WorldWideScience

Sample records for pillar stability experiment

  1. Aespoe Pillar Stability Experiment. Acoustic emission and ultrasonic monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Haycox, Jon; Pettitt, Will; Young, R. Paul [Applied Seismology Consultants Ltd., Shrewsbury (United Kingdom)

    2005-12-15

    This report describes the results from acoustic emission (AE) and ultrasonic monitoring of the Aespoe Pillar Stability Experiment (APSE) at SKB's Hard Rock Laboratory (HRL), Sweden. The APSE is being undertaken to demonstrate the current capability to predict spalling in a fractured rock mass using numerical modelling techniques, and to demonstrate the effect of backfill and confining pressure on the propagation of micro-cracks in rock adjacent to deposition holes within a repository. An ultrasonic acquisition system has provided acoustic emission and ultrasonic survey monitoring throughout the various phases of the experiment. Results from the entire data set are provided with this document so that they can be effectively compared to several numerical modelling studies, and to mechanical and thermal measurements conducted around the pillar volume, in an 'integrated analysis' performed by SKB staff. This document provides an in-depth summary of the AE and ultrasonic survey results for future reference. The pillar has been produced by excavating two 1.8 m diameter deposition holes 1 m apart. These were bored in 0.8 m steps using a Tunnel Boring Machine specially adapted for vertical drilling. The first deposition hole was drilled in December 2003. Preceding this a period of background monitoring was performed so as to obtain a datum for the results. The hole was then confined to 0.7 MPa internal over pressure using a specially designed water-filled bladder. The second deposition hole was excavated in March 2004. Heating of the pillar was performed over a two month period between ending in July 2004, when the confined deposition hole was slowly depressurised. Immediately after depressurisation the pillar was allowed to cool with cessation of monitoring occurring a month later. A total of 36,676 AE triggers were recorded over the reporting period between 13th October 2003 and 14th July 2004. Of these 15,198 have produced AE locations. The AE data set

  2. Aespoe Pillar Stability Experiment. Acoustic emission and ultrasonic monitoring

    International Nuclear Information System (INIS)

    Haycox, Jon; Pettitt, Will; Young, R. Paul

    2005-11-01

    This report describes the results from acoustic emission (AE) and ultrasonic monitoring of the Aespoe Pillar Stability Experiment (APSE) at SKB's Hard Rock Laboratory (HRL), Sweden. The APSE is being undertaken to demonstrate the current capability to predict spalling in a fractured rock mass using numerical modelling techniques, and to demonstrate the effect of backfill and confining pressure on the propagation of micro-cracks in rock adjacent to deposition holes within a repository. An ultrasonic acquisition system has provided acoustic emission and ultrasonic survey monitoring throughout the various phases of the experiment. Results from the entire data set are provided with this document so that they can be effectively compared to several numerical modelling studies, and to mechanical and thermal measurements conducted around the pillar volume, in an 'integrated analysis' performed by SKB staff. This document provides an in-depth summary of the AE and ultrasonic survey results for future reference. The pillar has been produced by excavating two 1.8 m diameter deposition holes 1 m apart. These were bored in 0.8 m steps using a Tunnel Boring Machine specially adapted for vertical drilling. The first deposition hole was drilled in December 2003. Preceding this a period of background monitoring was performed so as to obtain a datum for the results. The hole was then confined to 0.7 MPa internal over pressure using a specially designed water-filled bladder. The second deposition hole was excavated in March 2004. Heating of the pillar was performed over a two month period between ending in July 2004, when the confined deposition hole was slowly depressurised. Immediately after depressurisation the pillar was allowed to cool with cessation of monitoring occurring a month later. A total of 36,676 AE triggers were recorded over the reporting period between 13th October 2003 and 14th July 2004. Of these 15,198 have produced AE locations. The AE data set shows an intense

  3. Aespoe Pillar Stability Experiment. Modelling of fracture development of APSE by FRACOD

    International Nuclear Information System (INIS)

    Rinne, Mikael; Baotang Shen; Lee, Hee-Suk

    2004-03-01

    An in-situ experiment has started at Aespoe HRL to investigate the stability of a pillar between two closely located boreholes of deposition hole scale. This full-scale experiment is named the Aespoe Pillar Stability Experiment (APSE). One of the holes will be pressurized with 0.8 MPa water pressure to simulate confinement by backfill. Thermal stresses will be applied in the pillar by the use of electric heaters to reach the spalling conditions. To quantify the degree of damage during the experiment, an Acoustic Emission (AE) system will be used and strain measurements will be installed. FRACOD is a two dimensional BEM/DDM code for fracturing analysis in rock material. Here it has been used to model the rock mass response during the planned sequences of excavation-confinement-heating. The models predict the stress and displacement fields, fracture initiation and propagation, coalescence and the final failure of the rock mass. The presences of pre-existing fractures, which may have significant influence on the pillar behaviour, have also been considered in the modelling. This report summarises the modelling work using FRACOD to simulate the various experimental stages

  4. Aespoe Pillar Stability Experiment. Final coupled 3D thermo-mechanical modeling. Preliminary particle mechanical modeling

    International Nuclear Information System (INIS)

    Wanne, Toivo; Johansson, Erik; Potyondy, David

    2004-02-01

    SKB is planning to perform a large-scale pillar stability experiment called APSE (Aespoe Pillar Stability Experiment) at Aespoe HRL. The study is focused on understanding and control of progressive rock failure in hard crystalline rock and damage caused by high stresses. The elastic thermo-mechanical modeling was carried out in three dimensions because of the complex test geometry and in-situ stress tensor by using a finite-difference modeling software FLAC3D. Cracking and damage formation were modeled in the area of interest (pillar between two large scale holes) in two dimensions by using the Particle Flow Code (PFC), which is based on particle mechanics. FLAC and PFC were coupled to minimize the computer resources and the computing time. According to the modeling the initial temperature rises from 15 deg C to about 65 deg C in the pillar area during the heating period of 120 days. The rising temperature due to thermal expansion induces stresses in the pillar area and after 120 days heating the stresses have increased about 33% from the excavation induced maximum stress of 150 MPa to 200 MPa in the end of the heating period. The results from FLAC3D model showed that only regions where the crack initiation stress has exceeded were identified and they extended to about two meters down the hole wall. These could be considered the areas where damage may occur during the in-situ test. When the other hole is pressurized with a 0.8 MPa confining pressure it yields that 5 MPa more stress is needed to damage the rock than without confining pressure. This makes the damaged area in some degree smaller. High compressive stresses in addition to some tensile stresses might induce some AE (acoustic emission) activity in the upper part of the hole from the very beginning of the test and are thus potential areas where AE activities may be detected. Monitoring like acoustic emissions will be measured during the test execution. The 2D coupled PFC-FLAC modeling indicated that

  5. Aespoe Pillar Stability Experiment. Final coupled 3D thermo-mechanical modeling. Preliminary particle mechanical modeling

    Energy Technology Data Exchange (ETDEWEB)

    Wanne, Toivo; Johansson, Erik; Potyondy, David [Saanio and Riekkola Oy, Helsinki (Finland)

    2004-02-01

    SKB is planning to perform a large-scale pillar stability experiment called APSE (Aespoe Pillar Stability Experiment) at Aespoe HRL. The study is focused on understanding and control of progressive rock failure in hard crystalline rock and damage caused by high stresses. The elastic thermo-mechanical modeling was carried out in three dimensions because of the complex test geometry and in-situ stress tensor by using a finite-difference modeling software FLAC3D. Cracking and damage formation were modeled in the area of interest (pillar between two large scale holes) in two dimensions by using the Particle Flow Code (PFC), which is based on particle mechanics. FLAC and PFC were coupled to minimize the computer resources and the computing time. According to the modeling the initial temperature rises from 15 deg C to about 65 deg C in the pillar area during the heating period of 120 days. The rising temperature due to thermal expansion induces stresses in the pillar area and after 120 days heating the stresses have increased about 33% from the excavation induced maximum stress of 150 MPa to 200 MPa in the end of the heating period. The results from FLAC3D model showed that only regions where the crack initiation stress has exceeded were identified and they extended to about two meters down the hole wall. These could be considered the areas where damage may occur during the in-situ test. When the other hole is pressurized with a 0.8 MPa confining pressure it yields that 5 MPa more stress is needed to damage the rock than without confining pressure. This makes the damaged area in some degree smaller. High compressive stresses in addition to some tensile stresses might induce some AE (acoustic emission) activity in the upper part of the hole from the very beginning of the test and are thus potential areas where AE activities may be detected. Monitoring like acoustic emissions will be measured during the test execution. The 2D coupled PFC-FLAC modeling indicated that

  6. Aespoe Pillar Stability Experiment. Final 2D coupled thermo-mechanical modelling

    Energy Technology Data Exchange (ETDEWEB)

    Fredriksson, Anders; Staub, Isabelle; Outters, Nils [Golder Associates AB, Uppsala (Sweden)

    2004-02-01

    A site scale Pillar Stability Experiment is planned in the Aespoe Hard Rock Laboratory. One of the experiment's aims is to demonstrate the possibilities of predicting spalling in the fractured rock mass. In order to investigate the probability and conditions for spalling in the pillar 'prior to experiment' numerical simulations have been undertaken. This report presents the results obtained from 2D coupled thermo-mechanical numerical simulations that have been done with the Finite Element based programme JobFem. The 2D numerical simulations were conducted at two different depth levels, 0.5 and 1.5 m below tunnel floor. The in situ stresses have been confirmed with convergence measurements during the excavation of the tunnel. After updating the mechanical and thermal properties of the rock mass the final simulations have been undertaken. According to the modelling results the temperature in the pillar will increase from the initial 15.2 deg up to 58 deg after 120 days of heating. Based on these numerical simulations and on the thermal induced stresses the total stresses are expected to exceed 210 MPa at the border of the pillar for the level at 0.5 m below tunnel floor and might reach 180-182 MPa for the level at 1.5 m below tunnel floor. The stresses are slightly higher at the border of the confined hole. Upon these results and according to the rock mechanical properties the Crack Initiation Stress is exceeded at the border of the pillar already after the excavation phase. These results also illustrate that the Crack Damage Stress is exceeded only for the level at 0.5 m below tunnel floor and after at least 80 days of heating. The interpretation of the results shows that the required level of stress for spalling can be reached in the pillar.

  7. Aespoe Pillar Stability Experiment. Geology and mechanical properties of the rock in TASQ

    International Nuclear Information System (INIS)

    Staub, Isabelle; Andersson, J. Christer; Magnor, Bjoern

    2004-03-01

    An extensive characterization programme has been performed in the drift, TASQ, excavated for the Aespoe Pillar Stability Experiment, APSE, including the rock volume that will host the experiment pillar between the two deposition holes. The two major objectives with the characterization has been to 1) derive material properties for the final numerical modelling of the experiment and 2) to ensure that the pillar location is suitable from a structural and rock mechanical point of view. In summary the following activities have been performed: Geological mapping of the drift, the pilot holes cores and deposition hole DQ0066G01. 3D-visualisation of the geological mapping in the experiment (pillar) volume of TASQ. Convergence measurements during the excavation and back calculation of the results for determination of the stress tensor and the rock mass Young's modulus. Laboratory tests on core samples from the 15Φ76 mm core boreholes drilled around the pillar volume for determination of: compressive strength, thermal properties and fracture properties. P-wave velocity measurements on core samples and between boreholes for estimation of the excavation damaged zone and rock mass properties. The geological mapping and the 3D-visualisation gives a good description of the TASQ drift in general and the experiment volume in the drift in particular. The fracturing of the drift follows the pattern of the rest of Aespoe. Three fracture sets have been mapped in TASQ. The major fracture set is sub-vertical and trending NW, in principle parallel to σ 1 . This set is the most conductive at Aespoe and is the only water bearing set in TASQ. A second less pronounced set is trending NE, parallel to TASQ, and is also sub-vertical. The third set is sub-horizontal. It is interesting to note that the third set is the only one that almost completely consists of sealed fractures. The first two sets have mostly open fractures. One unique feature in the drift is a heavily oxidized brittle

  8. Aespoe Pillar Stability Experiment. Geology and mechanical properties of the rock in TASQ

    Energy Technology Data Exchange (ETDEWEB)

    Staub, Isabelle [Golder Associates AB, Uppsala (Sweden); Andersson, J. Christer; Magnor, Bjoern

    2004-03-01

    An extensive characterization programme has been performed in the drift, TASQ, excavated for the Aespoe Pillar Stability Experiment, APSE, including the rock volume that will host the experiment pillar between the two deposition holes. The two major objectives with the characterization has been to 1) derive material properties for the final numerical modelling of the experiment and 2) to ensure that the pillar location is suitable from a structural and rock mechanical point of view. In summary the following activities have been performed: Geological mapping of the drift, the pilot holes cores and deposition hole DQ0066G01. 3D-visualisation of the geological mapping in the experiment (pillar) volume of TASQ. Convergence measurements during the excavation and back calculation of the results for determination of the stress tensor and the rock mass Young's modulus. Laboratory tests on core samples from the 15{phi}76 mm core boreholes drilled around the pillar volume for determination of: compressive strength, thermal properties and fracture properties. P-wave velocity measurements on core samples and between boreholes for estimation of the excavation damaged zone and rock mass properties. The geological mapping and the 3D-visualisation gives a good description of the TASQ drift in general and the experiment volume in the drift in particular. The fracturing of the drift follows the pattern of the rest of Aespoe. Three fracture sets have been mapped in TASQ. The major fracture set is sub-vertical and trending NW, in principle parallel to {sigma}{sub 1}. This set is the most conductive at Aespoe and is the only water bearing set in TASQ. A second less pronounced set is trending NE, parallel to TASQ, and is also sub-vertical. The third set is sub-horizontal. It is interesting to note that the third set is the only one that almost completely consists of sealed fractures. The first two sets have mostly open fractures. One unique feature in the drift is a heavily

  9. Aespoe Pillar Stability Experiment. Summary of preparatory work and predictive modelling

    International Nuclear Information System (INIS)

    Andersson, J. Christer

    2004-11-01

    The Aespoe Pillar Stability Experiment, APSE, is a large scale rock mechanics experiment for research of the spalling process and the possibility for numerical modelling of it. The experiment can be summarized in three objectives: Demonstrate the current capability to predict spalling in a fractured rock mass; Demonstrate the effect of backfill (confining pressure) on the rock mass response; and Comparison of 2D and 3D mechanical and thermal predicting capabilities. This report is a summary of the works that has been performed in the experiment prior to the heating of the rock mass. The major activities that have been performed and are discussed herein are: 1) The geology of the experiment drift in general and the experiment volume in particular. 2) The design process of the experiment and thoughts behind some of the important decisions. 3) The monitoring programme and the supporting constructions for the instruments. 4) The numerical modelling, approaches taken and a summary of the predictions. In the end of the report there is a comparison of the results from the different models. Included is also a comparison of the time needed for building, realizing and make changes in the different models

  10. Aespoe Pillar Stability Experiment. Final experiment design, monitoring results and observations

    Energy Technology Data Exchange (ETDEWEB)

    Andersson, Christer [Swedish Nuclear Fuel and Waste Management Co., Stockholm (Sweden); Eng, Anders [Acuo Engineering AB, Linkoeping (Sweden)

    2005-12-15

    The field part of the Aespoe Pillar Stability Experiment at the Aespoe Hard Rock Laboratory (HRL) was finished in 2004. The experiment was designed to induce and monitor the process of brittle failure, spalling, in a fractured rock mass under controlled conditions. The field part was successfully conducted and a large data set was obtained. This report presents the final design of the experiment, the results of the monitoring, and the observations made during the spalling process and when the spalled rock was removed. When heating of the rock was initiated the rock responded quickly. After only a few days the spalling process was activated in the notch, as indicated by the acoustic emission system, and shortly thereafter displacement readings were recorded. Contraction (radial expansion) of the rock was recorded by several instruments before the notch reached the instrument levels. This contraction is probably the result of a 3D re-distribution of the stresses. The temperature increase in the system was both slower and reached a steady state much earlier than predicted by the numerical models. The propagation of the notch was therefore halted after approximately one month of heating. The power to the electrical heaters was therefore doubled. Spalling then started up again, and in one month's time it had propagated to a depth of approximately five metres in the hole. A second steady state was now reached, but this time the heater power was kept constant for a while to let the rock settle before the confinement pressure was reduced from 700 kPa to 0 in decrements of 50 kPa. The rock mass response to the pressure drop was very limited until the pressure was lowered to approximately 200 kPa (the atmospheric pressure is not included in the given pressure values). Large displacements and a high acoustic emission hit frequency were then measured in the open hole. After the de-pressurization of the confined hole, the heaters were left on for approximately one week

  11. Analysis of Äspö Pillar Stability Experiment: Continuous thermo-mechanical model development and calibration

    Czech Academy of Sciences Publication Activity Database

    Blaheta, Radim; Byczanski, Petr; Čermák, M.; Hrtus, Rostislav; Kohut, Roman; Kolcun, Alexej; Malík, Josef; Sysala, Stanislav

    2013-01-01

    Roč. 5, č. 2 (2013), s. 124-135 ISSN 1674-7755 Institutional support: RVO:68145535 Keywords : in situ pillar stability experiment * model calibration by back analysis * continuous mechanics * damage of granite rocks * Finite element method (FEM) Subject RIV: BA - General Mathematics http://www.sciencedirect.com/science/article/pii/S1674775513000103

  12. Long-Term Stability Evaluation and Pillar Design Criterion for Room-and-Pillar Mines

    Directory of Open Access Journals (Sweden)

    Yang Yu

    2017-10-01

    Full Text Available The collapse of abandoned room-and-pillar mines is often violent and unpredictable. Safety concerns often resulted in mine closures with no post-mining stability evaluations. As a result, large amounts of land resources over room-and-pillar mines are wasted. This paper attempts to establish an understanding of the long-term stability issues of goafs (abandoned mines. Considering progressive pillar failures and the effect of single pillar failure on surrounding pillars, this paper proposes a pillar peeling model to evaluate the long-term stability of coal mines and the associated criteria for evaluating the long-term stability of room-and-pillar mines. The validity of the peeling model was verified by numerical simulation, and field data from 500 pillar cases from China, South Africa, and India. It is found that the damage level of pillar peeling is affected by the peel angle and pillar height and is controlled by the pillar width–height ratio.

  13. Numerical simulations and analysis for the Aespoe pillar stability experiment. Part 1. Continuum based approaches using finite element method and comparison with other analysis model

    International Nuclear Information System (INIS)

    Chijimatsu, Masakazu; Koyama, Tomofumi; Shimizu, Hiroyuki; Nakama, Shigeo; Fujita, Tomoo

    2013-01-01

    DECOVALEX-2011 is an international cooperation project for enhancing the numerical models of radioactive waste repositories. In DECOVALEX-2011 project, the failure mechanism during excavation and heating processes observed in the Aespoe pillar stability experiment, which was carried out at the Aespoe Hard Rock Laboratory by the Swedish Nuclear Fuel and Waste Management Company, were simulated using Finite Element Method. When the calibrated parameters were used, simulation results agree qualitatively well with the experimental results. Therefore, it can be said that the spalling phenomenon is expressible even by the application with the continuum model by the use of the suitable parameters. (author)

  14. Pillarization

    NARCIS (Netherlands)

    Maussen, M.; Stone, J.; Dennis, R.M.; Rizova, P.S.; Smith, A.D.; Hou, X.

    2016-01-01

    Pillarization describes a society as divided into a number of "pillars," being compartments standing for the networks of organizations belonging to religious and ideological subcultures. Typically the associations cover a broad range of societal domains (education, media, political parties). The

  15. Causes of falls of hangingwall over gullies adjacent to stabilizing strike pillars

    CSIR Research Space (South Africa)

    Turner, PA

    1987-08-01

    Full Text Available This report discusses the occurrence of falls of ground in strike gullies. Falls of hangingwall over strike gullies on the up-dip side of strike stabilizing pillars in longwall mining systems were investigated. Gullies were examined in both...

  16. Determine the need to research the time-related stability decay of bord and pillar systems

    CSIR Research Space (South Africa)

    Oberholzer, JW

    1997-07-01

    Full Text Available in decisions regarding research work that could be conducted to investigate the time related decay of bord and pillar workings. As the working consist of pillars of varying shapes and sizes the study concentrated mainly on the aspects of pillar decay...

  17. Pretest parametric calculations for the heated pillar experiment in the WIPP In-Situ Experimental Area

    International Nuclear Information System (INIS)

    Branstetter, L.J.

    1983-03-01

    Results are presented for a pretest parametric study of several configurations and heat loads for the heated pillar experiment (Room H) in the Waste Isolation Pilot Plant (WIPP) In Situ Experimental Area. The purpose of this study is to serve as a basis for selection of a final experiment geometry and heat load. The experiment consists of a pillar of undisturbed rock salt surrounded by an excavated annular room. The pillar surface is covered by a blanket heat source which is externally insulated. A total of five thermal and ten structural calculations are described in a four to five year experimental time frame. Results are presented which include relevant temperature-time histories, deformations, rock salt stress component and effective stress profiles, and maximum stresses in anhydrite layers which are in close proximity to the room. Also included are predicted contours of a conservative post-processed measure of potential salt failure. Observed displacement histories are seen to be highly dependent on pillar and room height, but insensitive to other geometrical variations. The use of a tensile cutoff across slidelines is seen to produce more accurate predictions of anhydrite maximum stress, but to have little effect on rock salt stresses. The potential for salt failure is seen to be small in each case for the time frame of interest, and is only seen at longer times in the center of the room floor

  18. A physical and numerical modelling investigation of the roadway stability in longwall mining, with and without narrow pillar protection

    Energy Technology Data Exchange (ETDEWEB)

    Yavuz, H.; Fowell, R.J. [Suleyman Demirel University, Isparta (Turkey)

    2004-03-01

    The drivage of the supply gate of a development panel in the presumed low stress zone adjacent to the loader gate of an excavated panel with a very small width of intervening pillar between the two entries, known as skin-to-skin working, resulted in an extensive fall of the supply gate roof at Bilsthorpe colliery in 1993. This fall left a question over the application of skin-to-skin drivage of gate entries supported primarily by rock bolts. To investigate the possible reasons behind this fall, both physical and numerical modelling studies were carried out. Physical and numerical models were successful in demonstrating the potential danger of the working method with the rock bolt support system employed. Development of a shear failure plane from the rib edge into roof strata of the loader gate and development of the second shear failure plane at the abutment side of the supply gate exposed the supply gate to the fall of large rock blocks released by shear failure zones. Models demonstrated that the fall of the supply gate roof was not due to the inability of the rock bolts to prevent bed separation, but it was the method of working that made the bolts ineffective due to the height of the block delineated by the shear failure planes. Further physical and numerical models were undertaken to investigate the influence of 5, 7.5 and 10 in wide intervening pillars between the entries on the stability of the rock bolt supported supply gate roof. These studies showed that a 7.5 in or 10 in wide pillar would have prevented development of failure zones and fall of the roof while a 5 in pillar was found to be an undersized pillar width causing the development of extensive failure zones in the roof.

  19. Capabilities: Science Pillars

    Science.gov (United States)

    Alamos National Laboratory Delivering science and technology to protect our nation and promote world stability Science & Innovation Collaboration Careers Community Environment Science & Innovation Facilities Science Pillars Research Library Science Briefs Science News Science Highlights Lab Organizations

  20. Three Philosophical Pillars That Support Collaborative Learning.

    Science.gov (United States)

    Maltese, Ralph

    1991-01-01

    Discusses three philosophical pillars that support collaborative learning: "spaces of appearance," active engagement, and ownership. Describes classroom experiences with collaborative learning supported by these pillars. (PRA)

  1. Teaching population health and community-based care across diverse clinical experiences: integration of conceptual pillars and constructivist learning.

    Science.gov (United States)

    Valentine-Maher, Sarah K; Van Dyk, Elizabeth J; Aktan, Nadine M; Bliss, Julie Beshore

    2014-03-01

    Nursing programs are challenged to prepare future nurses to provide care and affect determinants of health for individuals and populations. This article advances a pedagogical model for clinical education that builds concepts related to both population-level care and direct care in the community through a contextual learning approach. Because the conceptual pillars and hybrid constructivist approach allow for conceptual learning consistency across experiences, the model expands programmatic capacity to use diverse community clinical sites that accept only small numbers of students. The concept-based and hybrid constructivist learning approach is expected to contribute to the development of broad intellectual skills and lifelong learning. The pillar concepts include determinants of health and nursing care of population aggregates; direct care, based on evidence and best practices; appreciation of lived experience of health and illness; public health nursing roles and relationship to ethical and professional formation; and multidisciplinary collaboration. Copyright 2014, SLACK Incorporated.

  2. High-Q submicron-diameter quantum-dot microcavity pillars for cavity QED experiments

    DEFF Research Database (Denmark)

    Gregersen, Niels; Lermer, Matthias; Dunzer, Florian

    As/AlAs micropillar design where Bloch-wave engineering is employed to significally enhance the cavity mode confinement in the submicron diameter regime. We demonstrate a record-high vacuum Rabi splitting of 85 µeV of the strong coupling for pillars incorporating quantum dots with modest oscillator strength f ≈ 10....... It is well-known that light-matter interaction depends on the photonic environment, and thus proper engineering of the optical mode in microcavity systems is central to obtaining the desired functionality. In the strong coupling regime, the visibility of the Rabi splitting is described by the light...... coupling in micropillars relied on quantum dots with high oscillator strengths f > 50, our advanced design allows for the observation of strong coupling for submicron diameter quantum dot-pillars with standard f ≈ 10 oscillator strength. A quality factor of 13600 and a vacuum Rabi splitting of 85 µe...

  3. Develop guidelines for the design of pillar systems for shallow and intermediate depth, tabular, hard rock mines and provide a methodology for assessing hangingwall stability and support requirements for the panels between pillars

    CSIR Research Space (South Africa)

    York, G

    1998-12-01

    Full Text Available The design of hard rock pillars, in shallow to intermediate depth hard rock mines, has been redefined as the determination of the pillar system load bearing capacity. This entails the ability to design each of the components of the pillar system...

  4. Develop guidelines for the design of pillar systems for shallow and intermediate depth, tabular, hard rock mines and provide methodology for assessing hangingwall stability and support requirements for the panels between pillars

    CSIR Research Space (South Africa)

    Haile, AT

    1995-12-01

    Full Text Available The overall view of the research being conducted at Impala platinum was to improve pillar design techniques through a rock testing programme, underground instrumentation and back analysis. The laboratory rock testing programme has provided a useful...

  5. pillared and un-pillared bentonite clays

    African Journals Online (AJOL)

    BARTH EKWUEME

    2011-07-29

    Jul 29, 2011 ... A pseudo-second order kinetic model was used to characterize the metal ion transport ... may endanger human health through consumption of sea food and ... widely reported. The pillared clays are two – dimensional zeolite.

  6. Allowable pillar to diameter ratio for strategic petroleum reserve caverns.

    Energy Technology Data Exchange (ETDEWEB)

    Ehgartner, Brian L.; Park, Byoung Yoon

    2011-05-01

    This report compiles 3-D finite element analyses performed to evaluate the stability of Strategic Petroleum Reserve (SPR) caverns over multiple leach cycles. When oil is withdrawn from a cavern in salt using freshwater, the cavern enlarges. As a result, the pillar separating caverns in the SPR fields is reduced over time due to usage of the reserve. The enlarged cavern diameters and smaller pillars reduce underground stability. Advances in geomechanics modeling enable the allowable pillar to diameter ratio (P/D) to be defined. Prior to such modeling capabilities, the allowable P/D was established as 1.78 based on some very limited experience in other cavern fields. While appropriate for 1980, the ratio conservatively limits the allowable number of oil drawdowns and hence limits the overall utility and life of the SPR cavern field. Analyses from all four cavern fields are evaluated along with operating experience gained over the past 30 years to define a new P/D for the reserve. A new ratio of 1.0 is recommended. This ratio is applicable only to existing SPR caverns.

  7. Pessimistic Determination of Mechanical Conditions and Micro/macroeconomic Evaluation of Mine Pillar Replacement

    Science.gov (United States)

    Chen, Qingfa; Zhao, Fuyu

    2017-12-01

    Numerous pillars are left after mining of underground mineral resources using the open stope method or after the first step of the partial filling method. The mineral recovery rate can, however, be improved by replacement recovery of pillars. In the present study, the relationships among the pillar type, minimum pillar width, and micro/macroeconomic factors were investigated from two perspectives, namely mechanical stability and micro/macroeconomic benefit. Based on the mechanical stability formulas for ore and artificial pillars, the minimum width for a specific pillar type was determined using a pessimistic criterion. The microeconomic benefit c of setting an ore pillar, the microeconomic benefit w of artificial pillar replacement, and the economic net present value (ENPV) of the replacement process were calculated. The values of c and w were compared with respect to ENPV, based on which the appropriate pillar type and economical benefit were determined.

  8. Space experiments with high stability clocks

    International Nuclear Information System (INIS)

    Vessot, R.F.C.

    1993-01-01

    Modern metrology depends increasingly on the accuracy and frequency stability of atomic clocks. Applications of such high-stability oscillators (or clocks) to experiments performed in space are described and estimates of the precision of these experiments are made in terms of clock performance. Methods using time-correlation to cancel localized disturbances in very long signal paths and a proposed space borne four station VLBI system are described. (TEC). 30 refs., 14 figs., 1 tab

  9. The role of the nature of pillars in the structural and magnetic properties of magnetic pillared vlays

    DEFF Research Database (Denmark)

    Bachir, Cherifa; Lan, Yanhua; Mereacre, Valeriu

    2011-01-01

    of pillared clays by examining in detail the influence of the calcination temperature and the nature of different pillared clays on these properties. Magnetic layered systems from different pillared clays were prepared and characterized. Firstly, Ti-, Al-, and Zr-pillared clays (Ti-PILCs, Al-PILCs, and Zr......-PILCs, respectively) were produced at different calcination temperatures and then magnetic pillared clays (Ti-M-PILCs, Al-M-PILCs, and Zr-M-PILCs) were prepared at ambient temperature. The synthesis involves a reduction in aqueous solution of the original Fe-exchanged pillared clay using NaBH4. The structural....... Similar experiments with Al- and Zr-pillars have been discussed. A correlation between the XRF data, porosity, FF calculation, and magnetic properties led to the conclusion that the sample Al-M-PILC previously calcined at 500 degrees C was the most stable material after the magnetization process. The same...

  10. Dynamic Stability Experiment of Maglev Systems,

    Science.gov (United States)

    1995-04-01

    This report summarizes the research performed on maglev vehicle dynamic stability at Argonne National Laboratory during the past few years. It also... maglev system, it is important to consider this phenomenon in the development of all maglev systems. This report presents dynamic stability experiments...on maglev systems and compares their numerical simulation with predictions calculated by a nonlinear dynamic computer code. Instabilities of an

  11. Coal pillar design procedures

    CSIR Research Space (South Africa)

    York, G

    2000-03-01

    Full Text Available Final Project Report Coal pillar design procedures G. York, I. Canbulat, B.W. Jack Research agency: CSIR Mining Technology Project number: COL 337 Date: March 2000 2 Executive Summary Examination of collapsed pillar cases outside of the empirical... in strength occurs with increasing specimen size. 45 40 35 30 25 20 15 10 5 0 20 40 60 80 100 120 140 160 UNIAX IA L COMPR EHEN SIV E S TR ENG TH (M Pa ) CUBE SIZE (cm) Figure 1...

  12. High-aspect-ratio, silicon oxide-enclosed pillar structures in microfluidic liquid chromatography.

    Science.gov (United States)

    Taylor, Lisa C; Lavrik, Nickolay V; Sepaniak, Michael J

    2010-11-15

    The present paper discusses the ability to separate chemical species using high-aspect-ratio, silicon oxide-enclosed pillar arrays. These miniaturized chromatographic systems require smaller sample volumes, experience less flow resistance, and generate superior separation efficiency over traditional packed bed liquid chromatographic columns, improvements controlled by the increased order and decreased pore size of the systems. In our distinctive fabrication sequence, plasma-enhanced chemical vapor deposition (PECVD) of silicon oxide is used to alter the surface and structural properties of the pillars for facile surface modification while improving the pillar mechanical stability and increasing surface area. The separation behavior of model compounds within our pillar systems indicated an unexpected hydrophobic-like separation mechanism. The effects of organic modifier, ionic concentration, and pressure-driven flow rate were studied. A decrease in the organic content of the mobile phase increased peak resolution while detrimentally effecting peak shape. A resolution of 4.7 (RSD = 3.7%) was obtained for nearly perfect Gaussian shaped peaks, exhibiting plate heights as low as 1.1 and 1.8 μm for fluorescein and sulforhodamine B, respectively. Contact angle measurements and DART mass spectrometry analysis indicate that our employed elastomeric soft bonding technique modifies pillar properties, creating a fortuitous stationary phase. This discovery provides evidence supporting the ability to easily functionalize PECVD oxide surfaces by gas-phase reactions.

  13. Scattering of spermatozoa off cylindrical pillars

    Science.gov (United States)

    Bukatin, Anton; Lushi, Enkeleida; Kantsler, Vasily

    2017-11-01

    The motion of micro-swimmers in structured environments, even though crucial in processes such as in vivo and in vitro egg fertilization, is still not completely understood. We combine microfluidic experiments with mathematical modeling of 3D swimming near convex surfaces to quantify the dynamics of individual sperm cells in the proximity of cylindrical pillars. Our results show that the hydrodynamic and contact forces that account for the shape asymmetry and flagellar motion, are crucial in correctly describing the dynamics observed in the experiments. Last, we discuss how the size of the cylindrical obstacles determines whether the swimmers scatter off or get trapped circling the pillar.

  14. Development and validation of a method to predict coal pillar life in South Africa

    Energy Technology Data Exchange (ETDEWEB)

    Van Der Merwe, J.N. [Pretoria Univ., Dept. of Mining Engineering (South Africa)

    2005-07-01

    One of the most difficult aspects of mine closure procedures, is to predict the long term stability of pillars in the case of coal mining. In South African coal mining, pillars have been designed since the late 1960's with the aid of a pillar strength formula based on statistical analysis of failed pillar cases by the well known team of Salamon and Munro. They developed the widely used power formula for pillar strength. Since that time, however, the data base of failed pillars has effectively doubled in size and re-analysis of the new data indicated that the original pillar strength of small pillars may have been over estimated. The data was then extensively re-analysed and a more effective linear formula for pillar strength was found. The most important differences between the two formulae are that the predicted strength of small pillars are lower and the strength of larger pillars, higher with the new formula. However, neither of the two methods explicitly cater for the prediction of the expected time of stability of coal pillars. No direct correlation between the safety factors and the period of stability of pillars could be found. It was then determined that the most frequent mode of pillar failure was by progressive scaling. Using the new formula to determine a minimum value of pillar safety factor (i.e. the safety factor at which failure can be taken as guaranteed to occur), the final sizes - after scaling - at which the failed pillars had to be in order to fail, were determined. The differences between the original dimensions and the postulated final dimensions were then used to calculate a rate of pillar scaling. The rate was then re-applied to the original data bases of both failed and intact pillar cases and distinct differences were found. The projected lives of the failed pillars were substantially shorter than the projected lives of the intact pillars. While this inspired confidence in the procedure, it was still based on an assumed and unproven

  15. Development and validation of a method to predict coal pillar life in South Africa

    International Nuclear Information System (INIS)

    Van Der Merwe, J.N.

    2005-01-01

    One of the most difficult aspects of mine closure procedures, is to predict the long term stability of pillars in the case of coal mining. In South African coal mining, pillars have been designed since the late 1960's with the aid of a pillar strength formula based on statistical analysis of failed pillar cases by the well known team of Salamon and Munro. They developed the widely used power formula for pillar strength. Since that time, however, the data base of failed pillars has effectively doubled in size and re-analysis of the new data indicated that the original pillar strength of small pillars may have been over estimated. The data was then extensively re-analysed and a more effective linear formula for pillar strength was found. The most important differences between the two formulae are that the predicted strength of small pillars are lower and the strength of larger pillars, higher with the new formula. However, neither of the two methods explicitly cater for the prediction of the expected time of stability of coal pillars. No direct correlation between the safety factors and the period of stability of pillars could be found. It was then determined that the most frequent mode of pillar failure was by progressive scaling. Using the new formula to determine a minimum value of pillar safety factor (i.e. the safety factor at which failure can be taken as guaranteed to occur), the final sizes - after scaling - at which the failed pillars had to be in order to fail, were determined. The differences between the original dimensions and the postulated final dimensions were then used to calculate a rate of pillar scaling. The rate was then re-applied to the original data bases of both failed and intact pillar cases and distinct differences were found. The projected lives of the failed pillars were substantially shorter than the projected lives of the intact pillars. While this inspired confidence in the procedure, it was still based on an assumed and unproven rate

  16. Stability assessment of the stopes and crown pillar of the S’Argentera abandoned mines (Ibiza, Spain) using geomechanical classifications, an empirical approach and numerical analysis focused on a possible tourist exploitation

    International Nuclear Information System (INIS)

    Jordá-Bordehore, L.; Jordá-Bordehore, R.; Durán Valsero, J.J.; Romero-Crespo, P.L.

    2017-01-01

    The argentiferous lead mines of S’Argentera in Ibiza (Balearic Islands, Spain) are some abandoned underground workings from the first decade of the 20th century. The stability of the main stopes and the crown pillar of the mines has been evaluated - part of which is located below the road between Santa Eulalia and San Carles de Peralta. The possibility of allowing public access to the surface of the mining area and setting up a project of a “show mine” on the underground stopes and galleries is analysed. The stability is assessed with an empirical approach using the O index, the scaled span method and a stability graph together with a numerical approach. Results show that the stopes of the mines are globally stable but some lack an adequate safety factor. Therefore some local reinforcements and monitoring are needed. The finite element modelling in two dimensions yields realistic results on the current stope stability and possible rock falls which have already occurred. [es

  17. Pillar-type acoustic metasurface

    DEFF Research Database (Denmark)

    Jin, Yabin; Bonello, Bernard; Moiseyenko, Rayisa

    2017-01-01

    We theoretically investigate acoustic metasurfaces consisting of either a single pillar or a line of identical pillars on a thin plate, and we report on the dependence on the geometrical parameters of both the monopolar compressional and dipolar bending modes. We show that for specific dimensions...

  18. A real-time monitoring system for the assessment of stability and performance of in abandoned room and pillar lignite mines

    International Nuclear Information System (INIS)

    Aydan, O.; Tano, H.; Sakamoto, A.; Yamada, N.; Sugiura, K.

    2005-01-01

    The authors have been involved with the stability of abandoned mines beneath urbanized residential areas in Tokai region. These abandoned lignite mines were in operation until 1960's. There is a great concern about the stability of these abandoned mines during large earthquakes. The 2003 Miyagi Hokubu earthquake caused great damage to abandoned mines and resulted in collapses. The authors describe an integrated real-time monitoring system and they report some measured data up to now. The responses of monitoring system during a large roof collapse under gravitational condition as well as during and after two earthquakes are presented and their implications are discussed. (authors)

  19. A real-time monitoring system for the assessment of stability and performance of in abandoned room and pillar lignite mines

    Energy Technology Data Exchange (ETDEWEB)

    Aydan, O. [Tokai Univ., Dept.of Marine Civil Engineering, Shizuoka (Japan); Tano, H. [Nihon Univ., Dept. of Civil Engineering, Koriyama (Japan); Sakamoto, A.; Yamada, N.; Sugiura, K. [Tobishima Construction Company, Nagoya Branch (Japan)

    2005-07-01

    The authors have been involved with the stability of abandoned mines beneath urbanized residential areas in Tokai region. These abandoned lignite mines were in operation until 1960's. There is a great concern about the stability of these abandoned mines during large earthquakes. The 2003 Miyagi Hokubu earthquake caused great damage to abandoned mines and resulted in collapses. The authors describe an integrated real-time monitoring system and they report some measured data up to now. The responses of monitoring system during a large roof collapse under gravitational condition as well as during and after two earthquakes are presented and their implications are discussed. (authors)

  20. Effect of structural discontinuities on coal pillar strength as a basis for improving safety in the design of coal pillar systems.

    CSIR Research Space (South Africa)

    Esterhuizen, GS

    1998-12-01

    Full Text Available The stability of underground coal mines depends on the integrity of the pillars which are required to support the overlying strata. Should the pillars collapse, the safety of the persons in the workings will be threatened. The strength of a coal...

  1. Experiments on the stability of metal diapirs

    Science.gov (United States)

    Wacheul, J. S.; Le Bars, M.; Aurnou, J. M.; Monteux, J.

    2013-12-01

    In the late stages of their accretions, telluric planets had most likely had a magma ocean because of numerous heat sources such as the important decay of radioactive elements and giant impacts. These giant impacts involved asteroid nearly as big as the moon, which were certainly differentiated. The core of these planetary embryos ultimately merged with the planets, but the amount of heat and chemicals they exchanged with the mantle during its passing through remains a widely open question. The question of the stability of an immiscible iron diapir falling through a magma ocean is essential for our understanding of these events. Thus, we have conducted the first experiments on an analogue system that involves liquid metal; we used liquid gallium as the melted iron and glycerol as the magma ocean. This set up allowed us to reach Reynolds numbers closer to the geophysical problem than other previous studies and accurate viscosity ratios. Using video analysis, we reconstruct the spectra of droplet sizes and velocities, from which we calculate a typical length of equilibration as a function of the diapir's radius. Our preliminary results are in agreement with the scenario of the iron rain concerning the droplet sizes, with a significant influence of the viscosity ratio on the maximal size of the droplets. However, the speed of these droplets seems to be controlled by the inertia of the whole flow in a sense that the relevant concept for the mixing between metal and silicate is turbulent mixing between miscible fluids. The influence of coalescence between droplets on this mixing, involving a significant part of the flow according to our experiment, is still to be quantified.

  2. Stress reduction for pillar filled structures

    Science.gov (United States)

    Nikolic, Rebecca J.; Conway, Adam; Shao, Qinghui; Voss, Lars; Cheung, Chin Li; Dar, Mushtaq A.

    2015-09-01

    According to one embodiment, an apparatus for detecting neutrons includes an array of pillars, wherein each of the pillars comprises a rounded cross sectional shape where the cross section is taken perpendicular to a longitudinal axis of the respective pillar, a cavity region between each of the pillars, and a neutron sensitive material located in each cavity region.

  3. The European Stability Mechanism: one of the pillars of the EU’s model of economic governance and its legitimacy deficit

    Directory of Open Access Journals (Sweden)

    Marcin Roman Czubala

    2015-06-01

    Full Text Available The establishment of the esm, the entity that offers financial assistance under strict conditions with the purpose of providing support for the stability of the euro area, was a clear European Union response to the current economic crisis. This entity, which is a part of the current model of economic governance of the EU, is a key element in the process of its coordination and improved economic surveillance, which makes its study to be considered highly relevant and current.  Therefore, the main goal of this article is to examine its legal structure, configuration, funding model, and ability to act, in order to then assess its feasibility and the degree of legitimacy deficit that it presents.

  4. Stability Analysis for HIFiRE Experiments

    Science.gov (United States)

    Li, Fei; Choudhari, Meelan M.; Chang, Chau-Lyan; White, Jeffery A.; Kimmel, Roger; Adamczak, David; Borg, Matthew; Stanfield, Scott; Smith, Mark S.

    2012-01-01

    The HIFiRE-1 flight experiment provided a valuable database pertaining to boundary layer transition over a 7-degree half-angle, circular cone model from supersonic to hypersonic Mach numbers, and a range of Reynolds numbers and angles of attack. This paper reports selected findings from the ongoing computational analysis of the measured in-flight transition behavior. Transition during the ascent phase at nearly zero degree angle of attack is dominated by second mode instabilities except in the vicinity of the cone meridian where a roughness element was placed midway along the length of the cone. The growth of first mode instabilities is found to be weak at all trajectory points analyzed from the ascent phase. For times less than approximately 18.5 seconds into the flight, the peak amplification ratio for second mode disturbances is sufficiently small because of the lower Mach numbers at earlier times, so that the transition behavior inferred from the measurements is attributed to an unknown physical mechanism, potentially related to step discontinuities in surface height near the locations of a change in the surface material. Based on the time histories of temperature and/or heat flux at transducer locations within the aft portion of the cone, the onset of transition correlated with a linear N-factor, based on parabolized stability equations, of approximately 13.5. Due to the large angles of attack during the re-entry phase, crossflow instability may play a significant role in transition. Computations also indicate the presence of pronounced crossflow separation over a significant portion of the trajectory segment that is relevant to transition analysis. The transition behavior during this re-entry segment of HIFiRE-1 flight shares some common features with the predicted transition front along the elliptic cone shaped HIFiRE-5 flight article, which was designed to provide hypersonic transition data for a fully 3D geometric configuration. To compare and contrast the

  5. In situ measurements of Merensky pillar behaviour at Impala Platinum

    CSIR Research Space (South Africa)

    Watson, BP

    2009-12-01

    Full Text Available to stabilize the stoping excavations. This paper describes the in situ measurement, of stress within a Merensky pillar from Impala Platinum. These measurements were used to derive a stress-strain curve that includes pre and post failure behaviour. 2D FLAC...

  6. Hydraulic method of working large super-drift pillars

    Energy Technology Data Exchange (ETDEWEB)

    Rad' ko, B.V.; Syroezhkin, P.V.; Durov, V.S.

    1987-03-01

    Describes the method of hydraulic coal extraction introduced in the Pioneer mine belonging to the Dobropol'eugol' coal association. This method was found to reduce the number of collection and ventilation roadways needed significantly, increase their stability, reduce coal loss and increase safety, particularly when mining pillars up to 80 m high. Large scale diagram of hydraulic mining layout shows: ventilation gate, hydraulic monitors, mine roadway, cross-cut, and collection roadways. A table shows pillar dimensions and depth and economic savings for different seams in the mine.

  7. Numerical experiments on unstructured PIC stability.

    Energy Technology Data Exchange (ETDEWEB)

    Day, David Minot

    2011-04-01

    Particle-In-Cell (PIC) is a method for plasmas simulation. Particles are pushed with Verlet time integration. Fields are modeled using finite differences on a tensor product mesh (cells). The Unstructured PIC methods studied here use instead finite element discretizations on unstructured (simplicial) meshes. PIC is constrained by stability limits (upper bounds) on mesh and time step sizes. Numerical evidence (2D) and analysis will be presented showing that similar bounds constrain unstructured PIC.

  8. A microfluidic device with pillars

    DEFF Research Database (Denmark)

    2014-01-01

    The invention provides a microfluidic device for mixing liquid reagents, the device comprises, a chip forming at least one reaction chamber between a bottom and a top and extending between an inlet and an outlet. To enable manufacturing from less rigid materials, the device comprises pillars...

  9. Further validation of bracket pillar design methodology

    CSIR Research Space (South Africa)

    Vieira, F

    1998-07-01

    Full Text Available Design charts for bracket pillar design were developed under a previous SIMRAC project GAP 223 to provide rock mechanics engineers with an initial estimate of bracket pillar sizes for clearly identified geological discontinuities, based on mining...

  10. 30 CFR 75.207 - Pillar recovery.

    Science.gov (United States)

    2010-07-01

    ... SAFETY STANDARDS-UNDERGROUND COAL MINES Roof Support § 75.207 Pillar recovery. Pillar recovery shall be... be left in place. (b) Before mining is started in a pillar split or lift— (1) At least two rows of breaker posts or equivalent support shall be installed— (i) As close to the initial intended breakline as...

  11. Numerical Approach for Goaf-Side Entry Layout and Yield Pillar Design in Fractured Ground Conditions

    Science.gov (United States)

    Jiang, Lishuai; Zhang, Peipeng; Chen, Lianjun; Hao, Zhen; Sainoki, Atsushi; Mitri, Hani S.; Wang, Qingbiao

    2017-11-01

    Entry driven along goaf-side (EDG), which is the development of an entry of the next longwall panel along the goaf-side and the isolation of the entry from the goaf with a small-width yield pillar, has been widely employed in China over the past several decades . The width of such a yield pillar has a crucial effect on EDG layout in terms of the ground control, isolation effect and resource recovery rate. Based on a case study, this paper presents an approach for evaluating, designing and optimizing EDG and yield pillar by considering the results from numerical simulations and field practice. To rigorously analyze the ground stability, the numerical study begins with the simulation of goaf-side stress and ground conditions. Four global models with identical conditions, except for the width of the yield pillar, are built, and the effect of pillar width on ground stability is investigated by comparing aspects of stress distribution, failure propagation, and displacement evolution during the entire service life of the entry. Based on simulation results, the isolation effect of the pillar acquired from field practice is also considered. The suggested optimal yield pillar design is validated using a field test in the same mine. Thus, the presented numerical approach provides references and can be utilized for the evaluation, design and optimization of EDG and yield pillars under similar geological and geotechnical circumstances.

  12. Experiences in stability testing of boiling water reactors

    International Nuclear Information System (INIS)

    March-Leuba, J.; Otaduy, P.J.

    1986-01-01

    The purpose of this paper is to summarize experiences with boiling water reactor (BWR) stability testing using noise analysis techniques. These techniques have been studied over an extended period of time, but it has been only recently that they have been well established and generally accepted. This paper contains first a review of the problem of BWR neutronic stability, focusing on its physical causes and its effects on reactor operation. The paper also describes the main techniques used to quantify, from noise measurements, the reactor's stability in terms of a decay ratio. Finally, the main results and experiences obtained from the stability tests performed at the Dresden and the Browns Ferry reactors using noise analysis techniques are summarized

  13. Numerical modeling for longwall pillar design: a case study from a typical longwall panel in China

    Science.gov (United States)

    Zhang, Guangchao; Liang, Saijiang; Tan, Yunliang; Xie, Fuxing; Chen, Shaojie; Jia, Hongguo

    2018-02-01

    This paper presents a new numerical modeling procedure and design principle for longwall pillar design with the assistance of numerical simulation of FLAC3D. A coal mine located in Yanzhou city, Shandong Province, China, was selected for this case study. A meticulously validated numerical model was developed to investigate the stress changes across the longwall pillar with various sizes. In order to improve the reliability of the numerical modeling, a calibration procedure is undertaken to match the Salamon and Munro pillar strength formula for the coal pillar, while a similar calibration procedure is used to estimate the stress-strain response of a gob. The model results demonstrated that when the coal pillar width was 7-8 m, most of the vertical load was carried by the panel rib, whilst the gateroad was overall in a relatively low stress environment and could keep its stability with proper supports. Thus, the rational longwall pillar width was set as 8 m and the field monitoring results confirmed the feasibility of this pillar size. The proposed numerical simulation procedure and design principle presented in this study could be a viable alternative approach for longwall pillar design for other similar projects.

  14. Organically pillared layered zinc hydroxides

    International Nuclear Information System (INIS)

    Kongshaug, K.O.; Fjellvaag, Helmer

    2004-01-01

    The two organically pillared layered zinc hydroxides [Zn 2 (OH) 2 (ndc)], CPO-6, and [Zn 3 (OH) 4 (bpdc)], CPO-7, were obtained in hydrothermal reactions between 2,6-naphthalenedicarboxylic acid (ndc) and zinc nitrate (CPO-6) and 4,4'biphenyldicarboxylate (bpdc) and zinc nitrate (CPO-7), respectively. In CPO-6, the tetrahedral zinc atoms are connected by two μ 2 -OH groups and two carboxylate oxygen atoms, forming infinite layers extending parallel to the bc-plane. These layers are pillared by ndc to form a three-dimensional structure. In CPO-7, the zinc hydroxide layers are containing four-, five- and six coordinated zinc atoms, and the layers are built like stairways running along the [001] direction. Each step is composed of three infinite chains running in the [010] direction. Both crystal structures were solved from conventional single crystal data. Crystal data for CPO-6: Monoclinic space group P2 1 /c (No. 14), a=11.9703(7), b=7.8154(5), c=6.2428(4) A, β=90.816(2) deg., V=583.97(6) A 3 and Z=4. Crystal data for CPO-7: Monoclinic space group C2/c (No. 15), a=35.220(4), b=6.2658(8), c=14.8888(17) A, β=112.580(4) deg., V=3033.8(6) A 3 and Z=8. The compounds were further characterized by thermogravimetric- and chemical analysis

  15. Study on the optimum design of bus window pillar join40t; Bus window pillar ketsugo buzai no saiteki sekkei ni kansuru kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    Tomioka, N [Nihon University, Tokyo (Japan); Lim, S; Kim, M; Lee, H; Kang, S; Bae, D

    1997-10-01

    Automobile body structure is generally assembled using various spot welded box sectional members. Especially, in the case of the bus, the shape of window pillar joint is assembled m T-type. This T-type member has some problem such as high stress concentration, low fatigue strength and structural rigidity. Therefore, in this report, performed a study on the optimum design of the bus window pillar joint for such problem by FEM analysis and experiments. 1 ref., 10 figs., 2 tabs.

  16. Suspension of Water Droplets on Individual Pillars

    DEFF Research Database (Denmark)

    Tóth, T.; Ferraro, D.; Chiarello, E.

    2011-01-01

    We report results of extensive experimental and numerical studies on the suspension of water drops deposited on cylindrical pillars having circular and square cross sections and different wettabilities. In the case of circular pillars, the drop contact line is pinned to the whole edge contour unt...

  17. Reassessment of coal pillar design procedure

    CSIR Research Space (South Africa)

    Madden, BJ

    1995-12-01

    Full Text Available The SIMRAC project COL 021A entitled “a reassessment of coal pillar design procedures” set out to achieve a coal pillar design procedure that takes cognisance of different geological and structural factors as well as the influence...

  18. Thermoelectric properties of silicon nano pillars

    Energy Technology Data Exchange (ETDEWEB)

    Stranz, Andrej; Soekmen, Uensal; Waag, Andreas; Peiner, Erwin [Institute of Semiconductor Technology, Braunschweig (Germany)

    2010-07-01

    In order to establish silicon as a efficient thermoelectric material, its high thermal conductivity has to be reduced which is feasible, e.g., by nano structuring. Therefore, in this study Si-based sub-micron pillars of various dimensions were investigated. Using anisotropic etching followed by thermal oxidation we could fabricate pillars of diameters <500 nm, about 25 {mu}m in height with aspect ratios of more than 50. The distance between the pillars was varied from 500 nm to 10 micron. Besides the fabrication and structural characterization of sub-micron silicon pillars, and adequate metrology for measuring their thermoelectric properties was implemented. Commercial tungsten probes and self-made gold probes, as well as Wollaston wire probes were used for electrical and thermal conductivity, as well as Seebeck voltage measurements on single pillars in a scanning electron microscope equipped with nano manipulators.

  19. Improved Dye Stability in Single-Molecule Fluorescence Experiments

    Science.gov (United States)

    EcheverrÍa Aitken, Colin; Marshall, R. Andrew; Pugi, Joseph D.

    Complex biological systems challenge existing single-molecule methods. In particular, dye stability limits observation time in singlemolecule fluorescence applications. Current approaches to improving dye performance involve the addition of enzymatic oxygen scavenging systems and small molecule additives. We present an enzymatic oxygen scavenging system that improves dye stability in single-molecule experiments. Compared to the currently-employed glucose-oxidase/catalase system, the protocatechuate-3,4-dioxygenase system achieves lower dissolved oxygen concentration and stabilizes single Cy3, Cy5, and Alexa488 fluorophores. Moreover, this system possesses none of the limitations associated with the glucose oxidase/catalase system. We also tested the effects of small molecule additives in this system. Biological reducing agents significantly destabilize the Cy5 fluorophore as a function of reducing potential. In contrast, anti-oxidants stabilize the Cy3 and Alexa488 fluorophores. We recommend use of the protocatechuate-3,4,-dioxygenase system with antioxidant additives, and in the absence of biological reducing agents. This system should have wide application to single-molecule fluorescence experiments.

  20. A field experiment on power line stabilization by SMES system

    International Nuclear Information System (INIS)

    Irie, F.; Takeo, M.; Sato, S.; Katahira, O.; Fukui, F.; Takamatsu, M.

    1992-01-01

    In this paper field experiments on stabilization of a hydro power plant by a SMES system are reported, where a generator having a rating of 60 kW at 3.3kV is connected to a 6.6kV power distribution line. The SMES system is composed of two 30kVA GTO convertors and a superconducting magnet system with an energy of 30kJ at 100A. Experiments of stabilization for the generator fluctuation caused by a sudden insertion of inductors in the line are successfully performed for some control modes. The value of the SMES system to compensate for a short period voltage dip is also confirmed

  1. Stability and Variability in Aesthetic Experience: A Review

    OpenAIRE

    Jacobsen, Thomas; Beudt, Susan

    2017-01-01

    Based on psychophysics’ pragmatic dualism, we trace the cognitive neuroscience of stability and variability in aesthetic experience. With regard to different domains of aesthetic processing, we touch upon the relevance of cognitive schemata for aesthetic preference. Attitudes and preferences are explored in detail. Evolutionary constraints on attitude formation or schema generation are elucidated, just as the often seemingly arbitrary influences of social, societal, and cultural nature are. A...

  2. Wettability transition of plasma-treated polystyrene micro/nano pillars-aligned patterns

    Directory of Open Access Journals (Sweden)

    2010-12-01

    Full Text Available This paper reports the wettability transition of plasma-treated polystyrene (PS micro/nano pillars-aligned patterns. The micro/nano pillars were prepared using hot embossing on silicon microporous template and alumina nanoporous template, which were fabricated by ultraviolet (UV lithography and inductive coupled plasma (ICP etching, and two-step anodic oxidation, respectively. The results indicate that the combination of micro/nano patterning and plasma irradiation can easily regulate wettabilities of PS surfaces, i.e. from hydrophilicity to hydrophobicity, or from hydrophobicity to superhydrophilicity. During the wettability transition from hydrophobicity to hydrophilicity there is only mild hydrophilicity loss. After plasma irradiation, moreover, the wettability of PS micro/nano pillars-aligned patterns is more stable than that of flat PS surfaces. The observed wettability transition and wettability stability of PS micro/nano pillars-aligned patterns are new phenomena, which may have potential in creating programmable functional polymer surfaces.

  3. Victimization Experiences and the Stabilization of Victim Sensitivity

    Directory of Open Access Journals (Sweden)

    Mario eGollwitzer

    2015-04-01

    Full Text Available People reliably differ in the extent to which they are sensitive to being victimized by others. Importantly, victim sensitivity predicts how people behave in social dilemma situations: Victim-sensitive individuals are less likely to trust others and more likely to behave uncooperatively - especially in socially uncertain situations. This pattern can be explained with the Sensitivity to Mean Intentions (SeMI model, according to which victim sensitivity entails a specific and asymmetric sensitivity to contextual cues that are associated with untrustworthiness. Recent research is largely in line with the model’s prediction, but some issues have remained conceptually unresolved so far. For instance, it is unclear why and how victim sensitivity becomes a stable trait and which developmental and cognitive processes are involved in such stabilization. In the present article, we will discuss the psychological processes that contribute to a stabilization of victim sensitivity within persons, both across the life span (ontogenetic stabilization and across social situations (actual-genetic stabilization. Our theoretical framework starts from the assumption that experiences of being exploited threaten a basic need, the need to trust. This need is so fundamental that experiences that threaten it receive a considerable amount of attention and trigger strong affective reactions. Associative learning processes can then explain (a how certain contextual cues (e.g., facial expressions become conditioned stimuli that elicit equally strong responses, (b why these contextual untrustworthiness cues receive much more attention than, for instance, trustworthiness cues, and (c how these cues shape spontaneous social expectations (regarding other people’s intentions. Finally, avoidance learning can explain why these cognitive processes gradually stabilize and become a trait: the trait which is referred to as victim sensitivity.

  4. Pillar support for a wind power plant

    Energy Technology Data Exchange (ETDEWEB)

    Dietz, A

    1978-08-24

    The invention concerns a stationary pillar for a wind power plant with vertical rotors in the outside walls of individual parts of the structure, which are arranged above one antoher and which can turn together freely as a pillar facade. There are problems in such a stationary pillar because of storm forces on the one hand, which try to buckle the pillar, and, on the other hand, the pillar should be easy to mount without difficult fishplates or screwed connections. In order to solve this problem, the invention provides that tension elements run from the top ring of the pillar to the foundation through all the spars and through the connecting rings inside the spars, whose tension forces not only counteract buckling of the pillar, but also pull the intersections of the spars together in tension and independently of the screwed connections also provided. The connecting rings at the connections to the spars have half sleeves, which are pushed into a sleeve of the spar coming from below. The tension elements can consist of bundles of steel wires or a wire rope.

  5. Design of Merensky Reef crush pillars

    CSIR Research Space (South Africa)

    Watson, BP

    2010-10-01

    Full Text Available appear stiff enough. However, evidence from the pillar bursts suggests that unfailed pillars located at 10 m or more from the face are in a dangerous, soft-loading situation and may burst if failure takes place. From the evidence of the few collapses... reached a deformation of 32 mm during the initial failure and all failed in a reasonably stable manner. The unacceptable stiffness of the surrounding strata is about 5.0 mm/GN. Most of the measured pillars failed under loading conditions where...

  6. PEDOT pillar fabrication using DOD inkjet system

    Science.gov (United States)

    Cui, Wei; Chang, Cheng-Ling; Wang, Wei-Chih

    2012-04-01

    In this paper, we present our preliminary results of high aspect ratio 3D PEDOT pillar study by drop-on demand (DOD) direct printing system. Design of the experimental setup and the fabrication of the DOD PEDOT pillar are introduced. Currently, the system can achieve a PEDOT pillar with a height of 300 μm and 80 μm in diameter. The proposed PEDOT 3D printing process has a wide range of potential applications in the eletronics and display industry.

  7. The Three Pillars of Machine Programming

    OpenAIRE

    Gottschlich, Justin; Solar-Lezama, Armando; Tatbul, Nesime; Carbin, Michael; Rinard, Martin; Barzilay, Regina; Amarasinghe, Saman; Tenenbaum, Joshua B; Mattson, Tim

    2018-01-01

    In this position paper, we describe our vision of the future of machine programming through a categorical examination of three pillars of research. Those pillars are: (i) intention, (ii) invention, and(iii) adaptation. Intention emphasizes advancements in the human-to-computer and computer-to-machine-learning interfaces. Invention emphasizes the creation or refinement of algorithms or core hardware and software building blocks through machine learning (ML). Adaptation emphasizes advances in t...

  8. Discussing three pillars of corporate governance

    OpenAIRE

    Andrei STĂNCULESCU; Eugen MITRICĂ

    2015-01-01

    This paper is a meaningful attempt to critically analyze the cohesion and relationship between three fundamental pillars of the corporate governance system: the shareholders, the board of directors and the employees. We present the characteristics of each pillar and discuss its relevance in corporate governance. A couple of world-renowned corporate governance models are considered. A synthetic conclusion is drawn based on information presented.

  9. Imaging of the cervical articular pillar

    Energy Technology Data Exchange (ETDEWEB)

    Yeomans, E. [Orange Base Hospital, Orange, NSW (Australia)

    1998-12-01

    The cervical articular pillar, due to the complex anatomical structure of the cervical spine, is not well demonstrated in routine plain radiographic views. Dedicated views have been devised to demonstrate the pillar, yet their performance has abated considerably since the inception of Computed Tomography (CT) in the 1970`s. It is the consideration that CT does not image the articular pillar with a 10 per cent accuracy that poses the question: Is there still a need for plain radiography of the cervical articular pillar? This paper studies the anatomy, plain radiography, and incidence of injury to the cervical articular pillar. It discusses (with reference to current and historic literature) the efficacy of current imaging protocols in depicting this injury. It deals with plain radiography, CT, complex tomography, and Magnetic Resonance Imaging (MRI) of the cervical spine to conclude there may still be a position in current imaging protocols for plain radiography of the cervical articular pillar. Copyright (1998) Australian Institute of Radiography 43 refs., 5 figs.

  10. Trajectory generation algorithm for smooth movement of a hybrid-type robot Rocker-Pillar

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Seung Min; Choi, Dong Kyu; Kim, Jong Won [School of Mechanical and Aerospace Engineering, Seoul National University, Seoul (Korea, Republic of); Kim, Hwa Soo [Dept. of Mechanical System Engineering, Kyonggi University, Suwon (Korea, Republic of)

    2016-11-15

    While traveling on rough terrain, smooth movement of a mobile robot plays an important role in carrying out the given tasks successfully. This paper describes the trajectory generation algorithm for smooth movement of hybrid-type mobile robot Rocker-Pillar by adjusting the angular velocity of its caterpillar as well as each wheel velocity in such a manner to minimize a proper index for smoothness. To this end, a new Smoothness index (SI) is first suggested to evaluate the smoothness of movement of Rocker-Pillar. Then, the trajectory generation algorithm is proposed to reduce the undesired oscillations of its Center of mass (CoM). The experiment are performed to examine the movement of Rocker-Pillar climbing up the step whose height is twice larger than its wheel radius. It is verified that the resulting SI is improved by more than 40 % so that the movement of Rocker-Pillar becomes much smoother by the proposed trajectory algorithm.

  11. Stability and Variability in Aesthetic Experience: A Review.

    Science.gov (United States)

    Jacobsen, Thomas; Beudt, Susan

    2017-01-01

    Based on psychophysics' pragmatic dualism, we trace the cognitive neuroscience of stability and variability in aesthetic experience. With regard to different domains of aesthetic processing, we touch upon the relevance of cognitive schemata for aesthetic preference. Attitudes and preferences are explored in detail. Evolutionary constraints on attitude formation or schema generation are elucidated, just as the often seemingly arbitrary influences of social, societal, and cultural nature are. A particular focus is put on the concept of critical periods during an individual's ontogenesis. The latter contrasting with changes of high frequency, such as fashion influences. Taken together, these analyses document the state of the art in the field and, potentially, highlight avenues for future research.

  12. Stability and Variability in Aesthetic Experience: A Review

    Science.gov (United States)

    Jacobsen, Thomas; Beudt, Susan

    2017-01-01

    Based on psychophysics’ pragmatic dualism, we trace the cognitive neuroscience of stability and variability in aesthetic experience. With regard to different domains of aesthetic processing, we touch upon the relevance of cognitive schemata for aesthetic preference. Attitudes and preferences are explored in detail. Evolutionary constraints on attitude formation or schema generation are elucidated, just as the often seemingly arbitrary influences of social, societal, and cultural nature are. A particular focus is put on the concept of critical periods during an individual’s ontogenesis. The latter contrasting with changes of high frequency, such as fashion influences. Taken together, these analyses document the state of the art in the field and, potentially, highlight avenues for future research. PMID:28223955

  13. THE SYNTHESIS OF Cr2O3-PILLARED MONTMORILLONITE (CrPM AND ITS USAGE FOR HOST MATERIAL OF p-NITROANILINE

    Directory of Open Access Journals (Sweden)

    Karna Wijaya

    2010-06-01

    Full Text Available The synthesis of Cr2O3-pillared montmorillonite (CrPM and its usage for host material of p-nitroaniline have been conducted. The Cr2O3-pillared montmorillonite clays was prepared by a direct ion exchange method. First, the polyhydroxychromium as a pillaring spesies was intercalated into the interlayer region of the montmorillonite clays (purified clay in the monocation form, result in a montmorillonite-polyoxychromium intercalation compound. The precursors/pillaring spesies was not stable, hence it must be stabilized by calcination in order to transform the polyoxychromium via dehydration and dehydroxylation processes into Cr2O3. This oxide constituts the so-called pillar that prop the clay layers apart to a relatively large distance. The Cr2O3-pillared clays as a host material was added into ethanol solution saturated with p-nitroaniline, and mixture was stirred for 24 h at room temperature. The Na-montmorillonite, Cr2O3-pillared clay and p-nitroaniline-Cr2O3-pillared clay (pNA-CrPM were characterized by X-Ray Diffraction (XRD, Gas Sorption Analysis, Infrared Spectroscopy (FTIR and Activated Neutron Analysis (ANA methods. The result of research showed that basal spacing (d001 of Cr2O3-pillared montmorillonite (CrPM was 18,55 Å, meanwhile the basal spacing of the hydrated Na-montmorillonite was 14,43 Å. The specific surface area of the Cr2O3-pillared montmorillonite was 174,308 m2/g, whereas p-nitroaniline-Cr2O3-pillared clay (pNA-CrPM was 133,331641 m2/g. This fact indicated that p-nitroaniline has been included into the pore of the Cr2O3-pillared clay.   Keyword: montmorillonite, pillared-clay, ion exchange, intercalate.

  14. Active containment systems incorporating modified pillared clays

    International Nuclear Information System (INIS)

    Lundie, P.; McLeod, N.

    1997-01-01

    The application of treatment technologies in active containment systems provides a more advanced and effective method for the remediation of contaminated sites. These treatment technologies can be applied in permeable reactive walls and/or funnel and gate systems. The application of modified pillared clays in active containment systems provides a mechanism for producing permeable reactive walls with versatile properties. These pillared clays are suitably modified to incorporate reactive intercalatants capable of reacting with both a broad range of organic pollutants of varying molecular size, polarity and reactivity. Heavy metals can be removed from contaminated water by conventional ion-exchange and other reactive processes within the clay structure. Complex contamination problems can be addressed by the application of more than one modified clay on a site specific basis. This paper briefly describes the active containment system and the structure/chemistry of the modified pillared clay technology, illustrating potential applications of the in-situ treatment process for contaminated site remediation

  15. Removal of nitrate by zero-valent iron and pillared bentonite

    International Nuclear Information System (INIS)

    Li Jianfa; Li Yimin; Meng Qingling

    2010-01-01

    The pillared bentonite prepared by intercalating poly(hydroxo Al(III)) cations into bentonite interlayers was used together with Fe(0) for removing nitrate in column experiments. The obvious synergetic effect on nitrate removal was exhibited through uniformly mixing the pillared bentonite with Fe(0). In such a mixing manner, the nitrate was 100% removed, and the removal efficiency was much higher than the simple summation of adsorption by the pillared bentonite and reduction by Fe(0). The influencing factors such as bentonite type, amount of the pillared bentonite and initial pH of nitrate solutions were investigated. In this uniform mixture, the pillared bentonite could adsorb nitrate ions, and facilitated the mass transfer of nitrate onto Fe(0) surface, then accelerated the nitrate reduction. The pillared bentonite could also act as the proton-donor, and helped to keep the complete nitrate removal for at least 10 h even when the nitrate solution was fed at nearly neutral pH.

