On PID Controller Design Using Knowledge Based Fuzzy System
Directory of Open Access Journals (Sweden)
Jana Nowakova
2012-01-01
Full Text Available The designing of PID controllers is a frequently discussed problem. Many of design methods have been developed, classic (analytical tuning methods, optimization methods etc. or not so common fuzzy knowledge based methods which are designed to achieve good setpoint following, corresponding time response etc. In this case, the new way of designing PID controller parameters is created where the above mentioned knowledge system based on relations of Ziegler-Nichols design methods is used, more precisely the combination of the both Ziegler-Nichols methods. The proof of efficiency of a proposed method and a numerical experiment is presented.
Design of a PID Controller for a PCR Micro Reactor
Dinca, M. P.; Gheorghe, M.; Galvin, P.
2009-01-01
Proportional-integral-derivative (PID) controllers are widely used in process control, and consequently they are described in most of the textbooks on automatic control. However, rather than presenting the overall design process, the examples given in such textbooks are intended to illuminate specific focused aspects of selection, tuning and…
Singularly Perturbation Method Applied To Multivariable PID Controller Design
Directory of Open Access Journals (Sweden)
Mashitah Che Razali
2015-01-01
Full Text Available Proportional integral derivative (PID controllers are commonly used in process industries due to their simple structure and high reliability. Efficient tuning is one of the relevant issues of PID controller type. The tuning process always becomes a challenging matter especially for multivariable system and to obtain the best control tuning for different time scales system. This motivates the use of singularly perturbation method into the multivariable PID (MPID controller designs. In this work, wastewater treatment plant and Newell and Lee evaporator were considered as system case studies. Four MPID control strategies, Davison, Penttinen-Koivo, Maciejowski, and Combined methods, were applied into the systems. The singularly perturbation method based on Naidu and Jian Niu algorithms was applied into MPID control design. It was found that the singularly perturbed system obtained by Naidu method was able to maintain the system characteristic and hence was applied into the design of MPID controllers. The closed loop performance and process interactions were analyzed. It is observed that less computation time is required for singularly perturbed MPID controller compared to the conventional MPID controller. The closed loop performance shows good transient responses, low steady state error, and less process interaction when using singularly perturbed MPID controller.
Optimal Pid Controller Design Using Adaptive Vurpso Algorithm
Zirkohi, Majid Moradi
2015-04-01
The purpose of this paper is to improve theVelocity Update Relaxation Particle Swarm Optimization algorithm (VURPSO). The improved algorithm is called Adaptive VURPSO (AVURPSO) algorithm. Then, an optimal design of a Proportional-Integral-Derivative (PID) controller is obtained using the AVURPSO algorithm. An adaptive momentum factor is used to regulate a trade-off between the global and the local exploration abilities in the proposed algorithm. This operation helps the system to reach the optimal solution quickly and saves the computation time. Comparisons on the optimal PID controller design confirm the superiority of AVURPSO algorithm to the optimization algorithms mentioned in this paper namely the VURPSO algorithm, the Ant Colony algorithm, and the conventional approach. Comparisons on the speed of convergence confirm that the proposed algorithm has a faster convergence in a less computation time to yield a global optimum value. The proposed AVURPSO can be used in the diverse areas of optimization problems such as industrial planning, resource allocation, scheduling, decision making, pattern recognition and machine learning. The proposed AVURPSO algorithm is efficiently used to design an optimal PID controller.
Directory of Open Access Journals (Sweden)
Sivananaithaperumal Sudalaiandi
2014-06-01
Full Text Available This paper presents an automatic tuning of multivariable Fractional-Order Proportional, Integral and Derivative controller (FO-PID parameters using Covariance Matrix Adaptation Evolution Strategy (CMAES algorithm. Decoupled multivariable FO-PI and FO-PID controller structures are considered. Oustaloup integer order approximation is used for the fractional integrals and derivatives. For validation, two Multi-Input Multi- Output (MIMO distillation columns described byWood and Berry and Ogunnaike and Ray are considered for the design of multivariable FO-PID controller. Optimal FO-PID controller is designed by minimizing Integral Absolute Error (IAE as objective function. The results of previously reported PI/PID controller are considered for comparison purposes. Simulation results reveal that the performance of FOPI and FO-PID controller is better than integer order PI/PID controller in terms of IAE. Also, CMAES algorithm is suitable for the design of FO-PI / FO-PID controller.
Hybrid intelligent PID control design for PEMFC anode system
Institute of Scientific and Technical Information of China (English)
Rui-min WANG; Ying-ying ZHANG; Guang-yi CAO
2008-01-01
Control design is important for proton exchange membrane fuel cell (PEMFC) generator. This work researched the anode system of a 60-kW PEMFC generator. Both anode pressure and humidity must he maintained at ideal levels during steady operation. In view of characteristics and requirements of the system, a hybrid intelligent PID controller is designed specifically based on dynamic simulation. A single neuron PI controller is used for anode humidity by adjusting the water injection to the hydrogen cell. Another incremental PID controller, based on the diagonal recurrent neural network (DRNN) dynamic identification, is used to control anode pressure to be more stable and exact by adjusting the hydrogen flow rate. This control strategy can avoid the coupling problem of the PEMFC and achieve a more adaptive ability. Simulation results showed that the control strategy can maintain both anode humidity and pressure at ideal levels regardless of variable load, nonlinear dynamic and coupling characteristics of the system. This work will give some guides for further control design and applications of the total PEMFC generator.
Directory of Open Access Journals (Sweden)
Horaţiu Ştefan Grif
2011-06-01
Full Text Available The paper describes the implementation and the tuning of a digital PID controller used in a daylight control application. Due to the fact that the process is unknown, an experimental method, Ziegler-Nichols, for the tuning of the PID controller was used. The obtained PID parameters do not offer a good behavior of the ALCS. To improve the performances of the ALCS, supplementary tuning of the PID parameters, via step response analysis, was made. The step response acquiring and analysis may have an expensive time cost. To avoid the time cost the present paper offers an algorithm which guide the designer to chose, in a slight manner, not only a set but a set family of the PID parameters for which the ALCS has a good behavior. Also, the algorithm presents the way how the ALCS user can set his desired ALCS speed reaction to the daylight variations.
Design of Adaptive Fuzzy PID Altitude Control System for Unmanned Aerial Vehicle
Institute of Scientific and Technical Information of China (English)
SHI Gang; YANG Shu-xing; JING Ya-xing; XU Yong
2008-01-01
Based on Matlab/Simulink and Fuzzy Logic toolboxes, the altitude control system is designed and simulated. The validity of conventional PID control method and adaptive fuzzy PID control method is compared. It can be drawn out that the adaptive fuzzy PID control method is superior to the conventional PID in rising time and overshoot etc. The effectiveness of a fuzzy PID controller shows potential application in the future, especially in the presence of model uncertainty or changing dynamics and time-varying parameters.
Design of Fuzzy PID controller to control DC motor with zero overshoot
Directory of Open Access Journals (Sweden)
Meenakshi Chourasiya
2014-10-01
Full Text Available Most of the real time operation based physical system, digital PID is used in field such as servo-motor/dc motor/temperature control system, robotics, power electronics etc. need to interface with high speed constraints, higher density PLD’s such as FPGA used to integrate several logics on single IC. There are some limitations in it to overcome these limitations Fuzzy logic is introduced with PID and Fuzzy PID is formed. This paper explains experimental design of Fuzzy PID controller. We aimed to make controller power efficient, more compact, and zero overshoot. MATLAB is used to design PID controller to calculate and plot the time response of the control system and Simulink to generate a set of coefficients.
Institute of Scientific and Technical Information of China (English)
JIN Qibing; LIU Qie; WANG Qi; TIAN Yuqi; WANG Yuanfei
2013-01-01
The IMC (Internal Model Control) controller based on robust tuning can improve the robustness and dynamic performance of the system.In this paper,the robustness degree of the control system is investigated based on Maximum Sensitivity (Ms) in depth.And the analytical relationship is obtained between the robustness specification and controller parameters,which gives a clear design criterion to robust IMC controller.Moreover,a novel and simple IMC-PID (Proportional-Integral-Derivative) tuning method is proposed by converting the IMC controller to PID form in terms of the time domain rather than the frequency domain adopted in some conventional IMC-based methods.Hence,the presented IMC-PID gives a good performance with a specific robustness degree.The new IMC-PID method is compared with other classical IMC-PID rules,showing the flexibility and feasibility for a wide range of plants.
Design New Intelligent PID like Fuzzy Backstepping Controller
Directory of Open Access Journals (Sweden)
Arzhang Khajeh
2014-02-01
Full Text Available The minimum rule base Proportional Integral Derivative (PID Fuzzy backstepping Controller is presented in this research. The popularity of PID Fuzzy backstepping controller can be attributed to their robust performance in a wide range of operating conditions and partly to their functional simplicity. The process of setting of PID Fuzzy backstepping controller can be determined as an optimization task. Over the years, use of intelligent strategies for tuning of these controllers has been growing. PID methodology has three inputs and if any input is described with seven linguistic values, and any rule has three conditions we will need 7 × 7 × 7 = 343 rules. It is too much work to write 343 rules. In this research the PID-like fuzzy controller can be constructed as a parallel structure of a PD-like fuzzy controller and a PI-like controller to have the minimum rule base. However backstepping controller is work based on cancelling decoupling and nonlinear terms of dynamic parameters of each link, this controller is work based on manipulator dynamic model and this technique is highly sensitive to the knowledge of all parameters of nonlinear robot manipulator’s dynamic equation. This research is used to reduce or eliminate the backstepping controller problem based on minimum rule base fuzzy logic theory to control of flexible robot manipulator system and testing of the quality of process control in the simulation environment of MATLAB/SIMULINK Simulator.
Prakash, J; Srinivasan, K
2009-07-01
In this paper, the authors have represented the nonlinear system as a family of local linear state space models, local PID controllers have been designed on the basis of linear models, and the weighted sum of the output from the local PID controllers (Nonlinear PID controller) has been used to control the nonlinear process. Further, Nonlinear Model Predictive Controller using the family of local linear state space models (F-NMPC) has been developed. The effectiveness of the proposed control schemes has been demonstrated on a CSTR process, which exhibits dynamic nonlinearity.
A General Method for Designing Fractional Order PID Controller
Directory of Open Access Journals (Sweden)
Marzieh Safaei
2013-01-01
Full Text Available The idea of using fractional order calculus in control became apparent when this kind of calculus was accepted as a powerful tool in many applications. This resulted in a new generation of PID controller called fractional order PID Controller, named as Controller. controller is more flexible and provides a better response with larger stability region as compared with standard PID controller. This paper presents a simple and reliable method for finding the family of controllers. The required calculations are done in frequency domain based on frequency response of the system and the stability region is specified in the parameters space. This method can be used for time-delay systems and, more generally, for any system with no transfer function.
Design of PID controller with incomplete derivation based on ant system algorithm
Institute of Scientific and Technical Information of China (English)
Guanzheng TAN; Qingdong ZENG; Wenbin LI
2004-01-01
A new and intelligent design method for PID controller with incomplete derivation is proposed based on the ant system algorithm (ASA).For a given control system with this kind of PID controller,a group of optimal PID controller parameters K*p,T*i, and T*d can be obtained by taking the overshoot,settling time,and steady-state error of the system's unit step response as the performance indexes and by use of our improved ant system algorithm.K*p,T*i, and T*d can be used in real-time control.This kind of controller is called the ASA-PID controller with incomplete derivation.To verify the performance of the ASA-PID controller,three different typical transfer functions were tested,and three existing typical tuning methods of PID controller parameters,including the Ziegler-Nichols method (ZN),the genetic algorithm (GA),and the simulated annealing (SA),were adopted for comparison.The simulation results showed that the ASA-PID controller can be used to control different objects and has better performance compared with the ZN-PID and GA-PID controllers,and comparable performance compared with the SA-PID controller.
Fuzzy Auto-adjust PID Controller Design of Brushless DC Motor
Yuanxi, Wang; Yali, Yu; Guosheng, Zhang; Xiaoliang, Sheng
Using conventional PID control method, to guarantee the rapidity and small overshoot dynamic and static performance of the BLDCM (brushless DC motor) system is out of the question. The control method to combine fuzzy control with PID control was fit the multivariable strong coupling nonlinear characteristic of BLDCM system. Matlab/Simulink simulation model had been built. The result of computer simulation shows that, compared with the conventional PID controller, the dynamic and static performance of fuzzy auto-adjust PID controller are put forward to optimize. The research work of this paper has profound significance for high precision controller design.
The design for the fuzzy PID control of the intelligent following vehicle with gas floating
Institute of Scientific and Technical Information of China (English)
He Yi; Song Xiaodong; Chen Ming
2012-01-01
The intelligent following vehicle with gas floating has the characteristics of complicated structure and large quality. In this paper ,the author first establish the mathematical mode of the motion system land and then design a controller using the fuzzy PID control method which could realize auto-tuning PID parameters. By the MATLAB simulation analysis, the results show that fuzzy self-tuning PID control can enhance the response speed of system and has a better adaptability.
CAS algorithm-based optimum design of PID controller in AVR system
Energy Technology Data Exchange (ETDEWEB)
Zhu Hui [Information Security Center, State Key Laboratory of Networking and Switching Technology, Beijing University of Posts and Telecommunications, P.O. Box 145, Beijing 100876 (China); Key Laboratory of Network and Information Attack and Defence Technology of Ministry of Education, Beijing University of Posts and Telecommunications, Beijing 100876 (China); National Engineering Laboratory for Disaster Backup and Recovery, Beijing 100876 (China)], E-mail: zhuhui05608@hotmail.com; Li Lixiang; Zhao Ying; Guo Yu; Yang Yixian [Information Security Center, State Key Laboratory of Networking and Switching Technology, Beijing University of Posts and Telecommunications, P.O. Box 145, Beijing 100876 (China); Key Laboratory of Network and Information Attack and Defence Technology of Ministry of Education, Beijing University of Posts and Telecommunications, Beijing 100876 (China); National Engineering Laboratory for Disaster Backup and Recovery, Beijing 100876 (China)
2009-10-30
This paper presents a novel design method for determining the optimal PID controller parameters of an automatic voltage regulator (AVR) system using the chaotic ant swarm (CAS) algorithm. In the tuning process of parameters, the CAS algorithm is iterated to give the optimal parameters of the PID controller based on the fitness theory, where the position vector of each ant in the CAS algorithm corresponds to the parameter vector of the PID controller. The proposed CAS-PID controllers can ensure better control system performance with respect to the reference input in comparison with GA-PID controllers. Numerical simulations are provided to verify the effectiveness and feasibility of PID controller based on CAS algorithm.
Tuning of Fuzzy PID Controllers
DEFF Research Database (Denmark)
Jantzen, Jan
1998-01-01
Since fuzzy controllers are nonlinear, it is more difficult to set the controller gains compared to proportional-integral-derivative (PID) controllers. This research paper proposes a design procedure and a tuning procedure that carries tuning rules from the PID domain over to fuzzy single......-loop controllers. The idea is to start with a tuned, conventional PID controller, replace it with an equivalent linear fuzzy controller, make the fuzzy controller nonlinear, and eventually fine-tune the nonlinear fuzzy controller. This is relevant whenever a PID controller is possible or already implemented....
Direct Drive Electro-hydraulic Servo Control System Design with Self-Tuning Fuzzy PID Controller
Directory of Open Access Journals (Sweden)
Wang Yeqin
2013-06-01
Full Text Available According to the nonlinear and time-varying uncertainty characteristics of direct drive electro-hydraulic servo control system, a self-tuning fuzzy PID control method with speed change integral and differential ahead optimizing operator is put forward by combining fuzzy inference and traditional PID control in this paper.The rule of fuzzy logic is designed, the membership function of the fuzzy subsets is determined and lookup table method is used to correcte the PID parameters in real-time. Finally the simulation is conducted with the typical input signal, such as tracking step, sine etc. The simulation results show that，the self-tuning fuzzy PID control system can effectively improve the dynamic characteristic when the system is out of the range of the operating point compared with the traditional PID control system, there is obvious improvement in the indexes of rapidity, stability and accuracy, and fuzzy self-tuning PID Control is more robust, and more suitable for direct drive electro-hydraulic servo system.
Fliess, Michel; Join, Cédric
2008-01-01
International audience; Intelligent PID controllers, or i-PID controllers, are PID controllers where the unknown parts of the plant, which might be highly nonlinear and/or time-varying, are taken into account without any modeling procedure. Our main tool is an online numerical differentiator, which is based on easily implementable fast estimation and identification techniques. Several numerical experiments demonstrate the efficiency of our method when compared to more classic PID regulators.
Design Method for the Magnetic Bearing Control System with Fuzzy-PID Approach
Institute of Scientific and Technical Information of China (English)
XU Chun-guang; L(U) Dong-ming; HAO Juan
2008-01-01
The five degree freedom magnetic bearing is researched and its structure and working principles are introduced also.Based on the fuzzy control technology,combining fuzzy algorithm and PID control method,identifying the transition process mode of the online system to get the PID parameters'self-adjusting,the magnetic bearing system's Fuzzy-PID nonlinear controller is designed by analyzing the system control demands.The Fuzzy-PID nonlinear controller can deal with the magnetic bearing system's open loop instability and strong nonlinearity,and the approach could improve the system's rapidity,adaptability,stability and dynamic characteristics.Comparative analysis and experiments are conducted between linear PID and nonlinear fuzzyPID control methods,the results show that the fuzzy-PID controller is better,and the five-freedom magnetic bearing's rotary precision experiments are conducted by the fuzzy-PID controller,it satisfies the control rotary precision demands and realizes the bearing's steady floating and rotating.
Research Trends for PID Controllers
Directory of Open Access Journals (Sweden)
Antonio Visioli
2012-01-01
Full Text Available This paper analyses the most significant issues that have been recently been addressed by researchers in the field of Proportional-Integral-Derivative (PID controllers. In particular, the most recent techniques proposed for tuning and designing PID-based control structures are briefly reviewed, together with methods for assessing their performance. Finally, fractional-order and event-based PID controllers are presented among the most significant developments in the field.
A new PID controller design for automatic generation control of hydro power systems
Energy Technology Data Exchange (ETDEWEB)
Khodabakhshian, A.; Hooshmand, R. [Electrical Engineering Department, University of Isfahan (Iran)
2010-06-15
This paper presents a new robust PID controller for automatic generation control (AGC) of hydro turbine power systems. The method is mainly based on a maximum peak resonance specification that is graphically supported by the Nichols chart. The open-loop frequency response curve is tangent to a specified ellipse and this makes the method to be efficient for controlling the overshoot, the stability and the dynamics of the system. Comparative results of this new load frequency controller with a conventional PI one and also with another PID controller design tested on a multimachine power system show the improvement in system damping remarkably. The region of acceptable performance of the new PID controller covers a wide range of operating and system conditions. (author)
Design of PID controller with incomplete derivation based on differential evolution algorithm
Institute of Scientific and Technical Information of China (English)
Wu Lianghong; Wang Yaonan; Zhou Shaowu; Tan Wen
2008-01-01
To determine the optimal or near optimal parameters of PID controller with incomplete derivation, a novel design method based on differential evolution (DE) algorithm is presented. The controller is called DE-PID controller. To overcome the disadvantages of the integral performance criteria in the frequency domain such as IAE, ISE, and ITSE, a new performance criterion in the time domain is proposed. The optimization procedures employing the DE algorithm to search the optimal or near optimal PID controller parameters of a control system are demonstrated in detail. Three typical control systems are chosen to test and evaluate the adaptation and robustness of the proposed DE-PID controller. The simulation results show that the proposed approach has superior features of easy implementation, stable convergence characteristic, and good computational efficiency. Compared with the ZN, GA, and ASA, the proposed design method is indeed more efficient and robust in improving the step response of a control system.
Directory of Open Access Journals (Sweden)
Chengqiang Yin
2014-01-01
Full Text Available A two-degree-of-freedom control structure is proposed for a class of unstable processes with time delay based on modified Smith predictor control; the superior performance of disturbance rejection and good robust stability are gained for the system. The set-point tracking controller is designed using the direct synthesis method; the IMC-PID controller for disturbance rejection is designed based on the internal mode control design principle. The controller for set-point response and the controller for disturbance rejection can be adjusted and optimized independently. Meanwhile, the two controllers are designed in the form of PID, which is convenient for engineering application. Finally, simulation examples demonstrate the validity of the proposed control scheme.
