WorldWideScience

Sample records for pinacol

  1. Sustainable Production of o-Xylene from Biomass-Derived Pinacol and Acrolein.

    Science.gov (United States)

    Hu, Yancheng; Li, Ning; Li, Guangyi; Wang, Aiqin; Cong, Yu; Wang, Xiaodong; Zhang, Tao

    2017-07-21

    o-Xylene (OX) is a large-volume commodity chemical that is conventionally produced from fossil fuels. In this study, an efficient and sustainable two-step route is used to produce OX from biomass-derived pinacol and acrolein. In the first step, the phosphotungstic acid (HPW)-catalyzed pinacol dehydration in 1-ethyl-3-methylimidazolium chloride ([emim]Cl) selectively affords 2,3-dimethylbutadiene. The high selectivity of this reaction can be ascribed to the H-bonding interaction between Cl - and the hydroxy group of pinacol. The stabilization of the carbocation intermediate by the surrounding anion Cl - may be another reason for the high selectivity. Notably, the good reusability of the HPW/[emim]Cl system can reduce the waste output and production cost. In the second step, OX is selectively produced by a Diels-Alder reaction of 2,3-dimethylbutadiene and acrolein, followed by a Pd/C-catalyzed decarbonylation/aromatization cascade in a one-pot fashion. The sustainable two-step process efficiently produces renewable OX in 79 % overall yield. Analogously, biomass-derived crotonaldehyde and pinacol can also serve as the feedstocks for the production of 1,2,4-trimethylbenzene. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Formation of Exceptionally Weak C–C Bonds by Metal-Templated Pinacol Coupling

    NARCIS (Netherlands)

    Folkertsma, Emma; Benthem, Sanne H.; Witteman, Léon; Van Slagmaat, Christian A. M. R.; Lutz, Martin; Klein Gebbink, Robertus J.m.; Moret, Marc-etienne

    2017-01-01

    The ability of the bis(imidazolyl)ketone ligand BMdiPhIK (bis(1-methyl-4,5-diphenylimidazolyl)ketone) to function as a redox active ligand has been investigated. The reduction of [M(BMdiPhIK)Cl2] (M = Fe and Zn) complexes resulted in a pinacol-type coupling to form dinuclear complexes featuring very

  3. Reaction of active uranium and thorium with aromatic carbonyls and pinacols in hydrocarbon solvents

    International Nuclear Information System (INIS)

    Kahn, B.E.; Rieke, R.D.

    1988-01-01

    Highly reactive uranium and thorium metal powders have been prepared by reduction of the anhydrous metal(IV) chlorides in hydrocarbon solvents. The reduction employs the crystalline hydrocarbon-soluble reducing agent [(TMEDA)Li] 2 [Nap] (TMEDA = N,N,N',N'-tetramethylethylenediamine, Nap = naphthalene). The resulting active metal powders have been shown to be extremely reactive with oxygen-containing compounds and have been used in the reductive coupling of aromatic ketones giving tetra-arylethylenes. Reactions with pinacols have given some mechanistic insight into the ketone coupling reaction. These finely divided metal powders activate very weakly acidic C-H bonds forming metal hydrides, which can be transferred to organic substrates

  4. Silylative Pinacol Coupling Catalyzed by Nitrogen-Doped Carbon-Encapsulated Nickel/Cobalt Nanoparticles: Evidence for a Silyl Radical Pathway

    DEFF Research Database (Denmark)

    Kramer, Søren; Hejjo, Fatima; Rasmussen, Kristoffer Hauberg

    2018-01-01

    The silylative pinacol coupling of arylaldehydes catalyzed by aneasily accessible, heterogeneous base-metal catalyst is demonstrated. Instead of using the classical combination of catalyst, stoichiometric metal reductants, and chlorosilanes, the developed reaction only requires the use of a catal......The silylative pinacol coupling of arylaldehydes catalyzed by aneasily accessible, heterogeneous base-metal catalyst is demonstrated. Instead of using the classical combination of catalyst, stoichiometric metal reductants, and chlorosilanes, the developed reaction only requires the use....... The obtained results provided evidence for a reaction mechanism which is different from the classical pinacol coupling pathway. We propose that the heterogeneous catalyst facilitates easy access to silyl radicals, thereby circumventing the usual need for explosive initiators to access these species....... In addition, leaching tests and recycling of the catalyst were performed, clearly supporting the heterogeneous nature of the catalyst....

  5. Synthesis and Suzuki Cross-Coupling Reactions of 2,6-Bis(trifluoromethyl)pyridine-4-boronic Acid Pinacol Ester

    KAUST Repository

    Batool, Farhat

    2016-11-18

    Iridium-catalyzed aromatic borylation provides quick one-step access to 2,6-bis(trifluoromethyl)pyridine-4-boronic acid pinacol ester. Suzuki couplings of this highly electron-deficient pyridine-4-boronic ester with various (hetero)aryl bromides was successfully carried out and the coupled products were obtained in 46–95% isolated yields. Double and triple Suzuki couplings, with dibromo- and tribromoarenes, respectively, were also achieved. Thus demonstrating that this pyridine-4-boronic ester can be a useful source for the installation of one of the strongest electron-withdrawing aromatic group in organic compounds. Copyright © 2016, Georg Thieme Verlag. All rights reserved.

  6. Synthesis and Suzuki Cross-Coupling Reactions of 2,6-Bis(trifluoromethyl)pyridine-4-boronic Acid Pinacol Ester

    KAUST Repository

    Batool, Farhat; Emwas, Abdul-Hamid M.; Gao, Xin; Munawar, Munawar A.; Chotana, Ghayoor A.