  16. Water condensation on ultrahydrophobic flexible micro pillar surface

    Science.gov (United States)

    Narhe, Ramchandra

    2016-05-01

    We investigated the growth dynamics of water drops in controlled condensation on ultrahydrophobic geometrically patterned polydimethylsiloxane (PDMS) cylindrical micro pillars. At the beginning, the condensed drops size is comparable to the pattern dimensions. The interesting phenomenon we observe is that, as the condensation progresses, water drops between the pillars become unstable and enforced to grow in the upward direction along the pillars surface. The capillary force of these drops is of the order of μ\\text{N} and acts on neighboring pillars. That results into bending of the pillars. Pillars bending enhances the condensation and favors the most energetically stable Wenzel state.

  17. Rib-pillar mining at Sigma Colliery

    Energy Technology Data Exchange (ETDEWEB)

    De Beer, J J.S.; Hunter, F; Neethling, A F [Sigma Colliery, Sasolburg (South Africa)

    1991-06-01

    The paper describes the rib-pillar extraction method now used at Sigma Colliery in the Orange Free State. In this method, access roadways (with a high safety factor) are developed into a block of coal suitable for total extraction; pillars that have a low safety factor are then formed and extracted immediately. The method, together with the current practices of labour management, has resulted in better utilization of the coal resources and capital, increased production and labour productivity, and improved safety. 11 figs.

  18. Field emission from a single nanomechanical pillar

    International Nuclear Information System (INIS)

    Kim, Hyun S; Qin Hua; Westphall, Michael S; Smith, Lloyd M; Blick, Robert H

    2007-01-01

    We measured field emission from a silicon nanopillar mechanically oscillating between two electrodes. The pillar has a height of about 200 nm and a diameter of 50 nm, allowing resonant mechanical excitations at radio frequencies. The tunnelling barriers for field emission are mechanically modulated via displacement of the gold island on top of the pillar. We present a rich frequency-dependent response of the emission current in the frequency range of 300-400 MHz at room temperature. Modified Fowler-Nordheim field emission is observed and attributed to the mechanical oscillations of the nanopillar

  19. Flexible Pillared Graphene-Paper Electrodes for High-Performance Electrochemical Supercapacitors

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Gongkai; Sun, Xiang; Lu, Fengyuan; Sun, Hongtao; Yu, Mingpeng; Jiang, Weilin; Liu, Changsheng; Lian, Jie

    2011-12-08

    Flexible graphene paper (GP) pillared by carbon black (CB) nanoparticles using a simple vacuum filtration method is developed as a high-performance electrode material for supercapacitors. Through the introduction of CB nanoparticles as spacers, the self-restacking of graphene sheets during the filtration process is mitigated to a great extent. The pillared GP-based supercapacitors exhibit excellent electrochemical performances and cyclic stabilities compared with GP without the addition of CB nanoparticles. At a scan rate of 10 mV s-1, the specific capacitance of the pillared GP is 138 F g-1 and 83.2 F g-1 with negligible 3.85% and 4.35% capacitance degradation after 2000 cycles in aqueous and organic electrolytes, respectively. At an extremely fast scan rate of 500 mV s-1, the specific capacitance can reach 80 F g-1 in aqueous electrolyte. No binder is needed for assembling the supercapacitor cells and the pillared GP itself may serve as a current collector due to its intrinsic high electrical conductivity. Finally, the pillared GP has great potential in the development of promising flexible and ultralight-weight supercapacitors for electrochemical energy storage.

  20. Flexible pillared graphene-paper electrodes for high-performance electrochemical supercapacitors.

    Science.gov (United States)

    Wang, Gongkai; Sun, Xiang; Lu, Fengyuan; Sun, Hongtao; Yu, Mingpeng; Jiang, Weilin; Liu, Changsheng; Lian, Jie

    2012-02-06

    Flexible graphene paper (GP) pillared by carbon black (CB) nanoparticles using a simple vacuum filtration method is developed as a high-performance electrode material for supercapacitors. Through the introduction of CB nanoparticles as spacers, the self-restacking of graphene sheets during the filtration process is mitigated to a great extent. The pillared GP-based supercapacitors exhibit excellent electrochemical performances and cyclic stabilities compared with GP without the addition of CB nanoparticles. At a scan rate of 10 mV s(-1) , the specific capacitance of the pillared GP is 138 F g(-1) and 83.2 F g(-1) with negligible 3.85% and 4.35% capacitance degradation after 2000 cycles in aqueous and organic electrolytes, respectively. At an extremely fast scan rate of 500 mV s (-1) , the specific capacitance can reach 80 F g(-1) in aqueous electrolyte. No binder is needed for assembling the supercapacitor cells and the pillared GP itself may serve as a current collector due to its intrinsic high electrical conductivity. The pillared GP has great potential in the development of promising flexible and ultralight-weight supercapacitors for electrochemical energy storage. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Preliminary creep and pillar closure data for shales

    International Nuclear Information System (INIS)

    Lomenick, T.F.; Russell, J.E.

    1987-10-01

    The results of fourteen laboratory creep tests on model pillars of four different shales are reported. Initial pillar stresses range from 6.9 MPa (1000 psi) to 69 MPa (10,000 psi) and temperatures range from ambient to 100 0 C. Laboratory response data are used to evaluate the parameters in the transient power-law pillar closure equation similar to that previously used for model pillars of rock salt. The response of the model pillars of shale shows many of the same characteristics as for rock salt. Deformation is enhanced by higher stresses and temperatures, although the shale pillars are not as sensitive to either stress or temperature as are pillars of rock salt. These test results must be considered very preliminary since they represent the initial, or scoping, phase of a comprehensive model pillar test program that will lead to the development and validation of creep laws for clay-rich rocks. 11 refs., 9 figs., 7 tabs

  2. Empirical pillar design methods review report: Final report

    International Nuclear Information System (INIS)

    1988-02-01

    This report summarizes and evaluates empirical pillar design methods that may be of use during the conceptual design of a high-level nuclear waste repository in salt. The methods are discussed according to category (i.e, main, submain, and panel pillars; barrier pillars; and shaft pillars). Of the 21 identified for main, submain, and panel pillars, one method, the Confined Core Method, is evaluated as being most appropriate for conceptual design. Five methods are considered potentially applicable. Of six methods identified for barrier pillars, one method based on the Load Transfer Distance concept is considered most appropriate for design. Based on the evaluation of 25 methods identified for shaft pillars, an approximate sizing criterion is proposed for use in conceptual design. Aspects of pillar performance relating to creep, ground deformation, interaction with roof and floor rock, and response to high temperature environments are not adequately addressed by existing empirical design methods. 152 refs., 22 figs., 14 tabs

  3. Stress-state monitoring of coal pillars during room and pillar extraction

    Czech Academy of Sciences Publication Activity Database

    Waclawik, Petr; Ptáček, Jiří; Koníček, Petr; Kukutsch, Radovan; Němčík, J.

    2016-01-01

    Roč. 15, č. 2 (2016), s. 49-56 ISSN 2300-3960 R&D Projects: GA MŠk(CZ) LO1406; GA MŠk ED2.1.00/03.0082 Institutional support: RVO:68145535 Keywords : stress-state monitoring * room and pillar * coal pillar Subject RIV: DH - Mining , incl. Coal Mining http://www.sciencedirect.com/science/article/pii/S2300396016300180

  4. Applying the methodology of Design of Experiments to stability studies: a Partial Least Squares approach for evaluation of drug stability.

    Science.gov (United States)

    Jordan, Nika; Zakrajšek, Jure; Bohanec, Simona; Roškar, Robert; Grabnar, Iztok

    2018-05-01

    The aim of the present research is to show that the methodology of Design of Experiments can be applied to stability data evaluation, as they can be seen as multi-factor and multi-level experimental designs. Linear regression analysis is usually an approach for analyzing stability data, but multivariate statistical methods could also be used to assess drug stability during the development phase. Data from a stability study for a pharmaceutical product with hydrochlorothiazide (HCTZ) as an unstable drug substance was used as a case example in this paper. The design space of the stability study was modeled using Umetrics MODDE 10.1 software. We showed that a Partial Least Squares model could be used for a multi-dimensional presentation of all data generated in a stability study and for determination of the relationship among factors that influence drug stability. It might also be used for stability predictions and potentially for the optimization of the extent of stability testing needed to determine shelf life and storage conditions, which would be time and cost-effective for the pharmaceutical industry.

  5. Effects of pillar height and junction depth on the performance of radially doped silicon pillar arrays for solar energy applications

    NARCIS (Netherlands)

    Elbersen, R.; Vijselaar, Wouter Jan, Cornelis; Tiggelaar, Roald M.; Gardeniers, Johannes G.E.; Huskens, Jurriaan

    2016-01-01

    The effects of pillar height and junction depth on solar cell characteristics are investigated to provide design rules for arrays of such pillars in solar energy applications. Radially doped silicon pillar arrays are fabricated by deep reactive ion etching of silicon substrates followed by the

  6. Study of colloidal properties of natural and Al-pillared smectite and removal of copper ions from an aqueous solution.

    Science.gov (United States)

    Sartor, Lucas Resmini; de Azevedo, Antonio Carlos; Andrade, Gabriel Ramatis Pugliese

    2015-01-01

    In this study, an Al-pillared smectite was synthesized and changes in its colloidal properties were investigated. The pillaring solution was prepared by mixing 0.4 mol L(-1) NaOH and 0.2 mol L(-1) AlCl3.6H2O solutions. Intercalated clays were heated to obtain the pillared clay, and X-ray diffractometry (XRD), X-ray fluorescence (XRF), Fourier transform infrared (FTIR) spectroscopy and N2 sorption/desorption isotherms analysis were done to characterize the changes in clay properties. Moreover, adsorption experiments were carried out in order to evaluate the capacity of the pillared clays to remove Cu2+ from an aqueous solution and to characterize the interaction between adsorbent and adsorbate. The results indicate that the natural clay has a basal spacing of 1.26 nm, whereas the pillared clays reached 1.78 nm (500°C) and 1.80 nm (350°C) after calcination. XRF analysis revealed an increase in the Al3+ in the pillared clay as compared to the natural clay. The surface area and pore volume (micro and mesoporous) were higher for the pillared clays. Experimental data from the adsorption experiment were fit to Langmuir and Freundlich and Temkin adsorption models, and the former one was the best fit (highest r2 value) for all the clays and lower standard deviation (Δg%) for the natural clay. On the other hand, the Temkin model exhibited Δg% value lower for the pillared clays. Thermodynamics parameters demonstrate that the Cu2+ adsorption process is spontaneous for all the clays, but with higher values for the pillared materials. In addition, application of the Dubinin-Radushkevich model revealed that the bond between the metal and the clay are weak, characterizing a physisorption.

  7. Extending and implementing the Persistent ID pillars

    Science.gov (United States)

    Car, Nicholas; Golodoniuc, Pavel; Klump, Jens

    2017-04-01

    The recent double decade anniversary of scholarly persistent identifier use has triggered journal special editions such as "20 Years of Persistent Identifiers". For such a publication, it is apt to consider the longevity of some persistent identifier (PID) mechanisms (Digital Object Identifiers) and the partial disappearance of others (Life Sciences IDs). We have previously postulated a set of "PID Pillars" [1] which are design principles aimed at ensuring PIDs can survive technology and social change and thus persist for the long term that we have drawn from our observations of PIDs at work over many years. The principles: describe how to ensure identifiers' system and organisation independence; codify the delivery of essential PID system functions; mandate a separation of PID functions from data delivery mechanisms; and require generation of policies detailing how change is handled. In this presentation, first we extend on our previous work of introducing the pillars by refining their descriptions, giving specific suggestions for each and presenting some work that addresses them. Second, we propose a baseline data model for persistent identifiers that, if used, would assist the separation of PID metadata and PID system functioning. This would allow PID system function specifics to change over time (e.g. resolver services or even resolution protocols) and yet preserve the PIDs themselves. Third, we detail our existing PID system — the PID Service [2] — that partially implements the pillars and describe both its successes and shortcomings. Finally, we describe our planned next-generation system that will aim to use the baseline data model and fully implement the pillars.

  8. Estimating the coordinates of pillars and posts in the parking lots for intelligent parking assist system

    Science.gov (United States)

    Choi, Jae Hyung; Kuk, Jung Gap; Kim, Young Il; Cho, Nam Ik

    2012-01-01

    This paper proposes an algorithm for the detection of pillars or posts in the video captured by a single camera implemented on the fore side of a room mirror in a car. The main purpose of this algorithm is to complement the weakness of current ultrasonic parking assist system, which does not well find the exact position of pillars or does not recognize narrow posts. The proposed algorithm is consisted of three steps: straight line detection, line tracking, and the estimation of 3D position of pillars. In the first step, the strong lines are found by the Hough transform. Second step is the combination of detection and tracking, and the third is the calculation of 3D position of the line by the analysis of trajectory of relative positions and the parameters of camera. Experiments on synthetic and real images show that the proposed method successfully locates and tracks the position of pillars, which helps the ultrasonic system to correctly locate the edges of pillars. It is believed that the proposed algorithm can also be employed as a basic element for vision based autonomous driving system.

  9. Merensky pillar strength formulae based on back-analysis of pillar failures at Impala Platinum

    CSIR Research Space (South Africa)

    Watson, BP

    2008-08-01

    Full Text Available , with and without a large flanking area of mining. Such factors were generally less than 1.2 (20% correction), and were, where feasible, checked using Equation [1]4. This equation may be used if there is a large sea of mining with roughly uniform convergence... for pillars that are allowed to punch, as well as for pillars that are surrounded by an infinitely strong rock mass; high density mesh and varying brittleness Table IV Material and model properties �3 Co �0 �res �pr �0 �res (MPa) (MPa) (m�) A 2 15 55 50...

  10. Catalytic Wastewater Treatment Using Pillared Clays

    Science.gov (United States)

    Perathoner, Siglinda; Centi, Gabriele

    After introduction on the use of solid catalysts in wastewater treatment technologies, particularly advanced oxidation processes (AOPs), this review discussed the use of pillared clay (PILC) materials in three applications: (i) wet air catalytic oxidation (WACO), (ii) wet hydrogen peroxide catalytic oxidation (WHPCO) on Cu-PILC and Fe-PILC, and (iii) behavior of Ti-PILC and Fe-PILC in the photocatalytic or photo-Fenton conversion of pollutants. Literature data are critically analyzed to evidence the main direction to further investigate, in particularly with reference to the possible practical application of these technologies to treat industrial, municipal, or agro-food production wastewater.

  11. Quality factors of nonideal micro pillars

    DEFF Research Database (Denmark)

    Gregersen, Niels; Nielsen, Torben Roland; Tromborg, Bjarne

    2007-01-01

    The influence of fabrication-induced imperfections and material absorption on the quality (Q) factor of a microcavity pillar is studied numerically. The dependence on sidewall inclination, selective underetch, and intrinsic loss is quantified. The authors show that imperfections can lead to an im...... to an improvement in Q and that a sidewall inclination angle of less than 1° causes a dramatic change in the Q factor. The variations in Q can be attributed to a delicate balance between effective index contrasts, mode overlap, and higher-order mode contributions....

  12. Field reversal experiments (FRX). [Equilibrium, confinement, and stability

    Energy Technology Data Exchange (ETDEWEB)

    Linford, R.K.; Armstrong, W.T.; Platts, D.A.; Sherwood, E.G.

    1978-01-01

    The equilibrium, confinement, and stability properties of the reversed-field configuration (RFC) are being studied in two theta-pinch facilities. The RFC is an elongated toroidal plasma confined in a purely poloidal field geometry. The open field lines of the linear theta pinch support the closed-field RFC much like the vertical field centers the toroidal plasma in a tokamak. Depending on stability and confinement properties, the RFC might be used to greatly reduce the axial losses in linear fusion devices such as mirrors, theta pinches, and liners. The FRX systems produce RFC's with a major radius R = 2-6 cm, minor radius a approximately 2 cm, and a total length l approximately 35 cm. The observed temperatures are T/sub e/ approximately 100 eV and T/sub i/ = 150-350 eV with a peak density n approximately 2 x 10/sup 15/ cm/sup -3/. After the plasma reaches equilibrium, the RFC remains stable for up to 30 ..mu..s followed by the rapid growth of the rotational m = 2 instability, which terminates the confinement. During the stable equilibrium, the particle and energy confinement times are more than 10 times longer than in an open-field system. The behavior of the m = 2 mode qualitatively agrees with the theoretically predicted instability for rotational velocities exceeding some critical value.

  13. Feedback stabilization experiments using l = 2 equilibrium windings in Scyllac

    International Nuclear Information System (INIS)

    Bartsch, R.R.; Cantrell, E.L.; Gribble, R.F.; Freese, K.B.; Handy, L.E.; Kristal, R.; Miller, G.; Quinn, W.E.

    1977-01-01

    The confinement time in the Scyllac Sector Feedback Experiment has been extended with a pre-programmed equilibrium compensation force. This force was produced by driving a current with a flexible waveform in an additional set of l = 2 windings

  14. Supercapacitors based on pillared graphene nanostructures.

    Science.gov (United States)

    Lin, Jian; Zhong, Jiebin; Bao, Duoduo; Reiber-Kyle, Jennifer; Wang, Wei; Vullev, Valentine; Ozkan, Mihrimah; Ozkan, Cengiz S

    2012-03-01

    We describe the fabrication of highly conductive and large-area three dimensional pillared graphene nanostructure (PGN) films from assembly of vertically aligned CNT pillars on flexible copper foils for applications in electric double layer capacitors (EDLC). The PGN films synthesized via a one-step chemical vapor deposition process on flexible copper foils exhibit high conductivity with sheet resistance as low as 1.6 ohms per square and possessing high mechanical flexibility. Raman spectroscopy indicates the presence of multi walled carbon nanotubes (MWCNT) and their morphology can be controlled by the growth conditions. It was discovered that nitric acid treatment can significantly increase the specific capacitance of the devices. EDLC devices based on PGN electrodes (surface area of 565 m2/g) demonstrate enhanced performance with specific capacitance value as high as 330 F/g extracted from the current density-voltage (CV) measurements and energy density value of 45.8 Wh/kg. The hybrid graphene-CNT nanostructures are attractive for applications including supercapacitors, fuel cells and batteries.

  15. Evaporation-driven clustering of microscale pillars and lamellae

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Tae-Hong; Kim, Jungchul; Kim, Ho-Young, E-mail: hyk@snu.ac.kr [Department of Mechanical and Aerospace Engineering, Seoul National University, Seoul 08826 (Korea, Republic of)

    2016-02-15

    As a liquid film covering an array of micro- or nanoscale pillars or lamellae evaporates, its meniscus pulls the elastic patterns together because of capillary effects, leading to clustering of the slender microstructures. While this elastocapillary coalescence may imply various useful applications, it is detrimental to a semiconductor manufacturing process called the spin drying, where a liquid film rinses patterned wafers until drying. To understand the transient mechanism underlying such self-organization during and after liquid evaporation, we visualize the clustering dynamics of polymer micropatterns. Our visualization experiments reveal that the patterns clumped during liquid evaporation can be re-separated when completely dried in some cases. This restoration behavior is explained by considering adhesion energy of the patterns as well as capillary forces, which leads to a regime map to predict whether permanent stiction would occur. This work does not only extend our understanding of micropattern stiction, but also suggests a novel path to control and prevent pattern clustering.

  16. Solving the critical thermal bowing in 3C-SiC/Si(111) by a tilting Si pillar architecture

    Science.gov (United States)

    Albani, Marco; Marzegalli, Anna; Bergamaschini, Roberto; Mauceri, Marco; Crippa, Danilo; La Via, Francesco; von Känel, Hans; Miglio, Leo

    2018-05-01

    The exceptionally large thermal strain in few-micrometers-thick 3C-SiC films on Si(111), causing severe wafer bending and cracking, is demonstrated to be elastically quenched by substrate patterning in finite arrays of Si micro-pillars, sufficiently large in aspect ratio to allow for lateral pillar tilting, both by simulations and by preliminary experiments. In suspended SiC patches, the mechanical problem is addressed by finite element method: both the strain relaxation and the wafer curvature are calculated at different pillar height, array size, and film thickness. Patches as large as required by power electronic devices (500-1000 μm in size) show a remarkable residual strain in the central area, unless the pillar aspect ratio is made sufficiently large to allow peripheral pillars to accommodate the full film retraction. A sublinear relationship between the pillar aspect ratio and the patch size, guaranteeing a minimal curvature radius, as required for wafer processing and micro-crack prevention, is shown to be valid for any heteroepitaxial system.

  17. Liner Stability Experiments at Pegasus: Diagnostics and Experimental Results

    International Nuclear Information System (INIS)

    Clark, D.A.; Morgan, D.V.; Rodriguez, G.

    1998-01-01

    A series of experiments to compare imploding liner performance with magneto-hydrodynamic (MHD) modeling has been performed at the Los Alamos National Laboratory Pegasus II pulse power machine. Liner instability growth originating from initial perturbations machined into the liner has been observed with high resolution. Three major diagnostics were used: radiography, Velocity Interferometer for a Surface of Any Reflector (VISAR), and fiber optic impact pins. For radiography, three flash x-ray units were mounted radially to observe liner shape at three different times during the implosion. Liner velocity was measured continuously with the VISAR for the entire distance traveled in two experiments. Optical impact pins provide a high-resolution measure of liner symmetry and shape near the end of travel. Liner performance has compared well with predictions

  18. Periodically structured Si pillars for high-performing heterojunction photodetectors

    Science.gov (United States)

    Melvin David Kumar, M.; Yun, Ju-Hyung; Kim, Joondong

    2015-03-01

    A periodical array of silicon (Si) micro pillar structures was fabricated on Si substrates using PR etching process. Indium tin oxide (ITO) layer of 80 nm thickness was deposited over patterned Si substrates so as to make ITO/n-Si heterojunction devices. The influences of width and period of pillars on the optical and electrical properties of prepared devices were investigated. The surface morphology of the Si substrates revealed the uniform array of pillar structures. The 5/10 (width/period) Si pillar pattern reduced the optical reflectance to 6.5% from 17% which is of 5/7 pillar pattern. The current rectifying ratio was found higher for the device in which the pillars are situated in optimum periods. At both visible (600 nm) and near infrared (900 nm) range of wavelengths, the 5/7 and 5/10 pillar patterned device exhibited the better photoresponses which are suitable for making advanced photodetectors. This highly transmittance and photoresponsive pillar patterned Si substrates with an ITO layer would be a promising device for various photoelectric applications.

  19. Pillar size optimization design of isolated island panel gob-side entry driving in deep inclined coal seam—case study of Pingmei No. 6 coal seam

    Science.gov (United States)

    Zhang, Shuai; Wang, Xufeng; Fan, Gangwei; Zhang, Dongsheng; Jianbin, Cui

    2018-06-01

    There is a perception that deep roadways are difficult to maintain. To reverse this and to improve the recovery rate of coal resources, gob-side entry driving is widely used in coal mines, especially deep-mining coal mines, in China. Determination of the reasonable pillar size through in situ observation and experimentation plays a vital role for roadway maintenance. Based on the geological conditions of Pingmei No.6 coal seam, a theoretical analysis, numerical simulation, and industrial experiments are carried out to calculate the reasonable width of chain pillars, analyze the lateral support stress distribution law near the gob side, investigate the relationship between the coal pillar stress distribution, roadway surrounding rock stress distribution, roadway surrounding rock deformation and the coal pillar width. The results indicate that 5 m wide coal pillars can ensure that the chain pillars are at a lower stress level and the deformation of roadway surrounding rock is in a more reasonable range. Industrial experiments show that when the chain pillar width is 5 m, the deformation of roadway surrounding rock can meet the requirements of working face safe production. The numerical results agreed well with field measurement and observations, and the industrial experiments results further validated the results of the numerical simulation.

  20. USHPRR FUEL FABRICATION PILLAR: FABRICATION STATUS, PROCESS OPTIMIZATIONS, AND FUTURE PLANS

    Energy Technology Data Exchange (ETDEWEB)

    Wight, Jared M.; Joshi, Vineet V.; Lavender, Curt A.

    2018-03-12

    The Fuel Fabrication (FF) Pillar, a project within the U.S. High Performance Research Reactor Conversion program of the National Nuclear Security Administration’s Office of Material Management and Minimization, is tasked with the scale-up and commercialization of high-density monolithic U-Mo fuel for the conversion of appropriate research reactors to use of low-enriched fuel. The FF Pillar has made significant steps to demonstrate and optimize the baseline co-rolling process using commercial-scale equipment at both the Y-12 National Security Complex (Y-12) and BWX Technologies (BWXT). These demonstrations include the fabrication of the next irradiation experiment, Mini-Plate 1 (MP-1), and casting optimizations at Y-12. The FF Pillar uses a detailed process flow diagram to identify potential gaps in processing knowledge or demonstration, which helps direct the strategic research agenda of the FF Pillar. This paper describes the significant progress made toward understanding the fuel characteristics, and models developed to make informed decisions, increase process yield, and decrease lifecycle waste and costs.

  1. Supercritical water natural circulation flow stability experiment research

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Dongliang; Zhou, Tao; Li, Bing [North China Electric Power Univ., Beijing (China). School of Nuclear Science and Engineering; North China Electric Power Univ., Beijing (China). Inst. of Nuclear Thermalhydraulic Safety and Standardization; North China Electric Power Univ., Beijing (China). Beijing Key Lab. of Passive Safety Technology for Nuclear Energy; Huang, Yanping [Nuclear Power Institute of China, Chengdu (China). Science and Technology on Reactor System Design Technology Lab.

    2017-12-15

    The Thermal hydraulic characteristics of supercritical water natural circulation plays an important role in the safety of the Generation-IV supercritical water-cooled reactors. Hence it is crucial to conduct the natural circulation heat transfer experiment of supercritical water. The heat transfer characteristics have been studied under different system pressures in the natural circulation systems. Results show that the fluctuations in the subcritical flow rate (for natural circulation) is relatively small, as compared to the supercritical flow rate. By increasing the heating power, it is observed that the amplitude (and time period) of the fluctuation tends to become larger for the natural circulation of supercritical water. This tends to show the presence of flow instability in the supercritical water. It is possible to observe the flow instability phenomenon when the system pressure is suddenly reduced from the supercritical pressure state to the subcritical state. At the test outlet section, the temperature is prone to increase suddenly, whereas the blocking effect may be observed in the inlet section of the experiment.

  2. [Demographic influence on economic stability: the United States experience].

    Science.gov (United States)

    Easterlin, R A; Wachter, M; Wachter, S M

    1978-01-01

    Up to the 1930s the international migration rate into the U.S. was very high, while birth and mortality rates had little variation; migration was, therefore, the principal responsible for population growth rate. Migration cycles were induced by economic conditions, and had, in their turn, important effects on economic feedback. The growing of urban areas, i.e., accelerated demand for new homes and urban services in general, prolonged the economic expansion. After World War 2 a new period opened in the relation between demographic and economic cycles. At the end of the 1950s the U.S. experienced a considerable growth in the number of people between 15-29, due to corresponding birth rate increase, which initiated around 1940. This marked difference in the relative number of young adults, or manpower, resulted in an economic situation relatively unfavorable. For the future a decrease in the relative number of young adults is expected, reflecting the decrease in birth rate experienced around 1960. If the U.S. should experience a new "baby boom" in the next few decades, radical changes in the demographic composition of manpower will have to be expected.

  3. Simulation of the MHD stabilities of the experiment on HL-2A tokamak by GATO code

    International Nuclear Information System (INIS)

    Pan Wei; Chen Liaoyuan; Dong Jiaqi; Shen Yong; Zhang Jinhua

    2009-01-01

    The ideal two-dimensional MHD stabilities code, GATO, has been successfully immigrated to the high-performance computing system of HL-2A and used to the simulation study of the ideal MHD stabilities of the plasmas produced by one of the pellets injection experiments on HL-2A tokamak. The EFIT code was used to reconstruct the equilibrium configures firstly and the GATO was used to compute their MHD stabilities secondly whose source data were obtained by the NO.4050 discharge of the experiments on HL-2A, and finally by analyzing these results the preliminary conclusion was devised that the confinement performance of the plasma was improved because of the stabilization effect of the anti-sheared configures created by the pellets injection. (authors)

  4. Fold catastrophe model of dynamic pillar failure in asymmetric mining

    Energy Technology Data Exchange (ETDEWEB)

    Yue Pan; Ai-wu Li; Yun-song Qi [Qingdao Technological University, Qingdao (China). College of Civil Engineering

    2009-01-15

    A rock burst disaster not only destroys the pit facilities and results in economic loss but it also threatens the life of the miners. Pillar rock burst has a higher frequency of occurrence in the pit compared to other kinds of rock burst. Understanding the cause, magnitude and prevention of pillar rock burst is a significant undertaking. Equations describing the bending moment and displacement of the rock beam in asymmetric mining have been deduced for simplified asymmetric beam-pillar systems. Using the symbolic operation software MAPLE 9.5 a catastrophe model of the dynamic failure of an asymmetric rock-beam pillar system has been established. The differential form of the total potential function deduced from the law of conservation of energy was used for this deduction. The critical conditions and the initial and final positions of the pillar during failure have been given in analytical form. The amount of elastic energy released by the rock beam at the instant of failure is determined as well. A diagrammatic form showing the pillar failure was plotted using MATLAB software. This graph contains a wealth of information and is important for understanding the behavior during each deformation phase of the rock-beam pillar system. The graphic also aids in distinguishing the equivalent stiffness of the rock beam in different directions. 11 refs., 8 figs.

  5. Barrier pillar between production panels in coal mine

    Energy Technology Data Exchange (ETDEWEB)

    Zingano, Andre Cezar; Koppe, Jair Carlos; Costa, Joao Felipe C.L. [Universidade Federal do Rio Grande do Sul, Porto Alegre (Brazil)

    2007-07-01

    The function of the barrier pillar is to protect the mining panel in activity from the abutment load of adjacent mining panels that were mined. In the case of underground mines in Santa Catarina State, the barrier pillar has functioned to protect the main entries of the mine against pillar failure from old mining panels. The objective of this paper is to verify the application of the empirical method to design barrier pillars as proposed by Peng (1986), using numerical simulation following the mining geometry of the coal mines in Santa Catarina State. Two-dimensional numerical models were built taking into account the geometry of the main entries and mining panels for different overburden thickness, and considering the geomechanical properties for the rock mass that forms the roof-pillar-floor system for the Bonito coal vein. The results of the simulations showed that the empirical method to determine the barrier pillar width is valid for the studied coal vein and considered mine geometry. Neither did the pillar at the main entry become overstressed due to adjacent mine panels, nor did the roof present any failure due to stress redistribution. 9 refs., 6 figs., 5 tabs.

  6. The 5 Clinical Pillars of Value for Total Joint Arthroplasty in a Bundled Payment Paradigm.

    Science.gov (United States)

    Kim, Kelvin; Iorio, Richard

    2017-06-01

    Our large, urban, tertiary, university-based institution reflects on its 4-year experience with Bundled Payments for Care Improvement. We will describe the importance of 5 clinical pillars that have contributed to the early success of our bundled payment initiative. We are convinced that value-based care delivered through bundled payment initiatives is the best method to optimize patient outcomes while rewarding surgeons and hospitals for adapting to the evolving healthcare reforms. We summarize a number of experiences and lessons learned since the implementation of Bundled Payments for Care Improvement at our institution. Our experience has led to the development of more refined clinical pathways and coordination of care through evidence-based approaches. We have established that the success of the bundled payment program rests on the following 5 main clinical pillars: (1) optimizing patient selection and comorbidities; (2) optimizing care coordination, patient education, shared decision making, and patient expectations; (3) using a multimodal pain management protocol and minimizing narcotic use to facilitate rapid rehabilitation; (4) optimizing blood management, and standardizing venous thromboembolic disease prophylaxis treatment by risk standardizing patients and minimizing the use of aggressive anticoagulation; and (5) minimizing post-acute facility and resource utilization, and maximizing home resources for patient recovery. From our extensive experience with bundled payment models, we have established 5 clinical pillars of value for bundled payments. Our hope is that these principles will help ease the transition to value-based care for less-experienced healthcare systems. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. PILLARED ZEOLITES AMENDMENTS INFLUENCE FROM POLLUTED SOIL ON HEAVY METALS BIOACCUMULATION IN TOMATOES

    Directory of Open Access Journals (Sweden)

    SMARANDA MASU

    2007-05-01

    Full Text Available Due to anthropic activities, the presence of metals in polluted soils has effects on plants development and metals bioaccumulation into trophic levels. In this paper, were followed experiments regarding the tomatoes development into polluted soils with 43.4 – 58.4 mg Cd/kg d.s. and 500- 633 mg Pb/kg d.s. Nickel, zinc and copper content in soils are in the range of diffuse pollution values. Comparatively, an experiment was realized with polluted soils and amended with pillared zeolites. Pillared zeolites change metals distribution in soil fractions and their solubility. Tomato plants grew onto polluted soils, but did not present fruits. Tomatoes from polluted and amended soils presented fruits and metals in tissues (Zn  Cu  Ni. Zinc concentration was five times greater then Ni. Fruits do not accumulate cadmium and lead.

  8. POROUS MEMBRANE TEMPLATED SYNTHESIS OF POLYMER PILLARED LAYER

    Institute of Scientific and Technical Information of China (English)

    Zhong-wei Niu; Dan Li; Zhen-zhong Yang

    2003-01-01

    The anodic porous alumina membranes with a definite pore diameter and aspect ratio were used as templates to synthesize polymer pillared layer structures. The pillared polymer was produced in the template membrane pores, and the layer on the template surfaces. Rigid cured epoxy resin, polystyrene and soft hydrogel were chosen to confirm the methodology. The pillars were in the form of either tubes or fibers, which were controlled by the alumina membrane pore surface wettability. The structural features were confirmed by scanning electron microscopy results.

  9. Theoretical explanation of present mirror experiments and linear stability of larger scaled machines

    International Nuclear Information System (INIS)

    Berk, H.L.; Baldwin, D.E.; Cutler, T.A.; Lodestro, L.L.; Maron, N.; Pearlstein, L.D.; Rognlien, T.D.; Stewart, J.J.; Watson, D.C.

    1976-01-01

    A quasilinear model for the evolution of the 2XIIB mirror experiment is presented and shown to reproduce the time evolution of the experiment. From quasilinear theory it follows that the energy lifetime is the Spitzer electron drag time for T/sub e/ approximately less than 0.1T/sub i/. By computing the stability boundary of the DCLC mode, with warm plasma stabilization, the electron temperature is predicted as a function of radial scale length. In addition, the effect of finite length corrections to the Alfven cyclotron mode is assessed

  10. Planning maximum extraction of a safety pillar in the Most surface mine

    Energy Technology Data Exchange (ETDEWEB)

    Helis, P; Hess, L; Kubiznak, K [SHR - Banske Projekty, Teplice (Czechoslovakia)

    1990-11-01

    Discusses planned coal surface mining in the Most mine in the area of the Hnevin safety pillar with coal reserves amounting to about 7.5 Mt. The following aspects are evaluated: coal reserves and their distribution in the pillar, coal seam thickness and dip angles, water conditions, water influx rates, mechanical properties of the overburden and strata situated in the seam floor, slope stability and hazards of landslides, effects of water influx on landslide hazards, types of bucket wheel excavators used for overburden removal and mining, types of belt conveyors used for mine haulage, stackers, position of mining equipment in the mine. A scheme developed by Banske Projekty Teplice for partial extraction of the safety pillar would result in extraction of 4.5 Mt coal. About 1.7 Mt coal would be left in a safety coal layer about 10.0 m thick situated in the floor in zones with landslide hazards. KU 300 bucket wheel excavators, belt conveyors 1,200 mm wide and ZP 2,500 stackers would be used. 4 refs.

  11. The old pillars of new retailing.

    Science.gov (United States)

    Berry, L L

    2001-04-01

    Despite the harsh realities of retailing, the illusion persists that magical tools can help companies overcome the problems of fickle consumers, price-slashing competitors, and mood swings in the economy. Such wishful thinking holds that retailers will thrive if only they communicate better with customers through e-mail, employ hidden cameras to learn how customers make purchase decisions, and analyze scanner data to tailor special offers and manage inventory. But the truth is, there are no quick fixes. In the course of his extensive research on dozens of retailers, Leonard Berry found that the best companies create value for their customers in five interlocking ways. Whether you're running a physical store, a catalog business, an e-commerce site, or a combination of the three, you have to offer your customers superior solutions to their needs, treat them with respect, and connect with them on an emotional level. You also have to set prices fairly and make it easy for people to find what they need, pay for it quickly, and then move on. None of these pillars is new, and each sounds exceedingly simple, but don't be fooled--implementing these axioms in the real world is surprisingly difficult. The author illustrates how some retailers have built successful operations by attending to these commonsense ways of dealing with their customers and how others have failed to do so.

  12. The molecular environment of the pillar-like features in the H II region G46.5-0.2

    Science.gov (United States)

    Paron, S.; Celis Peña, M.; Ortega, M. E.; Fariña, C.; Petriella, A.; Rubio, M.; Ashley, R. P.

    2017-10-01

    At the interface of H II regions and molecular gas, peculiar structures appear, some of them with pillar-like shapes. Understanding their origin is important for characterizing triggered star formation and the impact of massive stars on the interstellar medium. In order to study the molecular environment and influence of radiation on two pillar-like features related to the H II region G46.5-0.2, we performed molecular line observations with the Atacama Submillimeter Telescope Experiment and spectroscopic optical observations with the Isaac Newton Telescope. From the optical observations, we identified the star that is exciting the H II region as spectral type O4-6. The molecular data allowed us to study the structure of the pillars and an HCO+ cloud lying between them. In this HCO+ cloud, which has no well-defined 12CO counterpart, we found direct evidence of star formation: two molecular outflows and two associated near-IR nebulosities. The outflow axis orientation is perpendicular to the direction of the radiation flow from the H II region. Several Class I sources are also embedded in this HCO+ cloud, showing that it is usual that young stellar objects (YSOs) form large associations occupying a cavity bounded by pillars. On the other hand, it was confirmed that the radiation-driven implosion (RDI) process is not occurring in one of the pillar tips.

  13. PS buildings : reinforced concrete structure for shielding "bridge" pillar

    CERN Multimedia

    CERN PhotoLab

    1956-01-01

    The PS ring traverses the region between the experimental halls South and North (buildings Nos 150 and 151) under massive bridge-shaped concrete beams. This pillar stands at the S-W end of the structure.

  14. Soft X-ray spectroscopic investigations in experiments on Z-pinch stabilization

    International Nuclear Information System (INIS)

    Pikuz, S.A.; Skobelev, I.Yu.

    1996-01-01

    X-ray spectroscopic methods were used to investigate the spatial distribution of Z-pinch plasma parameters. Experiments were carried out on the GAEL pulse line generator in Ecole Polytechnique (France) with different types of load. Obtained results for the concentration of electrons and plasma temperature showed that higher plasma homogeneity was obtained in experiments with complex load. Spectrograms demonstrate the stabilization effect of the A1-jet. (orig.)

  15. Soft X-ray spectroscopic investigations in experiments on Z-pinch stabilization

    Energy Technology Data Exchange (ETDEWEB)

    Pikuz, S.A. [Rossijskaya Akademiya Nauk, Moscow (Russian Federation). Fizicheskij Inst.; Shelkovenko, T.A. [Rossijskaya Akademiya Nauk, Moscow (Russian Federation). Fizicheskij Inst.; Romanova, V.M. [Rossijskaya Akademiya Nauk, Moscow (Russian Federation). Fizicheskij Inst.; Etlicher, B. [Ecole Polytechnique, Palaseau (France). Lab. de Phys. des Mililux Ionises; Attelan, S. [Ecole Polytechnique, Palaseau (France). Lab. de Phys. des Mililux Ionises; Chuvatin, A.S. [Ecole Polytechnique, Palaseau (France). Lab. de Phys. des Mililux Ionises; Faenov, A.Ya. [MISDC VNIIFTRI, Moscow (Russian Federation); Skobelev, I.Yu. [MISDC VNIIFTRI, Moscow (Russian Federation)

    1996-04-01

    X-ray spectroscopic methods were used to investigate the spatial distribution of Z-pinch plasma parameters. Experiments were carried out on the GAEL pulse line generator in Ecole Polytechnique (France) with different types of load. Obtained results for the concentration of electrons and plasma temperature showed that higher plasma homogeneity was obtained in experiments with complex load. Spectrograms demonstrate the stabilization effect of the A1-jet. (orig.).

  16. Positional stability experiment and analysis of elongated plasmas in Doublet III

    International Nuclear Information System (INIS)

    Yokomizo, Hideaki

    1984-04-01

    Control systems of the plasma position and shape on Doublet III are explained and experimental results of vertical stability of elongated plasmas are reviewed. Observed results of the vertical instability are qualitatively compared with the predictions from the simplified model and quantitatively compared with the numerical calculations based on a more realistic model. Experiments are in reasonable agreement with the theoretical analyses. (author)

  17. Glow experiment documentation of OMS/RCS pod and vertical stabilizer

    Science.gov (United States)

    1982-01-01

    Glow experiment documentation of one of the orbital maneuvering system (OMS) reaction control system (RCS) pods and a portion of the vertical stabilizer shows chemoluminescent effectresulting from atomic oxygen impacting the spacecraft and building to the point that the atomic oxygen atoms combine to form molecules of oxygen. The Image Intensifier on NIKON 35mm camera was used to record the glow.

  18. Glow experiment documentation of OMS/RCS pods and vertical stabilizer

    Science.gov (United States)

    1982-01-01

    Glow experiment documentation of orbital maneuvering system (OMS) reaction control system (RCS) pods and vertical stabilizer shows chemo-luminescent effect resulting from atomic oxygen impacting the spacecraft and building to the point that the atomic oxygen atoms combine to form molecules of oxygen. Image intensifier on NIKON 35mm camera was used to record glow on vertical tail and OMS pods.

  19. An experimental investigation of wind pressures on square pillars in tornado-like vortices

    International Nuclear Information System (INIS)

    Iwatani, Yoshiharu; Maruta, Eizou; Kanda, Makoto; Hattori, Yousuke; Hamano, Naoki; Matsuura, Takeshi

    1992-01-01

    This report describes a laboratory simulation of tornado-like vortices and laboratory measurements of steady wind loads on model structures in tornado-like vortices. The variations of wind direction and wind speed of tornado-like vortices and ground surface pressure under tornado-like vortices with the swirl ratio, Reynolds number and the surface roughness were investigated. Wind pressure distributions on square pillars were measured in tornado-like vortices. It was observed in the experiment that the negative pressures on the roof faces of square pillars were high and distributed rather uniformly but these on the side faces differed greatly from place to place and locally became high. The high pressure regions on the side faces were close to ground surface in the case where the model structures stood in the center of tornado-like vortex, and became higher as the increase of distance between the model structures and the center of tornado-like vortices. (author)

  20. A Monte Carlo model for the intermittent plasticity of micro-pillars

    International Nuclear Information System (INIS)

    Ng, K S; Ngan, A H W

    2008-01-01

    Earlier compression experiments on micrometre-sized aluminium pillars, fabricated by focused-ion beam milling, using a flat-punch nanoindenter revealed that post-yield deformation during constant-rate loading was jerky with interspersing strain bursts and linear elastic segments. Under load hold, the pillars crept mainly by means of sporadic strain bursts. In this work, a Monte Carlo simulation model is developed, with two statistics gathered from the load-ramp experiments as input, to account for the jerky deformation during the load ramp as well as load hold. Under load-ramp conditions, the simulations successfully captured other experimental observations made independently from the two inputs, namely, the diverging behaviour of the jerky stress–strain response at higher stresses, the increase in burst frequency and burst size with stress and the overall power-law distribution of the burst size. The model also predicts creep behaviour agreeable with the experimental observations, namely, the occurrence of sporadic bursts with frequency depending on stress, creep time and pillar dimensions

  1. Stabilization

    Directory of Open Access Journals (Sweden)

    Muhammad H. Al-Malack

    2016-07-01

    Full Text Available Fuel oil flyash (FFA produced in power and water desalination plants firing crude oils in the Kingdom of Saudi Arabia is being disposed in landfills, which increases the burden on the environment, therefore, FFA utilization must be encouraged. In the current research, the effect of adding FFA on the engineering properties of two indigenous soils, namely sand and marl, was investigated. FFA was added at concentrations of 5%, 10% and 15% to both soils with and without the addition of Portland cement. Mixtures of the stabilized soils were thoroughly evaluated using compaction, California Bearing Ratio (CBR, unconfined compressive strength (USC and durability tests. Results of these tests indicated that stabilized sand mixtures could not attain the ACI strength requirements. However, marl was found to satisfy the ACI strength requirement when only 5% of FFA was added together with 5% of cement. When the FFA was increased to 10% and 15%, the mixture’s strength was found to decrease to values below the ACI requirements. Results of the Toxicity Characteristics Leaching Procedure (TCLP, which was performed on samples that passed the ACI requirements, indicated that FFA must be cautiously used in soil stabilization.

  2. Formation of Pillars at the Boundaries between HII Regions and Molecular Clouds

    International Nuclear Information System (INIS)

    Mizuta, A; Kane, J O; Pound, M W; Remington, B A; Ryutov, D D; Takabe, H

    2006-01-01

    We investigate numerically the hydrodynamic instability of an ionization front (IF) accelerating into a molecular cloud, with imposed initial perturbations of different amplitudes. When the initial amplitude is small, the imposed perturbation is completely stabilized and does not grow. When the initial perturbation amplitude is large enough, roughly the ratio of the initial amplitude to wavelength is greater than 0.02, portions of the IF temporarily separate from the molecular cloud surface, locally decreasing the ablation pressure. This causes the appearance of a large, warm HI region and triggers nonlinear dynamics of the IF. The local difference of the ablation pressure and acceleration enhances the appearance and growth of a multimode perturbation. The stabilization usually seen at the IF in the linear regimes does not work due to the mismatch of the modes of the perturbations at the cloud surface and in density in HII region above the cloud surface. Molecular pillars are observed in the late stages of the large amplitude perturbation case. The velocity gradient in the pillars is in reasonably good agreement with that observed in the Eagle Nebula. The initial perturbation is imposed in three different ways: in density, in incident photon number flux, and in the surface shape. All cases show both stabilization for a small initial perturbation and large growth of the second harmonic by increasing amplitude of the initial perturbation above a critical value

  3. Rock stability considerations for siting and constructing a KBS-3 repository. Based on experiences from Aespoe HRL, AECL's URL, tunnelling and mining

    International Nuclear Information System (INIS)

    Martin, C.D.; Christiansson, Rolf; Soederhaell, J.

    2001-12-01

    Over the past 25 years the international nuclear community has carried out extensive research into the deep geological disposal of nuclear waste in hard rocks. In two cases this research has resulted in the construction of dedicated underground research facilities: SKB's Aespoe Hard Rock Laboratory, Sweden and AECL's Underground Research Laboratory, Canada. Both laboratories are located in hard rocks considered representative of the Fennoscandian and Canadian Shields, respectively. This report is intended to synthesize the important rock mechanics findings from these research programs. In particular the application of these finding to assessing the stability of underground openings. As such the report draws heavily on the published results from the SKB's ZEDEX Experiment in Sweden and AECL's Mine- by Experiment in Canada. The objectives of this report are to: 1. Describe, using the current state of knowledge, the role rock engineering can play in siting and constructing a KBS-3 repository. 2. Define the key rock mechanics parameters that should be determined in order to facilitate repository siting and construction. 3. Discuss possible construction issues, linked to rock stability, that may arise during the excavation of the underground openings of a KBS-3 repository. 4. Form a reference document for the rock stability analysis that has to be carried out as a part of the design works parallel to the site investigations. While there is no unique or single rock mechanics property or condition that would render the performance of a nuclear waste repository unacceptable, certain conditions can be treated as negative factors. Outlined below are major rock mechanics issues that should be addressed during the siting, construction and closure of a nuclear waste repository in Sweden in hard crystalline rock. During the site investigations phase, rock mechanics information will be predominately gathered from examination and testing of the rock core and mapping of the

  4. Current practice and guidelines for the safe design of water barrier pillars

    CSIR Research Space (South Africa)

    Rangasamy, T

    2001-08-01

    Full Text Available adjacent to barrier pillars was conducted to ascertain the relationship between compartment water head, barrier pillar width and flow rates for combinations of roof bound, coal bound and floor bound flow. The results obtained from the instrumentation... pillars. A survey of South African Collieries revealed that water leakage associated with barrier pillars can be classed into seven predominant geotechnical flow categories. Through extensive numerical modelling and case history matching, barrier pillar...

  5. Critical bias fields for tilting stability in the BETA-II experiment

    International Nuclear Information System (INIS)

    Dalhed, H.E.

    1981-01-01

    The PEST equilibrium code and the GATO ideal MHD stability code have been modified to study stability properties of Spheromak configurations. Of particular interest is the effect on tilting modes of perfectly conducting walls which do not link the plasma. This paper makes use of equilibria and conducting walls specifically designed to model the BETA-II experiment at LLNL. Onset of the tilting mode is determined as a function of the bias magnetic field. Comparison with available experimental data shows promising agreement with the numerical results

  6. The temporal stability of children's neighborhood experiences: A follow-up from birth to age 15

    Directory of Open Access Journals (Sweden)

    Tom Kleinepier

    2017-06-01

    Full Text Available Background: Despite increasing attention being paid to the temporal dynamics of childhood disadvantage, children's neighborhood characteristics are still frequently measured at a single point in time. Whether such cross-sectional measures serve as reliable proxies for children's long-run neighborhood conditions depends on the stability in children's neighborhood experiences over time. Objective: We investigate stability in children's neighborhood environment over time, focusing on two of the most commonly studied neighborhood socioeconomic conditions: The ethnic composition and mean income of the neighborhood. Methods: Drawing on data from the Dutch population registers, an entire cohort of children born in the Netherlands in 1999 (n=179,166 is followed from birth up until age 15. We use year-to-year correlations in the percentage of non-Western ethnic minorities and the mean logged income in the neighborhood to evaluate the temporal stability of children's neighborhood experiences. Results: Results indicate that children's neighborhood characteristics are more stable over time with regard to ethnic composition than with regard to the mean income. Children who had moved at least once had less stability in neighborhood characteristics than children who never moved. Finally, neighborhood experiences were found to be more stable over time for ethnic minority children, although differences were small with regard to mean income in the neighborhood. Conclusions: We conclude that single point-in-time measurements of neighborhood characteristics are reasonable proxies for the long-run ethnic composition of children's neighborhood environment, but rather noisy proxies for the long-run income status of their neighborhood, particularly for those who moved. Contribution: We examine the temporal stability of children's neighborhood experiences over almost the entire childhood life course in the European context.

  7. The four pillars of education - learning by value

    Science.gov (United States)

    Czerniak-Czyżniak, Marta

    2017-04-01

    Nature is a great laboratory and a place of research. Observing and being with nature tells us how to acquire knowledge, how to work in a group, how to protect nature and how to behave in its environment. There are four important elements of contemporary education. Many scientific achievements and inventions created by observation and imitation of nature. Teaching nature can take into account the four pillars of education presented in the report for the United Nations Jacques Delors: Learning to KNOW - by discovering, experiencing, develop interests Learn to ACT - by activity, experimentation, creativity and courage Learning to LIVE TOGETHER - through group work, help and care Learn to BE - safe, helpful, experience and maintain social contacts Teaching through action is extremely important for the development of the child-man* (Piaget, 2006). The thinking originates primarily from the action. Therefore, students should undertake independent research activities, perform experiments and conduct observations and thus raise questions about the world, looking for meanings and solutions. Adults (a teacher, a person with a passion) are to be the support in the search for knowledge. The following poster is the summary of Project „Environmental Education for Sustainable Development in teacher training" co-financed by Norwegian as well national funds. The aim of the project is to increase environment al awareness and strengthenknowledge about the environment and cli mate change among students of Elary childhood education, to exchange Polish-Norwegian experience on outdoor nature education didactics in the first grades of primary school, to develop a didactics of the outdoor education and to implement it in program of an early childhood education study. *Piaget, J. (2006) How a child imagines the world, Warsaw: PWN Publishing

  8. Robust flow stability: Theory, computations and experiments in near wall turbulence

    Science.gov (United States)

    Bobba, Kumar Manoj

    Helmholtz established the field of hydrodynamic stability with his pioneering work in 1868. From then on, hydrodynamic stability became an important tool in understanding various fundamental fluid flow phenomena in engineering (mechanical, aeronautics, chemical, materials, civil, etc.) and science (astrophysics, geophysics, biophysics, etc.), and turbulence in particular. However, there are many discrepancies between classical hydrodynamic stability theory and experiments. In this thesis, the limitations of traditional hydrodynamic stability theory are shown and a framework for robust flow stability theory is formulated. A host of new techniques like gramians, singular values, operator norms, etc. are introduced to understand the role of various kinds of uncertainty. An interesting feature of this framework is the close interplay between theory and computations. It is shown that a subset of Navier-Stokes equations are globally, non-nonlinearly stable for all Reynolds number. Yet, invoking this new theory, it is shown that these equations produce structures (vortices and streaks) as seen in the experiments. The experiments are done in zero pressure gradient transiting boundary layer on a flat plate in free surface tunnel. Digital particle image velocimetry, and MEMS based laser Doppler velocimeter and shear stress sensors have been used to make quantitative measurements of the flow. Various theoretical and computational predictions are in excellent agreement with the experimental data. A closely related topic of modeling, simulation and complexity reduction of large mechanics problems with multiple spatial and temporal scales is also studied. A nice method that rigorously quantifies the important scales and automatically gives models of the problem to various levels of accuracy is introduced. Computations done using spectral methods are presented.

  9. Superhydrophobic analyte concentration utilizing colloid-pillar array SERS substrates.

    Science.gov (United States)

    Wallace, Ryan A; Charlton, Jennifer J; Kirchner, Teresa B; Lavrik, Nickolay V; Datskos, Panos G; Sepaniak, Michael J

    2014-12-02

    The ability to detect a few molecules present in a large sample is of great interest for the detection of trace components in both medicinal and environmental samples. Surface enhanced Raman spectroscopy (SERS) is a technique that can be utilized to detect molecules at very low absolute numbers. However, detection at trace concentration levels in real samples requires properly designed delivery and detection systems. The following work involves superhydrophobic surfaces that have as a framework deterministic or stochastic silicon pillar arrays formed by lithographic or metal dewetting protocols, respectively. In order to generate the necessary plasmonic substrate for SERS detection, simple and flow stable Ag colloid was added to the functionalized pillar array system via soaking. Native pillars and pillars with hydrophobic modification are used. The pillars provide a means to concentrate analyte via superhydrophobic droplet evaporation effects. A ≥ 100-fold concentration of analyte was estimated, with a limit of detection of 2.9 × 10(-12) M for mitoxantrone dihydrochloride. Additionally, analytes were delivered to the surface via a multiplex approach in order to demonstrate an ability to control droplet size and placement for scaled-up uses in real world applications. Finally, a concentration process involving transport and sequestration based on surface treatment selective wicking is demonstrated.

  10. Flame Propagation and Blowout in Hydrocarbon Jets: Experiments to Understand the Stability and Structure

    Science.gov (United States)

    2012-07-29

    Wilson and Kevin M. Lyons. On Diluted-Fuel Combustion Issues in Burning Biogas Surrogates, ASME-JERT, (12 2009): . doi: 2010/01/07 10:47:38 2 TOTAL...four coflow velocities are used, resulting in eight additional flow configurations. Table 2 contains the data obtained for these configurations, as...counterflow have higher stability limits than those in an oblique configuration. 4.) Conclusions Based on the results obtained from this experiment, a

  11. Final analysis of the engineering data on the scyllac feedback stabilization experiment

    International Nuclear Information System (INIS)

    Kutac, K.J.; Kewish, R.W.; Miller, G.; Gribble, R.F.

    1977-01-01

    The feedback stabilization system consists of four basic components: plasma position detectors, a signal processor or mode analyzer driven by the position detector signals, power amplifiers which are driven by the mode analyzer, and feedback load coils driven by the power amplifiers. A short description of each of the four components of the system is presented. The location of the components in the experiment is shown

  12. Single macroscopic pillars as model system for bioinspired adhesives: influence of tip dimension, aspect ratio, and tilt angle.

    Science.gov (United States)

    Micciché, Maurizio; Arzt, Eduard; Kroner, Elmar

    2014-05-28

    The goal of our study is to better understand the design parameters of bioinspired dry adhesives inspired by geckos. For this, we fabricated single macroscopic pillars of 400 μm diameter with different aspect ratios and different tip shapes (i.e., flat tips, spherical tips with different radii, and mushroom tips with different diameters). Tilt-angle-dependent adhesion measurements showed that although the tip shape of the pillars strongly influences the pull-off force, the pull-off strength is similar for flat and mushroom-shaped tips. We found no tilt-angle dependency of adhesion for spherical tip structures and, except for high tilt angle and low preload experiments, no tilt-angle effect for mushroom-tip pillars. For flat-tip pillars, we found a strong influence of tilt angle on adhesion, which decreased linearly with increasing aspect ratio. The experiments show that for the tested aspect ratios between 1 and 5, a linear decrease of tilt-angle dependency is found. The results of our studies will help to design bioinspired adhesives for application on smooth and rough surfaces.

  13. Landslides in the area of the Jastrzebie town protective pillar

    Energy Technology Data Exchange (ETDEWEB)

    Rybicki, S

    1986-01-01

    Analyzes 76 landslides in the area of the safety pillar of Jastrzebie in the Rybnik coal region. Of 76 landslides 60% fell on natural slopes with an angle of 25-50 degrees, 22% on natural slopes with a 5-25 degree angle, 10% on man-made cuts and 8% on embankments. About 78% of the landslides was associated with water bearing layers. Of the 76 landslides 32 were situated in the safety pillar and 44 close to the pillar. Thirty-three landslides were closely associated with underground mining: 30 landslides were caused by longwall mining (landslide position was related to working face position), a further 3 were associated with mining in general. Statistical data on landslides associated with underground coal mining are analyzed: landslide area, angle of slope inclination, height, landslide range, water conditions, types of soils, types of mining areas classified according to effects of mining damage. 8 refs.

  14. Fabrication of Pillar Shaped Electrode Arrays for Artificial Retinal Implants

    Directory of Open Access Journals (Sweden)

    Sung June Kim

    2008-09-01

    Full Text Available Polyimide has been widely applied to neural prosthetic devices, such as the retinal implants, due to its well-known biocompatibility and ability to be micropatterned. However, planar films of polyimide that are typically employed show a limited ability in reducing the distance between electrodes and targeting cell layers, which limits site resolution for effective multi-channel stimulation. In this paper, we report a newly designed device with a pillar structure that more effectively interfaces with the target. Electrode arrays were successfully fabricated and safely implanted inside the rabbit eye in suprachoroidal space. Optical Coherence Tomography (OCT showed well-preserved pillar structures of the electrode without damage. Bipolar stimulation was applied through paired sites (6:1 and the neural responses were successfully recorded from several regions in the visual cortex. Electrically evoked cortical potential by the pillar electrode array stimulation were compared to visual evoked potential under full-field light stimulation.

  15. Digital Marketing and the Pillars of Shopper Experience

    OpenAIRE

    NEGRICEA, Costel Iliuta; PURCAREA, Ioan Matei

    2014-01-01

    We already live in a world of digital empowered intelligent customers, of digital products, of digital business operations and digital competitors. The fierce competition forces firms to exploit digital technologies, to have profound knowledge, to focus on market imperatives and to demonstrate a deep commitment to these digital empowered intelligent customers that disrupts every industry. Advantaged are the companies that master relevant data flow and improve the performance of employees who ...

  16. Aluminium - Cobalt-Pillared Clay for Dye Filtration Membrane

    Science.gov (United States)

    Darmawan, A.; Widiarsih

    2018-04-01

    The manufacture of membrane support from cobalt aluminium pillared clay has been conducted. This research was conducted by mixing a clay suspension with pillared solution prepared from the mixture of Co(NO3)2.6H2O and AlCl3.6H2O. The molar ratio between Al and Co was 75:25 and the ratio of [OH-]/[metal] was 2. The clay suspension was stirred for 24 hours at room temperature, filtered and dried. The dried clay was then calcined at 200°C, 300°C and 400°C with a ramp rate of 2°C/min. Aluminium-cobalt-pillared clay was then characterized by XRD and GSA and moulded become a membrane support for subsequent tests on dye filtration. The XRD analysis showed that basal spacing (d 001) value of aluminium cobalt was 19.49 Å, which was higher than the natural clay of 15.08Å however, the basal spacing decreased with increasing calcination temperature. The result of the GSA analysis showed that the pore diameter of the aluminium cobalt pillared clay membrane was almost the same as that of natural clay that were 34.5Å and 34.2Å, respectively. Nevertheless, the pillared clay has a more uniform pore size distribution. The results of methylene blue filtration measurements demonstrated that the membrane filter support could well which shown by a clear filtrate at all concentrations tested. The value of rejection and flux decreased with the increasing concentration of methylene blue. The values of dye rejection and water flux reached 99.89% and 5. 80 x 10-6 kg min-1, respectively but they decreased with increasing concentration of methylene blue. The results of this study indicates that the aluminium-pillared clay cobalt could be used as membrane materials especially for ultrafiltration.

  17. Development of a method to estimate coal pillar loading

    CSIR Research Space (South Africa)

    Roberts, DP

    2002-09-01

    Full Text Available to the panel width to depth ratio, the percentage extraction and the stiffness of the surrounding strata influence the validity of the tributary area method. An underground test was conducted to assess the magnitude of changes in pillar stress. Various... stress measurement devices were installed in test pillars just prior to mining. The stress changes were monitored and compared with numerical modelling results. It was found that stresses increased by between 0.3 MPa and 0.5 MPa and that the stresses...

  18. Evidence of flow stabilization in the ZaP Z pinch experiment

    International Nuclear Information System (INIS)

    Shumlak, U.; Crawford, E.; Golingo, R.P.; Nelson, B.A.; Zyrmpas, A.; Den Hartog, D.J.; Holly, D.J.

    2001-01-01

    The stabilizing effect of an axial flow on the m = 1 kink instability in Z pinches has been studied numerically with a linearized ideal MHD model to reveal that a sheared axial flow stabilizes the kink mode when the shear exceeds a threshold. The sheared flow stabilizing effect is investigated with the flow-through Z pinch experiment, ZaP. An azimuthal array of surface mounted magnetic probes located at the midplane of the 50 cm long pinch plasma measures the fluctuation levels of the azimuthal modes m=1, 2, and 3. After pinch formation a quiescent period is found where the mode activity is reduced to a few percent of the average field. Optical images from a fast framing camera and a HeNe interferometer also indicate a stable pinch plasma during this time. Doppler shift measurements of a C-III line correspond to an axial flow velocity of 9.6x10 4 m/s internal to the pinch. During the time when the axial plasma flow is high, the plasma experiences a quiescent period which lasts approximately 800 exponential growth times predicted by linear theory for a static plasma. (author)

  19. Scaled Eagle Nebula Experiments on NIF

    Energy Technology Data Exchange (ETDEWEB)

    Pound, Marc W. [Univ. of Maryland, College Park, MD (United States)

    2017-03-28

    We performed scaled laboratory experiments at the National Ignition Facility laser to assess models for the creation of pillar structures in star-forming clouds of molecular hydrogen, in particular the famous Pillars of the Eagle Nebula. Because pillars typically point towards nearby bright ultraviolet stars, sustained directional illumination appears to be critical to pillar formation. The experiments mock up illumination from a cluster of ultraviolet-emitting stars, using a novel long duration (30--60 ns), directional, laser-driven x-ray source consisting of multiple radiation cavities illuminated in series. Our pillar models are assessed using the morphology of the Eagle Pillars observed with the Hubble Space Telescope, and measurements of column density and velocity in Eagle Pillar II obtained at the BIMA and CARMA millimeter wave facilities. In the first experiments we assess a shielding model for pillar formation. The experimental data suggest that a shielding pillar can match the observed morphology of Eagle Pillar II, and the observed Pillar II column density and velocity, if augmented by late time cometary growth.

  20. Thermal stability of morpholine, AMP and sarcosine in PWR secondary systems. Laboratory and loop experiments

    International Nuclear Information System (INIS)

    Feron, D.; Lambert, I.

    1991-01-01

    Laboratory and loop tests have been carried out in order to investigate the thermal stability of three amines (morpholine, AMP and sarcosine) in PWR secondary conditions. Laboratory experiments have been performed in a titanium autoclave at 300 deg C. The results pointed out high thermal decomposition rates of AMP and sarcosine. A decomposition mechanism is proposed for the 3 amines. Loop tests have been performed in order to compare steam cycle conditioning with ammonia, morpholine and AMP. The amine concentrations and the decomposition products such as acetate and formate have been followed around the secondary circuit of the ORION loop which reproduces the main physico-chemical characteristics of a PWR secondary circuit. These concentrations are reported together with the evolution of cationic conductivities. The influence of oxygen concentration on amine thermal stability has been observed. Results are expressed also in terms of decomposition rates and of relative volatility

  1. Hot electron plasma equilibrium and stability in the Constance B mirror experiment

    International Nuclear Information System (INIS)

    Chen, Xing.

    1988-04-01

    An experimental study of the equilibrium and macroscopic stability property of an electron cyclotron resonance heating (ECRH) generated plasma in a minimum-B mirror is presented. The Constance B mirror is a single cell quadrupole magnetic mirror in which high beta (β ≤ 0.3) hot electron plasmas (T/sub e/≅400 keV) are created with up to 4 kW of ECRH power. The plasma equilibrium profile is hollow and resembles the baseball seam geometry of the magnet which provides the confining magnetic field. This configuration coincides with the drift orbit of deeply trapped particles. The on-axis hollowness of the hot electron density profile is 50 /+-/ 10%, and the pressure profile is at least as hollow as, if not more than, the hot electron density profile. The hollow plasma equilibrium is macroscopically stable and generated in all the experimental conditions in which the machine has been operated. Small macroscopic plasma fluctuations in the range of the hot electron curvature drift frequency sometimes occur but their growth rate is small (ω/sub i//ω/sub r/ ≤ 10 -2 ) and saturate at very low level (δB//bar B/ ≤ 10 -3 ). Particle drift reversal is predicted to occur for the model pressure profile which best fits the experimental data under the typical operating conditions. No strong instability is observed when the plasma is near the drift reversal parameter regime, despite a theoretical prediction of instability under such conditions. The experiment shows that the cold electron population has no stabilizing effect to the hot electrons, which disagrees with current hot electron stability theories and results of previous maximum-B experiments. A theoretical analysis using MHD theory shows that the compressibility can stabilize a plasma with a hollowness of 20--30% in the Constance B mirror well. 57 refs

  2. Charge transport in nanoscale vertical organic semiconductor pillar devices

    NARCIS (Netherlands)

    Wilbers, J.G.E.; Xu, B.; Bobbert, P.A.; de Jong, M.P.; van der Wiel, W.G.

    2017-01-01

    We report charge transport measurements in nanoscale vertical pillar structures incorporating ultrathin layers of the organic semiconductor poly(3-hexylthiophene) (P3HT). P3HT layers with thickness down to 5 nm are gently top-contacted using wedging transfer, yielding highly reproducible, robust

  3. Mine flooding and barrier pillar hydrology in the Pittsburgh basin

    International Nuclear Information System (INIS)

    Leavitt, B.R.

    1999-01-01

    Pennsylvania began requiring barrier pillars between mines as early as 1930. The Ashley formula, resulting from a early commission on the problem, requires 20 feet of coal plus a thickness of coal equal to four times the seam height plus an additional thickness of coal equal to one tenth of the overburden thickness, or the maximum potential hydraulic head. For a 6-foot thick coal seam under 400 feet of cover, the barrier would be 20+24+40=84 feet. The Ashley formula is intended to protect coal miners from a catastrophic failure of a barrier pillar which has a high head of water impounded behind it. The paper gives several examples of flooded and unflooded mines and the performance of their barrier pillars with respect to acid mine drainage. It is concluded that for all practical purposes, barrier pillars designed with the Ashley formula are able to hydrologically isolate mines from one another. This hydrologic isolation promotes the inundation of closed mines. Inundation effectively stops acid formation, thus, fully inundated mines do not represent a perpetual source of acid mine drainage. Infiltrating ground water improves the mine water chemistry resulting in a net alkaline discharge which has greatly lowered iron concentrations. The best locations for acid mine drainage treatment plants is at the lowest surface elevation above the mine with mine flooded to near that elevation

  4. Experiments of Laser Pointing Stability in Air and in Vacuum to Validate Micrometric Positioning Sensor

    CERN Document Server

    Stern, G; Piedigrossi, D; Sandomierski, J; Sosin, M; Geiger, A; Guillaume, S

    2014-01-01

    Aligning accelerator components over 200m with 10 μm accuracy is a challenging task within the Compact Linear Collider (CLIC) study. A solution based on laser beam in vacuum as straight line reference is proposed. The positions of the accelerator’s components are measured with respect to the laser beam by sensors made of camera/shutter assemblies. To validate these sensors, laser pointing stability has to be studied over 200m. We perform experiments in air and in vacuum in order to know how laser pointing stability varies with the distance of propagation and with the environment. The experiments show that the standard deviations of the laser spot coordinates increase with the distance of propagation. They also show that the standard deviations are much smaller in vacuum (8 μm at 35m) than in air (2000 μm at 200m). Our experiment validates the concept of laser beam in vacuum with camera/shutter assembly for micrometric positioning over 35m. It also gives an estimation of the achievable precision.