Zhang, Jianming
2016-11-25
An improved proportional-integral-derivative (PID) controller based on predictive functional control (PFC) is proposed and tested on the chamber pressure in an industrial coke furnace. The proposed design is motivated by the fact that PID controllers for industrial processes with time delay may not achieve the desired control performance because of the unavoidable model/plant mismatches, while model predictive control (MPC) is suitable for such situations. In this paper, PID control and PFC algorithm are combined to form a new PID controller that has the basic characteristic of PFC algorithm and at the same time, the simple structure of traditional PID controller. The proposed controller was tested in terms of set-point tracking and disturbance rejection, where the obtained results showed that the proposed controller had the better ensemble performance compared with traditional PID controllers.
Chakraborty, Mithun; Konar, Amit
2008-01-01
The Proportional-Integral-Derivative Controller is widely used in industries for process control applications. Fractional-order PID controllers are known to outperform their integer-order counterparts. In this paper, we propose a new technique of fractional-order PID controller synthesis based on peak overshoot and rise-time specifications. Our approach is to construct an objective function, the optimization of which yields a possible solution to the design problem. This objective function is optimized using two popular bio-inspired stochastic search algorithms, namely Particle Swarm Optimization and Differential Evolution. With the help of a suitable example, the superiority of the designed fractional-order PID controller to an integer-order PID controller is affirmed and a comparative study of the efficacy of the two above algorithms in solving the optimization problem is also presented.
Frequency-domain Model Matching PID Controller Design for Aero-engine
Liu, Nan; Huang, Jinquan; Lu, Feng
2014-12-01
The nonlinear model of aero-engine was linearized at multiple operation points by using frequency response method. The validation results indicate high accuracy of static and dynamic characteristics of the linear models. The improved PID tuning method of frequency-domain model matching was proposed with the system stability condition considered. The proposed method was applied to the design of PID controller of the high pressure rotor speed control in the flight envelope, and the control effects were evaluated by the nonlinear model. Simulation results show that the system had quick dynamic response with zero overshoot and zero steadystate error. Furthermore, a PID-fuzzy switching control scheme for aero-engine was designed, and the fuzzy switching system stability was proved. Simulations were studied to validate the applicability of the multiple PIDs fuzzy switching controller for aero-engine with wide range dynamics.
Design of sewage treatment system by applying fuzzy adaptive PID controller
Jin, Liang-Ping; Li, Hong-Chan
2013-03-01
In the sewage treatment system, the dissolved oxygen concentration control, due to its nonlinear, time-varying, large time delay and uncertainty, is difficult to establish the exact mathematical model. While the conventional PID controller only works with good linear not far from its operating point, it is difficult to realize the system control when the operating point far off. In order to solve the above problems, the paper proposed a method which combine fuzzy control with PID methods and designed a fuzzy adaptive PID controller based on S7-300 PLC .It employs fuzzy inference method to achieve the online tuning for PID parameters. The control algorithm by simulation and practical application show that the system has stronger robustness and better adaptability.
Design and implementation of a new fuzzy PID controller for networked control systems.
Fadaei, A; Salahshoor, K
2008-10-01
This paper presents a practical network platform to design and implement a networked-based cascade control system linking a Smar Foundation Fieldbus (FF) controller (DFI-302) and a Siemens programmable logic controller (PLC-S7-315-2DP) through Industrial Ethernet to a laboratory pilot plant. In the presented network configuration, the Smar OPC tag browser and Siemens WinCC OPC Channel provide the communicating interface between the two controllers. The paper investigates the performance of a PID controller implemented in two different possible configurations of FF function block (FB) and networked control system (NCS) via a remote Siemens PLC. In the FB control system implementation, the desired set-point is provided by the Siemens Human-Machine Interface (HMI) software (i.e, WinCC) via an Ethernet Modbus link. While, in the NCS implementation, the cascade loop is realized in remote Siemens PLC station and the final element set-point is sent to the Smar FF station via Ethernet bus. A new fuzzy PID control strategy is then proposed to improve the control performances of the networked-based control systems due to an induced transmission delay degradation effect. The proposed strategy utilizes an innovative idea based on sectionalizing the error signal of the step response into three different functional zones. The supporting philosophy behind these three functional zones is to decompose the desired control objectives in terms of rising time, settling time and steady-state error measures maintained by an appropriate PID-type controller in each zone. Then, fuzzy membership factors are defined to configure the control signal on the basis of the fuzzy weighted PID outputs of all three zones. The obtained results illustrate the effectiveness of the proposed fuzzy PID control scheme in improving the performances of the implemented NCS for different transportation delays.
Alfaro, Víctor M
2007-10-01
In this paper, an index for measuring fragility of proportional integral derivative (PID) controllers is proposed. This index relates the losses of robustness of the control loop when controller parameters change, to the nominal robustness of the control loop. Furthermore, it defines when a PID controller is fragile, nonfragile or resilient.
Design PID controllers for desired time-domain or frequency-domain response.
Zhang, Weidong; Xi, Yugeng; Yang, Genke; Xu, Xiaoming
2002-10-01
Practical requirements on the design of control systems, especially process control systems, are usually specified in terms of time-domain response, such as overshoot and rise time, or frequency-domain response, such as resonance peak and stability margin. Although numerous methods have been developed for the design of the proportional-integral-derivative (PID) controller, little work has been done in relation to the quantitative time-domain and frequency-domain responses. In this paper, we study the following problem: Given a nominal stable process with time delay, we design a suboptimal PID controller to achieve the required time-domain response or frequency-domain response for the nominal system or the uncertain system. An H(infinity) PID controller is developed based on optimal control theory and the parameters are derived analytically. Its properties are investigated and compared with that of two developed suboptimal controllers: an H2 PID controller and a Maclaurin PID controller. It is shown that all three controllers can provide the quantitative time-domain and frequency-domain responses.
The Sine Wave Tuning method: Robust PID controller design in the frequency domain
Directory of Open Access Journals (Sweden)
Š. Bucz
2015-12-01
Full Text Available The paper presents a novel robust PID controller design method for nominal performance specified in terms of maximum overshoot and settling time. The PID controller design provides guaranteed gain margin GM. The parameter of the tuning rules is a suitably chosen point of the plant frequency response obtained by a sine-wave signal with excitation frequency ωn. Then, the designed controller moves this point into the phase crossover with the required gain margin GM. The couple (ωn;GM is specified with respect to closed-loop performance requirements in terms of ηmax (maximum overshoot and ts (settling time according to developed parabolic dependences. The new approach has been verified on a vast batch of benchmark examples; subsequently, the developed algorithm has been extended to robust PID controller design for plants with unstable zero and unstructured uncertainties.
A frequency domain design of PID controller for an AVR system
Institute of Scientific and Technical Information of China (English)
Md Nishat ANWAR; Somnath PAN
2014-01-01
We propose a new proportional-integral-derivative (PID) controller design method for an automatic voltage regula-tion (AVR) system based on approximate model matching in the frequency domain. The parameters of the PID controller are obtained by approximate frequency response matching between the closed-loop control system and a reference model with the desired specifications. Two low frequency points are required for matching the frequency response, and the design method yields linear algebraic equations, solution of which gives the controller parameters. The effectiveness of the proposed method is demonstrated through examples taken from the literature and comparison with some popular methods.
A fuzzy model based adaptive PID controller design for nonlinear and uncertain processes.
Savran, Aydogan; Kahraman, Gokalp
2014-03-01
We develop a novel adaptive tuning method for classical proportional-integral-derivative (PID) controller to control nonlinear processes to adjust PID gains, a problem which is very difficult to overcome in the classical PID controllers. By incorporating classical PID control, which is well-known in industry, to the control of nonlinear processes, we introduce a method which can readily be used by the industry. In this method, controller design does not require a first principal model of the process which is usually very difficult to obtain. Instead, it depends on a fuzzy process model which is constructed from the measured input-output data of the process. A soft limiter is used to impose industrial limits on the control input. The performance of the system is successfully tested on the bioreactor, a highly nonlinear process involving instabilities. Several tests showed the method's success in tracking, robustness to noise, and adaptation properties. We as well compared our system's performance to those of a plant with altered parameters with measurement noise, and obtained less ringing and better tracking. To conclude, we present a novel adaptive control method that is built upon the well-known PID architecture that successfully controls highly nonlinear industrial processes, even under conditions such as strong parameter variations, noise, and instabilities.
Ali, Ahmad; Majhi, Somanath
2009-01-01
In this work, the normalized Internal Model Control (IMC) filter time constant is designed to achieve a specified value of the maximum sensitivity for stable first and second order plus time delay process models, respectively. Since a particular value of the maximum sensitivity results in an almost constant percentage overshoot to controller setpoint change, an empirical relationship between the normalized IMC filter time constant and percentage overshoot is presented. The main advantage of the proposed method is that only a user-defined overshoot is required to design a PI/PID controller. Simulation examples are given to demonstrate the value of the proposed method.
Institute of Scientific and Technical Information of China (English)
LI Yin-ya; SHENG An-dong; WANG Yuan-gang
2007-01-01
A novel design method for determining the proportional-integral-derivative(PID) controller gains of an anti-aircraft artillery servo system with multiple performance specifications based on a particle swarm optimization (PSO) algorithm is proposed. First, a performance criterion evolution function combined with the system maximum displacement settling time, rise time, overshoot, steady state error, constant velocity tracking error and sine wave tracking error is defined. Second, the optimization problem of PID controller parameters and the searching procedure of PSO algorithm are constructed. Finally, the optimal or near optimal PID controller parameters are fast and easily obtained by solving the above optimization problem on the given controller parameter space following the PSO searching procedure. The simulation results show the effectiveness of the proposed controllers.
Tahoun, A H
2017-01-01
In this paper, the stabilization problem of actuators saturation in uncertain chaotic systems is investigated via an adaptive PID control method. The PID control parameters are auto-tuned adaptively via adaptive control laws. A multi-level augmented error is designed to account for the extra terms appearing due to the use of PID and saturation. The proposed control technique uses both the state-feedback and the output-feedback methodologies. Based on Lyapunov׳s stability theory, new anti-windup adaptive controllers are proposed. Demonstrative examples with MATLAB simulations are studied. The simulation results show the efficiency of the proposed adaptive PID controllers.
Design of PID Controller for Maglev System Based on an Improved PSO with Mixed Inertia Weight
Directory of Open Access Journals (Sweden)
Rongrong Song
2014-06-01
Full Text Available A Maglev system was modeled by the exact feedback linearization to achieve two same linear subsystems. The proportional-integral-differential controllers (PID based on particle swarm optimization (PSO algorithm with four different inertia weights were then used to regulate both linear subsystems. These different inertia weights were Fixed Inertia Weight (FIW, Linear Descend Inertia Weight (LIW, Linear Differential Descend Inertia Weight (LDW, and mixed inertia weight (FIW–LIW-LDW. On the other hand, the parameters of the PSO-PID controllers via mixed inertia weight (FIW–LIW-LDW were optimized, the parameter values in the electromagnet 1 and electromagnet 2 were both 0.4. Simulation results demonstrate that the control performance and robustness of PSO-PID based on mixed inertia weight (FIW–LIW-LDW was superior to that of three PSO-PID controllers based on single inertia weights. For electromagnet 1, the overshoot of PSO-PID controller with mixed inertia weight reduced 3.36% than that of PSO-PID controller with FIW, 5.81% than that of PSO-PID controller with LIW, and 6.34% than that of PSO-PID controller with LDW; for electromagnet 2, the overshoot of PSO-PID controller with mixed inertia weight reduced 1.07% than that of PSO-PID controller with FIW, 12.56% than that of PSO-PID controller with LIW, 7.97% than that of PSO-PID controller with LDW; the adjusting time of PSO-PID controller with mixed inertia weight reduced 0.395s than that of PSO-PID controller with FIW, 34.1s than that of PSO-PID controller with LIW, and 33.494s than that of PSO-PID controller with LDW
Design of a Fractional Order PID Controller Using Particle Swarm Optimization Technique
Maiti, Deepyaman; Konar, Amit
2008-01-01
Particle Swarm Optimization technique offers optimal or suboptimal solution to multidimensional rough objective functions. In this paper, this optimization technique is used for designing fractional order PID controllers that give better performance than their integer order counterparts. Controller synthesis is based on required peak overshoot and rise time specifications. The characteristic equation is minimized to obtain an optimum set of controller parameters. Results show that this design method can effectively tune the parameters of the fractional order controller.
Design New PID like Fuzzy CTC Controller: Applied to Spherical Motor
Directory of Open Access Journals (Sweden)
Mohammad shamsodini
2014-05-01
Full Text Available The minimum rule base Proportional Integral Derivative (PID Fuzzy Computed Torque Controller with application to spherical motor is presented in this research. The popularity of PID Fuzzy Computed Torque Controller can be attributed to their robust performance in a wide range of operating conditions and partly to their functional simplicity. PID methodology has three inputs and if any input is described with seven linguistic values, and any rule has three conditions we will need 343 rules. It is too much work to write 343 rules and have lots of problem to design embedded control system e.g., Field Programmable Gate Array (FPGA. In this research the PID-like fuzzy controller can be constructed as a parallel structure of a PD-like fuzzy controller and a conventional PI controller to have the minimum rule base and acceptable trajectory follow disturbance to control of spherical motor. However computed torque controller is work based on cancelling decoupling and nonlinear terms of dynamic parameters for each direction of three degree of freedom spherical motor, this controller is work based on motor dynamic model and this technique is highly sensitive to the knowledge of all parameters of nonlinear spherical motor’s dynamic equation. This research is used to reduce or eliminate the computed torque controller problem based on minimum rule base fuzzy logic theory to control of three degrees of freedom spherical motor system and testing of the quality of process control in the simulation environment of MATLAB/SIMULINK Simulator.
Design of Optimal PID Controller with ɛ-Routh Stability for Different Processes
Directory of Open Access Journals (Sweden)
XianHong Li
2013-01-01
Full Text Available This paper presents a design method of the optimal proportional-integral-derivative (PID controller with ɛ-Routh stability for different processes through Lyapunov approach. The optimal PID controller could be acquired by minimizing an augmented integral squared error (AISE performance index which contains control error and at least first-order error derivative, or even may contain nth-order error derivative. The optimal control problem could be transformed into a nonlinear constraint optimization (NLCO problem via Lyapunov theorems. Therefore, optimal PID controller could be obtained by solving NLCO problem through interior method or other optimization methods. The proposed method can be applied for different processes, and optimal PID controllers under various control weight matrices and ɛ-Routh stability are presented for different processes. Control weight matrix and ɛ-Routh stability’s effects on system performances are studied, and different tuning methods’ system performances are also discussed. ɛ-Routh stability’s effects on disturbance rejection ability are investigated, and different tuning methods’ disturbances rejection ability is studied. To further illustrate the proposed method, experimental results of coupled water tank system (CWTS under different set points are presented. Both simulation results and experiment results show the effectiveness and usefulness of the proposed method.
Design a PID Controller for Suspension System by Back Propagation Neural Network
Directory of Open Access Journals (Sweden)
M. Heidari
2013-01-01
Full Text Available This paper presents a neural network for designing of a PID controller for suspension system. The suspension system, designed as a quarter model, is used to simplify the problem to one-dimensional spring-damper system. In this paper, back propagation neural network (BPN has been used for determining the gain parameters of a PID controller for suspension system of automotive. The BPN method is found to be the most accurate and quick. The best results were obtained by the BPN by Levenberg-Marquardt algorithm training with 10 neurons in the one hidden layer. Training was continued until the mean squared error is less than . Desired error value was achieved in the BPN, and the BPN was tested with both data used and not used for training. By training of this network, it is possible to estimate the gain parameters of PID controller at any condition. The inputs of network are automotive velocity, overshoot percentage, settling time, and steady state error of suspension system response. Also outputs of the net are the gain parameters of PID controller. Resultant low relative error value of the ANN model indicates the usability of the BPN in this area.
Directory of Open Access Journals (Sweden)
Yasir Khudhair Abbas
2012-01-01
Full Text Available In this paper, an intelligent tracking control system of both single- and double-axis Piezoelectric Micropositioner stage is designed using Genetic Algorithms (GAs method for the optimal Proportional-Integral-Derivative (PID controller tuning parameters. The (GA-based PID control design approach is a methodology to tune a (PID controller in an optimal control sense with respect to specified objective function. By using the (GA-based PID control approach, the high-performance trajectory tracking responses of the Piezoelectric Micropositioner stage can be obtained. The (GA code was built and the simulation results were obtained using MATLAB environment. The Piezoelectric Micropositioner simulation model with the (GA-based PID control is illustrated to show the validity of the proposed control method for practical applications, such as scanning microscopy.
PID Controller with Operational Amplifier
Directory of Open Access Journals (Sweden)
Cristian Paul Chioncel
2009-01-01
Full Text Available The paper presents a PID controller made with LM741 operational amplifier that implement the PID controllers laws and allow for a widerange of applications of in the field of automatic control of technicalprocesses and systems.
IMC-PID-fractional-order-filter controllers design for integer order systems.
Maâmar, Bettayeb; Rachid, Mansouri
2014-09-01
One of the reasons of the great success of standard PID controllers is the presence of simple tuning rules, of the automatic tuning feature and of tables that simplify significantly their design. For the fractional order case, some tuning rules have been proposed in the literature. However, they are not general because they are valid only for some model cases. In this paper, a new approach is investigated. The fractional property is not especially imposed by the controller structure but by the closed loop reference model. The resulting controller is fractional but it has a very interesting structure for its implementation. Indeed, the controller can be decomposed into two transfer functions: an integer transfer function which is generally an integer PID controller and a simple fractional filter.
On PID Controller Design by Combining Pole Placement Technique with Symmetrical Optimum Criterion
Directory of Open Access Journals (Sweden)
Viorel Nicolau
2013-01-01
Full Text Available In this paper, aspects of analytical design of PID controllers are studied, by combining pole placement technique with symmetrical optimum criterion. The proposed method is based on low-order plant model with pure integrator, and it can be used for both fast and slow processes. Starting from the desired closed-loop transfer function, which contains a second-order oscillating system and a lead-lag compensator, it is shown that the zero value depends on the real-pole value of closed-loop transfer function. In addition, there is only one pole value, which satisfies the assumptions of symmetrical optimum criterion imposed to open-loop transfer function. In these conditions, by combining the pole placement technique with symmetrical optimum criterion, the analytical expressions of the controller parameters can be simplified. For simulations, PID autopilot design for heading control problem of a conventional ship is considered.
Design Intelligent PID like Fuzzy Sliding Mode Controller for Spherical Motor
Directory of Open Access Journals (Sweden)
Farzin Matin
2014-04-01
Full Text Available The minimum rule base Proportional Integral Derivative (PID Fuzzy Sliding Mode Controller (SMC with application to spherical motor is presented in this research. The popularity of PID Fuzzy Sliding Mode Controller can be attributed to their robust performance in a wide range of operating conditions and partly to their functional simplicity. The process of setting of PID Fuzzy Sliding Mode Controller can be determined as an optimization task. Over the years, use of intelligent strategies for tuning of these controllers has been growing especially in nonlinear and uncertain systems. Proportional Integral Derivative methodology has three inputs and if any input is described with seven linguistic values, and any rule has three conditions, we will need 343 rules. It is too much work to write 343 rules and have lots of problem to design embedded control system e.g., Field Programmable Gate Array (FPGA. In this research the PID-like fuzzy controller can be constructed as a parallel structure of a PD-like fuzzy controller and a conventional PI controller to have the minimum rule base and good trajectory follow disturbance to control of spherical motor. However Sliding Mode Controller is work based on cancelling decoupling and nonlinear terms of dynamic parameters for each direction of three degree of freedom spherical motor, this controller is work based on motor dynamic model and this technique is highly sensitive to the knowledge of all parameters of nonlinear spherical motor’s dynamic equation which caused to challenge in uncertain system. This research is used to reduce or eliminate the Sliding Mode Controller problem based on minimum rule base fuzzy logic theory to control of three degrees of freedom spherical motor system and testing of the quality of process control in the simulation environment of MATLAB/SIMULINK Simulator.
