WorldWideScience

Sample records for pili promote epithelial

  1. Highly conserved type 1 pili promote enterotoxigenic E. coli pathogen-host interactions.

    Directory of Open Access Journals (Sweden)

    Alaullah Sheikh

    2017-05-01

    Full Text Available Enterotoxigenic Escherichia coli (ETEC, defined by their elaboration of heat-labile (LT and/or heat-stable (ST enterotoxins, are a common cause of diarrheal illness in developing countries. Efficient delivery of these toxins requires ETEC to engage target host enterocytes. This engagement is accomplished using a variety of pathovar-specific and conserved E. coli adhesin molecules as well as plasmid encoded colonization factors. Some of these adhesins undergo significant transcriptional modulation as ETEC encounter intestinal epithelia, perhaps suggesting that they cooperatively facilitate interaction with the host. Among genes significantly upregulated on cell contact are those encoding type 1 pili. We therefore investigated the role played by these pili in facilitating ETEC adhesion, and toxin delivery to model intestinal epithelia. We demonstrate that type 1 pili, encoded in the E. coli core genome, play an essential role in ETEC virulence, acting in concert with plasmid-encoded pathovar specific colonization factor (CF fimbriae to promote optimal bacterial adhesion to cultured intestinal epithelium (CIE and to epithelial monolayers differentiated from human small intestinal stem cells. Type 1 pili are tipped with the FimH adhesin which recognizes mannose with stereochemical specificity. Thus, enhanced production of highly mannosylated proteins on intestinal epithelia promoted FimH-mediated ETEC adhesion, while conversely, interruption of FimH lectin-epithelial interactions with soluble mannose, anti-FimH antibodies or mutagenesis of fimH effectively blocked ETEC adhesion. Moreover, fimH mutants were significantly impaired in delivery of both heat-stable and heat-labile toxins to the target epithelial cells in vitro, and these mutants were substantially less virulent in rabbit ileal loop assays, a classical model of ETEC pathogenesis. Collectively, our data suggest that these highly conserved pili play an essential role in virulence of these

  2. Functional Analysis of Lactobacillus rhamnosus GG Pili in Relation to Adhesion and Immunomodulatory Interactions with Intestinal Epithelial Cells

    Science.gov (United States)

    Claes, Ingmar; Tytgat, Hanne L. P.; Verhoeven, Tine L. A.; Marien, Eyra; von Ossowski, Ingemar; Reunanen, Justus; Palva, Airi; de Vos, Willem M.; De Keersmaecker, Sigrid C. J.; Vanderleyden, Jos

    2012-01-01

    Lactobacillus rhamnosus GG, a probiotic with good survival capacity in the human gut, has well-documented adhesion properties and health effects. Recently, spaCBA-encoded pili that bind to human intestinal mucus were identified on its cell surface. Here, we report on the phenotypic analysis of a spaCBA pilus knockout mutant in comparison with the wild type and other adhesin mutants. The SpaCBA pilus of L. rhamnosus GG showed to be key for efficient adherence to the Caco-2 intestinal epithelial cell (IEC) line and biofilm formation. Moreover, the spaCBA mutant induces an elevated level of interleukin-8 (IL-8) mRNA in Caco-2 cells compared to the wild type, possibly involving an interaction of lipoteichoic acid with Toll-like receptor 2. In contrast, an L. rhamnosus GG mutant without exopolysaccharides but with an increased exposure of pili leads to the reduced expression of IL-8. Using Transwells to partition bacteria from Caco-2 cells, IL-8 induction is blocked completely regardless of whether wild-type or mutant L. rhamnosus GG cells are used. Taken together, our data suggest that L. rhamnosus GG SpaCBA pili, while promoting strong adhesive interactions with IECs, have a functional role in balancing IL-8 mRNA expression induced by surface molecules such as lipoteichoic acid. PMID:22020518

  3. Functional analysis of Lactobacillus rhamnosus GG pili in relation to adhesion and immunomodulatory interactions with intestinal epithelial cells.

    Science.gov (United States)

    Lebeer, Sarah; Claes, Ingmar; Tytgat, Hanne L P; Verhoeven, Tine L A; Marien, Eyra; von Ossowski, Ingemar; Reunanen, Justus; Palva, Airi; Vos, Willem M de; Keersmaecker, Sigrid C J De; Vanderleyden, Jos

    2012-01-01

    Lactobacillus rhamnosus GG, a probiotic with good survival capacity in the human gut, has well-documented adhesion properties and health effects. Recently, spaCBA-encoded pili that bind to human intestinal mucus were identified on its cell surface. Here, we report on the phenotypic analysis of a spaCBA pilus knockout mutant in comparison with the wild type and other adhesin mutants. The SpaCBA pilus of L. rhamnosus GG showed to be key for efficient adherence to the Caco-2 intestinal epithelial cell (IEC) line and biofilm formation. Moreover, the spaCBA mutant induces an elevated level of interleukin-8 (IL-8) mRNA in Caco-2 cells compared to the wild type, possibly involving an interaction of lipoteichoic acid with Toll-like receptor 2. In contrast, an L. rhamnosus GG mutant without exopolysaccharides but with an increased exposure of pili leads to the reduced expression of IL-8. Using Transwells to partition bacteria from Caco-2 cells, IL-8 induction is blocked completely regardless of whether wild-type or mutant L. rhamnosus GG cells are used. Taken together, our data suggest that L. rhamnosus GG SpaCBA pili, while promoting strong adhesive interactions with IECs, have a functional role in balancing IL-8 mRNA expression induced by surface molecules such as lipoteichoic acid.

  4. Kingella kingae expresses type IV pili that mediate adherence to respiratory epithelial and synovial cells.

    Science.gov (United States)

    Kehl-Fie, Thomas E; Miller, Sara E; St Geme, Joseph W

    2008-11-01

    Kingella kingae is a gram-negative bacterium that colonizes the respiratory tract and is a common cause of septic arthritis and osteomyelitis. Despite the increasing frequency of K. kingae disease, little is known about the mechanism by which this organism adheres to respiratory epithelium and seeds joints and bones. Previous work showed that K. kingae expresses long surface fibers that vary in surface density. In the current study, we found that these fibers are type IV pili and are necessary for efficient adherence to respiratory epithelial and synovial cells and that the number of pili expressed by the bacterium correlates with the level of adherence to synovial cells but not with the level of adherence to respiratory cells. In addition, we established that the major pilin subunit is encoded by a pilA homolog in a conserved region of the chromosome that also contains a second pilin gene and a type IV pilus accessory gene, both of which are dispensable for pilus assembly and pilus-mediated adherence. Upon examination of the K. kingae genome, we identified two genes in physically separate locations on the chromosome that encode homologs of the Neisseria PilC proteins and that have only a low level homology to each other. Examination of mutant strains revealed that both of the K. kingae PilC homologs are essential for a wild-type level of adherence to both respiratory epithelial and synovial cells. Taken together, these results demonstrate that type IV pili and the two PilC homologs play important roles in mediating K. kingae adherence.

  5. Kingella kingae Expresses Type IV Pili That Mediate Adherence to Respiratory Epithelial and Synovial Cells▿

    Science.gov (United States)

    Kehl-Fie, Thomas E.; Miller, Sara E.; St. Geme, Joseph W.

    2008-01-01

    Kingella kingae is a gram-negative bacterium that colonizes the respiratory tract and is a common cause of septic arthritis and osteomyelitis. Despite the increasing frequency of K. kingae disease, little is known about the mechanism by which this organism adheres to respiratory epithelium and seeds joints and bones. Previous work showed that K. kingae expresses long surface fibers that vary in surface density. In the current study, we found that these fibers are type IV pili and are necessary for efficient adherence to respiratory epithelial and synovial cells and that the number of pili expressed by the bacterium correlates with the level of adherence to synovial cells but not with the level of adherence to respiratory cells. In addition, we established that the major pilin subunit is encoded by a pilA homolog in a conserved region of the chromosome that also contains a second pilin gene and a type IV pilus accessory gene, both of which are dispensable for pilus assembly and pilus-mediated adherence. Upon examination of the K. kingae genome, we identified two genes in physically separate locations on the chromosome that encode homologs of the Neisseria PilC proteins and that have only a low level homology to each other. Examination of mutant strains revealed that both of the K. kingae PilC homologs are essential for a wild-type level of adherence to both respiratory epithelial and synovial cells. Taken together, these results demonstrate that type IV pili and the two PilC homologs play important roles in mediating K. kingae adherence. PMID:18757541

  6. Functional Analysis of Lactobacillus rhamnosus GG Pili in Relation to Adhesion and Immunomodulatory Interactions with Intestinal Epithelial Cells

    NARCIS (Netherlands)

    Lebeer, S.; Claes, I.J.; Tytgat, H.L.P.; Verhoeven, T.L.A.; Marien, E.; Ossowski, von I.; Reunanen, J.; Palva, A.; Vos, de W.M.; Keersmaecker, de S.C.; Vanderleyden, J.

    2012-01-01

    Lactobacillus rhamnosus GG, a probiotic with good survival capacity in the human gut, has well-documented adhesion properties and health effects. Recently, spaCBA-encoded pili that bind to human intestinal mucus were identified on its cell surface. Here, we report on the phenotypic analysis of a

  7. Functional Analysis of Lactobacillus rhamnosus GG Pili in Relation to Adhesion and Immunomodulatory Interactions with Intestinal Epithelial Cells

    NARCIS (Netherlands)

    Lebeer, S.; Claes, I.J.; Tytgat, H.L.P.; Verhoeven, T.L.A.; Marien, E.; Ossowski, von I.; Reunanen, J.; Palva, A.; Vos, de W.M.; Keersmaecker, de S.C.; Vanderleyden, J.

    2012-01-01

    Lactobacillus rhamnosus GG, a probiotic with good survival capacity in the human gut, has well-documented adhesion properties and health effects. Recently, spaCBA-encoded pili that bind to human intestinal mucus were identified on its cell surface. Here, we report on the phenotypic analysis of a spa

  8. Type IV(B) pili are required for invasion but not for adhesion of Salmonella enterica serovar Typhi into BHK epithelial cells in a cystic fibrosis transmembrane conductance regulator-independent manner.

    Science.gov (United States)

    Bravo, Denisse; Blondel, Carlos J; Hoare, Anilei; Leyton, Lisette; Valvano, Miguel A; Contreras, Inés

    2011-11-01

    The cystic fibrosis transmembrane conductance regulator (CFTR) has been proposed as an epithelial cell receptor for the entry of Salmonella Typhi but not Salmonella Typhimurium. The bacterial ligand recognized by CFTR is thought to reside either in the S. Typhi lipopolysaccharide core region or in the type IV pili. Here, we assessed the ability of virulent strains of S. Typhi and S. Typhimurium to adhere to and invade BHK epithelial cells expressing either the wild-type CFTR protein or the ∆F508 CFTR mutant. Both S. Typhi and S. Typhimurium invaded the epithelial cells in a CFTR-independent fashion. Furthermore and also in a CFTR-independent manner, a S. Typhi pilS mutant adhered normally to BHK cells but displayed a 50% reduction in invasion as compared to wild-type bacteria. Immunofluorescence microscopy revealed that bacteria and CFTR do not colocalize at the epithelial cell surface. Together, our results strongly argue against the established dogma that CFTR is a receptor for entry of Salmonella to epithelial cells.

  9. Probiotics promote gut health through stimulation of epithelial innate immunity.

    Science.gov (United States)

    Pagnini, Cristiano; Saeed, Rubina; Bamias, Giorgos; Arseneau, Kristen O; Pizarro, Theresa T; Cominelli, Fabio

    2010-01-05

    Probiotic formulations are widely available and have a variety of proposed beneficial effects, including promotion of gut health. The mechanisms of action of probiotic bacteria in the intestine are still unclear but are generally attributed to an antiinflammatory effect. Here, we demonstrate that the multiple probiotic formulation VSL#3 prevents the onset of intestinal inflammation by local stimulation of epithelial innate immune responses (i.e., increased production of epithelial-derived TNF-alpha and restoration of epithelial barrier function in vivo). We also demonstrate that probiotic bacteria stimulate epithelial production of TNF-alpha and activate NF-kappaB in vitro. Our results support the hypothesis that probiotics promote gut health through stimulation, rather than suppression, of the innate immune system. Furthermore, our findings provide the perspective that defects in innate immunity may play a critical role in the pathogenesis and progression of intestinal disorders, such as inflammatory bowel disease.

  10. Enteropathogenic Escherichia coli (EPEC) adhesion to intestinal epithelial cells: role of bundle-forming pili (BFP), EspA filaments and intimin.

    Science.gov (United States)

    Cleary, Jennifer; Lai, Li-Ching; Shaw, Robert K; Straatman-Iwanowska, Anna; Donnenberg, Michael S; Frankel, Gad; Knutton, Stuart

    2004-03-01

    Enteropathogenic Escherichia coli (EPEC), an important paediatric diarrhoeal pathogen, employs multiple adhesins to colonize the small bowel and produces characteristic 'attaching and effacing' (A/E) lesions on small intestinal enterocytes. EPEC adhesins that have been associated with A/E adhesion and intestinal colonization include bundle-forming pili (BFP), EspA filaments and intimin. BFP are involved in bacteria-bacteria interaction and microcolony formation but their role in cell adhesion remains unclear; EspA filaments are components of the EPEC type III secretion system but since they interact directly with host cells they may also function as adhesins; intimin is the well characterized intimate EPEC adhesin which binds the translocated intimin receptor, Tir. However, other uncharacterized host cell receptors have been implicated in intimin-mediated adhesion. In this study, the role of BFP, EspA filaments and intimin in EPEC adhesion to intestinal brush border cells was assessed by observing adhesion of wild-type EPEC strain E2348/69 and a set of isogenic single, double and triple mutants in bfpA, espA and eae (intimin gene) to differentiated human intestinal Caco-2 cells. E2348/69 (bfpA(+) espA(+) eae(+)) adhered rapidly (border of Caco-2 cells and subsequently produced microcolonies and typical A/E lesions. Non-intimate brush border adhesion of double mutant strain UMD880 (bfpA(+) espA(-) eae(-)) also occurred rapidly, whereas adhesion of strain UMD886 (bfpA(-) espA(+) eae(-)) occurred later in the infection (>1 h) and with much lower efficiency; confocal microscopy indicated BFP and EspA-mediated adhesion, respectively. Strain UMD883 (bfpA(-) espA(-) eae(+)), which is unable to translocate Tir, was non-adherent although this strain was able to form intimate attachment and A/E lesions when co-cultured with strain CVD206 (bfpA(+) espA(+) eae(-)) which supplied Tir to the membrane. Single mutant strains CVD206 (bfpA(+) espA(+) eae(-)) and UMD872 (bfpA(+) esp

  11. Q pili enhance the attachment of Moraxella bovis to bovine corneas in vitro.

    Science.gov (United States)

    Ruehl, W W; Marrs, C; Beard, M K; Shokooki, V; Hinojoza, J R; Banks, S; Bieber, D; Mattick, J S

    1993-01-01

    Moraxella bovis, the causative agent of infectious bovine keratoconjunctivitis, exhibits several virulence factors, including pili, haemolysin, leukotoxin, and proteases. The pili are filamentous appendages which mediate bacterial adherence. Prior studies have shown that Q-piliated M. bovis Epp63 are more infectious and more pathogenic than I-piliated and non-piliated isogenic variants, suggesting that Q pili per se, or traits associated with Q-pilin expression, promote the early association of Q-piliated bacteria with bovine corneal tissue. In order to better evaluate the role of Q pili in M. bovis attachment, several M. bovis strains and a recombinant P. aeruginosa strain which elaborates M. bovis Q pili but not P. aeruginosa PAK pili, were evaluated using an in vitro corneal attachment assay. For each strain tested, piliated organisms attached better than non-piliated bacteria. M. bovis Epp63 Q-piliated bacteria adhered better than either the I-piliated or non-piliated isogenic variants. Finally, recombinant P. aeruginosa organisms elaborating M. bovis Q pili adhered better than the parent P. aeruginosa strain which did not produce M. bovis pili. These results indicate that the presence of pili, especially Q pili, enhances the attachment of bacteria to bovine cornea in vitro.

  12. Probiotics promote endocytic allergen degradation in gut epithelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Song, Chun-Hua [Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou (China); Liu, Zhi-Qiang [Department of Gastroenterology, The Second Hospital, Zhengzhou University, Zhengzhou (China); Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON (Canada); Huang, Shelly [Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON (Canada); Zheng, Peng-Yuan, E-mail: medp7123@126.com [Department of Gastroenterology, The Second Hospital, Zhengzhou University, Zhengzhou (China); Yang, Ping-Chang, E-mail: yangp@mcmaster.ca [Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON (Canada)

    2012-09-14

    Highlights: Black-Right-Pointing-Pointer Knockdown of A20 compromised the epithelial barrier function. Black-Right-Pointing-Pointer The fusion of endosome/lysosome was disturbed in the A20-deficient HT-29 cells. Black-Right-Pointing-Pointer Antigens transported across A20-deficient HT-29 monolayers conserved antigenicity. Black-Right-Pointing-Pointer Probiotic proteins increased the expression of A20 in HT-29 cells. -- Abstract: Background and aims: Epithelial barrier dysfunction plays a critical role in the pathogenesis of allergic diseases; the mechanism is to be further understood. The ubiquitin E3 ligase A20 (A20) plays a role in the endocytic protein degradation in the cells. This study aims to elucidate the role of A20 in the maintenance of gut epithelial barrier function. Methods: Gut epithelial cell line, HT-29 cell, was cultured into monolayers to evaluate the barrier function in transwells. RNA interference was employed to knock down the A20 gene in HT-29 cells to test the role of A20 in the maintenance of epithelial barrier function. Probiotic derived proteins were extracted from the culture supernatants using to enhance the expression of A20 in HT-29 cells. Results: The results showed that the knockdown of A20 compromised the epithelial barrier function in HT-29 monolayers, mainly increased the intracellular permeability. The fusion of endosome/lysosome was disturbed in the A20-deficient HT-29 cells. Allergens collected from the transwell basal chambers of A20-deficient HT-29 monolayers still conserved functional antigenicity. Treating with probiotic derived proteins increased the expression of A20 in HT-29 cells and promote the barrier function. Conclusion: A20 plays an important role in the maintenance of epithelial barrier function as shown by HT-29 monolayer. Probiotic derived protein increases the expression of A20 and promote the HT-29 monolayer barrier function.

  13. Dynamics of gonococcal type IV pili during infection.

    Science.gov (United States)

    Opitz, Dirk; Clausen, Martin; Maier, Berenike

    2009-07-13

    Type IV pili are important bacterial virulence factors that mediate attachment to mammalian host cells and elicit downstream signals. When adhered to abiotic surfaces, the human pathogen Neisseria gonorrhoeae generates force by retracting these polymeric cell appendages. We recently found that single pili generate stalling forces that exceed 100 pN, but it is unclear whether bacteria generate force once they adhere to their human host cells. Here, we report that pili retract very actively during infection of human epithelial cells. The retraction velocity is bimodal and the high velocity mode persisted at higher forces in contrast to an abiotic environment. Bacteria generate considerable force during infection, but the maximum force is reduced from 120+/-40 pN on abiotic surfaces to 70+/-20 pN on epithelial cells, most likely due to elastic effects. Velocity and maximum force of pilus retraction are largely independent of the infection period within 1 h and 24 h post-infection. Thus, the force generated by type IV pili during infection is high enough to induce cytoskeletal rearrangements in the host cell.

  14. Archaeal type IV pili and their involvement in biofilm formation.

    Science.gov (United States)

    Pohlschroder, Mechthild; Esquivel, Rianne N

    2015-01-01

    Type IV pili are ancient proteinaceous structures present on the cell surface of species in nearly all bacterial and archaeal phyla. These filaments, which are required for a diverse array of important cellular processes, are assembled employing a conserved set of core components. While type IV pilins, the structural subunits of pili, share little sequence homology, their signal peptides are structurally conserved allowing for in silico prediction. Recently, in vivo studies in model archaea representing the euryarchaeal and crenarchaeal kingdoms confirmed that several of these pilins are incorporated into type IV adhesion pili. In addition to facilitating surface adhesion, these in vivo studies also showed that several predicted pilins are required for additional functions that are critical to biofilm formation. Examples include the subunits of Sulfolobus acidocaldarius Ups pili, which are induced by exposure to UV light and promote cell aggregation and conjugation, and a subset of the Haloferax volcanii adhesion pilins, which play a critical role in microcolony formation while other pilins inhibit this process. The recent discovery of novel pilin functions such as the ability of haloarchaeal adhesion pilins to regulate swimming motility may point to novel regulatory pathways conserved across prokaryotic domains. In this review, we will discuss recent advances in our understanding of the functional roles played by archaeal type IV adhesion pili and their subunits, with particular emphasis on their involvement in biofilm formation.

  15. Multibody simulation of adhesion pili

    CERN Document Server

    Zakrisson, Johan; Servin, Martin; Axner, Ove; Lacoursiere, Claude; Andersson, Magnus

    2014-01-01

    We present a coarse grained rigid multibody model of a subunit assembled helix-like polymer, e.g., adhesion pili expressed by bacteria, that is capable of describing the polymers force-extension response. With building blocks representing individual subunits the model appropriately describes the complex behavior of pili expressed by the gram-negative uropathogenic Escherichia coli bacteria under the action of an external force. Numerical simulations show that the dynamics of the model, which include both the effects of unwinding and rewinding, are in good quantitative agreement with the characteristic force-extension response as observed experimentally for type 1 and P pili. By tuning the model, it is also possible to reproduce the force-extension response in the presence of anti-shaft antibodies, which dramatically changes the mechanical properties. Thus, the model and the results in this work give enhanced understanding of how a pilus unwinds under action of external forces and provide new perspective of th...

  16. GSTP1 expression and promoter methylation in epithelial ovarian carcinoma

    Directory of Open Access Journals (Sweden)

    V Shilpa

    2014-01-01

    Full Text Available Context: GSTP1 is a subgroup of glutathione-S-transferase family, which provides cellular protection against free radical and carcinogenic compounds due to its detoxifying function. Altered GSTP1 activity due to down regulation of enzyme activity and DNA methylation has been reported in many tumors, although data for ovarian cancer are few. In this study, we aimed at determining the expression of GSTP1 in relation to the methylation of the GSTP1 promoter in epithelial ovarian cancer (EOC. Materials and Methods: GSTP1 mRNA expression and GSTP1 enzyme concentration were assessed by quantitative reverse transcriptase polymerase chain reaction (PCR and enzyme-linked immunosorbent assay, respectively, in 88 EOCs, 14 low malignant potential (LMP tumors, and 20 benign tumors. The promoter methylation of GSTP1 gene was evaluated by methylation-specific PCR. Results: Reduced GSTP1 mRNA expression was observed in 49% EOCs, 21.4% LMP, and 45% benign tumors. Significantly lower levels of plasma GSTP1 were observed in all tumor samples compared to normal. GSTP1 promoter methylation was detected in 10 (11.4% EOCs and 1 (7.3% LMP tumors. No methylation was observed in benign tumors and normal ovaries. Conclusions: Our results show that there is a significant down regulation of GSTP1 expression while hypermethylation of the GSTP1 gene promoter is not very frequent in EOC. Further studies are needed to study underlying mechanisms leading to decreased expression.

  17. Cholesteatoma fibroblasts promote epithelial cell proliferation through overexpression of epiregulin.

    Directory of Open Access Journals (Sweden)

    Mamoru Yoshikawa

    Full Text Available To investigate whether keratinocytes proliferate in response to epiregulin produced by subepithelial fibroblasts derived from middle ear cholesteatoma. Tissue samples were obtained from patients undergoing tympanoplasty. The quantitative polymerase chain reaction and immunohistochemistry were performed to examine epiregulin expression and localization in cholesteatoma tissues and retroauricular skin tissues. Fibroblasts were cultured from cholesteatoma tissues and from normal retroauricular skin. These fibroblasts were used as feeder cells for culture with a human keratinocyte cell line (PHK16-0b. To investigate the role of epiregulin in colony formation by PHK16-0b cells, epiregulin mRNA expression was knocked down in fibroblasts by using short interfering RNA and epiregulin protein was blocked with a neutralizing antibody. Epiregulin mRNA expression was significantly elevated in cholesteatoma tissues compared with that in normal retroauricular skin. Staining for epiregulin was more intense in the epithelial cells and subepithelial fibroblasts of cholesteatoma tissues than in retroauricular skin. When PHK16-0b cells were cultured with cholesteatoma fibroblasts, their colony-forming efficiency was 50% higher than when these cells were cultured with normal skin fibroblasts. Also, knockdown of epiregulin mRNA in cholesteatoma fibroblasts led to greater suppression of colony formation than knockdown in skin fibroblasts. Furthermore, the colony-forming efficiency of PHK16-0b cells was significantly reduced after treatment with an epiregulin neutralizing antibody in co-culture with cholesteatoma fibroblasts, but not in co-culture with skin fibroblasts. These results suggest that keratinocyte hyperproliferation in cholesteatoma is promoted through overexpression of epiregulin by subepithelial fibroblasts via epithelial-mesenchymal interactions, which may play a crucial role in the pathogenesis of middle ear cholesteatoma.

  18. Archaeal type IV pili and their involvement in biofilm formation

    Directory of Open Access Journals (Sweden)

    Rianne eEsquivel

    2015-03-01

    Full Text Available Type IV pili are ancient proteinaceous structures present on the cell surface of species in nearly all bacterial and archaeal phyla. These filaments are involved in a diverse array of critical cellular processes. While the core components of the pilus biosynthesis machinery are highly conserved, type IV pilins, the structural subunits of pili, share little sequence homology. However, the conserved structure of the signal peptides of these pilus subunits has allowed the development of prediction programs that accurately detect the processing sites recognized by bacterial and archaeal prepilin peptidases. Using these programs, the genomes of organisms from both prokaryotic domains have been shown to encode a diverse set of putative type IV pilins. Recently, in vivo studies in model archaea representing the euryarchaeal and crenarchaeal kingdoms confirmed that several of these pilins are incorporated into type IV adhesion pili. In addition to facilitating surface adhesion, these in vivo studies also showed that several predicted pilins are required for additional functions that are critical to biofilm formation. Examples include the subunits of Sulfolobus acidocaldarius Ups pili, which are induced by exposure to UV light and promote cell aggregation and conjugation, and a subset of the Haloferax volcanii adhesion pilins, which play a critical role in microcolony formation while other pilins inhibit this process. The recent discovery of novel pilin functions such as the ability of haloarchaeal adhesion pilins to regulate swimming motility rather than being unique to organisms that inhabit high salt environments may point to novel prokaryotic regulatory pathways. In this review, we will discuss recent advances in our understanding of the functional roles played by archaeal type IV adhesion pili and their subunits, with particular emphasis on their involvement in biofilm formation.

  19. Strain-specific differences in pili formation and the interaction of Corynebacterium diphtheriae with host cells

    Directory of Open Access Journals (Sweden)

    Hensel Michael

    2010-10-01

    Full Text Available Abstract Background Corynebacterium diphtheriae, the causative agent of diphtheria, is well-investigated in respect to toxin production, while little is known about C. diphtheriae factors crucial for colonization of the host. In this study, we investigated strain-specific differences in adhesion, invasion and intracellular survival and analyzed formation of pili in different isolates. Results Adhesion of different C. diphtheriae strains to epithelial cells and invasion of these cells are not strictly coupled processes. Using ultrastructure analyses by atomic force microscopy, significant differences in macromolecular surface structures were found between the investigated C. diphtheriae strains in respect to number and length of pili. Interestingly, adhesion and pili formation are not coupled processes and also no correlation between invasion and pili formation was found. Using RNA hybridization and Western blotting experiments, strain-specific pili expression patterns were observed. None of the studied C. diphtheriae strains had a dramatic detrimental effect on host cell viability as indicated by measurements of transepithelial resistance of Detroit 562 cell monolayers and fluorescence microscopy, leading to the assumption that C. diphtheriae strains might use epithelial cells as an environmental niche supplying protection against antibodies and macrophages. Conclusions The results obtained suggest that it is necessary to investigate various isolates on a molecular level to understand and to predict the colonization process of different C. diphtheriae strains.

  20. Piliation of Lactobacillus rhamnosus GG Promotes Adhesion, Phagocytosis, and Cytokine Modulation in Macrophages

    Science.gov (United States)

    Vargas García, Cynthia E.; Petrova, Mariya; Claes, Ingmar J. J.; De Boeck, Ilke; Verhoeven, Tine L. A.; Dilissen, Ellen; von Ossowski, Ingemar; Palva, Airi; Bullens, Dominique M.; Vanderleyden, Jos

    2015-01-01

    Recently, spaCBA-encoded pili on the cell surface of Lactobacillus rhamnosus GG were identified to be key molecules for binding to human intestinal mucus and Caco-2 intestinal epithelial cells. Here, we investigated the role of the SpaCBA pilus of L. rhamnosus GG in the interaction with macrophages in vitro by comparing the wild type with surface mutants. Our results show that SpaCBA pili play a significant role in the capacity for adhesion to macrophages and also promote bacterial uptake by these phagocytic cells. Interestingly, our data suggest that SpaCBA pili also mediate anti-inflammatory effects by induction of interleukin-10 (IL-10) mRNA and reduction of interleukin-6 (IL-6) mRNA in a murine RAW 264.7 macrophage cell line. These pili appear to mediate these effects indirectly by promoting close contact with the macrophages, facilitating the exertion of anti-inflammatory effects by other surface molecules via yet unknown mechanisms. Blockage of complement receptor 3 (CR3), previously identified to be a receptor for streptococcal pili, significantly decreased the uptake of pilus-expressing strains in RAW 264.7 cells, while the expression of IL-10 and IL-6 mRNA by these macrophages was not affected by this blocking. On the other hand, blockage of Toll-like receptor 2 (TLR2) significantly reduced the expression of IL-6 mRNA irrespective of the presence of pili. PMID:25576613

  1. Piliation of Lactobacillus rhamnosus GG promotes adhesion, phagocytosis, and cytokine modulation in macrophages.

    Science.gov (United States)

    Vargas García, Cynthia E; Petrova, Mariya; Claes, Ingmar J J; De Boeck, Ilke; Verhoeven, Tine L A; Dilissen, Ellen; von Ossowski, Ingemar; Palva, Airi; Bullens, Dominique M; Vanderleyden, Jos; Lebeer, Sarah

    2015-03-01

    Recently, spaCBA-encoded pili on the cell surface of Lactobacillus rhamnosus GG were identified to be key molecules for binding to human intestinal mucus and Caco-2 intestinal epithelial cells. Here, we investigated the role of the SpaCBA pilus of L. rhamnosus GG in the interaction with macrophages in vitro by comparing the wild type with surface mutants. Our results show that SpaCBA pili play a significant role in the capacity for adhesion to macrophages and also promote bacterial uptake by these phagocytic cells. Interestingly, our data suggest that SpaCBA pili also mediate anti-inflammatory effects by induction of interleukin-10 (IL-10) mRNA and reduction of interleukin-6 (IL-6) mRNA in a murine RAW 264.7 macrophage cell line. These pili appear to mediate these effects indirectly by promoting close contact with the macrophages, facilitating the exertion of anti-inflammatory effects by other surface molecules via yet unknown mechanisms. Blockage of complement receptor 3 (CR3), previously identified to be a receptor for streptococcal pili, significantly decreased the uptake of pilus-expressing strains in RAW 264.7 cells, while the expression of IL-10 and IL-6 mRNA by these macrophages was not affected by this blocking. On the other hand, blockage of Toll-like receptor 2 (TLR2) significantly reduced the expression of IL-6 mRNA irrespective of the presence of pili.

  2. Parathyroid hormone-related protein promotes epithelial-mesenchymal transition.

    Science.gov (United States)

    Ardura, Juan Antonio; Rayego-Mateos, Sandra; Rámila, David; Ruiz-Ortega, Marta; Esbrit, Pedro

    2010-02-01

    Epithelial-mesenchymal transition (EMT) is an important process that contributes to renal fibrogenesis. TGF-beta1 and EGF stimulate EMT. Recent studies suggested that parathyroid hormone-related protein (PTHrP) promotes fibrogenesis in the damaged kidney, apparently dependent on its interaction with vascular endothelial growth factor (VEGF), but whether it also interacts with TGF-beta and EGF to modulate EMT is unknown. Here, PTHrP(1-36) increased TGF-beta1 in cultured tubuloepithelial cells and TGF-beta blockade inhibited PTHrP-induced EMT-related changes, including upregulation of alpha-smooth muscle actin and integrin-linked kinase, nuclear translocation of Snail, and downregulation of E-cadherin and zonula occludens-1. PTHrP(1-36) also induced EGF receptor (EGFR) activation; inhibition of protein kinase C and metalloproteases abrogated this activation. Inhibition of EGFR activation abolished these EMT-related changes, the activation of ERK1/2, and upregulation of TGF-beta1 and VEGF by PTHrP(1-36). Moreover, inhibition of ERK1/2 blocked EMT induced by either PTHrP(1-36), TGF-beta1, EGF, or VEGF. In vivo, obstruction of mouse kidneys led to changes consistent with EMT and upregulation of TGF-beta1 mRNA, p-EGFR protein, and PTHrP. Taken together, these data suggest that PTHrP, TGF-beta, EGF, and VEGF might cooperate through activation of ERK1/2 to induce EMT in renal tubuloepithelial cells.

  3. Trefoil peptides promote restitution of wounded corneal epithelial cells.

    Science.gov (United States)

    Göke, M N; Cook, J R; Kunert, K S; Fini, M E; Gipson, I K; Podolsky, D K

    2001-04-01

    The ocular surface shares many characteristics with mucosal surfaces. In both, healing is regulated by peptide growth factors, cytokines, and extracellular matrix proteins. However, these factors are not sufficient to ensure most rapid healing. Trefoil peptides are abundantly expressed epithelial cell products which exert protective effects and are key regulators of gastrointestinal epithelial restitution, the critical early phase of cell migration after mucosal injury. To assess the role of trefoil peptides in corneal epithelial wound healing, the effects of intestinal trefoil factor (ITF/TFF3) and spasmolytic polypeptide (SP/TFF2) on migration and proliferation of corneal epithelial cells were analyzed. Both ITF and SP enhanced restitution of primary rabbit corneal epithelial cells in vitro. While the restitution-enhancing effects of TGF-alpha and TGF-beta were both inhibited by neutralizing anti-TGF-beta-antibodies, trefoil peptide stimulation of restitution was not. Neither trefoil peptide significantly affected proliferation of primary corneal epithelial cells. ITF but not SP or pS2 mRNA was present in rabbit corneal and conjunctival tissues. In summary, the data indicate an unanticipated role of trefoil peptides in healing of ocular surface and demand rating their functional actions beyond the gastrointestinal tract.

  4. Y-27632, a ROCK Inhibitor, Promoted Limbal Epithelial Cell Proliferation and Corneal Wound Healing.

    Directory of Open Access Journals (Sweden)

    Chi-Chin Sun

    Full Text Available Transplantation of ex vivo cultured limbal epithelial cells is proven effective in restoring limbal stem cell deficiency. The present study aimed to investigate the promoting effect of Y-27632 on limbal epithelial cell proliferation. Limbal explants isolated from human donor eyes were expanded three weeks on culture dishes and outgrowth of epithelial cells was subsequently subcultured for in vitro experiments. In the presence of Y-27632, the ex vivo limbal outgrowth was accelerated, particularly the cells with epithelial cell-like morphology. Y-27632 dose-dependently promoted the proliferation of in vitro cultured human limbal epithelial cells as examined by phase contrast microscopy and luminescent cell-viability assay 30 hours after the treatment. The colony forming efficacy determined 7 days after the treatment was enhanced by Y-27632 also in a dose-dependent manner. The number of p63- or Ki67-positive cells was dose-dependently increased in Y-27632-treated cultures as detected by immunofluorescent staining and western blotanalysis. Cell cycle analysis by flow cytometric method revealed an increase in S-phase proliferating cells. The epithelial woundclosure rate was shown to be faster in experimental group received topical treatment withY-27632 than the sham control using a rat corneal wounding model. These resultsdemonstrate that Y-27632 can promote both the ex vivo and in vitro proliferation oflimbal epithelial cell proliferation. The in vivo enhanced epithelial wound healingfurther implies that the Y-27632 may act as a new strategy for treating limbal stem cell deficiency.

  5. Rac promotes epithelial cell rearrangement during tracheal tubulogenesis in Drosophila.

    Science.gov (United States)

    Chihara, Takahiro; Kato, Kagayaki; Taniguchi, Misako; Ng, Julian; Hayashi, Shigeo

    2003-04-01

    Cell rearrangement, accompanied by the rapid assembly and disassembly of cadherin-mediated cell adhesions, plays essential roles in epithelial morphogenesis. Various in vitro and cell culture studies on the small GTPase Rac have suggested it to be a key regulator of cell adhesion, but this notion needs to be verified in the context of embryonic development. We used the tracheal system of Drosophila to investigate the function of Rac in the epithelial cell rearrangement, with a special attention to its role in regulating epithelial cadherin activity. We found that a reduced Rac activity led to an expansion of cell junctions in the embryonic epidermis and tracheal epithelia, which was accompanied by an increase in the amount of Drosophila E-Cadherin-Catenin complexes by a post-transcriptional mechanism. Reduced Rac activity inhibited dynamic epithelial cell rearrangement. Hyperactivation of Rac, on the other hand, inhibited assembly of newly synthesized E-Cadherin into cell junctions and caused loss of tracheal cell adhesion, resulting in cell detachment from the epithelia. Thus, in the context of Drosophila tracheal development, Rac activity must be maintained at a level necessary to balance the assembly and disassembly of E-Cadherin at cell junctions. Together with its role in cell motility, Rac regulates plasticity of cell adhesion and thus ensures smooth remodeling of epithelial sheets into tubules.

  6. The Virulence Regulator Rns Activates the Expression of CS14 Pili

    Directory of Open Access Journals (Sweden)

    Maria Del Rocio Bodero

    2016-12-01

    Full Text Available Although many viral and bacterial pathogens cause diarrhea, enterotoxigenic E. coli (ETEC is one of the most frequently encountered in impoverished regions where it is estimated to kill between 300,000 and 700,000 children and infants annually. Critical ETEC virulence factors include pili which mediate the attachment of the pathogen to receptors in the intestinal lumen. In this study we show that the ETEC virulence regulator Rns positively regulates the expression of CS14 pili. Three Rns binding sites were identified upstream of the CS14 pilus promoter centered at −34.5, −80.5, and −155.5 relative to the Rns-dependent transcription start site. Mutagenesis of the promoter proximal site significantly decreased expression from the CS14 promoter. In contrast, the contribution of Rns bound at the promoter distal site was negligible and largely masked by occupancy of the promoter proximal site. Unexpectedly, Rns bound at the site centered at −80.5 had a slight but statistically significant inhibitory effect upon the pilin promoter. Nevertheless, this weak inhibitory effect was not sufficient to overcome the substantial promoter activation from Rns bound to the promoter proximal site. Thus, CS14 pili belong to a group of pili that depend upon Rns for their expression.

  7. Rebamipide promotes healing of colonic ulceration through enhanced epithelial restitution.

    Science.gov (United States)

    Takagi, Tomohisa; Naito, Yuji; Uchiyama, Kazuhiko; Okuda, Toshimitsu; Mizushima, Katsura; Suzuki, Takahiro; Handa, Osamu; Ishikawa, Takeshi; Yagi, Nobuaki; Kokura, Satoshi; Ichikawa, Hiroshi; Yoshikawa, Toshikazu

    2011-09-07

    To investigate the efficacy of rebamipide in a rat model of colitis and restitution of intestinal epithelial cells in vitro. Acute colitis was induced with trinitrobenzene sulfonic acid (TNBS) in male Wistar rats. Rats received intrarectal rebamipide treatment daily starting on day 7 and were sacrificed on day 14 after TNBS administration. The distal colon was removed to evaluate the various parameters of inflammation. Moreover, wound healing assays were used to determine the enhanced restitution of rat intestinal epithelial (RIE) cells treated with rebamipide. Intracolonic administration of rebamipide accelerated TNBS-induced ulcer healing. Increases in the wet weight of the colon after TNBS administration were significantly inhibited by rebamipide. The wound assay revealed that rebamipide enhanced the migration of RIE cells through phosphorylation of extracellular signal-regulated kinase (ERK) and activation of Rho kinase. Rebamipide enema healed intestinal injury by enhancing restitution of RIE cells, via ERK activation. Rebamipide might be a novel therapeutic approach for inflammatory bowel disease.

  8. Quantitative analysis of promoter methylation in exfoliated epithelial cells isolated from breast milk of healthy women

    OpenAIRE

    Wong, Chung M; Anderton, Douglas L.; Smith-Schneider, Sallie; Wing, Megan A; Greven, Melissa C; Arcaro, Kathleen F.

    2010-01-01

    Promoter methylation analysis of genes frequently silenced in breast cancer is a promising indicator of breast cancer risk, as these methylation events are thought to occur long before presentation of disease. The numerous exfoliated epithelial cells present in breast milk may provide the breast epithelial DNA needed for detailed methylation analysis and assessment of breast cancer risk. Fresh breast milk samples and health, lifestyle and reproductive history questionnaires were collected fro...

  9. Evidence for donor strand complementation in the biogenesis of Haemophilus influenzae haemagglutinating pili.

    Science.gov (United States)

    Krasan, G P; Sauer, F G; Cutter, D; Farley, M M; Gilsdorf, J R; Hultgren, S J; St Geme, J W

    2000-03-01

    Haemophilus influenzae haemagglutinating pili are surface appendages that promote attachment to host cells and facilitate respiratory tract colonization, an essential step in the pathogenesis of disease. In contrast to other well-characterized forms of pili, H. influenzae haemagglutinating pili are two-stranded helical structures. Nevertheless, haemagglutinating pili are assembled by a pathway that involves a periplasmic chaperone and an outer membrane usher, analogous to the prototype pathway involved in the biogenesis of Escherichia coli P pili. In this study, we performed site-directed mutagenesis of the H. influenzae HifB chaperone and HifA major pilus subunit at positions homologous to sites important for chaperone-subunit interactions and subunit oligomerization in P pili. Mutations at putative subunit binding pocket residues in HifB or at the penultimate tyrosine in HifA abolished formation of HifB-HifA periplasmic complexes, whereas mutations at the -14 glycine in HifA had no effect on HifB-HifA interactions but abrogated HifA oligomerization. To define further the constraints of the interaction between HifA and HifB, we examined the interchangeability of pilus gene cluster components from H. influenzae type b strain Eagan (hifA-hifEEag) and the related H. influenzae biogroup aegyptius strain F3031 (hifA-hifEF3031). Functional pili were assembled both with HifAEag and the strain F3031 gene cluster and with HifAF3031 and the strain Eagan gene cluster, underscoring the flexibility of the H. influenzae chaperone/usher pathway in incorporating HifA subunits with significant sequence diversity. To gain additional insight into the interactive surfaces of HifA and HifB, we aligned HifA sequences from 20 different strains and then modelled the HifA structure based on the recently crystallized PapD-PapK complex. Analysis of the resulting structure revealed high levels of sequence conservation in regions predicted to interact with HifB, and maximal sequence diversity

  10. Airway epithelial NF-κB activation promotes Mycoplasma pneumoniae clearance in mice.

    Directory of Open Access Journals (Sweden)

    Di Jiang

    Full Text Available Respiratory infections including atypical bacteria Mycoplasma pneumoniae (Mp contribute to the pathobiology of asthma and chronic obstructive pulmonary disease (COPD. Mp infection mainly targets airway epithelium and activates various signaling pathways such as nuclear factor κB (NF-κB. We have shown that short palate, lung, and nasal epithelium clone 1 (SPLUNC1 serves as a novel host defense protein and is up-regulated upon Mp infection through NF-κB activation in cultured human and mouse primary airway epithelial cells. However, the in vivo role of airway epithelial NF-κB activation in host defense against Mp infection has not been investigated. In the current study, we investigated the effects of in vivo airway epithelial NF-κB activation on lung Mp clearance and its association with airway epithelial SPLUNC1 expression.Non-antimicrobial tetracycline analog 9-t-butyl doxycycline (9-TB was initially optimized in mouse primary tracheal epithelial cell culture, and then utilized to induce in vivo airway epithelial specific NF-κB activation in conditional NF-κB transgenic mice (CC10-(CAIKKβ with or without Mp infection. Lung Mp load and inflammation were evaluated, and airway epithelial SPLUNC1 protein was examined by immunohistochemistry. We found that 9-TB treatment in NF-κB transgene positive (Tg+, but not transgene negative (Tg- mice significantly reduced lung Mp load. Moreover, 9-TB increased airway epithelial SPLUNC1 protein expression in NF-κB Tg+ mice.By using the non-antimicrobial 9-TB, our study demonstrates that in vivo airway epithelial NF-κB activation promotes lung bacterial clearance, which is accompanied by increased epithelial SPLUNC1 expression.

  11. Rebamipide promotes healing of colonic ulceration through enhanced epithelial restitution

    Institute of Scientific and Technical Information of China (English)

    Tomohisa Takagi; Satoshi Kokura; Hiroshi Ichikawa; Toshikazu Yoshikawa; Yuji Naito; Kazuhiko Uchiyama; Toshimitsu Okuda; Katsura Mizushima; Takahiro Suzuki; Osamu Handa; Takeshi Ishikawa; Nobuaki Yagi

    2011-01-01

    AIM: To investigate the efficacy of rebamipide in a rat model of colitis and restitution of intestinal epithelial cells in vitro. METHODS: Acute colitis was induced with trinitrobenzene sulfonic acid (TNBS) in male Wistar rats. Rats received intrarectal rebamipide treatment daily starting on day 7 and were sacrificed on day 14 after TNBS administration. The distal colon was removed to evaluate the various parameters of inflammation. Moreover, wound healing assays were used to determine the enhanced restitution of rat intestinal epithelial (RIE) cells treated with rebamipide. RESULTS: Intracolonic administration of rebamipide accelerated TNBS-induced ulcer healing. Increases in the wet weight of the colon after TNBS administration were significantly inhibited by rebamipide. The wound assay revealed that rebamipide enhanced the migration of RIE cells through phosphorylation of extracellular signal-regulated kinase (ERK) and activation of Rho kinase. CONCLUSION: Rebamipide enema healed intestinal injury by enhancing restitution of RIE cells, via ERK activation. Rebamipide might be a novel therapeutic approach for inflammatory bowel disease.

  12. Low-level laser irradiation promotes the proliferation and maturation of keratinocytes during epithelial wound repair

    Science.gov (United States)

    Sperandio, Felipe F.; Simões, Alyne; Corrêa, Luciana; Aranha, Ana Cecília C.; Giudice, Fernanda S.; Hamblin, Michael R.; Sousa, Suzana C.O.M.

    2015-01-01

    Low-level laser therapy (LLLT) has been extensively employed to improve epithelial wound healing, though the exact response of epithelium maturation and stratification after LLLT is unknown. Thus, this study aimed to assess the in vitro growth and differentiation of keratinocytes (KCs) and in vivo wound healing response when treated with LLLT. Human KCs (HaCaT cells) showed an enhanced proliferation with all the employed laser energy densities (3, 6 and 12 J/cm2, 660nm, 100mW), together with an increased expression of Cyclin D1. Moreover, the immunoexpression of proteins related to epithelial proliferation and maturation (p63, CK10, CK14) all indicated a faster maturation of the migrating KCs in the LLLT-treated wounds. In that way, an improved epithelial healing was promoted by LLLT with the employed parameters; this improvement was confirmed by changes in the expression of several proteins related to epithelial proliferation and maturation. PMID:25411997

  13. TRIM37 promotes epithelial-mesenchymal transition in colorectal cancer

    Science.gov (United States)

    Hu, Cheng-En; Gan, Jun

    2017-01-01

    There is substantial research on the oncogenic role of tripartite motif containing 37 (TRIM37); however, its importance in colorectal cancer (CRC) remains to be elucidated. The present study used reverse transcription-quantitative polymerase chain reaction, immunohistochemistry and western blotting to detect the expression level of TRIM37 in CRC. The importance of TRIM37 in cell proliferation, invasion and metastasis of CRC were investigated through overexpressing or knocking-down of TRIM37 in CRC cell lines, to observe its function. The present study revealed that TRIM37 was overexpressed in human CRC tissues. High TRIM37 expression resulted in increased CRC proliferation, migration and invasion. Mechanistically, it was confirmed that TRIM37 enhanced invasion and metastasis of CRC via the epithelial-mesenchymal transition pathway. In conclusion, the present study suggested that TRIM3 may contribute to CRC and act as a potential therapeutic target for CRC treatment. PMID:28098873

  14. Ascorbic Acid Promotes the Stemness of Corneal Epithelial Stem/Progenitor Cells and Accelerates Epithelial Wound Healing in the Cornea.

    Science.gov (United States)

    Chen, Jialin; Lan, Jie; Liu, Dongle; Backman, Ludvig J; Zhang, Wei; Zhou, Qingjun; Danielson, Patrik

    2017-03-09

    High concentration of ascorbic acid (vitamin C) has been found in corneal epithelium of various species. However, the specific functions and mechanisms of ascorbic acid in the repair of corneal epithelium are not clear. In this study, it was found that ascorbic acid accelerates corneal epithelial wound healing in vivo in mouse. In addition, ascorbic acid enhanced the stemness of cultured mouse corneal epithelial stem/progenitor cells (TKE2) in vitro, as shown by elevated clone formation ability and increased expression of stemness markers (especially p63 and SOX2). The contribution of ascorbic acid on the stemness enhancement was not dependent on the promotion of Akt phosphorylation, as concluded by using Akt inhibitor, nor was the stemness found to be dependent on the regulation of oxidative stress, as seen by the use of two other antioxidants (GMEE and NAC). However, ascorbic acid was found to promote extracellular matrix (ECM) production, and by using two collagen synthesis inhibitors (AzC and CIS), the increased expression of p63 and SOX2 by ascorbic acid was decreased by around 50%, showing that the increased stemness by ascorbic acid can be attributed to its regulation of ECM components. Moreover, the expression of p63 and SOX2 was elevated when TKE2 cells were cultured on collagen I coated plates, a situation that mimics the in vivo situation as collagen I is the main component in the corneal stroma. This study shows direct therapeutic benefits of ascorbic acid on corneal epithelial wound healing and provides new insights into the mechanisms involved. © Stem Cells Translational Medicine 2017.

  15. Keratin 15 promoter targets putative epithelial stem cells in the hair follicle bulge.

    Science.gov (United States)

    Liu, Yaping; Lyle, Stephen; Yang, Zaixin; Cotsarelis, George

    2003-11-01

    Putative epithelial stem cells in the hair follicle bulge are thought to play pivotal roles in the homeostasis, aging, and carcinogenesis of the cutaneous epithelium. Elucidating the role of bulge cells in these processes has been hampered by the lack of gene promoters that target this area with specificity. Here we describe the isolation of the mouse keratin 15 (K15) promoter and demonstrate its utility for preferentially targeting hair follicle bulge cells in adult K15/lacZ transgenic mice. We found that patterns of K15 expression and promoter activity changed with age and correlated with levels of differentiation within the cutaneous epithelium; less differentiated keratinocytes in the epidermis of the neonatal mouse and in the bulge area of the adult mouse preferentially expressed K15. These findings demonstrate the utility of the K15 promoter for targeting epithelial stem cells in the hair follicle bulge and set the stage for elucidating the role of bulge cells in skin biology.

  16. Snail1, Snail2, and E47 promote mammary epithelial branching morphogenesis

    OpenAIRE

    Lee, KangAe; Gjorevski, Nikolce; Boghaert, Eline; Radisky, Derek C.; Nelson, Celeste M.

    2011-01-01

    While the roles of Snail transcription factors in epithelial-mesenchymal transition (EMT) are well established, their functions in other morphogenetic processes are less understood. Here, Snail, Snail2, and E47 are shown to promote mammary gland branching morphogenesis, via activation of an EMT-like gene expression program.

  17. RSV-encoded NS2 promotes epithelial cell shedding and distal airway obstruction

    Science.gov (United States)

    Liesman, Rachael M.; Buchholz, Ursula J.; Luongo, Cindy L.; Yang, Lijuan; Proia, Alan D.; DeVincenzo, John P.; Collins, Peter L.; Pickles, Raymond J.

    2014-01-01

    Respiratory syncytial virus (RSV) infection is the major cause of bronchiolitis in young children. The factors that contribute to the increased propensity of RSV-induced distal airway disease compared with other commonly encountered respiratory viruses remain unclear. Here, we identified the RSV-encoded nonstructural 2 (NS2) protein as a viral genetic determinant for initiating RSV-induced distal airway obstruction. Infection of human cartilaginous airway epithelium (HAE) and a hamster model of disease with recombinant respiratory viruses revealed that NS2 promotes shedding of infected epithelial cells, resulting in two consequences of virus infection. First, epithelial cell shedding accelerated the reduction of virus titers, presumably by clearing virus-infected cells from airway mucosa. Second, epithelial cells shedding into the narrow-diameter bronchiolar airway lumens resulted in rapid accumulation of detached, pleomorphic epithelial cells, leading to acute distal airway obstruction. Together, these data indicate that RSV infection of the airway epithelium, via the action of NS2, promotes epithelial cell shedding, which not only accelerates viral clearance but also contributes to acute obstruction of the distal airways. Our results identify RSV NS2 as a contributing factor for the enhanced propensity of RSV to cause severe airway disease in young children and suggest NS2 as a potential therapeutic target for reducing the severity of distal airway disease. PMID:24713657

  18. Differentiation-Dependent KLF4 Expression Promotes Lytic Epstein-Barr Virus Infection in Epithelial Cells.

    Directory of Open Access Journals (Sweden)

    Dhananjay M Nawandar

    2015-10-01

    Full Text Available Epstein-Barr virus (EBV is a human herpesvirus associated with B-cell and epithelial cell malignancies. EBV lytically infects normal differentiated oral epithelial cells, where it causes a tongue lesion known as oral hairy leukoplakia (OHL in immunosuppressed patients. However, the cellular mechanism(s that enable EBV to establish exclusively lytic infection in normal differentiated oral epithelial cells are not currently understood. Here we show that a cellular transcription factor known to promote epithelial cell differentiation, KLF4, induces differentiation-dependent lytic EBV infection by binding to and activating the two EBV immediate-early gene (BZLF1 and BRLF1 promoters. We demonstrate that latently EBV-infected, telomerase-immortalized normal oral keratinocyte (NOKs cells undergo lytic viral reactivation confined to the more differentiated cell layers in organotypic raft culture. Furthermore, we show that endogenous KLF4 expression is required for efficient lytic viral reactivation in response to phorbol ester and sodium butyrate treatment in several different EBV-infected epithelial cell lines, and that the combination of KLF4 and another differentiation-dependent cellular transcription factor, BLIMP1, is highly synergistic for inducing lytic EBV infection. We confirm that both KLF4 and BLIMP1 are expressed in differentiated, but not undifferentiated, epithelial cells in normal tongue tissue, and show that KLF4 and BLIMP1 are both expressed in a patient-derived OHL lesion. In contrast, KLF4 protein is not detectably expressed in B cells, where EBV normally enters latent infection, although KLF4 over-expression is sufficient to induce lytic EBV reactivation in Burkitt lymphoma cells. Thus, KLF4, together with BLIMP1, plays a critical role in mediating lytic EBV reactivation in epithelial cells.

  19. Streptococcus salivarius MS-oral-D6 promotes gingival re-epithelialization in vitro through a secreted serine protease.

    Science.gov (United States)

    Fernandez-Gutierrez, Marcela M; Roosjen, Peter P J; Ultee, Eveline; Agelink, Maarten; Vervoort, Jacques J M; Keijser, Bart; Wells, Jerry M; Kleerebezem, Michiel

    2017-09-11

    Gingival re-epithelialization represents an essential phase of oral wound healing in which epithelial integrity is re-establish. We developed an automated high-throughput re-epithelialization kinetic model, using the gingival epithelial cell line Ca9-22. The model was employed to screen 39 lactic acid bacteria, predominantly including oral isolates, for their capacity to accelerate gingival re-epithelialization. This screen identified several strains of Streptococcus salivarius that stimulated re-epithelialization. Further analysis revealed that S. salivarius strain MS-oral-D6 significantly promoted re-epithelialization through a secreted proteinaceous compound and subsequent experiments identified a secreted serine protease as the most likely candidate to be involved in re-epithelialization stimulation. The identification of bacteria or their products that stimulate gingival wound repair may inspire novel strategies for the maintenance of oral health.

  20. DNA methylation signatures of the AIRE promoter in thymic epithelial cells, thymomas and normal tissues.

    Science.gov (United States)

    Kont, Vivian; Murumägi, Astrid; Tykocinski, Lars-Oliver; Kinkel, Sarah A; Webster, Kylie E; Kisand, Kai; Tserel, Liina; Pihlap, Maire; Ströbel, Philipp; Scott, Hamish S; Marx, Alexander; Kyewski, Bruno; Peterson, Pärt

    2011-12-01

    Mutations in the AIRE gene cause autoimmune polyendocrinopathy candidiasis ectodermal dystrophy (APECED), which is associated with autoimmunity towards several peripheral organs. The AIRE protein is almost exclusively expressed in medullary thymic epithelial cells (mTEC) and CpG methylation in the promoter of the AIRE gene has been suggested to control its tissue-specific expression pattern. We found that in human AIRE-positive medullary and AIRE-negative cortical epithelium, the AIRE promoter is hypomethylated, whereas in thymocytes, the promoter had high level of CpG methylation. Likewise, in mouse mTECs the AIRE promoter was uniformly hypomethylated. In the same vein, the AIRE promoter was hypomethylated in AIRE-negative thymic epithelial tumors (thymomas) and in several peripheral tissues. Our data are compatible with the notion that promoter hypomethylation is necessary but not sufficient for tissue-specific regulation of the AIRE gene. In contrast, a positive correlation between AIRE expression and histone H3 lysine 4 trimethylation, an active chromatin mark, was found in the AIRE promoter in human and mouse TECs. Copyright © 2011 Elsevier Ltd. All rights reserved.

  1. Lipoxin A4 promotes lung epithelial repair whilst inhibiting fibroblast proliferation

    Directory of Open Access Journals (Sweden)

    Shengxing Zheng

    2016-10-01

    Full Text Available Therapy that promotes epithelial repair whilst protecting against fibroproliferation is critical for restoring lung function in acute and chronic respiratory diseases. Primary human alveolar type II cells were used to model the effects of lipoxin A4 in vitro upon wound repair, proliferation, apoptosis and transdifferention. Effects of lipoxin A4 upon primary human lung fibroblast proliferation, collagen production, and myofibroblast differentiation were also assessed. Lipoxin A4 promoted type II cell wound repair and proliferation, blocked the negative effects of soluble Fas ligand/tumour necrosis factor α upon cell proliferation, viability and apoptosis, and augmented the epithelial cell proliferative response to bronchoaveolar lavage fluid (BALF from acute respiratory distress syndrome (ARDS. In contrast, Lipoxin A4 reduced fibroblast proliferation, collagen production and myofibroblast differentiation induced by transforming growth factor β and BALF from ARDS. The effects of Lipoxin A4 were phosphatidylinositol 3′-kinase dependent and mediated via the lipoxin A4 receptor. Lipoxin A4 appears to promote alveolar epithelial repair by stimulating epitheial cell wound repair, proliferation, reducing apoptosis and promoting trans-differentiation of alveolar type II cells into type I cells. Lipoxin A4 reduces fibroblast proliferation, collagen production and myofibroblast differentiation. These data suggest that targeting lipoxin actions may be a therapeutic strategy for treating the resolution phase of ARDS.

  2. Quantitative analysis of promoter methylation in exfoliated epithelial cells isolated from breast milk of healthy women.

    Science.gov (United States)

    Wong, Chung M; Anderton, Douglas L; Smith-Schneider, Sallie; Wing, Megan A; Greven, Melissa C; Arcaro, Kathleen F

    2010-10-01

    Promoter methylation analysis of genes frequently silenced in breast cancer is a promising indicator of breast cancer risk, as these methylation events are thought to occur long before presentation of disease. The numerous exfoliated epithelial cells present in breast milk may provide the breast epithelial DNA needed for detailed methylation analysis and assessment of breast cancer risk. Fresh breast milk samples and health, lifestyle, and reproductive history questionnaires were collected from 111 women. Pyrosequencing analysis was conducted on DNA isolated from the exfoliated epithelial cells immunomagnetically separated from the total cell population in the breast milk of 102 women. A total of 65 CpG sites were examined in six tumor suppressor genes: PYCARD (also known as ASC or TMS1), CDH1, GSTP1, RBP1 (also known as CRBP1), SFRP1, and RASSF1. A sufficient quantity of DNA was obtained for meaningful analysis of promoter methylation; women donated an average of 86 ml of milk with a mean yield of 32,700 epithelial cells per ml. Methylation scores were in general low as expected of benign tissue, but analysis of outlier methylation scores revealed a significant relationship between breast cancer risk, as indicated by previous biopsy, and methylation score for several CpG sites in CDH1, GSTP1, SFRP1, and RBP1. Methylation of RASSF1 was positively correlated with women's age irrespective of her reproductive history. Promoter methylation patterns in DNA from breast milk epithelial cells can likely be used to assess breast cancer risk. Additional studies of women at high breast cancer risk are warranted.

  3. Furin promotes epithelial-mesenchymal transition in pancreatic cancer cells via Hippo-YAP pathway.

    Science.gov (United States)

    Zhang, Youli; Zhou, Meng; Wei, Hong; Zhou, Hailang; He, Junbo; Lu, Ying; Wang, Dawei; Chen, Baoding; Zeng, Jian; Peng, Wanxin; Du, Fengyi; Gong, Aihua; Xu, Min

    2017-04-01

    Furin, a well-characterized proprotein convertase, plays an important role in many diseases and links to tumor metastasis. However, the role of furin in pancreatic cancer progression remains to be elucidated. In the present study, we found that furin promotes the growth and the epithelial-mesenchymal transition (EMT) of pancreatic cancer cells. First, we found that furin knockdown significantly inhibited proliferation, invasion and migration in BxPC3 and SW1990 cells, while furin overexpression promoted the above behavior in PANC1 and PaTu8988 cells. Further evidence revealed that furin knockdown resulted in the upregulation of E-cadherin (epithelial marker), and the downregulation of N-cadherin and Vimentin (mesenchymal markers) in BxPC3 and SW1990 cells, whereas furin overexpression remarkably led to the opposite effects in PANC1 and PaTu8988 cells. Furthermore, our data showed that Furin knockdown, furin inhibitor D6R or overexpression significantly affected YAP phosphoration level and total YAP protein level, indicating that furin was involved in Hippo-YAP pathway. It is suggested that furin promotes epithelial-mesenchymal transition in pancreatic cancer cells probably via Hippo-YAP pathway and may be a potential target for anti-pancreatic cancer.

  4. Damping effect of helix-like pili

    CERN Document Server

    Zakrisson, Johan; Axner, Ove; Andersson, Magnus

    2014-01-01

    Biopolymers are vital structures for many living organisms; for a variety of bacteria, adhesion polymers play a crucial role for the initiation of colonization. Some bacteria express, on their surface, attachment organelles (pili) that comprise subunits formed into stiff helix-like structures that possess unique biomechanical properties. These helix-like structures possess a high degree of flexibility that gives the biopolymers a unique extendibility. This has been considered beneficial for piliated bacteria adhering to host surfaces in the presence of a fluid flow. We show in this work that helix-like pili have the ability to act as efficient dampers of force that can, for a limited time, lower the load on the force-mediating adhesin-receptor bond on the tip of an individual pilus. The model presented is applied to bacteria adhering with a single pilus of either of the two most common types expressed by uropathogenic Escherichia coli, P or type 1 pili, subjected to realistic flows. The results indicate that ...

  5. Membrane-Permeable Calpain Inhibitors Promote Rat Oral Mucosal Epithelial Cell Proliferation by Inhibiting IL-1α Signaling.

    Directory of Open Access Journals (Sweden)

    Makoto Kondo

    Full Text Available To standardise regenerative medicine using cultured cells, the use of serum-free, chemically defined media will be necessary. We have reported that IL-1α inhibits the growth of epithelial cells in culture and that recombinant IL-1 receptor antagonist (IL-1RA significantly promotes epithelial cell growth in no feeder layer condition. In this study, we examined inhibitors of calpain, a cysteine proteinase that plays crucial roles in various cellular functions, including IL-1α maturation and secretion. The culturing of epithelial cells in serum-free media supplemented with a membrane-permeable calpain inhibitor significantly promoted growth while suppressing IL-1α maturation and secretion. By contrast, non-membrane-permeable calpain inhibitor treatment did not have these effects. Interestingly, immunoblotting analysis revealed that immature, untruncated, IL-1α expression was also downregulated by cell-permeable calpain inhibitor treatment, and the difference in IL-1α gene expression increased from day 2 to day 6. Although IL-1RA has been reported to promote epithelial cell growth, we detected no synergistic promotion of epithelial cell growth using a calpain inhibitor and IL-1RA. These findings indicate that calpain inhibitors promote epithelial cell proliferation by inhibiting IL-1α maturation at an early phase of epithelial cell culture and by suppressing the positive feedback-mediated amplification of IL-1α signalling.

  6. Lactobacillus rhamnosus GG Lysate Increases Re-Epithelialization of Keratinocyte Scratch Assays by Promoting Migration.

    Science.gov (United States)

    Mohammedsaeed, Walaa; Cruickshank, Sheena; McBain, Andrew J; O'Neill, Catherine A

    2015-11-05

    A limited number of studies have investigated the potential of probiotics to promote wound healing in the digestive tract. The aim of the current investigation was to determine whether probiotic bacteria or their extracts could be beneficial in cutaneous wound healing. A keratinocyte monolayer scratch assay was used to assess re-epithelialization; which comprises keratinocyte proliferation and migration. Primary human keratinocyte monolayers were scratched then exposed to lysates of Lactobacillus (L) rhamnosus GG, L. reuteri, L. plantarum or L. fermentum. Re-epithelialization of treated monolayers was compared to that of untreated controls. Lysates of L. rhamnosus GG and L. reuteri significantly increased the rate of re-epithelialization, with L. rhamnosus GG being the most efficacious. L. reuteri increased keratinocyte proliferation while L. rhamnosus GG lysate significantly increased proliferation and migration. Microarray analysis of L. rhamnosus GG treated scratches showed increased expression of multiple genes including the chemokine CXCL2 and its receptor CXCR2. These are involved in normal wound healing where they stimulate keratinocyte proliferation and/or migration. Increased protein expression of both CXCL2 and CXCR2 were confirmed by ELISA and immunoblotting. These data demonstrate that L. rhamnosus GG lysate accelerates re-epithelialization of keratinocyte scratch assays, potentially via chemokine receptor pairs that induce keratinocyte migration.

  7. Angiomotin promotes renal epithelial and carcinoma cell proliferation by retaining the nuclear YAP.

    Science.gov (United States)

    Lv, Meng; Li, Shuting; Luo, Changqin; Zhang, Xiaoman; Shen, Yanwei; Sui, Yan Xia; Wang, Fan; Wang, Xin; Yang, Jiao; Liu, Peijun; Yang, Jin

    2016-03-15

    Renal cell carcinoma (RCC) is one of the common tumors in the urinary system without effective therapies. Angiomotin (Amot) can interact with Yes-associated protein (YAP) to either stimulate or inhibit YAP activity, playing a potential role in cell proliferation. However, the role of Amot in regulating the proliferation of renal epithelial and RCC cells is unknown. Here, we show that Amot is expressed predominantly in the nucleus of RCC cells and tissues, and in the cytoplasm and nucleus of renal epithelial cells and paracancerous tissues. Furthermore, Amot silencing inhibited proliferation of HK-2 and 786-O cells while Amot upregulation promoted proliferation of ACHN cells. Interestingly, the location of Amot and YAP in RCC clinical samples and cells was similar. Amot interacted with YAP in HK-2 and 786-O cells, particularly in the nucleus. Moreover, Amot silencing mitigated the levels of nuclear YAP in HK-2 and 786-O cells and reduced YAP-related CTGF and Cyr61 expression in 786-O cells. Amot upregulation slightly increased the nuclear YAP and YAP-related gene expression in ACHN cells. Finally, enhanced YAP expression restored proliferation of Amot-silencing 786-O cells. Together, these data indicate that Amot is crucial for the maintenance of nuclear YAP to promote renal epithelial and RCC proliferation.

  8. Nerve Growth Factor Promotes Corneal Epithelial Migration by Enhancing Expression of Matrix Metalloprotease-9

    Science.gov (United States)

    Blanco-Mezquita, Tomas; Martinez-Garcia, Carmen; Proença, Rui; Zieske, James D.; Bonini, Stefano; Lambiase, Alessandro; Merayo-Lloves, Jesus

    2013-01-01

    Purpose. Nerve growth factor (NGF) is a neuropeptide essential for the development, survival, growth, and differentiation of corneal cells. Its effects are mediated by both TrkA and p75 receptors. Clinically relevant use of NGF was introduced to treat neurotrophic ulcerations in patients. Herein, we examine the mechanisms by which NGF enhances epithelial wound healing both in vivo and in vitro. Methods. An animal model using adult hens was implemented for the in vivo experiments. Laser ablation keratectomy was performed and animals were observed for up to 7 days. Epithelial healing was measured with fluorescein. In addition, proliferation was measured using BrdU incorporation and both TrkA and matrix metalloprotease-9 (MMP-9) expression were measured by immunohistochemistry (IHC) and Western blot (WB). In vitro experiments were carried out with telomerase-immortalized human corneal epithelial cells (HCLE). The rate of proliferation was measured using a colorimetric assay and BrdU incorporation. Real-time migration was evaluated with an inverted microscope. MMP-9 expression was evaluated by immunocytochemistry (ICC), WB, zymography, and RT-PCR. Finally, beta-4 integrin (β4) expression was assessed by ICC and WB. Results. Faster epithelial healing was observed in NGF-treated corneas compared with controls (P < 0.01). These corneas showed increased proliferation, TrkA upregulation, and enhanced MMP-9 presence (P < 0.01). In vitro, faster spreading and migration were observed in response to NGF (P < 0.01). Enhanced proliferation, as well as enhanced TrkA and MMP-9 expression, and decreased β4 levels were observed after adding NGF (P < 0.01). Conclusions. NGF plays a major role during the epithelial healing process by promoting migration, a process that is accelerated by cell spreading. This effect is mediated by both the upregulation of MMP-9 and cleavage of β4 integrin. PMID:23640040

  9. Interaction with intestinal epithelial cells promotes an immunosuppressive phenotype in Lactobacillus casei.

    Directory of Open Access Journals (Sweden)

    Minna Tiittanen

    Full Text Available Maintenance of the immunological tolerance and homeostasis in the gut is associated with the composition of the intestinal microbiota. We here report that cultivation of Lactobacillus casei ATCC 334 in the presence of human intestinal epithelial cells promotes functional changes in bacteria. In particular, the interaction enhanced the immunosuppressive phenotype of L. casei as demonstrated by the ability of L. casei to generate functional regulatory T cells (CD4+CD25+FoxP3+ and production of the anti-inflammatory cytokine interleukin-10 by human peripheral blood mononuclear cells. The results indicate microbe-host cross-talk that changes features of microbes, and suggest that in vitro simulation of epithelial cell interaction can reveal functional properties of gut microbes more accurately than conventional cultivation.

  10. Promoting effect of lactoferrin on barrier function and epithelial differentiation of human keratinocytes.

    Science.gov (United States)

    Uchida, Ryo; Aoki, Reiji; Aoki-Yoshida, Ayako; Tajima, Atsushi; Takayama, Yoshiharu

    2017-02-01

    The purpose of this study was to elucidate the effects of bovine lactoferrin on keratinocyte differentiation and barrier function. Addition of bovine lactoferrin to differentiating HaCaT human keratinocytes led to increased transepithelial electrical resistance (TER), a marker of epithelial barrier function. This elevation was followed by upregulation of two differentiation markers, involucrin and filaggrin. The expression level of sterol regulatory element-binding protein-1 was also enhanced by bovine lactoferrin. The lactoferrin-induced upregulation of involucrin and filaggrin expression were confirmed in normal human epidermal keratinocytes (NHEK). Treatment with SB203580, a p38 mitogen-activated protein kinase (MAPK) α inhibitor, impaired the upregulation of involucrin and filaggrin expression in response to lactoferrin. The elevation of p38 MAPK phosphorylation was further enhanced by lactoferrin in the initial stage of differentiation of HaCaT keratinocytes. The findings suggest that bovine lactoferrin promotes epithelial differentiation by a p38-MAPK-dependent mechanism.

  11. Antioxidant treatment promotes prostate epithelial proliferation in Nkx3.1 mutant mice.

    Directory of Open Access Journals (Sweden)

    Erin E Martinez

    Full Text Available Discordant results in preclinical and clinical trials have raised questions over the effectiveness of antioxidants in prostate cancer chemoprevention. Results from the large-scale Selenium and Vitamin E Cancer Prevention Trial (SELECT showed that antioxidants failed to prevent, and in some cases promoted, prostate cancer formation in men without a history of the disease. One possible explanation for these alarming results is the notion that the effects of antioxidant treatment on the prostate are modified by specific, intrinsic genetic risk factors, causing some men to respond negatively to antioxidant treatment. Loss of expression of the homeobox transcription factor NKX3.1 in the prostate is frequently associated with human prostate cancer. Nkx3.1 mutant mice display prostatic hyperplasia and dysplasia and are used as a model of the early stages of prostate cancer initiation. While the mechanisms by which Nkx3.1 loss promotes prostate tumorigenicity are not completely understood, published data have suggested that elevated reactive oxygen species (ROS associated with Nkx3.1 loss may be a causative factor. Here we have tested this hypothesis by treating Nkx3.1 mutant mice with the antioxidant N-acetylcysteine (NAC for 13 weeks post-weaning. Surprisingly, while NAC treatment decreased ROS levels in Nkx3.1 mutant mouse prostates, it failed to reduce prostatic epithelial hyperplasia/dysplasia. Rather, NAC treatment increased epithelial cell proliferation and promoted the expression of a pro-proliferative gene signature. These results show that ROS do not promote proliferation in the Nkx3.1-null prostate, but instead inhibit proliferation, suggesting that antioxidant treatment may encourage prostate epithelial cell proliferation early in prostate tumorigenesis. Our findings provide new insight that may help explain the increased prostate cancer risk observed with vitamin E treatment in the SELECT trial and emphasize the need for preclinical studies

  12. Activin B promotes epithelial wound healing in vivo through RhoA-JNK signaling pathway.

    Directory of Open Access Journals (Sweden)

    Min Zhang

    Full Text Available BACKGROUND: Activin B has been reported to promote the proliferation and migration of keratinocytes in vitro via the RhoA-JNK signaling pathway, whereas its in vivo role and mechanism in wound healing process has not yet been elucidated. PRINCIPAL FINDINGS: In this study, we explored the potential mechanism by which activin B induces epithelial wound healing in mice. Recombinant lentiviral plasmids, with RhoA (N19 and RhoA (L63 were used to infect wounded KM mice. The wound healing process was monitored after different treatments. Activin B-induced cell proliferation on the wounded skin was visualized by electron microscopy and analyzed by 5'-bromodeoxyuridine (BrdU incorporation assay. Protein expression of p-JNK or p-cJun was determined by immunohistochemical staining and immunoblotting analysis. Activin B efficiently stimulated the proliferation of keratinocytes and hair follicle cells at the wound area and promoted wound closure. RhoA positively regulated activin B-induced wound healing by up-regulating the expression of p-JNK and p-cJun. Moreover, suppression of RhoA activation delayed activin B-induced wound healing, while JNK inhibition recapitulated phenotypes of RhoA inhibition on wound healing. CONCLUSION: These results demonstrate that activin B promotes epithelial wound closure in vivo through the RhoA-Rock-JNK-cJun signaling pathway, providing novel insight into the essential role of activin B in the therapy of wound repair.

  13. Construction of predictive promoter models on the example of antibacterial response of human epithelial cells

    Directory of Open Access Journals (Sweden)

    Wingender Edgar

    2005-01-01

    Full Text Available Abstract Background Binding of a bacteria to a eukaryotic cell triggers a complex network of interactions in and between both cells. P. aeruginosa is a pathogen that causes acute and chronic lung infections by interacting with the pulmonary epithelial cells. We use this example for examining the ways of triggering the response of the eukaryotic cell(s, leading us to a better understanding of the details of the inflammatory process in general. Results Considering a set of genes co-expressed during the antibacterial response of human lung epithelial cells, we constructed a promoter model for the search of additional target genes potentially involved in the same cell response. The model construction is based on the consideration of pair-wise combinations of transcription factor binding sites (TFBS. It has been shown that the antibacterial response of human epithelial cells is triggered by at least two distinct pathways. We therefore supposed that there are two subsets of promoters activated by each of them. Optimally, they should be "complementary" in the sense of appearing in complementary subsets of the (+-training set. We developed the concept of complementary pairs, i.e., two mutually exclusive pairs of TFBS, each of which should be found in one of the two complementary subsets. Conclusions We suggest a simple, but exhaustive method for searching for TFBS pairs which characterize the whole (+-training set, as well as for complementary pairs. Applying this method, we came up with a promoter model of antibacterial response genes that consists of one TFBS pair which should be found in the whole training set and four complementary pairs. We applied this model to screening of 13,000 upstream regions of human genes and identified 430 new target genes which are potentially involved in antibacterial defense mechanisms.

  14. Pancreatic stellate cells promote epithelial-mesenchymal transition in pancreatic cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Kikuta, Kazuhiro [Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai (Japan); Masamune, Atsushi, E-mail: amasamune@med.tohoku.ac.jp [Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai (Japan); Watanabe, Takashi; Ariga, Hiroyuki; Itoh, Hiromichi; Hamada, Shin; Satoh, Kennichi [Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai (Japan); Egawa, Shinichi; Unno, Michiaki [Department of Hepatobiliary-Pancreatic Surgery, Tohoku University Graduate School of Medicine, Sendai (Japan); Shimosegawa, Tooru [Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai (Japan)

    2010-12-17

    Research highlights: {yields} Recent studies have shown that pancreatic stellate cells (PSCs) promote the progression of pancreatic cancer. {yields} Pancreatic cancer cells co-cultured with PSCs showed loose cell contacts and scattered, fibroblast-like appearance. {yields} PSCs decreased the expression of epithelial markers but increased that of mesenchymal markers, along with increased migration. {yields} This study suggests epithelial-mesenchymal transition as a novel mechanism by which PSCs contribute to the aggressive behavior of pancreatic cancer cells. -- Abstract: The interaction between pancreatic cancer cells and pancreatic stellate cells (PSCs), a major profibrogenic cell type in the pancreas, is receiving increasing attention. There is accumulating evidence that PSCs promote the progression of pancreatic cancer by increasing cancer cell proliferation and invasion as well as by protecting them from radiation- and gemcitabine-induced apoptosis. Because epithelial-mesenchymal transition (EMT) plays a critical role in the progression of pancreatic cancer, we hypothesized that PSCs promote EMT in pancreatic cancer cells. Panc-1 and SUIT-2 pancreatic cancer cells were indirectly co-cultured with human PSCs isolated from patients undergoing operation for pancreatic cancer. The expression of epithelial and mesenchymal markers was examined by real-time PCR and immunofluorescent staining. The migration of pancreatic cancer cells was examined by scratch and two-chamber assays. Pancreatic cancer cells co-cultured with PSCs showed loose cell contacts and a scattered, fibroblast-like appearance. The expression of E-cadherin, cytokeratin 19, and membrane-associated {beta}-catenin was decreased, whereas vimentin and Snail (Snai-1) expression was increased more in cancer cells co-cultured with PSCs than in mono-cultured cells. The migration of pancreatic cancer cells was increased by co-culture with PSCs. The PSC-induced decrease of E-cadherin expression was not altered

  15. Dynamic properties of bacterial pili measured by optical tweezers

    CERN Document Server

    Fallman, Erik; Schedin, Staffan; Jass, Jana; Uhlin, Bernt Eric; Axner, Ove

    2014-01-01

    The ability of uropathogenic Escherichia coli (UPEC) to cause urinary tract infections is dependent on their ability to colonize the uroepithelium. Infecting bacteria ascend the urethra to the bladder and then kidneys by attaching to the uroepithelial cells via the differential expression of adhesins. P pili are associated with pyelonephritis, the more severe infection of the kidneys. In order to find means to treat pyelonephritis, it is therefore of interest to investigate the properties P pili. The mechanical behavior of individual P pili of uropathogenic Escherichia coli has recently been investigated using optical tweezers. P pili, whose main part constitutes the PapA rod, composed of ~1000 PapA subunits in a helical arrangement, are distributed over the bacterial surface and mediate adhesion to host cells. We have earlier studied P pili regarding its stretching/elongation properties where we have found and characterized three different elongation regions, of which one constitute an unfolding of the quate...

  16. Subinhibitory concentrations of triclosan promote Streptococcus mutans biofilm formation and adherence to oral epithelial cells.

    Directory of Open Access Journals (Sweden)

    Telma Blanca Lombardo Bedran

    Full Text Available Triclosan is a general membrane-active agent with a broad-spectrum antimicrobial activity that is commonly used in oral care products. In this study, we investigated the effect of sub-minimum inhibitory concentrations (MICs of triclosan on the capacity of the cariogenic bacterium Streptococcus mutans to form biofilm and adhere to oral epithelial cells. As quantified by crystal violet staining, biofilm formation by two reference strains of S. mutans was dose-dependently promoted, in the range of 2.2- to 6.2-fold, by 1/2 and 1/4 MIC of triclosan. Observations by scanning electron microscopy revealed the presence of a dense biofilm attached to the polystyrene surface. Growth of S. mutans in the presence of triclosan at sub-MICs also increased its capacity to adhere to a monolayer of gingival epithelial cells. The expression of several genes involved in adherence and biofilm formation in S. mutans was investigated by quantitative RT-PCR. It was found that sub-MICs of triclosan significantly increased the expression of comD, gtfC, and luxS, and to a lesser extent of gtfB and atlA genes. These findings stress the importance of maintaining effective bactericidal concentrations of therapeutic triclosan since sub-MICs may promote colonization of the oral cavity by S. mutans.

  17. Subinhibitory concentrations of triclosan promote Streptococcus mutans biofilm formation and adherence to oral epithelial cells.

    Science.gov (United States)

    Bedran, Telma Blanca Lombardo; Grignon, Louis; Spolidorio, Denise Palomari; Grenier, Daniel

    2014-01-01

    Triclosan is a general membrane-active agent with a broad-spectrum antimicrobial activity that is commonly used in oral care products. In this study, we investigated the effect of sub-minimum inhibitory concentrations (MICs) of triclosan on the capacity of the cariogenic bacterium Streptococcus mutans to form biofilm and adhere to oral epithelial cells. As quantified by crystal violet staining, biofilm formation by two reference strains of S. mutans was dose-dependently promoted, in the range of 2.2- to 6.2-fold, by 1/2 and 1/4 MIC of triclosan. Observations by scanning electron microscopy revealed the presence of a dense biofilm attached to the polystyrene surface. Growth of S. mutans in the presence of triclosan at sub-MICs also increased its capacity to adhere to a monolayer of gingival epithelial cells. The expression of several genes involved in adherence and biofilm formation in S. mutans was investigated by quantitative RT-PCR. It was found that sub-MICs of triclosan significantly increased the expression of comD, gtfC, and luxS, and to a lesser extent of gtfB and atlA genes. These findings stress the importance of maintaining effective bactericidal concentrations of therapeutic triclosan since sub-MICs may promote colonization of the oral cavity by S. mutans.

  18. Increased promoter methylation in exfoliated breast epithelial cells in women with a previous breast biopsy.

    Science.gov (United States)

    Browne, Eva P; Punska, Elizabeth C; Lenington, Sarah; Otis, Christopher N; Anderton, Douglas L; Arcaro, Kathleen F

    2011-12-01

    Accurately identifying women at increased risk of developing breast cancer will provide greater opportunity for early detection and prevention. DNA promoter methylation is a promising biomarker for assessing breast cancer risk. Breast milk contains large numbers of exfoliated epithelial cells that are ideal for methylation analyses. Exfoliated epithelial cells were isolated from the milk obtained from each breast of 134 women with a history of a non-proliferative benign breast biopsy (Biopsy Group). Promoter methylation of three tumor suppressor genes, RASSF1, SFRP1 and GSTP1, was assessed by pyrosequencing of bisulfite-modified DNA. Methylation scores from the milk of the 134 women in the Biopsy Group were compared to scores from 102 women for whom a breast biopsy was not a recruitment requirement (Reference Group). Mean methylation scores for RASSF1 and GSTP1 were significantly higher in the Biopsy than in the Reference Group. For all three genes the percentage of outlier scores was greater in the Biopsy than in the Reference Group but reached statistical significance only for GSTP1. A comparison between the biopsied and non-biopsied breasts of the Biopsy Group revealed higher mean methylation and a greater number of outlier scores in the biopsied breast for both SFRP1 and RASSF1, but not for GSTP1. This is the first evidence of CpG island methylation in tumor suppressor genes of women who may be at increased risk of developing breast cancer based on having had a prior breast biopsy.