    2016-01-01

    Iridium-catalyzed aromatic borylation provides quick one-step access to 2,6-bis(trifluoromethyl)pyridine-4-boronic acid pinacol ester. Suzuki couplings of this highly electron-deficient pyridine-4-boronic ester with various (hetero)aryl bromides was successfully carried out and the coupled products were obtained in 46–95% isolated yields. Double and triple Suzuki couplings, with dibromo- and tribromoarenes, respectively, were also achieved. Thus demonstrating that this pyridine-4-boronic ester can be a useful source for the installation of one of the strongest electron-withdrawing aromatic group in organic compounds. Copyright © 2016, Georg Thieme Verlag. All rights reserved.

  7. Synthesis, thermolysis and pyrolysis of group IV metal pinacolates: The impact of a vicinal diol as a supporting ligand for molecular precursors

    Science.gov (United States)

    Zechmann, Cecilia A.

    In an effort to investigate the suitability of an alternative ligand class for molecular precursors, the following studies were carried out: (1) New zirconium species were obtained by reaction of zirconium isopropoxide alcoholate, Zr2(OiPr)8(HOiPr) 2, with pinacol (HOCMe2CMe2OH). Control of reaction stoichiometries followed by azeotropic distillation of evolved isopropanol led to the successful preparation of a range of homo- and heteroleptic trinuclear species, Zr3(OCMe2CMe2O)2(O iPr)8(HOiPr)2, Zr3(OCMe 2CMe2O)4(OCMe2CMe2OH) 2(OiPr)2, and Zr3(OCMe2CMe 2O)4(OCMe2CMe2OH)4. Dinuclear products could be obtained by carrying out the reactions at room temperature or by addition of excess pinacol (in which case Zr2(OCMe2 CMe2O)2(OCMe2CMe2OH) 4 was the product). (2) Similar reactions between Ti(Oi Pr)4 and pinacol gave dinuclear products under all conditions. Both homo- (Ti2(OiPr)2(OCMe2CMe 2O)2(OCMe2CMe2OH)2) and heterometallic complexes (Ti2(OCMe2CMe2O) 2(OCMe2CMe2OH)4) were characterized. (3) Controlled addition of water to either of the isolated titanium pinacolates gave Ti3(mu3-O)(OCMe2CMe2O) 4(OCMe2CMe2OH)2. (4) Reaction of zirconium pinacolates with water led to the isolation of Zr4(mu 2-O)(OCMe2CMe2O)4(OCMe2CMe 2OH)6 and Zr6(mu3-O)4(H 2O)2(OCMe2CMe2O)5(OCMe 2CMe2OH)5. 17O NMR studies aided in the investigation of active equilibria and reversibility of hydrolysis. (5) The thermolysis of Zr2(OCMe2CMe2O) 2(OCMe2CMe2OH)4 gave ZrO2 in a mixture of crystalline phases. GC-MS and NMR analysis of the volatiles revealed 4 C6 products as well as two ligand coupled products. Isotope-labeling studies were carried out to probe the mechanisms by which the organic products were formed. (6) Reaction of Zr2(OCMe 2CMe2O)2(OCMe2CMe2OH) 4 with Ti(OiPr)4 gives (OiPr) 2TiZr2(OCMe2CMe2O)4(OCMe 2CMe2OH)2 which reacts with a second equivalent of Ti(OiPr)4 to give (OiPr) 4Ti2Zr2(OCMe2CMe2O) 6. (7) Reaction of Li{N(SiMe3)2}·Et 2O or Na{N(SiMe3)2}·x THF with Zr2(OCMe2CMe2O)2(OCMe 2CMe2OH)4

  8. Novel C-2 epimerization of aldoses promoted by nickel(II) diamine complexes, involving a stereospecific pinacol-type 1,2-carbon shift

    International Nuclear Information System (INIS)

    Tanase, Tomoaki; Shimizu, Fumihiko; Kuse, Manabu; Yano, Shigenobu; Hidai, Masanobu; Yoshikawa, Sadao

    1988-01-01

    The newly discovered C-2 epimerization of aldoses promoted by nickel(II) diamine complexes has been investigated in detail by using 13 C-enriched D-glucose, 13 C NMR spectroscopy, and EXAFS (extended x-ray absorption fine structure) analysis. Aldoses treated with nickel(II) diamine complexes (diamine = N,N,N'-trimethylethylenediamine (N,N,N'-Me 3 en), N,N,N',N'-tetramethylethylenediamine (N,N,N',N'-Me 4 en), etc.) in methanolic solutions were rapidly (60 degree C, 3-5 min) epimerized at C-2 to give equilibrium mixtures where the ratio of C-2 epimers shifts to the side of the naturally rare mannose-type aldoses (having the cis arrangement of C-2 and C-3 hydroxyl groups) compared with those in the thermodynamic equilibrium states. The epimerization product of D-[1- 13 C]glucose was exclusively D-[2- 13 C]mannose, demonstrating that the reaction involves a stereospecific 1,2-shift of the carbon skeleton resulting in inversion of configuration at C-2. Furthermore, the absorption and circular dichroism spectra of the reaction solutions indicated the presence of an intermediate nickel(II) complex containing both diamine and sugar components, which was directly revealed by EXAFS analysis to be a mononuclear nickel(II) complex having octahedral coordination geometry. All these observations strongly suggest that the C-2 epimerization proceeds through an intermediate mononuclear nickel(II) complex, where the carbinolamine-like adduct of aldose with diamine in an open-chain form is epimerized at C-2 by a stereospecific rearrangement of the carbon skeleton or a pinacol-type rearrangement involving a cyclic transition state. 44 refs., 5 figs., 4 tabs

  9. MAGNESIUM IN WATER: SIMPLE AND EFFECTIVE FOR PINACOL COUPLING. (R822668)

    Science.gov (United States)

    The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...

  10. [18F]fluorination of biorelevant arylboronic acid pinacol ester scaffolds synthesized by convergence techniques

    NARCIS (Netherlands)

    Clemente, G.S.; Zarganes-Tzitzikas, T.; Antunes, I.F.; Dömling, A.; Elsinga, P.H.