Design of Multiregional Supervisory Fuzzy PID Control of pH Reactors
Directory of Open Access Journals (Sweden)
Shebel AlSabbah
2015-01-01
Full Text Available This work concerns designing multiregional supervisory fuzzy PID (Proportional-Integral-Derivative control for pH reactors. The proposed work focuses, mainly, on two themes. The first one is to propose a multiregional supervisory fuzzy-based cascade control structure. It would enable modifying dynamics and enhance system’s stability. The fuzzy system (master loop has been chosen as a tuner for PID controller (slave loop. It takes into consideration parameters uncertainties and reference tracking. The second theme concerns designing a hybrid neural network-based pH estimator. The proposed estimator would overcome the industrial drawbacks, that is, cost and size, found with conventional methods for pH measurement. The final end-user-interface (EUI front panel and the results that evaluate the performance of the supervisory fuzzy PID-based control system and hybrid NN-based estimator have been presented using the compatibility found between LabView and MatLab. They lead to conclude that the proposed algorithms are appropriate to systems nonlinearities encountered with pH reactors.
Pei, L; Theilacker, J; Soyars, W; Martinez, A; Bossert, R; DeGraff, B; Darve, C
2012-01-01
The Horizontal Test Stand (HTS) SRF Cavity and Cryomodule 1 (CM1) of eight 9-cell, 1.3GHz SRF cavities are operating at Fermilab. For the cryogenic control system, how to hold liquid level constant in the cryostat by regulation of its Joule-Thompson JT-valve is very important after cryostat cool down to 2.0 K. The 72-cell cryostat liquid level response generally takes a long time delay after regulating its JT-valve; therefore, typical PID control loop should result in some cryostat parameter oscillations. This paper presents a type of PID parameter self-optimal and Time-Delay control method used to reduce cryogenic system parameters' oscillation.
Energy Technology Data Exchange (ETDEWEB)
Pei, L.; Klebaner, A.; Theilacker, J.; Soyars, W.; Martinez, A.; Bossert, R.; DeGraff, B.; Darve, C.; /Fermilab
2011-06-01
The Horizontal Test Stand (HTS) SRF Cavity and Cryomodule 1 (CM1) of eight 9-cell, 1.3GHz SRF cavities are operating at Fermilab. For the cryogenic control system, how to hold liquid level constant in the cryostat by regulation of its Joule-Thompson JT-valve is very important after cryostat cool down to 2.0 K. The 72-cell cryostat liquid level response generally takes a long time delay after regulating its JT-valve; therefore, typical PID control loop should result in some cryostat parameter oscillations. This paper presents a type of PID parameter self-optimal and Time-Delay control method used to reduce cryogenic system parameters oscillation.
New tuning method for PID controller.
Shen, Jing-Chung
2002-10-01
In this paper, a tuning method for proportional-integral-derivative (PID) controller and the performance assessment formulas for this method are proposed. This tuning method is based on a genetic algorithm based PID controller design method. For deriving the tuning formula, the genetic algorithm based design method is applied to design PID controllers for a variety of processes. The relationship between the controller parameters and the parameters that characterize the process dynamics are determined and the tuning formula is then derived. Using simulation studies, the rules for assessing the performance of a PID controller tuned by the proposed method are also given. This makes it possible to incorporate the capability to determine if the PID controller is well tuned or not into an autotuner. An autotuner based on this new tuning method and the corresponding performance assessment rules is also established. Simulations and real-time experimental results are given to demonstrate the effectiveness and usefulness of these formulas.
Relationship between fuzzy controllers and PID controllers
Institute of Scientific and Technical Information of China (English)
李洪兴
1999-01-01
The internal relations between fuzzy controllers and PID controllers are revealed. First, it is pointed out that a fuzzy controller with one input and one output is just a piecewise P controller. Then it is proved that a fuzzy controller with two inputs and one output is just a piecewise PD (or I) controller with interaction between P and D (or PI). At last, the conclusion that a fuzzy controller with three inputs and one output is just a piecewise PID controller with interaction among P, I and D is given. Moreover, a kind of difference scheme of fuzzy controllers is designed.
Design a Novel SISO Off-line Tuning of Modified PID Fuzzy Sliding Mode Controller
Directory of Open Access Journals (Sweden)
Ali Shahcheraghi
2014-01-01
Full Text Available The Proportional Integral Derivative (PID Fuzzy Sliding Mode Controller (FSMC is the most widely used control strategy in the Industry (control of robotic arm. The popularity of PID FSMC controllers can be attributed to their robust performance in a wide range of operating conditions and partly to their functional simplicity. The process of setting of PID FSMC controller can be determined as an optimization task. Over the years, use of intelligent strategies for tuning of these controllers has been growing. Biologically inspired evolutionary strategies have gained importance over other strategies because of their consistent performance over wide range of process models and their flexibility. This paper analyses the modified PID FSMC controllers based on minimum rule base for flexible robot manipulator system and test the quality of process control in the simulation environment of MATLAB/SIMULINK Simulator.
The Design of Inverted Pendulum System Based on Virtual Prototype Technology and PID Control
Institute of Scientific and Technical Information of China (English)
2010-01-01
<正>A design scheme of a single Inverted Pendulum Virtual Prototype based on the combination of software and hardware is introduced.It uses hardware platform of C8051F020 single chip and the software of Matlab,Visual Basic and Kingview.It can simulate the force and movement of Inverted Pendulum expediently and intuitively.The combination of software and hardware makes the system closer to the reality.The concrete scheme is introduced in the paper and the result of PID control which verifies the correctness of the scheme.
PID Controllers Design Applied to Positioning of Ball on the Stewart Platform
Directory of Open Access Journals (Sweden)
Koszewnik Andrzej
2014-12-01
Full Text Available The paper presents the design and practical implementation of PID controllers for a Stewart platform. The platform uses a resistance touch panel as a sensor and servo motors as actuators. The complete control system stabilizing the ball on the platform is realized with the Arduino microcontroller and the Matlab/Simulink software. Two processes required to acquire measurement signals from the touch panel in two perpendicular directions X and Y, are discussed. The first process includes the calibration of the touch panel, and the second process - the filtering of measurement signals with the low pass Butterworth filter. The obtained signals are used to design the algorithm of the ball stabilization by decoupling the global system into two local subsystems. The algorithm is implemented in a soft real time system. The parameters of both PID controllers (PIDx and PIDy are tuned by the trial-error method and implemented in the microcontroller. Finally, the complete control system is tested at the laboratory stand.
Automatic PID Control Loops Design for Performance Improvement of Cryogenic Turboexpander
Joshi, D. M.; Patel, H. K.; Shah, D. K.
2015-04-01
Cryogenics field involves temperature below 123 K which is much less than ambient temperature. In addition, many industrially important physical processes—from fulfilling the needs of National Thermonuclear Fusion programs, superconducting magnets to treatment of cutting tools and preservation of blood cells, require extreme low temperature. The low temperature required for liquefaction of common gases can be obtained by several processes. Liquefaction is the process of cooling or refrigerating a gas to a temperature below its critical temperature so that liquid can be formed at some suitable pressure which is below the critical pressure. Helium liquefier is used for the liquefaction process of helium gas. In general, the Helium Refrigerator/Liquefier (HRL) needs turboexpander as expansion machine to produce cooling effect which is further used for the production of liquid helium. Turboexpanders, a high speed device that is supported on gas bearings, are the most critical component in many helium refrigeration systems. A very minor fault in the operation and manufacturing or impurities in the helium gas can destroy the turboexpander. However, since the performance of expanders is dependent on a number of operating parameters and the relations between them are quite complex, the instrumentation and control system design for turboexpander needs special attention. The inefficiency of manual control leads to the need of designing automatic control loops for turboexpander. Proper design and implementation of the control loops plays an important role in the successful operation of the cryogenic turboexpander. The PID control loops has to be implemented with accurate interlocks and logic to enhance the performance of the cryogenic turboexpander. For different normal and off-normal operations, speeds will be different and hence a proper control method for critical rotational speed avoidance is must. This paper presents the design of PID control loops needed for the
Design Of A Novel Online Experiment Setup For PID Controller Applications
Directory of Open Access Journals (Sweden)
Sezgin Kaçar
2017-02-01
Full Text Available In this study, an internet based remote access experiment setup was developed for induction direct current motor speed control with PID controller which can be used as a support material in engineering education. The experiment setup is wireless and communicates with the remote server using transfer control protocol/internet protocol through a wireless ADSL modem. Users can perform the experiments as real time accessing the web pages in the remote server by using any computer which has internet connection. By means of interactively-designed web pages, users can monitor the speed change executing alterations of the PID controller parameter and motor reference speed. Also users can save the measured values on their own computers. In addition to this, with the support of a webcam, the running of the experimental set can be monitored on the web page. Additionally, for the experimental set, preparing the peripheral units card, the interaction was expanded between the user and the experimental set. Relatively to this, the user can monitor the ambient temperature of the experimental set’s current place on the web page and can make his/her own message write on LCD of the experimental set and can enlighten it if he/she wants.
Greenhouse irrigation control system design based on ZigBee and fuzzy PID technology
Zhou, Bing; Yang, Qiliang; Liu, Kenan; Li, Peiqing; Zhang, Jing; Wang, Qijian
In order to achieve the water demand information accurately detect of the greenhouse crop and its precision irrigation automatic control, this article has designed a set of the irrigated control system based on ZigBee and fuzzy PID technology, which composed by the soil water potential sensor, CC2530F256 wireless microprocessor, IAR Embedded Workbench software development platform. And the time of Irrigation as the output .while the amount of soil water potential and crop growth cycle as the input. The article depended on Greenhouse-grown Jatropha to verify the object, the results show that the system can irrigate timely and appropriately according to the soil water potential and water demend of the different stages of Jatropha growth , which basically meet the design requirements. Therefore, the system has broad application prospects in the amount of greenhouse crop of fine control irrigation.
PID Controller Design for UPS Three-Phase Inverters Considering Magnetic Coupling
Directory of Open Access Journals (Sweden)
Yu Zhang
2014-11-01
Full Text Available In three-phase inverters used in uninterruptible power supplies (UPSs, three-limb inductors and three-limb transformers are commonly used in consideration of cost and size. However, magnetic coupling exists between the three phases of the inverter, which can result in complex models. When instantaneous feedback control strategies are introduced to achieve high quality output waveforms, the transient analysis of the closed-loop inverters becomes difficult. In this paper, the phenomenon of magnetic coupling in three-phase inverters due to three-limb inductors and three-limb transformers is analyzed. A decoupled dynamic model is derived based on the instantaneous symmetrical components transformation, which comprises three decoupled equivalent circuits of instantaneous symmetrical components. Analyses based on this model indicate that magnetic coupling may have a significant impact on the performance of three-phase inverters under unbalanced load conditions and transient responses. For three-phase inverters in UPSs with Proportional-Integral-Differential (PID closed-loop control strategies, the interactive influence between instantaneous closed-loop regulation and magnetic coupling is researched. Finally, a method of reliability analysis and PID controller design for inverters with magnetic coupling is derived. Simulation and experiment results validate the model and conclusions.
Design High Efficiency-Minimum Rule Base PID Like Fuzzy Computed Torque Controller
Directory of Open Access Journals (Sweden)
Alireza Khalilian
2014-06-01
Full Text Available The minimum rule base Proportional Integral Derivative (PID Fuzzy Computed Torque Controller is presented in this research. The popularity of PID Fuzzy Computed Torque Controller can be attributed to their robust performance in a wide range of operating conditions and partly to their functional simplicity. The process of setting of PID Fuzzy Computed Torque Controller can be determined as an optimization task. Over the years, use of intelligent strategies for tuning of these controllers has been growing. PID methodology has three inputs and if any input is described with seven linguistic values, and any rule has three conditions we will need 343 rules. It is too much work to write 343 rules. In this research the PID-like fuzzy controller can be constructed as a parallel structure of a PD-like fuzzy controller and a PI controller to have the minimum rule base. However computed torque controller is work based on cancelling decoupling and nonlinear terms of dynamic parameters of each link, this controller is work based on manipulator dynamic model and this technique is highly sensitive to the knowledge of all parameters of nonlinear robot manipulator’s dynamic equation. This research is used to reduce or eliminate the computed torque controller problem based on minimum rule base fuzzy logic theory to control of flexible robot manipulator system and testing of the quality of process control in the simulation environment of MATLAB/SIMULINK Simulator.
Design High-Efficiency Intelligent PID like Fuzzy Backstepping Controller for Three Dimension Motor
Directory of Open Access Journals (Sweden)
Mahsa Piltan
2014-08-01
Full Text Available The minimum rule base Proportional Integral Derivative (PID Fuzzy backstepping Controller for three dimensions spherical motor is presented in this research. The popularity of PID Fuzzy backstepping controller can be attributed to their robust performance in a wide range of operating conditions and partly to their functional simplicity. The process of setting of PID Fuzzy backstepping controller can be determined as an optimization task. Over the years, use of intelligent strategies for tuning of these controllers has been growing. PID methodology has three inputs and if any input is described with seven linguistic values, and any rule has three conditions we will need 7 × 7 × 7 = 343 rules. It is too much work to write 343 rules. In this research the PID-like fuzzy controller can be constructed as a parallel structure of a PI-like controller and a PD-like fuzzy controller to have the minimum rule base. However backstepping controller is work based on cancelling decoupling and nonlinear terms of dynamic parameters of each dimension, this controller is work based on spherical motor dynamic model and this technique is highly sensitive to the knowledge of all parameters of nonlinear three dimension spherical motor’s dynamic equation. This research is used to reduce or eliminate the backstepping controller problem based on minimum rule base fuzzy logic theory to control of spherical motor system and testing of the quality of process control in the simulation environment of MATLAB/SIMULINK Simulator.
Directory of Open Access Journals (Sweden)
Seyed Abbas Taher
2014-03-01
Full Text Available In this paper, fractional order PID (FOPID controller was proposed for load frequency control (LFC in an interconnected power system. This controller had five parameters to be tuned; thus, it provided two more degrees of freedom in comparison with the conventional PID. For proper tuning of the controller parameters, imperialist competitive algorithm (ICA was used. ICA is a new evolutionary algorithm with proved efficiency. In this study, simulation investigations were carried out on a three-area power system with different generating units. These results showed that FOPID controller was robust to the parameter changes in the power system. Also, the simulation results certified much better performance of FOPID controller for LFC in comparison with conventional PID controllers.
Design of PID controllers in double feedback loops for SISO systems with set-point filters.
Vijayan, V; Panda, Rames C
2012-07-01
A PID controller is widely used to control industrial processes that are mostly open loop stable or unstable. Selection of proper feedback structure and controller tuning helps to improve the performance of the loop. In this paper a double-feedback loop/method is used to achieve stability and better performance of the process. The internal feedback is used for stabilizing the process and the outer loop is used for good setpoint tracking. An internal model controller (IMC) based PID method is used for tuning the outer loop controller. Autotuning based on relay feedback or the Ziegler-Nichols method can be used for tuning an inner loop controller. A tuning parameter (λ) that is used to tune IMC-PID is used as a time constant of a setpoint filter that is used for reducing the peak overshoot. The method has been tested successfully on many low order processes.
Multiobjective optimization design of a fractional order PID controller for a gun control system.
Gao, Qiang; Chen, Jilin; Wang, Li; Xu, Shiqing; Hou, Yuanlong
2013-01-01
Motion control of gun barrels is an ongoing topic for the development of gun control equipments possessing excellent performances. In this paper, a typical fractional order PID control strategy is employed for the gun control system. To obtain optimal parameters of the controller, a multiobjective optimization scheme is developed from the loop-shaping perspective. To solve the specified nonlinear optimization problem, a novel Pareto optimal solution based multiobjective differential evolution algorithm is proposed. To enhance the convergent rate of the optimization process, an opposition based learning method is embedded in the chaotic population initialization process. To enhance the robustness of the algorithm for different problems, an adapting scheme of the mutation operation is further employed. With assistance of the evolutionary algorithm, the optimal solution for the specified problem is selected. The numerical simulation results show that the control system can rapidly follow the demand signal with high accuracy and high robustness, demonstrating the efficiency of the proposed controller parameter tuning method.
Directory of Open Access Journals (Sweden)
Alrijadjis .
2014-12-01
Full Text Available The proportional integral derivative (PID controllers have been widely used in most process control systems for a long time. However, it is a very important problem how to choose PID parameters, because these parameters give a great influence on the control performance. Especially, it is difficult to tune these parameters for nonlinear systems. In this paper, a new modified particle swarm optimization (PSO is presented to search for optimal PID parameters for such system. The proposed algorithm is to modify constriction coefficient which is nonlinearly decreased time-varying for improving the final accuracy and the convergence speed of PSO. To validate the control performance of the proposed method, a typical nonlinear system control, a continuous stirred tank reactor (CSTR process, is illustrated. The results testify that a new modified PSO algorithm can perform well in the nonlinear PID control system design in term of lesser overshoot, rise-time, settling-time, IAE and ISE. Keywords: PID controller, Particle Swarm Optimization (PSO,constriction factor, nonlinear system.
Design and simulation about a self-Tuning fuzzy-PID controller
Institute of Scientific and Technical Information of China (English)
ZHANG Yi; FU Wen-yong; LI Yan-hua; DENG Hao-wen; LIU Hong-chang
2009-01-01
Fuzzy logic has attracted the attention of structural control engineers during the last few years, because fuzzy logic can handle nonlinearities, uncertainties, and heuristic knowledge effectively and easily. In this paper, a self-Tuning fuzzy-PID control method which used the technology of the fuzzy control and PID control unified is presented. These techniques can visualize the results and processes for structure stress. These techniques will also provide convenience for engineers and users, and have high practical values. The MATLAB simulation result shows that the system precision and the efficiency are very high and the static error is small, and robustness was also validated.
Optimal PID Controller Design Based on PSO-RBFNN for Wind Turbine Systems
Directory of Open Access Journals (Sweden)
Jau-Woei Perng
2014-01-01
Full Text Available A strategy was proposed to determine the optimal operating point for the proportional-integral-derivative (PID controller of a wind turbine, and identify the stability regions in the parameter space. The proposed approach combined particle swarm optimization (PSO and radial basis function neural network (RBFNN algorithms. These intelligent algorithms are artificial learning mechanisms that can determine the optimal operating points, and were used to generate the function representing the most favorable operating parameters from each parameter of for the stability region of the PID controller. A graphical method was used to determine the 2D or 3D vision boundaries of the PID-type controller space in closed-loop wind turbine systems. The proposed techniques were demonstrated using simulations of a drive train model without time delay and a pitch control model with time delay. Finally, the 3D stability boundaries were determined the proposed graphical approach with and without time delay systems.
Designing an Energy Storage System Fuzzy PID Controller for Microgrid Islanded Operation
Directory of Open Access Journals (Sweden)
Jin-Hong Jeon
2011-09-01
Full Text Available Recently, interest in microgrids, which are composed of distributed generation (DG, distributed storage (DS, and loads, has been growing as a potentially effective clean energy system to mitigate against climate change. The microgrid is operated in the grid-connected mode and the islanded mode according to the conditions of the upstream power grid. The role of the energy storage system (ESS is especially important to maintain constant the frequency and voltage of an islanded microgrid. For this reason, various approaches for ESS control have been put forth. In this paper, a fuzzy PID controller is proposed to improve the frequency control performance of the ESS. This fuzzy PID controller consists of a fuzzy logic controller and a conventional PI controller, connected in series. The fuzzy logic controller has two input signals, and then the output signal of the fuzzy logic controller is the input signal of the conventional PI controller. For comparison of control performance, gains of each PI controller and fuzzy PID controller are tuned by the particle swam optimization (PSO algorithm. In the simulation study, the control performance of the fuzzy PID was also tested under various operating conditions using the PSCAD/EMTDC simulation platform.
Design of an iterative auto-tuning algorithm for a fuzzy PID controller
Saeed, Bakhtiar I.; Mehrdadi, B.
2012-05-01
Since the first application of fuzzy logic in the field of control engineering, it has been extensively employed in controlling a wide range of applications. The human knowledge on controlling complex and non-linear processes can be incorporated into a controller in the form of linguistic terms. However, with the lack of analytical design study it is becoming more difficult to auto-tune controller parameters. Fuzzy logic controller has several parameters that can be adjusted, such as: membership functions, rule-base and scaling gains. Furthermore, it is not always easy to find the relation between the type of membership functions or rule-base and the controller performance. This study proposes a new systematic auto-tuning algorithm to fine tune fuzzy logic controller gains. A fuzzy PID controller is proposed and applied to several second order systems. The relationship between the closed-loop response and the controller parameters is analysed to devise an auto-tuning method. The results show that the proposed method is highly effective and produces zero overshoot with enhanced transient response. In addition, the robustness of the controller is investigated in the case of parameter changes and the results show a satisfactory performance.