  19. The Transcriptional Repressor ZNF503/Zeppo2 Promotes Mammary Epithelial Cell Proliferation and Enhances Cell Invasion*

    Science.gov (United States)

    Shahi, Payam; Slorach, Euan M.; Wang, Chih-Yang; Chou, Jonathan; Lu, Angela; Ruderisch, Aline; Werb, Zena

    2015-01-01

    The NET (nocA, Nlz, elB, TLP-1) subfamily of zinc finger proteins is an important mediator during developmental processes. The evolutionary conserved zinc finger protein ZNF503/Zeppo2 (zinc finger elbow-related proline domain protein 2, Zpo2) plays critical roles during embryogenesis. We found that Zpo2 is expressed in adult tissue and examined its function. We found that ZPO2 is a nuclearly targeted transcriptional repressor that is expressed in mammary epithelial cells. Elevated Zpo2 levels increase mammary epithelial cell proliferation. Zpo2 promotes cellular invasion through down-regulation of E-cadherin and regulates the invasive phenotype in a RAC1-dependent manner. We detect elevated Zpo2 expression during breast cancer progression in a MMTV-PyMT transgenic mouse model. Tumor transplant experiments indicated that overexpression of Zpo2 in MMTV-PyMT mammary tumor cell lines enhances lung metastasis. Our findings suggest that Zpo2 plays a significant role in mammary gland homeostasis and that deregulation of Zpo2 may promote breast cancer development. PMID:25538248

  20. Binding of CFA/I Pili of Enterotoxigenic Escherichia coli to Asialo-GM1 Is Mediated by the Minor Pilin CfaE.

    Science.gov (United States)

    Madhavan, T P Vipin; Riches, James D; Scanlon, Martin J; Ulett, Glen C; Sakellaris, Harry

    2016-05-01

    CFA/I pili are representatives of a large family of related pili that mediate the adherence of enterotoxigenic Escherichia coli to intestinal epithelial cells. They are assembled via the alternate chaperone-usher pathway and consist of two subunits, CfaB, which makes up the pilus shaft and a single pilus tip-associated subunit, CfaE. The current model of pilus-mediated adherence proposes that CFA/I has two distinct binding activities; the CfaE subunit is responsible for binding to receptors of unknown structure on erythrocyte and intestinal epithelial cell surfaces, while CfaB binds to various glycosphingolipids, including asialo-GM1. In this report, we present two independent lines of evidence that, contrary to the existing model, CfaB does not bind to asialo-GM1 independently of CfaE. Neither purified CfaB subunits nor CfaB assembled into pili bind to asialo-GM1. Instead, we demonstrate that binding activity toward asialo-GM1 resides in CfaE and this is essential for pilus binding to Caco-2 intestinal epithelial cells. We conclude that the binding activities of CFA/I pili for asialo-GM1, erythrocytes, and intestinal cells are inseparable, require the same amino acid residues in CfaE, and therefore depend on the same or very similar binding mechanisms. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  1. Adipose-derived mesenchymal stem cells promote cell proliferation and invasion of epithelial ovarian cancer

    Energy Technology Data Exchange (ETDEWEB)

    Chu, Yijing; Tang, Huijuan; Guo, Yan; Guo, Jing; Huang, Bangxing; Fang, Fang; Cai, Jing, E-mail: caijingmmm@hotmail.com; Wang, Zehua, E-mail: zehuawang@163.net

    2015-09-10

    Adipose-derived mesenchymal stem cell (ADSC) is an important component of tumor microenvironment. However, whether ADSCs have a hand in ovarian cancer progression remains unclear. In this study, we investigated the impact of human ADSCs derived from the omentum of normal donors on human epithelial ovarian cancer (EOC) cells in vitro and in vivo. Direct and indirect co-culture models including ADSCs and human EOC cell lines were established and the effects of ADSCs on EOC cell proliferation were evaluated by EdU incorporation and flow cytometry. Transwell migration assays and detection of MMPs were performed to assess the invasion activity of EOC cells in vitro. Mouse models were established by intraperitoneal injection of EOC cells with or without concomitant ADSCs to investigate the role of ADSCs in tumor progression in vivo. We found that ADSCs significantly promoted proliferation and invasion of EOC cells in both direct and indirect co-culture assays. In addition, after co-culture with ADSCs, EOC cells secreted higher levels of matrix metalloproteinases (MMPs), and inhibition of MMP2 and MMP9 partially relieved the tumor-promoting effects of ADSCs in vitro. In mouse xenograft models, we confirmed that ADSCs promoted EOC growth and metastasis and elevated the expression of MMP2 and MMP9. Our findings indicate that omental ADSCs play a promotive role during ovarian cancer progression. - Highlights: • Omental adipose derived stem cells enhanced growth and invasion properties of ovarian cancer cells. • Adipose derived stem cells promoted the growth and metastasis of ovarian cancer in mice models. • Adipose derived stem cells promoted MMPs expression and secretion of ovarian cancer cells. • Elevated MMPs mediated the tumor promoting effects of ADSCs.

  2. ExpR coordinates the expression of symbiotically important, bundle-forming Flp pili with quorum sensing in Sinorhizobium meliloti.

    Science.gov (United States)

    Zatakia, Hardik M; Nelson, Cassandra E; Syed, Umair J; Scharf, Birgit E

    2014-04-01

    Type IVb pili in enteropathogenic bacteria function as a host colonization factor by mediating tight adherence to host cells, but their role in bacterium-plant symbiosis is currently unknown. The genome of the symbiotic soil bacterium Sinorhizobium meliloti contains two clusters encoding proteins for type IVb pili of the Flp (fimbrial low-molecular-weight protein) subfamily. To establish the role of Flp pili in the symbiotic interaction of S. meliloti and its host, Medicago sativa, we deleted pilA1, which encodes the putative pilin subunit in the chromosomal flp-1 cluster and conducted competitive nodulation assays. The pilA1 deletion strain formed 27% fewer nodules than the wild type. Transmission electron microscopy revealed the presence of bundle-forming pili protruding from the polar and lateral region of S. meliloti wild-type cells. The putative pilus assembly ATPase CpaE1 fused to mCherry showed a predominantly unilateral localization. Transcriptional reporter gene assays demonstrated that expression of pilA1 peaks in early stationary phase and is repressed by the quorum-sensing regulator ExpR, which also controls production of exopolysaccharides and motility. Binding of acyl homoserine lactone-activated ExpR to the pilA1 promoter was confirmed with electrophoretic mobility shift assays. A 17-bp consensus sequence for ExpR binding was identified within the 28-bp protected region by DNase I footprinting analyses. Our results show that Flp pili are important for efficient symbiosis of S. meliloti with its plant host. The temporal inverse regulation of exopolysaccharides and pili by ExpR enables S. meliloti to achieve a coordinated expression of cellular processes during early stages of host interaction.

  3. Mesenchymal Cancer Cell-Stroma Crosstalk Promotes Niche Activation, Epithelial Reversion, and Metastatic Colonization

    Directory of Open Access Journals (Sweden)

    Yaiza del Pozo Martin

    2015-12-01

    Full Text Available During metastatic colonization, tumor cells must establish a favorable microenvironment or niche that will sustain their growth. However, both the temporal and molecular details of this process remain poorly understood. Here, we found that metastatic initiating cells (MICs exhibit a high capacity for lung fibroblast activation as a result of Thrombospondin 2 (THBS2 expression. Importantly, inhibiting the mesenchymal phenotype of MICs by blocking the epithelial-to-mesenchymal transition (EMT-associated kinase AXL reduces THBS2 secretion, niche-activating ability, and, consequently, metastatic competence. Subsequently, disseminated metastatic cells revert to an AXL-negative, more epithelial phenotype to proliferate and decrease the phosphorylation levels of TGF-β-dependent SMAD2-3 in favor of BMP/SMAD1-5 signaling. Remarkably, newly activated fibroblasts promote this transition. In summary, our data reveal a crosstalk between cancer cells and their microenvironment whereby the EMT status initially triggers and then is regulated by niche activation during metastatic colonization.

  4. Epstein-Barr Virus Infection of Mammary Epithelial Cells Promotes Malignant Transformation.

    Science.gov (United States)

    Hu, Hai; Luo, Man-Li; Desmedt, Christine; Nabavi, Sheida; Yadegarynia, Sina; Hong, Alex; Konstantinopoulos, Panagiotis A; Gabrielson, Edward; Hines-Boykin, Rebecca; Pihan, German; Yuan, Xin; Sotirious, Christos; Dittmer, Dirk P; Fingeroth, Joyce D; Wulf, Gerburg M

    2016-07-01

    Whether the human tumor virus, Epstein-Barr Virus (EBV), promotes breast cancer remains controversial and a potential mechanism has remained elusive. Here we show that EBV can infect primary mammary epithelial cells (MECs) that express the receptor CD21. EBV infection leads to the expansion of early MEC progenitor cells with a stem cell phenotype, activates MET signaling and enforces a differentiation block. When MECs were implanted as xenografts, EBV infection cooperated with activated Ras and accelerated the formation of breast cancer. Infection in EBV-related tumors was of a latency type II pattern, similar to nasopharyngeal carcinoma (NPC). A human gene expression signature for MECs infected with EBV, termed EBVness, was associated with high grade, estrogen-receptor-negative status, p53 mutation and poor survival. In 11/33 EBVness-positive tumors, EBV-DNA was detected by fluorescent in situ hybridization for the viral LMP1 and BXLF2 genes. In an analysis of the TCGA breast cancer data EBVness correlated with the presence of the APOBEC mutational signature. We conclude that a contribution of EBV to breast cancer etiology is plausible, through a mechanism in which EBV infection predisposes mammary epithelial cells to malignant transformation, but is no longer required once malignant transformation has occurred.

  5. Epstein–Barr Virus Infection of Mammary Epithelial Cells Promotes Malignant Transformation

    Directory of Open Access Journals (Sweden)

    Hai Hu

    2016-07-01

    Full Text Available Whether the human tumor virus, Epstein–Barr Virus (EBV, promotes breast cancer remains controversial and a potential mechanism has remained elusive. Here we show that EBV can infect primary mammary epithelial cells (MECs that express the receptor CD21. EBV infection leads to the expansion of early MEC progenitor cells with a stem cell phenotype, activates MET signaling and enforces a differentiation block. When MECs were implanted as xenografts, EBV infection cooperated with activated Ras and accelerated the formation of breast cancer. Infection in EBV-related tumors was of a latency type II pattern, similar to nasopharyngeal carcinoma (NPC. A human gene expression signature for MECs infected with EBV, termed EBVness, was associated with high grade, estrogen-receptor-negative status, p53 mutation and poor survival. In 11/33 EBVness-positive tumors, EBV-DNA was detected by fluorescent in situ hybridization for the viral LMP1 and BXLF2 genes. In an analysis of the TCGA breast cancer data EBVness correlated with the presence of the APOBEC mutational signature. We conclude that a contribution of EBV to breast cancer etiology is plausible, through a mechanism in which EBV infection predisposes mammary epithelial cells to malignant transformation, but is no longer required once malignant transformation has occurred.

  6. Upregulation of TrkB promotes epithelial-mesenchymal transition and anoikis resistance in endometrial carcinoma.

    Directory of Open Access Journals (Sweden)

    Wei Bao

    Full Text Available Mechanisms governing the metastasis of endometrial carcinoma (EC are poorly defined. Recent data support a role for the cell surface receptor tyrosine kinase TrkB in the progression of several human tumors. Here we present evidence for a direct role of TrkB in human EC. Immunohistochemical analysis revealed that TrkB and its secreted ligand, brain-derived neurotrophic factor (BDNF, are more highly expressed in EC than in normal endometrium. High TrkB levels correlated with lymph node metastasis (p<0.05 and lymphovascular space involvement (p<0.05 in EC. Depletion of TrkB by stable shRNA-mediated knockdown decreased the migratory and invasive capacity of cancer cell lines in vitro and resulted in anoikis in suspended cells. Conversely, exogenous expression of TrkB increased cell migration and invasion and promoted anoikis resistance in suspension culture. Furthermore, over-expression of TrkB or stimulation by BDNF resulted in altered the expression of molecular mediators of the epithelial-to-mesenchymal transition (EMT. RNA interference (RNAi-mediated depletion of the downstream regulator, Twist, blocked TrkB-induced EMT-like transformation. The use of in vivo models revealed decreased peritoneal dissemination in TrkB-depleted EC cells. Additionally, TrkB-depleted EC cells underwent mesenchymal-to-epithelial transition and anoikis in vivo. Our data support a novel function for TrkB in promoting EMT and resistance to anoikis. Thus, TrkB may constitute a potential therapeutic target in human EC.

  7. Intramolecular amide bonds stabilize pili on the surface of bacilli

    Energy Technology Data Exchange (ETDEWEB)

    Budzik, Jonathan M.; Poor, Catherine B.; Faull, Kym F.; Whitelegge, Julian P.; He, Chuan; Schneewind, Olaf; (UC); (UCLA-MED)

    2010-01-12

    Gram-positive bacteria elaborate pili and do so without the participation of folding chaperones or disulfide bond catalysts. Sortases, enzymes that cut pilin precursors, form covalent bonds that link pilin subunits and assemble pili on the bacterial surface. We determined the x-ray structure of BcpA, the major pilin subunit of Bacillus cereus. The BcpA precursor encompasses 2 Ig folds (CNA{sub 2} and CNA{sub 3}) and one jelly-roll domain (XNA) each of which synthesizes a single intramolecular amide bond. A fourth amide bond, derived from the Ig fold of CNA{sub 1}, is formed only after pilin subunits have been incorporated into pili. We report that the domains of pilin precursors have evolved to synthesize a discrete sequence of intramolecular amide bonds, thereby conferring structural stability and protease resistance to pili.

  8. The suppressor of cytokine signaling SOCS1 promotes apoptosis of intestinal epithelial cells via p53 signaling in Crohn's disease.

    Science.gov (United States)

    Cui, Xiaopeng; Shan, Xiaohang; Qian, Ji; Ji, Qianqian; Wang, Liang; Wang, Xiaotong; Li, Manhua; Ding, Haifang; Liu, Qingqing; Chen, Lingling; Zhang, Dongmei; Ni, Runzhou

    2016-08-01

    The suppressor of cytokine signaling SOCS1 is a member of the cytokine signaling pathway inhibitor family, which is induced by the IFN-γ induced JAK signaling pathway. The expression of SOCS1 has been found to increase in Crohn's disease (CD) patients, but the role of SOCS1 in intestinal epithelium is unclear. This study was designed to investigate whether SOCS1 has a role in the death of intestinal epithelial cells and intestinal injury. The results showed that the expression of SOCS1 increased in CD patients, and the expression of SOCS1, p-p53 and PUMA increased in the mouse TNBS induced colitis model. Using IFN-γ treated HT-29 cells as an apoptotic model of intestinal epithelial cells in vitro, we confirmed that SOCS1 promoted apoptosis of intestinal epithelial cells by activating p53. In HT-29 cells which were treated with IFN-γ, the interaction between p53 and SOCS1 and phosphorylation of p53 were significantly higher than untreated cells. When knocking SOCS1 down by using SOCS1 siRNA, phosphorylation of p53 and apoptosis of intestinal epithelial cells which was induced by IFN-γ were significantly inhibited. In summary, our findings suggest that SOCS1 may promote apoptosis of intestinal epithelial cells at least partly through mediating p53 signaling.

  9. Notch promotes epithelial-mesenchymal transition during cardiac development and oncogenic transformation

    Science.gov (United States)

    Timmerman, Luika A.; Grego-Bessa, Joaquín; Raya, Angel; Bertrán, Esther; Pérez-Pomares, José María; Díez, Juan; Aranda, Sergi; Palomo, Sergio; McCormick, Frank; Izpisúa-Belmonte, Juan Carlos; de la Pompa, José Luis

    2004-01-01

    Epithelial-to-mesenchymal transition (EMT) is fundamental to both embryogenesis and tumor metastasis. The Notch intercellular signaling pathway regulates cell fate determination throughout metazoan evolution, and overexpression of activating alleles is oncogenic in mammals. Here we demonstrate that Notch activity promotes EMT during both cardiac development and oncogenic transformation via transcriptional induction of the Snail repressor, a potent and evolutionarily conserved mediator of EMT in many tissues and tumor types. In the embryonic heart, Notch functions via lateral induction to promote a selective transforming growth factor-β (TGFβ)-mediated EMT that leads to cellularization of developing cardiac valvular primordia. Embryos that lack Notch signaling elements exhibit severely attenuated cardiac snail expression, abnormal maintenance of intercellular endocardial adhesion complexes, and abortive endocardial EMT in vivo and in vitro. Accordingly, transient ectopic expression of activated Notch1 (N1IC) in zebrafish embryos leads to hypercellular cardiac valves, whereas Notch inhibition prevents valve development. Overexpression of N1IC in immortalized endothelial cells in vitro induces EMT accompanied by oncogenic transformation, with corresponding induction of snail and repression of VE-cadherin expression. Notch is expressed in embryonic regions where EMT occurs, suggesting an intimate and fundamental role for Notch, which may be reactivated during tumor metastasis. PMID:14701881

  10. Interleukin-6 mediates epithelial-stromal interactions and promotes gastric tumorigenesis.

    Directory of Open Access Journals (Sweden)

    Hiroto Kinoshita

    Full Text Available Interleukin-6 (IL-6 is a pleiotropic cytokine that affects various functions, including tumor development. Although the importance of IL-6 in gastric cancer has been documented in experimental and clinical studies, the mechanism by which IL-6 promotes gastric cancer remains unclear. In this study, we investigated the role of IL-6 in the epithelial-stromal interaction in gastric tumorigenesis. Immunohistochemical analysis of human gastritis, gastric adenoma, and gastric cancer tissues revealed that IL-6 was frequently detected in the stroma. IL-6-positive cells in the stroma showed positive staining for the fibroblast marker α-smooth muscle actin, suggesting that stromal fibroblasts produce IL-6. We compared IL-6 knockout (IL-6(-/- mice with wild-type (WT mice in a model of gastric tumorigenesis induced by the chemical carcinogen N-methyl-N-nitrosourea. The stromal fibroblasts expressed IL-6 in tumors from WT mice. Gastric tumorigenesis was attenuated in IL-6(-/- mice, compared with WT mice. Impaired tumor development in IL-6(-/- mice was correlated with the decreased activation of STAT3, a factor associated with gastric cancer cell proliferation. In vitro, when gastric cancer cell line was co-cultured with primary human gastric fibroblast, STAT3-related genes including COX-2 and iNOS were induced in gastric cancer cells and this response was attenuated with neutralizing anti-IL-6 receptor antibody. IL-6 production from fibroblasts was increased when fibroblasts were cultured in the presence of gastric cancer cell-conditioned media. IL-6 production from fibroblasts was suppressed by an interleukin-1 (IL-1 receptor antagonist and siRNA inhibition of IL-1α in the fibroblasts. IL-1α mRNA and protein were increased in fibroblast lysate, suggesting that cell-associated IL-1α in fibroblasts may be involved. Our results suggest the importance of IL-6 mediated stromal-epithelial cell interaction in gastric tumorigenesis.

  11. Specific epidermal growth factor receptor autophosphorylation sites promote mouse colon epithelial cell chemotaxis and restitution.

    Science.gov (United States)

    Yamaoka, Toshimitsu; Frey, Mark R; Dise, Rebecca S; Bernard, Jessica K; Polk, D Brent

    2011-08-01

    Upon ligand binding, epidermal growth factor (EGF) receptor (R) autophosphorylates on COOH-terminal tyrosines, generating docking sites for signaling partners that stimulate proliferation, restitution, and chemotaxis. Specificity for individual EGFR tyrosines in cellular responses has been hypothesized but not well documented. Here we tested the requirement for particular tyrosines, and associated downstream pathways, in mouse colon epithelial cell chemotactic migration. We compared these requirements to those for the phenotypically distinct restitution (wound healing) migration. Wild-type, Y992/1173F, Y1045F, Y1068F, and Y1086F EGFR constructs were expressed in EGFR(-/-) cells; EGF-induced chemotaxis or restitution were determined by Boyden chamber or modified scratch wound assay, respectively. Pharmacological inhibitors of p38, phospholipase C (PLC), Src, MEK, JNK/SAPK, phosphatidylinositol 3-kinase (PI 3-kinase), and protein kinase C (PKC) were used to block EGF-stimulated signaling. Pathway activation was determined by immunoblot analysis. Unlike wild-type EGFR, Y992/1173F and Y1086F EGFR did not stimulate colon epithelial cell chemotaxis toward EGF; Y1045F and Y1068F EGFR partially stimulated chemotaxis. Only wild-type EGFR promoted colonocyte restitution. Inhibition of p38, PLC, and Src, or Grb2 knockdown, blocked chemotaxis; JNK, PI 3-kinase, and PKC inhibitors or c-Cbl knockdown blocked restitution but not chemotaxis. All four EGFR mutants stimulated downstream signaling in response to EGF, but Y992/1173F EGFR was partially defective in PLCγ activation whereas both Y1068F and Y1086F EGFR failed to activate Src. We conclude that specific EGFR tyrosines play key roles in determining cellular responses to ligand. Chemotaxis and restitution, which have different migration phenotypes and physiological consequences, have overlapping but not identical EGFR signaling requirements.

  12. Functional polymorphisms in the TERT promoter are associated with risk of serous epithelial ovarian and breast cancers.

    Directory of Open Access Journals (Sweden)

    Jonathan Beesley

    Full Text Available Genetic variation at the TERT-CLPTM1L locus at 5p15.33 is associated with susceptibility to several cancers, including epithelial ovarian cancer (EOC. We have carried out fine-mapping of this region in EOC which implicates an association with a single nucleotide polymorphism (SNP within the TERT promoter. We demonstrate that the minor alleles at rs2736109, and at an additional TERT promoter SNP, rs2736108, are associated with decreased breast cancer risk, and that the combination of both SNPs substantially reduces TERT promoter activity.

  13. Pili-like proteins of Akkermansia muciniphila modulate host immune responses and gut barrier function

    Science.gov (United States)

    Reunanen, Justus; Meijerink, Marjolein; Pietilä, Taija E.; Kainulainen, Veera; Klievink, Judith; Huuskonen, Laura; Aalvink, Steven; Skurnik, Mikael; Boeren, Sjef; Satokari, Reetta; Mercenier, Annick; Palva, Airi; Smidt, Hauke; de Vos, Willem M.; Belzer, Clara

    2017-01-01

    Gut barrier function is key in maintaining a balanced response between the host and its microbiome. The microbiota can modulate changes in gut barrier as well as metabolic and inflammatory responses. This highly complex system involves numerous microbiota-derived factors. The gut symbiont Akkermansia muciniphila is positively correlated with a lean phenotype, reduced body weight gain, amelioration of metabolic responses and restoration of gut barrier function by modulation of mucus layer thickness. However, the molecular mechanisms behind its metabolic and immunological regulatory properties are unexplored. Herein, we identify a highly abundant outer membrane pili-like protein of A. muciniphila MucT that is directly involved in immune regulation and enhancement of trans-epithelial resistance. The purified Amuc_1100 protein and enrichments containing all its associated proteins induced production of specific cytokines through activation of Toll-like receptor (TLR) 2 and TLR4. This mainly leads to high levels of IL-10 similar to those induced by the other beneficial immune suppressive microorganisms such as Faecalibacterium prausnitzii A2-165 and Lactobacillus plantarum WCFS1. Together these results indicate that outer membrane protein composition and particularly the newly identified highly abundant pili-like protein Amuc_1100 of A. muciniphila are involved in host immunological homeostasis at the gut mucosa, and improvement of gut barrier function. PMID:28249045

  14. An LGG-derived protein promotes IgA production through upregulation of APRIL expression in intestinal epithelial cells.

    Science.gov (United States)

    Wang, Y; Liu, L; Moore, D J; Shen, X; Peek, R M; Acra, S A; Li, H; Ren, X; Polk, D B; Yan, F

    2017-03-01

    p40, a Lactobacillus rhamnosus GG (LGG)-derived protein, transactivates epidermal growth factor receptor (EGFR) in intestinal epithelial cells, leading to amelioration of intestinal injury and inflammation. To elucidate mechanisms by which p40 regulates mucosal immunity to prevent inflammation, this study aimed to determine the effects and mechanisms of p40 on regulation of a proliferation-inducing ligand (APRIL) expression in intestinal epithelial cells for promoting immunoglobulin A (IgA) production. p40 upregulated April gene expression and protein production in mouse small intestine epithelial (MSIE) cells, which were inhibited by blocking EGFR expression and kinase activity. Enteroids from Egfr(fl/fl), but not Egfr(fl/fl)-Vil-Cre mice with EGFR specifically deleted in intestinal epithelial cells, exhibited increased April gene expression by p40 treatment. p40-conditioned media from MSIE cells increased B-cell class switching to IgA(+) cells and IgA production, which was suppressed by APRIL receptor-neutralizing antibodies. Treatment of B cells with p40 did not show any effects on IgA production. p40 treatment increased April gene expression and protein production in small intestinal epithelial cells, fecal IgA levels, IgA(+)B220(+), IgA(+)CD19(+), and IgA(+) plasma cells in lamina propria of Egfr(fl/fl), but not of Egfr(fl/fl)-Vil-Cre, mice. Thus p40 upregulates EGFR-dependent APRIL production in intestinal epithelial cells, which may contribute to promoting IgA production.

  15. Cten promotes epithelial-mesenchymal transition through the post-transcriptional stabilization of Snail.

    Science.gov (United States)

    Thorpe, Hannah; Asiri, Abdulaziz; Akhlaq, Maham; Ilyas, Mohammad

    2017-07-10

    Cten promotes cell migration however the knowledge of underlying signalling pathways is sparse. We have shown that Cten downregulates E-cadherin, a feature of epithelial to mesenchymal transition (EMT). This prompted us to investigate whether Cten further contributed to EMT processes to regulate cell motility. The regulation of Snail by Cten was investigated following overexpression, knockdown (by RNA-interference) or knockout of Cten in HCT116, Caco-2 and SW620 colorectal cancer (CRC) cell lines. Subsequently, the cycloheximide (CHX) pulse chase assay was used to investigate changes in Snail protein stability and the functional relevance of Cten-Snail signalling was investigated. Snail was identified as a downstream target of Cten signalling using multiple approaches of Cten expression manipulation. Furthermore, this activity was mediated through the SH2 domain of Cten. The CHX assay confirmed that Cten was regulating Snail at a post transcriptional level and this was through the prevention of Snail degradation. Cell migration, invasion and colony formation efficiency were increased following forced expression of GFP-Cten but subsequently lost when Snail was knocked down, demonstrating a functional Cten-Snail signalling axis. In conclusion, we have described a novel Cten-Snail signaling pathway that contributes to cell motility in CRC, mediated by the stabilization of Snail protein. This finding potentially furthers the understanding of EMT regulatory networks in cancer metastasis. © 2017 Wiley Periodicals, Inc.

  16. Hyperglycemia Promotes the Epithelial-Mesenchymal Transition of Pancreatic Cancer via Hydrogen Peroxide

    Directory of Open Access Journals (Sweden)

    Wei Li

    2016-01-01

    Full Text Available Diabetes mellitus (DM and pancreatic cancer are intimately related, as approximately 85% of patients diagnosed with pancreatic cancer have impaired glucose tolerance or even DM. Our previous studies have indicated that high glucose could promote the invasive and migratory abilities of pancreatic cancer cells. We therefore explored the underlying mechanism that hyperglycemia modulates the metastatic potential of pancreatic cancer. Our data showed that streptozotocin- (STZ- treated diabetic nude mice exhibit larger tumor size than that of the euglycemic mice. The number of nude mice that develop liver metastasis or ascites is much more in the STZ-treated group than that in the euglycemic group. Hyperglycemic mice contain a higher plasma H2O2-level than that from euglycemic mice. The injection of polyethylene glycol-conjugated catalase (PEG-CAT, an H2O2 scavenger, may reverse hyperglycemia-induced tumor metastasis. In addition, hyperglycemia could also modulate the expression of epithelial-mesenchymal transition- (EMT- related factors in pancreatic tumor tissues, as the E-cadherin level is decreased and the expression of mesenchymal markers N-cadherin and vimentin as well as transcription factor snail is strongly increased. The injection of PEG-CAT could also reverse hyperglycemia-induced EMT. These results suggest that the association between hyperglycemia and poor prognosis of pancreatic cancer can be attributed to the alterations of EMT through the production of hydrogen peroxide.

  17. Epithelial membrane protein-2 promotes endometrial tumor formation through activation of FAK and Src.

    Directory of Open Access Journals (Sweden)

    Maoyong Fu

    Full Text Available Endometrial cancer is the most common gynecologic malignancy diagnosed among women in developed countries. One recent biomarker strongly associated with disease progression and survival is epithelial membrane protein-2 (EMP2, a tetraspan protein known to associate with and modify surface expression of certain integrin isoforms. In this study, we show using a xenograft model system that EMP2 expression is necessary for efficient endometrial tumor formation, and we have started to characterize the mechanism by which EMP2 contributes to this malignant phenotype. In endometrial cancer cells, the focal adhesion kinase (FAK/Src pathway appears to regulate migration as measured through wound healing assays. Manipulation of EMP2 levels in endometrial cancer cells regulates the phosphorylation of FAK and Src, and promotes their distribution into lipid raft domains. Notably, cells with low levels of EMP2 fail to migrate and poorly form tumors in vivo. These findings reveal the pivotal role of EMP2 in endometrial cancer carcinogenesis, and suggest that the association of elevated EMP2 levels with endometrial cancer prognosis may be causally linked to its effect on integrin-mediated signaling.

  18. Enhanced proliferation, invasion, and epithelial-mesenchymal transition of nicotine-promoted gastric cancer by periostin

    Institute of Scientific and Technical Information of China (English)

    Yu Liu; Bao-An Liu

    2011-01-01

    AIM: To investigate the contribution of periostin in nicotine-promoted gastric cancer cell proliferation, survival, invasion, drug resistance, and epithelial-mesenchymal transition (EMT). METHODS: Gastric cancer cells were treated with nicotine and periostin protein expression was determined by immunoblotting. Periostin mRNA in gastric cancer cells was silenced using small interfering RNA (siRNA) techniques and periostin gene expression was evaluated by quantitative reverse transcription-polymerase chain reaction. Gastric cancer cells transfected with control or periostin siRNA plasmid were compared in terms of cell proliferation using the methylthiazolyldiphenyl-tetrazolium bromide assay. Cell apoptosis was compared using annexin V-fluoresceine isothiocyanate and propidium iodine double staining. Tumor invasion was determined using the Boyden chamber invasion assay, and the EMT marker Snail expression was evaluated by immunoblotting. RESULTS: Nicotine upregulated periostin in gastric cancer cells through a COX-2 dependent pathway, which was blocked by the COX-2-specific inhibitor NS398. Periostin mRNA expression was decreased by ~87.2% by siRNA in gastric cancer cells, and stable periostinsilenced cells were obtained by G418 screening. Periostin- silenced gastric cancer cells exhibited reduced cell proliferation, elevated sensitivity to chemotherapy with 5-fluorouracil, and decreased cell invasion and Snail expression (P < 0.05). CONCLUSION: Periostin is a nicotine target gene in gastric cancer and plays a role in gastric cancer cell growth, invasion, drug resistance, and EMT facilitated by nicotine.

  19. Parathyroid hormone related-protein promotes epithelial-to-mesenchymal transition in prostate cancer.

    Directory of Open Access Journals (Sweden)

    Weg M Ongkeko

    Full Text Available Parathyroid hormone-related protein (PTHrP possesses a variety of physiological and developmental functions and is also known to facilitate the progression of many common cancers, notably their skeletal invasion, primarily by increasing bone resorption. The purpose of this study was to determine whether PTHrP could promote epithelial-to-mesenchymal transition (EMT, a process implicated in cancer stem cells that is critically involved in cancer invasion and metastasis. EMT was observed in DU 145 prostate cancer cells stably overexpressing either the 1-141 or 1-173 isoform of PTHrP, where there was upregulation of Snail and vimentin and downregulation of E-cadherin relative to parental DU 145. By contrast, the opposite effect was observed in PC-3 prostate cancer cells where high levels of PTHrP were knocked-down via lentiviral siRNA transduction. Increased tumor progression was observed in PTHrP-overexpressing DU 145 cells while decreased progression was observed in PTHrP-knockdown PC-3 cells. PTHrP-overexpressing DU 145 formed larger tumors when implanted orthoptopically into nude mice and in one case resulted in spinal metastasis, an effect not observed among mice injected with parental DU 145 cells. PTHrP-overexpressing DU 145 cells also caused significant bone destruction when injected into the tibiae of nude mice, while parental DU 145 cells caused little to no destruction of bone. Together, these results suggest that PTHrP may work through EMT to promote an aggressive and metastatic phenotype in prostate cancer, a pathway of importance in cancer stem cells. Thus, continued efforts to elucidate the pathways involved in PTHrP-induced EMT as well as to develop ways to specifically target PTHrP signaling may lead to more effective therapies for prostate cancer.

  20. Epithelial nuclear factor-κB signaling promotes lung carcinogenesis via recruitment of regulatory T lymphocytes.

    Science.gov (United States)

    Zaynagetdinov, R; Stathopoulos, G T; Sherrill, T P; Cheng, D-S; McLoed, A G; Ausborn, J A; Polosukhin, V V; Connelly, L; Zhou, W; Fingleton, B; Peebles, R S; Prince, L S; Yull, F E; Blackwell, T S

    2012-06-28

    The mechanisms by which chronic inflammatory lung diseases, particularly chronic obstructive pulmonary disease, confer enhanced risk for lung cancer are not well-defined. To investigate whether nuclear factor (NF)-κB, a key mediator of immune and inflammatory responses, provides an interface between persistent lung inflammation and carcinogenesis, we utilized tetracycline-inducible transgenic mice expressing constitutively active IκB kinase β in airway epithelium (IKTA (IKKβ trans-activated) mice). Intraperitoneal injection of ethyl carbamate (urethane), or 3-methylcholanthrene (MCA) and butylated hydroxytoluene (BHT) was used to induce lung tumorigenesis. Doxycycline-treated IKTA mice developed chronic airway inflammation and markedly increased numbers of lung tumors in response to urethane, even when transgene expression (and therefore epithelial NF-κB activation) was begun after exposure to carcinogen. Studies using a separate tumor initiator/promoter model (MCA+BHT) indicated that NF-κB functions as an independent tumor promoter. Enhanced tumor formation in IKTA mice was preceded by increased proliferation and reduced apoptosis of alveolar epithelium, resulting in increased formation of premalignant lesions. Investigation of inflammatory cells in lungs of IKTA mice revealed a substantial increase in macrophages and lymphocytes, including functional CD4+/CD25+/FoxP3+ regulatory T lymphocytes (Tregs). Importantly, Treg depletion using repetitive injections of anti-CD25 antibodies limited excessive tumor formation in IKTA mice. At 6 weeks following urethane injection, antibody-mediated Treg depletion in IKTA mice reduced the number of premalignant lesions in the lungs in association with an increase in CD8 lymphocytes. Thus, persistent NF-κB signaling in airway epithelium facilitates carcinogenesis by sculpting the immune/inflammatory environment in the lungs.

  1. Parathyroid hormone related-protein promotes epithelial-to-mesenchymal transition in prostate cancer.

    Science.gov (United States)

    Ongkeko, Weg M; Burton, Doug; Kiang, Alan; Abhold, Eric; Kuo, Selena Z; Rahimy, Elham; Yang, Meng; Hoffman, Robert M; Wang-Rodriguez, Jessica; Deftos, Leonard J

    2014-01-01

    Parathyroid hormone-related protein (PTHrP) possesses a variety of physiological and developmental functions and is also known to facilitate the progression of many common cancers, notably their skeletal invasion, primarily by increasing bone resorption. The purpose of this study was to determine whether PTHrP could promote epithelial-to-mesenchymal transition (EMT), a process implicated in cancer stem cells that is critically involved in cancer invasion and metastasis. EMT was observed in DU 145 prostate cancer cells stably overexpressing either the 1-141 or 1-173 isoform of PTHrP, where there was upregulation of Snail and vimentin and downregulation of E-cadherin relative to parental DU 145. By contrast, the opposite effect was observed in PC-3 prostate cancer cells where high levels of PTHrP were knocked-down via lentiviral siRNA transduction. Increased tumor progression was observed in PTHrP-overexpressing DU 145 cells while decreased progression was observed in PTHrP-knockdown PC-3 cells. PTHrP-overexpressing DU 145 formed larger tumors when implanted orthoptopically into nude mice and in one case resulted in spinal metastasis, an effect not observed among mice injected with parental DU 145 cells. PTHrP-overexpressing DU 145 cells also caused significant bone destruction when injected into the tibiae of nude mice, while parental DU 145 cells caused little to no destruction of bone. Together, these results suggest that PTHrP may work through EMT to promote an aggressive and metastatic phenotype in prostate cancer, a pathway of importance in cancer stem cells. Thus, continued efforts to elucidate the pathways involved in PTHrP-induced EMT as well as to develop ways to specifically target PTHrP signaling may lead to more effective therapies for prostate cancer.

  2. Epidermal growth factor promotes protein degradation of epithelial protein lost in neoplasm (EPLIN), a putative metastasis suppressor, during epithelial-mesenchymal transition.

    Science.gov (United States)

    Zhang, Shumin; Wang, Xu; Iqbal, Shareen; Wang, Yanru; Osunkoya, Adeboye O; Chen, Zhengjia; Chen, Zhuo; Shin, Dong M; Yuan, Hongwei; Wang, Yongqiang A; Zhau, Haiyen E; Chung, Leland W K; Ritenour, Chad; Kucuk, Omer; Wu, Daqing

    2013-01-18

    Aberrant expression of EGF receptors has been associated with hormone-refractory and metastatic prostate cancer (PCa). However, the molecular mechanism for EGF signaling in promoting PCa metastasis remains elusive. Using experimental models of PCa metastasis, we demonstrated that EGF could induce robust epithelial-mesenchymal transition (EMT) and increase invasiveness. Interestingly, EGF was found to be capable of promoting protein turnover of epithelial protein lost in neoplasm (EPLIN), a putative suppressor of EMT and tumor metastasis. Mechanistic study revealed that EGF could activate the phosphorylation, ubiquitination, and degradation of EPLIN through an extracellular signal-regulated kinase 1/2 (ERK1/2)-dependent signaling cascade. Pharmacological inhibition of the ERK1/2 pathway effectively antagonized EGF-induced EPLIN degradation. Two serine residues, i.e. serine 362 and serine 604, were identified as putative ERK1/2 phosphorylation sites in human EPLIN, whose point mutation rendered resistance to EGF-induced protein turnover. This study elucidated a novel molecular mechanism for EGF regulation of EMT and invasiveness in PCa cells, indicating that blockade of EGF signaling could be beneficial in preventing and retarding PCa metastasis at early stages.

  3. Leptin promotes metastasis by inducing an epithelial-mesenchymal transition in A549 lung cancer cells.

    Science.gov (United States)

    Feng, Helin; Liu, Qingyi; Zhang, Ning; Zheng, Lihua; Sang, Meixiang; Feng, Jiangang; Zhang, Jinming; Wu, Xiangyun; Shan, Baoen

    2013-01-01

    Leptin, an adipocyte-derived cytokine associated with obesity, has been reported to participate in carcinogenesis. Epithelial-mesenchymal transition (EMT) is also considered as a key event in tumor metastasis. The aim of this study is to investigate the mechanism of leptin in the promotion of EMT leading to metastasis in A549 lung cancer cells. We investigated the effect of leptin on migration of A549 cells using wound healing and transwell assays. The incidence of EMT in A549 cells was examined by real-time PCR and immunofluorescence staining. The expression of TGF-β in A549 cells was detected by real-time PCR, and blocking of TGF-β in A549 cells was achieved by siRNA techniques. Additional work was performed using 100 patient samples, which included samples from 50 patients diagnosed with lung cancer and an additional 50 patients diagnosed with lung cancer with metastatic bone lesions. Leptin expression was measured using immunohistochemistry techniques. We demonstrated that leptin can effectively enhance the metastasis of human lung cancer A549 cell line using both wound healing and transwell assays. We also found the incidence of EMT in A549 cells after leptin exposure. Furthermore, we detected the expression of TGF-β in A549 cells, which had been reported to play an important role in inducing EMT. We showed that leptin can significantly upregulate TGF-β at both the mRNA and protein levels in A549 cells. Using siRNA to block the expression of TGF-β in A549 cells, we confirmed the role of TGF-β in the promotion of metastasis and induction of EMT. Furthermore, we found that in patient samples leptin was present at higher levels in samples associated with diagnosis of lung cancer bone metastases tissue than lung cancer tissue. Our results indicated that leptin promoted the metastasis of A549 human lung cancer cell lines by inducing EMT in a TGF-β-dependent manner.

  4. A gene expression programme induced by bovine colostrum whey promotes growth and wound-healing processes in intestinal epithelial cells.

    Science.gov (United States)

    Blais, M; Pouliot, Y; Gauthier, S; Boutin, Y; Lessard, M

    2014-01-01

    Bovine colostrum is well known for its beneficial properties on health and development. It contains a wide variety of bioactive ingredients that are known to promote a number of cellular processes. Therefore the use of colostrum whey as a feed additive to promote intestinal health has been proposed, yet little is known about mechanisms implicated in its beneficial properties on intestinal epithelial cells. In the present paper, casein were removed from bovine colostrum and the remaining liquid, rich in bioactive compounds, was evaluated for its capacity to modulate cellular processes in porcine intestinal epithelial cell line IPEC-J2 and human colon adenocarcinoma cell line Caco-2/15. First, we verified the effect of colostrum whey and cheese whey on processes involved in intestinal wound healing, including cell proliferation, attachment, morphology and migration. Our results showed that colostrum whey promoted proliferation and migration, and decreased specifically the attachment of Caco-2/15 cells on the culture dish. On the other hand, cheese whey induced proliferation and morphological changes in IPEC-J2 cells, but failed to induce migration. The gene expression profile of IPEC-J2 cells following colostrum whey treatment was evaluated by microarray analysis. Results revealed that the expression of a significant number of genes involved in cell migration, adhesion and proliferation was indeed affected in colostrum whey-treated cells. In conclusion, colostrum specific bioactive content could be beneficial for intestinal epithelial cell homoeostasis by controlling biological processes implicated in wound healing through a precise gene expression programme.

  5. The SULFs, extracellular sulfatases for heparan sulfate, promote the migration of corneal epithelial cells during wound repair.

    Directory of Open Access Journals (Sweden)

    Inna Maltseva

    Full Text Available Corneal epithelial wound repair involves the migration of epithelial cells to cover the defect followed by the proliferation of the cells to restore thickness. Heparan sulfate proteoglycans (HSPGs are ubiquitous extracellular molecules that bind to a plethora of growth factors, cytokines, and morphogens and thereby regulate their signaling functions. Ligand binding by HS chains depends on the pattern of four sulfation modifications, one of which is 6-O-sulfation of glucosamine (6OS. SULF1 and SULF2 are highly homologous, extracellular endosulfatases, which post-synthetically edit the sulfation status of HS by removing 6OS from intact chains. The SULFs thereby modulate multiple signaling pathways including the augmentation of Wnt/ß-catenin signaling. We found that wounding of mouse corneal epithelium stimulated SULF1 expression in superficial epithelial cells proximal to the wound edge. Sulf1⁻/⁻, but not Sulf2⁻/⁻, mice, exhibited a marked delay in healing. Furthermore, corneal epithelial cells derived from Sulf1⁻/⁻ mice exhibited a reduced rate of migration in repair of a scratched monolayer compared to wild-type cells. In contrast, human primary corneal epithelial cells expressed SULF2, as did a human corneal epithelial cell line (THCE. Knockdown of SULF2 in THCE cells also slowed migration, which was restored by overexpression of either mouse SULF2 or human SULF1. The interchangeability of the two SULFs establishes their capacity for functional redundancy. Knockdown of SULF2 decreased Wnt/ß-catenin signaling in THCE cells. Extracellular antagonists of Wnt signaling reduced migration of THCE cells. However in SULF2- knockdown cells, these antagonists exerted no further effects on migration, consistent with the SULF functioning as an upstream regulator of Wnt signaling. Further understanding of the mechanistic action of the SULFs in promoting corneal repair may lead to new therapeutic approaches for the treatment of corneal injuries.

  6. Molecular analysis of the UV-inducible pili operon from Sulfolobus acidocaldarius

    NARCIS (Netherlands)

    Wolferen, Marleen van; Ajon, Małgorzata; Driessen, Arnold J.M.; Albers, Sonja-Verena

    2013-01-01

    Upon ultraviolet (UV) stress, hyperthermophilic Sulfolobus species show a highly induced transcription of a gene cluster responsible for pili biogenesis: the UV-inducible pili operon (ups operon). This operon is involved in UV-induced pili assembly, cellular aggregation, and subsequent DNA exchange

  7. Hepatitis B virus X protein promotes renal epithelial-mesenchymal transition in human renal proximal tubule epithelial cells through the activation of NF-κB.

    Science.gov (United States)

    Li, Mei; Hu, Liping; Zhu, Fengxin; Zhou, Zhangmei; Tian, Jianwei; Ai, Jun

    2016-08-01

    Hepatitis B virus (HBV)-associated glomerulo-nephritis is the most common extra-hepatic disorder occurring with hepatitis B virus infection. In the present study, we hypothesized that HBV X protein (HBx) may play a critical role in renal interstitial fibrosis, as HBx has been shown to induce epithelial-mesenchymal transition (EMT) in renal cells. For this purpose, we successfully transfected HBx plasmid into human renal proximal tubule epithelial cells (HK-2 cells). We found that transfection with HBx plasmid significantly downregulated E-cadherin expression and upregulated α-smooth muscle actin, collagen I and fibronectin expression in a time- and concentration-dependent manner (at the lower concentrations and earlier time points). HBx also increased nuclear factor-κB (NF-κB) phosphorylation in a time- and concentration-dependent manner (again at the lower concentrations and earlier time points); however, it did not alter the phosphorylation of Smad2, Smad3, p38, phosphoinositide 3-kinase (PI3K) or extracellular signal-regulated kinase (ERK). Thus, the findings of this study demonstrate that HBx promotes EMT in renal HK-2 cells, and the potential underlying mechanisms may involve the activation of the NF-κB signaling pathway.

  8. Epidermal growth factor stimulates Rac activation through Src and phosphatidylinositol 3-kinase to promote colonic epithelial cell migration.

    Science.gov (United States)

    Dise, Rebecca S; Frey, Mark R; Whitehead, Robert H; Polk, D Brent

    2008-01-01

    Regulated intestinal epithelial cell migration plays a key role in wound healing and maintenance of a healthy gastrointestinal tract. Epidermal growth factor (EGF) stimulates cell migration and wound closure in intestinal epithelial cells through incompletely understood mechanisms. In this study we investigated the role of the small GTPase Rac in EGF-induced cell migration using an in vitro wound-healing assay. In mouse colonic epithelial (MCE) cell lines, EGF-stimulated wound closure was accompanied by a doubling of the number of cells containing lamellipodial extensions at the wound margin, increased Rac membrane translocation in cells at the wound margin, and rapid Rac activation. Either Rac1 small interfering (si)RNA or a Rac1 inhibitor completely blocked EGF-stimulated wound closure. Whereas EGF failed to activate Rac in colon cells from EGF receptor (EGFR) knockout mice, stable expression of wild-type EGFR restored EGF-stimulated Rac activation and migration. Pharmacological inhibition of either phosphatidylinositol 3-kinase (PI3K) or Src family kinases reduced EGF-stimulated Rac activation. Cotreatment of cells with both inhibitors completely blocked EGF-stimulated Rac activation and localization to the leading edge of cells and lamellipodial extension. Our results present a novel mechanism by which the PI3K and Src signaling cascades cooperate to activate Rac and promote intestinal epithelial cell migration downstream of EGFR.

  9. Expressing the Geobacter metallireducens PilA in Geobacter sulfurreducens Yields Pili with Exceptional Conductivity

    Science.gov (United States)

    Tan, Yang; Adhikari, Ramesh Y.; Malvankar, Nikhil S.; Ward, Joy E.; Woodard, Trevor L.; Nevin, Kelly P.

    2017-01-01

    ABSTRACT The electrically conductive pili (e-pili) of Geobacter sulfurreducens serve as a model for a novel strategy for long-range extracellular electron transfer. e-pili are also a new class of bioelectronic materials. However, the only other Geobacter pili previously studied, which were from G. uraniireducens, were poorly conductive. In order to obtain more information on the range of pili conductivities in Geobacter species, the pili of G. metallireducens were investigated. Heterologously expressing the PilA gene of G. metallireducens in G. sulfurreducens yielded a G. sulfurreducens strain, designated strain MP, that produced abundant pili. Strain MP exhibited phenotypes consistent with the presence of e-pili, such as high rates of Fe(III) oxide reduction and high current densities on graphite anodes. Individual pili prepared at physiologically relevant pH 7 had conductivities of 277 ± 18.9 S/cm (mean ± standard deviation), which is 5,000-fold higher than the conductivity of G. sulfurreducens pili at pH 7 and nearly 1 million-fold higher than the conductivity of G. uraniireducens pili at the same pH. A potential explanation for the higher conductivity of the G. metallireducens pili is their greater density of aromatic amino acids, which are known to be important components in electron transport along the length of the pilus. The G. metallireducens pili represent the most highly conductive pili found to date and suggest strategies for designing synthetic pili with even higher conductivities. PMID:28096491

  10. Connective Tissue Growth Factor Promotes Pulmonary Epithelial Cell Senescence and Is Associated with COPD Severity.

    Science.gov (United States)

    Jang, Jun-Ho; Chand, Hitendra S; Bruse, Shannon; Doyle-Eisele, Melanie; Royer, Christopher; McDonald, Jacob; Qualls, Clifford; Klingelhutz, Aloysius J; Lin, Yong; Mallampalli, Rama; Tesfaigzi, Yohannes; Nyunoya, Toru

    2017-04-01

    The purpose of this study was to determine whether expression of connective tissue growth factor (CTGF) protein in chronic obstructive pulmonary disease (COPD) is consistent in humans and animal models of COPD and to investigate the role of this protein in lung epithelial cells. CTGF in lung epithelial cells of ex-smokers with COPD was compared with ex-smokers without COPD by immunofluorescence. A total of twenty C57Bl/6 mice and sixteen non-human primates (NHPs) were exposed to cigarette smoke (CS) for 4 weeks. Ten mice of these CS-exposed mice and eight of the CS-exposed NHPs were infected with H3N2 influenza A virus (IAV), while the remaining ten mice and eight NHPs were mock-infected with vehicle as control. Both mRNA and protein expression of CTGF in lung epithelial cells of mice and NHPs were determined. The effects of CTGF overexpression on cell proliferation, p16 protein, and senescence-associated β-galactosidase (SA-β-gal) activity were examined in cultured human bronchial epithelial cells (HBECs). In humans, CTGF expression increased with increasing COPD severity. We found that protein expression of CTGF was upregulated in lung epithelial cells in both mice and NHPs exposed to CS and infected with IAV compared to those exposed to CS only. When overexpressed in HBECs, CTGF accelerated cellular senescence accompanied by p16 accumulation. Both CTGF and p16 protein expression in lung epithelia are positively associated with the severity of COPD in ex-smokers. These findings show that CTGF is consistently expressed in epithelial cells of COPD lungs. By accelerating lung epithelial senescence, CTGF may block regeneration relative to epithelial cell loss and lead to emphysema.

  11. Single-cell force spectroscopy of pili-mediated adhesion

    Science.gov (United States)

    Sullan, Ruby May A.; Beaussart, Audrey; Tripathi, Prachi; Derclaye, Sylvie; El-Kirat-Chatel, Sofiane; Li, James K.; Schneider, Yves-Jacques; Vanderleyden, Jos; Lebeer, Sarah; Dufrêne, Yves F.

    2013-12-01

    Although bacterial pili are known to mediate cell adhesion to a variety of substrates, the molecular interactions behind this process are poorly understood. We report the direct measurement of the forces guiding pili-mediated adhesion, focusing on the medically important probiotic bacterium Lactobacillus rhamnosus GG (LGG). Using non-invasive single-cell force spectroscopy (SCFS), we quantify the adhesion forces between individual bacteria and biotic (mucin, intestinal cells) or abiotic (hydrophobic monolayers) surfaces. On hydrophobic surfaces, bacterial pili strengthen adhesion through remarkable nanospring properties, which - presumably - enable the bacteria to resist high shear forces under physiological conditions. On mucin, nanosprings are more frequent and adhesion forces larger, reflecting the influence of specific pili-mucin bonds. Interestingly, these mechanical responses are no longer observed on human intestinal Caco-2 cells. Rather, force curves exhibit constant force plateaus with extended ruptures reflecting the extraction of membrane nanotethers. These single-cell analyses provide novel insights into the molecular mechanisms by which piliated bacteria colonize surfaces (nanosprings, nanotethers), and offer exciting avenues in nanomedicine for understanding and controlling the adhesion of microbial cells (probiotics, pathogens).

  12. The biomechanical properties of F1C pili

    CERN Document Server

    Castelain, Mickaël; Klinth, Jeanna; Lindberg, Stina; Andersson, Magnus; Uhlin, Bernt Eric; Axner, Ove

    2014-01-01

    Uropathogenic Escherichia coli (UPEC) express various kinds of organelles, so-called pili or fimbriae, that mediate adhesion to host tissue in the urinary tract through specific receptor-adhesin interactions. The biomechanical properties of these pili have been considered important for the ability of bacteria to withstand shear forces from rinsing urine flows. Force measuring optical tweezers have been used to characterize individual organelles of F1C type expressed by UPEC bacteria with respect to such properties. Qualitatively, the force-vs.-elongation response was found to be similar to that of other types of helix-like pili expressed by UPEC, i.e. type 1, P, and S, with force-induced elongation in three regions of which one represents the important uncoiling mechanism of the helix-like quaternary structure. Quantitatively, the steady-state uncoiling force was assessed to 26.4(1.4) pN, which is similar to those of other pili (which range from 21 pN for SI to 30 pN for type 1). The corner velocity for dynam...

  13. Interleukin-4 Induces CpG Site-Specific Demethylation of the Pendrin Promoter in Primary Human Bronchial Epithelial Cells

    Directory of Open Access Journals (Sweden)

    Giada Scantamburlo

    2017-03-01

    Full Text Available Pendrin is upregulated in bronchial epithelial cells following IL-4 stimulation via binding of STAT6 to an N4 GAS motif. Basal CpG methylation of the pendrin promoter is cell-specific. We studied if a correlation exists between IL-4 sensitivity and the CpG methylation status of the pendrin promoter in human bronchial epithelial cell models. Methods: Real-time PCR and pyrosequencing were used to respectively quantify pendrin mRNA levels and methylation of pendrin promoter, with and without IL-4 stimulation, in healthy and diseased primary HBE cells, as well as NCI-H292 cells. Results: Increases in pendrin mRNA after IL-4 stimulation was more robust in NCI-H292 cells than in primary cells. The amount of gDNA methylated varied greatly between the cell types. In particular, CpG site 90 located near the N4 GAS motif was highly methylated in the primary cells. An additional CpG site (90bis, created by a SNP, was found only in the primary cells. IL-4 stimulation resulted in dramatic demethylation of CpG sites 90 and 90bis in the primary cells. Conclusions: IL-4 induces demethylation of specific CpG sites within the pendrin promoter. These epigenetic alterations are cell type specific, and may in part dictate pendrin mRNA transcription.

  14. NEDD9 is a positive regulator of epithelial-mesenchymal transition and promotes invasion in aggressive breast cancer.

    Directory of Open Access Journals (Sweden)

    Chenfei Kong

    Full Text Available Epithelial to mesenchymal transition (EMT plays an important role in many biological processes. The latest studies revealed that aggressive breast cancer, especially the triple-negative breast cancer (TNBC subtype was frequently associated with apparent EMT, but the mechanisms are still unclear. NEDD9/HEF1/Cas-L is a member of the Cas protein family and was identified as a metastasis marker in multiple cancer types. In this study, we wished to discern the role of NEDD9 in breast cancer progression and to investigate the molecular mechanism by which NEDD9 regulates EMT and promotes invasion in triple-negative breast cancer. We showed that expression of NEDD9 was frequently upregulated in TNBC cell lines, and in aggressive breast tumors, especially in TNBC subtype. Knockdown of endogenous NEDD9 reduced the migration, invasion and proliferation of TNBC cells. Moreover, ectopic overexpression of NEDD9 in mammary epithelial cells led to a string of events including the trigger of EMT, activation of ERK signaling, increase of several EMT-inducing transcription factors and promotion of their interactions with the E-cadherin promoter. Data presented in this report contribute to the understanding of the mechanisms by which NEDD9 promotes EMT, and provide useful clues to the evaluation of the potential of NEDD9 as a responsive molecular target for TNBC chemotherapy.

  15. Streptococcus pyogenes pili promote pharyngeal cell adhesion and biofilm formation

    National Research Council Canada - National Science Library

    Manetti, Andrea G. O; Zingaretti, Chiara; Falugi, Fabiana; Capo, Sabrina; Bombaci, Mauro; Bagnoli, Fabio; Gambellini, Gabriella; Bensi, Giuliano; Mora, Marirosa; Edwards, Andrew M; Musser, James M; Graviss, Edward A; Telford, John L; Grandi, Guido; Margarit, Immaculada

    2007-01-01

    Group A Streptococcus (GAS, Streptococcus pyogenes ) is a Gram‐positive human pathogen responsible for several acute diseases and autoimmune sequelae that account for half a million deaths worldwide every year...

  16. LL-37 via EGFR transactivation to promote high glucose-attenuated epithelial wound healing in organ-cultured corneas.

    Science.gov (United States)

    Yin, Jia; Yu, Fu-Shin X

    2010-04-01

    Purpose. Patients with diabetes are at higher risk for delayed corneal reepithelialization and infection. Previous studies indicated that high glucose (HG) impairs epidermal growth factor receptor (EGFR) signaling and attenuates ex vivo corneal epithelial wound healing. The authors investigated the effects of antimicrobial peptide LL-37 on HG-attenuated corneal epithelial EGFR signaling and wound closure. Methods. Human corneal epithelial cells (HCECs) were stimulated with LL-37. Heparin-binding EGF-like growth factor (HB-EGF) shedding was assessed by measuring the release of alkaline phosphatase (AP) in a stable HCEC line expressing HB-EGF-AP. Activation of EGFR, phosphoinositide 3-kinase (PI3K), and extracellular signal-regulated kinases 1/2 (ERK1/2) was determined by Western blot analysis. Corneal epithelial wound closure was assessed in cultured HCECs and porcine corneas. LL-37 expression was determined by immune dot blot. Results. LL-37 induced HB-EGF-AP release and EGFR activation in a dose-dependent manner. LL-37 prolonged EGFR signaling in response to wounding. LL-37 enhanced the closure of a scratch wound in cultured HCECs and partially rescued HG-attenuated wound healing in an EGFR- and a PI3K-dependent manner and restored HG-impaired EGFR signaling in cultured porcine corneas. HG attenuated wounding-induced LL-37 expression in cultured HCECs. Conclusions. LL-37 is a tonic factor promoting EGFR signaling and enhancing epithelial wound healing in normal and high glucose conditions. With both antimicrobial and regenerative capabilities, LL-37 may be a potential therapeutic for diabetic keratopathy.

  17. Pili-Induced Clustering of N. gonorrhoeae Bacteria.

    Directory of Open Access Journals (Sweden)

    Johannes Taktikos

    Full Text Available Type IV pili (Tfp are prokaryotic retractable appendages known to mediate surface attachment, motility, and subsequent clustering of cells. Tfp are the main means of motility for Neisseria gonorrhoeae, the causative agent of gonorrhea. Tfp are also involved in formation of the microcolonies, which play a crucial role in the progression of the disease. While motility of individual cells is relatively well understood, little is known about the dynamics of N. gonorrhoeae aggregation. We investigate how individual N. gonorrhoeae cells, initially uniformly dispersed on flat plastic or glass surfaces, agglomerate into spherical microcolonies within hours. We quantify the clustering process by measuring the area fraction covered by the cells, number of cell aggregates, and their average size as a function of time. We observe that the microcolonies are also able to move but their mobility rapidly vanishes as the size of the colony increases. After a certain critical size they become immobile. We propose a simple theoretical model which assumes a pili-pili interaction of cells as the main clustering mechanism. Numerical simulations of the model quantitatively reproduce the experimental data on clustering and thus suggest that the agglomeration process can be entirely explained by the Tfp-mediated interactions. In agreement with this hypothesis mutants lacking pili are not able to form colonies. Moreover, cells with deficient quorum sensing mechanism show similar aggregation as the wild-type bacteria. Therefore, our results demonstrate that pili provide an essential mechanism for colony formation, while additional chemical cues, for example quorum sensing, might be of secondary importance.

  18. Dynamic properties of bacterial pili measured by optical tweezers

    Science.gov (United States)

    Fallman, Erik G.; Andersson, Magnus J.; Schedin, Staffan S.; Jass, Jana; Uhlin, Bernt Eric; Axner, Ove

    2004-10-01

    The ability of uropathogenic Escherichia coli (UPEC) to cause urinary tract infections is dependent on their ability to colonize the uroepithelium. Infecting bacteria ascend the urethra to the bladder and then kidneys by attaching to the uroepithelial cells via the differential expression of adhesins. P pili are associated with pyelonephritis, the more severe infection of the kidneys. In order to find means to treat pyelonephritis, it is therefore of interest to investigate the properties P pili. The mechanical behavior of individual P pili of uropathogenic Escherichia coli has recently been investigated using optical tweezers. P pili, whose main part constitutes the PapA rod, composed of ~1000 PapA subunits in a helical arrangement, are distributed over the bacterial surface and mediate adhesion to host cells. We have earlier studied P pili regarding its stretching/elongation properties where we have found and characterized three different elongation regions, of which one constitute an unfolding of the quaternary (helical) structure of the PapA rod. It was shown that this unfolding takes place at an elongation independent force of 27 +/- 2 pN. We have also recently performed studies on its folding properties and shown that the unfolding/folding of the PapA rod is completely reversible. Here we present a study of the dynamical properties of the PapA rod. We show, among other things, that the unfolding force increases and that the folding force decreases with the speed of unfolding and folding respectively. Moreover, the PapA rod can be folded-unfolded a significant number of times without loosing its characteristics, a phenomenon that is believed to be important for the bacterium to keep close contact to the host tissue and consequently helps the bacterium to colonize the host tissue.

  19. Interleukin-13 promotes expression of Alix to compromise renal tubular epithelial barrier function.

    Science.gov (United States)

    Xu, Chen; Sun, Guangdong; Yang, Jie; Sun, Qianmei; Tong, Zhaohui

    2015-05-01

    The epithelial barrier dysfunction plays a critical role in a number of kidney diseases. The mechanism is unclear. Alix is a protein involving in protein degradation in epithelial cells. This study aims to investigate that interleukin (IL)-13 inhibits Alix to compromise the kidney epithelial barrier function. In this study, the murine collecting duct cell line (M-1) was cultured in Transwell inserts to investigate the significance of Alix in compromising the epithelial barrier functions. T cell (Teff cells) proliferation assay was employed to assess the antigenicity of ovalbumin (OVA) that was transported across the M-1 monolayer barrier. The results showed that M-1 cells express Alix. Exposure to interleukin (IL)-13 markedly decreased the expression of Alix in M-1 cells, which compromised the M-1 monolayer barrier functions by showing the increases in the permeability to OVA. Over-expression of Alix abolished the IL-13-induced M-1 monolayer barrier dysfunction. Knockdown of Alix significantly increased M-1 monolayer permeability. The OVA collected from the Transwell basal chambers induced the OVA-specific T cell proliferation. We conclude that IL-13 compromises M-1 epithelial barrier functions via inhibiting Alix expression.

  20. Stem cell factor expression after renal ischemia promotes tubular epithelial survival.

    Directory of Open Access Journals (Sweden)

    Geurt Stokman

    Full Text Available BACKGROUND: Renal ischemia leads to apoptosis of tubular epithelial cells and results in decreased renal function. Tissue repair involves re-epithelialization of the tubular basement membrane. Survival of the tubular epithelium following ischemia is therefore important in the successful regeneration of renal tissue. The cytokine stem cell factor (SCF has been shown to protect the tubular epithelium against apoptosis. METHODOLOGY/PRINCIPAL FINDINGS: In a mouse model for renal ischemia/reperfusion injury, we studied how expression of c-KIT on tubular epithelium and its ligand SCF protect cells against apoptosis. Administration of SCF specific antisense oligonucleotides significantly decreased specific staining of SCF following ischemia. Reduced SCF expression resulted in impaired renal function, increased tubular damage and increased tubular epithelial apoptosis, independent of inflammation. In an in vitro hypoxia model, stimulation of tubular epithelial cells with SCF activated survival signaling and decreased apoptosis. CONCLUSIONS/SIGNIFICANCE: Our data indicate an important role for c-KIT and SCF in mediating tubular epithelial cell survival via an autocrine pathway.

  1. TMPRSS2/ERG promotes epithelial to mesenchymal transition through the ZEB1/ZEB2 axis in a prostate cancer model.

    Directory of Open Access Journals (Sweden)

    Orit Leshem

    Full Text Available Prostate cancer is the most common non-dermatologic malignancy in men in the Western world. Recently, a frequent chromosomal aberration fusing androgen regulated TMPRSS2 promoter and the ERG gene (TMPRSS2/ERG was discovered in prostate cancer. Several studies demonstrated cooperation between TMPRSS2/ERG and other defective pathways in cancer progression. However, the unveiling of more specific pathways in which TMPRSS2/ERG takes part, requires further investigation. Using immortalized prostate epithelial cells we were able to show that TMPRSS2/ERG over-expressing cells undergo an Epithelial to Mesenchymal Transition (EMT, manifested by acquisition of mesenchymal morphology and markers as well as migration and invasion capabilities. These findings were corroborated in vivo, where the control cells gave rise to discrete nodules while the TMPRSS2/ERG-expressing cells formed malignant tumors, which expressed EMT markers. To further investigate the general transcription scheme induced by TMPRSS2/ERG, cells were subjected to a microarray analysis that revealed a distinct EMT expression program, including up-regulation of the EMT facilitators, ZEB1 and ZEB2, and down-regulation of the epithelial marker CDH1(E-Cadherin. A chromatin immunoprecipitation assay revealed direct binding of TMPRSS2/ERG to the promoter of ZEB1 but not ZEB2. However, TMPRSS2/ERG was able to bind the promoters of the ZEB2 modulators, IL1R2 and SPINT1. This set of experiments further illuminates the mechanism by which the TMPRSS2/ERG fusion affects prostate cancer progression and might assist in targeting TMPRSS2/ERG and its downstream targets in future drug design efforts.

  2. Stromal adipocyte enhancer-binding protein (AEBP1) promotes mammary epithelial cell hyperplasia via proinflammatory and hedgehog signaling.

    Science.gov (United States)

    Holloway, Ryan W; Bogachev, Oleg; Bharadwaj, Alamelu G; McCluskey, Greg D; Majdalawieh, Amin F; Zhang, Lei; Ro, Hyo-Sung

    2012-11-09

    Disruption of mammary stromal-epithelial communication leads to aberrant mammary gland development and induces mammary tumorigenesis. Macrophages have been implicated in carcinogenesis primarily by creating an inflammatory microenvironment, which promotes growth of the adjacent epithelial cells. Adipocyte enhancer-binding protein 1 (AEBP1), a novel proinflammatory mediator, promotes macrophage inflammatory responsiveness by inducing NF-κB activity, which has been implicated in tumor cell growth and survival by aberrant sonic hedgehog (Shh) expression. Here, we show that stromal macrophage AEBP1 overexpression results in precocious alveologenesis in the virgin AEBP1 transgenic (AEBP1(TG)) mice, and the onset of ductal hyperplasia was accelerated in AEBP1(TG) mice fed a high fat diet, which induces endogenous AEBP1 expression. Transplantation of AEBP1(TG) bone marrow cells into non-transgenic (AEBP1(NT)) mice resulted in alveolar hyperplasia with up-regulation of NF-κB activity and TNFα expression as displayed in the AEBP1(TG) mammary macrophages and epithelium. Shh expression was induced in AEBP1(TG) macrophages and RAW264.7 macrophages overexpressing AEBP1. The Shh target genes Gli1 and Bmi1 expression was induced in the AEBP1(TG) mammary epithelium and HC11 mammary epithelial cells co-cultured with AEBP1(TG) peritoneal macrophages. The conditioned AEBP1(TG) macrophage culture media promoted NF-κB activity and survival signal, Akt activation, in HC11 cells, whereas such effects were abolished by TNFα neutralizing antibody treatment. Furthermore, HC11 cells displayed enhanced proliferation in response to AEBP1(TG) macrophages and their conditioned media. Our findings highlight the role of AEBP1 in the signaling pathways regulating the cross-talk between mammary epithelium and stroma that could predispose the mammary tissue to tumorigenesis.

  3. Myoferlin depletion in breast cancer cells promotes mesenchymal to epithelial shape change and stalls invasion.

    Directory of Open Access Journals (Sweden)

    Ruth Li

    Full Text Available Myoferlin (MYOF is a mammalian ferlin protein with homology to ancestral Fer-1, a nematode protein that regulates spermatic membrane fusion, which underlies the amoeboid-like movements of its sperm. Studies in muscle and endothelial cells have reported on the role of myoferlin in membrane repair, endocytosis, myoblast fusion, and the proper expression of various plasma membrane receptors. In this study, using an in vitro human breast cancer cell model, we demonstrate that myoferlin is abundantly expressed in invasive breast tumor cells. Depletion of MYOF using lentiviral-driven shRNA expression revealed that MDA-MB-231 cells reverted to an epithelial morphology, suggesting at least some features of mesenchymal to epithelial transition (MET. These observations were confirmed by the down-regulation of some mesenchymal cell markers (e.g., fibronectin and vimentin and coordinate up-regulation of the E-cadherin epithelial marker. Cell invasion assays using Boyden chambers showed that loss of MYOF led to a significant diminution in invasion through Matrigel or type I collagen, while cell migration was unaffected. PCR array and screening of serum-free culture supernatants from shRNA(MYOF transduced MDA-MB-231 cells indicated a significant reduction in the steady-state levels of several matrix metalloproteinases. These data when considered in toto suggest a novel role of MYOF in breast tumor cell invasion and a potential reversion to an epithelial phenotype upon loss of MYOF.

  4. Inflammatory cytokines promote inducible nitric oxide synthase-mediated DNA damage in hamster gallbladder epithelial cells

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    AIM: To investigate the link between chronic biliary inflammation and carcinogenesis using hamster gallbladder epithelial cells.METHODS: Gallbladder epithelial cells were isolated from hamsters and cultured with a mixture of inflammatory cytokines including interleukin-1β, interferon-γ, and tumor necrosis factor-α. Inducible nitric oxide synthase (iNOS) expression, nitric oxide (NO) generation, and DNA damage were evaluated.RESULTS: NO generation was increased significantly following cytokine stimulation, and suppressed by an iNOS inhibitor. iNOS mRNA expression was demonstrated in the gallbladder epithelial cells during exposure to inflammatory cytokines. Furthermore, NO-dependent DNA damage, estimated by the comet assay, was significantly increased by cytokines, and decreased to control levels by an iNOS inhibitor.CONCLUSION: Cytokine stimulation induced iNOS expression and NO generation in normal hamster gallbladder epithelial cells, which was sufficient to cause DNA damage. These results indicate that NO-mediated genotoxicity induced by inflammatory cytokines through activation of iNOS may be involved in the process of biliary carcinogenesis in response to chronic inflammation of the biliary tree.

  5. Cell competition with normal epithelial cells promotes apical extrusion of transformed cells through metabolic changes.

    Science.gov (United States)

    Kon, Shunsuke; Ishibashi, Kojiro; Katoh, Hiroto; Kitamoto, Sho; Shirai, Takanobu; Tanaka, Shinya; Kajita, Mihoko; Ishikawa, Susumu; Yamauchi, Hajime; Yako, Yuta; Kamasaki, Tomoko; Matsumoto, Tomohiro; Watanabe, Hirotaka; Egami, Riku; Sasaki, Ayana; Nishikawa, Atsuko; Kameda, Ikumi; Maruyama, Takeshi; Narumi, Rika; Morita, Tomoko; Sasaki, Yoshiteru; Enoki, Ryosuke; Honma, Sato; Imamura, Hiromi; Oshima, Masanobu; Soga, Tomoyoshi; Miyazaki, Jun-Ichi; Duchen, Michael R; Nam, Jin-Min; Onodera, Yasuhito; Yoshioka, Shingo; Kikuta, Junichi; Ishii, Masaru; Imajo, Masamichi; Nishida, Eisuke; Fujioka, Yoichiro; Ohba, Yusuke; Sato, Toshiro; Fujita, Yasuyuki

    2017-05-01

    Recent studies have revealed that newly emerging transformed cells are often apically extruded from epithelial tissues. During this process, normal epithelial cells can recognize and actively eliminate transformed cells, a process called epithelial defence against cancer (EDAC). Here, we show that mitochondrial membrane potential is diminished in RasV12-transformed cells when they are surrounded by normal cells. In addition, glucose uptake is elevated, leading to higher lactate production. The mitochondrial dysfunction is driven by upregulation of pyruvate dehydrogenase kinase 4 (PDK4), which positively regulates elimination of RasV12-transformed cells. Furthermore, EDAC from the surrounding normal cells, involving filamin, drives the Warburg-effect-like metabolic alteration. Moreover, using a cell-competition mouse model, we demonstrate that PDK-mediated metabolic changes promote the elimination of RasV12-transformed cells from intestinal epithelia. These data indicate that non-cell-autonomous metabolic modulation is a crucial regulator for cell competition, shedding light on the unexplored events at the initial stage of carcinogenesis.

  6. Podophyllotoxin Extracted from Juniperus sabina Fruit Inhibits Rat Sperm Maturation and Fertility by Promoting Epididymal Epithelial Cell Apoptosis

    Science.gov (United States)

    Li, Guoting; Qu, Lijuan; Chen, Ping; Lu, Zhigang; Zhou, Jieyun; Guo, Xiangjie; Li, Zhao; Ma, Aying

    2017-01-01

    This study aimed to investigate the antifertility effect of Juniperus sabina fruit on male rats and its possible mechanism, and hence it might be developed as a potential nonhormonal male contraceptive. Male rats were intragastrically fed for consecutive 8-week and 4-week recovery with the fruit of J. Sabina, and sperm maturation, serum testosterone level, and histopathology were analyzed. Epididymal epithelial cell culture was prepared for detection of podophyllotoxin activities. Furthermore, cell proliferation, transmission electron microscopy, Annexin V/Propidium iodide, TUNEL, RT-PCR, ELISA, and western blotting were examined. The results showed that rat sperm motility and fertility were remarkably declined after feeding the fruit. Moreover, the fruit targeted the epididymis rather than the testis. After 4-week recovery, more than half of the male rats resumed normal fertility. It was found that podophyllotoxin significantly inhibited epididymal epithelial cell proliferation, promoted cell apoptosis, and increased the mRNA and protein levels of TNF-α and the expression levels of cytochrome c, caspase-8, caspase-9, and caspase-3. Our findings suggest that the fruit of J. sabina could inhibit male rat sperm maturation and fertility. The potential mechanism might be related to podophyllotoxin, inducing epididymal epithelial cell apoptosis through TNF-α and caspase signaling pathway. PMID:28744317

  7. HIV Impairs Lung Epithelial Integrity and Enters the Epithelium to Promote Chronic Lung Inflammation.

    Science.gov (United States)

    Brune, Kieran A; Ferreira, Fernanda; Mandke, Pooja; Chau, Eric; Aggarwal, Neil R; D'Alessio, Franco R; Lambert, Allison A; Kirk, Gregory; Blankson, Joel; Drummond, M Bradley; Tsibris, Athe M; Sidhaye, Venkataramana K

    2016-01-01

    Several clinical studies show that individuals with HIV are at an increased risk for worsened lung function and for the development of COPD, although the mechanism underlying this increased susceptibility is poorly understood. The airway epithelium, situated at the interface between the external environment and the lung parenchyma, acts as a physical and immunological barrier that secretes mucins and cytokines in response to noxious stimuli which can contribute to the pathobiology of chronic obstructive pulmonary disease (COPD). We sought to determine the effects of HIV on the lung epithelium. We grew primary normal human bronchial epithelial (NHBE) cells and primary lung epithelial cells isolated from bronchial brushings of patients to confluence and allowed them to differentiate at an air- liquid interface (ALI) to assess the effects of HIV on the lung epithelium. We assessed changes in monolayer permeability as well as the expression of E-cadherin and inflammatory modulators to determine the effect of HIV on the lung epithelium. We measured E-cadherin protein abundance in patients with HIV compared to normal controls. Cell associated HIV RNA and DNA were quantified and the p24 viral antigen was measured in culture supernatant. Surprisingly, X4, not R5, tropic virus decreased expression of E-cadherin and increased monolayer permeability. While there was some transcriptional regulation of E-cadherin, there was significant increase in lysosome-mediated protein degradation in cells exposed to X4 tropic HIV. Interaction with CXCR4 and viral fusion with the epithelial cell were required to induce the epithelial changes. X4 tropic virus was able to enter the airway epithelial cells but not replicate in these cells, while R5 tropic viruses did not enter the epithelial cells. Significantly, X4 tropic HIV induced the expression of intercellular adhesion molecule-1 (ICAM-1) and activated extracellular signal-regulated kinase (ERK). We demonstrate that HIV can enter airway

  8. HIV Impairs Lung Epithelial Integrity and Enters the Epithelium to Promote Chronic Lung Inflammation.

    Directory of Open Access Journals (Sweden)

    Kieran A Brune

    Full Text Available Several clinical studies show that individuals with HIV are at an increased risk for worsened lung function and for the development of COPD, although the mechanism underlying this increased susceptibility is poorly understood. The airway epithelium, situated at the interface between the external environment and the lung parenchyma, acts as a physical and immunological barrier that secretes mucins and cytokines in response to noxious stimuli which can contribute to the pathobiology of chronic obstructive pulmonary disease (COPD. We sought to determine the effects of HIV on the lung epithelium. We grew primary normal human bronchial epithelial (NHBE cells and primary lung epithelial cells isolated from bronchial brushings of patients to confluence and allowed them to differentiate at an air- liquid interface (ALI to assess the effects of HIV on the lung epithelium. We assessed changes in monolayer permeability as well as the expression of E-cadherin and inflammatory modulators to determine the effect of HIV on the lung epithelium. We measured E-cadherin protein abundance in patients with HIV compared to normal controls. Cell associated HIV RNA and DNA were quantified and the p24 viral antigen was measured in culture supernatant. Surprisingly, X4, not R5, tropic virus decreased expression of E-cadherin and increased monolayer permeability. While there was some transcriptional regulation of E-cadherin, there was significant increase in lysosome-mediated protein degradation in cells exposed to X4 tropic HIV. Interaction with CXCR4 and viral fusion with the epithelial cell were required to induce the epithelial changes. X4 tropic virus was able to enter the airway epithelial cells but not replicate in these cells, while R5 tropic viruses did not enter the epithelial cells. Significantly, X4 tropic HIV induced the expression of intercellular adhesion molecule-1 (ICAM-1 and activated extracellular signal-regulated kinase (ERK. We demonstrate that HIV

  9. CAP-D3 Promotes Bacterial Clearance in Human Intestinal Epithelial Cells by Repressing Expression of Amino Acid Transporters

    Science.gov (United States)

    Kemp, Jacqueline R.; Nickerson, Kourtney P.; Deutschman, Emily; Kim, Yeojung; West, Gail; Sadler, Tammy; Stylianou, Eleni; Krokowski, Dawid; Hatzoglou, Maria; de la Motte, Carol; Rubin, Brian P.; Fiocchi, Claudio

    2015-01-01

    BACKGROUND & AIMS Defects in colonic epithelial barrier defenses are associated with ulcerative colitis (UC). The proteins that regulate bacterial clearance in the colonic epithelium have not been completely identified. The chromosome-associated protein D3 (dCAP-D3), regulates responses to bacterial infection. We examined whether CAP-D3 promotes bacterial clearance in human colonic epithelium. METHODS Clearance of Salmonella or adherent-invasive Escherichia coli LF82 was assessed by gentamycin protection assays in HT-29 and Caco-2 cells expressing small hairpin RNAs against CAP-D3. We used immunoblot assays to measure levels of CAP-D3 in colonic epithelial cells from patients with UC and healthy individuals (controls). RNA sequencing identified genes activated by CAP-D3. We analyzed the roles of CAP-D3 target genes in bacterial clearance using gentamycin protection and immunofluorescence assays and studies with pharmacologic inhibitors. RESULTS CAP-D3 expression was reduced in colonic epithelial cells from patients with active UC. Reduced CAP-D3 expression decreased autophagy and impaired intracellular bacterial clearance by HT-29 and Caco-2 colonic epithelial cells. Lower levels of CAP-D3 increased transcription of genes encoding SLC7A5 and SLC3A2, whose products heterodimerize to form an amino acid transporter in HT-29 cells following bacterial infection; levels of SLC7A5–SLC3A2 were increased in tissues from patients with UC, compared with controls. Reduced CAP-D3 in HT-29 cells resulted in earlier recruitment of SLC7A5 to Salmonella-containing vacuoles, increased activity of mTORC1, and increased survival of bacteria. Inhibition of SLC7A5–SLC3A2 or mTORC1 activity rescued the bacterial clearance defects of CAP-D3– deficient cells. CONCLUSIONS CAP-D3 downregulates transcription of genes that encode amino acid transporters (SLC7A5 and SLC3A2) to promote bacterial autophagy by colon epithelial cells. Levels of CAP-D3 protein are reduced in patients with

  10. Herpes simplex virus gE/gI extracellular domains promote axonal transport and spread from neurons to epithelial cells.

    Science.gov (United States)

    Howard, Paul W; Wright, Catherine C; Howard, Tiffani; Johnson, David C

    2014-10-01

    spread from axons to epithelial cells. HSV gE/gI is a glycoprotein that facilitates this virus spread, although by poorly understood mechanisms. Here, we show that the extracellular (ET) domains of gE/gI promote the sorting of viral structural proteins into proximal axons to begin axonal transport. However, the gE/gI ET domains also participate in the extracellular spread from axon tips across cell junctions to epithelial cells. Understanding the molecular mechanisms involved in gE/gI-mediated sorting of virus particles into axons and extracellular spread to adjacent cells is fundamentally important for identifying novel targets to reduce alphaherpesvirus disease. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  11. Glial cell line-derived neurotrophic factor promotes barrier maturation and wound healing in intestinal epithelial cells in vitro.

    Science.gov (United States)

    Meir, Michael; Flemming, Sven; Burkard, Natalie; Bergauer, Lisa; Metzger, Marco; Germer, Christoph-Thomas; Schlegel, Nicolas

    2015-10-15

    Recent data suggest that neurotrophic factors from the enteric nervous system are involved in intestinal epithelial barrier regulation. In this context the glial cell line-derived neurotrophic factor (GDNF) was shown to affect gut barrier properties in vivo directly or indirectly by largely undefined processes in a model of inflammatory bowel disease (IBD). We further investigated the potential role and mechanisms of GDNF in the regulation of intestinal barrier functions. Immunostaining of human gut specimen showed positive GDNF staining in enteric neuronal plexus and in enterocytes. In Western blots of the intestinal epithelial cell lines Caco2 and HT29B6, significant amounts of GDNF were detected, suggesting that enterocytes represent an additional source of GDNF. Application of recombinant GDNF on Caco2 and HT29B6 cells for 24 h resulted in significant epithelial barrier stabilization in monolayers with immature barrier functions. Wound-healing assays showed a significantly faster closure of the wounded areas after GDNF application. GDNF augmented cAMP levels and led to significant inactivation of p38 MAPK in immature cells. Activation of p38 MAPK signaling by SB-202190 mimicked GDNF-induced barrier maturation, whereas the p38 MAPK activator anisomycin blocked GDNF-induced effects. Increasing cAMP levels had adverse effects on barrier maturation, as revealed by permeability measurements. However, increased cAMP augmented the proliferation rate in Caco2 cells, and GDNF-induced proliferation of epithelial cells was abrogated by the PKA inhibitor H89. Our data show that enterocytes represent an additional source of GDNF synthesis. GDNF contributes to wound healing in a cAMP/PKA-dependent manner and promotes barrier maturation in immature enterocytes cells by inactivation of p38 MAPK signaling.