    2017-01-01

    Aim: The development of small molecules through convergent multicomponent reactions (MCR) has been boosted during the last decade due to the ability to synthesize, virtually without any side-products, numerous small drug-like molecules with several degrees of structural diversity.(1) The association

  11. Nucleophilic 18F-Labeling of Spirocyclic Iodonium Ylide or Boronic Pinacol Ester Precursors - Advantages and Disadvantages

    DEFF Research Database (Denmark)

    Petersen, Ida Nymann; Kristensen, Jesper Langgaard; Herth, Matthias Manfred

    2017-01-01

    The field of labeling electron-rich aryl compounds with nucleophilic [18F]fluoride has recently expanded with radiofluorination strategies that apply boronic esters or spirocyclic iodonium ylides as precursors. Herein, we present a direct comparison of these strategies by using nine chemically di...

  12. MAGNESIUM-MEDIATED CARBON-CARBON BOND FORMATIONS IN AQUEOUS MEDIA: BARBIER-GRIGNARD ALLYLATION AND PINACOL COUPLING OF ALDEHYDES. (R822668)

    Science.gov (United States)

    The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...

  13. Molecular orbital studies on the Wagner-Meerwein migration in ...

    Indian Academy of Sciences (India)

    Meerwein migration of various groups during the pinacol-pinacolone rearrangement of some acyclic systems. Pinacol first protonates and dehydrates to form a carbocation that undergoes a 1,2-migration to form a protonated ketone, which then ...

  14. Rhodium-Catalyzed Dehydrogenative Borylation of Cyclic Alkenes

    Science.gov (United States)

    Kondoh, Azusa; Jamison, Timothy F.

    2010-01-01

    A rhodium-catalyzed dehydrogenative borylation of cyclic alkenes is described. This reaction provides direct access to cyclic 1-alkenylboronic acid pinacol esters, useful intermediates in organic synthesis. Suzuki-Miyaura cross-coupling applications are also presented. PMID:20107646

  15. Homogeneous and heterogeneous photoredox-catalyzed hydroxymethylation of ketones and keto esters: catalyst screening, chemoselectivity and dilution effects

    Directory of Open Access Journals (Sweden)

    Axel G. Griesbeck

    2014-05-01

    Full Text Available The homogeneous titanium- and dye-catalyzed as well as the heterogeneous semiconductor particle-catalyzed photohydroxymethylation of ketones by methanol were investigated in order to evaluate the most active photocatalyst system. Dialkoxytitanium dichlorides are the most efficient species for chemoselective hydroxymethylation of acetophenone as well as other aromatic and aliphatic ketones. Pinacol coupling is the dominant process for semiconductor catalysis and ketone reduction dominates the Ti(OiPr4/methanol or isopropanol systems. Application of dilution effects on the TiO2 catalysis leads to an increase in hydroxymethylation at the expense of the pinacol coupling.

  16. Synthesis of a jojoba bean disaccharide.

    Science.gov (United States)

    Kornienko, A; Marnera, G; d'Alarcao, M

    1998-08-01

    A synthesis of the disaccharide recently isolated from jojoba beans, 2-O-alpha-D-galactopyranosyl-D-chiro-inositol, has been achieved. The suitably protected chiro-inositol unit was prepared by an enantiospecific synthesis from L-xylose utilizing SmI2-mediated pinacol coupling as a key step.

  17. Diols and anions can control the formation of an exciplex between a pyridinium boronic acid with an aryl group connected via a propylene linker.

    Science.gov (United States)

    Huang, Yan-Jun; Jiang, Yun-Bao; Bull, Steven D; Fossey, John S; James, Tony D

    2010-11-21

    The exciplex formation between a pyridinium boronic acid and phenyl group connected via a propylene linker can be monitored using fluorescence. Addition of pinacol affords a cyclic boronate ester with enhanced Lewis acidity that increases the strength of its cation-π stacking interaction causing a four-fold fluorescence enhancement.

  18. Thermometric MIP sensor for fructosyl valine.

    Science.gov (United States)

    Rajkumar, Rajagopal; Katterle, Martin; Warsinke, Axel; Möhwald, Helmuth; Scheller, Frieder W

    2008-02-28

    Interactions of molecularly imprinted polymers containing phenyl boronic acid residues with fructosyl valine, fructose and pinacol, respectively are analysed in aqueous solution (pH 11.4) by using a flow calorimeter. The reversible formation of (two) cyclic boronic acid diesters per fructosyl molecule generates a 40-fold higher exothermic signal as compared to the control polymer. Whereas binding of pinacol to either the MIP or the control polymer generates a very small endothermic signal reflecting a negligible contribution of the esterification to the overall process. An "apparent imprinting factor" of 41 is found which exceeds the respective value of batch binding procedures by a factor of 30. Furthermore, the MIP sensor was used to characterise the crossreactivity. The influence of shape selective molecular recognition is discussed.

  19. Structure and reactivity of boron-ate complexes derived from primary and secondary boronic esters.

    Science.gov (United States)

    Feeney, Kathryn; Berionni, Guillaume; Mayr, Herbert; Aggarwal, Varinder K

    2015-06-05

    Boron-ate complexes derived from primary and secondary boronic esters and aryllithiums have been isolated, and the kinetics of their reactions with carbenium ions studied. The second-order rate constants have been used to derive nucleophilicity parameters for the boron-ate complexes, revealing that nucleophilicity increased with (i) electron-donating aromatics on boron, (ii) neopentyl glycol over pinacol boronic esters, and (iii) 12-crown-4 ether.

