United States)

    The transition of fleshy fruit maturation to ripening is regulated by exogenous and endogenous signals which coordinate the transition of the fruit to a final state of attractiveness to seed dispersing organisms. Tomato is a model for biology and genetics regulating specific ripening pathways includ...

  7. Traps and trap placement may affect location of brown marmorated stink bug (Hemiptera: Pentatomidae) and increase injury to tomato fruits in home gardens.

    Science.gov (United States)

    Sargent, Chris; Martinson, Holly M; Raupp, Michael J

    2014-04-01

    The invasive brown marmorated stink bug, Halyomorpha halys (Stål) (Hemiptera: Pentatomidae), is an important pest of field crops, fruit orchards, commercial vegetables, ornamental plants, and home vegetable gardens. Pheromone-baited traps designed to attract, trap, and kill H. halys are marketed for use in home gardens to reduce damage to plants. To test this assertion, we conducted the following experiment: One group of 15 gardeners placed stink bug traps at the end of a row of tomatoes, Solanum lycopersicum (L.), in their vegetable garden and another group of 14 placed no traps in their garden and served as controls. Gardeners with traps were no more or less likely to have H. halys on tomato plants than those without traps, but the abundance of H. halys on tomato fruits was marginally greater in gardens with traps. However, tomato fruits grown in gardens with traps sustained significantly more injury than tomato fruits grown in gardens without traps. Furthermore, tomato fruits on plants near the trap housed more H. halys than tomato fruits on plants at the end of a row away from the trap. Traps may be useful in identifying gardens where H. halys is likely to be found and ones in which stink bug injury to tomatoes is likely. We found no evidence that stink bug traps protected tomatoes from H. halys, and it appears that the addition of traps to gardens may increase injury to tomato fruits.

  8. Regulation of fruit ascorbic acid concentrations during ripening in high and low vitamin C tomato cultivars

    Directory of Open Access Journals (Sweden)

    Mellidou Ifigeneia

    2012-12-01

    Full Text Available Abstract Background To gain insight into the regulation of fruit ascorbic acid (AsA pool in tomatoes, a combination of metabolite analyses, non-labelled and radiolabelled substrate feeding experiments, enzyme activity measurements and gene expression studies were carried out in fruits of the ‘low-’ and ‘high-AsA’ tomato cultivars ‘Ailsa Craig’ and ‘Santorini’ respectively. Results The two cultivars exhibited different profiles of total AsA (totAsA, AsA + dehydroascorbate and AsA accumulation during ripening, but both displayed a characteristic peak in concentrations at the breaker stage. Substrate feeding experiments demonstrated that the L-galactose pathway is the main AsA biosynthetic route in tomato fruits, but that substrates from alternative pathways can increase the AsA pool at specific developmental stages. In addition, we show that young fruits display a higher AsA biosynthetic capacity than mature ones, but this does not lead to higher AsA concentrations due to either enhanced rates of AsA breakdown (‘Ailsa Craig’ or decreased rates of AsA recycling (‘Santorini’, depending on the cultivar. In the later stages of ripening, differences in fruit totAsA-AsA concentrations of the two cultivars can be explained by differences in the rate of AsA recycling activities. Analysis of the expression of AsA metabolic genes showed that only the expression of one orthologue of GDP-L-galactose phosphorylase (SlGGP1, and of two monodehydroascorbate reductases (SlMDHAR1 and SlMDHAR3 correlated with the changes in fruit totAsA-AsA concentrations during fruit ripening in ‘Ailsa Craig’, and that only the expression of SlGGP1 was linked to the high AsA concentrations found in red ripe ‘Santorini’ fruits. Conclusions Results indicate that ‘Ailsa Craig’ and ‘Santorini’ use complementary mechanisms to maintain the fruit AsA pool. In the low-AsA cultivar (‘Ailsa Craig’, alternative routes of AsA biosynthesis may

  9. Spatial and temporal distribution of genes involved in polyamine metabolism during tomato fruit development.

    Science.gov (United States)

    Tsaniklidis, Georgios; Kotsiras, Anastasios; Tsafouros, Athanasios; Roussos, Peter A; Aivalakis, Georgios; Katinakis, Panagiotis; Delis, Costas

    2016-03-01

    Polyamines are organic compounds involved in various biological roles in plants, including cell growth and organ development. In the present study, the expression profile, the accumulation of free polyamines and the transcript localisation of the genes involved in Put metabolism, such as Ornithine decarboxylase (ODC), Arginine decarboxylase (ADC) and copper containing Amine oxidase (CuAO), were examined during Solanum lycopersicum cv. Chiou fruit development and maturation. Moreover, the expression of genes coding for enzymes involved in higher polyamine metabolism, including Spermidine synthase (SPDS), Spermine synthase (SPMS), S-adenosylmethionine decarboxylase (SAMDC) and Polyamine oxidase (PAO), were studied. Most genes participating in PAs biosynthesis and metabolism exhibited an increased accumulation of transcripts at the early stages of fruit development. In contrast, CuAO and SPMS were mostly expressed later, during the development stages of the fruits where a massive increase in fruit volume occurs, while the SPDS1 gene exhibited a rather constant expression with a peak at the red ripe stage. Although Put, Spd and Spm were all exhibited decreasing levels in developing immature fruits, Put levels maxed late during fruit ripening. In contrast to Put both Spd and Spm levels continue to decrease gradually until full ripening. It is worth noticing that in situ RNA-RNA hybridisation is reported for the first time in tomato fruits. The localisation of ADC2, ODC1 and CuAO gene transcripts at tissues such as the locular parenchyma and the vascular bundles fruits, supports the theory that all genes involved in Put biosynthesis and catabolism are mostly expressed in fast growing tissues. The relatively high expression levels of CuAO at the ImG4 stage of fruit development (fruits with a diameter of 3 cm), mature green and breaker stages could possibly be attributed to the implication of polyamines in physiological processes taking place during fruit ripening.

  10. Fruit-specific RNAi-mediated suppression of DET1 enhances carotenoid and flavonoid content in tomatoes

    Science.gov (United States)

    Davuluri, Ganga Rao; van Tuinen, Ageeth; Fraser, Paul D; Manfredonia, Alessandro; Newman, Robert; Burgess, Diane; Brummell, David A; King, Stephen R; Palys, Joe; Uhlig, John; Bramley, Peter M; Pennings, Henk M J; Bowler, Chris

    2013-01-01

    Tomatoes are a principal dietary source of carotenoids and flavonoids, both of which are highly beneficial for human health1,2. Overexpression of genes encoding biosynthetic enzymes or transcription factors have resulted in tomatoes with improved carotenoid or flavonoid content, but never with both3–7. We attempted to increase tomato fruit nutritional value by suppressing an endogenous photomorphogenesis regulatory gene, DET1, using fruit-specific promoters combined with RNA interference (RNAi) technology. Molecular analysis indicated that DET1 transcripts were indeed specifically degraded in transgenic fruits. Both carotenoid and flavonoid contents were increased significantly, whereas other parameters of fruit quality were largely unchanged. These results demonstrate that manipulation of a plant regulatory gene can simultaneously influence the production of several phytonutrients generated from independent biosynthetic pathways, and provide a novel example of the use of organ-specific gene silencing to improve the nutritional value of plant-derived products. PMID:15951803

  11. Calmodulin Gene Expression in Response to Mechanical Wounding and Botrytis cinerea Infection in Tomato Fruit.

    Science.gov (United States)

    Peng, Hui; Yang, Tianbao; Ii, Wayne M Jurick

    2014-08-29

    Calmodulin, a ubiquitous calcium sensor, plays an important role in decoding stress-triggered intracellular calcium changes and regulates the functions of numerous target proteins involved in various plant physiological responses. To determine the functions of calmodulin in fleshy fruit, expression studies were performed on a family of six calmodulin genes (SlCaMs) in mature-green stage tomato fruit in response to mechanical injury and Botrytis cinerea infection. Both wounding and pathogen inoculation triggered expression of all those genes, with SlCaM2 being the most responsive one to both treatments. Furthermore, all calmodulin genes were upregulated by salicylic acid and methyl jasmonate, two signaling molecules involved in plant immunity. In addition to SlCaM2, SlCaM1 was highly responsive to salicylic acid and methyl jasmonate. However, SlCaM2 exhibited a more rapid and stronger response than SlCaM1. Overexpression of SlCaM2 in tomato fruit enhanced resistance to Botrytis-induced decay, whereas reducing its expression resulted in increased lesion development. These results indicate that calmodulin is a positive regulator of plant defense in fruit by activating defense pathways including salicylate- and jasmonate-signaling pathways, and SlCaM2 is the major calmodulin gene responsible for this event.

  12. Calmodulin Gene Expression in Response to Mechanical Wounding and Botrytis cinerea Infection in Tomato Fruit

    Directory of Open Access Journals (Sweden)

    Hui Peng

    2014-08-01

    Full Text Available Calmodulin, a ubiquitous calcium sensor, plays an important role in decoding stress-triggered intracellular calcium changes and regulates the functions of numerous target proteins involved in various plant physiological responses. To determine the functions of calmodulin in fleshy fruit, expression studies were performed on a family of six calmodulin genes (SlCaMs in mature-green stage tomato fruit in response to mechanical injury and Botrytis cinerea infection. Both wounding and pathogen inoculation triggered expression of all those genes, with SlCaM2 being the most responsive one to both treatments. Furthermore, all calmodulin genes were upregulated by salicylic acid and methyl jasmonate, two signaling molecules involved in plant immunity. In addition to SlCaM2, SlCaM1 was highly responsive to salicylic acid and methyl jasmonate. However, SlCaM2 exhibited a more rapid and stronger response than SlCaM1. Overexpression of SlCaM2 in tomato fruit enhanced resistance to Botrytis-induced decay, whereas reducing its expression resulted in increased lesion development. These results indicate that calmodulin is a positive regulator of plant defense in fruit by activating defense pathways including salicylate- and jasmonate-signaling pathways, and SlCaM2 is the major calmodulin gene responsible for this event.

  13. AUXIN RESPONSE FACTOR 2 Intersects Hormonal Signals in the Regulation of Tomato Fruit Ripening.

    Science.gov (United States)

    Breitel, Dario A; Chappell-Maor, Louise; Meir, Sagit; Panizel, Irina; Puig, Clara Pons; Hao, Yanwei; Yifhar, Tamar; Yasuor, Hagai; Zouine, Mohamed; Bouzayen, Mondher; Granell Richart, Antonio; Rogachev, Ilana; Aharoni, Asaph

    2016-03-01

    The involvement of ethylene in fruit ripening is well documented, though knowledge regarding the crosstalk between ethylene and other hormones in ripening is lacking. We discovered that AUXIN RESPONSE FACTOR 2A (ARF2A), a recognized auxin signaling component, functions in the control of ripening. ARF2A expression is ripening regulated and reduced in the rin, nor and nr ripening mutants. It is also responsive to exogenous application of ethylene, auxin and abscisic acid (ABA). Over-expressing ARF2A in tomato resulted in blotchy ripening in which certain fruit regions turn red and possess accelerated ripening. ARF2A over-expressing fruit displayed early ethylene emission and ethylene signaling inhibition delayed their ripening phenotype, suggesting ethylene dependency. Both green and red fruit regions showed the induction of ethylene signaling components and master regulators of ripening. Comprehensive hormone profiling revealed that altered ARF2A expression in fruit significantly modified abscisates, cytokinins and salicylic acid while gibberellic acid and auxin metabolites were unaffected. Silencing of ARF2A further validated these observations as reducing ARF2A expression let to retarded fruit ripening, parthenocarpy and a disturbed hormonal profile. Finally, we show that ARF2A both homodimerizes and interacts with the ABA STRESS RIPENING (ASR1) protein, suggesting that ASR1 might be linking ABA and ethylene-dependent ripening. These results revealed that ARF2A interconnects signals of ethylene and additional hormones to co-ordinate the capacity of fruit tissue to initiate the complex ripening process.

  14. Influence of habitat pattern on orientation during host fruit location in the tomato fruit fly, Neoceratitis cyanescens.

    Science.gov (United States)

    Brévault, T; Quilici, S

    2007-12-01

    Fruit flies have evolved mechanisms using olfactory and visual signals to find and recognize suitable host plants. The objective of the present study was to determine how habitat patterns may assist fruit flies in locating host plants and fruit. The tomato fruit fly, Neoceratitis cyanescens (Bezzi), was chosen as an example of a specialized fruit fly, attacking plants of the Solanaceae family. A series of experiments was conducted in an outdoor field cage wherein flies were released and captured on sticky orange and yellow spheres displayed in pairs within or above potted host or non-host plants. Bright orange spheres mimicking host fruit were significantly more attractive than yellow spheres only when placed within the canopy of host plants and not when either within non-host plants or above both types of plants. Additional experiments combining sets of host and non-host plants in the same cage, or spraying leaf extract of host plant (bug weed) on non-host plants showed that volatile cues emitted by the foliage of host plants may influence the visual response of flies in attracting mature females engaged in a searching behaviour for a laying site and in assisting them to find the host fruit. Moreover, the response was specific to mature females with a high oviposition drive because starved mature females, immature females and males showed no significant preference for orange spheres. Olfactory signals emitted by the host foliage could be an indicator of an appropriate habitat, leading flies to engage in searching for a visual image.

  15. Sculpting the maturation, softening and ethylene pathway: The influences of microRNAs on tomato fruits

    Directory of Open Access Journals (Sweden)

    Zuo Jinhua

    2012-01-01

    Full Text Available Abstract Background MicroRNAs (miRNAs, a ubiquitous class of short RNAs, play vital roles in physiological and biochemical processes in plants by mediating gene silencing at post-transcriptional (PTGS level. Tomato is a model system to study molecular basis of fleshy fruit ripening and senescence, ethylene biosynthesis and signal transduction owing to its genetic and molecular tractability. To study the functions of miRNAs in tomato fruit ripening and senescence, and their possible roles in ethylene response, the next generation sequencing method was employed to identify miRNAs in tomato fruit. Bioinformatics and molecular biology approaches were combined to profile the miRNAs expression patterns at three different fruit ripening stages and by exogenous ethylene treatment. Results In addition to 7 novel miRNA families, 103 conserved miRNAs belonging to 24 families and 10 non-conserved miRNAs matching 9 families were identified in our libraries. The targets of many these miRNAs were predicted to be transcriptional factors. Other targets are known to play roles in the regulation of metabolic processes. Interestingly, some targets were predicted to be involved in fruit ripening and softening, such as Pectate Lyase, beta-galactosidase, while a few others were predicted to be involved in ethylene biosynthesis and signaling pathway, such as ACS, EIN2 and CTR1. The expression patterns of a number of such miRNAs at three ripening stages were confirmed by stem-loop RT-PCR, which showed a strong negative correlation with that of their targets. The regulation of exogenous ethylene on miRNAs expression profiles were analyzed simultaneously, and 3 down-regulated, 5 up-regulated miRNAs were found in this study. Conclusions A combination of high throughput sequencing and molecular biology approaches was used to explore the involvement of miRNAs during fruit ripening. Several miRNAs showed differential expression profiles during fruit ripening, and a number of

  16. Weighted correlation network analysis (WGCNA applied to the tomato fruit metabolome.

    Directory of Open Access Journals (Sweden)

    Matthew V DiLeo

    Full Text Available BACKGROUND: Advances in "omics" technologies have revolutionized the collection of biological data. A matching revolution in our understanding of biological systems, however, will only be realized when similar advances are made in informatic analysis of the resulting "big data." Here, we compare the capabilities of three conventional and novel statistical approaches to summarize and decipher the tomato metabolome. METHODOLOGY: Principal component analysis (PCA, batch learning self-organizing maps (BL-SOM and weighted gene co-expression network analysis (WGCNA were applied to a multivariate NMR dataset collected from developmentally staged tomato fruits belonging to several genotypes. While PCA and BL-SOM are appropriate and commonly used methods, WGCNA holds several advantages in the analysis of highly multivariate, complex data. CONCLUSIONS: PCA separated the two major genetic backgrounds (AC and NC, but provided little further information. Both BL-SOM and WGCNA clustered metabolites by expression, but WGCNA additionally defined "modules" of co-expressed metabolites explicitly and provided additional network statistics that described the systems properties of the tomato metabolic network. Our first application of WGCNA to tomato metabolomics data identified three major modules of metabolites that were associated with ripening-related traits and genetic background.

  17. Vermicompost as a soil supplement to improve growth, yield and fruit quality of tomato (Lycopersicum esculentum).

    Science.gov (United States)

    Gutiérrez-Miceli, Federico A; Santiago-Borraz, Jorge; Montes Molina, Joaquín Adolfo; Nafate, Camerino Carlos; Abud-Archila, Miguel; Oliva Llaven, María Angela; Rincón-Rosales, Reiner; Dendooven, Luc

    2007-11-01

    The effects of earthworm-processed sheep-manure (vermicompost) on the growth, productivity and chemical characteristics of tomatoes (Lycopersicum esculentum) (c.v. Rio Grande) were investigated in a greenhouse experiment. Five treatments were applied combining vermicompost and soil in proportions of 0:1, 1:1, 1:2, 1:3, 1:4 and 1:5 (v/v). Growth and yield parameters were measured 85 days and 100 days after transplanting. Addition of vermicompost increased plant heights significantly, but had no significant effect on the numbers of leaves or yields 85 days after transplanting. Yields of tomatoes were significantly greater when the relationship vermicompost:soil was 1:1, 1:2 or 1:3, 100 days after transplanting. Addition of sheep-manure vermicompost decreased soil pH, titratable acidity and increased soluble and insoluble solids, in tomato fruits compared to those harvested from plants cultivated in unamended soil. Sheep-manure vermicompost as a soil supplement increased tomato yields and soluble, insoluble solids and carbohydrate concentrations.

  18. CRISPR/Cas9-mediated mutagenesis of the RIN locus that regulates tomato fruit ripening.

    Science.gov (United States)

    Ito, Yasuhiro; Nishizawa-Yokoi, Ayako; Endo, Masaki; Mikami, Masafumi; Toki, Seiichi

    2015-11-06

    Site-directed mutagenesis using genetic approaches can provide a wealth of resources for crop breeding as well as for biological research. The clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated 9 endonuclease (CRISPR/Cas9) system is a novel strategy used to induce mutations in a specific genome region; the system functions in a variety of organisms, including plants. Here, we report application of the CRISPR/Cas9 system to efficient mutagenesis of the tomato genome. In this study, we targeted the tomato RIN gene, which encodes a MADS-box transcription factor regulating fruit ripening. Three regions within the gene were targeted and mutations consisting either of a single base insertion or deletion of more than three bases were found at the Cas9 cleavage sites in T0 regenerated plants. The RIN-protein-defective mutants produced incomplete-ripening fruits in which red color pigmentation was significantly lower than that of wild type, while heterologous mutants expressing the remaining wild-type gene reached full-ripening red color, confirming the important role of RIN in ripening. Several mutations that were generated at three independent target sites were inherited in the T1 progeny, confirming the applicability of this mutagenesis system in tomato.

  19. Correlation of Rutin Accumulation with 3-O-Glucosyl Transferase and Phenylalanine Ammonia-lyase Activities During the Ripening of Tomato Fruit

    NARCIS (Netherlands)

    Capanoglu, E.; Beekwilder, J.; Matros, A.; Boyacioglu, D.; Hall, R.D.; Mock, H.P.

    2012-01-01

    In tomato, the predominant flavonoid is quercetin-3-rutinoside (rutin). In this study, we aim to investigate the phenylalanine ammonia-lyase (PAL) and the quercetin-3-O-glucosyl transferase (3-GT) reactions in the formation of rutin during tomato fruit ripening. Tomatoes of the Moneymaker variety at

  20. Pathogenesis-Related Protein 1b1 (PR1b1) Is a Major Tomato Fruit Protein Responsive to Chilling Temperature and Upregulated in High Polyamine Transgenic Genotypes

    National Research Council Canada - National Science Library

    Goyal, Ravinder K; Fatima, Tahira; Topuz, Muhamet; Bernadec, Anne; Sicher, Richard; Handa, Avtar K; Mattoo, Autar K

    2016-01-01

    .... We have generated two transgenic tomato lines (556HO and 579HO) that express yeast S-adenosylmethionine decarboxylase and specifically accumulate Spd and Spm in fruits in comparison to fruits from control (556AZ) plants (Mehta et al., 2002...

  1. Molecular markers detect stable genomic regions underlying tomato fruit shelf life and weight

    Directory of Open Access Journals (Sweden)

    Guillermo Raúl Pratta

    2011-01-01

    Full Text Available Incorporating wild germplasm such as S. pimpinellifolium is an alternative strategy to prolong tomato fruit shelf life(SL without reducing fruit quality. A set of recombinant inbred lines with discrepant values of SL and weight (FW were derived byantagonistic-divergent selection from an interspecific cross. The general objective of this research was to evaluate Genotype x Year(GY and Marker x Year (MY interaction in these new genetic materials for both traits. Genotype and year principal effects and GYinteraction were statistically significant for SL. Genotype and year principal effects were significant for FW but GY interaction wasnot. The marker principal effect was significant for SL and FW but both year principal effect and MY interaction were not significant.Though SL was highly influenced by year conditions, some genome regions appeared to maintain a stable effect across years ofevaluation. Fruit weight, instead, was more independent of year effect.

  2. Association and Genetic Identification of Loci for Four Fruit Traits in Tomato Using InDel Markers

    Directory of Open Access Journals (Sweden)

    Xiaoxi Liu

    2017-07-01

    Full Text Available Tomato (Solanum lycopersicum fruit weight (FW, soluble solid content (SSC, fruit shape and fruit color are crucial for yield, quality and consumer acceptability. In this study, a 192 accessions tomato association panel comprising a mixture of wild species, cherry tomato, landraces, and modern varieties collected worldwide was genotyped with 547 InDel markers evenly distributed on 12 chromosomes and scored for FW, SSC, fruit shape index (FSI, and color parameters over 2 years with three replications each year. The association panel was sorted into two subpopulations. Linkage disequilibrium ranged from 3.0 to 47.2 Mb across 12 chromosomes. A set of 102 markers significantly (p < 1.19–1.30 × 10−4 associated with SSC, FW, fruit shape, and fruit color was identified on 11 of the 12 chromosomes using a mixed linear model. The associations were compared with the known gene/QTLs for the same traits. Genetic analysis using F2 populations detected 14 and 4 markers significantly (p < 0.05 associated with SSC and FW, respectively. Some loci were commonly detected by both association and linkage analysis. Particularly, one novel locus for FW on chromosome 4 detected by association analysis was also identified in F2 populations. The results demonstrated that association mapping using limited number of InDel markers and a relatively small population could not only complement and enhance previous QTL information, but also identify novel loci for marker-assisted selection of fruit traits in tomato.

  3. Gene and metabolite regulatory network analysis of early developing fruit tissues highlights new candidate genes for the control of tomato fruit composition and development.

    Science.gov (United States)

    Mounet, Fabien; Moing, Annick; Garcia, Virginie; Petit, Johann; Maucourt, Michael; Deborde, Catherine; Bernillon, Stéphane; Le Gall, Gwénaëlle; Colquhoun, Ian; Defernez, Marianne; Giraudel, Jean-Luc; Rolin, Dominique; Rothan, Christophe; Lemaire-Chamley, Martine

    2009-03-01

    Variations in early fruit development and composition may have major impacts on the taste and the overall quality of ripe tomato (Solanum lycopersicum) fruit. To get insights into the networks involved in these coordinated processes and to identify key regulatory genes, we explored the transcriptional and metabolic changes in expanding tomato fruit tissues using multivariate analysis and gene-metabolite correlation networks. To this end, we demonstrated and took advantage of the existence of clear structural and compositional differences between expanding mesocarp and locular tissue during fruit development (12-35 d postanthesis). Transcriptome and metabolome analyses were carried out with tomato microarrays and analytical methods including proton nuclear magnetic resonance and liquid chromatography-mass spectrometry, respectively. Pairwise comparisons of metabolite contents and gene expression profiles detected up to 37 direct gene-metabolite correlations involving regulatory genes (e.g. the correlations between glutamine, bZIP, and MYB transcription factors). Correlation network analyses revealed the existence of major hub genes correlated with 10 or more regulatory transcripts and embedded in a large regulatory network. This approach proved to be a valuable strategy for identifying specific subsets of genes implicated in key processes of fruit development and metabolism, which are therefore potential targets for genetic improvement of tomato fruit quality.

  4. Auxin Response Factor SlARF2 Is an Essential Component of the Regulatory Mechanism Controlling Fruit Ripening in Tomato.

    Science.gov (United States)

    Hao, Yanwei; Hu, Guojian; Breitel, Dario; Liu, Mingchun; Mila, Isabelle; Frasse, Pierre; Fu, Yongyao; Aharoni, Asaph; Bouzayen, Mondher; Zouine, Mohamed

    2015-12-01

    Ethylene is the main regulator of climacteric fruit ripening, by contrast the putative role of other phytohormones in this process remains poorly understood. The present study brings auxin signaling components into the mechanism regulating tomato fruit ripening through the functional characterization of Auxin Response Factor2 (SlARF2) which encodes a downstream component of auxin signaling. Two paralogs, SlARF2A and SlARF2B, are found in the tomato genome, both displaying a marked ripening-associated expression but distinct responsiveness to ethylene and auxin. Down-regulation of either SlARF2A or SlARF2B resulted in ripening defects while simultaneous silencing of both genes led to severe ripening inhibition suggesting a functional redundancy among the two ARFs. Tomato fruits under-expressing SlARF2 produced less climacteric ethylene and exhibited a dramatic down-regulation of the key ripening regulators RIN, CNR, NOR and TAGL1. Ethylene treatment failed to reverse the non-ripening phenotype and the expression of ethylene signaling and biosynthesis genes was strongly altered in SlARF2 down-regulated fruits. Although both SlARF proteins are transcriptional repressors the data indicate they work as positive regulators of tomato fruit ripening. Altogether, the study defines SlARF2 as a new component of the regulatory network controlling the ripening process in tomato.

  5. Auxin Response Factor SlARF2 Is an Essential Component of the Regulatory Mechanism Controlling Fruit Ripening in Tomato.

    Directory of Open Access Journals (Sweden)

    Yanwei Hao

    2015-12-01

    Full Text Available Ethylene is the main regulator of climacteric fruit ripening, by contrast the putative role of other phytohormones in this process remains poorly understood. The present study brings auxin signaling components into the mechanism regulating tomato fruit ripening through the functional characterization of Auxin Response Factor2 (SlARF2 which encodes a downstream component of auxin signaling. Two paralogs, SlARF2A and SlARF2B, are found in the tomato genome, both displaying a marked ripening-associated expression but distinct responsiveness to ethylene and auxin. Down-regulation of either SlARF2A or SlARF2B resulted in ripening defects while simultaneous silencing of both genes led to severe ripening inhibition suggesting a functional redundancy among the two ARFs. Tomato fruits under-expressing SlARF2 produced less climacteric ethylene and exhibited a dramatic down-regulation of the key ripening regulators RIN, CNR, NOR and TAGL1. Ethylene treatment failed to reverse the non-ripening phenotype and the expression of ethylene signaling and biosynthesis genes was strongly altered in SlARF2 down-regulated fruits. Although both SlARF proteins are transcriptional repressors the data indicate they work as positive regulators of tomato fruit ripening. Altogether, the study defines SlARF2 as a new component of the regulatory network controlling the ripening process in tomato.

  6. Effect heat stress on subcellular localization of Ca2+ in tomato fruits

    Directory of Open Access Journals (Sweden)

    Grażyna Garbaczewska

    2014-01-01

    Full Text Available The aim of this paper was to compare the fruit cell ultrastructure and subcellular localization of Ca2+ after heat stress with the use of the potassium antimonate method (Slocum and Roux 1982, Tretyn et al. 1992. The tomato plants Robin cv., relatively tolerant to heat stress, were grown under uncontrolled greenhouse conditions to the stage of fruiting. The plants were placed for 20h in two temperature regimes: 23oC (optimal temperature or 40oC (heat stress in darkness, under water vapour saturated atmosphere. Immediately after heat stress the fruits were harvested to estimate water soluble and insoluble calcium contents and subcellular localization of Ca2+. After heating the concentration of calcium in tomato fruits increased about twice. In both temperature treatments the water soluble fractions were lower than insoluble ones at smaller differences between insoluble and soluble fractions after heat stress. The shapes and localization of Ca2+ detected with the use of potassium antimonate method show that in fruits of control plants the precipitates were numerous, small and of oval shape. They were dispersed in cytosol or adjoined to endoplasmic reticulum or to external membrane of chloroplast. In the fruit of heated plants the precipitates were irregular in shape, amorphous and singly dispersed in the cytosol. We observed also some cytological changes in the structure of membranes and organelles of the plants of both experimental treatments. The heat induced increase of calcium content and the changes in subcellular localization of Ca2+ under heat stress suggest that calcium ions may be involved in avoiding heat injury. The problem requires more detailed further investigations.

  7. The chloroplast-to-chromoplast transition in tomato fruit

    OpenAIRE

    Bian, Wanping

    2012-01-01

    L'un des phénomènes les plus importants survenus pendant la maturation du fruit de tomate est le changement de couleur du vert au rouge. Ce changement a lieu dans les plastes et correspond à la différenciation des plastes photosynthétiques, les chloroplastes, en plastes non-photosynthétiques qui accumulent des caroténoïdes, les chromoplastes. Dans cette thèse, nous présentons d'abord une introduction bibliographique sur le domaine de la transition chloroplaste-chromoplaste, en décrivant les m...

  8. Quantitative trait loci pyramiding can improve the nutritional potential of tomato (Solanum lycopersicum) fruits.

    Science.gov (United States)

    Rigano, Maria Manuela; Raiola, Assunta; Tenore, Gian Carlo; Monti, Daria Maria; Del Giudice, Rita; Frusciante, Luigi; Barone, Amalia

    2014-11-26

    Solanum lycopersicum represents an important source of antioxidants and other bioactive compounds. Previously two Solanum pennellii introgression lines (IL 7-3 and IL 12-4) were identified as carrying quantitative trait loci (QTL) increasing fruit ascorbic acid and phenolics content. Novel tomato lines were obtained by pyramiding these selected QTLs in the genetic background of the cultivated line M82. Pyramided lines revealed significant increases of total phenolics, phenolic acids, ascorbic acid, and total antioxidant activity compared to parental lines IL 7-3 and IL 12-4 and the cultivated line M82. In addition, tomato extracts obtained from the pyramided lines had no cytotoxic effect on normal human cells while exhibiting a selective cytotoxic effect on aggressive cancer cells. Therefore, the present study demonstrates that it is possible to incorporate favorable wild-species QTLs in the cultivated genetic background to obtain genotypes with higher nutritional value.

  9. Enhanced polyamine accumulation alters carotenoid metabolism at the transcriptional level in tomato fruit over-expressing spermidine synthase.

    Science.gov (United States)

    Neily, Mohamed Hichem; Matsukura, Chiaki; Maucourt, Mickaël; Bernillon, Stéphane; Deborde, Catherine; Moing, Annick; Yin, Yong-Gen; Saito, Takeshi; Mori, Kentaro; Asamizu, Erika; Rolin, Dominique; Moriguchi, Takaya; Ezura, Hiroshi

    2011-02-15

    Polyamines are involved in crucial plant physiological events, but their roles in fruit development remain unclear. We generated transgenic tomato plants that show a 1.5- to 2-fold increase in polyamine content by over-expressing the spermidine synthase gene, which encodes a key enzyme for polyamine biosynthesis. Pericarp-columella and placental tissue from transgenic tomato fruits were subjected to (1)H-nuclear magnetic resonance (NMR) for untargeted metabolic profiling and high-performance liquid chromatography-diode array detection for carotenoid profiling to determine the effects of high levels of polyamine accumulation on tomato fruit metabolism. A principal component analysis of the quantitative (1)H NMR data from immature green to red ripe fruit showed a clear discrimination between developmental stages, especially during ripening. Quantification of 37 metabolites in pericarp-columella and 41 metabolites in placenta tissues revealed distinct metabolic profiles between the wild type and transgenic lines, particularly at the late ripening stages. Notably, the transgenic tomato fruits also showed an increase in carotenoid accumulation, especially in lycopene (1.3- to 2.2-fold), and increased ethylene production (1.2- to 1.6-fold) compared to wild-type fruits. Genes responsible for lycopene biosynthesis, including phytoene synthase, phytoene desaturase, and deoxy-d-xylulose 5-phosphate synthase, were significantly up-regulated in ripe transgenic fruits, whereas genes involved in lycopene degradation, including lycopene-epsilon cyclase and lycopene beta cyclase, were down-regulated in the transgenic fruits compared to the wild type. These results suggest that a high level of accumulation of polyamines in the tomato regulates the steady-state level of transcription of genes responsible for the lycopene metabolic pathway, which results in a higher accumulation of lycopene in the fruit.

  10. Differential expression of nuclear- and organelle-encoded genes during tomato fruit development.

    Science.gov (United States)

    Piechulla, B

    1988-12-01

    Steady-state mRNA levels of nuclear-and organelle-encoded genes were determined during fruit development and ripening. Transcripts specific for subunits of the mitochondrial and chloroplast ATPase complexes appear simultaneously and reach high levels two to three weeks after anthesis, but follow a different expression pattern during the ripening period. While the chloroplast-specific mRNA levels continuously decrease to low levels in ripe tomato fruits, the transcripts specific for two mitochondrial ATPase subunits continue to be present at relative high levels in red fruits. Transcript levels for the fructose-1,6-bisphosphate aldolase increase significantly during ripening. Structural proteins such as the alpha-subunit of tubulin and the hydroxyproline-rich glycoprotein extensin are expressed during maximal fruit growth. In addition, comparisons of mRNA levels of different genes in several plant organs (leaf, fruit, stem, and root) show characteristic differences. The results presented in this paper demonstrate that changes at the transcriptional or post-transcriptional level during fruit development can be correlated with morphological and physiological alterations.