  12. Pharmacological activation of cannabinoid 2 receptor attenuates inflammation, fibrogenesis, and promotes re-epithelialization during skin wound healing.

    Science.gov (United States)

    Wang, Lin-Lin; Zhao, Rui; Li, Jiao-Yong; Li, Shan-Shan; Liu, Min; Wang, Meng; Zhang, Meng-Zhou; Dong, Wen-Wen; Jiang, Shu-Kun; Zhang, Miao; Tian, Zhi-Ling; Liu, Chang-Sheng; Guan, Da-Wei

    2016-09-05

    Previous studies showed that cannabinoid 2 (CB2) receptor is expressed in multiple effector cells during skin wound healing. Meanwhile, its functional involvement in inflammation, fibrosis, and cell proliferation in other organs and skin diseases implied CB2 receptor might also regulate skin wound healing. To verify this hypothesis, mice excisional wounds were created and treated with highly selective CB2 receptor agonist GP1a (1-(2,4-dichlorophenyl)-6-methyl- N-piperidin-1-yl-4H-indeno[1,2-c]pyrazole-3-carboxamide) and antagonist AM630 ([6-iodo-2- methyl-1-(2-morpholin-4-ylethyl)indol-3-yl]-(4-methoxyphenyl)methanone) respectively. The inflammatory infiltration, cytokine expression, fibrogenesis, and wound re-epithelialization were analyzed. After CB2 receptor activation, neutrophil and macrophage infiltrations were reduced, and expressions of monocyte chemotactic protein (MCP)-1, stromal cell-derived factor (SDF)-1, Interleukin (IL)-6, IL-1β, tumor necrosis factor (TNF)-α, transforming growth factor (TGF)-β1 and vascular endothelial growth factor (VEGF)-A were decreased. Keratinocyte proliferation and migration were enhanced. Wound re-epithelialization was accelerated. Fibroblast accumulation and fibroblast-to-myofibroblast transformation were attenuated, and expression of pro-collagen I was decreased. Furthermore, HaCaT cells in vitro were treated with GP1a or AM630, which revealed that CB2 receptor activation promoted keratinocyte migration by inducing the epithelial to mesenchymal transition. These results, taken together, indicate that activating CB2 receptor could ameliorate wound healing by reducing inflammation, accelerating re-epithelialization, and attenuating scar formation. Thus, CB2 receptor agonist might be a novel perspective for skin wound therapy.

  13. A Geobacter sulfurreducens strain expressing pseudomonas aeruginosa type IV pili localizes OmcS on pili but is deficient in Fe(III) oxide reduction and current production.

    Science.gov (United States)

    Liu, Xing; Tremblay, Pier-Luc; Malvankar, Nikhil S; Nevin, Kelly P; Lovley, Derek R; Vargas, Madeline

    2014-02-01

    The conductive pili of Geobacter species play an important role in electron transfer to Fe(III) oxides, in long-range electron transport through current-producing biofilms, and in direct interspecies electron transfer. Although multiple lines of evidence have indicated that the pili of Geobacter sulfurreducens have a metal-like conductivity, independent of the presence of c-type cytochromes, this claim is still controversial. In order to further investigate this phenomenon, a strain of G. sulfurreducens, designated strain PA, was constructed in which the gene for the native PilA, the structural pilin protein, was replaced with the PilA gene of Pseudomonas aeruginosa PAO1. Strain PA expressed and properly assembled P. aeruginosa PilA subunits into pili and exhibited a profile of outer surface c-type cytochromes similar to that of a control strain expressing the G. sulfurreducens PilA. Surprisingly, the strain PA pili were decorated with the c-type cytochrome OmcS in a manner similar to the control strain. However, the strain PA pili were 14-fold less conductive than the pili of the control strain, and strain PA was severely impaired in Fe(III) oxide reduction and current production. These results demonstrate that the presence of OmcS on pili is not sufficient to confer conductivity to pili and suggest that there are unique structural features of the G. sulfurreducens PilA that are necessary for conductivity.

  14. Inactivation of ATM/ATR DNA damage checkpoint promotes androgen induced chromosomal instability in prostate epithelial cells.

    Directory of Open Access Journals (Sweden)

    Yung-Tuen Chiu

    Full Text Available The ATM/ATR DNA damage checkpoint functions in the maintenance of genetic stability and some missense variants of the ATM gene have been shown to confer a moderate increased risk of prostate cancer. However, whether inactivation of this checkpoint contributes directly to prostate specific cancer predisposition is still unknown. Here, we show that exposure of non-malignant prostate epithelial cells (HPr-1AR to androgen led to activation of the ATM/ATR DNA damage response and induction of cellular senescence. Notably, knockdown of the ATM gene expression in HPr-1AR cells can promote androgen-induced TMPRSS2: ERG rearrangement, a prostate-specific chromosome translocation frequently found in prostate cancer cells. Intriguingly, unlike the non-malignant prostate epithelial cells, the ATM/ATR DNA damage checkpoint appears to be defective in prostate cancer cells, since androgen treatment only induced a partial activation of the DNA damage response. This mechanism appears to preserve androgen induced autophosphorylation of ATM and phosphorylation of H2AX, lesion processing and repair pathway yet restrain ATM/CHK1/CHK2 and p53 signaling pathway. Our findings demonstrate that ATM/ATR inactivation is a crucial step in promoting androgen-induced genomic instability and prostate carcinogenesis.

  15. Streptococcal collagen-like surface protein 1 promotes adhesion to the respiratory epithelial cell

    Directory of Open Access Journals (Sweden)

    Chang Cherng-Shyang

    2010-12-01

    Full Text Available Abstract Background Collagen-like surface proteins Scl1 and Scl2 on Streptococcus pyogenes contain contiguous Gly-X-X triplet amino acid motifs, the characteristic structure of human collagen. Although the potential role of Scl1 in adhesion has been studied, the conclusions may be affected by the use of different S. pyogenes strains and their carriages of various adhesins. To explore the bona fide nature of Scl1 in adherence to human epithelial cells without the potential interference of other streptococcal surface factors, we constructed a scl1 isogenic mutant from the Scl2-defective S. pyogenes strain and a Scl1-expressed Escherichia coli. Results Loss of Scl1 in a Scl2-defective S. pyogenes strain dramatically decreased the adhesion of bacteria to HEp-2 human epithelial cells. Expression of Scl1 on the surface of the heterologous bacteria E. coli significantly increased adhesion to HEp-2. The increase in adhesion was nullified when Scl1-expressed E. coli was pre-incubated with proteases or antibodies against recombinant Scl1 (rScl1 protein. Treatment of HEp-2 cells with rScl protein or pronase drastically reduced the binding capability of Scl1-expressed E. coli. These findings suggest that the adhesion is mediated through Scl1 on bacterial surface and protein receptor(s on epithelial cells. Further blocking of potential integrins revealed significant contributions of α2 and β1 integrins in Scl1-mediated binding to epithelial cells. Conclusions Together, these results underscore the importance of Scl1 in the virulence of S. pyogenes and implicate Scl1 as an adhesin during pathogenesis of streptococcal infection.

  16. T lymphocytes promote the antiviral and inflammatory responses of airway epithelial cells.

    Directory of Open Access Journals (Sweden)

    Lan Jornot

    Full Text Available HYPOTHESIS: T cells modulate the antiviral and inflammatory responses of airway epithelial cells to human rhinoviruses (HRV. METHODS: Differentiated primary human nasal epithelial cells (HNEC grown on collagen-coated filters were exposed apically to HRV14 for 6 h, washed thoroughly and co-cultured with anti-CD3/CD28 activated T cells added in the basolateral compartment for 40 h. RESULTS: HRV14 did not induce IFNγ, NOS2, CXCL8 and IL-6 in HNEC, but enhanced expression of the T cell attractant CXCL10. On the other hand, HNEC co-cultured with activated T cells produced CXCL10 at a level several orders of magnitude higher than that induced by HRV14. Albeit to a much lower degree, activated T cells also induced CXCL8, IL-6 and NOS2. Anti-IFNγ antibodies and TNF soluble receptor completely blocked CXCL10 upregulation. Furthermore, a significant correlation was observed between epithelial CXCL10 mRNA expression and the amounts of IFNγ and TNF secreted by T cells. Likewise, increasing numbers of T cells to a constant number of HNEC in co-cultures resulted in increasing epithelial CXCL10 production, attaining a plateau at high IFNγ and TNF levels. Hence, HNEC activation by T cells is induced mainly by IFNγ and/or TNF. Activated T cells also markedly inhibited viral replication in HNEC, partially through activation of the nitric oxide pathway. CONCLUSION: Cross-talk between T cells and HNEC results in activation of the latter and increases their contribution to airway inflammation and virus clearance.

  17. Engineering zinc finger protein transcription factors to downregulate the epithelial glycoprotein-2 promoter as a novel anti-cancer treatment.

    Science.gov (United States)

    Gommans, Willemijn M; McLaughlin, Pamela M J; Lindhout, Beatrice I; Segal, David J; Wiegman, D J; Haisma, Hidde J; van der Zaal, Bert J; Rots, Marianne G

    2007-05-01

    Zinc finger protein transcription factors (ZFP-TFs) are emerging as powerful novel tools for the treatment of many different diseases. ZFPs are DNA-binding motifs and consist of modular zinc finger domains. Each domain can be engineered to recognize a specific DNA triplet, and stitching six domains together results in the recognition of a gene-specific sequence. Inhibition of gene expression can be achieved by fusing a repressor domain to these DNA-binding motifs. In this study, we engineered ZFP-TFs to downregulate the activity of the epithelial glycoprotein-2 (EGP-2) promoter. The protein EGP-2 is overexpressed in a wide variety of cancer types and EGP-2 downregulation has been shown to result in a decreased oncogenic potential of tumor cells. Therefore, downregulation of EGP-2 expression by ZFP-TFs provides a novel anti-cancer therapeutic. Using a straightforward strategy, we engineered a 3-ZFP that could bind a 9 bp sequence within the EGP-2 promoter. After the addition of a repressor domain, this 3-ZFP-TF could efficiently downregulate EGP-2 promoter activity by 60%. To demonstrate the flexibility of this technology, we coupled an activation domain to the engineered ZFP, resulting in a nearly 200% increase in EGP-2 promoter activity. To inhibit the endogenous EGP-2 promoter, we engineered 6-ZFP-TFs. Although none of the constructed ZFP-TFs could convincingly modulate the endogenous promoter, efficient and specific inhibition of the exogenous promoter was observed. Overall, ZFP-TFs are versatile bi-directional modulators of gene expression and downregulation of EGP-2 promoter activity using ZFP-TFs can ultimately result in a novel anti-cancer treatment.

  18. Streptococcus salivarius MS-oral-D6 promotes gingival re-epithelialization in vitro through a secreted serine protease

    NARCIS (Netherlands)

    Fernandez Gutierrez, Maria; Roosjen, Peter P.J.; Ultee, Eveline; Agelink, Maarten; Vervoort, Jacques J.M.; Keijser, Bart; Wells, Jerry M.; Kleerebezem, Michiel

    2017-01-01

    Gingival re-epithelialization represents an essential phase of oral wound healing in which epithelial integrity is re-establish. We developed an automated high-throughput re-epithelialization kinetic model, using the gingival epithelial cell line Ca9-22. The model was employed to screen 39 lactic

  19. Foxn1 Transcription Factor Regulates Wound Healing of Skin through Promoting Epithelial-Mesenchymal Transition.

    Directory of Open Access Journals (Sweden)

    Barbara Gawronska-Kozak

    Full Text Available Transcription factors are key molecules that finely tune gene expression in response to injury. We focused on the role of a transcription factor, Foxn1, whose expression is limited to the skin and thymus epithelium. Our previous studies showed that Foxn1 inactivity in nude mice creates a pro-regenerative environment during skin wound healing. To explore the mechanistic role of Foxn1 in the skin wound healing process, we analyzed post-injured skin tissues from Foxn1::Egfp transgenic and C57BL/6 mice with Western Blotting, qRT-PCR, immunofluorescence and flow cytometric assays. Foxn1 expression in non-injured skin localized to the epidermis and hair follicles. Post-injured skin tissues showed an intense Foxn1-eGFP signal at the wound margin and in leading epithelial tongue, where it co-localized with keratin 16, a marker of activated keratinocytes. This data support the concept that suprabasal keratinocytes, expressing Foxn1, are key cells in the process of re-epithelialization. The occurrence of an epithelial-mesenchymal transition (EMT was confirmed by high levels of Snail1 and Mmp-9 expression as well as through co-localization of vimentin/E-cadherin-positive cells in dermis tissue at four days post-wounding. Involvement of Foxn1 in the EMT process was verified by co-localization of Foxn1-eGFP cells with Snail1 in histological sections. Flow cytometric analysis showed the increase of double positive E-cadherin/N-cadherin cells within Foxn1-eGFP population of post-wounded skin cells isolates, which corroborated histological and gene expression analyses. Together, our findings indicate that Foxn1 acts as regulator of the skin wound healing process through engagement in re-epithelization and possible involvement in scar formation due to Foxn1 activity during the EMT process.

  20. The novel fibrinogen-binding protein FbsB promotes Streptococcus agalactiae invasion into epithelial cells.

    Science.gov (United States)

    Gutekunst, Heike; Eikmanns, Bernhard J; Reinscheid, Dieter J

    2004-06-01

    Streptococcus agalactiae is a major cause of bacterial sepsis and meningitis in human newborns. The interaction of S. agalactiae with host proteins and the entry into host cells thereby represent important virulence traits of these bacteria. The present report describes the identification of the fbsB gene, encoding a novel fibrinogen-binding protein that plays a crucial role in the invasion of S. agalactiae into human cells. In Western blots and enzyme-linked immunosorbent assay (ELISA) experiments, the FbsB protein was demonstrated to interact with soluble and immobilized fibrinogen. Binding studies showed the N-terminal 388 residues of FbsB and the Aalpha-subunit of human fibrinogen to recognize each other. By reverse transcription (RT)-PCR, the fbsB gene was shown to be cotranscribed with the gbs0851 gene in S. agalactiae. Deletion of the fbsB gene in the genome of S. agalactiae did not influence the binding of the bacteria to fibrinogen, suggesting that FbsB does not participate in the attachment of S. agalactiae to fibrinogen. In tissue culture experiments, however, the fbsB deletion mutant was severely impaired in its invasion into lung epithelial cells. Bacterial invasion could be reestablished by introducing the fbsB gene on a shuttle plasmid into the fbsB deletion mutant. Furthermore, treatment of lung epithelial cells with FbsB fusion protein blocked S. agalactiae invasion of epithelial cells in a dose-dependent fashion. These results suggest an important role of the FbsB protein in the overall process of host cell entry by S. agalactiae.

  1. SPRY4 Intronic Transcript 1 Promotes Epithelial-Mesenchymal Transition Through Association with Snail1 in Osteosarcoma.

    Science.gov (United States)

    Ru, Neng; Liang, Jie; Zhang, Fan; Wu, Weifei; Wang, Feifan; Liu, Xinzong; Du, Yuanli

    2016-06-01

    Osteosarcoma is an aggressive tumor and the most common malignancy of the skeleton. Due to pulmonary metastasis, the 5-year survival rate is still unsatisfactory. It has been reported that SPRY4 intronic transcript 1 (SPRY4-IT1) promotes cell growth, invasion, and inhibits apoptosis in several cancers. However, the role of SPRY4-IT1 in osteosarcoma remains unclear. In the present study, we investigated the role of SPRY4-IT1 in osteosarcoma cells. Loss- and gain-of-function assays demonstrated that SPRY4-IT1 promoted cell proliferation, migration, and invasion in osteosarcoma. Moreover, SPRY4-IT1 induced epithelial-mesenchymal transition phenotype in osteosarcoma cells. Subsequent investigations revealed that SPRY4-IT1 promoted migration and invasion through association with Snail1 and regulating its stability. Based on these findings, the SPRY4-IT1/Snail1/E-cadherin pathway may play a crucial role in promoting osteosarcoma metastasis. Thus, SPRY4-IT1 may be a potential target for new therapies of osteosarcoma.

  2. Identification of the MUC2 Promoter as a Strong Promoter for Intestinal Gene Expression through Generation of Transgenic Quail Expressing GFP in Gut Epithelial Cells

    Directory of Open Access Journals (Sweden)

    Rachel M. Woodfint

    2017-01-01

    Full Text Available Identification of tissue- and stage-specific gene promoters is valuable for delineating the functional roles of specific genes in genetically engineered animals. Here, through the comparison of gene expression in different tissues by analysis of a microarray database, the intestinal specificity of mucin 2 (MUC2 expression was identified in mice and humans, and further confirmed in chickens by RT-PCR (reverse transcription-PCR analysis. An analysis of cis-acting elements in avian MUC2 gene promoters revealed conservation of binding sites, within a 2.9 kb proximal promoter region, for transcription factors such as caudal type homeobox 2 (CDX2, GATA binding protein 4 (GATA4, hepatocyte nuclear factor 4 α (HNF4A, and transcription factor 4 (TCF4 that are important for maintaining intestinal homeostasis and functional integrity. By generating transgenic quail, we demonstrated that the 2.9 kb chicken MUC2 promoter could drive green fluorescent protein (GFP reporter expression exclusively in the small intestine, large intestine, and ceca. Fluorescence image analysis further revealed GFP expression in intestine epithelial cells. The GFP expression was barely detectable in the embryonic intestine, but increased during post-hatch development. The spatiotemporal expression pattern of the reporter gene confirmed that the 2.9 kb MUC2 promoter could retain the regulatory element to drive expression of target genes in intestinal tissues after hatching. This new transgene expression system, using the MUC2 promoter, will provide a new method of overexpressing target genes to study gene function in the avian intestine.

  3. Identification of the MUC2 Promoter as a Strong Promoter for Intestinal Gene Expression through Generation of Transgenic Quail Expressing GFP in Gut Epithelial Cells

    Science.gov (United States)

    Woodfint, Rachel M.; Chen, Paula R.; Ahn, Jinsoo; Suh, Yeunsu; Hwang, Seongsoo; Lee, Sang Suk; Lee, Kichoon

    2017-01-01

    Identification of tissue- and stage-specific gene promoters is valuable for delineating the functional roles of specific genes in genetically engineered animals. Here, through the comparison of gene expression in different tissues by analysis of a microarray database, the intestinal specificity of mucin 2 (MUC2) expression was identified in mice and humans, and further confirmed in chickens by RT-PCR (reverse transcription-PCR) analysis. An analysis of cis-acting elements in avian MUC2 gene promoters revealed conservation of binding sites, within a 2.9 kb proximal promoter region, for transcription factors such as caudal type homeobox 2 (CDX2), GATA binding protein 4 (GATA4), hepatocyte nuclear factor 4 α (HNF4A), and transcription factor 4 (TCF4) that are important for maintaining intestinal homeostasis and functional integrity. By generating transgenic quail, we demonstrated that the 2.9 kb chicken MUC2 promoter could drive green fluorescent protein (GFP) reporter expression exclusively in the small intestine, large intestine, and ceca. Fluorescence image analysis further revealed GFP expression in intestine epithelial cells. The GFP expression was barely detectable in the embryonic intestine, but increased during post-hatch development. The spatiotemporal expression pattern of the reporter gene confirmed that the 2.9 kb MUC2 promoter could retain the regulatory element to drive expression of target genes in intestinal tissues after hatching. This new transgene expression system, using the MUC2 promoter, will provide a new method of overexpressing target genes to study gene function in the avian intestine. PMID:28106824

  4. Downregulation of β-catenin decreases the tumorigenicity, but promotes epithelial-mesenchymal transition in breast cancer cells

    Directory of Open Access Journals (Sweden)

    Kai Cai

    2014-01-01

    Full Text Available Background: Wnt/β-catenin signaling pathway plays a key role in human breast cancer progression. In this study, we down regulated β-catenin expression in human breast cancer MDA-MB-231 cells and investigated the effect of β-catenin knockdown on the cell biological characteristics. Materials and Methods: The recombinant plasmids of pSUPER-enhancement green fluorescent protein 1 (EGFP1-scrabble-β-catenin-short hairpin ribonucleic acid (shRNA and pSUPER-EGFP1-β-catenin-shRNA-1 were transfected into MDA-MB-231 cells, respectively, and the stably transfected cells were isolated from G418 selected clones. The β-catenin gene silenced efficiency was measured by quantitative reverse transcriptase polymerase chain reaction (QRT-PCR and Western blot. The biological characteristics of MDA-MB-231 cells with down regulated β-catenin were evaluated by analyzing cell proliferation, clonogenicity, cell mobility and tumorigenicity. The expression of E-cadherin and Vimentin was concurrently detected by QRT-PCR. Results: The β-catenin-shRNA-1 stably transfected MDA-MB-231 cells significantly decreased β-catenin expression, cell proliferation, clonogenicity, and tumorigenicity in Balb/c nude mice compared with the MDA-MB-231 cells transfected with pSUPER-EGFP1-scrabble-β-catenin-shRNA. Interestingly, knockdown of β-catenin led to the reduction of epithelial E-cadherin expression, the increase of cell mobility and mesenchymal vimentin expression in MDA-MB-231 cells, indicating an epithelial to mesenchymal transition. Conclusion: Knockdown of β-catenin expression in human breast cancer MDA-MB-231 cells inhibits cell tumorigenicity in mice, but promotes cell epithelial-mesenchymal transition.

  5. RNA interference-mediated silencing of SOCS-1 via lentiviral vector promotes apoptosis of alveolar epithelial cells in vitro.

    Science.gov (United States)

    Qian, Yan-Rong; Zhang, Qiu-Rui; Cheng, Ting; Wan, Huan-Ying; Zhou, Min

    2012-02-01

    Suppressor of cytokine signaling-1 (SOCS1) is a protein that negatively regulates cytokine and growth factor signaling. However, little is known regarding the precise role it plays in idiopathic pulmonary fibrosis. The aim of the present study was to construct a recombinant lentiviral vector for RNA interference targeting the SOCS1 gene and to detect the expression in human alveolar epithelial cells. A lentiviral vector-mediated RNA interference method was used to establish a SOCS1-negative cell line of alveolar origin (A549). Three pairs of complementary small hairpin RNA (shRNA) oligonucleotides targeting the SOCS1 gene were designed, synthesized and inserted into the pPll3.7 vector. Packaged lentivirus particles were obtained after 48 h, and the supernatant was used to transfect the human alveolar epithelial cell line A549. The expression of the SOCS1 protein was detected by Western blotting. MTT assay was used to detect the cell proliferation of alveolar epithelial cells with SOCS1 knockdown. The recombinant plasmids were confirmed by sequencing. The lentivirus-containing supernatant effectively infected the A549 cell line, and the expression of SOCS1 protein was inhibited, which was confirmed by Western blotting in the target cells. MTT assay indicated the inhibition effect for cell proliferation of A549 cells in the SOCS1-RNA interference group, compared to the control group with no interference-mediated silencing of the SOCS1 gene. A lentiviral vector for RNA interference targeting the SOCS1 gene was successfully constructed, and cell survival tests showed that knockdown of the SOCS1 gene promotes the apoptosis of alveolar cells.

  6. Grainy head promotes expression of septate junction proteins and influences epithelial morphogenesis.

    Science.gov (United States)

    Narasimha, Maithreyi; Uv, Anne; Krejci, Alena; Brown, Nicholas H; Bray, Sarah J

    2008-03-15

    Transcription factors of the Grainy head (Grh) family are required in epithelia to generate the impermeable apical layer that protects against the external environment. This function is conserved in vertebrates and invertebrates, despite the differing molecular composition of the protective barrier. Epithelial cells also have junctions that create a paracellular diffusion barrier (tight or septate junctions). To examine whether Grh has a role in regulating such characteristics, we used an epidermal layer in the Drosophila embryo that has no endogenous Grh and lacks septate junctions, the amnioserosa. Expression of Grh in the amnioserosa caused severe defects in dorsal closure, a process similar to wound closure, and induced robust expression of the septate junction proteins Coracle, Fasciclin 3 and Sinuous. Grh-binding sites are present within the genes encoding these proteins, consistent with them being direct targets. Removal of Grh from imaginal disc cells caused a reduction in Fasciclin 3 and Coracle levels, suggesting that Grh normally fine tunes their epithelial expression and hence contributes to barrier properties. The fact that ectopic Grh arrests dorsal closure also suggests that this dynamic process relies on epithelia having distinct adhesive properties conferred by differential deployment of Grh.

  7. Helicobacter pylori Activates HMGB1 Expression and Recruits RAGE into Lipid Rafts to Promote Inflammation in Gastric Epithelial Cells

    Science.gov (United States)

    Lin, Hwai-Jeng; Hsu, Fang-Yu; Chen, Wei-Wei; Lee, Che-Hsin; Lin, Ying-Ju; Chen, Yi-Ywan M.; Chen, Chih-Jung; Huang, Mei-Zi; Kao, Min-Chuan; Chen, Yu-An; Lai, Hsin-Chih; Lai, Chih-Ho

    2016-01-01

    Helicobacter pylori infection is associated with several gastrointestinal disorders in the human population worldwide. High-mobility group box 1 (HMGB1), a ubiquitous nuclear protein, mediates various inflammation functions. The interaction between HMGB1 and receptor for advanced glycation end-products (RAGE) triggers nuclear factor (NF)-κB expression, which in turn stimulates the release of proinflammatory cytokines, such as interleukin (IL)-8, and enhances the inflammatory response. However, how H. pylori activates HMGB1 expression and mobilizes RAGE into cholesterol-rich microdomains in gastric epithelial cells to promote inflammation has not been explored. In this study, we found that HMGB1 and RAGE expression increased significantly in H. pylori-infected cells compared with -uninfected cells. Blocking HMGB1 by neutralizing antibody abrogated H. pylori-elicited RAGE, suggesting that RAGE expression follows HMGB1 production, and silenced RAGE-attenuated H. pylori-mediated NF-κB activation and IL-8 production. Furthermore, significantly more RAGE was present in detergent-resistant membranes extracted from H. pylori-infected cells than in those from -uninfected cells, indicating that H. pylori exploited cholesterol to induce the HMGB1 signaling pathway. These results indicate that HMGB1 plays a crucial role in H. pylori-induced inflammation in gastric epithelial cells, which may be valuable in developing treatments for H. pylori-associated diseases. PMID:27667993

  8. Histone deacetylase inhibitor valproic acid (VPA) promotes the epithelial mesenchymal transition of colorectal cancer cells via up regulation of Snail.

    Science.gov (United States)

    Feng, Jutao; Cen, Junhua; Li, Jun; Zhao, Rujin; Zhu, Canhua; Wang, Zongxin; Xie, Jiafen; Tang, Wei

    2015-01-01

    Histone deacetylase inhibitors (HDACIs) have been shown to have antiproliferative activity through cell-cycle arrest, differentiation, and apoptosis in colorectal cancer (CRC) cells. Our present study revealed that one HDAC inhibitor, valproic acid (VPA), can obviously promote in vitro motility of HCT-116 and SW480 cells. VPA treatment significantly down regulates the expression of epithelial markers E-Cadherin (E-Cad) and Zona occludin-1(ZO-1) while up regulates the mesenchymal markers Vimentin (Vim) and N-cadherin (N-Cad), suggesting that VPA can trigger the epithelial-mesenchymal transition (EMT) of CRC cells. VPA treatment significantly increases the expression and nuclear localization of Snail, the key transcription factors of EMT. Snail knockdown by siRNAs obviously reverses VPA induced EMT of HCT-116 and SW480 cells. Further, VPA can decrease the ubiquitination, increase the acetylation, and then elevate the stabilization of Snail. VPA also increases the phosphorylation of Akt/GSK-3β. The inhibitor of PI3K/Akt, LY2994002, significantly attenuates VPA induced phosphorylation of Akt and GSK-3β and up regulation of Snail and Vim. Collectively, our data reveal that VPA can trigger the EMT of CRC cells via up regulation of Snail through AKT/GSK-3β signals and post-transcriptional modification. It suggests that more attention should be paid when VPA used as a new anticancer drug for CRC patients.

  9. Helicobacter pylori Activates HMGB1 Expression and Recruits RAGE into Lipid Rafts to Promote Inflammation in Gastric Epithelial Cells.

    Science.gov (United States)

    Lin, Hwai-Jeng; Hsu, Fang-Yu; Chen, Wei-Wei; Lee, Che-Hsin; Lin, Ying-Ju; Chen, Yi-Ywan M; Chen, Chih-Jung; Huang, Mei-Zi; Kao, Min-Chuan; Chen, Yu-An; Lai, Hsin-Chih; Lai, Chih-Ho

    2016-01-01

    Helicobacter pylori infection is associated with several gastrointestinal disorders in the human population worldwide. High-mobility group box 1 (HMGB1), a ubiquitous nuclear protein, mediates various inflammation functions. The interaction between HMGB1 and receptor for advanced glycation end-products (RAGE) triggers nuclear factor (NF)-κB expression, which in turn stimulates the release of proinflammatory cytokines, such as interleukin (IL)-8, and enhances the inflammatory response. However, how H. pylori activates HMGB1 expression and mobilizes RAGE into cholesterol-rich microdomains in gastric epithelial cells to promote inflammation has not been explored. In this study, we found that HMGB1 and RAGE expression increased significantly in H. pylori-infected cells compared with -uninfected cells. Blocking HMGB1 by neutralizing antibody abrogated H. pylori-elicited RAGE, suggesting that RAGE expression follows HMGB1 production, and silenced RAGE-attenuated H. pylori-mediated NF-κB activation and IL-8 production. Furthermore, significantly more RAGE was present in detergent-resistant membranes extracted from H. pylori-infected cells than in those from -uninfected cells, indicating that H. pylori exploited cholesterol to induce the HMGB1 signaling pathway. These results indicate that HMGB1 plays a crucial role in H. pylori-induced inflammation in gastric epithelial cells, which may be valuable in developing treatments for H. pylori-associated diseases.

  10. Mesenchymal to Epithelial Transition Mediated by CDH1 Promotes Spontaneous Reprogramming of Male Germline Stem Cells to Pluripotency

    Directory of Open Access Journals (Sweden)

    Junhui An

    2017-02-01

    Full Text Available Cultured spermatogonial stem cells (GSCs can spontaneously form pluripotent cells in certain culture conditions. However, GSC reprogramming is a rare event that is largely unexplained. We show GSCs have high expression of mesenchymal to epithelial transition (MET suppressors resulting in a developmental barrier inhibiting GSC reprogramming. Either increasing OCT4 or repressing transforming growth factor β (TGF-β signaling promotes GSC reprogramming by upregulating CDH1 and boosting MET. Reducing ZEB1 also enhances GSC reprogramming through its direct effect on CDH1. RNA sequencing shows that rare GSCs, identified as CDH1+ after trypsin digestion, are epithelial-like cells. CDH1+ GSCs exhibit enhanced reprogramming and become more prevalent during the course of reprogramming. Our results provide a mechanistic explanation for the spontaneous emergence of pluripotent cells from GSC cultures; namely, rare GSCs upregulate CDH1 and initiate MET, processes normally kept in check by ZEB1 and TGF-β signaling, thereby ensuring germ cells are protected from aberrant acquisition of pluripotency.

  11. AGE-modified basement membrane cooperates with Endo180 to promote epithelial cell invasiveness and decrease prostate cancer survival

    DEFF Research Database (Denmark)

    Rodriguez-Teja, Mercedes; Gronau, Julian H; Breit, Claudia

    2015-01-01

    Biomechanical strain imposed by age-related thickening of the basal lamina and augmented tissue stiffness in the prostate gland coincides with increased cancer risk. Here we hypothesized that the structural alterations in the basal lamina associated with age can induce mechanotransduction pathways...... in non-transformed PECs via a molecular mechanism linked to cancer progression. This study provides a rationale for targeting CTLD2 in Endo180 in prostate cancer and other pathologies in which increased basal lamina thickness and tissue stiffness are driving factors. © 2014 The Authors. The Journal...... in prostate epithelial cells (PECs) to promote invasiveness and cancer progression. To demonstrate this, we developed a 3D model of PEC acini in which thickening and stiffening of basal lamina matrix was induced by advanced glycation end-product (AGE)-dependent non-enzymatic crosslinking of its major...

  12. Observation of bacterial type I pili extension and contraction under fluid flow.

    Directory of Open Access Journals (Sweden)

    Dilia E Rangel

    Full Text Available Type I pili are proteinaceous tethers that mediate bacterial adhesion of uropathogenic Escherichia coli to surfaces and are thought to help bacteria resist drag forces imparted by fluid flow via uncoiling of their quaternary structure. Uncoiling and recoiling have been observed in force spectroscopy experiments, but it is not clear if and how this process occurs under fluid flow. Here we developed an assay to study the mechanical properties of pili in a parallel plate flow chamber. We show that pili extend when attached E. coli bacteria are exposed to increasing shear stresses, that pili can help bacteria move against moderate fluid flows, and characterize two dynamic regimes of this displacement. The first regime is consistent with entropic contraction as modeled by a freely jointed chain, and the second with coiling of the quaternary structure of pili. These results confirm that coiling and uncoiling happen under flow but the observed dynamics are different from those reported previously. Using these results and those from previous studies, we review the mechanical properties of pili in the context of other elastic proteins such as the byssal threads of mussels. It has been proposed that the high extensibility of pili may help recruit more pili into tension and lower the force acting on each one by damping changes in force due to fluid flow. Our analysis of the mechanical properties suggests additional functions of pili; in particular, their extensibility may reduce tension by aligning pili with the direction of flow, and the uncoiled state of pili may complement uncoiling in regulating the force of the terminal adhesin.

  13. A structural basis for sustained bacterial adhesion: biomechanical properties of CFA/I pili.

    Science.gov (United States)

    Andersson, Magnus; Björnham, Oscar; Svantesson, Mats; Badahdah, Arwa; Uhlin, Bernt Eric; Bullitt, Esther

    2012-02-03

    Enterotoxigenic Escherichia coli (ETEC) are a major cause of diarrheal disease worldwide. Adhesion pili (or fimbriae), such as the CFA/I (colonization factor antigen I) organelles that enable ETEC to attach efficiently to the host intestinal tract epithelium, are critical virulence factors for initiation of infection. We characterized the intrinsic biomechanical properties and kinetics of individual CFA/I pili at the single-organelle level, demonstrating that weak external forces (7.5 pN) are sufficient to unwind the intact helical filament of this prototypical ETEC pilus and that it quickly regains its original structure when the force is removed. While the general relationship between exertion of force and an increase in the filament length for CFA/I pili associated with diarrheal disease is analogous to that of P pili and type 1 pili, associated with urinary tract and other infections, the biomechanical properties of these different pili differ in key quantitative details. Unique features of CFA/I pili, including the significantly lower force required for unwinding, the higher extension speed at which the pili enter a dynamic range of unwinding, and the appearance of sudden force drops during unwinding, can be attributed to morphological features of CFA/I pili including weak layer-to-layer interactions between subunits on adjacent turns of the helix and the approximately horizontal orientation of pilin subunits with respect to the filament axis. Our results indicate that ETEC CFA/I pili are flexible organelles optimized to withstand harsh motion without breaking, resulting in continued attachment to the intestinal epithelium by the pathogenic bacteria that express these pili. Copyright © 2011 Elsevier Ltd. All rights reserved.

  14. A Structural Basis for Sustained Bacterial Adhesion – Biomechanical Properties of CFA/I Pili

    Science.gov (United States)

    Andersson, Magnus; Björnham, Oscar; Svantesson, Mats; Badahdah, Arwa; Uhlin, Bernt Eric; Bullitt, Esther

    2012-01-01

    Enterotoxigenic Escherichia coli (ETEC) are a major cause of diarrheal disease worldwide. Adhesion pili (or fimbriae), such as the CFA/I (colonization factor antigen I) organelles that enable ETEC to attach efficiently to the host intestinal tract epithelium, are critical virulence factors for initiation of infection. We characterized at single organelle level the intrinsic biomechanical properties and kinetics of individual CFA/I pili, demonstrating that weak external forces (7.5 pN) are sufficient to unwind the intact helical filament of this prototypical ETEC pilus and that it quickly regains its original structure when the force is removed. While the general relationship between exertion of force and an increase in the filament length for CFA/I pili associated with diarrheal disease is analogous to that of P-pili and type 1 pili, associated with urinary tract and other infections, the biomechanical properties of these different pili differ in key quantitative details. Unique features of CFA/I pili, including the significantly lower force required for unwinding, the higher extension speed at which the pili enter a dynamic range of unwinding, and the appearance of sudden force drops during unwinding can be attributed to morphological features of CFA/I pili including weak layer-to-layer interactions between subunits on adjacent turns of the helix, and the approximately horizontal orientation of pilin subunits with respect to the filament axis. Our results indicate that ETEC CFA/I pili are flexible organelles optimized to withstand harsh motion without breaking, resulting in continued attachment to the intestinal epithelium by the pathogenic bacteria that express these pili. PMID:22178477

  15. Epithelial rotation promotes the global alignment of contractile actin bundles during Drosophila egg chamber elongation.

    Science.gov (United States)

    Cetera, Maureen; Ramirez-San Juan, Guillermina R; Oakes, Patrick W; Lewellyn, Lindsay; Fairchild, Michael J; Tanentzapf, Guy; Gardel, Margaret L; Horne-Badovinac, Sally

    2014-01-01

    Tissues use numerous mechanisms to change shape during development. The Drosophila egg chamber is an organ-like structure that elongates to form an elliptical egg. During elongation the follicular epithelial cells undergo a collective migration that causes the egg chamber to rotate within its surrounding basement membrane. Rotation coincides with the formation of a 'molecular corset', in which actin bundles in the epithelium and fibrils in the basement membrane are all aligned perpendicular to the elongation axis. Here we show that rotation plays a critical role in building the actin-based component of the corset. Rotation begins shortly after egg chamber formation and requires lamellipodial protrusions at each follicle cell's leading edge. During early stages, rotation is necessary for tissue-level actin bundle alignment, but it becomes dispensable after the basement membrane is polarized. This work highlights how collective cell migration can be used to build a polarized tissue organization for organ morphogenesis.

  16. Integrin β4 promotes cell invasion and epithelial-mesenchymal transition through the modulation of Slug expression in hepatocellular carcinoma

    Science.gov (United States)

    Li, Xiao-Long; Liu, Lin; Li, Dan-Dan; He, Ya-Ping; Guo, Le-Hang; Sun, Li-Ping; Liu, Lin-Na; Xu, Hui-Xiong; Zhang, Xiao-Ping

    2017-01-01

    Integrin β4 (ITGB4) is a transmembrane receptor involved in tumorigenesis and the invasiveness of many cancers. However, its role in hepatocellular carcinoma (HCC), one of the most prevalent human cancers worldwide, remains unclear. Here, we examined the involvement of ITGB4 in HCC and explored the underlying mechanisms. Real-time PCR and immunohistochemical analyses of tissues from 82 patients with HCC and four HCC cell lines showed higher ITGB4 levels in tumor than in adjacent non-tumor tissues and in HCC than in normal hepatic cells. Silencing of ITGB4 repressed cell proliferation, colony forming ability and cell invasiveness, whereas ectopic expression of ITGB4 promoted the proliferation and invasion of HCC cells and induced epithelial to mesenchymal transition (EMT) in parallel with the upregulation of Slug, as shown by transwell assays, WB and immunocytochemistry. Knockdown of Slug reduced cell viability inhibited invasion and reversed the effects of ITBG4 overexpression on promoting EMT, and AKT/Sox2-Nanog may also be involved. In a xenograft tumor model induced by injection of ITGB4-overexpressing cells into nude mice, ITGB4 promoted tumor growth and metastasis to the lungs. Taken together, our results indicate that ITGB4 plays a tumorigenic and pro-metastatic role mediated by Slug and suggest IGTB4 could be a prognostic indicator or a therapeutic target in patients with HCC. PMID:28084395

  17. Up-Regulated FASN Expression Promotes Transcoelomic Metastasis of Ovarian Cancer Cell through Epithelial-Mesenchymal Transition

    Directory of Open Access Journals (Sweden)

    Li Jiang

    2014-06-01

    Full Text Available Fatty acid synthase (FASN, responsible for the de novo synthesis of fatty acids, has been shown to act as an oncogene in various human cancers. However, the mechanisms by which FASN favors the progression of ovarian carcinoma remain unknown. In this study, we evaluated FASN expression in ovarian cancer and investigated how FASN regulates the aggressiveness of ovarian cancer cells. Our results show that increased FASN is associated with the peritoneal metastasis of ovarian cancers. Over-expression of FASN results in a significant increase of tumor burden in peritoneal dissemination, accompanied by augment in cellular colony formation and metastatic ability. Correspondingly, FASN knockdown using RNA interference in ovarian cancer cells inhibits the migration in vitro and experimental peritoneal dissemination in vivo. Mechanistic studies reveal that FASN promotes Epithelial-mesenchymal Transition (EMT via a transcriptional regulation of E-cadherin and N-cadherin, which is also confirmed by luciferase promoter activity analysis. Taken together, our work demonstrates that FASN promotes the peritoneal dissemination of ovarian cancer cells, at least in part through the induction of EMT. These findings suggest that FASN plays a critical role in the peritoneal metastasis of ovarian cancer. Targeting de novo lipogenesis may have a therapeutic potential for advanced ovarian cancer.

  18. RMP promotes epithelial-mesenchymal transition through NF-κB/CSN2/Snail pathway in hepatocellular carcinoma.

    Science.gov (United States)

    Zhou, Wei; Wang, Qi; Xu, Yi; Jiang, Jingting; Guo, Jingchun; Yu, Huijun; Wei, Wenxiang

    2017-06-20

    Epithelial-mesenchymal transition (EMT) is a significant risk factor for metastasis in hepatocellular carcinoma (HCC) patients and with poor prognosis. In this study, we demonstrate the key role of RPB5-mediating protein (RMP) in EMT of HCC cells and the mechanism by which RMP promote EMT. RMP increases migration, invasion, and the progress of EMT of HCC cells, which facilitates the accumulation of Snail, a transcriptional repressor involved in EMT initiation. NF-κB is activated by RMP, which directly promotes the expression of COP9 signalosome 2 (CSN2) to repress the degradation of Snail. Pulmonary metastases mouse model demonstrates that RMP induces metastasis in vivo. Immunohistochemical analysis of human HCC tissues confirms the correlation of RMP with the expression of E-cadherin, p65, CSN2 and Snail in vivo. Collectively, these findings indicate that RMP promotes EMT and HCC metastasis through NF-κB/CSN2/Snail pathway. These results suggest that RMP and p65 may serve as potential candidates of the targets in the treatment of metastatic HCC.

  19. Downregulation of microRNA-145 promotes epithelial-mesenchymal transition via regulating Snail in osteosarcoma.

    Science.gov (United States)

    Zhang, Z; Zhang, M; Chen, Qinghan; Zhang, Q

    2017-02-01

    Metastasis is the principal cause of cancer death and occurs through multiple, complex processes. Epithelial to mesenchymal transition (EMT) is an important process during embryonic development and has also been hypothesized to exhibit a significant role in cancer cell invasion and metastasis. MicroRNAs (miRNAs) are a class of widespread noncoding RNAs. In recent years, many studies have shown that miRNAs could influence the signaling pathways and downstream events that define EMT on a molecular level. However, the exact role and mechanisms of miR-145 in EMT of osteosarcoma (OS) was unknown. In the present study, miR-145 was downregulated in OS tissues and cell lines and it was shown that miR-145 expression was closely correlated with advanced tumor progression in patients of OS. In addition, miR-145 upregulation by miR-145 agomir significantly inhibited MG63 cells invasion and migration ability. MiR-145 was reported to be able to inhibit EMT in cancers. Following the examination of changes in cell epithelial and mesenchymal markers, it was found that upregulation of miR-145 strongly reversed EMT in MG63 cells. Meanwhile, the expression of Snail, a strong E-cadherin transcription repressor was also attenuated by miR-145 agomir. Furthermore, the decreased EMT and invasion and metastasis caused by miR-145 agomir could be restored by Snail siRNA. In conclusion, the results demonstrated that miR-145 could mediate EMT by targeting Snail and miR-145 might be a novel EMT regulating transcription factor that involved in the progression of OS. The specific drugs targeting miR-145-mediated EMT process might be new promising cancer therapies.

  20. Human thymus medullary epithelial cells promote regulatory T-cell generation by stimulating interleukin-2 production via ICOS ligand.

    Science.gov (United States)

    Nazzal, D; Gradolatto, A; Truffault, F; Bismuth, J; Berrih-Aknin, S

    2014-09-11

    Natural thymic T regulatory (tTreg) cells maintain tolerance to self-antigen. These cells are generated in the thymus, but how this generation occurs is still controversial. Furthermore, the contribution of thymus epithelial cells to this process is still unclear, especially in humans. Using an exceptional panel of human thymic samples, we demonstrated that medullary thymus epithelial cells (mTECs) promote the generation of tTreg cells and favor their function. These effects were mediated through soluble factors and were mTEC specific since other cell types had no such effect. By evaluating the effects of mTECs on the absolute number of Treg cells and their state of proliferation or cell death, we conclude that mTECs promote the proliferation of newly generated CD25+ cells from CD4+CD25- cells and protect Treg cells from cell death. This observation implicates Bcl-2 and mitochondrial membrane potential changes, indicating that the intrinsic cell death pathway is involved in Treg protection by mTECs. Interestingly, when the mTECs were cultured directly with purified Treg cells, they were able to promote their phenotype but not their expansion, suggesting that CD4+CD25- cells have a role in the expansion process. To explore the mechanisms involved, several neutralizing antibodies were tested. The effects of mTECs on Treg cells were essentially due to interleukin (IL)-2 overproduction by thymus CD4+ T cells. We then searched for a soluble factor produced by mTECs able to increase IL-2 production by CD4+ cells and could identify the inducible T-cell costimulator ligand (ICOSL). Our data strongly suggest a « ménage à trois »: mTEC cells (via ICOSL) induce overproduction of IL-2 by CD25- T cells leading to the expansion of tTreg cells. Altogether, these results demonstrate for the first time a role of mTECs in promoting Treg cell expansion in the human thymus and implicate IL-2 and ICOSL in this process.

  1. Mitis group streptococci express variable pilus islet 2 pili.

    Directory of Open Access Journals (Sweden)

    Dorothea Zähner

    Full Text Available BACKGROUND: Streptococcus oralis, Streptococcus mitis, and Streptococcus sanguinis are members of the Mitis group of streptococci and agents of oral biofilm, dental plaque and infective endocarditis, disease processes that involve bacteria-bacteria and bacteria-host interactions. Their close relative, the human pathogen S. pneumoniae uses pilus-islet 2 (PI-2-encoded pili to facilitate adhesion to eukaryotic cells. METHODOLOGY/PRINCIPAL FINDINGS: PI-2 pilus-encoding genetic islets were identified in S. oralis, S. mitis, and S. sanguinis, but were absent from other isolates of these species. The PI-2 islets resembled the genetic organization of the PI-2 islet of S. pneumoniae, but differed in the genes encoding the structural pilus proteins PitA and PitB. Two and three variants of pitA (a pseudogene in S. pneumoniae and pitB, respectively, were identified that showed ≈20% difference in nucleotide as well as corresponding protein sequence. Species-independent combinations of pitA and pitB variants indicated prior intra- and interspecies horizontal gene transfer events. Polyclonal antisera developed against PitA and PitB of S. oralis type strain ATCC35037 revealed that PI-2 pili in oral streptococci were composed of PitA and PitB. Electronmicrographs showed pilus structures radiating >700 nm from the bacterial surface in the wild type strain, but not in an isogenic PI-2 deletion mutant. Anti-PitB-antiserum only reacted with pili containing the same PitB variant, whereas anti-PitA antiserum was cross-reactive with the other PitA variant. Electronic multilocus sequence analysis revealed that all PI-2-encoding oral streptococci were closely-related and cluster with non-PI-2-encoding S. oralis strains. CONCLUSIONS/SIGNIFICANCE: This is the first identification of PI-2 pili in Mitis group oral streptococci. The findings provide a striking example of intra- and interspecies horizontal gene transfer. The PI-2 pilus diversity provides a possible key to

  2. Probiotic Gut Microbiota Isolate Interacts with Dendritic Cells via Glycosylated Heterotrimeric Pili

    NARCIS (Netherlands)

    Tytgat, Hanne; Teijlingen, van N.H.; Sullan, R.M.; Douillard, F.P.; Rasinkangas, P.; Messing, M.; Reunanen, J.; Satokari, R.; Vanderleyden, J.; Dufrêne, Y.F.; Geijtenbeek, T.B.H.; Vos, de W.M.; Lebeer, S.

    2016-01-01

    Mapping of the microbial molecules underlying microbiota-host interactions is key to understand how microbiota preserve mucosal homeostasis. A pivotal family of such bacterial molecules are pili. Pili are proteinaceous cell wall appendages with a well-documented role in adhesion, whilst their role i

  3. Relevance of Aromatic Amino Acids for Electron Conduction along Geobacter Pili Protein

    Science.gov (United States)

    Adhikari, Ramesh; Malvankar, Nikhil; Tuominen, Mark; Lovley, Derek

    It has been proposed that the charge transport though Geobacter sulfurreducens pili protein occurs through the aromatic amino acids forming helical conducting chain within pili. X-ray studies of pili show that the aromatic amino acids are packed close enough (3-4 Å) for pi-stacking to occur. Conductivity of the pili network increases with lowering temperature indicating metallic-like transport mechanism. However due to the complexity of charge percolation path in 3D network, the intrinsic conductivity of an individual pili was not known. Here, we report transport measurements of individual pili of G. sulfurreducens. The conductivity, similar to that of organic polymers, shows that the pili may have implications in materials research. In addition, the conductivity value is sufficient to explain the respiration rate of the G. sulfurreducens. Further studies of pili from different natural and genetically modified species with varying amount of aromatic amino acid density demonstrate that it can play a decisive role on the magnitude of the conductivity. This research was supported by the Office of Naval Research (ONR) and National Science Foundation (NSF) Center for Hierarchical Manufacturing (CHM). Nikhil S. Malvankar holds a Career Award from the Burroughs Wellcome Fund.

  4. Going wireless: Fe(III) oxide reduction without pili by Geobacter sulfurreducens strain JS-1.

    Science.gov (United States)

    Smith, Jessica A; Tremblay, Pier-Luc; Shrestha, Pravin Malla; Snoeyenbos-West, Oona L; Franks, Ashley E; Nevin, Kelly P; Lovley, Derek R

    2014-07-01

    Previous studies have suggested that the conductive pili of Geobacter sulfurreducens are essential for extracellular electron transfer to Fe(III) oxides and for optimal long-range electron transport through current-producing biofilms. The KN400 strain of G. sulfurreducens reduces poorly crystalline Fe(III) oxide more rapidly than the more extensively studied DL-1 strain. Deletion of the gene encoding PilA, the structural pilin protein, in strain KN400 inhibited Fe(III) oxide reduction. However, low rates of Fe(III) reduction were detected after extended incubation (>30 days) in the presence of Fe(III) oxide. After seven consecutive transfers, the PilA-deficient strain adapted to reduce Fe(III) oxide as fast as the wild type. Microarray, whole-genome resequencing, proteomic, and gene deletion studies indicated that this adaptation was associated with the production of larger amounts of the c-type cytochrome PgcA, which was released into the culture medium. It is proposed that the extracellular cytochrome acts as an electron shuttle, promoting electron transfer from the outer cell surface to Fe(III) oxides. The adapted PilA-deficient strain competed well with the wild-type strain when both were grown together on Fe(III) oxide. However, when 50% of the culture medium was replaced with fresh medium every 3 days, the wild-type strain outcompeted the adapted strain. A possible explanation for this is that the necessity to produce additional PgcA, to replace the PgcA being continually removed, put the adapted strain at a competitive disadvantage, similar to the apparent selection against electron shuttle-producing Fe(III) reducers in many anaerobic soils and sediments. Despite increased extracellular cytochrome production, the adapted PilA-deficient strain produced low levels of current, consistent with the concept that long-range electron transport through G. sulfurreducens biofilms is more effective via pili.

  5. CAP1 is overexpressed in human epithelial ovarian cancer and promotes cell proliferation.

    Science.gov (United States)

    Hua, Minhui; Yan, Sujuan; Deng, Yan; Xi, Qinghua; Liu, Rong; Yang, Shuyun; Liu, Jian; Tang, Chunhui; Wang, Yingying; Zhong, Jianxin

    2015-04-01

    Adenylate cyclase-associated protein 1 (CAP1) regulates both actin filaments and the Ras/cAMP pathway in yeast, and has been found play a role in cell motility and in the development of certain types of cancer. In the present study, we investigated CAP1 gene expression in human epithelial ovarian cancer (EOC). Western blot analysis and immunohistochemistry were performed using EOC tissue samples and the results revealed that CAP1 expression increased with the increasing grade of EOC. In the normal ovarian tissue samples however, CAP1 expression was barely detected. Using Pearson's χ2 test, it was demonstrated that CAP1 expression was associated with the histological grade and Ki-67 expression. Kaplan-Meier analysis revealed that a higher CAP1 expression in patients with EOC was associated with a poorer prognosis. In in vitro experiments using HO-8910 EOC cells, the expression of CAP1 was knocked down using siRNA. The proliferation of the HO-8910 cells was then determined by cell cycle analysis and cell proliferation assay using the cell counting kit-8 and flow cytometry. The results revealed that the loss of CAP1 expression inhibited cell cycle progression. These findings suggest that a high expression of CAP1 is involved in the pathogenesis of EOC, and that the downregulation of CAP1 in tumor cells may be a therapeutic target for the treatment of patients with EOC.

  6. FGFR4 promotes stroma-induced epithelial-to-mesenchymal transition in colorectal cancer.

    Science.gov (United States)

    Liu, Rui; Li, Jingyi; Xie, Ke; Zhang, Tao; Lei, Yunlong; Chen, Yi; Zhang, Lu; Huang, Kai; Wang, Kui; Wu, Hong; Wu, Min; Nice, Edouard C; Huang, Canhua; Wei, Yuquan

    2013-10-01

    Tumor cells evolve by interacting with the local microenvironment; however, the tumor-stroma interactions that govern tumor metastasis are poorly understood. In this study, proteomic analyses reveal that coculture with tumor-associated fibroblasts (TAF) induces significant overexpression of FGFR4, but not other FGFRs, in colorectal cancer cell lines. Mechanistic study shows that FGFR4 plays crucial roles in TAF-induced epithelial-to-mesenchymal transition (EMT) in colorectal cancer cell lines. Accumulated FGFR4 in cell membrane phosphorylates β-catenin, leading to translocation of β-catenin into the nucleus. Further, TAF-derived CCL2 and its downstream transcription factor, Ets-1, are prerequisites for TAF-induced FGFR4 upregulation. Furthermore, FGFR4-associated pathways are shown to be preferentially activated in colorectal tumor samples, and direct tumor metastasis in a mouse metastasis model. Our study shows a pivotal role of FGFR4 in tumor-stroma interactions during colorectal cancer metastasis, and suggests novel therapeutic opportunities for the treatment of colorectal cancer.

  7. Molecular analysis of the UV-inducible pili operon from Sulfolobus acidocaldarius.

    Science.gov (United States)

    van Wolferen, Marleen; Ajon, Małgorzata; Driessen, Arnold J M; Albers, Sonja-Verena

    2013-12-01

    Upon ultraviolet (UV) stress, hyperthermophilic Sulfolobus species show a highly induced transcription of a gene cluster responsible for pili biogenesis: the UV-inducible pili operon (ups operon). This operon is involved in UV-induced pili assembly, cellular aggregation, and subsequent DNA exchange between cells. As the system increases the fitness of Sulfolobus cells after UV light exposure, we assume that transfer of DNA takes place in order to repair UV-induced DNA damages via homologous recombination. Here, we studied all genes present in the ups cluster via gene deletion analysis with a focus on UpsX, a protein that shows no identifiable functional domains. UspX does not seem to be structurally essential for UV-induced pili formation and cellular aggregation, but appears to be important for efficient DNA transfer. In addition, we could show that pilin subunits UpsA and UpsB probably both function as major pilin subunits in the ups pili.

  8. 78 FR 51208 - Request for Nominations for the Na Hoa Pili O Kaloko-Honokohau Advisory Commission

    Science.gov (United States)

    2013-08-20

    ... National Park Service Request for Nominations for the Na Hoa Pili O Kaloko-Honokohau Advisory Commission AGENCY: National Park Service, Interior. ACTION: Notice of Request for Nominations for the Na Hoa Pili O... Interior, proposes to appoint new members to the Na Hoa Pili O Kaloko-Honokohau (The Friends of...

  9. 76 FR 64103 - Request for Nominations for the Na Hoa Pili O Kaloko-Honokohau Advisory Commission

    Science.gov (United States)

    2011-10-17

    ... National Park Service Request for Nominations for the Na Hoa Pili O Kaloko-Honokohau Advisory Commission AGENCY: National Park Service, Interior. ACTION: Notice of request for nominations for the Na Hoa Pili O... Interior, proposes to appoint new members to the Na Hoa Pili O Kaloko-Honokohau (The Friends of...

  10. Deficiency of thioredoxin binding protein-2 (TBP-2 enhances TGF-β signaling and promotes epithelial to mesenchymal transition.

    Directory of Open Access Journals (Sweden)

    So Masaki

    Full Text Available BACKGROUND: Transforming growth factor beta (TGF-β has critical roles in regulating cell growth, differentiation, apoptosis, invasion and epithelial-mesenchymal transition (EMT of various cancer cells. TGF-β-induced EMT is an important step during carcinoma progression to invasion state. Thioredoxin binding protein-2 (TBP-2, also called Txnip or VDUP1 is downregulated in various types of human cancer, and its deficiency results in the earlier onset of cancer. However, it remains unclear how TBP-2 suppresses the invasion and metastasis of cancer. PRINCIPAL FINDINGS: In this study, we demonstrated that TBP-2 deficiency increases the transcriptional activity in response to TGF-β and also enhances TGF-β-induced Smad2 phosphorylation levels. Knockdown of TBP-2 augmented the TGF-β-responsive expression of Snail and Slug, transcriptional factors related to TGF-β-mediated induction of EMT, and promoted TGF-β-induced spindle-like morphology consistent with the depletion of E-Cadherin in A549 cells. CONCLUSIONS/SIGNIFICANCE: Our results indicate that TBP-2 deficiency enhances TGF-β signaling and promotes TGF-β-induced EMT. The control of TGF-β-induced EMT is critical for the inhibition of the invasion and metastasis. Thus TBP-2, as a novel regulatory molecule of TGF-β signaling, is likely to be a prognostic indicator or a potential therapeutic target for preventing tumor progression.

  11. Purification, characterization, and pathogenicity of Moraxella bovis pili.

    Science.gov (United States)

    Ruehl, W W; Marrs, C F; Fernandez, R; Falkow, S; Schoolnik, G K

    1988-09-01

    Pilins composed of the alpha or beta pilins of Moraxella bovis strain Epp63 were purified, subjected to chemical or enzymatic cleavage, and the resulting fragments sequenced by automated Edman degradation. alpha Pilin was found to be a 155-amino-acid polypeptide with a single intramolecular disulfide bridge. The beta pilin amino acid sequence substantiated the previously reported structure derived from the beta pilin gene DNA sequence, and indicated that the alpha and beta pilins of this strain are approximately 70% homologous. DNA hybridization studies of genomic DNA from the alpha- and beta-piliated variants of strain Epp63 indicated that the expression of the two pilin types was governed by an oscillating mechanism of chromosomal rearrangement. The alpha and beta pili were evaluated serologically and found to exhibit approximately 50% shared antigenicity, indicating that regions of conserved and heterologous sequence specify both type-specific and crossreacting epitopes. The pathogenicity of the alpha- and beta-piliated variants was studied by ocular inoculation of calves eyes; beta-piliated organisms were significantly more infectious than alpha-piliated organisms, indicating that beta pili confer, or are associated with, a relative advantage during the first stages of ocular infection. Preliminary analysis of other M. bovis strains suggests that each strain produces two types of pilin, and that this property may be characteristic of the species.

  12. p53 and miR-34a Feedback Promotes Lung Epithelial Injury and Pulmonary Fibrosis.

    Science.gov (United States)

    Shetty, Shwetha K; Tiwari, Nivedita; Marudamuthu, Amarnath S; Puthusseri, Bijesh; Bhandary, Yashodhar P; Fu, Jian; Levin, Jeffrey; Idell, Steven; Shetty, Sreerama

    2017-03-05

    Idiopathic pulmonary fibrosis (IPF) is a progressive and fatal interstitial lung disease. The pathogenesis of interstitial lung diseases, including its most common form, IPF, remains poorly understood. Alveolar epithelial cell (AEC) apoptosis, proliferation, and accumulation of myofibroblasts and extracellular matrix deposition results in progressive loss of lung function in IPF. We found induction of tumor suppressor protein, p53, and apoptosis with suppression of urokinase-type plasminogen activator (uPA) and the uPA receptor in AECs from the lungs of IPF patients, and in mice with bleomycin, cigarette smoke, silica, or sepsis-induced lung injury. Treatment with the caveolin-1 scaffolding domain peptide (CSP) reversed these effects. Consistent with induction of p53, AECs from IPF lungs or mice with diverse types of lung injuries showed increased p53 acetylation and miR-34a expression with reduction in Sirt1. This was significantly reduced after treatment of wild-type mice with CSP, and uPA-deficient mice were unresponsive. Bleomycin failed to induce miR-34a in p53- or plasminogen activator inhibitor-1 (PAI-1)-deficient mice. CSP-mediated inhibition of miR-34a restored Sirt1, suppressed p53 acetylation and apoptosis in injured AECs, and prevented pulmonary fibrosis (PF). AEC-specific suppression of miR-34a inhibited bleomycin-induced p53, PAI-1, and apoptosis and prevented PF, whereas overexpression of precursor-miR-34a increased p53, PAI-1, and apoptosis in AECs of mice unexposed to bleomycin. Our study validates p53-miR-34a feedback as a potential therapeutic target in PF.

  13. BMPER Promotes Epithelial-Mesenchymal Transition in the Developing Cardiac Cushions.

    Directory of Open Access Journals (Sweden)

    Laura Dyer

    Full Text Available Formation of the cardiac valves is an essential component of cardiovascular development. Consistent with the role of the bone morphogenetic protein (BMP signaling pathway in cardiac valve formation, embryos that are deficient for the BMP regulator BMPER (BMP-binding endothelial regulator display the cardiac valve anomaly mitral valve prolapse. However, how BMPER deficiency leads to this defect is unknown. Based on its expression pattern in the developing cardiac cushions, we hypothesized that BMPER regulates BMP2-mediated signaling, leading to fine-tuned epithelial-mesenchymal transition (EMT and extracellular matrix deposition. In the BMPER-/- embryo, EMT is dysregulated in the atrioventricular and outflow tract cushions compared with their wild-type counterparts, as indicated by a significant increase of Sox9-positive cells during cushion formation. However, proliferation is not impaired in the developing BMPER-/- valves. In vitro data show that BMPER directly binds BMP2. In cultured endothelial cells, BMPER blocks BMP2-induced Smad activation in a dose-dependent manner. In addition, BMP2 increases the Sox9 protein level, and this increase is inhibited by co-treatment with BMPER. Consistently, in the BMPER-/- embryos, semi-quantitative analysis of Smad activation shows that the canonical BMP pathway is significantly more active in the atrioventricular cushions during EMT. These results indicate that BMPER negatively regulates BMP-induced Smad and Sox9 activity during valve development. Together, these results identify BMPER as a regulator of BMP2-induced cardiac valve development and will contribute to our understanding of valvular defects.

  14. IL-36R signalling activates intestinal epithelial cells and fibroblasts and promotes mucosal healing in vivo.

    Science.gov (United States)

    Scheibe, Kristina; Backert, Ingo; Wirtz, Stefan; Hueber, Axel; Schett, Georg; Vieth, Michael; Probst, Hans Christian; Bopp, Tobias; Neurath, Markus F; Neufert, Clemens

    2017-05-01

    Interleukin (IL)-36R signalling plays a proinflammatory role in different organs including the skin, but the expression of IL-36R ligands and their molecular function in intestinal inflammation are largely unknown. We studied the characteristics of IL-36R ligand expression in IBDs and experimental colitis. The functional role of IL-36R signalling in the intestine was addressed in experimental colitis and wound healing models in vivo by using mice with defective IL-36R signalling (IL-36R-/-) or Myd88, neutralising anti-IL-36R antibodies, recombinant IL-36R ligands and RNA-seq genome expression analysis. Expression of IL-36α and IL-36γ was significantly elevated in active human IBD and experimental colitis. While IL-36γ was predominantly detected in nuclei of the intestinal epithelium, IL-36α was mainly found in the cytoplasm of CD14(+) inflammatory macrophages. Functional studies showed that defective IL-36R signalling causes high susceptibility to acute dextran sodium sulfate colitis and impairs wound healing. Mechanistically, IL-36R ligands released upon mucosal damage activated IL-36R(+) colonic fibroblasts via Myd88 thereby inducing expression of chemokines, granulocyte-macrophage colony-stimulating factor (GM-CSF) and IL-6. Moreover, they induced proliferation of intestinal epithelial cells (IECs) and expression of the antimicrobial protein lipocalin 2. Finally, treatment of experimental intestinal wounds with IL-36R ligands significantly accelerated mucosal healing in vivo. IL-36R signalling is activated upon intestinal damage, stimulates IECs and fibroblasts and drives mucosal healing. Modulation of the IL-36R pathway emerges as a potential therapeutic strategy for induction of mucosal healing in IBD. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  15. Lysophosphatidic Acid Promotes Epithelial to Mesenchymal Transition in Ovarian Cancer Cells by Repressing SIRT1.

    Science.gov (United States)

    Ray, Upasana; Roy, Sib Sankar; Chowdhury, Shreya Roy

    2017-01-01

    Epithelial-to-mesenchymal transition (EMT) plays an essential role in the transition from early to invasive phenotype, however the underlying mechanisms still remain elusive. Herein, we propose a mechanism through which the class-III deacetylase SIRT1 regulates EMT in ovarian cancer (OC) cells. Expression analysis was performed using Q-PCR, western blot, immunofluorescence and fluorescence-IHC study. Matrigel invasion assay was used for the invasion study. Morphological alterations were observed by phalloidin-staining. Co-immunoprecipitation study was performed to analyze protein-protein interaction. Overexpression of SIRT1-WT as well as Resveratrol-mediated SIRT1 activation antagonized the invasion of OC cells by suppressing EMT. SIRT1 deacetylates HIF1α, to inactivate its transcriptional activity. To further validate HIF1α inactivation, its target gene, i.e. ZEB1, an EMT-inducing factor was found to attenuate upon SIRT1 activation. To uncover the regulatory factor governing SIRT1 expression, lysophosphatidic acid (LPA), a highly enriched oncolipid in ascites/serum of OC patients, was found to down-regulate SIRT1 expression. Importantly, LPA was found to induce the mesenchymal switch in OC cells through suppression of SIRT1. Decreased level of SIRT1 was further validated in ovarian tissue samples of OC patients. We have identified a mechanism that relates SIRT1 down-regulation to LPA-induced EMT in OC cells and may open new arenas on developing novel anti-cancer therapeutics. © 2017 The Author(s)Published by S. Karger AG, Basel.

  16. Deregulation of let-7e in epithelial ovarian cancer promotes the development of resistance to cisplatin

    Science.gov (United States)

    Cai, J; Yang, C; Yang, Q; Ding, H; Jia, J; Guo, J; Wang, J; Wang, Z

    2013-01-01

    Drug resistance remains a major clinical obstacle to successful treatment in ovarian cancer patients, and the evidence of microRNAs involvement in drug resistance has been emerging recently. In this report, we investigated the role of let-7e in the development of cisplatin-resistant ovarian cancer. On the cellular level, let-7e expression was significantly reduced in cisplatin-resistant human epithelial ovarian cancer (EOC) cell line A2780/CP compared with parental A2780 cell and decreased in a concentration-dependent manner in A2780, SKOV3 and ES2 cells treated with cisplatin. Overexpression of let-7e by transfection of agomir could resensitize A2780/CP and reduce the expression of cisplatin-resistant-related proteins enhancer of zeste 2 (EZH2) and cyclin D1 (CCND1), whereas let-7e inhibitors increased resistance to cisplatin in parental A2780 cells. Quantitative methylation-specific PCR analysis showed hypermethylation of the CpG island adjacent to let-7e in A2780/CP cells, and demethylation treatment with 5-aza-CdR or transfection of pYr-let-7e-shRNA plasmid containing unmethylated let-7e DNA sequence could restore let-7e expression and partly reduce the chemoresistance. In addition, cisplatin combined with let-7e agomirs inhibited the growth of A2780/CP xenograft more effectively than cisplatin alone. Diminished expression of EZH2 and CCND1 and higher cisplatin concentrations in tumor tissue of mice subjected to administration of let-7e agomirs in addition to cisplatin were revealed by immunohistochemistry and atomic absorption spectroscopy, respectively. Taken together, our findings suggest that let-7e may act as a promising therapeutic target for improvement of the sensibility to cisplatin in EOC. PMID:24100610

  17. miR-208-induced epithelial to mesenchymal transition of pancreatic cancer cells promotes cell metastasis and invasion.

    Science.gov (United States)

    Liu, Anan; Shao, Chenghao; Jin, Gang; Liu, Rui; Hao, Jun; Song, Bin; Ouyang, Liu; Hu, Xiangui

    2014-06-01

    The aim of this study was to investigate the role of miR-208 in the invasion and metastasis of pancreatic cancer cells and the underlying molecular mechanism. miR-208 mimic, miR-208 inhibitor and NC were transfected into pancreatic cancer cell line Bxpc3 using liposome. Transwell invasion and scratch assays were used to test cell migratory and invasive abilities. Western blotting and quantitative PCR methods were used to detect E-cadherin, fibronectin and vimentin protein and mRNA expression in pancreatic cancer cell line BxPC3 after transfection by miR-208 mimic, miR-208 inhibitor and NC. Transwell invasion and scratch assays showed that after overexpressing miR-208, pancreatic cancer cell line BxPC3 exhibited enhanced in vitro migratory and invasive abilities, while after downregulating miR-208 expression, cell migratory and invasive abilities were decreased. Western blotting and quantitative PCR showed that after overexpressing miR-208, expression of E-cadherin, an epithelial cell marker, was decreased and expression of fibronectin and vimentin, interstitial cell markers, was increased in pancreatic cancer cell line BxPC3; however, after inhibiting miR-208, increased E-cadherin expression and decreased fibronectin and vimentin expression were observed in pancreatic cancer cell line BxPC3. After overexpressing miR-208, p-AKT and p-GSK-3β expression was altered by activating AKT/GSK-3β/snail signaling pathway. miR-208 induces epithelial to mesenchymal transition of pancreatic cancer cell line BxPC3 by activating AKT/GSK-3β/snail signaling pathway and thereby promotes cell metastasis and invasion.

  18. Transketolase Serves a Poor Prognosticator in Esophageal Cancer by Promoting Cell Invasion via Epithelial-Mesenchymal Transition

    Science.gov (United States)

    Chao, Yin-Kai; Peng, Ta-Lun; Chuang, Wen-Yu; Yeh, Chi-Ju; Li, Yan-Liang; Lu, Ya-Ching; Cheng, Ann-Joy

    2016-01-01

    Background: To characterize the potential function and clinical significance of Transketolase (TKT) in esophageal cancer. Methods: High invasive esophageal squamous cell carcinoma (ESCC) cell line CE48T/VGH was used. Cellular functions in response to TKT modulation were examined, including cell growth, migration and invasion. The underlying molecules involved in the TKT regulatory mechanism were determined by western blot and confocal microscopic analysis. Clinically, TKT expressions in 76 ESCC patients were assessed by immunohistochemical (IHC) method, and the association with treatment outcome was determined. Results: TKT silencing inhibited cell migration and invasion but had a minimal effect on cell growth. This TKT silencing also induced the reversion of epithelial-mesenchymal transition (EMT), as evidenced by the spindle to cuboidal morphological change, increased the expression of epithelial markers (γ-catenin), and decreased the levels of mesenchymal markers (fibronectin and N-cadherin). Mechanically, TKT was shown to modulate the EMT through the pERK-Slug/Snail-associated signaling pathway. Clinically, a high level of TKT in the cancer tissues of patients with esophageal squamous cell carcinoma was associated with poor survival (P = 0.042). In the multivariate analysis, a high TKT level was also shown to be an independent unfavorable prognostic factor (Odds ratio: 1.827, 95% confidence interval: 1.045-3.196, P = 0.035). Conclusions: TKT contributes to esophageal cancer by promoting cell invasion via meditating EMT process. Clinically, the over-expression of TKT in ESCC patients predicts poorer survival. TKT inhibition may be a useful strategy to intervene in cancer cell invasion and metastasis, which may lead to better prognosis for ESCC patients. PMID:27698919

  19. Extracellular vesicles from women with breast cancer promote an epithelial-mesenchymal transition-like process in mammary epithelial cells MCF10A.

    Science.gov (United States)

    Galindo-Hernandez, Octavio; Gonzales-Vazquez, Cristina; Cortes-Reynosa, Pedro; Reyes-Uribe, Emmanuel; Chavez-Ocaña, Sonia; Reyes-Hernandez, Octavio; Sierra-Martinez, Mónica; Salazar, Eduardo Perez

    2015-12-01

    Extracellular vesicles (EVs) mediate many stages of tumor progression including angiogenesis, escape from immune surveillance, and extracellular matrix degradation. We studied whether EVs from plasma of women with breast cancer are able to induce an epithelial-mesenchymal transition (EMT) process in mammary epithelial cells MCF10A. Our findings demonstrate that EVs from plasma of breast cancer patients induce a downregulation of E-cadherin expression and an increase of vimentin and N-cadherin expression. Moreover, EVs induce migration and invasion, as well as an increase of NFκB-DNA binding activity and MMP-2 and MMP-9 secretions. In summary, our findings demonstrate, for the first time, that EVs from breast cancer patients induce an EMT-like process in human mammary non-tumorigenic epithelial cells MCF10A.

  20. The T box transcription factor TBX2 promotes epithelial-mesenchymal transition and invasion of normal and malignant breast epithelial cells.

    Directory of Open Access Journals (Sweden)

    Bin Wang

    Full Text Available The T box transcription factor TBX2, a master regulator of organogenesis, is aberrantly amplified in aggressive human epithelial cancers. While it has been shown that overexpression of TBX2 can bypass senescence, a failsafe mechanism against cancer, its potential role in tumor invasion has remained obscure. Here we demonstrate that TBX2 is a strong cell-autonomous inducer of the epithelial-mesenchymal transition (EMT, a latent morphogenetic program that is key to tumor progression from noninvasive to invasive malignant states. Ectopic expression of TBX2 in normal HC11 and MCF10A mammary epithelial cells was sufficient to induce morphological, molecular, and behavioral changes characteristic of EMT. These changes included loss of epithelial adhesion and polarity gene (E-cadherin, ß-catenin, ZO1 expression, and abnormal gain of mesenchymal markers (N-cadherin, Vimentin, as well as increased cell motility and invasion. Conversely, abrogation of endogenous TBX2 overexpression in the malignant human breast carcinoma cell lines MDA-MB-435 and MDA-MB-157 led to a restitution of epithelial characteristics with reciprocal loss of mesenchymal markers. Importantly, TBX2 inhibition abolished tumor cell invasion and the capacity to form lung metastases in a Xenograft mouse model. Meta-analysis of gene expression in over one thousand primary human breast tumors further showed that high TBX2 expression was significantly associated with reduced metastasis-free survival in patients, and with tumor subtypes enriched in EMT gene signatures, consistent with a role of TBX2 in oncogenic EMT. ChIP analysis and cell-based reporter assays further revealed that TBX2 directly represses transcription of E-cadherin, a tumor suppressor gene, whose loss is crucial for malignant tumor progression. Collectively, our results uncover an unanticipated link between TBX2 deregulation in cancer and the acquisition of EMT and invasive features of epithelial tumor cells.

  1. Mechanisms for Electron Transfer Through Pili to Fe(III) Oxide in Geobacter

    Energy Technology Data Exchange (ETDEWEB)

    Lovley, Derek R. [Univ. of Massachusetts, Amherst, MA (United States)

    2015-03-09

    The purpose of these studies was to aid the Department of Energy in its goal of understanding how microorganisms involved in the bioremediation of metals and radionuclides sustain their activity in the subsurface. This information is required in order to incorporate biological processes into decision making for environmental remediation and long-term stewardship of contaminated sites. The proposed research was designed to elucidate the mechanisms for electron transfer to Fe(III) oxides in Geobacter species because Geobacter species are abundant dissimilatory metal-reducing microorganisms in a diversity of sites in which uranium is undergoing natural attenuation via the reduction of soluble U(VI) to insoluble U(IV) or when this process is artificially stimulated with the addition of organic electron donors. This study investigated the novel, but highly controversial, concept that the final conduit for electron transfer to Fe(III) oxides are electrically conductive pili. The specific objectives were to: 1) further evaluate the conductivity along the pili of Geobacter sulfurreducens and related organisms; 2) determine the mechanisms for pili conductivity; and 3) investigate the role of pili in Fe(III) oxide reduction. The studies demonstrated that the pili of G. sulfurreducens are conductive along their length. Surprisingly, the pili possess a metallic-like conductivity similar to that observed in synthetic organic conducting polymers such as polyaniline. Detailed physical analysis of the pili, as well as studies in which the structure of the pili was genetically modified, demonstrated that the metallic-like conductivity of the pili could be attributed to overlapping pi-pi orbitals of aromatic amino acids. Other potential mechanisms for conductivity, such as electron hopping between cytochromes associated with the pili were definitively ruled out. Pili were also found to be essential for Fe(III) oxide reduction in G. metallireducens. Ecological studies demonstrated

  2. MiR-7 Promotes Epithelial Cell Transformation by Targeting the Tumor Suppressor KLF4

    OpenAIRE

    Karla F. Meza-Sosa; Erick I Pérez-García; Nohemí Camacho-Concha; Oswaldo López-Gutiérrez; Gustavo Pedraza-Alva; Leonor Pérez-Martínez

    2014-01-01

    MicroRNAs (miRNAs) are endogenous small non-coding RNAs that have a pivotal role in the post-transcriptional regulation of gene expression and their misregulation is common in different types of cancer. Although it has been shown that miR-7 plays an oncogenic role in different cellular contexts, the molecular mechanisms by which miR-7 promotes cell transformation are not well understood. Here we show that the transcription factor KLF4 is a direct target of miR-7 and present experimental evide...

  3. Pseudopregnancy induces the expression of hepatocyte nuclear factor-1 beta and its target gene aminopeptidase N in rabbit endometrium via the epithelial promoter

    DEFF Research Database (Denmark)

    Classen-Linke, I; Sjöström, H; Norén, O

    1995-01-01

    The rabbit endometrium is an excellent model system allowing experimental manipulation of aminopeptidase N (APN) mRNA expression in vivo. By RNase mapping and sequencing of cloned PCR-amplified primer-extended RNA, it was demonstrated that endometrial APN expression is directed by the epithelial...... APN promoter and is increased in human-choriogonadotropin-induced pseudopregnancy. Cloning and sequencing of the rabbit APN epithelial promoter revealed conservation of the upstream footprint (UF), hepatocyte nuclear factor-1 (HNF1) and Sp1 elements known to be present in the pig and human promoters...... as well. The pseudopregnancy-induced APN expression was found to be accompanied by a parallel increase in the level of the transcription factor HNF1 beta, whereas a much smaller increase in Sp1 and UF-binding proteins was observed. This indicates that HNF1 beta acts as a switch triggering the pregnancy...

  4. 6-OH-BDE-47 promotes human lung cancer cells epithelial mesenchymal transition via the AKT/Snail signal pathway.

    Science.gov (United States)

    Qu, Bao-Lin; Yu, Wei; Huang, Yu-Rong; Cai, Bo-Ning; Du, Le-Hui; Liu, Fang

    2015-01-01

    Hydroxylated polybrominated diphenyl ethers (OH-PBDEs) have been detected in the various human tissues. The OH-PBDEs are suggested to be stronger endocrine-disrupting compounds than PBDEs, therefore the toxicological effects of OH-PBDEs had received lots of attention. However, there is no study about the carcinogenic effect of OH-PBDEs and their estrogen potencies on the tumorigenesis and development of cancer. In the present study, we found that 6-hydroxy-2,2',4',4'-tetrabromodiphenyl ether (6-OH-BDE-47), the most abundant OH-PBDE congeners in human serum, promoted the in vitro migration of lung cancer A549 and H358 cells by induction of epithelial to mesenchymal transition (EMT). This was confirmed by that 6-OH-BDE-47 significantly down regulated the expression of epithelial markers E-cadherin (E-Cad) and zona occludin-1 (ZO-1) while up regulated the mesenchymal markers vimentin (Vim) and N-cadherin (N-Cad). 6-OH-BDE-47 up regulated the protein while not mRNA levels of Snail, which was the key transcription factor of EMT. Silencing of Snail by use of siRNA attenuated the 6-OH-BDE-47 induced EMT. This suggested that the stabilization of Snail was essential for 6-OH-BDE-47 induced EMT. Further, the treatment of 6-OH-BDE-47 increased the phosphorylation of AKT and ERK in A549 cells. Only PI3K/AKT inhibitor (LY294002), but not ERK inhibitor (PD98059), completely blocked the 6-OH-BDE-47 induced up regulation of Snail and down regulation of E-Cad, suggesting that PI3K/AKT pathway is important for 6-OH-BDE-47-mediated Snail stabilization and EMT in A549 cells. Generally, our results revealed for the first time that 6-OH-BDE-47 promoted the EMT of lung cancer cells via AKT/Snail signals. This suggested that more attention should be paid to the effects of OH-PBDEs on tumorigenesis and development of lung cancer. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Fasting protects mice from lethal DNA damage by promoting small intestinal epithelial stem cell survival.

    Science.gov (United States)

    Tinkum, Kelsey L; Stemler, Kristina M; White, Lynn S; Loza, Andrew J; Jeter-Jones, Sabrina; Michalski, Basia M; Kuzmicki, Catherine; Pless, Robert; Stappenbeck, Thaddeus S; Piwnica-Worms, David; Piwnica-Worms, Helen

    2015-12-22

    Short-term fasting protects mice from lethal doses of chemotherapy through undetermined mechanisms. Herein, we demonstrate that fasting preserves small intestinal (SI) architecture by maintaining SI stem cell viability and SI barrier function following exposure to high-dose etoposide. Nearly all SI stem cells were lost in fed mice, whereas fasting promoted sufficient SI stem cell survival to preserve SI integrity after etoposide treatment. Lineage tracing demonstrated that multiple SI stem cell populations, marked by Lgr5, Bmi1, or HopX expression, contributed to fasting-induced survival. DNA repair and DNA damage response genes were elevated in SI stem/progenitor cells of fasted etoposide-treated mice, which importantly correlated with faster resolution of DNA double-strand breaks and less apoptosis. Thus, fasting preserved SI stem cell viability as well as SI architecture and barrier function suggesting that fasting may reduce host toxicity in patients undergoing dose intensive chemotherapy.