  20. Photochemical studies on aromatic γ,δ-epoxy ketones: efficient synthesis of benzocyclobutanones and indanones.

    Science.gov (United States)

    Shao, Yutian; Yang, Chao; Gui, Weijun; Liu, Yang; Xia, Wujiong

    2012-04-11

    Irradiation of terminal aromatic γ,δ-epoxy ketones with a 450 W UV lamp led to Norrish type II cyclization/semi-pinacol rearrangement cascade reaction which formed the benzocyclobutanones containing a full-carbon quaternary center, whereas irradiation of substituted aromatic γ,δ-epoxy ketones led to the indanones through a photochemical epoxy rearrangement and 1,5-biradicals cyclization tandem reaction. This journal is © The Royal Society of Chemistry 2012

  1. Catalytic Activation of Nitrogen Dioxide for Selective Synthesis of Nitroorganics

    Science.gov (United States)

    2015-01-15

    promising reactivity but have obvious drawbacks (high toxicity ). In contrast, bismuth has remarkably low toxicity (Pepto-Bismol® is a bismuth salt...University of Notre Dame FINAL PERFORMANCE REPORT 5 Nitrative ipso-Deboronation of Arylboronic Acids and their Pinacol Esters. Carbon- boron bonds...also works well for a number of other boronic acids and boronate esters, with good tolerance of ancillary functional groups. In some arylboronic

  2. The synthesis and pyrolysis of polycyclic organic sulphites

    International Nuclear Information System (INIS)

    Venter, H.J.

    1988-01-01

    The syntheses and thermolyses of model sulphite substrates were investigated: Lithium aluminium hidride reductions via the formation of a cyclic transition state lead to the formation of an endo-endo-diol as the main product. In contrast with the above, sodium borohidride reductions proceded via the formation of an acyclic transition state, which gave rise to different end products. The influence of specific reaction mechanisms on the product distribution of hidride reductions is discussed. The pinacoles required for the syntheses of certain substrates were obtained by means of the Clemmensen reductions. An unusual alcohol was formed during one of Clemmensen reductions. A mechanisms for ring cleavage and pinacole formation is presented, while a modified mechanism is proposed for the Clemmensen reduction of ketones. Treatment of some of the pinacoles with thionyl chloride lead to the formation of specific sulphites. A cyclic sulphite was derived from a diol obtained via a lithium aluminium hidride reduction reaction. In contrast a specific diketone was converted to a specific hemiketal when treated with zinc and acetic acid. Attempts to convert the diketone to the corresponding diol were unsuccessful. The pyrolytic behaviour of some sulphites as well as some of the diols were investigated. The pyrolysis of γ-diols and the corresponding sulphites proceded similarly. Various structures were derived from extensive comparative 1 H- and 13 C- studies

  3. Reduction by metals dissolved in liquid ammonia of keto steroids. Equilibration of the alcohols

    International Nuclear Information System (INIS)

    Giroud, A.M.

    1970-01-01

    Reducing a ketone by dissolved metals involves two electrons; we may consider as intermediate a radical-anion, then a di-anion or a carbo-anion. The radical-anion may also split and give pinacols away. In order to discuss the reduction proceeds, we had to know the respective stabilities of the alcohols, which lead us to effectuate equilibration. The first chapter is devoted to the method of preparing the androstanone-II and the androstanols-IIα and II-β. We further establish the impossibility of using our methods for reaching a conclusion about the alcohols relative stability by experimental equilibration. Last we describe the methods for reducing the ketone by alkaline and earth-alkaline metals, dissolved in liquid ammonia, either in contact with a protons donor or with a later added protons donor. The resulting mixture of the two alcohols shows a prevailing quantity of the stable equatorial isomer α. In a second chapter, we study the action of selenic acid and hydroperoxide on cholestanone-3, which leads us to study the preparation and stereochemistry of the A-nor cholestane derivates. We further describe the preparation of the A-nor cholestanols-2α and 2β, and the corresponding acetates. Equilibration of the alcohols by chemical methods shows the 2 α-alcohol more stable than the 2β, which is mathematically confirmed. Last, the reduction of the A-nor cholestanone-2 by dissolved metals consistently leads to the less stable 2 β epimer, with associated pinacols. The third chapter is devoted to the study of the androstanone-17 reductions, and the relative stabilities of the 17α and 17β alcohols. Whichever operating methods is used, we predominantly obtain the more stable 17β alcohol. In all cases, a pinacol production is observed. Summing up, we note that, in all cases, we predominantly obtain the equatorial epimer, whether it should be the more stable or the less stable. (author) [fr

  4. BCl3‐Induced Annulative Oxo‐ and Thioboration for the Formation of C3‐Borylated Benzofurans and Benzothiophenes

    Science.gov (United States)

    Warner, Andrew J.; Churn, Anna; McGough, John S.

    2016-01-01

    Abstract BCl3‐induced borylative cyclization of aryl‐alkynes possessing ortho‐EMe (E=S, O) groups represents a simple, metal‐free method for the formation of C3‐borylated benzothiophenes and benzofurans. The dichloro(heteroaryl)borane primary products can be protected to form synthetically ubiquitous pinacol boronate esters or used in situ in Suzuki–Miyaura cross couplings to generate 2,3‐disubstituted heteroarenes from simple alkyne precursors in one pot. In a number of cases alkyne trans‐haloboration occurs alongside, or instead of, borylative cyclization and the factors controlling the reaction outcome are determined. PMID:27897368

  5. Borostannylation of Alkynes and Enynes. Scope and Limitations of the Reaction and Utility of the Adducts

    Science.gov (United States)

    Singidi, Ramakrishna Reddy; RajanBabu, T. V.