  11. Effect of Sodium Chloride on Fruit Ripening of the Nonripening Tomato Mutants nor and rin.

    Science.gov (United States)

    Mizrahi, Y; Zohar, R; Malis-Arad, S

    1982-02-01

    Tomato (Lycopersicon esculentum Mill) plants of the nonripening mutant nor, the ripening-inhibited mutant rin, and the normal cultivar ;Rutgers' were grown in nutrient solution supplemented with 3 grams per liter NaCl from the time of anthesis. In plants treated with NaCl, all the ripening parameters of the fruits of the nor mutant increased, but those of the rin mutant did not. The ripening of the fruits of the NaCl-treated nor plants was characterized by the development of a red color and taste, increased pectolytic activity, and increased evolution of CO(2) and ethylene. These changes do not normally take place in nor under control conditions. The values of these ripening parameters in nor were lower than those of the normal Rutgers fruits. In addition, both in nor and rin and in the normal variety, exposure of the plants to NaCl shortened the developmental period of the fruit, decreased the fruit size, and increased the concentrations of total soluble solids, Na(+), Cl(-), reducing sugars, and titratable acids in the fruit. The role of NaCl in overcoming the inability of nor to ripen is discussed.

  12. Color and state of maturity of fruit of the husk tomato.

    Directory of Open Access Journals (Sweden)

    Pedro Benito-Bautista

    2015-12-01

    Full Text Available The present study aimed to identify the physical and chemical characteristics that determine the state of maturity of the fruit of four varieties of husk tomato. One hundred fruits of the varieties: San Martin, Tecozautla 04, Rendidora, and Diamante, were collected. They were cultivated at a density of 40,000 plants/ha under experimental greenhouse conditions at the Interdisciplinary Research Center for Integrated Regional Development (CIIDIR, National Polytechnic Institute (IPN, in Oaxaca, Mexico. The plants were grown during the summer-autumn 2013 and spring-summer 2014 growing cycles. The husk filling and elapsed time since the fruit set were considered as indicators of harvest. Fruits were stored at room temperature (25 ± 3 °C, and each week 10 fruits of each variety were selected and analyzed for weight loss, penetration resistance, soluble solids, color, pH and titratable acidity. The statistic results indicate that color parameters a*, h * and color index (IC, were significantly high, and showed a high correlation with the physical and chemical properties for the state of maturation. The a* color coordinate presented the highest coefficient of correlation with fruit texture, followed by IC and h*. At the same time, a * and CI showed strong correlation with variables weight loss, titratable acidity, pH, and soluble solids. According to these results, the a* color parameter showed the greatest correlation with quality features, and varieties Tecozautla 04 and San Martin had the best quality characteristics.

  13. Enantioselective Degradation and Chiral Stability of Metalaxyl-M in Tomato Fruits.

    Science.gov (United States)

    Jing, Xu; Yao, Guojun; Wang, Peng; Liu, Donghui; Qi, Yanli; Zhou, Zhiqiang

    2016-05-01

    Metalaxyl is an important chiral acetanilide fungicide, and the activity almost entirely originates from the R-enantiomer. Racemic metalaxyl has been gradually replaced by the enantiopure R-enantiomer (metalaxyl-M). In this study a chiral residue analysis method for metalaxyl and the metabolite metalaxyl acid was set up based on high-performance liquid chromatography tandem mass spectroscopy (HPLC-MS/MS). The enantioselective degradation and chiral stability of metalaxyl-M in tomato fruits in two geographically distinct regions of China (Heilongjiang and Hunan Province) were evaluated and the enantioselectivity of metalaxyl acid was also investigated. Tomato plants grew under field conditions with a one-time spray application of metalaxyl-M wettable powder. It was found that R-metalaxyl was not chirally stable and the inactive S-metalaxyl was detected in tomato fruits. At day 40, S-metalaxyl derived from R-metalaxyl accounted for 32% and 26% of the total amount of metalaxyl, respectively. The metabolites R-metalaxyl acid and S-metalaxyl acid were both observed in tomato, and the ratio of S-metalaxyl acid to the sum of S- and R-metalaxyl acid was 36% and 28% at day 40, respectively. For both metalaxyl and metalaxyl acid, the half-life of the S-enantiomer was longer than the R-enantiomer. The results indicated that the enantiomeric conversion should be considered in the bioactivity evaluation and environmental pollution assessment. Chirality 28:382-386, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  14. Impact of integrated pest management on the population of leafminers, fruit borers, and natural enemies in tomato

    OpenAIRE

    2005-01-01

    The objective of this work was to evaluate the impact of integrated pest management (IPM) in the productivity of the tomato and in the populations of leafminers, fruit borers, and natural enemies in tomato crops. The treatments were calendar (spraying twice weekly with insecticides and fungicides), IPM (spraying when action thresholds were achieved), and control (no pesticide was applied). IPM was the most efficient system of pest control due to presenting similar productivity and 65.6% less ...

  15. Relationships between fruit exocarp antioxidants in the tomato (Lycopersicon esculentum) high pigment-1 mutant during development.

    Science.gov (United States)

    Andrews, Preston K.; Fahy, Deirdre A.; Foyer, Christine H.

    2004-04-01

    Development-dependent changes in fruit antioxidants were examined in the exocarp (epidermal and hypodermal tissues) of the monogenic recessive tomato (Lycopersicon esculentum L.) mutant high pigment (hp-1) and its wild-type parent 'Rutgers' grown under non-stress conditions in a greenhouse. The hp-1 mutant was chosen for this study because the reportedly higher lycopene and ascorbic acid (AsA) contents of the fruit may alter its tolerance to photooxidative stress. Throughout most of fruit development, reduced AsA concentrations in the exocarp of hp-1 were 1.5 to 2.0 times higher than in 'Rutgers', but total glutathione concentrations were similar in both genotypes. Only in ripe red fruit were reduced AsA and total glutathione concentrations lower in hp-1 than in 'Rutgers'. The redox ratios (reduced : reduced + oxidized) of AsA in hp-1 and 'Rutgers' exocarps were similar and usually > 0.9, however, the redox ratio of glutathione was lower in hp-1 than in 'Rutgers' throughout development. Lycopene concentrations in ripe red fruit were about 5 times higher in hp-1 than in 'Rutgers'. Large increases in the specific enzyme activities of superoxide dismutase (EC 1.15.1.1), ascorbate peroxidase (EC 1.11.1.11), and monodehydroascorbate reductase (MDHAR; EC 1.6.5.4) occurred during fruit development in both genotypes, with an inverse relationship between the activities of these enzymes and chlorophyll content. Glutathione reductase (EC 1.6.4.2) and MDHAR-specific activities were higher in hp-1 than 'Rutgers' only at the later stages of fruit development. Dehydroascorbate reductase (EC 1.8.5.1) activities, however, were usually higher in 'Rugters' than in hp-1. Catalase (CAT, EC 1.11.1.6) activities increased with fruit development until the fruit were orange/light red, when CAT was higher in 'Rutgers' than in hp-1, but then declined in the ripe red fruit of both genotypes. These results suggest that elevated AsA in the exocarp of hp-1 fruit early in fruit development may

  16. Inhibition of chloroplastic fructose 1,6-bisphosphatase in tomato fruits leads to decreased fruit size, but only small changes in carbohydrate metabolism

    DEFF Research Database (Denmark)

    Obiadalla-Ali, H.; Fernie, A.R.; Lytovchenko, A.;

    2004-01-01

    A potato (Solanum tuberosum L. ) cDNA coding for the chloroplastic isoform of fructose 1,6-bisphosphatase (cp-FBPase) was utilized to repress its activity in tomatoes (Lycopersicon esculentum Mill.) using antisense techniques. The patatin B33 promoter was used to ensure fruit specificity of the a......A potato (Solanum tuberosum L. ) cDNA coding for the chloroplastic isoform of fructose 1,6-bisphosphatase (cp-FBPase) was utilized to repress its activity in tomatoes (Lycopersicon esculentum Mill.) using antisense techniques. The patatin B33 promoter was used to ensure fruit specificity...

  17. Differential expression of two genes for 1-aminocyclopropane-1-carboxylate synthase in tomato fruits

    Energy Technology Data Exchange (ETDEWEB)

    Olson, D.C.; White, J.A.; Edelman, L.; Kende, H. (Michigan State Univ., East Lansing (United States)); Harkins, R.N. (Berlex Biosciences, Alameda, CA (United States))

    1991-06-15

    1-Aminocyclopropane-1-carboxylate synthase is the regulated enzyme in the biosynthetic pathway of the plant hormone ethylene. A full-length cDNA encoding this enzyme has been cloned from tomato fruits. The authors report here the complete nucleotide and derived amino acid sequences of a cDNA encoding a second isoform of ACC synthase from tomato fruits. The cDNAs coding for both isoforms contain highly conserved regions that are surrounded by regions of low homology, especially at the 5{prime} and 3{prime} ends. Gene-specific probes were constructed to examine the expression of transcripts encoding the two ACC synthase isoforms under two conditions of enhanced ethylene formation--namely, during fruit ripening and in response to mechanical stress (wounding). The level of mRNA encoding both isoforms, ACC synthase 1 and 2, increased during ripening. In contrast, wounding caused an increase in only the level of mRNA coding for ACC synthase 1. Blot analysis of genomic DNA digested with restriction enzymes confirmed that ACC synthase 1 and 2 are encoded by different genes.

  18. 硬果番茄新品种选育%On Breeding New Species of Hard-Fruit Tomato

    Institute of Scientific and Technical Information of China (English)

    张立永; 王国华; 尹庆珍; 杨辰海; 韩建会; 郄丽娟; 赵付江

    2013-01-01

    选取河北省农林科学院经济作物研究所新配置的16个番茄F1组合为试材,以国内生产上应用的中果型硬粉果品种冀番135为对照,利用质构仪研究了上述番茄生长过程中质构硬度的变化.结果表明:不同生长阶段番茄果实硬度差异显著;16个不同番茄F1青果期和红果期果实硬度差异显著;番茄F1红果期果实硬度与青果期果实硬度极显著正相关;番茄F113#在青果期和红果期硬度都最大,并且在采后贮藏期其果实硬度比国内生产上应用的中果型硬粉果品种冀番135的大,耐贮运性能好,是硬粉果番茄选育的理想品种.%The hardness of tomato fruit is an important indicator of storability and breeding.In the project,the change of hardness degree in the growth process of the above tomato has been studied with the texture analyzer,with 16 tomato F1 combination newly bred by the Institute of Cash Crops of Hebei Academy of Agriculture and Forestry Sciences as the test materials,with the small-fruited hard powder fruit variety of JF 135 that has been applied in the domestic production as the control.The results show that the tomato fruits in the different growth stages show significant difference in hardness; 16 different tomatoes F1 show significant difference in hardness in the green fruit period and the red fruit period; tomato F1 13# has the greatest hardness in the green fruit period and the red fruit period,it has greater hardness in the post-harvest storage period than that of the small-fruited hard powder fruit variety of JF 135 that has been applied in the domestic production,and it has good storability and transport performance,thus it is the ideal bred variety of hard powder fruit tomato.

  19. Transcriptional Activity of the MADS Box ARLEQUIN/TOMATO AGAMOUS-LIKE1 Gene Is Required for Cuticle Development of Tomato Fruit.

    Science.gov (United States)

    Giménez, Estela; Dominguez, Eva; Pineda, Benito; Heredia, Antonio; Moreno, Vicente; Lozano, Rafael; Angosto, Trinidad

    2015-07-01

    Fruit development and ripening entail key biological and agronomic events, which ensure the appropriate formation and dispersal of seeds and determine productivity and yield quality traits. The MADS box gene Arlequin/tomato Agamous-like1 (hereafter referred to as TAGL1) was reported as a key regulator of tomato (Solanum lycopersicum) reproductive development, mainly involved in flower development, early fruit development, and ripening. It is shown here that silencing of the TAGL1 gene (RNA interference lines) promotes significant changes affecting cuticle development, mainly a reduction of thickness and stiffness, as well as a significant decrease in the content of cuticle components (cutin, waxes, polysaccharides, and phenolic compounds). Accordingly, overexpression of TAGL1 significantly increased the amount of cuticle and most of its components while rendering a mechanically weak cuticle. Expression of the genes involved in cuticle biosynthesis agreed with the biochemical and biomechanical features of cuticles isolated from transgenic fruits; it also indicated that TAGL1 participates in the transcriptional control of cuticle development mediating the biosynthesis of cuticle components. Furthermore, cell morphology and the arrangement of epidermal cell layers, on whose activity cuticle formation depends, were altered when TAGL1 was either silenced or constitutively expressed, indicating that this transcription factor regulates cuticle development, probably through the biosynthetic activity of epidermal cells. Our results also support cuticle development as an integrated event in the fruit expansion and ripening processes that characterize fleshy-fruited species such as tomato.

  20. A novel strategy to produce sweeter tomato fruits with high sugar contents by fruit-specific expression of a single bZIP transcription factor gene.

    Science.gov (United States)

    Sagor, G H M; Berberich, Thomas; Tanaka, Shun; Nishiyama, Manabu; Kanayama, Yoshinori; Kojima, Seiji; Muramoto, Koji; Kusano, Tomonobu

    2016-04-01

    Enhancement of sugar content and sweetness is desirable in some vegetables and in almost all fruits; however, biotechnological methods to increase sugar content are limited. Here, a completely novel methodological approach is presented that produces sweeter tomato fruits but does not have any negative effects on plant growth. Sucrose-induced repression of translation (SIRT), which is mediated by upstream open reading frames (uORFs), was initially reported in Arabidopsis AtbZIP11, a class S basic region leucine zipper (bZIP) transcription factor gene. Here, two AtbZIP11 orthologous genes, SlbZIP1 and SlbZIP2, were identified in tomato (Solanum lycopersicum). SlbZIP1 and SlbZIP2 contained four and three uORFs, respectively, in the cDNA 5'-leader regions. The second uORFs from the 5' cDNA end were conserved and involved in SIRT. Tomato plants were transformed with binary vectors in which only the main open reading frames (ORFs) of SlbZIP1 and SlbZIP2, without the SIRT-responsive uORFs, were placed under the control of the fruit-specific E8 promoter. Growth and morphology of the resulting transgenic tomato plants were comparable to those of wild-type plants. Transgenic fruits were approximately 1.5-fold higher in sugar content (sucrose/glucose/fructose) than nontransgenic tomato fruits. In addition, the levels of several amino acids, such as asparagine and glutamine, were higher in transgenic fruits than in wild-type fruits. This was expected because SlbZIP transactivates the asparagine synthase and proline dehydrogenase genes. This 'sweetening' technology is broadly applicable to other plants that utilize sucrose as a major translocation sugar.

  1. A visual reporter system for virus-induced gene silencing in tomato fruit based on anthocyanin accumulation.

    Science.gov (United States)

    Orzaez, Diego; Medina, Aurora; Torre, Sara; Fernández-Moreno, Josefina Patricia; Rambla, José Luis; Fernández-Del-Carmen, Asun; Butelli, Eugenio; Martin, Cathie; Granell, Antonio

    2009-07-01

    Virus-induced gene silencing (VIGS) is a powerful tool for reverse genetics in tomato (Solanum lycopersicum). However, the irregular distribution of the effects of VIGS hampers the identification and quantification of nonvisual phenotypes. To overcome this limitation, a visually traceable VIGS system was developed for fruit, comprising two elements: (1) a transgenic tomato line (Del/Ros1) expressing Antirrhinum majus Delila and Rosea1 transcription factors under the control of the fruit-specific E8 promoter, showing a purple-fruited, anthocyanin-rich phenotype; and (2) a modified tobacco rattle virus VIGS vector incorporating partial Rosea1 and Delila sequences, which was shown to restore the red-fruited phenotype upon agroinjection in Del/Ros1 plants. Dissection of silenced areas for subsequent chemometric analysis successfully identified the relevant metabolites underlying gene function for three tomato genes, phytoene desaturase, TomloxC, and SlODO1, used for proof of concept. The C-6 aldehydes derived from lipid 13-hydroperoxidation were found to be the volatile compounds most severely affected by TomloxC silencing, whereas geranial and 6-methyl-5-hepten-2-one were identified as the volatiles most severely reduced by phytoene desaturase silencing in ripening fruit. In a third example, silencing of SlODO1, a tomato homolog of the ODORANT1 gene encoding a myb transcription factor, which regulates benzenoid metabolism in petunia (Petunia hybrida) flowers, resulted in a sharp accumulation of benzaldehyde in tomato fruit. Together, these results indicate that fruit VIGS, enhanced by anthocyanin monitoring, can be a powerful tool for reverse genetics in the study of the metabolic networks operating during fruit ripening.

  2. Role of the Tomato Non-Ripening Mutation in Regulating Fruit Quality Elucidated Using iTRAQ Protein Profile Analysis

    Science.gov (United States)

    Yuan, Xin-Yu; Wang, Rui-Heng; Zhao, Xiao-Dan; Luo, Yun-Bo; Fu, Da-Qi

    2016-01-01

    Natural mutants of the Non-ripening (Nor) gene repress the normal ripening of tomato fruit. The molecular mechanism of fruit ripening regulation by the Nor gene is unclear. To elucidate how the Nor gene can affect ripening and fruit quality at the protein level, we used the fruits of Nor mutants and wild-type Ailsa Craig (AC) to perform iTRAQ (isobaric tags for relative and absolute quantitation) analysis. The Nor mutation altered tomato fruit ripening and affected quality in various respects, including ethylene biosynthesis by down-regulating the abundance of 1-aminocyclopropane-1-carboxylic acid oxidase (ACO), pigment biosynthesis by repressing phytoene synthase 1 (PSY1), ζ-carotene isomerase (Z-ISO), chalcone synthase 1 (CHS1) and other proteins, enhancing fruit firmness by increasing the abundance of cellulose synthase protein, while reducing those of polygalacturonase 2 (PG2) and pectate lyase (PL), altering biosynthesis of nutrients such as carbohydrates, amino acids, and anthocyanins. Conversely, Nor mutation also enhanced the fruit’s resistance to some pathogens by up-regulating the expression of several genes associated with stress and defense. Therefore, the Nor gene is involved in the regulation of fruit ripening and quality. It is useful in the future as a means to improve fruit quality in tomato. PMID:27732677

  3. The Impact of Organic Farming on Quality of Tomatoes Is Associated to Increased Oxidative Stress during Fruit Development

    Science.gov (United States)

    Oliveira, Aurelice B.; Moura, Carlos F. H.; Gomes-Filho, Enéas; Marco, Claudia A.; Urban, Laurent; Miranda, Maria Raquel A.

    2013-01-01

    This study was conducted with the objective of testing the hypothesis that tomato fruits from organic farming accumulate more nutritional compounds, such as phenolics and vitamin C as a consequence of the stressing conditions associated with farming system. Growth was reduced in fruits from organic farming while titratable acidity, the soluble solids content and the concentrations in vitamin C were respectively +29%, +57% and +55% higher at the stage of commercial maturity. At that time, the total phenolic content was +139% higher than in the fruits from conventional farming which seems consistent with the more than two times higher activity of phenylalanine ammonia lyase (PAL) we observed throughout fruit development in fruits from organic farming. Cell membrane lipid peroxidation (LPO) degree was 60% higher in organic tomatoes. SOD activity was also dramatically higher in the fruits from organic farming. Taken together, our observations suggest that tomato fruits from organic farming experienced stressing conditions that resulted in oxidative stress and the accumulation of higher concentrations of soluble solids as sugars and other compounds contributing to fruit nutritional quality such as vitamin C and phenolic compounds. PMID:23437115

  4. The impact of organic farming on quality of tomatoes is associated to increased oxidative stress during fruit development.

    Science.gov (United States)

    Oliveira, Aurelice B; Moura, Carlos F H; Gomes-Filho, Enéas; Marco, Claudia A; Urban, Laurent; Miranda, Maria Raquel A

    2013-01-01

    This study was conducted with the objective of testing the hypothesis that tomato fruits from organic farming accumulate more nutritional compounds, such as phenolics and vitamin C as a consequence of the stressing conditions associated with farming system. Growth was reduced in fruits from organic farming while titratable acidity, the soluble solids content and the concentrations in vitamin C were respectively +29%, +57% and +55% higher at the stage of commercial maturity. At that time, the total phenolic content was +139% higher than in the fruits from conventional farming which seems consistent with the more than two times higher activity of phenylalanine ammonia lyase (PAL) we observed throughout fruit development in fruits from organic farming. Cell membrane lipid peroxidation (LPO) degree was 60% higher in organic tomatoes. SOD activity was also dramatically higher in the fruits from organic farming. Taken together, our observations suggest that tomato fruits from organic farming experienced stressing conditions that resulted in oxidative stress and the accumulation of higher concentrations of soluble solids as sugars and other compounds contributing to fruit nutritional quality such as vitamin C and phenolic compounds.

  5. Molecular breeding of a novel orange-brown tomato fruit with enhanced beta-carotene and chlorophyll accumulation.

    Science.gov (United States)

    Manoharan, Ranjith Kumar; Jung, Hee-Jeong; Hwang, Indeok; Jeong, Namhee; Kho, Kang Hee; Chung, Mi-Young; Nou, Ill-Sup

    2017-01-01

    Tomatoes provide a significant dietary source of the carotenoids, lycopene and β-carotene. During ripening, carotenoid accumulation determines the fruit colors while chlorophyll degradation. These traits have been, and continue to be, a significant focus for plant breeding efforts. Previous work has found strong evidence for a relationship between CYC-B gene expression and the orange color of fleshy fruit. Other work has identified a point mutation in SGR that impedes chlorophyll degradation and causes brown flesh color to be retained in some tomato varieties. We crossed two inbred lines, KNY2 (orange) and KNB1 (brown) and evaluated the relationship between these genes for their effect on fruit color. Phenotypes of F2 generation plants were analyzed and a novel 'orange-brown' fruit color was identified. We confirm two SNPs, one in CYC-B and another in SGR gene sequence, associated with segregation of 'orange-brown' fruit color in F2 generation. The carotenoid and chlorophyll content of a fleshy fruit was assessed across the different phenotypes and showed a strong correlation with expression pattern of carotenoid biosynthesis genes and SGR function. The orange-brown fruit has high β-carotene and chlorophyll. Our results provide valuable information for breeders to develop tomato fruit of a novel color using molecular markers.

  6. Reduced levels of NADH-dependent glutamate dehydrogenase decrease the glutamate content of ripe tomato fruit but have no effect on green fruit or leaves.

    Science.gov (United States)

    Ferraro, Gisela; D'Angelo, Matilde; Sulpice, Ronan; Stitt, Mark; Valle, Estela M

    2015-06-01

    Glutamate (Glu) is a taste enhancer that contributes to the characteristic flavour of foods. In fruit of tomato (Solanum lycopersicum L.), the Glu content increases dramatically during the ripening process, becoming the most abundant free amino acid when the fruit become red. There is also a concomitant increase in NADH-dependent glutamate dehydrogenase (GDH) activity during the ripening transition. This enzyme is located in the mitochondria and catalyses the reversible amination of 2-oxoglutarate to Glu. To investigate the potential effect of GDH on Glu metabolism, the abundance of GDH was altered by artificial microRNA technology. Efficient silencing of all the endogenous SlGDH genes was achieved, leading to a dramatic decrease in total GDH activity. This decrease in GDH activity did not lead to any clear morphological or metabolic phenotype in leaves or green fruit. However, red fruit on the transgenic plants showed markedly reduced levels of Glu and a large increase in aspartate, glucose and fructose content in comparison to wild-type fruit. These results suggest that GDH is involved in the synthesis of Glu in tomato fruit during the ripening processes. This contrasts with the biological role ascribed to GDH in many other tissues and species. Overall, these findings suggest that GDH has a major effect on the control of metabolic composition during tomato fruit ripening, but not at other stages of development.

  7. Exploiting genomics resources to identify candidate genes underlying antioxidants content in tomato fruit

    Directory of Open Access Journals (Sweden)

    Roberta eCalafiore

    2016-04-01

    Full Text Available The tomato is a model species for fleshy fruit development and ripening, as well as for genomics studies of others Solanaceae. Many genetic and genomics resources, including databases for sequencing, transcriptomics and metabolomics data, have been developed and are today available. The purpose of the present work was to uncover new genes and/or alleles that determine ascorbic acid and carotenoids accumulation, by exploiting one Solanum pennellii introgression lines (IL7-3 harboring quantitative trait loci (QTL that increase the content of these metabolite in the fruit. The higher ascorbic acid and carotenoids content in IL7-3 was confirmed at three fruit developmental stages. The tomato genome reference sequence and the recently released S. pennellii genome sequence were investigated to identify candidate genes that might control ascorbic acid and carotenoids accumulation. First of all, a refinement of the wild region borders in the IL7-3 was achieved by analyzing CAPS markers designed in our laboratory. Afterwards, six candidate genes associated to ascorbic acid and one with carotenoids metabolism were identified exploring the annotation and the Gene Ontology terms of genes included in the region. Variants between the sequence of the wild and the cultivated alleles of these genes were investigated for their functional relevance and their potential effects on the protein sequences were predicted. Transcriptional levels of candidate genes in the introgression region were extracted from RNA-Seq data available for the entire S. pennellii introgression lines collection and verified by Real-Time qPCR. Finally, seven IL7-3 sub-lines were genotyped using 28 species-specific markers and then were evaluated for metabolites content. These analyses evidenced a significant decrease in transcript abundance for one 9-cis-epoxycarotenoid dioxygenase and one L-ascorbate oxidase homolog, whose role in the accumulation of carotenoids and ascorbic acid is

  8. Mannosyl- and Xylosyl-Containing Glycans Promote Tomato (Lycopersicon esculentum Mill.) Fruit Ripening.

    Science.gov (United States)

    Priem, B; Gross, K C

    1992-01-01

    The oligosaccharide glycans mannosylalpha1-6(mannosylalpha1-3)mannosylalpha1-6(mannosylalpha1-3) mannosylbeta1-4-N-acetylglucosamine and mannosylalpha1-6(mannosylalpha1-3)(xylosylbeta1-2) mannosylbeta1-4-N-acetylglucosaminyl(fucosylalpha1-3) N-acetylglucosamine were infiltrated into mature green tomato fruit (Lycopersicon esculentum Mill., cv Rutgers). Coinfiltration of 1 nanogram per gram fresh weight of the glycans with 40 micrograms per gram fresh weight galactose, a level of galactose insufficient to promote ripening, stimulated ripening as measured by red coloration and ethylene production.

  9. [The study of tomato fruit weight quantitative trait locus and its application in genetics teaching].

    Science.gov (United States)

    Wang, Haiyan

    2015-08-01

    The classical research cases, which have greatly promoted the development of genetics in history, can be combined with the content of courses in genetics teaching to train students' ability of scientific thinking and genetic analysis. The localization and clone of gene controlling tomato fruit weight is a pioneer work in quantitative trait locus (QTL) studies and represents a complete process of QTL research in plants. Application of this integrated case in genetics teaching, which showed a wonderful process of scientific discovery and the fascination of genetic research, has inspired students' interest in genetics and achieved a good teaching effect.

  10. PREDICTION OF DAYS AFTER ANTHESIS OF DEVELOPING TOMATO (SOLANUM LYCOPERSICUM FRUIT FROM BLOSSOM-END CHANGES IN COLOR

    Directory of Open Access Journals (Sweden)

    Tiznado-Hernández Martín Ernesto

    2013-01-01

    Full Text Available The development of mathematical models to predict the physiological status of a developing fruit can be a useful tool to reduce the variation in fruit response to postharvest treatments. The objective of this study was to develop a mathematical model to predict Days After Anthesis (DAA in tomato fruit from changes in the blossom end color. Around 160 tomato flowers from 40 plants of a tomato cultivar ‘Rutgers’ and the nearly isogenic line tomato ripening mutant rin were tagged after artificial pollination and allowed to fruit set. The quantification of color was done from 5 to 85 DAA every 5 days in the tomato fruit blossom-end of both ‘Rutgers’ and mutant rin using a a Minolta chroma meter CR-300 set in the L*, a* and b* color space. The predictive model was developed using the stepwise procedure in forward selection with DAA as the response variable and all the possible combinations between the next group of regressor: L*, a* and b*, square L*, a* and b*, chroma and Hue angle calculated from measured a* and b* values. It was used the F statistic, mean square error, coefficient of determination, Mallows coefficient and distribution of residuals around zero as indicators of model prediction’s efficiency. Correlation coefficients between the different variables measured and the DAA were calculated. The reliability of the statistical analysis was tested by using the nearly isogenic line of ‘Rutgers’: The non-ripening mutant rin as a comparative control. It was concluded that the statistical procedure used is robust and sensitive enough to identify data not suitable for developing a good predictive model. Also, it is possible to predict the days after anthesis of a developing tomato fruit from changes in the blossom-end color with almost 80% of accuracy.

  11. Changes in volatiles and glycosides during fruit maturation of two contrasted tomato ( Solanum lycopersicum ) lines.

    Science.gov (United States)

    Birtić, Simona; Ginies, Christian; Causse, Mathilde; Renard, Catherine M G C; Page, David

    2009-01-28

    The relationship between fruit maturation and volatile contents was investigated in two contrasted Cervil (CER) and Levovil (LEV) tomato ( Solanum lycopersicum ) lines. As fruits ripened, their volatile contents mainly increased. Although some compounds displayed contrasting patterns, overall, volatiles were clearly more abundant and conferred stronger aromas to CER than to LEV fruits. This intervarietal difference in volatile contents yielding much lower volatile contents in LEV was further investigated to determine whether it is due to a higher capacity of volatile glycosylation within LEV as compared to CER. Again, glycosides mainly increased during fruit maturation and were more abundant within CER than within LEV. Overall glycoside findings were indicative of a superior capacity to biosynthesize rather than an inferior capacity to glycosylate volatiles of CER. Eugenol and 2-methoxyphenol volatiles were exceptional compounds as they remained at higher levels in maturing LEV than in CER. 2-Methylthioacetaldehyde was for the first time identified as putatively related to differences of aroma between lines, as it was abundant in Cervil but absent in Levovil. Considering the described odor value of these three products, they should contribute differently to the particular olfactive features of LEV and CER fruits.

  12. Lycopene fortification on the quality characteristics of beverage formulations developed from pink flesh guava (Psidium guajava L.).

    Science.gov (United States)

    Pasupuleti, Vijayanand; Kulkarni, Shyamrao Gururao

    2014-12-01

    Pink flesh guava (Psidium guajava L) is an important tropical fruit widely cultivated in different parts of India. The fruit apart from its characteristic pink flesh color is a good source of ascorbic acid, reducing sugars and pectin. Pink color of guava pulp is attributed to the presence of carotenoid pigment lycopene. Incorporation of lycopene in the form of tomato puree to the guava pulp resulted in changes in the quality characteristics of the guava beverage formulations. Lycopene in guava beverage improved the color and appearance and also the nutritional quality of the beverage. Guava beverage having 6 % tomato puree had acceptable color, flavor and overall quality. Increasing levels of tomato puree in the beverage affected the flavor and decreased the sensory acceptability. Beverage formulations showed increase in lycopene concentration from 760 μg/100 g to 2010 μg/100 g with increase in concentration of tomato puree. Ascorbic acid and lycopene decreased by 25.7 % and 12.23 % respectively in beverage stored at room temperature. Guava beverage fortified with lycopene was stable with acceptable sensory quality during the storage of 6 months at room temperature.

  13. Transcriptional Regulation of Fruit Ripening by Tomato FRUITFULL Homologs and Associated MADS Box Proteins[W

    Science.gov (United States)

    Fujisawa, Masaki; Shima, Yoko; Nakagawa, Hiroyuki; Kitagawa, Mamiko; Kimbara, Junji; Nakano, Toshitsugu; Kasumi, Takafumi; Ito, Yasuhiro

    2014-01-01

    The tomato (Solanum lycopersicum) MADS box FRUITFULL homologs FUL1 and FUL2 act as key ripening regulators and interact with the master regulator MADS box protein RIPENING INHIBITOR (RIN). Here, we report the large-scale identification of direct targets of FUL1 and FUL2 by transcriptome analysis of FUL1/FUL2 suppressed fruits and chromatin immunoprecipitation coupled with microarray analysis (ChIP-chip) targeting tomato gene promoters. The ChIP-chip and transcriptome analysis identified FUL1/FUL2 target genes that contain at least one genomic region bound by FUL1 or FUL2 (regions that occur mainly in their promoters) and exhibit FUL1/FUL2-dependent expression during ripening. These analyses identified 860 direct FUL1 targets and 878 direct FUL2 targets; this set of genes includes both direct targets of RIN and nontargets of RIN. Functional classification of the FUL1/FUL2 targets revealed that these FUL homologs function in many biological processes via the regulation of ripening-related gene expression, both in cooperation with and independent of RIN. Our in vitro assay showed that the FUL homologs, RIN, and tomato AGAMOUS-LIKE1 form DNA binding complexes, suggesting that tetramer complexes of these MADS box proteins are mainly responsible for the regulation of ripening. PMID:24415769

  14. Transcriptional regulation of fruit ripening by tomato FRUITFULL homologs and associated MADS box proteins.

    Science.gov (United States)

    Fujisawa, Masaki; Shima, Yoko; Nakagawa, Hiroyuki; Kitagawa, Mamiko; Kimbara, Junji; Nakano, Toshitsugu; Kasumi, Takafumi; Ito, Yasuhiro

    2014-01-01

    The tomato (Solanum lycopersicum) MADS box FRUITFULL homologs FUL1 and FUL2 act as key ripening regulators and interact with the master regulator MADS box protein RIPENING INHIBITOR (RIN). Here, we report the large-scale identification of direct targets of FUL1 and FUL2 by transcriptome analysis of FUL1/FUL2 suppressed fruits and chromatin immunoprecipitation coupled with microarray analysis (ChIP-chip) targeting tomato gene promoters. The ChIP-chip and transcriptome analysis identified FUL1/FUL2 target genes that contain at least one genomic region bound by FUL1 or FUL2 (regions that occur mainly in their promoters) and exhibit FUL1/FUL2-dependent expression during ripening. These analyses identified 860 direct FUL1 targets and 878 direct FUL2 targets; this set of genes includes both direct targets of RIN and nontargets of RIN. Functional classification of the FUL1/FUL2 targets revealed that these FUL homologs function in many biological processes via the regulation of ripening-related gene expression, both in cooperation with and independent of RIN. Our in vitro assay showed that the FUL homologs, RIN, and tomato AGAMOUS-LIKE1 form DNA binding complexes, suggesting that tetramer complexes of these MADS box proteins are mainly responsible for the regulation of ripening.