  6. Fasting protects mice from lethal DNA damage by promoting small intestinal epithelial stem cell survival

    Science.gov (United States)

    Tinkum, Kelsey L.; Stemler, Kristina M.; White, Lynn S.; Loza, Andrew J.; Jeter-Jones, Sabrina; Michalski, Basia M.; Kuzmicki, Catherine; Pless, Robert; Stappenbeck, Thaddeus S.; Piwnica-Worms, David; Piwnica-Worms, Helen

    2015-01-01

    Short-term fasting protects mice from lethal doses of chemotherapy through undetermined mechanisms. Herein, we demonstrate that fasting preserves small intestinal (SI) architecture by maintaining SI stem cell viability and SI barrier function following exposure to high-dose etoposide. Nearly all SI stem cells were lost in fed mice, whereas fasting promoted sufficient SI stem cell survival to preserve SI integrity after etoposide treatment. Lineage tracing demonstrated that multiple SI stem cell populations, marked by Lgr5, Bmi1, or HopX expression, contributed to fasting-induced survival. DNA repair and DNA damage response genes were elevated in SI stem/progenitor cells of fasted etoposide-treated mice, which importantly correlated with faster resolution of DNA double-strand breaks and less apoptosis. Thus, fasting preserved SI stem cell viability as well as SI architecture and barrier function suggesting that fasting may reduce host toxicity in patients undergoing dose intensive chemotherapy. PMID:26644583

  7. Porcine milk-derived exosomes promote proliferation of intestinal epithelial cells

    Science.gov (United States)

    Chen, Ting; Xie, Mei-Ying; Sun, Jia-Jie; Ye, Rui-Song; Cheng, Xiao; Sun, Rui-Ping; Wei, Li-Min; Li, Meng; Lin, De-Lin; Jiang, Qing-Yan; Xi, Qian-Yun; Zhang, Yong-Liang

    2016-01-01

    Milk-derived exosomes were identified as a novel mechanism of mother-to-child transmission of regulatory molecules, but their functions in intestinal tissues of neonates are not well-studied. Here, we characterized potential roles of porcine milk-derived exosomes in the intestinal tract. In vitro, treatment with milk-derived exosomes (27 ± 3 ng and 55 ± 5 ng total RNA) significantly promoted IPEC-J2 cell proliferation by MTT, CCK8, EdU fluorescence and EdU flow cytometry assays. The qRT-PCR and Western blot analyses indicated milk-derived exosomes (0.27 ± 0.03 μg total RNA) significantly promoted expression of CDX2, IGF-1R and PCNA, and inhibited p53 gene expression involved in intestinal proliferation. Additionally, six detected miRNAs were significantly increased in IPEC-J2 cell, while FAS and SERPINE were significantly down-regulated relative to that in control. In vivo, treated groups (0.125 μg and 0.25 μg total RNA) significantly raised mice’ villus height, crypt depth and ratio of villus length to crypt depth of intestinal tissues, significantly increased CDX2, PCNA and IGF-1R’ expression and significantly inhibited p53′ expression. Our study demonstrated that milk-derived exosomes can facilitate intestinal cell proliferation and intestinal tract development, thus giving a new insight for milk nutrition and newborn development and health. PMID:27646050

  8. Uncoiling mechanism of Klebsiella pneumoniae type 3 pili measured by using optical tweezers

    Science.gov (United States)

    Chen, Feng-Jung; Chan, Chia-Han; Liu, Kuo-Liang; Huang, Ying-Jung; Peng, Hwei-Ling; Chang, Hwan-You; Yew, Tri-Rung; Hsu, Ken Y.; Hsu, Long

    2007-09-01

    Pili are bacterial appendages that play many important roles in bacterial behaviors, physiology and interaction with hosts. Via pili, bacteria are able to adhere to, migrate onto, and colonize on host cells, mechanically. Different from the most studied type 1 and P type pili, which are rigid and thick with an average of 6~7 nm in diameter, type 3 pili are relatively tiny (3-5 nm in diameter) and flexible, and their biophysical properties remains unclear. By using optical tweezers, we found that the elongation processes of type 3 pili are divided into three phases: (1) elastic elongation, (2) uncoiling elongation, and (3) intrinsic elongation, separately. Besides, the uncoiling force of the recombinant pili displayed on the surface of E. coli [pmrkABCD V1F] is measured 20 pN in average stronger than that of E. coli [pmrkABCD V1]. This suggests that pilin MrkF is involved in determining the mechanical properties of the type 3 pili.

  9. Multiwall carbon nanotubes directly promote fibroblast-myofibroblast and epithelial-mesenchymal transitions through the activation of the TGF-β/Smad signaling pathway.

    Science.gov (United States)

    Wang, Peng; Wang, Yue; Nie, Xin; Braïni, Céline; Bai, Ru; Chen, Chunying

    2015-01-27

    A number of studies have demonstrated that MWCNTs induce granuloma formation and fibrotic responses in vivo, and it has been recently reported that MWCNT-induced macrophage activation and subsequent TGF-β secretion contribute to pulmonary fibrotic responses. However, their direct effects against alveolar type-II epithelial cells and fibroblasts and the corresponding underlying mechanisms remain largely unaddressed. Here, MWCNTs are reported to be able to directly promote fibroblast-to-myofibroblast conversion and the epithelial-mesenchymal transition (EMT) through the activation of the TGF-β/Smad signaling pathway. Both of the cell transitions may play important roles in MWCNT-induced pulmonary fibrosis. Firstly, in-vivo and in-vitro data show that long MWCNTs can directly interact with fibroblasts and epithelial cells, and some of them may be uptaken into fibroblasts and epithelial cells by endocytosis. Secondly, long MWCNTs can directly activate fibroblasts and increase both the basal and TGF-β1-induced expression of the fibroblast-specific protein-1, α-smooth muscle actin, and collagen III. Finally, MWCNTs can induce the EMT through the activation of TGF-β/Smad2 signaling in alveolar type-II epithelial cells, from which some fibroblasts involved in pulmonary fibrosis are thought to originate. These observations suggest that the activation of the TGF-β/Smad2 signaling plays a critical role in the process of the fibroblast-to-myofibroblast transition and the EMT induced by MWCNTs.

  10. Promotion on Nucleation and Aggregation of Calcium Oxalate Crystals by Injured African Green Monkey Renal Epithelial Cells

    Institute of Scientific and Technical Information of China (English)

    张燊; 彭花; 姚秀琼; 苏泽轩; 欧阳健明

    2012-01-01

    The purpose of this work was to detect the properties of African green monkey renal epithelial cells (Vero) after oxidative injury and to study the mediation of the injured Vero on aggregation and formation of calcium oxalate crystals. This injury model was induced by 0.15 mmol/L H2O2 according to the pretest evaluation. The results suggested that H2O2 could injure Vero significantly and decrease cell viability in a time-dependent manner for exposure time of 0.5--2 h. After cell injury, the indexes connected with oxidative injury changed. The malondialdehyde (MDA) content and osteopontin (OPN) expression increased, while superoxide dismutase (SOD) level decreased. It resulted in the increase of both the amount of CaOxa crystals and the degree of crystal aggregation on the injured cells. This work indicated that injured cells promoted the formation of calcium oxalate monohydrate (COM) crystals, thus increased the risk of formation of urinary stone.

  11. MicroRNA-616 promotes the migration, invasion and epithelial-mesenchymal transition of HCC by targeting PTEN.

    Science.gov (United States)

    Zhang, Di; Zhou, Peihua; Wang, Wei; Wang, Xiaolong; Li, Junhui; Sun, Xuejun; Zhang, Li

    2016-01-01

    MicroRNAs, which can post-transcriptionally regulate gene expression by binding to the 3'-untranslated regions of the mRNAs, have been found to be the critical regulators of the development and progression of hepatocellular carcinoma (HCC). The present study demonstrated for the first time that microRNA-616 (miR-616) was markedly upregulated in HCC tissues, and was associated with the recurrence and metastasis of HCC. Elevated level of miR-616 was correlated with adverse clinicopathological features and poor prognosis of HCC patients. Gain- and loss-of-function studies revealed that miR-616 could potentiate the migration, invasion and the epithelial-mesenchymal transtion (EMT) phenotype of HCC cells. Phosphatase and tensin homolog (PTEN), the predicted target of miR-616 by bioinformatics analysis, was confirmed as a direct downstream target of miR-616 through western blotting, luciferase reporter and immunohistochemical assays. Furthermore, we demonstrated that miR-616 exerted the promoting effects on EMT and metastatic ability of HCC cells through suppressing PTEN expression. Based on these results, we conclude that miR-616 is a promising prognostic biomarker of HCC and targeting miR-616 may be a potential option to prevent the progression of HCC.

  12. N-cadherin/FGFR promotes metastasis through epithelial-to-mesenchymal transition and stem/progenitor cell-like properties.

    Science.gov (United States)

    Qian, X; Anzovino, A; Kim, S; Suyama, K; Yao, J; Hulit, J; Agiostratidou, G; Chandiramani, N; McDaid, H M; Nagi, C; Cohen, H W; Phillips, G R; Norton, L; Hazan, R B

    2014-06-26

    N-cadherin and HER2/neu were found to be co-expressed in invasive breast carcinomas. To test the contribution of N-cadherin and HER2 in mammary tumor metastasis, we targeted N-cadherin expression in the mammary epithelium of the MMTV-Neu mouse. In the context of ErbB2/Neu, N-cadherin stimulated carcinoma cell invasion, proliferation and metastasis. N-cadherin caused fibroblast growth factor receptor (FGFR) upmodulation, resulting in epithelial-to-mesenchymal transition (EMT) and stem/progenitor like properties, involving Snail and Slug upregulation, mammosphere formation and aldehyde dehydrogenase activity. N-cadherin potentiation of the FGFR stimulated extracellular signal regulated kinase (ERK) and protein kinase B (AKT) phosphorylation resulting in differential effects on metastasis. Although ERK inhibition suppressed cyclin D1 expression, cell proliferation and stem/progenitor cell properties, it did not affect invasion or EMT. Conversely, AKT inhibition suppressed invasion through Akt 2 attenuation, and EMT through Snail inhibition, but had no effect on cyclin D1 expression, cell proliferation or mammosphere formation. These findings suggest N-cadherin/FGFR has a pivotal role in promoting metastasis through differential regulation of ERK and AKT, and underscore the potential for targeting the FGFR in advanced ErbB2-amplified breast tumors.

  13. Loss of canonical Smad4 signaling promotes KRAS driven malignant transformation of human pancreatic duct epithelial cells and metastasis.

    Directory of Open Access Journals (Sweden)

    Lisa Leung

    Full Text Available Pancreatic ductal adenocarcinoma (PDAC is the fourth most common cause of cancer death in North America. Activating KRAS mutations and Smad4 loss occur in approximately 90% and 55% of PDAC, respectively. While their roles in the early stages of PDAC development have been confirmed in genetically modified mouse models, their roles in the multistep malignant transformation of human pancreatic duct cells have not been directly demonstrated. Here, we report that Smad4 represents a barrier in KRAS-mediated malignant transformation of the near normal immortalized human pancreatic duct epithelial (HPDE cell line model. Marked Smad4 downregulation by shRNA in KRAS (G12V expressing HPDE cells failed to cause tumorigenic transformation. However, KRAS-mediated malignant transformation occurred in a new HPDE-TGF-β resistant (TβR cell line that completely lacks Smad4 protein expression and is resistant to the mito-inhibitory activity of TGF-β. This transformation resulted in tumor formation and development of metastatic phenotype when the cells were implanted orthotopically into the mouse pancreas. Smad4 restoration re-established TGF-β sensitivity, markedly increased tumor latency by promoting apoptosis, and decreased metastatic potential. These results directly establish the critical combination of the KRAS oncogene and complete Smad4 inactivation in the multi-stage malignant transformation and metastatic progression of normal human HPDE cells.

  14. Interleukin-6 induces an epithelial-mesenchymal transition phenotype in human adamantinomatous craniopharyngioma cells and promotes tumor cell migration

    Science.gov (United States)

    Zhou, Jie; Zhang, Chao; Pan, Jun; Chen, Ligang; Qi, Song-Tao

    2017-01-01

    Total resection of adamantinomatous craniopharyngioma (ACP) is complex and often leads to postoperative recurrence. This is due to the tendency of the tumor to invade the surrounding brain tissue and the generation of a local inflammatory state between the tumor cells and parenchyma. While there is evidence to suggest that interleukin-6 (IL-6) induces craniopharyngioma (CP)-associated inflammation, particularly in ACP, the role of IL-6 in the progression of ACP remains unclear. The results of the present study demonstrated that CP inflammation was associated with pathological classification, extent of surgery, degree of calcification and postoperative hypothalamic status scale. Cytokine antibody arrays were conducted to measure the expression of IL-6 and other inflammatory factors in tumor tissues in response to various levels of inflammatory exposure. IL-6, IL-6 receptor (IL-6R) and glycoprotein 130 expression was detected by immunohistochemistry. In addition, an ELISA was performed to quantify the levels of soluble IL-6R (sIL-6R) in the cystic fluid and supernatants of ACP cells and tumor-associated fibroblasts. These measurements demonstrated that ACP cells produce IL-6 and its associated proteins. In addition, the results revealed that while the viability of ACP cells was not affected, the migration of ACP cells was promoted by IL-6 treatment in a concentration-dependent manner. Conversely, treatment with an IL-6-blocking monoclonal antibody significantly decreased the migration of ACP cells. In addition, IL-6 treatment increased the expression of vimentin and decreased the expression of E-cadherin in a dose-dependent manner. The findings of the present study demonstrate that IL-6 may promote migration in vitro via the classic- and trans-signaling pathways by inducing epithelial-mesenchymal transition in ACP cell cultures. PMID:28487953

  15. IL-6 promotes growth and epithelial-mesenchymal transition of CD133+ cells of non-small cell lung cancer.

    Science.gov (United States)

    Lee, Soo Ok; Yang, Xiaodong; Duan, Shanzhou; Tsai, Ying; Strojny, Laura R; Keng, Peter; Chen, Yuhchyau

    2016-02-09

    We examined IL-6 effects on growth, epithelial-mesenchymal transition (EMT) process, and metastatic ability of CD133+ and CD133- cell subpopulations isolated from three non-small cell lung cancer (NSCLC) cell lines: A549, H157, and H1299. We developed IL-6 knocked-down and scramble (sc) control cells of A549 and H157 cell lines by lentiviral infection system, isolated CD133+ and CD133- sub-populations, and investigated the IL-6 role in self-renewal/growth of these cells. IL-6 showed either an inhibitory or lack of effect in modulating growth of CD133- cells depending on intracellular IL-6 levels, but there was higher self-renewal ability of IL-6 expressing CD133+ cells than IL-6 knocked down cells, confirming the promoter role of IL-6 in CD133+ cells growth. We then examined tumor growth of xenografts developed from CD133+ cells of A549IL-6si vs. A549sc cell lines. Consistently, there was retarded growth of tumors developed from A549IL-6si, CD133+ cells compared to tumors originating from A549sc, CD133+ cells. The effect of IL-6 in promoting CD133+ self-renewal was due to hedgehog (Hhg) and Erk signaling pathway activation and higher Bcl-2/Bcl-xL expression. We also investigated whether IL-6 regulates the EMT process of CD133- and CD133+ cells differently. Expression of the EMT/metastasis-associated molecules in IL-6 expressing cells was higher than in IL-6 knocked down cells. Together, we demonstrated dual roles of IL-6 in regulating growth of CD133- and CD133+ subpopulations of lung cancer cells and significant regulation of IL-6 on EMT/metastasis increase in CD133+ cells, not in CD133- cells.

  16. Persistent Exposure to Porphyromonas gingivalis Promotes Proliferative and Invasion Capabilities, and Tumorigenic Properties of Human Immortalized Oral Epithelial Cells

    Science.gov (United States)

    Geng, Fengxue; Liu, Junchao; Guo, Yan; Li, Chen; Wang, Hongyang; Wang, Hongyan; Zhao, Haijiao; Pan, Yaping

    2017-01-01

    Recent epidemiological studies revealed a significant association between oral squamous cell carcinoma (OSCC) and Porphyromonas gingivalis, a major pathogen of periodontal disease. As a keystone pathogen of periodontitis, P. gingivalis is known not only to damage local periodontal tissues, but also to evade the host immune system and eventually affect systemic health. However, its role in OSCC has yet to be defined. To explore the underlying effect of chronic P. gingivalis infection on OSCC and to identify relevant biomarkers as promising targets for therapy and prevention, we established a novel model by exposing human immortalized oral epithelial cells (HIOECs) to P. gingivalis at a low multiplicity of infection (MOI) for 5–23 weeks. The P. gingivalis infected HIOECs were monitored for tumor biological alteration by proliferation, wound healing, transwell invasion, and gelatin zymography assays. Microarray and proteomic analyses were performed on HIOECs infected with P. gingivalis for 15 weeks, and some selected data were validated by quantitative real-time PCR and (or) western blot on cells infected for 15 and 23 weeks. Persistent exposure to P. gingivalis caused cell morphological changes, increased proliferation ability with higher S phase fraction in the cell cycle, and promoted cell migratory and invasive properties. In combining results of bioinformatics analyses and validation assays, tumor-related genes such as NNMT, FLI1, GAS6, lncRNA CCAT1, PDCD1LG2, and CD274 may be considered as the key regulators in tumor-like transformation in response to long-time exposure of P. gingivalis. In addition, some useful clinical biomarkers and novel proteins were also presented. In conclusion, P. gingivalis could promote tumorigenic properties of HIOECs, indicating that chronic P. gingivalis infection may be considered as a potential risk factor for oral cancer. The key regulators detected from the present model might be used in monitoring the development of OSCC with

  17. The aryl hydrocarbon receptor controls cyclin O to promote epithelial multiciliogenesis

    Science.gov (United States)

    Villa, Matteo; Crotta, Stefania; Dingwell, Kevin S.; Hirst, Elizabeth M. A.; Gialitakis, Manolis; Ahlfors, Helena; Smith, James C.; Stockinger, Brigitta; Wack, Andreas

    2016-01-01

    Epithelia function as barriers against environmental insults and express the transcription factor aryl hydrocarbon receptor (AhR). However, AhR function in these tissues is unknown. Here we show that AhR regulates multiciliogenesis in both murine airway epithelia and in Xenopus laevis epidermis. In air-exposed airway epithelia, induction of factors required for multiciliogenesis, including cyclin O (Ccno) and Multicilin (Mcidas), is AhR dependent, and air exposure induces AhR binding to the Ccno promoter. Submersion and hypoxic conditions impede AhR-dependent Ccno induction. This is mediated by the persistence of Notch signalling, as Notch blockade renders multiciliogenesis and Ccno induction by AhR independent from air exposure. In contrast to Ccno induction, air exposure does not induce the canonical AhR target cytochrome P450 1a1 (Cyp1a1). Inversely, exposure to AhR ligands induces Cyp1a1 but not Ccno and impeded ciliogenesis. These data indicate that AhR involvement in detoxification of environmental pollutants may impede its physiological role, resulting in respiratory pathology. PMID:27554288

  18. OTX1 promotes colorectal cancer progression through epithelial-mesenchymal transition

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Kun; Cai, Xin-Yi; Li, Qiang; Yang, Zhi-Bin; Xiong, Wei; Shen, Tao; Wang, Wei-Ya; Li, Yun-Feng, E-mail: ynsliyunfeng@163.com

    2014-01-31

    Highlights: • OTX1 is overexpression in colorectal cancer tissues. • Overexpression of OTX1 promotes colorectal cancer cell proliferation and invasion in vitro and tumor growth in vivo. • Depletion of OTX1 inhibits colorectal cancer cell proliferation and invasion in vitro. • Overexpression of OTX1 is linked to the EMT-like phenotype. - Abstract: Orthodenticle homeobox 1 (OTX1), a transcription factor containing a bicoid-like homeodomain, plays a role in brain and sensory organ development. In this study, we report that OTX1 is overexpressed in human colorectal cancer (CRC) and OTX1 overexpression is associated with higher stage. Functional analyses reveal that overexpression of OTX1 results in accumulation of CRC cell proliferation and invasion in vitro and tumor growth in vivo, whereas ablation of OTX1 expression significantly inhibits the proliferative and invasive capability of CRC cells in vitro. Together, our results indicate that OTX1 is involved in human colon carcinogenesis and may serve as a potential therapeutic target for human colorectal cancer.

  19. Phenotypical analysis of the Lactobacillus rhamnosus GG fimbrial spaFED operon: surface expression and functional characterization of recombinant SpaFED pili in Lactococcus lactis.

    Science.gov (United States)

    Rintahaka, Johanna; Yu, Xia; Kant, Ravi; Palva, Airi; von Ossowski, Ingemar

    2014-01-01

    A noticeable genomic feature of many piliated Gram-positive bacterial species is the presence of more than one pilus-encoding operon. Paradigmatically, the gut-adapted Lactobacillus rhamnosus GG strain contains two different fimbrial operons in its genome. However, whereas one of these operons (called spaCBA) is encoding for the functionally mucus-/collagen-binding SpaCBA pilus, for the other operon (called spaFED) any native expression of the SpaFED-called pili is still the subject of some uncertainty. Irrespective of such considerations, we decided it would be of relevance or interest to decipher the gross structure of this pilus type, and as well assess its functional capabilities for cellular adhesion and immunostimulation. For this, and by following the approach we had used previously to explicate the immuno-properties of SpaCBA pili, we constructed nisin-inducible expression clones producing either wild-type or SpaF pilin-deleted surface-assembled L. rhamnosus GG SpaFED pili on Lactococcus lactis cells. Using these piliated lactococcal constructs, we found that the pilin-polymerized architecture of a recombinant-produced SpaFED pilus coincides with sequence-based functional predictions of the related pilins, and in fact is prototypical of those other sortase-dependent pilus-like structures thus far characterized for piliated Gram-positive bacteria. Moreover, we confirmed that among the different pilin subunits encompassing spaFED operon-encoded pili, the SpaF pilin is a main adhesion determinant, and when present in the assembled structure can mediate pilus binding to mucus, certain extracellular matrix proteins, and different gut epithelial cell lines. However, somewhat unexpectedly, when recombinant SpaFED pili are surface-attached, we found that they could not potentiate the existing lactococcal cell-induced immune responses so elicited from intestinal- and immune-related cells, but rather instead, they could dampen them. Accordingly, we have now provided

  20. Phenotypical analysis of the Lactobacillus rhamnosus GG fimbrial spaFED operon: surface expression and functional characterization of recombinant SpaFED pili in Lactococcus lactis.

    Directory of Open Access Journals (Sweden)

    Johanna Rintahaka

    Full Text Available A noticeable genomic feature of many piliated Gram-positive bacterial species is the presence of more than one pilus-encoding operon. Paradigmatically, the gut-adapted Lactobacillus rhamnosus GG strain contains two different fimbrial operons in its genome. However, whereas one of these operons (called spaCBA is encoding for the functionally mucus-/collagen-binding SpaCBA pilus, for the other operon (called spaFED any native expression of the SpaFED-called pili is still the subject of some uncertainty. Irrespective of such considerations, we decided it would be of relevance or interest to decipher the gross structure of this pilus type, and as well assess its functional capabilities for cellular adhesion and immunostimulation. For this, and by following the approach we had used previously to explicate the immuno-properties of SpaCBA pili, we constructed nisin-inducible expression clones producing either wild-type or SpaF pilin-deleted surface-assembled L. rhamnosus GG SpaFED pili on Lactococcus lactis cells. Using these piliated lactococcal constructs, we found that the pilin-polymerized architecture of a recombinant-produced SpaFED pilus coincides with sequence-based functional predictions of the related pilins, and in fact is prototypical of those other sortase-dependent pilus-like structures thus far characterized for piliated Gram-positive bacteria. Moreover, we confirmed that among the different pilin subunits encompassing spaFED operon-encoded pili, the SpaF pilin is a main adhesion determinant, and when present in the assembled structure can mediate pilus binding to mucus, certain extracellular matrix proteins, and different gut epithelial cell lines. However, somewhat unexpectedly, when recombinant SpaFED pili are surface-attached, we found that they could not potentiate the existing lactococcal cell-induced immune responses so elicited from intestinal- and immune-related cells, but rather instead, they could dampen them. Accordingly, we

  1. Pili canaliculi as manifestation of giant axonal neuropathy*

    Science.gov (United States)

    de Almeida Jr., Hiram Larangeira; Garcias, Gilberto; Silva, Ricardo Marques e; Batista, Stela Laner; Pasetto, Fernanda

    2016-01-01

    Giant axonal neuropathy is a rare autosomal recessive neurodegenerative disease. The condition is characterized by neurons with abnormally large axons due to intracellular filament accumulation. The swollen axons affect both the peripheral and central nervous system. A 6-year old female patient had been referred to a geneticist reporting problems with walking and hypotonia. At the age of 10, she became wheelchair dependent. Scanning electron microscopy of a curly hair classified it as pili canaliculi. GAN gene sequencing demonstrated mutation c.1456G>A (p.GLU486LYS). At the age of 12, the patient died due to respiratory complications. Dermatologists should be aware of this entity since hair changes are considered suggestive of GAN.

  2. AGE-modified basement membrane cooperates with Endo180 to promote epithelial cell invasiveness and decrease prostate cancer survival.

    Science.gov (United States)

    Rodriguez-Teja, Mercedes; Gronau, Julian H; Breit, Claudia; Zhang, Yu Zhi; Minamidate, Ai; Caley, Matthew P; McCarthy, Afshan; Cox, Thomas R; Erler, Janine T; Gaughan, Luke; Darby, Steven; Robson, Craig; Mauri, Francesco; Waxman, Jonathan; Sturge, Justin

    2015-03-01

    Biomechanical strain imposed by age-related thickening of the basal lamina and augmented tissue stiffness in the prostate gland coincides with increased cancer risk. Here we hypothesized that the structural alterations in the basal lamina associated with age can induce mechanotransduction pathways in prostate epithelial cells (PECs) to promote invasiveness and cancer progression. To demonstrate this, we developed a 3D model of PEC acini in which thickening and stiffening of basal lamina matrix was induced by advanced glycation end-product (AGE)-dependent non-enzymatic crosslinking of its major components, collagen IV and laminin. We used this model to demonstrate that antibody targeted blockade of CTLD2, the second of eight C-type lectin-like domains in Endo180 (CD280, CLEC13E, KIAA0709, MRC2, TEM9, uPARAP) that can recognize glycosylated collagens, reversed actinomyosin-based contractility [myosin-light chain-2 (MLC2) phosphorylation], loss of cell polarity, loss of cell-cell junctions, luminal infiltration and basal invasion induced by AGE-modified basal lamina matrix in PEC acini. Our in vitro results were concordant with luminal occlusion of acini in the prostate glands of adult Endo180(Δ) (Ex2-6/) (Δ) (Ex2-6) mice, with constitutively exposed CTLD2 and decreased survival of men with early (non-invasive) prostate cancer with high epithelial Endo180 expression and levels of AGE. These findings indicate that AGE-dependent modification of the basal lamina induces invasive behaviour in non-transformed PECs via a molecular mechanism linked to cancer progression. This study provides a rationale for targeting CTLD2 in Endo180 in prostate cancer and other pathologies in which increased basal lamina thickness and tissue stiffness are driving factors. © 2014 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland. © 2014 The Authors. The Journal of Pathology published by John Wiley & Sons

  3. Sonic hedgehog (Shh) signaling promotes tumorigenicity and stemness via activation of epithelial-to-mesenchymal transition (EMT) in bladder cancer.

    Science.gov (United States)

    Islam, S S; Mokhtari, R B; Noman, A S; Uddin, M; Rahman, M Z; Azadi, M A; Zlotta, A; van der Kwast, T; Yeger, H; Farhat, W A

    2016-05-01

    Activation of the sonic hedgehog (Shh) signaling pathway controls tumorigenesis in a variety of cancers. Here, we show a role for Shh signaling in the promotion of epithelial-to-mesenchymal transition (EMT), tumorigenicity, and stemness in the bladder cancer. EMT induction was assessed by the decreased expression of E-cadherin and ZO-1 and increased expression of N-cadherin. The induced EMT was associated with increased cell motility, invasiveness, and clonogenicity. These progression relevant behaviors were attenuated by treatment with Hh inhibitors cyclopamine and GDC-0449, and after knockdown by Shh-siRNA, and led to reversal of the EMT phenotype. The results with HTB-9 were confirmed using a second bladder cancer cell line, BFTC905 (DM). In a xenograft mouse model TGF-β1 treated HTB-9 cells exhibited enhanced tumor growth. Although normal bladder epithelial cells could also undergo EMT and upregulate Shh with TGF-β1 they did not exhibit tumorigenicity. The TGF-β1 treated HTB-9 xenografts showed strong evidence for a switch to a more stem cell like phenotype, with functional activation of CD133, Sox2, Nanog, and Oct4. The bladder cancer specific stem cell markers CK5 and CK14 were upregulated in the TGF-β1 treated xenograft tumor samples, while CD44 remained unchanged in both treated and untreated tumors. Immunohistochemical analysis of 22 primary human bladder tumors indicated that Shh expression was positively correlated with tumor grade and stage. Elevated expression of Ki-67, Shh, Gli2, and N-cadherin were observed in the high grade and stage human bladder tumor samples, and conversely, the downregulation of these genes were observed in the low grade and stage tumor samples. Collectively, this study indicates that TGF-β1-induced Shh may regulate EMT and tumorigenicity in bladder cancer. Our studies reveal that the TGF-β1 induction of EMT and Shh is cell type context dependent. Thus, targeting the Shh pathway could be clinically beneficial in the

  4. Aberrant promoter methylation and gene expression of H-cadherin gene is associated with tumor progression and recurrence in epithelial ovarian carcinoma

    Directory of Open Access Journals (Sweden)

    Rahul Bhagat

    2014-01-01

    Full Text Available Background: Loss of expression of cadherins by promoter hypermethylation has been described in many epithelial cancers, and it may play a role in tumor cell invasion and metastasis. Previously, we reported that E-cadherin gene is frequently methylated in epithelial ovarian cancer. Aim: The aim of this study was to compare the promoter hypermethylation of H-cadherin gene in ovarian epithelial neoplasms to better understand the role of epigenetic silencing in carcinogenesis. Materials and Methods: We examined the promoter methylation of the H-cadherin gene in 134 epithelial ovarian carcinomas (EOC, 23 low malignant potential (LMP tumors, 26 benign cystadenomas and 15 normal ovarian tissues. Methylation was investigated by methylation specific polymerase chain reaction (MSP and the results confirmed by bisulfite DNA sequencing. Relative gene expression of H-cadherin was done using quantitative reverse transcriptase PCR on 51 EOC cases, 9 LMP tumors, 7 benign cystadenomas with 5 normal ovarian tissues. Results: Aberrant methylation of H-cadherin was present in 20 of 134 (15% carcinoma cases, 2 of 23 (09% LMP tumors and 1 of 26 (4% benign cystadenomas. No methylation was observed in any of the normal ovarian tissues. The mRNA expression level of H-cadherin was significantly down-regulated in EOC and LMP tumors than the corresponding normal tissues, whereas the expression level was normal in benign cystadenomas. A significant correlation of H-cadherin promoter methylation was observed with reduced gene expression in EOC. The prevalence of H-cadherin methylation was associated significantly with stage, histopathological grade, and menopausal status of the patient. H-cadherin methylation also had significant association with recurrence and differentiation of tumor. Conclusion: Our findings suggest an association between H-cadherin methylation, tumor progression and recurrence in EOC.

  5. Pili mediate specific adhesion of Streptococcus pyogenes to human tonsil and skin

    National Research Council Canada - National Science Library

    Abbot, Emily L; Smith, Wendy D; Siou, Gerard P. S; Chiriboga, Carlos; Smith, Rebecca J; Wilson, Janet A; Hirst, Barry H; Kehoe, Michael A

    2007-01-01

    ... such as Corynebacterium diphtheriae, Streptococcus agalacticae, S. pneumoniae and S. pyogenes. Using various ex vivo tissue and cellular models, here we show that pili mediate adhesion of serotype M1...

  6. Down-regulated peroxisome proliferator-activated receptor γ (PPARγ) in lung epithelial cells promotes a PPARγ agonist-reversible proinflammatory phenotype in chronic obstructive pulmonary disease (COPD).

    Science.gov (United States)

    Lakshmi, Sowmya P; Reddy, Aravind T; Zhang, Yingze; Sciurba, Frank C; Mallampalli, Rama K; Duncan, Steven R; Reddy, Raju C

    2014-03-07

    Chronic obstructive pulmonary disease (COPD) is a progressive inflammatory condition and a leading cause of death, with no available cure. We assessed the actions in pulmonary epithelial cells of peroxisome proliferator-activated receptor γ (PPARγ), a nuclear hormone receptor with anti-inflammatory effects, whose role in COPD is largely unknown. We found that PPARγ was down-regulated in lung tissue and epithelial cells of COPD patients, via both reduced expression and phosphorylation-mediated inhibition, whereas pro-inflammatory nuclear factor-κB (NF-κB) activity was increased. Cigarette smoking is the main risk factor for COPD, and exposing airway epithelial cells to cigarette smoke extract (CSE) likewise down-regulated PPARγ and activated NF-κB. CSE also down-regulated and post-translationally inhibited the glucocorticoid receptor (GR-α) and histone deacetylase 2 (HDAC2), a corepressor important for glucocorticoid action and whose down-regulation is thought to cause glucocorticoid insensitivity in COPD. Treating epithelial cells with synthetic (rosiglitazone) or endogenous (10-nitro-oleic acid) PPARγ agonists strongly up-regulated PPARγ expression and activity, suppressed CSE-induced production and secretion of inflammatory cytokines, and reversed its activation of NF-κB by inhibiting the IκB kinase pathway and by promoting direct inhibitory binding of PPARγ to NF-κB. In contrast, PPARγ knockdown via siRNA augmented CSE-induced chemokine release and decreases in HDAC activity, suggesting a potential anti-inflammatory role of endogenous PPARγ. The results imply that down-regulation of pulmonary epithelial PPARγ by cigarette smoke promotes inflammatory pathways and diminishes glucocorticoid responsiveness, thereby contributing to COPD pathogenesis, and further suggest that PPARγ agonists may be useful for COPD treatment.

  7. Probiotic Gut Microbiota Isolate Interacts with Dendritic Cells via Glycosylated Heterotrimeric Pili.

    Directory of Open Access Journals (Sweden)

    Hanne L P Tytgat

    Full Text Available Mapping of the microbial molecules underlying microbiota-host interactions is key to understand how microbiota preserve mucosal homeostasis. A pivotal family of such bacterial molecules are pili. Pili are proteinaceous cell wall appendages with a well-documented role in adhesion, whilst their role in immune interaction with the host is less established. Gram-positive pili are often posttranslationally modified by sortase-specific cleavage reactions and the formation of intramolecular peptide bonds. Here we report glycosylation as a new level of posttranslational modification of sortase-dependent pili of a beneficial microbiota species and its role in immune modulation. We focused on the SpaCBA pili of the model probiotic and beneficial human gut microbiota isolate Lactobacillus rhamnosus GG. A unique combination of molecular techniques, nanoscale mechanical and immunological approaches led to the identification of mannose and fucose residues on the SpaCBA pili. These glycans on the pili are recognized by human dendritic cells via the C-type lectin receptor DC-SIGN, a key carbohydrate-dependent immune tailoring pattern recognition receptor. This specific lectin-sugar interaction is moreover of functional importance and modulated the cytokine response of dendritic cells. This provides insight into the direct role bacterial glycoproteins can play in the immunomodulation of the host. Modification of the complex heterotrimeric pili of a model probiotic and microbiota isolate with mannose and fucose is of importance for the functional interaction with the host immune lectin receptor DC-SIGN on human dendritic cells. Our findings shed light on the yet underappreciated role of glycoconjugates in bacteria-host interactions.

  8. A Structural Basis for Sustained Bacterial Adhesion – Biomechanical Properties of CFA/I Pili

    OpenAIRE

    Andersson, Magnus; Björnham, Oscar; Svantesson, Mats; Badahdah, Arwa; Uhlin, Bernt Eric; Bullitt, Esther

    2011-01-01

    Enterotoxigenic Escherichia coli (ETEC) are a major cause of diarrheal disease worldwide. Adhesion pili (or fimbriae), such as the CFA/I (colonization factor antigen I) organelles that enable ETEC to attach efficiently to the host intestinal tract epithelium, are critical virulence factors for initiation of infection. We characterized at single organelle level the intrinsic biomechanical properties and kinetics of individual CFA/I pili, demonstrating that weak external forces (7.5 pN) are suf...

  9. Streptolysin S Promotes Programmed Cell Death and Enhances Inflammatory Signaling in Epithelial Keratinocytes during Group A Streptococcus Infection.

    Science.gov (United States)

    Flaherty, Rebecca A; Puricelli, Jessica M; Higashi, Dustin L; Park, Claudia J; Lee, Shaun W

    2015-10-01

    Streptococcus pyogenes, or group A Streptococcus (GAS), is a pathogen that causes a multitude of human diseases from pharyngitis to severe infections such as toxic shock syndrome and necrotizing fasciitis. One of the primary virulence factors produced by GAS is the peptide toxin streptolysin S (SLS). In addition to its well-recognized role as a cytolysin, recent evidence has indicated that SLS may influence host cell signaling pathways at sublytic concentrations during infection. We employed an antibody array-based approach to comprehensively identify global host cell changes in human epithelial keratinocytes in response to the SLS toxin. We identified key SLS-dependent host responses, including the initiation of specific programmed cell death and inflammatory cascades with concomitant downregulation of Akt-mediated cytoprotection. Significant signaling responses identified by our array analysis were confirmed using biochemical and protein identification methods. To further demonstrate that the observed SLS-dependent host signaling changes were mediated primarily by the secreted toxin, we designed a Transwell infection system in which direct bacterial attachment to host cells was prevented, while secreted factors were allowed access to host cells. The results using this approach were consistent with our direct infection studies and reveal that SLS is a bacterial toxin that does not require bacterial attachment to host cells for activity. In light of these findings, we propose that the production of SLS by GAS during skin infection promotes invasive outcomes by triggering programmed cell death and inflammatory cascades in host cells to breach the keratinocyte barrier for dissemination into deeper tissues. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  10. High-frequency low-level diode laser irradiation promotes proliferation and migration of primary cultured human gingival epithelial cells.

    Science.gov (United States)

    Ejiri, Kenichiro; Aoki, Akira; Yamaguchi, Yoko; Ohshima, Mitsuhiro; Izumi, Yuichi

    2014-07-01

    In periodontal therapy, the use of low-level diode lasers has recently been considered to improve wound healing of the gingival tissue. However, its effects on human gingival epithelial cells (HGECs) remain unknown. The aim of the present study was to examine whether high-frequency low-level diode laser irradiation stimulates key cell responses in wound healing, proliferation and migration, in primary cultured HGECs in vitro. HGECs were derived from seven independent gingival tissue specimens. Cultured HGECs were exposed to a single session of high-frequency (30 kHz) low-level diode laser irradiation with various irradiation time periods (fluence 5.7-56.7 J/cm(2)). After 20-24 h, cell proliferation was evaluated by WST-8 assay and [(3)H]thymidine incorporation assay, and cell migration was monitored by in vitro wound healing assay. Further, phosphorylation of the mitogen-activated protein kinase (MAPK) pathways after irradiation was investigated by Western blotting. The high-frequency low-level irradiation significantly increased cell proliferation and [(3)H]thymidine incorporation at various irradiation time periods. Migration of the irradiated cells was significantly accelerated compared with the nonirradiated control. Further, the low-level diode laser irradiation induced phosphorylation of MAPK/extracellular signal-regulated protein kinase (ERK) at 5, 15, 60, and 120 min after irradiation. Stress-activated protein kinases/c-Jun N-terminal kinase and p38 MAPK remained un-phosphorylated. The results show that high-frequency low-level diode laser irradiation promotes HGEC proliferation and migration in association with the activation of MAPK/ERK, suggesting that laser irradiation may accelerate gingival wound healing.

  11. Pili mediate specific adhesion of Streptococcus pyogenes to human tonsil and skin.

    Science.gov (United States)

    Abbot, Emily L; Smith, Wendy D; Siou, Gerard P S; Chiriboga, Carlos; Smith, Rebecca J; Wilson, Janet A; Hirst, Barry H; Kehoe, Michael A

    2007-07-01

    Very little is known about the biological functions of pili that have recently been found to be expressed by important Gram-positive pathogens such as Corynebacterium diphtheriae, Streptococcus agalacticae, S. pneumoniae and S. pyogenes. Using various ex vivo tissue and cellular models, here we show that pili mediate adhesion of serotype M1 S. pyogenes strain SF370 to both human tonsil epithelium and primary human keratinocytes, which represent the two main sites of infection by this human-specific pathogen. Mutants lacking minor pilus subunits retained the ability to express cell-surface pili, but these were functionally defective. In contrast to above, pili were not required for S. pyogenes adhesion to either immortalized HEp-2 or A549 cells, highlighting an important limitation of these extensively used adhesion/invasion models. Adhering bacteria were internalized very effectively by both HEp-2 and A549 cells, but not by tonsil epithelium or primary keratinocytes. While pili acted as the primary adhesin, the surface M1 protein clearly enhanced adhesion to tonsil, but surprisingly, had the opposite effect on adhesion to keratinocytes. These studies provide clear evidence that S. pyogenes pili display an adhesive specificity for clinically relevant human tissues and are likely to play a critical role in the initial stages of infection.

  12. The Nanomechanical Properties of Lactococcus lactis Pili Are Conditioned by the Polymerized Backbone Pilin.

    Directory of Open Access Journals (Sweden)

    Mickaël Castelain

    Full Text Available Pili produced by Lactococcus lactis subsp. lactis are putative linear structures consisting of repetitive subunits of the major pilin PilB that forms the backbone, pilin PilA situated at the distal end of the pilus, and an anchoring pilin PilC that tethers the pilus to the peptidoglycan. We determined the nanomechanical properties of pili using optical-tweezers force spectroscopy. Single pili were exposed to optical forces that yielded force-versus-extension spectra fitted using the Worm-Like Chain model. Native pili subjected to a force of 0-200 pN exhibit an inextensible, but highly flexible ultrastructure, reflected by their short persistence length. We tested a panel of derived strains to understand the functional role of the different pilins. First, we found that both the major pilin PilB and sortase C organize the backbone into a full-length organelle and dictate the nanomechanical properties of the pili. Second, we found that both PilA tip pilin and PilC anchoring pilin were not essential for the nanomechanical properties of pili. However, PilC maintains the pilus on the bacterial surface and may play a crucial role in the adhesion- and biofilm-forming properties of L. lactis.

  13. Cooperative retraction of bundled type IV pili enables nanonewton force generation.

    Directory of Open Access Journals (Sweden)

    Nicolas Biais

    2008-04-01

    Full Text Available The causative agent of gonorrhea, Neisseria gonorrhoeae, bears retractable filamentous appendages called type IV pili (Tfp. Tfp are used by many pathogenic and nonpathogenic bacteria to carry out a number of vital functions, including DNA uptake, twitching motility (crawling over surfaces, and attachment to host cells. In N. gonorrhoeae, Tfp binding to epithelial cells and the mechanical forces associated with this binding stimulate signaling cascades and gene expression that enhance infection. Retraction of a single Tfp filament generates forces of 50-100 piconewtons, but nothing is known, thus far, on the retraction force ability of multiple Tfp filaments, even though each bacterium expresses multiple Tfp and multiple bacteria interact during infection. We designed a micropillar assay system to measure Tfp retraction forces. This system consists of an array of force sensors made of elastic pillars that allow quantification of retraction forces from adherent N. gonorrhoeae bacteria. Electron microscopy and fluorescence microscopy were used in combination with this novel assay to assess the structures of Tfp. We show that Tfp can form bundles, which contain up to 8-10 Tfp filaments, that act as coordinated retractable units with forces up to 10 times greater than single filament retraction forces. Furthermore, single filament retraction forces are transient, whereas bundled filaments produce retraction forces that can be sustained. Alterations of noncovalent protein-protein interactions between Tfp can inhibit both bundle formation and high-amplitude retraction forces. Retraction forces build over time through the recruitment and bundling of multiple Tfp that pull cooperatively to generate forces in the nanonewton range. We propose that Tfp retraction can be synchronized through bundling, that Tfp bundle retraction can generate forces in the nanonewton range in vivo, and that such high forces could affect infection.

  14. Increased Eps15 homology domain 1 and RAB11FIP3 expression regulate breast cancer progression via promoting epithelial growth factor receptor recycling.

    Science.gov (United States)

    Tong, Dandan; Liang, Ya-Nan; Stepanova, A A; Liu, Yu; Li, Xiaobo; Wang, Letian; Zhang, Fengmin; Vasilyeva, N V

    2017-02-01

    a better prognostic marker in breast cancer diagnosis. Furthermore, RAB11FIP3 combines with Eps15 homology domain 1 to promote the endocytosis recycling of phosphorylation of epithelial growth factor receptor.

  15. PDGF receptor-α does not promote HCMV entry into epithelial and endothelial cells but increased quantities stimulate entry by an abnormal pathway.

    Directory of Open Access Journals (Sweden)

    Adam L Vanarsdall

    2012-09-01

    Full Text Available Epidermal growth factor receptor (EGFR and platelet-derived growth factor receptor-α (PDGFRα were reported to mediate entry of HCMV, including HCMV lab strain AD169. AD169 cannot assemble gH/gL/UL128-131, a glycoprotein complex that is essential for HCMV entry into biologically important epithelial cells, endothelial cells, and monocyte-macrophages. Given this, it appeared incongruous that EGFR and PDGFRα play widespread roles in HCMV entry. Thus, we investigated whether PDGFRα and EGFR could promote entry of wild type HCMV strain TR. EGFR did not promote HCMV entry into any cell type. PDGFRα-transduction of epithelial and endothelial cells and several non-permissive cells markedly enhanced HCMV TR entry and surprisingly, promoted entry of HCMV mutants lacking gH/gL/UL128-131 into epithelial and endothelial cells. Entry of HCMV was not blocked by a panel of PDGFRα antibodies or the PDGFR ligand in fibroblasts, epithelial, or endothelial cells or by shRNA silencing of PDGFRα in epithelial cells. Moreover, HCMV glycoprotein induced cell-cell fusion was not increased when PDGFRα was expressed in cells. Together these results suggested that HCMV does not interact directly with PDGFRα. Instead, the enhanced entry produced by PDGFRα resulted from a novel entry pathway involving clathrin-independent, dynamin-dependent endocytosis of HCMV followed by low pH-independent fusion. When PDGFRα was expressed in cells, an HCMV lab strain escaped endosomes and tegument proteins reached the nucleus, but without PDGFRα virions were degraded. By contrast, wild type HCMV uses another pathway to enter epithelial cells involving macropinocytosis and low pH-dependent fusion, a pathway that lab strains (lacking gH/gL/UL128-131 cannot follow. Thus, PDGFRα does not act as a receptor for HCMV but increased PDGFRα alters cells, facilitating virus entry by an abnormal pathway. Given that PDGFRα increased infection of some cells to 90%, PDGFRα may be very

  16. Reduced Epithelial Na+/H+ Exchange Drives Gut Microbial Dysbiosis and Promotes Inflammatory Response in T Cell-Mediated Murine Colitis.

    Directory of Open Access Journals (Sweden)

    Daniel Laubitz

    Full Text Available Inflammatory bowel diseases (IBD are associated with functional inhibition of epithelial Na+/H+ exchange. In mice, a selective disruption of NHE3 (Slc9a3, a major apical Na+/H+ exchanger, also promotes IBD-like symptoms and gut microbial dysbiosis. We hypothesized that disruption of Na+/H+ exchange is necessary for the development of dysbiosis, which promotes an exacerbated mucosal inflammatory response. Therefore, we performed a temporal analysis of gut microbiota composition, and mucosal immune response to adoptive T cell transfer was evaluated in Rag2-/- and NHE3-/-/Rag2-/- (DKO mice with and without broad-spectrum antibiotics. Microbiome (16S profiling, colonic histology, T cell and neutrophil infiltration, mucosal inflammatory tone, and epithelial permeability were analyzed. In adoptive T cell transfer colitis model, Slc9a3 status was the most significant determinant of gut microbial community. In DKO mice, NHE3-deficiency and dysbiosis were associated with dramatically accelerated and exacerbated disease, with rapid body weight loss, increased mucosal T cell and neutrophil influx, increased mucosal cytokine expression, increased permeability, and expansion of CD25-FoxP3+ Tregs; this enhanced susceptibility was alleviated by oral broad-spectrum antibiotics. Based on these results and our previous work, we postulate that epithelial electrolyte homeostasis is an important modulator in the progression of colitis, acting through remodeling of the gut microbial community.

  17. Tracing anti-cancer and cancer-promoting actions of all-trans retinoic acid in breast cancer to a RARα epigenetic mechanism of mammary epithelial cell fate.

    Science.gov (United States)

    Rossetti, Stefano; Ren, MingQiang; Visconti, Nicolo; Corlazzoli, Francesca; Gagliostro, Vincenzo; Somenzi, Giulia; Yao, Jin; Sun, Yijun; Sacchi, Nicoletta

    2016-12-27

    A hallmark of cancer cells is the ability to evade the growth inhibitory/pro-apoptotic action of physiological all-trans retinoic acid (RA) signal, the bioactive derivative of Vitamin A. However, as we and others reported, RA can also promote cancer cell growth and invasion. Here we show that anticancer and cancer-promoting RA actions in breast cancer have roots in a mechanism of mammary epithelial cell morphogenesis that involves both transcriptional (epigenetic) and non-transcriptional RARα (RARA) functions. We found that the mammary epithelial cell-context specific degree of functionality of the RARA transcriptional (epigenetic) component of this mechanism, by tuning the effects of the non-transcriptional RARA component, determines different cell fate decisions during mammary morphogenesis. Indeed, factors that hamper the RARA epigenetic function make physiological RA drive aberrant morphogenesis via non-transcriptional RARA, thus leading to cell transformation. Remarkably, also the cell context-specific degree of functionality of the RARA epigenetic component retained by breast cancer cells is critical to determine cell fate decisions in response to physiological as well as supraphysiological RA variation. Overall this study supports the proof of principle that the epigenetic functional plasticity of the mammary epithelial cell RARA mechanism, which is essential for normal morphogenetic processes, is necessary to deter breast cancer onset/progression consequent to the insidious action of physiological RA.

  18. The effect of conspecific ampulla oviductal epithelial cells during in vitro maturation on oocyte developmental competence and maturation-promoting factor (MPF) activity in sheep.

    Science.gov (United States)

    Dadashpour Davachi, Navid; Kohram, Hamid; Zare Shahneh, Ahmad; Zhandi, Mahdi; Goudarzi, Abbas; Fallahi, Roozbeh; Masoudi, Reza; Yousefi, Ali Reza; Bartlewski, Pawel M

    2017-01-15

    The acquisition of fertilization ability by oocytes is one of the prerequisites for successful in vitro embryo production. In the present study, we examined the influence of conspecific ampulla oviductal epithelial cells incubated with cumulus-oocyte complexes (COCs) throughout the IVM phase on the developmental competence and maturation-promoting factor (MPF) activity of sheep oocytes. There were six experimental groups in this study, namely four groups with and two groups without oviductal epithelial cells added to IVM media: adult COCs matured in vitro with the ampulla oviductal epithelial cells obtained from adult (AAE; G1) or prepubertal donors (prepubertal sheep ampulla oviductal epithelial cells [PAE]; G4), COCs obtained from prepubertal animals cocultured with AAE (G2) or PAE (G3), and adult (C1) and prepubertal sheep COCs (C2) matured without oviductal epithelial cells. Coincubation of oocytes retrieved from both adult and sexually immature donors with AAE (G1 and G2) resulted in significantly improved rates of metaphase-II (M-II) attainment (G1: 85.1 ± 2.0 and G2: 40.2 ± 1.3) and blastocyst formation (G1: 42.2 ± 1.1 and G2: 21.2 ± 1.0) as well as blastocyst development (total cell count; G1: 130.3 ± 7.8, G2: 70.2 ± 3.5) compared with their respective controls (C1: 94.3 ± 4.1 and C2: 49.7 ± 2.0). Prior to IVM, the activity of MPF was greater (P vitro embryo production efficiency. A significant increase in MPF activity following IVM of G2 oocytes could be responsible, at least partly, for the improved rate of blastocyst formation after IVF of prepubertal sheep oocytes. Crown Copyright © 2016. Published by Elsevier Inc. All rights reserved.

  19. Pili-driven surface motility of Myxococcus xanthus

    Science.gov (United States)

    Gibiansky, Maxsim; Hu, Wei; Zhao, Kun; Pan, Hongwei; Shi, Wenyuan; Dahmen, Karin; Wong, Gerard

    2012-02-01

    Myxococcus xanthus is a common, rod-shaped soil-dwelling bacterium with complex motility characteristics. In groups, M. xanthus bacteria can move via social ``S'' motility, in which the Type IV Pili (TFP) attach to secreted exopolysaccharides (EPS). We examine this motility mechanism using high-framerate video acquisition, taking data on individual bacteria at 400 frames per second; using particle tracking algorithms, we algorithmically reconstruct the bacterial trajectories. The motion of a single bacterium as it is pulled by its TFP through the EPS layer on the surface is not smooth, but instead displays distinct plateaus and slips, with a wide range of plateau and slip lengths. The distribution of slips exhibits power law scaling, consistent with a crackling noise model; crackling noise has previously been used to model nonbiological systems such as earthquake dynamics and Barkhausen noise. We show quantitative agreement between mean field friction models and observed bacterial dynamics. We demonstrate that the crackling noise behavior of M. xanthus is strongly dependent on the presence of EPS, but is unaffected by the chemotactic behavior of the bacterium; we also demonstrate velocity coupling between pairs of bacteria in the early stages of social motility.

  20. Snail family members unequally trigger EMT and thereby differ in their ability to promote the neoplastic transformation of mammary epithelial cells.

    Directory of Open Access Journals (Sweden)

    Baptiste Gras

    Full Text Available By fostering cell commitment to the epithelial-to-mesenchymal transition (EMT, SNAIL proteins endow cells with motility, thereby favoring the metastatic spread of tumor cells. Whether the phenotypic change additionally facilitates tumor initiation has never been addressed. Here we demonstrate that when a SNAIL protein is ectopically produced in non-transformed mammary epithelial cells, the cells are protected from anoikis and proliferate under low-adherence conditions: a hallmark of cancer cells. The three SNAIL proteins show unequal oncogenic potential, strictly correlating with their ability to promote EMT. SNAIL3 especially behaves as a poor EMT-inducer comforting the concept that the transcription factor functionally diverges from its two related proteins.

  1. Snail family members unequally trigger EMT and thereby differ in their ability to promote the neoplastic transformation of mammary epithelial cells.

    Science.gov (United States)

    Gras, Baptiste; Jacqueroud, Laurent; Wierinckx, Anne; Lamblot, Christelle; Fauvet, Frédérique; Lachuer, Joël; Puisieux, Alain; Ansieau, Stéphane

    2014-01-01

    By fostering cell commitment to the epithelial-to-mesenchymal transition (EMT), SNAIL proteins endow cells with motility, thereby favoring the metastatic spread of tumor cells. Whether the phenotypic change additionally facilitates tumor initiation has never been addressed. Here we demonstrate that when a SNAIL protein is ectopically produced in non-transformed mammary epithelial cells, the cells are protected from anoikis and proliferate under low-adherence conditions: a hallmark of cancer cells. The three SNAIL proteins show unequal oncogenic potential, strictly correlating with their ability to promote EMT. SNAIL3 especially behaves as a poor EMT-inducer comforting the concept that the transcription factor functionally diverges from its two related proteins.

  2. Methylglyoxal induces endoplasmic reticulum stress and DNA demethylation in the Keap1 promoter of human lens epithelial cells and age-related cataracts.

    Science.gov (United States)

    Palsamy, Periyasamy; Bidasee, Keshore R; Ayaki, Masahiko; Augusteyn, Robert C; Chan, Jefferson Y; Shinohara, Toshimichi

    2014-07-01

    Age-related cataracts are a leading cause of blindness. Previously, we have demonstrated the association of the unfolded protein response with various cataractogenic stressors. However, DNA methylation alterations leading to suppression of lenticular antioxidant protection remains unclear. Here, we report the methylglyoxal-mediated sequential events responsible for Keap1 promoter DNA demethylation in human lens epithelial cells, because Keap1 is a negative regulatory protein that regulates the Nrf2 antioxidant protein. Methylglyoxal induces endoplasmic reticulum stress and activates the unfolded protein response leading to overproduction of reactive oxygen species before human lens epithelial cell death. Methylglyoxal also suppresses Nrf2 and DNA methyltransferases but activates the DNA demethylation pathway enzyme TET1. Bisulfite genomic DNA sequencing confirms the methylglyoxal-mediated Keap1 promoter DNA demethylation leading to overexpression of Keap1 mRNA and protein. Similarly, bisulfite genomic DNA sequencing shows that human clear lenses (n = 15) slowly lose 5-methylcytosine in the Keap1 promoter throughout life, at a rate of 1% per year. By contrast, diabetic cataractous lenses (n = 21) lose an average of 90% of the 5-methylcytosine regardless of age. Overexpressed Keap1 protein is responsible for decreasing Nrf2 by proteasomal degradation, thereby suppressing Nrf2-dependent stress protection. This study demonstrates for the first time the associations of unfolded protein response activation, Nrf2-dependent antioxidant system failure, and loss of Keap1 promoter methylation because of altered active and passive DNA demethylation pathway enzymes in human lens epithelial cells by methylglyoxal. As an outcome, the cellular redox balance is altered toward lens oxidation and cataract formation.

  3. Extracellular reduction of uranium via Geobacter conductive pili as a protective cellular mechanism.

    Science.gov (United States)

    Cologgi, Dena L; Lampa-Pastirk, Sanela; Speers, Allison M; Kelly, Shelly D; Reguera, Gemma

    2011-09-13

    The in situ stimulation of Fe(III) oxide reduction by Geobacter bacteria leads to the concomitant precipitation of hexavalent uranium [U(VI)] from groundwater. Despite its promise for the bioremediation of uranium contaminants, the biological mechanism behind this reaction remains elusive. Because Fe(III) oxide reduction requires the expression of Geobacter's conductive pili, we evaluated their contribution to uranium reduction in Geobacter sulfurreducens grown under pili-inducing or noninducing conditions. A pilin-deficient mutant and a genetically complemented strain with reduced outer membrane c-cytochrome content were used as controls. Pili expression significantly enhanced the rate and extent of uranium immobilization per cell and prevented periplasmic mineralization. As a result, pili expression also preserved the vital respiratory activities of the cell envelope and the cell's viability. Uranium preferentially precipitated along the pili and, to a lesser extent, on outer membrane redox-active foci. In contrast, the pilus-defective strains had different degrees of periplasmic mineralization matching well with their outer membrane c-cytochrome content. X-ray absorption spectroscopy analyses demonstrated the extracellular reduction of U(VI) by the pili to mononuclear tetravalent uranium U(IV) complexed by carbon-containing ligands, consistent with a biological reduction. In contrast, the U(IV) in the pilin-deficient mutant cells also required an additional phosphorous ligand, in agreement with the predominantly periplasmic mineralization of uranium observed in this strain. These findings demonstrate a previously unrecognized role for Geobacter conductive pili in the extracellular reduction of uranium, and highlight its essential function as a catalytic and protective cellular mechanism that is of interest for the bioremediation of uranium-contaminated groundwater.

  4. Multiscale modeling of bacterial colonies: how pili mediate the dynamics of single cells and cellular aggregates

    Science.gov (United States)

    Pönisch, Wolfram; Weber, Christoph A.; Juckeland, Guido; Biais, Nicolas; Zaburdaev, Vasily

    2017-01-01

    Neisseria gonorrhoeae is the causative agent of one of the most common sexually transmitted diseases, gonorrhea. Over the past two decades there has been an alarming increase of reported gonorrhea cases where the bacteria were resistant to the most commonly used antibiotics thus prompting for alternative antimicrobial treatment strategies. The crucial step in this and many other bacterial infections is the formation of microcolonies, agglomerates consisting of up to several thousands of cells. The attachment and motility of cells on solid substrates as well as the cell-cell interactions are primarily mediated by type IV pili, long polymeric filaments protruding from the surface of cells. While the crucial role of pili in the assembly of microcolonies has been well recognized, the exact mechanisms of how they govern the formation and dynamics of microcolonies are still poorly understood. Here, we present a computational model of individual cells with explicit pili dynamics, force generation and pili-pili interactions. We employ the model to study a wide range of biological processes, such as the motility of individual cells on a surface, the heterogeneous cell motility within the large cell aggregates, and the merging dynamics and the self-assembly of microcolonies. The results of numerical simulations highlight the central role of pili generated forces in the formation of bacterial colonies and are in agreement with the available experimental observations. The model can quantify the behavior of multicellular bacterial colonies on biologically relevant temporal and spatial scales and can be easily adjusted to include the geometry and pili characteristics of various bacterial species. Ultimately, the combination of the microbiological experimental approach with the in silico model of bacterial colonies might provide new qualitative and quantitative insights on the development of bacterial infections and thus pave the way to new antimicrobial treatments.

  5. Helicobacter pylori CagA and IL-1β Promote the Epithelial-to-Mesenchymal Transition in a Nontransformed Epithelial Cell Model

    Science.gov (United States)

    Arévalo-Romero, Haruki; Meza, Isaura; Vallejo-Flores, Gabriela

    2016-01-01

    Gastric cancer is the third cause of cancer death worldwide and infection by Helicobacter pylori (H. pylori) is considered the most important risk factor, mainly by the activity of its virulence factor CagA. H. pylori/CagA-induced chronic inflammation triggers a series of gastric lesions of increased severity, starting with gastritis and ending with cancer. IL-1β has been associated with tumor development and invasiveness in different types of cancer, including gastric cancer. Currently, it is not clear if there is an association between CagA and IL-1β at a cellular level. In this study, we analyzed the effects of IL-1β and CagA on MCF-10A nontransformed cells. We found evidence that both CagA and IL-1β trigger the initiation of the epithelial-to-mesenchymal transition characterized by β-catenin nuclear translocation, increased expression of Snail1 and ZEB1, downregulation of CDH1, and morphological changes during MCF-10A acini formation. However, only CagA induced MMP9 activity and cell invasion. Our data support that IL-1β and CagA target the β-catenin pathway, with CagA leading to acquisition of a stage related to aggressive tumors. PMID:27525003

  6. Helicobacter pylori CagA and IL-1β Promote the Epithelial-to-Mesenchymal Transition in a Nontransformed Epithelial Cell Model

    Directory of Open Access Journals (Sweden)

    Haruki Arévalo-Romero

    2016-01-01

    Full Text Available Gastric cancer is the third cause of cancer death worldwide and infection by Helicobacter pylori (H. pylori is considered the most important risk factor, mainly by the activity of its virulence factor CagA. H. pylori/CagA-induced chronic inflammation triggers a series of gastric lesions of increased severity, starting with gastritis and ending with cancer. IL-1β has been associated with tumor development and invasiveness in different types of cancer, including gastric cancer. Currently, it is not clear if there is an association between CagA and IL-1β at a cellular level. In this study, we analyzed the effects of IL-1β and CagA on MCF-10A nontransformed cells. We found evidence that both CagA and IL-1β trigger the initiation of the epithelial-to-mesenchymal transition characterized by β-catenin nuclear translocation, increased expression of Snail1 and ZEB1, downregulation of CDH1, and morphological changes during MCF-10A acini formation. However, only CagA induced MMP9 activity and cell invasion. Our data support that IL-1β and CagA target the β-catenin pathway, with CagA leading to acquisition of a stage related to aggressive tumors.

  7. Epidermal Cells Expressing Putative Cell Markers in Nonglabrous Skin Existing in Direct Proximity with the Distal End of the Arrector Pili Muscle

    Directory of Open Access Journals (Sweden)

    N. Torkamani

    2016-01-01

    Full Text Available Inconsistent with the view that epidermal stem cells reside randomly spread along the basal layer of the epidermal rete ridges, we found that epidermal cells expressing stem cell markers in nonglabrous skin exist in direct connection with the distal end of the arrector pili muscle. The epidermal cells that express stem cell markers consist of a subpopulation of basal keratinocytes located in a niche at the lowermost portion of the rete ridges at the distal arrector pili muscle attachment site. Keratinocytes in the epidermal stem cell niche express K15, MCSP, and α6 integrin. α5 integrin marks the distal end of the APM colocalized with basal keratinocytes expressing stem cell markers located in a well-protected and nourished environment at the lowermost point of the epidermis; these cells are hypothesized to participate directly in epidermal renewal and homeostasis and also indirectly in wound healing through communication with the hair follicle bulge epithelial stem cell population through the APM. Our findings, plus a reevaluation of the literature, support the hierarchical model of interfollicular epidermal stem cell units of Fitzpatrick. This new view provides insights into epidermal control and the possible involvement of epidermal stem cells in nonmelanoma skin carcinogenesis.

  8. PTEN and p53 cross-regulation induced by soy isoflavone genistein promotes mammary epithelial cell cycle arrest and lobuloalveolar differentiation.

    Science.gov (United States)

    Rahal, Omar M; Simmen, Rosalia C M

    2010-08-01

    The tumor suppressors phosphatase and tensin homologue deleted on chromosome ten (PTEN) and p53 are closely related to the pathogenesis of breast cancer, yet pathway-specific mechanisms underlying their participation in mediating the protective actions of dietary bioactive components on breast cancer risk are poorly understood. We recently showed that dietary exposure to the soy isoflavone genistein (GEN) induced PTEN expression in mammary epithelial cells in vivo and in vitro, consistent with the breast cancer preventive effects of soy food consumption. Here, we evaluated PTEN and p53 functional interactions in the nuclear compartment of mammary epithelial cells as a mechanism for mammary tumor protection by GEN. Using the non-tumorigenic human mammary epithelial cells MCF10-A, we demonstrate that GEN increased PTEN expression and nuclear localization. We show that increased nuclear PTEN levels initiated an autoregulatory loop involving PTEN-dependent increases in p53 nuclear localization, PTEN-p53 physical association, PTEN-p53 co-recruitment to the PTEN promoter region and p53 transactivation of PTEN promoter activity. The PTEN-p53 cross talk induced by GEN resulted in increased cell cycle arrest; decreased pro-proliferative cyclin D1 and pleiotrophin gene expression and the early formation of mammary acini, indicative of GEN promotion of lobuloalveolar differentiation. Our findings provide support to GEN-induced PTEN as both a target and regulator of p53 action and offer a mechanistic basis for PTEN pathway activation to underlie the antitumor properties of dietary factors, with important implications for reducing breast cancer risk.

  9. Vibrio cholerae use pili and flagella synergistically to effect motility switching and conditional surface attachment

    Science.gov (United States)

    Utada, Andrew S.; Bennett, Rachel R.; Fong, Jiunn C. N.; Gibiansky, Maxsim L.; Yildiz, Fitnat H.; Golestanian, Ramin; Wong, Gerard C. L.

    2014-09-01

    We show that Vibrio cholerae, the causative agent of cholera, use their flagella and mannose-sensitive hemagglutinin (MSHA) type IV pili synergistically to switch between two complementary motility states that together facilitate surface selection and attachment. Flagellar rotation counter-rotates the cell body, causing MSHA pili to have periodic mechanical contact with the surface for surface-skimming cells. Using tracking algorithms at 5 ms resolution we observe two motility behaviours: ‘roaming', characterized by meandering trajectories, and ‘orbiting’, characterized by repetitive high-curvature orbits. We develop a hydrodynamic model showing that these phenotypes result from a nonlinear relationship between trajectory shape and frictional forces between pili and the surface: strong pili-surface interactions generate orbiting motion, increasing the local bacterial loiter time. Time-lapse imaging reveals how only orbiting mode cells can attach irreversibly and form microcolonies. These observations suggest that MSHA pili are crucial for surface selection, irreversible attachment, and ultimately microcolony formation.

  10. Visualization of charge propagation along individual pili proteins using ambient electrostatic force microscopy

    Science.gov (United States)

    Malvankar, Nikhil S.; Yalcin, Sibel Ebru; Tuominen, Mark T.; Lovley, Derek R.

    2014-12-01

    The nanoscale imaging of charge flow in proteins is crucial to understanding several life processes, including respiration, metabolism and photosynthesis. However, existing imaging methods are only effective under non-physiological conditions or are limited to photosynthetic proteins. Here, we show that electrostatic force microscopy can be used to directly visualize charge propagation along pili of Geobacter sulfurreducens with nanometre resolution and under ambient conditions. Charges injected at a single point into individual, untreated pili, which are still attached to cells, propagated over the entire filament. The mobile charge density in the pili, as well as the temperature and pH dependence of the charge density, were similar to those of carbon nanotubes and other organic conductors. These findings, coupled with a lack of charge propagation in mutated pili that were missing key aromatic amino acids, suggest that the pili of G. sulfurreducens function as molecular wires with transport via delocalized charges, rather than the hopping mechanism that is typical of biological electron transport.

  11. Functional polymorphisms in the TERT promoter are associated with risk of serous epithelial ovarian and breast cancers

    NARCIS (Netherlands)

    Beesley, J.; Pickett, H.A.; Johnatty, S.E.; Dunning, A.M.; Chen, X.; Li, J.; Michailidou, K.; Lu, Y.; Rider, D.N.; Palmieri, R.T.; Stutz, M.D.; Lambrechts, D.; Despierre, E.; Lambrechts, S.; Vergote, I.; Chang-Claude, J.; Nickels, S.; Vrieling, A.; Flesch-Janys, D.; Wang-Gohrke, S.; Eilber, U.; Bogdanova, N.; Antonenkova, N.; Runnebaum, I.B.; Dork, T.; Goodman, M.T.; Lurie, G.; Wilkens, L.R.; Matsuno, R.K.; Kiemeney, L.A.L.M.; Aben, K.K.H.; Marees, T.; Massuger, L.F.A.G.; Fridley, B.L.; Vierkant, R.A.; Bandera, E.V.; Olson, S.H.; Orlow, I.; Rodriguez-Rodriguez, L.; Cook, L.S.; Le, N.D.; Brooks-Wilson, A.; Kelemen, L.E.; Campbell, I.; Gayther, S.A.; Ramus, S.J.; Gentry-Maharaj, A.; Menon, U.; Ahmed, S.; Baynes, C.; Pharoah, P.D.; Muir, K.; Lophatananon, A.; Chaiwerawattana, A.; Wiangnon, S.; MacGregor, S.; Easton, D.F.; Reddel, R.R.; Goode, E.L.; Chenevix-Trench, G.

    2011-01-01

    Genetic variation at the TERT-CLPTM1L locus at 5p15.33 is associated with susceptibility to several cancers, including epithelial ovarian cancer (EOC). We have carried out fine-mapping of this region in EOC which implicates an association with a single nucleotide polymorphism (SNP) within the TERT

  12. DMBT1 promotes basal and meconium-induced nitric oxide production in human lung epithelial cells in vitro

    DEFF Research Database (Denmark)

    Müller, Hanna; Weiss, Christel; Renner, Marcus

    2017-01-01

    Meconium aspiration syndrome (MAS) is characterized by surfactant inactivation and inflammation. As lung epithelial cells up-regulate nitric oxide (NO) in response to inflammation, the NO production following meconium exposition was examined in relation to expression of Deleted in Malignant Brain...

  13. Functional polymorphisms in the TERT promoter are associated with risk of serous epithelial ovarian and breast cancers

    NARCIS (Netherlands)

    Beesley, J.; Pickett, H.A.; Johnatty, S.E.; Dunning, A.M.; Chen, X.; Li, J.; Michailidou, K.; Lu, Y.; Rider, D.N.; Palmieri, R.T.; Stutz, M.D.; Lambrechts, D.; Despierre, E.; Lambrechts, S.; Vergote, I.; Chang-Claude, J.; Nickels, S.; Vrieling, A.; Flesch-Janys, D.; Wang-Gohrke, S.; Eilber, U.; Bogdanova, N.; Antonenkova, N.; Runnebaum, I.B.; Dork, T.; Goodman, M.T.; Lurie, G.; Wilkens, L.R.; Matsuno, R.K.; Kiemeney, L.A.L.M.; Aben, K.K.H.; Marees, T.; Massuger, L.F.A.G.; Fridley, B.L.; Vierkant, R.A.; Bandera, E.V.; Olson, S.H.; Orlow, I.; Rodriguez-Rodriguez, L.; Cook, L.S.; Le, N.D.; Brooks-Wilson, A.; Kelemen, L.E.; Campbell, I.; Gayther, S.A.; Ramus, S.J.; Gentry-Maharaj, A.; Menon, U.; Ahmed, S.; Baynes, C.; Pharoah, P.D.; Muir, K.; Lophatananon, A.; Chaiwerawattana, A.; Wiangnon, S.; MacGregor, S.; Easton, D.F.; Reddel, R.R.; Goode, E.L.; Chenevix-Trench, G.

    2011-01-01

    Genetic variation at the TERT-CLPTM1L locus at 5p15.33 is associated with susceptibility to several cancers, including epithelial ovarian cancer (EOC). We have carried out fine-mapping of this region in EOC which implicates an association with a single nucleotide polymorphism (SNP) within the TERT p

  14. Transient RUNX1 Expression during Early Mesendodermal Differentiation of hESCs Promotes Epithelial to Mesenchymal Transition through TGFB2 Signaling

    Directory of Open Access Journals (Sweden)

    Jennifer J. VanOudenhove

    2016-11-01

    Full Text Available The transition of human embryonic stem cells (hESCs from pluripotency to lineage commitment is not fully understood, and a role for phenotypic transcription factors in the initial stages of hESC differentiation remains to be explored. From a screen of candidate factors, we found that RUNX1 is selectively and transiently upregulated early in hESC differentiation to mesendodermal lineages. Transcriptome profiling and functional analyses upon RUNX1 depletion established a role for RUNX1 in promoting cell motility. In parallel, we discovered a loss of repression for several epithelial genes, indicating that loss of RUNX1 impaired an epithelial to mesenchymal transition during differentiation. Cell biological and biochemical approaches revealed that RUNX1 depletion specifically compromised TGFB2 signaling. Both the decrease in motility and deregulated epithelial marker expression upon RUNX1 depletion were rescued by reintroduction of TGFB2, but not TGFB1. These findings identify roles for RUNX1-TGFB2 signaling in early events of mesendodermal lineage commitment.

  15. Ghrelin promotes intestinal epithelial cell proliferation through PI3K/Akt pathway and EGFR trans-activation both converging to ERK 1/2 phosphorylation.

    Science.gov (United States)

    Waseem, Talat; Duxbury, Mark; Ashley, Stanley W; Robinson, Malcolm K

    2014-02-01

    Little is known about ghrelin's effects on intestinal epithelial cells even though it is known to be a mitogen for a variety of other cell types. Because ghrelin is released in close proximity to the proliferative compartment of the intestinal tract, we hypothesized that ghrelin may have potent pro-proliferative effect on intestinal epithelial cells as well. To test this hypothesis, we characterized the effects of ghrelin on FHs74Int and Caco-2 intestinal epithelial cell lines in vitro. We found that ghrelin has potent dose dependent proliferative effects in both cell lines through a yet to be characterized G protein coupled growth hormone secretagogue receptor (GHS-R) subtype. Consistent with above findings, cell cycle flowcytometric analyses demonstrated that ghrelin shifts cells from the G1 to S phase and thereby promotes cell cycle progression. Further characterization of subcellular events, suggested that ghrelin mediates its pro-proliferative effect through Adenylate cyclase (AC)-independent epidermal growth factor receptor (EGFR) trans-activation and PI3K-Akt phosphorylation. Both these pathways converge to stimulate MAPK, ERK 1/2 downstream. The role of ghrelin in states where intestinal mucosal injury and rapid mucosal repair occur warrants further investigation.

  16. Hypoxia-induced down-regulation of microRNA-34a promotes EMT by targeting the Notch signaling pathway in tubular epithelial cells.

    Directory of Open Access Journals (Sweden)

    Rui Du

    Full Text Available BACKGROUND: Hypoxia-induced renal tubular cell epithelial-mesenchymal transition (EMT is an important event leading to renal fibrosis. MicroRNAs (miRNAs are small non-coding RNA molecules that bind to their mRNA targets, thereby leading to translational repression. The role of miRNA in hypoxia-induced EMT is largely unknown. METHODOLOGY/PRINCIPAL FINDINGS: miRNA profiling was performed for the identification of differentially expressed miRNAs in HK-2 cells under normal and low oxygen, and the results were then verified by quantitative real time RT-PCR (qRT-PCR. The function of miRNAs in hypoxia-induced renal tubular cell EMT was assessed by the transfection of specific miRNA inhibitors and mimics. Luciferase reporter gene assays and western blot analysis were performed to validate the target genes of miR-34a. siRNA against Jagged1 was designed to investigate the role of the miR-34a-Notch pathway in hypoxia induced renal tubular cell EMT. miRNA-34a was identified as being downregulated in hypoxic renal tubular epithelial cells. Inhibition of miR-34a expression in HK-2 cells, which highly express endogenous miR-34a, promoted a mesenchymal phenotype accompanied by reduced expression of the epithelial marker Z0-1, E-cadherin and increased expression of the mesenchymal markers α-SMA and vimentin. Conversely, miR-34a mimics effectively prevented hypoxia-induced EMT. Transfection of miRNA-34a in HK-2 cells under hypoxia abolished hypoxia-induced expression of Notch1 and Jagged1 as well as Notch downstream signals, such as snail. Western blot analysis and luciferase reporter gene assays showed direct evidence for miR-34a targeting Notch1 and Jagged1. siRNAs against Jagged1 or Notch1 effectively prevented miR-34a inhibitor-induced tubular epithelial cell EMT. CONCLUSIONS/SIGNIFICANCE: Our study provides evidence that the hypoxia-induced decrease of miR-34a expression could promote EMT in renal tubular epithelial cells by directly targeting Notch1 and

  17. Mesenchymal Stem Cell Conditioned Medium Promotes Proliferation and Migration of Alveolar Epithelial Cells under Septic Conditions In Vitro via the JNK-P38 Signaling Pathway.

    Science.gov (United States)

    Chen, Jie; Li, Yanqin; Hao, Haojie; Li, Chonghui; Du, Yu; Hu, Ye; Li, Jian; Liang, Zhixin; Li, Chunsun; Liu, Jiejie; Chen, Liangan

    2015-01-01

    Mesenchymal stem cell (MSC) based therapies may be useful for treating acute respiratory distress syndrome (ARDS), but the underlying mechanisms are incompletely understood. We investigated the impact of human umbilical cord Wharton's jelly-derived MSC (hUC-MSC) secreted factors on alveolar epithelial cells under septic conditions and determined the relevant intracellular signaling pathways. Human alveolar epithelial cells (AEC) and primary human small airway epithelial cells (SAEC) were subjected to lipopolysaccharide (LPS) with or without the presence of hUC-MSC-conditioned medium (CM). Proliferation and migration of AEC and SAEC were determined via an MTT assay, a wound healing assay and a transwell migration assay (only for AEC). Protein phosphorylation was determined by western blot and the experiments were repeated in presence of small-molecule inhibitors. The hMSC-secretory proteins were identified by LC-MS/MS mass spectrometry. MSC-CM enhanced proliferation and migration. Activation of JNK and P38, but not ERK, was required for the proliferation and migration of AEC and SAEC. Pretreatment of AEC or SAEC with SP600125, an inhibitor of JNK1 or SB200358, an inhibitor of P38, significantly reduced cell proliferation and migration. An array of proteins including TGF-beta receptor type-1, TGF-beta receptor type-2, Ras-related C3 botulinum toxin substrate 1 and Ras-related C3 botulinum toxin substrate 2 which influencing the proliferation and migration of AEC and SAEC were detected in MSC-CM. Our data suggest MSC promote epithelial cell repair through releasing a repertoire of paracrine factors via activation of JNK and P38 MAPK. © 2015 S. Karger AG, Basel.

  18. Mesenchymal Stem Cell Conditioned Medium Promotes Proliferation and Migration of Alveolar Epithelial Cells under Septic Conditions In Vitro via the JNK-P38 Signaling Pathway

    Directory of Open Access Journals (Sweden)

    Jie Chen

    2015-11-01

    Full Text Available Background/Aims: Mesenchymal stem cell (MSC based therapies may be useful for treating acute respiratory distress syndrome (ARDS, but the underlying mechanisms are incompletely understood. We investigated the impact of human umbilical cord Wharton's jelly-derived MSC (hUC-MSC secreted factors on alveolar epithelial cells under septic conditions and determined the relevant intracellular signaling pathways. Methods: Human alveolar epithelial cells (AEC and primary human small airway epithelial cells (SAEC were subjected to lipopolysaccharide (LPS with or without the presence of hUC-MSC-conditioned medium (CM. Proliferation and migration of AEC and SAEC were determined via an MTT assay, a wound healing assay and a transwell migration assay (only for AEC. Protein phosphorylation was determined by western blot and the experiments were repeated in presence of small-molecule inhibitors. The hMSC-secretory proteins were identified by LC-MS/MS mass spectrometry. Results: MSC-CM enhanced proliferation and migration. Activation of JNK and P38, but not ERK, was required for the proliferation and migration of AEC and SAEC. Pretreatment of AEC or SAEC with SP600125, an inhibitor of JNK1 or SB200358, an inhibitor of P38, significantly reduced cell proliferation and migration. An array of proteins including TGF-beta receptor type-1, TGF-beta receptor type-2, Ras-related C3 botulinum toxin substrate 1 and Ras-related C3 botulinum toxin substrate 2 which influencing the proliferation and migration of AEC and SAEC were detected in MSC-CM. Conclusion: Our data suggest MSC promote epithelial cell repair through releasing a repertoire of paracrine factors via activation of JNK and P38 MAPK.

  19. Biofilm formation by Pseudomonas aeruginosa wild type, flagella and type IV pili mutants

    DEFF Research Database (Denmark)

    Klausen, M.; Heydorn, Arne; Ragas, Paula Cornelia

    2003-01-01

    Biofilm formation by Gfp-tagged Pseudomonas aeruginosa PAO1 wild type, flagella and type IV pili mutants in flow chambers irrigated with citrate minimal medium was characterized by the use of confocal laser scanning microscopy and comstat image analysis. Flagella and type IV pili were not necessary...... for P. aeruginosa initial attachment or biofilm formation, but the cell appendages had roles in biofilm development, as wild type, flagella and type IV pili mutants formed biofilms with different structures. Dynamics and selection during biofilm formation were investigated by tagging the wild type...... and flagella/type IV mutants with Yfp and Cfp and performing time-lapse confocal laser scanning microscopy in mixed colour biofilms. The initial microcolony formation occurred by clonal growth, after which wild-type P. aeruginosa bacteria spread over the substratum by means of twitching motility. The wild...

  20. Infectious bovine keratoconjunctivitis: enhancement of Moraxella bovis pili immunogenicity with diphtheria-tetanus toxoids and pertussis vaccine.

    Science.gov (United States)

    Pugh, G W; Kopecky, K E; McDonald, T J

    1984-04-01

    A study was conducted to determine whether diphtheria-tetanus-toxoids and pertussis vaccine (DPT) would enhance the immunogenicity of homologous Moraxella bovis pili fractions. Thirty-six calves were divided into 4 groups (I, II, III, and IV) of 9 calves each. Calves in group I were not vaccinated and served as controls. Calves in group II were vaccinated with pili fractions only. Calves in group III were vaccinated with DPT only. Calves in group IV were vaccinated with DPT and pili. Vaccination consisted of 2 inoculations, 21 days apart. Fourteen days after the last vaccinal inoculation was done, the eyes of all calves were exposed to a hemolytic homologous strain of M bovis. The percentage of eyes with disease was significantly less in calves given DPT and pili (P less than 0.001) and calves given pili only (P less than 0.05) than in calves given DPT only or nonvaccinated calves. The lesions were less severe in calves vaccinated with pili only than in calves not vaccinated with pili. Serologic results also showed a positive relationship between the development of serum antibodies against pili and immunity. The results indicate that DPT enhanced the immune response and if used as an adjuvant, might be useful in the development of a vaccine against infectious bovine keratoconjunctivitis.

  1. 77 FR 66864 - Notice of November 15, 2012, Meeting for Na Hoa Pili O Kaloko-Honokohau National Historical Park...

    Science.gov (United States)

    2012-11-07

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF THE INTERIOR National Park Service Notice of November 15, 2012, Meeting for Na Hoa Pili O Kaloko- Honokohau National.... SUMMARY: This notice sets forth the date of the November 15, 2012, meeting of the Na Hoa Pili O...

  2. Impairment of the biomechanical compliance of P pili: a novel means of inhibiting uropathogenic bacterial infections?

    Science.gov (United States)

    Klinth, Jeanna E; Pinkner, Jerome S; Hultgren, Scott J; Almqvist, Fredrik; Uhlin, Bernt Eric; Axner, Ove

    2012-03-01

    Gram-negative bacteria often initiate their colonization by use of extended attachment organelles, so called pili. When exposed to force, the rod of helix-like pili has been found to be highly extendable, mainly attributed to uncoiling and recoiling of its quaternary structure. This provides the bacteria with the ability to redistribute an external force among a multitude of pili, which enables them to withstand strong rinsing flows, which, in turn, facilitates adherence and colonization processes critical to virulence. Thus, pili fibers are possible targets for novel antibacterial agents. By use of a substance that compromises compliance of the pili, the ability of bacteria to redistribute external forces can be impaired, so they will no longer be able to resist strong urine flow and thus be removed from the host. It is possible such a substance can serve as an alternative to existing antibiotics in the future or be a part of a multi-drug. In this work we investigated whether it is possible to achieve this by targeting the recoiling process. The test substance was purified PapD. The effect of PapD on the compliance of P pili was assessed at the single organelle level by use of force-measuring optical tweezers. We showed that the recoiling process, and thus the biomechanical compliance, in particular the recoiling process, can be impaired by the presence of PapD. This leads to a new concept in the search for novel drug candidates combating uropathogenic bacterial infections--"coilicides", targeting the subunits of which the pilus rod is composed.