  5. Mechanical properties of pillared-graphene nanostructures using molecular dynamics simulations

    International Nuclear Information System (INIS)

    Wang, Chih-Hao; Fang, Te-Hua; Sun, Wei-Li

    2014-01-01

    The deformation behaviour and mechanical properties of three-dimensional (3D) pillared graphene are investigated using molecular dynamics simulations. The Tersoff–Brenner many-body potential model is employed to evaluate the interactions between 3D pillared-graphene carbon atoms and nanotube carbons. The Lennard-Jones potential model is used to compute the interactions between a conical indenter and 3D pillared-graphene carbon atoms. The effects of the size and geometric structure of 3D pillared-graphene are evaluated in terms of the indentation force and contact stiffness. The simulation results for an armchair nanotube of 3D pillared graphene show that the contact stiffness increases with increasing chiral vector of the 3D-pillared graphene. However, the adhesive force sharply decreases with increasing chiral vector of the 3D-pillared graphene. A zigzag nanotube of 3D-pillared graphene exhibits better mechanical properties compared with those of the armchair nanotube. (paper)

  6. Eco-Friendly Magnetic Iron Oxide Pillared Montmorillonite for Advanced Catalytic Degradation of Dichlorophenol

    Science.gov (United States)

    Eco-friendly pillared montmorillonites, in which the pillars consist of iron oxide are expected to have interesting and unusual magnetic properties that are applicable for environmental decontamination. Completely “green” and effective composite was synthesized using mild reactio...

  7. Using Controlled Landslide Initiation Experiments to Test Limit-Equilibrium Analyses of Slope Stability

    Science.gov (United States)

    Reid, M. E.; Iverson, R. M.; Brien, D. L.; Iverson, N. R.; Lahusen, R. G.; Logan, M.

    2004-12-01

    Most studies of landslide initiation employ limit equilibrium analyses of slope stability. Owing to a lack of detailed data, however, few studies have tested limit-equilibrium predictions against physical measurements of slope failure. We have conducted a series of field-scale, highly controlled landslide initiation experiments at the USGS debris-flow flume in Oregon; these experiments provide exceptional data to test limit equilibrium methods. In each of seven experiments, we attempted to induce failure in a 0.65m thick, 2m wide, 6m3 prism of loamy sand placed behind a retaining wall in the 31° sloping flume. We systematically investigated triggering of sliding by groundwater injection, by prolonged moderate-intensity sprinkling, and by bursts of high intensity sprinkling. We also used vibratory compaction to control soil porosity and thereby investigate differences in failure behavior of dense and loose soils. About 50 sensors were monitored at 20 Hz during the experiments, including nests of tiltmeters buried at 7 cm spacing to define subsurface failure geometry, and nests of tensiometers and pore-pressure sensors to define evolving pore-pressure fields. In addition, we performed ancillary laboratory tests to measure soil porosity, shear strength, hydraulic conductivity, and compressibility. In loose soils (porosity of 0.52 to 0.55), abrupt failure typically occurred along the flume bed after substantial soil deformation. In denser soils (porosity of 0.41 to 0.44), gradual failure occurred within the soil prism. All failure surfaces had a maximum length to depth ratio of about 7. In even denser soil (porosity of 0.39), we could not induce failure by sprinkling. The internal friction angle of the soils varied from 28° to 40° with decreasing porosity. We analyzed stability at failure, given the observed pore-pressure conditions just prior to large movement, using a 1-D infinite-slope method and a more complete 2-D Janbu method. Each method provides a static

  8. High-performance field emission device utilizing vertically aligned carbon nanotubes-based pillar architectures

    Science.gov (United States)

    Gupta, Bipin Kumar; Kedawat, Garima; Gangwar, Amit Kumar; Nagpal, Kanika; Kashyap, Pradeep Kumar; Srivastava, Shubhda; Singh, Satbir; Kumar, Pawan; Suryawanshi, Sachin R.; Seo, Deok Min; Tripathi, Prashant; More, Mahendra A.; Srivastava, O. N.; Hahm, Myung Gwan; Late, Dattatray J.

    2018-01-01

    The vertical aligned carbon nanotubes (CNTs)-based pillar architectures were created on laminated silicon oxide/silicon (SiO2/Si) wafer substrate at 775 °C by using water-assisted chemical vapor deposition under low pressure process condition. The lamination was carried out by aluminum (Al, 10.0 nm thickness) as a barrier layer and iron (Fe, 1.5 nm thickness) as a catalyst precursor layer sequentially on a silicon wafer substrate. Scanning electron microscope (SEM) images show that synthesized CNTs are vertically aligned and uniformly distributed with a high density. The CNTs have approximately 2-30 walls with an inner diameter of 3-8 nm. Raman spectrum analysis shows G-band at 1580 cm-1 and D-band at 1340 cm-1. The G-band is higher than D-band, which indicates that CNTs are highly graphitized. The field emission analysis of the CNTs revealed high field emission current density (4mA/cm2 at 1.2V/μm), low turn-on field (0.6 V/μm) and field enhancement factor (6917) with better stability and longer lifetime. Emitter morphology resulting in improved promising field emission performances, which is a crucial factor for the fabrication of pillared shaped vertical aligned CNTs bundles as practical electron sources.

  9. High-performance field emission device utilizing vertically aligned carbon nanotubes-based pillar architectures

    Directory of Open Access Journals (Sweden)

    Bipin Kumar Gupta

    2018-01-01

    Full Text Available The vertical aligned carbon nanotubes (CNTs-based pillar architectures were created on laminated silicon oxide/silicon (SiO2/Si wafer substrate at 775 °C by using water-assisted chemical vapor deposition under low pressure process condition. The lamination was carried out by aluminum (Al, 10.0 nm thickness as a barrier layer and iron (Fe, 1.5 nm thickness as a catalyst precursor layer sequentially on a silicon wafer substrate. Scanning electron microscope (SEM images show that synthesized CNTs are vertically aligned and uniformly distributed with a high density. The CNTs have approximately 2–30 walls with an inner diameter of 3–8 nm. Raman spectrum analysis shows G-band at 1580 cm−1 and D-band at 1340 cm−1. The G-band is higher than D-band, which indicates that CNTs are highly graphitized. The field emission analysis of the CNTs revealed high field emission current density (4mA/cm2 at 1.2V/μm, low turn-on field (0.6 V/μm and field enhancement factor (6917 with better stability and longer lifetime. Emitter morphology resulting in improved promising field emission performances, which is a crucial factor for the fabrication of pillared shaped vertical aligned CNTs bundles as practical electron sources.

  10. A statistical physics consideration about the strength of small size metallic glass pillars

    NARCIS (Netherlands)

    Chen, Changqiang; Pei, Yutao; De Hosson, Jeff Th. M.; Skrotzki, W; Oertel, CG; Biermann, H; Heilmaier, M

    2010-01-01

    We have fabricated micro-/nano-pillars of a Zr-based metallic glass, Zr(50)Ti(16.5)Cu(15)Ni(18.5), with pillar tip diameters ranging from similar to 750 nm to similar to 110 nm. These pillars were mechanically tested quantitatively in-situ in a Transmission Electron Microscope (TEM). Due to a slight

  11. Heterogeneous photo-Fenton decolorization of Orange II over Al-pillared Fe-smectite: Response surface approach, degradation pathway, and toxicity evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Li, Huiyuan; Li, Yanli [Department of Environmental Engineering, Wuhan University, Wuhan 430079 (China); Xiang, Luojing [Department of Environmental Engineering, Wuhan University, Wuhan 430079 (China); Université de Poitiers, UMR CNRS 7285, IC2MP, ENSIP, B1, 1 rue Marcel Doré, TSA 41105, Poitiers 86073 Cedex 9 (France); Huang, Qianqian; Qiu, Juanjuan [Department of Environmental Engineering, Wuhan University, Wuhan 430079 (China); Zhang, Hui, E-mail: eeng@whu.edu.cn [Department of Environmental Engineering, Wuhan University, Wuhan 430079 (China); Sivaiah, Matte Venkata; Baron, Fabien; Barrault, Joel; Petit, Sabine [Université de Poitiers, UMR CNRS 7285, IC2MP, ENSIP, B1, 1 rue Marcel Doré, TSA 41105, Poitiers 86073 Cedex 9 (France); Valange, Sabine, E-mail: sabine.valange@univ-poitiers.fr [Université de Poitiers, UMR CNRS 7285, IC2MP, ENSIP, B1, 1 rue Marcel Doré, TSA 41105, Poitiers 86073 Cedex 9 (France)

    2015-04-28

    Highlights: • Al-pillared Fe-smectite was synthesized and used as the photo-Fenton catalyst. • Response surface methodology was used to study the effects of reaction parameters. • The main intermediate products were identified by GC–MS technique. • A possible degradation pathway of Orange II was proposed. • All the generated products of Orange II were less toxic than the original dye. - Abstract: A ferric smectite clay material was synthesized and further intercalated with Al{sub 2}O{sub 3} pillars for the first time with the aim of evaluating its ability to be used as heterogeneous catalyst for the photo-Fenton decolorization of azo dye Orange II. UV irradiation was found to enhance the activity of the catalyst in the heterogeneous photo-Fenton process. Catalyst loading of 0.5 g/L and hydrogen peroxide concentration of 13.5 mM yielded a remarkable color removal, accompanied by excellent catalyst stability. The decolorization of Orange II followed the pseudo-first-order kinetics for initial dye concentrations from 20 to 160 mg/L. The central composite design (CCD) based on the response surface methodology (RSM) was applied to evaluate the effects of several operating parameters, namely initial pH, catalyst loading and hydrogen peroxide concentration, on the decolorization efficiency. The RSM model was derived and the response surface plots were developed based on the results. Moreover, the main intermediate products were separated and identified using gas chromatography–mass spectrometry (GC–MS) and a possible degradation pathway was proposed accordingly. The acute toxicity experiments illustrated that the Daphniamagna immobilization rate continuously decreased during 150 min reaction, indicating that the effluent was suitable for sequential biological treatment.

  12. A large-scale forest fragmentation experiment: the Stability of Altered Forest Ecosystems Project

    Science.gov (United States)

    Ewers, Robert M.; Didham, Raphael K.; Fahrig, Lenore; Ferraz, Gonçalo; Hector, Andy; Holt, Robert D.; Kapos, Valerie; Reynolds, Glen; Sinun, Waidi; Snaddon, Jake L.; Turner, Edgar C.

    2011-01-01

    Opportunities to conduct large-scale field experiments are rare, but provide a unique opportunity to reveal the complex processes that operate within natural ecosystems. Here, we review the design of existing, large-scale forest fragmentation experiments. Based on this review, we develop a design for the Stability of Altered Forest Ecosystems (SAFE) Project, a new forest fragmentation experiment to be located in the lowland tropical forests of Borneo (Sabah, Malaysia). The SAFE Project represents an advance on existing experiments in that it: (i) allows discrimination of the effects of landscape-level forest cover from patch-level processes; (ii) is designed to facilitate the unification of a wide range of data types on ecological patterns and processes that operate over a wide range of spatial scales; (iii) has greater replication than existing experiments; (iv) incorporates an experimental manipulation of riparian corridors; and (v) embeds the experimentally fragmented landscape within a wider gradient of land-use intensity than do existing projects. The SAFE Project represents an opportunity for ecologists across disciplines to participate in a large initiative designed to generate a broad understanding of the ecological impacts of tropical forest modification. PMID:22006969

  13. A large-scale forest fragmentation experiment: the Stability of Altered Forest Ecosystems Project.

    Science.gov (United States)

    Ewers, Robert M; Didham, Raphael K; Fahrig, Lenore; Ferraz, Gonçalo; Hector, Andy; Holt, Robert D; Kapos, Valerie; Reynolds, Glen; Sinun, Waidi; Snaddon, Jake L; Turner, Edgar C

    2011-11-27

    Opportunities to conduct large-scale field experiments are rare, but provide a unique opportunity to reveal the complex processes that operate within natural ecosystems. Here, we review the design of existing, large-scale forest fragmentation experiments. Based on this review, we develop a design for the Stability of Altered Forest Ecosystems (SAFE) Project, a new forest fragmentation experiment to be located in the lowland tropical forests of Borneo (Sabah, Malaysia). The SAFE Project represents an advance on existing experiments in that it: (i) allows discrimination of the effects of landscape-level forest cover from patch-level processes; (ii) is designed to facilitate the unification of a wide range of data types on ecological patterns and processes that operate over a wide range of spatial scales; (iii) has greater replication than existing experiments; (iv) incorporates an experimental manipulation of riparian corridors; and (v) embeds the experimentally fragmented landscape within a wider gradient of land-use intensity than do existing projects. The SAFE Project represents an opportunity for ecologists across disciplines to participate in a large initiative designed to generate a broad understanding of the ecological impacts of tropical forest modification.

  14. Experiment of Laser Pointing Stability on Different Surfaces to validate Micrometric Positioning Sensor

    CERN Document Server

    AUTHOR|(SzGeCERN)721924; Mainaud Durand, Helene; Piedigrossi, Didier; Sandomierski, Jacek; Sosin, Mateusz; Geiger, Alain; Guillaume, Sebastien

    2014-01-01

    CLIC requires 10 μm precision and accuracy over 200m for the pre-alignment of beam related components. A solution based on laser beam as straight line reference is being studied at CERN. It involves camera/shutter assemblies as micrometric positioning sensors. To validate the sensors, it is necessary to determine an appropriate material for the shutter in terms of laser pointing stability. Experiments are carried out with paper, metal and ceramic surfaces. This paper presents the standard deviations of the laser spot coordinates obtained on the different surfaces, as well as the measurement error. Our experiments validate the choice of paper and ceramic for the shutter of the micrometric positioning sensor. It also provides an estimate of the achievable precision and accuracy of the determination of the laser spot centre with respect to the shutter coordinate system defined by reference targets.

  15. Performance and stability limits at near-unity aspect ratio in the Pegasus Toroidal Experiment

    International Nuclear Information System (INIS)

    Fonck, R.J.

    2002-01-01

    The Pegasus Toroidal Experiment is a mid-sized extremely-low aspect ratio (A) spherical torus (ST). It has the dual roles of exploring limits of ST behavior as A approaches 1 and studying the physics of ST plasmas in the tokamak-spheromak overlap regime. Major parameters are R 0.25 - 0.45 m, A 1.1 - 1.4, I p ≤ 0.15MA, and B t p =aB t is similar to that observed for NBI-heated START discharges. Achievable plasma current apparently is subject to a 'soft' limit of I p =I t f ≤ 1. Access to higher-current plasmas appears to be restricted by the appearance of large internal MHD activity, including m/n=2/1 and 3/2 modes. Recent experiments have begun to access ideal stability limits, with disruptions observed as q 95 approaches 5, in agreement with numerical predictions. (author)

  16. Linking soil permeability and soil aggregate stability with root development: a pots experiment (preliminary results)

    Science.gov (United States)

    Vergani, Chiara; Graf, Frank; Gerber, Werner

    2015-04-01

    Quantifying and monitoring the contribution of vegetation to the stability of the slopes is a key issue for implementing effective soil bioengineering measures. This topic is being widely investigated both from the hydrological and mechanical point of view. Nevertheless, due to the high variability of the biological components, we are still far from a comprehensive understanding of the role of plants in slope stabilization, especially if the different succession phases and the temporal development of vegetation is considered. Graf et al., 2014, found within the scope of aggregate stability investigations that the root length per soil volume of alder specimen grown for 20 weeks under laboratory conditions is comparable to the one of 20 years old vegetation in the field. This means that already relatively short time scales can provide meaningful information at least for the first stage of colonization of soil bioengineering measures, which is also the most critical. In the present study we analyzed the effect of root growth on two soil properties critical to evaluate the performance of vegetation in restoring and re-stabilizing slopes: permeability and soil aggregate stability. We set up a laboratory experiment in order to work under controlled conditions and limit as much as possible the natural variability. Alnus incana was selected as the study species as it is widely used in restoration projects in the Alps, also because of its capacity to fix nitrogen and its symbiosis with both ecto and arbuscular mycorrhizal fungi. After the first month of growth in germination pots, we planted one specimen each in big quasi cylindrical pots of 34 cm diameter and 35 cm height. The pots were filled with the soil fraction smaller than 10 mm coming from an oven dried moraine collected in a subalpine landslide area (Hexenrübi catchment, central Switzerland). The targeted dry unit weight was 16 kN/m3. The plants have been maintained at a daily temperature of 25°C and relative

  17. Gyrokinetic Stability Studies of the Microtearing Mode in the National Spherical Torus Experiment H-mode

    International Nuclear Information System (INIS)

    Baumgaertel J.A., Redi M.H., Budny R.V., Rewoldt G., Dorland W.

    2005-01-01

    Insight into plasma microturbulence and transport is being sought using linear simulations of drift waves on the National Spherical Torus Experiment (NSTX), following a study of drift wave modes on the Alcator C-Mod Tokamak. Microturbulence is likely generated by instabilities of drift waves, which cause transport of heat and particles. Understanding this transport is important because the containment of heat and particles is required for the achievement of practical nuclear fusion. Microtearing modes may cause high heat transport through high electron thermal conductivity. It is hoped that microtearing will be stable along with good electron transport in the proposed low collisionality International Thermonuclear Experimental Reactor (ITER). Stability of the microtearing mode is investigated for conditions at mid-radius in a high density NSTX high performance (H-mode) plasma, which is compared to the proposed ITER plasmas. The microtearing mode is driven by the electron temperature gradient, and believed to be mediated by ion collisions and magnetic shear. Calculations are based on input files produced by TRXPL following TRANSP (a time-dependent transport analysis code) analysis. The variability of unstable mode growth rates is examined as a function of ion and electron collisionalities using the parallel gyrokinetic computational code GS2. Results show the microtearing mode stability dependence for a range of plasma collisionalities. Computation verifies analytic predictions that higher collisionalities than in the NSTX experiment increase microtearing instability growth rates, but that the modes are stabilized at the highest values. There is a transition of the dominant mode in the collisionality scan to ion temperature gradient character at both high and low collisionalities. The calculations suggest that plasma electron thermal confinement may be greatly improved in the low-collisionality ITER

  18. Analysis of Pilot-Induced-Oscillation and Pilot Vehicle System Stability Using UAS Flight Experiments

    Directory of Open Access Journals (Sweden)

    Tanmay K. Mandal

    2016-11-01

    Full Text Available This paper reports the results of a Pilot-Induced Oscillation (PIO and human pilot control characterization study performed using flight data collected with a Remotely Controlled (R/C unmanned research aircraft. The study was carried out on the longitudinal axis of the aircraft. Several existing Category 1 and Category 2 PIO criteria developed for manned aircraft are first surveyed and their effectiveness for predicting the PIO susceptibility for the R/C unmanned aircraft is evaluated using several flight experiments. It was found that the Bandwidth/Pitch rate overshoot and open loop onset point (OLOP criteria prediction results matched flight test observations. However, other criteria failed to provide accurate prediction results. To further characterize the human pilot control behavior during these experiments, a quasi-linear pilot model is used. The parameters of the pilot model estimated using data obtained from flight tests are then used to obtain information about the stability of the Pilot Vehicle System (PVS for Category 1 PIOs occurred during straight and level flights. The batch estimation technique used to estimate the parameters of the quasi-linear pilot model failed to completely capture the compatibility nature of the human pilot. The estimation results however provided valuable insights into the frequency characteristics of the human pilot commands. Additionally, stability analysis of the Category 2 PIOs for elevator actuator rate limiting is carried out using simulations and the results are compared with actual flight results.

  19. Ensuring Support for Research and Quality Improvement (QI) Networks: Four Pillars of Sustainability?An Emerging Framework

    OpenAIRE

    Holve, Erin

    2013-01-01

    Multi-institutional research and quality improvement (QI) projects using electronic clinical data (ECD) hold great promise for improving quality of care and patient outcomes but typically require significant infrastructure investments both to initiate and maintain the project over its duration. Consequently, it is important for these projects to think holistically about sustainability to ensure their long-term success. Four ?pillars? of sustainability are discussed based on the experiences of...

  20. Numerical Analysis on Failure Modes and Mechanisms of Mine Pillars under Shear Loading

    Directory of Open Access Journals (Sweden)

    Tianhui Ma

    2016-01-01

    Full Text Available Severe damage occurs frequently in mine pillars subjected to shear stresses. The empirical design charts or formulas for mine pillars are not applicable to orebodies under shear. In this paper, the failure process of pillars under shear stresses was investigated by numerical simulations using the rock failure process analysis (RFPA 2D software. The numerical simulation results indicate that the strength of mine pillars and the corresponding failure mode vary with different width-to-height ratios and dip angles. With increasing dip angle, stress concentration first occurs at the intersection between the pillar and the roof, leading to formation of microcracks. Damage gradually develops from the surface to the core of the pillar. The damage process is tracked with acoustic emission monitoring. The study in this paper can provide an effective means for understanding the failure mechanism, planning, and design of mine pillars.

  1. Crystallography of Representative MOFs Based on Pillared Cyanonickelate (PICNIC Architecture

    Directory of Open Access Journals (Sweden)

    Winnie Wong-Ng

    2016-09-01

    Full Text Available The pillared layer motif is a commonly used route to porous coordination polymers or metal organic frameworks (MOFs. Materials based on the pillared cyano-bridged architecture, [Ni’(LNi(CN4]n (L = pillar organic ligands, also known as PICNICs, have been shown to be especially diverse where pore size and pore functionality can be varied by the choice of pillar organic ligand. In addition, a number of PICNICs form soft porous structures that show reversible structure transitions during the adsorption and desorption of guests. The structural flexibility in these materials can be affected by relatively minor differences in ligand design, and the physical driving force for variations in host-guest behavior in these materials is still not known. One key to understanding this diversity is a detailed investigation of the crystal structures of both rigid and flexible PICNIC derivatives. This article gives a brief review of flexible MOFs. It also reports the crystal structures of five PICNICS from our laboratories including three 3-D porous frameworks (Ni-Bpene, NI-BpyMe, Ni-BpyNH2, one 2-D layer (Ni-Bpy, and one 1-D chain (Ni-Naph compound. The sorption data of BpyMe for CO2, CH4 and N2 is described. The important role of NH3 (from the solvent of crystallization as blocking ligands which prevent the polymerization of the 1-D chains and 2-D layers to become 3D porous frameworks in the Ni-Bpy and Ni-Naph compounds is also addressed.

  2. Stabilization of electron-scale turbulence by electron density gradient in national spherical torus experiment

    Energy Technology Data Exchange (ETDEWEB)

    Ruiz Ruiz, J.; White, A. E. [MIT-Plasma Science and Fusion Center, Cambridge, Massachusetts 02139 (United States); Ren, Y.; Guttenfelder, W.; Kaye, S. M.; Leblanc, B. P.; Mazzucato, E. [Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543 (United States); Lee, K. C. [National Fusion Research Institute, Daejeon (Korea, Republic of); Domier, C. W. [University of California at Davis, Davis, California 95616 (United States); Smith, D. R. [University of Wisconsin-Madison, Madison, Wisconsin 53706 (United States); Yuh, H. [Nova Photonics, Inc., Princeton, New Jersey 08540 (United States)

    2015-12-15

    Theory and experiments have shown that electron temperature gradient (ETG) turbulence on the electron gyro-scale, k{sub ⊥}ρ{sub e} ≲ 1, can be responsible for anomalous electron thermal transport in NSTX. Electron scale (high-k) turbulence is diagnosed in NSTX with a high-k microwave scattering system [D. R. Smith et al., Rev. Sci. Instrum. 79, 123501 (2008)]. Here we report on stabilization effects of the electron density gradient on electron-scale density fluctuations in a set of neutral beam injection heated H-mode plasmas. We found that the absence of high-k density fluctuations from measurements is correlated with large equilibrium density gradient, which is shown to be consistent with linear stabilization of ETG modes due to the density gradient using the analytical ETG linear threshold in F. Jenko et al. [Phys. Plasmas 8, 4096 (2001)] and linear gyrokinetic simulations with GS2 [M. Kotschenreuther et al., Comput. Phys. Commun. 88, 128 (1995)]. We also found that the observed power of electron-scale turbulence (when it exists) is anti-correlated with the equilibrium density gradient, suggesting density gradient as a nonlinear stabilizing mechanism. Higher density gradients give rise to lower values of the plasma frame frequency, calculated based on the Doppler shift of the measured density fluctuations. Linear gyrokinetic simulations show that higher values of the electron density gradient reduce the value of the real frequency, in agreement with experimental observation. Nonlinear electron-scale gyrokinetic simulations show that high electron density gradient reduces electron heat flux and stiffness, and increases the ETG nonlinear threshold, consistent with experimental observations.

  3. Dynamics of fault slip near the stability transition combining laboratory and numerical experiments

    Science.gov (United States)

    Mele Veedu, D.; Giorgetti, C.; Scuderi, M. M.; Barbot, S.; Marone, C.; Collettini, C.

    2017-12-01

    Frictional stability controls the seismogenic potential of faults. Laboratory (1) and theoretical (2) studies document and predict the conditions under which fault slip is seismic or aseismic. However, the full gamut of fault slip behavior near the stable/unstable boundary is still poorly known. Here, we combine insight from laboratory and numerical experiments to identify the wide spectrum of frictional instabilities around that transition, including slow-slip events, period-multiplying events, and chaos. We present a synoptic picture of the dynamics of fault slip in a bifurcation diagram obtained from a series of laboratory and numerical experiments. We compare the laboratory observations with spring-slider and finite-fault numerical models. In the laboratory, we vary the stiffness of the system by modulating the stress field around the experimental fault. In the numerical experiments, we vary the characteristic weakening distance to explore a range of critical nucleation sizes. Contrarily to previously found (3), complex fault dynamics can be obtained with a rate-and-state constitutive law with a single state variable. While the dynamics of fault slip is complicated on large faults by the presence of morphological and rheological heterogeneities, the range of instabilities identified in the laboratory is reminiscent of the variety of slow and fast earthquakes found along subduction zones (4). The accord between laboratory data and theoretical models affords more realistic predictions of fault behavior at slow slip speeds. (1) Scuderi et al., (2016), (2) Ruina (1983), (3) Gu & Wong (1994), (4) Obara & Kato (2016)

  4. Is there Complex Trauma Experience typology for Australian's experiencing extreme social disadvantage and low housing stability?

    Science.gov (United States)

    Keane, Carol A; Magee, Christopher A; Kelly, Peter J

    2016-11-01

    Traumatic childhood experiences predict many adverse outcomes in adulthood including Complex-PTSD. Understanding complex trauma within socially disadvantaged populations has important implications for policy development and intervention implementation. This paper examined the nature of complex trauma experienced by disadvantaged individuals using a latent class analysis (LCA) approach. Data were collected through the large-scale Journeys Home Study (N=1682), utilising a representative sample of individuals experiencing low housing stability. Data on adverse childhood experiences, adulthood interpersonal trauma and relevant covariates were collected through interviews at baseline (Wave 1). Latent class analysis (LCA) was conducted to identify distinct classes of childhood trauma history, which included physical assault, neglect, and sexual abuse. Multinomial logistic regression investigated childhood relevant factors associated with class membership such as biological relationship of primary carer at age 14 years and number of times in foster care. Of the total sample (N=1682), 99% reported traumatic adverse childhood experiences. The most common included witnessing of violence, threat/experience of physical abuse, and sexual assault. LCA identified six distinct childhood trauma history classes including high violence and multiple traumas. Significant covariate differences between classes included: gender, biological relationship of primary carer at age 14 years, and time in foster care. Identification of six distinct childhood trauma history profiles suggests there might be unique treatment implications for individuals living in extreme social disadvantage. Further research is required to examine the relationship between these classes of experience, consequent impact on adulthood engagement, and future transitions though homelessness. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Possibility of experiments using radiation counters for test electron stability and Pauli principle violation in atoms

    International Nuclear Information System (INIS)

    Barabash, A.S.

    1989-01-01

    Capabilities of modern radiation detectors for investigation into electron stability and possible violation of Pauli principle in atoms are discussed. For experimental searches of electron instability the following low-background devices are used: scintillation NaI-detectors, semiconducting detectors of enriched germanium, emission chamber, multisection proportional counter and low-temperature detectors. It is ascertained that using modern low-background devices applying the earlier enumerated detectors, it is possible to achieve sensitivity of the order of 10 24 -10 25 years for the electron lifetime relatively to its decay and Pauli principle violation in atoms. Experiments with sensitivity of ∼ 10 26 -10 27 can be realized in massive low-temperature detectors, developed for neutrino physics. 28 refs; 1 fig

  6. Parameterization experiments performed via synthetic mass movements prototypes generated by 3D slope stability simulator

    Science.gov (United States)

    Colangelo, Antonio C.

    2010-05-01

    each cell in synthetic slope systems performed by relief unity emulator. The central methodological strategy is to locate the potential rupture surfaces (prs), main material discontinuities, like soil-regolith or regolith-rock transitions. Inner these "prs", we would to outline the effective potential rupture surfaces (eprs). This surface is a sub-set of the "prs" that presents safety factor less than unity (fwalls, the "slope stability simulator" generates a synthetic mass movement. The overlay material will slide until that a new equilibrium be attained at residual shear strength. These devices generate graphic 3D cinematic sequences of experiments in synthetic slope systems and numerical results about physical and morphological data about scars and deposits. Thus, we have a detailed geotechnical, morphological, topographic and morphometric description of these mass movements prototypes, for deal with effective mass movements found in the real environments.

  7. Pillared Graphene: A New 3-D Innovative Network Nanostructure Augments Hydrogen Storage

    Science.gov (United States)

    Georgios, Dimitrakakis K.; Emmanuel, Tylianakis; George, Froudakis E.

    2009-08-01

    same orientation. In addition, the structure has no expanding limits and this is shown by the unfinished CNTs on the top and bottom of the structure (Figure 1). Obviously, the length and the intertube distance of the CNTs can be changed at will in order to have a material with tunable pores. This tailored porosity is a key aspect of our material and thus its usage can be extended to other applications besides hydrogen storage. The stability of the structure was determined by DFT calculations using the Turbomole ab-initio package. As it was shown by these calculations, our material is stable and in principle it can be formed. Its hydrogen storage capacity was then evaluated by Grand Canonical Monte Carlo (GCMC) calculations and the results showed a spectacular increase when Pillared Graphene was doped with lithium atoms. The increment on the loading when lithium atoms were present was so high that our material was able to store 6.1% wt. and 41 gr./L of hydrogen under ambient conditions.

  8. Deformation-driven diffusion and plastic flow in amorphous granular pillars.

    Science.gov (United States)

    Li, Wenbin; Rieser, Jennifer M; Liu, Andrea J; Durian, Douglas J; Li, Ju

    2015-06-01

    We report a combined experimental and simulation study of deformation-induced diffusion in compacted quasi-two-dimensional amorphous granular pillars, in which thermal fluctuations play a negligible role. The pillars, consisting of bidisperse cylindrical acetal plastic particles standing upright on a substrate, are deformed uniaxially and quasistatically by a rigid bar moving at a constant speed. The plastic flow and particle rearrangements in the pillars are characterized by computing the best-fit affine transformation strain and nonaffine displacement associated with each particle between two stages of deformation. The nonaffine displacement exhibits exponential crossover from ballistic to diffusive behavior with respect to the cumulative deviatoric strain, indicating that in athermal granular packings, the cumulative deviatoric strain plays the role of time in thermal systems and drives effective particle diffusion. We further study the size-dependent deformation of the granular pillars by simulation, and find that different-sized pillars follow self-similar shape evolution during deformation. In addition, the yield stress of the pillars increases linearly with pillar size. Formation of transient shear lines in the pillars during deformation becomes more evident as pillar size increases. The width of these elementary shear bands is about twice the diameter of a particle, and does not vary with pillar size.

  9. Performance and stability limits at near-unity aspect ratio in the pegasus toroidal experiment

    International Nuclear Information System (INIS)

    Fonck, R.; Diem, S.; Garstka, G.; Kissick, M.; Lewicki, B.; Ostrander, C.; Probert, P.; Reinke, M.; Sontag, A.; Tritz, K.; Unterberg, E.

    2003-01-01

    The Pegasus Toroidal Experiment is a mid-sized extremely-low aspect ratio (A) spherical torus (ST). It has the dual roles of exploring limits of ST behavior as A approaches 1 and studying the physics of ST plasmas in the tokamak-spheromak overlap regime. Major parameters are R 0.25 - 0.45 m, A 1.1 - 1.4, I p T 20% have been obtained, and the operational space of beta vs I p /aB T is similar to that observed for NBI-heated START discharges. Achievable plasma current is subject to an apparent limit of I p /I tf ∼ 1. Access to higher-current plasmas appears to be restricted by the appearance of large internal MHD activity, including m/n=2/1 and 3/2 modes. Recent experiments have begun to access ideal stability limits, with disruptions observed as q 95 approaches 5, in agreement with numerical predictions for external kink mode onset. (author)

  10. [Evaluation of the influence of humidity and temperature on the drug stability by initial average rate experiment].

    Science.gov (United States)

    He, Ning; Sun, Hechun; Dai, Miaomiao

    2014-05-01

    To evaluate the influence of temperature and humidity on the drug stability by initial average rate experiment, and to obtained the kinetic parameters. The effect of concentration error, drug degradation extent, humidity and temperature numbers, humidity and temperature range, and average humidity and temperature on the accuracy and precision of kinetic parameters in the initial average rate experiment was explored. The stability of vitamin C, as a solid state model, was investigated by an initial average rate experiment. Under the same experimental conditions, the kinetic parameters obtained from this proposed method were comparable to those from classical isothermal experiment at constant humidity. The estimates were more accurate and precise by controlling the extent of drug degradation, changing humidity and temperature range, or by setting the average temperature closer to room temperature. Compared with isothermal experiments at constant humidity, our proposed method saves time, labor, and materials.

  11. The effect of the depth and groundwater on the formation of sinkholes or ground subsidence associated with abandoned room and pillar lignite mines under static and dynamic conditions

    Directory of Open Access Journals (Sweden)

    Ö. Aydan

    2015-11-01

    Full Text Available It is well known that some sinkholes or subsidence take place from time to time in the areas where abandoned room and pillar type mines exist. The author has been involved with the stability of abandoned mines beneath urbanized residential areas in Tokai region and there is a great concern about the stability of these abandoned mines during large earthquakes as well as in the long term. The 2003 Miyagi Hokubu and 2011 Great East Japan earthquakes caused great damage to abandoned mines and resulted in many collapses. The author presents the effect of the depth and groundwater on the formation of sinkholes or ground subsidence associated with abandoned room and pillar lignite mines under static and dynamic conditions and discusses the implications on the areas above abandoned lignite mines in this paper.

  12. Ordered microporous layered lanthanide 1,3,5-benzenetriphosphonates pillared with cationic organic molecules.

    Science.gov (United States)

    Araki, Takahiro; Kondo, Atsushi; Maeda, Kazuyuki

    2015-04-13

    Novel isomorphous pillared-layer-type crystalline lanthanide 1,3,5-benzenetriphosphonates were prepared with bpy and dbo as organic pillars (LnBP-bpy and LnBP-dbo; Ln: Ce, Pr, and Nd). Ab initio crystal structure solution using synchrotron X-ray powder diffraction data revealed that the organic pillars do not exist as neutral coordinating ligands but as cationic molecules. Especially the LnBP-dbo phases have ordered interlayer space filled with water molecules between the dbo pillars, and the interlayer water is successfully removed by heating under vacuum with slightly distorted but basically retained pillared layer structures. Microporosity of the materials is confirmed by adsorption of nitrogen, carbon dioxide, and hydrogen gases. Such microporous layered metal phosphonates pillared with cationic molecules should be unprecedented and should offer new strategies to design ordered microporous materials. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Constraint effects of model coal pillar geometry on its strength

    Energy Technology Data Exchange (ETDEWEB)

    Wahab Khair, A.; Danqing Xu (West Virgina University, Morgantown, WV (United States))

    1994-06-01

    Coal and rock specimens with various diameter/height ratios (D/H) were subjected to compressive test in the laboratory. The deformation and failure characteristics of specimens were studied. The study showed that the D/H ratio of specimens significantly affects the deformation, failure characteristics, and the strength of material. The results provide a better understanding of the mechanism of D/H ratio effect on the strength of materials. The magnitude and mechanism of D/H ratio effect was compared with the effect of confining pressure, and contrasted to size effect. The application of the study to pillar design is discussed. 3 refs., 10 figs.

  14. Simple scaling laws for the evaporation of droplets pinned on pillars: Transfer-rate- and diffusion-limited regimes.

    Science.gov (United States)

    Hernandez-Perez, Ruth; García-Cordero, José L; Escobar, Juan V

    2017-12-01

    The evaporation of droplets can give rise to a wide range of interesting phenomena in which the dynamics of the evaporation are crucial. In this work, we find simple scaling laws for the evaporation dynamics of axisymmetric droplets pinned on millimeter-sized pillars. Different laws are found depending on whether evaporation is limited by the diffusion of vapor molecules or by the transfer rate across the liquid-vapor interface. For the diffusion-limited regime, we find that a mass-loss rate equal to 3/7 of that of a free-standing evaporating droplet brings a good balance between simplicity and physical correctness. We also find a scaling law for the evaporation of multicomponent solutions. The scaling laws found are validated against experiments of the evaporation of droplets of (1) water, (2) blood plasma, and (3) a mixture of water and polyethylene glycol, pinned on acrylic pillars of different diameters. These results shed light on the macroscopic dynamics of evaporation on pillars as a first step towards the understanding of other complex phenomena that may be taking place during the evaporation process, such as particle transport and chemical reactions.

  15. Simple scaling laws for the evaporation of droplets pinned on pillars: Transfer-rate- and diffusion-limited regimes

    Science.gov (United States)

    Hernandez-Perez, Ruth; García-Cordero, José L.; Escobar, Juan V.

    2017-12-01

    The evaporation of droplets can give rise to a wide range of interesting phenomena in which the dynamics of the evaporation are crucial. In this work, we find simple scaling laws for the evaporation dynamics of axisymmetric droplets pinned on millimeter-sized pillars. Different laws are found depending on whether evaporation is limited by the diffusion of vapor molecules or by the transfer rate across the liquid-vapor interface. For the diffusion-limited regime, we find that a mass-loss rate equal to 3/7 of that of a free-standing evaporating droplet brings a good balance between simplicity and physical correctness. We also find a scaling law for the evaporation of multicomponent solutions. The scaling laws found are validated against experiments of the evaporation of droplets of (1) water, (2) blood plasma, and (3) a mixture of water and polyethylene glycol, pinned on acrylic pillars of different diameters. These results shed light on the macroscopic dynamics of evaporation on pillars as a first step towards the understanding of other complex phenomena that may be taking place during the evaporation process, such as particle transport and chemical reactions.

  16. Argilas pilarizadas - uma introdução An introduction to pillared clays

    Directory of Open Access Journals (Sweden)

    Fernando J. Luna

    1999-02-01

    Full Text Available The synthesis, characterization and some applications in catalysis of pillared clays are described at an introductory level. The use of x-ray diffraction, surface area measurements, thermal analysis, IR spectrophotometry and solid-state NMR in the characterization of pillared clays is briefly discussed. Pillarization followed by doping or introduction of metal clusters into clays could lead to the development of selective heterogeneous catalysts.

  17. Laser beam pointing and stabilization by fractional-order PID control: Tuning rule and experiments

    KAUST Repository

    Al-Alwan, Asem Ibrahim Alwan

    2017-10-24

    This paper studies the problem of high-precision positioning of laser beams by using a robust Fractional-Order Proportional-Integral-Derivative (FOPID) controller. The control problem addressed in laser beams aims to maintain the position of the laser beam on a Position Sensing Device (PSD) despite the effects of noise and active disturbances. The FOPID controller is well known for its simplicity with better tuning flexibility along with robustness to noise and output disturbance rejections. Thus, a control strategy based on FOPID to achieve the control objectives has been proposed. The FOPID gains and differentiation orders are optimally tuned in order to fulfill the robustness design specifications by solving a nonlinear optimization problem. A comparison to the conventional Proportional-Integral-Derivative (PID) and robust PID is also provided from simulation and experiment set-up. Due to sensor noise, practical PID controllers that filter the position signal before taking the derivative have been also proposed. Experimental results show that the requirements are totally met for the laser beam platform to be stabilized.

  18. Laser beam pointing and stabilization by fractional-order PID control: Tuning rule and experiments

    KAUST Repository

    Al-Alwan, Asem Ibrahim Alwan; Guo, Xingang; Ndoye, Ibrahima; Laleg-Kirati, Taous-Meriem

    2017-01-01

    This paper studies the problem of high-precision positioning of laser beams by using a robust Fractional-Order Proportional-Integral-Derivative (FOPID) controller. The control problem addressed in laser beams aims to maintain the position of the laser beam on a Position Sensing Device (PSD) despite the effects of noise and active disturbances. The FOPID controller is well known for its simplicity with better tuning flexibility along with robustness to noise and output disturbance rejections. Thus, a control strategy based on FOPID to achieve the control objectives has been proposed. The FOPID gains and differentiation orders are optimally tuned in order to fulfill the robustness design specifications by solving a nonlinear optimization problem. A comparison to the conventional Proportional-Integral-Derivative (PID) and robust PID is also provided from simulation and experiment set-up. Due to sensor noise, practical PID controllers that filter the position signal before taking the derivative have been also proposed. Experimental results show that the requirements are totally met for the laser beam platform to be stabilized.

  19. Manipulating the optical properties of CdSe/ZnSSe quantum dot based monolithic pillar microcavities

    Energy Technology Data Exchange (ETDEWEB)

    Seyfried, Moritz; Kalden, Joachim; Lohmeyer, Henning; Sebald, Kathrin; Gutowski, Juergen [Semiconductor Optics, Institute of Solid state Physics, University of Bremen (Germany); Kruse, Carsten; Hommel, Detlef, E-mail: Seyfried@ifp.uni-bremen.d [Semiconductor Epitaxy, Institute of Solid state Physics, University of Bremen (Germany)

    2010-02-01

    A customization of the optical properties of pillar microcavities on the desired applications is essential for their future use as quantum-optical devices. Therefore, all-epitaxial cavities with CdSe quantum dot embedded in pillar structures with different geometries have been realized by focused-ion-beam etching. The quality factors of circularly shaped pillar microcavities have been measured and their dependence on the excitation power is discussed. As a possibility to achieve polarized light emission, asymmetrically shaped microcavities are presented. Examples of an elliptically shaped pillar as well as of photonic molecules are investigated with respect to their photoluminescence characteristics and polarization.

  20. Temporal stability of preferences and willingness to pay for natural areas in choice experiments: A test-retest

    NARCIS (Netherlands)

    Schaafsma, M.; Brouwer, R.; Liekens, I.; de Nocker, L.

    2014-01-01

    The main objective of this paper is to test the temporal stability of stated preferences and willingness to pay (WTP) values from a Choice Experiment (CE) in a test-retest. The same group of participants was asked the same choice tasks in an internet-based CE, conducted twice with a time interval of

  1. Exploring the Stability of Gold Nanoparticles by Experimenting with Adsorption Interactions of Nanomaterials in an Undergraduate Lab

    Science.gov (United States)

    Lee, Chi-Feng; You, Pei-Yun; Lin, Ying-Chiao; Hsu, Tsai-Ling; Cheng, Pi-Yun; Wu, Yu-Xuan; Tseng, Chi-Shun; Chen, Sheng-Wen; Chang, Huey-Por; Lin, Yang-Wei

    2015-01-01

    The proposed experiment can help students to understand the factors involved in the stability of gold nanoparticles (Au NPs) by exploring the adsorption interaction between Au NPs and various substances. The students in this study found that the surface plasmon resonance band of Au NP solutions underwent a red shift (i.e., from 520 to 650 nm)…

  2. Peeking at ecosystem stability: making use of a natural disturbance experiment to analyze resistance and resilience.

    Science.gov (United States)

    Bruelheide, Helge; Luginbühl, Ute

    2009-05-01

    To determine which factors contribute most to the stability of species composition in a beech forest after profound disturbance, we made use of a natural experiment caused by a severe windthrow that occurred at a permanent monitoring site in an old beech forest in Lower Saxony (Germany). The floristic composition was recorded for the succeeding five years after the disturbance and used to derive measures of resistance and resilience for plots as well as for individual species. Due to the existence of previously established randomly distributed permanent plots, we had precise information of the pre-disturbance state, including initial cover of the herb layer, species richness, and species composition. Variables describing the floristic change, resistance, and resilience were derived from correspondence analysis allowing for partitioning the effects of variation among plots from those of temporal change. We asked to which degree these variables could be predicted by pre-disturbance state and disturbance intensity. We found that both the pre-disturbance state and the disturbance intensity were good predictors for floristic change and resistance, while they failed to predict resilience. Among the descriptors of the pre-disturbance state the initial cover of the herb layer turned out to be a useful predictor, which is explained by a high vegetation cover buffering against losses and preventing establishment of newcomers. In contrast, species number neither showed a relationship to floristic change nor to resistance. Putative positive effects of species number on stability according to the insurance hypothesis might have been counterbalanced by a disruption of niche complementarity in species-rich communities. Among the descriptors of disturbance intensity, the loss in canopy cover and the change in photosynthetically active radiation after the storm were equally good predictors for the change in floristic composition and resistance. The analysis of the responses of

  3. Policy framework for utilisation. A pillar of better accessibility

    International Nuclear Information System (INIS)

    2008-01-01

    The goals and frameworks for traffic and transport policy for the Netherlands to 2020 are described in the Mobility Document. Whereas government policy previously viewed mobility as a problem or as something permissible, the assumption is now that mobility is a must. Mobility, for people as well as goods, is a prerequisite for society and the economy to function well. The Mobility Document contains ambitious goals to deal with current and anticipated traffic and transport problems: door to door, faster, cleaner and safer. Three interrelated pillars are to help achieve these goals: Building, Pricing and Utilisation. Work is being done on the Building and Pricing pillars; Utilisation is elaborated further in this policy framework. The Policy Framework for Utilisation is an elaboration of the Mobility Document for the 2008-2020 period and aims for faster, cleaner, safer travel from door to door. The purpose of this policy framework is to describe the direction of development of utilisation, in terms of content as well as process, to indicate actions that are required and to provide perspective on the expected effects. The policy framework is in line with current developments or plans, caters to new opportunities (technological and otherwise), encourages the innovative potential of the market and provides room for joint ventures between the government and the market. It will result in actions for the short term and provide direction for activities and developments for the longer term

  4. Heterogeneous photo-Fenton decolorization of Orange II over Al-pillared Fe-smectite: response surface approach, degradation pathway, and toxicity evaluation.

    Science.gov (United States)

    Li, Huiyuan; Li, Yanli; Xiang, Luojing; Huang, Qianqian; Qiu, Juanjuan; Zhang, Hui; Sivaiah, Matte Venkata; Baron, Fabien; Barrault, Joel; Petit, Sabine; Valange, Sabine

    2015-04-28

    A ferric smectite clay material was synthesized and further intercalated with Al2O3 pillars for the first time with the aim of evaluating its ability to be used as heterogeneous catalyst for the photo-Fenton decolorization of azo dye Orange II. UV irradiation was found to enhance the activity of the catalyst in the heterogeneous photo-Fenton process. Catalyst loading of 0.5g/L and hydrogen peroxide concentration of 13.5mM yielded a remarkable color removal, accompanied by excellent catalyst stability. The decolorization of Orange II followed the pseudo-first-order kinetics for initial dye concentrations from 20 to 160mg/L. The central composite design (CCD) based on the response surface methodology (RSM) was applied to evaluate the effects of several operating parameters, namely initial pH, catalyst loading and hydrogen peroxide concentration, on the decolorization efficiency. The RSM model was derived and the response surface plots were developed based on the results. Moreover, the main intermediate products were separated and identified using gas chromatography-mass spectrometry (GC-MS) and a possible degradation pathway was proposed accordingly. The acute toxicity experiments illustrated that the Daphniamagna immobilization rate continuously decreased during 150min reaction, indicating that the effluent was suitable for sequential biological treatment. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. The Turbopause experiment: atmospheric stability and turbulent structure spanning the turbopause altitude

    Directory of Open Access Journals (Sweden)

    G. A. Lehmacher

    2011-12-01

    Full Text Available Very few sequences of high resolution wind and temperature measurements in the lower thermosphere are available in the literature, which makes it difficult to verify the simulation results of models that would provide better understanding of the complex dynamics of the region. To address this problem the Turbopause experiment used four rockets launched over a period of approximately two hours from Poker Flat Research Range, Alaska (64° N, 147° W on the night of 17–18 February 2009. All four rocket payloads released trimethyl aluminum trails for neutral wind and turbulence measurements, and two of the rockets carried ionization gauges and fixed-bias Langmuir probes measuring neutral and electron densities, small-scale fluctuations and neutral temperatures. Two lidars monitored temperature structure and sodium densities. The observations were made under quiet geomagnetic conditions and show persistence in the wind magnitudes and shears throughout the observing period while being modulated by inertia-gravity waves. High resolution temperature profiles show the winter polar mesosphere and lower thermosphere in a state of relatively low stability with several quasi-adiabatic layers between 74 and 103 km. Temperature and wind data were combined to calculate Richardson number profiles. Evidence for turbulence comes from simultaneous observations of density fluctuations and downward transport of sodium in a mixed layer near 75 km; the observation of turbulent fluctuations and energy dissipation from 87–90 km; and fast and irregular trail expansion at 90–93 km, and especially between 95 to 103 km. The regions of turbulent trails agree well with regions of quasi-adiabatic temperature gradients. Above 103 km, trail diffusion was mainly laminar; however, unusual features and vortices in the trail diffusion were observed up to 118 km that have not been as prevalent or as clearly evident in earlier trail releases.

  6. The Sloan-C Pillars: Towards a Balanced Approach to Measuring Organizational Learning

    Science.gov (United States)

    Yeo, Kee Meng; Mayadas, A. Frank

    2010-01-01

    The Sloan Pillars have set the standard for university-wide online learning program assessment for more than a dozen years. In this paper, the authors propose the extension of the Pillars to corporate e-learning, offering an alternative to traditional enterprise learning assessments. Claiming that conventional methods stress individual courses or…

  7. Workshops around the pillar system design computer program produced in SIMRAC project GAP334

    CSIR Research Space (South Africa)

    York, G

    2000-03-01

    Full Text Available with the actual Pillar System Design program. Four workshops were held, three in the Bushveld Complex, and one at the Conference Centre at CSIR Miningtek. The delegates comprised most of the industry rock mechanics practitioners who deal with pillar system design...

  8. Rock stability considerations for siting and constructing a KBS-3 repository. Based on experiences from Aespoe HRL, AECL's URL, tunnelling and mining

    Energy Technology Data Exchange (ETDEWEB)

    Martin, C.D. [Univ. of Alberta, Edmonton (Canada); Christiansson, Rolf [Swedish Nuclear Fuel and Waste Management Co., Stockholm (Sweden); Soederhaell, J. [VBB VIAK AB, Stockholm (Sweden)

    2001-12-01

    Over the past 25 years the international nuclear community has carried out extensive research into the deep geological disposal of nuclear waste in hard rocks. In two cases this research has resulted in the construction of dedicated underground research facilities: SKB's Aespoe Hard Rock Laboratory, Sweden and AECL's Underground Research Laboratory, Canada. Both laboratories are located in hard rocks considered representative of the Fennoscandian and Canadian Shields, respectively. This report is intended to synthesize the important rock mechanics findings from these research programs. In particular the application of these finding to assessing the stability of underground openings. As such the report draws heavily on the published results from the SKB's ZEDEX Experiment in Sweden and AECL's Mine- by Experiment in Canada. The objectives of this report are to: 1. Describe, using the current state of knowledge, the role rock engineering can play in siting and constructing a KBS-3 repository. 2. Define the key rock mechanics parameters that should be determined in order to facilitate repository siting and construction. 3. Discuss possible construction issues, linked to rock stability, that may arise during the excavation of the underground openings of a KBS-3 repository. 4. Form a reference document for the rock stability analysis that has to be carried out as a part of the design works parallel to the site investigations. While there is no unique or single rock mechanics property or condition that would render the performance of a nuclear waste repository unacceptable, certain conditions can be treated as negative factors. Outlined below are major rock mechanics issues that should be addressed during the siting, construction and closure of a nuclear waste repository in Sweden in hard crystalline rock. During the site investigations phase, rock mechanics information will be predominately gathered from examination and testing of the rock core and

  9. Species richness and the temporal stability of biomass production: a new analysis of recent biodiversity experiments

    NARCIS (Netherlands)

    Gross, K.; Cardinale, B.J.; Fox, J.W.; Gonzalez, A.; Loreau, M.; Polley, H.W.; Reich, P.B.; Ruijven, van J.

    2013-01-01

    The relationship between biological diversity and ecological stability has fascinated ecologists for decades. Determining the generality of this relationship, and discovering the mechanisms that underlie it, are vitally important for ecosystem management. Here, we investigate how species richness

  10. Lithium fall reactor concept: the question of jet stability, with recommendations for further experiments

    International Nuclear Information System (INIS)

    Kang, S.W.

    1978-01-01

    The stability of a liquid-lithium jet flow is of importance in a laser fusion reactor design. In this report we analyze and discuss jet stability with respect to fluid dynamics, delineating physical factors that may affect the jet breakup and performing some simple calculations to determine quantitatively the relative influences of various parameters. We define areas of uncertainty and recommend possible experimental verification, theoretical analysis, or both

  11. Uncovering stability mechanisms in microbial ecosystems - combining microcosm experiments, computational modelling and ecological theory in a multidisciplinary approach

    Science.gov (United States)

    Worrich, Anja; König, Sara; Banitz, Thomas; Centler, Florian; Frank, Karin; Kästner, Matthias; Miltner, Anja; Thullner, Martin; Wick, Lukas

    2015-04-01

    Although bacterial degraders in soil are commonly exposed to fluctuating environmental conditions, the functional performance of the biodegradation processes can often be maintained by resistance and resilience mechanisms. However, there is still a gap in the mechanistic understanding of key factors contributing to the stability of such an ecosystem service. Therefore we developed an integrated approach combining microcosm experiments, simulation models and ecological theory to directly make use of the strengths of these disciplines. In a continuous interplay process, data, hypotheses, and central questions are exchanged between disciplines to initiate new experiments and models to ultimately identify buffer mechanisms and factors providing functional stability. We focus on drying and rewetting-cycles in soil ecosystems, which are a major abiotic driver for bacterial activity. Functional recovery of the system was found to depend on different spatial processes in the computational model. In particular, bacterial motility is a prerequisite for biodegradation if either bacteria or substrate are heterogeneously distributed. Hence, laboratory experiments focussing on bacterial dispersal processes were conducted and confirmed this finding also for functional resistance. Obtained results will be incorporated into the model in the next step. Overall, the combination of computational modelling and laboratory experiments identified spatial processes as the main driving force for functional stability in the considered system, and has proved a powerful methodological approach.

  12. Four pillars of radio astronomy Mills, Christiansen, Wild, Bracewell

    CERN Document Server

    Frater, R H; Wendt, H W

    2017-01-01

    This is the story of Bernie Mills, Chris Christiansen, Paul Wild and Ron Bracewell, members of a team of radio astronomers that would lead Australia, and the world, into this new field of research. Each of the four is remembered for his remarkable work: Mills for the development the cross type instrument that now bears his name; Christiansen for the application of rotational synthesis techniques; Wild for the masterful joining of observations and theory to elicit the nature of the solar atmosphere; Bracewell for his contribution to imaging theory. As well, these Four Pillars are remembered for creating a remarkable environment for scientific discovery and for influencing the careers of future generations. Their pursuit of basic science helped pave the way for technological developments in areas ranging from Wi-Fi to sonar to medical imaging to air navigation, and for underpinning the foundations of modern cosmology and astrophysics.

  13. Integrated analysis of rock mass deformation within shaft protective pillar

    Directory of Open Access Journals (Sweden)

    Ewa Warchala

    2016-01-01

    Full Text Available The paper presents an analysis of the rock mass deformation resulting from mining in the vicinity of the shaft protection pillar. A methodology of deformation prediction is based on a deterministic method using Finite Element Method (FEM. The FEM solution is based on the knowledge of the geomechanical properties of the various geological formations, tectonic faults, types of mining systems, and the complexity of the behaviour of the rock mass. The analysis gave the stress and displacement fields in the rock mass. Results of the analysis will allow for design of an optimal mining system. The analysis is illustrated by an example of the shaft R-VIII Rudna Mine KGHM Polish Copper SA.

  14. Environmental management as a pillar for sustainable development.

    Science.gov (United States)

    Mikulčić, Hrvoje; Duić, Neven; Dewil, Raf

    2017-12-01

    There is a growing concern about how to minimize the impact of human activities on the environment. Already nowadays, in some places adaptation efforts are needed in order to avoid the irreversibility of negative human activities. Due to climate changes, and corresponding environmental and social changes, there is a great need for a more sustainable development of mankind. Over the years, research studies that analyzed the sustainable development of different communities with a multi-disciplinary approach, stressed the necessity of preserving the environment for next generations. Therefore, responsible and conscientious management of the environment is a pillar of the sustainable development concept. This review introduction article provides an overview of the recent top scientific publications related to sustainable development that mostly originated from previous SDEWES conferences. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Three Pillars for the Neural Control of Appetite.

    Science.gov (United States)

    Sternson, Scott M; Eiselt, Anne-Kathrin

    2017-02-10

    The neural control of appetite is important for understanding motivated behavior as well as the present rising prevalence of obesity. Over the past several years, new tools for cell type-specific neuron activity monitoring and perturbation have enabled increasingly detailed analyses of the mechanisms underlying appetite-control systems. Three major neural circuits strongly and acutely influence appetite but with notably different characteristics. Although these circuits interact, they have distinct properties and thus appear to contribute to separate but interlinked processes influencing appetite, thereby forming three pillars of appetite control. Here, we summarize some of the key characteristics of appetite circuits that are emerging from recent work and synthesize the findings into a provisional framework that can guide future studies.

  16. Integrated pillar scatterers for speeding up classification of cell holograms.

    Science.gov (United States)

    Lugnan, Alessio; Dambre, Joni; Bienstman, Peter

    2017-11-27

    The computational power required to classify cell holograms is a major limit to the throughput of label-free cell sorting based on digital holographic microscopy. In this work, a simple integrated photonic stage comprising a collection of silica pillar scatterers is proposed as an effective nonlinear mixing interface between the light scattered by a cell and an image sensor. The light processing provided by the photonic stage allows for the use of a simple linear classifier implemented in the electric domain and applied on a limited number of pixels. A proof-of-concept of the presented machine learning technique, which is based on the extreme learning machine (ELM) paradigm, is provided by the classification results on samples generated by 2D FDTD simulations of cells in a microfluidic channel.

  17. Cu Pillar Low Temperature Bonding and Interconnection Technology of for 3D RF Microsystem

    Science.gov (United States)

    Shi, G. X.; Qian, K. Q.; Huang, M.; Yu, Y. W.; Zhu, J.

    2018-03-01

    In this paper 3D interconnects technologies used Cu pillars are discussed with respect to RF microsystem. While 2.5D Si interposer and 3D packaging seem to rely to cu pillars for the coming years, RF microsystem used the heterogeneous chip such as GaAs integration with Si interposers should be at low temperature. The pillars were constituted by Cu (2 micron) -Ni (2 micron) -Cu (3 micron) -Sn (1 micron) multilayer metal and total height is 8 micron on the front-side of the wafer by using electroplating. The wafer backside Cu pillar is obtained by temporary bonding, thinning and silicon surface etching. The RF interposers are stacked by Cu-Sn eutectic bonding at 260 °C. Analyzed the reliability of different pillar bonding structure.

  18. Ensuring Support for Research and Quality Improvement (QI) Networks: Four Pillars of Sustainability-An Emerging Framework.

    Science.gov (United States)

    Holve, Erin

    2013-01-01

    Multi-institutional research and quality improvement (QI) projects using electronic clinical data (ECD) hold great promise for improving quality of care and patient outcomes but typically require significant infrastructure investments both to initiate and maintain the project over its duration. Consequently, it is important for these projects to think holistically about sustainability to ensure their long-term success. Four "pillars" of sustainability are discussed based on the experiences of EDM Forum grantees and other research and QI networks. These include trust and value, governance, management, and financial and administrative support. Two "foundational considerations," adaptive capacity and policy levers, are also discussed.

  19. Stability assessment of the stopes and crown pillar of the S’Argentera abandoned mines (Ibiza, Spain) using geomechanical classifications, an empirical approach and numerical analysis focused on a possible tourist exploitation; Evaluación de la estabilidad de las labores y pilar corona en las minas abandonadas de S’Argentera (Ibiza, España) combinando clasificaciones geomecánicas, métodos empíricos y análisis numérico - enfocado a su posible aprovechamiento turístico.

    Energy Technology Data Exchange (ETDEWEB)

    Jordá-Bordehore, L.; Jordá-Bordehore, R.; Durán Valsero, J.J.; Romero-Crespo, P.L.

    2017-09-01

    The argentiferous lead mines of S’Argentera in Ibiza (Balearic Islands, Spain) are some abandoned underground workings from the first decade of the 20th century. The stability of the main stopes and the crown pillar of the mines has been evaluated - part of which is located below the road between Santa Eulalia and San Carles de Peralta. The possibility of allowing public access to the surface of the mining area and setting up a project of a “show mine” on the underground stopes and galleries is analysed. The stability is assessed with an empirical approach using the O index, the scaled span method and a stability graph together with a numerical approach. Results show that the stopes of the mines are globally stable but some lack an adequate safety factor. Therefore some local reinforcements and monitoring are needed. The finite element modelling in two dimensions yields realistic results on the current stope stability and possible rock falls which have already occurred. [Spanish] Las minas de S’Argentera en Ibiza (Islas Baleares, España) son unas labores subterráneas de plomo argentífero abandonadas desde la primera década del siglo XX. Se ha analizado la estabilidad geotécnica de las cámaras y del pilar corona de las minas (sobre parte del cual pasa la carretera entre Santa Eulalia y San Carles de Peralta), dado que se está contemplando en un futuro permitir el acceso a la parte superior del conjunto de minas e iniciar un proyecto de rehabilitación turística de las labores subterráneas. Se ha evaluado la estabilidad combinando un enfoque empírico mediante el índice Q, método gráfico de estabilidad y ancho escalado, y métodos numéricos de elementos finitos para análisis tensodeformacional. El resultado del análisis muestra que las cámaras de las minas son estables pero algunas no poseen un adecuado factor de seguridad. Por lo tanto son necesarios algunos refuerzos y monitoreo puntuales. La modelización tensodeformacional en dos

  20. Influence of Previous Crop on Durum Wheat Yield and Yield Stability in a Long-term Experiment

    Directory of Open Access Journals (Sweden)

    Anna Maria Stellacci

    2011-02-01

    Full Text Available Long-term experiments are leading indicators of sustainability and serve as an early warning system to detect problems that may compromise future productivity. So the stability of yield is an important parameter to be considered when judging the value of a cropping system relative to others. In a long-term rotation experiment set up in 1972 the influence of different crop sequences on the yields and on yield stability of durum wheat (Triticum durum Desf. was studied. The complete field experiment is a split-split plot in a randomized complete block design with two replications; the whole experiment considers three crop sequences: 1 three-year crop rotation: sugar-beet, wheat + catch crop, wheat; 2 one-year crop rotation: wheat + catch crop; 3 wheat continuous crop; the split treatments are two different crop residue managements; the split-split plot treatments are 18 different fertilization formulas. Each phase of every crop rotation occurred every year. In this paper only one crop residue management and only one fertilization treatment have been analized. Wheat crops in different rotations are coded as follows: F1: wheat after sugar-beet in three-year crop rotation; F2: wheat after wheat in three-year crop rotation; Fc+i: wheat in wheat + catch crop rotation; Fc: continuous wheat. The following two variables were analysed: grain yield and hectolitre weight. Repeated measures analyses of variance and stability analyses have been perfomed for the two variables. The stability analysis was conducted using: three variance methods, namely the coefficient of variability of Francis and Kannenberg, the ecovalence index of Wricke and the stability variance index of Shukla; the regression method of Eberhart and Russell; a method, proposed by Piepho, that computes the probability of one system outperforming another system. It has turned out that each of the stability methods used has enriched of information the simple variance analysis. The Piepho

  1. Applications of a computer model to the analysis of rock-backfill interaction in pillar recovery operations

    Energy Technology Data Exchange (ETDEWEB)

    Sinclair, T. J.E. [Dames and Moore, London, England, United Kingdom; Shillabeer, J. H. [Dames and Moore, Toronto (Canada); Herget, G. [CANMET, Ottawa (Canada)

    1980-05-15

    This paper describes the application of a computer model to the analysis of backfill stability in pillar recovery operations with particular reference to two case studies. An explicit finite difference computer program was developed for the purpose of modelling the three-dimensional interaction of rock and backfill in underground excavations. Of particular interest was the mechanics of stress transfer from the rock mass to the pillars and then the backfill. The need, therefore, for a model to allow for the three-dimensional effects and the sequence of operations is evident. The paper gives a brief description of the computer program, descriptions of the mines, the sequences of operations and how they were modelled, and the results of the analyses in graphical form. For both case studies, failure of the backfill was predicted at certain stages. Subsequent reports from the mines indicate that such failures did not occur at the relevant stage. The paper discusses the validity of the model and concludes that the approach accurately represents the principles of rock mechanics in cut-and-fill mining and that further research should be directed towards determining the input parameters to an equal degree of sophistication.

  2. Mechanism of the Topotactic Formation of gamma-Zirconium Phosphate Covalently Pillared with Diphosphonate Groups.

    Science.gov (United States)

    Alberti, G.; Giontella, E.; Murcia-Mascarós, S.; Vivani, R.

    1998-09-07

    The topotactic reaction of gamma-ZrPO(4)[O(2)P(OH)(2)].2H(2)O (gamma-ZrP) with benzenediphosphonic acid was examined in water and in acetone-water mixtures. This reaction was found to take place in water only on the external surface of the microcrystals, and pillared compounds were never obtained, even after very long reaction times. On the contrary, covalently pillared compounds were quickly obtained in acetone-water mixtures. The mechanism of the latter topotactic reaction was investigated by determining the rate of the phosphate groups released and the rate of the benzenediphosphonates taken up by gamma-ZrP over a long time (50 days). These data showed that pillared derivatives of gamma-ZrP can be obtained because colloidal dispersions of exfoliated lamellae are formed in acetone-water mixtures. The diphosphonate group acts initially as a monovalent species, replacing only one dihydrogen phosphate group on the surface of the exfoliated gamma-lamellae. The colloidal and partially derivatized lamellae thus formed can interact with each other by forming polylamellar pillared systems. When the number of pillared lamellae exceeds a given value (usually 5-6), flocculation of the colloidal gamma-ZrP takes place. Topotactic reactions between packets of pillared lamellae may also continue in the flocculated system. Therefore, the average number of the pillared lamellae slowly increases over time.

  3. Low-temperature pyrolysis of oily sludge: roles of Fe/Al-pillared bentonites

    Directory of Open Access Journals (Sweden)

    Jia Hanzhong

    2017-09-01

    Full Text Available Pyrolysis is potentially an effective treatment of oily sludge for oil recovery, and the addition of a catalyst is expected to affect its pyrolysis behavior. In the present study, Fe/Al-pillared bentonite with various Fe/Al ratios as pyrolysis catalyst is prepared and characterized by XRD, N2 adsorption, and NH3-TPD. The integration of Al and Fe in the bentonite interlayers to form pillared clay is evidenced by increase in the basal spacing. As a result, a critical ratio of Fe/Al exists in the Fe/Al-pillared bentonite catalytic pyrolysis for oil recovery from the sludge. The oil yield increases with respect to increase in Fe/Al ratio of catalysts, then decreases with further increasing of Fe/Al ratio. The optimum oil yield using 2.0 wt% of Fe/Al 0.5-pillared bentonite as catalyst attains to 52.46% compared to 29.23% without catalyst addition in the present study. In addition, the addition of Fe/Al-pillared bentonite catalyst also improves the quality of pyrolysis-produced oil and promotes the formation of CH4. Fe/Al-pillared bentonite provides acid center in the inner surface, which is beneficial to the cracking reaction of oil molecules in pyrolysis process. The present work implies that Fe/Al-pillared bentonite as addictive holds great potential in industrial pyrolysis of oily sludge.

  4. Preparation of Al/Fe-Pillared Clays: Effect of the Starting Mineral.

    Science.gov (United States)

    Muñoz, Helir-Joseph; Blanco, Carolina; Gil, Antonio; Vicente, Miguel-Ángel; Galeano, Luis-Alejandro

    2017-11-28

    Four natural clays were modified with mixed polyoxocations of Al/Fe for evaluating the effect of the physicochemical properties of the starting materials (chemical composition, abundance of expandable clay phases, cationic exchange capacity and textural properties) on final physicochemical and catalytic properties of Al/Fe-PILCs. The aluminosilicate denoted C2 exhibited the highest potential as starting material in the preparation of Al/Fe-PILC catalysts, mainly due to its starting cationic exchange capacity (192 meq/100 g) and the dioctahedral nature of the smectite phase. These characteristics favored the intercalation of the mixed (Al 13- x /Fe x ) 7+ Keggin-type polyoxocations, stabilizing a basal spacing of 17.4 Å and high increase of the BET surface (194 m²/g), mainly represented in microporous content. According to H₂-TPR analyses, catalytic performance of the incorporated Fe in the Catalytic Wet Peroxide Oxidation (CWPO) reaction strongly depends on the level of location in mixed Al/Fe pillars. Altogether, such physicochemical characteristics promoted high performance in CWPO catalytic degradation of methyl orange in aqueous medium at very mild reaction temperatures (25.0 ± 1.0 °C) and pressure (76 kPa), achieving TOC removal of 52% and 70% of azo-dye decolourization in only 75 min of reaction under very low concentration of clay catalyst (0.05 g/L).