  15. The effect of the lenght of storage on the amount of lycopene in the fruits of tomato (Lycopersicon esculentum L.

    Directory of Open Access Journals (Sweden)

    Anton Uher

    2008-01-01

    Full Text Available We focused on tomatoes for industrial processing due to its economical importance for its lycopene content. The objective of our research is to find the variation of lycopene content in tomato fruits depending upon the length of after harvest storage and thermic treatment, which is inevitable when being industrialy processed. From the point of view of nutritional qualities the most relevant contentual substance of tomatos are carotenoids, included lycopene.At average for tree following experimental years we learnt significant differences regarding the content of lycopene and the length of storage of tomato fruits. Immediately after the harvest and proccesing tomato fruits contained, at average for tree years, 103.24 mg of lycopene. After 14 days the content of lycopene declined to 46.76 mg . kg−1 of fresh mass. After 30 days the average value dropped to 29.26 mg . kg−1. This fact comfirms that boiling respectively thermic treatment increases the content of lycopene in tomato fruits, particulary in our experiment to the value 83.33 mg . kg−1. At varieties Ladislav, Peto 86, Prémium, Salus the content of lycopene has even risen in comparison with its content up to 48 hours after the harvest. Tomato (Lycopersicon esculentum L. belongs to the most signifficant vegetable varieties either for its exploitation in processing industry as well as for its nutritional value with extraordinary beneficial effect for human organism.Although the content of lycopene is genetically stable attribute, its content in our experiment ranged from 45.39 mg . kg−1 (Prémium variety to 77.98 mg . kg−1 (Zámčan variety, which are significant differences.

  16. Precursor uptake assays and metabolic analyses in isolated tomato fruit chromoplasts

    Directory of Open Access Journals (Sweden)

    Angaman Djédoux

    2012-01-01

    Full Text Available Abstract Background Carotenoids are the most widespread group of pigments found in nature. In addition to their role in the physiology of the plant, carotenoids also have nutritional relevance as their incorporation in the human diet provides health benefits. In non-photosynthetic tissues, carotenoids are synthesized and stored in specialized plastids called chromoplasts. At present very little is known about the origin of the metabolic precursors and cofactors required to sustain the high rate of carotenoid biosynthesis in these plastids. Recent proteomic data have revealed a number of biochemical and metabolic processes potentially operating in fruit chromoplasts. However, considering that chloroplast to chromoplast differentiation is a very rapid process during fruit ripening, there is the possibility that some of the proteins identified in the proteomic analysis could represent remnants no longer having a functional role in chromoplasts. Therefore, experimental validation is necessary to prove whether these predicted processes are actually operative in chromoplasts. Results A method has been established for high-yield purification of tomato fruit chromoplasts suitable for metabolic studies. Radiolabeled precursors were efficiently incorporated and further metabolized in isolated chromoplast. Analysis of labeled lipophilic compounds has revealed that lipid biosynthesis is a very efficient process in chromoplasts, while the relatively low incorporation levels found in carotenoids suggest that lipid production may represent a competing pathway for carotenoid biosynthesis. Malate and pyruvate are efficiently converted into acetyl-CoA, in agreement with the active operation of the malic enzyme and the pyruvate dehydrogenase complex in the chromoplast. Our results have also shown that isolated chromoplasts can actively sustain anabolic processes without the exogenous supply of ATP, thus suggesting that these organelles may generate this energetic

  17. Tomatoes

    NARCIS (Netherlands)

    Heuvelink, E.

    2005-01-01

    Tomatoes are one of the most widely produced and consumed horticultural crops in the world, both for the fresh produce market and the processed food industries. This book describes the scientific principles underlying the biology and production of the tomato crop, both in the open field and in green

  18. Effect of selenium on control of postharvest gray mould of tomato fruit and the possible mechanisms involved

    Directory of Open Access Journals (Sweden)

    Zhilin eWu

    2016-01-01

    Full Text Available Selenium (Se has important benefits for crop growth and stress tolerance at low concentrations. However, there is very little information on antimicrobial effect of selenium against the economically important fungus Botrytis cinerea. In the present study, using sodium selenite as Se source, we investigated the effect of Se salts on spore germination and mycelial growth of the fungal pathogen in vitro and gray mould control in harvested tomato fruit. Se treatment at 24 mg/L significantly inhibited spore germination of the fungal pathogen and effectively controlled gray mould in harvested tomato fruit. Se treatment at 24 mg/L seems to induce the generation of intracellular reactive oxygen species in the fungal spores. The membrane integrity damage was observed with fluorescence microscopy following staining with propidium iodide after treatment of the spores with Se. These results suggest that Se has the potential for controlling gray mould rot of tomato fruits and might be useful in integrated control against gray mould disease of postharvest fruits and vegetables caused by B. cinerea. The mechanisms by which Se decreased gray mould decay of tomato fruit may be directly related to the severe damage to the conidia plasma membrane and loss of cytoplasmic materials from the hyphae.

  19. Inhibition of CUTIN DEFICIENT 2 Causes Defects in Cuticle Function and Structure and Metabolite Changes in Tomato Fruit.

    Science.gov (United States)

    Kimbara, Junji; Yoshida, Miho; Ito, Hirotaka; Kitagawa, Mamiko; Takada, Wataru; Hayashi, Kayoko; Shibutani, Yusuke; Kusano, Miyako; Okazaki, Yozo; Nakabayashi, Ryo; Mori, Tetsuya; Saito, Kazuki; Ariizumi, Tohru; Ezura, Hiroshi

    2013-09-01

    Tomato (Solanum lycopersicum) fruit cuticle has been extensively studied due to its effect on the biochemical and physiological properties of the fruit. To date, several tomato mutants defective in proper cuticle formation have been identified. To gain insight into tomato cuticle formation, we investigated one such mutant, sticky peel/light green (pe lg). We verified the responsible gene by fine mapping and obtained the same conclusion as a previous report. To elucidate the pleiotropic effects of cuticle deficiency caused by the cd2 mutation, CD2 suppression lines were constructed. As found in the pe lg mutant, the suppression lines showed enhanced water permeability and aberrant leaf and fruit cuticles. Water use efficiency of the suppression line was lower than that of the wild type. However, photosynthetic ability was not affected in the suppression line. Since these phenotypes are related to altered deposition of wax and cutin, other lipidic metabolites might be changed, too. To confirm this hypothesis, we conducted metabolite profiling. The metabolite profiling revealed that not only lipid but also sugar, flavonoid and glycoalkaloid metabolites in fruit were changed in the cd2 mutant. These results indicate that CD2 is essential both for normal cutin and wax deposition and for proper accumulation of specific metabolites in tomato fruit.

  20. Accumulation of free polyamines enhances the antioxidant response in fruits of grafted tomato plants under water stress.

    Science.gov (United States)

    Sánchez-Rodríguez, E; Romero, L; Ruiz, J M

    2016-01-15

    Polyamines, small aliphatic polycations, have been suggested to play key roles in a number of biological processes. In this paper, attempts were made to investigate the possibility of improving antioxidant response of tomato fruits in relation with endogenous free polyamines content. We studied the reactive oxygen species and polyamines content, and antioxidant and polyamine-biosynthesis enzyme activities in fruits of ungrafted and grafted tomato plants under moderate water stress. We used a drought-tolerant cultivar (Zarina) and drought-sensitive cultivar (Josefina) to obtain reciprocal graft, selfgraft and ungraft plants. Fruits contained higher endogenous polyamine content during the course of the experiment relative to the control, coupled with higher arginine decarboxylase and spermine synthase activities in Zarina ungrafted and ZarxJos. In these cultivars, tomato fruits showed a lower reactive oxygen species generation and higher catalase and superoxide dismutase activities, suggesting that a higher content in polyamines (especially spermine) exerted a positive effect on antioxidant systems. All of these data suggest that spermine leads to more effective reactive oxygen species scavenging (less tissue damage) in tomato fruits, which may function collectively to enhance dehydration tolerance.

  1. Changes in esculeoside A content in different regions of the tomato fruit during maturation and heat processing.

    Science.gov (United States)

    Katsumata, Akiko; Kimura, Mizuki; Saigo, Hiromi; Aburaya, Kei; Nakano, Masako; Ikeda, Tsuyoshi; Fujiwara, Yukio; Nagai, Ryoji

    2011-04-27

    We previously demonstrated that esculeogenin A, a new aglycone of the tomato sapogenol esculeoside A, inhibits both acyl coenzyme A:cholesterol acyl-transferase (ACAT)-1 and -2 and ameliorates the pathogenesis of atherosclerosis in apoE deficient mice. Although we believe that daily intake of esculeoside A from tomato products can play a beneficial role in preventing the pathogenesis of atherosclerosis, the compound is not being used for preventive medicine due to the lack of information on methods for quantitative analysis and the content and stability of the compound in tomato products. In the present study, we report the development of a high-performance liquid chromatography (HPLC) method using an instrument equipped with a refractive index (RI) detector for esculeoside A quantification. We used this method to measure the changes in esculeoside A content during maturation, its distribution in the fruit body, and its stability during the heating process. The contents of esculeoside A in cherry tomatoes and Momotaro tomatoes were 21- and 9-fold, respectively, higher than that of lycopene, which is the most well-known compound in tomatoes. Furthermore, the esculeoside A content in pericarp wall was higher than in the whole tomato fruit and increased in a time-dependent manner during maturation. Although the melting point of purified esculeoside A was 225 °C, the esculeoside A in crude tomato extract decreased in a temperature-dependent manner. Degradation due to the heating process was inhibited under a pH of 9. These results demonstrated that the esculeoside A content differs in the various types of tomatoes, during maturation, and during the heating process used for preservation.

  2. Influence of Yellow Light-Emitting Diodes at 590 nm on Storage of Apple, Tomato and Bell Pepper Fruit

    Science.gov (United States)

    Kokalj, Doris; Hribar, Janez; Cigić, Blaž; Zlatić, Emil; Demšar, Lea; Sinkovič, Lovro; Šircelj, Helena; Bizjak, Grega; Vidrih, Rajko

    2016-01-01

    Summary The objective of this study is to investigate the effects of irradiation from light-emitting diodes (LEDs) on several fruits during storage. To improve storage and increase the contents of some bioactive compounds, apple, tomato and red bell pepper fruits were exposed to yellow light emitted from the diodes at 590 nm. The contents of ascorbic acid, total phenolics, total flavonoids and several pigments were investigated, along with the antioxidant potential. The colour parameters (L*, a* and b*) and firmness of the fruit were also determined. After 7 days of LED light irradiation, there was significantly higher total phenolic content and antioxidant potential in apple peel extracts. The irradiated fruit of tomato had significantly higher levels of total phenolic compounds, and the fruit of red bell pepper had significantly higher antioxidant potential. LED light had no effects on the colour parameters, although there was a tendency to accelerate colour development. Apple fruit irradiated with LED light was significantly less firm. Among twelve analysed pigments, significantly more β-carotene was detected in LED light-irradiated apple and bell pepper fruit, more α-tocopherol and γ-tocopherol in bell pepper fruit, and more lutein in apple peel and bell pepper fruit. The applied LED light slightly accelerated the ripening of the studied fruit, and affected the synthesis of some of the secondary metabolites. PMID:27904413

  3. Influence of Yellow Light-Emitting Diodes at 590 nm on Storage of Apple, Tomato and Bell Pepper Fruit

    Directory of Open Access Journals (Sweden)

    Janez Hribar

    2016-01-01

    Full Text Available The objective of this study is to investigate the eff ects of irradiation from light-emitting diodes (LEDs on several fruits during storage. To improve storage and increase the contents of some bioactive compounds, apple, tomato and red bell pepper fruits were exposed to yellow light emitted from the diodes at 590 nm. The contents of ascorbic acid, total phenolics, total flavonoids and several pigments were investigated, along with the antioxidant potential. The colour parameters (L*, a* and b* and firmness of the fruit were also determined. After 7 days of LED light irradiation, there was significantly higher total phenolic content and antioxidant potential in apple peel extracts. The irradiated fruit of tomato had significantly higher levels of total phenolic compounds, and the fruit of red bell pepper had significantly higher antioxidant potential. LED light had no effects on the colour parameters, although there was a tendency to accelerate colour development. Apple fruit irradiated with LED light was significantly less firm. Among twelve analysed pigments, significantly more β-carotene was detected in LED light-irradiated apple and bell pepper fruit, more α-tocopherol and γ-tocopherol in bell pepper fruit, and more lutein in apple peel and bell pepper fruit. The applied LED light slightly accelerated the ripening of the studied fruit, and affected the synthesis of some of the secondary metabolites.

  4. AUXIN RESPONSE FACTOR 2 Intersects Hormonal Signals in the Regulation of Tomato Fruit Ripening.

    Directory of Open Access Journals (Sweden)

    Dario A Breitel

    2016-03-01

    Full Text Available The involvement of ethylene in fruit ripening is well documented, though knowledge regarding the crosstalk between ethylene and other hormones in ripening is lacking. We discovered that AUXIN RESPONSE FACTOR 2A (ARF2A, a recognized auxin signaling component, functions in the control of ripening. ARF2A expression is ripening regulated and reduced in the rin, nor and nr ripening mutants. It is also responsive to exogenous application of ethylene, auxin and abscisic acid (ABA. Over-expressing ARF2A in tomato resulted in blotchy ripening in which certain fruit regions turn red and possess accelerated ripening. ARF2A over-expressing fruit displayed early ethylene emission and ethylene signaling inhibition delayed their ripening phenotype, suggesting ethylene dependency. Both green and red fruit regions showed the induction of ethylene signaling components and master regulators of ripening. Comprehensive hormone profiling revealed that altered ARF2A expression in fruit significantly modified abscisates, cytokinins and salicylic acid while gibberellic acid and auxin metabolites were unaffected. Silencing of ARF2A further validated these observations as reducing ARF2A expression let to retarded fruit ripening, parthenocarpy and a disturbed hormonal profile. Finally, we show that ARF2A both homodimerizes and interacts with the ABA STRESS RIPENING (ASR1 protein, suggesting that ASR1 might be linking ABA and ethylene-dependent ripening. These results revealed that ARF2A interconnects signals of ethylene and additional hormones to co-ordinate the capacity of fruit tissue to initiate the complex ripening process.

  5. Genomic analyses provide insights into the history of tomato breeding.

    Science.gov (United States)

    Lin, Tao; Zhu, Guangtao; Zhang, Junhong; Xu, Xiangyang; Yu, Qinghui; Zheng, Zheng; Zhang, Zhonghua; Lun, Yaoyao; Li, Shuai; Wang, Xiaoxuan; Huang, Zejun; Li, Junming; Zhang, Chunzhi; Wang, Taotao; Zhang, Yuyang; Wang, Aoxue; Zhang, Yancong; Lin, Kui; Li, Chuanyou; Xiong, Guosheng; Xue, Yongbiao; Mazzucato, Andrea; Causse, Mathilde; Fei, Zhangjun; Giovannoni, James J; Chetelat, Roger T; Zamir, Dani; Städler, Thomas; Li, Jingfu; Ye, Zhibiao; Du, Yongchen; Huang, Sanwen

    2014-11-01

    The histories of crop domestication and breeding are recorded in genomes. Although tomato is a model species for plant biology and breeding, the nature of human selection that altered its genome remains largely unknown. Here we report a comprehensive analysis of tomato evolution based on the genome sequences of 360 accessions. We provide evidence that domestication and improvement focused on two independent sets of quantitative trait loci (QTLs), resulting in modern tomato fruit ∼100 times larger than its ancestor. Furthermore, we discovered a major genomic signature for modern processing tomatoes, identified the causative variants that confer pink fruit color and precisely visualized the linkage drag associated with wild introgressions. This study outlines the accomplishments as well as the costs of historical selection and provides molecular insights toward further improvement.

  6. Activity and functional interaction of alternative oxidase and uncoupling protein in mitochondria from tomato fruit

    Directory of Open Access Journals (Sweden)

    F.E. Sluse

    2000-03-01

    Full Text Available Cyanide-resistant alternative oxidase (AOX is not limited to plant mitochondria and is widespread among several types of protists. The uncoupling protein (UCP is much more widespread than previously believed, not only in tissues of higher animals but also in plants and in an amoeboid protozoan. The redox energy-dissipating pathway (AOX and the proton electrochemical gradient energy-dissipating pathway (UCP lead to the same final effect, i.e., a decrease in ATP synthesis and an increase in heat production. Studies with green tomato fruit mitochondria show that both proteins are present simultaneously in the membrane. This raises the question of a specific physiological role for each energy-dissipating system and of a possible functional connection between them (shared regulation. Linoleic acid, an abundant free fatty acid in plants which activates UCP, strongly inhibits cyanide-resistant respiration mediated by AOX. Moreover, studies of the evolution of AOX and UCP protein expression and of their activities during post-harvest ripening of tomato fruit show that AOX and plant UCP work sequentially: AOX activity decreases in early post-growing stages and UCP activity is decreased in late ripening stages. Electron partitioning between the alternative oxidase and the cytochrome pathway as well as H+ gradient partitioning between ATP synthase and UCP can be evaluated by the ADP/O method. This method facilitates description of the kinetics of energy-dissipating pathways and of ATP synthase when state 3 respiration is decreased by limitation of oxidizable substrate.

  7. Polycomb-group protein SlMSI1 represses the expression of fruit-ripening genes to prolong shelf life in tomato.

    Science.gov (United States)

    Liu, Dan-Dan; Zhou, Li-Jie; Fang, Mou-Jing; Dong, Qing-Long; An, Xiu-Hong; You, Chun-Xiang; Hao, Yu-Jin

    2016-08-25

    Polycomb-group (PcG) protein MULTICOPY SUPPRESSOR OF IRA1 (MSI1) protein is an evolutionarily conserved developmental suppressor and plays a crucial role in regulating epigenetic modulations. However, the potential role and function of MSI1 in fleshy fruits remain unknown. In this study, SlMSI1 was cloned and transformed into tomato to explore its function. The quantitative real-time PCR results showed that SlMSI1 was highly expressed in flowers and fruits and that its transcript and protein levels were significantly decreased in fruits after the breaker stage. Additionally, SlMSI1-overexpressing transgenic tomatoes displayed abnormal non-ripening fruit formation, whereas its suppression promoted fruit ripening in transgenic tomatoes. Quantitative real-time PCR assays also showed that RIN and its regulons were decreased in SlMSI1 overexpression transgenic tomato fruits. Furthermore, RNA-seq analysis demonstrated that SlMSI1 inhibits fruit ripening by negatively regulating a large set of fruit-ripening genes in addition to RIN and its regulons. Finally, genetic manipulation of SlMSI1 and RIN successfully prolonged the fruit shelf life by regulating the fruit-ripening genes in tomato. Our findings reveal a novel regulatory function of SlMSI1 in fruit ripening and provide a new regulator that may be useful for genetic engineering and modification of fruit shelf life.

  8. Quantitative Evaluation of Surface Color of Tomato Fruits Cultivated in Remote Farm Using Digital Camera Images

    Science.gov (United States)

    Hashimoto, Atsushi; Suehara, Ken-Ichiro; Kameoka, Takaharu

    To measure the quantitative surface color information of agricultural products with the ambient information during cultivation, a color calibration method for digital camera images and a remote monitoring system of color imaging using the Web were developed. Single-lens reflex and web digital cameras were used for the image acquisitions. The tomato images through the post-ripening process were taken by the digital camera in both the standard image acquisition system and in the field conditions from the morning to evening. Several kinds of images were acquired with the standard RGB color chart set up just behind the tomato fruit on a black matte, and a color calibration was carried out. The influence of the sunlight could be experimentally eliminated, and the calibrated color information consistently agreed with the standard ones acquired in the system through the post-ripening process. Furthermore, the surface color change of the tomato on the tree in a greenhouse was remotely monitored during maturation using the digital cameras equipped with the Field Server. The acquired digital color images were sent from the Farm Station to the BIFE Laboratory of Mie University via VPN. The time behavior of the tomato surface color change during the maturing process could be measured using the color parameter calculated based on the obtained and calibrated color images along with the ambient atmospheric record. This study is a very important step in developing the surface color analysis for both the simple and rapid evaluation of the crop vigor in the field and to construct an ambient and networked remote monitoring system for food security, precision agriculture, and agricultural research.

  9. Transport Properties of the Tomato Fruit Tonoplast : III. Temperature Dependence of Calcium Transport.

    Science.gov (United States)

    Joyce, D C; Cramer, G R; Reid, M S; Bennett, A B

    1988-12-01

    Calcium transport into tomato (Lycopersicon esculentum Mill, cv Castlemart) fruit tonoplast vesicles was studied. Calcium uptake was stimulated approximately 10-fold by MgATP. Two ATP-dependent Ca(2+) transport activities could be resolved on the basis of sensitivity to nitrate and affinity for Ca(2+). A low affinity Ca(2+) uptake system (K(m) > 200 micromolar) was inhibited by nitrate and ionophores and is thought to represent a tonoplast localized H(+)/Ca(2+) antiport. A high affinity Ca(2+) uptake system (K(m) = 6 micromolar) was not inhibited by nitrate, had reduced sensitivity to ionophores, and appeared to be associated with a population of low density endoplasmic reticulum vesicles that contaminated the tonoplast-enriched membrane fraction. Arrhenius plots of the temperature dependence of Ca(2+) transport in tomato membrane vesicles showed a sharp increase in activation energy at temperatures below 10 to 12 degrees C that was not observed in red beet membrane vesicles. This low temperature effect on tonoplast Ca(2+)/H(+) antiport activity could only by partially ascribed to an effect of low temperature on H(+)-ATPase activity, ATP-dependent H(+) transport, passive H(+) fluxes, or passive Ca(2+) fluxes. These results suggest that low temperature directly affects Ca(2+)/H(+) exchange across the tomato fruit tonoplast, resulting in an apparent change in activation energy for the transport reaction. This could result from a direct effect of temperature on the Ca(2+)/H(+) exchange protein or by an indirect effect of temperature on lipid interactions with the Ca(2+)/H(+) exchange protein.

  10. Effects of the Lycopersicon chmielewskii sucrose accumulator gene (sucr) on fruit yield and quality parameters following introgression into tomato.

    Science.gov (United States)

    Chetelat, R T; Deverna, J W; Bennett, A B

    1995-07-01

    A gene controlling fruit sucrose accumulation, sucr, was introgressed from the wild tomato species Lycopersicon chmielewskii into the genetic background of a hexose-accumulating cultivated tomato, L. esculentum. During introgression, the size of the L. chmielewskii chromosomal segment containing sucr was reduced by selection for recombination between RFLP markers for the sucr gene and flanking loci. The effects of sucr on soluble solids content, fruit size, yield and other fruit parameters were studied in the genetic background of the processing tomato cultivar 'Huntl00'. In a segregating BC5F2 generation, the smallest introgression containing sucr-associated markers was necessary and sufficient to confer high-level sucrose accumulation, the effects of which were completely recessive. Fruit of sucr/sucr genotypes were smaller than those of +/sucr or +/+ genotypes at all stages of development. The timing of sugar accumulation and total sugar concentration were unaffected by sugar composition. No differences in total fruit biomass (fresh weight of red and green fruit) at harvest were observed between the genotypes, and sucrose accumulators produced greater numbers of fruit than hexose accumulators in one family. However, the proportion of ripe fruit at harvest, and hence yield of ripe fruit, as well as average ripe fruit weight and seed set were reduced in sucr/sucr genotypes. Sucrose accumulation was also associated with increased soluble solids content, consistency, serum viscosity, predicted paste yield and acidity, and decreased color rating. In the first backcross to L. chmielewskii, hexose accumulators (+/sucr) had larger fruit than sucrose accumulators (sucr/sucr), while no difference in soluble solids was detected.

  11. Pink lesions.

    Science.gov (United States)

    Giacomel, Jason; Zalaudek, Iris

    2013-10-01

    Dermoscopy (dermatoscopy or surface microscopy) is an ancillary dermatologic tool that in experienced hands can improve the accuracy of diagnosis of a variety of benign and malignant pigmented skin tumors. The early and more accurate diagnosis of nonpigmented, or pink, tumors can also be assisted by dermoscopy. This review focuses on the dermoscopic diagnosis of pink lesions, with emphasis on blood vessel morphology and pattern. A 3-step algorithm is presented, which facilitates the timely and more accurate diagnosis of pink tumors and subsequently guides the management for such lesions.

  12. Postharvest Analysis of Lowland Transgenic Tomato Fruits Harboring hpRNAi-ACO1 Construct

    Directory of Open Access Journals (Sweden)

    Bita Behboodian

    2012-01-01

    Full Text Available The plant hormone, ethylene, is an important regulator which involved in regulating fruit ripening and flower senescence. In this study, RNA interference (RNAi technology was employed to silence the genes involved in ethylene biosynthetic pathway. This was achieved by blocking the expression of specific gene encoding the ACC oxidase. Initially, cDNA corresponding to ACO1 of lowland tomato cultivar (MT1, which has high identity with ACO1 of Solanum lycopersicum in GenBank, was cloned through RT-PCR. Using a partial coding region of ACO1, one hpRNAi transformation vector was constructed and expressed ectopically under the 35S promoter. Results showed that transgenic lines harboring the hpRNA-ACO1 construct had lower ethylene production and a longer shelf life of 32 days as compared to 10 days for wild-type fruits. Changes in cell wall degrading enzyme activities were also investigated in cases where the transgenic fruits exhibited reduced rates of firmness loss, which can be associated with a decrease in pectin methylesterase (PME and polygalacturonase (PG activities. However, no significant change was detected in both transgenic and wild-type fruits in terms of β-galactosidase (β-Gal activity and levels of total soluble solid, titratable acid and ascorbic acid.

  13. Catabolism of Branched Chain Amino Acids Supports Respiration but Not Volatile Synthesis in Tomato Fruits

    Institute of Scientific and Technical Information of China (English)

    Andrej Kochevenko; Wagner L.Araújo; Gregory S.Maloney; Denise M.Tieman; Phuc Thi Do; Mark G.Taylor; Harry J.Klee; Alisdair R.Fernie

    2012-01-01

    The branched-chain amino acid transaminases (BCATs) have a crucial role in metabolism of the branched-chain amino acids leucine,isoleucine,and valine.These enzymes catalyze the last step of synthesis and the initial step of degradation of these amino acids.Although the biosynthetic pathways of branched chain amino acids in plants have been extensively investigated and a number of genes have been characterized,their catabolism in plants is not yet completely understood.We previously characterized the branched chain amino acid transaminase gene family in tomato,revealing both the subcellular localization and kinetic properties of the enzymes encoded by six genes.Here,we examined possible functions of the enzymes during fruit development.We further characterized transgenic plants differing in the expression of branched chain amino acid transaminases 1 and 3,evaluating the rates of respiration in fruits deficient in BCAT1 and the levels of volatiles in lines overexpressing either BCAT1 or BCAT3.We quantitatively tested,via precursor and isotope feeding experiments,the importance of the branched chain amino acids and their corresponding keto acids in the formation of fruit volatiles.Our results not only demonstrate for the first time the importance of branched chain amino acids in fruit respiration,but also reveal that keto acids,rather than amino acids,are the likely precursors for the branched chain flavor volatiles.

  14. BIO-EFFICACY OF INSECTICIDES AGAINST FRUIT BORER (HELICOVERPA ARMIGERA IN TOMATO (LYCOPERSICON ESCULENTUM

    Directory of Open Access Journals (Sweden)

    Ravi Kumar Katroju,

    2014-02-01

    Full Text Available Field experiment carried out during kharif, 2012 at Student’s Farm, College of Agriculture, Rajendranagar, Hyderabad to evaluate the efficacy of insecticides viz., emamectin benzoate 5 SG @11 g a.i. ha-1, emamectin benzoate 5 SG @ 22 g a.i. ha-1, profenophos 50 EC @ 500 g a.i. ha-1, profenophos 50 EC @1000 g a.i. ha-1, spinosad 45 SC @ 100 g a.i. ha-1, bifenthrin 10 EC @ 100 g a.i. ha-1 and Bacillus thuringiensis @ 25 g a.i. ha-1against tomato fruit borer (Helicoverpa armigera. Among all the insecticides, profenophos (1000 g a.i. ha-1 was found to be the most effective one with a maximum reduction in fruit borer population (65.20%, minimum per cent of fruit damage (28.80% and maximum yield (26.43 kg/20 m2 followed by bifenthrin @ 100 g a.i.ha-1 with reduced larval population of 64.51% and damaged fruits 32.60%.

  15. Influence of Yellow Light-Emitting Diodes at 590 nm on Storage of Apple, Tomato and Bell Pepper Fruit

    OpenAIRE

    2016-01-01

    The objective of this study is to investigate the effects of irradiation from light-emitting diodes (LEDs) on several fruits during storage. To improve storage and increase the contents of some bioactive compounds, apple, tomato and red bell pepper fruits were exposed to yellow light emitted from the diodes at 590 nm. The contents of ascorbic acid, total phenolics, total flavonoids and several pigments were investigated, along with the antioxidant potential. The colour parameters (L*, a* and ...

  16. Respiratory activity of ‘Chelan’, ‘Bing’ and ‘Selah’ sweet cherries in relation to fruit traits at green, white-pink, red and mahogany ripening stages

    Science.gov (United States)

    Sweet cherry fruit development is subjectively sub-divided into four stages on the basis of exocarp color, which includes green, white-pink, red and mahogany stages. ‘Chelan’, ‘Bing’ and ‘Selah’, representing early-, mid- and late-season cultivars, respectively, and three different abscission-respon...

  17. Products Released from Enzymically Active Cell Wall Stimulate Ethylene Production and Ripening in Preclimacteric Tomato (Lycopersicon esculentum Mill.) Fruit.

    Science.gov (United States)

    Brecht, J K; Huber, D J

    1988-12-01

    Enzymically active cell wall from ripe tomato (Lycopersicon esculentum Mill.) fruit pericarp release uronic acids through the action of wall-bound polygalacturonase. The potential involvement of products of wall hydrolysis in the induction of ethylene synthesis during tomato ripening was investigated by vacuum infiltrating preclimacteric (green) fruit with solutions containing pectin fragments enzymically released from cell wall from ripe fruit. Ripening initiation was accelerated in pectin-infiltrated fruit compared to control (buffer-infiltrated) fruit as measured by initiation of climacteric CO(2) and ethylene production and appearance of red color. The response to infiltration was maximum at a concentration of 25 micrograms pectin per fruit; higher concentrations (up to 125 micrograms per fruit) had no additional effect. When products released from isolated cell wall from ripe pericarp were separated on Bio-Gel P-2 and specific size classes infiltrated into preclimacteric fruit, ripening-promotive activity was found only in the larger (degree of polymerization >8) fragments. Products released from pectin derived from preclimacteric pericarp upon treatment with polygalacturonase from ripe pericarp did not stimulate ripening when infiltrated into preclimacteric fruit.

  18. Ripening-regulated susceptibility of tomato fruit to Botrytis cinerea requires NOR but not RIN or ethylene.

    Science.gov (United States)

    Cantu, Dario; Blanco-Ulate, Barbara; Yang, Liya; Labavitch, John M; Bennett, Alan B; Powell, Ann L T

    2009-07-01

    Fruit ripening is a developmental process that is associated with increased susceptibility to the necrotrophic pathogen Botrytis cinerea. Histochemical observations demonstrate that unripe tomato (Solanum lycopersicum) fruit activate pathogen defense responses, but these responses are attenuated in ripe fruit infected by B. cinerea. Tomato fruit ripening is regulated independently and cooperatively by ethylene and transcription factors, including NON-RIPENING (NOR) and RIPENING-INHIBITOR (RIN). Mutations in NOR or RIN or interference with ethylene perception prevent fruit from ripening and, thereby, would be expected to influence susceptibility. We show, however, that the susceptibility of ripe fruit is dependent on NOR but not on RIN and only partially on ethylene perception, leading to the conclusion that not all of the pathways and events that constitute ripening render fruit susceptible. Additionally, on unripe fruit, B. cinerea induces the expression of genes also expressed as uninfected fruit ripen. Among the ripening-associated genes induced by B. cinerea are LePG (for polygalacturonase) and LeExp1 (for expansin), which encode cell wall-modifying proteins and have been shown to facilitate susceptibility. LePG and LeExp1 are induced only in susceptible rin fruit and not in resistant nor fruit. Thus, to infect fruit, B. cinerea relies on some of the processes and events that occur during ripening, and the fungus induces these pathways in unripe fruit, suggesting that the pathogen itself can initiate the induction of susceptibility by exploiting endogenous developmental programs. These results demonstrate the developmental plasticity of plant responses to the fungus and indicate how known regulators of fruit ripening participate in regulating ripening-associated pathogen susceptibility.

  19. Phytochemical and nutrient/antinutrient interactions in cherry tomato (Lycopersicon esculentum) fruits.

    Science.gov (United States)

    Oyetayo, Folake Lucy; Ibitoye, Muyiwa Femi

    2012-07-01

    The fruit of the cherry tomato (Lycopersicon esculentum (Solanaceae)) was analysed for mineral and antinutrient composition. Phosphorus (33.04 ± 0.21 mg/100g) was the most abundant mineral in the fruit, followed by calcium (32.04 ± 0.06 mg/100 g), and potassium (11.9 ± 0.1 mg/100 g) and manganese (9.55 ± 0.28 mg/100 g) were also present in appreciable quantities. Antinutrients, including phytate, glycoside, saponin and tannin, were screened and quantified. Phytate (112.82 ± 0.1 mg/100 g), glycoside (2.33 ± 0.00 mg/100 g), saponin (1.31 ± 0.00 mg/100g) and tannin (0.21 ± 0.00 mg/100 g) were present in the fruit but phlobatanin and glycosides with steroidal rings were not found. The calculated calcium:phytate ratio of the fruits was below the critical value and the calculated [calcium] [phytate]:[zinc] molar ratio was less than the critical value. The calcium:phosphorus ratio (0.97 mg/100 g) shows the fruit to be a good source of food nutrients, while the sodium:potassium value was less than 1. Ca/P ratio below 0.5 indicates deficiency of these minerals while Na/K ratio above 1 is detrimental because of excessive sodium levels. The results of the study generally revealed the fruit to be rich in minerals but containing insufficient quantities of antinutrients to result in poor mineral bioavailability.