Application of Adaptive Fuzzy PID Leveling Controller
Directory of Open Access Journals (Sweden)
Ke Zhang
2013-05-01
Full Text Available Aiming at the levelling precision, speed and stability of suspended access platform, this paper put forward a new adaptive fuzzy PID control levelling algorithm by fuzzy theory. The method is aided design by using the SIMULINK toolbox of MATLAB, and setting the membership function and the fuzzy-PID control rule. The levelling algorithm can real-time adjust the three parameters of PID according to the fuzzy rules due to the current state. It is experimented, which is verified the algorithm have better stability and dynamic performance.
Implementation of Fuzzy-PID in Smart Car Control
Institute of Scientific and Technical Information of China (English)
2010-01-01
<正>An unmanued smart car control system and the fuzzy-PID control algorithm are produced.A design scheme of fuzzy-PID controller is put forward.The simulation analysis from matlab indicated that the dynamic performance of fuzzy-PID control algorithm is better than that of usual PID.Experimental result of smart car show that it can follow the black guid line well and fast-stable complete running the whole trip.
Li, Mingjie; Zhou, Ping; Zhao, Zhicheng; Zhang, Jinggang
2016-03-01
Recently, fractional order (FO) processes with dead-time have attracted more and more attention of many researchers in control field, but FO-PID controllers design techniques available for the FO processes with dead-time suffer from lack of direct systematic approaches. In this paper, a simple design and parameters tuning approach of two-degree-of-freedom (2-DOF) FO-PID controller based on internal model control (IMC) is proposed for FO processes with dead-time, conventional one-degree-of-freedom control exhibited the shortcoming of coupling of robustness and dynamic response performance. 2-DOF control can overcome the above weakness which means it realizes decoupling of robustness and dynamic performance from each other. The adjustable parameter η2 of FO-PID controller is directly related to the robustness of closed-loop system, and the analytical expression is given between the maximum sensitivity specification Ms and parameters η2. In addition, according to the dynamic performance requirement of the practical system, the parameters η1 can also be selected easily. By approximating the dead-time term of the process model with the first-order Padé or Taylor series, the expressions for 2-DOF FO-PID controller parameters are derived for three classes of FO processes with dead-time. Moreover, compared with other methods, the proposed method is simple and easy to implement. Finally, the simulation results are given to illustrate the effectiveness of this method.
Review, Design, Optimization and Stability Analysis of Fractional-Order PID Controller
Directory of Open Access Journals (Sweden)
Ammar SOUKKOU
2016-07-01
Full Text Available This paper will establish the importance and significance of studying the fractional-order control of nonlinear dynamical systems. The foundation and the sources related to this research scope is going to be set. Then, the paper incorporates a brief overview on how this study is performed and present the organization of this study. The present work investigates the effectiveness of the physical-fractional and biological-genetic operators to develop an Optimal Form of Fractional-order PID Controller (O2Fo-PIDC. The newly developed Fo-PIDC with optimal structure and parameters can, also, improve the performances required in the modeling and control of modern manufacturing-industrial process (MIP. The synthesis methodology of the proposed O2Fo-PIDC can be viewed as a multi-level design approach. The hierarchical Multiobjective genetic algorithm (MGA, adopted in this work, can be visualized as a combination of structural and parametric genes of a controller orchestrated in a hierarchical fashion. Then, it is applied to select an optimal structure and knowledge base of the developed fractional controller to satisfy the various design specification contradictories (simplicity, accuracy, stability and robustness.
Directory of Open Access Journals (Sweden)
Maitraye Sen
2014-05-01
Full Text Available In this work, a hybrid MPC (model predictive control-PID (proportional-integral-derivative control system has been designed for the continuous purification and processing framework of active pharmaceutical ingredients (APIs. The specific unit operations associated with the purification and processing of API have been developed from first-principles and connected in a continuous framework in the form of a flowsheet model. These integrated unit operations are highly interactive along with the presence of process delays. Therefore, a hybrid MPC-PID is a promising alternative to achieve the desired control loop performance as mandated by the regulatory authorities. The integrated flowsheet model has been simulated in gPROMSTM (Process System Enterprise, London, UK. This flowsheet model has been linearized in order to design the control scheme. The ability to track the set point and reject disturbances has been evaluated. A comparative study between the performance of the hybrid MPC-PID and a PID-only control scheme has been presented. The results show that an enhanced control loop performance can be obtained under the hybrid control scheme and demonstrate that such a scheme has high potential in improving the efficiency of pharmaceutical manufacturing operations.
Multiobjective Optimization Design of a Fractional Order PID Controller for a Gun Control System
Directory of Open Access Journals (Sweden)
Qiang Gao
2013-01-01
Full Text Available Motion control of gun barrels is an ongoing topic for the development of gun control equipments possessing excellent performances. In this paper, a typical fractional order PID control strategy is employed for the gun control system. To obtain optimal parameters of the controller, a multiobjective optimization scheme is developed from the loop-shaping perspective. To solve the specified nonlinear optimization problem, a novel Pareto optimal solution based multiobjective differential evolution algorithm is proposed. To enhance the convergent rate of the optimization process, an opposition based learning method is embedded in the chaotic population initialization process. To enhance the robustness of the algorithm for different problems, an adapting scheme of the mutation operation is further employed. With assistance of the evolutionary algorithm, the optimal solution for the specified problem is selected. The numerical simulation results show that the control system can rapidly follow the demand signal with high accuracy and high robustness, demonstrating the efficiency of the proposed controller parameter tuning method.
A Novel Approach in Designing PID Controller for Semi-active Quarter Car Model
Directory of Open Access Journals (Sweden)
Mehta Vedant
2016-01-01
Full Text Available This paper implements Teaching-Learning based optimization (TLBO to obtain optimized value of spring stiffness for better ride comfort. Further, this optimized value is then used in a semi-active quarter car setup to remove any discrepancies due to non-optimized spring. This paper also introduces a novel approach to control the Semi-active suspension parameter (damping coefficient for a better performance. For controlling semi-active parameters, PID controller has been used. PID controller output is fed to the quarter car setup as a damping coefficient. Thus changing the damping coefficient dynamically as the disturbance occurs, and thus improving the ride comfort. The sprung mass acceleration and rattle space of semi-active quarter car has been compared with sprung mass acceleration and rattle space of passive quarter car model to show the difference in results and thereby, results and conclusions are drawn.
A GA-based PID active queue management control design for TCP/IP networks
Kuo, H.-H.; Chen, C.-K.; Yan, J.-J.; Liao, T.-L.
2008-02-01
In this paper, a genetic algorithm-based (GA-based) proportional-integral-derivative (PID) controller as an active queue manager for Internet routers is proposed to reduce packet loss and improve network utilization in TCP/IP networks. Based on the window-based nonlinear dynamics, the TCP network was modeled as a time-delayed system with a saturated input due to the limitations of packet-dropping probability and the effects of propagation delays in TCP networks. An improved genetic algorithm is employed to derive optimal or near optimal PID control gains such that a performance index of integrated-absolute error (IAE) in terms of the error between the router queue length and the desired queue length is minimized. The performance of the proposed control scheme was evaluated in various network scenarios via a series of numerical simulations. The simulation results confirm that the proposed scheme outperforms other AQM schemes.
自整定模糊PID控制器的设计与Simulink仿真%Design of the Fuzzy Self-tuning PID Controller and Simulink Simulation
Institute of Scientific and Technical Information of China (English)
龚齐斌; 向贤兵
2012-01-01
In order to solve the problems of the complicated control system, based on the original PID control, by combining PID with fuzzy adaptive control algorithm, a fuzzy selftuning PID controller is designed. Then, a simula tion is carried out with the help of Simulink in MATLAB. The result shows that the fuzzy selftuning PID controller whose control effect is superior to the original PID controller has great adaptive capacity.%针对复杂系统的控制问题,在原有PID控制的基础上,将PID与模糊控制相结合,设计一种自整定模糊PID控制器,利用MATLAB中的Simulink软件进行仿真。仿真研究表明,自整定模糊PID控制器具有较强的自整定能力,控制效果优于原有PID控制器。
Directory of Open Access Journals (Sweden)
Xingguo Lu
2016-05-01
Full Text Available In this work, we propose a new method for the optimal design and tuning of a Proportional Integral-Derivative type (PID-type interval type-2 fuzzy logic controller (IT2 FLC for Delta parallel robot trajectory tracking control. The presented methodology starts with an optimal design problem of IT2 FLC. A group of IT2 FLCs are obtained by blurring the membership functions using a variable called blurring degree. By comparing the performance of the controllers, the optimal structure of IT2 FLC is obtained. Then, a multi-objective optimization problem is formulated to tune the scaling factors of the PID-type IT2 FLC. The Non-dominated Sorting Genetic Algorithm (NSGA-II is adopted to solve the constrained nonlinear multi-objective optimization problem. Simulation results of the optimized controller are presented and discussed regarding application in the Delta parallel robot. The proposed method provides an effective way to design and tune the PID-type IT2 FLC with a desired control performance.
A mathematical explanation via "intelligent" PID controllers of the strange ubiquity of PIDs
Novel, Brigitte D'Andrea; Join, Cédric; Mounier, Hugues; Steux, Bruno
2010-01-01
The ubiquity of PID controllers in the industry has remained mysterious until now. We provide here a mathematical explanation of this strange phenomenon by comparing their sampling with the the one of "intelligent" PID controllers, which were recently introduced. Some computer simulations nevertheless confirm the superiority of the new intelligent feedback design.
The Parrot UAV Controlled by PID Controllers
Directory of Open Access Journals (Sweden)
Koszewnik Andrzej
2014-08-01
Full Text Available The paper presents the process of modeling and designing control laws for four-rotor type of the Parrot UAV. The state space model is obtained by using several phenomena like gyroscopic effects for rigid bodies, propellers and rotors. The obtained model has been used to design PID control laws for roll, pitch, yaw angle and altitude, respectively. The numerical simulations of the closed loop model are shown that system in satisfy way stabilize flight of the quadro-rotor in all considered directions.
Slip control design of electric vehicle using indirect Dahlin Adaptive Pid
Fauzi, I. R.; Koko, F.; Kirom, M. R.
2016-11-01
In this paper the problem to be solved is to build a slip control on a wheel that may occur in an electric car wheel. Slip is the difference in vehicle velocity and wheel tangential velocity and to be enlarged when the torque given growing. Slip can be reduced by controlling the torque of the wheel so that the wheel tangential speed does not exceed the vehicle speed. The experiment in this paper is a simulation using MATLAB Simulink and using Adaptive control. The response adaptive PID control more quickly 1.5 s than PID control and can controlled wheel tangential speed close to the vehicle velocity on a dry asphalt, wet asphalt, snow and ice surface sequent at time 2s, 4s, 10s, and 50s. The maximum acceleration of the vehicle (V) on the surface of the dry asphalt, wet asphalt, snow, and ice surface sequent at 8.9 m/s2, 6.2 m/s2, 2.75 m/s2, and 0.34 m/s2.
Back stepping-Based-PID-Controller Designed for an Artificial Pancreas model
Directory of Open Access Journals (Sweden)
ShaimaMahmou Mahdi
2011-01-01
Full Text Available Artificial pancreas is simulated to handle Type I diabetic patients under intensive care by automatically controlling the insulin infusion rate. A Backstepping technique is used to apply the effect of PID controller to blood glucose level since there is no direct relation between insulin infusion (the manipulated variable and glucose level in Bergmans system model subjected to an oral glucose tolerance test by applying a meal translated into a disturbance. Backstepping technique is usually recommended to stabilize and control the states of Bergman's class of nonlinear systems. The results showed a very satisfactory behavior of glucose deviation to a sudden rise represented by the meal that increase the blood glucose
On the Improved Nonlinear Tracking Differentiator based Nonlinear PID Controller Design
Directory of Open Access Journals (Sweden)
Ibraheem Kasim Ibraheem
2016-10-01
Full Text Available This paper presents a new improved nonlinear tracking differentiator (INTD with hyperbolic tangent function in the state-space system. The stability and convergence of the INTD are thoroughly investigated and proved. Through the error analysis, the proposed INTD can extract differentiation of any piecewise smooth nonlinear signal to reach a high accuracy. The improved tracking differentiator (INTD has the required filtering features and can cope with the nonlinearities caused by the noise. Through simulations, the INTD is implemented as a signal’s derivative generator for the closed-loop feedback control system with a nonlinear PID controller for the nonlinear Mass-Spring-Damper system and showed that it could achieve the signal tracking and differentiation faster with a minimum mean square error.
Ohnishi, Yoshihiro; Ikemoto, Takahiro; Yamamoto, Toru
This paper proposes an adaptive PID controller which is driven by current control performance. The calculations of the PID parameters are based on the generalized minimum variance control(GMVC) algorithm. The current control performance is obtained in an online manner over a user-specified time-window with some overlap. The retuning of PID parameters are only carried out when controller performance deteriorates below a user-specified threshold. Experimental evaluations on the voltage control of the DC-DC converter demonstrates the practicality and utility of this idea.
Ghousiya Begum, K; Seshagiri Rao, A; Radhakrishnan, T K
2017-03-18
Internal model control (IMC) with optimal H2 minimization framework is proposed in this paper for design of proportional-integral-derivative (PID) controllers. The controller design is addressed for integrating and double integrating time delay processes with right half plane (RHP) zeros. Blaschke product is used to derive the optimal controller. There is a single adjustable closed loop tuning parameter for controller design. Systematic guidelines are provided for selection of this tuning parameter based on maximum sensitivity. Simulation studies have been carried out on various integrating time delay processes to show the advantages of the proposed method. The proposed controller provides enhanced closed loop performances when compared to recently reported methods in the literature. Quantitative comparative analysis has been carried out using the performance indices, Integral Absolute Error (IAE) and Total Variation (TV).
Directory of Open Access Journals (Sweden)
Azita Yazdanpanah
2014-04-01
Full Text Available Continuum robot manipulators are optimized to meet best trajectory requirements. Closed loop control is a key technology that is used to optimize the system output process to achieve this goal. In order to conduct research in the area of closed loop control, a control oriented cycle-to-cycle continuum robot model, containing dynamic model information for each individual continuum robot manipulator, is a necessity. In this research, the continuum robot manipulator is modeled according to information between joint variable and torque, which is represented by the nonlinear dynamic equation. After that, a multi-input-multi-output baseline computed torque control scheme is used to simultaneously control the torque load of system to regulate the joint variables to desired levels. One of the most important challenge in control theory is on-line tuning therefore fuzzy supervised optimization is used to tune the modified baseline and computed torque control coefficient. The performance of the modified baseline computed torque controller is compared with that of a baseline proportional, integral, and derivative (PID controller.
Directory of Open Access Journals (Sweden)
Khulood A. Dagher
2013-12-01
Full Text Available A particle swarm optimization algorithm and neural network like self-tuning PID controller for CSTR system is presented. The scheme of the discrete-time PID control structure is based on neural network and tuned the parameters of the PID controller by using a particle swarm optimization PSO technique as a simple and fast training algorithm. The proposed method has advantage that it is not necessary to use a combined structure of identification and decision because it used PSO. Simulation results show the effectiveness of the proposed adaptive PID neural control algorithm in terms of minimum tracking error and smoothness control signal obtained for non-linear dynamical CSTR system.
Neural PID Control Strategy for Networked Process Control
Directory of Open Access Journals (Sweden)
Jianhua Zhang
2013-01-01
Full Text Available A new method with a two-layer hierarchy is presented based on a neural proportional-integral-derivative (PID iterative learning method over the communication network for the closed-loop automatic tuning of a PID controller. It can enhance the performance of the well-known simple PID feedback control loop in the local field when real networked process control applied to systems with uncertain factors, such as external disturbance or randomly delayed measurements. The proposed PID iterative learning method is implemented by backpropagation neural networks whose weights are updated via minimizing tracking error entropy of closed-loop systems. The convergence in the mean square sense is analysed for closed-loop networked control systems. To demonstrate the potential applications of the proposed strategies, a pressure-tank experiment is provided to show the usefulness and effectiveness of the proposed design method in network process control systems.
Energy Technology Data Exchange (ETDEWEB)
Wei, Xinyu, E-mail: xyuwei@mail.xjtu.edu.cn; Wang, Pengfei, E-mail: pengfeixiaoli@yahoo.cn; Zhao, Fuyu, E-mail: fuyuzhao_xj@163.com
2016-08-01
Highlights: • We establish a disperse dynamic model for AP1000 reactor core. • A digital PID control based on QDRNN is used to design a decoupling control system. • The decoupling performance is verified and discussed. • The decoupling control system is simulated under the load following operation. - Abstract: The control system of the AP1000 reactor core uses the mechanical shim (MSHIM) strategy, which includes a power control subsystem and an axial power distribution control subsystem. To address the strong coupling between the two subsystems, an interlock between the two subsystems is used, which can only alleviate but not eliminate the coupling. Therefore, sometimes the axial offset (AO) cannot be controlled tightly, and the flexibility of load-following operation is limited. Thus, the decoupling of the original AP1000 reactor core control system is the focus of this paper. First, a two-node disperse dynamic model is established for the AP1000 reactor core to use PID control. Then, a digital PID control system based on a quasi-diagonal recurrent neural network (QDRNN) is designed to decouple the original system. Finally, the decoupling of the control system is verified by the step signal and load-following condition. The results show that the designed control system can decouple the original system as expected and the AO can be controlled much more tightly. Moreover, the flexibility of the load following is increased.
Multivariable robust PID control for a PEMFC system
Energy Technology Data Exchange (ETDEWEB)
Wang, Fu-Cheng; Ko, Chin-Chun [Department of Mechanical Engineering, National Taiwan University, No. 1 Roosevelt Rd. Sec. 4, Taipei 10617 (China)
2010-10-15
This paper proposes robust proportional-integral-derivative (PID) control for a proton exchange membrane fuel cell (PEMFC) system. We model a PEMFC as a multivariable system, and apply identification techniques to obtain the system's transfer function matrices, where system variations and disturbances are regarded as uncertainties. Because robust control can cope with system uncertainties and disturbances, it has been successfully applied to improve the stability, performance, and efficiency of PEMFC systems in previous studies. However, the resulting robust controllers might be too complicated for hardware implementation. On the other hand, PID control has been widely applicable to engineering practices because of its simple structure, but it lacks stability analysis for systems with uncertainties. Therefore, by combining the merits of robust control and PID control, we design robust PID controllers for the PEMFC system. Based on evaluation of stability, performance, and efficiencies, the proposed robust PID controllers are shown to be effective. (author)
PID control with robust disturbance feedback control
DEFF Research Database (Denmark)
Kawai, Fukiko; Vinther, Kasper; Andersen, Palle
2015-01-01
Disturbance Feedback Control (DFC) is a technique, originally proposed by Fuji Electric, for augmenting existing control systems with an extra feedback for attenuation of disturbances and model errors. In this work, we analyze the robustness and performance of a PID-based control system with DFC...... and performance (if such gains exist). Finally, two different simulation case studies are evaluated and compared. Our numerical studies indicate that better performance can be achieved with the proposed method compared with a conservatively tuned PID controller and comparable performance can be achieved when...... compared with an H-infinity controller....
Chaos optimization based immune PID controller design%一种基于混沌优化的免疫PID控制器
Institute of Scientific and Technical Information of China (English)
韩贵金
2012-01-01
针对目前智能PID控制器普遍存在的诸如计算量大、收敛速度慢以及控制精度相对较差等问题,提出一种基于混沌优化的免疫PID控制器。与传统的免疫PID控制器相比主要做了两个方面的改进,一个是利用小波神经网络对免疫PID控制器的非线性函数部分进行逼近,另一个是利用混沌优化算法对免疫PID控制器的三个控制参数进行优化。仿真结果表明该控制器的控制性能优于其它类型的智能PID控制器以及常规PID控制器。%Aiming at several problems such as complex computation, convergence slowly and poor controlling precision exited in current intelligent PID controllers, a new immune PID controller is designed. Compared with additional immune PID controller, two improvements are made, one is that a wavelets neural network is adopted to approximate the nonlinear function of immune PID controller; the other is that Chaos is used to optimize three parameters of immune PID controller. The simulation experiments show that the performance of controller is better than conventional PID controllers and current intelligent PID controllers.