  5. The Los Alamos Science Pillars The Science of Signatures

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Joshua E. [Los Alamos National Laboratory; Peterson, Eugene J. [Los Alamos National Laboratory

    2012-09-13

    As a national security science laboratory, Los Alamos is often asked to detect and measure the characteristics of complex systems and to use the resulting information to quantify the system's behavior. The Science of Signatures (SoS) pillar is the broad suite of technical expertise and capability that we use to accomplish this task. With it, we discover new signatures, develop new methods for detecting or measuring signatures, and deploy new detection technologies. The breadth of work at Los Alamos National Laboratory (LANL) in SoS is impressive and spans from the initial understanding of nuclear weapon performance during the Manhattan Project, to unraveling the human genome, to deploying laser spectroscopy instrumentation on Mars. Clearly, SoS is a primary science area for the Laboratory and we foresee that as it matures, new regimes of signatures will be discovered and new ways of extracting information from existing data streams will be developed. These advances will in turn drive the development of sensing instrumentation and sensor deployment. The Science of Signatures is one of three science pillars championed by the Laboratory and vital to supporting our status as a leading national security science laboratory. As with the other two pillars, Materials for the Future and Information Science and Technology for Predictive Science (IS&T), SoS relies on the integration of technical disciplines and the multidisciplinary science and engineering that is our hallmark to tackle the most difficult national security challenges. Over nine months in 2011 and 2012, a team of science leaders from across the Laboratory has worked to develop a SoS strategy that positions us for the future. The crafting of this strategy has been championed by the Chemistry, Life, and Earth Sciences Directorate, but as you will see from this document, SoS is truly an Institution-wide effort and it has engagement from every organization at the Laboratory. This process tapped the insight and

  6. Optimization of pillar electrodes in subretinal prosthesis for enhanced proximity to target neurons

    Science.gov (United States)

    Flores, Thomas; Lei, Xin; Huang, Tiffany; Lorach, Henri; Dalal, Roopa; Galambos, Ludwig; Kamins, Theodore; Mathieson, Keith; Palanker, Daniel

    2018-06-01

    Objective. High-resolution prosthetic vision requires dense stimulating arrays with small electrodes. However, such miniaturization reduces electrode capacitance and penetration of electric field into tissue. We evaluate potential solutions to these problems with subretinal implants based on utilization of pillar electrodes. Approach. To study integration of three-dimensional (3D) implants with retinal tissue, we fabricated arrays with varying pillar diameter, pitch, and height, and implanted beneath the degenerate retina in rats (Royal College of Surgeons, RCS). Tissue integration was evaluated six weeks post-op using histology and whole-mount confocal fluorescence imaging. The electric field generated by various electrode configurations was calculated in COMSOL, and stimulation thresholds assessed using a model of network-mediated retinal response. Main results. Retinal tissue migrated into the space between pillars with no visible gliosis in 90% of implanted arrays. Pillars with 10 μm height reached the middle of the inner nuclear layer (INL), while 22 μm pillars reached the upper portion of the INL. Electroplated pillars with dome-shaped caps increase the active electrode surface area. Selective deposition of sputtered iridium oxide onto the cap ensures localization of the current injection to the pillar top, obviating the need to insulate the pillar sidewall. According to computational model, pillars having a cathodic return electrode above the INL and active anodic ring electrode at the surface of the implant would enable six times lower stimulation threshold, compared to planar arrays with circumferential return, but suffer from greater cross-talk between the neighboring pixels. Significance. 3D electrodes in subretinal prostheses help reduce electrode-tissue separation and decrease stimulation thresholds to enable smaller pixels, and thereby improve visual acuity of prosthetic vision.

  7. Acid–base properties of pillared interlayered clays with single and mixed Zr–Al oxide pillars prepared from Tunisian-interstratified illite–smectite

    Directory of Open Access Journals (Sweden)

    Saida Mnasri

    2017-12-01

    Full Text Available Interstratified illite–smectite clay samples from Tunisia have been used in order to prepare Al, Zr and Zr–Al-pillared clays. Several Al/metal, OH/metal ratios were used in order to investigate the effect on the chemical and physical properties, specifically the point of zero charge (PZC of the synthesized pillared clays. The structure of the pillared materials is studied by XRD and cationic exchange capacity. The textural property is investigated by the nitrogen adsorption/desorption method. The acid–base chemistry “surface acidity” of these products was analysed by using mass and potentiometric titration in order to determine the PZC and the equilibrium constants (pKa of each sample. The resulting materials exhibited basal spacings in the range of 17.4–20.5 Å, with high surface areas (134–199 m2 g−1. Titration curves obtained by acid–base potentiometric titration for the starting material showed an indistinct cross-over point at about pH = 7.3, whereas in the case of pillared samples, points were observed at the acidic region between 4 and 6. In addition, the calculated pKas values of pillared clays show a shifting to the acidic values compared to the untreated sample.

  8. Xenon-129 NMR study of the microporous structure of clays and pillared clays

    International Nuclear Information System (INIS)

    Tsiao, C.; Carrado, K.A.

    1990-01-01

    129 Xe NMR studies have been carried out using xenon gas adsorbed in clays and pillared clays. Data from the measurements provide information on the pore structure of clays before and after pillaring. The results indicate that the effective pore diameter of montmorillonite increases, for example, from 5.4 Angstrom to 8.0 Angstrom after pillaring cheto-montmorillonite with aluminum polyoxohydroxy Keggin cations. The data are consistent with X-ray powder diffraction results, which show a corresponding increase in the interlamellar gallery height from 5.6 Angstrom to 8.4 Angstrom

  9. InGaN micro-LED-pillar as the building block for high brightness emitters

    KAUST Repository

    Shen, Chao; Cha, Dong Kyu; Ng, Tien Khee; Ooi, Boon S.; Yang, Yang

    2013-01-01

    In summary, we confirmed the improved electrical and optical characteristics, with reduced efficiency droop in InGaN μLED-pillars when these devices were scaled down in size. We demonstrated that strain relief contributed to further improvement in EQE characteristics in small InGaN μLED-pillars (D < 50 μm), apart from the current spreading effect. The μLED-pillar can be deployed as the building block for large effective-area, high brightness emitter. © 2013 IEEE.

  10. C5-Alkynyl-Functionalized ?-L-LNA: Synthesis, Thermal Denaturation Experiments and Enzymatic Stability

    OpenAIRE

    Kumar, Pawan; Baral, Bharat; Anderson, Brooke A.; Guenther, Dale C.; ?stergaard, Michael E.; Sharma, Pawan K.; Hrdlicka, Patrick J.

    2014-01-01

    Major efforts are currently being devoted to improving the binding affinity, target specificity, and enzymatic stability of oligonucleotides used for nucleic acid targeting applications in molecular biology, biotechnology, and medicinal chemistry. One of the most popular strategies toward this end has been to introduce additional modifications to the sugar ring of affinity-inducing conformationally restricted nucleotide building blocks such as locked nucleic acid (LNA). In the preceding artic...

  11. Proceedings of the workshop nuclear structure of light nuclei far from stability experiment and theory

    International Nuclear Information System (INIS)

    Klotz, G.

    1991-01-01

    The volume discuss nuclear structure of light and nuclei far from stability. The discussions took place in five sessions. In session 1 β decay, in session 2 nuclei near N=20, in session 3 radioactive ion beams' study with help of electromagnetic separators, in session 4 beta decay of light nuclei, in session 5 further papers were discussed in shell models, binding energy and chart of nuclides. (G.P.)

  12. Rayleigh-Taylor-instability evolution in colliding-plasma-jet experiments with magnetic and viscous stabilization

    Energy Technology Data Exchange (ETDEWEB)

    Adams, Colin Stuart [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Univ. of New Mexico, Albuquerque, NM (United States); Univ. of Washington, Seattle, WA (United States)

    2015-01-15

    The Rayleigh-Taylor instability causes mixing in plasmas throughout the universe, from micron-scale plasmas in inertial confinement fusion implosions to parsec-scale supernova remnants. The evolution of this interchange instability in a plasma is influenced by the presence of viscosity and magnetic fields, both of which have the potential to stabilize short-wavelength modes. Very few experimental observations of Rayleigh-Taylor growth in plasmas with stabilizing mechanisms are reported in the literature, and those that are reported are in sub-millimeter scale plasmas that are difficult to diagnose. Experimental observations in well-characterized plasmas are important for validation of computational models used to make design predictions for inertial confinement fusion efforts. This dissertation presents observations of instability growth during the interaction between a high Mach-number, initially un-magnetized plasma jet and a stagnated, magnetized plasma. A multi-frame fast camera captures Rayleigh-Taylor-instability growth while interferometry, spectroscopy, photodiode, and magnetic probe diagnostics are employed to estimate plasma parameters in the vicinity of the collision. As the instability grows, an evolution to longer mode wavelength is observed. Comparisons of experimental data with idealized magnetohydrodynamic simulations including a physical viscosity model suggest that the observed instability evolution is consistent with both magnetic and viscous stabilization. These data provide the opportunity to benchmark computational models used in astrophysics and fusion research.

  13. Maintenance of stability in γ spectrometric system of low active and environmental samples - a practical experience

    International Nuclear Information System (INIS)

    Ravishankar, R.; Bandyopadhyay, T.; Sarkar, P.K.

    2011-01-01

    Particle Accelerators are becoming part of the society with more and more medical and Industrial types are added every year in addition to research type of accelerators. The outflow of materials to the public domain from such accelerator facilities need to checked carefully and must be released after ensuring the activities of such materials should not exceed the regulatory limits. Health Physics Unit, VECC is involved in analyzing food product samples, seized samples which are suspected to contain Uranium etc and other environmental samples in addition to analyzing radioactive materials evolved from Operational Health Physics work. Most of these analyses involve γ Spectrometric Systems of high efficiency and high resolution types. The efficacy of the analysis and results depends on various parameters of the spectrometric system. The electrical noise from the power supply system and other noises picked up, even in the range of a few milli volts range, have been found to affect the stability of the system. These effects may not be present initially during installation but may creep in due course due to various reasons including weather conditions, wear and tear etc. Unless these problems are attended in regular intervals, the stability of the spectrometric systems and hence the results of analysis of the low active and environmental samples, will not be satisfactory. The work describes the practical problems faced by Health Physics Unit, the methods employed in identifying the problems, the necessary remedial measures taken, the final outcome in the stability and the procedures framed in order to avoid in future. (author)

  14. A pillar-layered metal-organic framework as luminescent sensor for selective and reversible response of chloroform

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Kun; Li, Shuni; Jiang, Yucheng; Hu, Mancheng; Zhai, Quan-Guo, E-mail: zhaiqg@snnu.edu.cn

    2017-03-15

    A new 3D metal-organic framework, namely, (Zn{sub 4}(H{sub 2}BPTC){sub 2}(HCOO){sub 4}){sub n} (SNNU-1, H{sub 4}BPTC=biphenyl-3,3',5,5'-tetracarboxylic acid, SNNU=Shaanxi Normal University) has been solvothermal synthesized. Four independent tetrahedral Zn atoms are connected by organic ligands to form a 2D Zn-H{sub 2}BPTC layer, which is further bridged by in-situ generated HCOO{sup -} to give the 3D pillar-layered framework of SNNU-1. Unique Zn and H{sub 2}BPTC all act as 4-connected nodes leading to a new 4,4,4-connected topological net with point symbol of (4·5·6{sup 2}·8{sup 2})(4·5{sup 2}·6{sup 2}·8)(5{sup 2}·6{sup 3}·7). Notably, intense blue emission band is observed for SNNU-1, which exhibits solvent-dependent effect. Compared to other common organic solvents, chloroform can specially improve the photoluminescent intensity of SNNU-1. Further repeated response and release experiments clearly showed that SNNU-1 can act as luminescent sensor for selective and reversible detection of chloroform. - Graphical abstract: Zn{sup 2+} ions are bridged by aromatic tetracarboxylate ligands and inorganic formate anions to give a microporous pillar layered open-framework, which exhibits not only strong photoluminescence but also selective and reversible luminescent sensing for chloroform. - Highlights: • Novel Zn-tetracarboxylate-formate microporous pillar layered open-framework. • New 4,4,4-connected topology and rod-packing net. • Solvent-dependent photoluminescent intensity. • Selective and reversible response for chloroform.

  15. New pillars of evolutionary theory in the light of genomics

    International Nuclear Information System (INIS)

    Lopez Carrascal, Camilo Ernesto

    2011-01-01

    The evolutionist theory proposed by Darwin is one of the fundamental pillars in biology. Darwin's theory was solidified with the modern synthesis of evolutionary biology thanks to the rediscovery of Mendel's work, which laid the genetic basis of heredity. In recent years, great progress has been acquired in the sequencing and analyses of complete genomes, which have provided several elements to discuss some Darwinists tenets of evolution. The evidence of gene duplication and whole-genome duplication, the horizontal gene transfer and the endosymbiosis process question the idea that evolution proceeds through the gradual accumulation of infinitesimally small random changes. The new evidence of neutral selection on the genomics context reveals other mechanisms of evolution not necessarily related with the idea of progress or with an adaptationist program as was originally stated by the Darwin's theory. in this paper, I present these and other concepts such as gene regulation, molecular mechanisms of development and some environmental aspects (epigenesis and phenotypic plasticity) as starting points to think in the necessity to update the evolutionary theory which in my opinion should be more inclusive, pluralistic and consistent with our current knowledge.

  16. A Laboratory Experiment for Rapid Determination of the Stability of Vitamin C

    Science.gov (United States)

    Adem, Seid M.; Lueng, Sam H.; Elles, Lisa M. Sharpe; Shaver, Lee Alan

    2016-01-01

    Experiments in laboratory manuals intended for general, organic, and biological (GOB) chemistry laboratories include few opportunities for students to engage in instrumental methods of analysis. Many of these students seek careers in modern health-related fields where experience in spectroscopic techniques would be beneficial. A simple, rapid,…

  17. Inflation expectations and stability in an overlapping generations experiment with money creation

    NARCIS (Netherlands)

    Heemeijer, P.; Hommes, C.; Sonnemans, J.; Tuinstra, J.

    2009-01-01

    We investigate how non-specialists form inflation expectations by running an experiment using a basic Overlapping Generations (OLG) model. The participants of the experiment are students of the University of Amsterdam, who predict inflation during 50 successive periods and are rewarded based on

  18. Pilarização de esmectita brasileira para fins catalíticos. Emprego de argila pilarizada na alquilação de benzeno com 1-dodeceno Pillarization of Brazilian smectite for the catalytic of purpose. Use of pillared clay in the alkylation of benzene with 1-dodecene

    Directory of Open Access Journals (Sweden)

    Sidnei Quezada M. Leite

    2000-04-01

    Full Text Available Al-pillared clay was prepared with a Brazilian bentonite from the Campina Grande region (Paraíba, BRAZIL. It was intercalated at 298 K, during 48 hours, with a solution containing [Al3+] = 0.10 mol/L and molar ratio OH/Al = 2.0 prepared at 333 K, and was calcined at 773K. The catalytic activity was evaluated by alkylation of benzene with 1-dodecene. The characterization methods were: X-ray fluorescence and diffraction analysis; 27Al, 29Si and 23Na MAS NMR and textural analysis by N2 adsorption. The thermal stability of the natural clay was improved by the pillaring procedure, as well as the catalytic activity. The intercalated clay presented the highest initial rate of reaction among the systems tested.

  19. Segregated copper ratio experiment on transient stability (SeCRETS). Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Bruzzone, P. [ed.] [Ecole Polytechnique Federale de Lausanne, Centre de Recherches en Physique des Plasmas (CRPP), CH-1015 Lausanne (Switzerland)

    2001-01-01

    Two Nb{sub 3}Sn, steel jacketed, cable-in-conduit conductors have been manufactured with identical non-Cu cross sections and the stabilizer either included in the Nb{sub 3}Sn composite or partly segregated as copper wires. The two conductors are series connected and wound as a bifilar , single layer solenoid, assembled in the high field bore (11 T) of the SULTAN test facility. The operating current is up to 12 kA (400 A/mm{sup 2}). A transverse pulsed field is applied with {delta}B up to 2.7 T, field rate up to 180 T/s and field integral up to 530 T{sup 2}/s. In the dc test, a good agreement is found between the I{sub c} and the T{sub cs} results, both correctly scaling according to the parameters derived from the strand tests. The n-value from the V-I curve is in the range of 15. The current sharing at the high field section is correlated with a local current re-distribution, observed by arrays of miniature Hall sensors, detecting the self-field around the conductor. The ac losses results in the range of 2 to 9 Hz by gas flow calorimetry indicate coupling currents constant, n{tau}, in the range of 1.5 ms at high field, increasing by a factor of 2 with 12 kA transport current. Loss extrapolation to 0 frequency suggests that the loss curve may be not linear outside the test range, with higher n{tau} at lower field rate. The calorimetric loss estimation at the fast field transient (f=15 Hz) indicates n{tau} {approx_equal} 2 ms. The ITER plasma disruption transients have been reproduced by the pulsed coils. Due to the very low ac losses, no quench could be generated in either conductor even reducing the temperature margin below 0.2-0.3 K. Very large field transients, with integral above 100 T{sup 2}/s, are required to quench the conductors. In that range, the conductor without segregated copper has superior performance. Due to the large interstrand resistance (very low ac losses), the segregated copper has marginal contribution to the stability. No evidence of current

  20. Role of clinician's experience and implant design on implant stability. An ex vivo study in artificial soft bones.

    Science.gov (United States)

    Romanos, Georgios E; Basha-Hijazi, Abdulaziz; Gupta, Bhumija; Ren, Yan-Fang; Malmstrom, Hans

    2014-04-01

    Clinical experience in implant placement is important in order to prevent implant failures. However, the implant design affects the primary implant stability (PS) especially in poor quality bones. Therefore, the aim of this study was to compare the effect of clinician surgical experience on PS, when placing different type of implant designs. A total of 180 implants (90 parallel walled-P and 90 tapered-T) were placed in freshly slaughtered cow ribs. Bone quality was evaluated by two examiners during surgery and considered as 'type IV' bone. Implants (ø 5 mm, length: 15 mm, Osseotite, BIOMET 3i, Palm Beach Gardens, FL, USA) were placed by three different clinicians (master/I, good/II, non-experienced/III, under direct supervision of a manufacturer representative; 30 implants/group). An independent observer assessed the accuracy of placement by resonance frequency analysis (RFA) with implant stability quotient (ISQ) values. Two-way analysis of variance (ANOVA) and Tukey's post hoc test were used to detect the surgical experience of the clinicians and their interaction and effects of implant design on the PS. All implants were mechanically stable. The mean ISQ values were: 49.57(± 18.49) for the P-implants and 67.07(± 8.79) for the T-implants. The two-way ANOVA showed significant effects of implant design (p bone. © 2012 Wiley Periodicals, Inc.

  1. Surface tension-induced PDMS micro-pillars with controllable tips and tilt angles

    KAUST Repository

    Li, Huawei; Fan, Yiqiang; Conchouso Gonzalez, David; Foulds, Ian G.

    2013-01-01

    This paper reports a novel method to fabricate three-dimensional (3D) polydimethylsiloxane (PDMS) micro-pillars using a CO2 laser-machined poly(methyl methacrylate) (PMMA) mold with through-holes. This method eliminates the requirements of expensive and complicated facilities to fabricate a 3D mold. The micro-pillars were formed by the capillary force that draws PDMS into the through-holes of the PMMA mold. The tilt angles of the micro-pillars depend on the tilt angles of the through-holes in the mold, and the concave and convex micro-lens tip shapes of the PDMS micro-pillars can be modified by changing the surface wettability of the PMMA through-holes.

  2. Design and construction of porous metal-organic frameworks based on flexible BPH pillars

    Science.gov (United States)

    Hao, Xiang-Rong; Yang, Guang-sheng; Shao, Kui-Zhan; Su, Zhong-Min; Yuan, Gang; Wang, Xin-Long

    2013-02-01

    Three metal-organic frameworks (MOFs), [Co2(BPDC)2(4-BPH)·3DMF]n (1), [Cd2(BPDC)2(4-BPH)2·2DMF]n (2) and [Ni2(BDC)2(3-BPH)2 (H2O)·4DMF]n (3) (H2BPDC=biphenyl-4,4'-dicarboxylic acid, H2BDC=terephthalic acid, BPH=bis(pyridinylethylidene)hydrazine and DMF=N,N'-dimethylformamide), have been solvothermally synthesized based on the insertion of heterogeneous BPH pillars. Framework 1 has "single-pillared" MOF-5-like motif with inner cage diameters of up to 18.6 Å. Framework 2 has "double pillared" MOF-5-like motif with cage diameters of 19.2 Å while 3 has "double pillared" 8-connected framework with channel diameters of 11.0 Å. Powder X-ray diffraction (PXRD) shows that 3 is a dynamic porous framework.

  3. Effect of orientation and loading rate on compression behavior of small-scale Mo pillars

    International Nuclear Information System (INIS)

    Schneider, A.S.; Clark, B.G.; Frick, C.P.; Gruber, P.A.; Arzt, E.

    2009-01-01

    Recently, much work has focused on the size effect in face centered cubic (fcc) structures, however few pillar studies have focused on body centered cubic (bcc) metals. This paper explores the role of bcc crystal structure on the size effect, through compression testing of [001] and [235] Molybdenum (Mo) small-scale pillars manufactured by focused ion beam (FIB). The pillar diameters ranged from 200 nm to 5 μm. Results show that the relationship between yield stress and diameter exhibits an inverse relationship (σ y ∝ d -0.22 for [001] Mo and σ y ∝ d -0.34 for [235] Mo) weaker than that observed for face centered cubic (fcc) metals (σ y ∝ d -0.6to-1.0 ). Additional tests at various loading rates revealed that small-scale Mo pillars exhibit a strain rate sensitivity similar to bulk Mo.

  4. Surface tension-induced PDMS micro-pillars with controllable tips and tilt angles

    KAUST Repository

    Li, Huawei

    2013-12-21

    This paper reports a novel method to fabricate three-dimensional (3D) polydimethylsiloxane (PDMS) micro-pillars using a CO2 laser-machined poly(methyl methacrylate) (PMMA) mold with through-holes. This method eliminates the requirements of expensive and complicated facilities to fabricate a 3D mold. The micro-pillars were formed by the capillary force that draws PDMS into the through-holes of the PMMA mold. The tilt angles of the micro-pillars depend on the tilt angles of the through-holes in the mold, and the concave and convex micro-lens tip shapes of the PDMS micro-pillars can be modified by changing the surface wettability of the PMMA through-holes.

  5. A micro-pillar array to trap magnetic beads in microfluidic systems

    KAUST Repository

    Gooneratne, Chinthaka Pasan; Kosel, Jü rgen

    2012-01-01

    A micro-pillar array (MPA) is proposed in this paper to trap and separate magnetic beads (MBs) in microfluidic systems. MBs are used in many biomedical applications due to being compatible in dimension to biomolecules, the large surface area

  6. Criticality studies: One of the two pillars of criticality safety at the Belgonucleaire MOX plant

    International Nuclear Information System (INIS)

    Lance, B.; Maldague, T.; Evrard, G.; Renard, A.; Kockerols, P.

    2001-01-01

    The present paper focuses on the criticality studies performed by the Engineering Division of Belgonucleaire. These are one of the two pillars of the criticality prevention implemented for the Belgonucleaire MOX producing plant. (author)

  7. Non-lithographic method of forming ordered arrays of silicon pillars and macropores

    International Nuclear Information System (INIS)

    Mills, David; Kolasinski, Kurt W

    2005-01-01

    Micrometre-scale Si pillars are formed by chemically enhanced laser ablation using nanosecond excimer laser irradiation of a Si single crystal in the presence of SF 6 . We demonstrate the importance of precursor holes in determining the positioning of the pillars and show that we can control the initiation of precursor holes by ruling a grating into the Si substrate prior to irradiation. A rule defines an edge from which the laser light diffracts. Near-field amplification of the laser intensity enhances the formation of the precursor holes and aligns them parallel to the rule. The pillars can be thinned and eventually removed by wet chemical etching in aqueous KOH, resulting first in ordered arrays of extremely high aspect ratio pillars (e.g. tens of micrometres in length, with ∼ 10 nm tips) and then macropores. The shape of the macropore is determined by crystallography and the anisotropy of the wet etchant

  8. The Maryland Centrifugal Experiment (MCX): Centrifugal Confinement and Velocity Shear Stabilization of Plasmas in Shaped Open Magnetic Systems

    International Nuclear Information System (INIS)

    Hassam, Adil; Ellis, Richard F.

    2012-01-01

    The Maryland Centrifugal Experiment (MCX) Project has investigated the concepts of centrifugal plasma confinement and stabilization of instabilities by velocity shear. The basic requirement is supersonic plasma rotation about a shaped, open magnetic field. Overall, the MCX Project attained three primary goals that were set out at the start of the project. First, supersonic rotation at Mach number up to 2.5 was obtained. Second, turbulence from flute interchange modes was found considerably reduced from conventional. Third, plasma pressure was contained along the field, as evidenced by density drops of x10 from the center to the mirror throats.

  9. Impact of credit information on the banks stability: Global experience and lessons for Ukraine

    Directory of Open Access Journals (Sweden)

    Inna Bielova

    2016-05-01

    Full Text Available A quality of the credit portfolio is one of the most important factors of banking system reliability. It is obviously, that there is a direct relationship between this indicator and financial stability of the bank. In turn, the quality of the loan portfolio depends on many factors that are investigated in scientific and educational literature. In this paper, we propose to focus on a group of factors of credit risk that are connected with the availability of information about the borrower. The low efficiency of the national system of collecting information about borrowers in Ukraine in comparison with foreign models was confirmed by the quantitative analysis. This tendency cases the high level of credit risks and low financial stability level of domestic banks. It is necessary to make active efforts on improving the effectiveness of credit bureaus in Ukraine by establishing public credit registry and also to focus on solving other problems associated with the collection and use of information about borrowers

  10. Structure and stability of defective silicene on Ag(001) and Ag(111) substrates: A computer experiment

    Science.gov (United States)

    Galashev, A. E.; Ivanichkina, K. A.; Vorob'ev, A. S.; Rakhmanova, O. R.

    2017-06-01

    The structure and stability of a two-layer defective silicene on Ag(001) and Ag(111) substrates have been investigated using the molecular dynamics method. The transformation of the radial distribution function of silicene due to the formation of monovacancies, divacancies, trivacancies, and hexavacancies is reduced primarily to a decrease in the intensity of the peaks and the disappearance of the "shoulder" in the second peak. With the passage of time, multivacancies can undergo coalescence with each other and the fragmentation into smaller vacancies, as well as form vacancy clusters. According to the geometric criterion, the Ag(001) substrate provides a higher stability of a perfect two-layer silicene. It has been found, however, that the defective silicene on this substrate has a lower energy only when it contains monovacancies and divacancies. A change in the size of defects leads to a change in the energy priority when choosing between the Ag(001) and Ag(111) substrates. The motion of a lithium ion inside an extended channel between two silicene sheets results in a further disordering of the defective structure of the silicene, during which the strongest stresses in the silicene are generated by forces directed perpendicular to the external electric field. These forces dominate in the silicene channel, the wall of which is supported by the Ag(001) or Ag(111) substrate.

  11. Design and construction of porous metal-organic frameworks based on flexible BPH pillars

    Energy Technology Data Exchange (ETDEWEB)

    Hao, Xiang-Rong; Yang, Guang-sheng; Shao, Kui-Zhan [Institute of Functional Material Chemistry, Faculty of Chemistry, Northeast Normal University, Changchun 130024, Jilin (China); Su, Zhong-Min, E-mail: zmsu@nenu.edu.cn [Institute of Functional Material Chemistry, Faculty of Chemistry, Northeast Normal University, Changchun 130024, Jilin (China); Yuan, Gang; Wang, Xin-Long [Institute of Functional Material Chemistry, Faculty of Chemistry, Northeast Normal University, Changchun 130024, Jilin (China)

    2013-02-15

    Three metal-organic frameworks (MOFs), [Co{sub 2}(BPDC){sub 2}(4-BPH){center_dot}3DMF]{sub n} (1), [Cd{sub 2}(BPDC){sub 2}(4-BPH){sub 2}{center_dot}2DMF]{sub n} (2) and [Ni{sub 2}(BDC){sub 2}(3-BPH){sub 2} (H{sub 2}O){center_dot}4DMF]{sub n} (3) (H{sub 2}BPDC=biphenyl-4,4 Prime -dicarboxylic acid, H{sub 2}BDC=terephthalic acid, BPH=bis(pyridinylethylidene)hydrazine and DMF=N,N Prime -dimethylformamide), have been solvothermally synthesized based on the insertion of heterogeneous BPH pillars. Framework 1 has 'single-pillared' MOF-5-like motif with inner cage diameters of up to 18.6 A. Framework 2 has 'double pillared' MOF-5-like motif with cage diameters of 19.2 A while 3 has 'double pillared' 8-connected framework with channel diameters of 11.0 A. Powder X-ray diffraction (PXRD) shows that 3 is a dynamic porous framework. - Graphical abstract: By insertion of flexible BPH pillars based on 'pillaring' strategy, three metal-organic frameworks are obtained showing that the porous frameworks can be constructed in a much greater variety. Highlights: Black-Right-Pointing-Pointer Frameworks 1 and 2 have MOF-5 like motif. Black-Right-Pointing-Pointer The cube-like cages in 1 and 2 are quite large, comparable to the IRMOF-10. Black-Right-Pointing-Pointer Framework 1 is 'single-pillared' mode while 2 is 'double-pillared' mode. Black-Right-Pointing-Pointer PXRD and gas adsorption analysis show that 3 is a dynamic porous framework.

  12. Segregated copper ratio experiment on transient stability (SeCRETS). Final Report

    International Nuclear Information System (INIS)

    Bruzzone, P.

    2001-01-01

    Two Nb 3 Sn, steel jacketed, cable-in-conduit conductors have been manufactured with identical non-Cu cross sections and the stabilizer either included in the Nb 3 Sn composite or partly segregated as copper wires. The two conductors are series connected and wound as a bifilar , single layer solenoid, assembled in the high field bore (11 T) of the SULTAN test facility. The operating current is up to 12 kA (400 A/mm 2 ). A transverse pulsed field is applied with ΔB up to 2.7 T, field rate up to 180 T/s and field integral up to 530 T 2 /s. In the dc test, a good agreement is found between the I c and the T cs results, both correctly scaling according to the parameters derived from the strand tests. The n-value from the V-I curve is in the range of 15. The current sharing at the high field section is correlated with a local current re-distribution, observed by arrays of miniature Hall sensors, detecting the self-field around the conductor. The ac losses results in the range of 2 to 9 Hz by gas flow calorimetry indicate coupling currents constant, nτ, in the range of 1.5 ms at high field, increasing by a factor of 2 with 12 kA transport current. Loss extrapolation to 0 frequency suggests that the loss curve may be not linear outside the test range, with higher nτ at lower field rate. The calorimetric loss estimation at the fast field transient (f=15 Hz) indicates nτ ≅ 2 ms. The ITER plasma disruption transients have been reproduced by the pulsed coils. Due to the very low ac losses, no quench could be generated in either conductor even reducing the temperature margin below 0.2-0.3 K. Very large field transients, with integral above 100 T 2 /s, are required to quench the conductors. In that range, the conductor without segregated copper has superior performance. Due to the large interstrand resistance (very low ac losses), the segregated copper has marginal contribution to the stability. No evidence of current redistribution is observed during the field transients

  13. Leader Experience and the Identification of Challenges in a Stability and Support Operation

    National Research Council Canada - National Science Library

    Nobel, Orly B-Y; Zbylut, Michelle L; Fuchs, Daniella; Campbell, Kathleen; Brazil, Donna; Morrison, Eric

    2006-01-01

    This paper describes exploratory research that examined the impact of military leadership experience on how individuals frame a type of operating environment encountered by Soldiers deployed to the Middle East...

  14. Resurvey of site stability quadrilaterals, Otay Mountain and Quincy, California. [San Andreas fault experiment

    Science.gov (United States)

    Scholz, C. H.

    1977-01-01

    Trilateration quadrilaterals established across two faults near the San Andreas Fault Experiment laser/satellite ranging sites were resurveyed after four years. No evidence of significant tectonic motion was found.

  15. ELMs and constraints on the H-mode pedestal: peeling-ballooning stability calculation and comparison with experiment

    International Nuclear Information System (INIS)

    Snyder, P.B.; Ferron, J.R.; Wilson, H.R.

    2004-01-01

    We review and test the peeling-ballooning model for edge localized modes (ELMs) and pedestal constraints, a model based upon theoretical analysis of magnetohydrodynamic (MHD) instabilities that can limit the pedestal height and drive ELMs. A highly efficient MHD stability code, ELITE, is used to calculate quantitative stability constraints on the pedestal, including constraints on the pedestal height. Because of the impact of collisionality on the bootstrap current, these pedestal constraints are dependent on the density and temperature separately, rather than simply on the pressure. ELITE stability calculations are directly compared with experimental data for a series of plasmas in which the density is varied and ELM characteristics change. In addition, a technique is developed whereby peeling-ballooning pedestal constraints are calculated as a function of key equilibrium parameters via ELITE calculations using series of model equilibria. This technique is used to successfully compare the expected pedestal height as a function of density, triangularity and plasma current with experimental data. Furthermore, the technique can be applied for parameter ranges beyond the purview of present experiments, and we present a brief projection of peeling-ballooning pedestal constraints for burning plasma tokamak designs. (author)

  16. Rock mechanics of crown pillars between cut-and-fill stopes at the Mount Isa mine

    Energy Technology Data Exchange (ETDEWEB)

    Lee, M. F.; Bridges, M. C.

    1980-05-15

    At both levels, the leading stopes experienced bad ground conditions due to high stresses in the stope's backs when the crown pillars were about 35 m high. At 9 level, cut-and-fill mining stopped and most of the crown pillars were extracted by a slot-and-massfire method. At 11 level, cut-and-fill mining continued. Shear displacement along bedding planes began within and around the crown pillars of the leading stopes at 11 level, and spread through other crown pillars and to the hangingwall of the stoping system. Destressing and good ground conditions occurred where shear occurred, with further concentrations of stress in other areas. Crown pillars are being extracted to leave minimal 1:2 height to width diaphragms under the stopes above. Ground behavior of the 11 level crown pillars was investigated by observation, stress measurement, regional surveying of displacement and finite element models. An explanation of the ground behavior has evolved from this work. Bedding planes with an estimated angle of sliding friction of 10/sup 0/ were the main factor determining the behavior of this area.

  17. Beyond DSM-5 and IQ Scores: Integrating the Four Pillars to Forensic Evaluations.

    Science.gov (United States)

    Delgado, Sergio V; Barzman, Drew H

    2017-03-01

    The current adult and child forensic psychiatrist is well trained, familiar, and comfortable with the use of the semi-structured Diagnostic and Statistical Manual of Mental Disorders, 5th Edition, APA 2013 (DSM-5) [In APA, 2003] interview style. The author's assertion is not that this method is invalid or unreliable; rather, that it can be complemented by integrating elements of the defendant's four pillar assessment. Assessing the four pillars expands on the information provided by a semi-structured DSM-5-style interview in psychiatry. The four pillars are the foundation of a person's personality; temperament, cognition (learning abilities or weaknesses), cognitive flexibility (theory of mind) and internal working models of attachment, within the backdrop of the family and of the social and cultural environment in which they have lived. The importance of the study of four pillars is based on the understanding that human behavior and psychopathology as a complex and multifaceted process that includes the level of social-emotional maturity and cognitive abilities (In Delgado et al. Contemporary Psychodynamic Psychotherapy for Children and Adolescents: Integrating Intersubjectivity and Neuroscience. Springer, Berlin, 2015). The four pillars are not new concepts, rather they had been studied by separate non-clinical disciplines, and had not been integrated to the clinical practice. As far as we know, it wasn't until Delgado et al. (Contemporary Psychodynamic Psychotherapy for Children and Adolescents: Integrating Intersubjectivity and Neuroscience. Springer, Berlin, 2015) incorporated the four pillars in a user-friendly manner to clinical practice.

  18. Asymmetric liquid wetting and spreading on surfaces with slanted micro-pillar arrays

    KAUST Repository

    Yang, Xiaoming

    2013-01-01

    Uni-directional liquid spreading on asymmetric silicone-fabricated nanostructured surfaces has recently been reported. In this work, uniformly deflected polydimethylsiloxane (PDMS) micro-pillars covered with silver films were fabricated. Asymmetric liquid wetting and spreading behaviors in a preferential direction were observed on the slanted micro-pillar surfaces and a micro-scale thin liquid film advancing ahead of the bulk liquid droplet was clearly observed by high-speed video imaging. It is found that the slanted micro-pillar array is able to promote or inhibit the propagation of this thin liquid film in different directions by the asymmetric capillary force. The spreading behavior of the bulk liquid was guided and finally controlled by this micro-scale liquid film. Different spreading regimes are defined by the relationship between the liquid intrinsic contact angle and the critical angles, which were determined by the pillar height, pillar deflection angle and inter-pillar spacing. © The Royal Society of Chemistry 2013.

  19. Methods for polarized light emission from CdSe quantum dot based monolithic pillar microcavities

    Energy Technology Data Exchange (ETDEWEB)

    Seyfried, Moritz; Kalden, Joachim; Sebald, Kathrin; Gutowski, Juergen; Kruse, Carsten; Hommel, Detlef [Institute of Solid State Physics, University of Bremen (Germany)

    2010-07-01

    A lifting of the polarization degeneracy of the fundamental cavity mode in pillar microcavities (MCs) would allow for controlling the polarization state of the emitted photons. Therefore, monolithic VCSEL structures were grown by molecular beam epitaxy containing either one CdSe/ZnSSe quantum dot layer or three quantum well layers as active material. By using focused-ion-beam etching, MC pillars with different geometries were prepared out of the planar samples. Among these are circularly shaped pillar MCs with diameters in the range from 500 nm up to 4 {mu}m and quality factors of up to 7860, elliptically shaped MCs, and so-called photonic molecules consisting of circular pillar MCs which are connected by small bars. Polarization dependent photoluminescence investigations of the fundamental cavity mode reveal a lifting of the polarization degeneracy for all three types of MCs. The energy splitting of up to 0.42 meV in the circularly shaped pillar MCs is probably caused by anisotropic strain conditions within the sample and directly dependent on the pillar diameter, whereas the larger energy splitting of up to 0.72 meV for the photonic molecules or even 4.5 meV for the elliptically shaped MC is based on their asymmetric cross sections.

  20. Experiment and Simulation of Autoignition in Jet Flames and its Relevance to Flame Stabilization and Structure

    KAUST Repository

    Al-Noman, Saeed M.

    2016-06-01

    Autoignition characteristics of pre-vaporized iso-octane, primary reference fuels, gasolines, and dimethyl ether (DME) have been investigated experimentally in a coflow with elevated temperature of air. With the coflow air at relatively low initial temperatures below autoignition temperature Tauto, an external ignition source was required to stabilize the flame. Non-autoignited lifted flames had tribrachial edge structures and their liftoff heights correlated well with the jet velocity scaled by the stoichiometric laminar burning velocity, indicating the importance of the edge propagation speed on flame stabilization balanced with local flow velocity. At high initial temperatures over Tauto, the autoignited flames were stabilized without requiring an external ignition source. The autoignited lifted flames exhibited either tribrachial edge structures or Mild combustion behaviors depending on the level of fuel dilution. For the iso-octane and n-heptane fuels, two distinct transition behaviors were observed in the autoignition regime from a nozzle-attached flame to a lifted tribrachial-edge flame and then a sudden transition to lifted Mild combustion as the jet velocity increased at a certain fuel dilution level. The liftoff data of the autoignited flames with tribrachial edges were analyzed based on calculated ignition delay times for the pre-vaporized fuels. Analysis of the experimental data suggested that ignition delay time may be much less sensitive to initial temperature under atmospheric pressure conditions as compared with predictions. For the gasoline fuels for advanced combustion engines (FACEs), and primary reference fuels (PRFs), autoignited liftoff data were correlated with Research Octane Number and Cetane Number. For the DME fuel, planar laser-induced fluorescence (PLIF) of formaldehyde (CH2O) and CH* chemiluminescence were visualized qualitatively. In the autoignition regime for both tribrachial structure and mild combustion, formaldehyde were found

  1. Refractometric sensitivity and thermal stabilization of fluorescent core microcapillary sensors: theory and experiment.

    Science.gov (United States)

    Lane, S; Marsiglio, F; Zhi, Y; Meldrum, A

    2015-02-20

    Fluorescent-core microcapillaries (FCMs) present a robust basis for the application of optical whispering gallery modes toward refractometric sensing. An important question concerns whether these devices can be rendered insensitive to local temperature fluctuations, which may otherwise limit their refractometric detection limits, mainly as a result of thermorefractive effects. Here, we first use a standard cylindrical cavity formalism to develop the refractometric and thermally limited detection limits for the FCM structure. We then measure the thermal response of a real device with different analytes in the channel and compare the result to the theory. Good stability against temperature fluctuations was obtained for an ethanol solvent, with a near-zero observed thermal shift for the transverse magnetic modes. Similarly good results could in principle be obtained for any other solvent (e.g., water), if the thickness of the fluorescent layer can be sufficiently well controlled.

  2. Immobilization of heavy metals on pillared montmorillonite with a grafted chelate ligand

    International Nuclear Information System (INIS)

    Brown, Loren; Seaton, Kenneth; Mohseni, Ray; Vasiliev, Aleksey

    2013-01-01

    Highlights: • Mesoporous organoclay for immobilization of heavy metal cations was obtained. • The material has a porous structure with high contents of surface adsorption sites. • Leaching of heavy metals from soil reduced in the presence of this adsorbent. • The adsorbent demonstrated high effectiveness in neutral and acidic media. -- Abstract: The objective of this work was the development of an efficient adsorbent for irreversible immobilization of heavy metals in contaminated soils. The adsorbent was prepared by pillaring of montmorillonite with silica followed by grafting of a chelate ligand on its surface. Obtained adsorbent was mesoporous with high content of adsorption sites. Its structure was studied by BET adsorption of N 2 , dynamic light scattering, and scanning electron microscopy. The adsorption capacity of the organoclay was measured by its mixing with contaminated kaolin and soil samples and by analysis of heavy metal contents in leachate. Deionized water and 50% acetic acid were used for leaching of metals from the samples. As it was demonstrated by the experiments, the adsorbent was efficient in immobilization of heavy metals not only in neutral aqueous media but also in the presence of weak acid. As a result, the adsorbent can be used for reduction of heavy metal leaching from contaminated sites

  3. Structural optimization of interpenetrated pillared-layer coordination polymers for ethylene/ethane separation.

    Science.gov (United States)

    Kishida, Keisuke; Horike, Satoshi; Watanabe, Yoshihiro; Tahara, Mina; Inubushi, Yasutaka; Kitagawa, Susumu

    2014-06-01

    With the goal of achieving effective ethylene/ethane separation, we evaluated the gas sorption properties of four pillared-layer-type porous coordination polymers with double interpenetration, [Zn2(tp)2(bpy)]n (1), [Zn2(fm)2(bpe)]n (2), [Zn2(fm)2(bpa)]n (3), and [Zn2(fm)2(bpy)]n (4) (tp = terephthalate, bpy = 4,4'-bipyridyl, fm = fumarate, bpe = 1,2-di(4-pyridyl)ethylene and bpa = 1,2-di(4-pyridyl)ethane). It was found that 4, which contains the narrowest pores of all of these compounds, exhibited ethylene-selective sorption profiles. The ethylene selectivity of 4 was estimated to be 4.6 at 298 K based on breakthrough experiments using ethylene/ethane gas mixtures. In addition, 4 exhibited a good regeneration ability compared with a conventional porous material. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Volumetric Analysis of 3-D-Cultured Colonies in Wet Alginate Spots Using 384-Pillar Plate.

    Science.gov (United States)

    Lee, Dong Woo; Choi, Yea-Jun; Lee, Sang-Yun; Kim, Myoung-Hee; Doh, Il; Ryu, Gyu Ha; Choi, Soo-Mi

    2018-06-01

    The volumetric analysis of three-dimensional (3-D)-cultured colonies in alginate spots has been proposed to increase drug efficacy. In a previously developed pillar/well chip platform, colonies within spots are usually stained and dried for analysis of cell viability using two-dimensional (2-D) fluorescent images. Since the number of viable cells in colonies is directly related to colony volume, we proposed the 3-D analysis of colonies for high-accuracy cell viability calculation. The spots were immersed in buffer, and the 3-D volume of each colony was calculated from the 2-D stacking fluorescent images of the spot with different focal positions. In the experiments with human gastric carcinoma cells and anticancer drugs, we compared cell viability values calculated using the 2-D area and 3-D volume of colonies in the wet and dried alginate spots, respectively. The IC 50 value calculated using the 3-D volume of the colonies (9.5 μM) was less than that calculated in the 2-D area analysis (121.5 μM). We observed that the colony showed a more sensitive drug response regarding volume calculated from the 3-D image reconstructed using several confocal images than regarding colony area calculated in the 2-D analysis.

  5. Immobilization of heavy metals on pillared montmorillonite with a grafted chelate ligand.

    Science.gov (United States)

    Brown, Loren; Seaton, Kenneth; Mohseni, Ray; Vasiliev, Aleksey

    2013-10-15

    The objective of this work was the development of an efficient adsorbent for irreversible immobilization of heavy metals in contaminated soils. The adsorbent was prepared by pillaring of montmorillonite with silica followed by grafting of a chelate ligand on its surface. Obtained adsorbent was mesoporous with high content of adsorption sites. Its structure was studied by BET adsorption of N2, dynamic light scattering, and scanning electron microscopy. The adsorption capacity of the organoclay was measured by its mixing with contaminated kaolin and soil samples and by analysis of heavy metal contents in leachate. Deionized water and 50% acetic acid were used for leaching of metals from the samples. As it was demonstrated by the experiments, the adsorbent was efficient in immobilization of heavy metals not only in neutral aqueous media but also in the presence of weak acid. As a result, the adsorbent can be used for reduction of heavy metal leaching from contaminated sites. Copyright © 2013 Elsevier B.V. All rights reserved.

  6. Road Maintenance Experience Using Polyurethane (PU) Foam Injection System and Geocrete Soil Stabilization as Ground Rehabilitation

    Science.gov (United States)

    Fakhar, A. M. M.; Asmaniza, A.

    2016-07-01

    There are many types of ground rehabilation and improvement that can be consider and implement in engineering construction works for soil improvement in order to prevent road profile deformation in later stage. However, when comes to road maintenance especially on operated expressways, not all method can be apply directly as it must comply to opreation's working window and lane closure basis. Key factors that considering ideal proposal for ground rehabilitation are time, cost, quality and most importantly practicality. It should provide long lifespan structure in order to reduce continuous cycle of maintenance. Thus, this paper will present two approaches for ground rehabilitation, namely Polyurethane (PU) Foam Injection System and Geocrete Soil Stabilization. The first approach is an injection system which consists two-parts chemical grout of Isocynate and Polyol when mixed together within soil structure through injection will polymerized with volume expansion. The strong expansion of grouting causes significant compression and compacting of the surrounding soil and subsequently improve ground properties and uplift sunken structure. The later is a cold in-place recyclying whereby mixture process that combines in-situ soil materials, cement, white powder (alkaline) additive and water to produce hard yet flexible and durable ground layer that act as solid foundation with improved bearing capacity. The improvement of the mechanical behaviour of soil through these two systems is investigated by an extensive testing programme which includes in-situ and laboratory test in determining properties such as strength, stiffness, compressibility, bearing capacity, differential settlement and etc.

  7. Fuel plate stability experiments and analysis for the Advanced Neutron Source

    International Nuclear Information System (INIS)

    Swinson, W.F.; Battiste, R.L.; Luttrell, C.R.; Yahr, G.T.

    1992-01-01

    The planned Advanced Neutron Source (ANS) and several existing reactors use closely spaced arrays of involute shaped fuel-plates which are cooled by water flowing through the channels between the plates. There is concern that at certain coolant flow velocities adjacent plates may deflect and touch, with resulting failure of the plates. Experiments have been conducted at the Oak Ridge National Laboratory to examine this potential phenomenon. Results of the experiments and comparison with analytical predictions are reported in this paper. The tests were conducted using full scale epoxy plate models of the aluminum/uranium silicide ANS involute shaped fuel plates. Use of epoxy plates and model theory allowed lower flow velocities and pressures to explore the potential failure mechanism. Plate deflections and channel pressures as function of the flow velocity are examined. Comparisons with mathematical models are noted. 12 refs

  8. Fuel plate stability experiments and analysis for the Advanced Neutron Source

    International Nuclear Information System (INIS)

    Swinson, W.F.; Battiste, R.L.; Luttrell, C.R.; Yahr, G.T.

    1993-05-01

    The planned reactor for the Advanced Neutron Source (ANS) will use closely spaced arrays of involute-shaped fuel plates that will be cooled by water flowing through the channels between the plates. There is concern that at certain coolant flow velocities, adjacent plates may deflect and touch, with resulting failure of the plates. Experiments have been conducted at the Oak Ridge National Laboratory to examine this potential phenomenon. Results of the experiments and comparison with analytical predictions are reported. The tests were conducted using full-scale epoxy plate models of the aluminum/uranium silicide ANS involute-shaped fuel plates. Use of epoxy plates and model theory allowed lower flow velocities and pressures to explore the potential failure mechanism. Plate deflections and channel pressures as functions of the flow velocity are examined. Comparisons with mathematical models are noted

  9. Relations between Eastern four pillars theory and Western measures of personality traits.

    Science.gov (United States)

    Jung, Seung Ah; Yang, Chang Soon

    2015-05-01

    The present study investigated the validity of personality classification using four pillars theory, a tradition in China and northeastern Asia. Four pillars analyses were performed for 148 adults on the basis of their birth year, month, day, and hour. Participants completed two personality tests, the Korean version of Temperament and Character Inventory-Revised-Short Version (TCI) and the Korean Inventory of Interpersonal Problems; scores were correlated with four pillars classification elements. Mean difference tests (e.g., t-test, ANOVA) were compared with groups classified by four pillars index. There were no significant correlations between personality scale scores and total yin/yang number (i.e., the 8 heavenly or earthly stems), and no significant between-groups results for classifications by yin/yang day stem and the five elements. There were significant but weak (r=0.18-0.29) correlations between the five elements and personality scale scores. For the six gods and personality scales, there were significant but weak (r=0.18-0.25) correlations. Features predicted by four pillars theory were most consistent when participants were grouped according to the yin/yang of the day stem and dominance of yin/yang numbers in the eight heavenly or earthly stems. Although the major criteria of four pillars theory were not independently correlated with personality scale scores, correlations emerged when participants were grouped according to the composite yin/yang variable. Our results suggest the utility of four pillars theory (beyond fortune telling or astrology) for classifying personality traits and making behavioral predictions.

  10. Relations between Eastern Four Pillars Theory and Western Measures of Personality Traits

    Science.gov (United States)

    Jung, Seung Ah

    2015-01-01

    Purpose The present study investigated the validity of personality classification using four pillars theory, a tradition in China and northeastern Asia. Materials and Methods Four pillars analyses were performed for 148 adults on the basis of their birth year, month, day, and hour. Participants completed two personality tests, the Korean version of Temperament and Character Inventory-Revised-Short Version (TCI) and the Korean Inventory of Interpersonal Problems; scores were correlated with four pillars classification elements. Mean difference tests (e.g., t-test, ANOVA) were compared with groups classified by four pillars index. Results There were no significant correlations between personality scale scores and total yin/yang number (i.e., the 8 heavenly or earthly stems), and no significant between-groups results for classifications by yin/yang day stem and the five elements. There were significant but weak (r=0.18-0.29) correlations between the five elements and personality scale scores. For the six gods and personality scales, there were significant but weak (r=0.18-0.25) correlations. Features predicted by four pillars theory were most consistent when participants were grouped according to the yin/yang of the day stem and dominance of yin/yang numbers in the eight heavenly or earthly stems. Conclusion Although the major criteria of four pillars theory were not independently correlated with personality scale scores, correlations emerged when participants were grouped according to the composite yin/yang variable. Our results suggest the utility of four pillars theory (beyond fortune telling or astrology) for classifying personality traits and making behavioral predictions. PMID:25837175

  11. Deep proton writing of high aspect ratio SU-8 micro-pillars on glass

    Energy Technology Data Exchange (ETDEWEB)

    Ebraert, Evert, E-mail: eebraert@b-phot.org; Rwamucyo, Ben; Thienpont, Hugo; Van Erps, Jürgen

    2016-12-15

    Deep proton writing (DPW) is a fabrication technology developed for the rapid prototyping of polymer micro-structures. We use SU-8, a negative resist, spincoated in a layer up to 720 μm-thick in a single step on borosilicate glass, for irradiation with a collimated 12 MeV energy proton beam. Micro-pillars with a slightly conical profile are irradiated in the SU-8 layer. We determine the optimal proton fluence to be 1.02 × 10{sup 4} μm{sup −2}, with which we are able to repeatably achieve micro-pillars with a top-diameter of 138 ± 1 μm and a bottom-diameter of 151 ± 3 μm. The smallest fabricated pillars have a top-diameter of 57 ± 5 μm. We achieved a root-mean-square sidewall surface roughness between 19 nm and 35 nm for the fabricated micro-pillars, measured over an area of 5 × 63.7 μm. We briefly discuss initial testing of two potential applications of the fabricated micro-pillars. Using ∼100 μm-diameter pillars as waveguides for gigascale integration optical interconnect applications, has shown a 4.7 dB improvement in optical multimode fiber-to-fiber coupling as compared to the case where an air–gap is present between the fibers at the telecom wavelength of 1550 nm. The ∼140 μm-diameter pillars were used for mold fabrication with silicone casting. The resulting mold can be used for hydrogel casting, to obtain hydrogel replicas mimicking human tissue for in vitro bio-chemical applications.

  12. Clinical experiences of dynamic stabilizers: Dynesys and Dynesys top loading system for lumbar spine degenerative disease

    Directory of Open Access Journals (Sweden)

    Cheng-Ta Hsieh

    2016-04-01

    Full Text Available Dynesys (Dynamic Neutralization System was designed to overcome the shortcomings of fusion. The Dynesys top loading (DTL system is a new alternative Dynesys system that can be applied via a minimally invasive procedure. This study aimed to ascertain whether DTL is a suitable device for motion preservation and prevention of instability, and to compare the clinical and radiological outcomes between DTL and Dynesys. In this study, 12 patients were treated with Dynesys and 21 patients were treated with DTL. Back and leg pain were evaluated using the visual analog scale. The Oswestry Disability Index was used to evaluate the patients' function. Range of motion (ROM at the operative level and for the whole lumbar spine was measured pre- and postoperatively. The length of wound, blood loss, length of hospital stay, and operation duration were also compared. All patients were followed up for 12–76 months. Scores on the visual analog scale and Oswestry Disability Index were significantly improved postoperatively. The median ROM of the whole spine and index level ROM in all patients showed 12.5% and 79.6% loss, respectively. The DTL group exhibited significantly better results in terms of blood loss, wound length, and operation duration, in addition to early ambulation. In conclusion, Dynesys and DTL are semirigid fixation systems that can significantly improve clinical symptoms and signs. Our results suggested that DTL was better than Dynesys as a result of it being a minimally invasive procedure. However, further study with large sample sizes and longer follow-up durations is required to validate the effects of these dynamic stabilizers.

  13. Stability of reference class ionization chambers used for radiotherapy dosimetry: IAEA experience

    International Nuclear Information System (INIS)

    Czap, L.; Meghzifene, A.; Shortt, K.R.; Andreo, P.

    2002-01-01

    The IAEA calibrates ionization chambers, used in radiotherapy, for its Member States. The calibrations are either for Secondary Standards Dosimetry Laboratories (SSDLs) or hospitals from countries without a SSDL. For that purpose, the IAEA calibrates mainly reference class instruments that are in turn used to cross-calibrate field class instruments at the hospital. Typically, the IAEA calibrates about 30-40 ionization chambers per year, of which about half are new chambers purchased by the IAEA for its Member States using Technical Cooperation funds. The IAEA database includes the calibration coefficients of 189 reference class ionization chambers of the following types: NE-2561/2611, NE-2571, W-30001/W-30010. The results of the calibrations and recalibrations of the ionization chambers in terms of air kerma and absorbed dose to water are presented and discussed. The ratio of 60 Co calibration coefficients N D,w /N K , labelled C K , was determined for all chambers. The use of C K as a chamber dependent parameter and quality control indicator to check the results of the routine IAEA calibrations is discussed. In the process of its routine calibrations, the IAEA identified a specific problem related to the W- 30001 ionization chambers. The stability of these chambers was found to exceed the 0.5% tolerance limit set by the International IEC standard. Other SSDLs reported similar findings. The manufacturer stopped the production of these W-30001 chambers to investigate the reasons for this anomalous behaviour. After identifying and correcting the problem, the manufacturer produced a new type of ionization chamber. Five of these chambers were tested at the IAEA and found to be within the tolerance limit

  14. Feedback control and stabilization experiments on the Texas Experimental Tokamak (TEXT)

    International Nuclear Information System (INIS)

    Uckan, T.; Carreras, B.A.; Richards, B.; Wootton, A.J.; Bengtson, R.D.; Bravenec, R.; Li, G.X.; Hurwitz, P.D.; Phillips, P.E.; Rowan, W.L.

    1994-06-01

    Plasma edge feedback experiments on the Texas Experimental Tokamak (TEXT) have been successful in controlling the edge plasma potential fluctuation level. The feedback wave-launcher, consisting of electrostatic probes located in the shadow of the limiter, is driven by the local edge potential fluctuations. In general, the edge potential fluctuations are modified in a broad frequency band. Moreover, it is observed that the potential fluctuations can be reduced (≤100 kHz) without enhancing other modes, or excited (10 to 12 kHz), depending on the phase difference between the driver and the launcher signal, and gain of the system. This turbulence modification is achieved not only locally but also halfway around the torus and has about 2 cm of poloidal extent. Experiments on the characterization of the global plasma parameters with the edge feedback are discussed. Effects of the edge feedback on the estimated fluctuation-induced radial particle flux as well as on the local plasma parameters are presented

  15. Studying the effect of a variation in the main parameters on stability of homogeneous earth dams using design experiment

    Directory of Open Access Journals (Sweden)

    Lakehal Rida

    2017-09-01

    Full Text Available Deterministic approaches such as the limit equilibrium method (LEM especially Bishop modified method has been traditionally used to evaluate the stability of embankment dams. However, the uncertainty associated with the material properties necessitates the use of the probabilistic method to account the sensitivity of this uncertainty on the response of the deterministic approaches. In this study, the authors propose the application of design experiment, especially central composite design (CCD to determine the effects of independent uncertain parameters on the response of stability. A second-order polynomial model with cross terms is used to create an approximating function referred to as response surface for the implicit limit state surface, for which the input data were provided by stability analyses of different heights of homogeneous earth dams (10 m, 20 m, and 30 m with a depth ratio of DH = 1.5 and a circular slip surface using the Bishop modified limit equilibrium method. The proposed models obtained from this application represent higher prediction accuracy. The study of the effect of geotechnical parameters (material properties of embankment on safety factor show the importance of individual factors in level of linear effect with a positive effect of c’ or φ’ and a negative effect of H, γd, γsat and significant influence of two-factors interaction, the effect of c’ highly dependent on H, β, γd and φ’. Moreover, the effect of φ’ is dependent on the values of H and β. Lastly, the optimization of safety factor with respect to the range of values of material properties was made, and two failures modes are discussed which are (φ’, c’ reduction and γd increase.

  16. Infected hardware after surgical stabilization of rib fractures: Outcomes and management experience.

    Science.gov (United States)

    Thiels, Cornelius A; Aho, Johnathon M; Naik, Nimesh D; Zielinski, Martin D; Schiller, Henry J; Morris, David S; Kim, Brian D

    2016-05-01

    Surgical stabilization of rib fracture (SSRF) is increasingly used for treatment of rib fractures. There are few data on the incidence, risk factors, outcomes, and optimal management strategy for hardware infection in these patients. We aimed to develop and propose a management algorithm to help others treat this potentially morbid complication. We retrospectively searched a prospectively collected rib fracture database for the records of all patients who underwent SSRF from August 2009 through March 2014 at our institution. We then analyzed for the subsequent development of hardware infection among these patients. Standard descriptive analyses were performed. Among 122 patients who underwent SSRF, most (73%) were men; the mean (SD) age was 59.5 (16.4) years, and median (interquartile range [IQR]) Injury Severity Score was 17 (13-22). The median number of rib fractures was 7 (5-9) and 48% of the patients had flail chest. Mortality at 30 days was 0.8%. Five patients (4.1%) had a hardware infection on mean (SD) postoperative day 12.0 (6.6). Median Injury Severity Score (17 [range, 13-42]) and hospital length of stay (9 days [6-37 days]) in these patients were similar to the values for those without infection (17 days [range, 13-22 days] and 9 days [6-12 days], respectively). Patients with infection underwent a median (IQR) of 2 (range, 2-3) additional operations, which included wound debridement (n = 5), negative-pressure wound therapy (n = 3), and antibiotic beads (n = 4). Hardware was removed in 3 patients at 140, 190, and 192 days after index operation. Cultures grew only gram-positive organisms. No patients required reintervention after hardware removal, and all achieved bony union and were taking no narcotics or antibiotics at the latest follow-up. Although uncommon, hardware infection after SSRF carries considerable morbidity. With the use of an aggressive multimodal management strategy, however, bony union and favorable long-term outcomes can be achieved

  17. Diagnostic method for measuring plasma-induced voltages on the PBX-M [Princeton Beta Experiment-Modified] stabilizing shell

    International Nuclear Information System (INIS)

    Kugel, H.W.; Okabayashi, M.; Schweitzer, S.

    1990-07-01

    The Princeton Beta Experiment-Modified (PBX-M) has a close-fitting conducting, passive plate, stabilizing shell which nearly surrounds highly indented, bean-shaped plasmas. The proximity of this electrically isolated shell to a large fraction of the plasma surface allows measurements similar to previous work on other tokamaks using floating probes and limiters. Measurements were performed to characterize the plasma-induced voltages on the PBX-M passive plate stabilizing shell during high-β plasmas. Voltage differences were measured between the respective passive plate toroidal and poloidal gaps, the respective passive plates and the vessel, and an outer poloidal graphite limiter and its passive plate. The calibration and qualification testing procedures are discussed. The initial measurements found that the largest voltages were observed at plasma start-up and at the plasma current disruption and exhibited characteristics depending on operating conditions. The highest voltages observed have been at disruption and were less than 2 kV. 9 refs., 5 figs

  18. Stabilization of Cd-, Pb-, Cu- and Zn-contaminated calcareous agricultural soil using red mud: a field experiment.

    Science.gov (United States)

    Wang, Yangyang; Li, Fangfang; Song, Jian; Xiao, Ruiyang; Luo, Lin; Yang, Zhihui; Chai, Liyuan

    2018-04-12

    Red mud (RM) was used to remediate heavy metal-contaminated soils. Experiments with two different dosages of RM added to soils were carried out in this study. It was found that soil pH increased 0.3 and 0.5 unit with the dosage of 3 and 5% (wt%), respectively. At the dosage of 5%, the highest stabilization efficiencies for Cd, Pb, Cu and Zn reached 67.95, 64.21, 43.73 and 63.73%, respectively. The addition of RM obviously transferred Cd from the exchangeable fraction to the residual fraction. Meanwhile, in comparison with the control (no RM added), it reduced 24.38, 49.20, 19.42 and 8.89% of Cd, Pb, Cu and Zn in wheat grains at the RM addition dosage of 5%, respectively. At the same time, the yield of wheat grains increased 17.81 and 24.66% at the RM addition dosage of 3 and 5%, respectively. Finally, the addition of RM did not change the soil bacterial community. These results indicate that RM has a great potential in stabilizing heavy metals in calcareous agricultural soils.

  19. Feedback control and stabilization experiments on the Texas Experimental Tokamak (TEXT)

    International Nuclear Information System (INIS)

    Uckan, T.; Richards, B.; Wootton, A.J.; Bengtson, R.D.; Bravenec, R.; Carreras, B.A.; Li, G.X.; Hurwitz, P.; Phillips, P.E.; Rowan, W.L.; Tsui, H.Y.W.; Uglum, J.R.; Wen, Y.; Winslow, D.

    1995-01-01

    Plasma edge feedback experiments on the Texas Experimental Tokamak (TEXT) have been successful in controlling the edge plasma potential fluctuation level. The feedback wave-launcher is driven by the local edge potential fluctuations. The edge potential fluctuations are modified in a broad frequency band. Moreover, the potential fluctuations can be reduced (≤100 kHz) without enhancing other modes, or excited (10 to 12 kHz), depending on the phase difference between the driver and the launcher signal, and gain of the system. This turbulence modification is achieved not only locally but also halfway around the torus and has about 2 cm of poloidal extent. The local plasma parameters at the edge and the estimated fluctuation-induced radial particle flux are somewhat affected by the edge feedback. ((orig.))

  20. Hydrodynamic model experiments for stabilized liquid liners with annular piston drive

    International Nuclear Information System (INIS)

    Burton, R.L.; Turchi, P.J.; Jenkins, D.J.; Cooper, A.L.

    1977-01-01

    The achievement of megagauss-level magnetic fields by flux compression using controlled liquid liner implosions will be studied in the LINUS-O experiments. This paper reports on experimental studies of the rotating liquid liner at lower energy density, using a one-third scale model with water as the liner material. Radial implosion of the free inside surface of the liquid is achieved by axial displacement of an annular piston, driven by helium. Azimuthally symmetric, repetitive implosion-reexpansion cycles have been demonstrated, with area compressions of over a hundred. The apparatus has also been used to investigate other problems inherent in the annular piston geometry, including piston guidance, seals, z-dependence of the imploding free surface trajectory, and Rayleigh-Taylor instability of the free surface. Methods for r-z plane tailoring of the free surface to provide three-dimensional payload compression are considered

  1. Time scales of foam stability in shallow conduits: Insights from analogue experiments

    Science.gov (United States)

    Spina, L.; Scheu, B.; Cimarelli, C.; Arciniega-Ceballos, A.; Dingwell, D. B.

    2016-10-01

    Volcanic systems can exhibit periodical trends in degassing activity, characterized by a wide range of time scales. Understanding the dynamics that control such periodic behavior can provide a picture of the processes occurring in the feeding system. Toward this end, we analyzed the periodicity of outgassing in a series of decompression experiments performed on analogue material (argon-saturated silicone oil plus glass beads/fibers) scaled to serve as models of basaltic magma. To define the effects of liquid viscosity and crystal content on the time scale of outgassing, we investigated both: (1) pure liquid systems, at differing viscosities (100 and 1000 Pa s), and (2) particle-bearing suspensions (diluted and semidiluted). The results indicate that under dynamic conditions (e.g., decompressive bubble growth and fluid ascent within the conduit), the periodicity of foam disruption may be up to several orders of magnitude less than estimates based on the analysis of static conditions. This difference in foam disruption time scale is inferred to result from the contribution of bubble shear and bubble growth to inter-bubble film thinning. The presence of particles in the semidiluted regime is further linked to shorter bubble bursting times, likely resulting from contributions of the presence of a solid network and coalescence processes to the relative increase in bubble breakup rates. Finally, it is argued that these experiments represent a good analogue of gas-piston activity (i.e., the periodical rise-and-fall of a basaltic lava lake surface), implying a dominant role for shallow foam accumulation as a source process for these phenomena.

  2. Strain relief InGaN/GaN MQW micro-pillars for high brightness LEDs

    KAUST Repository

    Shen, Chao

    2013-01-01

    Micro-structured group-III-nitrides are considered as promising strain relief structures for high efficiency solid state lighting. In this work, the strain field in InGaN/GaN multi-quantum wells (MQWs) micro-pillars is investigated using micro-Raman spectroscopy and the design of micro-pillars were studied experimentally. We distinguished the strained and strain-relieved signatures of the GaN layer from the E2 phonon peak split from the Raman scattering signatures at 572 cm-1 and 568 cm-1, respectively. The extent of strain relief is examined considering the height and size of micro-pillars fabricated using focused ion beam (FIB) micro-machining technique. A significant strain relief can be achieved when one micro-machined through the entire epi-layers, 3 μm in our study. The dependence of strain relief on micro-pillar diameter (D) suggested that micro-pillar with D < 3 μm showed high degree of strain relief. Our results shed new insights into designing strain-relieved InGaN/GaN microstructures for high brightness light emitting diode arrays. © 2013 IEEE.

  3. Reverse engineering of B-pillar with 3D optical scanning for manufacturing of non-uniform thickness part

    OpenAIRE

    Islam Md. Tasbirul; Abdullah A.B.; Mahmud Mohamad Zihad

    2017-01-01

    This paper presents reverse engineering (RE) of a complex automobile structural part, B-pillar. As a major part of the automobile body-in white (BiW), B-pillar has substantial opportunity for weight reduction by introducing variable thickness across its sections. To leverage such potential, an existing B-pillar was reverse engineered with a 3D optical scanner and computer aided design (CAD) application. First, digital data (i.e. in meshes) of exiting B-pillar was obtained by the scanner, and ...