  20. Construction of Cherry Tomato Fruit SpecificLYC-B Interference Vector and Validation of Its Specific Expression in Fruits of Discrepant Colors%番茄果实特异性LYC-B干扰载体的构建及在不同颜色果实中的表达特异性验证

    Institute of Scientific and Technical Information of China (English)

    王巧丽; 梁燕; 张振才; 李翠; 李云洲; 王玲慧

    2014-01-01

    为了研究番茄LYC-B干扰对类胡萝卜素合成主要酶和主要代谢产物的影响,构建了果实特异性的番茄红素β-环化酶LYC-B干扰载体,并验证了其在不同颜色番茄果实中的有效性。依据X13437.1扩增番茄果实特异启动子E8,构建了果实特异性载体E8-pBI121,其在粉色、红色、绿色和紫色的番茄果实中均能表达。依据X86452.1扩增番茄LYC-B从61~861 bp 间长度为801 bp的片段LYC-B1和从480~781 bp 间长度为302 bp的片段 LYC-B2,构建了以CaMV 35S为启动子的LYC-B干扰表达载体pBI121-B1B2,以E8替换CaMV 35S,构建了果实特异性干扰载体E8-pBI121-B1B2。采用农杆菌注射法分别侵染番茄叶片和果实,GUS染色显示,pBI121-B1B2在叶片、果实和种子中均表达,E8-pBI121-B1B2只在果实和种子中表达。%The experiment will be conducted to research the specific impacts of lycopene β-cyclase interference on carotenoid metabolism,cherry tomato(Solanum lycopersicum L. var. cerasiforme Alef.) fruit-specific lycopene β-cyclase interference vector was constructed,and the validity in different color fruits were verified. Cherry tomato fruit-specific promoter E8 was amplified according to X13437.1 and fruit-specific vector of E8-pBI121 was constructed,which could be expressed in cherry tomato fruits of pink,red,green and purple colors. According to X86452.1,two different lycopene β-cyclase sequences B1 and B2 were amplified,LYC-B1 with 801 bp from 61 bp to 861 bp and LYC-B2 with 302 bp from 480 bp to 781 bp of LYC-B. The interference vector of pBI121-B1B2 with CaMV 35S promotor and the fruit-specific expression interference vectors of E8- pBI121-B1B2 with E8 promotor were constructed. E8-pBI121,pBI121-B1B2 and E8-pBI121-B1B2 were transferred into Agrobacterium tumefaciens GV3101 with the freeze-thaw method,then transformed into living cherry tomato fruits and leaves by injection. The results of GUS staining 7 days after injection

  1. The Solanum lycopersicum auxin response factor 7 (SlARF7) regulates auxin signaling during tomato fruit set and development.

    Science.gov (United States)

    de Jong, Maaike; Wolters-Arts, Mieke; Feron, Richard; Mariani, Celestina; Vriezen, Wim H

    2009-01-01

    Auxin response factors (ARFs) are encoded by a gene family of transcription factors that specifically control auxin-dependent developmental processes. A tomato ARF gene, homologous to Arabidopsis NPH4/ARF7 and therefore designated as Solanum lycopersicum ARF7 (SlARF7), was found to be expressed at a high level in unpollinated mature ovaries. More detailed analysis of tomato ovaries showed that the level of SlARF7 transcript increases during flower development, remains at a constant high level in mature flowers, and is down-regulated within 48 h after pollination. Transgenic plants with decreased SlARF7 mRNA levels formed seedless (parthenocarpic) fruits. These fruits were heart-shaped and had a rather thick pericarp due to increased cell expansion, compared with the pericarp of wild-type fruits. The expression analysis, together with the parthenocarpic fruit phenotype of the transgenic lines, suggests that, in tomato, SlARF7 acts as a negative regulator of fruit set until pollination and fertilization have taken place, and moderates the auxin response during fruit growth.

  2. An integrative genomics approach for deciphering the complex interactions between ascorbate metabolism and fruit growth and composition in tomato.

    Science.gov (United States)

    Garcia, Virginie; Stevens, Rebecca; Gil, Laurent; Gilbert, Louise; Gest, Noé; Petit, Johann; Faurobert, Mireille; Maucourt, Mickael; Deborde, Catherine; Moing, Annick; Poessel, Jean-Luc; Jacob, Daniel; Bouchet, Jean-Paul; Giraudel, Jean-Luc; Gouble, Barbara; Page, David; Alhagdow, Moftah; Massot, Capucine; Gautier, Hélène; Lemaire-Chamley, Martine; de Daruvar, Antoine; Rolin, Dominique; Usadel, Bjoern; Lahaye, Marc; Causse, Mathilde; Baldet, Pierre; Rothan, Christophe

    2009-11-01

    Very few reports have studied the interactions between ascorbate and fruit metabolism. In order to get insights into the complex relationships between ascorbate biosynthesis/recycling and other metabolic pathways in the fruit, we undertook a fruit systems biology approach. To this end, we have produced tomato transgenic lines altered in ascorbate content and redox ratio by RNAi-targeting several key enzymes involved in ascorbate biosynthesis (2 enzymes) and recycling (2 enzymes). In the VTC (ViTamin C) Fruit project, we then generated phenotypic and genomic (transcriptome, proteome, metabolome) data from wild type and mutant tomato fruit at two stages of fruit development, and developed or implemented statistical and bioinformatic tools as a web application (named VTC Tool box) necessary to store, analyse and integrate experimental data in tomato. By using Kohonen's self-organizing maps (SOMs) to cluster the biological data, pair-wise Pearson correlation analyses and simultaneous visualization of transcript/protein and metabolites (MapMan), this approach allowed us to uncover major relationships between ascorbate and other metabolic pathways.

  3. Effect of chlormequat (CCC on the accumulation of ethephon in tomatoes and on ethephon-stimulated ripening

    Directory of Open Access Journals (Sweden)

    Janusz Czapski

    2013-12-01

    Full Text Available In greenhouse experiment, tomato seedlings were treated with CCC (250 mg·l-1 twice before transplanting. When about 10% of fruits were showing signs of ripening (pink fruits, ethephon solution (960 mg·l-1 was applied either to leaves only or to fruits only, in order to make ripening more uniform. CCC treatment delayed the process of fruit ripening and lowered the ethephon accumulation in ripe fruits as compared to the control (CCC untreated plants. The results were similar when ethephon was applied to leaves only or to fruits only.

  4. Induced point mutations in the phytoene synthase 1 gene cause differences in carotenoid content during tomato fruit ripening

    NARCIS (Netherlands)

    Gady, A.L.F.; Vriezen, W.; Wal, van de M.H.B.J.; Huang, P.; Bovy, A.G.; Visser, R.G.F.; Bachem, C.W.B.

    2012-01-01

    In tomato, carotenoids are important with regard to major breeding traits such as fruit colour and human health. The enzyme phytoene synthase (PSY1) directs metabolic flux towards carotenoid synthesis. Through TILLING (Targeting Induced Local Lesions IN Genomes), we have identified two point mutatio

  5. Transcriptome and Metabolite Profiling Show That APETALA2a Is a Major Regulator of Tomato Fruit Ripening

    NARCIS (Netherlands)

    Karlova, R.B.; Rosin, F.M.A.; Busscher-Lange, J.; Parapunova, V.A.; Do, P.T.; Fernie, A.R.; Fraser, P.D.; Baxter, C.; Angenent, G.C.; Maagd, de R.A.

    2011-01-01

    Fruit ripening in tomato (Solanum lycopersicum) requires the coordination of both developmental cues as well as the plant hormone ethylene. Although the role of ethylene in mediating climacteric ripening has been established, knowledge regarding the developmental regulators that modulate the involve

  6. Cell-wall-associated endo-B-mannanase increases in the skin and outer pericarp of tomato fruits during ripening

    NARCIS (Netherlands)

    Bewley, J.D.; Banik, M.; Bourgault, R.; Fuertado, A.; Toorop, P.; Hilhorst, H.W.M.

    2000-01-01

    Activity of endo-ß-mannanase increases during ripening of tomato (Lycopersicon esculentum Mill.) fruit of the cultivar Trust. ß-Mannoside mannohydrolase is also present during ripening, but its pattern of activity is different from that of endo-ß-mannanase. The increase in endo-ß-mannanase activity

  7. Water relations of GA- and ABA-deficient tomato mutants during seed and fruit development and their influence on germination

    NARCIS (Netherlands)

    Liu, Y.; Bino, R.J.; Karssen, C.M.; Hilhorst, H.W.M.

    1996-01-01

    To explain the differing germination behaviour of seeds of wild type, gibberellin-deficient (gib1) or abscisic acid-deficient (sitw) mutants of tomato (Lycopersicon esculentum Mill. cv. Moneymaker), growth and water relations of fruit tissues, seeds and embryos were determined during development. Th

  8. Nitrogen Requirements for Growth and Early Fruit Development of Drip-Irrigated Processing Tomato (Lycopersicon esculentum Mill.) in Portugal

    Science.gov (United States)

    The effect of continuous application of small quantities of nitrogen (N) in irrigation water and N applied as starter on growth and development of processing tomato (Lycopersicon esculentum Mill.), from transplanting to beginning of fruit set, was studied in two experiments: a pot experiment and a f...

  9. Abscisic acid and sucrose regulate tomato and strawberry fruit ripening through the abscisic acid-stress-ripening transcription factor.

    Science.gov (United States)

    Jia, Haifeng; Jiu, Songtao; Zhang, Cheng; Wang, Chen; Tariq, Pervaiz; Liu, Zhongjie; Wang, Baoju; Cui, Liwen; Fang, Jinggui

    2016-10-01

    Although great progress has been made towards understanding the role of abscisic acid (ABA) and sucrose in fruit ripening, the mechanisms underlying the ABA and sucrose signalling pathways remain elusive. In this study, transcription factor ABA-stress-ripening (ASR), which is involved in the transduction of ABA and sucrose signalling pathways, was isolated and analysed in the nonclimacteric fruit, strawberry and the climacteric fruit, tomato. We have identified four ASR isoforms in tomato and one in strawberry. All ASR sequences contained the ABA stress- and ripening-induced proteins and water-deficit stress-induced proteins (ABA/WDS) domain and all ASR transcripts showed increased expression during fruit development. The expression of the ASR gene was influenced not only by sucrose and ABA, but also by jasmonic acid (JA) and indole-3-acetic acid (IAA), and these four factors were correlated with each other during fruit development. ASR bound the hexose transporter (HT) promoter, which contained a sugar box that activated downstream gene expression. Overexpression of the ASR gene promoted fruit softening and ripening, whereas RNA interference delayed fruit ripening, as well as affected fruit physiological changes. Change in ASR gene expression influenced the expression of several ripening-related genes such as CHS, CHI, F3H, DFR, ANS, UFGT, PG, PL, EXP1/2, XET16, Cel1/2 and PME. Taken together, this study may provide new evidence on the important role of ASR in cross-signalling between ABA and sucrose to regulate tomato and strawberry fruit ripening. The findings of this study also provide new insights into the regulatory mechanism underlying fruit development.

  10. Identification of the pink disease for longan fruit in Hainan province%海南龙眼红粉病的病原鉴定

    Institute of Scientific and Technical Information of China (English)

    杨济徽; 李鹏; 张龙; 曾宇; 杨叶; 范咏梅

    2016-01-01

    [Objective] Longan (Dimocarpus longana Lour.) is one type of evergreen tree,which is widely grown in the subtropical zone of South China.Along with the development of the longan industry,the diseases associated with this tree increased gradually.A new disease was discovered in Hainan,which occurs in the endangered growth stage of the longan fruit.According to its symptoms,it was named the "pink disease." This disease has been the most important factor influencing the quality and production of longan fruit.The objective of this study is to identify the pathogen and supply a theory as the basis for scientific control of this disease in the future.[Methods] Investigated the prevalent situation of the longan new disease in the field for three years in succession from 2013 to 2015.The longan fruit which had the pink disease were collected from the main producing areas in Hainan province.We identified the pathogen on the unhealthy longan through morphology and recorded the spore identified through morphology.One-centimeter disks of the diseased longan fruit were collected from the field and were cut and surface-sterilized with 75% ethanol and 1‰ HgCl2.The disks were placed on a potato dextrose agar (PDA) medium in order to establish cultures at a temperature of 26-28 ℃ for 7 days.Each pure culture was obtained by subculturing hyphal tips onto anther fresh PDA plates,and separating the pured pathogen single spores.To confirm the Trichothecium roseum isolates as the causative pathogen,healthy longan fruit (five bunches of longan fruit) from longan trees were sprayed with a conidial suspension (approximately 1.0× lO5 CFU· mL-1) of the isolates and incubated at 20 ℃ and 100% relative humidity with plastic and incurring natural cycles of light and darkness.Approximately 1 mL of conidial suspension solution was used for each group of Iongan fruit.The groups of longan fruit were sprayed daily with sterile double-distilled water.As negative controls,five groups of

  11. Tomato transcriptome and mutant analyses suggest a role for plant stress hormones in the interaction between fruit and Botrytis cinerea

    Directory of Open Access Journals (Sweden)

    Barbara eBlanco-Ulate

    2013-05-01

    Full Text Available Fruit-pathogen interactions are a valuable biological system to study the role of plant development in the transition from resistance to susceptibility. In general, unripe fruit are resistant to pathogen infection but become increasingly more susceptible as they ripen. During ripening, fruit undergo significant physiological and biochemical changes that are coordinated by complex regulatory and hormonal signaling networks. The interplay between multiple plant stress hormones in the interaction between plant vegetative tissues and microbial pathogens has been documented extensively, but the relevance of these hormones during infections of fruit is unclear. In this work, we analyzed a transcriptome study of tomato fruit infected with Botrytis cinerea in order to profile the expression of genes for the biosynthesis, modification and signal transduction of ethylene (ET, salicylic acid (SA, jasmonic acid (JA, and abscisic acid (ABA, hormones that may be not only involved in ripening, but also in fruit interactions with pathogens. The changes in relative expression of key genes during infection and assays of susceptibility of fruit with impaired synthesis or perception of these hormones were used to formulate hypotheses regarding the involvement of these regulators in the outcome of the tomato fruit-B. cinerea interaction.

  12. Tomato transcriptome and mutant analyses suggest a role for plant stress hormones in the interaction between fruit and Botrytis cinerea.

    Science.gov (United States)

    Blanco-Ulate, Barbara; Vincenti, Estefania; Powell, Ann L T; Cantu, Dario

    2013-01-01

    Fruit-pathogen interactions are a valuable biological system to study the role of plant development in the transition from resistance to susceptibility. In general, unripe fruit are resistant to pathogen infection but become increasingly more susceptible as they ripen. During ripening, fruit undergo significant physiological and biochemical changes that are coordinated by complex regulatory and hormonal signaling networks. The interplay between multiple plant stress hormones in the interaction between plant vegetative tissues and microbial pathogens has been documented extensively, but the relevance of these hormones during infections of fruit is unclear. In this work, we analyzed a transcriptome study of tomato fruit infected with Botrytis cinerea in order to profile the expression of genes for the biosynthesis, modification and signal transduction of ethylene (ET), salicylic acid (SA), jasmonic acid (JA), and abscisic acid (ABA), hormones that may be not only involved in ripening, but also in fruit interactions with pathogens. The changes in relative expression of key genes during infection and assays of susceptibility of fruit with impaired synthesis or perception of these hormones were used to formulate hypotheses regarding the involvement of these regulators in the outcome of the tomato fruit-B. cinerea interaction.

  13. A Chitosan Coating Containing Essential Oil from Origanum vulgare L. to Control Postharvest Mold Infections and Keep the Quality of Cherry Tomato Fruit.

    Science.gov (United States)

    Barreto, Tainá A; Andrade, Sonalle C A; Maciel, Janeeyre F; Arcanjo, Narciza M O; Madruga, Marta S; Meireles, Bruno; Cordeiro, Ângela M T; Souza, Evandro L; Magnani, Marciane

    2016-01-01

    The efficacy of an edible chitosan coating (CHI; 4 mg/mL) and Origanum vulgare L. essential oil (OVEO; 1.25 μL/mL) for maintaining the quality of cherry tomato fruit during storage at room (25°C; 12 days) and cold (12°C; 24 days) temperatures was assessed. CHI and OVEO in combination showed in vitro fungicidal effects against R. stolonifer and Aspergillus niger. CHI-OVEO coating reduced the incidence of black mold and soft rot caused by these fungi in artificially contaminated cherry tomato fruit during storage at both temperatures. CHI-OVEO coating delayed the appearance of the first visible signs of black mold and soft rot in artificially contaminated cherry tomato fruit stored at room temperature by 6 days and by more than 9 days in those stored at cold temperature. At the end of storage at room and cold temperature fruit coated with CHI-OVEO showed higher firmness (>2 N/mm) and lower weight loss (>2%) compared to uncoated tomato fruit. CHI-OVEO coating delayed the decrease of lycopene, ascorbic citric acid, glucose and fructose during the storage time assessed at room or cold temperatures. The increase of catechin, myricetin, caffeic and syringic acids was higher (1-9 mg/g) in cherry tomato fruit coated with CHI-OVEO compared to uncoated fruit during the storage at both temperatures studied. CHI-OVEO coating is a feasible treatment for maintaining the storage quality of cherry tomato fruit.

  14. 1-Methylcyclopropene delays tomato fruit ripening Retardamento do amadurecimento de tomates com 1-metilciclopropeno

    Directory of Open Access Journals (Sweden)

    Celso Luiz Moretti

    2002-12-01

    Full Text Available Tomato (Lycopersicon esculentum Mill. fruits, cv. Santa Clara, were harvested at the breaker stage from commercial fields in Brazlândia, Brazil, to investigate the ability of 1-methylcyclopropene (1-MCP to retard tomato fruit ripening. Fruit without external blemishes were graded for size (diameter = 80±5 mm and mass (m = 130±10 g, placed inside hermetically sealed boxes, and 1-MCP was applied for 12 hours (T = 22±1°C; RH = 80-85% at four different concentrations: 0 (control, 250, 500 and 1000 mL.L-1. Fruits were held at ambient conditions (T = 23±2°C; RH 80-85% for 2 days and then stored inside a cold room (T = 20±1°C; RH = 85-95%. Every 3 days, during a 15-day period, fruits were analyzed for firmness, total soluble solids, titratable acidity, external color, and total carotenoids. Firmness of fruit treated with 1000 mL.L-1 was about 88% higher than control fruits after 17 days. The a*/b* ratio, an indicator of skin color, for fruit treated with 1000 mL.L-1 of 1-MCP was 38% lower than control fruits at the end of the storage period. Treatments with higher concentrations of 1-MCP delayed total carotenoids synthesis and color development. Control fruits stored for 17 days had about 190% more total carotenoids than fruits treated with 1000 mL.L-1 of 1-MCP. Postharvest application of 1-MCP was an efficient method to delay tomato fruit ripening. As 1-MCP concentration increased, ripening was further delayed. Tomatoes treated with 250, 500, and 1000 mL.L-1 of 1-MCP were delayed by 8 to 11, 11 to 13 and 15 to 17 days, respectively.Tomates (Lycopersicon esculentum Mill., 'Santa Clara', foram colhidos no estádio verde-rosado em campos de produção comercial em Brazlândia (DF com o objetivo de investigar a capacidade do 1-metilciclopropeno (1-MCP em retardar o amadurecimento de tomates. Frutos sem danos mecânicos externos aparentes foram selecionados para tamanho (diâmetro = 80±5 mm e massa (m = 130±10 g, foram colocados em câmaras herm

  15. Pyrophosphate levels strongly influence ascorbate and starch content in tomato fruit

    Directory of Open Access Journals (Sweden)

    Sonia eOsorio

    2013-08-01

    Full Text Available Ascorbate (vitamin C deficiency leads to low immunity, scurvy, and other human diseases and is therefore a global health problem. Given that plants are major ascorbate sources for humans, biofortification of this vitamin in our foodstuffs is of considerable importance. Ascorbate is synthetized by a number of alternative pathways: (i from the glycolytic intermediates D-glucose-6P (the key intermediates are GDP-D-mannose and L-galactose, (ii from the breakdown of the cell wall polymer pectin which uses the methyl ester of D-galacturonic acid as precursor and (iii from myo-inositol as precursor via myo-inositol oxygenase. We report here the engineering of fruit-specific overexpression of a bacterial pyrophosphatase, which hydrolyzes the inorganic pyrophosphate (PPi to orthophosphate (Pi. This strategy resulted in increased vitamin C levels up to 2.5 fold in ripe fruit as well as increasing in the major sugars, sucrose and glucose, yet decreasing the level of starch. When considered together, these finding indicate an intimate linkage between ascorbate and sugar biosynthesis in plants. Moreover, the combined data reveal the importance of PPi metabolism in tomato fruit metabolism and development.

  16. Determination of the Elastic Properties of Tomato Fruit Cells with an Atomic Force Microscope

    Directory of Open Access Journals (Sweden)

    Andrzej Kurenda

    2013-09-01

    Full Text Available Since the mechanical properties of single cells together with the intercellular adhesive properties determine the macro-mechanical properties of plants, a method for evaluation of the cell elastic properties is needed to help explanation of the behavior of fruits and vegetables in handling and food processing. For this purpose, indentation of tomato mesocarp cells with an atomic force microscope was used. The Young’s modulus of a cell using the Hertz and Sneddon models, and stiffness were calculated from force-indentation curves. Use of two probes of distinct radius of curvature (20 nm and 10,000 nm showed that the measured elastic properties were significantly affected by tip geometry. The Young’s modulus was about 100 kPa ± 35 kPa and 20 kPa ± 14 kPa for the sharper tip and a bead tip, respectively. Moreover, large variability regarding elastic properties (>100% among cells sampled from the same region in the fruit was observed. We showed that AFM provides the possibility of combining nano-mechanical properties with topography imaging, which could be very useful for the study of structure-related properties of fruits and vegetables at the cellular and sub-cellular scale.

  17. Rapid phenotyping of the tomato fruit model, Micro-Tom, with a portable VIS-NIR spectrometer.

    Science.gov (United States)

    Ecarnot, Martin; Bączyk, Paulina; Tessarotto, Lydie; Chervin, Christian

    2013-09-01

    Tomato (Solanum lycopersicum) quality traits such as juice soluble solid content (Brix), juice pH, color parameters (Hue and Chroma), firmness and water content, are critical factors for fruit quality assessment. The need for screening very large numbers of fruit has led to the development of a high-throughput method using visible-near infrared (VIS-NIR) spectrometry. We are reporting here a set of results obtained with a portable spectrometer using the 350-2500 nm range, showing good prediction of the quality traits cited above, over a wide range of developmental stages from immature green to ripe tomato fruit, cv. Micro-Tom. This is a rather good set of quality traits compared to previous publications predicting tomato quality with VIS-NIR spectrometry, and the prediction is robust, as it was obtained by grouping sets of different operators. This would be a useful tool to phenotype hundreds of Micro-Tom per day, making it possible to follow the dynamics of the described parameters on growing fruits. Thus the method can be used to study the biochemistry and physiology of fruit development in planta.

  18. Changes of Activities in NAD Kinase and NADP Phosphatase During Ripening and Senescence of Tomato and Strawberry Fruits

    Institute of Scientific and Technical Information of China (English)

    GU Cai-qin; GUAN Jun-feng; XI Yu-fang; LI Guang-min

    2002-01-01

    Activities of NAD kinase(NADK)and NADP phosphatase and relationship between the two enzymes and temperature, respiration, ethylene production and trifluoperazine(TFP) were studied during ripening and senescence of strawberry and tomato frnits after harvest at 4℃and 20℃. The activity of NAD kinase in strawberry decreased slowly during first four days, then increased gradually. The NADP phosphatase activity increased at the second day, decreased the next day,then increased again. In tomato fruit, the activities of NAD kinase and NADP phosphatase increased at the second day, decreased with the ripening and senescence of the fruit. The change trend of NAD kinase and respiration in the two fruits were similar, the same were NADP phosphatase and ethylene production. TFP enhanced the activity of NAD kinase and had little effect on NADP phosphatase. Low temperature(4℃ ) activated the NAD kinase and reduced the activity of NADP phosphatase. These results indicated that the NAD kinase and NADP phosphatase were related to the ripening and senescence of strawberry and tomato fruits. The activation of NAD kinase probably postponed the ripening and senescence of the fruits.

  19. Bioinformatic and molecular analysis of hydroxymethylbutenyl diphosphate synthase (GCPE) gene expression during carotenoid accumulation in ripening tomato fruit.

    Science.gov (United States)

    Rodríguez-Concepción, Manuel; Querol, Jordi; Lois, Luisa María; Imperial, Santiago; Boronat, Albert

    2003-07-01

    Carotenoids are plastidic isoprenoid pigments of great biological and biotechnological interest. The precursors for carotenoid production are synthesized through the recently elucidated methylerythritol phosphate (MEP) pathway. Here we have identified a tomato ( Lycopersicon esculentum Mill.) cDNA sequence encoding a full-length protein with homology to the MEP pathway enzyme hydroxymethylbutenyl 4-diphosphate synthase (HDS, also called GCPE). Comparison with other plant and bacterial HDS sequences showed that the plant enzymes contain a plastid-targeting N-terminal sequence and two highly conserved plant-specific domains in the mature protein with no homology to any other sequence in the databases. The ubiquitous distribution of HDS-encoding expressed sequence tags (ESTs) in the tomato collections suggests that the corresponding gene is likely expressed throughout the plant. The role of HDS in controlling the supply of precursors for carotenoid biosynthesis was estimated from the bioinformatic and molecular analysis of transcript abundance in different stages of fruit development. No significant changes in HDS gene expression were deduced from the statistical analysis of EST distribution during fruit ripening, when an active MEP pathway is required to support a massive accumulation of carotenoids. RNA blot experiments confirmed that similar transcript levels were present in both the wild-type and carotenoid-depleted yellow ripe ( r) mutant fruit independent of the stage of development and the carotenoid composition of the fruit. Together, our results are consistent with a non-limiting role for HDS in carotenoid biosynthesis during tomato fruit ripening.

  20. Foliar application of calcium chloride and borax influences plant growth, yield, and quality of tomato (Lycopersicon esculentum Mill.) fruit

    OpenAIRE

    RAB, Abdur; Haq, Ihsan-ul

    2012-01-01

    The influence of CaCl2 and borax on growth, yield, and quality of tomato was investigated during the years 2009 and 2010. The experiment was laid out with a randomized complete block design. Calcium chloride (0.3% and 0.6%) and borax (0.2% and 0.4%) solutions were applied as foliar sprays either alone or in combination and data were recorded for plant height, branches per plant, flowers per cluster, fruits per plant, yield, fruit weight, fruit firmness, and total soluble solid content of the ...

  1. CHS silencing suggests a negative cross-talk between wax and flavonoid pathways in tomato fruit cuticle.

    Science.gov (United States)

    Heredia, Antonio; Heredia-Guerrero, José Alejandro; Domínguez, Eva

    2015-01-01

    Tomato fruits (Solanum lycopersicum L.) accumulate flavonoids in their cuticle and epidermal cells during ripening. These flavonoids come from de novo biosynthesis due to a significant increase in chalcone synthase (CHS) activity during ripening. Virus-induced gene silencing (VIGS) of tomato fruits have been used to down-regulate SlCHS expression during ripening and analyze the effects at the epidermal and cuticle level. Besides the expected change in fruit color due to a lack of flavonoids incorporated to the cuticle, several other modifications such as a decrease in the amount of cutin and polysaccharides were observed. These indicate a role for either flavonoids or CHS in the alteration of the expression levels of some genes involved in cuticle biosynthesis. Moreover, a negative interaction between the 2 cuticle components, flavonoids and waxes, suggests a relationship between these 2 metabolic pathways.

  2. Pyrophosphate Fructose-6-P 1-Phosphotransferase from Tomato Fruit : Evidence for Change during Ripening.

    Science.gov (United States)

    Wong, J H; Kiss, F; Wu, M X; Buchanan, B B

    1990-10-01

    Three forms of pyrophosphate fructose-6-phosphate 1-phosphotransferase (PFP) were purified from both green and red tomato (Lycopersicon esculentum) fruit: (a) a classical form (designated Q(2)) containing alpha- (66 kilodalton) and beta- (60 kilodalton) subunits; (b) a form (Q(1)) containing a beta-doublet subunit; and (c) a form (Q(0)) that appeared to contain a beta-singlet subunit. Several lines of evidence suggested that the different forms occur under physiological conditions. Q(2) was purified to apparent electrophoretic homogeneity; Q(1) and Q(0) were highly purified, but not to homogeneity. The distribution of the PFP forms from red (versus green) tomato was: Q(2), 29% (90%); Q(1), 47% (6%); and Q(0), 24% (4%). The major difference distinguishing the red from the green tomato enzymes was the fructose-2,6-bisphosphate (Fru-2,6-P(2))-induced change in K(m) for fructose-6-phosphate (Fru-6-P), the ;green forms' showing markedly enhanced affinity on activation (K(m) decrease of 7-9-fold) and the ;red forms' showing either little change (Q(0), Q(1)) or a relatively small (2.5-fold) affinity increase (Q(2)). The results extend our earlier findings with carrot root to another tissue and indicate that forms of PFP showing low or no affinity increase for Fru 6-P on activation by Fru-2,6-P(2) (here Q(1) and Q(0)) are associated with sugar storage, whereas the classical form (Q(2)), which shows a pronounced affinity increase, is more important for starch storage.

  3. Surface Drainage and Mulching Drip-Irrigated Tomatoes Reduces Soil Salinity and Improves Fruit Yield

    Science.gov (United States)

    Hou, Maomao; Zhu, Lvdan; Jin, Qiu

    2016-01-01

    A study on the effects of mulched drip irrigation combined with surface drainage on saline soil and tomatoes was conducted in coastal areas of eastern China, where the crops are subjected to excessive salt. The treatments contained three irrigation rates—200, 250 and 300 m3/ha—and three drain ditch depths—10, 20 and 30 cm. The contents of soil salinity, organic matter and available nutrient were observed, and the tomato plant height, stem diameter and leaf area index during different growth periods were recorded. Results showed that the total removal rate of salt from soil at a 0–1 m depth was 8.7–13.2% for the three drainages. Compared with the control, the treatments increased the content of available N (by 12.1–47.1%) and available K (by 5.0–21.9%) in the soils inside the mulch and decreased the content of available N (by 3.4–22.1%) and available K (by 7.5–16.4%) in the soils outside the mulch. For tomatoes, the plant height and the stem diameter was increased significantly by the irrigations but was not significantly affected by the drainages, and the leaf area index was increased by 0.39~1.76, 1.10~2.90 and 2.80~6.86 respectively in corresponding to the seedling, flowering and fruit-set stage. Moreover, yield-increase rates of 7.9–27.6% were found for the treatments compared to the control with a similar amount of applied water. PMID:27153110

  4. Four peroxidase Loci in red-fruited tomato species: genetics and geographic distribution.

    Science.gov (United States)

    Rick, C M; Zobel, R W; Fobes, J F

    1974-03-01

    The banding patterns of certain anodal peroxidase variants of red-fruited tomato species are governed by alleles at four loci-two alleles per locus. Alleles at three loci code for modified enzyme migration patterns and are codominant in heterozygotes; those at the fourth locus code for presence or absence of a band. No evidence of linkage was detected in preliminary tests between four of the six possible combinations of loci. All variant alleles-i.e., those not represented in the standard genotype of Lycopersicon esculentum-exist in the wild L. pimpinellifolium from coastal Peru; all but Prx-3(n) are also known in L. esculentum from the sympatric region but are rare or absent elsewhere. Between the distributions of alleles of Prx-1 and those of Ge, the gamete-eliminator locus, a significant association exists, which probably does not owe to genetic linkage. The tendency of alleles of Prx loci, as well as those of cm, Ge, h, and Od, to be shared between wild and cultivated taxa in the sympatric region but seldom elsewhere, in addition to published correlated evidence, suggests that the wild alleles tend to substitute in cultivated forms as a result of introgression. In respect to the number of common alleles, cultivated tomatoes more closely resemble the wild L. esculentum var. cerasiforme than L. pimpinellifolium.

  5. microRNA156-targeted SPL/SBP box transcription factors regulate tomato ovary and fruit development.

    Science.gov (United States)

    Ferreira e Silva, Geraldo Felipe; Silva, Eder Marques; Azevedo, Mariana da Silva; Guivin, Mike Anderson Corazon; Ramiro, Daniel Alves; Figueiredo, Cassia Regina; Carrer, Helaine; Peres, Lázaro Eustáquio Pereira; Nogueira, Fabio Tebaldi Silveira

    2014-05-01

    Fruit ripening in tomato (Solanum lycopersicum L.) is well understood at the molecular level. However, information regarding genetic pathways associated with tomato ovary and early fruit development is still lacking. Here, we investigate the possible role(s) of the microRNA156/SQUAMOSA promoter-binding protein-like (SPL or SBP box) module (miR156 node) in tomato ovary development. miR156-targeted S. lycopersicum SBP genes were dynamically expressed in developing flowers and ovaries, and miR156 was mainly expressed in meristematic tissues of the ovary, including placenta and ovules. Transgenic tomato cv. Micro-Tom plants over-expressing the AtMIR156b precursor exhibited abnormal flower and fruit morphology, with fruits characterized by growth of extra carpels and ectopic structures. Scanning electron microscopy and histological analyses showed the presence of meristem-like structures inside the ovaries, which are probably responsible for the ectopic organs. Interestingly, expression of genes associated with meristem maintenance and formation of new organs, such as LeT6/TKN2 (a KNOX-like class I gene) and GOBLET (a NAM/CUC-like gene), was induced in developing ovaries of transgenic plants as well as in the ovaries of the natural mutant Mouse ear (Me), which also displays fruits with extra carpels. Conversely, expression of the MADS box genes MACROCALYX (MC) and FUL1/TDR4, and the LEAFY ortholog FALSIFLORA, was repressed in the developing ovaries of miR156 over-expressors, suggesting similarities with Arabidopsis at this point of the miR156/SPL pathway but with distinct functional consequences in reproductive development. Altogether, these observations suggest that the miR156 node is involved in maintenance of the meristematic state of ovary tissues, thereby controlling initial steps of fleshy fruit development and determinacy.