  3. Autocrine/Paracrine Human Growth Hormone-stimulated MicroRNA 96-182-183 Cluster Promotes Epithelial-Mesenchymal Transition and Invasion in Breast Cancer.

    Science.gov (United States)

    Zhang, Weijie; Qian, Pengxu; Zhang, Xiao; Zhang, Min; Wang, Hong; Wu, Mingming; Kong, Xiangjun; Tan, Sheng; Ding, Keshuo; Perry, Jo K; Wu, Zhengsheng; Cao, Yuan; Lobie, Peter E; Zhu, Tao

    2015-05-29

    Human growth hormone (hGH) plays critical roles in pubertal mammary gland growth, development, and sexual maturation. Accumulated studies have reported that autocrine/paracrine hGH is an orthotopically expressed oncoprotein that promotes normal mammary epithelial cell oncogenic transformation. Autocrine/paracrine hGH has also been reported to promote mammary epithelial cell epithelial-mesenchymal transition (EMT) and invasion. However, the underlying mechanism remains largely obscure. MicroRNAs (miRNAs) are reported to be involved in regulation of multiple cellular functions of cancer. To determine whether autocrine/paracrine hGH promotes EMT and invasion through modulation of miRNA expression, we performed microarray profiling using MCF-7 cells stably expressing wild type or a translation-deficient hGH gene and identified miR-96-182-183 as an autocrine/paracrine hGH-regulated miRNA cluster. Forced expression of miR-96-182-183 conferred on epithelioid MCF-7 cells a mesenchymal phenotype and promoted invasive behavior in vitro and dissemination in vivo. Moreover, we observed that miR-96-182-183 promoted EMT and invasion by directly and simultaneously suppressing BRMS1L (breast cancer metastasis suppressor 1-like) gene expression. miR-96 and miR-182 also targeted GHR, providing a potential negative feedback loop in the hGH-GHR signaling pathway. We further demonstrated that autocrine/paracrine hGH stimulated miR-96-182-183 expression and facilitated EMT and invasion via STAT3 and STAT5 signaling. Consistent with elevated expression of autocrine/paracrine hGH in metastatic breast cancer tissue, miR-96-182-183 expression was also remarkably enhanced. Hence, we delineate the roles of the miRNA-96-182-183 cluster and elucidate a novel hGH-GHR-STAT3/STAT5-miR-96-182-183-BRMS1L-ZEB1/E47-EMT/invasion axis, which provides further understanding of the mechanism of autocrine/paracrine hGH-stimulated EMT and invasion in breast cancer.

  4. Combination of melatonin and Wnt-4 promotes neural cell differentiation in bovine amniotic epithelial cells and recovery from spinal cord injury.

    Science.gov (United States)

    Gao, Yuhua; Bai, Chunyu; Zheng, Dong; Li, Changli; Zhang, Wenxiu; Li, Mei; Guan, Weijun; Ma, Yuehui

    2016-04-01

    Although melatonin has been shown to exhibit a wide variety of biological functions, its effects on promoting differentiation of neural cells remain unknown. Wnt signaling mediates major developmental processes during embryogenesis and regulates maintenance, self-renewal, and differentiation of adult mammalian stem cells. However, the role of the noncanonical Wnt pathway during neurogenesis remains poorly understood. In this study, the amniotic epithelial cells ( AECs) were isolated from bovine amnion and incubated with various melatonin concentrations (0.01, 0.1, 1, 10, or 100 μm) and 5 × 10(-5) m all-trans retinoic acid (RA) for screening optimum culture medium of neural differentiation, compared with each groups, 1 μm melatonin and 5 × 10(-5) m RA were selected to induce neural differentiation of AECs, and then siMT1, siMT2, oWnt-4, and siWnt-4 were expressed in AECs to research role of these genes in neural differentiation. Efficiency of neural differentiation was evaluated after expressed above genes using flow cytometry. Cell function of neural cells was demonstrated in vivo using spinal cord injury model after cell transplantation, and damage repair of spinal cord was assessed using cell tracking and Basso, Beattie, Bresnahan Locomotor Rating Scale scores. Results demonstrated that melatonin stimulated melatonin receptor 1, which subsequently increased bovine amniotic epithelial cell vitality and promoted differentiation into neural cells. This took place through cooperation with Wnt-4. Additionally, following cotreatment with melatonin and Wnt-4, neurogenesis gene expression was significantly altered. Furthermore, single inhibition of melatonin receptor 1 or Wnt-4 expression decreased expression of neurogenesis-related genes, and bovine amniotic epithelial cell-derived neural cells were successfully colonized into injured spinal cord, which suggested participation in tissue repair.

  5. Microcystin-LR promotes epithelial-mesenchymal transition in colorectal cancer cells through PI3-K/AKT and SMAD2.

    Science.gov (United States)

    Ren, Yan; Yang, Mengli; Chen, Meng; Zhu, Qiangqiang; Zhou, Lihua; Qin, Wei; Wang, Ting

    2017-01-04

    Increasing evidences suggest that microcystins, a kind of toxic metabolites, produced by cyanobacteria in contaminated water may contribute to the aggravation of the human colorectal carcinoma. Our previous study showed that microcystin-LR (MC-LR) exposure caused significant invasion and migration of colorectal cancer cells. However, the roles of MC-LR in regulating epithelial-mesenchymal transition (EMT) in colorectal cancer cells remain unknown. In our study, we observed that MC-LR treatment decreased epithelial marker E-cadherin expression and up-regulated the levels of mesenchymal markers Vimentin and Snail in colorectal cancer cells. Moreover, MC-LR stimulated protein expression of SMAD2 and phospho-SMAD2 by PI3-K/AKT activation. The activated PI3-K/AKT and SMAD2 signaling largely accounted for MC-LR-induced EMT, which could be reversed by SMAD2 RNA interference or PI3-K/AKT chemical inhibitor in colorectal cancer cells. Our results show that MC-LR could induce SMAD2 expression to promote colorectal cancer cells EMT, which not only provides a mechanistic insight on MC-LR promotes EMT in colorectal cancer cells, but also support to the development of therapies aimed at SMAD2 in colorectal cancer induced by MC-LR. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  6. Suberoylanilide hydroxamic acid (SAHA) promotes the epithelial mesenchymal transition of triple negative breast cancer cells via HDAC8/FOXA1 signals.

    Science.gov (United States)

    Wu, Shao; Luo, Zhi; Yu, Peng-Jiu; Xie, Hui; He, Yu-Wen

    2016-01-01

    Inhibitor of histone deacetylases (HDACIs) have great therapeutic value for triple negative breast cancer (TNBC) patients. Interestingly, our present study reveals that suberoyl anilide hydroxamic acid (SAHA), one of the most advanced pan-HDAC inhibitor, can obviously promote in vitro motility of MDA-MB-231 and BT-549 cells via induction of epithelial-mesenchymal transition (EMT). SAHA treatment significantly down-regulates the expression of epithelial markers E-cadherin (E-Cad) while up-regulates the mesenchymal markers N-cadherin (N-Cad), vimentin (Vim) and fibronectin (FN). However, SAHA has no effect on the expression and nuclear translocation of EMT related transcription factors including Snail, Slug, Twist and ZEB. While SAHA treatment down-regulates the protein and mRNA expression of FOXA1 and then decreases its nuclear translocation. Over-expression of FOXA1 markedly attenuates SAHA induced EMT of TNBC cells. Further, silence of HDAC8, while not HDAC6, alleviates the down-regulation of FOXA1 and up-regulation of N-Cad and Vim in MDA-MB-231 cells treated with SAHA. Collectively, our present study reveals that SAHA can promote EMT of TNBC cells via HDAC8/FOXA1 signals, which suggests that more attention should be paid when SAHA is used as anti-cancer agent for cancer treatment.

  7. Cyr61 promotes epithelial-mesenchymal transition and tumor metastasis of osteosarcoma by Raf-1/MEK/ERK/Elk-1/TWIST-1 signaling pathway.

    Science.gov (United States)

    Hou, Chun-Han; Lin, Feng-Ling; Hou, Sheng-Mon; Liu, Ju-Fang

    2014-10-19

    Osteosarcoma is the most common primary malignant tumor in children and young adults, and its treatment requires effective therapeutic approaches because of a high mortality rate for lung metastasis. Epithelial to mesenchymal transition (EMT) has received considerable attention as a conceptual paradigm for explaining the invasive and metastatic behavior during cancer progression. The cysteine-rich angiogenic inducer 61 (Cyr61) gene, a member of the CCN gene family, is responsible for the secretion of Cyr61, a matrix-associated protein that is involved in several cellular functions. A previous study showed that Cyr61 expression is related to osteosarcoma progression. In addition, Cyr61 could promote cell migration and metastasis in osteosarcoma. However, discussions on the molecular mechanism involved in Cyr61-regulated metastasis in osteosarcoma is poorly discussed. We determined that the expression level of Cyr61 induced cell migration ability in osteosarcoma cells. The Cyr61 protein promoted the mesenchymal transition of osteosarcoma cells by upregulating mesenchymal markers (TWIST-1 and N-cadherin) and inhibiting the epithelial marker (E-cadherin). Moreover, the Cyr61-induced cell migration was mediated by EMT. The Cyr61 protein elicited a signaling cascade that included αvβ5 integrin, Raf-1, mitogen-activated protein kinase (MEK), extracellular signal-regulated kinase (ERK), and Elk-1. The reagent or gene knockdown of these signaling proteins could inhibit Cyr61-promoted EMT in osteosarcoma. Finally, the knockdown of Cyr61 expression obviously inhibited cell migration and repressed mesenchymal phenotypes, reducing lung metastasis. Our results indicate that Cyr61 promotes the EMT of osteosarcoma cells by regulating EMT markers via a signal transduction pathway that involves αvβ5 integrin, Raf-1, MEK, ERK, and Elk-1.

  8. Potential impact of (rs 4645878) BAX promoter -248G>A and (rs 1042522) TP53 72Arg>pro polymorphisms on epithelial ovarian cancer patients.

    Science.gov (United States)

    Dholariya, S; Mir, R; Zuberi, M; Yadav, P; Gandhi, G; Khurana, N; Saxena, A; Ray, P C

    2016-01-01

    In India, Epithelial ovarian cancer has emerged as one of the most common malignancies affecting women. Tumor protein 53 (TP53) induces expression of the B cell lymphoma 2-associated X protein (BAX) gene by directly binding to the TP53-binding element in the BAX promoter. Therefore, we hypothesized that single-nucleotide polymorphism of BAX promoter -248G>A and TP53 72Arg>Pro gene may jointly contribute to ovarian cancer risk. This study aimed at exploring the association of BAX promoter -248G>A and TP53 72Arg>Pro gene polymorphism with risk of developing EOC and its clinicopathological features and to evaluate gene-gene interaction of these two polymorphisms with risk of developing EOC. The study was conducted on 70 Epithelial ovarian cancer patients and 70 healthy controls. Genotyping of p53 codon 72 and BAX promoter gene was examined by ASO-PCR and PICA-PCR, respectively. Odds ratios and 95 % confidence intervals were calculated. We found an increased cancer risk associated with the BAX AA (ORs = 4.1, 95 %, CI = 1.23-13.97) genotype. An increased risk was also associated with the TP53 Pro/Pro (OR = 4.4, 95 % CI = 1.40-13.99) and Arg/Pro genotype (OR = 2.3, 95 % CI = 1.13-4.86). The gene-gene interaction of these polymorphisms increased EOC risk in a more than additive manner (ORs for the presence of both BAX AA and TP53 Arg/Pro genotypes = 8.7, 95 % CI = 1.66-45.48). BAX GG genotype was associated with adverse staging of cancer (P = 0.01). The findings suggest that polymorphism of BAX and TP53 genes may be potential genetic modifiers for developing ovarian cancer.

  9. SIRT1 promotes epithelial-mesenchymal transition and metastasis in colorectal cancer by regulating Fra-1 expression.

    Science.gov (United States)

    Cheng, Feifei; Su, Li; Yao, Chao; Liu, Limei; Shen, Junjie; Liu, Chungang; Chen, Xuejiao; Luo, Yongli; Jiang, Lupin; Shan, Juanjuan; Chen, Jun; Zhu, Wei; Shao, Jimin; Qian, Cheng

    2016-06-01

    Understanding molecular mechanisms of colorectal cancer (CRC) metastasis is urgently required for targeted therapy and prognosis of metastatic CRC. In this study, we explored potential effects of silent mating type information regulation 2 homolog 1 (SIRT1) on CRC metastasis. Our data showed that ectopic expression of SIRT1 markedly increased the migration and invasion of CRC cells. In contrast, silencing SIRT1 repressed this behavior in aggressive CRC cells. Tumor xenograft experiments revealed that knockdown of SIRT1 impaired CRC metastasis in vivo. Silencing SIRT1 in CRC cells induced mesenchymal-epithelial transition (MET), which is the reverse process of epithelial-mesenchymal transition (EMT) and characterized by a gain of epithelial and loss of mesenchymal markers. We provided a mechanistic insight toward regulation of Fra-1 by SIRT1 and demonstrated a direct link between the SIRT1-Fra-1 axis and EMT. Moreover, SIRT1 expression correlated positively with Fra-1 expression, metastasis and overall survival in patients with CRC. Taken together, our data provide a novel mechanistic role of SIRT1 in CRC metastasis, suggesting that SIRT1 may serve as a potential therapeutic target for metastatic CRC.

  10. Type IV pili in Francisella – A virulence trait in an intracellular pathogen

    Directory of Open Access Journals (Sweden)

    Emelie eNäslund Salomonsson

    2011-02-01

    Full Text Available Francisella tularensis is a highly virulent intracellular human pathogen that is capable of rapid proliferation in the infected host. Mutants affected in intracellular survival and growth are highly attenuated which highlights the importance of the intracellular phase of the infection. Genomic analysis has revealed that Francisella encodes all genes required for expression of functional type IV pili (Tfp, and in this focused review we summarise recent findings regarding this system in the pathogenesis of tularemia. Tfp are dynamic adhesive structures that have been identified as major virulence determinants in several human pathogens, but it is not obvious what role these structures could have in an intracellular pathogen like Francisella. In the human pathogenic strains, genes required for secretion and assembly of Tfp and one pilin, PilA, have shown to be required for full virulence. Importantly, specific genetic differences have been identified between the different Francisella subspecies where in the most pathogenic type A variants all genes are intact while several Tfp genes are pseudogenes in the less pathogenic type B strains. This suggests that there has been a selection for expression of Tfp with different properties in the different subspecies. There is also a possibility that the genetic differences reflect adaption to different environmental niches of the subspecies and plays a role in transmission of tularemia. This is also in line with recent findings where Tfp pilins are found to be glycosylated which could reflect a role for Tfp in the environment to promote survival and transmission. We are still far from understanding the role of Tfp in virulence and transmission of tularemia, but with the genomic information and genetic tools available we are in a good position to address these issues in the future.

  11. Pseudomonas aeruginosa Pore-Forming Exolysin and Type IV Pili Cooperate To Induce Host Cell Lysis

    Science.gov (United States)

    Basso, Pauline; Ragno, Michel; Elsen, Sylvie; Reboud, Emeline; Golovkine, Guillaume; Bouillot, Stephanie; Huber, Philippe; Lory, Stephen; Faudry, Eric

    2017-01-01

    ABSTRACT   Clinical strains of Pseudomonas aeruginosa lacking the type III secretion system genes employ a toxin, exolysin (ExlA), for host cell membrane disruption. Here, we demonstrated that ExlA export requires a predicted outer membrane protein, ExlB, showing that ExlA and ExlB define a new active two-partner secretion (TPS) system of P. aeruginosa. In addition to the TPS signals, ExlA harbors several distinct domains, which include one hemagglutinin domain, five arginine-glycine-aspartic acid (RGD) motifs, and a C-terminal region lacking any identifiable sequence motifs. However, this C-terminal region is important for the toxic activity, since its deletion abolishes host cell lysis. Using lipid vesicles and eukaryotic cells, including red blood cells, we demonstrated that ExlA has a pore-forming activity which precedes cell membrane disruption of nucleated cells. Finally, we developed a high-throughput cell-based live-dead assay and used it to screen a transposon mutant library of an ExlA-producing P. aeruginosa clinical strain for bacterial factors required for ExlA-mediated toxicity. The screen resulted in the identification of proteins involved in the formation of type IV pili as being required for ExlA to exert its cytotoxic activity by promoting close contact between bacteria and the host cell. These findings represent the first example of cooperation between a pore-forming toxin of the TPS family and surface appendages in host cell intoxication. PMID:28119472

  12. Fisetin inhibits human melanoma cell invasion through promotion of mesenchymal to epithelial transition and by targeting MAPK and NFκB signaling pathways.

    Directory of Open Access Journals (Sweden)

    Harish Chandra Pal

    Full Text Available Malignant melanoma is responsible for approximately 75% of skin cancer-related deaths. BRAF plays an important role in regulating the mitogen-activated protein kinase (MAPK signaling cascade in melanoma with activating mutations in the serine/threonine kinase BRAF occurring in 60-70% of malignant melanomas. The BRAF-MEK-ERK (MAPK pathway is a key regulator of melanoma cell invasion. In addition, activation of NFκB via the MAPK pathway is regulated through MEK-induced activation of IKK. These pathways are potential targets for prevention and treatment of melanoma. In this study, we investigated the effect of fisetin, a phytochemical present in fruits and vegetables, on melanoma cell invasion and epithelial-mesenchymal transition, and delineated the underlying molecular mechanism. Treatment of multiple human malignant melanoma cell lines with fisetin (5-20 µM resulted in inhibition of cell invasion. BRAF mutated melanoma cells were more sensitive to fisetin treatment, and this was associated with a decrease in the phosphorylation of MEK1/2 and ERK1/2. In addition, fisetin inhibited the activation of IKK leading to a reduction in the activation of the NFκB signaling pathway. Treatment of cells with an inhibitor of MEK1/2 (PD98059 or of NFκB (caffeic acid phenethyl ester also reduced melanoma cell invasion. Furthermore, treatment of fisetin promoted mesenchymal to epithelial transition in melanoma cells, which was associated with a decrease in mesenchymal markers (N-cadherin, vimentin, snail and fibronectin and an increase in epithelial markers (E-cadherin and desmoglein. Employing three dimensional skin equivalents consisting of A375 cells admixed with normal human keratinocytes embedded onto a collagen-constricted fibroblast matrix, we found that treatment of fisetin reduced the invasive potential of melanoma cells into the dermis and increased the expression of E-cadherin with a concomitant decrease in vimentin. These results indicate that

  13. Fisetin inhibits human melanoma cell invasion through promotion of mesenchymal to epithelial transition and by targeting MAPK and NFκB signaling pathways.

    Science.gov (United States)

    Pal, Harish Chandra; Sharma, Samriti; Strickland, Leah Ray; Katiyar, Santosh K; Ballestas, Mary E; Athar, Mohammad; Elmets, Craig A; Afaq, Farrukh

    2014-01-01

    Malignant melanoma is responsible for approximately 75% of skin cancer-related deaths. BRAF plays an important role in regulating the mitogen-activated protein kinase (MAPK) signaling cascade in melanoma with activating mutations in the serine/threonine kinase BRAF occurring in 60-70% of malignant melanomas. The BRAF-MEK-ERK (MAPK) pathway is a key regulator of melanoma cell invasion. In addition, activation of NFκB via the MAPK pathway is regulated through MEK-induced activation of IKK. These pathways are potential targets for prevention and treatment of melanoma. In this study, we investigated the effect of fisetin, a phytochemical present in fruits and vegetables, on melanoma cell invasion and epithelial-mesenchymal transition, and delineated the underlying molecular mechanism. Treatment of multiple human malignant melanoma cell lines with fisetin (5-20 µM) resulted in inhibition of cell invasion. BRAF mutated melanoma cells were more sensitive to fisetin treatment, and this was associated with a decrease in the phosphorylation of MEK1/2 and ERK1/2. In addition, fisetin inhibited the activation of IKK leading to a reduction in the activation of the NFκB signaling pathway. Treatment of cells with an inhibitor of MEK1/2 (PD98059) or of NFκB (caffeic acid phenethyl ester) also reduced melanoma cell invasion. Furthermore, treatment of fisetin promoted mesenchymal to epithelial transition in melanoma cells, which was associated with a decrease in mesenchymal markers (N-cadherin, vimentin, snail and fibronectin) and an increase in epithelial markers (E-cadherin and desmoglein). Employing three dimensional skin equivalents consisting of A375 cells admixed with normal human keratinocytes embedded onto a collagen-constricted fibroblast matrix, we found that treatment of fisetin reduced the invasive potential of melanoma cells into the dermis and increased the expression of E-cadherin with a concomitant decrease in vimentin. These results indicate that fisetin

  14. Down-regulation of Transducin-Like Enhancer of Split protein 4 in hepatocellular carcinoma promotes cell proliferation and epithelial-Mesenchymal-Transition

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Xiao-cai; Xiao, Cui-cui; Li, Hua [Department of Hepatic Surgery, 3rd Affiliated Hospital of Sun Yat-sen University, Guangzhou (China); Guangdong Provincial Key Laboratory of Liver Disease Research, Guangzhou (China); Tai, Yan; Zhang, Qi [Guangdong Provincial Key Laboratory of Liver Disease Research, Guangzhou (China); Yang, Yang, E-mail: yysysu2@163.com [Department of Hepatic Surgery, 3rd Affiliated Hospital of Sun Yat-sen University, Guangzhou (China)

    2016-08-19

    Background: Transducin-Like Enhancer of Split protein 4 (TLE4) has been reported to be involved in some subsets of acute myeloid leukemia and colorectal cancer. In the present study, we aimed to explore the role of TLE4 in tumorigenesis and cancer progression in hepatocellular carcinoma (HCC). Methods: The expression pattern of TLE4 in HCC was determined by Western-blot and qRT-PCR, gain-of-function and loss-of-function was used to explore the biological role of TLE4 in HCC cells. A xenograft model was established to confirm its effects on proliferation. Results: The protein expression levels of TLE4 were significantly down-regulated in HCC tissues compared to matched adjacent normal liver tissues. In vitro, down-regulation of TLE4 in Huh7 or SMMC-7721 promoted cell proliferation and ectopical expression of TLE4 in Hep3B or Bel-7404 suppressed cell proliferation. In addition, the cell colony formation ability was enhanced after down-regulation of TLE4 expression in Huh-7 but suppressed after over-expression in Hep3B. Furthermore, down-regulation of TLE4 increased the cell invasion ability, as well as increased the expression level of Vimentin and decreased that of E-cadherin, indicating a phenotype of epithelial-mesenchymal transition (EMT) in HCC cells. On the contrary, ectopical expression of TLE4 in HCC cells decreased the cell invasion ability and inhibited EMT. In vivo, compared to control group, xenograft tumor volumes were significantly decreased in TLE4 overexpression group. Conclusions: These results demonstrated that TLE4 might play important regulatory roles in cellular proliferation and EMT process in HCC. - Highlights: • TLE4 is significantly down-regulated in HCC samples. • Down regulated of TLE4 in HCC cells promotes cell proliferation. • Down regulated of TLE4 in HCC cells promotes epithelial-to-mesenchymal transition.

  15. Multiple roles of Pseudomonas aeruginosa TBCF10839 PilY1 in motility, transport and infection

    DEFF Research Database (Denmark)

    Bohn, Yu-Sing Tammy; Brandes, Gudrun; Rakhimova, Elza

    2009-01-01

    Polymorphonuclear neutrophils are the most important mammalian host defence cells against infections with Pseudomonas aeruginosa. Screening of a signature tagged mutagenesis library of the non-piliated P. aeruginosa strain TBCF10839 uncovered that transposon inactivation of its pilY1 gene rendere...

  16. Complete Genome Sequence of Pseudomonas aeruginosa Podophage MPK7, Which Requires Type IV Pili for Infection.

    Science.gov (United States)

    Bae, Hee-Won; Cho, You-Hee

    2013-10-10

    We report the complete genome sequence of Pseudomonas aeruginosa podophage MPK7. It displays synteny to the P. aeruginosa phages of the Phikmvlikevirus genus, which includes phiKMV and LKA1. MPK7 requires type IV pili (TFP) for infection, suggesting the role of functional TFP as the receptor for this phage genus.

  17. Force measuring optical tweezers system for long time measurements of P pili stability

    Science.gov (United States)

    Andersson, Magnus; Fällman, Erik; Uhlin, Bernt Eric; Axner, Ove

    2006-02-01

    A force-measuring optical tweezers instrumentation and long time measurements of the elongation and retraction of bacterial fimbriae from Uropathogenic E. coli (UPEC) under strain are presented. The instrumentation is presented in some detail. Special emphasis is given to measures taken to reduce the influence of noise and drifts in the system and from the surrounding, which makes long term force measurements possible. Individual P pili from UPEC bacteria were used as a biological model system for repetitive unfolding and refolding cycles of bacterial fimbriae under equilibrium conditions. P pili have evolved into a three-dimensional helix-like structure, the PapA rod, that can be successively and significantly elongated and/or unfolded when exposed to external forces. The instrumentation is used for characterization of the force-vs.-elongation response of the PapA rod of individual P pili, with emphasis on the long time stability of the forced unfolding and refolding of the helical structure of the PapA rod. The results show that the PapA rod is capable of withstanding extensive strain, leading to a complete unfolding of the helical structure, repetitive times during the life cycle of a bacterium without any noticeable alteration of the mechanical properties of the P pili. This function is believed to be importance for UPEC bacteria in vivo since it provides a close contact to a host cell (which is an initial step of invasion) despite urine cleaning attempts.

  18. UV-inducible cellular aggregation of the hyperthermophilic archaeon Sulfolobus solfataricus is mediated by pili formation

    NARCIS (Netherlands)

    Froels, Sabrina; Ajon, Malgorzata; Wagner, Michaela; Teichmann, Daniela; Zolghadr, Behnam; Folea, Mihaela; Boekema, Egbert J.; Driessen, Arnold J. M.; Schleper, Christa; Albers, Sonja-Verena

    2008-01-01

    The hyperthermophilic archaeon Sulfolobus solfataricus has been shown to exhibit a complex transcriptional response to UV irradiation involving 55 genes. Among the strongest UV-induced genes was a putative pili biogenesis operon encoding a potential secretion ATPase, two pre-pilins, a putative trans

  19. Inactivation of TGFβ receptor II signalling in pancreatic epithelial cells promotes acinar cell proliferation, acinar-to-ductal metaplasia and fibrosis during pancreatitis.

    Science.gov (United States)

    Grabliauskaite, Kamile; Saponara, Enrica; Reding, Theresia; Bombardo, Marta; Seleznik, Gitta M; Malagola, Ermanno; Zabel, Anja; Faso, Carmen; Sonda, Sabrina; Graf, Rolf

    2016-02-01

    Determining signalling pathways that regulate pancreatic regeneration following pancreatitis is critical for implementing therapeutic interventions. In this study we elucidated the molecular mechanisms underlying the effects of transforming growth factor-β (TGFβ) in pancreatic epithelial cells during tissue regeneration. To this end, we conditionally inactivated TGFβ receptor II (TGFβ-RII) using a Cre-LoxP system under the control of pancreas transcription factor 1a (PTF1a) promoter, specific for the pancreatic epithelium, and evaluated the molecular and cellular changes in a mouse model of cerulein-induced pancreatitis. We show that TGFβ-RII signalling does not mediate the initial acinar cell damage observed at the onset of pancreatitis. However, TGFβ-RII signalling not only restricts acinar cell replication during the regenerative phase of the disease but also limits ADM formation in vivo and in vitro in a cell-autonomous manner. Analyses of molecular mechanisms underlying the observed phenotype revealed that TGFβ-RII signalling stimulates the expression of cyclin-dependent kinase inhibitors and intersects with the EGFR signalling axis. Finally, TGFβ-RII ablation in epithelial cells resulted in increased infiltration of inflammatory cells in the early phases of pancreatitis and increased activation of pancreatic stellate cells in the later stages of pancreatitis, thus highlighting a TGFβ-based crosstalk between epithelial and stromal cells regulating the development of pancreatic inflammation and fibrosis. Collectively, our data not only contribute to clarifying the cellular processes governing pancreatic tissue regeneration, but also emphasize the conserved role of TGFβ as a tumour suppressor, both in the regenerative process following pancreatitis and in the initial phases of pancreatic cancer.

  20. Inositol-requiring protein 1 - X-box-binding protein 1 pathway promotes epithelial-mesenchymal transition via mediating snail expression in pulmonary fibrosis.

    Science.gov (United States)

    Mo, Xiao-Ting; Zhou, Wen-Cheng; Cui, Wen-Hui; Li, De-Lin; Li, Liu-Cheng; Xu, Liang; Zhao, Ping; Gao, Jian

    2015-08-01

    Epithelial-mesenchymal transition (EMT) is a complex biological program during which cells loss epithelial phenotype and acquire mesenchymal features. EMT is thought to be involved in the pathogenesis of various fibrotic diseases including pulmonary fibrosis (PF). Recent studies suggest that endoplasmic reticulum (ER) stress is associated with EMT in the progression of PF. However, the exact mechanism is unclear. Here, we developed a PF model with bleomycin (BLM) administration in rats and conducted several simulation experiments in alveolar epithelial cell (AECs) RLE-6TN to unravel the role of inositol-requiring protein 1 (IRE1) - X-box-binding protein 1 (XBP1) signal pathway in ER stress-induced EMT in PF. First, we observed that ER stress was occurred in type II AECs accompanied by EMT in BLM-induced PF. Then we explored the role of IRE1-XBP1-snail pathway in transforming growth factor (TGF)-β1/tunicamycin (TM)-induced EMT. When TGF-β1/TM was treated on AECs, IRE1 and XBP1 were overexpressed, meanwhile, snail expression was upregulated accompanied with EMT. However, when IRE1 or XBP1 was knockdown, TGF-β1/TM-induced EMT were blocked while the expression of snail was inhibited. Then we silenced snail and found that TGF-β1/TM-induced EMT were also suppressed, but it had no effect on the up-regulated expression of IRE1 and XBP1. Thus, we concluded that IRE1-XBP1 pathway promotes EMT via mediating snail expression in PF. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Loss of the Drosophila cell polarity regulator Scribbled promotes epithelial tissue overgrowth and cooperation with oncogenic Ras-Raf through impaired Hippo pathway signaling

    Directory of Open Access Journals (Sweden)

    Grusche Felix A

    2011-09-01

    Full Text Available Abstract Background Epithelial neoplasias are associated with alterations in cell polarity and excessive cell proliferation, yet how these neoplastic properties are related to one another is still poorly understood. The study of Drosophila genes that function as neoplastic tumor suppressors by regulating both of these properties has significant potential to clarify this relationship. Results Here we show in Drosophila that loss of Scribbled (Scrib, a cell polarity regulator and neoplastic tumor suppressor, results in impaired Hippo pathway signaling in the epithelial tissues of both the eye and wing imaginal disc. scrib mutant tissue overgrowth, but not the loss of cell polarity, is dependent upon defective Hippo signaling and can be rescued by knockdown of either the TEAD/TEF family transcription factor Scalloped or the transcriptional coactivator Yorkie in the eye disc, or reducing levels of Yorkie in the wing disc. Furthermore, loss of Scrib sensitizes tissue to transformation by oncogenic Ras-Raf signaling, and Yorkie-Scalloped activity is required to promote this cooperative tumor overgrowth. The inhibition of Hippo signaling in scrib mutant eye disc clones is not dependent upon JNK activity, but can be significantly rescued by reducing aPKC kinase activity, and ectopic aPKC activity is sufficient to impair Hippo signaling in the eye disc, even when JNK signaling is blocked. In contrast, warts mutant overgrowth does not require aPKC activity. Moreover, reducing endogenous levels of aPKC or increasing Scrib or Lethal giant larvae levels does not promote increased Hippo signaling, suggesting that aPKC activity is not normally rate limiting for Hippo pathway activity. Epistasis experiments suggest that Hippo pathway inhibition in scrib mutants occurs, at least in part, downstream or in parallel to both the Expanded and Fat arms of Hippo pathway regulation. Conclusions Loss of Scrib promotes Yorkie/Scalloped-dependent epithelial tissue

  2. The 18-kDa translocator protein (TSPO disrupts mammary epithelial morphogenesis and promotes breast cancer cell migration.

    Directory of Open Access Journals (Sweden)

    Xiaoting Wu

    Full Text Available Mitochondria play important roles in cancer progression and have emerged as viable targets for cancer therapy. Increasing levels of the outer mitochondrial membrane protein, 18-kDa translocator protein (TSPO, are associated with advancing breast cancer stage. In particular, higher TSPO levels are found in estrogen receptor (ER-negative breast tumors, compared with ER-positive tumors. In this study, we sought to define the roles of TSPO in the acquisition of breast cancer malignancy. Using a three-dimensional Matrigel culture system, we determined the impact of elevated TSPO levels on mammary epithelial morphogenesis. Our studies demonstrate that stable overexpression of TSPO in mammary epithelial MCF10A acini drives proliferation and provides partial resistance to luminal apoptosis, resulting in enlarged acinar structures with partially filled lumen that resemble early stage breast lesions leading to breast cancer. In breast cancer cell lines, TSPO silencing or TSPO overexpression significantly altered the migratory activity. In addition, we found that combination treatment with the TSPO ligands (PK 11195 or Ro5-4864 and lonidamine, a clinical phase II drug targeting mitochondria, decreased viability of ER-negative breast cancer cell lines. Taken together, these data demonstrate that increases in TSPO levels at different stages of breast cancer progression results in the acquisition of distinct properties associated with malignancy. Furthermore, targeting TSPO, particularly in combination with other mitochondria-targeting agents, may prove useful for the treatment of ER-negative breast cancer.

  3. The 18-kDa translocator protein (TSPO) disrupts mammary epithelial morphogenesis and promotes breast cancer cell migration.

    Science.gov (United States)

    Wu, Xiaoting; Gallo, Kathleen A

    2013-01-01

    Mitochondria play important roles in cancer progression and have emerged as viable targets for cancer therapy. Increasing levels of the outer mitochondrial membrane protein, 18-kDa translocator protein (TSPO), are associated with advancing breast cancer stage. In particular, higher TSPO levels are found in estrogen receptor (ER)-negative breast tumors, compared with ER-positive tumors. In this study, we sought to define the roles of TSPO in the acquisition of breast cancer malignancy. Using a three-dimensional Matrigel culture system, we determined the impact of elevated TSPO levels on mammary epithelial morphogenesis. Our studies demonstrate that stable overexpression of TSPO in mammary epithelial MCF10A acini drives proliferation and provides partial resistance to luminal apoptosis, resulting in enlarged acinar structures with partially filled lumen that resemble early stage breast lesions leading to breast cancer. In breast cancer cell lines, TSPO silencing or TSPO overexpression significantly altered the migratory activity. In addition, we found that combination treatment with the TSPO ligands (PK 11195 or Ro5-4864) and lonidamine, a clinical phase II drug targeting mitochondria, decreased viability of ER-negative breast cancer cell lines. Taken together, these data demonstrate that increases in TSPO levels at different stages of breast cancer progression results in the acquisition of distinct properties associated with malignancy. Furthermore, targeting TSPO, particularly in combination with other mitochondria-targeting agents, may prove useful for the treatment of ER-negative breast cancer.

  4. Chondroitin sulfate proteoglycan protein is stimulated by interleukin 11 and promotes endometrial epithelial cancer cell proliferation and migration.

    Science.gov (United States)

    Winship, Amy; Van Sinderen, Michelle; Heffernan-Marks, Ariella; Dimitriadis, Eva

    2017-03-01

    Endometrial cancer is the most common gynecological cancer. We identified interleukin 11 (IL11) as a critical mediator of endometrial tumourigenesis and demonstrated that IL11 regulates chondroitin sulfate proteoglycan (CSPG4) in human placental trophoblasts. CSPG4 is a cell membrane protein overexpressed in numerous human cancers, although its role in endometrial cancer has not been investigated. We examined CSPG4 expression and localization in primary human type I endometrioid grade (G) 1-3 tumours by qPCR and immunohistochemistry and determined whether IL11 stimulated CSPG4. IL11 upregulated CSPG4 mRNA in HEC1A (G2-derived endometrial epithelial cancer cell line) cells. IL11 administration to BALB/c nude mice enhanced HEC1A xenograft tumour growth and increased CSPG4 protein in tumours. CSPG4 mRNA was unchanged between human G1-3 endometrial cancer and control tissues. CSPG4 protein levels were elevated in the epithelium of G2 and G3 endometrial cancer and in the tumour-associated stroma of G3 tumour tissues compared to proliferative phase or post-menopausal endometrium. CSPG4 knockdown by siRNA reduced HEC1A proliferation and migration in vitro and reduced gene expression of the key epithelial-to-mesenchymal transition (EMT) regulator SNAIL. Our data suggest that CSPG4 inhibition may impair endometrial cancer progression by reducing cancer cell proliferation, migration and potentially EMT.

  5. YB-1 expression promotes epithelial-to-mesenchymal transition in prostate cancer that is inhibited by a small molecule fisetin

    Science.gov (United States)

    Khan, Mohammad Imran; Adhami, Vaqar Mustafa; Lall, Rahul Kumar; Sechi, Mario; Joshi, Dinesh C.; Haidar, Omar M.; Syed, Deeba Nadeem; Siddiqui, Imtiaz Ahmad; Chiu, Shing-Yan; Mukhtar, Hasan

    2014-01-01

    Epithelial-to-mesenchymal transition (EMT) plays an important role in prostate cancer (PCa) metastasis. The transcription/translation regulatory Y-box binding protein-1 (YB-1) is known to be associated with cancer metastasis. We observed that YB-1 expression increased with tumor grade and showed an inverse relationship with E-cadherin in a human PCa tissue array. Forced YB-1 expression induced a mesenchymal morphology that was associated with down regulation of epithelial markers. Silencing of YB-1 reversed mesenchymal features and decreased cell proliferation, migration and invasion in PCa cells. YB-1 is activated directly via Akt mediated phosphorylation at Ser102 within the cold shock domain (CSD). We next identified fisetin as an inhibitor of YB-1 activation. Computational docking and molecular dynamics suggested that fisetin binds on the residues from β1 - β4 strands of CSD, hindering Akt's interaction with YB-1. Calculated free binding energy ranged from −11.9845 to −9.6273 kcal/mol. Plasmon Surface Resonance studies showed that fisetin binds to YB-1 with an affinity of approximately 35 μM, with both slow association and dissociation. Fisetin also inhibited EGF induced YB-1 phosphorylation and markers of EMT both in vitro and in vivo. Collectively our data suggest that YB-1 induces EMT in PCa and identify fisetin as an inhibitor of its activation. PMID:24770864

  6. Ionizing Radiation Promotes Migration and Invasion of Cancer Cells Through Transforming Growth Factor-Beta-Mediated Epithelial-Mesenchymal Transition

    Energy Technology Data Exchange (ETDEWEB)

    Zhou Yongchun [Department of Radiation Oncology, Xijing Hospital Fourth Military Medical University, Xi' an (China); Department of Radiation Medicine, College of Preventive Medicine, Xijing Hospital Fourth Military Medical University, Xi' an (China); Liu Junye; Li Jing; Zhang Jie [Department of Radiation Medicine, College of Preventive Medicine, Xijing Hospital Fourth Military Medical University, Xi' an (China); Xu Yuqiao [Department of Pathology, Xijing Hospital Fourth Military Medical University, Xi' an (China); Zhang Huawei; Qiu Lianbo; Ding Guirong [Department of Radiation Medicine, College of Preventive Medicine, Xijing Hospital Fourth Military Medical University, Xi' an (China); Su Xiaoming [Department of Radiation Oncology, 306th Hospital of PLA, Beijing (China); Mei Shi [Department of Radiation Oncology, Xijing Hospital Fourth Military Medical University, Xi' an (China); Guo Guozhen, E-mail: guozhenguo@hotmail.com [Department of Radiation Medicine, College of Preventive Medicine, Xijing Hospital Fourth Military Medical University, Xi' an (China)

    2011-12-01

    Purpose: To examine whether ionizing radiation enhances the migratory and invasive abilities of cancer cells through transforming growth factor (TGF-{beta})-mediated epithelial-mesenchymal transition (EMT). Methods and Materials: Six cancer cell lines originating from different human organs were irradiated by {sup 60}Co {gamma}-ray at a total dose of 2 Gy, and the changes associated with EMT, including morphology, EMT markers, migration and invasion, were observed by microscope, Western blot, immunofluorescence, scratch assay, and transwell chamber assay, respectively. Then the protein levels of TGF-{beta} in these cancer cells were detected by enzyme-linked immunosorbent assay, and the role of TGF-{beta} signaling pathway in the effect of ionizing radiation on EMT was investigate by using the specific inhibitor SB431542. Results: After irradiation with {gamma}-ray at a total dose of 2 Gy, cancer cells presented the mesenchymal phenotype, and compared with the sham-irradiation group the expression of epithelial markers was decreased and of mesenchymal markers was increased, the migratory and invasive capabilities were strengthened, and the protein levels of TGF-{beta} were enhanced. Furthermore, events associated with EMT induced by IR in A549 could be reversed through inhibition of TGF-{beta} signaling. Conclusions: These results suggest that EMT mediated by TGF-{beta} plays a critical role in IR-induced enhancing of migratory and invasive capabilities in cancer cells.

  7. A Moraxella bovis pili vaccine produced by recombinant DNA technology for the prevention of infectious bovine keratoconjunctivitis.

    Science.gov (United States)

    Lepper, A W; Elleman, T C; Hoyne, P A; Lehrbach, P R; Atwell, J L; Schwartzkoff, C L; Egerton, J R; Tennent, J M

    1993-07-01

    Pili (fimbriae) were prepared from Moraxella bovis strain Dalton 2d (Dal2d) and from a derivative of Pseudomonas aeruginosa K/2PfS that contained a plasmid-borne Dal2d pilin gene and produced pili having serogroup-specific identity to Dal2d. Nine calves were vaccinated with two doses each of 30 micrograms authentic M. bovis Dal2d pili in oil adjuvant and 10 calves were vaccinated with a similar dose of P. aeruginosa-derived Dal2d pili in the same formulation. All 19 calves and 10 non-vaccinated controls were challenged by instillation of 1 x 10(9) virulent M. bovis Dal2d cells into both conjunctival sacs 19 days after the second vaccine dose. The serological response to vaccination and the degree of protection against experimentally induced infectious bovine keratoconjunctivitis (IBK) were assessed. None of the nine calves vaccinated with authentic M. bovis Dal2d pili developed IBK while two of those vaccinated with P. aeruginosa-derived Dal2d pili developed lesions which accounted for a mean group lesion score of 0.3. In contrast, 9 of the 10 non-vaccinated calves developed IBK lesions, the majority of which were progressive, required early treatment and accounted for a mean group lesion score of 1.5. These results demonstrate the potential of a relatively low dose of pili produced by recombinant DNA technology for development of an effective vaccine against IBK.

  8. FGF19 promotes epithelial-mesenchymal transition in hepatocellular carcinoma cells by modulating the GSK3β/β- catenin signaling cascade via FGFR4 activation.

    Science.gov (United States)

    Zhao, Huakan; Lv, Fenglin; Liang, Guizhao; Huang, Xiaobin; Wu, Gang; Zhang, Wenfa; Yu, Le; Shi, Lei; Teng, Yong

    2016-03-22

    Compelling evidence suggests that the epithelial-mesenchymal transition (EMT) correlates with aggressiveness of tumors and poor survival. FGF19 has been shown to be involved in EMT in cholangiocarcinoma and colorectal cancer, however, molecular mechanisms underlying FGF19-induced EMT process in hepatocellular carcinoma (HCC) remain largely unknown. Here, we show the expression of FGF19 is significantly elevated and negatively associated with the expression of E-cadherin in HCC tissues and cell lines. Ectopic FGF19 expression promotes EMT and invasion in epithelial-like HCC cells through repression of E-cadherin expression, whereas FGF19 knockdown enhances E-cadherin expression and hence diminishes EMT traits in mesenchymal-like HCC cells, suggesting FGF19 exerts its tumor progressing functions as an EMT inducer. Interestingly, depletion of FGF19 cannot abrogate EMT traits in the presence of GSK3β inhibitors. Furthermore, FGF19-induced EMT can be markedly attenuated when FGFR4 is knocked out. These observations clearly indicate that FGFR4/GSK3β/β-catenin axis may play a pivotal role in FGF19-induced EMT in HCC cells. As FGF19 and its specific receptor FGFR4 are frequently amplified in HCC cells, selective targeting this signaling node may lend insights into a potential effective therapeutic approach for blocking metastasis of HCC.

  9. Identification of TNF-alpha-Responsive Promoters and Enhancers in the Intestinal Epithelial Cell Model Caco-2

    DEFF Research Database (Denmark)

    Boyd, Mette; Coskun, Mehmet; Lilje, Berit;

    2014-01-01

    promoters. As a case example, we characterize an enhancer regulating the laminin-5 γ2-chain (LAMC2) gene by nuclear factor (NF)-κB binding. This report is the first to present comprehensive TSS and enhancer maps over Caco-2 cells, and highlights many novel inflammation-specific promoters and enhancers....... genome-wide maps of active transcription start sites (TSSs), and active enhancers in Caco-2 cells with or without tumour necrosis factor (TNF)-α stimulation to mimic an inflammatory state. We found 520 promoters that significantly changed their usage level upon TNF-α stimulation; of these, 52...

  10. A mucus adhesion promoting protein, MapA, mediates the adhesion of Lactobacillus reuteri to Caco-2 human intestinal epithelial cells.

    Science.gov (United States)

    Miyoshi, Yukihiro; Okada, Sanae; Uchimura, Tai; Satoh, Eiichi

    2006-07-01

    Lactobacillus reuteri is one of the dominant lactobacilli found in the gastrointestinal tract of various animals. A surface protein of L. reuteri 104R, mucus adhesion promoting protein (MapA), is considered to be an adhesion factor of this strain. We investigated the relation between MapA and adhesion of L. reuteri to human intestinal (Caco-2) cells. Quantitative analysis of the adhesion of L. reuteri strains to Caco-2 cells showed that various L. reuteri strains bind not only to mucus but also to intestinal epithelial cells. In addition, purified MapA bound to Caco-2 cells, and this binding inhibited the adhesion of L. reuteri in a concentration-dependent manner. Based on these observations, the adhesion of L. reuteri appears due to the binding of MapA to receptor-like molecules on Caco-2 cells. Further, far-western analysis indicated the existence of multiple receptor-like molecules in Caco-2 cells.

  11. AURKA promotes cancer metastasis by regulating epithelial-mesenchymal transition and cancer stem cell properties in hepatocellular carcinoma.

    Science.gov (United States)

    Chen, Chenlin; Song, Guangyuan; Xiang, Jue; Zhang, Hongcheng; Zhao, Shaoyun; Zhan, Yinchu

    2017-04-29

    AURKA (aurora kinase A) has been confirmed as an oncogene in cancer development; however, its role and underlying mechanisms in the metastasis of hepatocellular carcinoma (HCC) remain unknown. In this study, We found that AURKA was up-regulated in HCC tissues and correlated with pathological stage and distant metastasis. Further found that AURKA was involved in the cancer metastases after radiation in HCC. While overexpression of AURKA induced epithelial-mesenchymal transition (EMT) and cancer stem cell (CSC) behaviors though PI3K/AKT pathway, silencing AURKA suppressed radiation-enhanced cell invasiveness of HCC. Taken together, our results suggested that AURKA contributed in metastasis of irradiated residul HCC though facilitating EMT and CSC properties, suggesting the potential clinical application of AURKA inhibitors in radiotherapy for patients with HCC.

  12. Melanoma cell-derived exosomes promote epithelial-mesenchymal transition in primary melanocytes through paracrine/autocrine signaling in the tumor microenvironment.

    Science.gov (United States)

    Xiao, Deyi; Barry, Samantha; Kmetz, Daniel; Egger, Michael; Pan, Jianmin; Rai, Shesh N; Qu, Jifu; McMasters, Kelly M; Hao, Hongying

    2016-07-01

    The tumor microenvironment is abundant with exosomes that are secreted by the cancer cells themselves. Exosomes are nanosized, organelle-like membranous structures that are increasingly being recognized as major contributors in the progression of malignant neoplasms. A critical element in melanoma progression is its propensity to metastasize, but little is known about how melanoma cell-derived exosomes modulate the microenvironment to optimize conditions for tumor progression and metastasis. Here, we provide evidence that melanoma cell-derived exosomes promote phenotype switching in primary melanocytes through paracrine/autocrine signaling. We found that the mitogen-activated protein kinase (MAPK) signaling pathway was activated during the exosome-mediated epithelial-to-mesenchymal transition (EMT)-resembling process, which promotes metastasis. Let-7i, an miRNA modulator of EMT, was also involved in this process. We further defined two other miRNA modulators of EMT (miR-191 and let-7a) in serum exosomes for differentiating stage I melanoma patients from non-melanoma subjects. These results provide the first strong molecular evidence that melanoma cell-derived exosomes promote the EMT-resembling process in the tumor microenvironment. Thus, novel strategies targeting EMT and modulating the tumor microenvironment may emerge as important approaches for the treatment of metastatic melanoma. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  13. Candidate Tumor-Suppressor Gene DLEC1 Is Frequently Downregulated by Promoter Hypermethylation and Histone Hypoacetylation in Human Epithelial Ovarian Cancer

    Directory of Open Access Journals (Sweden)

    Joseph Kwong

    2006-04-01

    Full Text Available Suppression of ovarian tumor growth by chromosome 3p was demonstrated in a previous study. Deleted in Lung and Esophageal Cancer 1 (DLEC1 on 3p22.3 is a candidate tumor suppressor in lung, esophageal, and renal cancers. The potential involvement of DLEC1 in epithelial ovarian cancer remains unknown. In the present study, DLEC1 downregulation was found in ovarian cancer cell lines and primary ovarian tumors. Focus-expressed DLEC1 in two ovarian cancer cell lines resulted in 41% to 52% inhibition of colony formation. No chromosomal loss of chromosome 3p22.3 in any ovarian cancer cell line or tissue was found. Promoter hypermethylation of DLEC1 was detected in ovarian cancer cell lines with reduced DLEC1 transcripts, whereas methylation was not detected in normal ovarian epithelium and DLEC1-expressing ovarian cancer cell lines. Treatment with demethylating agent enhanced DLEC1 expression in 90% (9 of 10 of ovarian cancer cell lines. DLEC1 promoter methylation was examined in 13 high-grade ovarian tumor tissues with DLEC1 downregulation, in which 54% of the tumors showed DLEC1 methylation. In addition, 80% of ovarian cancer cell lines significantly upregulated DLEC1 transcripts after histone deacetylase inhibitor treatment. Therefore, our results suggested that DLEC1 suppressed the growth of ovarian cancer cells and that its downregulation was closely associated with promoter hypermethylation and histone hypoacetylation.

  14. FOXM1 promotes reprogramming of glucose metabolism in epithelial ovarian cancer cells via activation of GLUT1 and HK2 transcription.

    Science.gov (United States)

    Wang, Yu; Yun, Yuyu; Wu, Bo; Wen, Li; Wen, Mingling; Yang, Huiling; Zhao, Lisheng; Liu, Wenchao; Huang, Suyun; Wen, Ning; Li, Yu

    2016-07-26

    Cancer cells exhibit the reprogrammed metabolism mainly via aerobic glycolysis, a phenomenon known historically as the Warburg effect; however, the underlying mechanisms remain largely unknown. In this study, we characterized the critical role of transcription factor Forkhead box protein M1 (FOXM1) in aerobic glycolysis of human epithelial ovarian cancer (EOC) and its molecular mechanisms. Our data showed that aberrant expression of FOXM1 significantly contributed to the reprogramming of glucose metabolism in EOC cells. Aerobic glycolysis and cell proliferation were down-regulated in EOC cells when FOXM1 gene expression was suppressed by RNA interference. Moreover, knockdown of FOXM1 in EOC cells significantly reduced glucose transporter 1 (GLUT1) and hexokinase 2 (HK2) expression. FOXM1 bound directly to the GLUT1 and HK2 promoter regions and regulated the promoter activities and the expression of the genes at the transcriptional level. This reveals a novel mechanism by which glucose metabolism is regulated by FOXM1. Importantly, we further demonstrated that the expression levels of FOXM1, GLUT1 and HK2 were significantly increased in human EOC tissues relative to normal ovarian tissues, and that FOXM1 expression was positively correlated with GLUT1 and HK2 expression. Taken together, our results show that FOXM1 promotes reprogramming of glucose metabolism in EOC cells via activation of GLUT1 and HK2 transcription, suggesting that FOXM1 may be an important target in aerobic glycolysis pathway for developing novel anticancer agents.

  15. The co-factor of LIM domains (CLIM/LDB/NLI) maintains basal mammary epithelial stem cells and promotes breast tumorigenesis.

    Science.gov (United States)

    Salmans, Michael L; Yu, Zhengquan; Watanabe, Kazuhide; Cam, Eric; Sun, Peng; Smyth, Padhraic; Dai, Xing; Andersen, Bogi

    2014-07-01

    Mammary gland branching morphogenesis and ductal homeostasis relies on mammary stem cell function for the maintenance of basal and luminal cell compartments. The mechanisms of transcriptional regulation of the basal cell compartment are currently unknown. We explored these mechanisms in the basal cell compartment and identified the Co-factor of LIM domains (CLIM/LDB/NLI) as a transcriptional regulator that maintains these cells. Clims act within the basal cell compartment to promote branching morphogenesis by maintaining the number and proliferative potential of basal mammary epithelial stem cells. Clim2, in a complex with LMO4, supports mammary stem cells by directly targeting the Fgfr2 promoter in basal cells to increase its expression. Strikingly, Clims also coordinate basal-specific transcriptional programs to preserve luminal cell identity. These basal-derived cues inhibit epidermis-like differentiation of the luminal cell compartment and enhance the expression of luminal cell-specific oncogenes ErbB2 and ErbB3. Consistently, basal-expressed Clims promote the initiation and progression of breast cancer in the MMTV-PyMT tumor model, and the Clim-regulated branching morphogenesis gene network is a prognostic indicator of poor breast cancer outcome in humans.

  16. Activation of the Ig Iα1 promoter by the transcription factor Ets-1 triggers Ig Iα1-Cα1 germline transcription in epithelial cancer cells.

    Science.gov (United States)

    Duan, Zhi; Zheng, Hui; Xu, San; Jiang, Yiqun; Liu, Haidan; Li, Ming; Hu, Duosha; Li, Wei; Bode, Ann M; Dong, Zigang; Cao, Ya

    2014-03-01

    Immunoglobulins (Igs) are known to be synthesized and secreted only by B lymphocytes. Class switch recombination (CSR) is a key event that enables B cells to express Igs, and one of the crucial steps for CSR initiation is the germline transcription of Ig genes. Surprisingly, recent studies have demonstrated that the Ig genes are also expressed in some epithelial cancer cells; however, the mechanisms underlying how cancer cells initiate CSR and express Igs are still unknown. In this study, we confirmed that the Ig Iα1 promoter in cancer cell lines was activated by the Ets-1 transcription factor, and the activity of the Ig Iα1 promoter and Ig Iα1-Cα1 germline transcription were attenuated after knockdown of Ets-1 by specific small interfering RNAs (siRNA). Furthermore, the expression of Ets-1 and Igα heavy chain in cancer cells was dose dependently upregulated by TGF-β1. These results indicate that activation of the Ig Iα1 promoter by the transcription factor Ets-1 is a critical pathway and provides a novel mechanism for Ig expression in non-B cell cancers.

  17. CD8+ T cells promote proliferation of benign prostatic hyperplasia epithelial cells under low androgen level via modulation of CCL5/STAT5/CCND1 signaling pathway

    Science.gov (United States)

    Yang, Yang; Hu, Shuai; Liu, Jie; Cui, Yun; Fan, Yu; Lv, Tianjing; Liu, Libo; Li, Jun; He, Qun; Han, Wenke; Yu, Wei; Sun, Yin; Jin, Jie

    2017-01-01

    Previous studies by our group have shown that low intra-prostatic dihydrotestosterone (DHT) induced BPH epithelial cells (BECs) to recruit CD8+ T cells. However, the influence of the recruited CD8+ T cells on BECs under a low androgen level is still unknown. Here, we found CD8+ T cells have the capacity to promote proliferation of BECs in low androgen condition. Mechanism dissection revealed that interaction between CD8+ T cells and BECs through secretion of CCL5 might promote the phosphorylation of STAT5 and a higher expression of CCND1 in BECs. Suppressed CCL5/STAT5 signals via CCL5 neutralizing antibody or STAT5 inhibitor Pimozide led to reverse CD8+ T cell-enhanced BECs proliferation. IHC analysis from Finasteride treated patients showed PCNA expression in BECs was highly correlated to the level of CD8+ T cell infiltration and the expression of CCL5. Consequently, our data indicated infiltrating CD8+ T cells could promote the proliferation of BECs in low androgen condition via modulation of CCL5/STAT5/CCND1 signaling. The increased secretion of CCL5 from the CD8+ T cells/BECs interaction might help BECs survive in a low DHT environment. Targeting these signals may provide a new potential therapeutic approach to better treat BPH patients who failed the therapy of 5α-reductase inhibitors. PMID:28216616

  18. Overexpression of forkhead Box C2 promotes tumor metastasis and indicates poor prognosis in colon cancer via regulating epithelial-mesenchymal transition.

    Science.gov (United States)

    Li, Qingguo; Wu, Jitao; Wei, Ping; Xu, Ye; Zhuo, Changhua; Wang, Yuwei; Li, Dawei; Cai, Sanjun

    2015-01-01

    Forkhead box protein C2 (FOXC2) plays a vital role in carcinogenesis; however, its significance and prognostic value in colon cancer remain unclear. In this study, FOXC2 expression was analyzed in a tissue microarray (TMA) containing 185 samples of primary colon cancer tumor samples and in human colon cancer cell lines. The effect of FOXC2 on cell proliferation, tumorigenesis, and metastasis was examined in vitro and in vivo. FOXC2 was overexpressed in human colon cancer cells and tissues, and correlated with colon cancer progression and patient survival. Functional study demonstrated that FOXC2 promoted cell growth, cell migration, and tumor formation in nude mice, whereas knockdown of FOXC2 by short hairpin RNA (shRNAs) significantly suppressed cell growth, cell migration and tumor formation. Further study found that FOXC2 enhanced AKT activity with subsequent GSK-3β phosphorylation and Snail stabilization, and then induced epithelial-mesenchymal transition (EMT) and promoted tumor invasion and metastasis. Collectively, FOXC2 promotes colon cancer metastasis by facilitating EMT and acts as a potential prognostic factor and therapeutic target in colon cancer.

  19. MET receptor variant R970C favors calpain-dependent generation of a fragment promoting epithelial cell scattering.

    Science.gov (United States)

    Montagne, Rémi; Baranzelli, Anne; Muharram, Ghaffar; Catherine, Leroy; Lesaffre, Marie; Vinchent, Audrey; Kherrouche, Zoulika; Werkmeister, Elisabeth; Cortot, Alexis B; Tulasne, David

    2017-01-04

    The receptor tyrosine kinase MET and its ligand, the hepatocyte growth factor, are essential to embryonic development, whereas deregulation of MET signaling is associated with tumorigenesis leading to various cancers, including lung carcinoma. Mutations in the MET kinase domain lead to constitutive kinase activity and are associated with tumorigenesis. In lung cancer, however, some mutations are found in the juxtamembrane domain, and their functional consequences are unknown. Because the juxtamembrane domain of MET is targeted by several proteolytic cleavages, involved in its degradation during cell death or under steady-state conditions, we evaluated the influence of these mutations on the MET proteolytic cleavages. In stably transfected epithelial cells expressing MET, the juxtamembrane mutations R970C, P991S, and T992I were found not to modify the known caspase or presenilin-dependent regulated intramembrane proteolysis. Yet when overexpressed, the R970C variant caused generation of an as yet undescribed 45-kDa fragment (p45 MET). This fragment was found in the confluent lung cancer cell line NCI-H1437 carrying the R970C mutation and at a lesser extent in cell lines expressing WT MET, suggesting that R970C mutation favors this cleavage. Generation of p45 MET required the activity of the calpain proteases, confirming the involvement of proteolysis. Ectopic expression of reconstituted p45 MET in epithelial cell lines favored cell scattering and invasion indicating active role of this fragment in HGF/SF induced responses. Hence, although the juxtamembrane mutations of MET do not affect its known proteolytic cleavages, the R970C MET variant favors calpain dependent proteolytic cleavage in lung cancer cells.

  20. Netrins and Frazzled/DCC promote the migration and mesenchymal to epithelial transition of Drosophila midgut cells

    Directory of Open Access Journals (Sweden)

    Melissa Pert

    2015-01-01

    Full Text Available Mesenchymal-epithelial transitions (METs are important in both development and the growth of secondary tumours. Although the molecular basis for epithelial polarity is well studied, less is known about the cues that induce MET. Here we show that Netrins, well known as chemotropic guidance factors, provide a basal polarising cue during the Drosophila midgut MET. Both netrinA and netrinB are expressed in the visceral mesoderm, the substrate upon which midgut cells migrate, while their receptor frazzled (fra is expressed in midgut cells. Netrins are required to polarise Fra to the basal surface, and Netrins and Fra undergo mutually-dependent endocytosis, with Fra subsequently trafficking to late endosomes. Mutations to fra and netrins affect both migration and MET but to different degrees. Loss of fra strongly delays migration, midgut cells fail to extend protrusions, and apico-basal polarisation of proteins and epithelium formation is inhibited. In netrin mutants, the migration phenotype is weaker and cells still extend protrusions. However, apico-basal polarisation of proteins, including Fra, and FActin is greatly disrupted and a monolayer fails to form. Delocalised accumulations of FActin are prevalent in netrin mutants but not fra mutants suggesting delocalised Fra may disrupt the MET. βPS localisation is also affected in netrin mutants in that a basal gradient is reduced while localisation to the midgut/VM interface is increased. Since a similar effect is seen when endocytosis is inhibited, Netrin and Fra may regulate Integrin turnover. The results suggest Netrin-dependent basal polarisation of Fra is critical for the formation of an epithelium.

  1. Netrins and Frazzled/DCC promote the migration and mesenchymal to epithelial transition of Drosophila midgut cells.

    Science.gov (United States)

    Pert, Melissa; Gan, Miao; Saint, Robert; Murray, Michael J

    2015-01-23

    Mesenchymal-epithelial transitions (METs) are important in both development and the growth of secondary tumours. Although the molecular basis for epithelial polarity is well studied, less is known about the cues that induce MET. Here we show that Netrins, well known as chemotropic guidance factors, provide a basal polarising cue during the Drosophila midgut MET. Both netrinA and netrinB are expressed in the visceral mesoderm, the substrate upon which midgut cells migrate, while their receptor frazzled (fra) is expressed in midgut cells. Netrins are required to polarise Fra to the basal surface, and Netrins and Fra undergo mutually-dependent endocytosis, with Fra subsequently trafficking to late endosomes. Mutations to fra and netrins affect both migration and MET but to different degrees. Loss of fra strongly delays migration, midgut cells fail to extend protrusions, and apico-basal polarisation of proteins and epithelium formation is inhibited. In netrin mutants, the migration phenotype is weaker and cells still extend protrusions. However, apico-basal polarisation of proteins, including Fra, and FActin is greatly disrupted and a monolayer fails to form. Delocalised accumulations of FActin are prevalent in netrin mutants but not fra mutants suggesting delocalised Fra may disrupt the MET. βPS localisation is also affected in netrin mutants in that a basal gradient is reduced while localisation to the midgut/VM interface is increased. Since a similar effect is seen when endocytosis is inhibited, Netrin and Fra may regulate Integrin turnover. The results suggest Netrin-dependent basal polarisation of Fra is critical for the formation of an epithelium.

  2. Snail Promotes Epithelial Mesenchymal Transition in Breast Cancer Cells in Part via Activation of Nuclear ERK2

    Science.gov (United States)

    Smith, Bethany N.; Burton, Liza J.; Henderson, Veronica; Randle, Diandra D.; Morton, Derrick J.; Smith, Basil A.; Taliaferro-Smith, Latonia; Nagappan, Peri; Yates, Clayton; Zayzafoon, Majd; Chung, Leland W. K.; Odero-Marah, Valerie A.

    2014-01-01

    Snail transcription factor is up-regulated in several cancers and associated with increased tumor migration and invasion via induction of epithelial-to-mesenchymal transition (EMT). MAPK (ERK1/2) signaling regulates cellular processes including cell motility, adhesion, and invasion. We investigated the regulation of ERK1/2 by Snail in breast cancer cells. ERK1/2 activity (p-ERK) was higher in breast cancer patient tissue as compared to normal tissue. Snail and p-ERK were increased in several breast cancer cell lines as compared to normal mammary epithelial cells. Snail knockdown in MDA-MB-231 and T47-D breast cancer cells decreased or re-localized p-ERK from the nuclear compartment to the cytoplasm. Snail overexpression in MCF-7 breast cancer cells induced EMT, increased cell migration, decreased cell adhesion and also increased tumorigenicity. Snail induced nuclear translocation of p-ERK, and the activation of its subcellular downstream effector, Elk-1. Inhibiting MAPK activity with UO126 or knockdown of ERK2 isoform with siRNA in MCF-7 Snail cells reverted EMT induced by Snail as shown by decreased Snail and vimentin expression, decreased cell migration and increased cell adhesion. Overall, our data suggest that ERK2 isoform activation by Snail in aggressive breast cancer cells leads to EMT associated with increased cell migration and decreased cell adhesion. This regulation is enhanced by positive feedback regulation of Snail by ERK2. Therefore, therapeutic targeting of ERK2 isoform may be beneficial for breast cancer. PMID:25122124

  3. Snail promotes epithelial mesenchymal transition in breast cancer cells in part via activation of nuclear ERK2.

    Directory of Open Access Journals (Sweden)

    Bethany N Smith

    Full Text Available Snail transcription factor is up-regulated in several cancers and associated with increased tumor migration and invasion via induction of epithelial-to-mesenchymal transition (EMT. MAPK (ERK1/2 signaling regulates cellular processes including cell motility, adhesion, and invasion. We investigated the regulation of ERK1/2 by Snail in breast cancer cells. ERK1/2 activity (p-ERK was higher in breast cancer patient tissue as compared to normal tissue. Snail and p-ERK were increased in several breast cancer cell lines as compared to normal mammary epithelial cells. Snail knockdown in MDA-MB-231 and T47-D breast cancer cells decreased or re-localized p-ERK from the nuclear compartment to the cytoplasm. Snail overexpression in MCF-7 breast cancer cells induced EMT, increased cell migration, decreased cell adhesion and also increased tumorigenicity. Snail induced nuclear translocation of p-ERK, and the activation of its subcellular downstream effector, Elk-1. Inhibiting MAPK activity with UO126 or knockdown of ERK2 isoform with siRNA in MCF-7 Snail cells reverted EMT induced by Snail as shown by decreased Snail and vimentin expression, decreased cell migration and increased cell adhesion. Overall, our data suggest that ERK2 isoform activation by Snail in aggressive breast cancer cells leads to EMT associated with increased cell migration and decreased cell adhesion. This regulation is enhanced by positive feedback regulation of Snail by ERK2. Therefore, therapeutic targeting of ERK2 isoform may be beneficial for breast cancer.

  4. Hes1 promotes the IL-22-mediated antimicrobial response by enhancing STAT3-dependent transcription in human intestinal epithelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Murano, Tatsuro [Department of Gastroenterology and Hepatology, Graduate School, Tokyo Medical and Dental University, Tokyo (Japan); Okamoto, Ryuichi, E-mail: rokamoto.gast@tmd.ac.jp [Department of Gastroenterology and Hepatology, Graduate School, Tokyo Medical and Dental University, Tokyo (Japan); Department of Advanced GI Therapeutics, Graduate School, Tokyo Medical and Dental University, Tokyo (Japan); Ito, Go; Nakata, Toru; Hibiya, Shuji; Shimizu, Hiromichi; Fujii, Satoru; Kano, Yoshihito; Mizutani, Tomohiro; Yui, Shiro; Akiyama-Morio, Junko; Nemoto, Yasuhiro [Department of Gastroenterology and Hepatology, Graduate School, Tokyo Medical and Dental University, Tokyo (Japan); Tsuchiya, Kiichiro; Nakamura, Tetsuya [Department of Gastroenterology and Hepatology, Graduate School, Tokyo Medical and Dental University, Tokyo (Japan); Department of Advanced GI Therapeutics, Graduate School, Tokyo Medical and Dental University, Tokyo (Japan); Watanabe, Mamoru [Department of Gastroenterology and Hepatology, Graduate School, Tokyo Medical and Dental University, Tokyo (Japan)

    2014-01-17

    Highlights: •Hes1 enhances IL-22-STAT3 signaling in human intestinal epithelial cells. •Hes1 enhances REG family gene induction by IL-22-STAT3 signaling. •Protein level of Hes1 restricts the response to IL-22. •Present regulation of a cytokine signal represents a new mode of Hes1 function. -- Abstract: Notch signaling plays an essential role in the proliferation and differentiation of intestinal epithelial cells (IECs). We have previously shown that Notch signaling is up-regulated in the inflamed mucosa of ulcerative colitis (UC) and thereby plays an indispensable role in tissue regeneration. Here we show that in addition to Notch signaling, STAT3 signaling is highly activated in the inflamed mucosa of UC. Forced expression of the Notch target gene Hes1 dramatically enhanced the IL-22-mediated STAT3-dependent transcription in human IECs. This enhancement of STAT3-dependent transcription was achieved by the extended phosphorylation of STAT3 by Hes1. Microarray analysis revealed that Hes1-mediated enhancement of IL-22-STAT3 signaling significantly increased the induction of genes encoding antimicrobial peptides, such as REG1A, REG3A and REG3G, in human IECs. Conversely, the reduction of Hes1 protein levels with a γ-secretase inhibitor significantly down-regulated the induction of those genes in IECs, resulting in a markedly poor response to IL-22. Our present findings identify a new role for the molecular function of Hes1 in which the protein can interact with cytokine signals and regulate the immune response of IECs.

  5. The soybean peptide lunasin promotes apoptosis of mammary epithelial cells via induction of tumor suppressor PTEN: similarities and distinct actions from soy isoflavone genistein.

    Science.gov (United States)

    Pabona, John Mark P; Dave, Bhuvanesh; Su, Ying; Montales, Maria Theresa E; de Lumen, Ben O; de Mejia, Elvira G; Rahal, Omar M; Simmen, Rosalia C M

    2013-01-01

    Breast cancer is the leading cause of cancer deaths in women. Diet and lifestyle are major contributing factors to increased breast cancer risk. While mechanisms underlying dietary protection of mammary tumor formation are increasingly elucidated, there remains a dearth of knowledge on the nature and precise actions of specific bioactive components present in foods with purported health effects. The 43-amino acid peptide lunasin (LUN) is found in soybeans, is bioavailable similar to the isoflavone genistein (GEN), and thus may mediate the beneficial effects of soy food consumption. Here, we evaluated whether LUN displays common and distinct actions from those of GEN in non-malignant (mouse HC11) and malignant (human MCF-7) mammary epithelial cells. In MCF-7 cells, LUN up-regulated tumor suppressor phosphatase and tensin homolog deleted in chromosome ten (PTEN) promoter activity, increased PTEN transcript and protein levels and enhanced nuclear PTEN localization, similar to that shown for GEN in mammary epithelial cells. LUN-induced cellular apoptosis, akin to GEN, was mediated by PTEN, but unlike that for GEN, was p53-independent. LUN promoted E-cadherin and β-catenin non-nuclear localization similar to GEN, but unlike GEN, did not influence the proliferative effects of oncogene Wnt1 on HC11 cells. Further, LUN did not recapitulate GEN inhibitory effects on expansion of the cancer stem-like/progenitor population in MCF-7 cells. Results suggest the concerted actions of GEN and LUN on cellular apoptosis for potential mammary tumor preventive effects and highlight whole food consumption rather than intake of specific dietary supplements with limited biological effects for greater health benefits.

  6. TNF-{alpha} promotes human retinal pigment epithelial (RPE) cell migration by inducing matrix metallopeptidase 9 (MMP-9) expression through activation of Akt/mTORC1 signaling

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Cheng-hu; Cao, Guo-Fan [The Affiliated Eye Hospital of Nanjing Medical University, Nanjing 210029 (China); Jiang, Qin, E-mail: Jqin710@vip.sina.com [The Affiliated Eye Hospital of Nanjing Medical University, Nanjing 210029 (China); Yao, Jin, E-mail: dryaojin@yahoo.com [The Affiliated Eye Hospital of Nanjing Medical University, Nanjing 210029 (China)

    2012-08-17

    Highlights: Black-Right-Pointing-Pointer TNF-{alpha} induces MMP-9 expression and secretion to promote RPE cell migration. Black-Right-Pointing-Pointer MAPK activation is not critical for TNF-{alpha}-induced MMP-9 expression. Black-Right-Pointing-Pointer Akt and mTORC1 signaling mediate TNF-{alpha}-induced MMP-9 expression. Black-Right-Pointing-Pointer SIN1 knockdown showed no significant effect on MMP-9 expression by TNF-{alpha}. -- Abstract: Tumor necrosis factor-alpha (TNF-{alpha}) promotes in vitro retinal pigment epithelial (RPE) cell migration to initiate proliferative vitreoretinopathy (PVR). Here we report that TNF-{alpha} promotes human RPE cell migration by inducing matrix metallopeptidase 9 (MMP-9) expression. Inhibition of MMP-9 by its inhibitor or its neutralizing antibody inhibited TNF-{alpha}-induced in vitro RPE cell migration. Reversely, exogenously-added active MMP-9 promoted RPE cell migration. Suppression Akt/mTOR complex 1(mTORC1) activation by LY 294002 and rapamycin inhibited TNF-{alpha}-mediated MMP-9 expression. To introduce a constitutively active Akt (CA-Akt) in cultured RPE cells increased MMP-9 expression, and to block mTORC1 activation by rapamycin inhibited its effect. RNA interference (RNAi)-mediated silencing of SIN1, a key component of mTOR complex 2 (mTORC2), had no effect on MMP-9 expression or secretion. In conclusion, this study suggest that TNF-{alpha} promotes RPE cell migration by inducing MMP-9 expression through activation of Akt/ mTORC1, but not mTORC2 signaling.

  7. Engineering stromal-epithelial interactions in vitro for toxicology assessment

    Science.gov (United States)

    Background: Crosstalk between epithelial and stromal cells drives the morphogenesis of ectodermal organs during development and promotes normal mature adult epithelial tissue function. Epithelial-mesenchymal interactions (EMIs) have been examined using mammalian models, ex vivo t...

  8. Identification of TNF-α-responsive promoters and enhancers in the intestinal epithelial cell model Caco-2

    DEFF Research Database (Denmark)

    Boyd, Mette; Coskun, Mehmet; Lilje, Berit;

    2014-01-01

    promoters. As a case example, we characterize an enhancer regulating the laminin-5 γ2-chain (LAMC2) gene by nuclear factor (NF)-κB binding. This report is the first to present comprehensive TSS and enhancer maps over Caco-2 cells, and highlights many novel inflammation-specific promoters and enhancers....... genome-wide maps of active transcription start sites (TSSs), and active enhancers in Caco-2 cells with or without tumour necrosis factor (TNF)-α stimulation to mimic an inflammatory state. We found 520 promoters that significantly changed their usage level upon TNF-α stimulation; of these, 52......% are not annotated. A subset of these has the potential to confer change in protein function due to protein domain exclusion. Moreover, we locate 890 transcribed enhancer candidates, where ∼50% are changing in usage after TNF-α stimulation. These enhancers share motif enrichments with similarly responding gene...

  9. Arsenic promotes ubiquitinylation and lysosomal degradation of cystic fibrosis transmembrane conductance regulator (CFTR) chloride channels in human airway epithelial cells.

    Science.gov (United States)

    Bomberger, Jennifer M; Coutermarsh, Bonita A; Barnaby, Roxanna L; Stanton, Bruce A

    2012-05-18

    Arsenic exposure significantly increases respiratory bacterial infections and reduces the ability of the innate immune system to eliminate bacterial infections. Recently, we observed in the gill of killifish, an environmental model organism, that arsenic exposure induced the ubiquitinylation and degradation of cystic fibrosis transmembrane conductance regulator (CFTR), a chloride channel that is essential for the mucociliary clearance of respiratory pathogens in humans. Accordingly, in this study, we tested the hypothesis that low dose arsenic exposure reduces the abundance and function of CFTR in human airway epithelial cells. Arsenic induced a time- and dose-dependent increase in multiubiquitinylated CFTR, which led to its lysosomal degradation, and a decrease in CFTR-mediated chloride secretion. Although arsenic had no effect on the abundance or activity of USP10, a deubiquitinylating enzyme, siRNA-mediated knockdown of c-Cbl, an E3 ubiquitin ligase, abolished the arsenic-stimulated degradation of CFTR. Arsenic enhanced the degradation of CFTR by increasing phosphorylated c-Cbl, which increased its interaction with CFTR, and subsequent ubiquitinylation of CFTR. Because epidemiological studies have shown that arsenic increases the incidence of respiratory infections, this study suggests that one potential mechanism of this effect involves arsenic-induced ubiquitinylation and degradation of CFTR, which decreases chloride secretion and airway surface liquid volume, effects that would be proposed to reduce mucociliary clearance of respiratory pathogens.

  10. Alterations in plasma membrane promote overexpression and increase of sodium influx through epithelial sodium channel in hypertensive platelets.

    Science.gov (United States)

    Cerecedo, D; Martínez-Vieyra, Ivette; Sosa-Peinado, Alejandro; Cornejo-Garrido, Jorge; Ordaz-Pichardo, Cynthia; Benítez-Cardoza, Claudia

    2016-08-01

    Platelets are small, anucleated cell fragments that activate in response to a wide variety of stimuli, triggering a complex series of intracellular pathways leading to a hemostatic thrombus formation at vascular injury sites. However, in essential hypertension, platelet activation contributes to causing myocardial infarction and ischemic stroke. Reported abnormalities in platelet functions, such as platelet hyperactivity and hyperaggregability to several agonists, contribute to the pathogenesis and complications of thrombotic events associated with hypertension. Platelet membrane lipid composition and fluidity are determining for protein site accessibility, structural arrangement of platelet surface, and response to appropriate stimuli. The present study aimed to demonstrate whether structural and biochemical abnormalities in lipid membrane composition and fluidity characteristic of platelets from hypertensive patients influence the expression of the Epithelial Sodium Channel (ENaC), fundamental for sodium influx during collagen activation. Wb, cytometry and quantitative Reverse Transcription-Polymerase Chain Reaction (qRT-PCR) assays demonstrated ENaC overexpression in platelets from hypertensive subjects and in relation to control subjects. Additionally, our results strongly suggest a key role of β-dystroglycan as a scaffold for the organization of ENaC and associated proteins. Understanding of the mechanisms of platelet alterations in hypertension should provide valuable information for the pathophysiology of hypertension.

  11. Synergy between IL-8 and GM-CSF in reproductive tract epithelial cell secretions promotes enhanced neutrophil chemotaxis.

    Science.gov (United States)

    Shen, Li; Fahey, John V; Hussey, Stephen B; Asin, Susana N; Wira, Charles R; Fanger, Michael W

    2004-07-01

    Neutrophils occur in tissues of the female reproductive tract (FRT) under non-infected conditions. These cells generally enter tissues under the influence of chemoattractants called chemokines. Primary epithelial cells (EC) from FRT were a potent source of chemokines, IL-8 being the chief neutrophil chemoattractant secreted. Blocking with neutralizing anti-IL-8 showed that IL-8 did not account for all of the chemoattraction observed. A mixture of 25 ng/mL rIL-8 and 1 ng/mL rGM-CSF mediated 2.7-fold more chemotaxis than that expected if the two agents were additive. We then found that GM-CSF was produced by EC in amounts that synergised strongly with IL-8 to enhance chemotaxis. Treatment of uterine EC conditioned medium with saturating doses of anti-IL-8 plus anti-GM-CSF antibodies produced an 84% inhibition of chemotaxis. These findings demonstrate that the majority of neutrophil chemoattractant activity produced by FRT EC results from the synergistic effects of IL-8 and GM-CSF.

  12. THE ABERRANT PROMOTER HYPERMETHYLATION PATTERN OF THE ANTI - ANGIOGENIC TSP1 GENE IN EPITHELIAL OVARIAN CARCINOMA: AN INDIAN STUDY

    Directory of Open Access Journals (Sweden)

    Ramesh

    2015-06-01

    Full Text Available PURPOSE: The promoter hypermethylation patterns of Thrombospodin - 1 gene in 50 EOC patients were studied and the methylation pattern was correlated with various clinic pathological parameters. METHODS: The promoter hypermethylation pattern of the TSP - 1 gene was assessed using nested PCR and Methylation specific PCR. STATISTICAL ANALYSIS: All the available data was statistically analyzed using the Chi square test or Fisher Exact Test on the SPSS software version 22.0 and a value <0.0 5 was considered statistically significant. RESULTS: Forty of the fifty ovarian carcinoma samples reported positive for methylation corresponding to a methylation frequency of 80%. A methylation frequency of 89.2%, 83.3% and 42.8% was observed in malignant , Low malignant potential (borderline and benign sample cohorts. CONCLUSION: From the results drawn from this study, it clearly shows that the anti angiogenic protein TSP - 1 is extensively hypermethylated in ovarian carcinoma and that it accumulates over t he progression of the disease from benign to malignant. As previous reports suggest that there is no evidence of mutation of this gene, promoter hypermethylation may be a crucial factor for the down regulation of the gene. Further by clubbing together the promoter hypermethylation pattern of TSP - 1 gene with hypermethylation patterns of other TSG may provide a better insight into the application of using methylation profiles of TSG as a biomarker in the detection of ovarian carcinoma.

  13. The carcinoma-specific epithelial glycoprotein-2 promoter controls efficient and selective gene expression in an adenoviral context

    NARCIS (Netherlands)

    Gommans, WM; van Eert, SJ; McLaughlin, PMJ; Harmsen, MC; Yamamoto, M; Curiel, DT; Haisma, HJ; Rots, MG

    2006-01-01

    Adenoviral vectors are widely used in cancer gene therapy. After systemic administration however, the majority of the virus homes to the liver and the expressed transgene may cause hepatotoxicity. To restrict transgene expression to tumor cells, tumor- or tissue-specific promoters are utilized. The

  14. Osteopontin Promotes Invasion, Migration and Epithelial-Mesenchymal Transition of Human Endometrial Carcinoma Cell HEC-1A Through AKT and ERK1/2 Signaling

    Directory of Open Access Journals (Sweden)

    Yinghua Li

    2015-10-01

    Full Text Available Background/Aims: Osteopontin (OPN is an Extracellular Matrix (ECM molecule and is involved in many physiologic and pathologic processes, including cell adhesion, angiogenesis and tumor metastasis. OPN is a well-known multifunctional factor involved in various aspects of cancer progression, including endometrial cancer. In this study, we examined the significance of OPN in endometrial cancer. Methods: The proliferation, migration and invasion ability of HEC-1A cells were detected by Cell Counting Kit-8 (CCK-8, Wound scratch assay and transwell. Western blots were employed to detect the expression of Matrix metalloproteinase-2 (MMP-2 and epithelial-mesenchymal transition (EMT-related factors in HEC-1A cells treated with rhOPN. Results: rhOPN promotes cell proliferation, migration and invasion in HEC-1A cells. rhOPN influenced EMT-related factors and MMP-2 expression in HEC-1A cells. rhOPN promoted HEC-1A cells migration, invasion and EMT through protein kinase B (PKB/AKT and Extracellular regulated protein kinases (ERK1/2 signaling pathway. Conclusions: These results may open up a novel therapeutic strategy for endometrial cancer: namely, rhOPN have important roles in controlling growth of endometrial of cancer cells and suggest a novel target pathway for treatment of this cancer.

  15. Copper modulates zinc metalloproteinase-dependent ectodomain shedding of key signaling and adhesion proteins and promotes the invasion of prostate cancer epithelial cells.