  4. Evolution and Engineering of Precisely Controlled Ge Nanostructures on Scalable Array of Ordered Si Nano-pillars

    Science.gov (United States)

    Wang, Shuguang; Zhou, Tong; Li, Dehui; Zhong, Zhenyang

    2016-06-01

    The scalable array of ordered nano-pillars with precisely controllable quantum nanostructures (QNs) are ideal candidates for the exploration of the fundamental features of cavity quantum electrodynamics. It also has a great potential in the applications of innovative nano-optoelectronic devices for the future quantum communication and integrated photon circuits. Here, we present a synthesis of such hybrid system in combination of the nanosphere lithography and the self-assembly during heteroepitaxy. The precise positioning and controllable evolution of self-assembled Ge QNs, including quantum dot necklace(QDN), QD molecule(QDM) and quantum ring(QR), on Si nano-pillars are readily achieved. Considering the strain relaxation and the non-uniform Ge growth due to the thickness-dependent and anisotropic surface diffusion of adatoms on the pillars, the comprehensive scenario of the Ge growth on Si pillars is discovered. It clarifies the inherent mechanism underlying the controllable growth of the QNs on the pillar. Moreover, it inspires a deliberate two-step growth procedure to engineer the controllable QNs on the pillar. Our results pave a promising avenue to the achievement of desired nano-pillar-QNs system that facilitates the strong light-matter interaction due to both spectra and spatial coupling between the QNs and the cavity modes of a single pillar and the periodic pillars.

  5. Experience with Stabilization of SGHWR Sludge in a Commercial Plant in the United Kingdom

    International Nuclear Information System (INIS)

    Hagan, M.; Cornell, R.M.; Riley, B.; Ware, B.

    2009-01-01

    In July 2000, following a competitive tender, Nuvia Limited was contracted to design, build and commission a waste treatment plant to stabilise the active sludge stored in the External Active Sludge Tanks (EAST) at Winfrith, UK. The sludge was generated during the operational lifetime of the Steam Generating Heavy Water Reactor (SGHWR), which was in the early stages of decommissioning. This was in support of UKAEA's mission, which is to carry out environmental restoration of its nuclear sites and to put them to alternative uses wherever possible. Latterly, a new body, the Nuclear Decommissioning Authority (NDA), has become responsible for managing the UK decommissioning legacy and since 2004 UKAEA has been contracted to the NDA to deliver decommissioning work at Winfrith and other UK sites. The purpose of this commercial plant is to stabilise the radioactive sludge by encapsulation into a cement matrix within a purpose-designed 500 litre steel drum. The drum design incorporates a lost paddle mixer used to maintain homogeneity of the sludge as well as mixing it with the stabilising powders. The sludge in the EAST tanks is prepared for recovery by a process of homogenisation using in-tank stirrers. The means of reaching a narrow ratio of suspended solids within an aqueous medium will be described together with some of the problems encountered and the practical solutions devised. The material is transferred to the purpose-built Winfrith EAST Treatment Plant (WETP), where it is held in stainless steel tanks in a process area prior to being metered into a 500 litre stainless steel drum in the cell line for stabilization with powders. The cell line consists of five cells separated by shield doors designed to maintain strict contamination control. The line has a wet cell where the drums are filled with the sludge and powder, a cell with stations for curing and grouting the drums, a cell for lidding, bolting and QA inspection, a maintenance and gamma monitoring cell and a

  6. The possibility of increasing the efficiency of accessible coal deposits by optimizing dimensions of protective pillars or the scope of exploitation

    Science.gov (United States)

    Bańka, Piotr; Badura, Henryk; Wesołowski, Marek

    2017-11-01

    One of the ways to protect objects exposed to the influences of mining exploitation is establishing protective pillars for them. Properly determined pillar provides effective protection of the object for which it was established. Determining correct dimensions of a pillar requires taking into account contradictory requirements. Protection measures against the excessive influences of mining exploitation require designing the largest possible pillars, whereas economic requirements suggest a maximum reduction of the size of resources left in the pillar. This paper presents algorithms and programs developed for determining optimal dimensions of protective pillars for surface objects and shafts. The issue of designing a protective pillar was treated as a nonlinear programming task. The objective function are the resources left in a pillar while nonlinear limitations are the deformation values evoked by the mining exploitation. Resources in the pillar may be weighted e.g. by calorific value or by the inverse of output costs. The possibility of designing pillars of any polygon shape was taken into account. Because of the applied exploitation technologies the rectangular pillar shape should be considered more advantageous than the oval one, though it does not ensure the minimization of resources left in a pillar. In this article there is also presented a different approach to the design of protective pillars, which instead of fixing the pillar boundaries in subsequent seams, the length of longwall panels of the designed mining exploitation is limited in a way that ensures the effective protection of an object while maximizing the extraction ratio of the deposit.

  7. Catalysis as a foundational pillar of green chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Anastas, Paul T. [White House Office of Science and Technology Policy, Department of Chemistry, University of Nottingham Nottingham, (United Kingdom); Kirchhoff, Mary M. [U.S. Environmental Protection Agency and Trinity College, Washington, DC (United States); Williamson, Tracy C. [U.S. Environmental Protection Agency, Washington, DC (United States)

    2001-11-30

    Catalysis is one of the fundamental pillars of green chemistry, the design of chemical products and processes that reduce or eliminate the use and generation of hazardous substances. The design and application of new catalysts and catalytic systems are simultaneously achieving the dual goals of environmental protection and economic benefit. Green chemistry, the design of chemical products and processes that reduce or eliminate the use and generation of hazardous substances, is an overarching approach that is applicable to all aspects of chemistry. From feedstocks to solvents, to synthesis and processing, green chemistry actively seeks ways to produce materials in a way that is more benign to human health and the environment. The current emphasis on green chemistry reflects a shift away from the historic 'command-and-control' approach to environmental problems that mandated waste treatment and control and clean up through regulation, and toward preventing pollution at its source. Rather than accepting waste generation and disposal as unavoidable, green chemistry seeks new technologies that are cleaner and economically competitive. Utilizing green chemistry for pollution prevention demonstrates the power and beauty of chemistry: through careful design, society can enjoy the products on which we depend while benefiting the environment. The economic benefits of green chemistry are central drivers in its advancement. Industry is adopting green chemistry methodologies because they improve the corporate bottom line. A wide array of operating costs are decreased through the use of green chemistry. When less waste is generated, environmental compliance costs go down. Treatment and disposal become unnecessary when waste is eliminated. Decreased solvent usage and fewer processing steps lessen the material and energy costs of manufacturing and increase material efficiency. The environmental, human health, and the economic advantages realized through green chemistry

  8. Microscopic Pillars and Tubes Fabricated by Using Fish Dentine as a Molding Template

    Directory of Open Access Journals (Sweden)

    Weiqun Li

    2014-08-01

    Full Text Available Biomaterials in nature exhibit delicate structures that are greatly beyond the capability of the current manufacturing techniques. Duplicating these structures and applying them in engineering may help enhance the performance of traditional functional materials and structures. Inspired by gecko’s hierarchical micro- and nano-fibrillar structures for adhesion, in this work we fabricated micro-pillars and tubes by adopting the tubular dentine of black carp fish teeth as molding template. The adhesion performances of the fabricated micro-pillars and tubes were characterized and compared. It was found that the pull-off force of a single pillar was about twice of that of the tube with comparable size. Such unexpected discrepancy in adhesion was analyzed based on the contact mechanics theories.

  9. Numerical Simulations of Pillar Structured Solid State Thermal Neutron Detector Efficiency and Gamma Discrimination

    Energy Technology Data Exchange (ETDEWEB)

    Conway, A; Wang, T; Deo, N; Cheung, C; Nikolic, R

    2008-06-24

    This work reports numerical simulations of a novel three-dimensionally integrated, {sup 10}boron ({sup 10}B) and silicon p+, intrinsic, n+ (PIN) diode micropillar array for thermal neutron detection. The inter-digitated device structure has a high probability of interaction between the Si PIN pillars and the charged particles (alpha and {sup 7}Li) created from the neutron - {sup 10}B reaction. In this work, the effect of both the 3-D geometry (including pillar diameter, separation and height) and energy loss mechanisms are investigated via simulations to predict the neutron detection efficiency and gamma discrimination of this structure. The simulation results are demonstrated to compare well with the measurement results. This indicates that upon scaling the pillar height, a high efficiency thermal neutron detector is possible.

  10. Unusual mechanism of capillary condensation in pores modified with chains forming pillars.

    Science.gov (United States)

    Borówko, M; Patrykiejew, A; Sokołowski, S

    2011-08-07

    Density functional approach is applied to study the phase behavior of Lennard-Jones(12,6) fluid in pillared slit-like pores. Our focus is in the evaluation of phase transitions in fluid adsorbed in the pore of a fixed width. If the length of pillars is sufficiently large, we observe additional phase transitions of the first and second order due to the symmetry breaking of the distribution of chain segments and fluid species with respect to the slit-like pore center. Re-entrant symmetry changes and additional critical, critical end points and tricritical points then are observed. The scenario of phase changes is sensitive to the energy of fluid-solid interaction, the amount, and the length of the pillars. Quantitative trends and qualitative changes of the phase diagrams topology are examined depending on the values of these parameters.

  11. Cell motility regulation on a stepped micro pillar array device (SMPAD) with a discrete stiffness gradient.

    Science.gov (United States)

    Lee, Sujin; Hong, Juhee; Lee, Junghoon

    2016-02-28

    Our tissues consist of individual cells that respond to the elasticity of their environment, which varies between and within tissues. To better understand mechanically driven cell migration, it is necessary to manipulate the stiffness gradient across a substrate. Here, we have demonstrated a new variant of the microfabricated polymeric pillar array platform that can decouple the stiffness gradient from the ECM protein area. This goal is achieved via a "stepped" micro pillar array device (SMPAD) in which the contact area with the cell was kept constant while the diameter of the pillar bodies was altered to attain the proper mechanical stiffness. Using double-step SU-8 mold fabrication, the diameter of the top of every pillar was kept uniform, whereas that of the bottom was changed, to achieve the desired substrate rigidity. Fibronectin was immobilized on the pillar tops, providing a focal adhesion site for cells. C2C12, HeLa and NIH3T3 cells were cultured on the SMPAD, and the motion of the cells was observed by time-lapse microscopy. Using this simple platform, which produces a purely physical stimulus, we observed that various types of cell behavior are affected by the mechanical stimulus of the environment. We also demonstrated directed cell migration guided by a discrete rigidity gradient by varying stiffness. Interestingly, cell velocity was highest at the highest stiffness. Our approach enables the regulation of the mechanical properties of the polymeric pillar array device and eliminates the effects of the size of the contact area. This technique is a unique tool for studying cellular motion and behavior relative to various stiffness gradients in the environment.

  12. A Single-Molecule Propyne Trap: Highly Efficient Removal of Propyne from Propylene with Anion-Pillared Ultramicroporous Materials.

    Science.gov (United States)

    Yang, Lifeng; Cui, Xili; Yang, Qiwei; Qian, Siheng; Wu, Hui; Bao, Zongbi; Zhang, Zhiguo; Ren, Qilong; Zhou, Wei; Chen, Banglin; Xing, Huabin

    2018-03-01

    Propyne/propylene (C 3 H 4 /C 3 H 6 ) separation is a critical process for the production of polymer-grade C 3 H 6 . However, optimization of the structure of porous materials for the highly efficient removal of C 3 H 4 from C 3 H 6 remains challenging due to their similar structures and ultralow C 3 H 4 concentration. Here, it is first reported that hybrid ultramicroporous materials with pillared inorganic anions (SiF 6 2- = SIFSIX, NbOF 5 2- = NbOFFIVE) can serve as highly selective C 3 H 4 traps for the removal of trace C 3 H 4 from C 3 H 6 . Especially, it is revealed that the pyrazine-based ultramicroporous material with square grid structure for which the pore shape and functional site disposition can be varied in 0.1-0.5 Å scale to match both the shape and interacting sites of guest molecule is an interesting single-molecule trap for C 3 H 4 molecule. The pyrazine-based single-molecule trap enables extremely high C 3 H 4 uptake under ultralow concentration (2.65 mmol g -1 at 3000 ppm, one C 3 H 4 per unit cell) and record selectivity over C 3 H 6 at 298 K (>250). The single-molecule binding mode for C 3 H 4 within ultramicroporous material is validated by X-ray diffraction experiments and modeling studies. The breakthrough experiments confirm that anion-pillared ultramicroporous materials set new benchmarks for the removal of ultralow concentration C 3 H 4 (1000 ppm on SIFSIX-3-Ni, and 10 000 ppm on SIFSIX-2-Cu-i) from C 3 H 6 . © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Analysis of reactor material experiments investigating oxide fuel crust stability and heat transfer in jet impingement flow

    International Nuclear Information System (INIS)

    Sienicki, J.J.; Spencer, B.W.

    1985-01-01

    An analysis is presented of the crust stability and heat transfer behavior in the CSTI-1, CSTI-3, and CWTI-11 reactor material experiments in which a jet of molten oxide fuel at approx. 160 0 K above its freezing temperature was impinged normally upon stainless steel plates initially at 300 and 385 K. The major issue is the existence of nonexistence of a stable solidified layer of fuel, or crust, interstitial to the flowing hot fuel and the steel substrate, tending to insulate the steel from the hot molten fuel. A computer model was developed to predict the heatup of thermocouples imbedded immediately beneath the surface of the plate for both of the cases in which a stable crust is assumed to be either present or absent during the impingement phase. Comparison of the model calculations with the measured thermocouple temperatures indicates that a protective crust was present over nearly all of the plate surface area throughout the impingement process precluding major melting of the plate steel. However, the experiments also show evidence for very localized and isolated steel melting as revealed by localized and isolated pitting of the steel surface and the response of thermocouples located within the pitted region

  14. Assessment of chemical and biochemical stabilization of organic C in soils from the long-term experiments at Rothamsted (UK).

    Science.gov (United States)

    De Nobili, M; Contin, M; Mahieu, N; Randall, E W; Brookes, P C

    2008-01-01

    Biological and chemical stabilization of organic C was assessed in soils sampled from the long-term experiments at Rothamsted (UK), representing a wide range of carbon inputs and managements by extracting labile, non-humified organic matter (NH) and humic substances (HS). Four sequentially extracted humic substances fractions of soil organic matter (SOM) were extracted and characterized before and after a 215-day laboratory incubation at 25 degrees C from two arable soils, a woodland soil and an occasionally stubbed soil. The fractions corresponded to biochemically stabilised SOM extracted in 0.5M NaOH (free fulvic acids (FA) and humic acids (HA)) and chemically plus biochemically stabilised SOM extracted from the residue with 0.1M Na4P2O7 plus 0.1M NaOH (bound FA and HA). Our aim was to investigate the effects of chemical and biochemical stabilization on carbon sequestration. The non-humic to humic (NH/H) C ratio separated the soils into two distinct groups: arable soils (unless fertilised with farmyard manure) had an NH/H C ratio between 1.05 and 0.71, about twice that of the other soils (0.51-0.26). During incubation a slow, but detectable, decrease in the NH/H C ratio occurred in soils of C input equivalent or lower to 4Mgha(-1)y(-1), whereas the ratio remained practically constant in the other soils. Before incubation the free to bound humic C ratio increased linearly (R2=0.91) with C inputs in the soils from the Broadbalk experiment and decreased during incubation, showing that biochemical stabilization is less effective than chemical stabilization in preserving humic C. Changes in delta13C and delta15N after incubation were confined to the free FA fractions. The delta13C of free FA increased by 1.48 and 0.80 per thousand, respectively, in the stubbed and woodland soils, indicating a progressive biological transformation. On the contrary, a decrease was observed for the bound FA of both soils. Concomitantly, a Deltadelta15N of up to +3.52 per thousand was

  15. Neoclassical tearing modes on ASDEX Upgrade: Improved scaling laws, high confinement at high βN and new stabilization experiments

    International Nuclear Information System (INIS)

    Guenter, S.; Gude, A.; Igochine, V.; Maraschek, M.; Sips, A.C.C.; Zohm, H.; Gantenbein, G.; Sauter, O.

    2003-01-01

    In this paper recent results on the physics of neoclassical tearing modes (NTMs) achieved on ASDEX Upgrade are reported. A scaling law for NTM decay has been found, showing that the minimum local bootstrap current density required for mode growth is proportional to the ion gyro radius. As this scaling law does not depend on the seed island size, and thus on the background MHD activity, it is more reliable than previously derived scaling laws for the NTM onset. Furthermore, the recently reported Frequently Interrupted Regime (FIR) is discussed. In this new regime (m,n) NTMs are characterized by frequent amplitude drops caused by interaction with (m+1,n+1) background MHD activity. Due to the resulting reduced time averaged island size this leads to lower confinement degradation compared to that caused by the usual NTMs. As shown here, the transition into this regime can actively be triggered by lowering the magnetic shear at the q=(m+1)/=(n+1) rational surface. Further investigations regard mechanisms to increase the β N value for NTM onset such as plasma shaping, seed island size and density profile control. Using these studies, a scenario with high β N (β N = 3:5) at high density (n/n GW = 0.83) and confinement (H 98(y,2) = 1.2) has been developed. Moreover, this scenario is characterized by type II ELM activity and thus by moderate heat load to the target plates. Finally, new NTM stabilization experiments are reported, demonstrating an increase in β N after NTM stabilization. (author)

  16. Analysis and Optimization of Entry Stability in Underground Longwall Mining

    Directory of Open Access Journals (Sweden)

    Yubing Gao

    2017-11-01

    Full Text Available For sustainable utilization of limited coal resources, it is important to increase the coal recovery rate and reduce mine accidents, especially those occurring in the entry (gateroad. Entry stabilities are vital for ventilation, transportation and other essential services in underground coal mining. In the present study, a finite difference model was built to investigate stress evolutions around the entry, and true triaxial tests were carried out at the laboratory to explore entry wall stabilities under different mining conditions. The modeling and experimental results indicated that a wide coal pillar was favorable for entry stabilities, but oversize pillars caused a serious waste of coal resources. As the width of the entry wall decreased, the integrated vertical stress, induced by two adjacent mining panels, coupled with each other and experienced an increase on the entry wall, which inevitably weakened the stability of the entry. Therefore, mining with coal pillars always involves a tradeoff between economy and safety. To address this problem, an innovative non-pillar mining technique by optimizing the entry surrounding structures was proposed. Numerical simulation showed that the deformation of the entry roof decreased by approximately 66% after adopting the new approach, compared with that using the conventional mining method. Field monitoring indicated that the stress condition of the entry was significantly improved and the average roof pressure decreased by appropriately 60.33% after adopting the new technique. This work provides an economical and effective approach to achieve sustainable exploitation of underground coal resources.

  17. Ultrahigh and Selective SO2 Uptake in Inorganic Anion-Pillared Hybrid Porous Materials.

    Science.gov (United States)

    Cui, Xili; Yang, Qiwei; Yang, Lifeng; Krishna, Rajamani; Zhang, Zhiguo; Bao, Zongbi; Wu, Hui; Ren, Qilong; Zhou, Wei; Chen, Banglin; Xing, Huabin

    2017-07-01

    The efficient capture of SO 2 is of great significance in gas-purification processes including flue-gas desulfurization and natural-gas purification, but the design of porous materials with high adsorption capacity and selectivity of SO 2 remains very challenging. Herein, the selective recognition and dense packing of SO 2 clusters through multiple synergistic host-guest and guest-guest interactions by controlling the pore chemistry and size in inorganic anion (SiF 6 2- , SIFSIX) pillared metal-organic frameworks is reported. The binding sites of anions and aromatic rings in SIFSIX materials grasp every atom of SO 2 firmly via S δ+ ···F δ- electrostatic interactions and O δ- ···H δ+ dipole-dipole interactions, while the guest-guest interactions between SO 2 molecules further promote gas trapping within the pore space, which is elucidated by first-principles density functional theory calculations and powder X-ray diffraction experiments. These interactions afford new benchmarks for the highly efficient removal of SO 2 from other gases, even if at a very low SO 2 concentration. Exceptionally high SO 2 capacity of 11.01 mmol g -1 is achieved at atmosphere pressure by SIFSIX-1-Cu, and unprecedented low-pressure SO 2 capacity is obtained in SIFSIX-2-Cu-i (4.16 mmol g -1 SO 2 at 0.01 bar and 2.31 mmol g -1 at 0.002 bar). More importantly, record SO 2 /CO 2 selectivity (86-89) and excellent SO 2 /N 2 selectivity (1285-3145) are also achieved. Experimental breakthrough curves further demonstrate the excellent performance of these hybrid porous materials in removing low-concentration SO 2 . © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Experimental study of the retention properties of a cyclo olefin polymer pillar array column in reversed-phase mode

    NARCIS (Netherlands)

    Illa, Xavi; de Malsche, Wim; Gardeniers, Johannes G.E.; Desmet, Gert; Romano-Rodriguez, Albert

    2010-01-01

    Experimental measurements to study the retention capacity and band broadening under retentive conditions using micromachined non-porous pillar array columns fabricated in cyclo olefin polymer are presented. In particular, three columns with different depths but with the same pillar structure have

  19. Width design for gobs and isolated coal pillars based on overall burst-instability prevention in coal mines

    Directory of Open Access Journals (Sweden)

    Junfei Zhang

    2016-08-01

    Full Text Available An investigation was conducted on the overall burst-instability of isolated coal pillars by means of the possibility index diagnosis method (PIDM. First, the abutment pressure calculation model of the gob in side direction was established to derive the abutment pressure distribution curve of the isolated coal pillar. Second, the overall burst-instability ratio of the isolated coal pillars was defined. Finally, the PIDM was utilized to judge the possibility of overall burst-instability and recoverability of isolated coal pillars. The results show that an overall burst-instability may occur due to a large gob width or a small pillar width. If the width of the isolated coal pillar is not large enough, the shallow coal seam will be damaged at first, and then the high abutment pressure will be transferred to the deep coal seam, which may cause an overall burst-instability accident. This approach can be adopted to design widths of gobs and isolated coal pillars and to evaluate whether an existing isolated coal pillar is recoverable in skip-mining mines.

  20. Investigations into the residual strength of a 2.5 m wide Bushveld Merensky Reef crush pillar

    CSIR Research Space (South Africa)

    Watson, BP

    2008-08-01

    Full Text Available of falls of ground in already dangerous areas, and the larger pillars decrease the extraction ratio. This paper describes the evaluation of stress measurements conducted in two boreholes over a crush pillar with dimensions 2.5 m x 4.0 m, and a height of 1...

  1. Magnetic Reversal and Thermal Stability of CoFeB Perpendicular Magnetic Tunnel Junction Arrays Patterned by Block Copolymer Lithography

    KAUST Repository

    Tu, Kun-Hua

    2018-04-10

    Dense arrays of pillars, with diameters of 64 and 25 nm, were made from a perpendicular CoFeB magnetic tunnel junction thin film stack using block copolymer lithography. While the soft layer and hard layer in the 64 nm pillars reverse at different fields, the reversal of the two layers in the 25 nm pillars could not be distinguished, attributed to the strong interlayer magnetostatic coupling. First order reversal curves were used to identify the steps that occur during switching, and the thermal stability and effective switching volume were determined from scan rate dependent hysteresis measurements.

  2. Electrical characterization of Ge–Sb–Te phase change nano-pillars using conductive atomic force microscopy

    International Nuclear Information System (INIS)

    Bae, Byeong-Ju; Hong, Sung-Hoon; Hwang, Seon-Yong; Hwang, Jae-Yeon; Yang, Ki-Yeon; Lee, Heon

    2009-01-01

    The electrical characteristic of phase change material was studied in nano-scale using nanoimprint lithography and a conducting atomic force microscopy measurement system. Nanoimprint lithography was used to fabricate the nano-scale phase change material pattern. A Pt-coated AFM tip was used as a top electrode to measure the electrical characteristics of the GST nano-pillar. The GST nano-pillar, which is 200 nm in diameter, was amorphized by 2 V and 5 ns reset pulse and was then brought back to the crystalline phase by applying 1.3 V and 150 ns set pulse. Using this measurement system, the GST nano-pillar was switched between the amorphous and crystalline phases more than five times. The results of the reset and the set current measurement with the GST nano-pillar sizes show that the reset and the set currents also decreased with the decrease of the GST pillar size

  3. Straightforward Generation of Pillared, Microporous Graphene Frameworks for Use in Supercapacitors.

    Science.gov (United States)

    Yuan, Kai; Xu, Yazhou; Uihlein, Johannes; Brunklaus, Gunther; Shi, Lei; Heiderhoff, Ralf; Que, Mingming; Forster, Michael; Chassé, Thomas; Pichler, Thomas; Riedl, Thomas; Chen, Yiwang; Scherf, Ullrich

    2015-11-01

    Microporous, pillared graphene-based frameworks are generated in a simple functionalization/coupling procedure starting from reduced graphene oxide. They are used for the fabrication of high-performance supercapacitor devices. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Reproductive natural history and successful juvenile propagation of the threatened Caribbean Pillar Coral Dendrogyra cylindrus

    NARCIS (Netherlands)

    Marhaver, K.L.; Vermeij, M.J.A.; Medina, M.M.

    2015-01-01

    Background: The Caribbean pillar coral Dendrogyra cylindrus was recently listed as a threatened species under the United States Endangered Species Act. One of the major threats to this species is its low, virtually undetectable recruitment rate. To our knowledge, sexually-produced recruits have

  5. The use of virtual reality to simulate room and pillar operations

    Energy Technology Data Exchange (ETDEWEB)

    Crawshaw, S A.M.; Denby, B; McClarnon, D [Long-Airdox International Limited, Ilkeston (United Kingdom)

    1997-01-01

    Virtual Reality systems allow a user to interact with dynamic three-dimensional computer models of real world situations. The authors show how the complexity of room and pillar mining operations may be mirrored in a user-configurable system. Additionally, an understanding is gained of the mining method, and the operation of equipment in the actual working environment. 1 ref., 5 figs.

  6. Mechanical properties of nano and bulk Fe pillars using molecular dynamics and dislocation dynamics simulation

    Directory of Open Access Journals (Sweden)

    S. K. Deb Nath

    2017-10-01

    Full Text Available Using molecular dynamics simulation, tension and bending tests of a Fe nanopillar are carried out to obtain its Young’s modulus and yield strength. Then the comparative study of Young’s modulus and yield strength of a Fe nanopillar under bending and tension are carried out varying its diameter in the range of diameter 1-15nm. We find out the reasons why bending Young’s modulus and yield strength of a Fe nanopillar are higher than those of tension Young’s modulus and yield strength of a Fe nanopillar. Using the mobility parameters of bulk Fe from the experimental study [N. Urabe and J. Weertman, Materials Science and Engineering 18, 41 (1975], its temperature dependent stress-strain relationship, yield strength and strain hardening modulus are obtained from the dislocation dynamics simulations. Strain rate dependent yield strength and strain hardening modulus of bulk Fe pillars under tension are studied. Temperature dependent creep behaviors of bulk Fe pillars under tension are also studied. To verify the soundness of the present dislocation dynamics studies of the mechanical properties of bulk Fe pillars under tension, the stress vs. strain relationship and dislocation density vs. strain of bulk Fe pillars obtained by us are compared with the published results obtained by S. Queyreau, G. Monnet, and B. Devincre, International Journal of Plasticity 25, 361 (2009.

  7. Strength Reduction of Coal Pillar after CO2 Sequestration in Abandoned Coal Mines

    Directory of Open Access Journals (Sweden)

    Qiuhao Du

    2017-02-01

    Full Text Available CO2 geosequestration is currently considered to be the most effective and economical method to dispose of artificial greenhouse gases. There are a large number of coal mines that will be scrapped, and some of them are located in deep formations in China. CO2 storage in abandoned coal mines will be a potential option for greenhouse gas disposal. However, CO2 trapping in deep coal pillars would induce swelling effects of coal matrix. Adsorption-induced swelling not only modifies the volume and permeability of coal mass, but also causes the basic physical and mechanical properties changing, such as elastic modulus and Poisson ratio. It eventually results in some reduction in pillar strength. Based on the fractional swelling as a function of time and different loading pressure steps, the relationship between volumetric stress and adsorption pressure increment is acquired. Eventually, this paper presents a theory model to analyze the pillar strength reduction after CO2 adsorption. The model provides a method to quantitatively describe the interrelation of volumetric strain, swelling stress, and mechanical strength reduction after gas adsorption under the condition of step-by-step pressure loading and the non-Langmuir isothermal model. The model might have a significantly important implication for predicting the swelling stress and mechanical behaviors of coal pillars during CO2 sequestration in abandoned coal mines.

  8. The Decade of Education for Sustainable Development: Towards four pillars of learning

    OpenAIRE

    Shivali Lawale; Aline Bory-Adams

    2010-01-01

    Education for sustainable development is a paradigm shift in education which goes beyond the traditional realms of education. Shivali Lawale and Aline Bory-Adams assess how education for sustainable development could build sustainable societies through the Decade of Education for sustainable development. They explore how to build a conceptual framework based on the four pillars of learning proposed by the Delors Report.

  9. Promoting Family Literacy through the Five Pillars of Family and Community Engagement (FACE)

    Science.gov (United States)

    Kuo, Nai-Cheng

    2016-01-01

    Family literacy involves factors beyond what is done at home between parents and children. To help preservice teachers develop their understanding of the multiple dimensions of family literacy, this study uses the five pillars of family and community engagement (FACE)--early literacy, family involvement, access to books, expanded learning, and…

  10. The Sloan-C Pillars and Boundary Objects As a Framework for Evaluating Blended Learning

    Science.gov (United States)

    Laumakis, Mark; Graham, Charles; Dziuban, Chuck

    2009-01-01

    The authors contend that blended learning represents a boundary object; a construct that brings together constituencies from a variety of backgrounds with each of these cohorts defining the object somewhat differently. The Sloan-C Pillars (learning effectiveness, access, cost effectiveness, student satisfaction, and faculty satisfaction) provide…

  11. Fabrication and characterization of Au dimer antennas on glass pillars with enhanced plasmonic response

    Directory of Open Access Journals (Sweden)

    Sadeghi Pedram

    2017-06-01

    Full Text Available We report on the fabrication and dark-field spectroscopy characterization of Au dimer nanoantennas placed on top of SiO2 nanopillars. The reported process enables the fabrication of nanopillar dimers with gaps down to 15 nm and heights up to 1 μm. A clear dependence of the plasmonic resonance position on the dimer gap is observed for smaller pillar heights, showing the high uniformity and reproducibility of the process. It is shown how increasing the height of nanopillars significantly affects the recorded elastic scattering spectra from Au nanoantennas. The results are compared to finite-difference time-domain (FDTD and finite-element method (FEM simulations. Additionally, measured spectra are accompanied by dark-field microscopy images of the dimers, showing the pronounced change in color. Placing nanoantennas on nanopillars with a height comparable to the in-plane dimer dimensions results in an enhancement of the scattering response, which can be understood through reduced interaction of the near-fields with the substrate. When increasing the pillar height further, scattering by the pillars themselves manifests itself as a strong tail at lower wavelengths. Additionally, strong directional scattering is expected as a result of the interface between the nanoantennas and nanopillars, which is taken into account in simulations. For pillars of height close to the plasmonic resonance wavelength, the scattering spectra become more complex due to additional scattering peaks as a result of larger geometrical nonuniformities.

  12. A diabetic retinopathy detection method using an improved pillar K-means algorithm.

    Science.gov (United States)

    Gogula, Susmitha Valli; Divakar, Ch; Satyanarayana, Ch; Rao, Allam Appa

    2014-01-01

    The paper presents a new approach for medical image segmentation. Exudates are a visible sign of diabetic retinopathy that is the major reason of vision loss in patients with diabetes. If the exudates extend into the macular area, blindness may occur. Automated detection of exudates will assist ophthalmologists in early diagnosis. This segmentation process includes a new mechanism for clustering the elements of high-resolution images in order to improve precision and reduce computation time. The system applies K-means clustering to the image segmentation after getting optimized by Pillar algorithm; pillars are constructed in such a way that they can withstand the pressure. Improved pillar algorithm can optimize the K-means clustering for image segmentation in aspects of precision and computation time. This evaluates the proposed approach for image segmentation by comparing with Kmeans and Fuzzy C-means in a medical image. Using this method, identification of dark spot in the retina becomes easier and the proposed algorithm is applied on diabetic retinal images of all stages to identify hard and soft exudates, where the existing pillar K-means is more appropriate for brain MRI images. This proposed system help the doctors to identify the problem in the early stage and can suggest a better drug for preventing further retinal damage.

  13. Pillarization and Islam: Church-state traditions and Muslim claims for recognition in the Netherlands

    NARCIS (Netherlands)

    Maussen, M.

    2012-01-01

    Public policy responses to Muslim immigration in the Netherlands are often presented as crucially shaped by ‘pillarization’. This article takes issue with this perception by challenging two related assumptions. On the one hand, that the Dutch church-state model is essentially about pillarization

  14. synthesis, characterization and catalytic activity of the pillared molecular sieve MCM-36

    NARCIS (Netherlands)

    He, Y.; Nivarthy, G.S.; Eder, F.; Eder, F.; Seshan, Kulathuiyer; Lercher, J.A.

    1998-01-01

    MCM-36 materials were prepared by swelling the layered MCM-22 precursors with large organic molecules and then pillaring the resulting material with polymeric silica. A mesopore region with 0.25–0.3 nm thickness between the microporous layers was identified. The BET surface area obtained for MCM-36

  15. Silicon based near infrared photodetector using self-assembled organic crystalline nano-pillars

    Energy Technology Data Exchange (ETDEWEB)

    Ajiki, Yoshiharu, E-mail: yoshiharu-ajiki@ot.olympus.co.jp, E-mail: isao@i.u-tokyo.ac.jp [Micromachine Center, 67 Kanda Sakumagashi, Chiyoda-ku, Tokyo 100-0026 (Japan); Kan, Tetsuo [Department of Mechano-Informatics, Graduate School of Information Science and Technology, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-8656 (Japan); Yahiro, Masayuki; Hamada, Akiko; Adachi, Chihaya [Center for Organic Photonics and Electronics Research (OPERA), Kyushu University, 744 Motooka, Nishi, Fukuoka 819-0395 (Japan); Adachi, Junji [Office for Strategic Research Planning, Kyushu University, 6-10-1 Hakozaki, Higashi, Fukuoka 812-8581 (Japan); Matsumoto, Kiyoshi [IRT Research Initiative, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-8656 (Japan); Shimoyama, Isao, E-mail: yoshiharu-ajiki@ot.olympus.co.jp, E-mail: isao@i.u-tokyo.ac.jp [Department of Mechano-Informatics, Graduate School of Information Science and Technology, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-8656 (Japan); IRT Research Initiative, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-8656 (Japan)

    2016-04-11

    We propose a silicon (Si) based near-infrared photodetector using self-assembled organic crystalline nano-pillars, which were formed on an n-type Si substrate and were covered with an Au thin-film. These structures act as antennas for near-infrared light, resulting in an enhancement of the light absorption on the Au film. Because the Schottky junction is formed between the Au/n-type Si, the electron excited by the absorbed light can be detected as photocurrent. The optical measurement revealed that the nano-pillar structures enhanced the responsivity for the near-infrared light by 89 (14.5 mA/W) and 16 (0.433 mA/W) times compared with those of the photodetector without nano-pillars at the wavelengths of 1.2 and 1.3 μm, respectively. Moreover, no polarization dependency of the responsivity was observed, and the acceptable incident angle ranged from 0° to 30°. These broad responses were likely to be due to the organic nano-pillar structures' having variation in their orientation, which is advantageous for near-infrared detector uses.

  16. Monitoring the bedrock stability in Olkiluoto. Summary of campaign based GPS measurements in 1996-2011

    International Nuclear Information System (INIS)

    Nyberg, S.; Kallio, U.; Haekli, P.; Jokela, J.; Koivula, H.; Saaranen, V.; Rouhiainen, P.

    2013-12-01

    The Finnish Geodetic Institute has monitored crustal deformations in Olkiluoto since mid-1990s. This is a final report of campaign based GPS measurements carried out in 1996-2011. The aim of the research has been monitoring the bedrock stability in the Olkiluoto area. The research were started in 1995, when a local GPS network of ten pillars, called inner network, was established on Olkiluoto Island. The research area was expanded in 2003- 2005 with four new pillars (outer network) established at 5-10 km distances from the inner network. One of the pillar points is the Olkiluoto permanent GPS station. Regular biannual measurement campaigns have been carried out on other pillar points

  17. Effect of ultrasound on the structural and textural properties of copper-impregnated cerium-modified zirconium-pillared bentonite

    International Nuclear Information System (INIS)

    Tomul, Fatma

    2011-01-01

    In this study, the synthesis of zirconium-pillared bentonite modified with cerium was performed via two different methods by the application of conventional and ultrasonic treatments during the intercalation stage. To synthesise copper-impregnated pillared clays by wet impregnation, cerium-modified zirconium-pillared clays were used as supportive materials after being calcined at 300 °C. Ultrasonic treatment significantly decreased the required processing time compared with the conventional treatment of the synthesised pillared bentonites. Chemical analysis confirmed the incorporation of Zr 4+ , Ce 4+ and Cu 2+ species into the pillared bentonites. X-ray diffraction (XRD) patterns of zirconium- and cerium/zirconium-pillared bentonites prepared by conventional treatment show that one large d-spacing above 3.5 nm corresponds to the mesoporous delaminated part, and another small d-spacing above 1.7 nm is indicative of the microporous pillared part. Zirconium- and cerium/zirconium-pillared bentonites prepared via ultrasonic treatment exhibited similar results, with the same high d-spacing but with a second low-intensity d-spacing above 1.9 nm. The delaminated structures of the pillared bentonites synthesised by both methods were conserved after copper impregnation. Nitrogen-adsorption isotherm analysis showed that the textural characteristics of products synthesised by ultrasonic treatment were comparable to those of products synthesised by conventional treatment. Fourier-transform infrared spectroscopy (FTIR) analyses showed the presence of Brønsted- and Lewis-acid sites, and zirconium-pillared clays synthesised by conventional treatment exhibited increased numbers of Brønsted- and Lewis-acid sites after cerium addition and copper impregnation. However, the products synthesised by ultrasonic treatment exhibited an increased number of Brønsted- and Lewis-acid sites after cerium addition, but a decreased number of acid sites after copper impregnation.

  18. Evaluating 8 pillars of Total Productive Maintenance (TPM) implementation and their contribution to manufacturing performance

    Science.gov (United States)

    Adesta, E. Y. T.; Prabowo, H. A.; Agusman, D.

    2018-01-01

    TPM is one method to improve manufacturing performance through an emphasis on maintenance that involves everyone in the organization. Research on the application of TPM and its relevance to the manufacturing performance has been performed quite a lot. However, to the best of our knowledge, a study that deliberates how the application of 8 pillars TPM (especially in developing countries) is still hard to find. This paper attempts to evaluate in more detail about how the 8 pillars of TPM are applied in Indonesia and their impact on manufacturing performance. This research is a pilot study with a target of 50 companies. From the results of data collection, only 22 companies (44%) are eligible to process. Data processing was performed using SPSS and Smart PLS tools. From the validity and reliability tests, it can be seen that all items/indicators for TPM pillars are valid and reliable with correlation value (R) of 0.614 - 0.914 and with Cronbach’s alpha equal to 0.753. As for the Manufacturing Performance construct, the Delivery indicator was not valid. In overall, the model is reliable with Cronbach’s alpha of 0.710. From the results of Confirmatory Factors Analysis (CFA) for TPM, it can be seen that four indicators (pillars) are highly significant while four other indicators are less significant. For MP, three indicators are significant, and two are not significant. In general, the structural model of the relationship between TPM and MP is relatively strong and positive with values R = 0.791, and R squared = 0.626. This means that the TPM Pillars can explain 62.6% MP variability construct variable, while the other 37.4% can be explained by unrelated variables.

  19. Choice consistency and preference stability in test-retests of discrete choice experiment and open-ended willingness to pay elicitation formats

    NARCIS (Netherlands)

    Brouwer, R.; Logar, I.; Sheremet, O.I.

    2017-01-01

    This study tests the temporal stability of preferences, choices and willingness to pay (WTP) values using both discrete choice experiment (DCE) and open-ended (OE) WTP elicitation formats. The same sample is surveyed three times over the course of two years using each time the same choice sets.

  20. Hierarchical ZnO@MnO2 Core-Shell Pillar Arrays on Ni Foam for Binder-Free Supercapacitor Electrodes

    KAUST Repository

    Huang, Ming; Li, Fei; Zhao, Xiao Li; Luo, Da; You, Xue Qiu; Zhang, Yu Xin; Li, Gang

    2015-01-01

    © 2014 Elsevier Ltd. All rights reserved. Hierarchical ZnO@MnO2 core-shell pillar arrays on Ni foam have been fabricated by a facile two-step hydrothermal approach and further investigated as the binder-free electrode for supercapacitors. The core-shell hybrid nanostructure is achieved by decorating ultrathin self-standing MnO2 nanosheets on ZnO pillar arrays grown radically on Nickel foam. This unique well-designed binder-free electrode exhibits a high specific capacitance (423.5 F g-1 at a current density of 0.5 A g-1), and excellent cycling stability (92% capacitance retention after 3000 cycles). The improved electrochemical results show that the ZnO@MnO2 core-shell nanostructure electrode is promising for high-performance supercapacitors. The facile design of the unique core-shell array architectures provides a new and effective approach to fabricate high-performance binder-free electrode for supercapacitors.

  1. An array of ordered pillars with retentive properties for pressure-driven liquid chromatography fabricated directly from an unmodified cyclo olefin polymer

    NARCIS (Netherlands)

    Illa, Xavi; de Malsche, Wim; Bomer, Johan G.; Gardeniers, Johannes G.E.; Eijkel, Jan C.T.; Morante, Joan Ramon; Romano-Rodriguez, Albert; Desmet, Gert

    2009-01-01

    The current paper describes the development and characterization of a pillar array chip that is constructed out of a sandwich of cyclo olefin polymer (COP) sheets. The silicon master of a 5 cm long pillar array was embossed into the COP, yielding 4.3 µm deep pillars of 15.3 µm diameter with an

  2. Senior Service College: A Pillar of Civilian Senior Leader Development

    Science.gov (United States)

    2011-02-16

    other burgeoning global issues mandate the existence of capable senior civilian leaders who can effectively participate within the whole-of-government...experience that provides the opportunity to discuss and debate current global issues with the members of the world’s finest military. Civilians not only

  3. Design for Change : EPIC pillars for Persuasive Design for Health

    NARCIS (Netherlands)

    Tjin-Kam-Jet-Siemons, Liseth; van Gemert-Pijnen, Julia E.W.C.

    2016-01-01

    What makes technology now truly empathic? How to develop designs that matter? We apply the EPIC for change model for persuasive and empathic designs. EPIC stands for: • Engagement: Creating experience, flow using persuasive strategies and triggers in development, using positive psychology concepts;

  4. Problems experiences with the construction of cement and lime stabilized layers and working solutions for these problems

    CSIR Research Space (South Africa)

    Botha, PB

    2005-10-01

    Full Text Available Stabilized layers are used extensively in South-Africa in the construction of roads. The layers are usually stabilized with hydrated road lime, cement, slag, fly-ash, bitumen emulsion, foamed asphalt or a combination of several of these agents...

  5. [Toxicological evaluation of nanosized colloidal silver, stabilized with polyvinylpyrrolidone, in 92-day experiment on rats. II. Internal organs morphology].

    Science.gov (United States)

    Zaytseva, N V; Zemlyanova, M A; Zvezdin, V N; Dovbysh, A A; Gmoshinsky, I V; Khotimchenko, S A; Akafieva, T I

    2016-01-01

    The aim of the study was to evaluate the safe doses of commercially available nanosized colloidal silver (NCS), stabilized with polyvinilpirrolidone (PVP, food additive E1201) when administered in gastrointestinal tract of rats in the 92-day experiment in terms of the morphological changes in the internals of animals. The sample studied contained non-aggregated nanoparticles (NPs) of silver belonging to size fractions with a diameter of less than 5 nm, 10-20 nm or 50-80 nm. 80% of NPs were inside the range of hydrodynamic diameters 10.6-61.8 nm. The preparation of NCS was administered to growing male Wistar rats. (initial body weight 80 ± 10 g) for 1 month by intragastric gavage and then consumed with food at doses of 0.1, 1.0 and 10 mg/kg of body weight based on silver. The control animals received water or vehicle of nanomaterial--water solution of PVP. After withdrawal of animals from the experiment by exsanguination under ether anesthesia organs (liver, spleen, kidney, ileum) were isolated and their slides were prepared by standard methods following 'by staining with hematoxylin-eosin. Analysis was performed in light optical microscope equipped with a digital camera at a magnification from 1 x 100 to 1 x 1000. It was shown that the experimental animals treated with the NCS developed series of morphological changes in the tissues of the internal organs (liver, spleen and kidney) with the elevation of the range and severity of structural changes with increasing doses of silver. The most sensitive target of NCS action was apparently liver, which has already shown at a dose of 0.1 mg of silver NP/kg of body weight marked eosinophilic infiltration of portal tracts, which was accompanied at doses of 1.0 and 10.0 mg/kg by the emergence of medium and large-drop fat vacuoles in the cytoplasm of hepatocytes, swelling and lympho-macrophage. infiltration of the portal tracts. Detectable changes can be regarded as symptoms of inflammation of hepatocytes, at least, at a

  6. Forecast and Prevention of Coal and Gas Outbursts in the Case of Application of a New Mining Method - Drilling of a Coal Pillar

    Directory of Open Access Journals (Sweden)

    Vlastimil Hudeček

    2010-10-01

    Full Text Available Coal and gas outbursts are one of risk factors accompanying the mining of coal in low seams in the Ostrava-Karviná Coalfield.At the use of the method of longwall mining, all coal reserves have not been mined out owing to tectonic faults. For mining outthe residual reserves, the application of a new mining method - drilling of a coal pillar was proposed.The method of mining of a coal seam utilizing long large diameter boreholes is verified in the Paskov Mine (company OKD, JSC –Czech Republic under conditions of rock mass with hazard of rock and gas outbursts in localities of residual pillars left in seams afterfinishing the mining operations performed with using the classical method of longwall working along the strike. [5]Forecast and preventive measures applied to the verification of the new method were based on previous experience withthe mining of seams with hazard of coal and gas outbursts. They accepted fully valid legislation, i.e. Ordinance of Ostrava RegionalMining Authority No. 3895/2002 and supplementary materials (Instructions and Guidelines. The proposed measures respectedthe character of the method being verified. [4]For all areas being mined, projects containing also chapters specifying the problems of ensuring the safety of mining worksand operation under conditions of hazard of coal and gas outbursts were prepared.In the contributions, basic proposals for the principles of coal and gas outburst forecast and prevention when applying the newmining method – drilling of a coal pillar are presented

  7. A superhydrophobic chip based on SU-8 photoresist pillars suspended on a silicon nitride membrane

    KAUST Repository

    Marinaro, Giovanni; Accardo, Angelo; De Angelis, Francesco; Dane, Thomas; Weinhausen, Britta; Burghammer, Manfred; Riekel, Christian

    2014-01-01

    We developed a new generation of superhydrophobic chips optimized for probing ultrasmall sample quantities by X-ray scattering and fluorescence techniques. The chips are based on thin Si3N4 membranes with a tailored pattern of SU-8 photoresist pillars. Indeed, aqueous solution droplets can be evaporated and concentrated at predefined positions using a non-periodic pillar pattern. We demonstrated quantitatively the deposition and aggregation of gold glyconanoparticles from the evaporation of a nanomolar droplet in a small spot by raster X-ray nanofluorescence. Further, raster nanocrystallography of biological objects such as rod-like tobacco mosaic virus nanoparticles reveals crystalline macro-domain formation composed of highly oriented nanorods. © 2014 the Partner Organisations.

  8. A superhydrophobic chip based on SU-8 photoresist pillars suspended on a silicon nitride membrane

    KAUST Repository

    Marinaro, Giovanni

    2014-07-28

    We developed a new generation of superhydrophobic chips optimized for probing ultrasmall sample quantities by X-ray scattering and fluorescence techniques. The chips are based on thin Si3N4 membranes with a tailored pattern of SU-8 photoresist pillars. Indeed, aqueous solution droplets can be evaporated and concentrated at predefined positions using a non-periodic pillar pattern. We demonstrated quantitatively the deposition and aggregation of gold glyconanoparticles from the evaporation of a nanomolar droplet in a small spot by raster X-ray nanofluorescence. Further, raster nanocrystallography of biological objects such as rod-like tobacco mosaic virus nanoparticles reveals crystalline macro-domain formation composed of highly oriented nanorods. © 2014 the Partner Organisations.

  9. Analisis dan Perancangan Aplikasi Berbasis Web E-Procurement di PT Pillar Utama Contrindo

    Directory of Open Access Journals (Sweden)

    Sartika Kurniali

    2012-12-01

    Full Text Available The aim of this research is to analyze the current business process at the procurement department at PT Pillar Utama Contrindo as well as develop a web based e-procurement application prototype to supportprocurement process at the company. Interview, survey, as well as analysis and design to develop the prototype are used in the research. The research results in an e-procurement application prototype built to minimize errors on related document filling, help the company to get best price on their supply, and increase control. It can be concluded from the research that the protoype can be implemented to be a tool for the users to decide the best supplier, obtain the best price, and increase control in buying process at PT Pillar Utama Contrindo.

  10. A micro-pillar array to trap magnetic beads in microfluidic systems

    KAUST Repository

    Gooneratne, Chinthaka Pasan

    2012-12-01

    A micro-pillar array (MPA) is proposed in this paper to trap and separate magnetic beads (MBs) in microfluidic systems. MBs are used in many biomedical applications due to being compatible in dimension to biomolecules, the large surface area available to attach biomolecules, and the fact that they can be controlled by a magnetic field. Trapping and separating these labeled biomolecules is an important step toward achieving reliable and accurate quantification for disease diagnostics. Nickel Iron (Ni50Fe 50) micro-pillars were fabricated on a Silicon (Si) substrate by standard microfabrication techniques. Experimental results showed that MBs could be trapped on the MPA at the single bead level and separated from other non-target particles. This principle can easily be extended to trap and separate target biomolecules in heterogeneous biological samples. © 2012 IEEE.

  11. The Issue of Data Protection and Data Security in the (Pre-Lisbon EU Third Pillar

    Directory of Open Access Journals (Sweden)

    Maria O'Neill

    2010-06-01

    Full Text Available The key functional operability in the pre-Lisbon PJCCM pillar of the EU is the exchange of intelligence and information amongst the law enforcement bodies of the EU. The twin issues of data protection and data security within what was the EU’s third pillar legal framework therefore come to the fore. With the Lisbon Treaty reform of the EU, and the increased role of the Commission in PJCCM policy areas, and the integration of the PJCCM provisions with what have traditionally been the pillar I activities of Frontex, the opportunity for streamlining the data protection and data security provisions of the law enforcement bodies of the post-Lisbon EU arises. This is recognised by the Commission in their drafting of an amending regulation for Frontex , when they say that they would prefer “to return to the question of personal data in the context of the overall strategy for information exchange to be presented later this year and also taking into account the reflection to be carried out on how to further develop cooperation between agencies in the justice and home affairs field as requested by the Stockholm programme.” The focus of the literature published on this topic, has for the most part, been on the data protection provisions in Pillar I, EC. While the focus of research has recently sifted to the previously Pillar III PJCCM provisions on data protection, a more focused analysis of the interlocking issues of data protection and data security needs to be made in the context of the law enforcement bodies, particularly with regard to those which were based in the pre-Lisbon third pillar. This paper will make a contribution to that debate, arguing that a review of both the data protection and security provision post-Lisbon is required, not only in order to reinforce individual rights, but also inter-agency operability in combating cross-border EU crime. The EC’s provisions on data protection, as enshrined by Directive 95/46/EC, do not apply

  12. An adhesive bonding method with microfabricating micro pillars to prevent clogging in a microchannel

    International Nuclear Information System (INIS)

    Chen, Pin-Chuan; Liu, Yu-Min; Chou, Huang-Chieh

    2016-01-01

    Thermoplastics are widely used in the fabrication of microfluidic chips, due to their low cost, flexibility in manufacturing, and applicability in large-scale production. This paper presents a novel bonding method for the assembly of thermoplastic microfluidic chips, with the aim of preventing the flow of UV adhesive into microchannels during the bonding process. The proposed bonding methodology depends primarily on controlling the thickness of the UV adhesive, which is achieved by using spin-coating for the uniform UV adhesive in conjunction with the microfabrication of short pillars for keeping a uniform gap between the two bonded surfaces. In this study, two devices with serpentine microchannels (cross-sectional area of 500 μm  ×  500 μm and 200 μm  ×  200 μm) were fabricated on PMMA substrates using a micromilling machine, whereupon a hydrophobic coating was applied to the walls of 200 μm  ×  200 μm microchannels in order to prevent clogging, which might otherwise be caused by the seepage of UV adhesive into the channels. A variety of experiments were used to characterize the quality of bonding, the results of which reveal the following: (1) no leakage was observed in either of the microfluidic chips; (2) the hydrophobic coating proved highly effective in preventing the flow of UV adhesive into the smaller microchannels; (3) the average amount of clogging inside 500 μm  ×  500 μm microchannels was 1.13% with standard deviation of 0.55%, while the average amount of clogging inside 200 μm  ×  200 μm microchannels was 1.65% with standard deviation of 0.92%; (4) the average thickness of the UV adhesive in a 500 μm  ×  500 μm microfluidic chip was 32 μm with standard deviation of 2 μm, whereas the average thickness of the UV adhesive in a 200 μm  ×  200 μm microfluidic chip was 31 μm with standard deviation of 1.2 μm; (5) the two chips possess sufficient bonding strength to withstand

  13. Dense high-aspect ratio 3D carbon pillars on interdigitated microelectrode arrays

    DEFF Research Database (Denmark)

    Amato, Letizia; Heiskanen, Arto; Hansen, Rasmus

    2015-01-01

    In this work we present high-aspect ratio carbon pillars (1.4 μm in diameter and ∼11 μm in height) on top of interdigitated electrode arrays to be used for electrochemical applications. For this purpose, different types of 2D and 3D pyrolysed carbon structures were fabricated and characterised...... of pyrolysed carbon films with increased film resistance due to oxidation during storage....

  14. Environmental Remediation and Sorption of Metal Cations Using Aluminum Pillared Nano-Bentonite

    Science.gov (United States)

    Rifai, Rifai; Abou El Safa, Magda

    2015-04-01

    The release of heavy metal cations into the environment is a potential threat to water and soil quality. Some clay minerals play an important role, as physical and chemical barriers, for the isolation of metal-rich wastes and to adsorb heavy metals as well as to avoid their environmental dispersion. In the present study, the bentonitic clay (southeast El-Hammam City, Egypt) was subjected to pillaring using hydroxyl-aluminum solution. The XRD patterns of the Aluminum Pillared Nano-Bentonite (APNB) showed severe alteration of the crystal structure after pillaring. Poly metal solutions with different metal concentrations of Cu, Co, Ni, Zn, Cd and Pb (0.001, 0.005 and 0.01 moles), and pH (1, 2.5, 5 and 6) were subjected to treatment by the APNB. The removal process is very rapid and spontaneous and the contact time may be short (several minutes) for most adsorption to occur. The criterion for environmental remediation of APNB is less stringent and a short contact time is sufficient. The rate of Cu2+, Zn2+, Co2+, Cd2+, Ni2+ and Pb2+sorption remained higher or equal to the CEC. The sorption of metal ions by APNB are complex and probably involve several mechanisms. In general, APNB can be used to immobilize Cu2+, Zn2+, Co2+, Cd2+, Ni2+ and Pb2+ to any extent. For each metal ion, the most effective immobilization occurs over a particular pH around 5. According to the experimental data obtained, the uptake amount of the studied cations by APNB increased with increasing solution pH, sorbent dose and contact time. The preference of the APNB adsorption for heavy metal ions that are through the cation exchange processes decreases in the order: Cu2+>Zn2+>Co2+>Cd2+ >Ni2+ >Pb2+. Keywords: Bentonitic clay, Egypt, Aluminum Pillared Nano-Bentonite, heavy metal, environmental remediation

  15. Use of Pillared Clay-Based Catalysts for Wastewater Treatment through Fenton-Like Processes

    OpenAIRE

    J. Herney-Ramírez; Luis M. Madeira

    2010-01-01

    Clays, both natural and physical-chemically modified, are attractive materials for the preparation of supported catalysts. In this chapter, a review is made regarding the use of pillared interlayered clays (PILCs) in heterogeneous Fenton-like advanced oxidation processes. Their applications in pollutants degradation is summarized, with particular emphasis on the effect of the main operating conditions (e.g., initial H2O2 or parent compound concentration, catalyst load, pH, or temperature) on ...

  16. Analysis of the situation in the textile industry in Мacedonia through four quality pillars

    OpenAIRE

    Mitreva, Elizabeta; Risteski, Sanja; Srebrenkoska, Vineta; Lazarevski, Ilija

    2016-01-01

    In this paper is elaborated and confirmed the need of projection and implementation of total quality management (TQM) system within Macedonian textile factories. Quality should be required not only in the production process, but in all parts of the business processes, even in the way the employees behave. An analysis is made on the situation in the textile industry in Macedonia and its progress through the four quality pillars: internal standardization, statistical process control appliance, ...

  17. Porphyrinic supramolecular daisy chains incorporating pillar[5]arene-viologen host-guest interactions

    KAUST Repository

    Fathalla, Maher; Strutt, Nathan; Srinivasan, Sampath; Katsiev, Khabiboulakh; Hartlieb, Karel J.; Bakr, Osman; Stoddart, J. Fraser

    2015-01-01

    A porphyrin functionalised with pillar[5]arene and a viologen at its 5- and 15-meso positions assembles in a head-to-tail manner, producing linear supramolecular daisy chains in dichloromethane. At high concentrations, it forms an organogel which has been investigated by electron microscopy and rheological measurements, paving the way for the preparation of other functional supramolecular assemblies which harness viologen"⊂" pillararene host-guest interactions.

  18. UNESCO: The four pillars of ‘postmodern education’”

    OpenAIRE

    Silva, Lenildes Ribeiro

    2008-01-01

    This article sets out to establish a relationship between discussions on education mentioned in the report to UNESCO – Education: a treasure to discover – and Lyotard’s post-modernity discourse. It presents the proposal for education from this report, highlighting the four pillars of education: learning to know, learning to do, learning to be and live together, taking as their starting point the relationship between the process of globalization and the discourse of postmodernity and these pil...

  19. A framework for work-based learning: basic pillars and the interactions between them

    OpenAIRE

    Ferrández Berrueco, María Reina; Kekale, Tauno; Devins, David

    2016-01-01

    Purpose – European policy is placing an increasing emphasis on involving employers and labour market institutions in the design and delivery of higher education (HE) programmes that match curricula to current and future needs of the economy. The purpose of this paper is to investigate the curriculum development process for work-based learning (WBL) programmes and to connect it to the basic pillars, organizational and pedagogical strategies and key stages that enable higher education instit...

  20. Porphyrinic supramolecular daisy chains incorporating pillar[5]arene-viologen host-guest interactions

    KAUST Repository

    Fathalla, Maher

    2015-05-18

    A porphyrin functionalised with pillar[5]arene and a viologen at its 5- and 15-meso positions assembles in a head-to-tail manner, producing linear supramolecular daisy chains in dichloromethane. At high concentrations, it forms an organogel which has been investigated by electron microscopy and rheological measurements, paving the way for the preparation of other functional supramolecular assemblies which harness viologen"⊂" pillararene host-guest interactions.

  1. Preparation and extraction of sloping seams without leaving inter-drift coal pillars

    Energy Technology Data Exchange (ETDEWEB)

    Artamonov, N S; Bormotov, I N; Brovko, I I

    1977-10-01

    A description is given of mining three coal seams in the Kuznetsk Basin without leaving coal pillars because they could not withstand the stress of the induced reference pressure. This system reduced coal losses in 1976 in comparison to 1970 and eliminated local accumulations of methane by withdrawing it through the excavated area. The system was noted to have the disadvantage of additional expenditures for timber supports. 2 figures.

  2. Enhanced photocatalytic activity of microwave treated TiO2 pillared montmorillonite

    International Nuclear Information System (INIS)

    Sun Shenmei; Jiang Yinshan; Yu Lixin; Li Fangfei; Yang Zhengwen; Hou Tianyi; Hu Daqiang; Xia Maosheng

    2006-01-01

    TiO 2 pillared montmorillonite synthesized by microwave irradiation, exhibited good photocatalytic degradation performance of methyl orange, whose pseudo first order reaction rate constant was nearly four times than that of conventional method, because of its enhanced crystalline, preferred anatase phase and improved porosity performance, which were analysed by X-ray diffraction (XRD), far Fourier transform infrared ray spectroscopy (FTIR) and nitrogen adsorption isotherms

  3. Fabrication method to create high-aspect ratio pillars for photonic coupling of board level interconnects

    Science.gov (United States)

    Debaes, C.; Van Erps, J.; Karppinen, M.; Hiltunen, J.; Suyal, H.; Last, A.; Lee, M. G.; Karioja, P.; Taghizadeh, M.; Mohr, J.; Thienpont, H.; Glebov, A. L.

    2008-04-01

    An important challenge that remains to date in board level optical interconnects is the coupling between the optical waveguides on printed wiring boards and the packaged optoelectronics chips, which are preferably surface mountable on the boards. One possible solution is the use of Ball Grid Array (BGA) packages. This approach offers a reliable attachment despite the large CTE mismatch between the organic FR4 board and the semiconductor materials. Collimation via micro-lenses is here typically deployed to couple the light vertically from the waveguide substrate to the optoelectronics while allowing for a small misalignment between board and package. In this work, we explore the fabrication issues of an alternative approach in which the vertical photonic connection between board and package is governed by a micro-optical pillar which is attached both to the board substrate and to the optoelectronic chips. Such an approach allows for high density connections and small, high-speed detector footprints while maintaining an acceptable tolerance between board and package. The pillar should exhibit some flexibility and thus a high-aspect ratio is preferred. This work presents and compares different fabrication methods and applies different materials for such high-aspect ratio pillars. The different fabrication methods are: photolithography, direct laser writing and deep proton writing. The selection of optical materials that was investigated is: SU8, Ormocers, PU and a multifunctional acrylate polymer. The resulting optical pillars have diameters ranging from 20um up to 80um, with total heights ranging between 30um and 100um (symbol for micron). The aspect-ratio of the fabricated structures ranges from 1.5 to 5.

  4. Preparation of C.I. Pigment 52:1 anion-pillared layered double hydroxide and the thermo- and photostability of the resulting intercalated material

    Science.gov (United States)

    Guo, Shengchang; Evans, David G.; Li, Dianqing

    2006-05-01

    Intercalation of 2-naphthalenecarboxylic acid, 4-((4-chloro-5-methyl-2-sulfophenyl) azo)-3-hydroxy-, calcium salt (1:1) (C.I. Pigment Red 52:1, also known as New Rubine S6B) into a layered double hydroxide (LDHs) host was carried out using MgAl NO3 LDHs as a precursor in an effort to improve the thermal and photo stability of the pigment. After intercalation, the powder X-ray diffraction (XRD) pattern shows that the basal spacing of the LDHs increased from 0.86 to 1.92 nm. Infrared spectra and TG DTA curves demonstrate that there are supramolecular host guest interactions. It was found that the intercalated material is more stable than the pristine pigment at high temperatures. The pigment anion-pillared LDHs also exhibit much higher photostablity to UV-light than the pristine pigment.

  5. Rockburst Disaster Prediction of Isolated Coal Pillar by Electromagnetic Radiation Based on Frictional Effect

    Science.gov (United States)

    Zhao, Tongbin; Yin, Yanchun; Xiao, Fukun; Tan, Yunliang; Zou, Jianchao

    2014-01-01

    Based on the understanding that charges generated during coal cracking are due to coal particle friction, a microstructure model was developed by considering four different variation laws of friction coefficient. Firstly, the frictional energy release of coal sample during uniaxial compressive tests was investigated and discussed. Then electromagnetic radiation method was used to predict the potential rockburst disaster in isolated coal pillar mining face, Muchengjian Colliery. The results indicate that the friction coefficient of coal particles decreases linearly with the increase of axial loading force. In predicting the strain-type rockburst, the high stress state of coal must be closely monitored. Field monitoring shows that electromagnetic radiation signal became abnormal before the occurrence of rockburst during isolated coal pillar mining. Furthermore, rockburst tends to occur at the early and ending stages of isolated coal pillar extraction. Mine-site investigation shows the occurrence zone of rockburst is consistent with the prediction, proving the reliability of the electromagnetic radiation method to predict strain-type rockburst disaster. PMID:25054186

  6. The pillar of metropolitan greatness: The long making of archeological objects in Paris (1711-2001).

    Science.gov (United States)

    Van Damme, Stéphane

    2017-09-01

    Over three centuries after the 1711 discovery in the choir of Notre-Dame in Paris of a square-section stone bas-relief (the Pillar of the Boatmen) with depictions of several deities, both Gaulish and Roman, the blocks comprising it were analyzed as a symbol of Parisian power, if not autonomy, vis-à-vis the Roman Empire. Variously considered as local, national, or imperial representations, the blocks were a constant object of admiration, interrogation, and speculation among antiquarians of the Republic of Letters. They were also boundary objects - products of the emergence of a Parisian archeology dated from 1711. If this science reflected the tensions and ambiguities of a local regime of knowledge situated in a national context, it also helped to coordinate archeological work between different institutions and actors. This paper would like to assess the specific role played by the Pillar of the Boatmen as a fetish object in this process. To what extent could an archeological artifact influence this reshaping of urban representation, this change of scales? By following the three-century career of the pillar's blocks as composite objects, which some have identified as merely stones or a column, it is possible to understand the multiple dimensions that defined the object as archeological - as an artifact that contributed to the relocating of the historical city center - and the multiple approaches that transform existing remains into knowledgeable objects.

  7. Empirical approach for designing of support system in mechanized coal pillar mining

    Energy Technology Data Exchange (ETDEWEB)

    Kushwaha, A.; Singh, S.K.; Tewari, S.; Sinha, A. [Central Institute of Mining & Fuel Research, Dhanbad (India)

    2010-10-15

    Mechanized room-and-pillar system of coal pillar mining using side dump loading machine or load haul dumper machine, or by continuous miner, is the presently most dominant under ground method of extraction in India. Under this method of extraction, strata control is a major problem affecting safety and productivity of the mine. As per existing Director General of Mine Safety guidelines, systematic support rules must be followed at the depillaring faces irrespective of immediate roof rock type and competency. Therefore, there is a high chance that sometimes these systematic support rules give unnecessarily high support, or sometimes inadequate support, which may lead to roof failure at the face. As a result, there is a big loss of life and material including coal in terms of left-outribs/stooks and other associated mining equipment deployed at the faces. Therefore, in the present paper, authors attempted to develop generalized empirical equations for estimating the required support load density at different places of the face based on geotechnical parameters of the mine and physico-mechanical properties of the immediate roof rocks for designing of support system during mechanized coal pillar mining.

  8. Porous Structures in Stacked, Crumpled and Pillared Graphene-Based 3D Materials.

    Science.gov (United States)

    Guo, Fei; Creighton, Megan; Chen, Yantao; Hurt, Robert; Külaots, Indrek

    2014-01-01

    Graphene, an atomically thin material with the theoretical surface area of 2600 m 2 g -1 , has great potential in the fields of catalysis, separation, and gas storage if properly assembled into functional 3D materials at large scale. In ideal non-interacting ensembles of non-porous multilayer graphene plates, the surface area can be adequately estimated using the simple geometric law ~ 2600 m 2 g -1 /N, where N is the number of graphene sheets per plate. Some processing operations, however, lead to secondary plate-plate stacking, folding, crumpling or pillaring, which give rise to more complex structures. Here we show that bulk samples of multilayer graphene plates stack in an irregular fashion that preserves the 2600/N surface area and creates regular slot-like pores with sizes that are multiples of the unit plate thickness. In contrast, graphene oxide deposits into films with massive area loss (2600 to 40 m 2 g -1 ) due to nearly perfect alignment and stacking during the drying process. Pillaring graphene oxide sheets by co-deposition of colloidal-phase particle-based spacers has the potential to partially restore the large monolayer surface. Surface areas as high as 1000 m 2 g -1 are demonstrated here through colloidal-phase deposition of graphene oxide with water-dispersible aryl-sulfonated ultrafine carbon black as a pillaring agent.

  9. Model of care for a changing healthcare system: are there foundational pillars for design?

    Science.gov (United States)

    Booker, Catriona; Turbutt, Adam; Fox, Robyn

    2016-04-01

    Currently, healthcare organisations are being challenged to provide optimal clinical services within budget limitations while simultaneously being confronted by aging consumers and labour and skill shortages. Within this dynamic and changing environment, the ability to remain responsive to patient needs while managing these issues poses further challenges. Development or review of the model of care (MOC) may provide a possible solution to support efficiencies in service provision. Although MOC are not readily understood or appreciated as an efficiency strategy, they can be more easily explained by considering several recurring pillars when developing or redesigning an MOC. Generic and recurring foundational pillars include integrated care models, team functioning and communication, leadership, change management and lean thinking. These foundational pillars should be incorporated into the development and application of MOC in order to achieve desired outcomes. However, sustainability requires continuous review to enable improvement and must be integrated into routine business. Moreover, successful review of MOC requires collaboration and commitment by all stakeholders. Leaders are critical to motivating clinicians and stakeholders in the review process. Further, it is imperative that leaders engage stakeholders to commit to support the agreed strategies designed to provide efficient and comprehensive healthcare services. Redesign of MOC can significantly improve patient care by applying the agreed strategies. In the current healthcare environment, these strategies can favourably affect healthcare expenditure and, at the same time, improve the quality of interprofessional health services.