  6. Cell wall glycosidase activities and protein content variations during fruit development and ripening in three texture contrasted tomato cultivars

    Science.gov (United States)

    Konozy, Emadeldin H.E.; Causse, Mathilde; Faurobert, Mireille

    2012-01-01

    Excessive softening is the main factor limiting fruit shelf life and storage. It is generally acceptable now that softening of fruit which occurs during the ripening is due to synergistic actions of several enzymes on cell wall polysaccharides. As a subject for this study, we have assayed some glycosidase activities using three tomato species (Lycopersicon esculentum) contrasted for their texture phenotypes; the cherry tomato line Cervil (Solanum lycopersicum var. cerasiforme), a common taste tomato line Levovil (S. lycopersicum Mill.) and VilB a modern line, large, firmer and with good storage capability. Four glycosidase activities namely α-galactosidase, β-galactosidase, β-mannosidase and β-glucosidase were extracted from tomato’s cell wall of the three species. Cell wall protein from fruits pericarp was extracted and compared among the three cultivars at the following stages; 14 days post anthesis (14DPA) fruit; 21 days post anthesis (21DPA), turning (breaker), red and over ripe. When glycolytic activities were also compared among these cultivars at the precited development stages, gross variations were noticed from stage to stage and also from species to species in accordance with the fruit firmness status. Interestingly, VilB cultivar, the firmer among the other two, though possessed the highest total protein content, exhibited the lowest enzymatic activities. Taken together, these results may therefore allow us to conclude that studies of glycolytic activities in a single tomato cultivar cannot be generalized to all species. On the other hand, relating fruit development to glycosidase activities should logically be coupled to these enzymes from cell wall compartment. PMID:23961187

  7. Effects of phosphorus fertilizer supplementation on antioxidant enzyme activities in tomato fruits.

    Science.gov (United States)

    Ahn, Taehyun; Oke, Moustapha; Schofield, Andrew; Paliyath, Gopinadhan

    2005-03-09

    The effects of soil and foliar phosphorus supplementation on the activities and levels of superoxide dismutase (SOD), guaiacol peroxidase (POX), and ascorbate peroxidase (APX) in tomato fruits were evaluated by determining enzyme activities and isoenzyme analysis. Both protein levels and enzyme activities varied depending on the variety and season. In general, phosphorus supplementation did not alter SOD, POX, and APX activities significantly;however, some treatments showed season- and stage-specific enhancement in activities as noticed with hydrophos and seniphos supplementation. Three different SOD isozymes were observed, and these isozymes showed very similar staining intensities in response to P application and during the three developmental stages studied. Two major isozymes of POX and two different APX isozymes were observed at all the developmental stages. The results suggest that antioxidant enzyme activities may be influenced by the availability of phosphorus, but are subject to considerable variation depending on the developmental stage and the season.

  8. Persistence of metalaxyl residues on tomato fruit using high performance liquid chromatography and QuEChERS methodology

    Directory of Open Access Journals (Sweden)

    Farag Mahmoud Malhat

    2017-02-01

    Full Text Available Metalaxyl is a widely used fungicide around the world. Very limited data have been reported concerning the dissipation and residue of metalaxyl in agricultural products. Residues and dissipation rate of metalaxyl were estimated in tomato fruit by HPLC following single application of the fungicide at 262.5 g a.i. ha−1. The average initial deposit of metalaxyl on tomato fruits was found to be 2.39 mg kg−1. Residues of metalaxyl dissipated below the maximum residue limit (MRL of 0.5 mg kg−1 in 7 days. Half-life (t1/2 for degradation of metalaxyl on tomato fruit was observed to be 1.81 days. A waiting period of 7 days is suggested for safe consumption of tomato. The results would be useful for the safe use of metalaxyl and to prevent any health problem to customers.

  9. Movement of Salmonella serovar Typhimurium and E. coli O157:H7 to Ripe Tomato Fruit Following Various Routes of Contamination

    OpenAIRE

    2015-01-01

    Salmonella serovars have been associated with the majority of foodborne illness outbreaks involving tomatoes, and E. coli O157:H7 has caused outbreaks involving other fresh produce. Contamination by both pathogens has been thought to originate from all points of the growing and distribution process. To determine if Salmonella serovar Typhimurium and E. coli O157:H7 could move to the mature tomato fruit of different tomato cultivars following contamination, three different contamination scenar...

  10. Effect of 1-methylcyclopropene post-harvest treatment on ripening process in cherry tomato fruit (Lycopersicon esculentum var. cerasiforme).

    Science.gov (United States)

    Opiyo, Arnold M; Ying, Tie-Jin

    2005-02-01

    The responses of cherry tomato (Lycopersicon esculentum var. cerasiforme) fruits to post-harvest treatment with 1-MCP were investigated. The maturity stage at which 1-MCP application is most effective in delaying the ripening process was determined, and then the effects of different concentrations (0, 0.035, 0.07 and 0.11 microL/L) of 1-MCP on ethylene production, fruit softening, chlorophyll, lycopene and carotenoids contents of mature green (MG) cherry tomato fruits were assessed. 1-MCP at 0.07 and 0.11 microL/L reduced fruit C(2)H(4) production, delayed the C(2)H(4) peak at ambient temperature. Although 1-MCP at 0.035 microL/L was effective in retarding fruit ripening, it did not suppress endogenous ethylene production. Fruit softening was suppressed by 1-MCP, but its initiation was not affected by 1-MCP. The rate of chlorophyll degradation and its pattern of change with time, and the initiation of lycopene biosynthesis as well as its accumulation were all affected by 1-MCP, but only the accumulation of carotenoids was suppressed. Accumulation of lycopene and carotenoids was almost permanently hampered by 1-MCP at 0.07 microL/L or higher concentrations, and fruit color could not reach the control level even 2 weeks after 1-MCP treatment, indicating the close association of the metabolism of these pigments with ethylene perception. Since the concentration of 0.11 microL/L of 1-MCP was so high that it did not elicit additional response very much than 0.07 microL/L, these concentrations were considered to be practically effective concentrations for cherry tomato at MG stage. The effective 1-MCP concentrations might provide a useful reference to the levels of ethylene receptors as well as ethylene sensitivity in a specific fruit at given development stage.

  11. Expressing yeast SAMdc gene confers broad changes in gene expression and alters fatty acid composition in tomato fruit.

    Science.gov (United States)

    Kolotilin, Igor; Koltai, Hinanit; Bar-Or, Carmiya; Chen, Lea; Nahon, Sahadia; Shlomo, Haviva; Levin, Ilan; Reuveni, Moshe

    2011-07-01

    Tomato (Solanum lycopersicum) fruits expressing a yeast S-adenosyl methionine decarboxylase (ySAMdc) gene under control of a ripening-induced promoter show altered phytonutrient content and broad changes in gene expression. Genome-wide transcriptional alterations in pericarp tissues of the ySAMdc-expressing fruits are shown. Consistent with the ySAMdc expression pattern from the ripening-induced promoter, very minor transcriptional alterations were detected at the mature green developmental stage. At the breaker and red stages, altered levels of numerous transcripts were observed with a general tendency toward upregulation in the transgenic fruits. Ontological analysis of up- and downregulated transcript groups revealed various affected metabolic processes, mainly carbohydrate and amino acid metabolism, and protein synthesis, which appeared to be intensified in the ripening transgenic fruits. Other functional ontological categories of altered transcripts represented signal transduction, transcription regulation, RNA processing, molecular transport and stress response, as well as metabolism of lipids, glycans, xenobiotics, energy, cofactors and vitamins. In addition, transcript levels of genes encoding structural enzymes for several biosynthetic pathways showed strong correlations to levels of specific metabolites that displayed altered levels in transgenic fruits. Increased transcript levels of fatty acid biosynthesis enzymes were accompanied by a change in the fatty acid profile of transgenic fruits, most notably increasing ω-3 fatty acids at the expense of other lipids. Thus, SAMdc is a prime target in manipulating the nutritional value of tomato fruits. Combined with analyses of selected metabolites in the overripe fruits, a model of enhanced homeostasis of the pericarp tissue in the polyamine-accumulating tomatoes is proposed.

  12. The Influence of Co-Suppressing Tomato 1-Aminocyclopropane-1-Carboxylic Acid Oxidase Ⅰ on the Expression of Fruit Ripening-Related and Pathogenesis-Related Protein Genes

    Institute of Scientific and Technical Information of China (English)

    HU Zong-li; CHEN Xu-qing; CHEN Guo-ping; L(U) Li-juan; Grierson Donald

    2007-01-01

    The purpose of this study is to explore the influence of co-suppressing tomato ACC oxidase I on the expression of fruit ripening-related and pathogenesis-related protein genes, and on the biosynthesis of endogenous ethylene and storage ability of fruits. Specific fragments of several fruit ripening-related and pathogenesis-related protein genes from tomato (Lycopersicon esculentum) were cloned, such as the 1-aminocyclopropane-1-carboxylic acid oxidase 1 gene (LeACO1), 1-aminocyclopropane-1-carboxylic acid oxidase 3 gene (LeAC03), EIN3-binding F-box 1 gene (LeEBF1), pathogenesisrelated protein 1 gene (LePR1), pathogenesis-related protein 5 gene (LePR5), and pathogenesis-related protein osmotin precursor gene (LeNP24) by PCR or RT-PCR. Then these specific DNA fragments were used as probes to hybridize with the total RNAs extracted from the wild type tomato Ailsa Craig (AC++) and the LeACO1 co-suppression tomatoes (V1187 and T4B), respectively. At the same time, ethylene production measurement and storage experiment of tomato fruits were carried out. The hybridization results indicated that the expression of fruit ripening-related genes such as LeACO3 and LeEBF1, and pathogenesis-related protein genes such as LePR1, LePR5, and LeNP24, were reduced sharply, and the ethylene production in the fruits, wounded leaves decreased and the storage time of ripening fruits was prolonged, when the expression of LeACO1 gene in the transgenic tomato was suppressed. In the co-suppression tomatoes, the expression of fruit ripening-related and pathogenesis-related protein genes were restrained at different degrees, the biosynthesis of endogenous ethylene decreased and the storage ability of tomato fruits increased.

  13. Identification of potential target genes for the tomato fruit-ripening regulator RIN by chromatin immunoprecipitation

    Directory of Open Access Journals (Sweden)

    Nakano Toshitsugu

    2011-01-01

    Full Text Available Abstract Background During ripening, climacteric fruits increase their ethylene level and subsequently undergo various physiological changes, such as softening, pigmentation and development of aroma and flavor. These changes occur simultaneously and are caused by the highly synchronized expression of numerous genes at the onset of ripening. In tomatoes, the MADS-box transcription factor RIN has been regarded as a key regulator responsible for the onset of ripening by acting upstream of both ethylene- and non-ethylene-mediated controls. However, except for LeACS2, direct targets of RIN have not been clarified, and little is known about the transcriptional cascade for ripening. Results Using immunoprecipitated (IPed DNA fragments recovered by chromatin immunoprecipitation (ChIP with anti-RIN antibody from ripening tomato fruit, we analyzed potential binding sites for RIN (CArG-box sites in the promoters of representative ripening-induced genes by quantitative PCR. Results revealed nearly a 5- to 20-fold enrichment of CArG boxes in the promoters of LeACS2, LeACS4, PG, TBG4, LeEXP1, and LeMAN4 and of RIN itself, indicating direct interaction of RIN with their promoters in vivo. Moreover, sequence analysis and genome mapping of 51 cloned IPed DNAs revealed potential RIN binding sites. Quantitative PCR revealed that four of the potential binding sites were enriched 4- to 17-fold in the IPed DNA pools compared with the controls, indicating direct interaction of RIN with these sites in vivo. Near one of the four CArG boxes we found a gene encoding a protein similar to thioredoxin y1. An increase in the transcript level of this gene was observed with ripening in normal fruit but not in the rin mutant, suggesting that RIN possibly induces its expression. Conclusions The presented results suggest that RIN controls fruit softening and ethylene production by the direct transcriptional regulation of cell-wall-modifying genes and ethylene biosynthesis genes

  14. Differential regulation of Salmonella typhimurium genes involved in O-antigen capsule production and their role in persistence within tomato fruit.

    Science.gov (United States)

    Marvasi, Massimiliano; Cox, Clayton E; Xu, Yimin; Noel, Jason T; Giovannoni, James J; Teplitski, Max

    2013-07-01

    Enteric pathogens, including non-typhoidal Salmonella spp. and enterovirulent Escherichia coli, are capable of persisting and multiplying within plants. Yet, little is still known about the mechanisms of these interactions. This study identified the Salmonella yihT gene (involved in synthesis of the O-antigen capsule) as contributing to persistence in immature tomato fruit. Deletion of yihT reduced competitive fitness of S. enterica sv. Typhimurium in green (but not ripe, regardless of color) tomato fruit by approximately 3 logs. The yihT recombinase-based in vivo expression technology (RIVET) reporter was strongly activated in unripe tomato fruit, and fitness of the mutant inversely correlated with the level of the yihT gene expression. Expression of yihT in mature tomato fruit was low, and yihT did not affect competitive fitness within mature fruit. To better understand the molecular basis of the phenotype, behaviors of the yihT RIVET reporter and the yihT mutant were tested in tomato fruit defective in ethylene signaling. These experiments suggest a role for functional ethylene-mediated signaling in the persistence of Salmonella spp. within tomato fruit. Furthermore, jasmonic acid and its precursors strongly reduced expression of yihT.

  15. Validation and fine mapping of lyc12.1, a QTL for increased tomato fruit lycopene content.

    Science.gov (United States)

    Kinkade, Matthew P; Foolad, Majid R

    2013-08-01

    Lycopene content is a key component of tomato (Solanum lycopersicum L.) fruit quality, and is a focus of many tomato-breeding programs. Two QTLs for increased fruit lycopene content, inherited from a high-lycopene S. pimpinellifolium accession, were previously detected on tomato chromosomes 7 and 12 using a S. lycopersicum × S. pimpinellifolium RIL population, and were identified as potential targets for marker-assisted selection and positional cloning. To validate the phenotypic effect of these two QTLs, a BC2 population was developed from a cross between a select RIL and the S. lycopersicum recurrent parent. The BC2 population was field-grown and evaluated for fruit lycopene content using HPLC. Statistical analyses revealed that while lyc7.1 did not significantly increase lycopene content in the heterozygous condition, individuals harboring lyc12.1 in the heterozygous condition contained 70.3 % higher lycopene than the recurrent parent. To eliminate the potential pleiotropic effect of fruit size and minimize the physical size of the lyc12.1 introgression, a marker-assisted backcross program was undertaken and produced a BC3S1 NIL population (n = 1,500) segregating for lyc12.1. Lycopene contents from lyc12.1 homozygous and heterozygous recombinants in this population were measured and lyc12.1 was localized to a 1.5 cM region. Furthermore, we determined that lyc12.1 was delimited to a ~1.5 Mb sequence of tomato chromosome 12, and provided some insight into potential candidate genes in the region. The derived sub-NILs will be useful for transferring of lyc12.1 to other tomato genetic backgrounds and for further fine-mapping and cloning of the QTL.

  16. Facts About Pink Eye

    Science.gov (United States)

    ... Information > Pink Eye (Conjunctivitis) > Facts About Pink Eye Facts About Pink Eye Pink eye is one of ... for preventing eye infections. Last Reviewed: November 2015 Fact Sheet Blurb The National Eye Institute (NEI) is ...

  17. Conjunctivitis (Pink Eye)

    Science.gov (United States)

    ... that can be embedded on web pages. Conjunctivitis (Pink Eye) One-Page Overview Pink, itchy eyes? Conjunctivitis – ... protect yourself from getting and spreading pink eye . Pink Eye: What To Do Discusses causes and treatment, ...

  18. Identification and characterization of tomato gibberellin 2-oxidases (GA2oxs) and effects of fruit-specific SlGA2ox1 overexpression on fruit and seed growth and development.

    Science.gov (United States)

    Chen, Shen; Wang, Xiaojing; Zhang, Liying; Lin, Shanshan; Liu, Decai; Wang, Quanzhi; Cai, Shanya; El-Tanbouly, Rania; Gan, Lijun; Wu, Han; Li, Yi

    2016-01-01

    Gibberellins (GAs) play a crucial role in growth and development of the tomato fruit. Previously published studies focusing on the effect of GAs on tomato fruits used chemical treatments, constitutive overexpression or silencing of GA biosynthetic and catabolic genes globally throughout the plant. Fruit-specific overexpression of GA catabolic enzyme genes GA2-oxidases (GA2oxs), however, may provide an alternative method to study the role of endogenous GAs on the fruit development. In this study, we have identified 11 SlGA2ox proteins in tomato that are classified into three subgroups. Motif analysis and multiple sequence alignments have demonstrated that all SlGA2oxs, except SlGA2ox10, have similar motif compositions and high-sequence conservation. Quantitative reverse transcription-PCR analysis has showed that SlGA2oxs exhibit differential expression patterns in tomato fruits at different developmental stages. When the fruit-specific promoter TFM7 was used to control the expression of SlGA2ox1, we observed no changes in growth and development of vegetative organs. However, fruit weight, seed number and germination rate were significantly affected. We also treated tomato fruits with GA biosynthesis inhibitor and observed phenotypes similar to those of the transgenic fruits. Furthermore, we have demonstrated that expression of cell expansion and GA responsive genes were downregulated in transgenic tomato fruits, supporting that overexpression of the SlGA2ox1 leads to reduction in endogenous GAs. This study provides additional evidence that endogenous GAs and the SlGA2ox1 gene play an important role in controlling on fruit weight, seed development and germination in tomato plant.

  19. Identification and characterization of tomato gibberellin 2-oxidases (GA2oxs) and effects of fruit-specific SlGA2ox1 overexpression on fruit and seed growth and development

    Science.gov (United States)

    Chen, Shen; Wang, Xiaojing; Zhang, Liying; Lin, Shanshan; Liu, Decai; Wang, Quanzhi; Cai, Shanya; El-Tanbouly, Rania; Gan, Lijun; Wu, Han; Li, Yi

    2016-01-01

    Gibberellins (GAs) play a crucial role in growth and development of the tomato fruit. Previously published studies focusing on the effect of GAs on tomato fruits used chemical treatments, constitutive overexpression or silencing of GA biosynthetic and catabolic genes globally throughout the plant. Fruit-specific overexpression of GA catabolic enzyme genes GA2-oxidases (GA2oxs), however, may provide an alternative method to study the role of endogenous GAs on the fruit development. In this study, we have identified 11 SlGA2ox proteins in tomato that are classified into three subgroups. Motif analysis and multiple sequence alignments have demonstrated that all SlGA2oxs, except SlGA2ox10, have similar motif compositions and high-sequence conservation. Quantitative reverse transcription-PCR analysis has showed that SlGA2oxs exhibit differential expression patterns in tomato fruits at different developmental stages. When the fruit-specific promoter TFM7 was used to control the expression of SlGA2ox1, we observed no changes in growth and development of vegetative organs. However, fruit weight, seed number and germination rate were significantly affected. We also treated tomato fruits with GA biosynthesis inhibitor and observed phenotypes similar to those of the transgenic fruits. Furthermore, we have demonstrated that expression of cell expansion and GA responsive genes were downregulated in transgenic tomato fruits, supporting that overexpression of the SlGA2ox1 leads to reduction in endogenous GAs. This study provides additional evidence that endogenous GAs and the SlGA2ox1 gene play an important role in controlling on fruit weight, seed development and germination in tomato plant. PMID:28018605

  20. Polyuronides in Avocado (Persea americana) and Tomato (Lycopersicon esculentum) Fruits Exhibit Markedly Different Patterns of Molecular Weight Downshifts during Ripening.

    Science.gov (United States)

    Huber, D. J.; O'Donoghue, E. M.

    1993-01-01

    Avocado (Persea americana) fruit experience a rapid and extensive loss of firmness during ripening. In this study, we examined whether the chelator solubility and molecular weight of avocado polyuronides paralleled the accumulation of polygalacturonase (PG) activity and loss in fruit firmness. Polyuronides were derived from ethanolic precipitates of avocado mesocarp prepared using a procedure to rapidly inactivate endogenous enzymes. During ripening, chelator (cyclohexane-trans-1,2-diamine tetraacetic acid [CDTA])-soluble polyuronides increased from approximately 30 to 40 [mu]g of galacturonic acid equivalents (mg alcohol-insoluble solids)-1 in preripe fruit to 150 to 170 [mu]g mg-1 in postclimacteric fruit. In preripe fruit, chelator-extractable polyuronides were of high molecular weight and were partially excluded from Sepharose CL- 2B-300 gel filtration media. Avocado polyuronides exhibited marked downshifts in molecular weight during ripening. At the postclimacteric stage, nearly all chelator-extractable polyuronides, which constituted from 75 to 90% of total cell wall uronic acid content, eluted near the total volume of the filtration media. Rechromatography of low molecular weight polyuronides on Bio-Gel P-4 disclosed that oligomeric uronic acids are produced in vivo during avocado ripening. The gel filtration behavior and pattern of depolymerization of avocado polyuronides were not influenced by the polyuronide extraction protocol (imidazole versus CDTA) or by chromatographic conditions designed to minimize interpolymeric aggregation. Polyuronides from ripening tomato (Lycopersicon esculentum) fruit extracted and chromatographed under conditions identical with those used for avocado polyuronides exhibited markedly less rapid and less extensive downshifts in molecular weight during the transition from mature-green to fully ripe. Even during a 9-d period beyond the fully ripe stage, tomato fruit polyuronides exhibited limited additional depolymerization and

  1. Overexpression of a novel MADS-box gene SlFYFL delays senescence, fruit ripening and abscission in tomato

    Science.gov (United States)

    Xie, Qiaoli; Hu, Zongli; Zhu, Zhiguo; Dong, Tingting; Zhao, Zhiping; Cui, Baolu; Chen, Guoping

    2014-03-01

    MADS-domain proteins are important transcription factors involved in many biological processes of plants. In our study, a tomato MADS-box gene, SlFYFL, was isolated. SlFYFL is expressed in all tissues of tomato and significantly higher in mature leave, fruit of different stages, AZ (abscission zone) and sepal. Delayed leaf senescence and fruit ripening, increased storability and longer sepals were observed in 35S:FYFL tomato. The accumulation of carotenoid was reduced, and ethylene content, ethylene biosynthetic and responsive genes were down-regulated in 35S:FYFL fruits. Abscission zone (AZ) did not form normally and abscission zone development related genes were declined in AZs of 35S:FYFL plants. Yeast two-hybrid assay revealed that SlFYFL protein could interact with SlMADS-RIN, SlMADS1 and SlJOINTLESS, respectively. These results suggest that overexpression of SlFYFL regulate fruit ripening and development of AZ via interactions with the ripening and abscission zone-related MADS box proteins.

  2. Divergence in the enzymatic activities of a tomato and Solanum pennellii alcohol acyltransferase impacts fruit volatile ester composition.

    Science.gov (United States)

    Goulet, Charles; Kamiyoshihara, Yusuke; Lam, Nghi B; Richard, Théo; Taylor, Mark G; Tieman, Denise M; Klee, Harry J

    2015-01-01

    Tomato fruits accumulate a diverse set of volatiles including multiple esters. The content of ester volatiles is relatively low in tomato fruits (Solanum lycopersicum) and far more abundant in the closely related species Solanum pennellii. There are also qualitative variations in ester content between the two species. We have previously shown that high expression of a non-specific esterase is critical for the low overall ester content of S. lycopersicum fruit relative to S. pennellii fruit. Here, we show that qualitative differences in ester composition are the consequence of divergence in enzymatic activity of a ripening-related alcohol acyltransferase (AAT1). The S. pennellii AAT1 is more efficient than the tomato AAT1 for all the alcohols tested. The two enzymes have differences in their substrate preferences that explain the variations observed in the volatiles. The results illustrate how two related species have evolved to precisely adjust their volatile content by modulating the balance of the synthesis and degradation of esters.

  3. MACROCALYX and JOINTLESS Interact in the Transcriptional Regulation of Tomato Fruit Abscission Zone Development1[C][W

    Science.gov (United States)

    Nakano, Toshitsugu; Kimbara, Junji; Fujisawa, Masaki; Kitagawa, Mamiko; Ihashi, Nao; Maeda, Hideo; Kasumi, Takafumi; Ito, Yasuhiro

    2012-01-01

    Abscission in plants is a crucial process used to shed organs such as leaves, flowers, and fruits when they are senescent, damaged, or mature. Abscission occurs at predetermined positions called abscission zones (AZs). Although the regulation of fruit abscission is essential for agriculture, the developmental mechanisms remain unclear. Here, we describe a novel transcription factor regulating the development of tomato (Solanum lycopersicum) pedicel AZs. We found that the development of tomato pedicel AZs requires the gene MACROCALYX (MC), which was previously identified as a sepal size regulator and encodes a MADS-box transcription factor. MC has significant sequence similarity to Arabidopsis (Arabidopsis thaliana) FRUITFULL, which is involved in the regulation of fruit dehiscent zone development. The MC protein interacted physically with another MADS-box protein, JOINTLESS, which is known as a regulator of fruit abscission; the resulting heterodimer acquired a specific DNA-binding activity. Transcriptome analyses of pedicels at the preabscission stage revealed that the expression of the genes involved in phytohormone-related functions, cell wall modifications, fatty acid metabolism, and transcription factors is regulated by MC and JOINTLESS. The regulated genes include homologs of Arabidopsis WUSCHEL, REGULATOR OF AXILLARY MERISTEMS, CUP-SHAPED COTYLEDON, and LATERAL SUPPRESSOR. These Arabidopsis genes encode well-characterized transcription factors regulating meristem maintenance, axillary meristem development, and boundary formation in plant tissues. The tomato homologs were specifically expressed in AZs but not in other pedicel tissues, suggesting that these transcription factors may play key roles in pedicel AZ development. PMID:22106095

  4. The ascorbic acid content of tomato fruits is associated with the expression of genes involved in pectin degradation

    Directory of Open Access Journals (Sweden)

    Di Matteo Antonio

    2010-08-01

    Full Text Available Abstract Background High levels of ascorbic acid (AsA in tomato fruits provide health benefits for humans and also play an important role in several aspects of plant life. Although AsA metabolism has been characterized in detail, the genetic mechanisms controlling AsA accumulation in tomatoes are poorly understood. The transcriptional control of AsA levels in fruits can be investigated by combining the advanced genetic and genomic resources currently available for tomato. A comparative transcriptomic analysis of fruit tissues was carried out on an introgression line containing a QTL promoting AsA accumulation in the fruit, using a parental cultivar with lower AsA levels as a reference. Results Introgression line IL 12-4 (S. pennellii in a S. lycopersicum background was selected for transcriptomic analysis because it maintained differences in AsA levels compared to the parental genotypes M82 and S. pennellii over three consecutive trials. Comparative microarray analysis of IL 12-4 and M82 fruits over a 2-year period allowed 253 differentially-expressed genes to be identified, suggesting that AsA accumulation in IL 12-4 may be caused by a combination of increased metabolic flux and reduced utilization of AsA. In particular, the upregulation of a pectinesterase and two polygalacturonases suggests that AsA accumulation in IL12-4 fruit is mainly achieved by increasing flux through the L-galactonic acid pathway, which is driven by pectin degradation and may be triggered by ethylene. Conclusions Based on functional annotation, gene ontology classification and hierarchical clustering, a subset of the 253 differentially-expressed transcripts was used to develop a model to explain the higher AsA content in IL 12-4 fruits in terms of metabolic flux, precursor availability, demand for antioxidants, abundance of reactive oxygen species and ethylene signaling.

  5. Comparison of Coconut Coir, Rockwool, and Peat Cultivations for Tomato Production: Nutrient Balance, Plant Growth and Fruit Quality

    Directory of Open Access Journals (Sweden)

    Jing Xiong

    2017-08-01

    Full Text Available Rockwool (RC and peat are two common substrates used worldwide in horticultural crop production. In recent years environmental and ecological concerns raised the demand for reducing the use of RC and peat. Although coconut coir (CC has been increasingly used as an alternative to RC and peat, it is still needed to comprehensively evaluate the feasibility of CC before widely used. To meet this need, CC, RC, and peat-vermiculite (PVC cultivations were used as tomato cultivation substrates to evaluate their effects on EC, pH and mineral ions in root-zone solution and drainage, nutrient uptake by crops, nutrient balance of cultivation system, plant growth and fruit quality. In general, CC significantly increased K and S uptake by crops, photosynthesis, individual fruit weight and total fruit yield compared to RC, and increased P and K uptake by crops and total fruit yield compared to PVC. Moreover, CC significantly increased organic acid of fruit in first truss compared to both RC and PVC. The uncredited nutrient was overally lower under CC than under RC and PVC (the lower, the better. For all substrates, the blossom-end rot (BER of fruit increased gradually from 3rd to 13th trusses. The BER of fruit was not significantly influenced by CC compared to RC or PVC, but was sginificantly decreased by PVC compared to RC. Our results infer that CC was a potential substrate that could be widely used in tomato production. However, the inhibition of BER was still a challenge when CC was used as cultivation substrate for tomato.

  6. A tomato MADS-box transcription factor, SlMADS1, acts as a negative regulator of fruit ripening.

    Science.gov (United States)

    Dong, Tingting; Hu, Zongli; Deng, Lei; Wang, Yi; Zhu, Mingku; Zhang, Jianling; Chen, Guoping

    2013-10-01

    MADS-box genes encode a highly conserved gene family of transcriptional factors that regulate numerous developmental processes in plants. In this study, a tomato (Solanum lycopersicum) MADS-box gene, SlMADS1, was cloned and its tissue-specific expression profile was analyzed. The real-time polymerase chain reaction results showed that SlMADS1 was highly expressed in sepals and fruits; its expression level was increased with the development of sepals, while the transcript of SlMADS1 decreased significantly in accordance with fruit ripening. To further explore the function of SlMADS1, an RNA interference (RNAi) expression vector targeting SlMADS1 was constructed and transformed into tomato plants. Shorter ripening time of fruit was observed in SlMADS1-silenced tomatoes. The accumulation of carotenoid and the expression of PHYTOENE SYNTHETASE1 were enhanced in RNAi fruits. Besides, ethylene biosynthetic genes, including 1-AMINOCYCLOPROPANE-1-CARBOXYLATE SYNTHASE1A, 1-AMINOCYCLOPROPANE-1-CARBOXYLATE SYNTHASE6, 1-AMINOCYCLOPROPANE-1-CARBOXYLATE OXIDASE1, and 1-AMINOCYCLOPROPANE-1-CARBOXYLATE OXIDASE3, and the ethylene-responsive genes E4 and E8, which were involved in fruit ripening, were also up-regulated in silenced plants. SlMADS1 RNAi fruits showed approximately 2- to 4-fold increases in ethylene production compared with the wild type. Furthermore, SlMADS1-silenced seedlings displayed shorter hypocotyls and were more sensitive to 1-aminocyclopropane-1-carboxylate than the wild type. Additionally, a yeast two-hybrid assay revealed a clear interaction between SlMADS1 and SlMADS-RIN. These results suggest that SlMADS1 plays an important role in fruit ripening as a repressive modulator.

  7. Modelling central metabolic fluxes by constraint-based optimization reveals metabolic reprogramming of developing Solanum lycopersicum (tomato) fruit.

    Science.gov (United States)

    Colombié, Sophie; Nazaret, Christine; Bénard, Camille; Biais, Benoît; Mengin, Virginie; Solé, Marion; Fouillen, Laëtitia; Dieuaide-Noubhani, Martine; Mazat, Jean-Pierre; Beauvoit, Bertrand; Gibon, Yves

    2015-01-01

    Modelling of metabolic networks is a powerful tool to analyse the behaviour of developing plant organs, including fruits. Guided by our current understanding of heterotrophic metabolism of plant cells, a medium-scale stoichiometric model, including the balance of co-factors and energy, was constructed in order to describe metabolic shifts that occur through the nine sequential stages of Solanum lycopersicum (tomato) fruit development. The measured concentrations of the main biomass components and the accumulated metabolites in the pericarp, determined at each stage, were fitted in order to calculate, by derivation, the corresponding external fluxes. They were used as constraints to solve the model by minimizing the internal fluxes. The distribution of the calculated fluxes of central metabolism were then analysed and compared with known metabolic behaviours. For instance, the partition of the main metabolic pathways (glycolysis, pentose phosphate pathway, etc.) was relevant throughout fruit development. We also predicted a valid import of carbon and nitrogen by the fruit, as well as a consistent CO2 release. Interestingly, the energetic balance indicates that excess ATP is dissipated just before the onset of ripening, supporting the concept of the climacteric crisis. Finally, the apparent contradiction between calculated fluxes with low values compared with measured enzyme capacities suggest a complex reprogramming of the metabolic machinery during fruit development. With a powerful set of experimental data and an accurate definition of the metabolic system, this work provides important insight into the metabolic and physiological requirements of the developing tomato fruits.

  8. Tomato second cycle hybrids as a source of genetic variability for fruit quality traits

    Directory of Open Access Journals (Sweden)

    Pereira da Costa JH

    2016-11-01

    Full Text Available The objective of this study was to investigate the phenotypic and molecular variability in a F2 generation derived from a SCH (Second Cycle Hybrid in order to detect QTLs for some fruit traits of tomato. Genome coverage at different levels was achieved by three types of molecular markers (polypeptides, sequence-related amplified polymorphism-SRAP and amplified restriction fragment polymorphism - AFLP. Different degrees of polymorphism were detected by SRAP and AFLP at the DNA structure level and also by polypeptides at the DNA expression level. The first two markers, associated with phenotypic variation, detected QTLs involved in important agronomic traits such as fruit shelf life, soluble solids content, pH, and titratable acidity. New gene blocks originated by recombination during the first cycle of crossing were detected. This study confirmed that the observed phenotypic differences represent a new gene rearrangement and that these new gene blocks are responsible for the presence of the genetic variability detected for these traits.