Directory of Open Access Journals (Sweden)
Bikash Dey
2014-01-01
Full Text Available This paper present three different control strategies based on PI Control, PID control and Two degree of freedom PID control for Continuous Stirred Tank Reactor (CSTR.CSTR which offers a diverse range of application in the field of chemical engineering as well as in the control engineering and is an attractive research area for process control researchers. Our objective is to control the temperature of CSTR in presence of the set point. MATLAB SIMULINK software is used for model design and simulation
Institute of Scientific and Technical Information of China (English)
张艳; 李少远
2005-01-01
A novel decentralized PID controller design procedure based on backstepping principles is presented to operate multiple-input multiple-output (MIMO)dynamic processes. The first key feature of the design procedure is that a whole MIMO control system is decomposed into multiple control loops, therefore the sub-controllers can be efficiently flexibly designed in parallel prototype.The second key feature is that the decentralized controller has equivalency to those designed by backstepping approach. As a complementary support to the design procedure, the sufficient condition of the whole closed-loop system stability is analyzed via the small gain theorem and it can be proven that the process tracking performance is improved. The simulation results of the Shell benchmark control problem are provided to verify the effectiveness and practicality of the proposed decentralized PID control.
Wind turbine pitch control using ICPSO-PID algorithm
DEFF Research Database (Denmark)
Xu, Chang; Tian, Qiangqiang; Shen, Wen Zhong
2013-01-01
of improved cooperative particle swarm optimization (ICPSO) and PID, subsequently, it was used to tune the pitch controller parameters; thus the difficulty in PID tuning was removed when a wind speed was above the rated speed. It was indicated that the proposed optimization algorithm can tune the pitch...... with ICPSO-PID algorithm has a smaller overshoot, a shorter tuning time and better robustness. The design method proposed in the paper can be applied in a practical electro-hydraulic pitch control system for WTG......., a pitch controller was designed based on power and wind speed and by considering the inertia and delay characteristics of a pitch-control system to achieve a constant power output when a wind speed was beyond the rated one. A novel ICPSO-PID control algorithm was proposed based on a combination...
Directory of Open Access Journals (Sweden)
Arezou Geramipour
2013-04-01
Full Text Available This paper emphasizes on a method for designing digital PID controller based on Field Programmable Gate Array (FPGA device for regulating blood glucose level of type-I diabetic patients. The controller is tuned using Bergman Minimal model as a diabetic patient model in MATLAB and Simulink environment. The PID parameters are tuned using a genetic algorithm (GA. Because the speed of control systems has influence on their performance and stability, Field Programmable Gate Array (FPGA device is considered. A Simulink to FPGA flow is applied to the structure of PID controller with Xilinx blocks in Simulink. The results of blood glucose of two diabetic patient models using different quantization in bits are simulated. The results show that unsuitable number of bits cause hypoglycemia and increasing the peak of blood glucose in diabetic patients. System Generator and Integrated Software Environment (ISE are used for creating Bitstream file that can be downloaded into FPGA device. The results show that implementation of PID controller on FPGA using System Generator is compact and high speed and causes the designer can evaluate and implement different designs simply.
Improving the pneumatic control valve performance using a PID controller
Heidari, Mohammad; Homaei, Hadi
2014-01-01
Pneumatic control valves are still the most used in process industries due to their low cost and simplicity. This paper presents a design procedure of a PID controller for a pneumatic control valve. For comparison, P and PI controllers are also utilized for the control valve. The bond graph method is used to model the control valve, in order to compare the response characteristics of the valve. Simulation results are found for three controllers of the valve. The integral time absolute error c...
Directory of Open Access Journals (Sweden)
Hualong Xie
2015-04-01
Full Text Available A biped robot with heterogeneous legs (BRHL is proposed to provide an ideal test-bed for intelligent bionic legs (IBL. To make artificial leg gait better suited to a human, a four-bar mechanism is used as its knee joint, and a pneumatic artificial muscle (PAM is used as its driving source. The static mathematical model of PAM is established and the mechanical model of a single degree of freedom of a knee joint driven by PAM is analyzed. A control simulation of an artificial leg based on PID control algorithm is carried out and the simulation results indicate that the artificial leg can simulate precisely a normal human walking gait.
PID Controller Stabilization for First-order Integral Processes with Time Delay
Institute of Scientific and Technical Information of China (English)
无
2006-01-01
Due to the widespread application of the PID controller in industrial control systems, it is desirable to know the complete set of all the stabilizing PID controllers for a given plant before the controller design and tuning. In this paper,the stabilization problems of the classical proportionalintegral-derivative (PID) controller and the singleparameter PID controller (containing only one adjustable parameter) for integral processes with time delay are investigated, respectively. The complete set of stabilizing parameters of the classical PID controller is determined using a version of the Hermite-Biehler Theorem applicable to quasipolynomials. Since the stabilization problem of the single-parameter PID controller cannot be treated by the Hermite-Biehler Theorem, a simple method called duallocus diagram is employed to derive the stabilizing range of the single-parameter PID controller. These results provide insight into the tuning of the PID controllers.
Institute of Scientific and Technical Information of China (English)
ZHANG Dong-Li; TANG Ying-Gan; GUAN Xin-Ping
2014-01-01
Fractional order proportional-integral-derivative (FOPID) controller generalizes the standard PID controller. Compared to PID controller, FOPID controller has more pa-rameters and the tuning of parameters is more complex. In this paper, an improved artificial bee colony algorithm, which com-bines cyclic exchange neighborhood with chaos (CNC-ABC), is proposed for the sake of tuning the parameters of FOPID con-troller. The characteristic of the proposed CNC-ABC exists in two folds: one is that it enlarges the search scope of the solution by utilizing cyclic exchange neighborhood techniques, speeds up the convergence of artificial bee colony algorithm (ABC). The other is that it has potential to get out of local optima by exploit-ing the ergodicity of chaos. The proposed CNC-ABC algorithm is used to optimize the parameters of the FOPID controller for an automatic voltage regulator (AVR) system. Numerical sim-ulations show that the CNC-ABC FOPID controller has better performance than other FOPID and PID controllers.
Zamani, Abbas-Ali; Tavakoli, Saeed; Etedali, Sadegh
2017-03-01
Fractional order PID (FOPID) controllers are introduced as a general form of classical PID controllers using fractional calculus. As this controller provides good disturbance rejection and is robust against plant uncertainties it is appropriate for the vibration mitigation in structures. In this paper, an FOPID controller is designed to adjust the contact force of piezoelectric friction dampers for semi-active control of base-isolated structures during far-field and near-field earthquake excitations. A multi-objective cuckoo search algorithm is employed to tune the controller parameters. Considering the resulting Pareto optimal front, the best input for the FOPID controller is selected. For seven pairs of earthquakes and nine performance indices, the performance of the proposed controller is compared with those provided by several well-known control techniques. According to the simulation results, the proposed controller performs better than other controllers in terms of simultaneous reduction of the maximum base displacement and story acceleration for various types of earthquakes. Also, it provides acceptable responses in terms of inter-story drifts, root mean square of base displacements and floor acceleration. In addition, the evaluation of robustness for a stiffness uncertainty of ±10% indicates that the proposed controller gives a robust performance against such modeling errors.
Bonne, F.; Bonnay, P.; Hoa, C.; Mahoudeau, G.; Rousset, B.
2017-02-01
This papers deals with the Japan Torus-60 Super Advanced fusion experiment JT-60SA cryogenic system. A presentation of the JT-60SA cryogenic system model, from 300K to 4.4K -using the Matlab/Simulink/Simscape Simcryogenics library- will be given. As a first validation of our modelling strategy, the obtained operating point will be compared with the one obtained from HYSYS simulations. In the JT60-SA tokamak, pulsed heat loads are expected to be coming from the plasma and must be handled properly, using both appropriate refrigerator architecture and appropriate control model, to smooth the heat load. This paper presents model-based designed PID control schemes to control the helium mass inside the phase separator. The helium mass inside the phase separator as been chosen to be the variable of interest in the phase separator since it is independent of the pressure which can vary from 1 bar to 1.8 bar during load smoothing. Dynamics simulations will be shown to assess the legitimacy of the proposed strategy. This work is partially supported through the French National Research Agency (ANR), task agreement ANR-13-SEED-0005.
Multi-loop decentralized PID control based on covariance control criteria: an LMI approach.
Huang, Xin; Huang, Biao
2004-01-01
PID control is well known and widely applied in industry and many design algorithms are readily available in the literature. However, systematic design of multi-loop or decentralized PID control for multivariable processes to meet certain objectives simultaneously is still a challenging task. Designing multi-loop PID controllers such that the process variables satisfy the generalized covariance constraints is studied in this paper. A convergent computational algorithm is proposed to calculate the multi-loop PID controller for a process with stable disturbances. This algorithm is then extended to a process with random-walk disturbances. The feasibility of the proposed algorithm is verified by applying it to several simulation examples.
Harinath, Eranda; Mann, George K I
2008-06-01
This paper describes a design and two-level tuning method for fuzzy proportional-integral derivative (FPID) controllers for a multivariable process where the fuzzy inference uses the inference of standard additive model. The proposed method can be used for any n x n multi-input-multi-output process and guarantees closed-loop stability. In the two-level tuning scheme, the tuning follows two steps: low-level tuning followed by high-level tuning. The low-level tuning adjusts apparent linear gains, whereas the high-level tuning changes the nonlinearity in the normalized fuzzy output. In this paper, two types of FPID configurations are considered, and their performances are evaluated by using a real-time multizone temperature control problem having a 3 x 3 process system.
高速电磁阀模糊PID测控系统的设计%Design on Fuzzy-PID Control System of High-speed Solenoid
Institute of Scientific and Technical Information of China (English)
蒲亮亮; 张小栋
2009-01-01
For the problem of poor control precision of high-speed solenoid valves which are widely used in aero-engine control systems,a fuzzy-PID control system based on Soc single-chip is designed in this paper by using fuzzy self-tuning of PID parameters control algorithm.%针对航空发动机控制系统中高速电磁阀存在控制精度差的问题,采用PID参数模糊自整定的控制算法,设计了基于Soc单片机的高速电磁阀模糊PID测控系统.
Directory of Open Access Journals (Sweden)
D. RAMA REDDY
2012-07-01
Full Text Available This paper describes the stability regions of PID (Proportional +Integral+ Derivative and a new PID with series leading correction (SLC for Networked control system with time delay. The new PID controller has a tuning parameter ‘β’. The relation between β, KP, KI and KD is derived. The effect of plant parameters on stabilityregion of PID controllers and SLC-PID controllers in first-order and second-order systems with time delay are also studied. Finally, an open-loop zero was inserted into the plant-unstable second order system with time delay so that the stability regions of PID and SLC-PID controllers get effectively enlarged. The total system isimplemented using MATLAB/Simulink.
Liu, Xilin; Zhang, Milin; Richardson, Andrew G; Lucas, Timothy H; Van der Spiegel, Jan
2016-12-16
This paper presents a bidirectional brain machine interface (BMI) microsystem designed for closed-loop neuroscience research, especially experiments in freely behaving animals. The system-on-chip (SoC) consists of 16-channel neural recording front-ends, neural feature extraction units, 16-channel programmable neural stimulator back-ends, in-channel programmable closed-loop controllers, global analog-digital converters (ADC), and peripheral circuits. The proposed neural feature extraction units includes 1) an ultra low-power neural energy extraction unit enabling a 64-step natural logarithmic domain frequency tuning, and 2) a current-mode action potential (AP) detection unit with time-amplitude window discriminator. A programmable proportional-integral-derivative (PID) controller has been integrated in each channel enabling a various of closed-loop operations. The implemented ADCs include a 10-bit voltage-mode successive approximation register (SAR) ADC for the digitization of the neural feature outputs and/or local field potential (LFP) outputs, and an 8-bit current-mode SAR ADC for the digitization of the action potential outputs. The multi-mode stimulator can be programmed to perform monopolar or bipolar, symmetrical or asymmetrical charge balanced stimulation with a maximum current of 4 mA in an arbitrary channel configuration. The chip has been fabricated in 0.18 μ m CMOS technology, occupying a silicon area of 3.7 mm (2). The chip dissipates 56 μW/ch on average. General purpose low-power microcontroller with Bluetooth module are integrated in the system to provide wireless link and SoC configuration. Methods, circuit techniques and system topology proposed in this work can be used in a wide range of relevant neurophysiology research, especially closed-loop BMI experiments.
A Practical Application of IMC-PID Controller in Unmanned Vehicle
Directory of Open Access Journals (Sweden)
Qin Gang
2013-06-01
Full Text Available In allusion to unmanned vehicle steering control of the brushless DC motor control system, traditional PID controller parameter adjustment complex, weak ability to adapt to the environment and other issues, on the basis of the analysis of internal model control and classical PID control internal corresponding relationship, comprehensive its advantages, The design uses a brushless DC motor in the steering control system for unmanned vehicles based on the internal model PID controller ( IMC-PID for speed. Based on the build object theoretical model, online simulation controller show that, for the design objects, based on the internal model PID controller whether the system step response or disturbance tracking control effect can reach the classic PID control requirements, also reduces the complexity and randomness of the design parameters.
PID motion control tuning rules in a damping injection framework
Tadele, Tadele Shiferaw; Vries, de Theo; Stramigioli, Stefano
2013-01-01
This paper presents a general design approach for a performance based tuning of a damping injection framework impedance controller by using insights from PID motion control tuning rules. The damping injection framework impedance controller is suitable for human friendly robots as it enhances safety
A toolbox for robust PID controller tuning using convex optimization
Sadeghpour, Mehdi; de Oliveira, Vinicius; Karimi, Alireza
2012-01-01
A robust PID controller design toolbox for Matlab is presented in this paper. The design is based on linearizing or convexifying the conventional non-convex constraints on the classical robustness margins or H∞ constraints. Then the existing optimization solvers can be used to compute the controller parameters. The software can be used in a wide range of controller design problems, including multi-model systems and gain-scheduled controllers. The models can be parametric or non-parametric whi...
Rail Vehicle Vibrations Control Using Parameters Adaptive PID Controller
Directory of Open Access Journals (Sweden)
Muzaffer Metin
2014-01-01
Full Text Available In this study, vertical rail vehicle vibrations are controlled by the use of conventional PID and parameters which are adaptive to PID controllers. A parameters adaptive PID controller is designed to improve the passenger comfort by intuitional usage of this method that renews the parameters online and sensitively under variable track inputs. Sinusoidal vertical rail misalignment and measured real rail irregularity are considered as two different disruptive effects of the system. Active vibration control is applied to the system through the secondary suspension. The active suspension application of rail vehicle is examined by using 5-DOF quarter-rail vehicle model by using Manchester benchmark dynamic parameters. The new parameters of adaptive controller are optimized by means of genetic algorithm toolbox of MATLAB. Simulations are performed at maximum urban transportation speed (90 km/h of the rail vehicle with ±5% load changes of rail vehicle body to test the robustness of controllers. As a result, superior performance of parameters of adaptive controller is determined in time and frequency domain.
Modeling and Implementation of PID Control for Autonomous Robots
2007-06-01
Richard Dorf . Modern Control Systems. New York, New York: Addison-Wesley Publishing, 1995. Cabezas, Rodrigo. Design of A Bore Sight Camera For The...IMPLEMENTATION OF PID CONTROL FOR AUTONOMOUS ROBOTS by Todd A. Williamson June 2007 Thesis Advisor: Richard Harkins Second Reader: Peter...Author: Todd A. Williamson Approved by: Richard Harkins Thesis Advisor Peter Crooker Second Reader James Luscombe
Majdabadi-Farahani, V.; Hanif, M.; Gholaminezhad, I.; Jamali, A.; Nariman-Zadeh, N.
2014-10-01
In this paper, model predictive control (MPC) is used for optimal selection of proportional-integral-derivative (PID) controller gains. In conventional tuning methods a history of response error of the system under control in the passed time is measured and used to adjust PID parameters in order to improve the performance of the system in proceeding time. But MPC obviates this characteristic of classic PID. In fact MPC tries to tune the controller by predicting the system's behaviour some time steps ahead. In this way, PID parameters are adjusted before any real error occurs in the system's response. For this purpose, polynomial meta-models based on the evolved group method of data handling neural networks are obtained to simply simulate the time response of the dynamic system. Moreover, a non-dominated sorting genetic algorithm has been used in a multi-objective Pareto optimisation to select the parameters of the MPC which are prediction horizon, control horizon and relation of weight of Δ u and error, to minimise simultaneously two objective functions that are control effort and integral time absolute error of the system response. The results mentioned at the end obviously declare that the proposed method surpasses conventional tuning methods for PID controllers, and Pareto optimal selection of predictive parameters also improves the performance of the introduced method.
Genetic Algorithm Optimisation of PID Controllers for a Multivariable Process
Directory of Open Access Journals (Sweden)
Wael Alharbi
2017-03-01
Full Text Available This project is about the design of PID controllers and the improvement of outputs in multivariable processes. The optimisation of PID controller for the Shell oil process is presented in this paper, using Genetic Algorithms (GAs. Genetic Algorithms (GAs are used to automatically tune PID controllers according to given specifications. They use an objective function, which is specially formulated and measures the performance of controller in terms of time-domain bounds on the responses of closed-loop process.A specific objective function is suggested that allows the designer for a single-input, single-output (SISO process to explicitly specify the process performance specifications associated with the given problem in terms of time-domain bounds, then experimentally evaluate the closed-loop responses. This is investigated using a simple two-term parametric PID controller tuning problem. The results are then analysed and compared with those obtained using a number of popular conventional controller tuning methods. The intention is to demonstrate that the proposed objective function is inherently capable of accurately quantifying complex performance specifications in the time domain. This is something that cannot normally be employed in conventional controller design or tuning methods.Finally, the recommended objective function will be used to examine the control problems of Multi-Input-Multi-Output (MIMO processes, and the results will be presented in order to determine the efficiency of the suggested control system.
Seltzer, S. M.
1976-01-01
The problem discussed is to design a digital controller for a typical satellite. The controlled plant is considered to be a rigid body acting in a plane. The controller is assumed to be a digital computer which, when combined with the proposed control algorithm, can be represented as a sampled-data system. The objective is to present a design strategy and technique for selecting numerical values for the control gains (assuming position, integral, and derivative feedback) and the sample rate. The technique is based on the parameter plane method and requires that the system be amenable to z-transform analysis.
Application of Improved Genetic Algorithm in PID Controller Parameters Optimization
Directory of Open Access Journals (Sweden)
Ying Chen
2013-01-01
Full Text Available Ying Chen, Yong-jie Ma, Wen-xia Yun College of Physics and Electronic Engineering, Northwest Normal University, Anning Road no.967 ,Lanzhou,China,0931-7971503 e-mail:chenying1386685@126.com Abstract The setting and optimization of Proportion Integration Differentiation(PID parameters have been always the important study topics in the automatic control field. The current optimization design methods are often difficult to consider the system requirements for quickness ,reliability and robustness .So a method of PID controller parameters optimization based on Improved Genetic Algorithm(IGA is presented .Simulations with Matlab have proved that the control performance index based on IGA is better than that of the GA method and Z-N method, and is a method which has good practical value of the PID parameter setting and optimization .
Variable-order fuzzy fractional PID controller.
Liu, Lu; Pan, Feng; Xue, Dingyu
2015-03-01
In this paper, a new tuning method of variable-order fractional fuzzy PID controller (VOFFLC) is proposed for a class of fractional-order and integer-order control plants. Fuzzy logic control (FLC) could easily deal with parameter variations of control system, but the fractional-order parameters are unable to change through this way and it has confined the effectiveness of FLC. Therefore, an attempt is made in this paper to allow all the five parameters of fractional-order PID controller vary along with the transformation of system structure as the outputs of FLC, and the influence of fractional orders λ and μ on control systems has been investigated to make the fuzzy rules for VOFFLC. Four simulation results of different plants are shown to verify the availability of the proposed control strategy.
Tuning of PID Controller for A Linear Brushless DC Motor using Swarm Intelligence Technique
Directory of Open Access Journals (Sweden)
Pooja Sharma,
2014-05-01
Full Text Available An Optimal Design of PID Controller is proposed in this paper. The Methodology of PSO Algorithm is utilized to search the optimal parameters of Proportional Integral Derivative (PID Controller for BLDC Motor. PSO is an Evolutionary Optimization Technique. A Linear Brushless DC Motors are known for higher efficiency and lower maintenance. The Brushless DC Motor is modeled in Simulink & tuning of PID controller using PSO is implemented in MATLAB. This Method was more efficient for Step Response Characteristics.