  10. Surface displacements and pillar stresses associated with nuclear waste disposal in salt

    International Nuclear Information System (INIS)

    Hardy, M.P.; St John, C.M.

    1977-01-01

    A numerical model for regional analysis of stresses and displacement, resulting from heat generating waste placement in underground salt excavations, is presented. The model, which is an extension of that described by McClain and Starfield (1971), is based upon the displacement discontinuity method of stress analysis. It incorporates an empirical characterization of creep behavior of material on the excavation horizon and accounts for thermally induced stresses and displacements. The versatility of this approach is illustrated by the results of three relatively short simulations of test scale disposal facilities at shallow and greater depths. In addition, a three-dimensional code was used to evaluate the surface displacement history for a full-scale repository. This latter code, a thermoelastic analysis, gives an upper bound for the surface movements. It is concluded that the pillar stresses are the result of a complex non-linear interaction of many variables, and the maximum pillar stress can reach several multiples of the tributory-area pillar stress

  11. Rockburst Disaster Prediction of Isolated Coal Pillar by Electromagnetic Radiation Based on Frictional Effect

    Directory of Open Access Journals (Sweden)

    Tongbin Zhao

    2014-01-01

    Full Text Available Based on the understanding that charges generated during coal cracking are due to coal particle friction, a microstructure model was developed by considering four different variation laws of friction coefficient. Firstly, the frictional energy release of coal sample during uniaxial compressive tests was investigated and discussed. Then electromagnetic radiation method was used to predict the potential rockburst disaster in isolated coal pillar mining face, Muchengjian Colliery. The results indicate that the friction coefficient of coal particles decreases linearly with the increase of axial loading force. In predicting the strain-type rockburst, the high stress state of coal must be closely monitored. Field monitoring shows that electromagnetic radiation signal became abnormal before the occurrence of rockburst during isolated coal pillar mining. Furthermore, rockburst tends to occur at the early and ending stages of isolated coal pillar extraction. Mine-site investigation shows the occurrence zone of rockburst is consistent with the prediction, proving the reliability of the electromagnetic radiation method to predict strain-type rockburst disaster.

  12. Influence of a Large Pillar on the Optimum Roadway Position in an Extremely Close Coal Seam

    Directory of Open Access Journals (Sweden)

    Li Yang

    2016-01-01

    Full Text Available Based on the mining practice in an extremely close coal seam, theoretical analysis was conducted on the vertical stress distribution of the floor strata under a large coal pillar. The vertical stress distribution regulation of a No. 5 coal seam was revealed. To obtain the optimum position of the roadway that bears the supporting pressure of a large coal pillar, numerical modeling was applied to analyze the relation among the stress distribution of the roadway surrounding the rock that bears the supporting pressure of a large coal pillar, the plastic zone distribution of the roadway surrounding the rock, the surrounding rock deformation, and the roadway layout position. The theoretical calculation results of the stress value, stress variation rate, and influencing range of the stress influencing angle showed that the reasonable malposition of the No. 5 coal seam roadway was an inner malposition of 4 m. The mining practice showed the following: the layout of No. 25301 panel belt roadway at the position of the inner malposition of 4 m was reasonable, the roadway support performance was favourable without deformation, and ground pressure was not obvious. The research achievement of this study is the provision of a reference for roadway layouts under similar conditions.

  13. Basel’s Forgotten Pillar: The Myth of Market Discipline on the Forefront of Basel III

    Directory of Open Access Journals (Sweden)

    Vahit Ferhan Benli

    2016-01-01

    Full Text Available Although Basel II fortified the first two pillars with market transparency enhancing Pillar III disclosures and encouraged the usage of major Credit Rating Agencies (CRAs such as Moody’s, Standard and Poor’s, and Fitch as quasi governmental authorities to overcome asymmetric informational problems on risk and capital adequacy fronts of the global financial system, the recent global financial crisis has proven just the opposite. The banks and regulators were not in a position to truly assess the risk and capital adequacy frameworks of the global and domestic financial institutions based on the assessments of the rating agencies. To overcome the problem of informational asymmetry for the market participants, the Basel Committee on Banking Supervision set out new proposals for enhanced Pillar III disclosures in the areas of credit risks and capital reporting standards on the forefront of Basel III that would come into effect on April 1, 2016. This paper is a critical evaluation of the new reporting proposals of BCBS within the critical role of the credit rating agencies.

  14. In situ synthesis, characterization, and catalytic performance of tungstophosphoric acid encapsulated into the framework of mesoporous silica pillared clay.

    Science.gov (United States)

    Li, Baoshan; Liu, Zhenxing; Han, Chunying; Ma, Wei; Zhao, Songjie

    2012-07-01

    Mesoporous silica pillared clay (SPC) incorporated with tungstophosphoric acid (HPW) has been synthesized via in situ introducing P and W source in the acidic suspension of the clay interlayer template during the formation of the silica pillared clay. The samples were characterized by XRD, XRF, FT-IR, TG-DTA, N(2) adsorption-desorption, and SEM techniques. The results showed that the HPW formed by in situ method has been effectively introduced into the framework of mesoporous silica pillared clay and its Keggin structure remained perfectly after formation of the materials. In addition, samples with similar HPW loadings were also prepared by impregnation method using SPC as the support. HPW in the incorporated samples was better dispersed into the silica pillared clay than in the impregnated samples. The results of catalytic tests indicated that the encapsulated materials demonstrated better catalytic performance than the impregnated samples in oxidative desulfurization (ODS) of dibenzothiophene (DBT). Copyright © 2012 Elsevier Inc. All rights reserved.

  15. The World Nuclear University - A pillar of the nuclear renaissance

    Energy Technology Data Exchange (ETDEWEB)

    Nigon, Jean-Louis [World Nuclear University Working Groups, Carlton House, 22a St. James' s Square, London SW1Y 4JH (United Kingdom)

    2006-07-01

    activities of the WNU diverse agenda, each of them with the overriding goal of encouraging multinational cooperation among educators and professional experts. Of the ten Working Groups, three deal with education and knowledge, five are on key nuclear disciplines, and two on strategic analysis. A more detailed description of the various Working Groups is provided below. Beyond the enhancement of existing courses, and the sharing of the best practices, the WNU is in the process of designing original educational programmes. The targeted audiences include: - Young professionals and advanced students, - Teachers, - Policy and opinion makers, and - Senior managers within the industry. The paper has the following structure: Introduction; The 2005 Summer Institute; The 2005 WNU Summer Institute programme; The WNU-SI assessment and conclusions; The WNU programmes; Further events; Conclusion (a vision). To enhance worldwide education in nuclear science and technology the following WNU Programmes were established: A. Strengthening and Harmonizing University Curricula - Nuclear Reactor and Fuel Cycle Technology - Nuclear Safety Culture and Operational Experience - Security of Nuclear Facilities and Radioactive Sources - Nuclear Non-Proliferation and Safeguards - Radiation Health Effects and Protection - Nuclear Applications in Health, Environment, Nutrition, Agriculture, and Industry - Nuclear Law B. Developing Future Leaders - Annual WNU Summer Institute C. Sharing Advances in Nuclear Science - Special Symposia Featuring World-Leading Scientists D. Improving Secondary School Introductions to Nuclear Technology - Preparation and Dissemination of Internationally Usable Courses E. Informing Policy and Opinion Leaders - WNU Expert-Team Briefing In conclusion, one underlines that if the present generation is really willing to cut excessive greenhouse gas emissions and simultaneously to encourage and support energy growth in less developed countries, then nuclear power has to experience a

  16. The World Nuclear University - A pillar of the nuclear renaissance

    International Nuclear Information System (INIS)

    Nigon, Jean-Louis

    2006-01-01

    WNU diverse agenda, each of them with the overriding goal of encouraging multinational cooperation among educators and professional experts. Of the ten Working Groups, three deal with education and knowledge, five are on key nuclear disciplines, and two on strategic analysis. A more detailed description of the various Working Groups is provided below. Beyond the enhancement of existing courses, and the sharing of the best practices, the WNU is in the process of designing original educational programmes. The targeted audiences include: - Young professionals and advanced students, - Teachers, - Policy and opinion makers, and - Senior managers within the industry. The paper has the following structure: Introduction; The 2005 Summer Institute; The 2005 WNU Summer Institute programme; The WNU-SI assessment and conclusions; The WNU programmes; Further events; Conclusion (a vision). To enhance worldwide education in nuclear science and technology the following WNU Programmes were established: A. Strengthening and Harmonizing University Curricula - Nuclear Reactor and Fuel Cycle Technology - Nuclear Safety Culture and Operational Experience - Security of Nuclear Facilities and Radioactive Sources - Nuclear Non-Proliferation and Safeguards - Radiation Health Effects and Protection - Nuclear Applications in Health, Environment, Nutrition, Agriculture, and Industry - Nuclear Law B. Developing Future Leaders - Annual WNU Summer Institute C. Sharing Advances in Nuclear Science - Special Symposia Featuring World-Leading Scientists D. Improving Secondary School Introductions to Nuclear Technology - Preparation and Dissemination of Internationally Usable Courses E. Informing Policy and Opinion Leaders - WNU Expert-Team Briefing In conclusion, one underlines that if the present generation is really willing to cut excessive greenhouse gas emissions and simultaneously to encourage and support energy growth in less developed countries, then nuclear power has to experience a huge

  17. Template-directed synthesis of pillared-porous carbon nanosheet architectures: High-performance electrode materials for supercapacitors

    Energy Technology Data Exchange (ETDEWEB)

    Fan, Zhuangjun; Liu, Yang; Yan, Jun; Wang, Qian; Wei, Tong [Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education College of Material Science and Chemical Engineering, Harbin Engineering University, Harbin (China); Ning, Guoqing [State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing, Changping (China); Zhi, Linjie [National Center for Nanoscience and Technology of China, Zhongguancun, Beijing (China); Wei, Fei [Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing (China)

    2012-04-15

    3D pillared-porous carbon nanosheets with supporting carbon pillars between the carbon layers is prepared by the carbonization of pitch on porous MgO templates. This unique structure endows the high-rate transportation of electrolyte ions and electrons throughout the electrode matrix, resulting in excellent electrochemical performance. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  18. Some Thoughts about Literature as a Means of Advancing Sustainable Unity and Stability in the Contemporary Nigerian State

    Science.gov (United States)

    Anaso, George Nwaorah; Nwabudike, Christopher Eziafa

    2014-01-01

    An in-depth investigation was conducted on the possibility of literature employed to enhance cohesion, sustainable unity, national stability, and security of lives and property in the contemporary Nigeria. These three elements--unity, national stability, and security of lives and property are considered the key pillars of a modern state, the…

  19. Study of global stability of tall buildings with prestressed slabs

    Directory of Open Access Journals (Sweden)

    L. A. Feitosa

    Full Text Available The use of prestressed concrete flat slabs in buildings has been increasing in recent years in the Brazilian market. Since the implementation of tall and slender buildings a trend in civil engineering and architecture fields, arises from the use of prestressed slabs a difficulty in ensuring the overall stability of a building without beams. In order to evaluate the efficiency of the main bracing systems used in this type of building, namely pillars in formed "U" in elevator shafts and stairs, and pillars in which the lengths are significantly larger than their widths, was elaborated a computational models of fictional buildings, which were processed and analyzed using the software CAD/TQS. From the variation of parameters such as: geometry of the pillars, thick slabs, characteristic strength of the concrete, reduceofthe coefficient of inertia for consideration of non-linearities of the physical elements, stiffness of the connections between slabs and pillars, among others, to analyze the influence of these variables on the overall stability of the building from the facing of instability parameter Gama Z, under Brazilian standard NBR 6118, in addition to performing the processing of building using the P-Delta iterative calculation method for the same purpose.

  20. An insight on the nuclear competence building pillars

    Energy Technology Data Exchange (ETDEWEB)

    Wieland, P. [Comissao Nacional de Energia Nuclear, Rua General eertano, 90 - 22.290-901 - Rio de Janeiro (Brazil)]. e-mail: pwieland@cnen.gov.br

    2007-07-01

    knowledge if one is willing to collaborate in a highly motivated way, and the other one is passive or mentally absent. This paper takes an insight on competence building from a sensible point of view, sharing practical experiences from the nuclear area. (Author)

  1. An insight on the nuclear competence building pillars

    International Nuclear Information System (INIS)

    Wieland, P.

    2007-01-01

    knowledge if one is willing to collaborate in a highly motivated way, and the other one is passive or mentally absent. This paper takes an insight on competence building from a sensible point of view, sharing practical experiences from the nuclear area. (Author)

  2. In-plane confinement and waveguiding of surface acoustic waves through line defects in pillars-based phononic crystal

    Directory of Open Access Journals (Sweden)

    Abdelkrim Khelif

    2011-12-01

    Full Text Available We present a theoretical analysis of an in-plane confinement and a waveguiding of surface acoustic waves in pillars-based phononic crystal. The artificial crystal is made up of cylindrical pillars placed on a semi-infinite medium and arranged in a square array. With a well-chosen of the geometrical parameters, this pillars-based system can display two kinds of complete band gaps for guided waves propagating near the surface, a low frequency gap based on locally resonant mode of pillars as well as a higher frequency gap appearing at Bragg scattering regime. In addition, we demonstrate a waveguiding of surface acoustic wave inside an extended linear defect created by removing rows of pillars in the perfect crystal. We discuss the transmission and the polarization of such confined mode appearing in the higher frequency band gap. We highlight the strong similarity of such defect mode and the Rayleigh wave of free surface medium. An efficient finite element analysis is used to simulate the propagation of guided waves through silicon pillars on a silicon substrate.

  3. An experiment on rider stability while mounting : comparing middle-aged and elderly cyclists on pedelecs and conventional bicycles.

    NARCIS (Netherlands)

    Twisk, D.A.M. Platteel, S. & Lovegrove, G.R.

    2017-01-01

    Pedelecs, popular among elderly cyclists, are associated with a higher injury risk than conventional bicycles. About 17% of these injuries are due to falls while (dis)mounting. Using instrumented bicycles, this study aimed to identify factors contributing to the stability of self-chosen mounting

  4. Macroprudential policy and financial stability

    Directory of Open Access Journals (Sweden)

    Bogdan CHIRIACESCU

    2013-02-01

    Full Text Available This paper tries a conceptual framing of the issue of financial stability in economic theory and also to identify solutions to address episodes of financial instability. An essential reference is Minsky's financial instability hypothesis, which argues that a fundamental feature of the financial system is that it swings between robustness and fragility and these pendulum swings are an integral part of the process that generates the business cycle. Studies show that the effects of banking crises on economic activity are important both in magnitude and duration. Recently, macroprudential policy stood out as a central pillar in promoting financial stability in a broad sense. Regarding specific objectives of macroprudential policy, the prevalent vision refers to limiting systemic risk and macroeconomic costs of financial crises, but there are also important nuances.

  5. An experiment on rider stability while mounting: Comparing middle-aged and elderly cyclists on pedelecs and conventional bicycles.

    Science.gov (United States)

    Twisk, D A M; Platteel, S; Lovegrove, G R

    2017-08-01

    Pedelecs, popular among elderly cyclists, are associated with a higher injury risk than conventional bicycles. About 17% of these injuries are due to falls while (dis)mounting. Using instrumented bicycles, this study aimed to identify factors contributing to the stability of self-chosen mounting methods in four user groups: 30-45 versus 65+ years of age and males versus females. Mounting stability on pedelecs was compared with that on conventional bicycles, in controlled experimental setting (task in a fenced off parking lot) but also in real traffic conditions (traffic light turns green). Two mounting phases were differentiated: phase 1 as the transition from 'earth bound' to 'balance' and phase 2 as the acceleration to achieve harmonized cycling. Stability was operationalised in terms of the duration of these phases: the shorter their duration, the higher the stability. Pedelecs were shown to be less stable in phase 1 than conventional bicycles, irrespective of user group. For all user groups, only in phase 2 the advantages of electrical support kicked in. Results obtained in traffic conditions confirmed the patterns obtained in the controlled setting, with as only difference a lower speed in traffic conditions, which held for both mounting phases and bicycle types. Also measures of physical limitations due to low muscle strength were shown only to be compensated for by pedal support in phase 2 and not in phase 1. Further, mounting characteristics affected pedelec stability in phase 1 and not in phase 2. Higher stability was associated with a) starting while seated and b) using the pedal to push off. Although, these mounting characteristics were confounded with age, gender, and muscle strength, the pattern of results still suggest certain mounting techniques to be more beneficial for pedelecs. The results further illustrate the importance of a deeper understanding of the interactions of bicycle types and user groups on critical manoeuvres and their potential

  6. Supramolecular Host-Guest System as Ratiometric Fe3+ Ion Sensor Based on Water-Soluble Pillar[5]arene.

    Science.gov (United States)

    Yao, Qianfang; Lü, Baozhong; Ji, Chendong; Cai, Yang; Yin, Meizhen

    2017-10-18

    Developing a specific, ratiometric, and reversible detection method for metal ions is significant to guard against the threat of metal-caused environmental pollution and organisms poisoning. Here a supramolecular host-guest system (WP5⊃G) based on water-soluble pillar[5]arene (WP5) and water-soluble quaternized perylene diimide derivative (G) was constructed. Morphological transformation was achieved during the process of adding WP5 into G aqueous solution, and a fluorescence "turn-off" phenomenon was observed which was caused by supramolecular photoinduced electron transfer (PET). Meanwhile, hydrophobic effect and electrostatic interaction played important roles in this supramolecular process, which was confirmed by isothermal titration calorimeter (ITC) and ζ potential experiments. Furthermore, the supramolecular host-guest system could be a "turn-on" fluorescent probe for Fe 3+ ion detection through the process of interdicting supramolecular PET. Moreover, the Fe 3+ ion detection showed specific, ratiometric, and reversible performances with a detection limit of 2.13 × 10 -7 M, which might have great potentials in biological and environmental monitoring.

  7. Reframing Stability Operations: using Social Science to Identify Pillars of Stability Operations to Bridge the Gap Between the Principles of Joint Operations and Stability Operations Framework

    Science.gov (United States)

    2009-12-11

    anthropologists refer to mobility as a critical element to the human existence, though in doing so, they use the term in different ways. Malinowski ...Bronislaw Malinowski and Len Doyal and Ian Gough go further to specify what functions societies must implement to ensure individuals can meet these...work theorizes on basic needs by synthesizing the works of Malinowski , Abraham Maslow, Doyal and Gough, and Amartya Kumar Sen. This piece elaborates on

  8. Data on experiments result of three identical huts with shape-stabilized phase change materials in Japanese temperate climate

    Directory of Open Access Journals (Sweden)

    Hyun Bae Kim

    2018-04-01

    Full Text Available The data in this article are the experimental results of three identical huts (Hut A, B and C, which were examined by using varying shape-stabilized PCMs (SSPCMs sheet levels under natural and heating conditions in winter of Chiba prefecture where Japanese temperate climate. The SSPCMs sheet established the melting and solidification-temperature ranged at 19–26 °C were used. In Hut A, no SSPCM sheets were applied; in Hut B, four layers of SSPCM sheets were applied to the floor; in Hut C, one layer of SSPCM was applied to the floor, walls, and ceilings. The data provide information on the application of SSPCM sheets to improve indoor stabilization and the heating load reduction effects.

  9. Meeting Food Aid and Price Stabilization Objectives through Local Grain Purchase: A Review of the 1996 Experience

    OpenAIRE

    Amha, Wolday; Stepanek, Julie; Jayne, Thomas S.; Negassa, Asfaw

    1997-01-01

    The objective of this paper is to identify factors that can improve the ability of future local purchase activities to achieve a range of national food policy objectives. This analysis reviews the design and implementation of 1996 local purchase activities in Ethiopia in relation to three key policy objectives: price stabilization for farmers; promoting the development of a competitive and low-cost food marketing system; and procuring food aid resources in a cost effective manner.

  10. Conflict Resolution Styles as Mediators of Female Child Sexual Abuse Experience and Heterosexual Couple Relationship Satisfaction and Stability in Adulthood.

    Science.gov (United States)

    Knapp, Ashlee E; Knapp, Darin J; Brown, Cameron C; Larson, Jeffry H

    2017-01-01

    Trauma from female incestuous child sexual abuse may result in negative psychological consequences affecting adult relationships. This study explored relational consequences of incestuous child sexual abuse, focusing on conflict resolution styles, relationship satisfaction, and relationship stability. Using the RELATionship Evaluation dataset, 457 heterosexual couples in which female partners experienced incestuous child sexual abuse were compared to a group of 1,827 couples with no sexual abuse history. Analyses tested differences in the frequencies of reported conflict resolution styles for incestuous child sexual abuse and non-incestuous child sexual abuse groups, the mediating effects of conflict resolution styles on the relationship between incestuous child sexual abuse, and self- and partner-reported relationship satisfaction and stability. Significant differences in the reports of types of conflict resolution styles were found for incestuous child sexual abuse versus non-incestuous child sexual abuse groups. Incestuous child sexual abuse and conflict resolution styles were negatively related to relationship satisfaction and stability and there was a significant indirect effect between female incestuous child sexual abuse, female volatility, and relationship instability. Clinical applications for couple relationships are discussed.

  11. Two-Stage System Based on a Software-Defined Radio for Stabilizing of Optical Frequency Combs in Long-Term Experiments

    Directory of Open Access Journals (Sweden)

    Martin Čížek

    2014-01-01

    Full Text Available A passive optical resonator is a special sensor used for measurement of lengths on the nanometer and sub-nanometer scale. A stabilized optical frequency comb can provide an ultimate reference for measuring the wavelength of a tunable laser locked to the optical resonator. If we lock the repetition and offset frequencies of the comb to a high-grade radiofrequency (RF oscillator its relative frequency stability is transferred from the RF to the optical frequency domain. Experiments in the field of precise length metrology of low-expansion materials are usually of long-term nature so it is required that the optical frequency comb stay in operation for an extended period of time. The optoelectronic closed-loop systems used for stabilization of combs are usually based on traditional analog electronic circuits processing signals from photodetectors. From an experimental point of view, these setups are very complicated and sensitive to ambient conditions, especially in the optical part, therefore maintaining long-time operation is not easy. The research presented in this paper deals with a novel approach based on digital signal processing and a software-defined radio. We describe digital signal processing algorithms intended for keeping the femtosecond optical comb in a long-time stable operation. This need arose during specialized experiments involving measurements of optical frequencies of tunable continuous-wave lasers. The resulting system is capable of keeping the comb in lock for an extensive period of time (8 days or more with the relative stability better than 1.6 × 10−11.

  12. Thermal Emission of Alkali Metal Ions from Al30-Pillared Montmorillonite Studied by Mass Spectrometric Method.

    Science.gov (United States)

    Motalov, V B; Karasev, N S; Ovchinnikov, N L; Butman, M F

    2017-01-01

    The thermal emission of alkali metal ions from Al 30 -pillared montmorillonite in comparison with its natural form was studied by mass spectrometry in the temperature range 770-930 K. The measurements were carried out on a magnetic mass spectrometer MI-1201. For natural montmorillonite, the densities of the emission currents ( j ) decrease in the mass spectrum in the following sequence (T = 805 K, A/cm 2 ): K + (4.55 · 10 -14 ), Cs + (9.72 · 10 -15 ), Rb + (1.13 · 10 -15 ), Na + (1.75 · 10 -16 ), Li + (3.37 · 10 -17 ). For Al 30 -pillared montmorillonite, thermionic emission undergoes temperature-time changes. In the low-temperature section of the investigated range (770-805 K), the value of j increases substantially for all ions in comparison with natural montmorillonite (T = 805 K, A/cm 2 ): Cs + (6.47 · 10 -13 ), K + (9.44 · 10 -14 ), Na + (3.34 · 10 -15 ), Rb + (1.77 · 10 -15 ), and Li + (4.59 · 10 -16 ). A reversible anomaly is observed in the temperature range 805-832 K: with increasing temperature, the value of j of alkaline ions falls abruptly. This effect increases with increasing ionic radius of M + . After a long heating-up period, this anomaly disappears and the ln j - 1/ T dependence acquires a classical linear form. The results are interpreted from the point of view of the dependence of the efficiency of thermionic emission on the phase transformations of pillars.

  13. Thermal Emission of Alkali Metal Ions from Al30-Pillared Montmorillonite Studied by Mass Spectrometric Method

    Directory of Open Access Journals (Sweden)

    V. B. Motalov

    2017-01-01

    Full Text Available The thermal emission of alkali metal ions from Al30-pillared montmorillonite in comparison with its natural form was studied by mass spectrometry in the temperature range 770–930 K. The measurements were carried out on a magnetic mass spectrometer MI-1201. For natural montmorillonite, the densities of the emission currents (j decrease in the mass spectrum in the following sequence (T = 805 K, A/cm2: K+ (4.55 · 10−14, Cs+ (9.72 · 10−15, Rb+ (1.13 · 10−15, Na+ (1.75 · 10−16, Li+ (3.37 · 10−17. For Al30-pillared montmorillonite, thermionic emission undergoes temperature-time changes. In the low-temperature section of the investigated range (770–805 K, the value of j increases substantially for all ions in comparison with natural montmorillonite (T = 805 K, A/cm2: Cs+ (6.47 · 10−13, K+ (9.44 · 10−14, Na+ (3.34 · 10−15, Rb+ (1.77 · 10−15, and Li+ (4.59 · 10−16. A reversible anomaly is observed in the temperature range 805–832 K: with increasing temperature, the value of j of alkaline ions falls abruptly. This effect increases with increasing ionic radius of M+. After a long heating-up period, this anomaly disappears and the lnj-1/T dependence acquires a classical linear form. The results are interpreted from the point of view of the dependence of the efficiency of thermionic emission on the phase transformations of pillars.

  14. Thermal conductivity of pillared graphene-epoxy nanocomposites using molecular dynamics

    Science.gov (United States)

    Lakshmanan, A.; Srivastava, S.; Ramazani, A.; Sundararaghavan, V.

    2018-04-01

    Thermal conductivity in a pillared graphene-epoxy nanocomposite (PGEN) is studied using equilibrium molecular dynamics simulations. PGEN is a proposed material for advanced thermal management applications because it combines high in-plane conductivity of graphene with high axial conductivity of a nanotube to significantly enhance the overall conductivity of the epoxy matrix material. Anisotropic conductivity of PGEN has been compared with that of pristine and functionalized carbon nanotube-epoxy nanocomposites, showcasing the advantages of the unique hierarchical structure of PGEN. Compared to pure carbon allotropes, embedding the epoxy matrix also promotes a weaker dependence of conductivity on thermal variations. These features make this an attractive material for thermal management applications.

  15. The synthesis and application of pillared clays prepared from charge reduced montmorillonite

    Science.gov (United States)

    Engwall, Erik Edwin

    The synthesis of pillared interlayered clays (PILCs) makes use of the cation exchange capacity (CEC) of clay minerals to prop their structures open with large hydroxy-metal cations. Homo-ionic Ca-Montmorillonite with a CEC of 83.9 meq/100 g has been partially exchanged with varied amounts of Li+ and heated to 200°C for 24 hours. These have been used to produce Zr and Al PILCs making use of ethanol/water synthesis solutions to overcome the hydrophobic nature of the clay. For the Zr-PILC system, the d(001) spacings determined by x-ray diffraction (XRD) were relatively constant at 19.0--20.1 A with respect to changing the unpillared CEC. The Zr-PILCs had type I isotherms for argon at 87 K and for benzene, p-xylene and 1,3,5-trimethylbenzene adsorption at 30°C. Several Al-PILC synthesis procedures were evaluated and all produced materials whose adsorption capacity decreased with decreasing unpillared CEC. This reduction in adsorption capacity with unpillared CEC could be partially overcome by the combined use of ethanol/water pillaring solutions with ethanol/water washing. Previously unreported d(001) values in the range of 26.8 to 29.8 A were observed in Al-PILCs and were often bimodal with the expected values of about 18 A. These larger d(001) values were most prevalent at lower CEC values, if pillaring conditions favored the formation of polymeric species other than the Keggin cation. A new micropore size distribution model was developed to better understand PILC pore structure. The new model was compared to the Horvath and Kawazoe (1983) model (HK) and the Cheng and Yang (1994) model (CY) using argon adsorption at 87 K on Zr and Al-PILCs. The interlayer spacings determined by XRD for the test PILCs were 9.5 and 8.5 A for Zr and Al-PILCs respectively. Pore sizes predicted by the new model were 7.5 and 7.3 A for Zr and Al-PILCs respectively. The new model consistently predicts values that are closer to the interlayer spacing than either the HK or CY models. The new

  16. Multiwavelength Imaging Of YSOs With Disk In South Pillars Of Eta Carina

    Science.gov (United States)

    Reyes, J. A.; Porras, B. A.

    2013-04-01

    We present multiwavelength imaginery and spectral energy distributions (SEDs) of 15 Young Stellar Objects (YSOs) with disk components lying on the South Pillars region close to Eta Carina (η Car). The SEDs include IR fluxes from 2MASS, IRAC, MSX, AKARI, and MIPS-24 μm, and 1.1 mm flux from AzTEC camera at the ASTE antenna. Millimeter fluxes help to constrain the number of fitted models, which provide the list of physical parameters for the star, the disk and the envelope. We then compare the parameters of the YSOs and their spatial location within the star forming region.

  17. Is active management of mandatory pension funds in Croatia creating value for second pillar fund members?

    Directory of Open Access Journals (Sweden)

    Petar-Pierre Matek

    2015-09-01

    Full Text Available This paper analyses Croatian mandatory pension funds’ investment returns during the 2005-2014 period using performance attribution methodology. Results from active investment management are compared to a long-term policy return. Such analysis is essential to shed light on the contribution of active portfolio management in the second pillar pension scheme. Evidence suggests that in the period analysed portfolio managers have added value through active management decisions. In addition, we determined the sources of portfolio return by breaking down active return into policy, tactical asset allocation and security selection effect.

  18. International criminal justice: a pillar for the international rule of law

    Directory of Open Access Journals (Sweden)

    Gonzalo Aguilar Cavallo

    2012-12-01

    Full Text Available The international criminal justice has experienced a rapid change over the past years. This circumstance has underscored the need for interaction and complementation between international and domestic law. Some authors consider that the international criminal justice, and the activities of its tribunals, jeopardize the legality of international law. Our vision is that international criminal justice is a central pillar of the rule of law, at the national and the international levels. Far from undermining the legality of international law, international criminal justice paves the way towards a true international public order.

  19. Experimental study of the retention properties of a cyclo olefin polymer pillar array column in reversed-phase mode.

    Science.gov (United States)

    Illa, Xavi; De Malsche, Wim; Gardeniers, Han; Desmet, Gert; Romano-Rodríguez, Albert

    2010-11-01

    Experimental measurements to study the retention capacity and band broadening under retentive conditions using micromachined non-porous pillar array columns fabricated in cyclo olefin polymer are presented. In particular, three columns with different depths but with the same pillar structure have been fabricated via hot embossing and pressure-assisted thermal bonding. Separations of a mixture of four coumarins using varying mobile phase compositions have been monitored to study the relation between the retention factor and the ratio of organic solvent in the aqueous mobile phase. Moreover, the linear relation between the retention and the surface/volume ratio predicted in theory has been observed, achieving retention factors up to k=2.5. Under the same retentive conditions, minimal reduced plate height values of h(min)=0.4 have been obtained at retention factors of k=1.2. These experimental results are compared with the case of non-porous and porous silicon pillars. Similar results for the plate heights are achieved while retention factors are higher than the non-porous silicon column and considerably smaller than the porous pillar column, given the non-porous nature of the used cyclo olefin polymer. The feasibility of using this polymer column as an alternative to the pillar array silicon columns is corroborated.

  20. Reverse engineering of B-pillar with 3D optical scanning for manufacturing of non-uniform thickness part

    Directory of Open Access Journals (Sweden)

    Islam Md. Tasbirul

    2017-01-01

    Full Text Available This paper presents reverse engineering (RE of a complex automobile structural part, B-pillar. As a major part of the automobile body-in white (BiW, B-pillar has substantial opportunity for weight reduction by introducing variable thickness across its sections. To leverage such potential, an existing B-pillar was reverse engineered with a 3D optical scanner and computer aided design (CAD application. First, digital data (i.e. in meshes of exiting B-pillar was obtained by the scanner, and subsequently, this information was utilized in developing a complete 3D CAD model. CATIA V5 was used in the modeling where some of the essential work benches were “Digitized Shape Editor”, “Quick Surface Reconstruction”, “Wireframe and Surface Design”, “Freestyle”, “Generation Shape Design” and “Part design”. In the final CAD design, five different thicknesses were incorporated successfully in order to get a B-pillar with non-uniform sections. This research opened opportunities for thickness optimization and mold tooling design in real time manufacturing.

  1. Improving wettability of photo-resistive film surface with plasma surface modification for coplanar copper pillar plating of IC substrates

    International Nuclear Information System (INIS)

    Xiang, Jing; Wang, Chong; Chen, Yuanming; Wang, Shouxu; Hong, Yan; Zhang, Huaiwu; Gong, Lijun; He, Wei

    2017-01-01

    Highlights: • Air atmosphere plasmacould generatehydrophilic groups of photo-resistive film. • Better wettability of photo-resistive filmled tohigher plating uniformity of copper pillars. • New flow isreduced cost, simplified process and elevated productivity. - Abstract: The wettability of the photo-resistive film (PF) surfaces undergoing different pretreatments including the O_2−CF_4 low-pressure plasma (OCLP) and air plasma (AP), is investigated by water contact angle measurement instrument (WCAMI) before the bottom-up copper pillar plating. Chemical groups analysis performed by attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR) and X-ray photoelectron spectra (XPS) shows that after the OCLP and wash treatment, the wettability of PF surface is attenuated, because embedded fluorine and decreased oxygen content both enhance hydrophobicity. Compared with OCLP treatment, the PF surface treatment by non-toxic air plasma displays features of C−O, O−C=O, C=O and −NO_2 by AIR-FTIR and XPS, and a promoted wettability by WCAM. Under the identical electroplating condition, the surface with a better wettability allows electrolyte to spontaneously soak all the places of vias, resulting in improved copper pillar uniformity. Statistical analysis of metallographic data shows that more coplanar and flat copper pillars are achieved with the PF treatment of air plasma. Such modified copper-pillar-plating technology meets the requirement of accurate impedance, the high density interconnection for IC substrates.

  2. Improving wettability of photo-resistive film surface with plasma surface modification for coplanar copper pillar plating of IC substrates

    Energy Technology Data Exchange (ETDEWEB)

    Xiang, Jing; Wang, Chong; Chen, Yuanming; Wang, Shouxu; Hong, Yan; Zhang, Huaiwu [State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 610054 (China); Gong, Lijun [Research and Development Department, Guangzhou Fastprint Circuit Tech Co., Ltd., Guangzhou 510663 (China); He, Wei, E-mail: heweiz@uestc.edu.cn [State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 610054 (China); Research and Development Department, Guangdong Guanghua Sci-Tech Co., Ltd., Shantou 515000 (China)

    2017-07-31

    Highlights: • Air atmosphere plasmacould generatehydrophilic groups of photo-resistive film. • Better wettability of photo-resistive filmled tohigher plating uniformity of copper pillars. • New flow isreduced cost, simplified process and elevated productivity. - Abstract: The wettability of the photo-resistive film (PF) surfaces undergoing different pretreatments including the O{sub 2}−CF{sub 4} low-pressure plasma (OCLP) and air plasma (AP), is investigated by water contact angle measurement instrument (WCAMI) before the bottom-up copper pillar plating. Chemical groups analysis performed by attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR) and X-ray photoelectron spectra (XPS) shows that after the OCLP and wash treatment, the wettability of PF surface is attenuated, because embedded fluorine and decreased oxygen content both enhance hydrophobicity. Compared with OCLP treatment, the PF surface treatment by non-toxic air plasma displays features of C−O, O−C=O, C=O and −NO{sub 2} by AIR-FTIR and XPS, and a promoted wettability by WCAM. Under the identical electroplating condition, the surface with a better wettability allows electrolyte to spontaneously soak all the places of vias, resulting in improved copper pillar uniformity. Statistical analysis of metallographic data shows that more coplanar and flat copper pillars are achieved with the PF treatment of air plasma. Such modified copper-pillar-plating technology meets the requirement of accurate impedance, the high density interconnection for IC substrates.

  3. Building method (concreting) for an offshore platform equipped with several cantilevered pillars. Fremgangsmaate for fremstilling (stoeping) av en fralandsplattform som har flere mot hverandre hellende stoetteben

    Energy Technology Data Exchange (ETDEWEB)

    Olsen, O.

    1985-07-29

    The invention deals with a building method for an offshore platform made of concrete comprising several cantilevered pillars. In accordance with the invention, the building work is to be started in a dry dock, and can be completed in the same place or in deep water. The pillars and the foundation are made as separate structures. The foundation can also be made as separate structures for each of the pillars. The vertical positioned pillars are made by means of moving forms, and finally put into cantilevered position and permanently connected to the foundation and the upper end arrangement. The structure then is to be completed in the normal way. 7 drawings.

  4. Management of pediatric mandibular fractures using bioresorbable plating system - Efficacy, stability, and clinical outcomes: Our experiences and literature review.

    Science.gov (United States)

    Singh, Mahinder; Singh, R K; Passi, Deepak; Aggarwal, Mohit; Kaur, Guneet

    2016-01-01

    The purpose of this study was to determine the efficacy and stability of the biodegradable fixation system for treatment of mandible fractures in pediatric patients by measuring the bite force. Sixty pediatric patients with mandibular fractures (36 males, 24 females) were included in this study. The 2.5-mm resorbable plates were adapted along Champy's line of ideal osteosynthesis and secured with four 2.5 mm diameter monocortical resorbable screws, 8 mm in length. All patients were followed for 10 months. Clinical parameters, such as soft tissue infection, nonunion, malunion, implant exposure, malocclusion, nerve injury, and bite force for stability, were prospectively assessed. Adequate fixation and primary bone healing was achieved in 100% of the cases. Six minor complications (10%) were observed: 2 soft tissue infections (3%), 1 plate dehiscence (2%), 1 malocclusion (2%), and 2 paresthesia (3%). 2.5-mm resorbable plating system along Champy's line of ideal osteosynthesis is a good treatment modality for mandible fractures in pediatric patients.

  5. Management of pediatric mandibular fractures using bioresorbable plating system – Efficacy, stability, and clinical outcomes: Our experiences and literature review

    Science.gov (United States)

    Singh, Mahinder; Singh, R.K.; Passi, Deepak; Aggarwal, Mohit; Kaur, Guneet

    2015-01-01

    Aims The purpose of this study was to determine the efficacy and stability of the biodegradable fixation system for treatment of mandible fractures in pediatric patients by measuring the bite force. Methods Sixty pediatric patients with mandibular fractures (36 males, 24 females) were included in this study. The 2.5-mm resorbable plates were adapted along Champy's line of ideal osteosynthesis and secured with four 2.5 mm diameter monocortical resorbable screws, 8 mm in length. All patients were followed for 10 months. Clinical parameters, such as soft tissue infection, nonunion, malunion, implant exposure, malocclusion, nerve injury, and bite force for stability, were prospectively assessed. Results Adequate fixation and primary bone healing was achieved in 100% of the cases. Six minor complications (10%) were observed: 2 soft tissue infections (3%), 1 plate dehiscence (2%), 1 malocclusion (2%), and 2 paresthesia (3%). Conclusion 2.5-mm resorbable plating system along Champy's line of ideal osteosynthesis is a good treatment modality for mandible fractures in pediatric patients. PMID:27195206

  6. Long-term Dose Stability of OnabotulinumtoxinA Injection for Adductor Spasmodic Dysphonia: A 19-Year Single Institution Experience

    Directory of Open Access Journals (Sweden)

    Paul Paddle

    2017-11-01

    Full Text Available ObjectivesAdductor spasmodic dysphonia (AdSD is a focal dystonia predominantly involving the laryngeal adductor muscles. AdSD is reported to be a largely non-progressive neurological disorder, though fluctuations in symptom severity do occur. Repeated laryngeal onabotulinumtoxinA (BTX-A injections are the primary management for AdSD. A number of studies have demonstrated long-term dose stability as evidence of this long-term disease stability.MethodsA retrospective review was performed on all patients undergoing BTX-A injections for AdSD from April 1994 to September 2013 by a single laryngologist at a tertiary referral laryngology center. Patient demographics, injection doses, use of diazepam and/or lidocaine, and self-reported vocal function were recorded. Multiple linear regression analyses were performed.Results83 patients underwent a total of 1,168 injections over 19 years. The mean starting dose was 2.35 MU (0.79 SD. The mean long-term dose was 2.36 MU (0.79 SD. After adjusting for confounders, the change in the relative dose of BTX-A, with every year elapsed since initial dose was 0.13% (95% confidence interval −0.31 to 0.57%, p = 0.568.ConclusionBTX-A dose is stable over time in our large cohort of patients treated with bilateral thyroarytenoid injections for AdSD.

  7. Stability and change in retrospective reports of childhood experiences over a 5-year period: findings from the Davis Longitudinal Study.

    Science.gov (United States)

    Yancura, Loriena A; Aldwin, Carolyn M

    2009-09-01

    The paths via which childhood experiences influence well-being in adulthood are not well defined because most research relies on retrospective reports. This study examined the influence of demographic characteristics and current mood states on the reliability of reports of childhood experiences. The Child Experiences Scale (CES) was administered in 1996 and 2001 to participants in the Davis Longitudinal Study (N = 571; age range 22-61 years). Responses showed moderate to high cross-time reliability. Males were slightly more likely to change their responses. The influence of mood states was weak and more evident for global ratings of childhood than for specific experiences. These findings support the use of retrospective reports of childhood. (c) 2009 APA, all rights reserved.

  8. Study on the stability of a single-phase natural circulation flow in a closed loop. Demonstrative experiments on the higher-mode density wave oscillation

    International Nuclear Information System (INIS)

    Nishihara, Takashi

    1997-01-01

    Single-phase natural circulation loops are very important systems driven by the density variation generated thermally and have various applications in energy systems. Many theoretical and experimental works have been carried out on them and it has been known that the oscillatory instability can occur under some conditions. Most of the works on the oscillatory instability have been limited to specific geometry of the loops and they have paid attention only to the instability of fundamental mode, which has the period approximately equal to the item that the fluid goes round the loop, hereinafter referred to as the typical period. The author had applied the linear stability analysis to the simplified rectangular loop to investigate the basic stability characteristics of a natural circulation flow in a closed loop. The results indicate that various higher-mode oscillatory instabilities can be caused with a period approximately equal to one nth of the typical period according to parameters such as the pressure loss coefficient, the locations of a heat source and a heat sink, and so on. In this report, experimental tests were carried out and it was demonstrated that the higher-mode oscillatory instability can be caused with features as predicted in the analysis. The stability analysis was applied to the geometry of the experimental apparatus. The analytical results and those of experiments were compared with regard to the mode and the region of the parameters to be unstable and they have a good agreement qualitatively. (author)

  9. Adsorption of cadmium onto Al{sub 13}-pillared acid-activated montmorillonite

    Energy Technology Data Exchange (ETDEWEB)

    Yan Liangguo [State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing 100085 (China); Shan Xiaoquan [State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing 100085 (China)], E-mail: xiaoquan@rcees.ac.cn; Wen Bei [State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing 100085 (China); Owens, Gary [Centre for Environmental Risk Assessment and Remediation, University of South Australia, Mawson Lakes Campus, Mawson Lakes, Boulevard, South Australia 5095 (Australia)

    2008-08-15

    The optimal preparation conditions for Al{sub 13}-pillared acid-activated Na{sup +}-montmorillonite (Al{sub 13}-PAAMt) were (1) an acid-activated Na{sup +}-montmorillonite (Na{sup +}-Mt) solution of pH 3.0, (2) a OH{sup -}/Al{sup 3+} molar ratio of 2.4 and (3) Al{sup 3+}/Na{sup +}-Mt ratio of 1.0 mmol g{sup -1}. The effects of OH{sup -}/Al{sup 3+} and Al{sup 3+}/Na{sup +}-Mt ratios on the adsorption of Cd{sup 2+} onto Al{sub 13}-PAAMt were studied. A comparison of the adsorption of Cd{sup 2+} onto Al{sub 13}-PAAMt, Al{sub 13}-pillared Na{sup +}-montmorillonite (Al{sub 13}-PMt) and Na{sup +}-Mt suggested that Al{sub 13}-PAAMt had higher adsorption affinity for Cd{sup 2+} than the other two adsorbents. A pseudo-second-order model described the adsorption kinetics well. Cadmium adsorption followed the Langmuir two-site equation, while desorption was hysteretic.

  10. Writing and functionalisation of suspended DNA nanowires on superhydrophobic pillar arrays

    KAUST Repository

    Miele, Ermanno; Accardo, Angelo; Falqui, Andrea; Marini, Monica; Giugni, Andrea; Leoncini, Marco; De Angelis, Francesco De; Krahne, Roman; Di Fabrizio, Enzo M.

    2014-01-01

    Nanowire arrays and networks with precisely controlled patterns are very interesting for innovative device concepts in mesoscopic physics. In particular, DNA templates have proven to be versatile for the fabrication of complex structures that obtained functionality via combinations with other materials, for example by functionalisation with molecules or nanoparticles, or by coating with metals. Here, the controlled motion of the a three-phase contact line (TCL) of DNA-loaded drops on superhydrophobic substrates is used to fabricate suspended nanowire arrays. In particular, the deposition of DNA wires is imaged in situ, and different patterns are obtained on hexagonal pillar arrays by controlling the TCL velocity and direction. Robust conductive wires and networks are achieved by coating the wires with a thin layer of gold, and as proof of concept conductivity measurements are performed on single suspended wires. The plastic material of the superhydrophobic pillars ensures electrical isolation from the substrate. The more general versatility of these suspended nanowire networks as functional templates is outlined by fabricating hybrid organic-metal-semiconductor nanowires by growing ZnO nanocrystals onto the metal-coated nanowires.

  11. Studies of adsorption of pillarized and organofunctionalized smectite clay for Th"4"+ removal

    International Nuclear Information System (INIS)

    Guerra, D.J.L.; Menonca, E.S.; Silva, R.A.R.; Lara, W.

    2012-01-01

    A natural smectite clay sample was taken from the Amazon region, Amazonas State, Brazil. Zirconium polyoxycations were inserted into the smectite structure in a pillaring process. The pillarized smectite was organofunctionalized with the compound 3-mercaptopropyltrimethoxysilane. The natural and modified clay samples were used for the adsorption of tetravalent thorium cation from aqueous solution in a batch process. The adsorption process was fitted to equilibrium and kinetic models. The effects of stirring time, adsorbent dosage and pH on the adsorption capacity demonstrated that 90 min is sufficient to reach equilibrium at room temperature at pH 6.0. From the cation/basic center interactions for each smectite at the solid-liquid interface, the equilibrium constant and exothermic thermal effects were calculated with calorimetric methodology. By considering the net interactive number of moles for thorium cation and the equilibrium constant, the enthalpy, (-7.2 ± 0.11 to -7.0 ± 0.11 kJ mol"-"1) and negative Gibbs free energy, (-22.4 ± 0.1 to -23.1 ± 0.1 kJ mol"-"1) were calculated. These values enabled determination of the positive entropy, (51.2 ± 0.1 to 54.1 ± 0.1 JK"-"1mol"-"1). All liquid/solid interface adsorptions were spontaneous in nature and enthalpically driven.

  12. Morphology dependent field emission characteristics of ZnS/silicon nanoporous pillar array

    Science.gov (United States)

    Wang, Ling Li; Zhao, Cheng Zhou; Kang, Li Ping; Liu, De Wei; Zhao, Hui Chun; Hao, Shan Peng; Zhang, Yuan Kai; Chen, Zhen Ping; Li, Xin Jian

    2016-10-01

    Through depositing zinc sulphide (ZnS) nanoparticals on silicon nanoporous pillar array (Si-NPA) and crater-shaped silicon nanoporous pillar array (c-Si-NPA) by chemical bath deposition (CBD) method, ZnS/Si-NPA and c-ZnS/Si-NPA were prepared and the field emission (FE) properties of them were investigated. The turn-on electric fields of were 3.8 V/mm for ZnS/Si-NPA and 5.0 V/mm for c-ZnS/Si-NPA, respectively. The lower turn-on electric fields of ZnS/Si-NPA than that of c-ZnS/Si-NPA were attributed to the different electric distribution of the field emitters causing by the different surface morphology of the two samples, which was further demonstrated via the simulated results by finite element modeling. The FN curves for the ZnS/Si-NPA showed two-slope behavior. All the results indicate that the morphology play an important role in the FE properties and designing an appropriate top morphology for the emitter is a very efficient way to improve the FE performance.

  13. Large spin current injection in nano-pillar-based lateral spin valve

    Energy Technology Data Exchange (ETDEWEB)

    Nomura, Tatsuya [Department of Physics, Kyushu University, 744 Motooka, Fukuoka, 819-0395 (Japan); Ohnishi, Kohei; Kimura, Takashi, E-mail: t-kimu@phys.kyushu-u.ac.jp [Department of Physics, Kyushu University, 744 Motooka, Fukuoka, 819-0395 (Japan); Research Center for Quantum Nano-Spin Sciences, Kyushu University, 744 Motooka, Fukuoka, 819-0395 (Japan)

    2016-08-26

    We have investigated the influence of the injection of a large pure spin current on a magnetization process of a non-locally located ferromagnetic dot in nano-pillar-based lateral spin valves. Here, we prepared two kinds of the nano-pillar-type lateral spin valve based on Py nanodots and CoFeAl nanodots fabricated on a Cu film. In the Py/Cu lateral spin valve, although any significant change of the magnetization process of the Py nanodot has not been observed at room temperature. The magnetization reversal process is found to be modified by injecting a large pure spin current at 77 K. Switching the magnetization by the nonlocal spin injection has also been demonstrated at 77 K. In the CoFeAl/Cu lateral spin valve, a room temperature spin valve signal was strongly enhanced from the Py/Cu lateral spin valve because of the highly spin-polarized CoFeAl electrodes. The room temperature nonlocal switching has been demonstrated in the CoFeAl/Cu lateral spin valve.

  14. High acidity unilamellar zeolite MCM-56 and its pillared and delaminated derivatives.

    Science.gov (United States)

    Gil, Barbara; Makowski, Wacław; Marszalek, Bartosz; Roth, Wieslaw J; Kubu, Martin; Čejka, Jiři; Olejniczak, Zbigniew

    2014-07-21

    The unilamellar form of zeolite MWW, MCM-56, which is obtained by direct hydrothermal synthesis has been studied with regard to acidity and porosity in its original and post-synthesis modified pillared and delaminated forms. The acidity measured by FTIR was found to be only slightly lower than the highly active 3-D MWW forms, MCM-22 and MCM-49. Pivalonitrile adsorption, which is a measure of spatial openness, showed 50% accessibility vs. MCM-22/49. It highlights the potential of MCM-56 as a layered material with increased access to acid sites because it does not entail laborious post-synthesis modification. Swelling, pillaring and delamination of MCM-56 are facile but result in a reduction in the number of Brønsted acid sites (BAS) while increasing accessibility to pivalonitrile. The delamination procedure involving sonication and acidification of the highly basic mother liquor produces the most visible increase in surface area and access to all BAS. The accompanying doubling of the solid yield and the decrease in absolute number of BAS suggest significant precipitation of dissolved silica generated during swelling and sonication in high pH medium. The viability of separating surfactant covered layers upon sonication with the consequence of exposing hydrophobic hydrocarbon tails to aqueous environment is addressed.

  15. Writing and functionalisation of suspended DNA nanowires on superhydrophobic pillar arrays

    KAUST Repository

    Miele, Ermanno

    2014-08-08

    Nanowire arrays and networks with precisely controlled patterns are very interesting for innovative device concepts in mesoscopic physics. In particular, DNA templates have proven to be versatile for the fabrication of complex structures that obtained functionality via combinations with other materials, for example by functionalisation with molecules or nanoparticles, or by coating with metals. Here, the controlled motion of the a three-phase contact line (TCL) of DNA-loaded drops on superhydrophobic substrates is used to fabricate suspended nanowire arrays. In particular, the deposition of DNA wires is imaged in situ, and different patterns are obtained on hexagonal pillar arrays by controlling the TCL velocity and direction. Robust conductive wires and networks are achieved by coating the wires with a thin layer of gold, and as proof of concept conductivity measurements are performed on single suspended wires. The plastic material of the superhydrophobic pillars ensures electrical isolation from the substrate. The more general versatility of these suspended nanowire networks as functional templates is outlined by fabricating hybrid organic-metal-semiconductor nanowires by growing ZnO nanocrystals onto the metal-coated nanowires.

  16. Cerium Modified Pillared Montmorillonite Supported Cobalt Catalysts for Fischer Tropsch Synthesis

    International Nuclear Information System (INIS)

    Ahmad, N.; Ali, Z.; Abbas, S. M.; Hussain, F.

    2015-01-01

    Fischer-Tropsch (FT) synthesis was accomplished over Al-pillared Montmorillonite supported 20 wt% Co modified with different weight% of cerium catalysts. These catalysts were prepared by impregnation method while structural characterizations of the prepared samples were performed by XRD, TPR, NH/sub 3/TPD, TGA, BET, XRF and SEM techniques. The Fischer Tropsch reaction was studied in fixed bed micro catalytic reactor at temperature range of 220, 260 and 275 degree C and at different pressure (1, 5 and 10 bars). From the activity results, it was found that by pillaring NaMMT with Al higher catalytic activity and lower methane selectivity of NaMMT was achieved. Furthermore, the results of FT synthesis reaction revealed that cerium incorporation increased the dispersion of Co/sub 3/O/sub 4/ on the surface and consequently resulted in enhanced catalytic activity. Additionally, the C/sub 5/-C/sub 12/ hydrocarbons and methane selectivity increased while C/sub 22+/ hydrocarbons selectivity was decreased over cerium modified catalysts. Higher reaction temperature (>220 degree C) resulted in significant enhancement in CO conversion and methane selectivity. Though, increase in pressure from 1 to 10 bars eventually resulted in increase in C/sub 5+/ hydrocarbons and decrease in methane and C/sub 2/-C/sub 5/ hydrocarbons selectivity. (author)

  17. Modeling plastic deformation of post-irradiated copper micro-pillars

    Energy Technology Data Exchange (ETDEWEB)

    Crosby, Tamer, E-mail: tcrosby@ucla.edu; Po, Giacomo, E-mail: gpo@ucla.edu; Ghoniem, Nasr M., E-mail: ghoniem@ucla.edu

    2014-12-15

    We present here an application of a fundamentally new theoretical framework for description of the simultaneous evolution of radiation damage and plasticity that can describe both in situ and ex situ deformation of structural materials [1]. The theory is based on the variational principle of maximum entropy production rate; with constraints on dislocation climb motion that are imposed by point defect fluxes as a result of irradiation. The developed theory is implemented in a new computational code that facilitates the simulation of irradiated and unirradiated materials alike in a consistent fashion [2]. Discrete Dislocation Dynamics (DDD) computer simulations are presented here for irradiated fcc metals that address the phenomenon of dislocation channel formation in post-irradiated copper. The focus of the simulations is on the role of micro-pillar boundaries and the statistics of dislocation pinning by stacking-fault tetrahedra (SFTs) on the onset of dislocation channel and incipient surface crack formation. The simulations show that the spatial heterogeneity in the distribution of SFTs naturally leads to localized plastic deformation and incipient surface fracture of micro-pillars.

  18. Cross-contextual stability of bullying victimization: a person-oriented analysis of cyber and traditional bullying experiences among adolescents.

    Science.gov (United States)

    Erentaitė, Rasa; Bergman, Lars R; Zukauskienė, Rita

    2012-04-01

    Using a person-oriented approach the study examined whether bullying victimization at school continued into cyberspace victimization in a large sample of high school students in Lithuania (N = 1667, 58% girls), age 15-19 (M = 17.29, SD = 0.95). Three forms of traditional bullying (verbal, physical and relational) and seven forms of cyberbullying victimization through cell phones and computers were included in the analysis. The findings revealed that 35% of traditional bullying victims were also bullied in cyberspace. In particular, adolescents who experienced predominantly verbal and relational bullying at school, showed a higher risk of victimization in cyberspace a year later, while this was not observed for predominantly physical forms of traditional bullying. The findings point to the importance of a cross-contextual perspective in studies on stability of bullying victimization. © 2012 The Authors. Scandinavian Journal of Psychology © 2012 The Scandinavian Psychological Associations.

  19. Flume Experiments on the Influence of Salmon Spawning Density on Grain Stability and Bedload Transport in Gravel-bed Streams

    Science.gov (United States)

    Buxton, T. H.

    2015-12-01

    Salmon spawning in streams involves the female salmon digging a pit in the bed where she deposits eggs for fertilization before covering them with gravel excavated from the next pit upstream. Sequences of pit excavation and filling winnow fines, loosen sediment, and move bed material into a tailspill mound resembling the shape of a dune. Research suggests salmonid nests (redds) destabilize streambeds by reducing friction between loosened grains and converging flow that elevates shear stress on redd topography. However, bed stability may be enhanced by form drag from redds in clusters that lower shear stress on the granular bed, but this effect will vary with the proportion of the bed surface that is occupied by redds (P). I used simulated redds and water-worked ("unspawned") beds in a laboratory flume to evaluate these competing influences on grain stability and bedload transport rates with P=0.12, 0.34, and 0.41. Results indicate that competence (largest-grain) and reference transport rate estimates of critical conditions for particle entrainment inversely relate to P. Bedload transport increased as exponential functions of P and excess boundary shear stress. Therefore, redd form drag did not overcome the destabilizing effects of spawning. Instead, grain mobility and bedload transport increased with P because larger areas of the bed were composed of relatively loose, unstable grains and redd topography that experienced elevated shear stress. Consequently, the presence of redds in fish-bearing streams likely reduces the effects of sedimentation from landscape disturbance on stream habitats that salmon use for reproduction.

  20. Numerical Analysis of Warpage Induced by Thermo-Compression Bonding Process of Cu Pillar Bump Flip Chip Package

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Oh Young; Jung, Hoon Sun; Lee, Jung Hoon; Choa, Sung-Hoon [Seoul Nat’l Univ. of Science and Technology, Seoul (Korea, Republic of)

    2017-06-15

    In flip chip technology, the conventional solder bump has been replaced with a copper (Cu) pillar bump owing to its higher input/output (I/O) density, finer pitch, and higher reliability. However, Cu pillar bump technology faces several issues, such as interconnect shorting and higher low-k stress due to stiffer Cu pillar structure when the conventional reflow process is used. Therefore, the thermal compression bonding (TCB) process has been adopted in the flip chip attachment process in order to reduce the package warpage and stress. In this study, we investigated the package warpage induced during the TCB process using a numerical analysis. The warpage of the TCB process was compared with that of the reflow process.

  1. Stability of GNSS Monumentation: Analysis of Co-Located Monuments in the UNAVCO Plate Boundary Observatory

    Science.gov (United States)

    Blume, F.; Herring, T.; Mattioli, G. S.; Feaux, K.; Walls, C. P.; Austin, K. E.; Dittmann, S. T.

    2017-12-01

    Geodetic-quality permanent GNSS stations have used a number of different monument styles for the purpose of ensuring that the motions of the GNSS antenna reflect those of the Earth's crust while minimizing non-tectonic motions near the surface. Monuments range from simple masts mounted on buildings or drilled into bedrock, costing a few hundred dollars to machine-drilled-braced monuments in soil costing tens of thousands. The stability of an individual monument will depend on its design, the construction techniques used to install it, and the local surface geology where it is installed. Previous studies have separately investigated pairs of identical monuments at a single site, monument type performance using global statistical analysis, and multiple monument styles at a single site, yet the stability of different monument types in similar geologic conditions has not been adequately determined. To better characterize the stability of various monument styles in diverse geologic conditions UNAVCO constructed two additional monuments at five existing PBO stations in 2013. Deep drilled-braced, short drilled-braced, and single mast type monuments were installed at sites with bedrock at the surface; deep drilled-braced, short driven-braced and pillar type monuments were installed at sites with alluvium or soil at the surface. The sites include a variety of geographic, hydrologic, and geologic conditions. Data collected from the PBO Multi-Monument Experiment have been analyzed using a variety of methods. Each site is characterized using quality-control parameters such as multipath, signal-to-noise and previously determined seasonal variations. High-precision processing by PBO Analysis Centers with GAMIT and GIPSY use regional and global schemes and yield time-series with millimeter-level that determine noise content, overall site stability relative to other PBO sites and differential motions between the individual monuments. Sub-millimeter results from single

  2. Tunable waveguide and cavity in a phononic crystal plate by controlling whispering-gallery modes in hollow pillars

    DEFF Research Database (Denmark)

    Jin, Yabin; Fernez, Nicolas; Pennec, Yan

    2016-01-01

    We investigate the properties of a phononic crystal plate with hollow pillars and introduce the existence of whispering-gallery modes (WGMs). We show that by tuning the inner radius of the hollow pillar, these modes can merge inside both Bragg and low frequency band gaps, deserving phononic crystal...... and acoustic metamaterial applications. These modes can be used as narrow pass bands for which the quality factor can be greatly enhanced by the introduction of an additional cylinder between the hollow cylinder and the plate. We discuss some functionalities of these confined WGM in both Bragg and low...

  3. THE EFFECT OF INNER DIAPHRAGMS AND NON-CONTINUOUS SILL SECTION ON THE STIFFNESS OF AUTOMOTIVE B-PILLAR

    Directory of Open Access Journals (Sweden)

    C.F. Tan

    2017-11-01

    Full Text Available The paper discusses the knowledge on the behaviour of T-frame under specific loading will be obtained by experimental methods in order to investigate the deflection of the vehicle B-pillar or T-frame. In addition, a series of T-frame were designed with inner diaphragm at various location in the sill member in order to investigate the effect of inner diaphragm and noncontinuous closed hat section in the sill member. Lastly, the results from the experimental tests were compared with the finite element analysis results to demonstrate the effectiveness of the inner diaphragm in the automotive B-pillar.

  4. Thermally switchable adhesions of polystyrene-block-poly(n-isopropylacrylamide) copolymer pillar array mimicking climb attitude of geckos

    Science.gov (United States)

    Chen, Jem-Kun; Wang, Jing-Hong; Chang, Jia-Yaw; Fan, Shih-Kang

    2012-09-01

    Inspired by the gecko foot pad, we fabricated polystyrene-block-poly(N-isopropylacrylamide) (PS-b-PNIPAAm) copolymer pillar array to mimic climbing attitude of a gecko, alternately attach to and detach from a surface. The pillar array structure of the PS segment significantly enhances both of the hydrophilic and hydrophobic property of PNIPAAm segment tips at 25 and 50 °C, respectively, which could generate alternating adhesive forces of approximately 120 and 11 nN. The dramatic change in adhesive and friction force difference at 25 and 50 °C may guide the design of bio-inspired artificial analogues, which could approach gecko's climbing behavior.

  5. Momentum and scalar transport within a vegetation canopy following atmospheric stability and seasonal canopy changes: the CHATS experiment

    Directory of Open Access Journals (Sweden)

    S. Dupont

    2012-07-01

    Full Text Available Momentum and scalar (heat and water vapor transfer between a walnut canopy and the overlying atmosphere are investigated for two seasonal periods (before and after leaf-out, and for five thermal stability regimes (free and forced convection, near-neutral condition, transition to stable, and stable. Quadrant and octant analyses of momentum and scalar fluxes followed by space-time autocorrelations of observations from the Canopy Horizontal Array Turbulence Study's (CHATS thirty meter tower help characterize the motions exchanging momentum, heat, and moisture between the canopy layers and aloft.

    During sufficiently windy conditions, i.e. in forced convection, near-neutral and transition to stable regimes, momentum and scalars are generally transported by sweep and ejection motions associated with the well-known canopy-top "shear-driven" coherent eddy structures. During extreme stability conditions (both unstable and stable, the role of these "shear-driven" structures in transporting scalars decreases, inducing notable dissimilarity between momentum and scalar transport.

    In unstable conditions, "shear-driven" coherent structures are progressively replaced by "buo-yantly-driven" structures, known as thermal plumes; which appear very efficient at transporting scalars, especially upward thermal plumes above the canopy. Within the canopy, downward thermal plumes become more efficient at transporting scalars than upward thermal plumes if scalar sources are located in the upper canopy. We explain these features by suggesting that: (i downward plumes within the canopy correspond to large downward plumes coming from above, and (ii upward plumes within the canopy are local small plumes induced by canopy heat sources where passive scalars are first injected if there sources are at the same location as heat sources. Above the canopy, these small upward thermal plumes aggregate to form larger scale upward thermal plumes. Furthermore, scalar

  6. Assessing phase stability and element distribution in Co-base superalloys at elevated temperatures by in situ TEM heating experiments

    Energy Technology Data Exchange (ETDEWEB)

    Eggeler, Yolita; Mueller, Julian; Spiecker, Erdmann [Lehrstuhl fuer Mikro- und Nanostrukturforschung and Center for Nanoanalysis and Electron Microscopy (CENEM), Department Werkstoffwissenschaften, Universitaet Erlangen-Nuernberg, Erlangen (Germany)

    2016-07-01

    Co-based alloys, of a composition of Co-12Al-9W, form a stable two phase γ/γ{sup '} microstructure at 900 C. γ{sup '} cubes, consisting of the L12 crystal structure are coherently embedded in a solid solution fcc (A1) γ matrix. To ensure precipitate hardening at temperatures, which are relevant to practical applications, 700-1100 C, as experienced in gas turbine applications, the stability of the γ/γ{sup '} phases is of fundamental importance. In this analysis in situ TEM studies with chip-based heating systems (by DENS solution) are applied on new Co-based superalloys. After in situ heating at apr. 900 C and controlled quenching with different quenching rates the elemental distribution at the γ/γ{sup '} interface is measured using ChemiSTEM EDX. Exploiting the driving force for interface movement resulting from temperature-dependent volume fraction of γ and γ{sup '} insight into the diffusion of individual alloying elements and the relationship between local chemistry and ordering can be gained from transient phenomena. The experimental results will be compared with theoretical calculations. This work has been carried out within the framework of the SFB-TR 103 ''Single Crystal Superalloys''.

  7. Banking Models Under the Impact of the Post-Crisis Organizational Changes Apt to Confer Sustainable Financial Stability - Romanian Experience

    Directory of Open Access Journals (Sweden)

    Claudia Gabriela Baicu

    2012-06-01

    Full Text Available The global financial crisis led to substantial changes in the operating environment of banks. Reforming the regulatory framework of financial and banking activity and the increase role of state in banking systems in many countries are important factors that involve major changes in the organizing of banking activity, the strategies adopted, the business models practiced, etc. Based on these considerations, the paper examines trends in banking models after the 2007 crisis. The analysis of the banking models is performed from the perspective of the deep organizational changes that affected the banking environment and sustainable financial stability. The study focuses on the analysis of the banking sustenability and the business model in the Romanian banking system, in the context of the post-crisis organizational changes. The profound interdependence of the Romanian banking system with the banking systems of the European countries and the international tendencies in financial regulation are important factors that influence the business models of the Romanian banks. The banking model practiced in Romania continues to be the traditional one. Currently, the most important challenges of the Romanian banking system are the growth of the non-performing loans, the loans in foreign currency to unhedged borrowers, the pressure to meet the Basel III requirements, as well as the possibility that the exposure of foreign banks towards Romania to decrease.

  8. "Learning to Do" as a Pillar of Education and Its Links to Entrepreneurial Studies in Higher Education: European Contexts and Approaches

    Science.gov (United States)

    Miclea, Mircea

    2004-01-01

    The author links the "learning to do" pillar, one of the four pillars of the Delors Report of 1996 , "Learning: The Treasure Within", to the principles and purposes of an entrepreneurial university and the aims of the European Commission and the Bologna Process to enhance the employability of graduates of higher education. An entrepreneurial…

  9. Scharioth Macula Lens: A new intraocular implant for low-vision patients with stabilized maculopathy- first experience.

    Science.gov (United States)

    Nekolova, Jana; Rozsival, Pavel; Sin, Martin; Jiraskova, Nada

    2017-06-01

    To present the initial results of Scharioth Macula Lens (SML) implantation. The SML is a new add-on intraocular lens designed to increase uncorrected near visual acuity (UCVA) in patients with stabilized maculopathy. Eight patients were included in the study. All met the indication criteria before SML implantation. An SML was implanted in the better seeing eye. Near and distance visual acuity were tested. Possible complications and patient complaints were recorded and patients were asked about their quality of vision after SML implantation. The examination was carried out on day 1, 1 week, 1, 3 and 6 months after surgery. Six-month-results are presented. Apart from one, all patients with the SML had good near visual acuity at a recommended reading distance of 15 cm. Preoperatively, the mean (min-max) near UCVA was J13 (J8-J16), mean distance BCVA was 0.27. Postoperatively, the best results were after 1 month - near UCVA was J2.5 (J1-J7), distance BCVA was 0.26. Three months after surgery, this decreased to J4.5 (J1-J8); distance VA remained 0.25. Six months postoperatively - near vision was J4 (J1-J8) and distance VA was unchanged. Patients reported problems with reading speed and reading distance. Daily exercise improved their reading ability. One patient converted to wet AMD 3 months post-implantation. The SML is a new hope for low-vision patients. It acts as a magnifier in the eye. It is a suitable method for increasing near visual acuity in patients with inactive maculopathy.