  9. Rapid ester biosynthesis screening reveals a high activity alcohol-O-acyltransferase (AATase) from tomato fruit.

    Science.gov (United States)

    Lin, Jyun-Liang; Zhu, Jie; Wheeldon, Ian

    2016-05-01

    Ethyl and acetate esters are naturally produced in various yeasts, plants, and bacteria. The biosynthetic pathways that produce these esters share a common reaction step, the condensation of acetyl/acyl-CoA with an alcohol by alcohol-O-acetyl/acyltransferase (AATase). Recent metabolic engineering efforts exploit AATase activity to produce fatty acid ethyl esters as potential diesel fuel replacements as well as short- and medium-chain volatile esters as fragrance and flavor compounds. These efforts have been limited by the lack of a rapid screen to quantify ester biosynthesis. Enzyme engineering efforts have also been limited by the lack of a high throughput screen for AATase activity. Here, we developed a high throughput assay for AATase activity and used this assay to discover a high activity AATase from tomato fruit, Solanum lycopersicum (Atf-S.l). Atf1-S.l exhibited broad specificity towards acyl-CoAs with chain length from C4 to C10 and was specific towards 1-pentanol. The AATase screen also revealed new acyl-CoA substrate specificities for Atf1, Atf2, Eht1, and Eeb1 from Saccharomyces cerevisiae, and Atf-C.m from melon fruit, Cucumis melo, thus increasing the pool of characterized AATases that can be used in ester biosynthesis of ester-based fragrance and flavor compounds as well as fatty acid ethyl ester biofuels.

  10. Ultrastructure of the Epidermal Cell Wall and Cuticle of Tomato Fruit (Solanum lycopersicum L.) during Development.

    Science.gov (United States)

    Segado, Patricia; Domínguez, Eva; Heredia, Antonio

    2016-02-01

    The epidermis plays a pivotal role in plant development and interaction with the environment. However, it is still poorly understood, especially its outer epidermal wall: a singular wall covered by a cuticle. Changes in the cuticle and cell wall structures are important to fully understand their functions. In this work, an ultrastructure and immunocytochemical approach was taken to identify changes in the cuticle and the main components of the epidermal cell wall during tomato fruit development. A thin and uniform procuticle was already present before fruit set. During cell division, the inner side of the procuticle showed a globular structure with vesicle-like particles in the cell wall close to the cuticle. Transition between cell division and elongation was accompanied by a dramatic increase in cuticle thickness, which represented more than half of the outer epidermal wall, and the lamellate arrangement of the non-cutinized cell wall. Changes in this non-cutinized outer wall during development showed specific features not shared with other cell walls. The coordinated nature of the changes observed in the cuticle and the epidermal cell wall indicate a deep interaction between these two supramolecular structures. Hence, the cuticle should be interpreted within the context of the outer epidermal wall. © 2016 American Society of Plant Biologists. All Rights Reserved.

  11. Chromoplast formation during tomato fruit ripening. No evidence for plastid DNA methylation.

    Science.gov (United States)

    Marano, M R; Carrillo, N

    1991-01-01

    Ripening of tomato fruits involves differentiation of chloroplasts into non-photosynthetic chromoplasts. Plastid DNAs isolated either from green leaf chloroplasts or mature red fruit chromoplasts were compared by restriction endonuclease and DNA/DNA hybridization analyses. The same restriction and gene maps were obtained for both types of DNAs, illustrating the lack of major recombinational events during chromoplast formation. Several enzymes were used that discriminate the presence of methylated bases in their target sequences (Pst I, Pvu II, Sal I, Mbo I/Sau 3AI, Msp I/Hpa II, Bst NI/Eco RII). Plastid DNA fragments generated by these enzymes were hybridized against DNA probes encompassing about 85% of the tobacco chloroplast genome. These probes represented genes that follow very different expression behaviors in response to plastid development. Extensive restriction and hybridization analyses failed to reveal any difference between the chloroplast and chromoplast genomes, indicating that no developmentally related DNA methylation was detected by these methods. The results presented here do not support the hypothesis that selective DNA methylation of the chromoplast genome might play a major role in the transcriptional control of gene expression in these non-photosynthetic plastids.

  12. Inheritance of fruit color and pigment changes in a yellow tomato (Lycopersicon esculentum Mill. mutant

    Directory of Open Access Journals (Sweden)

    Elizanilda R. do Rêgo

    1999-03-01

    Full Text Available A naturally occurring yellow tomato fruit mutant cv. Santa Clara was reciprocally crossed with the red wild type, after which F1 plants were self pollinated or backcrossed with both parents. Plants from F1 generations produced all fruits with a homogeneous deep red color when ripe. F2 plants showed a 3:1 red:yellow segregation of fruit color, and 100% red when backcrossed with red wild type or 1:1 red:yellow segregation in backcrosses with the yellow mutant; hence, yellow fruit color was determined by a recessive allele. Based on reciprocal crosses, fruit color is unlikely to be determined by maternal genes. Accumulation of lycopene dropped by 99.3% and b-carotene by 77% in ripe yellow fruits, compared to the red wild type. Leaf and flower chlorophyll and total carotenoid concentrations were not affected by the yellow mutation. However, the mutant fruit had a higher rate of chlorophyll degradation during fruit ripening, whilst fruit from the F1 generation showed lower rates of degradation, similar to that observed in red wild type fruits.Neste trabalho avaliou-se a herança da cor do fruto de um mutante natural da cv. Santa Clara, por meio da análise das gerações F1 e segregantes, obtidas mediante cruzamento entre plantas da cv. Santa Clara normal e o mutante amarelo. A caracterização das plantas normais, mutantes e F1 foi feita com base na análise quantitativa dos pigmentos carotenóides e clorofila em flores, folhas e frutos verdes e maduros. Plantas F1 e provenientes do retrocruzamento com o progenitor normal apresentaram 100% de frutos vermelhos. A semelhança entre os F1 recíprocos mostra que há ausência de herança materna para as características avaliadas. Em gerações segregantes, as freqüências observadas foram compatíveis com herança monogênica pelo teste qui-quadrado, com dominância completa para o gene que confere cor vermelha. Os frutos amarelos apresentaram teores reduzidos de b-caroteno e licopeno, enquanto o h

  13. Genetic variation in the Solanaceae fruit bearing species lulo and tree tomato revealed by Conserved Ortholog (COSII markers

    Directory of Open Access Journals (Sweden)

    Felix Enciso-Rodríguez

    2010-01-01

    Full Text Available The Lulo or naranjilla (Solanum quitoense Lam. and the tree tomato or tamarillo (Solanum betaceum Cav. Sendt. are both Andean tropical fruit species with high nutritional value and the potential for becoming premium products in local and export markets. Herein, we present a report on the genetic characterization of 62 accessions of lulos (n = 32 and tree tomatoes (n = 30 through the use of PCR-based markers developed from single-copy conserved orthologous genes (COSII in other Solanaceae (Asterid species. We successfully PCR amplified a set of these markers for lulos (34 out of 46 initially tested and tree tomatoes (26 out of 41 for molecular studies. Six polymorphic COSII markers were found in lulo with a total of 47 alleles and five polymorphic markers in tree tomato with a total of 39 alleles in the two populations. Further genetic analyses indicated a high population structure (with F ST > 0.90, which may be a result of low migration between populations, adaptation to various niches and the number of markers evaluated. We propose COSII markers as sound tools for molecular studies, conservation and the breeding of these two fruit species.

  14. KNOX genes influence a gradient of fruit chloroplast development through regulation of GOLDEN2-LIKE expression in tomato.

    Science.gov (United States)

    Nadakuduti, Satya Swathi; Holdsworth, William L; Klein, Chelsey L; Barry, Cornelius S

    2014-06-01

    The chlorophyll content of unripe fleshy fruits is positively correlated with the nutrient content and flavor of ripe fruit. In tomato (Solanum lycopersicum) fruit, the uniform ripening (u) locus, which encodes a GOLDEN 2-LIKE transcription factor (SlGLK2), influences a gradient of chloroplast development that extends from the stem end of the fruit surrounding the calyx to the base of the fruit. With the exception of the u locus, the factors that influence the formation of this developmental gradient are unknown. In this study, characterization and positional cloning of the uniform gray-green (ug) locus of tomato reveals a thus far unknown role for the Class I KNOTTED1-LIKE HOMEOBOX (KNOX) gene, TKN4, in specifying the formation of this chloroplast gradient. The involvement of KNOX in fruit chloroplast development was confirmed through characterization of the Curl (Cu) mutant, a dominant gain-of-function mutation of TKN2, which displays ectopic fruit chloroplast development that resembles SlGLK2 over-expression. TKN2 and TKN4 act upstream of SlGLK2 and the related gene ARABIDOPSIS PSEUDO RESPONSE REGULATOR 2-LIKE (SlAPRR2-LIKE) to establish their latitudinal gradient of expression across developing fruit that leads to a gradient of chloroplast development. Class I KNOX genes typically influence plant morphology through maintenance of meristem activity, but this study identifies a role for TKN2 and TKN4 in specifically influencing chloroplast development in fruit but not leaves, suggesting that this fundamental process is differentially regulated in these two organs.

  15. Temporal regulation of polygalacturonase gene expression in fruits of normal, mutant, and heterozygous tomato genotypes.

    Science.gov (United States)

    Biggs, M S; Handa, A K

    1989-01-01

    Molecular cloning of polygalacturonase (PG; EC 3.2. 1.15) from fruits of tomato (Lycopersicon esculentum Mill cv Rutgers) was accomplished by constructing a cDNA library from turning stage poly(A)(+) RNA in lambdagtll and immunoscreening with polyclonal antibodies raised against purified PG2. Both PG cDNA and antibody probes were used to quantify changes in PG gene expression in pericarp from normal, mutant, and heterozygous genotypes. Results show that PG mRNA, protein, and enzyme activity sequentially peak at the turning, ripe, and red ripe stages of Rutgers pericarp ripening, respectively. PG gene expression was attenuated greatly (0-15% of normal on a gram fresh weight basis) for PG mRNA, protein, and enzyme activity in five ripening-impaired mutants (rin, nor, Nr, Gr, and Long Keeper) tested. Maximum expression of the PG gene in heterozygotes of rin, nor, Nr, Gr, and Long Keeper (crosses with Rutgers) at the mRNA level was about 25, 13, 17, 5, and 62% of the Rutgers turning stage, at the protein level was about 166, 110, 15, 6, and 104% of the Rutgers ripe stage, and at the enzyme activity level was about 69, 37, 4, 1, and 50% of the Rutgers red ripe stage, respectively. No PG gene expression was found in preclimacteric fruits or vegetative tissues. PG mRNA was localized on both free and membrane-bound polyribosomes of ripening pericarp. In addition to transcriptional regulation, mechanisms contributing to mRNA stability, delayed protein accumulation, and posttranslational modifications may play important roles in the overall accumulation of PG activity during fruit ripening.

  16. Effectiveness of almond gum trees exudate as a novel edible coating for improving postharvest quality of tomato (Solanum lycopersicum L.) fruits.

    Science.gov (United States)

    Mahfoudhi, Nesrine; Chouaibi, Moncef; Hamdi, Salem

    2014-01-01

    The use of coatings is a technique used to increase postharvest life of the fruit. Almond gum exudate was used, in comparison with gum arabic, at concentrations of 10% as a novel edible coating, to preserve the quality parameters of tomato (Solanumlycopersicum). Fruits were harvested at the mature-green stage of ripening. Results showed that the coatings delayed significantly (p color, weight loss, firmness, titratable acidity, ascorbic acid content, soluble solids concentration, and decay percentage compared to uncoated control fruits. Sensory evaluation proved the efficacy of 10% almond gum and gum arabic coatings to maintain the overall quality of tomato fruits during storage period (20 days). In addition, the difference between gum arabic and almond gum coatings was not significant (p > 0.05) except for pulp color. Therefore, we can suggest the use of almond gum exudate as a novel edible coating extends the shelf-life of tomato fruits on postharvest.

  17. An iodine supplementation of tomato fruits coated with an edible film of the iodide-doped chitosan.

    Science.gov (United States)

    Limchoowong, Nunticha; Sricharoen, Phitchan; Techawongstien, Suchila; Chanthai, Saksit

    2016-06-01

    In general, the risk of numerous thyroid cancers inevitably increases among people with iodine deficiencies. An iodide-doped chitosan (CT-I) solution was prepared for dipping tomatoes to coat the fresh surface with an edible film (1.5 μm), thereby providing iodine-rich fruits for daily intake. Characterisation of the thin film was conducted by FTIR and SEM. Stability of the CT-I film was studied via water immersion at various time intervals, and no residual iodide leached out due to intrinsic interactions between the cationic amino group of chitosan and iodide ions. Moreover, the iodide supplement exhibited no effect on the antioxidant activity of tomatoes. The iodine content in the film-coated tomato was determined by ICP-OES. The tomato coating with 1.5% (w/v) CT-I contained approximately 0.4 μg iodide per gram fresh weight. In addition, the freshness and storability of iodine-doped tomatoes were also maintained for shelf-life concerns.

  18. Tomato ACS4 is necessary for timely start of and progression through the climacteric phase of fruit ripening

    Science.gov (United States)

    Hoogstrate, Suzanne W.; van Bussel, Lambertus J. A.; Cristescu, Simona M.; Cator, Eric; Mariani, Celestina; Vriezen, Wim H.; Rieu, Ivo

    2014-01-01

    Climacteric fruit ripening, as it occurs in many fruit crops, depends on a rapid, autocatalytic increase in ethylene production. This agriculturally important process has been studied extensively, with tomato simultaneously acting both as a model species and target crop for modification. In tomato, the ethylene biosynthetic genes ACC SYNTHASE2 (ACS2) and ACS4 are highly expressed during fruit ripening, with a combined loss of both ACS2 and ACS4 activity preventing generation of the ethylene burst necessary for fruit ripening. However, the individual roles and importance of ACS2 and ACS4 have not been determined. In this study, we examined specifically the role of ACS4 by comparing the phenotype of an acs4 mutant firstly with that of the wild-type, and secondly with two novel ripening-inhibitor (rin) mutants. Ethylene production during ripening was significantly reduced in both acs4-1, and rin lines, with rin genotypes showing the weaker ethylene burst. Also i) the time between anthesis and the start of fruit ripening and ii) the time required to progress through ripening were significantly longer in acs4-1 than in the wild type, but shorter than in the strongest rin mutant. The delay in ripening was reflected in the lower expression of ripening-related transcripts during the mature green and light red ripening stages. Furthermore, expression of ACS2 and ACS4 was strongly dependent on a functional RIN gene, while ACS2 expression was largely independent of ACS4. Altogether, we show that ACS4 is necessary for normal progression of tomato fruit ripening and that mutation of this gene may provide a useful means for altering ripening traits. PMID:25278945

  19. Tomato ACS4 is necessary for timely start of and progression through the climacteric phase of fruit ripening

    Directory of Open Access Journals (Sweden)

    Suzanne eHoogstrate

    2014-09-01

    Full Text Available Climacteric fruit ripening, as it occurs in many fruit crops, depends on a rapid, autocatalytic increase in ethylene production. This agriculturally important process has been studied extensively, with tomato simultaneously acting both as a model species and target crop for modification. In tomato, the ethylene biosynthetic genes ACC SYNTHASE2 (ACS2 and ACS4 are highly expressed during fruit ripening, with a combined loss of both ACS2 and ACS4 activity preventing generation of the ethylene burst necessary for fruit ripening. However, the individual roles and importance of ACS2 and ACS4 have not been determined. In this study, we examined specifically the role of ACS4 by comparing the phenotype of an acs4 mutant firstly with that of the wild-type, and secondly with two novel ripening-inhibitor (rin mutants. Ethylene production during ripening was significantly reduced in both acs4-1, and rin lines, with rin genotypes showing the weaker ethylene burst. Also i the time between anthesis and the start of fruit ripening and ii the time required to progress through ripening were significantly longer in acs4-1 than in the wild type, but shorter than in the strongest rin mutant. The delay in ripening was reflected in the lower expression of ripening-related transcripts during the mature green and light red ripening stages. Furthermore, expression of ACS2 and ACS4 was strongly dependent on a functional RIN gene, while ACS2 expression was largely independent of ACS4. Altogether, we show that ACS4 is necessary for normal progression of tomato fruit ripening and that mutation of this gene may provide a useful means for altering ripening traits.

  20. Combined effects of enhanced ultraviolet-B radiation and doubled CO2 concentration on growth,fruit quality and yield of tomato in winter plastic greenhouse

    Institute of Scientific and Technical Information of China (English)

    LI Fangmin; WANG Jun; CHEN Yuping; ZOU Zhirong; WANG Xunling; YUE Ming

    2007-01-01

    Five different doses of ultraviolet-B (UV-B)radiation were supplied to tomato (Lycopersicon esculeutum.in the winter plastic greenhouse.The influences on the seedling growth,fruit quality and yield of tomato were investigated.Results showed that the seedling growth,and the contents of UV absorbing compounds,soluble sugar,organic acid,vitamin C and lycopene of tomato fruits,and yield of tomato increased under doubled CO2 concentration.Under the doubled CO2 concentration the effects of lost doses of UV-B radiation could further promote the effects of doubled CO:concentration.However,there is no significant increase in yield of tomato.The best dose of UV-B radiation is about 1.163 kJ.m-2.When the dose of UV-B radiation is more than it,the effects of UV-B will be reduced.

  1. Multi-environment QTL mapping reveals genetic architecture of fruit cracking in a tomato RIL Solanum lycopersicum × S. pimpinellifolium population.

    Science.gov (United States)

    Capel, Carmen; Yuste-Lisbona, Fernando J; López-Casado, Gloria; Angosto, Trinidad; Cuartero, Jesús; Lozano, Rafael; Capel, Juan

    2017-01-01

    QTL and codominant genetic markers for fruit cracking have been identified in a tomato genetic map derived from a RIL population, providing molecular tools for marker-assisted breeding of this trait. In tomato, as well as in other fleshy fruits, one of the main disorders that widely limit quality and production is fruit cracking or splitting of the epidermis that is observed on the fruit skin and flesh at any stage of fruit growth and maturation. To elucidate the genetic basis of fruit cracking, a quantitative trait loci (QTL) analysis was conducted in a recombinant inbred line (RIL) population derived from a cross between tomato (Solanum lycopersicum) and the wild-relative species S. pimpinellifolium. The RIL population was evaluated for fruit cracking during three consecutive growing seasons. Construction of a high-density linkage map based on codominant markers, covering more than 1000 cM of the whole genome, led to the identification of both main and epistatic QTL controlling fruit cracking on the basis of a single-environment as well as multiple-environment analysis. This information will enhance molecular breeding for novel cracking resistant varieties and simultaneously assist the identification of genes underlying these QTL, helping to reveal the genetic basis of fruit cracking in tomato.

  2. A functional pectin methylesterase inhibitor protein (SolyPMEI) is expressed during tomato fruit ripening and interacts with PME-1.

    Science.gov (United States)

    Reca, Ida Barbara; Lionetti, Vincenzo; Camardella, Laura; D'Avino, Rossana; Giardina, Thierry; Cervone, Felice; Bellincampi, Daniela

    2012-07-01

    A pectin methylesterase inhibitor (SolyPMEI) from tomato has been identified and characterised by a functional genomics approach. SolyPMEI is a cell wall protein sharing high similarity with Actinidia deliciosa PMEI (AdPMEI), the best characterised inhibitor from kiwi. It typically affects the activity of plant pectin methylesterases (PMEs) and is inactive against a microbial PME. SolyPMEI transcripts were mainly expressed in flower, pollen and ripe fruit where the protein accumulated at breaker and turning stages of ripening. The expression of SolyPMEI correlated during ripening with that of PME-1, the major fruit specific PME isoform. The interaction of SolyPMEI with PME-1 was demonstrated in ripe fruit by gel filtration and by immunoaffinity chromatography. The analysis of the zonal distribution of PME activity and the co-localization of SolyPMEI with high esterified pectins suggest that SolyPMEI regulates the spatial patterning of distribution of esterified pectins in fruit.

  3. Fruits from ripening impaired, chlorophyll degraded and jasmonate insensitive tomato mutants have altered tocopherol content and composition.

    Science.gov (United States)

    Almeida, Juliana; Asís, Ramón; Molineri, Virginia Noel; Sestari, Ivan; Lira, Bruno Silvestre; Carrari, Fernando; Peres, Lázaro Eustáquio Pereira; Rossi, Magdalena

    2015-03-01

    Since isoprenoids are precursors in chlorophyll, carotenoid and tocopherol pathways, the study of their metabolism is of fundamental importance in understanding the regulatory cross-talk that contributes to the nutritional quality of tomato fruits. By means of an integrated analysis of metabolite and gene expression profiles, isoprenoid metabolism was dissected in ripening-impaired (ripening inhibitor and non-ripening), senescence-related (lutescent1 and green flesh) and jasmonate insensitive (jasmonic acid insensitive 1-1) tomato mutants, all in the Micro-Tom genetic background. It was found that the more upstream the location of the mutated gene, the more extensive the effect on the transcriptional profiles of the isoprenoid-related genes. Although there was a distinct effect in the analyzed mutations on chlorophyll, carotenoid and tocopherol metabolism, a metabolic adjustment was apparent such the antioxidant capacity mostly remained constant. Transcriptional profiles from fruits of ripening and senescence-related tomato mutants suggested that maintenance of the de novo phytyl diphosphate synthesis might, in later ripening stages, compensate for the lack of chlorophyll-derived phytol used in tocopherol production. Interestingly, an impairment in jasmonate perception led to higher total tocopherol levels in ripe fruits, accompanied by an increase in antioxidant capacity, highlighting the contribution of tocopherols to this nutritionally important trait.

  4. Availability of Micro-Tom mutant library combined with TILLING in molecular breeding of tomato fruit shelf-life.

    Science.gov (United States)

    Okabe, Yoshihiro; Asamizu, Erika; Ariizumi, Tohru; Shirasawa, Kenta; Tabata, Satoshi; Ezura, Hiroshi

    2012-06-01

    Novel mutant alleles of an ethylene receptor Solanum lycopersicum ETHYLENE RESPONSE1 (SlETR1) gene, Sletr1-1 and Sletr1-2, were isolated from the Micro-Tom mutant library by TILLING in our previous study. They displayed different levels of impaired fruit ripening phenotype, suggesting that these alleles could be a valuable breeding material for improving shelf life of tomato fruit. To conduct practical use of the Sletr1 alleles in tomato breeding, genetic complementation analysis by transformation of genes carrying each allele is required. In this study, we generated and characterized transgenic lines over-expressing Sletr1-1 and Sletr1-2. All transgenic lines displayed ethylene insensitive phenotype and ripening inhibition, indicating that Sletr1-1 and Sletr1-2 associate with the ethylene insensitive phenotype. The level of ethylene sensitivity in the seedling was different between Sletr1-1 and Sletr1-2 transgenic lines, whereas no apparent difference was observed in fruit ripening phenotype. These results suggested that it is difficult to fine-tune the extent of ripening by transgenic approach even if the weaker allele (Sletr1-2) was used. Our present and previous studies indicate that the Micro-Tom mutant library combined with TILLING could be an efficient tool for exploring genetic variations of important agronomic traits in tomato breeding.

  5. Light affects ascorbate content and ascorbate-related gene expression in tomato leaves more than in fruits.

    Science.gov (United States)

    Massot, Capucine; Stevens, Rebecca; Génard, Michel; Longuenesse, Jean-Jacques; Gautier, Hélène

    2012-01-01

    Little is known about the light regulation of vitamin C synthesis in fruits. In contrast, previous studies in leaves revealed that VTC2 (coding for GDP-L: -galactose phosphorylase) was one of the key genes up-regulated by light in leaves. Our objective was to determine how the expression of ascorbate (AsA) synthesis genes in tomato (Solanum lycopersicum) was modified according to light irradiance in both leaves and fruits. Seven days of shading strongly decreased total ascorbate (reduced and oxidized form) content in leaves (50%) and to a lesser extent in fruits (10%). Among the last six steps of AsA biosynthesis, only two genes, VTC2 and GPP1 (one of the two unigenes coding for L: -galactose-1-P phosphatase in tomato), were down-regulated by long-term shading in red ripe fruits, compared to seven genes regulated in leaves. This underlines that light affects AsA-related gene expression more in leaves than in ripening fruits. Moreover, this study reveals strong daily changes in transcript levels of enzymes of the AsA biosynthetic pathway in leaves (11 of the 12 studied genes showed significant changes in their expression pattern). Among those genes, we found that diurnal variation in transcript levels of VTC2 and GME1 correlated to leaf AsA content measured 8 h later. This study provides a new hypothesis on the role of GME1 in addition to VTC2 in light-regulated AsA biosynthesis.

  6. Effect of Zinc and Manganese Nutrition on Fruit Yield and Nutrient Concentrations in Greenhouse Tomato in Hydroponic Culture

    Directory of Open Access Journals (Sweden)

    A. Tavassoli

    2010-06-01

    Full Text Available Abstract This research was performed in a completely randomized block design with four replications to investigate zinc (Zn and manganese (Mn nutrition effects on greenhouse tomato (Lycopersicon esculentum Mill. cv. HAMRA in a perlite-containing media. Experimental treatments were: (1 control (Mn and Zn-free nutrient solution, (2 application of Mn in a concentration equal to the full Hoagland’s nutrient solution (4.06 mg/l, (3 application of Zn in a concentration equal to the full Hoagland’s nutrient solution (4.42 mg/l, (4 application of Mn and Zn in concentrations equal to the 50% Hoagland’s nutrient solution (2.03 mg/l Mn + 2.21 mg/l Zn, and (5 application of Mn and Zn in concentrations equal to the full Hoagland’s nutrient solution (4.06 mg/l Mn + 4.42 mg/l Zn. Results showed that the highest fresh-fruit yield, fruit and leaf dry matter and content of Mn and Zn in fruit were obtained from single or combined application of Mn and Zn in concentrations equal to the full Hoagland’s nutrient solution. In addition, Zn and Mn nutrition significantly affected the fruit concentrations of crude protein, nitrogen and phosphorus, while the effect of these treatments on fruit size of tomato was not significant.

  7. Study protocol: a cluster randomised controlled trial of a school based fruit and vegetable intervention – Project Tomato

    Directory of Open Access Journals (Sweden)

    Conner Mark T

    2009-06-01

    Full Text Available Abstract Background The School Fruit and Vegetable Scheme (SFVS is an important public health intervention. The aim of this scheme is to provide a free piece of fruit and/or vegetable every day for children in Reception to Year 2. When children are no longer eligible for the scheme (from Year 3 their overall fruit and vegetable consumption decreases back to baseline levels. This proposed study aims to design a flexible multi-component intervention for schools to support the maintenance of fruit and vegetable consumption for Year 3 children who are no longer eligible for the scheme. Method This study is a cluster randomised controlled trial of Year 2 classes from 54 primary schools across England. The schools will be randomly allocated into two groups to receive either an active intervention called Project Tomato, to support maintenance of fruit intake in Year 3 children, or a less active intervention (control group, consisting of a 5 A DAY booklet. Children's diets will be analysed using the Child And Diet Evaluation Tool (CADET, and height and weight measurements collected, at baseline (Year 2 and 18 month follow-up (Year 4. The primary outcome will be the ability of the intervention (Project Tomato to maintain consumption of fruit and vegetable portions compared to the control group. Discussion A positive result will identify how fruit and vegetable consumption can be maintained in young children, and will be useful for policies supporting the SFVS. A negative result would be used to inform the research agenda and contribute to redefining future strategies for increasing children's fruit and vegetable consumption. Trial registration Medical Research Council Registry code G0501297

  8. The Effect of Methyl Jasmonate Vapour on Some Characteristics of Fruit Ripening, Carotenoids and Tomatine Changes in Tomato (Lycopersicon esculentum Mill.

    Directory of Open Access Journals (Sweden)

    Janusz Czapski

    2013-12-01

    Full Text Available Tomato ripening in normal red-fruited cultivar (Fiorin was delayed by treatment with methyl jasmonate (JA-Me vapour. A visual scoring system for describing tomato ripening was used. Surface of fruits exposed to JA-Me vapour, increased in yellow and decreased in red as determined by HunterLab colour meter. JA-Me significantly altered the firmness of fruits after 21 days storage. Vapour of JA-Me enhanced the level of β-carotene in outer part (peel with 3 mm pericarp tissue of fruit, while it had no effect in peeled fruit pericarp. JA-Me treatment decreased the level of lycopene in outer part and pericarp tissue, however, in outer part lycopene content decreased at a higher rate than in pericarp. Amount of tomatine in fruits treated with JA-Me had enhanced four-fold in outer part and by 62% in peeled fruit pericarp as compared with the control.

  9. A Near Infrared Spectroscopy (NIRS) and Chemometric Approach to Improve Apple Fruit Quality Management: A Case Study on the Cultivars "Cripps Pink" and "Braeburn".

    Science.gov (United States)

    Eisenstecken, Daniela; Panarese, Alessia; Robatscher, Peter; Huck, Christian W; Zanella, Angelo; Oberhuber, Michael

    2015-07-24

    The potential of near infrared spectroscopy (NIRS) in the wavelength range of 1000-2500 nm for predicting quality parameters such as total soluble solids (TSS), acidity (TA), firmness, and individual sugars (glucose, fructose, sucrose, and xylose) for two cultivars of apples ("Braeburn" and "Cripps Pink") was studied during the pre- and post-storage periods. Simultaneously, a qualitative investigation on the capability of NIRS to discriminate varieties, harvest dates, storage periods and fruit inhomogeneity was carried out. In order to generate a sample set with high variability within the most relevant apple quality traits, three different harvest time points in combination with five different storage periods were chosen, and the evolution of important quality parameters was followed both with NIRS and wet chemical methods. By applying a principal component analysis (PCA) a differentiation between the two cultivars, freshly harvested vs. long-term stored apples and, notably, between the sun-exposed vs. shaded side of apples could be found. For the determination of quality parameters effective prediction models for titratable acid (TA) and individual sugars such as fructose, glucose and sucrose by using partial least square (PLS) regression have been developed. Our results complement earlier reports, highlighting the versatility of NIRS as a fast, non-invasive method for quantitative and qualitative studies on apples.

  10. Wide-genome QTL mapping of fruit quality traits in a tomato RIL population derived from the wild-relative species Solanum pimpinellifolium L.

    Science.gov (United States)

    Capel, Carmen; Fernández del Carmen, Asunción; Alba, Juan Manuel; Lima-Silva, Viviana; Hernández-Gras, Francesc; Salinas, María; Boronat, Albert; Angosto, Trinidad; Botella, Miguel A; Fernández-Muñoz, Rafael; Granell, Antonio; Capel, Juan; Lozano, Rafael

    2015-10-01

    QTL and candidate genes associated to fruit quality traits have been identified in a tomato genetic map derived from Solanum pimpinellifolium L., providing molecular tools for marker-assisted breeding. The study of genetic, physiological, and molecular pathways involved in fruit development and ripening has considered tomato as the model fleshy-fruited species par excellence. Fruit quality traits regarding organoleptic and nutritional properties are major goals for tomato breeding programs since they largely decide the acceptance of tomato in both fresh and processing markets. Here we report the genetic mapping of single-locus and epistatic quantitative trait loci (QTL) associated to the fruit size and content of sugars, acids, vitamins, and carotenoids from the characterization of a RIL population derived from the wild-relative Solanum pimpinellifolium TO-937. A genetic map composed of 353 molecular markers including 13 genes regulating fruit and developmental traits was generated, which spanned 1007 cM with an average distance between markers of 2.8 cM. Genetic analyses indicated that fruit quality traits analyzed in this work exhibited transgressive segregation and that additive and epistatic effects are the major genetic basis of fruit quality traits. Moreover, most mapped QTL showed environment interaction effects. FrW7.1 fruit size QTL co-localized with QTL involved in soluble solid, vitamin C, and glucose contents, dry weight/fresh weight, and most importantly with the Sucrose Phosphate Synthase gene, suggesting that polymorphisms in this gene could influence genetic variation in several fruit quality traits. In addition, 1-deoxy-D-xylulose 5-phosphate synthase and Tocopherol cyclase genes were identified as candidate genes underlying QTL variation in beta-carotene and vitamin C. Together, our results provide useful genetic and molecular information regarding fruit quality and new chances for tomato breeding by implementing marker-assisted selection.

  11. A 'Big leaf, big fruit, big substrate' model for experiments on receding horizon optimal control of nutrient supply to greenhouse tomato

    NARCIS (Netherlands)

    Straten, van G.; Vanthoor, B.H.E.; Willigenburg, van L.G.; Elings, A.

    2006-01-01

    A dynamic model was set up to describe the mineral content, fruit dry matter content, and biomass of greenhouse tomato, for use in an experiment aiming at controlling the fertigation so as to reach the best compromise between disinfection costs of the recycled water and income from fruit fresh weigh

  12. Coatings comprising chitosan and Mentha piperita L. or Mentha × villosa Huds essential oils to prevent common postharvest mold infections and maintain the quality of cherry tomato fruit.

    Science.gov (United States)

    Guerra, Ingrid Conceição Dantas; de Oliveira, Priscila Dinah Lima; Pontes, Alline Lima de Souza; Lúcio, Ana Sílvia Suassuna Carneiro; Tavares, Josean Fechine; Barbosa-Filho, José Maria; Madruga, Marta Suely; de Souza, Evandro Leite

    2015-12-02

    In this study, we evaluated the efficacy of coatings comprising shrimp chitosan (CHI) and Mentha piperita L. (MPEO) or Mentha × villosa Huds (MVEO) essential oils to control mold infections caused by Aspergillus niger, Botrytis cinerea, Penicillium expansum and Rhizopus stolonifer in cherry tomato fruits (Solanum lycopersicum L.) during storage at room temperature (25°C for 12 days) and low temperature (12°C for 24 days). The effects of the coatings on the physicochemical and sensory characteristics of cherry tomato fruits during storage were also assessed. The minimum inhibitory concentration (MIC) of CHI against all test fungi was 8 mg/mL, whereas the MIC for both MPEO and MVEO was 5 μL/mL. Combinations of CHI at 4 mg/mL and MPEO or MVEO at 2.5 or 1.25 μL/mL strongly inhibited the mycelial growth and spore germination of target fungi. The coatings comprising CHI and MPEO or CHI and MVEO at the different tested concentrations delayed the growth of decay-causing fungi in artificially contaminated tomato fruit during storage at either room temperature or low temperature. The assayed coatings preserved the quality of cherry tomato fruit during storage, in terms of physicochemical and sensory attributes. These results indicate that coatings comprising CHI and MPEO or CHI and MVEO represent promising postharvest treatments to prevent common postharvest mold infections in cherry tomato fruit during storage without affecting the quality of the fruit.