    2010-01-01

    The utility of the bis-metallating reagent 1,3-dimethyl-2-trimethylstannyl-2-bora-1,3-diazacyclopentane (1) has not been fully realized because of the hydrolytic instability of the products derived from catalyzed vicinal syn-additions to alkynes. The isolation of variety of such adducts derived from alkynes (and also from hitherto unreported additions to 1,3-enynes) as stable boron pinacolates is reported. Examples of the applications of resulting products in tandem cross-coupling reactions and as dienes in Diels-Alder reactions are illustrated. PMID:20459076

  6. Fine-tuning the nucleophilic reactivities of boron ate complexes derived from aryl and heteroaryl boronic esters.

    Science.gov (United States)

    Berionni, Guillaume; Leonov, Artem I; Mayer, Peter; Ofial, Armin R; Mayr, Herbert

    2015-02-23

    Boron ate complexes derived from thienyl and furyl boronic esters and aryllithium compounds have been isolated and characterized by X-ray crystallography. Products and mechanisms of their reactions with carbenium and iminium ions have been analyzed. Kinetics of these reactions were monitored by UV/Vis spectroscopy, and the influence of the aryl substituents, the diol ligands (pinacol, ethylene glycol, neopentyl glycol, catechol), and the counterions on the nucleophilic reactivity of the boron ate complexes were examined. A Hammett correlation confirmed the polar nature of their reactions with benzhydrylium ions, and the correlation lg k(20 °C)=sN (E+N) was employed to determine the nucleophilicities of the boron ate complexes and to compare them with those of other borates and boronates. The neopentyl and ethylene glycol derivatives were found to be 10(4) times more reactive than the pinacol and catechol derivatives. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Organoboron compounds as Lewis acid receptors of fluoride ions in polymeric membranes.

    Science.gov (United States)

    Jańczyk, Martyna; Adamczyk-Woźniak, Agnieszka; Sporzyński, Andrzej; Wróblewski, Wojciech

    2012-07-06

    Newly synthesized organoboron compounds - 4-octyloxyphenylboronic acid (OPBA) and pinacol ester of 2,4,6-trifluorophenylboronic acid (PE-PBA) - were applied as Lewis acid receptors of fluoride anions. Despite enhanced selectivity, the polymer membrane electrodes containing the lipophilic receptor OPBA exhibited non-Nernstian slopes of the responses toward fluoride ions in acidic conditions. Such behavior was explained by the lability of the B-O bond in the boronic acids, and the OH(-)/F(-) exchange at higher fluoride content in the sample solution. In consequence, the stoichiometry of the OPBA-fluoride complexes in the membrane could vary during the calibration, changing the equilibrium concentration of the primary anion in membrane and providing super-Nernstian responses. The proposed mechanism was supported by (19)F NMR studies, which indicated that the fluoride complexation proceeds more effectively in acidic solution leading mainly to PhBF(3)(-) species. Finally, the performances of the membranes based on the phenylboronic acid pinacol ester, with a more stable B-O bond, were tested. As it was expected, Nernstian fluoride responses were recorded for such membranes with worsened fluoride selectivity. Copyright © 2012 Elsevier B.V. All rights reserved.

  8. Drug delivery system design and development for boron neutron capture therapy on cancer treatment

    International Nuclear Information System (INIS)

    Sherlock Huang, Lin-Chiang; Hsieh, Wen-Yuan; Chen, Jiun-Yu; Huang, Su-Chin; Chen, Jen-Kun; Hsu, Ming-Hua

    2014-01-01

    We have already synthesized a boron-containing polymeric micellar drug delivery system for boron neutron capture therapy (BNCT). The synthesized diblock copolymer, boron-terminated copolymers (Bpin-PLA-PEOz), consisted of biodegradable poly(D,L-lactide) (PLA) block and water-soluble polyelectrolyte poly(2-ethyl-2-oxazoline) (PEOz) block, and a cap of pinacol boronate ester (Bpin). In this study, we have demonstrated that synthesized Bpin-PLA-PEOz micelle has great potential to be boron drug delivery system with preliminary evaluation of biocompatibility and boron content. - Highlights: • Herein, we have synthesized boron-modified diblock copolymer. • Bpin-PLA-PEOz, which will be served as new boron containing vehicle for transporting the boron drug. • This boron containing Bpin-PLA-PEOz micelle was low toxicity can be applied to drug delivery

  9. Reduction by metals dissolved in liquid ammonia of keto steroids. Equilibration of the alcohols; Reduction par les metaux dissous dans l'ammoniac liquide de cetones en serie steroide. Equilibration des alcools

    Energy Technology Data Exchange (ETDEWEB)

    Giroud, A M [Commissariat a l' Energie Atomique, Grenoble (France). Centre d' Etudes Nucleaires

    1970-07-01

    Reducing a ketone by dissolved metals involves two electrons; we may consider as intermediate a radical-anion, then a di-anion or a carbo-anion. The radical-anion may also split and give pinacols away. In order to discuss the reduction proceeds, we had to know the respective stabilities of the alcohols, which lead us to effectuate equilibration. The first chapter is devoted to the method of preparing the androstanone-II and the androstanols-II{alpha} and II-{beta}. We further establish the impossibility of using our methods for reaching a conclusion about the alcohols relative stability by experimental equilibration. Last we describe the methods for reducing the ketone by alkaline and earth-alkaline metals, dissolved in liquid ammonia, either in contact with a protons donor or with a later added protons donor. The resulting mixture of the two alcohols shows a prevailing quantity of the stable equatorial isomer {alpha}. In a second chapter, we study the action of selenic acid and hydroperoxide on cholestanone-3, which leads us to study the preparation and stereochemistry of the A-nor cholestane derivates. We further describe the preparation of the A-nor cholestanols-2{alpha} and 2{beta}, and the corresponding acetates. Equilibration of the alcohols by chemical methods shows the 2 {alpha}-alcohol more stable than the 2{beta}, which is mathematically confirmed. Last, the reduction of the A-nor cholestanone-2 by dissolved metals consistently leads to the less stable 2 {beta} epimer, with associated pinacols. The third chapter is devoted to the study of the androstanone-17 reductions, and the relative stabilities of the 17{alpha} and 17{beta} alcohols. Whichever operating methods is used, we predominantly obtain the more stable 17{beta} alcohol. In all cases, a pinacol production is observed. Summing up, we note that, in all cases, we predominantly obtain the equatorial epimer, whether it should be the more stable or the less stable. (author) [French] La reduction d

  10. Reduction by metals dissolved in liquid ammonia of keto steroids. Equilibration of the alcohols; Reduction par les metaux dissous dans l'ammoniac liquide de cetones en serie steroide. Equilibration des alcools

    Energy Technology Data Exchange (ETDEWEB)