    Science.gov (United States)

    Parr-Sturgess, Catherine A; Tinker, Claire L; Hart, Claire A; Brown, Michael D; Clarke, Noel W; Parkin, Edward T

    2012-10-01

    A disintegrin and metalloproteinases (ADAMs) and matrix metalloproteinases (MMPs) are zinc metalloproteinases (ZMPs) that catalyze the "ectodomain shedding" of a range of cell surface proteins including signaling and adhesion molecules. These "sheddases" are associated with the invasion and metastasis of a range of cancers. Increased serum and tumor tissue levels of copper are also observed in several cancers, although little is known about how the metal might promote disease progression at the molecular level. In the current study, we investigated whether copper might regulate the ectodomain shedding of two key cell surface proteins implicated in the invasion and metastasis of prostate cancer, the Notch ligand Jagged1 and the adhesion molecule E-cadherin, and whether the metal was able to influence the invasion of the prostate cancer epithelial cell line PC3. Physiological copper concentrations stimulated the ZMP-mediated proteolysis of Jagged1 and E-cadherin in cell culture models, whereas other divalent metals had no effect. Copper-mediated Jagged1 proteolysis was also observed following the pretreatment of cells with cycloheximide and in a cell-free membrane system, indicating a posttranslational mechanism of sheddase activation. Finally, the concentrations of copper that stimulated ZMP-mediated protein shedding also enhanced PC3 invasion; an effect that could be negated using a sheddase inhibitor or copper chelators. Collectively, these data implicate copper as an important factor in promoting prostate cancer cell invasion and indicate that the selective posttranslational activation of ZMP-mediated protein shedding might play a role in this process.

  16. Achaete-scute complex homologue-1 promotes development of laryngocarcinoma via facilitating the epithelial-mesenchymal transformation.

    Science.gov (United States)

    Ma, Huaci; Du, Xiaodong; Zhang, Shu; Wang, Qiang; Yin, Yong; Qiu, Xiaoxia; Da, Peng; Yue, Huijun; Wu, Hao; Xu, Fenglei

    2017-06-01

    Laryngeal cancer is one of the most common fatal cancers among head and neck carcinomas, whose mechanism, however, remains unclear. The proneural basic-helix-loop-helix protein achaete-scute complex homologue-1, a member of the basic helix-loop-helix family, plays a very important role in many cancers. This study aims to explore the clinical value and mechanism of achaete-scute complex homologue-1 in laryngeal cancer. Methods including Cell Counting Kit-8, flow cytometry, Transwell invasion assays, and scratch assay were adopted to further explore the bio-function of achaete-scute complex homologue-1, whose expression was examined in fresh and paraffin chip of laryngeal carcinoma tissues by means of western blot and immunohistochemistry, after the interference of achaete-scute complex homologue-1; achaete-scute complex homologue-1, an overexpression in laryngeal carcinoma whose carcinogenicity potential was confirmed via western blot, was correlative with T classification (p = 0.002), histological differentiation (p = 0.000), lymph node metastasis (p = 0.000), and poor survival (p = 0.000). Multivariate analysis shows that achaete-scute complex homologue-1 overexpression is an independent prognostic factor unfavorable to laryngeal carcinoma patients (p = 0.000). Moreover, knocking down achaete-scute complex homologue-1 expression could significantly suppress the proliferation, migration, and invasion of laryngeal carcinoma cell in vitro and disorder epithelial-mesenchymal transformation-associated protein expression. Achaete-scute complex homologue-1 plays an important role in the genesis and progression of laryngeal carcinoma and may act as a potential biomarker for therapeutic target and prognostic prediction.

  17. A promoter polymorphism in human interleukin-32 modulates its expression and influences the risk and the outcome of epithelial cell-derived thyroid carcinoma.

    Science.gov (United States)

    Plantinga, Theo S; Costantini, Irene; Heinhuis, Bas; Huijbers, Angelique; Semango, George; Kusters, Benno; Netea, Mihai G; Hermus, Ad R M M; Smit, Jan W A; Dinarello, Charles A; Joosten, Leo A B; Netea-Maier, Romana T

    2013-07-01

    Interleukin (IL)-32 is an intracellular proinflammatory mediator that strongly modulates the inflammatory reaction. Recent studies have suggested the involvement of IL-32 in the pathogenesis of malignancies. We aimed to assess whether a known germ-line polymorphism in the IL32 promoter modulates IL-32 expression, and whether it influences susceptibility and/or outcome of epithelial cell-derived thyroid carcinoma (TC). In this study, IL32 genotype was assessed in 139 TC patients and 138 healthy controls and was correlated with TC susceptibility and clinical outcome. Furthermore, IL-32 messenger RNA expression and protein were assessed in TC tissues and functional consequences of genetic variants of IL32 were studied in a model of human primary immune cells. Results demonstrate substantial IL-32 expression in TC tumor tissue. Lipopolysaccharide (LPS) stimulation of primary immune cells revealed 2-fold higher expression of IL-32γ, but not IL-32β, in cells homozygous for the ancient T allele. Furthermore, production of LPS-induced cytokines was increased in cells bearing this T allele. Genetic analysis revealed that the ancient T allele was overrepresented in TC patients with odds ratio (95% confidence interval) = 1.71 (1.06-2.75). In addition, the cumulative radioactive iodine (RAI) dose received after total thyroidectomy was significantly higher in TC patients bearing the ancient T allele. In conclusion, individuals bearing genetic variants of IL32 that lead to an increased IL-32γ gene expression and higher production of proinflammatory cytokines have higher risk for developing epithelial cell-derived TC. Subsequently, they require higher dosages of RAI to achieve successful tumor remission. These data suggest an important role of IL-32 in the pathogenesis of TC.

  18. The three-dimensional structure of CFA/I adhesion pili: traveler's diarrhea bacteria hang on by a spring.

    Science.gov (United States)

    Mu, Xiang-Qi; Savarino, Stephen J; Bullitt, Esther

    2008-02-22

    To survive the harsh environment of a churning intestinal tract, bacteria attach to the host epithelium via thin fibers called pili (or fimbriae). Enterotoxigenic Escherichia coli bacteria expressing colonization factor antigen I (CFA/I) pili and related pili are the most common known bacterial cause of diarrheal disease, including traveler's diarrhea. CFA/I pili, assembled via the alternate chaperone pathway, are essential for binding and colonization of the small bowel by these pathogenic bacteria. Herein, we elucidate unique structural features of CFA/I pili that appear to optimize their function as bacterial tethers in the intestinal tract. Using transmission electron microscopy of negatively stained samples in combination with iterative three-dimensional helical reconstruction methods for image processing, we determined the structure of the CFA/I pilus filament. Our results indicate that strong end-to-end protein interactions and weak interactions between the coils of a sturdy spring-like helix provide the combination of strength, stability, and flexibility required to sustain bacterial adhesion and incite intestinal disease. We propose that CFA/I pili behave like a spring to maintain attachment to the gut lining during vortex mixing and downward flow of the intestinal contents, thereby persisting long enough for these bacteria to colonize the host epithelium and cause enteric disease.

  19. Low Energy Atomic Models Suggesting a Pilus Structure that could Account for Electrical Conductivity of Geobacter sulfurreducens Pili.

    Science.gov (United States)

    Xiao, Ke; Malvankar, Nikhil S; Shu, Chuanjun; Martz, Eric; Lovley, Derek R; Sun, Xiao

    2016-03-22

    The metallic-like electrical conductivity of Geobacter sulfurreducens pili has been documented with multiple lines of experimental evidence, but there is only a rudimentary understanding of the structural features which contribute to this novel mode of biological electron transport. In order to determine if it was feasible for the pilin monomers of G. sulfurreducens to assemble into a conductive filament, theoretical energy-minimized models of Geobacter pili were constructed with a previously described approach, in which pilin monomers are assembled using randomized structural parameters and distance constraints. The lowest energy models from a specific group of predicted structures lacked a central channel, in contrast to previously existing pili models. In half of the no-channel models the three N-terminal aromatic residues of the pilin monomer are arranged in a potentially electrically conductive geometry, sufficiently close to account for the experimentally observed metallic like conductivity of the pili that has been attributed to overlapping pi-pi orbitals of aromatic amino acids. These atomic resolution models capable of explaining the observed conductive properties of Geobacter pili are a valuable tool to guide further investigation of the metallic-like conductivity of the pili, their role in biogeochemical cycling, and applications in bioenergy and bioelectronics.

  20. Adiponectin as a potential tumor suppressor inhibiting epithelial-to-mesenchymal transition but frequently silenced in prostate cancer by promoter methylation.

    Science.gov (United States)

    Tan, Weiwei; Wang, Lin; Ma, Quanping; Qi, Mei; Lu, Ning; Zhang, Lili; Han, Bo

    2015-08-01

    Recent evidence suggests a particular role for obesity in prostate cancer (PCa) progression. Adiponectin (ADN) is a hormone secreted by adipose tissue and has a variety of functions including the inhibition of PCa cell proliferation. Although serum ADN levels have been identified to be related with carcinogenesis in a tissue-specific context, the exact role of endogenous ADN in PCa cells remains largely unknown. Two tissue microarrays were constructed and immunohistochemistry (IHC) was utilized to detect ADN's expression in a cohort of 96 Chinese PCa patients with radical prostatectomy as well as 15 cases with Benign Prostatic Hyperplasia (BPH). MTS and transwell assays were applied to validate the effects of ADN on proliferation and invasive capacity of PCa cells. Real-time PCR and Western blot were performed to evaluate the expression at transcript and protein levels. Epigenetic modifications of ADN's promoter after TGF-β1 treatment in 22RV1 cells was monitored by chromatin immunoprecipitation (ChIP). Methylation-Specific PCR (MSP) was performed to determine the methylation status of ADN's promoter. IHC showed decreased levels of ADN in 1 of 15 (6.7%) BPH cases, 6 of 27 (22.2%) PCa cases with low Gleason score (7). Silencing endogenous ADN could promote proliferation and invasion of 22RV1 cells via orchestrating Epithelial-to-mesenchymal Transition (EMT) process. TGF-β1, a potent EMT inducer, could decrease levels of chromatin markers associated with active genes (H3K4me3, H4acetylK16), and increase levels of repressive marker (H3K27me3) at ADN promoter in 22RV1 cells. Additionally, 5-aza and TSA treatment restored ADN expression in LNCaP cells in which the ADN expression was almost absent. MSP analysis revealed that methylation in the promoter might be involved in decreased expression of ADN in PCa tissues. Our findings indicated that endogenous ADN may function as a tumor suppressor gene through inhibiting EMT of PCa cells but is down-regulated in PCa via

  1. Chaperone-Usher Pili Loci of Colonization Factor-Negative Human Enterotoxigenic Escherichia coli

    Science.gov (United States)

    Del Canto, Felipe; O'Ryan, Miguel; Pardo, Mirka; Torres, Alexia; Gutiérrez, Daniela; Cádiz, Leandro; Valdés, Raul; Mansilla, Aquiles; Martínez, Rodrigo; Hernández, Daniela; Caro, Benjamin; Levine, Myron M.; Rasko, David A.; Hill, Christopher M.; Pop, Mihai; Stine, O. Colin; Vidal, Roberto

    2017-01-01

    Enterotoxigenic Escherichia coli (ETEC) is one of the most common causes of diarrhea worldwide. Among the 25 different ETEC adhesins, 22 are known as “colonization factors” (CFs), of which 17 are assembled by the chaperone-usher (CU) mechanism. Currently, there is no preventive therapy against ETEC, and CFs have been proposed as components for vaccine development. However, studies of diarrhea-causing ETEC strains worldwide indicate that between 15 and 50% of these are negative for known CFs, hindering the selection of the most widespread structures and suggesting that unknown adhesins remain to be identified. Here, we report the result of a comprehensive analysis of 35 draft genomes of ETEC strains which do not carry known adhesin genes; our goal was to find new CU pili loci. The phylogenetic profiles and serogroups of these strains were highly diverse, a majority of which produced only the heat-labile toxin. We identified 10 pili loci belonging to CU families β (1 locus), γ2 (7 loci), κ (1 locus), and π (1 locus), all of which contained the required number of open reading frames (ORFs) to encode functional structures. Three loci were variants of previously-known clusters, three had been only-partially described, and four are novel loci. Intra-loci genetic variability identified would allow the synthesis of up to 14 different structures. Clusters of putative γ2-CU pili were most common (23 strains), followed by putative β-CU pili (12 strains), which have not yet been fully characterized. Overall, our findings significantly increase the number of ETEC adhesion genes associated with human infections. PMID:28111618

  2. Structural characterization of CFA/III and Longus type IVb pili from enterotoxigenic Escherichia coli.

    Science.gov (United States)

    Kolappan, Subramaniapillai; Roos, Justin; Yuen, Alex S W; Pierce, Owen M; Craig, Lisa

    2012-05-01

    The type IV pili are helical filaments found on many Gram-negative pathogenic bacteria, with multiple diverse roles in pathogenesis, including microcolony formation, adhesion, and twitching motility. Many pathogenic enterotoxigenic Escherichia coli (ETEC) isolates express one of two type IV pili belonging to the type IVb subclass: CFA/III or Longus. Here we show a direct correlation between CFA/III expression and ETEC aggregation, suggesting that these pili, like the Vibrio cholerae toxin-coregulated pili (TCP), mediate microcolony formation. We report a 1.26-Å resolution crystal structure of CofA, the major pilin subunit from CFA/III. CofA is very similar in structure to V. cholerae TcpA but possesses a 10-amino-acid insertion that replaces part of the α2-helix with an irregular loop containing a 3(10)-helix. Homology modeling suggests a very similar structure for the Longus LngA pilin. A model for the CFA/III pilus filament was generated using the TCP electron microscopy reconstruction as a template. The unique 3(10)-helix insert fits perfectly within the gap between CofA globular domains. This insert, together with differences in surface-exposed residues, produces a filament that is smoother and more negatively charged than TCP. To explore the specificity of the type IV pilus assembly apparatus, CofA was expressed heterologously in V. cholerae by replacing the tcpA gene with that of cofA within the tcp operon. Although CofA was synthesized and processed by V. cholerae, no CFA/III filaments were detected, suggesting that the components of the type IVb pilus assembly system are highly specific to their pilin substrates.

  3. Over-expression of miR-106b promotes cell migration and metastasis in hepatocellular carcinoma by activating epithelial-mesenchymal transition process.

    Directory of Open Access Journals (Sweden)

    Wing Lung Yau

    Full Text Available Hepatocellular carcinoma (HCC is one the the most fatal cancers worldwide. The poor prognosis of HCC is mainly due to the developement of distance metastasis. To investigate the mechanism of metastasis in HCC, an orthotopic HCC metastasis animal model was established. Two sets of primary liver tumor cell lines and corresponding lung metastasis cell lines were generated. In vitro functional analysis demonstrated that the metastatic cell line had higher invasion and migration ability when compared with the primary liver tumor cell line. These cell lines were subjected to microRNA (miRNAs microarray analysis to identify differentially expressed miRNAs which were associated with the developement of metastasis in vivo. Fifteen human miRNAs, including miR-106b, were differentially expressed in 2 metastatic cell lines compared with the primary tumor cell lines. The clinical significance of miR-106b in 99 HCC clinical samples was studied. The results demonstrated that miR-106b was over-expressed in HCC tumor tissue compared with adjacent non-tumor tissue (p = 0.0005, and overexpression of miR-106b was signficantly correlated with higher tumor grade (p = 0.018. Further functional studies demonstrated that miR-106b could promote cell migration and stress fiber formation by over-expressing RhoGTPases, RhoA and RhoC. In vivo functional studies also showed that over-expression of miR-106b promoted HCC metastasis. These effects were related to the activation of the epithelial-mesenchymal transition (EMT process. Our results suggested that miR-106b expression contributed to HCC metastasis by activating the EMT process promoting cell migration in vitro and metastasis in vivo.

  4. Neuropilin-1 promotes epithelial-to-mesenchymal transition by stimulating nuclear factor-kappa B and is associated with poor prognosis in human oral squamous cell carcinoma.

    Directory of Open Access Journals (Sweden)

    Weiming Chu

    Full Text Available The epithelial-to-mesenchymal transition (EMT is a key process in carcinogenesis, invasion, and metastasis of oral squamous cell carcinoma (OSCC. In our previous studies, we found that neuropilin-1 (NRP1 is overexpressed in tongue squamous cell carcinoma and that this overexpression is associated with cell migration and invasion. Nuclear factor-kappa B (NF-κB plays an essential role both in the induction and the maintenance of EMT and tumor metastasis. Therefore, we hypothesized that NRP1 induces EMT, and that NRP1-induced migration and invasion may be an important mechanism for promoting invasion and metastasis of OSCC through NF-κB activation.The variations in gene and protein expression and the changes in the biological behavior of OSCC cell lines transfected with a vector encoding NRP1, or the corresponding vector control, were evaluated. NRP1 overexpression promoted EMT and was associated with enhanced invasive and metastatic properties. Furthermore, the induction of EMT promoted the acquisition of some cancer stem cell (CSC-like characteristics in OSCC cells. We addressed whether selective inhibition of NF-κB suppresses the NRP1-mediated EMT by treating cells with pyrrolidinedithiocarbamate ammonium (PDTC, an inhibitor of NF-κB. Immunohistochemical analysis of NRP1 in OSCC tissue samples further supported a key mediator role for NRP1 in tumor progression, lymph node metastasis, and indicated that NRP1 is a predictor for poor prognosis in OSCC patients.Our results indicate that NRP1 may regulate the EMT process in OSCC cell lines through NF-κB activation, and that higher NRP1 expression levels are associated with lymph node metastasis and poor prognosis in OSCC patients. Further investigation of the role of NRP1 in tumorigenesis may help identify novel targets for the prevention and therapy of oral cancers.

  5. The tumour suppressor SOX11 is associated with improved survival among high grade epithelial ovarian cancers and is regulated by reversible promoter methylation

    LENUS (Irish Health Repository)

    Sernbo, Sandra

    2011-09-24

    Abstract Background The neural transcription factor SOX11 has been described as a prognostic marker in epithelial ovarian cancers (EOC), however its role in individual histological subtypes and tumour grade requires further clarification. Furthermore, methylation-dependent silencing of SOX11 has been reported for B cell lymphomas and indicates that epigenetic drugs may be used to re-express this tumour suppressor, but information on SOX11 promoter methylation in EOC is still lacking. Methods SOX11 expression and clinicopathological data was compared using χ2 test in a cohort of 154 cases of primary invasive EOC. Kaplan-Meier analysis and the log rank test were applied to evaluate ovarian cancer-specific survival (OCSS) and overall survival (OS) in strata, according to SOX11 expression. Also, the methylation status of the SOX11 promoter was determined by sodium bisulfite sequencing and methylation specific PCR (MSP). Furthermore, the effect of ectopic overexpression of SOX11 on proliferation was studied through [3H]-thymidine incorporation. Results SOX11 expression was associated with an improved survival of patients with high grade EOC, although not independent of stage. Further analyses of EOC cell lines showed that SOX11 mRNA and protein were expressed in two of five cell lines, correlating with promoter methylation status. Demethylation was successfully performed using 5\\'-Aza-2\\'deoxycytidine (5-Aza-dC) resulting in SOX11 mRNA and protein expression in a previously negative EOC cell line. Furthermore, overexpression of SOX11 in EOC cell lines confirmed the growth regulatory role of SOX11. Conclusions SOX11 is a functionally associated protein in EOC with prognostic value for high-grade tumours. Re-expression of SOX11 in EOC indicates a potential use of epigenetic drugs to affect cellular growth in SOX11-negative tumours.

  6. miR-5003-3p promotes epithelial-mesenchymal transition in breast cancer cells through Snail stabilization and direct targeting of E-cadherin.

    Science.gov (United States)

    Kwak, Seo-Young; Yoo, Je-Ok; An, Hyun-Ju; Bae, In-Hwa; Park, Myung-Jin; Kim, Joon; Han, Young-Hoon

    2016-06-09

    One of the initial steps in metastatic dissemination is the epithelial-mesenchymal transition (EMT). Along this line, microRNAs (miRNAs) have been shown to function as important regulators of tumor progression at various stages. Therefore, we performed a functional screening for EMT-regulating miRNAs and identified several candidate miRNAs. Among these, we demonstrated that miR-5003-3p induces cellular features characteristic of EMT. miR-5003-3p induced upregulation of Snail, a key EMT-promoting transcription factor and transcriptional repressor of E-cadherin, through protein stabilization. MDM2 was identified as a direct target of miR-5003-3p, the downregulation of which induced Snail stabilization. E-cadherin was also demonstrated to be a direct target of miR-5003-3p, reinforcing the EMT-promoting function of miR-5003-3p. In situ hybridization and immunohistochemical analyses using tissue microarrays revealed that miR-5003-3p expression was higher in paired metastatic breast carcinoma tissues than in primary ductal carcinoma tissues, and was inversely correlated with the expression of MDM2 and E-cadherin. Furthermore, miR-5003-3p enhanced the formation of metastatic nodules in the lungs of mice in a tail vein injection experiment. Collectively, our results suggest that miR-5003-3p functions as a metastasis activator by promoting EMT through dual regulation of Snail stability and E-cadherin, and may therefore be a potential therapeutic target in metastatic cancers. © The Author (2016). Published by Oxford University Press on behalf of Journal of Molecular Cell Biology, IBCB, SIBS, CAS. All rights reserved.

  7. Pili-mediated Interactions between Neisseria Gonorrhoeae Bacteria are the Driving Mechanism of Microcolony Merging

    Science.gov (United States)

    Poenisch, Wolfram; Weber, Christoph; Alzurqa, Khaled; Nasrollahi, Hadi; Biais, Nicolas; Zaburdaev, Vasily; Collective Dynamics of Cells Team; Mechano-Micro-Biology Lab Team

    2015-03-01

    During the early infection with Neisseria gonorrhoeae the bacteria form microcolonies consisting of a few hundreds to a few thousands of cells. The formation of colonies is mediated by type IV pili, thin and long filaments that are also involved in the motion of single cells over a substrate. A related process causes attractive cell-cell-interactions. While the motion of single cells has been extensively studied during the past years, the physical principles driving the growth of these colonies are poorly understood. One key mechanism of colony growth is coalescence of smaller colonies. Therefore we experimentally examine the process of merging of two Neisseria gonorrhoeae colonies. We develop a theoretical microscopic model of single cells interacting solely by their pili. The experimental data and the results obtained from our model are in excellent quantitative agreement. We observe a fast initial approach of the two merging colonies within a few minutes, that is followed by a slow relaxation of the colony shape with a characteristic time of several hours. These findings suggest that pili-mediated interactions are the primary driving mechanism of the microcolony merging process.

  8. Rigid multibody simulation of a helix-like structure: the dynamics of bacterial adhesion pili.

    Science.gov (United States)

    Zakrisson, Johan; Wiklund, Krister; Servin, Martin; Axner, Ove; Lacoursière, Claude; Andersson, Magnus

    2015-07-01

    We present a coarse-grained rigid multibody model of a subunit assembled helix-like polymer, e.g., adhesion pili expressed by bacteria, that is capable of describing the polymer's force-extension response. With building blocks representing individual subunits, the model appropriately describes the complex behavior of pili expressed by the gram-negative uropathogenic Escherichia coli bacteria under the action of an external force. Numerical simulations show that the dynamics of the model, which include the effects of both unwinding and rewinding, are in good quantitative agreement with the characteristic force-extension response as observed experimentally for type 1 and P pili. By tuning the model, it is also possible to reproduce the force-extension response in the presence of anti-shaft antibodies, which dramatically changes the mechanical properties. Thus, the model and results in this work give enhanced understanding of how a pilus unwinds under the action of external forces and provide a new perspective of the complex bacterial adhesion processes.

  9. In vivo expression and variation of Escherichia coli type 1 and P pili in the urine of adults with acute urinary tract infections.

    Science.gov (United States)

    Kisielius, P. V.; Schwan, W. R.; Amundsen, S. K.; Duncan, J. L.; Schaeffer, A. J.

    1989-01-01

    In vivo expression of pili by Escherichia coli in the urine of 41 adults with lower urinary tract infections was analyzed by immunostaining with polyclonal antiserum to type 1 and P pili. Type 1 pili were detected in 31 of 41 urine specimens, while P pili were detected in 6 of 18 specimens. The piliation status of bacterial populations in urine was heterogeneous, varying from predominantly piliated to a mixture of piliated and nonpiliated cells. Bacteria frequently adhered to exfoliated uroepithelial cells and leukocytes in urine. Expression of pili in vivo did not always correlate with the hemagglutination phenotype after growth in vitro. Strains isolated from different sites in the urogenital tract of two individuals showed phenotypic variation in the state of piliation. The results demonstrate that E. coli type 1 and P pili are expressed and are subject to variation in vivo during acute urinary tract infections in adults. Images PMID:2566580

  10. Mutations in the Gene Encoding the Ancillary Pilin Subunit of the Streptococcus suis srtF Cluster Result in Pili Formed by the Major Subunit Only

    Science.gov (United States)

    Fittipaldi, Nahuel; Takamatsu, Daisuke; la Cruz Domínguez-Punaro, María de; Lecours, Marie-Pier; Montpetit, Diane; Osaki, Makoto; Sekizaki, Tsutomu; Gottschalk, Marcelo

    2010-01-01

    Pili have been shown to contribute to the virulence of different Gram-positive pathogenic species. Among other critical steps of bacterial pathogenesis, these structures participate in adherence to host cells, colonization and systemic virulence. Recently, the presence of at least four discrete gene clusters encoding putative pili has been revealed in the major swine pathogen and emerging zoonotic agent Streptococcus suis. However, pili production by this species has not yet been demonstrated. In this study, we investigated the functionality of one of these pili clusters, known as the srtF pilus cluster, by the construction of mutant strains for each of the four genes of the cluster as well as by the generation of antibodies against the putative pilin subunits. Results revealed that the S. suis serotype 2 strain P1/7, as well as several other highly virulent invasive S. suis serotype 2 isolates express pili from this cluster. However, in most cases tested, and as a result of nonsense mutations at the 5′ end of the gene encoding the minor pilin subunit (a putative adhesin), pili were formed by the major pilin subunit only. We then evaluated the role these pili play in S. suis virulence. Abolishment of the expression of srtF cluster-encoded pili did not result in impaired interactions of S. suis with porcine brain microvascular endothelial cells. Furthermore, non-piliated mutants were as virulent as the wild type strain when evaluated in a murine model of S. suis sepsis. Our results show that srtF cluster-encoded, S. suis pili are atypical compared to other Gram-positive pili. In addition, since the highly virulent strains under investigation are unlikely to produce other pili, our results suggest that pili might be dispensable for critical steps of the S. suis pathogenesis of infection. PMID:20052283

  11. Identification of TNF-α-responsive promoters and enhancers in the intestinal epithelial cell model Caco-2

    DEFF Research Database (Denmark)

    Boyd, Mette; Coskun, Mehmet; Lilje, Berit

    2014-01-01

    genome-wide maps of active transcription start sites (TSSs), and active enhancers in Caco-2 cells with or without tumour necrosis factor (TNF)-α stimulation to mimic an inflammatory state. We found 520 promoters that significantly changed their usage level upon TNF-α stimulation; of these, 52......The Caco-2 cell line is one of the most important in vitro models for enterocytes, and is used to study drug absorption and disease, including inflammatory bowel disease and cancer. In order to use the model optimally, it is necessary to map its functional entities. In this study, we have generated......% are not annotated. A subset of these has the potential to confer change in protein function due to protein domain exclusion. Moreover, we locate 890 transcribed enhancer candidates, where ∼50% are changing in usage after TNF-α stimulation. These enhancers share motif enrichments with similarly responding gene...

  12. Pili play an important role in enhancing the bacterial clearance from the middle ear in a mouse model of acute otitis media with Moraxella catarrhalis.

    Science.gov (United States)

    Kawano, Toshiaki; Hirano, Takashi; Kodama, Satoru; Mitsui, Marcelo Takahiro; Ahmed, Kamruddin; Nishizono, Akira; Suzuki, Masashi

    2013-03-01

    Moraxella catarrhalis is a Gram-negative aerobic diplococcus that is currently the third most frequent cause of bacterial acute otitis media (AOM) in children. In this study, we developed an experimental murine AOM model by inoculating M. catarrhalis in the middle ear bulla and studied the local response to this inoculation, and modulation of its course by the pili of M. catarrhalis. The pili-positive and pili-negative M. catarrhalis showed differences in bacterial clearance and infiltration of inflammatory cells in the middle ear. Pili-negative M. catarrhalis induced a more delayed and prolonged immune response in the middle ear than that of pili-positive M. catarrhalis. TLR2, -4, -5 and -9 mRNA expression was upregulated in neutrophils that infiltrated the middle ear cavity during AOM caused by both pili-positive and pili-negative bacteria. TLR5 mRNA expression and TLR5 protein in the neutrophils were induced more robustly by pili-positive M. catarrhalis. This immune response is likely to be related to neutrophil function such as toll-like 5-dependent phagocytosis. Our results show that mice may provide a useful AOM model for studying the role of M. catarrhalis. Furthermore, we show that pili play an important role in enhancing M. catarrhalis clearance from the middle ear that is probably mediated through neutrophil-dependent TLR5 signaling.

  13. Jagged1 upregulation in prostate epithelial cells promotes formation of reactive stroma in the Pten null mouse model for prostate cancer

    Science.gov (United States)

    Su, Qingtai; Zhang, Boyu; Zhang, Li; Dang, Truong; Rowley, David; Ittmann, Michael; Xin, Li

    2016-01-01

    The role of Notch signaling in prostate cancer has not been defined definitively. Several large scale tissue microarray studies revealed that the expression of some Notch signaling components including the Jagged1 ligand are upregulated in advanced human prostate cancer specimens. Jagged1 expressed by tumor cells may activate Notch signaling in both adjacent tumor cells and cells in tumor microenvironment. However, it remains undetermined whether increased Jagged1 expression reflects a cause for or a consequence of tumor progression in vivo. To address this question, we generated a novel R26-LSL-JAG1 mouse model that enables spatiotemporal Jagged1 expression. Prostate specific upregulation of Jagged1 neither interferes with prostate epithelial homeostasis nor significantly accelerates tumor initiation or progression in the prostate-specific Pten deletion mouse model for prostate cancer. However, Jagged1 upregulation results in increased inflammatory foci in tumors and incidence of intracystic adenocarcinoma. In addition, Jagged1 overexpression upregulates Tgfβ signaling in prostate stromal cells and promotes progression of a reactive stromal microenvironment in the Pten null prostate cancer model. Collectively, Jagged1 overexpression does not significantly accelerate prostate cancer initiation and progression in the context of loss-of-function of Pten, but alters tumor histopathology and microenvironment. Our study also highlights an understudied role of Notch signaling in regulating prostatic stromal homeostasis. PMID:27345403

  14. Leptin promotes fetal lung maturity and upregulates SP-A expression in pulmonary alveoli type-II epithelial cells involving TTF-1 activation.

    Directory of Open Access Journals (Sweden)

    Hui Chen

    Full Text Available The placental hormone leptin has important functions in fetal and neonatal growth, and prevents depressed respiration in leptin-deficient mice. The effect of leptin on respiratory distress suffered by low birth weight and premature infants has been studied. However, it is unclear how leptin enhances lung maturity in the fetus and ameliorates neonatal respiratory distress. In the present study, we found that antenatal treatment with leptin for 2 d significantly enhanced the relative alveolus area and improved the maturity of fetal lungs in a rat model of fetal growth restriction (FGR. Mean birth weight and lung wet weight were higher in the leptin-treated group than in the PBS-treated group, indicating promotion of fetal growth. Leptin upregulated the intracellular expression and extracellular secretion of surfactant protein (SP A in type-II alveolar epithelial cells (AECs in vivo and in vitro. Dual positive effects of leptin were found on protein expression and transcriptional activity of thyroid transcription factor-1 (TTF-1, a nuclear transcription essential for branching morphogenesis of the lung and expression of SP-A in type-II AECs. Knockdown of TTF-1 by RNA interference indicated that TTF-1 may play a vital role in leptin-induced SP-A expression. These results suggest that leptin may have great therapeutic potential for the treatment of FGR, and leptin-mediated SP-A induction and lung maturity of the fetus are TTF-1 dependent.

  15. N-myc downstream regulated gene 1 (NDRG1 promotes metastasis of human scirrhous gastric cancer cells through epithelial mesenchymal transition.

    Directory of Open Access Journals (Sweden)

    Hiroki Ureshino

    Full Text Available Our recent study demonstrated that higher expression of N-myc downregulated gene 1 (NDRG1 is closely correlated with poor prognosis in gastric cancer patients. In this study, we asked whether NDRG1 has pivotal roles in malignant progression including metastasis of gastric cancer cells. By gene expression microarray analysis expression of NDRG1 showed the higher increase among a total of 3691 up-regulated genes in a highly metastatic gastric cancer cell line (58As1 than their parental low metastatic counterpart (HSC-58. The highly metastatic cell lines showed decreased expression of E-cadherin, together with enhanced expression of vimentin and Snail. This decreased expression of E-cadherin was restored by Snail knockdown in highly metastatic cell lines. We next established stable NDRG1 knockdown cell lines (As1/Sic50 and As1/Sic54 from the highly metastatic cell line, and both of these cell lines showed enhanced expression of E-cadherin and decreased expression of vimentin and Snail. And also, E-cadherin promoter-driven luciferase activity was found to be increased by NDRG1 knockdown in the highly metastatic cell line. NDRG1 knockdown in gastric cancer cell showed suppressed invasion of cancer cells into surround tissues, suppressed metastasis to the peritoneum and decreased ascites accumulation in mice with significantly improved survival rates. This is the first study to demonstrate that NDRG1 plays its pivotal role in the malignant progression of gastric cancer through epithelial mesenchymal transition.

  16. Human amniotic epithelial stem cells promote wound healing by facilitating migration and proliferation of keratinocytes via ERK, JNK and AKT signaling pathways.

    Science.gov (United States)

    Zhao, Bin; Liu, Jia-Qi; Zheng, Zhao; Zhang, Jun; Wang, Shu-Yue; Han, Shi-Chao; Zhou, Qin; Guan, Hao; Li, Chao; Su, Lin-Lin; Hu, Da-Hai

    2016-07-01

    Wound healing is a highly orchestrated physiological process consisting in a complex interaction of cellular and biochemical events. Human amniotic epithelial stem cells (HAESCs) have been shown to be an attractive resource for wound healing because they are primitive stem cells. However, the exact effects of amnion-derived stem cells on the migration or proliferation of keratinocytes and their potential mechanism are not fully understood. We have found that HAESCs accelerate the migration of keratinocytes and induce a remarkable increase in the activity of phospho-ERK, phospho-JNK, and phospho-AKT, the blockade of which by their specific inhibitors significantly inhibits migration induced by HAESC-conditioned medium (CM). Furthermore, the co-culture of keratinocytes with HAESCs up-regulates the expression levels of cell proliferation proteins Cyclin D1, Cyclin D3 and Mdm2. In vivo animal experiments have shown that HAESC-CM improves wound healing, whereas blockade with ERK, JNK and AKT inhibitors significantly impairs wound healing. Taken together, these results reveal, for the first time, that HAESCs promote wound healing by facilitating the migration and proliferation of keratinocytes via ERK, JNK and AKT signaling pathways and might be a potential therapy in skin wound healing.

  17. Valproic acid (VPA) promotes the epithelial mesenchymal transition of hepatocarcinoma cells via transcriptional and post-transcriptional up regulation of Snail.

    Science.gov (United States)

    Wu, Lei; Feng, Hua; Hu, Jinhua; Tian, Xiangguo; Zhang, Chunqing

    2016-12-01

    Due to the low cost and favorable safety profile, valproic acid (VPA) has been considered as a potential candidate drug for therapy of various cancers. Our present study revealed that VPA, at the concentration (1mM) which has no effect on cell proliferation, can significantly increase the in vitro migration and invasion of hepatocarcinoma (HCC) HepG2 and Huh7 cells via induction of epithelial mesenchymal transition (EMT). VPA treatment can significantly increase the mRNA and protein expression of Snail, the key transcription factor of EMT. While knockdown of Snail can abolish VPA induced EMT of HCC cells. It suggested that Snail is essential for VPA induced EMT of HCC cells. VPA treatment also increased the phosphorylation of NF-κB p65. BAY 11-7082, the inhibitor of NF-κB, can significantly abolish VPA induced up regulation of Snail mRNA. Furthermore, VPA can increase the protein expression of Snail since 1h treatment via up regulation of half-lives of Snail protein. The increased protein stabilization of Snail can be attributed to VPA induced phosphorylation of Akt and GSK-3β. Collectively, our present study revealed that VPA can promote the EMT of HCC cells via up regulation of Snail through activation of NF-κB and Akt/GSK-3β signals. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  18. Teriflunomide (Leflunomide Promotes Cytostatic, Antioxidant, and Apoptotic Effects in Transformed Prostate Epithelial Cells: Evidence Supporting a Role for Teriflunomide in Prostate Cancer Chemoprevention

    Directory of Open Access Journals (Sweden)

    Numsen Hail, Jr

    2010-06-01

    Full Text Available Teriflunomide (TFN is an inhibitor of de novo pyrimidine synthesis and the active metabolite of leflunomide. Leflunomide is prescribed to patients worldwide as an immunomodulatory and anti-inflammatory disease-modifying prodrug. Leflunomide inhibited the growth of human prostate cancer xenographs in mice, and leflunomide or TFN promoted cytostasis and/or apoptosis in cultured cells. These findings suggest that TFN could be useful in prostate cancer chemoprevention. We investigated the possible mechanistic aspects of this tenet by characterizing the effects of TFN using premalignant PWR-1E and malignant DU-145 human prostate epithelial cells. TFN promoted a dose- and time-dependent cytostasis or apoptosis induction in these cells. The cytostatic effects of TFN, which were reversible but not by the presence of excess uridine in the culture medium, included diminished cellular uridine levels, an inhibition in oxygen consumption, a suppression of reactive oxygen species (ROS generation, S-phase cell cycle arrest, and a conspicuous reduction in the size and number of the nucleoli in the nuclei of these cells. Conversely, TFN's apoptogenic effects were characteristic of catastrophic mitochondrial disruption (i.e., a dissipation of mitochondrial inner transmembrane potential, enhanced ROS production, mitochondrial cytochrome c release, and cytoplasmic vacuolization and followed by DNA fragmentation. The respiration-deficient derivatives of the DU-145 cells, which are also uridine auxotrophs, were markedly resistant to the cytostatic and apoptotic effects of TFN, implicating de novo pyrimidine synthesis and mitochondrial bioenergetics as the primary targets for TFN in the respiration competent cells. These mechanistic findings advocate a role for TFN and mitochondrial bioenergetics in prostate cancer chemoprevention.

  19. Human breast adipose‑derived stem cells: characterization and differentiation into mammary gland‑like epithelial cells promoted by autologous activated platelet‑rich plasma.

    Science.gov (United States)

    Cui, Shi-En; Li, Hong-Mian; Liu, Da-Lie; Nan, Hua; Xu, Kun-Ming; Zhao, Pei-Ran; Liang, Shuang-Wu

    2014-08-01

    Human adipose‑derived stem cells (ASCs) isolated from various body sites have been widely investigated in basic and clinical studies. However, ASCs derived from human breast tissue (hbASCs) have not been extensively investigated. In order to expand our understanding of hbASCs and examine their potential applications in stem cell research and cell‑based therapy, hbASCs were isolated from discarded surgical fat tissue following reduction mammoplasty and a comprehensive characterization of these hbASCs was performed, including analysis of their cellular morphology, growth features, cell surface protein markers and multilineage differentiation capacity. These hbASCs expressed cluster of differentiation (CD)44, CD49d, CD90 and CD105, but did not express CD31 and CD34. Subsequently, the hbASCs were differentiated into adipocytes, osteocytes and chondrocytes in vitro. In order to examine the potential applications of hbASCs in breast reconstruction, an approach to promote in vitro differentiation of hbASCs into mammary gland‑like epithelial cells (MGECs) was developed using activated autologous platelet‑rich plasma (PRP). A proliferation phase and a subsequent morphological conversion phase were observed during this differentiation process. PRP significantly promoted the growth of hbASCs in the proliferation phase and increased the eventual conversion rate of hbASCs into MGECs. Thus, to the best of our knowledge, the present study provided the first comprehensive characterization of hbASCs and validated their multipotency. Furthermore, it was revealed that activated autologous PRP was able to enhance the differentiation efficiency of hbASCs into MGECs. The present study and other studies of hbASCs may aid the development of improved breast reconstruction strategies.

  20. miR-181b-3p promotes epithelial-mesenchymal transition in breast cancer cells through Snail stabilization by directly targeting YWHAG.

    Science.gov (United States)

    Yoo, Je-Ok; Kwak, Seo-Young; An, Hyun-Ju; Bae, In-Hwa; Park, Myung-Jin; Han, Young-Hoon

    2016-07-01

    Epithelial-mesenchymal transition (EMT) is essential for increased invasion and metastasis during cancer progression. Among the candidate EMT-regulating microRNAs that we previously identified, miR-181b-3p was found to induce EMT in MCF7 breast cancer cells, as indicated by an EMT-characteristic morphological change, increased invasiveness, and altered expression of an EMT marker. Transfection with a miR-181b-3p inhibitor reduced the expression of mesenchymal markers and the migration and invasion of highly invasive breast cancer cells. miR-181b-3p induced the upregulation of Snail, a master EMT inducer and transcriptional repressor of E-cadherin, through protein stabilization. YWHAG was identified as a direct target of miR-181b-3p, downregulation of which induced Snail stabilization and EMT phenotypes. Ectopic expression of YWHAG abrogated the effect of miR-181b-3p, including Snail stabilization and the promotion of invasion. In situ hybridization and immunohistochemical analyses indicated that YWHAG expression was inversely correlated with the expression of miR-181b-3p and Snail in human breast cancer tissues. Furthermore, transfection with miR-181b-3p increased the frequency of metastatic nodule formation in the lungs of mice in experimental metastasis assays using MDA-MB-231 cells. Taken together, our data suggest that miR-181b-3p functions as a metastasis activator by promoting Snail-induced EMT, and may therefore be a therapeutic target in metastatic cancers.

  1. Hes1 triggers epithelial-mesenchymal transition (EMT)-like cellular marker alterations and promotes invasion and metastasis of nasopharyngeal carcinoma by activating the PTEN/AKT pathway.

    Science.gov (United States)

    Wang, Sheng-Chun; Lin, Xiao-Lin; Wang, Hui-Yan; Qin, Yu-Juan; Chen, Lin; Li, Jing; Jia, Jun-Shuang; Shen, Hong-Fen; Yang, Sheng; Xie, Rao-Ying; Wei, Fang; Gao, Fei; Rong, Xiao-Xiang; Yang, Jie; Zhao, Wen-Tao; Zhang, Ting-Ting; Shi, Jun-Wen; Yao, Kai-Tai; Luo, Wei-Ren; Sun, Yan; Xiao, Dong

    2015-11-03

    Overexpression of the transcriptional factor Hes1 (hairy and enhancer of split-1) has been observed in numerous cancers, but the precise roles of Hes1 in epithelial-mesenchymal transition (EMT), cancer invasion and metastasis remain unknown. Our current study firstly revealed that Hes1 upregulation in a cohort of human nasopharyngeal carcinoma (NPC) biopsies is significantly associated with the EMT, invasive and metastatic phenotypes of cancer. In the present study, we found that Hes1 overexpression triggered EMT-like cellular marker alterations of NPC cells, whereas knockdown of Hes1 through shRNA reversed the EMT-like phenotypes, as strongly supported by Hes1-mediated EMT in NPC clinical specimens described above. Gain-of-function and loss-of-function experiments demonstrated that Hes1 promoted the migration and invasion of NPC cells in vitro. In addition, exogenous expression of Hes1 significantly enhanced the metastatic ability of NPC cells in vivo. Chromatin immunoprecipitation (ChIP) assays showed that Hes1 inhibited PTEN expression in NPC cells through binding to PTEN promoter region. Increased Hes1 expression and decreased PTEN expression were also observed in a cohort of NPC biopsies. Additional studies demonstrated that Hes1-induced EMT-like molecular changes and increased motility and invasion of NPC cells were mediated by PTEN. Taken together, our results suggest, for what we believe is the first time, that Hes1 plays an important role in the invasion and metastasis of NPC through inhibiting PTEN expression to trigger EMT-like phenotypes.

  2. Controlled water vapor transmission rate promotes wound-healing via wound re-epithelialization and contraction enhancement

    Science.gov (United States)

    Xu, Rui; Xia, Hesheng; He, Weifeng; Li, Zhichao; Zhao, Jian; Liu, Bo; Wang, Yuzhen; Lei, Qiang; Kong, Yi; Bai, Yang; Yao, Zhihui; Yan, Rongshuai; Li, Haisheng; Zhan, Rixing; Yang, Sisi; Luo, Gaoxing; Wu, Jun

    2016-04-01

    A desirable microenvironment is essential for wound healing, in which an ideal moisture content is one of the most important factors. The fundamental function and requirement for wound dressings is to keep the wound at an optimal moisture. Here, we prepared serial polyurethane (PU) membrane dressings with graded water vapor transmission rates (WVTRs), and the optimal WVTR of the dressing for wound healing was identified by both in vitro and in vivo studies. It was found that the dressing with a WVTR of 2028.3 ± 237.8 g/m2·24 h was able to maintain an optimal moisture content for the proliferation and regular function of epidermal cells and fibroblasts in a three-dimensional culture model. Moreover, the dressing with this optimal WTVR was found to be able to promote wound healing in a mouse skin wound model. Our finds may be helpful in the design of wound dressing for wound regeneration in the future.

  3. Long noncoding RNA SPRY4-IT1 promotes esophageal squamous cell carcinoma cell proliferation, invasion, and epithelial-mesenchymal transition.

    Science.gov (United States)

    Cui, Fei; Wu, Duoguang; He, Xiaotian; Wang, Wenjian; Xi, Jingle; Wang, Minghui

    2016-08-01

    The biology of esophageal squamous cell carcinoma (ESCC) remains poorly understood. Long noncoding RNAs (lncRNAs) are found to be dysregulated in a variety of cancers, including ESCC. SPRY4-IT1 has been recently revealed as oncogenic regulator or tumor suppressors in different cancers; however, whether SPRY4-IT1 is involved in ESCC remains poorly understood. To investigate the role of SPRY4-IT1 in ESCC, we evaluated the SPRY4-IT1 expression levels in a series of ESCC patients and a panel of ESCC cell line using qRT-PCR. CCK8 and colony formation assay were performed to assess the effect of SPRY4-IT1siRNA on cell proliferation, migration, and invasion of ESCC cell lines. SPRY4-IT1 expression was upregulated in ESCC tissues and the higher expression of SPRY4-IT1 was significantly correlated with tumor grade, depth of invasion, and lymph node metastasis. Moreover, silencing of SPRY4-IT1 expression inhibited ESCC cell proliferation, colony formation, migration, and invasion. Therefore, our study indicates that SPRY4-IT1 promotes proliferation and migration of ESCC cells and is a potential oncogene of ESCC.

  4. Chlamydia trachomatis Infection Is Associated with E-Cadherin Promoter Methylation, Downregulation of E-Cadherin Expression, and Increased Expression of Fibronectin and α-SMA—Implications for Epithelial-Mesenchymal Transition

    Directory of Open Access Journals (Sweden)

    Jovana Rajić

    2017-06-01

    Full Text Available Chlamydia trachomatis (Ct can induce scarring disease of the ocular mucosa, known as trachoma, the most common infectious cause of blindness worldwide. We hypothesized that epithelial-mesenchymal transition (EMT contributes to the fibrotic process in trachomatous scarring. Infection of human conjunctival epithelial cells (HCjE with Ct activated signaling pathways involved in EMT induction, which was correlated with decreased expression of E-cadherin, guardian of the epithelial phenotype. In addition, Ct infection was associated with increased expression of two mesenchymal cell markers: fibronectin and α-SMA. The DNA methylation statuses of selected regions of E-cadherin, fibronectin, and α-SMA genes revealed that Ct infection was accompanied with changes in DNA methylation of the E-cadherin promoter, while the expression of the two mesenchymal markers was not related with this epigenetic event. Our data suggest that Ct infection of conjunctival epithelial cells induces EMT-like changes that go along with modification of the methylation profile of the E-cadherin promoter and could, as one of the earliest events, contribute to processes triggering conjunctival scarring.

  5. Core 3 mucin-type O-glycan restoration in colorectal cancer cells promotes MUC1/p53/miR-200c-dependent epithelial identity.

    Science.gov (United States)

    Ye, J; Wei, X; Shang, Y; Pan, Q; Yang, M; Tian, Y; He, Y; Peng, Z; Chen, L; Chen, W; Wang, R

    2017-07-24

    The attachment of cell-surface carbohydrates to proteins mediated by the amino acids serine or threonine (O-glycan) is involved in tumor metastasis; the roles of O-glycans vary depending on their structure, but the detailed mechanisms by which O-glycans trigger signaling to control tumor metastasis are largely unknown. In this study, we found that the reduced expression of core 3 synthase correlated with metastasis to lymph nodes and distant organs, resulting in poor prognosis for colorectal cancer (CRC) patients. Mechanically, we revealed that mucin-type core 3 O-glycan was synthesized at the membrane-tethered MUC1 N terminus because of core 3 synthase expression in colon cancer cells. This further inhibited the translocation of MUC1-C to the nucleus, initiated p53 gene transcription that was dependent on the inhibition of MUC1-C nucleus translocation, activated p53-mediated miR-200c expression and resulted in mesenchymal-epithelial transition (MET). Inhibition of MUC1 via small interfering RNA (siRNA) in re-expressed core 3 synthase colon cancer cells further inhibited MUC1-C nucleus translocation, increased p53 and miR-200c expression, and enhanced MET. However, inhibition of p53 via siRNA or miR-200c via miR-200c inhibitor in re-expressed core 3 synthase colon cancer cells promoted the epithelial-mesenchymal transition (EMT) in a reversible manner. Core 3 synthase mRNA levels and the p53 mRNA levels or miR-200c levels in the colon cancerous samples were positively correlated. Our findings suggest a novel mechanism linking mucin-type core 3 O-glycan to the EMT-MET plasticity of CRC cells via MUC1/p53/miR-200c-dependent signaling cascade and shed light on therapeutic strategies to treat this malignancy.Oncogene advance online publication, 24 July 2017; doi:10.1038/onc.2017.241.

  6. Pigment epithelial-derived factor gene loaded novel COOH-PEG-PLGA-COOH nanoparticles promoted tumor suppression by systemic administration.

    Science.gov (United States)

    Yu, Ting; Xu, Bei; He, Lili; Xia, Shan; Chen, Yan; Zeng, Jun; Liu, Yongmei; Li, Shuangzhi; Tan, Xiaoyue; Ren, Ke; Yao, Shaohua; Song, Xiangrong

    2016-01-01

    Anti-angiogenesis has been proposed as an effective therapeutic strategy for cancer treatment. Pigment epithelium-derived factor (PEDF) is one of the most powerful endogenous anti-angiogenic reagents discovered to date and PEDF gene therapy has been recognized as a promising treatment option for various tumors. There is an urgent need to develop a safe and valid vector for its systemic delivery. Herein, a novel gene delivery system based on the newly synthesized copolymer COOH-PEG-PLGA-COOH (CPPC) was developed in this study, which was probably capable of overcoming the disadvantages of viral vectors and cationic lipids/polymers-based nonviral carriers. PEDF gene loaded CPPC nanoparticles (D-NPs) were fabricated by a modified double-emulsion water-in-oil-in-water (W/O/W) solvent evaporation method. D-NPs with uniform spherical shape had relatively high drug loading (~1.6%), probably because the introduced carboxyl group in poly (D,L-lactide-co-glycolide) terminal enhanced the interaction of copolymer with the PEDF gene complexes. An excellent in vitro antitumor effect was found in both C26 and A549 cells treated by D-NPs, in which PEDF levels were dramatically elevated due to the successful transfection of PEDF gene. D-NPs also showed a strong inhibitory effect on proliferation of human umbilical vein endothelial cells in vitro and inhibited the tumor-induced angiogenesis in vivo by an alginate-encapsulated tumor cell assay. Further in vivo antitumor investigation, carried out in a C26 subcutaneous tumor model by intravenous injection, demonstrated that D-NPs could achieve a significant antitumor activity with sharply reduced microvessel density and significantly promoted tumor cell apoptosis. Additionally, the in vitro hemolysis analysis and in vivo serological and biochemical analysis revealed that D-NPs had no obvious toxicity. All the data indicated that the novel CPPC nanoparticles were ideal vectors for the systemic delivery of PEDF gene and might be widely

  7. Serine-Rich Repeat Proteins and Pili Promote Streptococcus agalactiae Colonization of the Vaginal Tract

    NARCIS (Netherlands)

    Sheen, Tamsin R.; Jimenez, Alyssa; Wang, Nai-Yu; Banerjee, Anirban; van Sorge, Nina M.; Doran, Kelly S.

    2011-01-01

    Streptococcus agalactiae (group B streptococcus [GBS]) is a Gram-positive bacterium found in the female rectovaginal tract and is capable of producing severe disease in susceptible hosts, including newborns and pregnant women. The vaginal tract is considered a major reservoir for GBS, and maternal v

  8. Pigment epithelial-derived factor gene loaded novel COOH-PEG-PLGA-COOH nanoparticles promoted tumor suppression by systemic administration

    Directory of Open Access Journals (Sweden)

    Yu T

    2016-02-01

    proliferation of human umbilical vein endothelial cells in vitro and inhibited the tumor-induced angiogenesis in vivo by an alginate-encapsulated tumor cell assay. Further in vivo antitumor investigation, carried out in a C26 subcutaneous tumor model by intravenous injection, demonstrated that D-NPs could achieve a significant antitumor activity with sharply reduced microvessel density and significantly promoted tumor cell apoptosis. Additionally, the in vitro hemolysis analysis and in vivo serological and biochemical analysis revealed that D-NPs had no obvious toxicity. All the data indicated that the novel CPPC nanoparticles were ideal vectors for the systemic delivery of PEDF gene and might be widely used as systemic gene vectors. Keywords: pigment epithelium-derived factor gene, nanoparticles based on PLGA derivative, gene delivery, systemic delivery, tumor

  9. Cooperative role for tetraspanins in adhesin-mediated attachment of bacterial species to human epithelial cells.

    Science.gov (United States)

    Green, Luke R; Monk, Peter N; Partridge, Lynda J; Morris, Paul; Gorringe, Andrew R; Read, Robert C

    2011-06-01

    The tetraspanins are a superfamily of transmembrane proteins with diverse functions and can form extended microdomains within the plasma membrane in conjunction with partner proteins, which probably includes receptors for bacterial adhesins. Neisseria meningitidis, the causative agent of meningococcal disease, attaches to host nasopharyngeal epithelial cells via type IV pili and opacity (Opa) proteins. We examined the role of tetraspanin function in Neisseria meningitidis adherence to epithelial cells. Tetraspanins CD9, CD63, and CD151 were expressed by HEC-1-B and DETROIT 562 cells. Coincubation of cells with antibodies against all three tetraspanin molecules used individually or in combination, with recombinant tetraspanin extracellular domains (EC2), or with small interfering RNAs (siRNAs) significantly reduced adherence of Neisseria meningitidis. In contrast, recombinant CD81, a different tetraspanin, had no effect on meningococcal adherence. Antitetraspanin antibodies reduced the adherence to epithelial cells of Neisseria meningitidis strain derivatives expressing Opa and pili significantly more than isogenic strains lacking these determinants. Adherence to epithelial cells of strains of Staphylococcus aureus, Neisseria lactamica, Escherichia coli, and Streptococcus pneumoniae was also reduced by pretreatment of cells with tetraspanin antibodies and recombinant proteins. These data suggest that tetraspanins are required for optimal function of epithelial adhesion platforms containing specific receptors for Neisseria meningitidis and potentially for multiple species of bacteria.

  10. Autocrine Acetylcholine, Induced by IL-17A via NFκB and ERK1/2 Pathway Activation, Promotes MUC5AC and IL-8 Synthesis in Bronchial Epithelial Cells

    Directory of Open Access Journals (Sweden)

    Angela Marina Montalbano

    2016-01-01

    Full Text Available IL-17A is overexpressed in the lung during acute neutrophilic inflammation. Acetylcholine (ACh increases IL-8 and Muc5AC production in airway epithelial cells. We aimed to characterize the involvement of nonneuronal components of cholinergic system on IL-8 and Muc5AC production in bronchial epithelial cells stimulated with IL-17A. Bronchial epithelial cells were stimulated with recombinant human IL-17A (rhIL-17A to evaluate the ChAT expression, the ACh binding and production, the IL-8 release, and the Muc5AC production. Furthermore, the effectiveness of PD098,059 (inhibitor of MAPKK activation, Bay11-7082 (inhibitor of IkBα phosphorylation, Hemicholinium-3 (HCh-3 (choline uptake blocker, and Tiotropium bromide (Spiriva® (anticholinergic drug was tested in our in vitro model. We showed that rhIL-17A increased the expression of ChAT, the levels of ACh binding and production, and the IL-8 and Muc5AC production in stimulated bronchial epithelial cells compared with untreated cells. The pretreatment of the cells with PD098,059 and Bay11-7082 decreased the ChAT expression and the ACh production/binding, while HCh-3 and Tiotropium decreased the IL-8 and Muc5AC synthesis in bronchial epithelial cells stimulated with rhIL-17A. IL-17A is involved in the IL-8 and Muc5AC production promoting, via NFκB and ERK1/2 pathway activation, the synthesis of ChAT, and the related activity of autocrine ACh in bronchial epithelial cells.

  11. Upregulation of kazrin F by miR-186 suppresses apoptosis but promotes epithelial-mesenchymal transition to contribute to malignancy in human cervical cancer cells.

    Science.gov (United States)

    Liu, Chang; Wang, Jinghua; Hu, Yang; Xie, Hong; Liu, Min; Tang, Hua

    2017-02-01

    Previous studies have identified that kazrin is a constituent of desmosome and influences intercellular adhesion, growing development and morphology. We previously cloned another new isoform, kazrin F and found that it has anti-apoptotic effects on human glioma cell line. To further explore whether kazrin F is involved in tumorigenesis, we investigated its expression and role in cervical cancer (CC) cells. The role of kazrin F and miR-186 in CC was determined by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, colony formation, transwell, and apoptosis assays. Using enhanced green fluorescent protein (EGFP) reporter assays, reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and western blot analysis, we identified kazrin F post-transcriptional regulation by miR-186. We demonstrate that kazrin F is highly expressed in CC tissues compared with the adjacent noncancerous tissues and promotes cell proliferation, colony formation, migration and invasion in HeLa and C33A cells by suppressing apoptosis and facilitating epithelial-to-mesenchymal transition (EMT). Furthermore, miR-186 was confirmed as a regulator of kazrin F dysregulation. An EGFP reporter assay proved that miR-186 directly targets the 3'-untranslated region (3'UTR) of kazrin F and downregulates its expression, and miR-186 expression showed an inverse correlation with kazrin F levels in CC tissues. In addition, overexpression of miR-186 suppressed the malignant behaviors of CC cells. The ectopic expression of kazrin F rescued the inhibitory effects of miR-186. Our findings indicate that the upregulation of kazrin F due to downregulated miR-186 levels contributes to malignancy, and highlight the significance of kazrin F in CC tumorigenesis.

  12. Upregulation of kazrin F by miR-186 suppresses apoptosis but promotes epithelial-mesenchymal transition to contribute to malignancy in human cervical cancer cells

    Science.gov (United States)

    Liu, Chang; Wang, Jinghua; Hu, Yang; Xie, Hong; Liu, Min; Tang, Hua

    2017-01-01

    Objective Previous studies have identified that kazrin is a constituent of desmosome and influences intercellular adhesion, growing development and morphology. We previously cloned another new isoform, kazrin F and found that it has anti-apoptotic effects on human glioma cell line. To further explore whether kazrin F is involved in tumorigenesis, we investigated its expression and role in cervical cancer (CC) cells. Methods The role of kazrin F and miR-186 in CC was determined by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, colony formation, transwell, and apoptosis assays. Using enhanced green fluorescent protein (EGFP) reporter assays, reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and western blot analysis, we identified kazrin F post-transcriptional regulation by miR-186. Results We demonstrate that kazrin F is highly expressed in CC tissues compared with the adjacent noncancerous tissues and promotes cell proliferation, colony formation, migration and invasion in HeLa and C33A cells by suppressing apoptosis and facilitating epithelial-to-mesenchymal transition (EMT). Furthermore, miR-186 was confirmed as a regulator of kazrin F dysregulation. An EGFP reporter assay proved that miR-186 directly targets the 3’-untranslated region (3’UTR) of kazrin F and downregulates its expression, and miR-186 expression showed an inverse correlation with kazrin F levels in CC tissues. In addition, overexpression of miR-186 suppressed the malignant behaviors of CC cells. The ectopic expression of kazrin F rescued the inhibitory effects of miR-186. Conclusions Our findings indicate that the upregulation of kazrin F due to downregulated miR-186 levels contributes to malignancy, and highlight the significance of kazrin F in CC tumorigenesis. PMID:28373753

  13. Macrophages promote benzopyrene-induced tumor transformation of human bronchial epithelial cells by activation of NF-κB and STAT3 signaling in a bionic airway chip culture and in animal models.

    Science.gov (United States)

    Li, Encheng; Xu, Zhiyun; Zhao, Hui; Sun, Zhao; Wang, Lei; Guo, Zhe; Zhao, Yang; Gao, Zhancheng; Wang, Qi

    2015-04-20

    We investigated the role of macrophages in promoting benzopyrene (BaP)-induced malignant transformation of human bronchial epithelial cells using a BaP-induced tumor transformation model with a bionic airway chip in vitro and in animal models. The bionic airway chip culture data showed that macrophages promoted BaP-induced malignant transformation of human bronchial epithelial cells, which was mediated by nuclear factor (NF)-κB and STAT3 pathways to induce cell proliferation, colony formation in chip culture, and tumorigenicity in nude mice. Blockage of interleukin (IL)-6 or tumor necrosis factor (TNF)-α signaling or inhibition of NF-κB, STAT3, or cyclinD1 expression abrogated the effect of macrophages on malignant transformation in the bionic airway chip culture. In vivo, macrophages promoted lung tumorigenesis in a carcinogen-induced animal model. Similarly, blockage of NF-κB, STAT3, or cyclinD1 using siRNA transfection decreased the carcinogen-induced tumorigenesis in rats. We demonstrated that macrophages are critical in promoting lung tumorigenesis and that the macrophage-initiated TNF-α/NF-κB/cyclinD1 and IL-6/STAT3/cyclinD1 pathways are primarily responsible for promoting lung tumorigenesis.

  14. H-NS Nucleoid Protein Controls Virulence Features of Klebsiella pneumoniae by Regulating the Expression of Type 3 Pili and the Capsule Polysaccharide

    Science.gov (United States)

    Ares, Miguel A.; Fernández-Vázquez, José L.; Rosales-Reyes, Roberto; Jarillo-Quijada, Ma. Dolores; von Bargen, Kristine; Torres, Javier; González-y-Merchand, Jorge A.; Alcántar-Curiel, María D.; De la Cruz, Miguel A.

    2016-01-01

    Klebsiella pneumoniae is an opportunistic pathogen causing nosocomial infections. Main virulence determinants of K. pneumoniae are pili, capsular polysaccharide, lipopolysaccharide, and siderophores. The histone-like nucleoid-structuring protein (H-NS) is a pleiotropic regulator found in several gram-negative pathogens. It has functions both as an architectural component of the nucleoid and as a global regulator of gene expression. We generated a Δhns mutant and evaluated the role of the H-NS nucleoid protein on the virulence features of K. pneumoniae. A Δhns mutant down-regulated the mrkA pilin gene and biofilm formation was affected. In contrast, capsule expression was derepressed in the absence of H-NS conferring a hypermucoviscous phenotype. Moreover, H-NS deficiency affected the K. pneumoniae adherence to epithelial cells such as A549 and HeLa cells. In infection experiments using RAW264.7 and THP-1 differentiated macrophages, the Δhns mutant was less phagocytized than the wild-type strain. This phenotype was likely due to the low adherence to these phagocytic cells. Taken together, our data indicate that H-NS nucleoid protein is a crucial regulator of both T3P and CPS of K. pneumoniae. PMID:26904512

  15. Murine Butyrophilin-like (Btnl 1 and Btnl6 form heteromeric complexes in small intestinal epithelial cells and promote proliferation of local T lymphocytes

    Directory of Open Access Journals (Sweden)

    Cristina eLebrero-Fernández

    2016-01-01

    Full Text Available To date, few molecular conduits mediating the cross-talk between intestinal epithelial cells and intraepithelial lymphocytes (IELs have been described. We recently showed that Butyrophilin-like (Btnl 1 can attenuate the epithelial response to activated IELs, resulting in reduced production of pro-inflammatory mediators such as IL-6 and CXCL1. We here report that like Btnl1, murine Btnl6 expression is primarily confined to the intestinal epithelium. Although Btnl1 can exist in a cell surface-expressed homomeric form, we found that it additionally forms heteromeric complexes with Btnl6, and that the engagement of Btnl1 is a prerequisite for surface expression of Btnl6 on intestinal epithelial cells. In an IEL-epithelial cell co-culture system, enforced epithelial cell expression of Btnl1 significantly enhanced the proliferation of IELs in the absence of exogenous activation. The effect on proliferation was dependent on the presence of IL-2 or IL-15 and restricted to IELs upregulating CD25. In the gamma delta (gd T-cell subset, the Btnl1-Btnl6 complex, but not Btnl1, specifically elevated the proliferation of IELs bearing the Vg7Vd4 receptor. Thus, our results show that murine epithelial cell-specific Btnl proteins can form intrafamily heterocomplexes, and suggest that the interaction between Btnl proteins and IELs regulates the expansion of IELs in the intestinal mucosa.

  16. Structural characterization of outer membrane components of the type IV pili system in pathogenic Neisseria.

    Directory of Open Access Journals (Sweden)

    Samta Jain

    Full Text Available Structures of the type IV pili secretin complexes from Neisseria gonorrhoeae and Neisseria meningitidis, embedded in outer membranes were investigated by transmission electron microscopy. Single particle averaging revealed additional domains not observed previously. Secretin complexes of N. gonorrhoeae showed a double ring structure with a 14-15-fold symmetry in the central ring, and a 14-fold symmetry of the peripheral ring with 7 spikes protruding. In secretin complexes of N. meningitidis, the spikes were absent and the peripheral ring was partly or completely lacking. When present, it had a 19-fold symmetry. The structures of the complexes in several pil mutants were determined. Structures obtained from the pilC1/C2 adhesin and the pilW minor pilin deletion strains were similar to wild-type, whereas deletion of the homologue of N. meningitidis PilW resulted in the absence of secretin structures. Remarkably, the pilE pilin subunit and pilP lipoprotein deletion mutants showed a change in the symmetry of the peripheral ring from 14 to 19 and loss of spikes. The pilF ATPase mutant also lost the spikes, but maintained 14-fold symmetry. These results show that secretin complexes contain previously unidentified large and flexible extra domains with a probable role in stabilization or assembly of type IV pili.

  17. A helynevek szerepe az alternatív ideologikus gondolkodásban I. A Pilis-kultusz esete [The role of place names in an alternative ideological mindset I. The case of the Pilis Cult

    Directory of Open Access Journals (Sweden)

    Imreh, Réka

    2014-12-01

    Full Text Available This paper focuses on the role of place names in defining and legitimizing the identity of a subculture through the example of a complex contemporary alternative social phenomenon known as the Pilis Cult. The Pilis Cult, which is also linked with some other alternative theories (Sumerian–Hungarian linguistic affinity, root linguistics, The Holy Crown Doctrine, claims that the Pilis Mountains as a spiritual space have a special role in Hungarian history. In the specific attitude to language and place names adopted by this subculture, one can recognize elements similar to those of ancient and medieval magical thinking. These can be observed in the interpretation of place names of the mountains, in which associations connected to the phonetic forms or the semantics of the place names may turn these toponyms into “telling names”, proving 120 Imreh Réka the antiquity and spirituality of the area. This etymological-associative narration is illustrated in the paper with the examples of the place names Pilis and Dobogó-kő. The interpretations of these names commingling with the alternative ideas connected to the denotata themselves (e.g. heart chakra theory; Proto-Buda Theories establish a unified argumentation framework. The paper argues that even a linguistically unorthodox subculture – alongside its specific ideology – may emphasize aspects of the study of place names through which our knowledge can be expanded with respect, for instance, to the functional logic behind place names.

  18. Upregulation of ATG3 contributes to autophagy induced by the detachment of intestinal epithelial cells from the extracellular matrix, but promotes autophagy-independent apoptosis of the attached cells.

    Science.gov (United States)

    Yoo, Byong Hoon; Zagryazhskaya, Anna; Li, Yongling; Koomson, Ananda; Khan, Iman Aftab; Sasazuki, Takehiko; Shirasawa, Senji; Rosen, Kirill V

    2015-01-01

    Detachment of nonmalignant intestinal epithelial cells from the extracellular matrix (ECM) triggers their growth arrest and, ultimately, apoptosis. In contrast, colorectal cancer cells can grow without attachment to the ECM. This ability is critical for their malignant potential. We found previously that detachment-induced growth arrest of nonmalignant intestinal epithelial cells is driven by their detachment-triggered autophagy, and that RAS, a major oncogene, promotes growth of detached cells by blocking such autophagy. In an effort to identify the mechanisms of detachment-induced autophagy and growth arrest of nonmalignant cells we found here that detachment of these cells causes upregulation of ATG3 and that ATG3 upregulation contributes to autophagy and growth arrest of detached cells. We also observed that when ATG3 expression is artificially increased in the attached cells, ATG3 promotes neither autophagy nor growth arrest but triggers their apoptosis. ATG3 upregulation likely promotes autophagy of the detached but not that of the attached cells because detachment-dependent autophagy requires other detachment-induced events, such as the upregulation of ATG7. We further observed that those few adherent cells that do not die by apoptosis induced by ATG3 become resistant to apoptosis caused by cell detachment, a property that is critical for the ability of normal epithelial cells to become malignant. We conclude that cell-ECM adhesion can switch ATG3 functions: when upregulated in detached cells in the context of other autophagy-promoting events, ATG3 contributes to autophagy. However, when overexpressed in the adherent cells, in the circumstances not favoring autophagy, ATG3 triggers apoptosis.

  19. Pseudomonas aeruginosa bacteriophage PA1Ø requires type IV pili for infection and shows broad bactericidal and biofilm removal activities.

    Science.gov (United States)

    Kim, Shukho; Rahman, Marzia; Seol, Sung Yong; Yoon, Sang Sun; Kim, Jungmin

    2012-09-01

    We isolated a new lytic Pseudomonas aeruginosa phage that requires type IV pili for infection. PA1Ø has a broad bactericidal spectrum, covering Gram-positive and Gram-negative bacteria, and can eradicate biofilm cells. PA1Ø may be developed as a therapeutic agent for biofilm-related mixed infections with P. aeruginosa and Staphylococcus aureus.

  20. The commensal Streptococcus salivarius K12 downregulates the innate immune responses of human epithelial cells and promotes host-microbe homeostasis.

    Science.gov (United States)

    Cosseau, Celine; Devine, Deirdre A; Dullaghan, Edie; Gardy, Jennifer L; Chikatamarla, Avinash; Gellatly, Shaan; Yu, Lorraine L; Pistolic, Jelena; Falsafi, Reza; Tagg, John; Hancock, Robert E W

    2008-09-01

    Streptococcus salivarius is an early colonizer of human oral and nasopharyngeal epithelia, and strain K12 has reported probiotic effects. An emerging paradigm indicates that commensal bacteria downregulate immune responses through the action on NF-kappaB signaling pathways, but additional mechanisms underlying probiotic actions are not well understood. Our objective here was to identify host genes specifically targeted by K12 by comparing their responses with responses elicited by pathogens and to determine if S. salivarius modulates epithelial cell immune responses. RNA was extracted from human bronchial epithelial cells (16HBE14O- cells) cocultured with K12 or bacterial pathogens. cDNA was hybridized to a human 21K oligonucleotide-based array. Data were analyzed using ArrayPipe, InnateDB, PANTHER, and oPOSSUM. Interleukin 8 (IL-8) and growth-regulated oncogene alpha (Groalpha) secretion were determined by enzyme-linked immunosorbent assay. It was demonstrated that S. salivarius K12 specifically altered the expression of 565 host genes, particularly those involved in multiple innate defense pathways, general epithelial cell function and homeostasis, cytoskeletal remodeling, cell development and migration, and signaling pathways. It inhibited baseline IL-8 secretion and IL-8 responses to LL-37, Pseudomonas aeruginosa, and flagellin in epithelial cells and attenuated Groalpha secretion in response to flagellin. Immunosuppression was coincident with the inhibition of activation of the NF-kappaB pathway. Thus, the commensal and probiotic behaviors of S. salivarius K12 are proposed to be due to the organism (i) eliciting no proinflammatory response, (ii) stimulating an anti-inflammatory response, and (iii) modulating genes associated with adhesion to the epithelial layer and homeostasis. S. salivarius K12 might thereby ensure that it is tolerated by the host and maintained on the epithelial surface while actively protecting the host from inflammation and apoptosis

  1. Downregulation of tumor suppressing STF cDNA 3 promotes epithelial-mesenchymal transition and tumor metastasis of osteosarcoma by the Wnt/GSK-3β/β-catenin/Snail signaling pathway.

    Science.gov (United States)

    Lv, Yang-fan; Dai, Huanzi; Yan, Guang-ning; Meng, Gang; Zhang, Xi; Guo, Qiao-nan

    2016-04-10

    Epithelial to mesenchymal transition (EMT) has received considerable attention as a conceptual paradigm for explaining the invasive and metastatic behavior of cells during cancer progression. Our previous study showed that loss of expression of TSSC3 is positively associated with osteosarcoma malignancy and progression. However, whether TSSC3 mediates EMT in osteosarcoma is poorly understood. In the present study, we determined that TSSC3 downregulation induced cell migration and invasion ability and promoted mesenchymal transition of osteosarcoma cells by upregulating mesenchymal markers and inhibiting the epithelial markers. Furthermore, TSSC3 downregulation elicited a signaling cascade that included increased levels of Wnt3a and LRP5, inactivation of GSK-3β, accumulation of nuclear β-catenin and Snail, the augmented binding of β-catenin to TCF-4, and accordingly increased the expression of Wnt target genes (CD44, MMP7). The gene knockdown of these signaling proteins could inhibit TSSC3 downregulation-promoted EMT, migration, and invasion in osteosarcoma. Finally, TSSC3 overexpression obviously inhibited cell migration, invasion, and repressed mesenchymal phenotypes, reducing lung metastasis through GSK-3β activation. Collectively, TSSC3 downregulation promotes the EMT of osteosarcoma cells by regulating EMT markers via a signal transduction pathway that involves Snail, Wnt-β-catenin/TCF, and GSK-3β. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  2. New type IV pili-related genes involved in early stages of Ralstonia solanacearum potato infection.

    Science.gov (United States)

    Siri, María Inés; Sanabria, Analía; Boucher, Christian; Pianzzola, María Julia

    2014-07-01

    This study provides insights into the pathogenesis of Ralstonia solanacearum, in particular with regards to strains belonging to phylotype IIB, sequevar 1 (IIB-1) and their interaction with potato, its natural host. We performed a comparative genomic analysis among IIB-1 R. solanacearum strains with different levels of virulence in order to identify candidate virulence genes. With this approach, we identified a 33.7-kb deletion in a strain showing reduced virulence on potato. This region contains a cluster of six genes putatively involved in type IV pili (Tfp) biogenesis. Functional analysis suggests that these proteins contribute to several Tfp-related functions such as twitching motility and biofilm formation. In addition, this genetic cluster was found to contribute to early bacterial wilt pathogenesis and colonization fitness of potato roots.

  3. Architects at the bacterial surface - sortases and the assembly of pili with isopeptide bonds.

    Science.gov (United States)

    Hendrickx, Antoni P A; Budzik, Jonathan M; Oh, So-Young; Schneewind, Olaf

    2011-03-01

    The cell wall envelope of Gram-positive bacteria can be thought of as a surface organelle for the assembly of macromolecular structures that enable the unique lifestyle of each microorganism. Sortases - enzymes that cleave the sorting signals of secreted proteins to form isopeptide (amide) bonds between the secreted proteins and peptidoglycan or polypeptides - function as the principal architects of the bacterial surface. Acting alone or with other sortase enzymes, sortase construction leads to the anchoring of surface proteins at specific sites in the envelope or to the assembly of pili, which are fibrous structures formed from many protein subunits. The catalysis of intermolecular isopeptide bonds between pilin subunits is intertwined with the assembly of intramolecular isopeptide bonds within pilin subunits. Together, these isopeptide bonds endow these sortase products with adhesive properties and resistance to host proteases.

  4. The roles of epithelial cell contact, respiratory bacterial interactions and phosphorylcholine in promoting biofilm formation by Streptococcus pneumoniae and nontypeable Haemophilus influenzae.

    Science.gov (United States)

    Krishnamurthy, Ajay; Kyd, Jennelle

    2014-08-01

    Streptococcus pneumoniae and nontypeable Haemophilus influenzae (NTHi) often share a common niche within the nasopharynx, both associated with infections such as bronchitis and otitis media. This study investigated how the association between NTHi and S. pneumoniae and the host affects their propensity to form biofilms. We investigated a selection of bacterial strain and serotype combinations on biofilm formation, and the effect of contact with respiratory epithelial cells. Measurement of biofilm showed that co-infection with NTHi and S. pneumoniae increased biofilm formation following contact with epithelial cells compared to no contact demonstrating the role of epithelial cells in biofilm formation. Additionally, the influence of phosphorylcholine (ChoP) on biofilm production was investigated using the licD mutant strain of NTHi 2019 and found that ChoP had a role in mixed biofilm formation but was not the only requirement. The study highlights the complex interactions between microbes and the host epithelium during biofilm production, suggesting the importance of understanding why certain strains and serotypes differentially influence biofilm formation. A key contributor to increased biofilm formation was the upregulation of biofilm formation by epithelial cell factors.

  5. Comparative genomic analysis of Lactobacillus rhamnosus GG reveals pili containing a human- mucus binding protein.

    Science.gov (United States)

    Kankainen, Matti; Paulin, Lars; Tynkkynen, Soile; von Ossowski, Ingemar; Reunanen, Justus; Partanen, Pasi; Satokari, Reetta; Vesterlund, Satu; Hendrickx, Antoni P A; Lebeer, Sarah; De Keersmaecker, Sigrid C J; Vanderleyden, Jos; Hämäläinen, Tuula; Laukkanen, Suvi; Salovuori, Noora; Ritari, Jarmo; Alatalo, Edward; Korpela, Riitta; Mattila-Sandholm, Tiina; Lassig, Anna; Hatakka, Katja; Kinnunen, Katri T; Karjalainen, Heli; Saxelin, Maija; Laakso, Kati; Surakka, Anu; Palva, Airi; Salusjärvi, Tuomas; Auvinen, Petri; de Vos, Willem M

    2009-10-06

    To unravel the biological function of the widely used probiotic bacterium Lactobacillus rhamnosus GG, we compared its 3.0-Mbp genome sequence with the similarly sized genome of L. rhamnosus LC705, an adjunct starter culture exhibiting reduced binding to mucus. Both genomes demonstrated high sequence identity and synteny. However, for both strains, genomic islands, 5 in GG and 4 in LC705, punctuated the colinearity. A significant number of strain-specific genes were predicted in these islands (80 in GG and 72 in LC705). The GG-specific islands included genes coding for bacteriophage components, sugar metabolism and transport, and exopolysaccharide biosynthesis. One island only found in L. rhamnosus GG contained genes for 3 secreted LPXTG-like pilins (spaCBA) and a pilin-dedicated sortase. Using anti-SpaC antibodies, the physical presence of cell wall-bound pili was confirmed by immunoblotting. Immunogold electron microscopy showed that the SpaC pilin is located at the pilus tip but also sporadically throughout the structure. Moreover, the adherence of strain GG to human intestinal mucus was blocked by SpaC antiserum and abolished in a mutant carrying an inactivated spaC gene. Similarly, binding to mucus was demonstrated for the purified SpaC protein. We conclude that the presence of SpaC is essential for the mucus interaction of L. rhamnosus GG and likely explains its ability to persist in the human intestinal tract longer than LC705 during an intervention trial. The presence of mucus-binding pili on the surface of a nonpathogenic Gram-positive bacterial strain reveals a previously undescribed mechanism for the interaction of selected probiotic lactobacilli with host tissues.

  6. Cooperative Role for Tetraspanins in Adhesin-Mediated Attachment of Bacterial Species to Human Epithelial Cells ▿ †

    Science.gov (United States)

    Green, Luke R.; Monk, Peter N.; Partridge, Lynda J.; Morris, Paul; Gorringe, Andrew R.; Read, Robert C.

    2011-01-01

    The tetraspanins are a superfamily of transmembrane proteins with diverse functions and can form extended microdomains within the plasma membrane in conjunction with partner proteins, which probably includes receptors for bacterial adhesins. Neisseria meningitidis, the causative agent of meningococcal disease, attaches to host nasopharyngeal epithelial cells via type IV pili and opacity (Opa) proteins. We examined the role of tetraspanin function in Neisseria meningitidis adherence to epithelial cells. Tetraspanins CD9, CD63, and CD151 were expressed by HEC-1-B and DETROIT 562 cells. Coincubation of cells with antibodies against all three tetraspanin molecules used individually or in combination, with recombinant tetraspanin extracellular domains (EC2), or with small interfering RNAs (siRNAs) significantly reduced adherence of Neisseria meningitidis. In contrast, recombinant CD81, a different tetraspanin, had no effect on meningococcal adherence. Antitetraspanin antibodies reduced the adherence to epithelial cells of Neisseria meningitidis strain derivatives expressing Opa and pili significantly more than isogenic strains lacking these determinants. Adherence to epithelial cells of strains of Staphylococcus aureus, Neisseria lactamica, Escherichia coli, and Streptococcus pneumoniae was also reduced by pretreatment of cells with tetraspanin antibodies and recombinant proteins. These data suggest that tetraspanins are required for optimal function of epithelial adhesion platforms containing specific receptors for Neisseria meningitidis and potentially for multiple species of bacteria. PMID:21464080

  7. The CF-modifying gene EHF promotes p.Phe508del-CFTR residual function by altering protein glycosylation and trafficking in epithelial cells.

    Science.gov (United States)

    Stanke, Frauke; van Barneveld, Andrea; Hedtfeld, Silke; Wölfl, Stefan; Becker, Tim; Tümmler, Burkhard

    2014-05-01

    The three-base-pair deletion c.1521_1523delCTT (p.Phe508del, F508del) in the cystic fibrosis transmembrane conductance regulator (CFTR) is the most frequent disease-causing lesion in cystic fibrosis (CF). The CFTR gene encodes a chloride and bicarbonate channel at the apical membrane of epithelial cells. Altered ion transport of CFTR-expressing epithelia can be used to differentiate manifestations of the so-called CF basic defect. Recently, an 11p13 region has been described as a CF modifier by the North American CF Genetic Modifier Study Consortium. Selecting the epithelial-specific transcription factor EHF (ets homologous factor) as the likely candidate gene on 11p13, we have genotyped two intragenic microsatellites in EHF to replicate the 11p13 finding in the patient cohort of the European CF Twin and Sibling Study. We could observe an association of rare EHF haplotypes among homozygotes for c.1521_1523delCTT in CFTR, which exhibit a CF-untypical manifestation of the CF basic defect such as CFTR-mediated residual chloride secretion and low response to amiloride. We have reviewed transcriptome data obtained from intestinal epithelial samples of homozygotes for c.1521_1523delCTT in CFTR, which were stratified for their EHF genetic background. Transcripts that were upregulated among homozygotes for c.1521_1523delCTT in CFTR, who carry two rare EHF alleles, were enriched for genes that alter protein glycosylation and trafficking, both mechanisms being pivotal for the effective targeting of fully functional p.Phe508del-CFTR to the apical membrane of epithelial cells. We conclude that EHF modifies the CF phenotype by altering capabilities of the epithelial cell to correctly process the folding and trafficking of mutant p.Phe508del-CFTR.

  8. The protective efficacy of pili from different strains of Moraxella bovis within the same serogroup against infectious bovine keratoconjunctivitis.

    Science.gov (United States)

    Lepper, A W; Moore, L J; Atwell, J L; Tennent, J M

    1992-09-01

    Three groups of ten calves were each immunised with a total of 400 micrograms pili prepared from three separate strains of Moraxella bovis in Alhydrogel-oil adjuvant as two divided, equal doses 21 days apart. Groups 1 and 2 each received a monovalent vaccine made from strain 4L and S276R respectively, which belonged to pili serogroup A. Group 3 received vaccine made from pili of strain Maff1, belonging to serogroup F. A further group of ten calves served as non-vaccinated controls. Calves in groups 1 and 2 had developed serogroup A-specific antibody and those in group 3 developed serogroup F-specific antibody, and some evidence of cross-reacting antibody was also detected when measured by an agglutination test using formalin-killed piliated cells of serogroup A strain 4L. Although antibody titres measured against purified pili by ELISA were highest with homologous serogroup antigens, cross-reactive titres to shared epitopes of M. bovis pili were also detected by this method. Ocular challenge of the 40 calves with virulent M. bovis of serogroup A strain S276R was carried out 14 days after the second vaccine dose. All non-vaccinated calves developed infectious bovine keratoconjunctivitis (IBK). The percentage protection in groups 1 (strain 4L) and 2 (strain S276R) was 60% and 80% respectively (P less than 0.05), with mean lesion scores of 0.7 and 0.3 out of a possible 6.0. The percentage protection of calves in group 3 (strain Maff1) was only 30%, with a mean lesion score of 1.4 compared with 2.2 for non-vaccinated controls. The present findings, together with other evidence indicating that immunity to IBK is serogroup-specific, suggest that inclusion of pili from one representative strain from each of the seven Australian and British serogroups in a polyvalent, subunit vaccine should effectively protect the majority of cattle against IBK caused by most field strains of M. bovis encountered in Australia and the United Kingdom.