  13. MicroRNA profiling analysis throughout tomato fruit development and ripening reveals potential regulatory role of RIN on microRNAs accumulation.

    Science.gov (United States)

    Gao, Chao; Ju, Zheng; Cao, Dongyan; Zhai, Baiqiang; Qin, Guozheng; Zhu, Hongliang; Fu, Daqi; Luo, Yunbo; Zhu, Benzhong

    2015-04-01

    The development and ripening of tomato fruit are complex processes involving many gene regulatory pathways at the transcriptional and post-transcriptional level. Ripening inhibitor (RIN) is a vital transcription factor, which targets numerous ripening-related genes at the transcriptional level during tomato fruit ripening. MicroRNAs (miRNAs) are a class of short noncoding RNAs that play important roles in post-transcriptional gene regulation. To elucidate the potential regulatory relationship between rin and miRNAs during fruit development and ripening, we identified known miRNAs and profiled their expression in wild-type tomato and rin mutant using a deep sequencing approach combined with quantitative RT-PCR. A total of 33 known miRNA families were identified, of which 14 miRNA families were differently accumulated. Subsequent promoter analysis showed that possible RIN-binding motifs (CArG-box) tended to occur frequently in the promoter regions of partial differently expressed miRNAs. In addition, ethylene may participate in the regulation of miRNAs accumulation during tomato fruit ripening. Chromatin immunoprecipitation (ChIP) and electrophoretic mobility shift assay confirmed the direct binding of RIN to the promoter of MIR172a. Collectively, these results showed a close correlation between miRNA expression and RIN as well as ethylene, which further elucidated the regulatory roles of miRNAs during fruit development and ripening and enriched the regulatory network of RIN in tomato fruit.

  14. Characterization of a calcium/calmodulin-regulated SR/CAMTA gene family during tomato fruit development and ripening

    Directory of Open Access Journals (Sweden)

    Yang Tianbao

    2012-02-01

    Full Text Available Abstract Background Fruit ripening is a complicated development process affected by a variety of external and internal cues. It is well established that calcium treatment delays fruit ripening and senescence. However, the underlying molecular mechanisms remain unclear. Results Previous studies have shown that calcium/calmodulin-regulated SR/CAMTAs are important for modulation of disease resistance, cold sensitivity and wounding response in vegetative tissues. To study the possible roles of this gene family in fruit development and ripening, we cloned seven SR/CAMTAs, designated as SlSRs, from tomato, a model fruit-bearing crop. All seven genes encode polypeptides with a conserved DNA-binding domain and a calmodulin-binding site. Calmodulin specifically binds to the putative targeting site in a calcium-dependent manner. All SlSRs were highly yet differentially expressed during fruit development and ripening. Most notably, the expression of SlSR2 was scarcely detected at the mature green and breaker stages, two critical stages of fruit development and ripening; and SlSR3L and SlSR4 were expressed exclusively in fruit tissues. During the developmental span from 10 to 50 days post anthesis, the expression profiles of all seven SlSRs were dramatically altered in ripening mutant rin compared with wildtype fruit. By contrast, only minor alterations were noted for ripening mutant nor and Nr fruit. In addition, ethylene treatment of mature green wildtype fruit transiently stimulated expression of all SlSRs within one to two hours. Conclusions This study indicates that SlSR expression is influenced by both the Rin-mediated developmental network and ethylene signaling. The results suggest that calcium signaling is involved in the regulation of fruit development and ripening through calcium/calmodulin/SlSR interactions.

  15. A transcriptomic approach to identify regulatory genes involved in fruit set of wild-type and parthenocarpic tomato genotypes.

    Science.gov (United States)

    Ruiu, Fabrizio; Picarella, Maurizio Enea; Imanishi, Shunsuke; Mazzucato, Andrea

    2015-10-01

    The tomato parthenocarpic fruit (pat) mutation associates a strong competence for parthenocarpy with homeotic transformation of anthers and aberrancy of ovules. To dissect this complex floral phenotype, genes involved in the pollination-independent fruit set of the pat mutant were investigated by microarray analysis using wild-type and mutant ovaries. Normalized expression data were subjected to one-way ANOVA and 2499 differentially expressed genes (DEGs) displaying a >1.5 log-fold change in at least one of the pairwise comparisons analyzed were detected. DEGs were categorized into 20 clusters and clusters classified into five groups representing transcripts with similar expression dynamics. The "regulatory function" group (685 DEGs) contained putative negative or positive fruit set regulators, "pollination-dependent" (411 DEGs) included genes activated by pollination, "fruit growth-related" (815 DEGs) genes activated at early fruit growth. The last groups listed genes with different or similar expression pattern at all stages in the two genotypes. qRT-PCR validation of 20 DEGs plus other four selected genes assessed the high reliability of microarray expression data; the average correlation coefficient for the 20 DEGs was 0.90. In all the groups were evidenced relevant transcription factors encoding proteins regulating meristem differentiation and floral organ development, genes involved in metabolism, transport and response of hormones, genes involved in cell division and in primary and secondary metabolism. Among pathways related to secondary metabolites emerged genes related to the synthesis of flavonoids, supporting the recent evidence that these compounds are important at the fruit set phase. Selected genes showing a de-regulated expression pattern in pat were studied in other four parthenocarpic genotypes either genetically anonymous or carrying lesions in known gene sequences. This comparative approach offered novel insights for improving the present

  16. Laser microdissection of tomato fruit cell and tissue types for transcriptome profiling.

    Science.gov (United States)

    Martin, Laetitia B B; Nicolas, Philippe; Matas, Antonio J; Shinozaki, Yoshihito; Catalá, Carmen; Rose, Jocelyn K C

    2016-12-01

    This protocol enables transcriptome profiling of specific cell or tissue types that are isolated from tomato using laser microdissection (LM). To prepare tissue for LM, fruit samples are first fixed in optimal cutting temperature (OCT) medium and frozen in molds. The tissue is then sectioned using a cryostat before being dissected using an LM instrument. The RNAs contained in the harvested cells are purified and subjected to two rounds of amplification to yield sufficient quantities of RNA to generate cDNA libraries. Unlike several other techniques that are used to isolate specific cell types, LM has the advantage of being readily applied to any plant species without having to generate transgenic plants. Using the protocols described here, LM-mediated cell-type transcriptomic analysis of two samples requires ∼8 d from tissue harvest to RNA sequencing (RNA-seq), whereas each additional sample, up to a total of 12 samples, requires ∼1 additional day for the LM step. RNA obtained using this method has been successfully used for deep-coverage transcriptome profiling, which is a particularly effective strategy for identifying genes that are differentially expressed between cell or tissue types.

  17. Peroxidase complex with concomitant anodal and cathodal variation in red-fruited tomato species.

    Science.gov (United States)

    Rick, C M; Fobes, J F

    1976-03-01

    Four groups of bands (a-d) are controlled by 19 alleles of the Peroxidase-4 (Prx-4) complex in the red-fruited tomato species, Lycopersicon esculentum and L. pimpinellifolium. Heterozygotes can be detected by virtue of codominance in all combinations except a few in which bands of single groups are absent ("semi-null" alleles). No recombinations were detected in 7419 F(2) segregants of 53 different combinations of alleles. A maximum fiducial limit (P = 0.01) of 0.08% crossing-over between any Prx-4 band groups is estimated. Variation of the anodal b bands is absolutely associated with that of the cathodal d band in respect to presence versus absence and direction of migration. In respect to the origin of these variants, the probability of 18 instances of simultaneous mutation of genes at two loci, always in such complete agreement, is so remote that no more than one locus could conceivably govern b and d. The disposition of a is not similarly associated with that of the other bands, while that of the faint-staining c could not always be reliably resolved. The negation of all save extremely low recombination rates and the observed concomitant variation of b and d strongly support the concept of single locus control of all Prx-4 banding, this hypothesis being espoused until rejection should be required be required by future research. Models of single locus control of several isozymes are discussed.

  18. Agrobacterium-mediated transformation of tomato with rolB gene results in enhancement of fruit quality and foliar resistance against fungal pathogens.

    Science.gov (United States)

    Arshad, Waheed; Haq, Ihsan-ul-; Waheed, Mohammad Tahir; Mysore, Kirankumar S; Mirza, Bushra

    2014-01-01

    Tomato (Solanum lycopersicum L.) is the second most important cultivated crop next to potato, worldwide. Tomato serves as an important source of antioxidants in human diet. Alternaria solani and Fusarium oxysporum cause early blight and vascular wilt of tomato, respectively, resulting in severe crop losses. The foremost objective of the present study was to generate transgenic tomato plants with rolB gene and evaluate its effect on plant morphology, nutritional contents, yield and resistance against fungal infection. Tomato cv. Rio Grande was transformed via Agrobacterium tumefaciens harbouring rolB gene of Agrobacterium rhizogenes. rolB. Biochemical analyses showed considerable improvement in nutritional quality of transgenic tomato fruits as indicated by 62% increase in lycopene content, 225% in ascorbic acid content, 58% in total phenolics and 26% in free radical scavenging activity. Furthermore, rolB gene significantly improved the defence response of leaves of transgenic plants against two pathogenic fungal strains A. solani and F. oxysporum. Contrarily, transformed plants exhibited altered morphology and reduced fruit yield. In conclusion, rolB gene from A. rhizogenes can be used to generate transgenic tomato with increased nutritional contents of fruits as well as improved foliar tolerance against fungal pathogens.

  19. Fruit-specific overexpression of wound-induced tap1 under E8 promoter in tomato confers resistance to fungal pathogens at ripening stage.

    Science.gov (United States)

    Kesanakurti, Divya; Kolattukudy, Pappachan E; Kirti, Pulugurtha Bhardwaja

    2012-10-01

    Based on high economic importance and nutritious value of tomato fruits and as previous studies employed E8 promoter in fruit ripening-specific gene expression, we have developed transgenic tomato plants overexpressing tomato anionic peroxidase cDNA (tap1) under E8 promoter. Stable transgene integration was confirmed by polymerase chain reaction (PCR) and Southern analysis for nptII. Northern blotting confirmed elevated tap1 levels in the breaker- and red-ripe stages of T(1) transgenic fruits, whereas wild-type (WT) plants did not show tap1 expression in these developmental stages. Further, tap1 expression levels were significantly enhanced in response to wounding in breaker- and red-ripe stages of transgenic fruits, whereas wound-induced expression of tap1 was not detected in WT fruits. Confocal microscopy revealed high accumulation of phenolic compounds at the wound site in transgenic fruits suggesting a role of tap1 in wound-induced phenolic polymerization. Total peroxidase activity has increased remarkably in transgenic pericarp tissues in response to wounding, while very less or minimal levels were recorded in WT pericarp tissues. Transgenic fruits also displayed reduced post-harvest decay and increased resistance toward Alternaria alternata and Fusarium solani infection with noticeable inhibition in lesion formation. Conidiospore germination and mycelial growth of F. solani were severely inhibited when treated with E8-tap1 fruit extracts compared to WT fruits. 3-(4,5-Dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide assay showed reduced spore viability when incubated in E8-tap1 fruit extracts. Thus, fruit-specific expression of tap1 using E8 promoter is associated with enhanced total peroxidase activity and high phenolic accumulation in fruits with minimized post-harvest deterioration caused by wounding and fungal attack in tomato fruits.

  20. Dynamic Regulation of Nitrogen and Organic Acid Metabolism of Cherry Tomato Fruit as Affected by Different Nitrogen Forms

    Institute of Scientific and Technical Information of China (English)

    XU Xin-Juan; LI Qing-Yu; SONG Xiao-Hui; Shen Qi-Rong; Dong Cai-Xia

    2012-01-01

    Cherry tomatoes (Lycopersicon esculentum Mill.,cv.hongyangli) were hydroponically cultivated in a greenhouse to determine the effect of different nitrogen (N) forms on organic acid concentration and the activities of related enzymes involved in nitrogen and organic acid metabolism during cherry tomato fruit development.The results showed that fruit nitrate reductase (NR) activity was much higher following treatment with 100% NO-3 and 75% NO-3 +25% NH+4 than with 100% NH+4 except at maturity.Glutamine synthetaee (GS) activity trended downward during fruit development under all three treatments.Plants fed 100% NH4+ had the lowest fruit citrate and malate levels at maturity,with the highest malate concentration at an early stage.The activity of phosphoenolpyruvate carboxylase (PEPC) was found to be in accord with the malate concentration with every N source.Under all three N forms,the citrate synthase (CS) activity peaked one week before the citrate concentration.

  1. Solid-State (13)C NMR Delineates the Architectural Design of Biopolymers in Native and Genetically Altered Tomato Fruit Cuticles.

    Science.gov (United States)

    Chatterjee, Subhasish; Matas, Antonio J; Isaacson, Tal; Kehlet, Cindie; Rose, Jocelyn K C; Stark, Ruth E

    2016-01-11

    Plant cuticles on outer fruit and leaf surfaces are natural macromolecular composites of waxes and polyesters that ensure mechanical integrity and mitigate environmental challenges. They also provide renewable raw materials for cosmetics, packaging, and coatings. To delineate the structural framework and flexibility underlying the versatile functions of cutin biopolymers associated with polysaccharide-rich cell-wall matrices, solid-state NMR spectra and spin relaxation times were measured in a tomato fruit model system, including different developmental stages and surface phenotypes. The hydrophilic-hydrophobic balance of the cutin ensures compatibility with the underlying polysaccharide cell walls; the hydroxy fatty acid structures of outer epidermal cutin also support deposition of hydrophobic waxes and aromatic moieties while promoting the formation of cell-wall cross-links that rigidify and strengthen the cuticle composite during fruit development. Fruit cutin-deficient tomato mutants with compromised microbial resistance exhibit less efficient local and collective biopolymer motions, stiffening their cuticular surfaces and increasing their susceptibility to fracture.

  2. Movement of Salmonella serovar Typhimurium and E. coli O157:H7 to Ripe Tomato Fruit Following Various Routes of Contamination.

    Science.gov (United States)

    Deering, Amanda J; Jack, Dan R; Pruitt, Robert E; Mauer, Lisa J

    2015-11-05

    Salmonella serovars have been associated with the majority of foodborne illness outbreaks involving tomatoes, and E. coli O157:H7 has caused outbreaks involving other fresh produce. Contamination by both pathogens has been thought to originate from all points of the growing and distribution process. To determine if Salmonella serovar Typhimurium and E. coli O157:H7 could move to the mature tomato fruit of different tomato cultivars following contamination, three different contamination scenarios (seed, leaf, and soil) were examined. Following contamination, each cultivar appeared to respond differently to the presence of the pathogens, with most producing few fruit and having overall poor health. The Micro-Tom cultivar, however, produced relatively more fruit and E. coli O157:H7 was detected in the ripe tomatoes for both the seed- and leaf- contaminated plants, but not following soil contamination. The Roma cultivar produced fewer fruit, but was the only cultivar in which E. coli O157:H7 was detected via all three routes of contamination. Only two of the five cultivars produced tomatoes following seed-, leaf-, and soil- contamination with Salmonella Typhimurium, and no Salmonella was found in any of the tomatoes. Together these results show that different tomato cultivars respond differently to the presence of a human pathogen, and for E. coli O157:H7, in particular, tomato plants that are either contaminated as seeds or have a natural opening or a wound, that allows bacteria to enter the leaves can result in plants that have the potential to produce tomatoes that harbor internalized pathogenic bacteria.

  3. Movement of Salmonella serovar Typhimurium and E. coli O157:H7 to Ripe Tomato Fruit Following Various Routes of Contamination

    Directory of Open Access Journals (Sweden)

    Amanda J. Deering

    2015-11-01

    Full Text Available Salmonella serovars have been associated with the majority of foodborne illness outbreaks involving tomatoes, and E. coli O157:H7 has caused outbreaks involving other fresh produce. Contamination by both pathogens has been thought to originate from all points of the growing and distribution process. To determine if Salmonella serovar Typhimurium and E. coli O157:H7 could move to the mature tomato fruit of different tomato cultivars following contamination, three different contamination scenarios (seed, leaf, and soil were examined. Following contamination, each cultivar appeared to respond differently to the presence of the pathogens, with most producing few fruit and having overall poor health. The Micro-Tom cultivar, however, produced relatively more fruit and E. coli O157:H7 was detected in the ripe tomatoes for both the seed- and leaf- contaminated plants, but not following soil contamination. The Roma cultivar produced fewer fruit, but was the only cultivar in which E. coli O157:H7 was detected via all three routes of contamination. Only two of the five cultivars produced tomatoes following seed-, leaf-, and soil- contamination with Salmonella Typhimurium, and no Salmonella was found in any of the tomatoes. Together these results show that different tomato cultivars respond differently to the presence of a human pathogen, and for E. coli O157:H7, in particular, tomato plants that are either contaminated as seeds or have a natural opening or a wound, that allows bacteria to enter the leaves can result in plants that have the potential to produce tomatoes that harbor internalized pathogenic bacteria.

  4. iTRAQ protein profile analysis of tomato green-ripe mutant reveals new aspects critical for fruit ripening.

    Science.gov (United States)

    Pan, Xiaoqi; Zhu, Benzhong; Zhu, Hongliang; Chen, Yuexi; Tian, Huiqin; Luo, Yunbo; Fu, Daqi

    2014-04-01

    Green-ripe (Gr) tomato carries a dominant mutation and yields a nonripening fruit phenotype. The mutation results from a 334 bp deletion in a gene of unknown function at the Gr locus. The putative influence of Gr gene-deletion mutation on biochemical changes underlying the nonripening phenotype remains largely unknown. Respiration of Gr fruit was found to be reduced at mature green and breaker stage of ripening, while the fruit softening was dramatically prolonged. We studied the proteome of Gr mutant fruit using high-throughput iTRAQ and high-resolution mass spectrometry and identified 43 proteins representing 43 individual genes as potential influence-targets of Gr mutated fruit. The identified proteins are involved in several ripening-related pathways including cell-wall metabolism, photosynthesis, oxidative phosphorylation, carbohydrate and fatty acid metabolism, protein synthesis, and processing. Affected protein levels are correlated with the corresponding gene transcript levels. The modulation in the accumulation levels of PI(U1)P, PGIP, and PG2 supported the delayed softening phenotype of the Gr fruit. Further investigation in GR gene-silencing fruit ascertained the doubtless modulation of these targets by the deletion mutation of GR gene.

  5. Optimization and development of a high-performance liquid chromatography method for the simultaneous determination of vitamin E and carotenoids in tomato fruits.

    Science.gov (United States)

    Irakli, Maria; Chatzopoulou, Paschalina; Kadoglidou, Kalliopi; Tsivelika, Nektaria

    2016-09-01

    A simple and reliable high-performance liquid chromatography method was developed and validated for the simultaneous determination of lipophilic antioxidants in tomato fruits using C30 column operated at 15°C and a gradient mobile phase based on acetonitrile/methanol/dichloromethane in a total run time of 30 min. Diode array and fluorescence detectors were used respectively for the detection of carotenoids (lutein, zeaxanthin, cryptoxanthin, lycopene, and β-carotene) and vitamin E analogs (α-, β-, γ-, and δ-tocopherols, and tocotrienols). The best extraction yield of analytes in tomato fruits was achieved by employing ethyl acetate/hexane (1:1, v/v) after several treatments with various solvents. In addition, low extraction yields were obtained for carotenoids compared to tocopherols by adopting solid-phase extraction as a second clean-up step. The method was validated on the basis of recovery, precision, linearity, and limit of detection and quantification using spiked tomato samples. The method was applied to cherry and medium-sized tomato fruits. Lycopene was found to be present in largest amount in tomato pulp, followed by β-carotene and lutein. Due to its simplicity, rapidity, and efficiency, the method is suitable for routine analysis of lipophilic antioxidants in tomato fruits, and may also be applied to other vegetables of similar phytochemical profiles.

  6. Effect of different growing substrates on the plant water relations and marketable fruit yield greenhouse-grown tomato (Lycopersicon esculentum Mill.

    Directory of Open Access Journals (Sweden)

    Edward Borowski

    2012-10-01

    Full Text Available In the period 2009-2011, a study was conducted in a greenhouse, using fertigation, to determine water relations and fruit yield of tomato grown in different substrates. Tomato plants were grown on rockwool slabs, 15 dm3  in volume, and on slabs of the same volume made of the following straw chaff: rape straw; rape straw + peat (3:1; rape straw + pine bark (3:1; triticale straw; triticale straw + peat (3:1; triticale straw + pine bark (3:1. 2 tomato plants were grown on each slab, leaving 22 fruit clusters on each plant during the period from February to October. The obtained results showed that water potential, stomatal conductance, transpiration, water saturation deficit, and leaf free proline content in tomato grown on rockwool and on rape or triticale straw chaff substrates did not differ statistically significantly. Also, no significant differences were found in marketable tomato fruit yield and dry matter content in tomato fruits. Peat or pine bark addition to rape or triticale straw substrates had no significant effect on the change in their commercially useful traits. In the opinion of the present authors, substrates made of rape or triticale straw alone, and even more so with the addition of peat or bark, are not inferior in any way to commonly used rockwool.

  7. A chitosan coating containing essential oil from Origanum vulgare L. to control postharvest mold infections and keep the quality of cherry tomato fruit

    Directory of Open Access Journals (Sweden)

    Tainá Barreto

    2016-11-01

    Full Text Available The efficacy of an edible chitosan coating (CHI; 4 mg/mL and Origanum vulgare L. essential oil (OVEO; 1.25 µL/mL for maintaining the quality of cherry tomato fruit during storage at room (25 °C; 12 days and cold (12 °C; 24 days temperatures was assessed. CHI and OVEO in combination showed in vitro fungicidal effects against R. stolonifer and Aspergillus niger. CHI-OVEO coating reduced the incidence of black mold and soft rot caused by these fungi in artificially contaminated cherry tomato fruit during storage at both temperatures by more than. CHI-OVEO coating delayed the appearance of the first visible signs of black mold and soft rot in artificially contaminated cherry tomato fruit stored at room temperature by six days and by more than nine days in those stored at cold temperature. At the end of storage at room and cold temperature fruit coated with CHI-OVEO showed higher firmness ( > 2 N/mm and lower weight loss ( > 2 % compared to uncoated tomato fruit. CHI-OVEO coating delayed the decrease of lycopene, ascorbic citric acid, glucose and fructose during the storage time assessed at room or cold temperatures. The increase of catechin, myricetin, caffeic and syringic acids was higher (1 - 9 mg/g in cherry tomato fruit coated with CHI-OVEO compared to uncoated fruit during the storage at both temperatures studied. CHI-OVEO coating is a feasible treatment for maintaining the storage quality of cherry tomato fruit.

  8. A Chitosan Coating Containing Essential Oil from Origanum vulgare L. to Control Postharvest Mold Infections and Keep the Quality of Cherry Tomato Fruit

    Science.gov (United States)

    Barreto, Tainá A.; Andrade, Sonalle C. A.; Maciel, Janeeyre F.; Arcanjo, Narciza M. O.; Madruga, Marta S.; Meireles, Bruno; Cordeiro, Ângela M. T.; Souza, Evandro L.; Magnani, Marciane

    2016-01-01

    The efficacy of an edible chitosan coating (CHI; 4 mg/mL) and Origanum vulgare L. essential oil (OVEO; 1.25 μL/mL) for maintaining the quality of cherry tomato fruit during storage at room (25°C; 12 days) and cold (12°C; 24 days) temperatures was assessed. CHI and OVEO in combination showed in vitro fungicidal effects against R. stolonifer and Aspergillus niger. CHI-OVEO coating reduced the incidence of black mold and soft rot caused by these fungi in artificially contaminated cherry tomato fruit during storage at both temperatures. CHI-OVEO coating delayed the appearance of the first visible signs of black mold and soft rot in artificially contaminated cherry tomato fruit stored at room temperature by 6 days and by more than 9 days in those stored at cold temperature. At the end of storage at room and cold temperature fruit coated with CHI-OVEO showed higher firmness (>2 N/mm) and lower weight loss (>2%) compared to uncoated tomato fruit. CHI-OVEO coating delayed the decrease of lycopene, ascorbic citric acid, glucose and fructose during the storage time assessed at room or cold temperatures. The increase of catechin, myricetin, caffeic and syringic acids was higher (1–9 mg/g) in cherry tomato fruit coated with CHI-OVEO compared to uncoated fruit during the storage at both temperatures studied. CHI-OVEO coating is a feasible treatment for maintaining the storage quality of cherry tomato fruit. PMID:27877156

  9. Regulations on growth and development in tomato cotyledon, flower and fruit via destruction of miR396 with short tandem target mimic.

    Science.gov (United States)

    Cao, Dongyan; Wang, Jiao; Ju, Zheng; Liu, Qingqing; Li, Shan; Tian, Huiqin; Fu, Daqi; Zhu, Hongliang; Luo, Yunbo; Zhu, Benzhong

    2016-06-01

    Despite many studies about functions of miR396 were concentrated on cotyledon and leaf growth and development, only few researches were focused on flower and fruit, especially for fleshy fruit, for example, tomato fruit. Here, the roles of miR396 throughout the growth and development of tomato plant were explored with combining bioinformatics and transgene-mediated methods. In tomato, miR396 had two mature types (miR396a and miR396b), and miR396a expressed significantly higher than miR396b in cotyledon, flower, sepal and fruit. Generally, plant growth and development were regulated by miR396 via growth-regulating factors (GRFs). In tomato, all 13 SlGRFs were analyzed comprehensively, including phylogeny, domain and expression patterns. To investigate the roles of miR396 further, STTM396a/396a-88 was over-expressed in tomato, which induced miR396a and miR396b both dramatical down-regulation, and the target GRFs general up-regulation. As a result, the flowers, sepals and fruits all obviously became bigger. Most significantly, the sepal length of transgenic lines #3 and #4 at 39 days post-anthesis was separately increased 75% and 81%, and the fruit weight was added 45% and 39%, respectively. Overall, these results revealed novel roles of miR396 in regulating flower and fruit development, and provided a new potential way for improving tomato fruit yield.

  10. Efficacy of a coating composed of chitosan from Mucor circinelloides and carvacrol to control Aspergillus flavus and the quality of cherry tomato fruits

    Science.gov (United States)

    de Souza, Evandro L.; Sales, Camila V.; de Oliveira, Carlos E. V.; Lopes, Laênia A. A.; da Conceição, Maria L.; Berger, Lúcia R. R.; Stamford, Thayza C. M.

    2015-01-01

    Cherry tomato (Lycopersicon esculentum Mill) fruits are susceptible to contamination by Aspergillus flavus, which may cause the development of fruit rot and significant postharvest losses. Currently there are significant drawbacks for the use of synthetic fungicides to control pathogenic fungi in tomato fruits, and it has increased the interest in exploring new alternatives to control the occurrence of fungal infections in these fruits. This study evaluated the efficacy of chitosan (CHI) from Mucor circinelloides in combination with carvacrol (CAR) in inhibiting A. flavus in laboratory media and as a coating on cherry tomato fruits (25°C, 12 days and 12°C, 24 days). During a period of storage, the effect of coatings composed of CHI and CAR on autochthonous microflora, as well as on some quality characteristics of the fruits such as weight loss, color, firmness, soluble solids, and titratable acidity was evaluated. CHI and CAR displayed MIC valuesof 7.5 mg/mL and 10 μL/mL, respectively, against A. flavus. The combined application of CHI (7.5 or 3.75 mg/mL) and CAR (5 or 2.5 μL/mL) strongly inhibited the mycelial growth and spore germination of A. flavus. The coating composed of CHI (3.75 mg/mL) and CAR (2.5 or 1.25 μL/mL) inhibited the growth of A. flavus in artificially contaminated fruits, as well as the native fungal microflora of the fruits stored at room or low temperature. The application of the tested coatings preserved the quality of cherry tomato fruits as measured by some physicochemical attributes. From this, composite coatings containing CHI and CAR offer a promising alternative to control postharvest infection caused by A. flavus or native fungal microflora in fresh cherry tomato fruits without negatively affecting their quality over storage. PMID:26257717

  11. Efficacy of a coating composed of chitosan from Mucor circinelloides and carvacrol to control Aspergillus flavus and the quality of cherry tomato fruits

    Directory of Open Access Journals (Sweden)

    Evandro eDe Souza

    2015-07-01

    Full Text Available Cherry tomato (Lycopersicon esculentum Mill fruits are susceptible to contamination by Aspergillus flavus, which may cause the development of fruit rot and significant postharvest losses. Currently there are significant drawbacks for the use of synthetic fungicides to control pathogenic fungi in tomato fruits, and it has increased the interest in exploring new alternatives to control the occurrence of fungal infections in these fruits. This study evaluated the efficacy of chitosan (CHI from M. circinelloides in combination with carvacrol (CAR in inhibiting A. flavus in laboratory media and as a coating on cherry tomato fruits (25 °C, 12 days and 12 °C, 24 days. During a period of storage, the effect of coatings composed of CHI and CAR on autochthonous microflora, as well as on some quality characteristics of the fruits such as weight loss, color, firmness, soluble solids and titratable acidity was evaluated. CHI and CAR displayed MIC values of 7.5 mg/mL and 10 µL/mL, respectively, against A. flavus. The combined application of CHI (7.5 or 3.75 mg/mL and CAR (5 or 2.5 µL/mL strongly inhibited the mycelial growth and spore germination of A. flavus. The coating composed of CHI (3.75 mg/mL and CAR (2.5 or 1.25 µL/mL inhibited the growth of A. flavus in artificially contaminated fruits, as well as the native fungal microflora of the fruits stored at room or low temperature. The application of the tested coatings preserved the quality of cherry tomato fruits as measured by some physicochemical attributes. From this, composite coatings containing CHI and CAR offer a promising alternative to control postharvest infection caused by A. flavus or native fungal microflora in fresh cherry tomato fruits without negatively affecting their quality over storage.

  12. Efficacy of a coating composed of chitosan from Mucor circinelloides and carvacrol to control Aspergillus flavus and the quality of cherry tomato fruits.

    Science.gov (United States)

    de Souza, Evandro L; Sales, Camila V; de Oliveira, Carlos E V; Lopes, Laênia A A; da Conceição, Maria L; Berger, Lúcia R R; Stamford, Thayza C M

    2015-01-01

    Cherry tomato (Lycopersicon esculentum Mill) fruits are susceptible to contamination by Aspergillus flavus, which may cause the development of fruit rot and significant postharvest losses. Currently there are significant drawbacks for the use of synthetic fungicides to control pathogenic fungi in tomato fruits, and it has increased the interest in exploring new alternatives to control the occurrence of fungal infections in these fruits. This study evaluated the efficacy of chitosan (CHI) from Mucor circinelloides in combination with carvacrol (CAR) in inhibiting A. flavus in laboratory media and as a coating on cherry tomato fruits (25°C, 12 days and 12°C, 24 days). During a period of storage, the effect of coatings composed of CHI and CAR on autochthonous microflora, as well as on some quality characteristics of the fruits such as weight loss, color, firmness, soluble solids, and titratable acidity was evaluated. CHI and CAR displayed MIC valuesof 7.5 mg/mL and 10 μL/mL, respectively, against A. flavus. The combined application of CHI (7.5 or 3.75 mg/mL) and CAR (5 or 2.5 μL/mL) strongly inhibited the mycelial growth and spore germination of A. flavus. The coating composed of CHI (3.75 mg/mL) and CAR (2.5 or 1.25 μL/mL) inhibited the growth of A. flavus in artificially contaminated fruits, as well as the native fungal microflora of the fruits stored at room or low temperature. The application of the tested coatings preserved the quality of cherry tomato fruits as measured by some physicochemical attributes. From this, composite coatings containing CHI and CAR offer a promising alternative to control postharvest infection caused by A. flavus or native fungal microflora in fresh cherry tomato fruits without negatively affecting their quality over storage.

  13. Fast determination of prominent carotenoids in tomato fruits by CEC using methacrylate ester-based monolithic columns.

    Science.gov (United States)

    Adalid, Ana Maria; Herrero-Martínez, José Manuel; Roselló, Salvador; Maquieira, Angel; Nuez, Fernando

    2007-11-01

    In this study, the major carotenoids (beta-carotene and lycopene) present in tomato fruits were analyzed by CEC with a methacrylate ester-based monolithic column. The effects of the porogenic solvent ratio, and the hydrophobicity of bulk monomer employed were examined on carotenoids separations. A fast separation of these analytes was achieved in less than 5.0 min in a mobile phase containing 35% THF, 30% ACN, 30% methanol, and 5% of a 5 mM Tris aqueous buffer, pH 8, with lauryl methacrylate-based monoliths. The CEC method was evaluated in terms of detection limit and reproducibility (retention time, area, and column preparation) with values below 1.6 microg/mL and 7.2%, respectively. The proposed procedure was successfully applied to the determination of both carotenoids in fruits of several tomato-related species and its usefulness to analyze large series of samples for nutritional quality screening trials in tomato breeding programs is demonstrated. To our knowledge, this is the first work that exploits the powerful and user-friendly monolithic technology for quality breeding and germplasm evaluation program purposes.

  14. Ammonium secretion by Colletotrichum coccodes activates host NADPH oxidase activity enhancing host cell death and fungal virulence in tomato fruits.

    Science.gov (United States)

    Alkan, Noam; Davydov, Olga; Sagi, Moshe; Fluhr, Robert; Prusky, Dov

    2009-12-01

    Colletotrichum pathogens of fruit and leaves are known ammonium secretors. Here, we show that Colletotrichum coccodes virulence, as measured by tomato (Solanum lycopersicum cv. Motelle) fruit tissue necrosis, correlates with the amount of ammonium secreted. Ammonium application to fruit tissue induced hydrogen peroxide (H(2)O(2)) accumulation. To examine whether the tomato NADPH oxidase, SlRBOH, is a source for the ammonium-induced H(2)O(2), wild-type and antisense lines abrogated for SlRBOH (SlRBOH-AS) were examined. Wild-type lines produced 7.5-fold more reactive oxygen species when exposed to exogenous ammonium than did SlRBOH-AS lines. C. coccodes colonization of wild-type tomato lines resulted in higher H(2)O(2) production and faster fungal growth rate compared with colonization in the SlRBOH-AS mutant, although the amount of ammonium secreted by the fungi was similar in both cases. Enhanced ion leakage and cell death of fruit tissue were correlated with H(2)O(2) accumulation, and treatment with the reactive oxygen scavenger N-acetyl-l-cysteine decreased H(2)O(2) production, ion leakage, and cell death. Importantly, the activation of reactive oxygen species production by ammonium was positively affected by an extracellular pH increase from 4 to 9, implying that ammonium exerts its control via membrane penetration. Our results show that C. coccodes activates host reactive oxygen species and H(2)O(2) production through ammonium secretion. The resultant enhancement in host tissue decay is an important step in the activation of the necrotrophic process needed for colonization.