    Giroud, A.M. [Commissariat a l' Energie Atomique, Grenoble (France). Centre d' Etudes Nucleaires

    1970-07-01

    Reducing a ketone by dissolved metals involves two electrons; we may consider as intermediate a radical-anion, then a di-anion or a carbo-anion. The radical-anion may also split and give pinacols away. In order to discuss the reduction proceeds, we had to know the respective stabilities of the alcohols, which lead us to effectuate equilibration. The first chapter is devoted to the method of preparing the androstanone-II and the androstanols-II{alpha} and II-{beta}. We further establish the impossibility of using our methods for reaching a conclusion about the alcohols relative stability by experimental equilibration. Last we describe the methods for reducing the ketone by alkaline and earth-alkaline metals, dissolved in liquid ammonia, either in contact with a protons donor or with a later added protons donor. The resulting mixture of the two alcohols shows a prevailing quantity of the stable equatorial isomer {alpha}. In a second chapter, we study the action of selenic acid and hydroperoxide on cholestanone-3, which leads us to study the preparation and stereochemistry of the A-nor cholestane derivates. We further describe the preparation of the A-nor cholestanols-2{alpha} and 2{beta}, and the corresponding acetates. Equilibration of the alcohols by chemical methods shows the 2 {alpha}-alcohol more stable than the 2{beta}, which is mathematically confirmed. Last, the reduction of the A-nor cholestanone-2 by dissolved metals consistently leads to the less stable 2 {beta} epimer, with associated pinacols. The third chapter is devoted to the study of the androstanone-17 reductions, and the relative stabilities of the 17{alpha} and 17{beta} alcohols. Whichever operating methods is used, we predominantly obtain the more stable 17{beta} alcohol. In all cases, a pinacol production is observed. Summing up, we note that, in all cases, we predominantly obtain the equatorial epimer, whether it should be the more stable or the less stable. (author) [French] La reduction d

  11. Enantioselective synthesis of α-phenyl- and α-(dimethylphenylsilyl)alkylboronic esters by ligand mediated stereoinductive reagent-controlled homologation using configurationally labile carbenoids.

    Science.gov (United States)

    Barsamian, Adam L; Wu, Zhenhua; Blakemore, Paul R

    2015-03-28

    Chain extension of boronic esters by the action of configurationally labile racemic lithium carbenoids in the presence of scalemic bisoxazoline ligands was explored for the enantioselective synthesis of the two title product classes. Enantioenriched 2° carbinols generated by oxidative work-up (NaOOH) of initial α-phenylalkylboronate products were obtained in 35-83% yield and 70-96% ee by reaction of B-alkyl and B-aryl neopentyl glycol boronates with a combination of O-(α-lithiobenzyl)-N,N-diisopropylcarbamate and ligand 3,3-bis[(4S)-4,5-dihydro-4-isopropyloxazol-2-yl] pentane in toluene solvent (-78 °C to rt) with MgBr2·OEt2 additive. Enantioenriched α-(dimethylsilylphenylsilyl)alkylboronates were obtained in 35-69% yield and 9-57% ee by reaction of B-alkyl pinacol boronates with a combination of lithio(dimethylphenylsilyl)methyl 2,4,6-triisopropylbenzoate and ligand 2,2-bis[(4S)-4,5-dihydro-4-isopropyloxazol-2-yl]propane in cumene solvent (-45 °C to -95 °C to rt). The stereochemical outcome of the second type of reaction depended on the temperature history of the organolithium·ligand complex indicating that the stereoinduction mechanism in this case involves some aspect of dynamic thermodynamic resolution.

  12. The positive effect of oxygenated solvents for the synthetic use of electroregenerated ytterbium(II)

    International Nuclear Information System (INIS)

    Frontana-Uribe, Bernardo A.; Little, R. Daniel

    2005-01-01

    The addition of an oxygen based solvent, THF for example, to classical electrochemical media (DMF or ACN) improved the electrochemical behavior of the Yb(III)/Yb(II) couple. Two highlights of using 2:1 THF-DMF include the diminishing of the passivation at the carbon vitreous electrode when successive cycles are recorded and the almost totally reversible response of the system. The complexing effect of THF positively affects the electron-transfer kinetics of the redox couple, being faster in DMF-THF than in ACN-THF. A similar complexation effect was confirmed using tetraglyme as a cosolvent. The use of 2:1 THF-DMF allowed us to successfully substitute reticulated vitreous carbon in place of mercury as the working electrode for the Yb(II) electrogeneration experiments. Due to the stability of the alcoholate-Yb(III) complex, the recycling of Yb(III) to Yb(II) could not be achieved in the pinacolization reactions that were attempted

  13. An Approach for Expanding Triterpenoid Complexity via Divergent Norrish-Yang Photocyclization

    Science.gov (United States)

    Ignatenko, Vasily A.; Tochtrop, Gregory P.

    2013-01-01

    Triterpenoids comprise a very diverse family of polycyclic molecules that is well-known to possess a myriad of medicinal properties. Therefore, triterpenoids constitute an attractive target for medicinal chemistry and diversity-oriented synthesis. Photochemical transformations provide a promising tool for the rapid, green and inexpensive generation of skeletal diversity in the construction of natural product-like libraries. With this in mind, we have developed a diversity-oriented strategy, whereby the parent triterpenoids bryonolic acid and lanosterol are converted to the pseudo-symmetrical polyketones by sequential allylic oxidation and oxidative cleavage of the bridging double bond at the B/C-ring fusion. The resultant polyketones were hypothesized to undergo divergent Norrish-Yang cyclization to produce unique 6/4/8-fused triterpenoid analogs. The subtle differences between parent triterpenoids led to dramatically different spatial arrangements of reactive functionalities. This finding was rationalized through conformational analysis to explain unanticipated photoinduced pinacolization, as well as the regio- and stereochemical outcome of the desired Norrish-Yang cyclization. PMID:23544445

  14. Beyond benzyl grignards: facile generation of benzyl carbanions from styrenes.

    Science.gov (United States)