  9. PTEN and p53 cross-regulation induced by soy isoflavone genistein promotes mammary epithelial cell cycle arrest and lobuloalveolar differentiation

    OpenAIRE

    2010-01-01

    The tumor suppressors phosphatase and tensin homologue deleted on chromosome ten (PTEN) and p53 are closely related to the pathogenesis of breast cancer, yet pathway-specific mechanisms underlying their participation in mediating the protective actions of dietary bioactive components on breast cancer risk are poorly understood. We recently showed that dietary exposure to the soy isoflavone genistein (GEN) induced PTEN expression in mammary epithelial cells in vivo and in vitro, consistent wit...

  10. Loss of epithelial Gq and G11 signaling inhibits TGFβ production but promotes IL-33–mediated macrophage polarization and emphysema

    OpenAIRE

    John, Alison, E.; Wilson, Michael; Habgood, Anthony; Porte, Joanne; Tatler, Amanda L; Stavrou, Anastasios; Miele, Gino; Jolly, Lisa; Knox, Alan J; Takata, Masao; Offermanns, Stefan; Jenkins, R. Gisli

    2016-01-01

    Heterotrimeric guanine nucleotide–binding protein (G protein) signaling is a ubiquitous signaling system that links hundreds of G protein–coupled receptors (GPCRs) with four G protein signaling pathways. Two of these pathways, one mediated by Gq and G11 and the other by G12 and G13, are implicated in the force-dependent activation of transforming growth factor–β (TGFβ) in lung epithelial cells. Reduced TGFβ activation in alveolar cells leads to emphysema, whereas enhanced TGFβ activation prom...

  11. Diarrhea-associated biofilm formed by enteroaggregative Escherichia coli and aggregative Citrobacter freundii: a consortium mediated by putative F pili

    Directory of Open Access Journals (Sweden)

    Araújo Ana CG

    2010-02-01

    Full Text Available Abstract Background Enteroaggregative Escherichia coli (EAEC are enteropathogenic strains identified by the aggregative adhesion (AA pattern that share the capability to form biofilms. Citrobacter freundii is classically considered as an indigenous intestinal species that is sporadically associated with diarrhea. Results During an epidemiologic study focusing on infantile diarrhea, aggregative C. freundii (EACF and EAEC strains were concomitantly recovered from a severe case of mucous diarrhea. Thereby, the occurrence of synergic events involving these strains was investigated. Coinfection of HeLa cells with EACF and EAEC strains showed an 8-fold increase in the overall bacterial adhesion compared with single infections (P traA were capable of forming bacterial aggregates only in the presence of EACF. Scanning electronic microscopy analyses revealed that bacterial aggregates as well as enhanced biofilms formed by EACF and traA-positive EAEC were mediated by non-bundle forming, flexible pili. Moreover, mixed biofilms formed by EACF and traA-positive EAEC strains were significantly reduced using nonlethal concentration of zinc, a specific inhibitor of F pili. In addition, EAEC strains isolated from diarrheic children frequently produced single biofilms sensitive to zinc. Conclusions Putative F pili expressed by EAEC strains boosted mixed biofilm formation when in the presence of aggregative C. freundii.

  12. SNAIL induces epithelial-to-mesenchymal transition in a human pancreatic cancer cell line (BxPC3) and promotes distant metastasis and invasiveness in vivo.

    Science.gov (United States)

    Nishioka, Ryohei; Itoh, Shunji; Gui, Ting; Gai, Zhibo; Oikawa, Kosuke; Kawai, Manabu; Tani, Masaji; Yamaue, Hiroki; Muragaki, Yasuteru

    2010-10-01

    SNAIL, a potent repressor of E-cadherin expression, plays a key role in inducing epithelial-to-mesenchymal transition (EMT) in epithelial cells. During EMT, epithelial cells lose cell polarity and adhesion, and undergo drastic morphological changes acquiring highly migratory abilities. Although there is increasing evidence that EMT is involved in the progression of some human cancers, its significance in the progression of pancreatic cancer remains elusive. In Panc-1, a well-known human pancreatic cancer cell line in which EMT is triggered by TGF-β1 treatment, SNAIL and vimentin are highly expressed, whereas E-cadherin expression is scant. In contrast, another human pancreatic cancer cell line, BxPC3, in which SNAIL expression is not detected, has high levels of E-cadherin expression and does not undergo EMT upon TGF-β1 treatment. After transfecting the SNAIL gene into BxPC3, however, the cells undergo EMT with remarkable alterations in cell morphology and molecular expression patterns without the addition of any growth factors. Furthermore, in an orthotopic transplantation model using SCID mice, SNAIL-transfected BxPC3 displayed highly metastatic and invasive activities. In the immunohistochemical analysis of the tumor derived from the SNAIL-expressing BxPC3, alterations suggestive of EMT were observed in the invasive tumor front. SNAIL enabled BxPC3 to undergo EMT, endowing it with a highly malignant potential in vivo. These results indicate that SNAIL-mediated EMT may be relevant in the progression of pancreatic cancer, and SNAIL could be a molecular target for a pancreatic cancer intervention. Copyright © 2010 Elsevier Inc. All rights reserved.

  13. Protease-activated receptor-2 promotes kidney tubular epithelial inflammation by inhibiting autophagy via the PI3K/Akt/mTOR signalling pathway.

    Science.gov (United States)

    Du, Chunyang; Zhang, Tao; Xiao, Xia; Shi, Yonghong; Duan, Huijun; Ren, Yunzhuo

    2017-08-02

    Protease-activated receptor-2 (PAR2), which belongs to a specific class of the G-protein-coupled receptors, is central to several inflammation processes. However, the precise molecular mechanism involved remains undefined. Autophagy has been previously shown to affect inflammation. In the present study, we examine the effect of PAR2 on kidney tubular epithelial autophagy and on autophagy-related inflammation and reveal the underlying mechanism involved. Autophagic activity and levels of autophagic marker LC3 were examined in human kidney tubular epithelial cells with PAR2 knockdown or overexpression. We administered the mammalian target of rapamycin (mTOR) inhibitor (rapamycin) or activator (MHY1485) to investigate the function of the phosphoinositide 3-kinase (PI3K)/Akt/mTOR pathway. We also used transforming growth factor-β1 (TGF-β1)-induced HK-2 cell inflammation models to investigate the role of PAR2-associated autophagy in kidney tubular epithelial inflammation. PAR2 antagonist and rapamycin were administered to mice after unilateral ureteral obstruction to detect the correlations between PAR2, autophagy, and inflammation. Our results show that PAR2 overexpression in HK-2 cells led to a greater reduction in autophagy via the PI3K/Akt/mTOR pathway activation and induces autophagy-related inflammation. Meanwhile, a knockdown of PAR2 via PAR2 RNAi transfection greatly increased autophagy and alleviated autophagy-associated inflammation. In unilateral ureteral obstruction (UUO) kidneys, PAR2 antagonist treatment greatly attenuated renal inflammation and interstitial injury by enhancing autophagy. Moreover, inhibition of mTOR, rapa, markedly increased autophagy and inhibited the UUO-induced inflammation. We conclude that PAR2 induces kidney tubular epithelial inflammation by inhibiting autophagy via the PI3K/Akt/mTOR signalling pathway. Our results are suggestive that PAR2 inhibition may play a role in the treatment of diseases with increased inflammatory

  14. The monoamine oxidase-A inhibitor clorgyline promotes a mesenchymal-to-epithelial transition in the MDA-MB-231 breast cancer cell line.

    Science.gov (United States)

    Satram-Maharaj, Tamara; Nyarko, Jennifer N K; Kuski, Kelly; Fehr, Kelsey; Pennington, Paul R; Truitt, Luke; Freywald, Andrew; Lukong, Kiven Erique; Anderson, Deborah H; Mousseau, Darrell D

    2014-12-01

    Monoamine oxidase-A (MAO-A) dysfunction has been historically associated with depression. Recently, depression as well as altered MAO-A expression have both been associated with a poor prognosis in cancers, although the mechanism involved remains ambiguous. For example, MAO-A mRNA is repressed across cancers, yet MAO-A protein and levels of serotonin, a substrate of MAO-A implicated in depression, are paradoxically increased in malignancies, including breast cancer. The effect of clorgyline (CLG), a selective inhibitor of MAO-A, on malignant behaviour, expression of transitional markers, and biochemical correlates was examined in two human breast carcinoma cell lines, i.e. the epithelial, oestrogen receptor (ER)-positive MCF-7 cell line and the post-EMT (mesenchymal), ER-negative MDA-MB-231 cell line. CLG exerted little effect on malignant behaviour in MCF-7 cells, but inhibited proliferation and anchorage-independent growth, and increased invasiveness and active migration of MDA-MB-231 cells. CLG induced the expression of the mesenchymal marker vimentin in MCF-7 cells, but not in MDA-MB-231 cells. In contrast, CLG induced the epithelial protein marker E-cadherin in both cell lines, with a more robust effect in MDA-MB-231 cells (where a nuclear E-cadherin signal was also detected). This effect appears to be independent of any canonical Snai1-mediated regulation of E-cadherin mRNA expression. CLG interfered with the β-catenin/[phospho]GSK-3β complex as well as the E-cadherin/β-catenin complex in both cell lines cells, but, again, the effect was more robust in MDA-MB-231 cells. Parallel studies revealed a general lack of effect of CLG on the ER-negative, epithelial Au565 breast cancer cell line. Thus, any effect of CLG on metastatic behaviours appears to rely on the cell's EMT status rather than on the cell's ER status. These data suggest that inactivation of MAO-A triggers a mesenchymal-to-epithelial transition in MDA-MB-231 cells via a non-canonical mechanism

  15. Upregulation of CD147 promotes cell invasion, epithelial-to-mesenchymal transition and activates MAPK/ERK signaling pathway in colorectal cancer

    OpenAIRE

    Xu, Tao; Zhou, Mingliang; Peng, Lipan; Kong,Shuai; Miao, Ruizheng; Shi, Yulong; Sheng, Hongguang; Li, Leping

    2014-01-01

    Colorectal cancer (CRC) is one of the most common cancers in the world. CD147, a transmembrane protein, has been reported to be correlated with various cancers. In this study, we aimed to investigate the mechanism of CD147 in regulating drug resistance, cell invasion and epithelial-to-mesenchymal transition (EMT) in CRC cells. qRT-PCR and western blotting were used to evaluated the expression of CD147 in 40 CRC cases and 4 cell lines. Increased expression of CD147 at both mRNA and protein lev...

  16. RB inactivation in keratin 18 positive thymic epithelial cells promotes non-cell autonomous T cell hyperproliferation in genetically engineered mice

    Science.gov (United States)

    Song, Yurong; Sullivan, Teresa; Klarmann, Kimberly; Gilbert, Debra; O’Sullivan, T. Norene; Lu, Lucy; Wang, Sophie; Haines, Diana C.; Van Dyke, Terry; Keller, Jonathan R.

    2017-01-01

    Thymic epithelial cells (TEC), as part of thymic stroma, provide essential growth factors/cytokines and self-antigens to support T cell development and selection. Deletion of Rb family proteins in adult thymic stroma leads to T cell hyperplasia in vivo. To determine whether deletion of Rb specifically in keratin (K) 18 positive TEC was sufficient for thymocyte hyperplasia, we conditionally inactivated Rb and its family members p107 and p130 in K18+ TEC in genetically engineered mice (TgK18GT121; K18 mice). We found that thymocyte hyperproliferation was induced in mice with Rb inactivation in K18+ TEC, while normal T cell development was maintained; suggesting that inactivation of Rb specifically in K18+ TEC was sufficient and responsible for the phenotype. Transplantation of wild type bone marrow cells into mice with Rb inactivation in K18+ TEC resulted in donor T lymphocyte hyperplasia confirming the non-cell autonomous requirement for Rb proteins in K18+ TEC in regulating T cell proliferation. Our data suggests that thymic epithelial cells play an important role in regulating lymphoid proliferation and thymus size. PMID:28158249

  17. Disruption of the Cdc42/Par6/aPKC or Dlg/Scrib/Lgl Polarity Complex Promotes Epithelial Proliferation via Overlapping Mechanisms.

    Science.gov (United States)

    Schimizzi, Gregory V; Maher, Meghan T; Loza, Andrew J; Longmore, Gregory D

    2016-01-01

    The establishment and maintenance of apical-basal polarity is a defining characteristic and essential feature of functioning epithelia. Apical-basal polarity (ABP) proteins are also tumor suppressors that are targeted for disruption by oncogenic viruses and are commonly mutated in human carcinomas. Disruption of these ABP proteins is an early event in cancer development that results in increased proliferation and epithelial disorganization through means not fully characterized. Using the proliferating Drosophila melanogaster wing disc epithelium, we demonstrate that disruption of the junctional vs. basal polarity complexes results in increased epithelial proliferation via distinct downstream signaling pathways. Disruption of the basal polarity complex results in JNK-dependent proliferation, while disruption of the junctional complex primarily results in p38-dependent proliferation. Surprisingly, the Rho-Rok-Myosin contractility apparatus appears to play opposite roles in the regulation of the proliferative phenotype based on which polarity complex is disrupted. In contrast, non-autonomous Tumor Necrosis Factor (TNF) signaling appears to suppress the proliferation that results from apical-basal polarity disruption, regardless of which complex is disrupted. Finally we demonstrate that disruption of the junctional polarity complex activates JNK via the Rho-Rok-Myosin contractility apparatus independent of the cortical actin regulator, Moesin.

  18. Campylobacter jejuni outer membrane vesicle-associated proteolytic activity promotes bacterial invasion by mediating cleavage of intestinal epithelial cell E-cadherin and occludin.

    Science.gov (United States)

    Elmi, Abdi; Nasher, Fauzy; Jagatia, Heena; Gundogdu, Ozan; Bajaj-Elliott, Mona; Wren, Brendan; Dorrell, Nick

    2016-04-01

    Outer membrane vesicles (OMVs) play an important role in the pathogenicity of Gram-negative bacteria. Campylobacter jejuni produces OMVs that trigger IL-8, IL-6, hBD-3 and TNF-α responses from T84 intestinal epithelial cells and are cytotoxic to Caco-2 IECs and Galleria mellonella larvae. Proteomic analysis of 11168H OMVs identified the presence of three proteases, HtrA, Cj0511 and Cj1365c. In this study, 11168H OMVs were shown to possess proteolytic activity that was reduced by pretreatment with specific serine protease inhibitors. OMVs isolated from 11168H htrA, Cj0511 or Cj1365c mutants possess significantly reduced proteolytic activity. 11168H OMVs are able to cleave both E-cadherin and occludin, but this cleavage is reduced with OMVs pretreated with serine protease inhibitors and also with OMVs isolated from htrA or Cj1365c mutants. Co-incubation of T84 monolayers with 11168H OMVs results in a visible reduction in both E-cadherin and occludin. The addition of 11168H OMVs to the co-culture of live 11168H bacteria with T84 cells results in enhanced levels of bacterial adhesion and invasion in a time-dependent and dose-dependent manner. Further investigation of the cleavage of host cell structural proteins by C. jejuni OMVs should enhance our understanding of the interactions of this important pathogen with intestinal epithelial cells. © 2015 John Wiley & Sons Ltd.

  19. Upregulation of long noncoding RNA SPRY4-IT1 promotes metastasis of esophageal squamous cell carcinoma via induction of epithelial-mesenchymal transition.

    Science.gov (United States)

    Zhang, Chun-Yang; Li, Ren-Ke; Qi, Yu; Li, Xiang-Nan; Yang, Yang; Liu, Dong-Lei; Zhao, Jia; Zhu, Deng-Yan; Wu, Kai; Zhou, Xu-Dong; Zhao, Song

    2016-10-01

    Esophageal squamous cell carcinoma (ESCC) is one of the prevalent and deadly cancers worldwide, especially in Eastern Asia. Recent studies show that long noncoding RNAs (lncRNAs) have critical roles in diverse biological processes, including tumorigenesis. In the present study, we find that the expression of lncRNA SPRY4-IT1 is significantly upregulated in ESCC cell lines as compared with human esophageal epithelial cell line HEEC. Overexpression of SPRY4-IT1 can increase in vitro motility of ESCC cells via induction of epithelial-mesenchymal transition (EMT), which is characterized by increasing the expression of vimentin (Vim) and fibronectin (FN) with a concomitant decrease of E-cadherin (E-Cad) and ZO-1, while silencing of SPRY4-IT1 significantly inhibits the in vitro motility of ESCC cells. Further, the knockdown of SPRY4-IT1 also significantly attenuates TFG-β-induced EMT of ESCC cells. Further, lncRNA SPRY4-IT1 can directly increase the transcription, expression, and nuclear localization of Snail, one key transcription factor during the EMT processes of cancer cells, while siRNA-mediated specific knockdown of Snail can significantly attenuate SPRY4-IT1-induced EMT of ESCC cells. Our results suggest that lncRNA SPRY4-IT1 might be considered as a novel oncogene involved in ESCC progression.

  20. Earthworm symbiont Verminephrobacter eiseniae mediates natural transformation within the host egg capsules using type IV pili

    Directory of Open Access Journals (Sweden)

    SEANA Kelyn DAVIDSON

    2014-10-01

    Full Text Available The dense microbial communities commonly associated with plants and animals should offer many opportunities for horizontal gene transfer (HGT through described mechanisms of DNA exchange including natural transformation. However, studies of the significance of natural transformation have focused primarily on pathogens. The study presented here demonstrates highly efficient DNA exchange by natural transformation in a common symbiont of earthworms. The obligate bacterial symbiont Verminephrobacter eiseniae is a member of a microbial consortium of the earthworm Eisenia fetida that is transmitted into the egg capsules to colonize the embryonic worms. In the study presented here, by testing for transformants under different conditions in culture, we demonstrate that V. eiseniae can incorporate free DNA from the environment, that competency is regulated by environmental factors, and that it is sequence specific. Mutations in the type IV pili of V. eiseniae resulted in loss of DNA uptake, implicating the type IV pilus (TFP apparatus in DNA uptake. Furthermore, injection of DNA carrying antibiotic-resistance genes into egg capsules resulted in transformants within the capsule, demonstrating the relevance of DNA uptake within the earthworm system. The ability to take up species-specific DNA from the environment may explain the maintenance of the relatively large, intact genome of this long-associated obligate symbiont, and provides a mechanism for acquisition of foreign genes within the earthworm system.

  1. Type IV pili of Acidithiobacillus ferrooxidans can transfer electrons from extracellular electron donors.

    Science.gov (United States)

    Li, Yongquan; Li, Hongyu

    2014-03-01

    Studies on Acidithiobacillus ferrooxidans accepting electrons from Fe(II) have previously focused on cytochrome c. However, we have discovered that, besides cytochrome c, type IV pili (Tfp) can transfer electrons. Here, we report conduction by Tfp of A. ferrooxidans analyzed with a conducting-probe atomic force microscope (AFM). The results indicate that the Tfp of A. ferrooxidans are highly conductive. The genome sequence of A. ferrooxidans ATCC 23270 contains two genes, pilV and pilW, which code for pilin domain proteins with the conserved amino acids characteristic of Tfp. Multiple alignment analysis of the PilV and PilW (pilin) proteins indicated that pilV is the adhesin gene while pilW codes for the major protein element of Tfp. The likely function of Tfp is to complete the circuit between the cell surface and Fe(II) oxides. These results indicate that Tfp of A. ferrooxidans might serve as biological nanowires transferring electrons from the surface of Fe(II) oxides to the cell surface. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Advances on promotion of aged stromal cells in epithelial tumorigenesis%间质细胞衰老诱导上皮细胞癌变的研究进展

    Institute of Scientific and Technical Information of China (English)

    谷圣美

    2012-01-01

    Cellular senescence, defined by permanent cell cycle arrest. We all think that it has great evolutionary advantage in protecting the organism from developing cancer. However, aged stromal cells can significantly promote epithelial tumorigenesis. This tumor-expediting effect is carried out with the mobilization of the inflammatory network to expedite epithelial tumorigenesis. A thorough understanding of the regulatory mechanisms underlying these events may provide a theoretical basis for better studying the effect of cellular senescence in tumorigenesis and a novel therapeutic approach to tumor repression.%细胞衰老是根据永久性细胞周期阻滞而定义的.普遍认为,细胞衰老具有保护机体避免癌变的进化优势.然而,间质细胞的衰老却可以显著加快上皮肿瘤的发生,这种促瘤效应很可能是由衰老成纤维细胞激活的炎症网络造成的.对该调节机制的深入了解,可为研究细胞衰老在肿瘤发生中的作用提供理论基础,同时也可为肿瘤的治疗提供新思路.

  3. Grape seed proanthocyanidins inhibit migration potential of pancreatic cancer cells by promoting mesenchymal-to-epithelial transition and targeting NF-κB.

    Science.gov (United States)

    Prasad, Ram; Katiyar, Santosh K

    2013-06-28

    Here we explore the effect of grape seed proanthocyanidins (GSPs) on pancreatic cancer cell migration and the molecular mechanisms underlying these effects. Treatment of human pancreatic cancer cell lines Miapaca-2, PANC-1 and AsPC-1 with GSPs resulted in inhibition of cell migration (19-82%, P<0.01-0.001), which was associated with decreased phosphorylation of ERK1/2 and inactivation of NF-κB. Treatment of cells with UO126, an inhibitor of MEK, and caffeic acid phenethyl ester, an inhibitor of NF-κB, also inhibited the migration of cells (40-80%, P<0.01-0.001). Inhibition of cell migration by GSPs was associated with reversal of the epithelial-to-mesenchymal transition. This was associated with upregulation of E-cadherin and desmoglein-2 and down-regulation of fibronectin, N-cadherin and vimentin. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  4. Lipooligosaccharide-independent alteration of cellular homeostasis in Neisseria meningitidis-infected epithelial cells.

    Science.gov (United States)

    Bonnah, Robert A; Hoelter, Jenny; Steeghs, Liana; Enns, Caroline A; So, Magdalene; Muckenthaler, Martina U

    2005-06-01

    Neisseria meningitidis (MC) is an important cause of meningitis and septic shock. Primary loose attachment of MC to host epithelial cells is mediated by type IV pili. Lipooligosaccharide (LOS), opacity (Opa) proteins and glycolipid adhesins facilitate subsequent tight attachment. MC infection causes numerous changes in host epithelial cell homeostasis. These include cortical plaque formation, increased expression of proinflammatory cytokines and alterations in host iron homeostasis. Using both biochemical and genetic approaches, we examined the role of LOS in mediating these events. We first examined specific cellular iron homeostasis changes that occur following addition of purified MC LOS to epithelial cells. Using an MC mutant that completely lacks LOS (MC lps tbp), we examined pili-mediated attachment and cortical plaque formation in human endocervical epithelial cells (A431). We also tested whether the lack of LOS alters cellular homeostasis, including changes in the levels of host stress response factors and proinflammatory cytokines. MC lps tbp elicited the formation of cortical plaques in A431 cells. However, the plaques were less pronounced than those formed by the MC parent. Surprisingly, the proinflammatory cytokine TNF(alpha) was upregulated during infection in MC lps tbp-infected cells. Furthermore, alterations in iron homeostasis, including lower transferrin receptor 1 (TfR-1) levels, altered TfR-1 trafficking, an 'iron-starvation' gene expression profile and low iron regulatory protein (IRP) binding activity are independent of LOS. Our results demonstrate that LOS is partially involved in both the attachment to host cells and formation of cortical plaques. However, TNFalpha induction and changes in iron homeostasis observed in MC-infected epithelial cells are independent of LOS.

  5. Transient receptor potential vanilloid 1 activation by dietary capsaicin promotes urinary sodium excretion by inhibiting epithelial sodium channel α subunit-mediated sodium reabsorption.

    Science.gov (United States)

    Li, Li; Wang, Fei; Wei, Xing; Liang, Yi; Cui, Yuanting; Gao, Feng; Zhong, Jian; Pu, Yunfei; Zhao, Yu; Yan, Zhencheng; Arendshorst, William J; Nilius, Bernd; Chen, Jing; Liu, Daoyan; Zhu, Zhiming

    2014-08-01

    High salt (HS) intake contributes to the development of hypertension. Epithelial sodium channels play crucial roles in regulating renal sodium reabsorption and blood pressure. The renal transient receptor potential vanilloid 1 (TRPV1) cation channel can be activated by its agonist capsaicin. However, it is unknown whether dietary factors can act on urinary sodium excretion and renal epithelial sodium channel (ENaC) function. Here, we report that TRPV1 activation by dietary capsaicin increased urinary sodium excretion through reducing sodium reabsorption in wild-type (WT) mice on a HS diet but not in TRPV1(-/-) mice. The effect of capsaicin on urinary sodium excretion was involved in inhibiting αENaC and its related with-no-lysine kinase 1/serum- and glucocorticoid-inducible protein kinase 1 pathway in renal cortical collecting ducts of WT mice. Dietary capsaicin further reduced the increased αENaC activity in WT mice attributed to the HS diet. In contrast, this capsaicin effect was absent in TRPV1(-/-) mice. Immunoprecipitation study indicated αENaC specifically coexpressed and functionally interact with TRPV1 in renal cortical collecting ducts of WT mice. Additionally, ENaC activity and expression were suppressed by capsaicin-mediated TRPV1 activation in cultured M1-cortical collecting duct cells. Long-term dietary capsaicin prevented the development of high blood pressure in WT mice on a HS diet. It concludes that TRPV1 activation in the cortical collecting ducts by capsaicin increases urinary sodium excretion and avoids HS diet-induced hypertension through antagonizing αENaC-mediated urinary sodium reabsorption. Dietary capsaicin may represent a promising lifestyle intervention in populations exposed to a high dietary salt intake.

  6. High Glucose Promotes Tumor Invasion and Increases Metastasis-Associated Protein Expression in Human Lung Epithelial Cells by Upregulating Heme Oxygenase-1 via Reactive Oxygen Species or the TGF-β1/PI3K/Akt Signaling Pathway

    Directory of Open Access Journals (Sweden)

    Xiaowen Kang

    2015-02-01

    Full Text Available Background: Growing evidence indicates that heme oxygenase-1 (HO-1 is up-regulated in malignancies and subsequently alters tumor aggressiveness and various cancer-related factors, such as high glucose (HG levels. HO-1 expression can be induced when glucose concentrations are above 25 mM; however, the role of HO-1 in lung cancer patients with diabetes remains unknown. Therefore, in this study we investigated the promotion of tumor cell invasion and the expression of metastasis-associated proteins by inducing the up-regulation of HO-1 expression by HG treatment in A549 human lung epithelial cells. Methods: The expression of HO-1and metastasis-associated protein expression was explored by western blot analysis. HO-1 enzymatic activity, reactive oxygen species (ROS production and TGF-β1 production were examined by ELISA. Invasiveness was analyzed using a Transwell chamber. Results: HG treatment of A549 cells induced an increase in HO-1 expression, which was mediated by the HG-induced generation of reactive oxygen species (ROS and transforming growth factor-β1 (TGF-β1 in a concentration- and time-dependent manner. Following the increase in HO-1 expression, the enzymatic activity of HO-1 also increased in HG-treated cells. Pretreatment with N-acetyl-L-cysteine (NAC or with phosphatidylinositol 3-kinase (PI3K/Akt inhibitors attenuated the HG-induced increase in HO-1 expression. HG treatment of A549 cells enhanced the invasion potential of these cells, as shown with a Transwell assay, and increased metastasis-associated protein expression. However, HO-1 siRNA transfection significantly decreased these capabilities. Conclusion: this study is the first to demonstrate that HG treatment of A549 human lung epithelial cells promotes tumor cell invasion and increases metastasis-associated protein expression by up-regulating HO-1 expression via ROS or the TGF-β1/PI3K/Akt signaling pathway.

  7. Type-IV pili spectroscopic markers: applications in the quantification of piliation levels in Moraxella bovis cells by a FT-IR ANN-based model.

    Science.gov (United States)

    Bosch, Alejandra; Prieto, Claudia; Serra, Diego Omar; Martina, Pablo; Stämmbler, Maren; Naumann, Dieter; Schmitt, Jürgen; Yantorno, Osvaldo

    2010-08-01

    Type-IV pili are cell surface organelles found in a wide variety of Gram-negative bacteria. They have traditionally been detected by electron microscopy and ELISA techniques. However, these methodologies are not appropriate for the rapid discrimination and quantification of piliated and nonpiliated cells in industrial or field conditions. Here, the analysis of FT-IR spectra of piliated, nonpiliated and sheared Moraxella bovis cells, together with purified pili suspensions spectra, allowed the identification of 3 IR regions associated to spectroscopic markers of Type-IV pili: 1750-1600, 1450-1350 and 1280-950 cm(-1). Such IR-specific markers were found for piliated cells grown in different culture systems (liquid or solid media), independently of the strain or pili serotype. They were also sensitive to pili expression levels. Therefore, on the bases of these specific spectral features, an FT-IR ANN-based model was developed to classify piliation levels in 5 distinct groups. An overall classification rate of almost 90% demonstrates the strong potential of the ANN system developed to monitor M. bovis cultures in vaccine production.

  8. Epithelial-mesenchymal transition delayed by E-cad to promote tissue formation in hepatic differentiation of mouse embryonic stem cells in vitro.

    Science.gov (United States)

    Hu, Anbin; Shang, Changzhen; Li, Qiang; Sun, Nianfeng; Wu, Linwei; Ma, Yi; Jiao, Xingyuan; Min, Jun; Zeng, Gucheng; He, Xiaoshun

    2014-04-15

    Hepatic differentiation of embryonic stem cells (ESCs) usually results in a single cell lineage, and the formation of liver tissues remains difficult. Here, we examine the role of epithelial-mesenchymal transition (EMT) that is regulated by epithelial cadherin (E-cad) expression in hepatic tissue formation from ESCs. E-cad was transfected into mouse ESCs to enable a stable expression of E-cad. Hepatic differentiation of ESCs was then induced by hepatic growth factors. Wnt/β-catenin signaling and EMT speed were examined to determine the differentiation process. Hepatic and angiogenesis markers, as well as differentiated cell-adhesive force were also examined to identify the hepatic tissue differentiation. In our results, E-cad expression gradually decreased in normal ESC (N-ESC) differentiation, but remained stable in the E-cad transfected ESC (EC-ESC) group. In EC-ESC differentiation, expressions of cytoplastic β-catenin and EMT were much lower and significantly prolonged. Angiogenesis markers vascular endothelial growth factor receptor-1 (VEGFR-1) and CD31/PECAM-1 were expressed only on day 5-13 in N-ESC differentiation, whereas VEGFR-1 and CD31/PECAM-1 were expressed prolonged on day 5-17 in the EC-ESC group and were coincident with the expression of hepatic markers. Finally, EC-ESC differentiation maintained multilayer-growth patterns, and abundant vascular network structures appeared and migrated in albumin-positive cell areas. The cellular adhesion forces between embryonic body cells in EC-ESC differentiation during day 13-17 were similar to those of mouse liver tissue. In conclusion, accelerated EMT due to the decreased E-cad expression may partially contribute to the failure of hepatic tissue formation in N-ESC differentiation. E-cad can act in synergy with hepatic growth factors and facilitate the early-stage formation of hepatic tissues through down-regulating Wnt/β-catenin signaling and delaying EMT. This work provides a new insight into hepatic tissue

  9. Neisseria cinerea isolates can adhere to human epithelial cells by type IV pilus-independent mechanisms.

    Science.gov (United States)

    Wörmann, Mirka E; Horien, Corey L; Johnson, Errin; Liu, Guangyu; Aho, Ellen; Tang, Christoph M; Exley, Rachel M

    2016-03-01

    In pathogenic Neisseria species the type IV pili (Tfp) are of primary importance in host-pathogen interactions. Tfp mediate initial bacterial attachment to cell surfaces and formation of microcolonies via pilus-pilus interactions. Based on genome analysis, many non-pathogenic Neisseria species are predicted to express Tfp, but aside from studies on Neisseria elongata, relatively little is known about the formation and function of pili in these organisms. Here, we have analysed pilin expression and the role of Tfp in Neisseria cinerea. This non-pathogenic species shares a close taxonomic relationship to the pathogen Neisseria meningitidis and also colonizes the human oropharyngeal cavity. Through analysis of non-pathogenic Neisseria genomes we identified two genes with homology to pilE, which encodes the major pilin of N. meningitidis. We show which of the two genes is required for Tfp expression in N. cinerea and that Tfp in this species are required for DNA competence, similar to other Neisseria. However, in contrast to the meningococcus, deletion of the pilin gene did not impact the association of N. cinerea to human epithelial cells, demonstrating that N. cinerea isolates can adhere to human epithelial cells by Tfp-independent mechanisms.

  10. Book review, Ominis e bestias in su campidanu de iossu, Marcello Furio Pili

    Directory of Open Access Journals (Sweden)

    Manuel Graziani

    2011-12-01

    Full Text Available Ciò che ci ha più incuriosito di questa pubblicazione è il sottotitolo “Il rapporto tra uomini e animali nelle attività lavorative del passato e del presente”. L’autore Marcello Furio Pili, pur riconoscendo una sorta di omologazione della società umana a seguito della rivoluzione industriale, parte dal presupposto storico dell’unicità del rapporto con gli animali che da sempre è un tratto distintivo del popolo sardo. La ricerca si concentra su cinque paesi del Basso Campidano: Nuraminis, Monastir, Ussana, San Sperate e Sestu, ognuno trattato in una veste monografica a sé stante ma con la medesima struttura editoriale e contenutistica. Cinque paesi di stampo rurale la cui economia, almeno fino ai primi decenni del ’900, “era fondata essenzialmente sull’utilizzo della terra, agricoltura e allevamento di bestiame quindi, e quasi ogni altra attività ruotava intorno alla sfera del rus, della campagna”. Grande spazio viene dedicato, infatti, agli animali (bovini, equini, caprini, suidi, canidi, felini, leporidi, roditori, uccelli, insetti, ecc. che vengono classificati secondo la tassonomia risalente al Sistema della Natura di Linneo, con ovini e caprini accorpati in un unico paragrafo seguendo la moderna classificazione che li inserisce entrambi nella sottofamiglia Caprinae.Il grande formato del libro (21 × 29 cm e la presenza di numerose foto di animali, vegetazione e, soprattutto, vecchi strumenti di lavoro, rendono ancor più interessante questa ricerca che, pur essendo sostanzialmente di carattere antropologico, culturale e linguistico, è molto centrata sul rapporto uomo-animale: “Il rapporto con gli animali, in un modo o nell’altro, era, per quasi tutti i componenti della comunità, costante, necessario, inevitabile.”.

  11. The Mu opioid receptor promotes opioid and growth factor-induced proliferation, migration and Epithelial Mesenchymal Transition (EMT in human lung cancer.

    Directory of Open Access Journals (Sweden)

    Frances E Lennon

    Full Text Available Recent epidemiologic studies implying differences in cancer recurrence based on anesthetic regimens raise the possibility that the mu opioid receptor (MOR can influence cancer progression. Based on our previous observations that overexpression of MOR in human non-small cell lung cancer (NSCLC cells increased tumor growth and metastasis, this study examined whether MOR regulates growth factor receptor signaling and epithelial mesenchymal transition (EMT in human NSCLC cells. We utilized specific siRNA, shRNA, chemical inhibitors and overexpression vectors in human H358 NSCLC cells that were either untreated or treated with various concentrations of DAMGO, morphine, fentanyl, EGF or IGF. Cell function assays, immunoblot and immunoprecipitation assays were then performed. Our results indicate MOR regulates opioid and growth factor-induced EGF receptor signaling (Src, Gab-1, PI3K, Akt and STAT3 activation which is crucial for consequent human NSCLC cell proliferation and migration. In addition, human NSCLC cells treated with opioids, growth factors or MOR overexpression exhibited an increase in snail, slug and vimentin and decrease ZO-1 and claudin-1 protein levels, results consistent with an EMT phenotype. Further, these effects were reversed with silencing (shRNA or chemical inhibition of MOR, Src, Gab-1, PI3K, Akt and STAT3 (p<0.05. Our data suggest a possible direct effect of MOR on opioid and growth factor-signaling and consequent proliferation, migration and EMT transition during lung cancer progression. Such an effect provides a plausible explanation for the epidemiologic findings.

  12. In vivo-induced InvA-like autotransporters Ifp and InvC of Yersinia pseudotuberculosis promote interactions with intestinal epithelial cells and contribute to virulence.

    Science.gov (United States)

    Pisano, Fabio; Kochut, Annika; Uliczka, Frank; Geyer, Rebecca; Stolz, Tatjana; Thiermann, Tanja; Rohde, Manfred; Dersch, Petra

    2012-03-01

    The Yersinia pseudotuberculosis Ifp and InvC molecules are putative autotransporter proteins with a high homology to the invasin (InvA) protein. To characterize the function of these surface proteins, we expressed both factors in Escherichia coli K-12 and demonstrated the attachment of Ifp- and InvC-expressing bacteria to human-, mouse-, and pig-derived intestinal epithelial cells. Ifp also was found to mediate microcolony formation and internalization into polarized human enterocytes. The ifp and invC genes were not expressed under in vitro conditions but were found to be induced in the Peyer's patches of the mouse intestinal tract. In a murine coinfection model, the colonization of the Peyer's patches and the mesenteric lymph nodes of mice by the ifp-deficient strain was significantly reduced, and considerably fewer bacteria reached liver and spleen. The absence of InvC did not have a severe influence on bacterial colonization in the murine infection model, and it resulted in only a slightly reduced number of invC mutants in the Peyer's patches. The analysis of the host immune response demonstrated that the presence of Ifp and InvC reduced the recruitment of professional phagocytes, especially neutrophils, in the Peyer's patches. These findings support a role for the adhesins in modulating host-pathogen interactions that are important for immune defense.

  13. Long Non Coding RNA MALAT1 Promotes Tumor Growth and Metastasis by inducing Epithelial-Mesenchymal Transition in Oral Squamous Cell Carcinoma.

    Science.gov (United States)

    Zhou, Xuan; Liu, Su; Cai, Guoshuai; Kong, Lingping; Zhang, Tingting; Ren, Yu; Wu, Yansheng; Mei, Mei; Zhang, Lun; Wang, Xudong

    2015-11-02

    The prognosis of advanced oral squamous cell carcinoma (OSCC) patients remains dismal, and a better understanding of the underlying mechanisms is critical for identifying effective targets with therapeutic potential to improve the survival of patients with OSCC. This study aims to clarify the clinical and biological significance of metastasis-associated long non-coding RNA, metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) in OSCC. We found that MALAT1 is overexpressed in OSCC tissues compared to normal oral mucosa by real-time PCR. MALAT1 served as a new prognostic factor in OSCC patients. When knockdown by small interfering RNA (siRNA) in OSCC cell lines TSCCA and Tca8113, MALAT1 was shown to be required for maintaining epithelial-mesenchymal transition (EMT) mediated cell migration and invasion. Western blot and immunofluorescence staining showed that MALAT1 knockdown significantly suppressed N-cadherin and Vimentin expression but induced E-cadherin expression in vitro. Meanwhile, both nucleus and cytoplasm levels of β-catenin and NF-κB were attenuated, while elevated MALAT1 level triggered the expression of β-catenin and NF-κB. More importantly, targeting MALAT1 inhibited TSCCA cell-induced xenograft tumor growth in vivo. Therefore, these findings provide mechanistic insight into the role of MALAT1 in regulating OSCC metastasis, suggesting that MALAT1 is an important prognostic factor and therapeutic target for OSCC.

  14. Alterations of EGFR, p53 and PTEN that mimic changes found in basal-like breast cancer promote transformation of human mammary epithelial cells.

    Science.gov (United States)

    Pires, Maira M; Hopkins, Benjamin D; Saal, Lao H; Parsons, Ramon E

    2013-03-01

    Breast cancer can be classified into different molecular subtypes with varying clinical and pathological characteristics. The basal-like breast cancer subtype represents one of the most aggressive and lethal types of breast cancer, and due to poor mechanistic understanding, it lacks targeted therapy. Many basal-like breast cancer patient samples display alterations of established drivers of cancer development, including elevated expression of EGFR, p53 inactivating mutations and loss of expression of the tumor suppressor PTEN; however, their contribution to human basal-like breast cancer pathogenesis remains ill-defined. Using non-transformed human mammary epithelial cells, we set out to determine whether altering EGFR, p53 and PTEN in different combinations could contribute to basal-like breast cancer progression through transformation of cells. Altering PTEN in combination with either p53 or EGFR in contrast to any of the single alterations caused increased growth of transformed colonies in soft agar. Concomitantly modifying all three genes led to the highest rate of cellular proliferation and the greatest degree of anchorage-independent colony formation. Results from our effort to engineer a model of BBC expressing alterations of EGFR, p53 and PTEN suggest that these changes are cooperative and likely play a causal role in basal-like breast cancer pathogenesis. Consideration should be given to targeting EGFR and restoring p53 and PTEN signaling simultaneously as a strategy for treatment of this subtype of breast cancer.

  15. Cystine dimethylester loading promotes oxidative stress and a reduction in ATP independent of lysosomal cystine accumulation in a human proximal tubular epithelial cell line.

    Science.gov (United States)

    Sumayao, Rodolfo; McEvoy, Bernadette; Martin-Martin, Natalia; McMorrow, Tara; Newsholme, Philip

    2013-10-01

    Using the cystine dimethylester (CDME) loading technique to achieve elevated lysosomal cystine levels, ATP depletion has previously been postulated to be responsible for the renal dysfunction in cystinosis, a genetic disorder characterized by an excessive accumulation of cystine in the lysosomes. However, this is unlikely to be the sole factor responsible for the complexity of cell stress associated with cystinosis. Moreover, CDME has been shown to induce a direct toxic effect on mitochondrial ATP generation. Using a human-derived proximal tubular epithelial cell line, we compared the effects of CDME loading with small interfering RNA-mediated cystinosin, lysosomal cystine transporter (CTNS) gene silencing on glutathione redox status, reactive oxygen species levels, oxidative stress index, antioxidant enzyme activities and ATP generating capacity. The CDME-loaded cells displayed increased total glutathione content, extensive superoxide depletion, augmented oxidative stress index, decreased catalase activity, normal superoxide dismutase activity and compromised ATP generation. In contrast, cells subjected to CTNS gene inhibition demonstrated decreased total glutathione content, increased superoxide levels, unaltered oxidative stress index, unaltered catalase activity, induction of superoxide dismutase activity and normal ATP generation. Our data indicate that many CDME-induced effects are independent of lysosomal cystine accumulation, which further underscores the limited value of CDME loading for studying the pathogenesis of cystinosis. CTNS gene inhibition, which results in intracellular cystine accumulation, is a more realistic approach for investigating biochemical alterations in cystinosis.

  16. The tumor promoter 12-O-tetradecanoylphorbol-13-acetate (TPA) accelerates expression of differentiation markers in cultures of rat palatal epithelial cells

    DEFF Research Database (Denmark)

    Arenholt, D; Dabelsteen, Erik

    1987-01-01

    Cultures of rat palatal epithelium grown on collagen rafts were treated with different doses of the potent tumor promoter 12-O-tetradecanoylphorbol-13-acetate (TPA). Sections from biopsies taken 1, 6, 24, and 48 hr after the addition of TPA were examined for the localization of staining by blood...

  17. A promoter polymorphism in human interleukin-32 modulates its expression and influences the risk and the outcome of epithelial cell-derived thyroid carcinoma

    NARCIS (Netherlands)

    Plantinga, T.S.; Costantini, I.; Heinhuis, B.; Huijbers, A.; Semango, G.; Kusters, B.; Netea, M.G.; Hermus, A.R.M.M.; Smit, J.W.A.; Dinarello, C.A.; Joosten, L.A.B.; Netea-Maier, R.T.

    2013-01-01

    Interleukin (IL)-32 is an intracellular proinflammatory mediator that strongly modulates the inflammatory reaction. Recent studies have suggested the involvement of IL-32 in the pathogenesis of malignancies. We aimed to assess whether a known germ-line polymorphism in the IL32 promoter modulates IL-

  18. Novel pili-like surface structures of Halobacterium salinarum strain R1 are crucial for surface adhesion

    Directory of Open Access Journals (Sweden)

    Gerald eLosensky

    2015-01-01

    Full Text Available It was recently shown that haloarchaeal strains of different genera are able to adhere to surfaces and form surface-attached biofilms. However the surface structures mediating the adhesion were still unknown. We have identified a novel surface structure with Halobacterium salinarum strain R1, crucial for surface adhesion. Electron microscopic studies of surface-attached cells frequently showed pili-like surface structures of two different diameters that were irregularly distributed on the surface. The thinner filaments, 7 - 8 nm in diameter, represented a so far unobserved novel pili-like structure. Examination of the Hbt. salinarum R1 genome identified two putative gene loci (pil-1 and pil-2 encoding type IV pilus biogenesis complexes besides the archaellum encoding fla gene locus. Both pil-1 and pil-2 were expressed as transcriptional units, and the transcriptional start of pil-1 was identified. In silico analyses revealed that the pil-1 locus is present with other euryarchaeal genomes whereas the pil-2 is restricted to haloarchaea. Comparative real time qRT-PCR studies indicated that the general transcriptional activity was reduced in adherent versus planktonic cells. In contrast, the transcription of pilB1 and pilB2, encoding putative type IV pilus assembly ATPases, was induced in comparison to the archaella assembly/motor ATPase (flaI and the ferredoxin gene. Mutant strains were constructed that incurred a flaI deletion or flaI/pilB1 gene deletions. The absence of flaI caused the loss of the archaella while the additional absence of pilB1 led to loss of the novel pili-like surface structures. The ΔflaI/ΔpilB1 double mutants showed a 10-fold reduction in surface adhesion compared to the parental strain. Since surface adhesion was not reduced with the non-archaellated ΔflaI mutants, the pil-1 filaments have a distinct function in the adhesion process.

  19. The Flavonoid Apigenin Ameliorates Cisplatin-Induced Nephrotoxicity through Reduction of p53 Activation and Promotion of PI3K/Akt Pathway in Human Renal Proximal Tubular Epithelial Cells

    Directory of Open Access Journals (Sweden)

    Sung Min Ju

    2015-01-01

    Full Text Available Apigenin is a member of the flavone subclass of flavonoids present in fruits and vegetables. Apigenin has long been considered to have various biological activities, such as antioxidant, anti-inflammatory, and antitumorigenic properties, in various cell types. Cisplatin was known to exhibit cytotoxic effect to renal cells by inducing apoptosis through activation of p53. The present study investigated the antiapoptotic effects of apigenin on the cisplatin-treated human renal proximal tubular epithelial (HK-2 cells. HK-2 cells were pretreated with apigenin (5, 10, 20 μM for 1 h and then treated with 40 μM cisplatin for various times. Apigenin inhibited the cisplatin-induced apoptosis of HK-2 cells. Interestingly, apigenin itself exerted cytostatic activity because of its ability to induce cell cycle arrest. Apigenin inhibited caspase-3 activity and PARP cleavage in cisplatin-treated cells. Apigenin reduced cisplatin-induced phosphorylation and expression of p53, with no significant influence on production of ROS that is known to induce p53 activation. Furthermore, apigenin promoted cisplatin-induced Akt phosphorylation, suggesting that enhanced Akt activation may be involved in cytoprotection. Taken together, these results suggest that apigenin ameliorates cisplatin-induced apoptosis through reduction of p53 activation and promotion of PI3K/Akt pathway in HK-2 cells.

  20. RhoA/phosphatidylinositol 3-kinase/protein kinase B/mitogen-activated protein kinase signaling after growth arrest-specific protein 6/mer receptor tyrosine kinase engagement promotes epithelial cell growth and wound repair via upregulation of hepatocyte growth factor in macrophages.

    Science.gov (United States)

    Lee, Ye-Ji; Park, Hyun-Jung; Woo, So-Youn; Park, Eun-Mi; Kang, Jihee Lee

    2014-09-01

    Growth arrest-specific protein 6 (Gas6)/Mer receptor tyrosine kinase (Mer) signaling modulates cytokine secretion and helps to regulate the immune response and apoptotic cell clearance. Signaling pathways that activate an epithelial growth program in macrophages are still poorly defined. We report that Gas6/Mer/RhoA signaling can induce the production of epithelial growth factor hepatic growth factor (HGF) in macrophages, which ultimately promotes epithelial cell proliferation and wound repair. The RhoA/protein kinase B (Akt)/mitogen-activated protein (MAP) kinases, including p38 MAP kinase, extracellular signal-regulated protein kinase, and Jun NH2-terminal kinase axis in RAW 264.7 cells, was identified as Gas6/Mer downstream signaling pathway for the upregulation of HGF mRNA and protein. Conditioned medium from RAW 264.7 cells that had been exposed to Gas6 or apoptotic cells enhanced epithelial cell proliferation of the epithelial cell line LA-4 and wound closure. Cotreatment with an HGF receptor-blocking antibody or c-Met antagonist downregulated this enhancement. Inhibition of Mer with small interfering RNA (siRNA) or the RhoA/Rho kinase pathway by RhoA siRNA or Rho kinase pharmacologic inhibitor suppressed Gas6-induced HGF mRNA and protein expression in macrophages and blocked epithelial cell proliferation and wound closure induced by the conditioned medium. Our data provide evidence that macrophages can be reprogrammed by Gas6 to promote epithelial proliferation and wound repair via HGF, which is induced by the Mer/RhoA/Akt/MAP kinase pathway. Thus, defects in Gas6/Mer/RhoA signaling in macrophages may delay tissue repair after injury to the alveolar epithelium.

  1. LDH-A promotes malignant progression via activation of epithelial-to-mesenchymal transition and conferring stemness in muscle-invasive bladder cancer

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Fujin [Department of Urinary Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu (China); Department of Urinary Surgery, Huai' an Hospital to Xuzhou Medical University, Huai' an, Jiangsu (China); Ma, Song [Department of Urinary Surgery, Huai' an Hospital to Xuzhou Medical University, Huai' an, Jiangsu (China); Xue, Yubao [Department of Medical Oncology, Huai' an Hospital to Xuzhou Medical University, Huai' an, Jiangsu (China); Hou, Jianquan, E-mail: Jianquanhou@aliyun.com [Department of Urinary Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu (China); Zhang, Yongjie, E-mail: zhangyj0818@126.com [Department of Medical Oncology, Huai' an Hospital to Xuzhou Medical University, Huai' an, Jiangsu (China)

    2016-01-22

    Lactate dehydrogenase-A(LDH-A) is an important rate-limiting enzyme in the Warburg effect. Survival analysis indicated poor clinical outcomes in MIBC with high LDH-A expression. The results of in vitro experiment indicated that LDH-A promotes MIBC cells proliferation, invasion and migration. The positive relationship between LDH-A expression and CSC/EMT markers was confirmed both in invasive bladder cell line and in 136 MIBC specimens. Thus, we conclude that LDH-A may be a promising target for MIBC. - Highlights: • Survival analysis indicated poor clinical outcomes in MIBC with high LDH-A expression. • IHC analysis of 136 MIBC specimens revealed increased LDH-A is correlated with positive Oct4 and negative E-cadherin. • In vitro experiments demonstrated LDH-A promotes MIBC progression by positive regulation of EMT/CSC.

  2. miR-21 promotes fibrogenic epithelial-to-mesenchymal transition of epicardial mesothelial cells involving Programmed Cell Death 4 and Sprouty-1

    DEFF Research Database (Denmark)

    Brønnum, Hasse; Andersen, Ditte C; Schneider, Mikael

    2013-01-01

    and miR-21-dependent targeting of Programmed Cell Death 4 (PDCD4) and Sprouty Homolog 1 (SPRY1) significantly contributed to the development of a fibroblastoid phenotype. However, PDCD4- and SPRY1-targeting was not entirely ascribable to all phenotypic effects from miR-21, underscoring the pleiotropic......, especially TGF-β, promoted EMT progression in EMC cultures, which resulted in differential expression of numerous miRNAs, especially the pleiotropic miR-21. Accordingly, ectopic expression of miR-21 substantially promoted the fibroblast-like phenotype arising from fibrogenic EMT, whereas an antagonist...... that targeted miR-21 blocked this effect, as assessed on the E-cadherin/α-smooth muscle actin balance, cell viability, matrix activity, and cell motility, thus making miR-21 a relevant target of EMC-derived fibrosis. Several mRNA targets of miR-21 was differentially regulated during fibrogenic EMT of EMCs...

  3. Conditioned Medium from Adipose-Derived Stem Cells (ADSCs) Promotes Epithelial-to-Mesenchymal-Like Transition (EMT-Like) in Glioma Cells In vitro.

    Science.gov (United States)

    Iser, Isabele C; Ceschini, Stefanie M; Onzi, Giovana R; Bertoni, Ana Paula S; Lenz, Guido; Wink, Márcia R

    2016-12-01

    Mesenchymal stem cells (MSCs) have recently been described to home to brain tumors and to integrate into the tumor-associated stroma. Understanding the communication between cancer cells and MSCs has become fundamental to determine whether MSC-tumor interactions should be exploited as a vehicle for therapeutic agents or considered a target for intervention. Therefore, we investigated whether conditioned medium from adipose-derived stem cells (ADSCs-CM) modulate glioma tumor cells by analyzing several cell biology processes in vitro. C6 rat glioma cells were treated with ADSCs-CM, and cell proliferation, cell cycle, cell viability, cell morphology, adhesion, migration, and expression of epithelial-mesenchymal transition (EMT)-related surface markers were analyzed. ADSCs-CM did not alter cell viability, cell cycle, and growth rate of C6 glioma cells but increased their migratory capacity. Moreover, C6 cells treated with ADSC-CM showed reduced adhesion and underwent changes in cell morphology. Up-regulation of EMT-associated markers (vimentin, MMP2, and NRAS) was also observed following treatment with ADSC-CM. Our findings demonstrate that the paracrine factors released by ADSCs are able to modulate glioma cell biology. Therefore, ADSC-tumor cell interactions in a tumor microenvironment must be considered in the design of clinical application of stem cell therapy. Graphical Abstract Factors released by adipose-derived stem cells (ADSCs) may modulate the biology of C6 glioma cells. When C6 cells are exposed to a conditioned medium from adipose-derived stem cells (ADSCs-CM), some of these cells can undergo an EMT-like process and trans-differentiate into cells with a more mesenchymal phenotype, characterized by enhanced expression of EMT-related surface markers, reduced cell adhesion capacity, increased migratory capacity, as well as changes in cell and nuclei morphology.

  4. Ormocomp-modified glass increases collagen binding and promotes the adherence and maturation of human embryonic stem cell-derived retinal pigment epithelial cells.

    Science.gov (United States)

    Käpylä, Elli; Sorkio, Anni; Teymouri, Shokoufeh; Lahtonen, Kimmo; Vuori, Leena; Valden, Mika; Skottman, Heli; Kellomäki, Minna; Juuti-Uusitalo, Kati

    2014-12-09

    In in vitro live-cell imaging, it would be beneficial to grow and assess human embryonic stem cell-derived retinal pigment epithelial (hESC-RPE) cells on thin, transparent, rigid surfaces such as cover glasses. In this study, we assessed how the silanization of glass with 3-aminopropyltriethoxysilane (APTES), 3-(trimethoxysilyl)propyl methacrylate (MAPTMS), or polymer-ceramic material Ormocomp affects the surface properties, protein binding, and maturation of hESC-RPE cells. The surface properties were studied by contact angle measurements, X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM), and a protein binding assay. The cell adherence and proliferation were evaluated by culturing hESCRPE cells on collagen IV-coated untreated or silanized surfaces for 42 days. The Ormocomp treatment significantly increased the hydrophobicity and roughness of glass surfaces compared to the APTES and MAPTMS treatments. The XPS results indicated that the Ormocomp treatment changes the chemical composition of the glass surface by increasing the carbon content and the number of C-O/═O bonds. The protein-binding test confirmed that the Ormocomp-treated surfaces bound more collagen IV than did APTES- or MAPTMS-treated surfaces. All of the silane treatments increased the number of cells: after 42 days of culture, Ormocomp had 0.38, APTES had 0.16, MAPTMS had 0.19, and untreated glass had only 0.062, all presented as million cells cm(-2). There were no differences in cell numbers compared to smoother to rougher Ormocomp surfaces, suggesting that the surface chemistry and, more specifically, the collagen binding in combination with Ormocomp are beneficial to hESC-RPE cell culture. This study clearly demonstrates that Ormocomp treatment combined with collagen coating significantly increases hESC-RPE cell attachment compared to commonly used silanizing agents APTES and MAPTMS. Ormocomp silanization could thus enable the use of microscopic live cell imaging methods for h

  5. Overexpression of angiotensin II type 1 receptor in breast cancer cells induces epithelial-mesenchymal transition and promotes tumor growth and angiogenesis.

    Science.gov (United States)

    Oh, Eunhye; Kim, Ji Young; Cho, Youngkwan; An, Hyunsook; Lee, Nahyun; Jo, Hunho; Ban, Changill; Seo, Jae Hong

    2016-06-01

    The angiotensin II type I receptor (AGTR1) has been implicated in diverse aspects of human disease, from the regulation of blood pressure and cardiovascular homeostasis to cancer progression. We sought to investigate the role of AGTR1 in cell proliferation, epithelial-mesenchymal transition (EMT), migration, invasion, angiogenesis and tumor growth in the breast cancer cell line MCF7. Stable overexpression of AGTR1 was associated with accelerated cell proliferation, concomitant with increased expression of survival factors including poly(ADP-ribose) polymerase (PARP) and X-linked inhibitor of apoptosis (XIAP), as well as extracellular signal-regulated kinase (ERK) activation. AGTR1-overexpressing MCF7 cells were more aggressive than their parent line, with significantly increased activity in migration and invasion assays. These observations were associated with changes in EMT markers, including reduced E-cadherin expression and increased p-Smad3, Smad4 and Snail levels. Treatment with the AGTR1 antagonist losartan attenuated these effects. AGTR1 overexpression also accelerated tumor growth and increased Ki-67 expression in a xenograft model. This was associated with increased tumor angiogenesis, as evidenced by a significant increase in microvessels in the intratumoral and peritumoral areas, and enhanced tumor invasion, with the latter response associated with increased EMT marker expression and matrix metallopeptidase 9 (MMP-9) upregulation. In vivo administration of losartan significantly reduced both tumor growth and angiogenesis. Our findings suggest that AGTR1 plays a significant role in tumor aggressiveness, and its inhibition may have therapeutic implications. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Attenuation of TGF-β signaling suppresses premature senescence in a p21-dependent manner and promotes oncogenic Ras-mediated metastatic transformation in human mammary epithelial cells.

    Science.gov (United States)

    Lin, Shu; Yang, Junhua; Elkahloun, Abdel G; Bandyopadhyay, Abhik; Wang, Long; Cornell, John E; Yeh, I-Tien; Agyin, Joseph; Tomlinson, Gail; Sun, Lu-Zhe

    2012-04-01

    The molecular mechanisms that drive triple-negative, basal-like breast cancer progression are elusive. Few molecular targets have been identified for the prevention or treatment of this disease. Here we developed a series of isogenic basal-like human mammary epithelial cells (HMECs) with altered transforming growth factor-β (TGF-β) sensitivity and different malignancy, resembling a full spectrum of basal-like breast carcinogenesis, and determined the molecular mechanisms that contribute to oncogene-induced transformation of basal-like HMECs when TGF-β signaling is attenuated. We found that expression of a dominant-negative type II receptor (DNRII) of TGF-β abrogated autocrine TGF-β signaling in telomerase-immortalized HMECs and suppressed H-Ras-V12-induced senescence-like growth arrest (SLGA). Furthermore, coexpression of DNRII and H-Ras-V12 rendered HMECs highly tumorigenic and metastatic in vivo in comparison with H-Ras-V12-transformed HMECs that spontaneously escaped H-Ras-V12-induced SLGA. Microarray analysis revealed that p21 was the major player mediating Ras-induced SLGA, and attenuated or loss of p21 expression contributed to the escape from SLGA when autocrine TGF-β signaling was blocked in HMECs. Furthermore, knockdown of p21 also suppressed H-Ras-V12-induced SLGA. Our results identify that autocrine TGF-β signaling is an integral part of the cellular anti-transformation network by suppressing the expression of a host of genes, including p21-regulated genes, that mediate oncogene-induced transformation in basal-like breast cancer.

  7. Discoidin domain receptor 2 (DDR2) promotes breast cancer cell metastasis and the mechanism implicates epithelial-mesenchymal transition programme under hypoxia.

    Science.gov (United States)

    Ren, Tingting; Zhang, Wei; Liu, Xinping; Zhao, Hu; Zhang, Jian; Zhang, Jing; Li, Xia; Zhang, Yan; Bu, Xin; Shi, Man; Yao, Libo; Su, Jin

    2014-12-01

    A wide range of genes involved in breast cancer metastasis have been reported to be related to the microenvironment. We studied the role of discoidin domain receptor 2 (DDR2), a collagen-binding receptor, in breast cancer progression under hypoxic conditions. We showed that DDR2 protein expression closely correlated with the expression of hypoxic marker HIF-1α in clinical breast cancer specimens. The in vitro data demonstrated that hypoxia treatment increased the levels of both expression and phosphorylation of DDR2 in human breast cancer cell lines. In vivo, orthotopic breast tumour xenografts with DDR2 knockdown displayed reduced dissemination and significant prevention in pulmonary and lymphatic metastasis; conversely, these processes were significantly facilitated by the enforced expression of the activated form of DDR2. Further mechanism studies indicated that DDR2 plays an indispensable role in a series of hypoxia-induced behaviours of breast cancer cells, including migration, invasion, and epithelial-mesenchymal transition (EMT). The transcription factor Snail was found to mediate DDR2-induced down-regulation of the cell-cell adhesion molecule E-cadherin. It was also documented that there is a correlation between DDR2 and E-cadherin expression with the presence of lymph node metastases in 160 cases of invasive human breast carcinoma. In addition, we provided evidence that DDR2 silencing in breast cancer cells prevents the hypoxia-induced activation of ERK MAPK, suggesting its potential involvement in mediating the effect of DDR2 on hypoxia-induced signalling. Based on the results of this study, we conclude that DDR2 participates in hypoxia-induced breast cancer metastasis through the regulation of cell migration, invasion, and EMT, and thus may serve as an accessible therapeutic target for the treatment of breast cancer.

  8. XML The Ability of Cellulose Polysaccharide and Curli Pili Production in Uropathogenic Escherichia Coli and its Association with Biofilm Formation Intensity

    Directory of Open Access Journals (Sweden)

    Zahra Khozein (MSc

    2016-01-01

    Full Text Available Background and Objective: the Formation of urinary infection by uropathogenic E.coli needs numerous virulence factors and biofilm formation is among these factors. Bacteria that form biofilms express phenotype traits that appear according to the bacteria type. Cellulose is an important compound on the outside of E.coli causing bacterial cell-cell reactions and connection to nonliving surfaces. Curli pili cause the reaction between cell-cell and surface-cell in biofilms and lead to bacteria aggregation. Microorganisms’ ability to form biofilm on a surface depends on the surface nature and its conditions. This study aimed at determining the production ability of cellulose polysaccharide and curli pili in UPEC strains, and its correlation with formation and intensity of biofilm. Methods: In this study carried out to compare the ability of cellulose and pili curli production ability in 40 uropathogenic E.coli isolates ,by morphotype method in Congo Red medium (CR, each isolate was incubated at 37 oC, for 24 hours. After 24 hours, all colonies’ morphology characteristics were studied Results: It was shown that 67.5% of strains produced cellulose and 72.5% produced curli pili. In addition, 92.6% and 89% of isolates that produce cellulose and curli, respectively, had a moderate to strong biofilm. Moreover, it was shown that there is a significant correlation between cellulose and / or curli pili production with biofilm intensity. Conclusion: About 70% of E.coli isolates from patients' urine are able to produce cellulose or curli pili; therefore, it can be concluded that the production of these two combinations is effective in amount and intensity of biofilm formation.

  9. Vaccination against infectious bovine keratoconjunctivitis: protective efficacy and antibody response induced by pili of homologous and heterologous strains of Moraxella bovis.

    Science.gov (United States)

    Lepper, A W

    1988-10-01

    The protective effect of 2 Moraxella bovis pili vaccines against infectious bovine keratoconjunctivitis (IBK) experimentally induced by homologous or heterologous strain challenge with virulent, haemolytic M. bovis strain, Dal 2d, was measured in trials using weaned calves aged 3 to 7 months. Purified pili vaccines were prepared from haemolytic strain Dal 2d, (pilus serogroup IV), and haemolytic strain Epp 63, (pilus serogroup III). Calves were challenged by conjunctival instillation of 1 x 10(9) colony forming units of virulent M. bovis strain Dal 2d 14 days after the second of 2 subcutaneous doses of vaccine. Each consisted of 200 micrograms of pili in alum-oil adjuvant administered at an interval of 21 days. In trial 1 the level of protection against challenge with the homologous strain was 46.7% (p less than 0.01). Small, rapidly resolving lesions of IBK occurred in some vaccinates compared with a larger proportion of severe lesions that required treatment in non-vaccinated calves (p less than 0.025). In trial 2, the level of protection against IBK after exposure of vaccinates to the homologous Dal 2d strain was 72.7%, but no significant level of protection or reduction in the size and duration of lesions was apparent in similarly challenged calves vaccinated with Epp 63 pili when contrasted with susceptible, non-vaccinated controls. No marked reduction in the duration of infection with M. bovis Dal 2d following challenge resulted from vaccination with pili of either of the serogroups III or IV. Rising homologous serum IgG antibody titres to serogroups III and IV pili were recorded in response to vaccination with each antigen.(ABSTRACT TRUNCATED AT 250 WORDS)

  10. Poly-lactic acid nanoparticles (PLA-NP) promote physiological modifications in lung epithelial cells and are internalized by clathrin-coated pits and lipid rafts.

    Science.gov (United States)

    da Luz, Camila Macedo; Boyles, Matthew Samuel Powys; Falagan-Lotsch, Priscila; Pereira, Mariana Rodrigues; Tutumi, Henrique Rudolf; de Oliveira Santos, Eidy; Martins, Nathalia Balthazar; Himly, Martin; Sommer, Aniela; Foissner, Ilse; Duschl, Albert; Granjeiro, José Mauro; Leite, Paulo Emílio Corrêa

    2017-01-31

    Poly-lactic acid nanoparticles (PLA-NP) are a type of polymeric NP, frequently used as nanomedicines, which have advantages over metallic NP such as the ability to maintain therapeutic drug levels for sustained periods of time. Despite PLA-NP being considered biocompatible, data concerning alterations in cellular physiology are scarce. We conducted an extensive evaluation of PLA-NP biocompatibility in human lung epithelial A549 cells using high throughput screening and more complex methodologies. These included measurements of cytotoxicity, cell viability, immunomodulatory potential, and effects upon the cells' proteome. We used non- and green-fluorescent PLA-NP with 63 and 66 nm diameters, respectively. Cells were exposed with concentrations of 2, 20, 100 and 200 µg/mL, for 24, 48 and 72 h, in most experiments. Moreover, possible endocytic mechanisms of internalization of PLA-NP were investigated, such as those involving caveolae, lipid rafts, macropinocytosis and clathrin-coated pits. Cell viability and proliferation were not altered in response to PLA-NP. Multiplex analysis of secreted mediators revealed a low-level reduction of IL-12p70 and vascular epidermal growth factor (VEGF) in response to PLA-NP, while all other mediators assessed were unaffected. However, changes to the cells' proteome were observed in response to PLA-NP, and, additionally, the cellular stress marker miR155 was found to reduce. In dual exposures of staurosporine (STS) with PLA-NP, PLA-NP enhanced susceptibility to STS-induced cell death. Finally, PLA-NP were rapidly internalized in association with clathrin-coated pits, and, to a lesser extent, with lipid rafts. These data demonstrate that PLA-NP are internalized and, in general, tolerated by A549 cells, with no cytotoxicity and no secretion of pro-inflammatory mediators. However, PLA-NP exposure may induce modification of biological functions of A549 cells, which should be considered when designing drug delivery systems. Moreover

  11. LDH-A promotes malignant progression via activation of epithelial-to-mesenchymal transition and conferring stemness in muscle-invasive bladder cancer.

    Science.gov (United States)

    Jiang, Fujin; Ma, Song; Xue, Yubao; Hou, Jianquan; Zhang, Yongjie

    2016-01-22

    Lactate dehydrogenase-A(LDH-A) is an important rate-limiting enzyme in the Warburg effect. Survival analysis indicated poor clinical outcomes in MIBC with high LDH-A expression. The results of in vitro experiment indicated that LDH-A promotes MIBC cells proliferation, invasion and migration. The positive relationship between LDH-A expression and CSC/EMT markers was confirmed both in invasive bladder cell line and in 136 MIBC specimens. Thus, we conclude that LDH-A may be a promising target for MIBC.

  12. Epithelialization in Wound Healing: A Comprehensive Review

    Science.gov (United States)

    Pastar, Irena; Stojadinovic, Olivera; Yin, Natalie C.; Ramirez, Horacio; Nusbaum, Aron G.; Sawaya, Andrew; Patel, Shailee B.; Khalid, Laiqua; Isseroff, Rivkah R.; Tomic-Canic, Marjana

    2014-01-01

    Significance: Keratinocytes, a major cellular component of the epidermis, are responsible for restoring the epidermis after injury through a process termed epithelialization. This review will focus on the pivotal role of keratinocytes in epithelialization, including cellular processes and mechanisms of their regulation during re-epithelialization, and their cross talk with other cell types participating in wound healing. Recent Advances: Discoveries in epidermal stem cells, keratinocyte immune function, and the role of the epidermis as an independent neuroendocrine organ will be reviewed. Novel mechanisms of gene expression regulation important for re-epithelialization, including microRNAs and histone modifications, will also be discussed. Critical Issues: Epithelialization is an essential component of wound healing used as a defining parameter of a successful wound closure. A wound cannot be considered healed in the absence of re-epithelialization. The epithelialization process is impaired in all types of chronic wounds. Future Directions: A comprehensive understanding of the epithelialization process will ultimately lead to the development of novel therapeutic approaches to promote wound closure. PMID:25032064

  13. A preparation of cow's late colostrum fraction containing αs1-casein promoted the proliferation of cultured rat intestinal IEC-6 epithelial cells.

    Science.gov (United States)

    Cairangzhuoma; Yamamoto, Mayumi; Xijier; Inagaki, Mizuho; Uchida, Kenji; Yamashita, Kousaku; Saito, Shouichiro; Yabe, Tomio; Kanamaru, Yoshihiro

    2013-01-01

    Colostrum is a complex mixture of bioactives that promotes neonate growth. Recently, we have found by in vivo study that skimmed, sterilized, and concentrated bovine late colostrum (SCBLC), obtained from a Holstein herd on days 6-7 after parturition, had an ability to maintain intestinal integrity. In the present study we investigated effects of SCBLC on rat intestinal IEC-6 cell proliferation in vitro. A fraction containing αs1-casein was found to have a robust stimulation effect as compared to other protein fractions from SCBLC and even the αs1-casein fraction from milk from other Holstein herds. Furthermore, the SCBLC αs1-casein molecule demonstrated not only slightly slower mobility on both SDS- and native-PAGE than other bovine milk αs1-caseins, but also a peculiar conformation reminiscent of moltenglobule in the circular dichroism spectrum. These findings may be of relevant to the competence of SCBLC to preserve intestinal integrity.

  14. Fibulin-4 promotes osteosarcoma invasion and metastasis by inducing epithelial to mesenchymal transition via the PI3K/Akt/mTOR pathway.

    Science.gov (United States)

    Zhang, Dong; Wang, Songgang; Chen, Jie; Liu, Haitao; Lu, Jinfa; Jiang, Hua; Huang, Aimin; Chen, Yunzhen

    2017-05-01

    This study explored the role of fibulin-4 in osteosarcoma progression and the possible signaling pathway involved. Fibulin-4 mRNA and protein expression in normal tissue, benign fibrous dysplasia, osteosarcoma, osteosarcoma cell lines, the normal osteoblastic cell line hFOB, and different invasive subclones were evaluated by immunohistochemistry (IHC) or immunocytochemistry (ICC) and real-time reverse transcriptase-polymerase chain reaction (real-time qRT-PCR). Using in vitro functional assays, we analyzed the invasive and proliferative abilities of different osteosarcoma cell lines and subclones with differing invasive potential. To assess the role of fibulin-4 in the invasion and metastasis of osteosarcoma cells, lentiviral vectors with fibulin-4 small hairpin RNA (shRNA) and pLVX-fibulin-4 were constructed and used to infect the highly invasive and low invasive subclones and osteosarcoma cell lines. The effects of fibulin-4 knockdown and upregulation on the biological behavior of osteosarcoma cells were investigated by functional in vitro and in vivo assays. The results revealed that fibulin-4 expression was upregulated in osteosarcoma, and was positively correlated with low differentiation, lymph node metastasis, and poor prognosis. Fibulin-4 was also found to be over-expressed in highly invasive cell lines and in the highly invasive subclones. Fibulin-4 could promote osteosarcoma cell invasion and metastasis by inducing EMT via the PI3K/AKT/mTOR pathway. Collectively, our findings demonstrate that fibulin-4 is a promoter of osteosarcoma development and progression, and suggest a novel therapeutic target for future studies.

  15. Chronic regulation of colonic epithelial secretory function by activation of G protein-coupled receptors.

    LENUS (Irish Health Repository)

    Toumi, F

    2011-02-01

    Enteric neurotransmitters that act at G protein-coupled receptors (GPCRs) are well known to acutely promote epithelial Cl(-) and fluid secretion. Here we examined if acute GPCR activation might have more long-term consequences for epithelial secretory function.

  16. c-Src activation promotes nasopharyngeal carcinoma metastasis by inducing the epithelial-mesenchymal transition via PI3K/Akt signaling pathway: a new and promising target for NPC

    Science.gov (United States)

    Lu, Jinping; Xia, Weixiong; Yu, Yahui; Peng, Yongjian; Wang, Li; Wang, Gang; Ye, Yanfang; Yang, Jing; Liang, Hu; Kang, Tiebang; Lv, Xing

    2016-01-01

    Aberrant activation of cellular Src (c-Src), a non-receptor tyrosine kinase, could promote cancer progression through activating its downstream signaling pathways. However, the roles of c-Src and phosphorylated-Src (p-Src) in nasopharyngeal carcinoma (NPC) progression are rarely investigated. Herein, we have identified high c-Src concentrations in the serum of NPC patients with distant metastasis using high-throughput protein microarrays. Levels of c-Src in serum and p-Src in human primary NPC samples were unfavorable independent prognostic factors for cancer-specific survival, disease-free survival, and distant metastasis-free survival. Depletion or inactivation of c-Src in NPC cells using sgRNA with CRISPR/Cas9 system or PP2 decreased cell viability, colony formation, migration and invasion in vitro and metastasis in vivo. In contrast, these malignancies could be up-regulated by overexpressed c-Src in a NPC cell line with low-metastasis potential. Furthermore, p-Src was involved in promoting NPC cell metastasis by inducing the epithelial-mesenchymal transition (EMT) process via activating the PI3K/Akt pathway and cytoskeleton remodeling. The p-Src-induced EMT process could be retarded by PP2, which mediated by down-regulating the PI3K/Akt pathway. In conclusion, elevated levels of c-Src in serum and p-Src in primary NPC tissue correlated with poor outcomes of NPC patients. And aberrant activation of c-Src facilitated NPC cells with malignant potential, especially metastasis ability, which mediated by the PI3K/Akt pathway activation and sequentially induced the EMT process. These findings unveiled a promising approach for targeted therapy of advanced NPC. PMID:27078847

  17. Gankyrin promotes epithelial-mesenchymal transition and metastasis in NSCLC through forming a closed circle with IL-6/ STAT3 and TGF-β/SMAD3 signaling pathway

    Science.gov (United States)

    Zhao, Jin-bo; Wang, Xue-jiao; Chen, Zhao; Ni, Yun-feng; Wang, Ju-zheng; Han, Yong; Zhang, Zhi-pei; Yan, Xiao-long; Li, Xiao-fei

    2017-01-01

    Our previous research showed that Gankyrin was overexpressed in NSCLC and significantly associated with clinicopathologic features and poor prognosis. In this study, we will explore potential effect of Gankyrin on EMT and metastasis in NSCLC. The ectopic higher expression of Gankyrin markedly increased the migration and invasion in NSCLC cells. In contrast, silencing Gankyrin inhibit this aggressive behavior in NSCLC cells. Further study demonstrated that overexpression of Gankyrin could decrease E-cadherin expression and increase expression of Vimentin and Twist1 at mRNA and protein levels. These data indicated that Gankyrin could facilitate occurrence and development of EMT. Also IHC analysis showed that Gankyrin expression was negatively correlated with E-cadherin expression, while positively correlated with Vimentin and Twist1 expression in NSCLC tissues. The mechanism study finally suggested that the Gankyrin-driven EMT was partially due to IL-6/p-STAT3 and TGF-β/p-SMAD3 pathways activation. Taken together, our data provided a novel mechanism of Gankyrin promoting EMT and metastasis in NSCLC through forming a closed circle with IL-6/p-STAT3 and TGF-β/p-SMAD3 signaling pathway. PMID:27992365

  18. High fat diet promotes prostatic basal-to-luminal differentiation and accelerates initiation of prostate epithelial hyperplasia originated from basal cells

    Directory of Open Access Journals (Sweden)

    Oh-Joon Kwon

    2016-05-01

    Full Text Available Recent lineage tracing studies showed that the prostate basal and luminal cells in adult mice are two independent lineages under the physiological condition, but basal cells are capable of generating luminal progenies during bacterial infection-induced prostatitis. Because acute bacterial infection in human prostate tissues is relatively rare, the disease relevance of the bacterial infection-induced basal-to-luminal differentiation is uncertain. Herein we employ a high fat diet-induced sterile prostate inflammation model to determine whether basal-to-luminal differentiation can be induced by inflammation irrespective of the underlying etiologies. A K14-CreER model and a fluorescent report line are utilized to specifically label basal cells with the green fluorescent protein. We show that high fat diet promotes immune cell infiltration into the prostate tissues and basal-to-luminal differentiation. Increased cell proliferation accompanies basal-to-luminal differentiation, suggesting a concurrent regulation of basal cell proliferation and differentiation. This study demonstrates that basal-to-luminal differentiation can be induced by different types of prostate inflammation evolved with distinct etiologies. Finally, high fat diet also accelerates initiation and progression of prostatic intraepithelial neoplasia that are originated from basal cells with loss-of-function of the tumor suppressor Pten. Because prostate cancer originated from basal cells tends to be invasive, our study also provides an alternative explanation for the association between obesity and aggressive prostate cancer.

  19. Sex-determining region Y-box3 (SOX3) functions as an oncogene in promoting epithelial ovarian cancer by targeting Src kinase.

    Science.gov (United States)

    Yan, Qin; Wang, Fangyuan; Miao, Yi; Wu, Xiaomei; Bai, Mingzhu; Xi, Xiaowei; Feng, Youji

    2016-09-01

    Ovarian cancer is one of the most common cancers which cause female mortality. The knowledge of ovarian cancer initiation and progression is critical to develop new therapeutic strategies to treat and prevent it. Recently, SOX3 has been reported to play a pivotal role in tumor progression. However, the clinical significance of SOX3 in human ovarian cancer remains elusive, and the identity of SOX3 in ovarian cancer initiation, progression, and the related underlying mechanism is unknown. In this study, we showed that SOX3 expression increased from benign and borderline to malignant ovarian tumors. Subsequently, we found that overexpression of SOX3 in EOC cells promoted proliferation, migration, and invasion, while restrained apoptosis and adhesion of ovarian cancer cells. In contrast, silencing of SOX3 gained the opposite results. Finally, we discovered SOX3 targeted Src kinase in EOC cells. These data imply that SOX3, acting as an oncogene in EOC, is not only a crucial factor in the carcinogenesis but also a promising therapeutic target for EOC.

  20. 77 FR 77091 - Notice of February 22; May 17; August 23; and November 8, 2013, Meetings for Na Hoa Pili O Kaloko...

    Science.gov (United States)

    2012-12-31

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF THE INTERIOR National Park Service Notice of February 22; May 17; August 23; and November 8, 2013, Meetings for Na Hoa...; August 23; and November 8, 2013, meetings of the Na Hoa Pili O Kaloko- Honokohau National Historical...

  1. Lactobacillus rhamnosus GG Outcompetes Enterococcus faecium via Mucus-Binding Pili: Evidence for a Novel and Heterospecific Probiotic Mechanism.

    Science.gov (United States)

    Tytgat, Hanne L P; Douillard, François P; Reunanen, Justus; Rasinkangas, Pia; Hendrickx, Antoni P A; Laine, Pia K; Paulin, Lars; Satokari, Reetta; de Vos, Willem M

    2016-10-01

    Vancomycin-resistant enterococci (VRE) have become a major nosocomial threat. Enterococcus faecium is of special concern, as it can easily acquire new antibiotic resistances and is an excellent colonizer of the human intestinal tract. Several clinical studies have explored the potential use of beneficial bacteria to weed out opportunistic pathogens. Specifically, the widely studied Lactobacillus rhamnosus strain GG has been applied successfully in the context of VRE infections. Here, we provide new insight into the molecular mechanism underlying the effects of this model probiotic on VRE decolonization. Both clinical VRE isolates and L. rhamnosus GG express pili on their cell walls, which are the key modulators of their highly efficient colonization of the intestinal mucosa. We found that one of the VRE pilus clusters shares considerable sequence similarity with the SpaCBA-SrtC1 pilus cluster of L. rhamnosus GG. Remarkable immunological and functional similarities were discovered between the mucus-binding pili of L. rhamnosus GG and those of the clinical E. faecium strain E1165, which was characterized at the genome level. Moreover, E. faecium strain E1165 bound efficiently to mucus, which may be prevented by the presence of the mucus-binding SpaC protein or antibodies against L. rhamnosus GG or SpaC. These results present experimental support for a novel probiotic mechanism, in which the mucus-binding pili of L. rhamnosus GG prevent the binding of a potential pathogen to the host. Hence, we provide a molecular basis for the further exploitation of L. rhamnosus GG and its pilins for prophylaxis and treatment of VRE infections. Concern about vancomycin-resistant Enterococcus faecium causing nosocomial infections is rising globally. The arsenal of antibiotic strategies to treat these infections is nearly exhausted, and hence, new treatment strategies are urgently needed. Here, we provide molecular evidence to underpin reports of the successful clinical application of

  2. Oxidative stress-mediated NFκB phosphorylation upregulates p62/SQSTM1 and promotes retinal pigmented epithelial cell survival through increased autophagy

    Science.gov (United States)

    Qi, Xiaoping; Beli, Eleni; Rao, Haripriya V.; Ding, Jindong; Ip, Colin S.; Gu, Hongmei; Akin, Debra; Dunn, William A.; Bowes Rickman, Catherine; Lewin, Alfred S.; Grant, Maria B.; Boulton, Michael E.

    2017-01-01

    p62 is a scaffolding adaptor implicated in the clearance of protein aggregates by autophagy. Reactive oxygen species (ROS) can either stimulate or inhibit NFκB-mediated gene expression influencing cellular fate. We studied the effect of hydrogen peroxide (H2O2)-mediated oxidative stress and NFκB signaling on p62 expression in the retinal pigment epithelium (RPE) and investigated its role in regulation of autophagy and RPE survival against oxidative damage. Cultured human RPE cell line ARPE-19 and primary human adult and fetal RPE cells were exposed to H2O2-induced oxidative stress. The human apolipoprotein E4 targeted-replacement (APOE4) mouse model of AMD was used to study expression of p62 and other autophagy proteins in the retina. p62, NFκB p65 (total, phosphorylated, nuclear and cytoplasmic) and ATG10 expression was assessed by mRNA and protein analyses. Cellular ROS and mitochondrial superoxide were measured by CM-H2DCFDA and MitoSOX staining respectively. Mitochondrial viability was determined using MTT activity. qPCR-array system was used to investigate autophagic genes affected by p62. Nuclear and cytoplasmic levels of NFκB p65 were evaluated after cellular fractionation by Western blotting. We report that p62 is up-regulated in RPE cells under H2O2-induced oxidative stress and promotes autophagic activity. Depletion of endogenous p62 reduces autophagy by downregulation of ATG10 rendering RPE more susceptible to oxidative damage. NFκB p65 phosphorylation at Ser-536 was found to be critical for p62 upregulation in response to oxidative stress. Proteasome inhibition by H2O2 causes p62-NFκB signaling as antioxidant pre-treatment reversed p62 expression and p65 phosphorylation when RPE was challenged by H2O2 but not when by Lactacystin. p62 protein but not RNA levels are elevated in APOE4-HFC AMD mouse model, suggesting reduction of autophagic flux in disease conditions. Our findings suggest that p62 is necessary for RPE cytoprotection under oxidative

  3. Oxidative stress-mediated NFκB phosphorylation upregulates p62/SQSTM1 and promotes retinal pigmented epithelial cell survival through increased autophagy.