  10. Feedback stabilization initiative

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-06-01

    Much progress has been made in attaining high confinement regimes in magnetic confinement devices. These operating modes tend to be transient, however, due to the onset of MHD instabilities, and their stabilization is critical for improved performance at steady state. This report describes the Feedback Stabilization Initiative (FSI), a broad-based, multi-institutional effort to develop and implement methods for raising the achievable plasma betas through active MHD feedback stabilization. A key element in this proposed effort is the Feedback Stabilization Experiment (FSX), a medium-sized, national facility that would be specifically dedicated to demonstrating beta improvement in reactor relevant plasmas by using a variety of MHD feedback stabilization schemes.

  11. Feedback stabilization initiative

    International Nuclear Information System (INIS)

    1997-06-01

    Much progress has been made in attaining high confinement regimes in magnetic confinement devices. These operating modes tend to be transient, however, due to the onset of MHD instabilities, and their stabilization is critical for improved performance at steady state. This report describes the Feedback Stabilization Initiative (FSI), a broad-based, multi-institutional effort to develop and implement methods for raising the achievable plasma betas through active MHD feedback stabilization. A key element in this proposed effort is the Feedback Stabilization Experiment (FSX), a medium-sized, national facility that would be specifically dedicated to demonstrating beta improvement in reactor relevant plasmas by using a variety of MHD feedback stabilization schemes

  12. Ademe et Vous. International Newsletter No. 35, December 2015. COP21: one objective, four pillars

    International Nuclear Information System (INIS)

    Martin, Valerie; Seguin-Jacques, Catherine; Tappero, Denis

    2015-12-01

    Content: - COP21: one objective, four pillars: With COP21 providing a platform for intergovernmental negotiations, ADEME is actively working alongside with non-state actors to foster an environment conducive to success. - ADEME, a stakeholder of COP21: ADEME has been particularly proactive when it comes to mobilising non-state actors in the context of COP21, and has made the most of its presence at Le Bourget to announce a number of new initiatives covering a number of the 12 themes that make up the Lima-Paris Action Agenda. - Innovation exhibited at COP21: Giving the public an opportunity to be within reach of the world of tomorrow: This is the aim of the Innov'Climat exhibition, initiated by ADEME back in July and developed for COP21

  13. Investigation of activated Al-pillared clay efficiency in vegetable oil purification

    Directory of Open Access Journals (Sweden)

    Lomić Gizela A.

    2004-01-01

    Full Text Available This paper represents a contribution to the applicability of natural clays and their derivates as adsorbents in the process of purification of vegetable oil. Investigation of textural properties of raw and purified clay samples reveals that during acid activation and Al-pillaring, BET and micropore surface area increases significantly. However, bleaching capacity of clay and its derivates is not determined by using sample surface area, but rather sample total pore volume. Surface area, especially micropore surface area contributes to removal of smaller molecules. This was confirmed by successful elimination of moisture and volatile materials by samples with an appropriate micropore structure. Used samples of clay and its derivates do not significantly influence acid and peroxide values of raw sunflower oil during its treatment.

  14. Supramolecular Drug Delivery Systems Based on Water-Soluble Pillar[n]arenes.

    Science.gov (United States)

    Wu, Xuan; Gao, Lei; Hu, Xiao-Yu; Wang, Leyong

    2016-06-01

    Supramolecular drug delivery systems (SDDSs), including various kinds of nanostructures that are assembled by reversible noncovalent interactions, have attracted considerable attention as ideal drug carriers owing to their fascinating ability to undergo dynamic switching of structure, morphology, and function in response to various external stimuli, which provides a flexible and robust platform for designing and developing functional and smart supramolecular nano-drug carriers. Pillar[n]arenes represent a new generation of macrocyclic hosts, which have unique structures and excellent properties in host-guest chemistry. This account describes recent progress in our group to develop pillararene-based stimuli-responsive supramolecular nanostructures constructed by reversible host-guest interactions for controllable anticancer drug delivery. The potential applications of these supramolecular drug carriers in cancer treatment and the fundamental questions facing SDDSs are also discussed. © 2016 The Chemical Society of Japan & Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Ultra-fast magnetization reversal in magnetic nano-pillars by spin-polarized current

    Energy Technology Data Exchange (ETDEWEB)

    Devolder, T. [Institut d' Electronique Fondamentale, UMR 8622 CNRS, Universite Paris Sud, Ba-circumflex timent 220, 91405 Orsay (France)]. E-mail: thibaut.devolder@ief.u-psud.fr; Tulapurkar, A. [NanoElectronics Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba 305-8568 (Japan); CREST, Japan Science and Technology Corporation, 4-1-8 Honcho, Kawaguchi 332-0012 (Japan); Yagami, K. [SSNC, Semiconductor Technology Development Group, SONY Corporation, Atsugi, Kanagawa 243-0014 (Japan); Crozat, P. [Institut d' Electronique Fondamentale, UMR 8622 CNRS, Universite Paris Sud, Ba-circumflex timent 220, 91405 Orsay (France); Chappert, C. [Institut d' Electronique Fondamentale, UMR 8622 CNRS, Universite Paris Sud, Ba-circumflex timent 220, 91405 Orsay (France); Fukushima, A. [NanoElectronics Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba 305-8568 (Japan); CREST, Japan Science and Technology Corporation, 4-1-8 Honcho, Kawaguchi 332-0012 (Japan); Suzuki, Y. [NanoElectronics Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba 305-8568 (Japan); CREST, Japan Science and Technology Corporation, 4-1-8 Honcho, Kawaguchi 332-0012 (Japan)

    2005-02-01

    We study the speed limitations of the magnetization switching resulting from spin transfer in pillar-shaped CoFe/Cu/CoFe spin valves. The quasi-static critical currents are Ic-=-2mA for the antiparallel (AP) to parallel (P) configuration and Ic+=+4.6mA for the P to AP transition. Current pulses of duration down to 100ps and amplitude of 4I{sub c} trigger switching at 300K. The switching is probabilistic for lower current pulses. The P to AP transition speed is not much temperature dependant from 50 to 300K. In contrast, the AP to P transition is thermally inhibited and is much faster at 150K than at 300K. This thermal inhibition highlights the importance of the macrospin coherency and of the thermally excited spin waves with finite wave vector parallel to the magnetization. Our results validate spin-transfer switching for fast memory applications.

  16. Ultra-fast magnetization reversal in magnetic nano-pillars by spin-polarized current

    International Nuclear Information System (INIS)

    Devolder, T.; Tulapurkar, A.; Yagami, K.; Crozat, P.; Chappert, C.; Fukushima, A.; Suzuki, Y.

    2005-01-01

    We study the speed limitations of the magnetization switching resulting from spin transfer in pillar-shaped CoFe/Cu/CoFe spin valves. The quasi-static critical currents are Ic-=-2mA for the antiparallel (AP) to parallel (P) configuration and Ic+=+4.6mA for the P to AP transition. Current pulses of duration down to 100ps and amplitude of 4I c trigger switching at 300K. The switching is probabilistic for lower current pulses. The P to AP transition speed is not much temperature dependant from 50 to 300K. In contrast, the AP to P transition is thermally inhibited and is much faster at 150K than at 300K. This thermal inhibition highlights the importance of the macrospin coherency and of the thermally excited spin waves with finite wave vector parallel to the magnetization. Our results validate spin-transfer switching for fast memory applications

  17. The relation between district raise in the multiple coal seams and its pillars

    Energy Technology Data Exchange (ETDEWEB)

    Zhai, X. [Jiaozuo Institute of Technology, Jiaozuo (China). Dept. of Mining Engineering

    2002-02-01

    Based on the geological condition of multiple coal seams mining in No.8 Colliery of Pingdingshan Coal Group, the behaviours of the front abutment pressure in each of the coal seams and the fixed abutment pressure are observed. The main cause of deformation and damage to the galleries is the increasing value of the valid load coefficient of the surrounding rock. The rational pillar width of the district raise is studied when its two side seams have been mined, and the layout question of district raise in the different set of seams is also studied. The conclusions derived from the study are useful guiding reference for the design of district raise layout in deep multiple coal seams mining. 6 refs., 3 figs., 1 tab.

  18. The Third Pillar of the Basel Accord: Evidence of borrower discipline in the Kyrgyz banking system

    Directory of Open Access Journals (Sweden)

    Edgar Demetrio Tovar-García

    2016-07-01

    Full Text Available We empirically study the asset side of market discipline in the banking system of the Kyrgyz Republic, examining whether borrowers are willing to pay higher interest rates to high-quality banks. Based on dynamic panel models and a dataset with bank information from 23 banks over the period 2010–2012, our findings suggest the presence of market discipline induced by borrowers. In other words, banks with higher capital ratios and liquidity charge higher interest rates on loans. This result has several implications for the banking policy in Kyrgyzstan, where we can recommend to policymakers a disclosure policy following the Third Pillar of Basel III, because not only can the bank's creditors use bank information to penalize the excessive bank risk, but borrowers can also use this information to discipline their banks.

  19. THE IMPACT OF ICT SECTOR ON THE SOCIAL PILLAR OF SUSTAINABLE DEVELOPMENT

    Directory of Open Access Journals (Sweden)

    TEODORESCU ANA-MARIA

    2016-06-01

    Full Text Available The human being is the main axis in setting sustainable development goals. Sustainable development, through its components - economic and environmental, has only one beneficiary - the human factor who benefits of income, education, good quality environmental factors, and enjoy inter and intra-generational equity. Information technology and communications contributes to fulffiling the goals of sustainable development through access to information society services (e-health, e-government, e-learning, access to education. This article presents the sustainable development objectives and the impact of ICT sector on the social pillar of sustainable development. I used a theoretical research and qualitative analysis of the data. I presented values indicators at the european level, the lowest and highest value, and recorded values for Romania.

  20. Pillars of Creation among Destruction: Star Formation in Molecular Clouds near R136 in 30 Doradus

    Science.gov (United States)

    Kalari, Venu M.; Rubio, Mónica; Elmegreen, Bruce G.; Guzmán, Viviana V.; Zinnecker, Hans; Herrera, Cinthya N.

    2018-01-01

    We present new sensitive CO(2–1) observations of the 30 Doradus region in the Large Magellanic Cloud. We identify a chain of three newly discovered molecular clouds that we name KN1, KN2, and KN3 lying within 2–14 pc in projection from the young massive cluster R136 in 30 Doradus. Excited H2 2.12 μm emission is spatially coincident with the molecular clouds, but ionized Brγ emission is not. We interpret these observations as the tails of pillar-like structures whose ionized heads are pointing toward R136. Based on infrared photometry, we identify a new generation of stars forming within this structure.

  1. Preparation of Pillar[5]arene-Based [2]Rotaxanes by a Stopper-Exchange Strategy.

    Science.gov (United States)

    Nierengarten, Iwona; Meichsner, Eric; Holler, Michel; Pieper, Pauline; Deschenaux, Robert; Delavaux-Nicot, Béatrice; Nierengarten, Jean-François

    2018-01-02

    A pillar[5]arene-containing rotaxane building block bearing exchangeable stoppers has been prepared in multigram scale quantities with high yields from the reaction of 2,4-dinitrophenol (DNP) with the inclusion complex resulting from the association of dodecanedioyl chloride with 1,4-diethoxypillar[5]arene. Stopper exchange reactions have been achieved by treatment of the resulting DNP diester with various amines through an addition-elimination mechanism preventing the unthreading of the axle component during the reaction and thus preserving the [2]rotaxane structures. The resulting diamide [2]rotaxane derivatives have thus been obtained in good to excellent yields. Importantly, [2]rotaxanes difficult or impossible to prepare by direct introduction of the two stoppers in a single synthetic step are now easily available. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Short circuit experiment on an FCL coil wound with YBCO tape with a high-resistance stabilizing layer

    Energy Technology Data Exchange (ETDEWEB)

    Yazawa, T; Iijima, Y; Saito, T [Toshiba Corporation, Fujikura Ltd (Japan); Amemiya, N [Toshiba Corporation, Yokohama National University (Japan); Shiohara, Y [Toshiba Corporation, ISTEC SRL (Japan); Koyanagi, K; Ono, M; Urata, M, E-mail: takashi.yazawa@toshiba.co.jp

    2008-02-15

    One of the programs in the Ministry of Economy, Trade and Industry regarding R and D for developing YBCO conductors is to evaluate the suitability of the conductors in several applications. This paper focuses on one of the expected power applications, namely, a fault current limiter (FCL). YBCO tape conductors with ion beam assisted deposition (IBAD) substrates are used in this work. In order to increase the resistivity of the conductor, which is preferable for FCL applications, the thickness of a protective layer made of silver was decreased as much as possible. After obtaining the required current limiting performance in short sample experiments, a model coil was developed aiming at 6.6 kV-class FCLs. Short circuit experiments were conducted with a short-circuit generator. The coil successfully suppressed a short-circuit current of over 1.4 kA to about 500 A under an applied voltage of 3.8 kV, which is the nominal phase-to-ground voltage. The coil also suppressed a short-circuit current of 17 kA down to 700 A. The experimental results are as expected and show promise toward FCL applications.

  3. Short circuit experiment on an FCL coil wound with YBCO tape with a high-resistance stabilizing layer

    International Nuclear Information System (INIS)

    Yazawa, T; Iijima, Y; Saito, T; Amemiya, N; Shiohara, Y; Koyanagi, K; Ono, M; Urata, M

    2008-01-01

    One of the programs in the Ministry of Economy, Trade and Industry regarding R and D for developing YBCO conductors is to evaluate the suitability of the conductors in several applications. This paper focuses on one of the expected power applications, namely, a fault current limiter (FCL). YBCO tape conductors with ion beam assisted deposition (IBAD) substrates are used in this work. In order to increase the resistivity of the conductor, which is preferable for FCL applications, the thickness of a protective layer made of silver was decreased as much as possible. After obtaining the required current limiting performance in short sample experiments, a model coil was developed aiming at 6.6 kV-class FCLs. Short circuit experiments were conducted with a short-circuit generator. The coil successfully suppressed a short-circuit current of over 1.4 kA to about 500 A under an applied voltage of 3.8 kV, which is the nominal phase-to-ground voltage. The coil also suppressed a short-circuit current of 17 kA down to 700 A. The experimental results are as expected and show promise toward FCL applications

  4. PREPARATION AND CATALYTIC ACTIVITY FOR ISOPROPYL BENZENE CRACKING OF Co, Mo AND Co/Mo-Al2O3-PILLARED MONTMORILLONITE CATALYSTS

    Directory of Open Access Journals (Sweden)

    Hasanudin Hasanudin

    2010-06-01

    Full Text Available It has been prepared Co, Mo and Co/Mo-Al2O3-pillared montmorillonite catalysts using montmorillonite clay  as raw material. The structure and porosity of the catalysts were determined using N2 adsorption-desorption and FT-IR spectroscopy analysis methods. Isopropyl benzene cracking using these catalysts were used to test the catalytic activity and performance of Co, Mo and Co/Mo-Al2O3-pillared montmorillonites.  Characterization results showed that pillarization resulted in the increase of the total pore volume and specific surface area of the clay. Meanwhile, transition metals (Co, Mo and Co/Mo loaded on Al2O3-pillared monmorillonites could increase the catalytic activity of the catalysts for isopropyl benzene cracking significantly.   Keywords: pillared monmorillonite, isopropyl benzene  and cracking catalyst

  5. Effects of focused ion beam milling on the compressive behavior of directionally solidified micro-pillars and the nanoindentation response of an electro-polished surface

    International Nuclear Information System (INIS)

    Shim, Sang Hoon; Bei, Hongbin; Miller, Michael K; Pharr, George Mathews; George, Easo P

    2009-01-01

    Focused ion beam (FIB) milling is the typical way in which micro-pillars are fabricated to study small-scale plasticity and size effects in uniaxial compression. However, FIB milling can introduce defects into the milled pillars. To investigate the effects of FIB damage on mechanical behavior, we tested Mo-alloy micro-pillars that were FIB milled following directional solidification, and compared their compressive response to pillars that were not FIB milled. We also FIB milled at glancing incidence a Mo-alloy single-crystal surface, and compared its nanoindentation response to an electro-polished surface of the same crystal. Consequences for the interpretation of data obtained from FIB milled micro-pillars are discussed

  6. Melt cooling by bottom flooding: The experiment CometPC-H3. Ex-vessel core melt stabilization research

    International Nuclear Information System (INIS)

    Alsmeyer, H.; Cron, T.; Merkel, G.; Schmidt-Stiefel, S.; Tromm, W.; Wenz, T.

    2003-03-01

    The CometPC-H3 experiment was performed to investigate melt cooling by water addition to the bottom of the melt. The experiment was performed with a melt mass of 800 kg, 50% metal and 50% oxide, and 300 kW typical decay heat were simulated in the melt. As this was the first experiment after repair of the induction coil, attention was given to avoid overload of the induction coil and to keep the inductor voltage below critical values. Therefore, the height of the sacrificial concrete layer was reduced to 5 cm only, and the height of the porous concrete layers was also minimized to have a small distance and good coupling between heated melt and induction coil. After quite homogeneous erosion of the upper sacrificial concrete layer, passive bottom flooding started from the porous concrete after 220 s with 1.3 liter water/s. The melt was safely stopped, arrested and cooled. The porous, water filled concrete was only slightly attacked by the hot melt in the upper 25 mm of one sector of the coolant device. The peak cooling rate in the early contact phase of coolant water and melt was 4 MW/m 2 , and exceeded the decay heat by one order of magnitude. The cooling rate remarkably dropped, when the melt was covered by the penetrating water and a surface crust was formed. Volcanic eruptions from the melt during the solidification process were observed from 360 - 510 s and created a volcanic dome some 25 cm high, but had only minor effect on the generation of a porous structure, as the expelled melt solidified mostly with low porosity. Unfortunately, decay heat simulation in the melt was interrupted at 720 s by an incorrect safety signal, which excluded further investigation of the long term cooling processes. At that time, the melt was massively flooded by a layer of water, about 80 cm thick, and coolant water inflow was still 1 l/s. The melt had reached a stable situation: Downward erosion was stopped by the cooling process from the water filled, porous concrete layer. Top

  7. Design and construction of porous metal–organic frameworks based on flexible BPH pillars

    International Nuclear Information System (INIS)

    Hao, Xiang-Rong; Yang, Guang-sheng; Shao, Kui-Zhan; Su, Zhong-Min; Yuan, Gang; Wang, Xin-Long

    2013-01-01

    Three metal–organic frameworks (MOFs), [Co 2 (BPDC) 2 (4-BPH)·3DMF] n (1), [Cd 2 (BPDC) 2 (4-BPH) 2 ·2DMF] n (2) and [Ni 2 (BDC) 2 (3-BPH) 2 (H 2 O)·4DMF] n (3) (H 2 BPDC=biphenyl-4,4′-dicarboxylic acid, H 2 BDC=terephthalic acid, BPH=bis(pyridinylethylidene)hydrazine and DMF=N,N′-dimethylformamide), have been solvothermally synthesized based on the insertion of heterogeneous BPH pillars. Framework 1 has “single-pillared” MOF-5-like motif with inner cage diameters of up to 18.6 Å. Framework 2 has “double pillared” MOF-5-like motif with cage diameters of 19.2 Å while 3 has “double pillared” 8-connected framework with channel diameters of 11.0 Å. Powder X-ray diffraction (PXRD) shows that 3 is a dynamic porous framework. - Graphical abstract: By insertion of flexible BPH pillars based on “pillaring” strategy, three metal–organic frameworks are obtained showing that the porous frameworks can be constructed in a much greater variety. Highlights: ► Frameworks 1 and 2 have MOF-5 like motif. ► The cube-like cages in 1 and 2 are quite large, comparable to the IRMOF-10. ► Framework 1 is “single-pillared” mode while 2 is “double-pillared” mode. ► PXRD and gas adsorption analysis show that 3 is a dynamic porous framework.

  8. A family of porous lonsdaleite-e networks obtained through pillaring of decorated kagomé lattice sheets

    KAUST Repository

    Schoedel, Alexander; Boyette, Wesley; Wojtas, Łukasz; Eddaoudi, Mohamed; Zaworotko, Michael J.

    2013-01-01

    A new and versatile class of metal-organic materials (MOMs) with augmented lonsdaleite-e (lon-e-a) topology is presented herein. This family of lon-e nets are built by pillaring of hexagonal two-dimensional kagomé (kag) lattices constructed from well-known [Zn2(CO2R)4] paddlewheel molecular building blocks (MBBs) connected by 1,3- benzenedicarboxylate (bdc2-) linkers. The pillars are [Cr 3(μ3-O)(RCO2)]6 trigonal prismatic primary MBBs decorated by six pyridyl moieties (tp-PMBB-1). The three-fold symmetry (D3h) of tp-PMBB-1 is complementary with the alternating orientation of the axial sites of the paddlewheel MBBs and enables triple cross-linking of the kag layers by each pillar. These MOMs represent the first examples of axial-to-axial pillared undulating kag layers, and they are readily fine-tuned because the bdc2- moieties can be varied at their 5-position without changing the overall structure. This lon-e platform possesses functionalized hexagonal channels since the kag lattices are necessarily eclipsed. The effects of the substituent at the 5-positions of the bdc 2- linkers upon gas adsorption, particularly the heats of adsorption of carbon dioxide and methane, were studied. © 2013 American Chemical Society.

  9. Theoretical Investigations of CO 2 and H 2 Sorption in an Interpenetrated Square-Pillared Metal–Organic Material

    KAUST Repository

    Pham, Tony; Forrest, Katherine A.; McLaughlin, Keith; Tudor, Brant; Nugent, Patrick; Hogan, Adam; Mullen, Ashley; Cioce, Christian R.; Zaworotko, Michael J.; Space, Brian

    2013-01-01

    Simulations of CO2 and H2 sorption and separation were performed in [Cu(dpa)2SiF6-i], a metal-organic material (MOM) consisting of an interpenetrated square grid of Cu2+ ions coordinated to 4,4′-dipyridylacetylene (dpa) rings and pillars of SiF6 2

  10. Improving wettability of photo-resistive film surface with plasma surface modification for coplanar copper pillar plating of IC substrates

    Science.gov (United States)

    Xiang, Jing; Wang, Chong; Chen, Yuanming; Wang, Shouxu; Hong, Yan; Zhang, Huaiwu; Gong, Lijun; He, Wei

    2017-07-01

    The wettability of the photo-resistive film (PF) surfaces undergoing different pretreatments including the O2sbnd CF4 low-pressure plasma (OCLP) and air plasma (AP), is investigated by water contact angle measurement instrument (WCAMI) before the bottom-up copper pillar plating. Chemical groups analysis performed by attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR) and X-ray photoelectron spectra (XPS) shows that after the OCLP and wash treatment, the wettability of PF surface is attenuated, because embedded fluorine and decreased oxygen content both enhance hydrophobicity. Compared with OCLP treatment, the PF surface treatment by non-toxic air plasma displays features of Csbnd O, Osbnd Cdbnd O, Cdbnd O and sbnd NO2 by AIR-FTIR and XPS, and a promoted wettability by WCAM. Under the identical electroplating condition, the surface with a better wettability allows electrolyte to spontaneously soak all the places of vias, resulting in improved copper pillar uniformity. Statistical analysis of metallographic data shows that more coplanar and flat copper pillars are achieved with the PF treatment of air plasma. Such modified copper-pillar-plating technology meets the requirement of accurate impedance, the high density interconnection for IC substrates.

  11. Single-step direct fabrication of pillar-on-pore hybrid nanostructures in anodizing aluminum for superior superhydrophobic efficiency.

    Science.gov (United States)

    Jeong, Chanyoung; Choi, Chang-Hwan

    2012-02-01

    Conventional electrochemical anodizing processes of metals such as aluminum typically produce planar and homogeneous nanopore structures. If hydrophobically treated, such 2D planar and interconnected pore structures typically result in lower contact angle and larger contact angle hysteresis than 3D disconnected pillar structures and, hence, exhibit inferior superhydrophobic efficiency. In this study, we demonstrate for the first time that the anodizing parameters can be engineered to design novel pillar-on-pore (POP) hybrid nanostructures directly in a simple one-step fabrication process so that superior surface superhydrophobicity can also be realized effectively from the electrochemical anodization process. On the basis of the characteristic of forming a self-ordered porous morphology in a hexagonal array, the modulation of anodizing voltage and duration enabled the formulation of the hybrid-type nanostructures having controlled pillar morphology on top of a porous layer in both mild and hard anodization modes. The hybrid nanostructures of the anodized metal oxide layer initially enhanced the surface hydrophilicity significantly (i.e., superhydrophilic). However, after a hydrophobic monolayer coating, such hybrid nanostructures then showed superior superhydrophobic nonwetting properties not attainable by the plain nanoporous surfaces produced by conventional anodization conditions. The well-regulated anodization process suggests that electrochemical anodizing can expand its usefulness and efficacy to render various metallic substrates with great superhydrophilicity or -hydrophobicity by directly realizing pillar-like structures on top of a self-ordered nanoporous array through a simple one-step fabrication procedure.

  12. The role of education in the culture of four pillar poverty to establish the nationalism of young generation

    Science.gov (United States)

    Sarmini; Warsono

    2018-01-01

    Globalization as an international integration process brings several positive and negative impacts due to the exchange of world views, products, thoughts, and other cultural aspects that can diminish the values of national identity. Four pillars of nationality are needed as a foundation to counteract the negative effects of globalization, therefore a culturally, educative, legal and structural approach is needed so that the younger generation can truly understand and safeguard the four pillars of our nationality. So far the government has also played little role in building the four pillars into an education. This research intends to see how the role of education can build young generation of nationalism by using research design in the form of content analysis. The population in this study is the Education Office of Sidoarjo Regency, which is the level of Junior High School Education Unit. However, given the scope and breadth of the district of Sidoarjo, a representative sample is determined using FGD (Focus Group Discussion) data collection techniques and questionnaires that will be analyzed using written policy descriptions or unwritten policies. Through a series of research stages, it can be concluded that there are still many principals who have not integrated the culture of the four pillars of nationalism into a written and unwritten document covering intracurricular, extracurricular, school culture and through community participation.

  13. Mining the 510 coal seam prone to rock bursts and below a coal support pillar in a seam above

    Energy Technology Data Exchange (ETDEWEB)

    Major, M; Gebala, W

    1983-10-01

    The 510 coal seam, situated at a depth of 760 m below a support pillar left in an overlying coal seam, was mined by a system of longwall faces from 1979 to 1982. The seam was prone to rock bursts. Energy of rock bursts which occurred in the mine ranged from 10/SUP/5 to 10/SUP/6 J. The coal seam, 10 m thick, was mined by slicing. Faces were 140 m long. Stress concentrations caused by the suppport pillar left in the overlying coal seam were calculated. Curves which describe stress fluctuations were plotted. Rock burst hazards were determined by drilling. Drilling intervals depended on hazard degree and position of the test site in relation to the support pillar in the overlying coal seam. The face was 3 m high. Supports used in 2 gate roads were reinforced by steel and timber supports. Strong timber boards were placed at canopies of powered supports used at the working face. The face was situated at an angle of 10 degrees to the pillar axis. In the zone of critical stresses water infusion and shock blasting were used for rock burst prevention. These methods, plus reinforcement of the supports in gate roads and at the working face, guaranteed safe mining and prevented rock bursts. (8 refs.)

  14. The Effect of Mining Activity on the Surface in the Safety Shaft Pillar Area of Mayrau Mine

    Czech Academy of Sciences Publication Activity Database

    Živor, Roman; Klos, Pavel; Pechoč, Jiří; Brož, Milan

    M-24(340) (2002), s. 227-235 ISSN 0138-015X. [Polish-Czech-Slovakian Symposium on Mining Geophysics /28./. Niedzica, 11.06.2001-13.06.2001] R&D Projects: GA AV ČR IBS3086005 Institutional research plan: CEZ:AV0Z3046908 Keywords : shaft pillar * mining * surface subsidence Subject RIV: DH - Mining, incl. Coal Mining

  15. A family of porous lonsdaleite-e networks obtained through pillaring of decorated kagomé lattice sheets

    KAUST Repository

    Schoedel, Alexander

    2013-09-25

    A new and versatile class of metal-organic materials (MOMs) with augmented lonsdaleite-e (lon-e-a) topology is presented herein. This family of lon-e nets are built by pillaring of hexagonal two-dimensional kagomé (kag) lattices constructed from well-known [Zn2(CO2R)4] paddlewheel molecular building blocks (MBBs) connected by 1,3- benzenedicarboxylate (bdc2-) linkers. The pillars are [Cr 3(μ3-O)(RCO2)]6 trigonal prismatic primary MBBs decorated by six pyridyl moieties (tp-PMBB-1). The three-fold symmetry (D3h) of tp-PMBB-1 is complementary with the alternating orientation of the axial sites of the paddlewheel MBBs and enables triple cross-linking of the kag layers by each pillar. These MOMs represent the first examples of axial-to-axial pillared undulating kag layers, and they are readily fine-tuned because the bdc2- moieties can be varied at their 5-position without changing the overall structure. This lon-e platform possesses functionalized hexagonal channels since the kag lattices are necessarily eclipsed. The effects of the substituent at the 5-positions of the bdc 2- linkers upon gas adsorption, particularly the heats of adsorption of carbon dioxide and methane, were studied. © 2013 American Chemical Society.

  16. Determination of concrete cover thickness in a reinforced concrete pillar by observation of the scattered electromagnetic field

    Science.gov (United States)

    Di Gregorio, Pietro Paolo; Frezza, Fabrizio; Mangini, Fabio; Pajewski, Lara

    2017-04-01

    The electromagnetic scattered field by a reinforced concrete structure is calculated by means of frequency-domain numerical simulations and by making use of the scattered-field formulation. The concrete pillar, used as supporting architectural element, is modelled as a parallelepiped shell made of concrete material inside which are present steel bars. In order to make the model simpler, the steel bars are supposed running parallel to the air-pillar interface. To excite the model, a linearly-polarized plane wave impinging normally with respect to the pillars surface, is adopted. We consider two different polarizations in order to determine the most useful in terms of scattered-field sensitivity. Moreover, a preliminary frequency sweep allows us to choose the most suitable operating frequency depending on the dimensions of the pillar cross-section, the steel bars cross-section and the concrete cover. All the three components of the scattered field are monitored along a line just above the interface air-pillar. The electromagnetic properties of the materials employed in this study are present in the literature and, since a frequency-domain technique is adopted, no further approximation is needed. The results obtained for different values of the concrete cover are compared, with the goal of determining the scattered field dependence on the concrete cover thickness. Considering different concrete cover thicknesses, we want to provide an electromagnetic method to obtain this useful parameter by observation of the scattered electromagnetic field. One of the practical applications of this study in the field of Civil Engineering may be the use of ground penetrating radar (GPR) techniques to monitor the thickness of the concrete that separates the metal bars embedded in the pillar from the outer surface. A correct distance is useful because the concrete cover serves as a protection against external agents avoiding corrosion of the bars that might prejudice the reinforced

  17. 3D polyaniline porous layer anchored pillared graphene sheets: enhanced interface joined with high conductivity for better charge storage applications.

    Science.gov (United States)

    Sekar, Pandiaraj; Anothumakkool, Bihag; Kurungot, Sreekumar

    2015-04-15

    Here, we report synthesis of a 3-dimensional (3D) porous polyaniline (PANI) anchored on pillared graphene (G-PANI-PA) as an efficient charge storage material for supercapacitor applications. Benzoic acid (BA) anchored graphene, having spatially separated graphene layers (G-Bz-COOH), was used as a structure controlling support whereas 3D PANI growth has been achieved by a simple chemical oxidation of aniline in the presence of phytic acid (PA). The BA groups on G-Bz-COOH play a critical role in preventing the restacking of graphene to achieve a high surface area of 472 m(2)/g compared to reduced graphene oxide (RGO, 290 m(2)/g). The carboxylic acid (-COOH) group controls the rate of polymerization to achieve a compact polymer structure with micropores whereas the chelating nature of PA plays a crucial role to achieve the 3D growth pattern of PANI. This type of controlled interplay helps G-PANI-PA to achieve a high conductivity of 3.74 S/cm all the while maintaining a high surface area of 330 m(2)/g compared to PANI-PA (0.4 S/cm and 60 m(2)/g). G-PANI-PA thus conceives the characteristics required for facile charge mobility during fast charge-discharge cycles, which results in a high specific capacitance of 652 F/g for the composite. Owing to the high surface area along with high conductivity, G-PANI-PA displays a stable specific capacitance of 547 F/g even with a high mass loading of 3 mg/cm(2), an enhanced areal capacitance of 1.52 F/cm(2), and a volumetric capacitance of 122 F/cm(3). The reduced charge-transfer resistance (RCT) of 0.67 Ω displayed by G-PANI-PA compared to pure PANI (0.79 Ω) stands out as valid evidence of the improved charge mobility achieved by the system by growing the 3D PANI layer along the spatially separated layers of the graphene sheets. The low RCT helps the system to display capacitance retention as high as 65% even under a high current dragging condition of 10 A/g. High charge/discharge rates and good cycling stability are the other

  18. Experiment studies of fuel rod vibration in coolant flow for substantiation of vibration stability of fuel rods with no fretting-wear

    International Nuclear Information System (INIS)

    Egorov, Yu. V.; Afanasiev, A. V.; Makarov, V. V.; Matvienko, I. V.

    2013-01-01

    For substantiation of vibration stability it is necessary to determine the ultimate permissible vibration levels which do not cause fretting, to compare them with the level of fuel rod vibration caused by coolant flow. Another approach is feasible if there is experience of successful operation of FA-prototypes. In this case in order to justify vibration stability it may be sufficient to demonstrate that the new element does not cause increased vibration of the fuel rod. It can be done by comparing the levels of hydro-dynamic fuel rod vibration and FA new designs. Program of vibration tests of TVS-2M model included studies of forced oscillations of 12 fuel rods in the coolant flow in the spans containing intensifiers, in the reference span without intensifiers, in the lower spans with assembled ADF and after its disassembly. The experimental results for TVS-2M show that in the spans with intensifier «Sector run» the level of movements is 6% higher on the average than in the span without intensifiers, in the spans with intensifier «Eddy» it is 2% higher. The level of fuel rod vibration movements in the spans with set ADF is 2 % higher on the average than without ADF. During the studies of TVS-KVADRAT fuel rod vibration, the following tasks were solved: determination of acceleration of the middle of fuel rod spans at vibration excited due to hydrodynamics; determination of influence of coolant thermal- hydraulic parameters (temperature, flowrate, dynamic pressure) on fuel rod vibration response; determination of influence of span lengths on the vibration level. Conclusions: 1) The vibration tests of the full-scale model of TVS-2M in the coolant flow showed that the new elements of TVS-2M design (intensifiers of heat exchange and ADF) are not the source of fuel rod increased vibration. Considering successful operation of similar fuel rod spans in the existing TVS-2M design, vibration stability of TVS-2M fuel rods with new elements is ensured on the mechanism of

  19. Production and qualification of 40 km of Al-stabilized NbTi cable for the ATLAS experiment at CERN

    CERN Document Server

    Baccaglioni, G; Cartegni, G C; Horváth, I L; Neuenschwander, J; Pedrini, D; Rossi, L; Volpini, G

    2002-01-01

    The production of the conductor for the superconducting toroids of the ATLAS experiment at LHC (CERN) is now in progress. The toroid system, composed of one barrel toroid (BT) and two end cap toroids (ECTs), exploits aluminum-clad Rutherford-type NbTi conductors of large size (57 * 12 mm for BT, 42 * 12 mm for ECTs) and high critical current (Ic) (58 kA for BT and 60 kA for ECTs @ 4.2 K, 5 T). Some 55 km of conductor are required for the BT and 26 km for the ECTs, respectively. An Italian-Swiss (ETH Zurich and INFN) consortium is in charge of the delivery of half of the whole amount. This paper describes the results of this production with particular emphasis to the quality control system developed to monitor the production with both on-line controls and the post-production quality assessment protocols. The main result is the confirmation that the technologies selected and the whole process are reliable and reproducible over large production quantities. The overall degradation due to the cabling and the co-ex...

  20. The Simulation of the stabilizing process of glass nanoparticle in optical tweezer using series of laser pulses

    International Nuclear Information System (INIS)

    Ho Quang Quy; Hoang Dinh Hai

    2012-01-01

    In this article the stable region and stabilizing process of dielectric particle in fluid by the optical tweezer using the series of laser pulses are investigated. The influence of the repetition period and number of laser pulses on the radial variance of particle and the so-called stable space-time pillar is simulated and discussed. (author)

  1. Performance and stability tests of bare high purity germanium detectors in liquid argon for the GERDA experiment

    Energy Technology Data Exchange (ETDEWEB)

    Barnabe Heider, Marik

    2009-05-27

    GERDA will search for neutrinoless double beta decay of {sup 76}Ge by using a novel approach of bare germanium detectors in liquid argon (LAr). Enriched germanium detectors from the previous Heidelberg-Moscow and IGEX experiments have been reprocessed and will be deployed in GERDA Phase-I. At the center of this thesis project is the study of the performance of bare germanium detectors in cryogenic liquids. Identical detector performance as in vacuum cryostats (2.2 keV FWHM at 1.3 MeV) was achieved in cryogenic liquids with a new low-mass detector assembly and contacts. One major result is the discovery of a radiation induced leakage current (LC) increase when operating bare detectors with standard passivation layers in LAr. Charge collection and build-up on the passivation layer were identified as the origin of the LC increase. It was found that diodes without passivation do not exhibit this feature. Three month-long stable operation in LAr at {proportional_to} 5 pA LC under periodic gamma irradiation demonstrated the suitability of the modi ed detector design. Based on these results, all Phase-I detectors were reprocessed without passivation layer and subsequently successfully characterized in LAr in the GERDA underground Detector Laboratory. The mass loss during the reprocessing was {proportional_to}300 g out of 17.9 kg and the exposure above ground {proportional_to} 5 days. This results in a negligible cosmogenic background increase of {proportional_to} 5.10{sup -4} cts/(keV.kg.y) at {sup 76}Ge Q{sub {beta}}{sub {beta}} for {sup 60}Co and {sup 68}Ge. (orig.)

  2. Learning from Experience? Evidence on the Impact and Distribution of Teacher Experience and the Implications for Teacher Policy

    Science.gov (United States)

    Rice, Jennifer King

    2013-01-01

    Teacher experience has long been a central pillar of teacher workforce policies in U.S. school systems. The underlying assumption behind many of these policies is that experience promotes effectiveness, but is this really the case? What does existing evidence tell us about how, why, and for whom teacher experience matters? This policy brief…

  3. Cable Stability

    Energy Technology Data Exchange (ETDEWEB)

    Bottura, L [European Organization for Nuclear Research, Geneva (Switzerland)

    2014-07-01

    Superconductor stability is at the core of the design of any successful cable and magnet application. This chapter reviews the initial understanding of the stability mechanism, and reviews matters of importance for stability such as the nature and magnitude of the perturbation spectrum and the cooling mechanisms. Various stability strategies are studied, providing criteria that depend on the desired design and operating conditions.

  4. Improvement of thermoelectric properties induced by uniquely ordered lattice field in Bi2Se0.5Te2.5 pillar array

    International Nuclear Information System (INIS)

    Tan, Ming; Hao, Yanming; Wang, Gangzhi

    2014-01-01

    In this study, it was found that uniquely ordered lattice field favors transport of carriers but hinder that of phonons. The n-Bi 2 Se 0.5 Te 2.5 pillar array film was successfully achieved by a simple ion beam assisted deposition technique. This oriented pillar array structure is clear with pillar diameter of about 30 nm, exhibiting a uniquely ordered lattice field. The properties of the ordered Bi 2 Se 0.5 Te 2.5 pillar array were greatly enhanced in comparison with those of the ordinary film. The Bi 2 Se 0.5 Te 2.5 pillar array with a thermoelectric dimensionless figure-of-merit ZT=1.28 was obtained at room temperature. The in-plane transport mechanisms of the ordered pillar array and the ordinary structures, lattice field model, are proposed and investigated. The specially ordered lattice field is the main reason for the properties enhancement observed in the Bi 2 Se 0.5 Te 2.5 film. Introduction of such ordered lattice field into TE films is therefore a very promising approach. - Graphical abstract: In this study, it was found that uniquely ordered lattice field favors transport of carriers but hinder that of phonons. The Bi 2 Se 0.5 Te 2.5 pillar array film with a thermoelectric dimensionless figure-of-merit ZT=1.28 was obtained at room temperature. The in-plane transport mechanisms of the ordered pillar array and the ordinary structures, the lattice field model, are proposed and investigated. The specially ordered lattice field is the main reason for the properties enhancement observed in the Bi 2 Se 0.5 Te 2.5 pillar array. Introduction of such uniquely ordered lattice field into TE films is therefore a very promising approach. In (a) TEM and (b) HRTEM images of the ordered Bi 2 Se 0.5 Te 2.5 column array. - Highlights: • Uniquely ordered Bi 2 Se 0.5 Te 2.5 pillar array was achieved by an IBAD method. • The pillar array with an ordered lattice field exhibits attractive TE property. • The transport mechanism of such ordered pillar array is proposed and

  5. Time to Add a Fifth Pillar to Bedside Physical Examination: Inspection, Palpation, Percussion, Auscultation, and Insonation.

    Science.gov (United States)

    Narula, Jagat; Chandrashekhar, Y; Braunwald, Eugene

    2018-04-01

    Inspection, palpation, percussion, and auscultation have been the 4 pillars of clinical bedside medicine. Although these basic methods of physical examination have served us well, traditional bedside examination, for a number of reasons including diminishing interest and expertise, performs well less than what is required of a modern diagnostic strategy. Improving the performance of physical examination is vital given that it is crucial to guide diagnostic possibilities and further testing. Current efforts at improving physical examination skills during medical training have not been very successful, and incorporating appropriate technology at the bedside might improve its performance. Selective use of bedside ultrasound (or insonation) can be one such strategy that could be incorporated as the fifth component of the physical examination. Seeing pathology through imaging might improve interest in physical examination among trainees, and permit appropriate downstream testing and possibly superior decision making. Current ultrasound technology makes this feasible, and further miniaturization of ultrasound devices and reduced cost will allow for routine use at the bedside. It is time to have a wider debate and a possible consensus about updates required to enhance current paradigms of physical examination.

  6. The European Union as a Security Actor: Moving Beyond the Second Pillar

    Directory of Open Access Journals (Sweden)

    Kamil Zwolski

    2009-04-01

    Full Text Available It is suggested in this article that there is a discrepancy between, on the one hand, literature that focuses on the European Union (EU as a security actor and, on the other, contemporary security studies literature. This difference concerns the fact that the literature on the EU as a security actor treats security in a narrower sense than how it is approached in the literature on security studies. Over the past few decades, security studies literature has begun to fully acknowledge that the concept of security has broadened beyond traditional ‘hard’ security concerns and can encompass many different issues, for example the security implications of climate change. However, the literature on the EU as a security actor very often associates security only with the second pillar of the EU’s organisational structure; in particular the intergovernmental cooperation embodied by the Common Foreign and Security Policy (CFSP and the European Security and Defence Policy (ESDP. The main purpose of this article is to utilise the broader security studies approach to security as a means to expand the understanding of security in the context of the EU’s performance on the international stage. This is important because it allows the Union’s �����actorness’ in the field of security to be examined in a more holistic manner.

  7. Corrugated metal surface with pillars for terahertz surface plasmon polariton waveguide components

    KAUST Repository

    Yuehong, Xu

    2018-01-12

    In the terahertz regime, due to perfect conductivity of most metals, it is hard to realize a strong confinement of Surface plasmon polaritons (SPPs) although a propagation loss could be sufficiently low. We experimentally demonstrated a structure with periodic pillars arranged on a thin metal surface that supports bound modes of spoof SPPs at terahertz (THz) frequencies. By using scanning near-field THz microscopy, the electric field distribution above the metal surface within a distance of 130 μm was mapped. The results proved that this structure could guide spoof SPPs propagating along subwavelength waveguides, and at the same time reduce field expansion into free space. Further, for the development of integrated optical circuits, several components including straight waveguide, S-bend, Y-splitter and directional couplers were designed and characterized by the same method. We believe that the waveguide components proposed here will pave a new way for the development of flexible, wideband and compact photonic circuits operating at THz frequencies.

  8. Tomorrow’s Universities and the Seven Pillars of the Knowledge Revolution

    Directory of Open Access Journals (Sweden)

    Ismail Serageldin

    2013-09-01

    Full Text Available The emerging Knowledge Revolution goes beyond the changing technologies and the challenges and opportunities they create to include the structure of knowledge and how it is transmitted inter-generationally and across countries. There are seven major features of that profound transformation, which I call “The Seven Pillars of the New Knowledge Revolution”. These are: (i Parsing, Life & Organization; (ii Image & Text; (iii Humans & Machines; (iv Complexity & Chaos; (v Computation & Research; (vi Convergence & Transformation; and (vii Pluridisciplinarity & Policy. This diagnosis has profound implications on how one should think about the design and management of our institutions of learning, starting not only with universities, but also the school system, as well as our research institutions (whether in universities or in public and private labs, and the supporting institutions of knowledge (like museums, libraries and archives. Radical proposals are advanced for the content, method, participants and organizational setting of education, as well as the role of the University as mediator of transitions, its relationship with society and economy, as well as its physical presence, governance structure and the values it should promote. Core functions and curricula for the future, along with the possibility of a global university consortium, are discussed.

  9. Corrugated metal surface with pillars for terahertz surface plasmon polariton waveguide components

    KAUST Repository

    Yuehong, Xu; Yanfeng, Li; Chunxiu, Tian; Jiaguang, Han; Quan, Xu; Xueqian, Zhang; Xixiang, Zhang; Ying, Zhang; Weili, Zhang

    2018-01-01

    In the terahertz regime, due to perfect conductivity of most metals, it is hard to realize a strong confinement of Surface plasmon polaritons (SPPs) although a propagation loss could be sufficiently low. We experimentally demonstrated a structure with periodic pillars arranged on a thin metal surface that supports bound modes of spoof SPPs at terahertz (THz) frequencies. By using scanning near-field THz microscopy, the electric field distribution above the metal surface within a distance of 130 μm was mapped. The results proved that this structure could guide spoof SPPs propagating along subwavelength waveguides, and at the same time reduce field expansion into free space. Further, for the development of integrated optical circuits, several components including straight waveguide, S-bend, Y-splitter and directional couplers were designed and characterized by the same method. We believe that the waveguide components proposed here will pave a new way for the development of flexible, wideband and compact photonic circuits operating at THz frequencies.

  10. GaN and LED structures grown on pre-patterned silicon pillar arrays

    Energy Technology Data Exchange (ETDEWEB)

    Li, Shunfeng; Fuendling, Soenke; Soekmen, Uensal; Merzsch, Stephan; Neumann, Richard; Peiner, Erwin; Wehmann, Hergo-Heinrich; Waag, Andreas [Institut fuer Halbleitertechnik, TU Braunschweig, Hans-Sommer-Strasse 66, 38106 Braunschweig (Germany); Hinze, Peter; Weimann, Thomas [Physikalisch-Technische Bundesanstalt (PTB), Bundesallee 100, 38116 Braunschweig (Germany); Jahn, Uwe; Trampert, Achim; Riechert, Henning [Paul-Drude-Institut fuer Festkoerperelektronik, Hausvoigteiplatz 5-7, 10117 Berlin (Germany)

    2010-01-15

    GaN nanorods (or nanowires) have attracted great interest in a variety of applications, e.g. high-efficiency light emitting diodes, monolithic white light emission and optical interconnection due to their superior properties. In contrast to the mostly investigated self-assembled growth of GaN nanorods, we performed GaN nanorod growth by pre-patterning of the Si substrates. The pattern was transferred to Si substrates by photolithography and cryo-temperature inductively-coupled plasma etching. These Si templates then were used for further GaN nanorod growth by metal-organic vapour phase epitaxy (MOVPE). The low temperature AlN nucleation layer had to be optimized since it differs from its 2D layer counterpart on the surface area and orientations. We found a strong influence of diffusion processes, i.e. the GaN grown on top of the Si nanopillars can deplete the GaN around the Si pillars. Transmission electron microscopy measurements demonstrated clearly that the threading dislocations bend to the side facets of the pyramidal GaN nanostructures and terminate. Cathodoluminescence measurements reveal a difference of In composition and/or thickness of InGaN quantum wells on the different facets of the pyramidal GaN nanostructures. (copyright 2010 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  11. The Single Supervisory Mechanism: the Building Pillar of the European Banking Union

    Directory of Open Access Journals (Sweden)

    Luigi Chiarella

    2016-07-01

    Full Text Available One of the lessons learned from the 2008 financial crisis is that when a bank in Europe goes into trouble the ensuing effects can reach far beyond the immediate threat to its depositors and shareholders. In particular, the crisis has revealed the extent to which irresponsible behavior in the banking sector could undermine the foundations of the financial system and threaten the real economy, turning a banking crisis into a sovereign debt crisis as occurred in the eurozone in 2011. In response to this lesson, Member States first tried to address the systemic fragility of their banking systems through national policy tools, but countries that share a common currency and are more interdependent required more integrated responses. Therefore, at the euro area summit in June 2012, the European Council agreed to break the vicious circle between banks and sovereign debt and decided to create a banking union that would allow a centralized supervision for banks in the euro area through a newly established Single Supervisory Mechanism (SSM and a centralized resolution scheme. The SSM became operational in November 2014 and represents the building pillar of the banking union. The purpose of this paper is then to provide, after a brief description of the background (Par. 1, an analysis of the Single Supervisory Mechanism, illustrating its functioning (Par. 2, then focusing on the position and the powers of the ECB within it (Par. 3 and finally pointing out some remarks on the potential weaknesses of the new regime (Par. 4.

  12. Mining a coal seam with caving in a protective pillar of a mine shaft. [Poland

    Energy Technology Data Exchange (ETDEWEB)

    Szymura, G; Dilling, R; Kowalski, A

    1984-01-01

    Mining the 620 seam is evaluated (from 1.5 to 1.7 m thick at a depth of 468 m in the protective pillar of the upcast mine shaft used for ventilation, manriding and transport of materials in the Pstrowski mine in Upper Silesia). The shaft is 496 m deep, has a diameter of 3.5 m and its liners are made of bricks. Ground subsidence caused by underground mining influenced: the head frame above the shaft, residential buildings, a church, railway tracks and a river bed. A system of shortwall mining with caving was used. Deformation of shaft liners was reduced by advanced cutting of a coal block 30x30 m around the shaft. A system of timber cribbings and yielding elements was used. Design of support systems used around the shaft is shown in 3 schemes. Shaft deformation was within permissible limits. The maximum ground subsidence (0.95 m) occurred in the river area. Ground subsidence in the area of the church ranged from 0.75 to 0.81 m and in the head frame area 0.84 m. Accuracy of ground subsidence and shaft deformation forecasting was high. 4 references.

  13. Struggles against the pillars of agribusiness in Argentina: GMOs, agrotoxics and CONABIA

    Directory of Open Access Journals (Sweden)

    Cecilia Carrizo

    2014-10-01

    Full Text Available Provided with the contributions of the linguistic turn, our perspective conceives political theorizing as an intervention of the researcher in an intersubjective context in which a public issue is debated. We focus on those contexts in which the exercise and claim for rights against the consequences of agribusiness is thematized: diseases and deaths, siteclearances and evictions of indigenous and peasant communities, omission or complicit actions of the state institutions among other issues. We consider these diverse and sustained over time practices as struggles for recognition that put in tension the complacent “consensus of the commodities”, its concepts, practices, institutions and effects. We present the struggles against the pillars of agribusiness in Argentina: GMOs, pesticides and the National Commission on Agricultural Biotechnology (CONABIA. As a result of our research there are contributions that uncover the web of relationships impacted by agribusiness, the public problems generated and currently generates the technological innovation in this field, and the limits and possibilities for resolution. Also we offer glimpse into the structure, criteria and operation, also made invisible: the body of the official political system with responsibilities in this case in our country, the National Commission for Agricultural Technology (CONABIA.

  14. Friction Hydro-Pillar Processing of a High Carbon Steel: Joint Structure and Properties

    Science.gov (United States)

    Kanan, Luis Fernando; Vicharapu, Buchibabu; Bueno, Antonio Fernando Burkert; Clarke, Thomas; De, Amitava

    2018-04-01

    A coupled experimental and theoretical study is reported here on friction hydro-pillar processing of AISI 4140 steel, which is a novel solid-state joining technique to repair and fill crack holes in thick-walled components by an external stud. The stud is rotated and forced to fill a crack hole by plastic flow. During the process, frictional heating occurs along the interface of the stud and the wall of crack hole leading to thermal softening of the stud that eases its plastic deformation. The effect of the stud force, its rotational speed and the total processing time on the rate of heat generation and resulting transient temperature field is therefore examined to correlate the processing variables with the joint structure and properties in a systematic and quantitative manner, which is currently scarce in the published literature. The results show that a gentler stud force rate and greater processing time can promote proper filling of the crack hole and facilitate a defect-free joint between the stud and original component.

  15. Evaluating Pillar Industry's Transformation Capability: A Case Study of Two Chinese Steel-Based Cities.

    Science.gov (United States)

    Li, Zhidong; Marinova, Dora; Guo, Xiumei; Gao, Yuan

    2015-01-01

    Many steel-based cities in China were established between the 1950s and 1960s. After more than half a century of development and boom, these cities are starting to decline and industrial transformation is urgently needed. This paper focuses on evaluating the transformation capability of resource-based cities building an evaluation model. Using Text Mining and the Document Explorer technique as a way of extracting text features, the 200 most frequently used words are derived from 100 publications related to steel- and other resource-based cities. The Expert Evaluation Method (EEM) and Analytic Hierarchy Process (AHP) techniques are then applied to select 53 indicators, determine their weights and establish an index system for evaluating the transformation capability of the pillar industry of China's steel-based cities. Using real data and expert reviews, the improved Fuzzy Relation Matrix (FRM) method is applied to two case studies in China, namely Panzhihua and Daye, and the evaluation model is developed using Fuzzy Comprehensive Evaluation (FCE). The cities' abilities to carry out industrial transformation are evaluated with concerns expressed for the case of Daye. The findings have policy implications for the potential and required industrial transformation in the two selected cities and other resource-based towns.

  16. Electrolytic Manganese Dioxide Coatings on High Aspect Ratio Micro-Pillar Arrays for 3D Thin Film Lithium Ion Batteries

    Directory of Open Access Journals (Sweden)

    Yafa Zargouni

    2017-05-01

    Full Text Available In this work, we present the electrochemical deposition of manganese dioxide (MnO2 thin films on carbon-coated TiN/Si micro-pillars. The carbon buffer layer, grown by plasma enhanced chemical vapor deposition (PECVD, is used as a protective coating for the underlying TiN current collector from oxidation, during the film deposition, while improving the electrical conductivity of the stack. A conformal electrolytic MnO2 (EMD coating is successfully achieved on high aspect ratio C/TiN/Si pillar arrays by tailoring the deposition process. Lithiation/Delithiation cycling tests have been performed. Reversible insertion and extraction of Li+ through EMD structure are observed. The fabricated stack is thus considered as a good candidate not only for 3D micorbatteries but also for other energy storage applications.

  17. Electrolytic Manganese Dioxide Coatings on High Aspect Ratio Micro-Pillar Arrays for 3D Thin Film Lithium Ion Batteries.

    Science.gov (United States)

    Zargouni, Yafa; Deheryan, Stella; Radisic, Alex; Alouani, Khaled; Vereecken, Philippe M

    2017-05-27

    In this work, we present the electrochemical deposition of manganese dioxide (MnO₂) thin films on carbon-coated TiN/Si micro-pillars. The carbon buffer layer, grown by plasma enhanced chemical vapor deposition (PECVD), is used as a protective coating for the underlying TiN current collector from oxidation, during the film deposition, while improving the electrical conductivity of the stack. A conformal electrolytic MnO₂ (EMD) coating is successfully achieved on high aspect ratio C/TiN/Si pillar arrays by tailoring the deposition process. Lithiation/Delithiation cycling tests have been performed. Reversible insertion and extraction of Li⁺ through EMD structure are observed. The fabricated stack is thus considered as a good candidate not only for 3D micorbatteries but also for other energy storage applications.

  18. Effect of the platinum content on the microstructure and micropore size distribution of Pt/alumina-pillared clays.

    Science.gov (United States)

    Barrera-Vargas, M; Valencia-Rios, J; Vicente, M A; Korili, S A; Gil, A

    2005-12-15

    The aim of this work is to study the effect of the platinum content (0-1.8 wt % Pt) on the microstructure of an alumina-pillared clay. For this purpose, the nitrogen physisorption data at -196 degrees C, the micropore size distributions of the supported platinum catalysts, and the hydrogen chemisorption results at 30 degrees C have been analyzed and compared. The preparation of the catalysts has modified the textural properties of the Al-pillared clay support, giving rise to a loss of surface area and micropore volume. After reduction at 420 degrees C, the presence of dispersed metallic platinum with mean crystallite size in the 22-55 A range has been found by hydrogen adsorption. Comparison of all results reveals that the platinum species block the micropore entrances by steric hindrance to nitrogen access as the platinum content increases.

  19. A continuous flow micro filtration device for plasma/blood separation using submicron vertical pillar gap structures

    International Nuclear Information System (INIS)

    Kang, Tae Goo; Ji, Hongmiao; Lim, Pei Yi; Chen, Yu; Yoon, Yong-Jin

    2014-01-01

    This work demonstrates a continuous flow plasma/blood separator using a vertical submicron pillar gap structure. The working principle of the proposed separator is based on size exclusion of cells through cross-flow filtration, in which only plasma is allowed to pass through submicron vertical pillars located tangential to the main flow path of the blood sample. The maximum filtration efficiency of 99.9% was recorded with a plasma collection rate of 0.67 µl min −1 for an input blood flow rate of 12.5 µl min −1 . The hemolysis phenomenon was observed for an input blood flow rate above 30 µl min −1 . Based on the experimental results, we can conclude that the proposed device shows potential for the application of on-chip plasma/blood separation as a part of integrated point-of-care (POC) diagnostics systems. (technical note)

  20. Stability of Zircon and Its Isotopic Ratios in High-Temperature Fluids: Long-Term (4 months Isotope Exchange Experiment at 850°C and 50 MPa

    Directory of Open Access Journals (Sweden)

    Ilya N. Bindeman

    2018-05-01

    Full Text Available Stability of zircon in hydrothermal fluids and vanishingly slow rates of diffusion identify zircon as a reliable recorder of its formation conditions in recent and ancient rocks. Debate, however, persists on how rapidly oxygen and key trace elements (e.g., Li, B, Pb diffuse when zircon is exposed to silicate melt or hot aqueous fluids. Here, we report results of a nano- to micrometer-scale investigation of isotopic exchange using natural zircon from Mesa Falls Tuff (Yellowstone treated with quartz-saturated, isotopically (18O, D, 7Li, and 11B labeled water with a nominal δ18O value of +450%0 over 4 months at 850°C and 50 MPa. Frontside (crystal rim inwards δ18O depth profiling of zircon by magnetic sector SIMS shows initially high but decreasing 18O/16O over a ~130 nm non-Fickian profile, with a decay length comparable to the signal from surficial Au coating deposited onto zircon. In contrast, backside (crystal interior outwards depth profiling on a 2-3 μm thick wafer cut and thinned from treated zircon by focused ion beam (FIB milling lacks any significant increase in 18O/16O during penetration of the original surface layer. Near-surface time-of-flight (TOF-SIMS frontside profiles of uncoated zircon from 4-month and 1-day-long experiments as well as untreated zircons display similar enrichments of 18O over a distance of ~20 nm. All frontside 18O profiles are here interpreted as transient surface signals from nm-thick surface enrichment or contamination unrelated to diffusion. Likewise, frontside depth profiling of H, Li, and B isotopes are similar for long- and short-duration experiments. Additionally, surface U-Pb dating of zircon from the 4-month experiment returned U-Pb ages by depth profiling with ~1 μm penetration that were identical to untreated samples. Frontside and backside depth-profiling thus demonstrate that diffusive 18O enrichment in the presence of H2O is much slower than predicted from experiments in Watson and Cherniak

  1. Distributional effects and structural change induced by various CAP Pillar 1 proposals; the case of the Czech Republic

    OpenAIRE

    Ratinger, Tomas; Foltyn, Ivan; Jelinek, Ladislav; Kristkova, Zuzana

    2012-01-01

    This paper deals with the potential effects of the CAP pillar 1 on farm incomes and structural changes. It uses a dynamic Computable General Equilibrium model and a specific analysis on distributional effects. The effect of payments ceiling in the current CAP 2020 proposal with subtracting labour costs will bring only insignificant payment reduction for most farmers except large extensive beef breeders whose direct payments will drop by 13% on average. However, if the condition on labour cost...

  2. THE EVALUATION OF EIGHT PILLARS TOTAL PRODUCTIVE MAINTENANCE (TPM IMPLEMENTATION AND THEIR IMPACT ON OVERALL EQUIPMENT EFFECTIVENESS (OEE AND WASTE

    Directory of Open Access Journals (Sweden)

    Herry Agung Prabowo

    2018-02-01

    Full Text Available In this global era where the level of competition is higher, in addition to the influence of the suitable marketing strategy is also required strategy from the side of production/productivity. PT. XYZ is a company engaged in the manufacturing of snacks especially biscuits. The problem that often occurs in this company is the number of biscuits that are not in accordance with the standard and the production does not reach the target set because the machine suddenly breaks down frequently. To overcome the problems PT. XYZ then choose to implement the Total Productive Maintenance (TPM strategy. This study aims to evaluate the implementation of 8 TPM Pillars and measure the effects on manufacturing performance in the form of Overall Equipment Effectiveness (OEE and Waste. This study uses questionnaire-based survey method. The number of samples distributed is 40 units. Which returned and filled 33 questionnaires and which is worth to be processed as many as 30 samples. Then tested the validity and reliability of data using SPSS program. Validity critical value R = 0.361 for n = 30 and error rate 5%. For reliability test, R value = 0.60 was selected. From the validity test, there are 7 items of questions that are not valid so it is not included in the next process. For the reliability test of the questionnaire is quite reliable with the value of Cronbach's alpha of 0.811. From the CFA analysis, only 6 of 8 TPM pillars are significant while for manufacturing performance only OEE variable is significant. Correlation between 8 Pillars of TPM and manufacturing performance is Strong enough with a value of R = 0.862, which also means 74.3% (R2 variable manufacturing performance can be explained/influenced by variable 8 Pillar TPM and 26.7% the rest by other variables.

  3. Is something wrong with the second pillar in Switzerland?: Gender inequalities from a perspective of two Private Occupational Pension Institutions

    OpenAIRE

    Kucera, Jacqueline; Suter, Christian; Halford, Susan; Crettaz, Eric

    2015-01-01

    Inequalities and old age pension systems have been analyzed in depth by many scholars. This study tackles the question of gender inequalities in a propaedeutic manner and asks: “Is something wrong with the second pillar in Switzerland?” By perceiving the occupational pension system as secure and safe, the focus of this thesis lies in the idea of guaranteeing equality for future pensions. The thesis asks whether gender inequalities occur through the mechanism of interpretation of the Federal L...

  4. Development of a time-dependent energy model to calculate the mining-induced stress over gates and pillars

    Directory of Open Access Journals (Sweden)

    Mohammad Rezaei

    2015-06-01

    Full Text Available Generally, longwall mining-induced stress results from the stress relaxation due to destressed zone that occurs above the mined panel. Knowledge of induced stress is very important for accurate design of adjacent gateroads and intervening pillars which helps to raise the safety and productivity of longwall mining operations. This study presents a novel time-dependent analytical model for determination of the longwall mining-induced stress and investigates the coefficient of stress concentration over adjacent gates and pillars. The model is developed based on the strain energy balance in longwall mining incorporated to a rheological constitutive model of caved materials with time-varying parameters. The study site is the Tabas coal mine of Iran. In the proposed model, height of destressed zone above the mined panel, total longwall mining-induced stress, abutment angle, induced vertical stress, and coefficient of stress concentration over neighboring gates and intervening pillars are calculated. To evaluate the effect of proposed model parameters on the coefficient of stress concentration due to longwall mining, sensitivity analysis is performed based on the field data and experimental constants. Also, the results of the proposed model are compared with those of existing models. The comparative results confirm a good agreement between the proposed model and the in situ measurements. According to the obtained results, it is concluded that the proposed model can be successfully used to calculate the longwall mining-induced stress. Therefore, the optimum design of gate supports and pillar dimensions would be attainable which helps to increase the mining efficiency.

  5. The Evaluation of the II pillar pension’s funds: an integrated approach using multi-criteria decision methods

    OpenAIRE

    Novickytė, Lina; Rabikauskaitė, Viktorija

    2017-01-01

    Lithuania has had a significant reform path in the last twenty-five years like other communist bloc countries during the intense changes in the world. Changes and transformations took place in various areas including social security system. Since 2004 have been significant developments legalizing the three-pillar old age pension system supported by the World Bank. Currently, the pension funds operating more than ten years and their assessment still have not stopped being the centre of numerou...

  6. The evaluation of the II pillar pension’s funds: an integrated approach using multi-criteria decision methods

    OpenAIRE

    Novickytė,Lina; Rabikauskaitė,Viktorija

    2017-01-01

    Lithuania has had a significant reform path in the last twenty-five years like other communist bloc countries during the intense changes in the world. Changes and transformations took place in various areas including social security system. Since 2004 have been significant developments legalizing the three-pillar old age pension system supported by the World Bank. Currently, the pension funds operating more than ten years and their assessment still have not stopped being the centre of numerou...

  7. Functional activity of plasmid DNA after entry into the atmosphere of earth investigated by a new biomarker stability assay for ballistic spaceflight experiments.

    Directory of Open Access Journals (Sweden)

    Cora S Thiel

    Full Text Available Sounding rockets represent an excellent platform for testing the influence of space conditions during the passage of Earth's atmosphere and re-entry on biological, physical and chemical experiments for astrobiological purposes. We designed a robust functionality biomarker assay to analyze the biological effects of suborbital spaceflights prevailing during ballistic rocket flights. During the TEXUS-49 rocket mission in March 2011, artificial plasmid DNA carrying a fluorescent marker (enhanced green fluorescent protein: EGFP and an antibiotic resistance cassette (kanamycin/neomycin was attached on different positions of rocket exterior; (i circular every 90 degree on the outer surface concentrical of the payload, (ii in the grooves of screw heads located in between the surface application sites, and (iii on the surface of the bottom side of the payload. Temperature measurements showed two major peaks at 118 and 130 °C during the 780 seconds lasting flight on the inside of the recovery module, while outer gas temperatures of more than 1000 °C were estimated on the sample application locations. Directly after retrieval and return transport of the payload, the plasmid DNA samples were recovered. Subsequent analyses showed that DNA could be recovered from all application sites with a maximum of 53% in the grooves of the screw heads. We could further show that up to 35% of DNA retained its full biological function, i.e., mediating antibiotic resistance in bacteria and fluorescent marker expression in eukaryotic cells. These experiments show that our plasmid DNA biomarker assay is suitable to characterize the environmental conditions affecting DNA during an atmospheric transit and the re-entry and constitute the first report of the stability of DNA during hypervelocity atmospheric transit indicating that sounding rocket flights can be used to model the high-speed atmospheric entry of organics-laden artificial meteorites.

  8. Formation of zeolite-like zinc 1,3,5-benzenetriphosphonate open-frameworks by topotactic pillaring of anionic layers.

    Science.gov (United States)

    Maeda, Kazuyuki; Takamatsu, Ryohei; Mochizuki, Miki; Kawawa, Kanako; Kondo, Atsushi

    2013-08-07

    An ab initio powder X-ray crystal structure analysis revealed that layered zinc 1,3,5-benzenetriphosphonates containing interlayer tetramethylammonium (ZBP-TMA) or 4,4'-bipyridinium cations (ZBP-bpy) are transformed to novel isomorphous 3D open-framework compounds ZBP-M (M: K, Rb, and Cs) by treatment in aqueous alkali metal chloride solutions. ZBP-Ms have a pillared layer-type of anionic framework containing 2D zigzag channels connected with cage-like spaces. The potassium atoms in ZBP-K are located near 8MR windows in the 2D zigzag channels, and the potassium cations are successfully exchanged with ammonium cations retaining the open-framework structure. The ammonium form (ZBP-NH4) showed remarkable cation exchange selectivity for Rb(+) and Cs(+) in a mixture of alkali metal cations. It is assumed that zinc ions partially dissolved from the starting layered ZBP precursors are intercalated in ZBP layers to form pillared layered 3D open-frameworks. These results clearly show that topotactic pillared layer approaches are applicable not only to zeolite-related materials but also to novel open-framework metal organophosphonates.