    Grigg, R David; Rigoli, Jared W; Van Hoveln, Ryan; Neale, Samuel; Schomaker, Jennifer M

    2012-07-23

    Benzylic functionalization is a convenient approach towards the conversion of readily available aromatic hydrocarbon feedstocks into more useful molecules. However, the formation of carbanionic benzyl species from benzyl halides or similar precursors is far from trivial. An alternative approach is the direct reaction of a styrene with a suitable coupling partner, but these reactions often involve the use of precious-metal transition-metal catalysts. Herein, we report the facile and convenient generation of reactive benzyl anionic species from styrenes. A Cu(I)-catalyzed Markovnikov hydroboration of the styrenic double bond by using a bulky pinacol borane source is followed by treatment with KOtBu to facilitate a sterically induced cleavage of the C-B bond to produce a benzylic carbanion. Quenching this intermediate with a variety of electrophiles, including CO(2), CS(2), isocyanates, and isothiocyanates, promotes C-C bond formation at the benzylic carbon atom. The utility of this methodology was demonstrated in a three-step, two-pot synthesis of the nonsteroidal anti-inflammatory drug (±)-flurbiprofen. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Cobalt-Catalyzed C(sp(2))-H Borylation: Mechanistic Insights Inspire Catalyst Design.

    Science.gov (United States)

    Obligacion, Jennifer V; Semproni, Scott P; Pappas, Iraklis; Chirik, Paul J

    2016-08-24

    A comprehensive study into the mechanism of bis(phosphino)pyridine (PNP) cobalt-catalyzed C-H borylation of 2,6-lutidine using B2Pin2 (Pin = pinacolate) has been conducted. The experimentally observed rate law, deuterium kinetic isotope effects, and identification of the catalyst resting state support turnover limiting C-H activation from a fully characterized cobalt(I) boryl intermediate. Monitoring the catalytic reaction as a function of time revealed that borylation of the 4-position of the pincer in the cobalt catalyst was faster than arene borylation. Cyclic voltammetry established the electron withdrawing influence of 4-BPin, which slows the rate of C-H oxidative addition and hence overall catalytic turnover. This mechanistic insight inspired the next generation of 4-substituted PNP cobalt catalysts with electron donating and sterically blocking methyl and pyrrolidinyl substituents that exhibited increased activity for the C-H borylation of unactivated arenes. The rationally designed catalysts promote effective turnover with stoichiometric quantities of arene substrate and B2Pin2. Kinetic studies on the improved catalyst, 4-(H)2BPin, established a change in turnover limiting step from C-H oxidative addition to C-B reductive elimination. The iridium congener of the optimized cobalt catalyst, 6-(H)2BPin, was prepared and crystallographically characterized and proved inactive for C-H borylation, a result of the high kinetic barrier for reductive elimination from octahedral Ir(III) complexes.

  16. Total Synthesis of Natural Products Using Hypervalent Iodine Reagents

    Directory of Open Access Journals (Sweden)

    Gaetan eMaertens

    2015-01-01

    Full Text Available We present a review of natural product syntheses accomplished in our laboratory during the last five years. Each synthetic route features a phenol dearomatization promoted by an environmentally benign hypervalent iodine reagent. The dearomatizations demonstrate the aromatic ring umpolung concept, and involve stereoselective remodeling of the inert unsaturations of a phenol into a highly functionalized key intermediate that may contain a quaternary carbon center and a prochiral dienone system. Several new oxidative strategies were employed, including transpositions (1,3-alkyl shift and Prins-pinacol, a polycyclization, an ipso rearrangement, and direct nucleophilic additions at the phenol para position. Several alkaloids, heterocyclic compounds, and a polycyclic core have been achieved, including sceletenone (a serotonin reuptake inhibitor, acetylaspidoalbidine (an antitumor agent, fortucine (antiviral and antitumor, erysotramidine (curare-like effect, platensimycin (an antibiotic, and the main core of a kaurane diterpene (immunosuppressive agent and stimulator of apoptosis. These concise and in some cases enantioselective syntheses effectively demonstrate the importance of hypervalent iodine reagents in the total synthesis of bioactive natural products.

  17. The Effects of Dilute Sulfuric Acid on Sheet Resistance and Transmittance in Poly(3,4-thylenedioxythiophene: Poly(styrenesulfonate Films

    Directory of Open Access Journals (Sweden)

    Teen-Hang Meen

    2013-01-01

    Full Text Available The conductivity of poly(3,4-thylenedioxythiophene: poly(styrenesulfonate (PEDOT: PSS films by adding various molar concentrations of sulfuric acid (H2SO4 was improved and studied in this paper. The sheet resistance of the doped PEDOT: PSS film was enhanced with increasing the ratio of H2SO4, but it drops after the maximum sheet resistance. The reason for this phenomenon is resulting from the fact that the H2SO4 preferentially react with the sorbitol which is so-called the pinacol rearrangement. The nonconductive anions of some PSS− were substituted by the conductive anions of hydrogen sulfate (HSO4- when the residual H2SO4 reacted with PSS. In addition to the substitution reaction, PEDOT chains were increasingly aggregated with increasing the ratio of H2SO4. After doped H2SO4, the sheet resistance of H2SO4-doped PEDOT: PSS film is improved nearly 36%; the surface roughness is reduced from 1.268 nm to 0.822 nm and the transmittance is up to 91.9% in the visible wavelength range from 400 to 700 nm.