    Science.gov (United States)

    Song, Chunjuan; Mitter, Sayak K; Qi, Xiaoping; Beli, Eleni; Rao, Haripriya V; Ding, Jindong; Ip, Colin S; Gu, Hongmei; Akin, Debra; Dunn, William A; Bowes Rickman, Catherine; Lewin, Alfred S; Grant, Maria B; Boulton, Michael E

    2017-01-01

    p62 is a scaffolding adaptor implicated in the clearance of protein aggregates by autophagy. Reactive oxygen species (ROS) can either stimulate or inhibit NFκB-mediated gene expression influencing cellular fate. We studied the effect of hydrogen peroxide (H2O2)-mediated oxidative stress and NFκB signaling on p62 expression in the retinal pigment epithelium (RPE) and investigated its role in regulation of autophagy and RPE survival against oxidative damage. Cultured human RPE cell line ARPE-19 and primary human adult and fetal RPE cells were exposed to H2O2-induced oxidative stress. The human apolipoprotein E4 targeted-replacement (APOE4) mouse model of AMD was used to study expression of p62 and other autophagy proteins in the retina. p62, NFκB p65 (total, phosphorylated, nuclear and cytoplasmic) and ATG10 expression was assessed by mRNA and protein analyses. Cellular ROS and mitochondrial superoxide were measured by CM-H2DCFDA and MitoSOX staining respectively. Mitochondrial viability was determined using MTT activity. qPCR-array system was used to investigate autophagic genes affected by p62. Nuclear and cytoplasmic levels of NFκB p65 were evaluated after cellular fractionation by Western blotting. We report that p62 is up-regulated in RPE cells under H2O2-induced oxidative stress and promotes autophagic activity. Depletion of endogenous p62 reduces autophagy by downregulation of ATG10 rendering RPE more susceptible to oxidative damage. NFκB p65 phosphorylation at Ser-536 was found to be critical for p62 upregulation in response to oxidative stress. Proteasome inhibition by H2O2 causes p62-NFκB signaling as antioxidant pre-treatment reversed p62 expression and p65 phosphorylation when RPE was challenged by H2O2 but not when by Lactacystin. p62 protein but not RNA levels are elevated in APOE4-HFC AMD mouse model, suggesting reduction of autophagic flux in disease conditions. Our findings suggest that p62 is necessary for RPE cytoprotection under oxidative

  4. Neutrophil-induced injury of rat pulmonary alveolar epithelial cells.

    Science.gov (United States)

    Simon, R H; DeHart, P D; Todd, R F

    1986-11-01

    The damage to pulmonary alveolar epithelial cells that occurs in many inflammatory conditions is thought to be caused in part by phagocytic neutrophils. To investigate this process, we exposed monolayers of purified rat alveolar epithelial cells to stimulated human neutrophils and measured cytotoxicity using a 51Cr-release assay. We found that stimulated neutrophils killed epithelial cells by a process that did not require neutrophil-generated reactive oxygen metabolites. Pretreatment of neutrophils with an antibody (anti-Mo1) that reduced neutrophil adherence to epithelial cells limited killing. Although a variety of serine protease inhibitors partially inhibited cytotoxicity, we found that neutrophil cytoplasts, neutrophil lysates, neutrophil-conditioned medium, purified azurophilic or specific granule contents, and purified human neutrophil elastase did not duplicate the injury. We conclude that stimulated neutrophils can kill alveolar epithelial cells in an oxygen metabolite-independent manner. Tight adherence of stimulated neutrophils to epithelial cell monolayers appears to promote epithelial cell killing.

  5. Force transmission in epithelial tissues.

    Science.gov (United States)

    Vasquez, Claudia G; Martin, Adam C

    2016-03-01

    In epithelial tissues, cells constantly generate and transmit forces between each other. Forces generated by the actomyosin cytoskeleton regulate tissue shape and structure and also provide signals that influence cells' decisions to divide, die, or differentiate. Forces are transmitted across epithelia because cells are mechanically linked through junctional complexes, and forces can propagate through the cell cytoplasm. Here, we review some of the molecular mechanisms responsible for force generation, with a specific focus on the actomyosin cortex and adherens junctions. We then discuss evidence for how these mechanisms promote cell shape changes and force transmission in tissues.

  6. Transcriptional mechanisms coordinating tight junction assembly during epithelial differentiation.

    Science.gov (United States)

    Boivin, Felix J; Schmidt-Ott, Kai M

    2017-06-01

    Epithelial tissues form a selective barrier via direct cell-cell interactions to separate and establish concentration gradients between the different compartments of the body. Proper function and formation of this barrier rely on the establishment of distinct intercellular junction complexes. These complexes include tight junctions, adherens junctions, desmosomes, and gap junctions. The tight junction is by far the most diverse junctional complex in the epithelial barrier. Its composition varies greatly across different epithelial tissues to confer various barrier properties. Thus, epithelial cells rely on tightly regulated transcriptional mechanisms to ensure proper formation of the epithelial barrier and to achieve tight junction diversity. Here, we review different transcriptional mechanisms utilized during embryogenesis and disease development to promote tight junction assembly and maintenance of intercellular barrier integrity. We focus particularly on the Grainyhead-like transcription factors and ligand-activated nuclear hormone receptors, two central families of proteins in epithelialization. © 2017 New York Academy of Sciences.

  7. Electronic properties of conductive pili of the metal-reducing bacterium Geobacter sulfurreducens probed by scanning tunneling microscopy

    Science.gov (United States)

    Veazey, Joshua P.; Reguera, Gemma; Tessmer, Stuart H.

    2011-12-01

    The metal-reducing bacterium Geobacter sulfurreducens produces conductive protein appendages known as “pilus nanowires” to transfer electrons to metal oxides and to other cells. These processes can be harnessed for the bioremediation of toxic metals and the generation of electricity in bioelectrochemical cells. Key to these applications is a detailed understanding of how these nanostructures conduct electrons. However, to the best of our knowledge, their mechanism of electron transport is not known. We used the capability of scanning tunneling microscopy (STM) to probe conductive materials with higher spatial resolution than other scanning probe methods to gain insights into the transversal electronic behavior of native, cell-anchored pili. Despite the presence of insulating cellular components, the STM topography resolved electronic molecular substructures with periodicities similar to those reported for the pilus shaft. STM spectroscopy revealed electronic states near the Fermi level, consistent with a conducting material, but did not reveal electronic states expected for cytochromes. Furthermore, the transversal conductance was asymmetric, as previously reported for assemblies of helical peptides. Our results thus indicate that the Geobacter pilus shaft has an intrinsic electronic structure that could play a role in charge transport.

  8. Epithelial-Mesenchymal Transition and Breast Cancer

    Directory of Open Access Journals (Sweden)

    Yanyuan Wu

    2016-01-01

    Full Text Available Breast cancer is the most common cancer in women and distant site metastasis is the main cause of death in breast cancer patients. There is increasing evidence supporting the role of epithelial-mesenchymal transition (EMT in tumor cell progression, invasion, and metastasis. During the process of EMT, epithelial cancer cells acquire molecular alternations that facilitate the loss of epithelial features and gain of mesenchymal phenotype. Such transformation promotes cancer cell migration and invasion. Moreover, emerging evidence suggests that EMT is associated with the increased enrichment of cancer stem-like cells (CSCs and these CSCs display mesenchymal characteristics that are resistant to chemotherapy and target therapy. However, the clinical relevance of EMT in human cancer is still under debate. This review will provide an overview of current evidence of EMT from studies using clinical human breast cancer tissues and its associated challenges.

  9. [Focal epithelial hyperplasia].

    Science.gov (United States)

    Vera-Iglesias, E; García-Arpa, M; Sánchez-Caminero, P; Romero-Aguilera, G; Cortina de la Calle, P

    2007-11-01

    Focal epithelial hyperplasia is a rare disease of the oral mucosa caused by the human papilloma virus (HPV). It appears as a benign epithelial growth, usually in the mucosa of the lower lip. It is mainly associated with HPV serotypes 13 and 32 and there is a clear racial predilection for the disease in Native Americans and Eskimos. We describe the case of a 17-year-old girl from Ecuador with multiple papular lesions in both lips that were clinically and histologically consistent with focal epithelial hyperplasia. Analysis by polymerase chain reaction detected HPV serotype 13.

  10. 上皮性卵巢癌组织中WWOX基因启动子区域CpG岛的甲基化状态及临床意义%Methylation State of WWOX Gene Promoter CpG Islands in Epithelial Ovarian Cancer and Its Clinical Significance

    Institute of Scientific and Technical Information of China (English)

    闫洪超; 孙洁芸; 陆晓媛; 韩秋峪; 魏敏

    2012-01-01

    目的 研究上皮性卵巢癌组织中WWOX基因启动子区CpG岛的甲基化状态,并分析WWOX基因的甲基化与上皮性卵巢癌的临床病理指标之间的关系.方法 采用甲基化特异性PCR(methylation specific polymerase chain reaction,MSP)方法检测48例上皮性卵巢癌、18例卵巢交界性上皮性肿瘤、26例卵巢良性上皮性肿瘤及33例正常卵巢组织中WWOX基因CpG岛甲基化状态.结果 上皮性卵巢癌、卵巢交界性上皮性肿瘤、卵巢良性上皮性肿瘤组织中WWOX基因启动子区CpG岛甲基化率分别为43.75%、26.32%、3.84%,正常卵巢组织中未检测到WWOX基因CpG岛甲基化.上皮性卵巢癌组织中WWOX基因CpG岛的甲基化率明显高于其他卵巢组织,差异有统计学意义(P<0.01).晚期(Ⅲ期、Ⅳ期)上皮性卵巢癌组织中WWOX基因CpG岛的甲基化率高于早期(Ⅰ期、Ⅱ期)上皮性卵巢癌组织,差异有统计学意义(P<0.05).结论 上皮性卵巢癌组织中广泛存在着WWOX基因启动子区CpG岛甲基化,可能是导致WWOX基因失活的重要机制.WWOX基因的异常甲基化可能与上皮性卵巢癌的发生发展密切相关,其可能成为上皮性卵巢癌的早期诊断和评估预后的重要指标.%Objective To evaluate the methylation status of CpG islands in WWOX gene promoter region of epithelial ovarian cancer, and to explore the relationship between methylation state of WWOX gene CpG island and clinicopathological indexes in epithelial ovarian cancer. Methods The methylation state of WWOX gene CpG island was evaluated by methylation specific polymerase chain reaction(MSP) in 48 patients with epithelial ovarian cancer, 18 patients with borderline epithelial ovarian tumors,26 patients with epithelial benign tumors,and 33 patients with normal ovarian tissues. Results The rates of CpG island methylation in WWOX gene promoter region in epithelial ovarian cancer tissues,borderline ovarian tumor tissues and benign ovarian tumor

  11. Engineering epithelial-stromal interactions in vitro for toxicology assessment.

    Science.gov (United States)

    Belair, David G; Abbott, Barbara D

    2017-03-08

    Crosstalk between epithelial and stromal cells drives the morphogenesis of ectodermal organs during development and promotes normal mature adult epithelial tissue homeostasis. Epithelial-stromal interactions (ESIs) have historically been examined using mammalian models and ex vivo tissue recombination. Although these approaches have elucidated signaling mechanisms underlying embryonic morphogenesis processes and adult mammalian epithelial tissue function, they are limited by the availability of tissue, low throughput, and human developmental or physiological relevance. In this review, we describe how bioengineered ESIs, using either human stem cells or co-cultures of human primary epithelial and stromal cells, have enabled the development of human in vitro epithelial tissue models that recapitulate the architecture, phenotype, and function of adult human epithelial tissues. We discuss how the strategies used to engineer mature epithelial tissue models in vitro could be extrapolated to instruct the design of organotypic culture models that can recapitulate the structure of embryonic ectodermal tissues and enable the in vitro assessment of events critical to organ/tissue morphogenesis. Given the importance of ESIs towards normal epithelial tissue development and function, such models present a unique opportunity for toxicological screening assays to incorporate ESIs to assess the impact of chemicals on mature and developing epidermal tissues.

  12. Cyclic di-GMP riboswitch-regulated type IV pili contribute to aggregation of Clostridium difficile.

    Science.gov (United States)

    Bordeleau, Eric; Purcell, Erin B; Lafontaine, Daniel A; Fortier, Louis-Charles; Tamayo, Rita; Burrus, Vincent

    2015-03-01

    Clostridium difficile is an anaerobic Gram-positive bacterium that causes intestinal infections with symptoms ranging from mild diarrhea to fulminant colitis. Cyclic diguanosine monophosphate (c-di-GMP) is a bacterial second messenger that typically regulates the switch from motile, free-living to sessile and multicellular behaviors in Gram-negative bacteria. Increased intracellular c-di-GMP concentration in C. difficile was recently shown to reduce flagellar motility and to increase cell aggregation. In this work, we investigated the role of the primary type IV pilus (T4P) locus in c-di-GMP-dependent cell aggregation. Inactivation of two T4P genes, pilA1 (CD3513) and pilB1 (CD3512), abolished pilus formation and significantly reduced cell aggregation under high c-di-GMP conditions. pilA1 is preceded by a putative c-di-GMP riboswitch, predicted to be transcriptionally active upon c-di-GMP binding. Consistent with our prediction, high intracellular c-di-GMP concentration increased transcript levels of T4P genes. In addition, single-round in vitro transcription assays confirmed that transcription downstream of the predicted transcription terminator was dose dependent and specific to c-di-GMP binding to the riboswitch aptamer. These results support a model in which T4P gene transcription is upregulated by c-di-GMP as a result of its binding to an upstream transcriptionally activating riboswitch, promoting cell aggregation in C. difficile.

  13. Globoside accelerates the differentiation of dental epithelial cells into ameloblasts

    Institute of Scientific and Technical Information of China (English)

    Takashi Nakamura; Yuta Chiba; Masahiro Naruse; Kan Saito; Hidemitsu Harada; Satoshi Fukumoto

    2016-01-01

    Tooth crown morphogenesis is tightly regulated by the proliferation and differentiation of dental epithelial cells. Globoside (Gb4), a globo-series glycosphingolipid, is highly expressed during embryogenesis as well as organogenesis, including tooth development. We previously reported that Gb4 is dominantly expressed in the neutral lipid fraction of dental epithelial cells. However, because its functional role in tooth development remains unknown, we investigated the involvement of Gb4 in dental epithelial cell differentiation. The expression of Gb4 was detected in ameloblasts of postnatal mouse molars and incisors. A cell culture analysis using HAT-7 cells, a rat-derived dental epithelial cell line, revealed that Gb4 did not promote dental epithelial cell proliferation. Interestingly, exogenous administration of Gb4 enhanced the gene expression of enamel extracellular matrix proteins such as ameloblastin, amelogenin, and enamelin in dental epithelial cells as well as in developing tooth germs. Gb4 also induced the expression of TrkB, one of the key receptors required for ameloblast induction in dental epithelial cells. In contrast, Gb4 downregulated the expression of p75, a receptor for neurotrophins (including neurotrophin-4) and a marker of undifferentiated dental epithelial cells. In addition, we found that exogenous administration of Gb4 to dental epithelial cells stimulated the extracellular signal-regulated kinase and p38 mitogen-activated protein kinase signalling pathways. Furthermore, Gb4 induced the expression of epiprofin and Runx2, the positive regulators for ameloblastin gene transcription. Thus, our results suggest that Gb4 contributes to promoting the differentiation of dental epithelial cells into ameloblasts.

  14. Hypervariable pili and flagella genes provide suitable new targets for DNA high-resolution melt-based genotyping of dairy Geobacillus spp.

    Science.gov (United States)

    Chauhan, Kanika; Seale, R Brent; Deeth, Hilton C; Turner, Mark S

    2014-10-01

    Although nonpathogenic in nature, spores of Geobacillus are able to attach to surfaces, germinate, and form biofilms, allowing rapid multiplication and persistence within milk powder processing plants, causing final product contamination, and eventually leading to a loss of revenue in terms of downgraded product quality. As a result, Geobacillus spp. have been found to be common contaminants of milk powder worldwide. Genotyping methods can help in gaining insight into the ecology and transmission of these thermophilic bacteria within and between dairy processing plants. The objective of this study was to use the assembled draft genomes of two Geobacillus spp. to identify and test new hypervariable genotyping targets for differentiating closely related dairy Geobacillus isolates. The two Geobacillus spp. strains obtained from high spore count powders were obtained in 2010 (isolate 7E) and in 1995 (isolate 126) and were previously shown to be of same genotype based on a variable number tandem repeat genotyping method. Significant nucleotide sequence variation was found in genes encoding pili and flagella, which were further investigated as suitable loci for a new high-resolution melt analysis (HRMA)-based genotyping method. Three genes encoding pulG (containing prepilin-type N-terminal cleavage domain), pilT (pili retraction protein), and fliW (flagellar assembly protein) were selected as targets for the new pili/flagella gene (PilFla) HRMA genotyping method. The three-gene-based PilFla-HRMA genotyping method differentiated 35 milk powder Geobacillus spp. isolates into 19 different genotype groups (D = 0.93), which compared favorably to the previous method (which used four variable number tandem repeat loci) that generated 16 different genotype groups (D = 0.90). In conclusion, through comparative genomics of two closely related dairy Geobacillus strains, we have identified new hypervariable regions that prove to be useful targets for highly discriminatory genotyping.

  15. Extracellular matrix proteins regulate epithelial-mesenchymal transition in mammary epithelial cells

    Science.gov (United States)

    Chen, Qike K.; Lee, KangAe; Radisky, Derek C.; Nelson, Celeste M.

    2013-01-01

    Mouse mammary epithelial cells undergo transdifferentiation via epithelial-mesenchymal transition (EMT) upon treatment with matrix metalloproteinase-3 (MMP3). In rigid microenvironments, MMP3 upregulates expression of Rac1b, which translocates to the cell membrane to promote induction of reactive oxygen species and EMT. Here we examine the role of the extracellular matrix (ECM) in this process. Our data show that the basement membrane protein laminin suppresses the EMT response in MMP3-treated cells, whereas fibronectin promotes EMT. These ECM proteins regulate EMT via interactions with their specific integrin receptors. α6-integrin sequesters Rac1b from the membrane and is required for inhibition of EMT by laminin. In contrast, α5-integrin maintains Rac1b at the membrane and is required for the promotion of EMT by fibronectin. Understanding the regulatory role of the ECM will provide insight into mechanisms underlying normal and pathological development of the mammary gland. PMID:23660532

  16. Coronaviruses in polarized epithelial cells

    NARCIS (Netherlands)

    Rossen, J W; Bekker, C P; Voorhout, W F; Horzinek, M C; Van der Ende, A; Strous, G J; Rottier, P J

    1995-01-01

    Coronaviruses have a marked tropism for epithelial cells. In this paper the interactions of the porcine transmissible gastroenteritis virus (TGEV) and mouse hepatitis virus (MHV-A59) with epithelial cells are compared. Porcine (LLC-PK1) and murine (mTAL) epithelial cells were grown on permeable supp

  17. Normal morphogenesis of epithelial tissues and progression of epithelial tumors.

    Science.gov (United States)

    Wang, Chun-Chao; Jamal, Leen; Janes, Kevin A

    2012-01-01

    Epithelial cells organize into various tissue architectures that largely maintain their structure throughout the life of an organism. For decades, the morphogenesis of epithelial tissues has fascinated scientists at the interface of cell, developmental, and molecular biology. Systems biology offers ways to combine knowledge from these disciplines by building integrative models that are quantitative and predictive. Can such models be useful for gaining a deeper understanding of epithelial morphogenesis? Here, we take inventory of some recurring themes in epithelial morphogenesis that systems approaches could strive to capture. Predictive understanding of morphogenesis at the systems level would prove especially valuable for diseases such as cancer, where epithelial tissue architecture is profoundly disrupted.

  18. Pseudomonas aeruginosa Transmigrates at Epithelial Cell-Cell Junctions, Exploiting Sites of Cell Division and Senescent Cell Extrusion.

    Directory of Open Access Journals (Sweden)

    Guillaume Golovkine

    2016-01-01

    Full Text Available To achieve systemic infection, bacterial pathogens must overcome the critical and challenging step of transmigration across epithelial barriers. This is particularly true for opportunistic pathogens such as Pseudomonas aeruginosa, an agent which causes nosocomial infections. Despite extensive study, details on the mechanisms used by this bacterium to transmigrate across epithelial tissues, as well as the entry sites it uses, remain speculative. Here, using real-time microscopy and a model epithelial barrier, we show that P. aeruginosa employs a paracellular transmigration route, taking advantage of altered cell-cell junctions at sites of cell division or when senescent cells are expelled from the cell layer. Once a bacterium transmigrates, it is followed by a cohort of bacteria using the same entry point. The basal compartment is then invaded radially from the initial penetration site. Effective transmigration and propagation require type 4 pili, the type 3 secretion system (T3SS and a flagellum, although flagellum-deficient bacteria can occasionally invade the basal compartment from wounded areas. In the basal compartment, the bacteria inject the T3SS toxins into host cells, disrupting the cytoskeleton and focal contacts to allow their progression under the cells. Thus, P. aeruginosa exploits intrinsic host cell processes to breach the epithelium and invade the subcellular compartment.

  19. Chitin-Induced Airway Epithelial Cell Innate Immune Responses Are Inhibited by Carvacrol/Thymol

    OpenAIRE

    Ali Reza Khosravi; David J Erle

    2016-01-01

    Chitin is produced in large amounts by fungi, insects, and other organisms and has been implicated in the pathogenesis of asthma. Airway epithelial cells are in direct contact with environmental particles and serve as the first line of defense against inhaled allergens and pathogens. The potential contributions of airway epithelial cells to chitin-induced asthma remain poorly understood. We hypothesized that chitin directly stimulates airway epithelial cells to release cytokines that promote ...

  20. Mammary epithelial cell

    DEFF Research Database (Denmark)

    Kass, Laura; Erler, Janine Terra; Dembo, Micah

    2007-01-01

    a repertoire of transmembrane receptors, of which integrins are the best characterized. Integrins modulate cell fate by reciprocally transducing biochemical and biophysical cues between the cell and the extracellular matrix, facilitating processes such as embryonic branching morphogenesis and lactation...... in the mammary gland. During breast development and cancer progression, the extracellular matrix is dynamically altered such that its composition, turnover, processing and orientation change dramatically. These modifications influence mammary epithelial cell shape, and modulate growth factor and hormonal...

  1. Oral focal epithelial hyperplasia.

    Science.gov (United States)

    López-Jornet, Pía; Camacho-Alonso, Fabio; Berdugo, Lucero

    2010-01-01

    Focal epithelial hyperplasia (FEH) is a benign, asymptomatic disease. It appears as papules, principally on the lower lip, although it can also be found on the retro-commissural mucosa and tongue and, less frequently, on the upper lip, gingiva and palate. FEH is caused by human papillomavirus subtype 13 or 32. The condition occurs in many populations and ethnic groups. We present the clinical case of a 31-year-old male with lesions that clinically and histologically corresponded to FEH.

  2. Spectroscopic Studies of Abiotic and Biological Nanomaterials: Silver Nanoparticles, Rhodamine 6G Adsorbed on Graphene, and c-Type Cytochromes and Type IV Pili in Geobacter sulfurreducens

    Science.gov (United States)

    Thrall, Elizabeth S.

    This thesis describes spectroscopic studies of three different systems: silver nanoparticles, the dye molecule rhodamine 6G adsorbed on graphene, and the type IV pili and c-type cytochromes produced by the dissimilatory metal-reducing bacterium Geobacter sulfurreducens. Although these systems are quite different in some ways, they can all be considered examples of nanomaterials. A nanomaterial is generally defined as having at least one dimension below 100 nm in size. Silver nanoparticles, with sub-100 nm size in all dimensions, are examples of zero-dimensional nanomaterials. Graphene, a single atomic layer of carbon atoms, is the paradigmatic two-dimensional nanomaterial. And although bacterial cells are on the order of 1 μm in size, the type IV pili and multiheme c-type cytochromes produced by G. sulfurreducens can be considered to be one- and zero-dimensional nanomaterials respectively. A further connection between these systems is their strong interaction with visible light, allowing us to study them using similar spectroscopic tools. The first chapter of this thesis describes research on the plasmon-mediated photochemistry of silver nanoparticles. Silver nanoparticles support coherent electron oscillations, known as localized surface plasmons, at resonance frequencies that depend on the particle size and shape and the local dielectric environment. Nanoparticle absorption and scattering cross-sections are maximized at surface plasmon resonance frequencies, and the electromagnetic field is amplified near the particle surface. Plasmonic effects can enhance the photochemistry of silver particles alone or in conjunction with semiconductors according to several mechanisms. We study the photooxidation of citrate by silver nanoparticles in a photoelectrochemical cell, focusing on the wavelength-dependence of the reaction rate and the role of the semiconductor substrate. We find that the citrate photooxidation rate does not track the plasmon resonance of the silver

  3. Passive immunisation of neonatal lambs against infection with enteropathogenic Escherichia coli via colostrum of ewes immunised with crude and purified K99 pili.

    Science.gov (United States)

    Altmann, K; Mukkur, T K

    1983-09-01

    Lambs sucking ewes immunised four to five weeks before parturition with crude preparations of K99 and purified K99 pili of single subunit composition were protected against challenge infection with heterologous enteropathogenic Escherichia coli strains. In contrast, the majority of lambs sucking sham-immunised ewes suffered severe diarrhoea and dehydration, followed by death in nearly half of the affected lambs. Protection was related to the presence of antibody in the colostral whey and lamb sera. K99-specific antibody activity in the colostral whey was found to be confined to IgM and IgG (IgG1 and IgG2) but not to the IgA class.

  4. Učinak četiriju ljekovitih biljaka na proizvodnju, biokemijske pokazatelje u krvi i ilealnu mikrofloru u tovnih pilića.

    OpenAIRE

    Sharifi, Seyed D.; Khorsandi, Saeedeh H.; Khadem, Ali A.; Salehi, Abdolreza; Moslehi, Hamidreza

    2013-01-01

    Istraživanje je poduzeto s ciljem da se procijene učinci dodatka u hranu četiriju biljaka od medicinskog značenja na proizvodnju, sadržaj lipida u krvi i mikrofloru u ileumu. U pokus je bilo uzeto 336 jednodnevnih tovnih pilića linije Ross, nasumce raspoređenih, od kojih je svaki prošao šest tretmana s četiri ponavljanja. Hrana je bila jednake kalorične vrijednosti i dušičnog sastava, a sadržavala je 15 g/kg suhog kumina, 3 g/kg peperminta, 2 g/kg stolisnika i 2 g/kg biljke dubačac. Dva pripr...

  5. C-di-GMP Regulates Motile to Sessile Transition by Modulating MshA Pili Biogenesis and Near-Surface Motility Behavior in Vibrio cholerae.

    Science.gov (United States)

    Jones, Christopher J; Utada, Andrew; Davis, Kimberly R; Thongsomboon, Wiriya; Zamorano Sanchez, David; Banakar, Vinita; Cegelski, Lynette; Wong, Gerard C L; Yildiz, Fitnat H

    2015-10-01

    In many bacteria, including Vibrio cholerae, cyclic dimeric guanosine monophosphate (c-di-GMP) controls the motile to biofilm life style switch. Yet, little is known about how this occurs. In this study, we report that changes in c-di-GMP concentration impact the biosynthesis of the MshA pili, resulting in altered motility and biofilm phenotypes in V. cholerae. Previously, we reported that cdgJ encodes a c-di-GMP phosphodiesterase and a ΔcdgJ mutant has reduced motility and enhanced biofilm formation. Here we show that loss of the genes required for the mannose-sensitive hemagglutinin (MshA) pilus biogenesis restores motility in the ΔcdgJ mutant. Mutations of the predicted ATPase proteins mshE or pilT, responsible for polymerizing and depolymerizing MshA pili, impair near surface motility behavior and initial surface attachment dynamics. A ΔcdgJ mutant has enhanced surface attachment, while the ΔcdgJmshA mutant phenocopies the high motility and low attachment phenotypes observed in a ΔmshA strain. Elevated concentrations of c-di-GMP enhance surface MshA pilus production. MshE, but not PilT binds c-di-GMP directly, establishing a mechanism for c-di-GMP signaling input in MshA pilus production. Collectively, our results suggest that the dynamic nature of the MshA pilus established by the assembly and disassembly of pilin subunits is essential for transition from the motile to sessile lifestyle and that c-di-GMP affects MshA pilus assembly and function through direct interactions with the MshE ATPase.

  6. The protective efficacy of cloned Moraxella bovis pili in monovalent and multivalent vaccine formulations against experimentally induced infectious bovine keratoconjunctivitis (IBK).

    Science.gov (United States)

    Lepper, A W; Atwell, J L; Lehrbach, P R; Schwartzkoff, C L; Egerton, J R; Tennent, J M

    1995-07-01

    Calves were vaccinated with cloned Moraxella bovis pili of serogroup C (experiment 1) or B (experiment 2) either as a monovalent formulation or as part of a multivalent preparation with pili of six other serogroups. Within 4 weeks of the second vaccine dose vaccinated calves and non-vaccinated controls were challenged via the ocular route with either virulent M. bovis strain Dal2d (serogroup C) or M. bovis strain 3WO7 (serogroup B) in experiments 1 and 2, respectively. Calves vaccinated with multivalent vaccines had significantly lower antibody titres than those vaccinated with monovalent preparations. Nevertheless, the levels of protection against infectious bovine keratoconjunctivitis (IBK) achieved with multivalent vaccines were 72% and 83% for the groups challenged with M. bovis strains of serogroups B and C, respectively. The serogroup C monovalent vaccine gave 100% protection against experimentally induced IBK and M. bovis isolates cultured from the eyes 6 days post-challenge were identified as belonging solely to serogroup C. Unexpectedly, only 25% protection was achieved against homologous strain challenge of calves that received the monovalent serogroup B vaccine. Furthermore, the majority of M. bovis isolates recovered from calves in this group belonged to serogroup C, as did half of those isolates cultured from the multivalent vaccinates. The remaining bacterial isolates from the latter group, together with all isolates from the non-vaccinated controls, belonged to serogroup B. Results are consistent with the hypothesis that derivatives of the serogroup B challenge inoculum had expressed serogroup C pilus antigen within 6 days of the challenge, possibly as a result of pilus gene inversion occurring in response to the presence of specific antibody in eye tissues and tears.

  7. A novel putrescine importer required for type 1 pili-driven surface motility induced by extracellular putrescine in Escherichia coli K-12.

    Science.gov (United States)

    Kurihara, Shin; Suzuki, Hideyuki; Oshida, Mayu; Benno, Yoshimi

    2011-03-25

    Recently, many studies have reported that polyamines play a role in bacterial cell-to-cell signaling processes. The present study describes a novel putrescine importer required for induction of type 1 pili-driven surface motility. The surface motility of the Escherichia coli ΔspeAB ΔspeC ΔpotABCD strain, which cannot produce putrescine and cannot import spermidine from the medium, was induced by extracellular putrescine. Introduction of the gene deletions for known polyamine importers (ΔpotE, ΔpotFGHI, and ΔpuuP) or a putative polyamine importer (ΔydcSTUV) into the ΔspeAB ΔspeC ΔpotABCD strain did not affect putrescine-induced surface motility. The deletion of yeeF, an annotated putative putrescine importer, in the ΔspeAB ΔspeC ΔpotABCD ΔydcSTUV strain abolished surface motility in putrescine-supplemented medium. Complementation of yeeF by a plasmid vector restored surface motility. The surface motility observed in the present study was abolished by the deletion of fimA, suggesting that the surface motility is type 1 pili-driven. A transport assay using the yeeF(+) or ΔyeeF strains revealed that YeeF is a novel putrescine importer. The K(m) of YeeF (155 μM) is 40 to 300 times higher than that of other importers reported previously. On the other hand, the V(max) of YeeF (9.3 nmol/min/mg) is comparable to that of PotABCD, PotFGHI, and PuuP. The low affinity of YeeF for putrescine may allow E. coli to sense the cell density depending on the concentration of extracellular putrescine.

  8. Human papillomavirus type 16 E6 and E 7 proteins alter NF-kB in cultured cervical epithelial cells and inhibition of NF-kB promotes cell growth and immortalization

    Energy Technology Data Exchange (ETDEWEB)

    Vandermark, Erik R.; Deluca, Krysta A.; Gardner, Courtney R.; Marker, Daniel F.; Schreiner, Cynthia N.; Strickland, David A.; Wilton, Katelynn M. [Department of Biology, Clarkson University, Potsdam, NY 13699-5805 (United States); Mondal, Sumona [Department of Mathematics, Clarkson University, Potsdam, NY 13699-5805 (United States); Woodworth, Craig D., E-mail: woodworth@clarkson.edu [Department of Biology, Clarkson University, Potsdam, NY 13699-5805 (United States)

    2012-03-30

    The NF-kB family of transcription factors regulates important biological functions including cell growth, survival and the immune response. We found that Human Papillomavirus type 16 (HPV-16) E7 and E6/E7 proteins inhibited basal and TNF-alpha-inducible NF-kB activity in human epithelial cells cultured from the cervical transformation zone, the anatomic region where most cervical cancers develop. In contrast, HPV-16 E6 regulated NF-kB in a cell type- and cell growth-dependent manner. NF-kB influenced immortalization of cervical cells by HPV16. Inhibition of NF-kB by an IkB alpha repressor mutant increased colony formation and immortalization by HPV-16. In contrast, activation of NF-kB by constitutive expression of p65 inhibited proliferation and immortalization. Our results suggest that inhibition of NF-kB by HPV-16 E6/E7 contributes to immortalization of cells from the cervical transformation zone.

  9. Transcriptional networks in epithelial-mesenchymal transition.

    Directory of Open Access Journals (Sweden)

    Christo Venkov

    Full Text Available Epithelial-mesenchymal transition (EMT changes polarized epithelial cells into migratory phenotypes associated with loss of cell-cell adhesion molecules and cytoskeletal rearrangements. This form of plasticity is seen in mesodermal development, fibroblast formation, and cancer metastasis.Here we identify prominent transcriptional networks active during three time points of this transitional process, as epithelial cells become fibroblasts. DNA microarray in cultured epithelia undergoing EMT, validated in vivo, were used to detect various patterns of gene expression. In particular, the promoter sequences of differentially expressed genes and their transcription factors were analyzed to identify potential binding sites and partners. The four most frequent cis-regulatory elements (CREs in up-regulated genes were SRY, FTS-1, Evi-1, and GC-Box, and RNA inhibition of the four transcription factors, Atf2, Klf10, Sox11, and SP1, most frequently binding these CREs, establish their importance in the initiation and propagation of EMT. Oligonucleotides that block the most frequent CREs restrain EMT at early and intermediate stages through apoptosis of the cells.Our results identify new transcriptional interactions with high frequency CREs that modulate the stability of cellular plasticity, and may serve as targets for modulating these transitional states in fibroblasts.

  10. Three-dimensional collagen matrix induces a mechanosensitive invasive epithelial phenotype

    Science.gov (United States)

    Carey, Shawn P.; Martin, Karen E.; Reinhart-King, Cynthia A.

    2017-01-01

    A critical step in breast cancer progression is local tissue invasion, during which cells pass from the epithelial compartment to the stromal compartment. We recently showed that malignant leader cells can promote the invasion of otherwise non-invasive epithelial follower cells, but the effects of this induced-invasion phenomenon on follower cell phenotype remain unclear. Notably, this process can expose epithelial cells to the stromal extracellular matrix (ECM), which is distinct from the ECM within the normal epithelial microenvironment. Here, we used a 3D epithelial morphogenesis model in which cells were cultured in biochemically and mechanically defined matrices to examine matrix-mediated gene expression and the associated phenotypic response. We found that 3D collagen matrix promoted expression of mesenchymal genes including MT1-MMP, which was required for collagen-stimulated invasive behavior. Epithelial invasion required matrix anchorage as well as signaling through Src, PI3K, and Rac1, and increasingly stiff collagen promoted dispersive epithelial cell invasion. These results suggest that leader cell-facilitated access to the stromal ECM may trigger an invasive phenotype in follower epithelial cells that could enable them to actively participate in local tissue invasion. PMID:28186196

  11. Human corneal epithelial subpopulations

    DEFF Research Database (Denmark)

    Søndergaard, Chris Bath

    2013-01-01

    -free EpiLife medium, using a range of physiologically relevant oxygen concentrations (2%, 5%, 10%, 15% and 20%). Using immunocytochemistry and advanced fluorescence microscopy, cells were characterized regarding growth, cell cycle distribution, colony-forming efficiency (CFE), phenotypes...... and cytomorphometry. Limbal epithelial cells expanded in 2% O2 exhibited slow growth, low fraction of cells in S/G2 , high CFE, high expression of stem cell markers ABCG2 and p63α, and low fraction of differentiation marker CK3 resembling a LESC phenotype. The effect of hypoxia to maintain LESCs in culture...

  12. Oncogenic pathways implicated in ovarian epithelial cancer.

    Science.gov (United States)

    Nicosia, Santo V; Bai, Wenlong; Cheng, Jin Q; Coppola, Domenico; Kruk, Patricia A

    2003-08-01

    Characterization of intracellular signaling pathways should lead to a better understanding of ovarian epithelial carcinogenesis and provide an opportunity to interfere with signal transduction targets involved in ovarian tumor cell growth, survival, and progression. Challenges toward such an effort are significant because many of these signals are part of cascades within an intricate and likely redundant intracellular signaling network (Fig.1). For instance, a given signal may activate a dual intracellular pathway (ie, MEK1-MAPK and PI3K/Akt required for fibronectin-dependent activation of matrix metalloproteinase 9). A single pathway also may transduce more than one biologic or oncogenic signal (ie, PI3K signaling in epithelial and endothelial cell growth and sprouting of neovessels). Despite these challenges, evidence for therapeutic targeting of signal transduction pathways is accumulating in human cancer. For instance, the EGF-specific tyrosine kinase inhibitor ZD 1839 (Iressa) may have a beneficial therapeutic effect on ovarian epithelial cancer. Therapy of this cancer may include inhibitors of PI kinase (quercetin), ezrin and PIP kinase (genistein). The G protein-coupled family of receptors, including LPA, also is an attractive target to drugs, although their frequent pleiotropic functions may be at times toxic and lack specificity. Because of the lack of notable toxicity, PI3K/Akt pathway inhibitors such as FTIs are a promising targeted therapy of ovarian epithelial cancer. Increasing insight into the oncogenic pathways involved in ovarian epithelial cancer also is helping clinicians to understand better the phenomenon of chemoresistance in this malignancy. Oncogenic activation of gamma-synuclein promotes cell survival and provides resistance to paclitaxel, but such a resistance is partially overcome by an MEK inhibitor that suppresses ERK activity. Ovarian epithelial cancer is a complex group of neoplasms with an overall poor prognosis. Comprehension of

  13. Epimorphin Functions as a Key Morphoregulator for Mammary Epithelial Cells

    Energy Technology Data Exchange (ETDEWEB)

    Hirai, H.; Lochter, A.; Galosy, S.; Koshida, S.; Niwa, S.; Bissell, M.J.

    1997-10-13

    Hepatocyte growth factor (HGF) and EGF have been reported to promote branching morphogenesis of mammary epithelial cells. We now show that it is epimorphin that is primarily responsible for this phenomenon. In vivo, epimorphin was detected in the stromal compartment but not in lumenal epithelial cells of the mammary gland; in culture, however, a subpopulation of mammary epithelial cells produced significant amounts of epimorphin. When epimorphin-expressing epithelial cell clones were cultured in collagen gels they displayed branching morphogenesis in the presence of HGF, EGF, keratinocyte growth factor, or fibroblast growth factor, a process that was inhibited by anti-epimorphin but not anti-HGF antibodies. The branch length, however, was roughly proportional to the ability of the factors to induce growth. Accordingly, epimorphin-negative epithelial cells simply grew in a cluster in response to the growth factors and failed to branch. When recombinant epimorphin was added to these collagen gels, epimorphin-negative cells underwent branching morphogenesis. The mode of action of epimorphin on morphogenesis of the gland, however, was dependent on how it was presented to the mammary cells. If epimorphin was overexpressed in epimorphin-negative epithelial cells under regulation of an inducible promoter or was allowed to coat the surface of each epithelial cell in a nonpolar fashion, the cells formed globular, alveoli-like structures with a large central lumen instead of branching ducts. This process was enhanced also by addition of HGF, EGF, or other growth factors and was inhibited by epimorphin antibodies. These results suggest that epimorphin is the primary morphogen in the mammary gland but that growth factors are necessary to achieve the appropriate cell numbers for the resulting morphogenesis to be visualized.

  14. Simple Epithelial Keratins.

    Science.gov (United States)

    Strnad, Pavel; Guldiken, Nurdan; Helenius, Terhi O; Misiorek, Julia O; Nyström, Joel H; Lähdeniemi, Iris A K; Silvander, Jonas S G; Kuscuoglu, Deniz; Toivola, Diana M

    2016-01-01

    Simple epithelial keratins (SEKs) are the cytoplasmic intermediate filament proteins of single-layered and glandular epithelial cells as found in the liver, pancreas, intestine, and lung. SEKs have broad cytoprotective functions, which are facilitated by dynamic posttranslational modifications and interaction with associated proteins. SEK filaments are composed of obligate heteropolymers of type II (K7, K8) and type I (K18-K20, K23) keratins. The multifaceted roles of SEKs are increasingly appreciated due to findings obtained from transgenic mouse models and human studies that identified SEK variants in several digestive diseases. Reorganization of the SEK network into aggregates called Mallory-Denk bodies (MDBs) is characteristic for specific liver disorders such as alcoholic and nonalcoholic steatohepatitis. To spur further research on SEKs, we here review the methods and potential caveats of their isolation as well as possibilities to study them in cell culture. The existing transgenic SEK mouse models, their advantages and potential drawbacks are discussed. The tools to induce MDBs, ways of their visualization and quantification, as well as the possibilities to detect SEK variants in humans are summarized. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Hydraulic fracture during epithelial stretching

    Science.gov (United States)

    Casares, Laura; Vincent, Romaric; Zalvidea, Dobryna; Campillo, Noelia; Navajas, Daniel; Arroyo, Marino; Trepat, Xavier

    2015-03-01

    The origin of fracture in epithelial cell sheets subject to stretch is commonly attributed to excess tension in the cells’ cytoskeleton, in the plasma membrane, or in cell-cell contacts. Here, we demonstrate that for a variety of synthetic and physiological hydrogel substrates the formation of epithelial cracks is caused by tissue stretching independently of epithelial tension. We show that the origin of the cracks is hydraulic; they result from a transient pressure build-up in the substrate during stretch and compression manoeuvres. After pressure equilibration, cracks heal readily through actomyosin-dependent mechanisms. The observed phenomenology is captured by the theory of poroelasticity, which predicts the size and healing dynamics of epithelial cracks as a function of the stiffness, geometry and composition of the hydrogel substrate. Our findings demonstrate that epithelial integrity is determined in a tension-independent manner by the coupling between tissue stretching and matrix hydraulics.

  16. Extensive focal epithelial hyperplasia.

    Science.gov (United States)

    Hashemipour, Maryam Alsadat; Shoryabi, Ali; Adhami, Shahrzad; Mehrabizadeh Honarmand, Hoda

    2010-01-01

    Heck's disease or focal epithelial hyperplasia is a benign contagious disease caused by human papillomavirus types 13 or 32. It occurs with low frequency in the Iranian population. This condition is characterized by the occurrence of multiple, small papules or nodules in the oral cavity, especially on the labial and buccal mucosa and tongue. In some populations, up to 39% of children are affected. Conservative surgical excision of lesions may be performed for diagnostic or aesthetic purposes. The risk of recurrence after this therapy is minimal, and there seems to be no malignant transformation potential. In the present work, we presented the clinical case of a 12-year-old Iranian girl with oral lesions that clinically and histologically correspond to Heck's disease.

  17. 间充质干细胞条件培养液促进肺癌细胞上皮间质转化%Human bone marrow mesenchymal stem cells promote epithelial mesenchymal transition in lung cancer cells

    Institute of Scientific and Technical Information of China (English)

    吴佳斌; 王涛; 杨伟林; 王均洁; 肖婕婓; 王儒琛; 陈振光

    2016-01-01

    BACKGROUND:The complex relationship between bone marrow mesenchymal stem cels and cancers severely limit the clinical application of mesenchymal stem cels. So it is urgent to study the role of mesenchymal stem cels in tumor growth and metastasis. OBJECTIVE:To explore the effect of human bone marrow mesenchymal stem cels on epithelial mesenchymal transition in non-smal cel lung cancer A549 and PAa cels. METHODS:The A549 and PAa cels were cultured with mesenchymal stem cel supernatant (mesenchymal stem cel conditioned medium, MSCs-CM). The celular morphology was observed under a microscope. The mRNA and protein expression of E-cadherin, N-cadherin, Vimentin, Slug, Snail, and Twist were determined by RT-PCR and western blot. Transwel and wound healing assay were used to detect the change of migration and metastatic ability. RESULTS AND CONCLUSION:Compared with the control group, the celular morphology of experimental group showed mesenchymal-like changes. In response to MSCs-CM, there was decreased E-cadherin but increased N-cadherin, Vimentin and Slug, Snail, Twist at mRNA and protein levels compared with the control group (P   目的:探讨人骨髓来源间充质干细胞对人非小细胞肺癌A549、PAa细胞上皮间质转化的影响。  方法:收集间充质干细胞上清液作为间充质干细胞条件培养液培养肺癌细胞 A549和 PAa,观察肺癌细胞形态、上皮间质转化标志物E-钙黏素、N-钙黏素、波形蛋白以及其转录因子Slug、Snail、Twist等的表达以及肺癌细胞运动迁移能力的变化。  结果与结论:①与对照组对比:加入条件培养液的肺癌细胞形态发生了间质样变化,且E-钙黏素表达降低,N-钙黏素、波形蛋白mRNA与蛋白表达水平上升,转录因子Slug、Snail、Twist mRNA表达水平也明显增加,同时细胞运动迁移能力增强。②结果表明人骨髓来源间充质干细胞可以促进非小细胞肺癌A549、PAa细胞上皮间

  18. Human Epithelial Cells Discriminate between Commensal and Pathogenic Interactions with Candida albicans.

    Science.gov (United States)

    Rast, Timothy J; Kullas, Amy L; Southern, Peter J; Davis, Dana A

    2016-01-01

    The commensal fungus, Candida albicans, can cause life-threatening infections in at risk individuals. C. albicans colonizes mucosal surfaces of most people, adhering to and interacting with epithelial cells. At low concentrations, C. albicans is not pathogenic nor does it cause epithelial cell damage in vitro; at high concentrations, C. albicans causes mucosal infections and kills epithelial cells in vitro. Here we show that while there are quantitative dose-dependent differences in exposed epithelial cell populations, these reflect a fundamental qualitative difference in host cell response to C. albicans. Using transcriptional profiling experiments and real time PCR, we found that wild-type C. albicans induce dose-dependent responses from a FaDu epithelial cell line. However, real time PCR and Western blot analysis using a high dose of various C. albicans strains demonstrated that these dose-dependent responses are associated with ability to promote host cell damage. Our studies support the idea that epithelial cells play a key role in the immune system by monitoring the microbial community at mucosal surfaces and initiating defensive responses when this community is dysfunctional. This places epithelial cells at a pivotal position in the interaction with C. albicans as epithelial cells themselves promote C. albicans stimulated damage.

  19. Role of Epithelial-Mesenchyme Transition in Chlamydia Pathogenesis.

    Directory of Open Access Journals (Sweden)

    Joseph U Igietseme

    Full Text Available Chlamydia trachomatis genital infection in women causes serious adverse reproductive complications, and is a strong co-factor for human papilloma virus (HPV-associated cervical epithelial carcinoma. We tested the hypothesis that Chlamydia induces epithelial-mesenchyme transition (EMT involving T cell-derived TNF-alpha signaling, caspase activation, cleavage inactivation of dicer and dysregulation of micro-RNA (miRNA in the reproductive epithelium; the pathologic process of EMT causes fibrosis and fertility-related epithelial dysfunction, and also provides the co-factor function for HPV-related cervical epithelial carcinoma. Using a combination of microarrays, immunohistochemistry and proteomics, we showed that chlamydia altered the expression of crucial miRNAs that control EMT, fibrosis and tumorigenesis; specifically, miR-15a, miR-29b, miR-382 and MiR-429 that maintain epithelial integrity were down-regulated, while miR-9, mi-R-19a, miR-22 and miR-205 that promote EMT, fibrosis and tumorigenesis were up-regulated. Chlamydia induced EMT in vitro and in vivo, marked by the suppression of normal epithelial cell markers especially E-cadherin but up-regulation of mesenchymal markers of pathological EMT, including T-cadherin, MMP9, and fibronectin. Also, Chlamydia upregulated pro-EMT regulators, including the zinc finger E-box binding homeobox protein, ZEB1, Snail1/2, and thrombospondin1 (Thbs1, but down-regulated anti-EMT and fertility promoting proteins (i.e., the major gap junction protein connexin 43 (Cx43, Mets1, Add1Scarb1 and MARCKSL1. T cell-derived TNF-alpha signaling was required for chlamydial-induced infertility and caspase inhibitors prevented both infertility and EMT. Thus, chlamydial-induced T cell-derived TNF-alpha activated caspases that inactivated dicer, causing alteration in the expression of reproductive epithelial miRNAs and induction of EMT. EMT causes epithelial malfunction, fibrosis, infertility, and the enhancement of

  20. Establishment of Epithelial Attachment on Titanium Surface Coated with Platelet Activating Peptide

    Science.gov (United States)

    Sugawara, Shiho; Maeno, Masahiko; Lee, Cliff; Nagai, Shigemi; Kim, David M.; Da Silva, John; Kondo, Hisatomo

    2016-01-01

    The aim of this study was to produce epithelial attachment on a typical implant abutment surface of smooth titanium. A challenging complication that hinders the success of dental implants is peri-implantitis. A common cause of peri-implantitis may results from the lack of epithelial sealing at the peri-implant collar. Histologically, epithelial sealing is recognized as the attachment of the basement membrane (BM). BM-attachment is promoted by activated platelet aggregates at surgical wound sites. On the other hand, platelets did not aggregate on smooth titanium, the surface typical of the implant abutment. We then hypothesized that epithelial BM-attachment was produced when titanium surface was modified to allow platelet aggregation. Titanium surfaces were coated with a protease activated receptor 4-activating peptide (PAR4-AP). PAR4-AP coating yielded rapid aggregation of platelets on the titanium surface. Platelet aggregates released robust amount of epithelial chemoattractants (IGF-I, TGF-β) and growth factors (EGF, VEGF) on the titanium surface. Human gingival epithelial cells, when they were co-cultured on the platelet aggregates, successfully attached to the PAR4-AP coated titanium surface with spread laminin5 positive BM and consecutive staining of the epithelial tight junction component ZO1, indicating the formation of complete epithelial sheet. These in-vitro results indicate the establishment of epithelial BM-attachment to the titanium surface. PMID:27741287

  1. Roles of Wnt/{beta}-catenin signaling in epithelial differentiation of mesenchymal stem cells

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yajing; Sun, Zhaorui; Qiu, Xuefeng [Immunology and Reproductive Biology Laboratory, Medical College of Nanjing University, Nanjing 210093 (China); Jiangsu Key Laboratory of Molecular Medicine, Nanjing 210093 (China); Li, Yan [Jiangsu Centers for Diseases Prevention and Control, Nanjing 210009 (China); Qin, Jizheng [Immunology and Reproductive Biology Laboratory, Medical College of Nanjing University, Nanjing 210093 (China); Jiangsu Key Laboratory of Molecular Medicine, Nanjing 210093 (China); Han, Xiaodong, E-mail: hanxd@nju.edu.cn [Immunology and Reproductive Biology Laboratory, Medical College of Nanjing University, Nanjing 210093 (China); Jiangsu Key Laboratory of Molecular Medicine, Nanjing 210093 (China)

    2009-12-25

    Bone marrow-derived mesenchymal stem cells (MSCs) have been demonstrated to be able to differentiate into epithelial lineage, but the precise mechanisms controlling this process are unclear. Our aim is to explore the roles of Wnt/{beta}-catenin in the epithelial differentiation of MSCs. Using indirect co-culture of rat MSCs with rat airway epithelial cells (RTE), MSCs expressed several airway epithelial markers (cytokeratin 18, tight junction protein occudin, cystic fibrosis transmembrance regulator). The protein levels of some important members in Wnt/{beta}-catenin signaling were determined, suggested down-regulation of Wnt/{beta}-catenin with epithelial differentiation of MSCs. Furthermore, Wnt3{alpha} can inhibit the epithelial differentiation of MSCs. A loss of {beta}-catenin induced by Dickkopf-1 can enhance MSCs differentiation into epithelial cells. Lithium chloride transiently activated {beta}-catenin expression and subsequently decreased {beta}-catenin level and at last inhibited MSCs to differentiate into airway epithelium. Taken together, our study indicated that RTE cells can trigger epithelial differentiation of MSCs. Blocking Wnt/{beta}-catenin signaling may promote MSCs to differentiate towards airway epithelial cells.

  2. Connective Tissue Growth Factor Expression in Human Bronchial Epithelial Cells

    Institute of Scientific and Technical Information of China (English)

    Amrita DOSANJH

    2006-01-01

    Connective tissue growth factor (CTGF) is a cysteine-rich protein that promotes extracellular matrix deposition. CTGF is selectively induced by transforming growth factor β and des-Arg kallidin in lung fibroblasts and increases steady-state mRNA levels of α type I collagen, 5α-integrin and fibronectin in fibroblasts. Bronchial epithelial cells have been proposed to functionally interact with lung fibroblasts. We therefore investigated if bronchial epithelial cells are able to synthesize CTGF. Human bronchial epithelial cells were grown to subconfluence in standard growth media. Proliferating cells grown in small airway growth media were harvested following starvation for up to 24 h. Expression of CTGF transcripts was measured by PCR. Immunocytochemistry was also completed using a commercially available antibody.The cells expressed readily detectable CTGF transcripts. Starvation of these cells resulted in a quantitative decline of CTGF transcripts. Direct sequencing of the PCR product identified human CTGF. Immunocytochemistry confirmed intracellular CTGF in the cells and none in negative control cells. We conclude that bronchial epithelial cells could be a novel source of CTGF. Bronchial epithelial cell-derived CTGF could thus directly influence the deposition of collagen in certain fibrotic lung diseases.

  3. Bacillus anthracis lethal toxin reduces human alveolar epithelial barrier function.

    Science.gov (United States)

    Langer, Marybeth; Duggan, Elizabeth Stewart; Booth, John Leland; Patel, Vineet Indrajit; Zander, Ryan A; Silasi-Mansat, Robert; Ramani, Vijay; Veres, Tibor Zoltan; Prenzler, Frauke; Sewald, Katherina; Williams, Daniel M; Coggeshall, Kenneth Mark; Awasthi, Shanjana; Lupu, Florea; Burian, Dennis; Ballard, Jimmy Dale; Braun, Armin; Metcalf, Jordan Patrick

    2012-12-01

    The lung is the site of entry for Bacillus anthracis in inhalation anthrax, the deadliest form of the disease. Bacillus anthracis produces virulence toxins required for disease. Alveolar macrophages were considered the primary target of the Bacillus anthracis virulence factor lethal toxin because lethal toxin inhibits mouse macrophages through cleavage of MEK signaling pathway components, but we have reported that human alveolar macrophages are not a target of lethal toxin. Our current results suggest that, unlike human alveolar macrophages, the cells lining the respiratory units of the lung, alveolar epithelial cells, are a target of lethal toxin in humans. Alveolar epithelial cells expressed lethal toxin receptor protein, bound the protective antigen component of lethal toxin, and were subject to lethal-toxin-induced cleavage of multiple MEKs. These findings suggest that human alveolar epithelial cells are a target of Bacillus anthracis lethal toxin. Further, no reduction in alveolar epithelial cell viability was observed, but lethal toxin caused actin rearrangement and impaired desmosome formation, consistent with impaired barrier function as well as reduced surfactant production. Therefore, by compromising epithelial barrier function, lethal toxin may play a role in the pathogenesis of inhalation anthrax by facilitating the dissemination of Bacillus anthracis from the lung in early disease and promoting edema in late stages of the illness.

  4. Biomaterial surface proteomic signature determines interaction with epithelial cells.

    Science.gov (United States)

    Abdallah, Mohamed-Nur; Tran, Simon D; Abughanam, Ghada; Laurenti, Marco; Zuanazzi, David; Mezour, Mohamed A; Xiao, Yizhi; Cerruti, Marta; Siqueira, Walter L; Tamimi, Faleh

    2017-03-01

    Cells interact with biomaterials indirectly through extracellular matrix (ECM) proteins adsorbed onto their surface. Accordingly, it could be hypothesized that the surface proteomic signature of a biomaterial might determine its interaction with cells. Here, we present a surface proteomic approach to test this hypothesis in the specific case of biomaterial-epithelial cell interactions. In particular, we determined the surface proteomic signature of different biomaterials exposed to the ECM of epithelial cells (basal lamina). We revealed that the biomaterial surface chemistry determines the surface proteomic profile, and subsequently the interaction with epithelial cells. In addition, we found that biomaterials with surface chemistries closer to that of percutaneous tissues, such as aminated PMMA and aminated PDLLA, promoted higher selective adsorption of key basal lamina proteins (laminins, nidogen-1) and subsequently improved their interactions with epithelial cells. These findings suggest that mimicking the surface chemistry of natural percutaneous tissues can improve biomaterial-epithelial integration, and thus provide a rationale for the design of improved biomaterial surfaces for skin regeneration and percutaneous medical devices.

  5. Polymorphisms in stromal genes and susceptibility to serous epithelial ovarian cancer: a report from the Ovarian Cancer Association Consortium

    DEFF Research Database (Denmark)

    Amankwah, Ernest K; Wang, Qinggang; Schildkraut, Joellen M

    2011-01-01

    Alterations in stromal tissue components can inhibit or promote epithelial tumorigenesis. Decorin (DCN) and lumican (LUM) show reduced stromal expression in serous epithelial ovarian cancer (sEOC). We hypothesized that common variants in these genes associate with risk. Associations with sEOC among...

  6. A scaffold protein connects type IV pili with the Chp chemosensory system to mediate activation of virulence signaling in Pseudomonas aeruginosa.

    Science.gov (United States)

    Inclan, Yuki F; Persat, Alexandre; Greninger, Alexander; Von Dollen, John; Johnson, Jeffery; Krogan, Nevan; Gitai, Zemer; Engel, Joanne N

    2016-08-01

    Type IV pili (TFP) function as mechanosensors to trigger acute virulence programs in Pseudomonas aeruginosa. On surface contact, TFP retraction activates the Chp chemosensory system phosphorelay to upregulate 3', 5'-cyclic monophosphate (cAMP) production and transcription of virulence-associated genes. To dissect the specific interactions mediating the mechanochemical relay, we used affinity purification/mass spectrometry, directed co-immunoprecipitations in P. aeruginosa, single cell analysis of contact-dependent transcriptional reporters, subcellular localization and bacterial two hybrid assays. We demonstrate that FimL, a Chp chemosensory system accessory protein of unknown function, directly links the integral component of the TFP structural complex FimV, a peptidoglycan binding protein, with one of the Chp system output response regulators PilG. FimL and PilG colocalize at cell poles in a FimV-dependent manner. While PilG phosphorylation is required for TFP function and mechanochemical signaling, it is not required for polar localization or binding to FimL. Phylogenetic analysis reveals other bacterial species simultaneously encode TFP, the Chp system, FimL, FimV and adenylate cyclase homologs, suggesting that surface sensing may be widespread among TFP-expressing bacteria. We propose that FimL acts as a scaffold enabling spatial colocalization of TFP and Chp system components to coordinate signaling leading to cAMP-dependent upregulation of virulence genes on surface contact. © 2016 John Wiley & Sons Ltd.

  7. Integrins and epithelial cell polarity.

    Science.gov (United States)

    Lee, Jessica L; Streuli, Charles H

    2014-08-01

    Cell polarity is characterised by differences in structure, composition and function between at least two poles of a cell. In epithelial cells, these spatial differences allow for the formation of defined apical and basal membranes. It has been increasingly recognised that cell-matrix interactions and integrins play an essential role in creating epithelial cell polarity, although key gaps in our knowledge remain. This Commentary will discuss the mounting evidence for the role of integrins in polarising epithelial cells. We build a model in which both inside-out signals to polarise basement membrane assembly at the basal surface, and outside-in signals to control microtubule apical-basal orientation and vesicular trafficking are required for establishing and maintaining the orientation of epithelial cell polarity. Finally, we discuss the relevance of the basal integrin polarity axis to cancer. This article is part of a Minifocus on Establishing polarity.

  8. Intestinal epithelial cells and their role in innate mucosal immunity

    OpenAIRE

    Maldonado-Contreras, A. L.; McCormick, Beth A

    2010-01-01

    The mucosal surfaces of the respiratory, gastrointestinal and urogenital tracts are covered by a layer of epithelial cells that are responsible for sensing and promoting a host immune response in order to establish the limits not only for commensal microorganisms but also for foreign organisms or particles. This is a remarkable task as the human body represents a composite of about 10 trillion human-self cells plus non-self cells from autochthonous or indigenous microbes that outnumber human ...

  9. Ablation of lung epithelial cells deregulates FGF-10 expression and impairs lung branching morphogenesis.

    Science.gov (United States)

    Kim, Namjin; Yamamoto, Hiroaki; Pauling, Michelle Haynes; Lorizio, Walter; Vu, Thiennu H

    2009-01-01

    Epithelial-mesenchymal interactions are essential for tissue patterning during organogenesis. Distal lung epithelium and its adjacent mesenchyme comprise the epithelial-mesenchymal signaling unit that regulates lung branching morphogenesis. Tissue recombination experiments have demonstrated the importance of mesenchymal signals in inducing lung epithelial differentiation and branching, but the role of the epithelium in regulating mesenchymal signals has not been well characterized. Using transgenic mice, we ablated distal lung epithelial cells during lung development by inducing the expression of a constitutively active proapoptotic Bax protein under the surfactant protein C (SP-C) promoter. We found that epithelial cell ablation results in impaired lung branching morphogenesis, which progresses to emphysematous airspaces in the adults. Mesenchymal expression of fibroblast growth factor 10 (Fgf-10), whose strict spatial and temporal expression is critical for proper lung branching morphogenesis, is disrupted and loses its localized pattern. Interestingly, the expression of sonic hedgehog (Shh), an epithelial gene known to modulate Fgf-10 expression, is unchanged, indicating the existence of other distal epithelial signals that regulate mesenchymal Fgf-10expression. We propose that distal SP-C expressing lung epithelial cells provide essential signals for the downregulation of Fgf-10 expression in the distal mesenchyme during lung development. 292:123-130, 2009. (c) 2008 Wiley-Liss, Inc.

  10. Activated alveolar epithelial cells initiate fibrosis through autocrine and paracrine secretion of connective tissue growth factor.

    Science.gov (United States)

    Yang, Jibing; Velikoff, Miranda; Canalis, Ernesto; Horowitz, Jeffrey C; Kim, Kevin K

    2014-04-15

    Fibrogenesis involves a pathological accumulation of activated fibroblasts and extensive matrix remodeling. Profibrotic cytokines, such as TGF-β, stimulate fibroblasts to overexpress fibrotic matrix proteins and induce further expression of profibrotic cytokines, resulting in progressive fibrosis. Connective tissue growth factor (CTGF) is a profibrotic cytokine that is indicative of fibroblast activation. Epithelial cells are abundant in the normal lung, but their contribution to fibrogenesis remains poorly defined. Profibrotic cytokines may activate epithelial cells with protein expression and functions that overlap with the functions of active fibroblasts. We found that alveolar epithelial cells undergoing TGF-β-mediated mesenchymal transition in vitro were also capable of activating lung fibroblasts through production of CTGF. Alveolar epithelial cell expression of CTGF was dramatically reduced by inhibition of Rho signaling. CTGF reporter mice demonstrated increased CTGF promoter activity by lung epithelial cells acutely after bleomycin in vivo. Furthermore, mice with lung epithelial cell-specific deletion of CTGF had an attenuated fibrotic response to bleomycin. These studies provide direct evidence that epithelial cell activation initiates a cycle of fibrogenic effector cell activation during progressive fibrosis. Therapy targeted at epithelial cell production of CTGF offers a novel pathway for abrogating this progressive cycle and limiting tissue fibrosis.

  11. Focal epithelial hyperplasia: Case report.

    Science.gov (United States)

    Puriene, Alina; Rimkevicius, Arunas; Gaigalas, Mindaugas

    2011-01-01

    The purpose of the present article is to present a 15 year-old patient with focal epithelial hyperplasia and to review the references on the subject-related etiological, pathological, diagnostic and treatment aspects. Focal epithelial hyperplasia is a rare human papilloma virus (HPV) related to oral lesion with very low frequency within our population. Surgical treatment with a biopsy was performed, acanthosis and parakeratosis are consistent histopathological features, since the patient had no history of sexual contact and HIV infection, the virus was probably acquired from environmental sources.

  12. The hemorrhagic coli pilus (HCP of Escherichia coli O157:H7 is an inducer of proinflammatory cytokine secretion in intestinal epithelial cells.

    Directory of Open Access Journals (Sweden)

    Maria A Ledesma

    Full Text Available BACKGROUND: Enterohemorrhagic Escherichia coli (EHEC O157:H7, the causative agent of hemorrhagic colitis and the hemolytic uremic syndrome (HUS, produces long bundles of type IV pili (TFP called hemorrhagic coli pili (HCP. HCP are capable of mediating several phenomena associated with pathogenicity: i adherence to human and bovine epithelial cells; ii invasion of epithelial cells; iii hemagglutination of rabbit erythrocytes; iv biofilm formation; v twitching motility; and vi specific binding to laminin and fibronectin. HCP are composed of a 19 kDa pilin subunit (HcpA encoded by the hcpA chromosomal gene (called prepilin peptidase-dependent gene [ppdD] in E. coli K-12. METHODOLOGY/PRINCIPAL FINDINGS: In this study we investigated the potential role of HCP of E. coli O157:H7 strain EDL933 in activating the release of pro- and anti-inflammatory cytokines from a variety of host epithelial cells. We found that purified HCP and a recombinant HcpA protein induced significant release of IL-8 and TNF-alpha, from cultured polarized intestinal cells (T84 and HT-29 cells and non-intestinal HeLa cells. Levels of proinflammatory IL-8 and TNF-alpha, but not IL-2, IL6, or IL-10 cytokines, were increased in the presence of HCP and recombinant HcpA after 6 h of incubation with >or=50 ng/ml of protein, suggesting that stimulation of IL-8 and TNF-alpha are dose and time-dependent. In addition, we also demonstrated that flagella are potent inducers of cytokine production. Furthermore, MAPK activation kinetics studies showed that EHEC induces p38 phosphorylation under HCP-producing conditions, and ERK1/2 and JNK activation was detectable after 3 h of EHEC infection. HT-29 cells were stimulated with epidermal growth factor stimulation of HT-29 cells for 30 min leading to activation of three MAPKs. CONCLUSIONS/SIGNIFICANCE: The HcpA pilin monomer of the HCP produced by EHEC O157:H7 is a potent inducer of IL-8 and TNF-alpha release, an event which could play a

  13. The hemorrhagic coli pilus (HCP) of Escherichia coli O157:H7 is an inducer of proinflammatory cytokine secretion in intestinal epithelial cells.

    Science.gov (United States)

    Ledesma, Maria A; Ochoa, Sara A; Cruz, Ariadnna; Rocha-Ramírez, Luz M; Mas-Oliva, Jaime; Eslava, Carlos A; Girón, Jorge A; Xicohtencatl-Cortes, Juan

    2010-08-12

    Enterohemorrhagic Escherichia coli (EHEC) O157:H7, the causative agent of hemorrhagic colitis and the hemolytic uremic syndrome (HUS), produces long bundles of type IV pili (TFP) called hemorrhagic coli pili (HCP). HCP are capable of mediating several phenomena associated with pathogenicity: i) adherence to human and bovine epithelial cells; ii) invasion of epithelial cells; iii) hemagglutination of rabbit erythrocytes; iv) biofilm formation; v) twitching motility; and vi) specific binding to laminin and fibronectin. HCP are composed of a 19 kDa pilin subunit (HcpA) encoded by the hcpA chromosomal gene (called prepilin peptidase-dependent gene [ppdD] in E. coli K-12). In this study we investigated the potential role of HCP of E. coli O157:H7 strain EDL933 in activating the release of pro- and anti-inflammatory cytokines from a variety of host epithelial cells. We found that purified HCP and a recombinant HcpA protein induced significant release of IL-8 and TNF-alpha, from cultured polarized intestinal cells (T84 and HT-29 cells) and non-intestinal HeLa cells. Levels of proinflammatory IL-8 and TNF-alpha, but not IL-2, IL6, or IL-10 cytokines, were increased in the presence of HCP and recombinant HcpA after 6 h of incubation with >or=50 ng/ml of protein, suggesting that stimulation of IL-8 and TNF-alpha are dose and time-dependent. In addition, we also demonstrated that flagella are potent inducers of cytokine production. Furthermore, MAPK activation kinetics studies showed that EHEC induces p38 phosphorylation under HCP-producing conditions, and ERK1/2 and JNK activation was detectable after 3 h of EHEC infection. HT-29 cells were stimulated with epidermal growth factor stimulation of HT-29 cells for 30 min leading to activation of three MAPKs. The HcpA pilin monomer of the HCP produced by EHEC O157:H7 is a potent inducer of IL-8 and TNF-alpha release, an event which could play a significant role in the pathogenesis of hemorrhagic colitis caused by this pathogen.

  14. Gab2 promotes epithelial-mesenchymal transition in breast cancer through GSK-3β/Snail signaling pathway%Gab2通过GSK-3β/Snail信号通路促进乳腺癌的上皮-间质转化

    Institute of Scientific and Technical Information of China (English)

    田红艳; 李笑; 孙志亮; 李洪利; 刘雨清; 尹崇高

    2016-01-01

    Background and purpose:More and more evidence has showed that Grb2 binding protein-2 (Gab2) is associated with tumor invasion and metastasis. However, the relationship between Gab2 and epithelial-mesenchymal transition (EMT) in breast cancer is not clear. The aim of this study is to investigate the effect of Gab2 on EMT markers and the mechanism of Gab2 on breast cancer invasion and metastasis.Methods:Immunohistochemical methods were used to detect the expressions of Gab2, E-cadherin and vimentin in 80 cases of breast cancer tissues, and the correlations between them were analyzed. Western blot was used to detect the expression of Gab2 in breast tissues. After MDA-MB-231 cells were transfected with siRNA plasmid, wound healing assay was used to detect the invasive ability of transfected cells induced by epithelial growth factor (EGF) in vitro. Then Western blot was used to analyze the protein expressions of E-cadherin, vimentin, phosphorylated GSK-3β (p-GSK-3β) and nuclear Snail.Results:Gab2 was negatively correlated with the expression of E-cadherin and positively correlated with the expression of vimentin in breast cancer tissues (P<0.05). The expression of Gab2 in breast cancer tissues was higher than that in normal breast tissues adjacent to breast cancer. In vitro, Gab2 expression was significantly knocked down in MDA-MB-231 cells transfected with Gab2 siRNA plasmid (SiGab2/MDA-MB-231cells). Meanwhile, the invasive ability of SiGab2/MDA-MB-231cells was decreased with EGF stimulation. The expression of E-cadherin was increased in SiGab2/MDA-MB-231cells. However, the expressions of vimentin, p-GSK-3β and nuclear Snail were decreased in SiGab2/MDA-MB-231cells.Conclusion:Gab2 can promote the invasion and metastasis of breast cancer by EMT through GSK-3β/Snail signaling pathway.%背景与目的:越来越多的证据显示,Grb2协同结合蛋白2(Grb2 binding protein-2,Gab2)与肿瘤的侵袭转移相关,但Gab2与乳腺癌上皮-间质转化(epithelial

  15. Macrophage Responses to Epithelial Dysfunction Promote Lung Fibrosis in Aging

    Science.gov (United States)

    2016-10-01

    niche by monocyte- derived alveolar macrophages. Thus, we were able to overcome the technical issues and use regular shielded bone marrow chimeras for... protocols established and optimized. Major Task 3: Can the adoptive transfer of tissue-resident alveolar macrophages improve chronic stress in the lung...subtask. Since approval of the protocol by IRB and HRPO a total of 45 lung samples were processed , including donor lungs and lungs from patients with

  16. Effect of Helicobacter pylori on gastric epithelial cells

    Science.gov (United States)

    Alzahrani, Shatha; Lina, Taslima T; Gonzalez, Jazmin; Pinchuk, Irina V; Beswick, Ellen J; Reyes, Victor E

    2014-01-01

    The gastrointestinal epithelium has cells with features that make them a powerful line of defense in innate mucosal immunity. Features that allow gastrointestinal epithelial cells to contribute in innate defense include cell barrier integrity, cell turnover, autophagy, and innate immune responses. Helicobacter pylori (H. pylori) is a spiral shape gram negative bacterium that selectively colonizes the gastric epithelium of more than half of the world’s population. The infection invariably becomes persistent due to highly specialized mechanisms that facilitate H. pylori’s avoidance of this initial line of host defense as well as adaptive immune mechanisms. The host response is thus unsuccessful in clearing the infection and as a result becomes established as a persistent infection promoting chronic inflammation. In some individuals the associated inflammation contributes to ulcerogenesis or neoplasia. H. pylori has an array of different strategies to interact intimately with epithelial cells and manipulate their cellular processes and functions. Among the multiple aspects that H. pylori affects in gastric epithelial cells are their distribution of epithelial junctions, DNA damage, apoptosis, proliferation, stimulation of cytokine production, and cell transformation. Some of these processes are initiated as a result of the activation of signaling mechanisms activated on binding of H. pylori to cell surface receptors or via soluble virulence factors that gain access to the epithelium. The multiple responses by the epithelium to the infection contribute to pathogenesis associated with H. pylori. PMID:25278677

  17. Chemotaxis and Binding of Pseudomonas aeruginosa to Scratch-Wounded Human Cystic Fibrosis Airway Epithelial Cells.

    Directory of Open Access Journals (Sweden)

    Christian Schwarzer

    Full Text Available Confocal imaging was used to characterize interactions of Pseudomonas aeruginosa (PA, expressing GFP or labeled with Syto 11 with CF airway epithelial cells (CFBE41o-, grown as confluent monolayers with unknown polarity on coverglasses in control conditions and following scratch wounding. Epithelia and PAO1-GFP or PAK-GFP (2 MOI were incubated with Ringer containing typical extracellular salts, pH and glucose and propidium iodide (PI, to identify dead cells. PAO1 and PAK swam randomly over and did not bind to nonwounded CFBE41o- cells. PA migrated rapidly (began within 20 sec, maximum by 5 mins and massively (10-80 fold increase, termed "swarming", but transiently (random swimming after 15 mins, to wounds, particularly near cells that took up PI. Some PA remained immobilized on cells near the wound. PA swam randomly over intact CFBE41o- monolayers and wounded monolayers that had been incubated with medium for 1 hr. Expression of CFTR and altered pH of the media did not affect PA interactions with CFBE41o- wounds. In contrast, PAO1 swarming and immobilization along wounds was abolished in PAO1 (PAO1ΔcheYZABW, no expression of chemotaxis regulatory components cheY, cheZ, cheA, cheB and cheW and greatly reduced in PAO1 that did not express amino acid receptors pctA, B and C (PAO1ΔpctABC and in PAO1 incubated in Ringer containing a high concentration of mixed amino acids. Non-piliated PAKΔpilA swarmed normally towards wounded areas but bound infrequently to CFBE41o- cells. In contrast, both swarming and binding of PA to CFBE41o- cells near wounds were prevented in non-flagellated PAKΔfliC. Data are consistent with the idea that (i PA use amino acid sensor-driven chemotaxis and flagella-driven swimming to swarm to CF airway epithelial cells near wounds and (ii PA use pili to bind to epithelial cells near wounds.

  18. Ectopic Epithelial Deaminase in IBD

    Science.gov (United States)

    2014-05-01

    guide a better understanding of host-commensal microbiota interactions in intestinal inflammation. Mucosal Immunol. 2011;4:127-32. PMID: 21248723...Chitinase 3-like-1 exacerbates intestinal inflammation by enhancing bacterial adhesion and invasion in colonic epithelial cells. Gastroenterology. 2006;130:398-411. PMID: 16472595 APPENDICES: None

  19. Epithelial histogenesis during tooth development.

    Science.gov (United States)

    Lesot, H; Brook, A H

    2009-12-01

    This paper reviews the current understanding of the progressive changes mediating dental epithelial histogenesis as a basis for future collaborative studies. Tooth development involves morphogenesis, epithelial histogenesis and cell differentiation. The consecutive morphological stages of lamina, bud, cap and bell are also characterized by changes in epithelial histogenesis. Differential cell proliferation rates, apoptosis, and alterations in adhesion and shape lead to the positioning of groups of cells with different functions. During tooth histo-morphogenesis changes occur in basement membrane composition, expression of signalling molecules and the localization of cell surface components. Cell positional identity may be related to cell history. Another important parameter is cell plasticity. Independently of signalling molecules, which play a major role in inducing or modulating specific steps, cell-cell and cell-matrix interactions regulate the plasticity/rigidity of particular domains of the enamel organ. This involves specifying in space the differential growth and influences the progressive tooth morphogenesis by shaping the epithelial-mesenchymal junction. Deposition of a mineralized matrix determines the final shape of the crown. All data reviewed in this paper were investigated in the mouse.

  20. Oral epithelial dysplasia classification systems

    DEFF Research Database (Denmark)

    Warnakulasuriya, S; Reibel, J; Bouquot, J

    2008-01-01

    ) and was of the view that reducing the number of choices from 3 to 2 may increase the likelihood of agreement between pathologists. The utility of this need to be tested in future studies. The variables that are likely to affect oral epithelial dysplasia scoring were discussed and are outlined here; these need...

  1. Computational modeling of epithelial tissues.

    Science.gov (United States)

    Smallwood, Rod

    2009-01-01

    There is an extensive literature on the computational modeling of epithelial tissues at all levels from subcellular to whole tissue. This review concentrates on behavior at the individual cell to whole tissue level, and particularly on organizational aspects, and provides an indication of where information from other areas, such as the modeling of angiogenesis, is relevant. The skin, and the lining of all of the body cavities (lung, gut, cervix, bladder etc) are epithelial tissues, which in a topological sense are the boundary between inside and outside the body. They are thin sheets of cells (usually of the order of 0.5 mm thick) without extracellular matrix, have a relatively simple structure, and contain few types of cells. They have important barrier, secretory and transport functions, which are essential for the maintenance of life, so homeostasis and wound healing are important aspects of the behavior of epithelial tissues. Carcinomas originate in epithelial tissues.There are essentially two approaches to modeling tissues--to start at the level of the tissue (i.e., a length scale of the order of 1 mm) and develop generalized equations for behavior (a continuum approach); or to start at the level of the cell (i.e., a length scale of the order of 10 µm) and develop tissue behavior as an emergent property of cellular behavior (an individual-based approach). As will be seen, these are not mutually exclusive approaches, and they come in a variety of flavors.

  2. AGE-RAGE interaction in the TGFβ2-mediated epithelial to mesenchymal transition of human lens epithelial cells.

    Science.gov (United States)

    Raghavan, Cibin T; Nagaraj, Ram H

    2016-08-01

    Basement membrane (BM) proteins accumulate chemical modifications with age. One such modification is glycation, which results in the formation of advanced glycation endproducts (AGEs). In a previous study, we reported that AGEs in the human lens capsule (BM) promote the TGFβ2-mediated epithelial-to-mesenchymal transition (EMT) of lens epithelial cells, which we proposed as a mechanism for posterior capsule opacification (PCO) or secondary cataract formation. In this study, we investigated the role of a receptor for AGEs (RAGE) in the TGFβ2-mediated EMT in a human lens epithelial cell line (FHL124). RAGE was present in FHL124 cells, and its levels were unaltered in cells cultured on either native or AGE-modified BM or upon treatment with TGFβ2. RAGE overexpression significantly enhanced the TGFβ2-mediated EMT responses in cells cultured on AGE-modified BM compared with the unmodified matrix. In contrast, treatment of cells with a RAGE antibody or EN-RAGE (an endogenous ligand for RAGE) resulted in a significant reduction in the TGFβ2-mediated EMT response. This was accompanied by a reduction in TGFβ2-mediated Smad signaling and ROS generation. These results imply that the interaction of matrix AGEs with RAGE plays a role in the TGFβ2-mediated EMT of lens epithelial cells and suggest that the blockade of RAGE could be a strategy to prevent PCO and other age-associated fibrosis.

  3. PRL-3 disrupts epithelial architecture by altering the post-mitotic midbody position.

    Science.gov (United States)

    Luján, Pablo; Varsano, Giulia; Rubio, Teresa; Hennrich, Marco L; Sachsenheimer, Timo; Gálvez-Santisteban, Manuel; Martín-Belmonte, Fernando; Gavin, Anne-Claude; Brügger, Britta; Köhn, Maja

    2016-11-01

    Disruption of epithelial architecture is a fundamental event during epithelial tumorigenesis. We show that the expression of the cancer-promoting phosphatase PRL-3 (PTP4A3), which is overexpressed in several epithelial cancers, in polarized epithelial MDCK and Caco2 cells leads to invasion and the formation of multiple ectopic, fully polarized lumens in cysts. Both processes disrupt epithelial architecture and are hallmarks of cancer. The pathological relevance of these findings is supported by the knockdown of endogenous PRL-3 in MCF-7 breast cancer cells grown in three-dimensional branched structures, showing the rescue from multiple-lumen- to single-lumen-containing branch ends. Mechanistically, it has been previously shown that ectopic lumens can arise from midbodies that have been mislocalized through the loss of mitotic spindle orientation or through the loss of asymmetric abscission. Here, we show that PRL-3 triggers ectopic lumen formation through midbody mispositioning without altering the spindle orientation or asymmetric abscission, instead, PRL-3 accelerates cytokinesis, suggesting that this process is an alternative new mechanism for ectopic lumen formation in MDCK cysts. The disruption of epithelial architecture by PRL-3 revealed here is a newly recognized mechanism for PRL-3-promoted cancer progression.

  4. Topical Administration of Acylated Homoserine Lactone Improves Epithelialization of Cutaneous Wounds in Hyperglycaemic Rats.

    Directory of Open Access Journals (Sweden)

    Lijuan Huang

    Full Text Available Clinicians often experience delayed epithelialization in diabetic patients, for which a high glucose condition is one of the causes. However, the mechanisms underlying delayed wound closure have not been fully elucidated, and effective treatments to enhance epithelialization in patients with hyperglycaemia have not been established. Here we propose a new reagent, acylated homoserine lactone (AHL, to improve the delayed epithelialization due to the disordered formation of a basement membrane of epidermis in hyperglycaemic rats. Acute hyperglycaemia was induced by streptozotocin injection in this experiment. Full thickness wounds were created on the flanks of hyperglycaemic or control rats. Histochemical and immunohistochemical analyses were performed to identify hyperglycaemia-specific abnormalities in epidermal regeneration by comparison between groups. We then examined the effects of AHL on delayed epithelialization in hyperglycaemic rats. Histological analysis showed the significantly shorter epithelializing tissue (P < 0.05, abnormal structure of basement membrane (fragmentation and immaturity, and hypo- and hyperproliferation of basal keratinocytes in hyperglycaemic rats. Treating the wound with AHL resulted in the decreased abnormalities of basement membrane, normal distribution of proliferating epidermal keratinocytes, and significantly promoted epithelialization (P < 0.05 in hyperglycemic rats, suggesting the improving effects of AHL on abnormal epithelialization due to hyperglycemia.

  5. Epithelial progesterone receptor