Structure Analysis and Function Evaluation of a Kind of Fuzzy PID Controllers
Institute of Scientific and Technical Information of China (English)
DUXinyu; ZHANGNaiyao; YUNa
2004-01-01
In this paper, a kind of fuzzy PID (Proportional integral and derivate) controllers is discussed, which has 3 input variables (error, difference of error, sum of error) and one output variable; triangular fully-overlapped symmetric membership function for input variables; singleton equally-spaced membership function for the output variable; linear control rules; Sum-Product inference method; and Center of area (COA) defuzzification algorithm. The paper consists of three main parts. In the first part, the structure properties of fuzzy PID controllers are studied. The explicit expression of this kind of fuzzy PID controllers is derived. It is proved that the analytical structure of fuzzy PID controllers is the sum of a global three-dimensional multi-level relay and a local nonlinear controller. When the number of fuzzy sets tends to infinity, the local nonlinear controller will disappear, and the degree of nonlinearity of the fuzzy PID controller becomes zero. In the second part, the function properties of fuzzy PID controllers are studied. It is revealed that the fuzzy PID controller is a variable gain nonlinear PID controller; so linear PID controllers can be regarded as a special example of fuzzy PID controllers. Moreover, they are equivalent to the sum of three fuzzy controllers with one-to-one mapping; so they do not suffer from some weaknesses such as composed-action, input coupling, etc. Based on these theoretical results, a systematic design approach of fuzzy PID control systems is proposed and demonstrated by 2 simulation examples in the third part of this paper. It is shown that the proposed fuzzy PID controller not only has good structure and function characteristics, but also can be very simply and quickly designed; therefore, it is very suitable for a wide range of applications.
Differential Evolution-Based PID Control of Nonlinear Full-Car Electrohydraulic Suspensions
Directory of Open Access Journals (Sweden)
Jimoh O. Pedro
2013-01-01
Full Text Available This paper presents a differential-evolution- (DE- optimized, independent multiloop proportional-integral-derivative (PID controller design for full-car nonlinear, electrohydraulic suspension systems. The multiloop PID control stabilises the actuator via force feedback and also improves the system performance. Controller gains are computed using manual tuning and through DE optimization to minimise a performance index, which addresses suspension travel, road holding, vehicle handling, ride comfort, and power consumption constraints. Simulation results showed superior performance of the DE-optimized PID-controlled active vehicle suspension system (AVSS over the manually tuned PID-controlled AVSS and the passive vehicle suspension system (PVSS.
Institute of Scientific and Technical Information of China (English)
魏晓娟; 王耀武
2015-01-01
Based on the requirements of the walking-assistant robot ,the control system should be adapt to different road conditions and achieve high precision ,so ,a robot control system based on TMS320F2812 is designed in this paper ,including its hardware and software design .Then ,a moving control method based on the fuzzy PID control algorithm is presented for the walking-assistant ro-bot to realize some different moving properties .At last ,the feasibility and adaptability of the walking-assistant robot's control sys-tem is verified by experiment .%为了满足助老助行机器人对运动控制系统能够适应不同路况和高精度的要求 ,设计了一种基于T M S320F2812的助老助行机器人控制系统 ,完成了硬件、软件设计.将模糊PID算法应用到助老助行机器人的双电机差速驱动控制中 ,实现了复杂的行走功能 ,通过试验验证了整个控制系统的可行性和自适应性.
Model-reference robust tuning of PID controllers
Alfaro, Victor M
2016-01-01
This book presents a unified methodology for the design of PID controllers that encompasses the wide range of different dynamics to be found in industrial processes. This is extended to provide a coherent way of dealing with the tuning of PID controllers. The particular method at the core of the book is the so-called model-reference robust tuning (MoReRT), developed by the authors. MoReRT constitutes a novel and powerful way of thinking of a robust design and taking into account the usual design trade-offs encountered in any control design problem. The book starts by presenting the different two-degree-of-freedom PID control algorithm variations and their conversion relations as well as the indexes used for performance, robustness and fragility evaluation:the bases of the proposed model. Secondly, the MoReRT design methodology and normalized controlled process models and controllers used in the design are described in order to facilitate the formulation of the different design problems and subsequent derivati...
Design of remote experiment system based on neuron PID controller%基于神经元PID控制器的远程实验系统设计
Institute of Scientific and Technical Information of China (English)
李晓荣; 刘志强
2016-01-01
Since the uncertainty of network delay in remote experiment system can impact on the experimental results,the remote experiment system based on neuron PID controller was designed. The algorithm of PID⁃NN neural network controller is studied. Its convergence and stability are analyzed. The implementation method of the system′s network communication and con⁃trol in client/server sides is given. The response contrast test for the machinery control arm was conducted in the laboratory. The experimental results show that the response overshoot,steady⁃state error and response time of the experiment system based on neuron PID controller are smaller than those of the experiment system based on common PID control method. The correctness of the algorithm was proved.%针对目前远程实验系统中网络延时的不确定对实验结果产生影响的问题，设计了基于神经元PID控制器的远程实验系统。研究了PID⁃NN神经网络控制器的算法并分析了算法的收敛性和稳定性，给出了远程实验系统的客户/服务器端网络通信及控制的实现方法。最后对实验室中机械控制臂进行了响应对比试验，实验结果表明，基于神经元PID控制器实验系统的响应超调量、稳态误差及响应时间明显小于普通PID控制方法的实验系统，证明了算法的正确性。
ROBUST INTERNAL MODEL CONTROL STRATEGY BASED PID CONTROLLER FOR BLDCM
Directory of Open Access Journals (Sweden)
A.PURNA CHANDRA RAO
2010-11-01
Full Text Available All the closed loop control system requires the controller for improvement of transient response of the error signal. Though the tuning of PID controller in real time is bit difficult and moreover it lacks the disturbance rejection capability. This paper presents a tuning of PID parameters based on internal model strategy. The advantageous of the proposed control strategy is well described in the paper. To test the validity of the proposed control, it is implemented in brushless dc motor drive. The mathematical model of brushless dc motor (BLDC is presented for control design. In addition the robustness of the control strategy is discussed. The proposed control strategy possesses good transient responses and good load disturbance response. In addition, the proposed control strategy possesses good tracking ability. To test the effectiveness of the proposed strategy, the BLDC is represented in transfer function model and later implemented in test system. The results are presented to validate the proposed control strategy for BLDC drive.
Bikash Dey; Lusika Roy
2014-01-01
This paper present three different control strategies based on PI Control, PID control and Two degree of freedom PID control for Continuous Stirred Tank Reactor (CSTR).CSTR which offers a diverse range of application in the field of chemical engineering as well as in the control engineering and is an attractive research area for process control researchers. Our objective is to control the temperature of CSTR in presence of the set point. MATLAB SIMULINK software is used for mo...
Automatic Tuning of PID Controller for a 1-D Levitation System Using a Genetic Algorithm
DEFF Research Database (Denmark)
Yang, Zhenyu; Pedersen, Gerulf K.m.
2006-01-01
The automatic PID control design for a onedimensional magnetic levitation system is investigated. The PID controller is automatically tuned using the non-dominated sorting genetic algorithm (NSGA-II) based on a nonlinear system model. The developed controller is digitally implemented and tested...
PID Controller Optimization by GA and Its Performances on the Electro-hydraulic Servo Control System
Institute of Scientific and Technical Information of China (English)
Karam M. Eibayomy; Jiao Zongxia; Zhang Huaqing
2008-01-01
A proportional integral derivative (PID) controller is designed and attached to electro-hydraulic servo actuator system (EHSAS) to control the angular position of the rotary actuator which control the movable surface of space vehicles. The PID gain parameters areoptimized by the genetic algorithm (GA). The controller is verified on the new state-space model of servo-valves attached to the physical rotary actuator by SIMULINK program. The controller and the state-space model are verified experimentally. Simulation and experimental results verify the effectiveness of the PID controller adaptive by GA to control the angular position of the rotary actuator as compared with the classical PID controller and the compensator controller.
Directory of Open Access Journals (Sweden)
Fatemeh Masoudnia
2013-11-01
Full Text Available In this paper three optimum approaches to design PID controller for a Gryphon Robot are presented. The three applied approaches are Artificial Bee Colony, Shuffled Frog Leaping algorithms and nero-fuzzy system. The design goal is to minimize the integral absolute error and reduce transient response by minimizing overshoot, settling time and rise time of step response. An Objective function of these indexes is defined and minimized applying Shuffled Frog Leaping (SFL algorithm, Artificial Bee Colony (ABC algorithm and Nero-Fuzzy System (FNN. After optimization of the objective function, the optimal parameters for the PID controller are adjusted. Simulation results show that FNN has a remarkable effect on decreasing the amount of settling time and rise-time and eliminating of steady-state error while the SFL algorithm performs better on steady-state error and the ABC algorithm is better on decreasing of overshoot. In steady state manner, all of the methods react robustly to the disturbance, but FNN shows more stability in transient response.
Development of Solar Tracking System Using Imc-Pid Controller
Directory of Open Access Journals (Sweden)
Bamigboye O. Oladayo
2016-06-01
Full Text Available In the past, solar cells are hooked with fixed elevating angles, and it does not track the sun. Therefore the efficiency of the power generation is low. A solar panel receives the most sunlight when it is perpendicular to the sun’s rays, but the sunlight direction changes regularly with changing seasons and weather. There is therefore the need to track the solar panel to increase its efficiency. The stability and improved speed of response can only be achieved with appropriate controller to take care of external disturbances and design uncertainty associated with a conventional controller. The IMC controller would be used to allow good tracking ability and good load disturbance rejection Unconventional controller like fuzzy logic can be used to tune the PID controller andthe result compared with using a conventional controller like ZN. The internal model control based proportional integral derivative design procedure can be implemented in industrial processes using existing proportional integral derivative control equipment. Modeling of a dual axis solar tracker. An IMC-PID controller was developed for a dual axis solar tracker. The result of this work showed that the IMC-PID controller provided an efficient and commendable improvement in the relative stability, disturbance attenuation, set point tracking and an improved speed of response for the system
Fuzzy-Immune PID Control for AMB Systems
Institute of Scientific and Technical Information of China (English)
SU Yixin; LI Xuan; ZHOU Zude; CHEN Youping; ZHANG Danhong
2006-01-01
In order to improve the dynamic performance of active magnetic bearing systems with highly nonlinear and naturally unstable dynamics, a new nonlinear fuzzy-immune proportional-integral-derivative (PID) controller is proposed by combining the immune feedback law with linear PID control. This controller consists of a PID controller and a basic immune proportional controller in cascaded connection, the nonlinear function of the immune proportional controller is realized by using fuzzy reasoning. Simulation results demonstrate that the active magnetic bearing system with the proposed controller has better dynamic performance and disturbance rejection ability than using the linear PID controller.
PID feedback for mixed H2/H∞ tracking control of robotic manipulators
Institute of Scientific and Technical Information of China (English)
黄春庆; 施颂椒
2004-01-01
The design objective of a mixed H2/H∞ control is to find the H2 optimal control law under aprescribed disturbance attenuation level. This paper addresses a optimal PID control law on the basis of the newsolution to mixed H2/H∞optimal control problem that provide much more flexible design compared to the existing works. Then a closed-form PID controller to mixed H2/H∞ robotic tracking problem is simply constructed and hence the design procedure is presented.Finally, numerical simulations illustrate the effectiveness of the optimal PID feedback design proposed in this paper via a two-link robotic manipulator.
Tuning of PID controllers for boiler-turbine units.
Tan, Wen; Liu, Jizhen; Fang, Fang; Chen, Yanqiao
2004-10-01
A simple two-by-two model for a boiler-turbine unit is demonstrated in this paper. The model can capture the essential dynamics of a unit. The design of a coordinated controller is discussed based on this model. A PID control structure is derived, and a tuning procedure is proposed. The examples show that the method is easy to apply and can achieve acceptable performance.
Fuzzy-PID controlled lift feedback fin stabilizer
Institute of Scientific and Technical Information of China (English)
LIANG Yan-hua; JIN Hong-zhang; LIANG Li-hua
2008-01-01
Conventional PID controllers are widely used in fin stabilizer control systems,but they have time-variations,nonlinearity,and uncertainty influencing their control effects.A lift feedback fuzzy-PID control method was developed to better deal with these problems,and this lift feedback fin stabilizer system was simulated under different sea condition.Test results showed the system has better anti-rolling performance than traditional fin-angle PID control systems.
Series pid pitch controller of large wind turbines generator
Directory of Open Access Journals (Sweden)
Micić Aleksandar D.
2015-01-01
Full Text Available For this stable process with oscillatory dynamics, characterized with small damping ratio and dominant transport delay, design of the series PID pitch controller is based on the model obtained from the open-loop process step response, filtered with the second-order Butterworth filter Fbw. Performance of the series PID pitch controller, with the filter Fbw, is analyzed by simulations of the set-point and input/output disturbance responses, including simulations with a colored noise added to the control variable. Excellent performance/robustness tradeoff is obtained, compared to the recently proposed PI pitch controllers and to the modified internal model pitch controller, developed here, which has a natural mechanism to compensate effect of dominant transport delay. [Projekat Ministarstva nauke Republike Srbije, br. III 47016
Design of Fuzzy-PID Controller of PV Grid-connected Control System%光伏并网系统模糊PID控制器的设计
Institute of Scientific and Technical Information of China (English)
贺运胜
2013-01-01
As illumination is stochastic and uncertain, a set of PID parameters can hardly achieve satisfactory control performance for grid-connected control for photovoltaic system. Based on the mathematical model of three-phase two-stage PV grid inverter, fuzzy-PID control strategy is applied in the grid control of PV system. Digital simulation and physical simulation show that fuzzy-PID control strategy can improve the PV system grid control dynamic process and the PV system can smoothly connect the grid.%由于光照具有随机性和不确定性等特点，光伏并网控制若采用传统PID控制，仅一组固定的参数难以在不同光照下均具有良好的并网控制效果。在三相两级式并网逆变器数学模型的基础上，将模糊PID控制策略引入光伏系统的并网控制中。通过数字仿真和物理仿真表明模糊控制与PID控制相结合的模糊PID控制，改善了光伏系统并网控制的动态过程，能够实现光伏系统的平滑并网。
Rodrigo, M A; Seco, A; Ferrer, J; Penya-roja, J M; Valverde, J L
1999-01-01
In this paper, several tuning algorithms, specifically ITAE, IMC and Cohen and Coon, were applied in order to tune an activated sludge aeration PID controller. Performance results of these controllers were compared by simulation with those obtained by using a nonlinear fuzzy PID controller. In order to design this controller, a trial and error procedure was used to determine, as a function of error at current time and at a previous time, sets of parameters (including controller gain, integral time and derivative time) which achieve satisfactory response of a PID controller actuating over the aeration process. Once these sets of data were obtained, neural networks were used to obtain fuzzy membership functions and fuzzy rules of the fuzzy PID controller.
Application of Fuzzy-PID Control System in Full-Mechanized Coal Face
Institute of Scientific and Technical Information of China (English)
LU Kui; TANG Pei-rong; YANG Wei-min
2005-01-01
The control system, which includes structure, the composition of software and hardware, the form of PID control system and its systematic closed-loop, was used in No.4236 full-mechanized coal face of Xinlongzhuang mine.The typical fuzzy PID control system structure was investigated, and a simplified fuzzy PID control system was taken the place of the complex three-dimension fuzzy controller. Based on the parameter relation between fuzzy controller and normal PID controller, a common method of parameter adjustment of PID controller was summed up and the computer simulation was realized. This system can overcome the problems of large delay, nonlinear, poor running environment and great load change in the full-mechanized coal face. The simulating investigation indicates that the designing method of fuzzy controller is simple and feasible.
Fractional order PID controller for improvement of PMSM speed control in aerospace applications
Saraji, Ali Motalebi; Ghanbari, Mahmood
2014-12-01
Because of the benefits reduced size, cost and maintenance, noise, CO2 emissions and increased control flexibility and precision, to meet these expectations, electrical equipment increasingly utilize in modern aircraft systems and aerospace industry rather than conventional mechanic, hydraulic, and pneumatic power systems. Electric motor drives are capable of converting electrical power to drive actuators, pumps, compressors, and other subsystems at variable speeds. In the past decades, permanent magnet synchronous motor (PMSM) and brushless dc (BLDC) motor were investigated for aerospace applications such as aircraft actuators. In this paper, the fractional-order PID controller is used in the design of speed loop of PMSM speed control system. Having more parameters for tuning fractional order PID controller lead to good performance ratio to integer order. This good performance is shown by comparison fractional order PID controller with the conventional PI and tuned PID controller by Genetic algorithm in MATLAB soft wear.
Fractional order PID controller for improvement of PMSM speed control in aerospace applications
Energy Technology Data Exchange (ETDEWEB)
Saraji, Ali Motalebi [Young Researchers and Elite Club, AliAbad Katoul Branch, Islamic Azad University, AliAbad Katoul (Iran, Islamic Republic of); Ghanbari, Mahmood [Department of Electrical Engineering, AliAbad Katoul Branch, Islamic Azad University, AliAbad Katoul (Iran, Islamic Republic of)
2014-12-10
Because of the benefits reduced size, cost and maintenance, noise, CO2 emissions and increased control flexibility and precision, to meet these expectations, electrical equipment increasingly utilize in modern aircraft systems and aerospace industry rather than conventional mechanic, hydraulic, and pneumatic power systems. Electric motor drives are capable of converting electrical power to drive actuators, pumps, compressors, and other subsystems at variable speeds. In the past decades, permanent magnet synchronous motor (PMSM) and brushless dc (BLDC) motor were investigated for aerospace applications such as aircraft actuators. In this paper, the fractional-order PID controller is used in the design of speed loop of PMSM speed control system. Having more parameters for tuning fractional order PID controller lead to good performance ratio to integer order. This good performance is shown by comparison fractional order PID controller with the conventional PI and tuned PID controller by Genetic algorithm in MATLAB soft wear.
PID and predictive control of electrical drives and power converters using MATLAB/Simulink
Wang, Liuping; Yoo, Dae; Gan, Lu; Ng, Ki
2015-01-01
A timely introduction to current research on PID and predictive control by one of the leading authors on the subject PID and Predictive Control of Electric Drives and Power Supplies using MATLAB/Simulink examines the classical control system strategies, such as PID control, feed-forward control and cascade control, which are widely used in current practice. The authors share their experiences in actual design and implementation of the control systems on laboratory test-beds, taking the reader from the fundamentals through to more sophisticated design and analysis. The book contains secti
Mo, Qingkai; Zhang, Tao; Yan, Yining
2016-10-01
There are contradictions among speediness, anti-disturbance performance, and steady-state accuracy caused by traditional PID controller in the existing light source systems of thermal frequency stabilizing laser with double longitudinal modes. In this paper, a new kind of fuzzy adaptive PID controller was designed by combining fuzzy PID control technology and expert system to make frequency stabilizing system obtain the optimal performance. The experiments show that the frequency stability of the designed PID controller is similar to the existing PID controller (the magnitude of frequency stability is less than 10-9 in constant temperature and 10-7 in open air). But the preheating time is shortened obviously (from 10 minutes to 5 minutes) and the anti-disturbance capability is improved significantly (the recovery time needed after strong interference is reduced from 1 minute to 10 seconds).
Tuning PID Controller Using Multiobjective Ant Colony Optimization
Directory of Open Access Journals (Sweden)
Ibtissem Chiha
2012-01-01
Full Text Available This paper treats a tuning of PID controllers method using multiobjective ant colony optimization. The design objective was to apply the ant colony algorithm in the aim of tuning the optimum solution of the PID controllers (Kp, Ki, and Kd by minimizing the multiobjective function. The potential of using multiobjective ant algorithms is to identify the Pareto optimal solution. The other methods are applied to make comparisons between a classic approach based on the “Ziegler-Nichols” method and a metaheuristic approach based on the genetic algorithms. Simulation results demonstrate that the new tuning method using multiobjective ant colony optimization has a better control system performance compared with the classic approach and the genetic algorithms.
Fuzzy PID controller combines with closed-loop optimal fuzzy reasoning for pitch control system
Li, Yezi; Xiao, Cheng; Sun, Jinhao
2013-03-01
PID and fuzzy PID controller are applied into the pitch control system. PID control has simple principle and its parameters setting are rather easy. Fuzzy control need not to establish the mathematical of the control system and has strong robustness. The advantages of fuzzy PID control are simple, easy in setting parameters and strong robustness. Fuzzy PID controller combines with closed-loop optimal fuzzy reasoning (COFR), which can effectively improve the robustness, when the robustness is special requirement. MATLAB software is used for simulations, results display that fuzzy PID controller which combines with COFR has better performances than PID controller when errors exist.