  18. Atypical McMurry Cross-Coupling Reactions Leading to a New Series of Potent Antiproliferative Compounds Bearing the Key [Ferrocenyl-Ene-Phenol] Motif

    Directory of Open Access Journals (Sweden)

    Pascal Pigeon

    2014-07-01

    Full Text Available In the course of the preparation of a series of ferrocenyl derivatives of diethylstilbestrol (DES, in which one of the 4-hydroxyphenyl moieties was replaced by a ferrocenyl group, the McMurry reaction of chloropropionylferrocene with a number of mono-aryl ketones unexpectedly yielded the hydroxylated ferrocenyl DES derivatives, 5a–c, in poor yields (10%–16%. These compounds showed high activity on the hormone-independent breast cancer cell line MDA-MB-231 with IC50 values ranging from 0.14 to 0.36 µM. Surprisingly, non-hydroxylated ferrocenyl DES, 4, showed only an IC50 value of 1.14 µM, illustrating the importance of the hydroxyethyl function in this promising new series. For comparison, McMurry reactions of the shorter chain analogue chloroacetylferrocene were carried out to see the difference in behaviour with mono-aryl ketones versus a diaryl ketone. The effect of changing the length of the alkyl chain adjacent to the phenolic substituent of the hydroxylated ferrocenyl DES was studied, a mechanistic rationale to account for the unexpected products is proposed, and the antiproliferative activities of all of these compounds on MDA-MB-231 cells lines were measured and compared. X-ray crystal structures of cross-coupled products and of pinacol-pinacolone rearrangements are reported.

  19. Oxygen-atom transfer chemistry and thermolytic properties of a di-tert-butylphosphate-ligated Mn4O4 cubane.

    Science.gov (United States)

    Van Allsburg, Kurt M; Anzenberg, Eitan; Drisdell, Walter S; Yano, Junko; Tilley, T Don

    2015-03-16

    [Mn4O4{O2P(OtBu)2}6] (1), an Mn4O4 cubane complex combining the structural inspiration of the photosystem II oxygen-evolving complex with thermolytic precursor ligands, was synthesized and fully characterized. Core oxygen atoms within complex 1 are transferred upon reaction with an oxygen-atom acceptor (PEt3), to give the butterfly complex [Mn4O2{O2P(OtBu)2}6(OPEt3)2]. The cubane structure is restored by reaction of the latter complex with the O-atom donor PhIO. Complex 1 was investigated as a precursor to inorganic Mn metaphosphate/pyrophosphate materials, which were studied by X-ray absorption spectroscopy to determine the fate of the Mn4O4 unit. Under the conditions employed, thermolyses of 1 result in reduction of the manganese to Mn(II) species. Finally, the related butterfly complex [Mn4O2{O2P(pin)}6(bpy)2] (pin = pinacolate) is described. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Synthesis of N-(6-Arylbenzo[d]thiazole-2-acetamide Derivatives and Their Biological Activities: An Experimental and Computational Approach.

    Science.gov (United States)

    Gull, Yasmeen; Rasool, Nasir; Noreen, Mnaza; Altaf, Ataf Ali; Musharraf, Syed Ghulam; Zubair, Muhammad; Nasim, Faiz-Ul-Hassan; Yaqoob, Asma; DeFeo, Vincenzo; Zia-Ul-Haq, Muhammad

    2016-02-25

    A new series of N-(6-arylbenzo[d]thiazol-2-yl)acetamides were synthesized by C-C coupling methodology in the presence of Pd(0) using various aryl boronic pinacol ester/acids. The newly synthesized compounds were evaluated for various biological activities like antioxidant, haemolytic, antibacterial and urease inhibition. In bioassays these compounds were found to have moderate to good activities. Among the tested biological activities screened these compounds displayed the most significant activity for urease inhibition. In urease inhibition, all compounds were found more active than the standard used. The compound N-(6-(p-tolyl)benzo[d]thiazol-2-yl)acetamide was found to be the most active. To understand this urease inhibition, molecular docking studies were performed. The in silico studies showed that these acetamide derivatives bind to the non-metallic active site of the urease enzyme. Structure-activity studies revealed that H-bonding of compounds with the enzyme is important for its inhibition.

  1. Group 4 Metalloporphyrin diolato Complexes and Catalytic Application of Metalloporphyrins and Related Transition Metal Complexes

    Energy Technology Data Exchange (ETDEWEB)

    Du, Guodong [Iowa State Univ., Ames, IA (United States)

    2003-01-01

    In this work, the first examples of group 4 metalloporphyrin 1,2-diolato complexes were synthesized through a number of strategies. In general, treatment of imido metalloporphyrin complexes, (TTP)M=NR, (M = Ti, Zr, Hf), with vicinal diols led to the formation of a series of diolato complexes. Alternatively, the chelating pinacolate complexes could be prepared by metathesis of (TTP)MCl2 (M = Ti, Hf) with disodium pinacolate. These complexes were found to undergo C-C cleavage reactions to produce organic carbonyl compounds. For titanium porphyrins, treatment of a titanium(II) alkyne adduct, (TTP)Ti(η2-PhC≡CPh), with aromatic aldehydes or aryl ketones resulted in reductive coupling of the carbonyl groups to produce the corresponding diolato complexes. Aliphatic aldehydes or ketones were not reactive towards (TTP)Ti(η2-PhC≡CPh). However, these carbonyl compounds could be incorporated into a diolato complex on reaction with a reactive precursor, (TTP)Ti[O(Ph)2C(Ph)2O] to provide unsymmetrical diolato complexes via cross coupling reactions. In addition, an enediolato complex (TTP)Ti(OCPhCPhO) was obtained from the reaction of (TTP)Ti(η2-PhC≡CPh) with benzoin. Titanium porphyrin diolato complexes were found to be intermediates in the (TTP)Ti=O-catalyzed cleavage reactions of vicinal diols, in which atmospheric oxygen was the oxidant. Furthermore, (TTP)Ti=O was capable of catalyzing the oxidation of benzyl alcohol and α-hydroxy ketones to benzaldehyde and α-diketones, respectively. Other high valent metalloporphyrin complexes also can catalyze the oxidative diol cleavage and the benzyl alcohol oxidation reactions with dioxygen. A comparison of Ti(IV) and Sn(IV) porphyrin chemistry was undertaken. While chelated diolato complexes were invariably obtained for titanium porphyrins on treatment with 1,2-diols, the reaction of vicinal diols with tin porphyrins gave a number of products, including mono