  15. Fruit-surface flavonoid accumulation in tomato is controlled by a SlMYB12-regulated transcriptional network.

    Directory of Open Access Journals (Sweden)

    Avital Adato

    2009-12-01

    Full Text Available The cuticle covering plants' aerial surfaces is a unique structure that plays a key role in organ development and protection against diverse stress conditions. A detailed analysis of the tomato colorless-peel y mutant was carried out in the framework of studying the outer surface of reproductive organs. The y mutant peel lacks the yellow flavonoid pigment naringenin chalcone, which has been suggested to influence the characteristics and function of the cuticular layer. Large-scale metabolic and transcript profiling revealed broad effects on both primary and secondary metabolism, related mostly to the biosynthesis of phenylpropanoids, particularly flavonoids. These were not restricted to the fruit or to a specific stage of its development and indicated that the y mutant phenotype is due to a mutation in a regulatory gene. Indeed, expression analyses specified three R2R3-MYB-type transcription factors that were significantly down-regulated in the y mutant fruit peel. One of these, SlMYB12, was mapped to the genomic region on tomato chromosome 1 previously shown to harbor the y mutation. Identification of an additional mutant allele that co-segregates with the colorless-peel trait, specific down-regulation of SlMYB12 and rescue of the y phenotype by overexpression of SlMYB12 on the mutant background, confirmed that a lesion in this regulator underlies the y phenotype. Hence, this work provides novel insight to the study of fleshy fruit cuticular structure and paves the way for the elucidation of the regulatory network that controls flavonoid accumulation in tomato fruit cuticle.

  16. Ozone Effects on Fruit Productivity and Photosynthetic Response of Two Tomato Cultivars in Relation to Stomatal Fluxes

    Directory of Open Access Journals (Sweden)

    Giacomo Gerosa

    2008-03-01

    Full Text Available An Open-Top Chamber experiment on two tomato cultivars (cv. Oxheart and cv. San Marzano was carried out in Curno (Northern Italy between June and September 2007. Two ozone treatments were applied for a 3.5 months period: Non-Filtered OTC (NF-OTC, 95% of ambient ozone and Charcoal-Filtered OTC (CF-OTC, 50% of ambient ozone. Diurnal cycles of porometry measurements were performed during the season and allowed to draw a stomatal conductance model for each cultivar in order to calculate the ozone stomatal fluxes taken up by plants. Assessments on fruits yield were performed during the season, taking into account the number of fruits, their fresh weight and their marketability. In addition, measurements on the chlorophyll fluorescence of photosystems were carried out to assess possible negative effects on photosynthetic efficiency. Despite the two cultivars absorbed a similar ozone stomatal dose during the season (with an 8% difference, their responses to ozone treatments were totally divergent in relation to both fruits yield and photosynthetic efficiency. Plants of cv. Oxheart grown in NF-OTCs showed significant yield loss in the total weight of fruits (-35.9% which is exclusively related to a decrease in the number of fruits produced (-35.7% of total fruits; -30.6% of marketable fruits, since mean fresh weight of fruits remained unaffected. Moreover the same plants displayed low values (in comparison to CF-OTCs plants of the photosynthetic efficiency index (PIabs during the most intense period of ozone stress (July occurred in the flowering stage of plants and at the beginning of fructification. Plants of the cv. San Marzano had an opposite response behaviour with an increase of the mean fresh weight of fruits in plants grown in NF-OTC (even if not statistically significant and no difference in the number of fruits produced and in the values of photosynthetic efficiency.

  17. Ozone Effects on Fruit Productivity and Photosynthetic Response of Two Tomato Cultivars in Relation to Stomatal Fluxes

    Directory of Open Access Journals (Sweden)

    Francesco Tagliaferro

    2011-02-01

    Full Text Available An Open-Top Chamber experiment on two tomato cultivars (cv. Oxheart and cv. San Marzano was carried out in Curno (Northern Italy between June and September 2007. Two ozone treatments were applied for a 3.5 months period: Non-Filtered OTC (NF-OTC, 95% of ambient ozone and Charcoal-Filtered OTC (CF-OTC, 50% of ambient ozone. Diurnal cycles of porometry measurements were performed during the season and allowed to draw a stomatal conductance model for each cultivar in order to calculate the ozone stomatal fluxes taken up by plants. Assessments on fruits yield were performed during the season, taking into account the number of fruits, their fresh weight and their marketability. In addition, measurements on the chlorophyll fluorescence of photosystems were carried out to assess possible negative effects on photosynthetic efficiency. Despite the two cultivars absorbed a similar ozone stomatal dose during the season (with an 8% difference, their responses to ozone treatments were totally divergent in relation to both fruits yield and photosynthetic efficiency. Plants of cv. Oxheart grown in NF-OTCs showed significant yield loss in the total weight of fruits (-35.9% which is exclusively related to a decrease in the number of fruits produced (-35.7% of total fruits; -30.6% of marketable fruits, since mean fresh weight of fruits remained unaffected. Moreover the same plants displayed low values (in comparison to CF-OTCs plants of the photosynthetic efficiency index (PIabs during the most intense period of ozone stress (July occurred in the flowering stage of plants and at the beginning of fructification. Plants of the cv. San Marzano had an opposite response behaviour with an increase of the mean fresh weight of fruits in plants grown in NF-OTC (even if not statistically significant and no difference in the number of fruits produced and in the values of photosynthetic efficiency.

  18. POSTHARVEST CONSERVATION OF STRUCTURAL LONG SHELF LIFE TOMATO FRUITS AND WITH THE MUTANT RIN PRODUCED, IN EDAPHOCLIMATIC CONDITIONS OF THE SOUTHERN STATE OF TOCANTINS

    Directory of Open Access Journals (Sweden)

    Miréia Aparecida Bezerra Pereira

    2015-06-01

    Full Text Available The high temperature of growth environment can affect the postharvest quality of tomato fruits. In this situation, an alternative for the farmers is the use of hybrid cultivars that produce long shelf life fruit with longer postharvest shelf life when compared to normal varieties of fruits. The objective of this research was to compare the postharvest conservation of fruits of structural long shelf life tomato hybrids and with the mutant rin. The fruits evaluated were from fifteen tomato genotypes produced under the edaphoclimatic conditions of the southern State of Tocantins, being four of them long shelf life type hybrids (with rin allele which were: Tyler, Rebeca, Carmem and AF 13527; nine of them structural long shelf life hybrids: Lumi, Débora Max, Michelli, Tammy, AF 12525, AF 11097, AF 13363, AF 13364 and AF 13525; and two normal fruit cultivars: Santa Clara and Drica. The fruits were harvested at the breaker stage and stored in a controlled environment (20 °C and relative humidity of 60%. The half-life firmness of fruits of genotypes with a structural genotypic long shelf life background ranged from 6.25 to 13.44 days for the genotypes Tammy and AF13525, respectively, not differing from the long shelf life genotypes with rin allele. Despite the fact that daytime temperatures are higher than those recommended for the tomatoes crops, it was observed that if the fruits are stored in appropriate conditions (20 °C and relative humidity of 60%, the color and firmness of the fruits with a long shelf life genotypes with rin allele and structural genotypic background evolve more slowly than the fruits of normal genotypes. Under these conditions, it took the fruits 7 to 8 days to acquire a red color on more than 80% of the surface after being harvested.

  19. A VIN1 GUS::GFP fusion reveals activated sucrose metabolism programming occurring in interspersed cells during tomato fruit ripening.

    Science.gov (United States)

    Estornell, Leandro Hueso; Pons, Clara; Martínez, Alicia; O'Connor, José Enrique; Orzaez, Diego; Granell, Antonio

    2013-08-15

    The tomato is a model for fleshy fruit development and ripening. Here we report on the identification of a novel unique cell autonomous/cellular pattern of expression that was detected in fruits of transgenic tomato lines carrying a GFP GUS driven by the fruit specific vacuolar invertase promoter VIN1. The VIN1 promoter sequence faithfully reproduced the global endogenous VIN expression by conferring a biphasic pattern of expression with a second phase clearly associated to fruit ripening. A closer view revealed a salt and pepper pattern of expression characterized by individual cells exhibiting a range of expression levels (from high to low) surrounded by cells with no expression. This type of pattern was detected across different fruit tissues and cell types with some preferences for vascular, sub-epidermal layer and the inner part of the fruit. Cell ability to show promoter activity was neither directly associated with overall ripening - as we find VIN+ and - VIN- cells at all stages of ripening, nor with cell size. Nevertheless the number of cells with active VIN-driven expression increased with ripening and the activity of the VIN promoter seems to be inversely correlated with cell size in VIN+ cells. Gene expression analysis of FACS-sorted VIN+ cells revealed a transcriptionally distinct subpopulation of cells defined by increased expression of genes related to sucrose metabolism, and decreased activity in protein synthesis and chromatin remodeling. This finding suggests that local micro heterogeneity may underlie some aspects (i.e. the futile cycles involving sucrose metabolism) of an otherwise more uniform looking ripening program.

  20. Antibacterial and Antioxidant Activities of the Volatile Composition of the Flower and Fruit of Solanum sisymbriifolium (Litchi Tomato

    Directory of Open Access Journals (Sweden)

    Ardalan Pasdaran, Arsalan Pasdaran, Nazim Mamedov

    2017-03-01

    Full Text Available Background: Solanum sisymbriifolium Lam. is used as traditional remedy in South America, recently this plant considered as new edible source. Berries and flower of S. sisymbriifolium have a characteristic fragrance. The pleasant fragrance of the S. sisymbriifolium could be considered as a source of food additive or preservative. Methods: The essential oils of the flower and fruit of S. sisymbriifolium Lam. (litchi tomato were isolated by hydrodistillation method and tested for antibacterial and antioxidant potentials also these volatile oils analyzed by the gas chromatography-mass spectrometry (GC-MS and gas chromatography-flame ionization detection (GC-FID.The antimicrobial activity of the essential oils of fruits and flowers were tested against Staphylococcus aureus using the well diffusion method and their free-radical-scavenging activity were assessed by the 2, 2-diphenyl-picryl-hydrazyl (DPPH assay. Results: The essential oil of flower was characterized by a high content of aldehydes and aliphatic hydrocarbons (66.8% and the essential oil of the fruit has high amount of fatty acids and their derivatives (80.1%. Heptadecane (37.9 % and 9,12,15-octadecatrienal (22.7% were the main compounds in flower whereas the fruits essential oil contained hexadecanoic acid (77.4% and ambrettolide (7.4%. The essential oils showed antibacterial activity against S. aureus in 60 and 80 µg/mL for fruit and flower, respectively. In antioxidant activity assay fruit essential oil (with100 µg/mL showed better activity in compression to flower essential oil with 83.33% activity. Conclusion: This study showed that litchi tomato can be considered as a new source of edible compounds. Flower showed suitable antioxidant and antibacterial activity. This study also can be present an overview about chemical marker compounds of Solanum genus.

  1. Optimization of EC Values of Nutrient Solution for Tomato Fruits Quality in Hydroponics System Using Artificial Neural Network and Genetic Algorithms

    Directory of Open Access Journals (Sweden)

    Herry Suhardiyanto

    2009-03-01

    Full Text Available Total soluble solids (TSS and fruit fresh weight are two indicators to show the quality of tomato fruits. To gain high values of TSS and fruit fresh weight, it is important to consider the concentration of nutrient solution, which is commonly represented by Electrical Conductivity (EC value. Generally, the increasing of EC value not only increases the number of TSS, but also decreases fruit fresh weight. Therefore, it is important to optimize the EC value for both indicators of quality of tomato fruits. The objective of this research is to optimize the EC value of nutrient solution on each generative stage using Artificial Neural Network (ANN and Genetic Algorithms (GA. ANN was used to identify the relationship between different EC value treatments with TSS value and fruit fresh weight. GA was applied to determine the optimal EC value in generative growth, which is divided into three stages. Results showed that the optimal EC values in the flowering stage, the fruiting stage and the harvesting stage were 1.4 mS/cm, 10.2 mS/cm and 9.7 mS/cm, respectively. Using these values, a tomato fruit could be estimated with TSS value of 7.9% and fruit fresh weight of 51.34 g.

  2. Sensory Quality of ‘Cherry’ Tomatoes in Relation to 1-MCP Treatment and Storage Duration

    OpenAIRE

    Marek GAJEWSKI; Mazur, Katarzyna; Jadwiga RADZANOWSKA; Kowalczyk, Katarzyna; Marcinkowska, Monika; Klaudyna RYL; Karolina KALOTA

    2014-01-01

    1-MCP (1-methylcyclopropene), the ethylene receptors blocker, is used in horticultural practice for prolonging ‘shelf-life’ of several species of fruits and vegetables. The objective of this study was to determine the effect of 1-MCP treatment on sensory characteristics of ‘cherry’ type tomatoes (Solanum lycopersicum L. var. cerasiforme) after 4-week storage. In the experiment the fruits were harvested at pink and light-red fruit stages (3rd and 5th stage, according to USDA classification), a...

  3. Analyses of tomato fruit brightness mutants uncover both cutin-deficient and cutin-abundant mutants and a new hypomorphic allele of GDSL lipase.

    Science.gov (United States)

    Petit, Johann; Bres, Cécile; Just, Daniel; Garcia, Virginie; Mauxion, Jean-Philippe; Marion, Didier; Bakan, Bénédicte; Joubès, Jérôme; Domergue, Frédéric; Rothan, Christophe

    2014-02-01

    The cuticle is a protective layer synthesized by epidermal cells of the plants and consisting of cutin covered and filled by waxes. In tomato (Solanum lycopersicum) fruit, the thick cuticle embedding epidermal cells has crucial roles in the control of pathogens, water loss, cracking, postharvest shelf-life, and brightness. To identify tomato mutants with modified cuticle composition and architecture and to further decipher the relationships between fruit brightness and cuticle in tomato, we screened an ethyl methanesulfonate mutant collection in the miniature tomato cultivar Micro-Tom for mutants with altered fruit brightness. Our screen resulted in the isolation of 16 glossy and 8 dull mutants displaying changes in the amount and/or composition of wax and cutin, cuticle thickness, and surface aspect of the fruit as characterized by optical and environmental scanning electron microscopy. The main conclusions on the relationships between fruit brightness and cuticle features were as follows: (1) screening for fruit brightness is an effective way to identify tomato cuticle mutants; (2) fruit brightness is independent from wax load variations; (3) glossy mutants show either reduced or increased cutin load; and (4) dull mutants display alterations in epidermal cell number and shape. Cuticle composition analyses further allowed the identification of groups of mutants displaying remarkable cuticle changes, such as mutants with increased dicarboxylic acids in cutin. Using genetic mapping of a strong cutin-deficient mutation, we discovered a novel hypomorphic allele of GDSL lipase carrying a splice junction mutation, thus highlighting the potential of tomato brightness mutants for advancing our understanding of cuticle formation in plants.

  4. Phosphoenolpyruvate carboxykinase (PEPCK) deficiency affects the germination, growth and fruit sugar content in tomato (Solanum lycopersicum L.).

    Science.gov (United States)

    Huang, Yong-Xing; Yin, Yong-Gen; Sanuki, Atsuko; Fukuda, Naoya; Ezura, Hiroshi; Matsukura, Chiaki

    2015-11-01

    Phosphoenolpyruvate carboxykinase (PEPCK) is a key regulatory enzyme and is utilized in the gluconeogenesis pathway in plants. Although, its catalytic and regulatory properties are quite well understood, there are uncertainties regarding its physiological role in many plants tissues such as the flesh of developing fruits. To further understand the function of PEPCK in fruits and other tissues, RNAi transgenic tomato plants in which SlPEPCK transcription was down-regulated by either CaMV 35S constitutive promoter or the fruit-specific E8 promoter were generated and characterized on the basis of their phenotypic and metabolic aspects. In the PEPCK-deficient lines, prominent growth suppression of germinated seedlings was observed and other vegetative suppression appeared during the early stage of plant growth in the 35S promoter-driven lines. In particular, root elongation was most obviously suppressed in the germinated seedlings, indicating that the gluconeogenesis pathway is involved in the root growth of seedlings. Regarding the primary metabolism in fruit, the soluble sugar content tended to decrease, whereas the malate content tended to increase in ripening fruits of the RNAi lines compared with the wild type. These results indicate that activation of the gluconeogenesis pathway from organic acids to sugars occurs during ripening but is suppressed by the knocking down of the PEPCK gene, suggesting that PEPCK participates in determining the sugar/acid ratio in ripening fruit.

  5. miR168 influences phase transition, leaf epinasty, and fruit development via SlAGO1s in tomato.

    Science.gov (United States)

    Xian, Zhiqiang; Huang, Wei; Yang, Yingwu; Tang, Ning; Zhang, Chao; Ren, Maozhi; Li, Zhengguo

    2014-12-01

    In Arabidopsis thaliana, Argonaute1 (AGO1) interacts with miR168 to modulate the small RNA regulatory pathway. However, the underlying mechanism of regulation and relationship between AGO1 and miR168 is poorly understood in the cash crop Solanum lycopersicum (tomato). We previously found that SlAGO1A and SlAGO1B were cleaved by miR168 in tomato. In this study, we show that SlAGO1A and SlAGO1B accumulate in miR168-sponge transgenic plants, and that expression of miR168-resistant SlAGO1A (4m-SlAGO1A) and SlAGO1B (4m-SlAGO1B) in tomato results in a series of defects affecting growth rate, floral timing, leaves, and fruit. Accumulation of miR156 was found when 4m-SlAGO1A was at an early developmental stage compared to the wild type and original SlAGO1A transgenic plants, and miR172 was highly expressed in adult 4m-SlAGO1A compared to the controls. In addition, the expression of multiple small RNAs was altered in 4m-SlAGO1A. Taken together, our data provide novel insights into the interaction between SlAGO1s and miR168 in determining growth rate, phase change, leaf epinasty, fruit initiation and expansion, and other developmental processes in tomato.

  6. Genetic and physiological analysis of tomato fruit weight and composition: influence of carbon availability on QTL detection.

    Science.gov (United States)

    Prudent, Marion; Causse, Mathilde; Génard, Michel; Tripodi, Pasquale; Grandillo, Silvana; Bertin, Nadia

    2009-01-01

    Throughout tomato domestication, a large increase in fruit size was associated with a loss of dry matter and sugar contents. This study aims to dissect the contributions of genetic variation and the physiological processes underlying the relationships between fruit growth and the accumulation of dry matter and sugars. Fruit quality traits and physiological parameters were measured on 20 introgression lines derived from the introgression of Solanum chmielewskii into S. lycopersicum, under high (HL, unpruned trusses) and low (LL, trusses pruned to one fruit) fruit load conditions. Inter- and intra-genotypic correlations among traits were estimated and quantitative trait loci (QTL) for size, composition, and physiological traits were mapped. LL increased almost all traits, but the response of sugar content was genotype-dependent, involving either dilution effects or differences in carbon allocation to sugars. Genotype x fruit load interactions were significant for most traits and only 30% of the QTL were stable under both fruit loads. Many QTL for fresh weight and cell or seed numbers co-localized. Eleven clusters of QTL for fresh weight and dry matter or sugar content were detected, eight with opposite allele effects and three with negative effects. Two genotypic antagonistic relationships, between fresh weight and dry matter content and between cell number and cell size, were significant only under HL; the second could be interpreted as a competition for carbohydrates among cells. The role of cuticular conductance, fruit transpiration or cracking in the relationship between fruit fresh weight and composition was also emphasized at the genetic and physiological levels.

  7. Changes in color-related compounds in tomato fruit exocarp and mesocarp during ripening using HPLC-APcI+-mass Spectrometry

    OpenAIRE

    Carrillo-López, A.; Yahia, E.M.

    2012-01-01

    Tomato is an important agricultural crop world-wide. Their pigments are very important in many ways. They have been associated with health benefits such as lowering the risk of some chronic diseases. Quantification of chlorophylls by spectrophotometry and Identification of carotenoids using liquid chromatography coupled to mass spectrometry, and quantification by HPLC-DAD was carried out in the exocarp and mesocarp of tomato fruit during 6 different ripeness stages (mature-green, breakers, tu...

  8. Transcriptomic Analysis Reveals Possible Influences of ABA on Secondary Metabolism of Pigments, Flavonoids and Antioxidants in Tomato Fruit during Ripening.

    Science.gov (United States)

    Mou, Wangshu; Li, Dongdong; Luo, Zisheng; Mao, Linchun; Ying, Tiejin

    2015-01-01

    Abscisic acid (ABA) has been proven to be involved in the regulation of climacteric fruit ripening, but a comprehensive investigation of its influence on ripening related processes is still lacking. By applying the next generation sequencing technology, we conducted a comparative analysis of the effects of exogenous ABA and NDGA (Nordihydroguaiaretic acid, an inhibitor of ABA biosynthesis) on tomato fruit ripening. The high throughput sequencing results showed that out of the 25728 genes expressed across all three samples, 10388 were identified as significantly differently expressed genes. Exogenous ABA was found to enhance the transcription of genes involved in pigments metabolism, including carotenoids biosynthesis and chlorophyll degradation, whereas NDGA treatment inhibited these processes. The results also revealed the crucial role of ABA in flavonoids synthesis and regulation of antioxidant system. Intriguingly, we also found that an inhibition of endogenous ABA significantly enhanced the transcriptional abundance of genes involved in photosynthesis. Our results highlighted the significance of ABA in regulating tomato ripening, which provided insight into the regulatory mechanism of fruit maturation and senescence process.

  9. Transcriptomic Analysis Reveals Possible Influences of ABA on Secondary Metabolism of Pigments, Flavonoids and Antioxidants in Tomato Fruit during Ripening.

    Directory of Open Access Journals (Sweden)

    Wangshu Mou

    Full Text Available Abscisic acid (ABA has been proven to be involved in the regulation of climacteric fruit ripening, but a comprehensive investigation of its influence on ripening related processes is still lacking. By applying the next generation sequencing technology, we conducted a comparative analysis of the effects of exogenous ABA and NDGA (Nordihydroguaiaretic acid, an inhibitor of ABA biosynthesis on tomato fruit ripening. The high throughput sequencing results showed that out of the 25728 genes expressed across all three samples, 10388 were identified as significantly differently expressed genes. Exogenous ABA was found to enhance the transcription of genes involved in pigments metabolism, including carotenoids biosynthesis and chlorophyll degradation, whereas NDGA treatment inhibited these processes. The results also revealed the crucial role of ABA in flavonoids synthesis and regulation of antioxidant system. Intriguingly, we also found that an inhibition of endogenous ABA significantly enhanced the transcriptional abundance of genes involved in photosynthesis. Our results highlighted the significance of ABA in regulating tomato ripening, which provided insight into the regulatory mechanism of fruit maturation and senescence process.

  10. Mitochondrial ascorbate-glutathione cycle and proteomic analysis of carbonylated proteins during tomato (Solanum lycopersicum) fruit ripening.

    Science.gov (United States)

    López-Vidal, O; Camejo, D; Rivera-Cabrera, F; Konigsberg, M; Villa-Hernández, J M; Mendoza-Espinoza, J A; Pérez-Flores, L J; Sevilla, F; Jiménez, A; Díaz de León-Sánchez, F

    2016-03-01

    In non-photosynthetic tissues, mitochondria are the main source of energy and of reactive oxygen species. Accumulation of high levels of these species in the cell causes damage to macromolecules including several proteins and induces changes in different metabolic processes. Fruit ripening has been characterized as an oxidative phenomenon; therefore, control of reactive oxygen species levels by mitochondrial antioxidants plays a crucial role on this process. In this work, ascorbate-glutathione cycle components, hydrogen peroxide levels and the proteomic profile of carbonylated proteins were analyzed in mitochondria isolated from tomato (Solanum lycopersicum) fruit at two ripening stages. A significant increase on most ascorbate-glutathione cycle components and on carbonylated proteins was observed in mitochondria from breaker to light red stage. Enzymes and proteins involved in diverse cellular and mitochondrial metabolic pathways were identified among the carbonylated proteins. These results suggest that protein carbonylation is a post-translational modification involved in tomato fruit ripening regulation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Accumulation of wound-inducible ACC synthase transcript in tomato fruit is inhibited by salicylic acid and polyamines.

    Science.gov (United States)

    Li, N; Parsons, B L; Liu, D R; Mattoo, A K

    1992-02-01

    Regulation of wound-inducible 1-aminocyclopropane-1-carboxylic acid (ACC) synthase expression was studied in tomato fruit (Lycopersicon esculentum cv. Pik-Red). A 70 base oligonucleotide probe homologous to published ACC synthase cDNA sequences was successfully used to identify and analyze regulation of a wound-inducible transcript. The 1.8 kb ACC synthase transcript increased upon wounding the fruit as well as during fruit ripening. Salicylic acid, an inhibitor of wound-responsive genes in tomato, inhibited the wound-induced accumulation of the ACC synthase transcript. Further, polyamines (putrescine, spermidine and spermine) that have anti-senescence properties and have been shown to inhibit the development of ACC synthase activity, inhibited the accumulation of the wound-inducible ACC synthase transcript. The inhibition by spermine was greater than that caused by putrescine or spermidine. The transcript level of a wound-repressible glycine-rich protein gene and that of the constitutively expressed rRNA were not affected as markedly by either salicylic acid or polyamines. These data suggest that salicylic acid and polyamines may specifically regulate ethylene biosynthesis at the level of ACC synthase transcript accumulation.

  12. Simultaneous transcriptome analysis of Colletotrichum gloeosporioides and tomato fruit pathosystem reveals novel fungal pathogenicity and fruit defense strategies.

    Science.gov (United States)

    Alkan, Noam; Friedlander, Gilgi; Ment, Dana; Prusky, Dov; Fluhr, Robert

    2015-01-01

    The fungus Colletotrichum gloeosporioides breaches the fruit cuticle but remains quiescent until fruit ripening signals a switch to necrotrophy, culminating in devastating anthracnose disease. There is a need to understand the distinct fungal arms strategy and the simultaneous fruit response. Transcriptome analysis of fungal-fruit interactions was carried out concurrently in the appressoria, quiescent and necrotrophic stages. Conidia germinating on unripe fruit cuticle showed stage-specific transcription that was accompanied by massive fruit defense responses. The subsequent quiescent stage showed the development of dendritic-like structures and swollen hyphae within the fruit epidermis. The quiescent fungal transcriptome was characterized by activation of chromatin remodeling genes and unsuspected environmental alkalization. Fruit response was portrayed by continued highly integrated massive up-regulation of defense genes. During cuticle infection of green or ripe fruit, fungi recapitulate the same developmental stages but with differing quiescent time spans. The necrotrophic stage showed a dramatic shift in fungal metabolism and up-regulation of pathogenicity factors. Fruit response to necrotrophy showed activation of the salicylic acid pathway, climaxing in cell death. Transcriptome analysis of C. gloeosporioides infection of fruit reveals its distinct stage-specific lifestyle and the concurrent changing fruit response, deepening our perception of the unfolding fungal-fruit arms and defenses race.

  13. The tomato FRUITFULL homologs TDR4/FUL1 and MBP7/FUL2 regulate ethylene-independent aspects of fruit ripening.

    Science.gov (United States)

    Bemer, Marian; Karlova, Rumyana; Ballester, Ana Rosa; Tikunov, Yury M; Bovy, Arnaud G; Wolters-Arts, Mieke; Rossetto, Priscilla de Barros; Angenent, Gerco C; de Maagd, Ruud A

    2012-11-01

    Tomato (Solanum lycopersicum) contains two close homologs of the Arabidopsis thaliana MADS domain transcription factor FRUITFULL (FUL), FUL1 (previously called TDR4) and FUL2 (previously MBP7). Both proteins interact with the ripening regulator RIPENING INHIBITOR (RIN) and are expressed during fruit ripening. To elucidate their function in tomato, we characterized single and double FUL1 and FUL2 knockdown lines. Whereas the single lines only showed very mild alterations in fruit pigmentation, the double silenced lines exhibited an orange-ripe fruit phenotype due to highly reduced lycopene levels, suggesting that FUL1 and FUL2 have a redundant function in fruit ripening. More detailed analyses of the phenotype, transcriptome, and metabolome of the fruits silenced for both FUL1 and FUL2 suggest that the genes are involved in cell wall modification, the production of cuticle components and volatiles, and glutamic acid (Glu) accumulation. Glu is responsible for the characteristic umami taste of the present-day cultivated tomato fruit. In contrast with previously identified ripening regulators, FUL1 and FUL2 do not regulate ethylene biosynthesis but influence ripening in an ethylene-independent manner. Our data combined with those of others suggest that FUL1/2 and TOMATO AGAMOUS-LIKE1 regulate different subsets of the known RIN targets, probably in a protein complex with the latter.

  14. The Tomato FRUITFULL Homologs TDR4/FUL1 and MBP7/FUL2 Regulate Ethylene-Independent Aspects of Fruit Ripening[W

    Science.gov (United States)

    Bemer, Marian; Karlova, Rumyana; Ballester, Ana Rosa; Tikunov, Yury M.; Bovy, Arnaud G.; Wolters-Arts, Mieke; Rossetto, Priscilla de Barros; Angenent, Gerco C.; de Maagd, Ruud A.

    2012-01-01

    Tomato (Solanum lycopersicum) contains two close homologs of the Arabidopsis thaliana MADS domain transcription factor FRUITFULL (FUL), FUL1 (previously called TDR4) and FUL2 (previously MBP7). Both proteins interact with the ripening regulator RIPENING INHIBITOR (RIN) and are expressed during fruit ripening. To elucidate their function in tomato, we characterized single and double FUL1 and FUL2 knockdown lines. Whereas the single lines only showed very mild alterations in fruit pigmentation, the double silenced lines exhibited an orange-ripe fruit phenotype due to highly reduced lycopene levels, suggesting that FUL1 and FUL2 have a redundant function in fruit ripening. More detailed analyses of the phenotype, transcriptome, and metabolome of the fruits silenced for both FUL1 and FUL2 suggest that the genes are involved in cell wall modification, the production of cuticle components and volatiles, and glutamic acid (Glu) accumulation. Glu is responsible for the characteristic umami taste of the present-day cultivated tomato fruit. In contrast with previously identified ripening regulators, FUL1 and FUL2 do not regulate ethylene biosynthesis but influence ripening in an ethylene-independent manner. Our data combined with those of others suggest that FUL1/2 and TOMATO AGAMOUS-LIKE1 regulate different subsets of the known RIN targets, probably in a protein complex with the latter. PMID:23136376

  15. Selection of Reference Genes for Quantitative Real-Time RT-PCR Studies in Tomato Fruit of the Genotype MT-Rg1

    Science.gov (United States)

    González-Aguilera, Karla L.; Saad, Carolina F.; Chávez Montes, Ricardo A.; Alves-Ferreira, Marcio; de Folter, Stefan

    2016-01-01

    Quantitative real-time RT-PCR (qRT-PCR) has become one of the most widely used methods for accurate quantification of gene expression. Since there are no universal reference genes for normalization, the optimal strategy to normalize raw qRT-PCR data is to perform an initial comparison of a set of independent reference genes to assess the most stable ones in each biological model. Normalization of a qRT-PCR experiment helps to ensure that the results are both statistically significant and biologically meaningful. Tomato is the model of choice to study fleshy fruit development. The miniature tomato (Solanum lycopersicum L.) cultivar Micro-Tom (MT) is considered a model system for tomato genetics and functional genomics. A new genotype, containing the Rg1 allele, improves tomato in vitro regeneration. In this work, we evaluated the expression stability of four tomato reference genes, namely CAC, SAND, Expressed, and ACTIN2. We showed that the genes CAC and Exp are the best reference genes of the four we tested during fruit development in the MT-Rg1 genotype. Furthermore, we validated the reference genes by showing that the expression profiles of the transcription factors FRUITFULL1 and APETALA2c during fruit development are comparable to previous reports using other tomato cultivars. PMID:27679646

  16. Determination of lycopene and beta-carotene content in tomato fruits and related products: Comparison of FT-Raman, ATR-IR, and NIR spectroscopy.

    Science.gov (United States)

    Baranska, M; Schütze, W; Schulz, H

    2006-12-15

    Tomatoes and various products derived from thermally processed tomatoes are major sources of lycopene, but apart from this micronutrient, other carotenoids such as beta-carotene also are present in the fruit. They occur in tomato fruits and various tomato products in amounts of 2.62-629.00 (lycopene) and 0.23-2.83 mg/100 g (beta-carotene). Standard methods for determining the carotenoid content require the extraction of the analyte as well as other cleanup steps. In this work, FT-Raman, ATR-IR, and NIR spectroscopy are applied in order to establish new, fast, and nondestructive calibration methods for quantification of lycopene and beta-carotene content in tomato fruits and related products. The best prediction quality was achieved using a model based on IR spectroscopy (R2 = 0.98 and 0.97, SECV = 33.20 and 0.16 for lycopene and beta-carotene, respectively). In spite of the fact that Raman spectra of tomato products show characteristic key bands of the investigated carotenoids, this method gives slightly lower reliability (R2 = 0.91 and 0.89, SECV = 74.34 and 0.34 for lycopene and beta-carotene, respectively). NIR spectroscopy, which has been used for quantification purposes in the agricultural sector for several decades, in this study shows the worse prediction quality (R2 = 0.85 and 0.80, SECV = 91.19 and 0.41 for lycopene and beta-carotene, respectively).

  17. Genotype and environmental interaction for fruit quality traits in vintage tomato varieties

    Science.gov (United States)

    Tomato (Solanum lycopersicum L.) is the second most commonly consumed vegetable after in the world, after potato. There is a growing demand for quality tomato in the market place. Traits such as lycopene, total soluble solids (TSS), vitamin C and titratable acid (TA) conten