Soft Real-Time PID Control on a VME Computer
Karayan, Vahag; Sander, Stanley; Cageao, Richard
2007-01-01
microPID (uPID) is a computer program for real-time proportional + integral + derivative (PID) control of a translation stage in a Fourier-transform ultraviolet spectrometer. microPID implements a PID control loop over a position profile at sampling rate of 8 kHz (sampling period 125microseconds). The software runs in a strippeddown Linux operating system on a VersaModule Eurocard (VME) computer operating in real-time priority queue using an embedded controller, a 16-bit digital-to-analog converter (D/A) board, and a laser-positioning board (LPB). microPID consists of three main parts: (1) VME device-driver routines, (2) software that administers a custom protocol for serial communication with a control computer, and (3) a loop section that obtains the current position from an LPB-driver routine, calculates the ideal position from the profile, and calculates a new voltage command by use of an embedded PID routine all within each sampling period. The voltage command is sent to the D/A board to control the stage. microPID uses special kernel headers to obtain microsecond timing resolution. Inasmuch as microPID implements a single-threaded process and all other processes are disabled, the Linux operating system acts as a soft real-time system.
An effective frequency domain approach to tuning non-PID controllers for high performance.
Wang, Qing-Guo; Ru, He; Huang, Xiao-Gang
2002-01-01
In this paper, a new tuning method is proposed for the design of non-PID controllers for complex processes to achieve high performance. Compared with the existing PID tuning methods, the proposed non-PID controller design method can yield better performance for a wide range of complex processes. A suitable objective transfer function for the closed-loop system is chosen according to process characteristics. The corresponding ideal controller is derived. Model reduction is applied to fit the ideal controller into a much simpler and realizable form. Stability analysis is given and simulation examples are provided to demonstrate the effectiveness of the proposed method.
连续搅拌反应釜过程的闭环增益成形PID控制器设计%PID controller design of closed-loop gain shaping in CSTR process
Institute of Scientific and Technical Information of China (English)
李述清; 张胜修; 张煜东; 胡波
2011-01-01
针对连续搅拌反应釜(CSTR)系统控制问题,设计了一种基于闭环增益成形算法的PID控制器,以提高PID控制器设计的简洁性和鲁棒性.首先假设期望闭环回路传递函数有一阶形式,同时将受控对象的一阶传递函数和PID控制器构成实际闭环回路传递函数.然后,比较期望闭环回路传递函数和实际闭环回路传递函数,即可确定PJD参数.最后,以某CSTR系统为例,利用该方法设计了PID控制器,并通过仿真结果比较,检验了该方法所得PID控制器的良好鲁棒稳定性和动态品质.%To solve the control problem of Continuous-Stirred-Tank-Reactor (CSTR), a straightforward PID design based on closed-loop gain shaping algorithm was proposed in this paper to enhance the simplicity and robustness of PID controller.Firstly, the transfer function of the anticipant closed-loop control system was assumed as a 1st order system, and the actual closed-loop transfer function was consisted of the 1 st order transfer function and PID controller.Then, the anticipated closedloop transfer function was compared with that of the actual closed-loop, thus the PID controller coefficients could be calculated.Finally, the robust PID controller was designed in a CSTR system.The simulation results demonstrate that the PID controller has better robust stability and dynamic performance.
Analytical one parameter method for PID motion controller settings
Dijk, van J.; Aarts, R.G.K.M.
2012-01-01
In this paper analytical expressions for PID-controllers settings for electromechanical motion systems are presented. It will be shown that by an adequate frequency domain oriented parametrization, the parameters of a PID-controller are analytically dependent on one variable only, the cross-over fre
Directory of Open Access Journals (Sweden)
Benxian Xiao
2014-06-01
Full Text Available Proposed the PID controller parameters tuning method based-on New Luus-Jaakola (NLJ algorithm and satisfaction idea. According to the different requirements of each performance index, designed the satisfaction function with fuzzy constraint attributes, and then determined the comprehensive satisfaction function for PID tuning by NLJ algorithm. Provided the steps of PID controller parameters tuning based on the NLJ algorithm and satisfaction, and applied this tuning method to the cascade control system of superheated steam temperature for Power Station Boiler. Finally the simulation and experiment results have shown the proposed method has good dynamic and static control performances for this complicated superheated steam temperature control system.
Turbine speed control system based on a fuzzy-PID
Institute of Scientific and Technical Information of China (English)
SUN Jian-hua; WANG Wei; YU Hai-yan
2008-01-01
The flexibility demand of marine nuclear power plant is very high,the multiple parameters of the marine nuclear power plant with the once-through steam generator are strongly coupled,and the normal PID control of the turbine speed can't meet the control demand. This paper introduces a turbine speed Fuzzy-PID controller to coordinately control the steam pressure and thus realize the demand for quick tracking and steady state control over the turbine speed by using the Fuzzy control's quick dynamic response and PID control's steady state performance. The simulation shows the improvement of the response time and steady state performance of the control system.
ANFIS-PID Controller for Arm Rehabilitation Device
Directory of Open Access Journals (Sweden)
M.H.Jali
2015-10-01
Full Text Available In this paper, the arm rehabilitation device controller based on fuzzy logic techniques is presented. Patients who has post-stroke may lose control of their upper limb. If they are treated with functional rehabilitation training, the patients can rehabilitate their motion functions and working abilities. These rehabilitation devices are used to recover the movement of arm after stroke. Many controllers had been used for the rehabilitation device and one of them is ANFIS-PID controller where Adaptive Neuro-Fuzzy Inference System (ANFIS technique is the combination of fuzzy logic and neural network system. The objectives of this project are to develop arm rehabilitation device controller based on the ANFIS-PID technique. The development of ANFIS is purposely as an inverse model to the system and proportional-integral- erivative (PID controller as a feedback control. EMG model is integrated to the control system as reference where Artificial Neural Network (ANN is used to model the EMG to position relationship. Simulation is conducted using MATLAB to validate the system performance that is integrated with EMG model. Then the performance is compared between ANFIS-PID controller and PID alone controller. ANFIS–PID controller reduced more tracking error compared to PID controller and demonstrates better results when disturbance is applied to the control system.
Didactic System for the Experimental Study of Digital PID Control Structures
Directory of Open Access Journals (Sweden)
Stelian-Emilian OLTEAN
2016-12-01
Full Text Available The proportional integral derivative (PID controller has a known structure used in feedback control of industrial processes. One of the most common applications is the control of the DC motor. The paper presents a didactic system designed for educational purposes used for studying various conventional PID structures and the influence of the PID components in the control process of the DC motor’s speed. The system contains a low cost acquisition board based on PIC 16F628A microcontroller. The experimental results are shown graphically using a PC application made in Matlab environment.
Digital implementation of fractional order PID controller and its application
Institute of Scientific and Technical Information of China (English)
Wang Zhenbin; Wang Zhenlei; Cao Guangyi; Zhu Xinjian
2005-01-01
A new discretization scheme is proposed for the design of a fractional order PID controller. In the design of a fractional order controller the interest is mainly focused on the s-domain, but there exists a difficult problem in the s-domain that needs to be solved, i.e. how to calculate fractional derivatives and integrals efficiently and quickly. Our scheme adopts the time domain that is well suited for Z-transform analysis and digital implementation. The main idea of the scheme is based on the definition of Grunwald-Letnicov fractional calculus. In this case some limited terms of the definition are taken so that it is much easier and faster to calculate fractional derivatives and integrals in the time domain or zdomain without loss much of the precision. Its effectiveness is illustrated by discretization of half-order fractional differential and integral operators compared with that of the analytical scheme. An example of designing fractional order digital controllers is included for illustration, in which different fractional order PID controllers are designed for the control of a nonlinear dynamic system containing one of the four different kinds of nonlinear blocks: saturation, deadzone, hysteresis, and relay.
Nonlinear Decoupling PID Control Using Neural Networks and Multiple Models
Institute of Scientific and Technical Information of China (English)
无
2006-01-01
For a class of complex industrial processes with strong nonlinearity, serious coupling and uncertainty, a nonlinear decoupling proportional-integral-differential (PID) controller is proposed, which consists of a traditional PID controller, a decoupling compensator and a feedforward compensator for the unmodeled dynamics. The parameters of such controller is selected based on the generalized minimum variance control law. The unmodeled dynamics is estimated and compensated by neural networks, a switching mechanism is introduced to improve tracking performance, then a nonlinear decoupling PID control algorithm is proposed. All signals in such switching system are globally bounded and the tracking error is convergent. Simulations show effectiveness of the algorithm.
基于PID算法的炉窑温度串级控制系统设计%Furnace Temperature Cascade Control System Design Based on PID Algorithm
Institute of Scientific and Technical Information of China (English)
罗及红
2012-01-01
The use of temperature sensors, transmitters, PLC and its A/D conversion device MAD02 and the computer, with the furnace as the object to the furnace outlet temperature, main controlled parameter, in order to furnace temperature for secondary controlled parameters, with resistance wire of the heating furnace voltage as a control parameter, PLC controller, design of furnace temperature series level control system, using PID algorithm for the PLC program design, realization of the furnace temperature setpoint control. After the debugging experiment, comprehensive error of only 0. 926degrees C, fully meet the system error in the range of 2DEG C control requirements.%利用温度传感器、变送器、PLC及其配套的A/D转换器件MAD02和上位计算机,以炉窑为被控对象,以炉窑出口气温为主被控参数,以炉膛内的气温为副被控参数,以加热炉电阻丝电压为控制参数,以PLC为控制器,设计了炉窑温度串级控制系统,运用PID算法进行了PLC程序设计,实现了炉窑气温的定值控制；经调试实验证明,综合误差仅为0.926℃,充分满足了本系统误差范围在2℃以内的控制要求.
Intelligent PID guidance control for AUV path tracking
Institute of Scientific and Technical Information of China (English)
李晔; 姜言清; 王磊峰; 曹建; 张国成
2015-01-01
Based on rational behavior model of three layers, a tracking control system is designed for straight line tracking which is commonly used in underwater survey missions. An intelligent PID control law implemented as planning level during the control system using transverse deviation is came up with. Continuous tracking of path expressed by a point sequence can be realized by the law. Firstly, a path tracking control system based on rational behavior model of three layers is designed, mainly satisfying the needs of underactuated AUV. Since there is no need to perform spatially coupled maneuvers, the 3D path tracking control is decoupled into planar 2D path tracking and depth or height tracking separately. Secondly, planar path tracking controller is introduced. For the reason that more attention is paid to comparing with vertical position control, transverse deviation in analytical form is derived. According to the Lyapunov direct theory, control law is designed using discrete PID algorithm whose parameters obey adaptive fuzzy adjustment. Reference heading angle is given as an output of the guidance controller conducted by lateral deviation together with its derivative. For the purpose of improving control quality and facilitating parameter modifying, data normalize modules based on Sigmoid function are applied to input-output data manipulation. Lastly, a sequence of experiments was carried out successfully, including tests in Longfeng lake and at the Yellow sea. In most challenging sea conditions, tracking errors of straight line are below 2 m in general. The results show that AUV is able to compensate the disturbance brought by sea current. The provided test results demonstrate that the designed guidance controller guarantees stably and accurately straight route tracking. Besides, the proposed control system is accessible for continuous comb-shaped path tracking in region searching.
Longitudinal control of aircraft dynamics based on optimization of PID parameters
Deepa, S. N.; Sudha, G.
2016-03-01
Recent years many flight control systems and industries are employing PID controllers to improve the dynamic behavior of the characteristics. In this paper, PID controller is developed to improve the stability and performance of general aviation aircraft system. Designing the optimum PID controller parameters for a pitch control aircraft is important in expanding the flight safety envelope. Mathematical model is developed to describe the longitudinal pitch control of an aircraft. The PID controller is designed based on the dynamic modeling of an aircraft system. Different tuning methods namely Zeigler-Nichols method (ZN), Modified Zeigler-Nichols method, Tyreus-Luyben tuning, Astrom-Hagglund tuning methods are employed. The time domain specifications of different tuning methods are compared to obtain the optimum parameters value. The results prove that PID controller tuned by Zeigler-Nichols for aircraft pitch control dynamics is better in stability and performance in all conditions. Future research work of obtaining optimum PID controller parameters using artificial intelligence techniques should be carried out.
Directory of Open Access Journals (Sweden)
R. Arulmurugan
2012-10-01
Full Text Available This paper proposes a new dc to dc boost converter using closed loop control proportional Integral and Derivative mechanism for photovoltaic (PV standalone high voltage applications. The boost converter is composed of MOSFETs which are driven by closed loop PWM control. Many advantages including high efficiency, minimum number of switch, high voltage and power, low cost. This converter is attractive for high voltage and high power applications. The analysis and design considerations of the converter are presented. A prototype was implemented for an application requiring a 410W output power, input voltage range from 17.1-V, and a 317-V output voltage. The proposed system efficiency is about 90%.
Dominant pole placement with fractional order PID controllers: D-decomposition approach.
Mandić, Petar D; Šekara, Tomislav B; Lazarević, Mihailo P; Bošković, Marko
2017-03-01
Dominant pole placement is a useful technique designed to deal with the problem of controlling a high order or time-delay systems with low order controller such as the PID controller. This paper tries to solve this problem by using D-decomposition method. Straightforward analytic procedure makes this method extremely powerful and easy to apply. This technique is applicable to a wide range of transfer functions: with or without time-delay, rational and non-rational ones, and those describing distributed parameter systems. In order to control as many different processes as possible, a fractional order PID controller is introduced, as a generalization of classical PID controller. As a consequence, it provides additional parameters for better adjusting system performances. The design method presented in this paper tunes the parameters of PID and fractional PID controller in order to obtain good load disturbance response with a constraint on the maximum sensitivity and sensitivity to noise measurement. Good set point response is also one of the design goals of this technique. Numerous examples taken from the process industry are given, and D-decomposition approach is compared with other PID optimization methods to show its effectiveness.
Variable Structure PID Control to Prevent Integrator Windup
Hall, C. E.; Hodel, A. S.; Hung, J. Y.
1999-01-01
PID controllers are frequently used to control systems requiring zero steady-state error while maintaining requirements for settling time and robustness (gain/phase margins). PID controllers suffer significant loss of performance due to short-term integrator wind-up when used in systems with actuator saturation. We examine several existing and proposed methods for the prevention of integrator wind-up in both continuous and discrete time implementations.
Directory of Open Access Journals (Sweden)
C.Agees Kumar
2010-07-01
Full Text Available PID controller is widely used for main steam temperature control of boiler unit in thermal power plant. To avoid the drawback of current PID design methods, this paper presents a new design method for multi-objective PID controller to synthetically consider system requirement in reliability and robustness. Adaptive weighted PSO (AWPSO technique is applied to the parameter optimization design. The optimization problem considered is highly nonlinear, complex, with multiple objectives and constraints. The simulation results on an actual main steam temperature control system indicate that, the multi-objective PID controller designed by presented method, can improve the dynamic performance of main steam temperature control system, with good robustness ability.
New Asymmetric Fuzzy PID Control for Pneumatic Position Control System
Institute of Scientific and Technical Information of China (English)
薛阳; 彭光正; 范萌; 伍清河
2004-01-01
A fuzzy control algorithm of asymmetric fuzzy strategy is introduced for a servo-pneumatic position system. It can effectively solve the difficult problems of single rod low friction cylinders, which are mainly caused by asymmetric structures and different friction characteristics in two directions. On the basis of this algorithm, a traditional PID control is used to improve dynamic performance. Furthermore, a new asymmetric fuzzy PID control with α factor is advanced to improve the self-adaptability and robustness of the system. Both the theoretical analyses and experimental results prove that, with this control strategy, the dynamic performance of the system can be greatly improved. The system using this control algorithm has strong robustness and it obtains desired overshoot and repeatability in both transient and steady-state responses.
Computation of robustly stabilizing PID controllers for interval systems.
Matušů, Radek; Prokop, Roman
2016-01-01
The paper is focused on the computation of all possible robustly stabilizing Proportional-Integral-Derivative (PID) controllers for plants with interval uncertainty. The main idea of the proposed method is based on Tan's (et al.) technique for calculation of (nominally) stabilizing PI and PID controllers or robustly stabilizing PI controllers by means of plotting the stability boundary locus in either P-I plane or P-I-D space. Refinement of the existing method by consideration of 16 segment plants instead of 16 Kharitonov plants provides an elegant and efficient tool for finding all robustly stabilizing PID controllers for an interval system. The validity and relatively effortless application of presented theoretical concepts are demonstrated through a computation and simulation example in which the uncertain mathematical model of an experimental oblique wing aircraft is robustly stabilized.
Improved automatic tuning of PID controller for stable processes.
Kumar Padhy, Prabin; Majhi, Somanath
2009-10-01
This paper presents an improved automatic tuning method for stable processes using a modified relay in the presence of static load disturbances and measurement noise. The modified relay consists of a standard relay in series with a PI controller of unity proportional gain. The integral time constant of the PI controller of the modified relay is chosen so as to ensure a minimum loop phase margin of 30( composite function). A limit cycle is then obtained using the modified relay. Hereafter, the PID controller is designed using the limit cycle output data. The derivative time constant is obtained by maintaining the above mentioned loop phase margin. Minimizing the distance of Nyquist curve of the loop transfer function from the imaginary axis of the complex plane gives the proportional gain. The integral time constant of the PID controller is set equal to the integral time constant of the PI controller of the modified relay. The effectiveness of the proposed technique is verified by simulation results.
Design and Simulation of Buck Converter Based on Fuzzy PID Control%基于自整定模糊PID控制的Buck变换器设计与仿真
Institute of Scientific and Technical Information of China (English)
王淯舒; 孙培德; 吕蕾
2014-01-01
The PID controller’s structure is simple and has some characteristics of strong robustness and high reliability, but it cannot adjust PID parameters along with the change of interior parameters of the system, so that it cannot achieve optimal control. Aiming at this problem, we design a kind of PID control algorithm based on fuzzy control theory whose parameters can be self-tuning on line. The algorithm for the typical Buck converter is simulated by using Matlab2012. The simulation results show that the fuzzy PID controller can not only achieve high accuracy and high robustness control, but also can self-tuning PID parameters online.%DC-DC功率变换器在各个领域应用广泛，工业应用中大多采用PID控制。尽管PID控制具有结构简单、鲁棒性和可靠性高等特点，但PID参数不能随系统内部参数的变化而自行调整，导致无法达到最优控制。为此，设计一种基于模糊控制理论的、可在线自整定参数的PID算法，并用Matlab2012对典型Buck变换器和模糊自整定PID算法仿真。结果表明：模糊PID控制器既可实现高精度、高鲁棒性控制，又能完成PID参数的在线自整定。
O'Dwyer, Aidan
1999-01-01
A summary of tuning rules for the PID control of single input, single output (SISO) processes with time delay, modeled in stable first order lag plus time delay (FOLPD) form, is provided in this part of the paper.
A novel auto-tuning PID control mechanism for nonlinear systems.
Cetin, Meric; Iplikci, Serdar
2015-09-01
In this paper, a novel Runge-Kutta (RK) discretization-based model-predictive auto-tuning proportional-integral-derivative controller (RK-PID) is introduced for the control of continuous-time nonlinear systems. The parameters of the PID controller are tuned using RK model of the system through prediction error-square minimization where the predicted information of tracking error provides an enhanced tuning of the parameters. Based on the model-predictive control (MPC) approach, the proposed mechanism provides necessary PID parameter adaptations while generating additive correction terms to assist the initially inadequate PID controller. Efficiency of the proposed mechanism has been tested on two experimental real-time systems: an unstable single-input single-output (SISO) nonlinear magnetic-levitation system and a nonlinear multi-input multi-output (MIMO) liquid-level system. RK-PID has been compared to standard PID, standard nonlinear MPC (NMPC), RK-MPC and conventional sliding-mode control (SMC) methods in terms of control performance, robustness, computational complexity and design issue. The proposed mechanism exhibits acceptable tuning and control performance with very small steady-state tracking errors, and provides very short settling time for parameter convergence.
Global Stabilisation of Underactuated Mechanical Systems via PID Passivity-Based Control
2016-01-01
In this note we identify a class of underactuated mechanical systems whose desired constant equilibrium position can be globally stabilised with the ubiquitous PID controller. The class is characterised via some easily verifiable conditions on the systems inertia matrix and potential energy function, which are satisfied by many benchmark examples. The design proceeds in two main steps, first, the definition of two new passive outputs whose weighted sum defines the signal around which the PID ...