  9. Parallel-plate submicron gap formed by micromachined low-density pillars for near-field radiative heat transfer

    International Nuclear Information System (INIS)

    Ito, Kota; Miura, Atsushi; Iizuka, Hideo; Toshiyoshi, Hiroshi

    2015-01-01

    Near-field radiative heat transfer has been a subject of great interest due to the applicability to thermal management and energy conversion. In this letter, a submicron gap between a pair of diced fused quartz substrates is formed by using micromachined low-density pillars to obtain both the parallelism and small parasitic heat conduction. The gap uniformity is validated by the optical interferometry at four corners of the substrates. The heat flux across the gap is measured in a steady-state and is no greater than twice of theoretically predicted radiative heat flux, which indicates that the parasitic heat conduction is suppressed to the level of the radiative heat transfer or less. The heat conduction through the pillars is modeled, and it is found to be limited by the thermal contact resistance between the pillar top and the opposing substrate surface. The methodology to form and evaluate the gap promotes the near-field radiative heat transfer to various applications such as thermal rectification, thermal modulation, and thermophotovoltaics

  10. Inclined-wall regular micro-pillar-arrayed surfaces covered entirely with an alumina nanowire forest and their improved superhydrophobicity

    International Nuclear Information System (INIS)

    Kim, Dae-Ho; Lee, Dongyun; Cho, Chae-Ryong; Kim, Soo-Hyung; Lee, Deug-Woo; Kim, Jong-Man; Kim, Yongsung; Kang, Jae-Wook; Hong, Suck Won

    2011-01-01

    This paper reports a multiple-scale hierarchically structured superhydrophobic surface that is composed of inclined-wall regular micro-pillar arrays covered entirely with an alumina nanowire forest (ANF) to improve the surface wettability. The multiple-scaled structures were fabricated stably using a simple batch process based on an anisotropic chemical silicon etching process and a subsequent time-controlled anodic aluminum oxide technique. The surface wetting properties of the mono-roughened surfaces with inclined-wall micro-pillar arrays, which are normally in the Wenzel wetting regime, could be transitioned perfectly to the slippery Cassie mode and enhanced greatly in the Wenzel regime in cases of a high- and low-density of the micro-pillars, respectively, by easily amplifying the intrinsic contact angle through the entire coverage of the ANF on the micro-roughened surfaces. The wettability of the proposed multiple-scaled surfaces could also be predicted using analytic surface models and the experimental results agreed greatly with the wetting trends estimated theoretically due to the geometrical regularity of the base micro-structures

  11. Reduced-Pressure Chemical Vapor Deposition Growth of Isolated Ge Crystals and Suspended Layers on Micrometric Si Pillars.

    Science.gov (United States)

    Skibitzki, Oliver; Capellini, Giovanni; Yamamoto, Yuji; Zaumseil, Peter; Schubert, Markus Andreas; Schroeder, Thomas; Ballabio, Andrea; Bergamaschini, Roberto; Salvalaglio, Marco; Miglio, Leo; Montalenti, Francesco

    2016-10-05

    In this work, we demonstrate the growth of Ge crystals and suspended continuous layers on Si(001) substrates deeply patterned in high aspect-ratio pillars. The material deposition was carried out in a commercial reduced-pressure chemical vapor deposition reactor, thus extending the "vertical-heteroepitaxy" technique developed by using the peculiar low-energy plasma-enhanced chemical vapor deposition reactor, to widely available epitaxial tools. The growth process was thoroughly analyzed, from the formation of small initial seeds to the final coalescence into a continuous suspended layer, by means of scanning and transmission electron microscopy, X-ray diffraction, and μ-Raman spectroscopy. The preoxidation of the Si pillar sidewalls and the addition of hydrochloric gas in the reactants proved to be key to achieve highly selective Ge growth on the pillars top only, which, in turn, is needed to promote the formation of a continuous Ge layer. Thanks to continuum growth models, we were able to single out the different roles played by thermodynamics and kinetics in the deposition dynamics. We believe that our findings will open the way to the low-cost realization of tens of micrometers thick heteroepitaxial layer (e.g., Ge, SiC, and GaAs) on Si having high crystal quality.

  12. Mean wall-shear stress measurements using the micro-pillar shear-stress sensor MPS3

    International Nuclear Information System (INIS)

    Große, S; Schröder, W

    2008-01-01

    A new sensor to measure the mean turbulent wall-shear stress in turbulent flows is described. The wall-shear stress sensor MPS 3 has been tested in a well-defined fully developed turbulent pipe flow at Reynolds numbers Re b based on the bulk velocity U b and the pipe diameter D in the range of Re b = 10 000–20 000. The results demonstrate a convincing agreement of the mean wall-shear stress obtained with the new sensor technique with analytical and experimental results from the literature. The sensor device consists of a flexible micro-pillar that extends from the wall into the viscous sublayer. Bending due to the exerting fluid forces, the pillar-tip deflection serves as a measure for the local wall-shear stress. The sensor concept, calibration techniques, the achievable accuracy and error estimates, the fields of application and the sensor limits will be discussed. Furthermore, a first estimate of the pillar dynamic response will be derived showing the potential of the sensor to also measure the turbulent fluctuating wall-shear stress

  13. Controlling the photochemical reaction of an azastilbene derivative in water using a water-soluble pillar[6]arene.

    Science.gov (United States)

    Xia, Danyu; Wang, Pi; Shi, Bingbing

    2017-09-20

    Photochemistry plays an important role in our lives. It has also been a common tool in the laboratory to construct complicated systems from small molecules. Supramolecular chemistry provides an opportunity to solve some of the problems in controlling photochemical reactions via non-covalent interactions. By using confining media and weak interactions between the medium and the reactant molecule, the excited state behavior of molecules has been successfully manipulated. Pillararenes, a new class of macrocyclic hosts, have rarely been used in the field of photochemical investigations, such as the controlling of photo-induced reactions. Herein, we explore a synthetic macrocyclic host, a water-soluble pillar[6]arene, as a controlling tool to manipulate the photo-induced reactions (hydration) in water. A host-guest system in water based on a water-soluble pillar[6]arene and an azastilbene derivative, (E)-4,4'-dimethyl-4,4'-diazoniastilbene diiodide, has been constructed. Then this water-soluble pillar[6]arene was successfully employed to control the photohydration of the azastilbene derivative in water as a "protective agent".

  14. Fe/Ti co-pillared clay for enhanced arsenite removal and photo oxidation under UV irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yuan [School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072 (China); Guang Dong Electric Power Design Institute, China Energy Engineering Group Co. Ltd., Guangzhou 510663 (China); Cai, Xiaojiao [School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072 (China); Guo, Jingwei [School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072 (China); The 718th Research Institute of CSIC, Handan 056027 (China); Zhou, Shimin [School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072 (China); Na, Ping, E-mail: naping@tju.edu.cn [School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072 (China)

    2015-01-01

    Graphical abstract: - Highlights: • An iron and titanium co-pillared montmorillonite (Fe-Ti/MMT) was synthesized for arsenite removal. • Variety of characterization results indicated that Fe and Ti species were pillared in MMT. • A possible mechanism of arsenite adsorption/oxidation with UV light was established. • The participation of Fe component can promote the process of photocatalytic oxidation in Fe-Ti/MMT + As(III) system. • Fe-Ti/MMT can function as both photocatalyst and adsorbent for arsenite removal. - Abstract: A series of iron and titanium co-pillared montmorillonites (Fe-Ti/MMT) were prepared using hydrolysis of inserted titanium and different iron content in montmorillonite (MMT). The Fe-Ti/MMT were characterized by X-ray fluorescence, N{sub 2} adsorption and desorption, X-ray diffraction, scanning electron microscopy (SEM) and transmission electron microscopy (TEM), confirming the effective insertion of Fe species and TiO{sub 2} in the MMT. The Fe-Ti/MMT was used to remove arsenite (As(III)) from aqueous solutions under different conditions. The result of As(III) adsorption under UV irradiation showed that the photo activity can be enhanced by incorporating Fe and Ti in MMT. Fourier-transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS) analysis indicated that the hydroxyl groups bonded to metal oxide (M–OH) played an important role in the adsorption of As(III)

  15. Parallel-plate submicron gap formed by micromachined low-density pillars for near-field radiative heat transfer

    Energy Technology Data Exchange (ETDEWEB)

    Ito, Kota, E-mail: kotaito@mosk.tytlabs.co.jp [Toyota Central Research and Development Laboratories, Nagakute, Aichi 480-1192 (Japan); Research Center for Advanced Science and Technology (RCAST), The University of Tokyo, Komaba, Meguro-ku, Tokyo 153-8904 (Japan); Miura, Atsushi; Iizuka, Hideo [Toyota Central Research and Development Laboratories, Nagakute, Aichi 480-1192 (Japan); Toshiyoshi, Hiroshi [Research Center for Advanced Science and Technology (RCAST), The University of Tokyo, Komaba, Meguro-ku, Tokyo 153-8904 (Japan)

    2015-02-23

    Near-field radiative heat transfer has been a subject of great interest due to the applicability to thermal management and energy conversion. In this letter, a submicron gap between a pair of diced fused quartz substrates is formed by using micromachined low-density pillars to obtain both the parallelism and small parasitic heat conduction. The gap uniformity is validated by the optical interferometry at four corners of the substrates. The heat flux across the gap is measured in a steady-state and is no greater than twice of theoretically predicted radiative heat flux, which indicates that the parasitic heat conduction is suppressed to the level of the radiative heat transfer or less. The heat conduction through the pillars is modeled, and it is found to be limited by the thermal contact resistance between the pillar top and the opposing substrate surface. The methodology to form and evaluate the gap promotes the near-field radiative heat transfer to various applications such as thermal rectification, thermal modulation, and thermophotovoltaics.

  16. Counter-rotating type tidal stream power unit boarded on pillar (performances and flow conditions of tandem propellers)

    Science.gov (United States)

    Usui, Yuta; Kanemoto, Toshiaki; Hiraki, Koju

    2013-12-01

    The authors have invented the unique counter-rotating type tidal stream power unit composed of the tandem propellers and the double rotational armature type peculiar generator without the traditional stator. The front and the rear propellers counter-drive the inner and the outer armatures of the peculiar generator, respectively. The unit has the fruitful advantages that not only the output is sufficiently higher without supplementary equipment such as a gearbox, but also the rotational moment hardly act on the pillar because the rotational torque of both propellers/armatures are counter-balanced in the unit. This paper discusses experimentally the performances of the power unit and the effects of the propeller rotation on the sea surface. The axial force acting on the pillar increases naturally with the increase of not only the stream velocity but also the drag of the tandem propellers. Besides, the force vertical to the stream also acts on the pillar, which is induced from the Karman vortex street and the dominant frequencies appear owing to the front and the rear propeller rotations. The propeller rotating in close to the sea surface brings the abnormal wave and the amplitude increases as the stream velocity is faster and/or the drag is stronger.

  17. Verification of the fulfilment of the purposes of Basel II, Pillar 3 through application of the web log mining methods

    Directory of Open Access Journals (Sweden)

    M. Munk

    2012-01-01

    Full Text Available The objective of the paper is the verification of the fulfilment of the purposes of Basel II, Pillar 3 – market discipline during the recent financial crisis. The objective of the paper is to describe the current state of the working out of the project that is focused on the analysis of the market participants’ interest in mandatory disclosure of financial information by a commercial bank by means of advanced methods of web log mining. The output of the realized project will be the verification of the assumptions related to the purposes of Basel III by means of the web mining methods, the recommendations for possible reduction of mandatory disclosure of information under Basel II and III, the proposal of the methodology for data preparation for web log mining in this application domain and the generalised procedure for users’ behaviour modelling dependent on time. The schedule of the project has been divided into three phases. The paper deals with its first phase that is focusing on the data pre-processing, analysis and evaluation of the required information under Basel II, Pillar 3 since 2008 and its disclosure into the web site of a commercial bank. The authors introduce the methodologies for data preparation and known heuristic methods for path completion into web log files with respect to the particularity of investigated application domain. They propose scientific methods for modelling users’ behaviour of the webpages related to Pillar 3 with respect to time.

  18. A non-symmetric pillar[5]arene based on triazole-linked 8-oxyquinolines as a sequential sensor for thorium(IV) followed by fluoride ions.

    Science.gov (United States)

    Fang, Yuyu; Li, Caixia; Wu, Lei; Bai, Bing; Li, Xing; Jia, Yiming; Feng, Wen; Yuan, Lihua

    2015-09-07

    A novel non-symmetric pillar[5]arene bearing triazole-linked 8-oxyquinolines at one rim was synthesized and demonstrated as a sequential fluorescence sensor for thorium(iv) followed by fluoride ions with high sensitivity and selectivity.

  19. Globules and pillars in Cygnus X. I. Herschel far-infrared imaging of the Cygnus OB2 environment

    Science.gov (United States)

    Schneider, N.; Bontemps, S.; Motte, F.; Blazere, A.; André, Ph.; Anderson, L. D.; Arzoumanian, D.; Comerón, F.; Didelon, P.; Di Francesco, J.; Duarte-Cabral, A.; Guarcello, M. G.; Hennemann, M.; Hill, T.; Könyves, V.; Marston, A.; Minier, V.; Rygl, K. L. J.; Röllig, M.; Roy, A.; Spinoglio, L.; Tremblin, P.; White, G. J.; Wright, N. J.

    2016-06-01

    The radiative feedback of massive stars on molecular clouds creates pillars, globules and other features at the interface between the H II region and molecular cloud. Optical and near-infrared observations from the ground as well as with the Hubble or Spitzer satellites have revealed numerous examples of such cloud structures. We present here Herschel far-infrared observations between 70 μm and 500 μm of the immediate environment of the rich Cygnus OB2 association, performed within the Herschel imaging survey of OB Young Stellar objects (HOBYS) program. All of the observed irradiated structures were detected based on their appearance at 70 μm, and have been classified as pillars, globules, evaporating gasous globules (EGGs), proplyd-like objects, and condensations. From the 70 μm and 160 μm flux maps, we derive the local far-ultraviolet (FUV) field on the photon dominated surfaces. In parallel, we use a census of the O-stars to estimate the overall FUV-field, that is 103-104 G0 (Habing field) close to the central OB cluster (within 10 pc) and decreases down to a few tens G0, in a distance of 50 pc. From a spectral energy distribution (SED) fit to the four longest Herschel wavelengths, we determine column density and temperature maps and derive masses, volume densities and surface densities for these structures. We find that the morphological classification corresponds to distinct physical properties. Pillars and globules are massive (~500 M⊙) and large (equivalent radius r ~ 0.6 pc) structures, corresponding to what is defined as "clumps" for molecular clouds. EGGs and proplyd-likeobjects are smaller (r ~ 0.1 and 0.2 pc) and less massive (~10 and ~30 M⊙). Cloud condensations are small (~0.1 pc), have an average mass of 35 M⊙, are dense (~6 × 104 cm-3), and can thus be described as molecular cloud "cores". All pillars and globules are oriented toward the Cyg OB2 association center and have the longest estimated photoevaporation lifetimes, a few million

  20. A comparative UV-vis-diffuse reflectance study on the location and interaction of cerium ions in Al- and Zr-pillared montmorillonite clays

    International Nuclear Information System (INIS)

    Rao, G. Ranga; Mishra, Braja Gopal

    2005-01-01

    The environment, location and interaction of the Ce 3+ ions in the micropores of Al- and Zr-pillared clays have been studied by UV-vis-diffuse reflectance spectroscopy (UV-vis-DRS). The DRS spectra show that the chemical environment of the Ce 3+ ions in cerium exchanged clay is different from that of the Al- and Zr-pillared clays. The Al-Ce pillared clays (Al-Ce-PM) show four distinct absorption bands at 224, 263, 294 and 342 nm in the UV region which are attributed to 4f → 5d interconfigurational transitions of Ce 3+ ions associated with alumina pillars. The O 2- → Ce 3+ charge transfer band observed at 263 nm for Ce-exchanged and Al-Ce-PM clays is blue shifted by 10 nm for Ce-Zr-pillared clays (Ce-Zr-PM) due to fully hydrated Ce 3+ ions. The Ce 3+ ions are incorporated in the Al- and Zr-pillars possibly as AlCeO 3 and Ce x Zr 1-x O 2 particles upon heat treatment

  1. Stability of reinforced cemented backfills

    International Nuclear Information System (INIS)

    Mitchell, R.J.; Stone, D.M.

    1987-01-01

    Mining with backfill has been the subject of several international meetings in recent years and a considerable research effort is being applied to improve both mining economics and ore recovery by using backfill for ground support. Classified mill tailings sands are the most commonly used backfill material but these fine sands must be stabilized before full ore pillar recovery can be achieved. Normal portland cement is generally used for stabilization but the high cost of cement prohibits high cement usage. This paper considers the use of reinforcements in cemented fill to reduce the cement usage. It is concluded that strong cemented layers at typical spacings of about 3 meters in a low cement content bulk fill can reinforce the fill and reduce the overall cement usage. Fibre reinforcements introduced into strong layers or into bulk fills are also known to be effective in reducing cement usage. Some development work is needed to produce the ideal type of anchored fibre in order to realize economic gains from fibre-reinforced fills

  2. Thermo-mechanical effects from a KBS-3 type repository. Performance of pillars between repository tunnels

    International Nuclear Information System (INIS)

    Hakami, E.; Olofsson, Stig-Olof

    2000-03-01

    The aim of this study has been to investigate how the rock mass, in the near field of a KBS-3 type repository, will be affected by the excavation of tunnels and deposition holes and the thermal load from the deposited waste. The three-dimensional finite difference program FLAC 3D was used to perform numerical simulation of the rock mass behaviour. The rock mass was modelled as a homogeneous and isotropic continuum. The initial area heat intensity of the repository was assumed to be 10 W/m 2 in all models. The results show that in the middle of the pillar between the repository tunnels the temperature reaches a maximum of about 70 deg C after 55 years of deposition. The extent of areas where the rock is predicted to yield depends on the assumed quality of the rock mass and the initial in-situ stress field. The volume of yielded rock reaches a maximum after about 200 years after deposition. For a rock mass with internal friction angle of 45 deg and cohesion of 5 MPa (using a Mohr-Coulomb material model), the extent of yielded rock is limited to about 1.5 m behind the excavation periphery. The largest rock displacements are found in the tunnel floor at the upper part of the deposition holes. Tension and shear failure in the periphery of the excavations is predicted to occur during the rock excavation, with a depth extension depending on the magnitude and orientation of the in-situ stresses, as well as on the rock mass quality. Both the excavation effects and the then-no-mechanical effects are smallest when the major principal stress is oriented parallel with the deposition tunnels. The maximum convergence between tunnel walls was calculated to occur after 200 years and be about 9 mm, in the model assuming a rock mass with 5 MPa cohesion, 45 deg internal friction angle and maximum horizontal stress perpendicular to the tunnel. In this study confining effects from the buffer and backfill material was neglected. The effective stress concept was used in most of the models

  3. Three-dimensional imaging, change detection, and stability assessment during the centerline trench levee seepage experiment using terrestrial light detection and ranging technology, Twitchell Island, California, 2012

    Science.gov (United States)

    Bawden, Gerald W.; Howle, James; Bond, Sandra; Shriro, Michelle; Buck, Peter

    2014-01-01

    A full scale field seepage test was conducted on a north-south trending levee segment of a now bypassed old meander belt on Twitchell Island, California, to understand the effects of live and decaying root systems on levee seepage and slope stability. The field test in May 2012 was centered on a north-south trench with two segments: a shorter control segment and a longer seepage test segment. The complete length of the trench area measured 40.4 meters (m) near the levee centerline with mature trees located on the waterside and landside of the levee flanks. The levee was instrumented with piezometers and tensiometers to measure positive and negative porewater pressures across the levee after the trench was flooded with water and held at a constant hydraulic head during the seepage test—the results from this component of the experiment are not discussed in this report. We collected more than one billion three-dimensional light detection and ranging (lidar) data points before, during, and after the centerline seepage test to assess centimeter-scale stability of the two trees and the levee crown. During the seepage test, the waterside tree toppled (rotated 20.7 degrees) into the water. The landside tree rotated away from the levee by 5 centimeters (cm) at a height of 2 m on the tree. The paved surface of the levee crown had three regions that showed subsidence on the waterside of the trench—discussed as the northern, central, and southern features. The northern feature is an elongate region that subsided 2.1 cm over an area with an average width of 1.35 m that extends 15.8 m parallel to the trench from the northern end of the trench to just north of the trench midpoint, and is associated with a crack 1 cm in height that formed during the seepage test on the trench wall. The central subsidence feature is a semicircular region on the waterside of the trench that subsided by as much as 6.2 cm over an area 3.4 m wide and 11.2 m long. The southern feature is an elongate

  4. Unsteady wall pressure field of a model A-pillar conical vortex

    Energy Technology Data Exchange (ETDEWEB)

    Hoarau, C. [Laboratoire d' Etudes Aerodynamiques, LEA UMR CNRS/Universite de Poitiers/ENSMA 6609, Teleport 2, 1 Av. Clement Ader, BP 40109, 86961 Futuroscope Chasseneuil (France); Boree, J. [Laboratoire d' Etudes Aerodynamiques, LEA UMR CNRS/Universite de Poitiers/ENSMA 6609, Teleport 2, 1 Av. Clement Ader, BP 40109, 86961 Futuroscope Chasseneuil (France)], E-mail: jacques.boree@lea.ensma.fr; Laumonier, J.; Gervais, Y. [Laboratoire d' Etudes Aerodynamiques, LEA UMR CNRS/Universite de Poitiers/ENSMA 6609, Teleport 2, 1 Av. Clement Ader, BP 40109, 86961 Futuroscope Chasseneuil (France)

    2008-06-15

    The spatio-temporal properties of the unsteady wall pressure field of a model A-pillar conical vortex are studied in this paper by combining 2 component LDV measurements and multi-point pressure measurements using off-set microphones. The model body has sharp edges. Detailed LDV measurements are presented and discussed in the vortex region. The fluctuating velocities are the signature of both an unsteady behaviour of the organised vortical structure interacting with the wall and of finer scale turbulence carried by the unsteady flow. A spectral analysis of the fluctuating pressure under the vortex core is used to analyse the link between the temporal and spatial scales of the unsteady aerodynamics and the wall pressure field. We show that the conical vortex is a guide for the velocity perturbations and that their hydrodynamic pressure footprint is transported at the measured mean axial velocity in a local reference frame aligned with the vortex core. Two distinct peaks of coherence can then be associated with perturbations having (i) a length scale of the order of the full length of the conical structure; (ii) a length scale of the order of the width of the structure. These perturbations may correspond to a global meandering of the structure (low frequency contribution) and to large scale perturbations generated during the rolling-up of the unsteady vortex sheet. Notably, the energy containing higher frequency parts of the PSD are only weakly correlated when distant sensors are considered. The three distinct contributions extracted here have a significant impact as far as Cp' is concerned and should be transmitted in very different ways by the car structure because the frequency and length scale range is very distinct.

  5. Unsteady wall pressure field of a model A-pillar conical vortex

    International Nuclear Information System (INIS)

    Hoarau, C.; Boree, J.; Laumonier, J.; Gervais, Y.

    2008-01-01

    The spatio-temporal properties of the unsteady wall pressure field of a model A-pillar conical vortex are studied in this paper by combining 2 component LDV measurements and multi-point pressure measurements using off-set microphones. The model body has sharp edges. Detailed LDV measurements are presented and discussed in the vortex region. The fluctuating velocities are the signature of both an unsteady behaviour of the organised vortical structure interacting with the wall and of finer scale turbulence carried by the unsteady flow. A spectral analysis of the fluctuating pressure under the vortex core is used to analyse the link between the temporal and spatial scales of the unsteady aerodynamics and the wall pressure field. We show that the conical vortex is a guide for the velocity perturbations and that their hydrodynamic pressure footprint is transported at the measured mean axial velocity in a local reference frame aligned with the vortex core. Two distinct peaks of coherence can then be associated with perturbations having (i) a length scale of the order of the full length of the conical structure; (ii) a length scale of the order of the width of the structure. These perturbations may correspond to a global meandering of the structure (low frequency contribution) and to large scale perturbations generated during the rolling-up of the unsteady vortex sheet. Notably, the energy containing higher frequency parts of the PSD are only weakly correlated when distant sensors are considered. The three distinct contributions extracted here have a significant impact as far as Cp' is concerned and should be transmitted in very different ways by the car structure because the frequency and length scale range is very distinct

  6. Tillage and crop residue management methods had minor effects on the stock and stabilization of topsoil carbon in a 30-year field experiment.

    Science.gov (United States)

    Singh, Pooja; Heikkinen, Jaakko; Ketoja, Elise; Nuutinen, Visa; Palojärvi, Ansa; Sheehy, Jatta; Esala, Martti; Mitra, Sudip; Alakukku, Laura; Regina, Kristiina

    2015-06-15

    We studied the effects of tillage and straw management on soil aggregation and soil carbon sequestration in a 30-year split-plot experiment on clay soil in southern Finland. The experimental plots were under conventional or reduced tillage with straw retained, removed or burnt. Wet sieving was done to study organic carbon and soil composition divided in four fractions: 1) large macroaggregates, 2) small macroaggregates, 3) microaggregates and 4) silt and clay. To further estimate the stability of carbon in the soil, coarse particulate organic matter, microaggregates and silt and clay were isolated from the macroaggregates. Total carbon stock in the topsoil (equivalent to 200 kg m(-2)) was slightly lower under reduced tillage (5.0 kg m(-2)) than under conventional tillage (5.2 kg m(-2)). Reduced tillage changed the soil composition by increasing the percentage of macroaggregates and decreasing the percentage of microaggregates. There was no evidence of differences in the composition of the macroaggregates or carbon content in the macroaggregate-occluded fractions. However, due to the higher total amount of macroaggregates in the soil, more carbon was bound to the macroaggregate-occluded microaggregates in reduced tillage. Compared with plowed soil, the density of deep burrowing earthworms (Lumbricus terrestris) was considerably higher under reduced tillage and positively associated with the percentage of large macroaggregates. The total amount of microbial biomass carbon did not differ between the treatments. Straw management did not have discernible effects either on soil aggregation or soil carbon stock. We conclude that although reduced tillage can improve clay soil structure, generally the chances to increase topsoil carbon sequestration by reduced tillage or straw management practices appear limited in cereal monoculture systems of the boreal region. This may be related to the already high C content of soils, the precipitation level favoring decomposition and

  7. Using a Mixed Methods Approach to Examine Practice Characteristics Associated With Implementation of an Adult Immunization Intervention Using the 4 Pillars Practice Transformation Program.

    Science.gov (United States)

    Hawk, Mary; Nowalk, Mary Patricia; Moehling, Krissy K; Pavlik, Valory; Raviotta, Jonathan M; Brown, Anthony E; Zimmerman, Richard K; Ricci, Edmund M

    Adult immunization rates are consistently suboptimal, exacting significant human and financial burden of preventable disease. Practice-level interventions to improve immunization rates have produced mixed results. The context of change critically affects implementation of evidence-based interventions. We conducted a randomized controlled cluster trial of the 4 Pillars Practice Transformation Program to increase adult vaccination rates in primary care practices and used qualitative methods to test intervention effects and understand practice characteristics associated with implementation success. We conducted qualitative interviews with staff from 14 practices to assess implementation experiences. Thematic analysis of data pointed to the importance of quality improvement history, communication and practice leadership, Immunization Champion leadership effectiveness, and organizational flexibility. Practices were scored on these characteristics and grouped into four types: Low Implementers, Medium Implementers, High Implementers, and Public/University Practices. Intervention uptake and immunization rate changes were compared, and a significant increase in influenza vaccination rates (3.9 percentage points [PPs]; p = .038) was observed for High Implementers only. Significant increases in Tdap vaccination rates were observed for High Implementers (9.3 PP; p = 0.006) and the Public/University groups (6.5 PP; p = 0.012), but not other groups. Practice characteristics may be critical factors in predicting intervention success.

  8. Application of a routine moment tensor inversion capability in the development of a new design consideration for the stability of foundations of stabilising pillars in deep level gold mines and pillars in intermediate depth hard rock mines

    CSIR Research Space (South Africa)

    Linzer, LM

    2002-03-01

    Full Text Available analysis of failure mechanisms, development of moment tensor inversion program and verification of the hybrid moment tensor inversion technique. Geomechanical and geotechnical analyses were undertaken to determine the rock mass condition of in situ... on the mine using the ISS software and then reprocessed using AURA, the seismogram processing analysis program written by CSIR Miningtek. It was found that the magnitudes computed using AURA were substantially larger than those computed using the ISS...

  9. Synthesis of SnO2 pillared carbon using long chain alkylamine grafted graphene oxide: an efficient anode material for lithium ion batteries.

    Science.gov (United States)

    Reddy, M Jeevan Kumar; Ryu, Sung Hun; Shanmugharaj, A M

    2016-01-07

    With the objective of developing new advanced composite materials that can be used as anodes for lithium ion batteries (LIBs), herein we describe the synthesis of SnO2 pillared carbon using various alkylamine (hexylamine; dodecylamine and octadecylamine) grafted graphene oxides and butyl trichlorotin precursors followed by its calcination at 500 °C for 2 h. While the grafted alkylamine induces crystalline growth of SnO2 pillars, thermal annealing of alkylamine grafted graphene oxide results in the formation of amorphous carbon coated graphene. Field emission scanning electron microscopy (FE-SEM) results reveal the successful formation of SnO2 pillared carbon on the graphene surface. X-ray diffraction (XRD), transmission electron microscopy (TEM) and Raman spectroscopy characterization corroborates the formation of rutile SnO2 crystals on the graphene surface. A significant rise in the BET surface area is observed for SnO2 pillared carbon, when compared to pristine GO. Electrochemical characterization studies of SnO2 pillared carbon based anode materials showed an enhanced lithium storage capacity and fine cyclic performance in comparison with pristine GO. The initial specific capacities of SnO2 pillared carbon are observed to be 1379 mA h g(-1), 1255 mA h g(-1) and 1360 mA h g(-1) that decrease to 750 mA h g(-1), 643 mA h g(-1) and 560 mA h g(-1) depending upon the chain length of grafted alkylamine on the graphene surface respectively. Electrochemical impedance spectral analysis reveals that the exchange current density of SnO2 pillared carbon based electrodes is higher, corroborating its enhanced electrochemical activity in comparison with GO based electrodes.

  10. Effects of PCB Pad Metal Finishes on the Cu-Pillar/Sn-Ag Micro Bump Joint Reliability of Chip-on-Board (COB) Assembly

    Science.gov (United States)

    Kim, Youngsoon; Lee, Seyong; Shin, Ji-won; Paik, Kyung-Wook

    2016-06-01

    While solder bumps have been used as the bump structure to form the interconnection during the last few decades, the continuing scaling down of devices has led to a change in the bump structure to Cu-pillar/Sn-Ag micro-bumps. Cu-pillar/Sn-Ag micro-bump interconnections differ from conventional solder bump interconnections in terms of their assembly processing and reliability. A thermo-compression bonding method with pre-applied b-stage non-conductive films has been adopted to form solder joints between Cu pillar/Sn-Ag micro bumps and printed circuit board vehicles, using various pad metal finishes. As a result, various interfacial inter-metallic compounds (IMCs) reactions and stress concentrations occur at the Cu pillar/Sn-Ag micro bumps joints. Therefore, it is necessary to investigate the influence of pad metal finishes on the structural reliability of fine pitch Cu pillar/Sn-Ag micro bumps flip chip packaging. In this study, four different pad surface finishes (Thin Ni ENEPIG, OSP, ENEPIG, ENIG) were evaluated in terms of their interconnection reliability by thermal cycle (T/C) test up to 2000 cycles at temperatures ranging from -55°C to 125°C and high-temperature storage test up to 1000 h at 150°C. The contact resistances of the Cu pillar/Sn-Ag micro bump showed significant differences after the T/C reliability test in the following order: thin Ni ENEPIG > OSP > ENEPIG where the thin Ni ENEPIG pad metal finish provided the best Cu pillar/Sn-Ag micro bump interconnection in terms of bump joint reliability. Various IMCs formed between the bump joint areas can account for the main failure mechanism.

  11. Accelerated testing for studying pavement design and performance (FY 2003) : evaluation of the chemical stabilized subgrade soil (CISL Experiment No. 12).

    Science.gov (United States)

    2008-01-01

    The Midwest States Accelerated Pavement Testing Pooled Fund Program, financed by the highway departments : of Missouri, Iowa, Kansas and Nebraska, has supported an accelerated pavement testing (APT) project to compare : the performance of stabilized ...

  12. Resource reliability, accessibility and governance: pillars for managing water resources to achieve water security in Nepal

    Science.gov (United States)

    Biggs, E. M.; Duncan, J.; Atkinson, P.; Dash, J.

    2013-12-01

    As one of the world's most water-abundant countries, Nepal has plenty of water yet resources are both spatially and temporally unevenly distributed. With a population heavily engaged in subsistence farming, whereby livelihoods are entirely dependent on rain-fed agriculture, changes in freshwater resources can substantially impact upon survival. The two main sources of water in Nepal come from monsoon precipitation and glacial runoff. The former is essential for sustaining livelihoods where communities have little or no access to perennial water resources. Much of Nepal's population live in the southern Mid-Hills and Terai regions where dependency on the monsoon system is high and climate-environment interactions are intricate. Any fluctuations in precipitation can severely affect essential potable resources and food security. As the population continues to expand in Nepal, and pressures build on access to adequate and clean water resources, there is a need for institutions to cooperate and increase the effectiveness of water management policies. This research presents a framework detailing three fundamental pillars for managing water resources to achieve sustainable water security in Nepal. These are (i) resource reliability; (ii) adequate accessibility; and (iii) effective governance. Evidence is presented which indicates that water resources are adequate in Nepal to sustain the population. In addition, aspects of climate change are having less impact than previously perceived e.g. results from trend analysis of precipitation time-series indicate a decrease in monsoon extremes and interannual variation over the last half-century. However, accessibility to clean water resources and the potential for water storage is limiting the use of these resources. This issue is particularly prevalent given the heterogeneity in spatial and temporal distributions of water. Water governance is also ineffective due to government instability and a lack of continuity in policy

  13. Optimization of silver-assisted nano-pillar etching process in silicon

    International Nuclear Information System (INIS)

    Azhari, Ayu Wazira; Sopian, Kamaruzzaman; Desa, Mohd Khairunaz Mat; Zaidi, Saleem H.

    2015-01-01

    Graphical abstract: - Highlights: • Statistical analysis for synthesis of nano-pillar in crystalline Si substrates is presented. • Model is in good agreement with experimental for the etching rate and lateral etching respectively. • Optimum values for all parameters in fabrication of nanostructured Si are attained. - Abstract: In this study, a respond surface methodology (RSM) model is developed using three-level Box–Behnken experimental design (BBD) technique. This model is developed to investigate the influence of metal-assisted chemical etching (MACE) process variables on the nanopillars profiles created in single crystalline silicon (Si) substrate. Design-Expert ® software (version 7.1) is employed in formulating the RSM model based on five critical process variables: (A) concentration of silver (Ag), (B) concentration of hydrofluoric acid (HF), (C) concentration of hydrogen peroxide (H 2 O 2 ), (D) deposition time, and (E) etching time. This model is supported by data from 46 experimental configurations. Etched profiles as a function of lateral etching rate, vertical etching rate, height, size and separation between the Si trenches and etching uniformity are characterized using field emission scanning electron microscope (FE-SEM). A quadratic regression model is developed to correlate critical process variables and is validated using the analysis of variance (ANOVA) methodology. The model exhibits near-linear dependence of lateral and vertical etching rates on both the H 2 O 2 concentration and etching time. The predicted model is in good agreement with the experimental data where R 2 is equal to 0.80 and 0.67 for the etching rate and lateral etching respectively. The optimized result shows minimum lateral etching with the average pore size of about 69 nm while the maximum etching rate is estimated at around 360 nm/min. The model demonstrates that the etching process uniformity is not influenced by either the etchant concentration or the etching time

  14. Earle K. Plyler Prize Lecture: The Three Pillars of Ultrafast Molecular Science - Time, Phase, Intensity

    Science.gov (United States)

    Stolow, Albert

    We discuss the probing and control of molecular wavepacket dynamics in the context of three main `pillars' of light-matter interaction: time, phase, intensity. Time: Using short, coherent laser pulses and perturbative matter-field interactions, we study molecular wavepackets with a focus on the ultrafast non-Born-Oppenheimer dynamics, that is, the coupling of electronic and nuclear motions. Time-Resolved Photoelectron Spectroscopy (TRPES) is a powerful ultrafast probe of these processes in polyatomic molecules because it is sensitive both electronic and vibrational dynamics. Ideally, one would like to observe these ultrafast processes from the molecule's point of view - the Molecular Frame - thereby avoiding loss of information due to orientational averaging. This can be achieved by Time-Resolved Coincidence Imaging Spectroscopy (TRCIS) which images 3D recoil vectors of both photofragments and photoelectrons, in coincidence and as a function of time, permitting direct Molecular Frame imaging of valence electronic dynamics during a molecular dynamics. Phase: Using intermediate strength non-perturbative interactions, we apply the second order (polarizability) Non-Resonant Dynamic Stark Effect (NRDSE) to control molecular dynamics without any net absorption of light. NRDSE is also the interaction underlying molecular alignment and applies to field-free 1D of linear molecules and field-free 3D alignment of general (asymmetric) molecules. Using laser alignment, we can transiently fix a molecule in space, yielding a more general approach to direct Molecular Frame imaging of valence electronic dynamics during a chemical reaction. Intensity: In strong (ionizing) laser fields, a new laser-matter physics emerges for polyatomic systems wherein both the single active electron picture and the adiabatic electron response, both implicit in the standard 3-step models, can fail dramatically. This has important consequences for all attosecond strong field spectroscopies of

  15. Optimization of silver-assisted nano-pillar etching process in silicon

    Energy Technology Data Exchange (ETDEWEB)

    Azhari, Ayu Wazira, E-mail: ayuwazira@unimap.edu.my [Solar Energy Research Institute, Universiti Kebangsaan Malaysia, Bangi, Selangor 43650 (Malaysia); School of Environmental Engineering, Universiti Malaysia Perlis, 01000, Kangar, Perlis (Malaysia); Sopian, Kamaruzzaman [Solar Energy Research Institute, Universiti Kebangsaan Malaysia, Bangi, Selangor 43650 (Malaysia); Desa, Mohd Khairunaz Mat [School of Electrical and Electronic Engineering, Universiti Sains Malaysia, Nibong Tebal, Pulau Pinang, 14300 (Malaysia); Zaidi, Saleem H. [Solar Energy Research Institute, Universiti Kebangsaan Malaysia, Bangi, Selangor 43650 (Malaysia)

    2015-12-01

    Graphical abstract: - Highlights: • Statistical analysis for synthesis of nano-pillar in crystalline Si substrates is presented. • Model is in good agreement with experimental for the etching rate and lateral etching respectively. • Optimum values for all parameters in fabrication of nanostructured Si are attained. - Abstract: In this study, a respond surface methodology (RSM) model is developed using three-level Box–Behnken experimental design (BBD) technique. This model is developed to investigate the influence of metal-assisted chemical etching (MACE) process variables on the nanopillars profiles created in single crystalline silicon (Si) substrate. Design-Expert{sup ®} software (version 7.1) is employed in formulating the RSM model based on five critical process variables: (A) concentration of silver (Ag), (B) concentration of hydrofluoric acid (HF), (C) concentration of hydrogen peroxide (H{sub 2}O{sub 2}), (D) deposition time, and (E) etching time. This model is supported by data from 46 experimental configurations. Etched profiles as a function of lateral etching rate, vertical etching rate, height, size and separation between the Si trenches and etching uniformity are characterized using field emission scanning electron microscope (FE-SEM). A quadratic regression model is developed to correlate critical process variables and is validated using the analysis of variance (ANOVA) methodology. The model exhibits near-linear dependence of lateral and vertical etching rates on both the H{sub 2}O{sub 2} concentration and etching time. The predicted model is in good agreement with the experimental data where R{sup 2} is equal to 0.80 and 0.67 for the etching rate and lateral etching respectively. The optimized result shows minimum lateral etching with the average pore size of about 69 nm while the maximum etching rate is estimated at around 360 nm/min. The model demonstrates that the etching process uniformity is not influenced by either the etchant

  16. Long term stability of power systems

    Energy Technology Data Exchange (ETDEWEB)

    Kundur, P; Gao, B [Powertech Labs. Inc., Surrey, BC (Canada)

    1994-12-31

    Power system long term stability is still a developing subject. In this paper we provide our perspectives and experiences related to long term stability. The paper begins with the description of the nature of the long term stability problem, followed by the discussion of issues related to the modeling and solution techniques of tools for long term stability analysis. Cases studies are presented to illustrate the voltage stability aspect and plant dynamics aspect of long term stability. (author) 20 refs., 11 figs.

  17. Using the 4 Pillars Practice Transformation Program to Increase Pneumococcal Immunizations for Older Adults: A Cluster-Randomized Trial.

    Science.gov (United States)

    Zimmerman, Richard K; Brown, Anthony E; Pavlik, Valory N; Moehling, Krissy K; Raviotta, Jonathan M; Lin, Chyongchiou J; Zhang, Song; Hawk, Mary; Kyle, Shakala; Patel, Suchita; Ahmed, Faruque; Nowalk, Mary Patricia

    2017-01-01

    To test the effectiveness of a step-by step, evidence-based guide, the 4 Pillars Practice Transformation Program, to increase adult pneumococcal vaccination. Randomized controlled cluster trial (RCCT) in Year 1 (June 1, 2013 to May 31, 2014) and pre-post study in Year 2 (June 1, 2014 to January 31, 2015) with data analyzed in 2016. Baseline year was June 1, 2012, to May 31, 2013. Demographic and vaccination data were derived from deidentified electronic medical record extractions. Primary care practices (n = 25) stratified according to metropolitan area (Houston, Pittsburgh), location (rural, urban, suburban), and type (family medicine, internal medicine), randomized to receive the intervention in Year 1 (n = 13) or Year 2 (n = 12). Individuals aged 65 and older at baseline (N = 18,107; mean age 74.2; 60.7% female, 16.5% non-white, 15.7% Hispanic). The 4 Pillars Program, provider education, and one-on-one coaching of practice-based immunization champions. Outcome measures were 23-valent pneumococcal polysaccharide vaccine (PPSV) and pneumococcal conjugate vaccine (PCV) vaccination rates and percentage point (PP) changes in vaccination rates. In the Year 1 RCCT, PPSV vaccination rates increased significantly in all intervention and control groups, with average increases ranging from 6.5 to 8.7 PP (P < .001). The intervention was not related to greater likelihood of PPSV vaccination. In the Year 2 pre-post study, the likelihood of PPSV and PCV vaccination was significantly higher in the active intervention sites than the maintenance sites in Pittsburgh but not in Houston. In a RCCT, PPSV vaccination rates increased in the intervention and control groups in Year 1. In a pre-post study, private primary care practices actively participating in the 4 Pillars Practice Transformation Program improved PPSV and PCV uptake significantly more than practices that were in the maintenance phase of the study. © 2016, Copyright the Authors Journal compilation © 2016, The American

  18. Preliminary assessment of potential underground stability (wedge and spalling) at Forsmark, Simpevarp and Laxemar sites

    Energy Technology Data Exchange (ETDEWEB)

    Martin, Derek [Univ. of Alberta, Edmonton (Canada). Geotechnical Engineering

    2005-12-15

    In SKB's Underground Design Premises the objective in the early design phase is to estimate if there is sufficient space for the repository at a site. One of the conditions that could limit the space available is stability of the underground openings, i.e., deposition tunnels and deposition boreholes. The purpose of this report is to provide a preliminary assessment of the potential for wedge instability and spalling that may be encountered at the Forsmark, Simpevarp and Laxemar sites based on information from the site investigations program up to July 30, 2004. The rock mass spalling strength was defined using the in-situ results from SKB's Aespoe Pillar Stability Experiment and AECL's Mine-by Experiment. These experiments suggest that the rock mass spalling strength for crystalline rocks can be estimated as 0.57 of the mean laboratory uniaxial compressive strength. A probability-based methodology utilizing this in-situ rock mass spalling strength has been developed for assessing the risk for spalling in a repository at the Forsmark, Simpevarp and Laxemar sites. The in-situ stresses and the uniaxial compressive strength data from these sites were used as the bases for the analyses. Preliminary findings from all sites suggest that, generally, the risk for spalling increases as the depth of the repository increases, simply because the stress magnitudes increase with depth. The depth at which the risk for spalling is significant, depends on the individual sites which are discussed below. The greatest uncertainty in the spalling analyses for Forsmark is related to the uncertainty in the horizontal stress magnitudes and associated stress gradients with depth. The confidence in these analyses can only be increased by increasing the confidence in the stress and geology model for the site. From the analyses completed it appears that spalling in the deposition tunnels can be controlled by orienting the tunnels approximately parallel to the maximum horizontal

  19. Impact of the limitations of state-of-the-art micro-fabrication processes on the performance of pillar array columns for liquid chromatography.

    Science.gov (United States)

    Op de Beeck, Jeff; De Malsche, Wim; Tezcan, Deniz S; De Moor, Piet; Desmet, Gert

    2012-05-25

    We report on the practical limitations of the current state-of-the-art in micro-fabrication technology to produce the small pillar sizes that are needed to obtain high efficiency pillar array columns. For this purpose, nine channels with a different pillar diameter, ranging from 5 to 0.5 μm were fabricated using state-of the-art deep-UV lithography and deep reactive ion etching (DRIE) etching technology. The obtained results strongly deviated from the theoretically expected trend, wherein the minimal plate height (H(min)) would reduce linearly with the pillar diameter. The minimal plate height decreases from 1.7 to 1.2 μm when going from 4.80 to 3.81 μm diameter pillars, but as the dimensions are further reduced, the minimal plate heights rise again to values around 2 μm. The smallest pillar diameter even produced the worst minimal plate height (4 μm). An in-depth scanning electron microscopy (SEM) inspection of the different channels clearly reveals that these findings can be attributed to the micro-fabrication limitations that are inevitably encountered when exploring the limits of deep-UV lithography and DRIE etching processes. When the target dimensions of the design approach the etching resolution limits, the band broadening increases in a strongly non-linear way with the decreased pillar dimensions. This highly non-linear relationship can be understood from first principles: when the machining error is of the order of 100-200 nm and when the target design size for the inter-pillar distance is of the order of 250 nm, this inevitably leads to pores that will range in size between 50 and 450 nm that we want to highlight with our paper highly non-linear relationship. This highly non-linear relationship can be understood from first principles: when the machining error is of the order of 100-200 nm and when the target design size for the inter-pillar distance is of the order of 250 nm, this inevitably leads to pores that will range in size between 50 and 450

  20. Material versatility using replica molding for large-scale fabrication of high aspect-ratio, high density arrays of nano-pillars

    International Nuclear Information System (INIS)

    Li, Y; Menon, C; Ng, H W; Gates, B D

    2014-01-01

    Arrays of high aspect-ratio (AR) nano-pillars have attracted a lot of interest for various applications, such as for use in solar cells, surface acoustic sensors, tissue engineering, bio-inspired adhesives and anti-reflective surfaces. Each application may require a different structural material, which can vary in the required chemical composition and mechanical properties. In this paper, a low cost fabrication procedure is proposed for large scale, high AR and high density arrays of nano-pillars. The proposed method enables the replication of a master with high fidelity, using the subsequent replica molds multiple times, and preparing arrays of nano-pillars in a variety of different materials. As an example applied to bio-inspired dry adhesion, polymeric arrays of nano-pillars are prepared in this work. Thermoset and thermoplastic nano-pillar arrays are examined using an atomic force microscope to assess their adhesion strength and its uniformity. Results indicate the proposed method is robust and can be used to reliably prepare nano-structures with a high AR. (paper)

  1. Synthesis of pillar and microsphere-like magnesium oxide particles and their fluoride adsorption performance in aqueous solutions

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Sang Gool; Ha, Jong-Wook; Sohn, Eun-Ho; Park, In Jun; Lee, Soo-Bok [Korea Research Institute of Chemical Technology, Daejeon (Korea, Republic of)

    2017-10-15

    We synthesized pillar and microsphere-like MgO particles and their fluoride removal performance. Samples of MgO were synthesized by calcination of precursors derived from MgCO{sub 3}·3H{sub 2}O and characterized using field emission scanning electron microscopy, X-ray diffraction, and N{sub 2} adsorption-desorption isotherms. The fluoride removal performance of the MgO samples was investigated in terms of adsorption kinetics and adsorption equilibrium. The effects of pH and the presence of other anions on the fluoride adsorption were also considered. The adsorption capacities of pillar and microsphere-like MgO particles were 151.51 and 166.66mg/g, respectively. The pH of the aqueous solutions did not significantly affect the fluoride adsorption at pH 9 or lower. Except for phosphate, the effect of co-existing anions on fluoride adsorption was not considerable. Fluoride removal occurred through the substitution of hydroxyl groups on the surface of MgO with fluorides.

  2. Degradation of methylene blue using pillared TiO2 on de-oiled spent bleaching clay

    Science.gov (United States)

    Hindryawati, N.; Panggabean, A. S.; Fadillah, N. D.; Erwin; Daniel

    2018-04-01

    Degradation of methylene blue (MB) using pillared TiO2 onto spent bleaching clay has been conducted. Activation of deoiled spent bleaching clay (DSBC) has been done using acid, followed by pillarization with TiO2 using rarasaponin from Klerak fruit as surfactant. From the X-ray diffraction results show the mineral on DSBC is rectorite with dioctahedral mica layer and dioctahedral smectite with ratio 2:1. This molecule have formula Na.Al4(Si, Al)8.O20.(OH)4. H2O and after calcinations the pattern TiO2 was appearance at 2θ: 27.4460°, 36.0850°, 54.3216° and 56.6403°. In order to test the catalytic performance of Ti-DSBC for photodegradation of MB under UV light was conducted under several reaction conditions. The highest degradation of MB was 90 % within 50 minutes and Ti-DSBC can be reused until 5 cycles with percent degradation MB was 84 %.

  3. Effect of Manganese Promotion on Al-Pillared Montmorillonite Supported Cobalt Nanoparticles for Fischer-Tropsch Synthesis

    International Nuclear Information System (INIS)

    Ahmad, N.; Hussain, S. T.; Abbas, S. M.; Khan, Y.; Muhammad, B.; Ali, N.

    2013-01-01

    The effect of Mn-promotion on high surface area Al-pillared montmorillonite (AlMMT) supported Co nanoparticles prepared by hydrothermal method have been investigated. A series of different weight% Mn-promoted Co nanoparticles were prepared and characterized by XRD, TPR, TGA, BET and SEM techniques. An increase in the surface area of MMT is observed with Al-pillaring. Fischer-Tropsch catalytic activity of the as prepared catalysts was studied in a fixed bed micro reactor at 225 .deg. C, H 2 /CO = 2 and at 1 atm pressure. The data showed that by the addition of Mn the selectivity of C 1 dropped drastically while that of C 2 -C 12 hydrocarbons increased significantly over all the Mn-promoted Co/AlMMT catalysts. The C 13 -C 20 hydrocarbons remained almost same for all the catalysts while the selectivity of C 21+ long chain hydrocarbons decreased considerably with the addition of Mn. The catalyst with 3.5%Mn showed lowest C 21+ and highest C 2 -C 12 hydrocarbons selectivity due to cracking of long chain hydrocarbons over acidic sites of MMT

  4. The Troy Microneedle: A Rapidly Separating, Dissolving Microneedle Formed by Cyclic Contact and Drying on the Pillar (CCDP.

    Directory of Open Access Journals (Sweden)

    Miroo Kim

    Full Text Available In dissolving microneedle (DMN-mediated therapy, complete and rapid delivery of DMNs is critical for the desired efficacy. Traditional patch-based DMN delivery, however, may fail due to incomplete delivery from insufficient skin insertion or rapid separation of microneedles due to their strong bond to the backing film. Here, we introduce the Troy microneedle, which was created by cyclic contact and drying on the pillar (CCDP, and which enabled simultaneous complete and rapid delivery of DMN. This CCDP process could be flexibly repeated to achieve a specific desired drug dose in a DMN. We evaluated DMN separation using agarose gel, and the Troy microneedle achieved more complete and rapid separation than other, more deeply dipped DMN, primarily because of the Troy's minimal junction between the DMN and pillar. When Troy microneedles were applied to pig cadaver skin, it took only 15 s for over 90% of encapsulated rhodamine B to be delivered, compared to 2 h with application of a traditional DMN patch. In vivo skin penetration studies demonstrated rapid DMN-separation of Troy microneedles still in solid form before dissolution. The Troy microneedle overcomes critical issues associated with the low penetration efficiency of flat patch-based DMN and provides an innovative route for DMN-mediated therapy, combining patient convenience with the desire drug efficacy.

  5. The Troy Microneedle: A Rapidly Separating, Dissolving Microneedle Formed by Cyclic Contact and Drying on the Pillar (CCDP).

    Science.gov (United States)

    Kim, Miroo; Yang, Huisuk; Kim, Suyong; Lee, Chisong; Jung, Hyungil

    2015-01-01

    In dissolving microneedle (DMN)-mediated therapy, complete and rapid delivery of DMNs is critical for the desired efficacy. Traditional patch-based DMN delivery, however, may fail due to incomplete delivery from insufficient skin insertion or rapid separation of microneedles due to their strong bond to the backing film. Here, we introduce the Troy microneedle, which was created by cyclic contact and drying on the pillar (CCDP), and which enabled simultaneous complete and rapid delivery of DMN. This CCDP process could be flexibly repeated to achieve a specific desired drug dose in a DMN. We evaluated DMN separation using agarose gel, and the Troy microneedle achieved more complete and rapid separation than other, more deeply dipped DMN, primarily because of the Troy's minimal junction between the DMN and pillar. When Troy microneedles were applied to pig cadaver skin, it took only 15 s for over 90% of encapsulated rhodamine B to be delivered, compared to 2 h with application of a traditional DMN patch. In vivo skin penetration studies demonstrated rapid DMN-separation of Troy microneedles still in solid form before dissolution. The Troy microneedle overcomes critical issues associated with the low penetration efficiency of flat patch-based DMN and provides an innovative route for DMN-mediated therapy, combining patient convenience with the desire drug efficacy.

  6. Key pillars of data interoperability in Earth Sciences - INSPIRE and beyond

    Science.gov (United States)

    Tomas, Robert; Lutz, Michael

    2013-04-01

    The well-known heterogeneity and fragmentation of data models, formats and controlled vocabularies of environmental data limit potential data users from utilising the wealth of environmental information available today across Europe. The main aim of INSPIRE1 is to improve this situation and give users possibility to access, use and correctly interpret environmental data. Over the past years number of INSPIRE technical guidelines (TG) and implementing rules (IR) for interoperability have been developed, involving hundreds of domain experts from across Europe. The data interoperability specifications, which have been developed for all 34 INSPIRE spatial data themes2, are the central component of the TG and IR. Several of these themes are related to the earth sciences, e.g. geology (including hydrogeology, geophysics and geomorphology), mineral and energy resources, soil science, natural hazards, meteorology, oceanography, hydrology and land cover. The following main pillars for data interoperability and harmonisation have been identified during the development of the specifications: Conceptual data models describe the spatial objects and their properties and relationships for the different spatial data themes. To achieve cross-domain harmonization, the data models for all themes are based on a common modelling framework (the INSPIRE Generic Conceptual Model3) and managed in a common UML repository. Harmonised vocabularies (or code lists) are to be used in data exchange in order to overcome interoperability issues caused by heterogeneous free-text and/or multi-lingual content. Since a mapping to a harmonized vocabulary could be difficult, the INSPIRE data models typically allow the provision of more specific terms from local vocabularies in addition to the harmonized terms - utilizing either the extensibility options or additional terminological attributes. Encoding. Currently, specific XML profiles of the Geography Markup Language (GML) are promoted as the standard

  7. Preparación y propiedades de una arcilla montmorillonita pilareada con polihidroxicationes de aluminio Preparation and properties of a montmorillonite clay pillared with aluminium polyhydroxications

    Directory of Open Access Journals (Sweden)

    Sibele B. C. Pergher

    1999-09-01

    Full Text Available Montmorillonite clay from Brazil was pillared with aluminium polyhydroxications. The influence of Al/Mont ratio and calcination temperature in the properties of the prepared materials was studied. Results showed that the pillarization process increases the basal spaces of the natural clay from 9,7 to 18,5Å and the superficial area from 41 to ~230m2/g. The calcination process at different temperatures showed that the pillared material was stable until 600oC but the adequate temperature for calcination was 450oC. Materials prepared with different Al/Mont ratios showed the maximum Al incorporation for ratios >10meq Al/g and a good distribution for rations >15meq Al/g.

  8. Origin, Development and Decline of Monolithic Pillars and the Continuity of the Tradition in Polylithic, Non-Lithic and Structural Forms

    Directory of Open Access Journals (Sweden)

    S. Krishnamurthy

    2016-02-01

    Full Text Available The present paper deals with one such creations of Man, i.e. the tradition of erecting free standing monolithic pillars - its origin, growth and decline and the continuity of the tradition of erecting such pillars in its changed polylithic (from Greek word polloi = many + lithic = stone, non-lithic and structural forms. No exact reason can be found, pointing it to be the exact cause for the decline in the tradition of erecting monolithic pillar and its transformation. In this paper the authors try to analyse various phenomenon likesocio-political, economic and technical aspects which may have lead to their decline and subsequently their continuity in a changed form in Indian context.

  9. Stabilization of compactible waste

    International Nuclear Information System (INIS)

    Franz, E.M.; Heiser, J.H. III; Colombo, P.

    1990-09-01

    This report summarizes the results of series of experiments performed to determine the feasibility of stabilizing compacted or compactible waste with polymers. The need for this work arose from problems encountered at disposal sites attributed to the instability of this waste in disposal. These studies are part of an experimental program conducted at Brookhaven National Laboratory (BNL) investigating methods for the improved solidification/stabilization of DOE low-level wastes. The approach taken in this study was to perform a series of survey type experiments using various polymerization systems to find the most economical and practical method for further in-depth studies. Compactible dry bulk waste was stabilized with two different monomer systems: styrene-trimethylolpropane trimethacrylate (TMPTMA) and polyester-styrene, in laboratory-scale experiments. Stabilization was accomplished by wetting or soaking compactible waste (before or after compaction) with monomers, which were subsequently polymerized. Three stabilization methods are described. One involves the in-situ treatment of compacted waste with monomers in which a vacuum technique is used to introduce the binder into the waste. The second method involves the alternate placement and compaction of waste and binder into a disposal container. In the third method, the waste is treated before compaction by wetting the waste with the binder using a spraying technique. A series of samples stabilized at various binder-to-waste ratios were evaluated through water immersion and compression testing. Full-scale studies were conducted by stabilizing two 55-gallon drums of real compacted waste. The results of this preliminary study indicate that the integrity of compacted waste forms can be readily improved to ensure their long-term durability in disposal environments. 9 refs., 10 figs., 2 tabs

  10. Stabilizing Niger

    DEFF Research Database (Denmark)

    Hahonou, Eric Komlavi

    international intervention in Niger. Their main objective is to secure their own strategic, economic and political interests by strengthening the Nigerien authorities through direct intervention and capacity building activities. For western states reinforcing state security institutions and stabilizing elite...

  11. Dataset on the structure and thermodynamic and dynamic stability of Mo2ScAlC2 from experiments and first-principles calculations

    Directory of Open Access Journals (Sweden)

    Martin Dahlqvist

    2017-02-01

    Full Text Available The data presented in this paper are related to the research article entitled “Theoretical stability and materials synthesis of a chemically ordered MAX phase, Mo2ScAlC2, and its two-dimensional derivate Mo2ScC” (Meshkian et al. 2017 [1]. This paper describes theoretical phase stability calculations of the MAX phase alloy MoxSc3-xAlC2 (x=0, 1, 2, 3, including chemical disorder and out-of-plane order of Mo and Sc along with related phonon dispersion and Bader charges, and Rietveld refinement of Mo2ScAlC2. The data is made publicly available to enable critical or extended analyzes.

  12. Investigation of excavation stability in a finite repository

    International Nuclear Information System (INIS)

    St John, C.M.; Mitchell, S.J.

    1987-05-01

    Two-dimensional thermal-mechanical analyses of a hypothetical repository in tuff were performed using a boundary-element computer code, with the objective of investigating the relative stability of several waste emplacement panel access drifts. The drifts were assumed to be located within a central shaft pillar, within a small pillar between adjacent panels, or at the repository perimeter. The results of analyses indicate that matrix failure is unlikely and that the extent of activation of pre-existing joints is influenced by the drift location and the initial state of stress. The results also show that several years after waste emplacement the influence of the initial State of Stress is small compared to the influence of thermally induced stresses. Regions of joint activation are seen to be most extensive around the drifts between adjacent panels. The predicted extent of such activation was small when it was assumed that the joints were vertical or near vertical. More extensive regions of activation of shallow dipping joints were noted. However, joints of such orientation are believed to occur relatively infrequently in the candidate horizon for waste emplacement and the activation of the shallow dipping joints does not necessarily lead to drift stability concerns. 3 refs., 24 figs., 7 tabs

  13. Role of the current density profile on drift wave stability in internal transport barrier reversed magnetic shear experiments at JET and Tore Supra

    Energy Technology Data Exchange (ETDEWEB)

    Fourment, C; Hoang, G T; Eriksson, L-G; Garbet, X; Litaudon, X; Tresset, G [EURATOM-CEA Association, CEA/DSM/DRFC, CEA Cadarache, 13108 St Paul-lez-Durance (France)

    2003-03-01

    The role of the current density profile on drift wave stability is investigated using a linear electrostatic gyro-kinetic code. The growth rates are shown to have a linear dependence on the normalized temperature gradients above a certain threshold. A parametric study of the threshold shows a dramatic stabilizing effect of negative magnetic shear, especially for large scale instabilities. A set of handy formulae fitting the threshold as a function of the magnetic shear and the safety factor is proposed. Analysis of reversed magnetic shear discharges with internal transport barrier (ITB) in JET shows that ion ITBs can be triggered by the negative magnetic shear in the core of the plasma. Subsequently, the increase of the ExB shearing rate allows for the expansion of the ITB, despite the increase of the linear growth rates due to the temperature gradient peaking. In the case of the electron ITB obtained in the Tore Supra LHEP mode, the central increase of the confinement is associated with the stabilization of large scale trapped electron modes by the negative magnetic shear effect, whereas the steep electron temperature gradient destabilizes the small scale electron temperature gradient modes, which prevent the electron heat transport to reach neoclassical levels.

  14. Cyber Deterrence and Stability

    Energy Technology Data Exchange (ETDEWEB)

    Goychayev, Rustam [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Carr, Geoffrey A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Weise, Rachel A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Donnelly, David A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Clements, Samuel L. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Benz, Jacob M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Rodda, Kabrena E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Bartholomew, Rachel A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); McKinnon, Archibald D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Andres, Richard B. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2017-09-30

    Throughout the 20th and early 21st centuries, deterrence and arms control have been cornerstones of strategic stability between the superpowers. However, the weaponization of the cyber realm by State actors and the multipolar nature of cyber conflict now undermines that stability. Strategic stability is the state in which nations believe that if they act aggressively to undermine U.S. national interests and the post-World War II liberal democratic order, the consequences will outweigh the benefits. The sense of lawlessness and lack of consequences in the cyber realm embolden States to be more aggressive in taking actions that undermine stability. Accordingly, this paper examines 1) the role of deterrence and arms control in securing cyber stability, and 2) the limitations and challenges associated with these traditional national security paradigms as applied to this emerging threat domain. This paper demonstrates that many 20th-century deterrence and arms control concepts are not particularly applicable in the cyber realm. However, they are not entirely irrelevant. The United States can distill lessons learned from this rich deterrence and arms control experience to develop and deploy a strategy to advance cyber stability.

  15. Experiments at the Aespoe Hard Rock Laboratory

    International Nuclear Information System (INIS)

    2004-12-01

    A dress rehearsal is being held in preparation for the construction of a deep repository for spent nuclear fuel at SKB's underground Hard Rock Laboratory (HRL) on Aespoe, outside Oskarshamn. Here we can test different technical solutions on a full scale and in a realistic environment. The Aespoe HRL is also used for field research. We are conducting a number of experiments here in collaboration with Swedish and international experts. In the Zedex experiment we have compared how the rock is affected around a drill-and-blast tunnel versus a bored tunnel. In a new experiment we will investigate how much the rock can take. A narrow pillar between two boreholes will be loaded to the point that the rock's ultimate strength is exceeded (Aespoe Pillar Stability Experiment). In the Demo Test we are demonstrating emplacement of the copper canisters and the surrounding bentonite in the deposition holes. In the Prototype Repository we study what long-term changes occur in the barriers under the conditions prevailing in a deep repository. Horizontal deposition: Is it possible to deposit the canisters horizontally without compromising safety? Backfill and Plug Test: The tunnels in the future deep repository for spent nuclear fuel will be filled with clay and crushed rock and then plugged. Canister Retrieval Test: If the deep repository should not perform satisfactorily for some reason, we want to be able to retrieve the spent fuel. The Lot test is intended to show how the bentonite behaves in an environment similar to that in the future deep repository. The purpose of the TBT test is to determine how the bentonite clay in the buffer is affected by high temperatures. Two-phase flow means that liberated gas in the groundwater flows separately in the fractures in the rock. This reduces the capacity of the rock to conduct water. Lasgit: By pressurizing a canister with helium, we can measure how the gas moves through the surrounding buffer. Colloid Project: Can very small particles

  16. Review of subsidence and stabilization techniques

    International Nuclear Information System (INIS)

    Fernando, D.A.

    1988-01-01

    In Britain the damage caused by underground coal mining operations approximates to about 100 million pounds Sterling per annum, most of the damage resulting from longwall mining operations. Causes of subsidence can be attributed to the following factors: (1) roof failure (2) pillar failure (3) floor movements. Currently, in Britain, the mining industry is undergoing a state of decline for economic reasons. Consequently, the number of old coal sites available for development schemes has increased. Therefore, the problems associated with subsidence can be segregated into two parts. The first being the mitigation of the effects of subsidence on structures on actively mined areas. The second being the stabilization and rehabilitation of ground over and around old mine sites for new development schemes. In the former case the stabilization techniques employed may be local or global, depending on the problems encountered in any particular area. In the latter case, generally, grouting techniques are employed. This paper aims to review the causes of subsidence and the techniques used to minimize its effect on structures. Also, more economic alternative methods of ground stabilization techniques are described and proposed, to be used in this area of ground engineering

  17. Diameter dependence of emission power in MgO-based nano-pillar spin-torque oscillators

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Bochong; Kubota, Hitoshi, E-mail: hit-kubota@aist.go.jp; Yakushiji, Kay; Tamaru, Shingo; Arai, Hiroko; Imamura, Hiroshi; Fukushima, Akio; Yuasa, Shinji [Spintronics Research Center, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8568 (Japan)

    2016-06-20

    The dependence on diameter of the emission power in MgO-based nano-pillar spin torque oscillators (STOs) was systematically investigated. A maximum emission power of over 2.5 μW was obtained around 300 nm in diameter, which is the largest reported to date among the out-of-plane precession STOs. By analyzing physical quantities, precession cone angle of the free-layer magnetization was evaluated. In the diameter range below 300 nm, the increase in power was mainly due to the increase of the injected current. The power decrease above 300 nm is possibly attributed to the decrease in the averaged precession cone angle, suggesting spatial phase difference of magnetization precession. This study provides the method for estimating the optimum STO diameter, which is of great importance in practical use.

  18. Risk analysis of the proxy life-cycle investments in the second pillar pension scheme in Croatia

    Directory of Open Access Journals (Sweden)

    Renata Kovačević

    2015-03-01

    Full Text Available In this article we analyze the expected risk of pension funds with different risk profiles in the proxy life-cycle model of investments for the 2nd pillar pension scheme in Croatia. The benefits of implementing proxy life-cycle investments, compared to the previous model of mandatory pension funds investments, are clearly visible in the total expected amount of accumulated savings from the risk/return perspective. However, those benefits are partially diminished by the fact that the expected risk of a pension fund with the lowest risk profile is not substantially different from the expected risk of a pension fund with a medium risk profile, due to the lack of diversification. Additionally, we analyze the robustness of the proxy life-cycle model to a sudden and severe market shock, where we determine the presence of risk for those members who choose to switch to a pension fund with a lower risk profile at an unfavorable moment.

  19. SERS activity of Au nanoparticles coated on an array of carbon nanotube nested into silicon nanoporous pillar

    International Nuclear Information System (INIS)

    Jiang Weifen; Zhang Yanfeng; Wang Yusheng; Xu Lei; Li Xinjian

    2011-01-01

    A novel composite structure, Au nanoparticles coated on a nest-shaped array of carbon nanotube nested into a silicon nanoporous pillar array (Au/NACNT/Si-NPA), was fabricated for surface-enhanced Raman scattering (SERS). The morphology of the Au/NACNT/Si-NPA composite structure was characterized with the aid of scanning electron microscopy, X-ray diffraction instrumentation and Transmission electron microscopy. Compared with SERS of rhodamine 6G (R6G) adsorbed on SERS-active Au substrate reported, the SERS signals of R6G adsorbed on these gold nanoparticles were obviously improved. This was attributed to the enlarged specific surface area for adsorption of target molecules brought by the nest-shaped CNTs structure.

  20. Preparation, characterization and application in deep catalytic ODS of the mesoporous silica pillared clay incorporated with phosphotungstic acid.

    Science.gov (United States)

    Li, Baoshan; Liu, Zhenxing; Liu, Jianjun; Zhou, Zhiyuan; Gao, Xiaohui; Pang, Xinmei; Sheng, Huiting

    2011-10-15

    Mesoporous silica pillared clay (SPC) materials with different contents of H(3)PW(12)O(40) (HPW) heteropoly acid were synthesized by introducing HPW into clay interlayer template in an acidic suspension using sol-gel method. Samples with similar HPW loadings were also prepared by impregnation method using SPC as the support. The results of the characterizations showed that HPW was dispersed more homogeneously in the encapsulated samples than in the impregnated samples. The encapsulated materials exhibited better catalytic performance than the impregnated samples in oxidative desulfurization of dibenzothiophene-containing model oil. The sulfur removal reached up to 98.6% for the model oil under the experiential conditions. Copyright © 2011 Elsevier Inc. All rights reserved.