Cheng, Longlong; Zhang, Guangju; Wan, Baikun; Hao, Linlin; Qi, Hongzhi; Ming, Dong
2009-01-01
Functional electrical stimulation (FES) has been widely used in the area of neural engineering. It utilizes electrical current to activate nerves innervating extremities affected by paralysis. An effective combination of a traditional PID controller and a neural network, being capable of nonlinear expression and adaptive learning property, supply a more reliable approach to construct FES controller that help the paraplegia complete the action they want. A FES system tuned by Radial Basis Function (RBF) Neural Network-based Proportional-Integral-Derivative (PID) model was designed to control the knee joint according to the desired trajectory through stimulation of lower limbs muscles in this paper. Experiment result shows that the FES system with RBF Neural Network-based PID model get a better performance when tracking the preset trajectory of knee angle comparing with the system adjusted by Ziegler- Nichols tuning PID model.
A Proposal of Adaptive PID Controller Based on Reinforcement Learning
Institute of Scientific and Technical Information of China (English)
WANG Xue-song; CHENG Yu-hu; SUN Wei
2007-01-01
Aimed at the lack of self-tuning PID parameters in conventional PID controllers, the structure and learning algorithm of an adaptive PID controller based on reinforcement learning were proposed. Actor-Critic learning was used to tune PID parameters in an adaptive way by taking advantage of the model-free and on-line learning properties of reinforcement learning effectively. In order to reduce the demand of storage space and to improve the learning efficiency,a single RBF neural network was used to approximate the policy function of Actor and the value function of Critic simultaneously. The inputs of RBF network are the system error, as well as the first and the second-order differences of error. The Actor can realize the mapping from the system state to PID parameters, while the Critic evaluates the outputs of the Actor and produces TD error. Based on TD error performance index and gradient descent method, the updating rules of RBF kernel function and network weights were given. Simulation results show that the proposed controller is efficient for complex nonlinear systems and it is perfectly adaptable and strongly robust, which is better than that of a conventional PID controller.
CONTROL OF CONCENTRATION IN CSTR USING DMC AND CONVENTIONAL PID BASED ON RELAY FEEDBACK METHOD
Directory of Open Access Journals (Sweden)
S. SRINIVASULU RAJU
2013-04-01
Full Text Available This paper presents the design of a Dynamic Matrix Controller (DMC is analyzed for concentration control of Continuous Stirred Tank Reactors (CSTRs which have strong nonlinearities. Various control approaches have been applied on CSTR to control its parameters. All the industrial process applications require solutions of a specific chemical strength of the chemicals or fluids considered for analysis. Such specific concentrations are achieved by mixing a full strength solution with water in the desired proportions. For this, we use twocontrollers DMC and PID and analyzed. The basic PID controllers have difficulty in dealing with complex nonlinear processes. Simulation studies give satisfactory results. In this paper the control the concentration of one chemical with the help of other has been analyzed. Model design and simulation are done in MATLAB/SIMULINK, using programming. The concentration control is found better controlled with the addition of DMC instead of PID controller solely.
Recurrent neural networks-based multivariable system PID predictive control
Institute of Scientific and Technical Information of China (English)
ZHANG Yan; WANG Fanzhen; SONG Ying; CHEN Zengqiang; YUAN Zhuzhi
2007-01-01
A nonlinear proportion integration differentiation (PID) controller is proposed on the basis of recurrent neural networks,due to the difficulty of tuning the parameters of conventional PID controller.In the control process of nonlinear multivariable system,a decoupling controller was constructed,which took advantage of multi-nonlinear PID controllers in parallel.With the idea of predictive control,two multivariable predictive control strategies were established.One strategy involved the use of the general minimum variance control function on the basis of recursive multi-step predictive method.The other involved the adoption of multistep predictive cost energy to train the weights of the decoupling controller.Simulation studies have shown the efficiency of these strategies.
Integrated Auto-Tuning PID Control of Continuous Casting Process
Institute of Scientific and Technical Information of China (English)
无
2000-01-01
PID controllers were used for the hydraulic servo system of sliding gate and the tundish weight control system in continuous caster. These two loops were synthesized in mould level controller based on model reduction and internal model control strategy. Satisfactory control performance of this synthetic mould level controller was demonstrated by simulations and on-line experiments.
Quarter Car Active Suspension System Control Using PID Controller tuned by PSO
Wissam H. Al-Mutar
2015-01-01
The objective of this paper is to design an efficient control scheme for car suspension system. The purpose of suspension system in vehicles is to get more comfortable riding and good handling with road vibrations. A nonlinear hydraulic actuator is connected to passive suspension system in parallel with damper. The Particles Swarm Optimization is used to tune a PID controller for active suspension system. The designed controller is applied for quarter car suspension system and result is compa...
Institute of Scientific and Technical Information of China (English)
谭冠政; 李安平
2003-01-01
An optimal PID controller with incomplete derivation is proposed based on fuzzy inference and the geneticalgorithm, which is called the fuzzy-GA PID controller with incomplete derivation. It consists of the off-line part andthe on-line part. In the off-line part, by taking the overshoot, rise time, and settling time of system unit step re-sponse as the performance indexes and by using the genetic algorithm, a group of optimal PID parameters K*p , Ti* ,and Tj are obtained, which are used as the initial values for the on-line tuning of PID parameters. In the on-linepart, based on K; , Ti* , and T*d and according to the current system error e and its time derivative, a dedicatedprogram is written, which is used to optimize and adjust the PID parameters on line through a fuzzy inference mech-anism to ensure that the system response has optimal dynamic and steady-state performance. The controller has beenused to control the D. C. motor of the intelligent bionic artificial leg designed by the authors. The result of computersimulation shows that this kind of optimal PID controller has excellent control performance and robust performance.
Institute of Scientific and Technical Information of China (English)
Tan Guanzheng(谭冠政); Xiao Hongfeng; Wang Yuechao
2004-01-01
A new kind of optimal fuzzy PID controller is proposed, which contains two parts. One is an on-line fuzzy inference mechanism and another is a conventional PID controller. In the fuzzy inference mechanism, three adjustable factors xp, xi, and xd are introduced. Their function is to further modify and optimize the result of the fuzzy inference to make the controller have the optimal control effect on a given object. The optimal values of these factors are determined based on the ITAE criterion and the flexible polyhedron search algorithm of Nelder and Mead. This PID controller has been used to control a D.C. motor of the intelligent artificial leg designed by the authors. The result of computer simulation indicates that the design of this controller is very effective and can be widely used to control different kinds of objects and processes.
Application of PID controller to 2D differential geometric guidance problem
Institute of Scientific and Technical Information of China (English)
Chaoyong LI; Wuxing JING
2007-01-01
This paper presents the application of the proportional-integral-derivative (PID) controller to the flight control system (FCS) for two-dimensional (2D) differential geometric (DG) guidance and control problem. In particular,the performance of the designed FCS is investigated. To this end, the commanded angle-of-attack is firstly developed in the time domain using the classical DG formulations. Then, the classical PID controller is introduced to develop a FCS so as to form the 2D DG guidance and control system, and the PID controller parameters are determined by the Ziegler-Nichols method as well as the Routh-Hurwitz stability algorithm to guarantee the convergence of the system error. The results demonstrate that the designed controller yields a fast responding system, and the resulting DG guidance and control system is viable and effective in a realistic missile defense engagement.
烘箱温度模糊PID控制系统的设计与实现%Design and Realization of Fuzzy PID Control for Oven Temperature Control System
Institute of Scientific and Technical Information of China (English)
陈杰; 张开明; 姚远
2011-01-01
文章在改造烘箱结构的基础上,建立了烘箱的数学模型,设计了模糊-PID控制器.以组态软件作为系统核心,将组态软件（MCGS）与模糊-PID控制器结合起来,将原来分散控制的12台烘箱设备集中控制,利用组态软件对生产过程进行动态工艺图显示、参数设置、实时数据采集等操作,通过智能模块对固态继电器进行控制,改以往的移相触发方式为过零触发,从而达到节电控温的目的.%Based on rebuilding the oven structure,the mathematical model of oven is established and Fuzzy-PID controller rules are designed in this paper.With the core of MCGS,Fuzzy-PID controller combines with MCGS,twelve ovens that dispersed before are controlled in concentrated.By the use of MCGS,the dynamic technics maps of process are showed,PID parameters are setting,real time data are collecting.After replacing Zero-Crossing Trigger-Based with phase transfer,in the control of intelligence model,the aim of saving electricity and temperature controlling are realized.
IMC based robust PID controller tuning for disturbance rejection
Institute of Scientific and Technical Information of China (English)
Mohammad Shamsuzzoha
2016-01-01
It is well-known that the IMC-PID controller tuning gives fast and improved set point response but slow disturbance rejection. A modification has been proposed in IMC-PID tuning rule for the improved disturbance rejection. For the modified IMC-PID tuning rule, a method has been developed to obtain the IMC-PID setting in closed-loop mode without acquiring detailed information of the process. The proposed method is based on the closed-loop step set point experiment using a proportional only controller with gainKc0. It is the direct approach to find the PID controller setting similar to classical Ziegler-Nichols closed-loop method. Based on simulations of a wide range of first-order with delay processes, a simple correlation has been derived to obtain the modified IMC-PID controller settings from closed-loop experiment. In this method, controller gain is a function of the overshoot obtained in the closed loop set point experiment. The integral and derivative time is mainly a function of the time to reach the first peak (overshoot). Simulation has been conducted for the broad class of processes and the controllers were tuned to have the same degree of robustness by measuring the maximum sensitivity, Ms, in order to obtain a reasonable comparison. The PID controller settings obtained in the proposed tuning method show better performance and robustness with other two-step tuning methods for the broad class of processes. It has also been applied to temperature control loop in distillation column model. The result has been compared to the open loop tuning method where it gives robust and fast response.
Comparison of PID Controller Tuning Methods with Genetic Algorithm for FOPTD System
Directory of Open Access Journals (Sweden)
K. Mohamed Hussain
2014-02-01
Full Text Available Measurement of Level, Temperature, Pressure and Flow parameters are very vital in all process industries. A combination of a few transducers with a controller, that forms a closed loop system leads to a stable and effective process. This article deals with control of in the process tank and comparative analysis of various PID control techniques and Genetic Algorithm (GA technique. The model for such a Real-time process is identified as First Order Plus Dead Time (FOPTD process and validated. The need for improved performance of the process has led to the development of model based controllers. Well-designed conventional Proportional, Integral and Derivative (PID controllers are the most widely used controller in the chemical process industries because of their simplicity, robustness and successful practical applications. Many tuning methods have been proposed for PID controllers. Many tuning methods have been proposed for obtaining better PID controller parameter settings. The comparison of various tuning methods for First Order Plus Dead Time (FOPTD process are analysed using simulation software. Our purpose in this study is comparison of these tuning methods for single input single output (SISO systems using computer simulation.Also efficiency of various PID controller are investigated for different performance metrics such as Integral Square Error (ISE, Integral Absolute Error (IAE, Integral Time absolute Error (ITAE, and Mean square Error (MSE is presented and simulation is carried out. Work in this paper explores basic concepts, mathematics, and design aspect of PID controller. Comparison between the PID controller and Genetic Algorithm (GA will have been carried out to determine the best controller for the temperature system.
A Practical Tuning Method for the Robust PID Controller with Velocity Feed-Back
Directory of Open Access Journals (Sweden)
Emre Sariyildiz
2015-08-01
Full Text Available Proportional-Integral-Derivative (PID control is the most widely used control method in industrial and academic applications due to its simplicity and efficiency. Several different control methods/algorithms have been proposed to tune the gains of PID controllers. However, the conventional tuning methods do not have sufficient performance and simplicity for practical applications, such as robotics and motion control. The performance of motion control systems may significantly deteriorate by the nonlinear plant uncertainties and unknown external disturbances, such as inertia variations, friction, external loads, etc., i.e., there may be a significant discrepancy between the simulation and experiment if the robustness is not considered in the design of PID controllers. This paper proposes a novel practical tuning method for the robust PID controller with velocity feed-back for motion control systems. The main advantages of the proposed method are the simplicity and efficiency in practical applications, i.e., a high performance robust motion control system can be easily designed by properly tuning conventional PID controllers. The validity of the proposal is verified by giving simulation and experimental results.
Nonlinear system PID-type multi-step predictive control
Institute of Scientific and Technical Information of China (English)
Yan ZHANG; Zengqiang CHEN; Zhuzhi YUAN
2004-01-01
A compound neural network was constructed during the process of identification and multi-step prediction. Under the PlD-type long-range predictive cost function, the control signal was calculated based on gradient algorithm. The nonlinear controller' s structure was similar to the conventional PID controller. The parameters of this controller were tuned by using a local recurrent neural network on-line. The controller has a better effect than the conventional PID controller. Simulation study shows the effectiveness and good performance.
Directory of Open Access Journals (Sweden)
Puchalski Bartosz
2015-12-01
Full Text Available In the paper, analysis of multi-region fuzzy logic controller with local PID controllers for steam generator of pressurized water reactor (PWR working in wide range of thermal power changes is presented. The U-tube steam generator has a nonlinear dynamics depending on thermal power transferred from coolant of the primary loop of the PWR plant. Control of water level in the steam generator conducted by a traditional PID controller which is designed for nominal power level of the nuclear reactor operates insufficiently well in wide range of operational conditions, especially at the low thermal power level. Thus the steam generator is often controlled manually by operators. Incorrect water level in the steam generator may lead to accidental shutdown of the nuclear reactor and consequently financial losses. In the paper a comparison of proposed multi region fuzzy logic controller and traditional PID controllers designed only for nominal condition is presented. The gains of the local PID controllers have been derived by solving appropriate optimization tasks with the cost function in a form of integrated squared error (ISE criterion. In both cases, a model of steam generator which is readily available in literature was used for control algorithms synthesis purposes. The proposed multi-region fuzzy logic controller and traditional PID controller were subjected to broad-based simulation tests in rapid prototyping software - Matlab/Simulink. These tests proved the advantage of multi-region fuzzy logic controller with local PID controllers over its traditional counterpart.
Performance-based parameter tuning method of model-driven PID control systems.
Zhao, Y M; Xie, W F; Tu, X W
2012-05-01
In this paper, performance-based parameter tuning method of model-driven Two-Degree-of-Freedom PID (MD TDOF PID) control system has been proposed to enhance the control performances of a process. Known for its ability of stabilizing the unstable processes, fast tracking to the change of set points and rejecting disturbance, the MD TDOF PID has gained research interest recently. The tuning methods for the reported MD TDOF PID are based on internal model control (IMC) method instead of optimizing the performance indices. In this paper, an Integral of Time Absolute Error (ITAE) zero-position-error optimal tuning and noise effect minimizing method is proposed for tuning two parameters in MD TDOF PID control system to achieve the desired regulating and disturbance rejection performance. The comparison with Two-Degree-of-Freedom control scheme by modified smith predictor (TDOF CS MSP) and the designed MD TDOF PID tuned by the IMC tuning method demonstrates the effectiveness of the proposed tuning method.
Relay feedback tuning of robust PID controllers with iso-damping property.
Chen, YangQuan; Moore, Kevin L
2005-02-01
A new tuning method for proportional-integral-derivative (PID) controller design is proposed for a class of unknown, stable, and minimum phase plants. We are able to design a PID controller to ensure that the phase Bode plot is flat, i.e., the phase derivative w.r.t. the frequency is zero, at a given frequency called the "tangent frequency" so that the closed-loop system is robust to gain variations and the step responses exhibit an iso-damping property. At the "tangent frequency," the Nyquist curve tangentially touches the sensitivity circle. Several relay feedback tests are used to identify the plant gain and phase at the tangent frequency in an iterative way. The identified plant gain and phase at the desired tangent frequency are used to estimate the derivatives of amplitude and phase of the plant with respect to frequency at the same frequency point by Bode's integral relationship. Then, these derivatives are used to design a PID controller for slope adjustment of the Nyquist plot to achieve the robustness of the system to gain variations. No plant model is assumed during the PID controller design. Only several relay tests are needed. Simulation examples illustrate the effectiveness and the simplicity of the proposed method for robust PID controller design with an iso-damping property.
Robust PID Steering Control in Parameter Space for Highly Automated Driving
Directory of Open Access Journals (Sweden)
Mümin Tolga Emirler
2014-01-01
Full Text Available This paper is on the design of a parameter space based robust PID steering controller. This controller is used for automated steering in automated path following of a midsized sedan. Linear and nonlinear models of this midsized sedan are presented in the paper. Experimental results are used to validate the longitudinal and lateral dynamic models of this vehicle. This paper is on automated steering control and concentrates on the lateral direction of motion. The linear model is used to design a PID steering controller in parameter space that satisfies D-stability. The PID steering controller that is designed is used in a simulation study to illustrate the effectiveness of the proposed method. Simulation results for a circular trajectory and for a curved trajectory are presented and discussed in detail. This study is part of a larger research effort aimed at implementing highly automated driving in a midsized sedan.
Genetic Algorithm based PID controller for Frequency Regulation Ancillary services
Directory of Open Access Journals (Sweden)
Sandeep Bhongade
2010-12-01
Full Text Available In this paper, the parameters of Proportional, Integral and Derivative (PID controller for Automatic Generation Control (AGC suitable in restructured power system is tuned according to Generic Algorithms (GAs based performance indices. The key idea of the proposed method is to use the fitness function based on Area Control Error (ACE. The functioning of the proposed Genetic Algorithm based PID (GAPID controller has been demonstrated on a 75-bus Indian power system network and the results have been compared with those obtained by using Least Square Minimization method.
Optimal fuzzy PID controller with adjustable factors based on flexible polyhedron search algorithm
Institute of Scientific and Technical Information of China (English)
谭冠政; 肖宏峰; 王越超
2002-01-01
A new kind of optimal fuzzy PID controller is proposed, which contains two parts. One is an on-line fuzzy inference system, and the other is a conventional PID controller. In the fuzzy inference system, three adjustable factors xp, xi, and xd are introduced. Their functions are to further modify and optimize the result of the fuzzy inference so as to make the controller have the optimal control effect on a given object. The optimal values of these adjustable factors are determined based on the ITAE criterion and the Nelder and Mead′s flexible polyhedron search algorithm. This optimal fuzzy PID controller has been used to control the executive motor of the intelligent artificial leg designed by the authors. The result of computer simulation indicates that this controller is very effective and can be widely used to control different kinds of objects and processes.
PID Control in the Third Millennium Lessons Learned and New Approaches
Visioli, Antonio
2012-01-01
The early 21st century has seen a renewed interest in research in the widely-adopted proportional-integral-derivative (PID) controllers. PID Control in the Third Millennium provides an overview of the advances made as a result. Featuring: · new approaches for controller tuning; · control structures and configurations for more efficient control; · practical issues in PID implementation; and · non-standard approaches to PID including fractional-order, event-based, nonlinear, data-driven and predictive control; the nearly twenty chapters provide a state-of-the-art resumé of PID controller theory, design and realization. Each chapter has specialist authorship and ideas clearly characterized from both academic and industrial viewpoints. Advances in Industrial Control aims to report and encourage the transfer of technology in control engineering. The rapid development of control technology has an impact on all areas of the control discipline. The series o...
Integral Separation PID Control Based on Self-balanced Car Design%基于积分分离PID控制的自平衡小车设计
Institute of Scientific and Technical Information of China (English)
蒋龙; 罗亮; 王欣
2015-01-01
以STM32F103VET6作为控制核心芯片，采用带加速度计的陀螺仪MPU6050构成小车姿态检测装置，采用双路驱动器TB6612FNG驱动带数字编码器的直流电机搭建了自平衡小车系统。采用积分分离式PID算法实现了车身平衡的快速稳定控制。经实验证明积分分离式PID算法能够快速、稳定地控制小车系统达到平衡状态。%Based STM32F103VET6 control core chip,with accelerometer gyroscope MPU6050 constitute trolley posture detection device,with dual drive TB6612FNG drive with digital encoders DC motor a self-balanced car system was built. Integral separate PID algorithm was used to achieve a rapid and stable control of body balance. The experimental testing indicate integral separation PID algorithm can quickly and stably control the car system to reach equilibrium.
Tian, Lianfang
2004-06-01
In this paper, an intelligent proportional-integral-derivative (PID) control method is introduced to the robotic testing system for the biomechanical study of human musculoskeletal joints. For the testing system, the robot is a highly nonlinear and heavily coupled complicated system, and the human spinal specimen also demonstrates nonlinear property when undergoing testing. Although the conventional PID control approach is extensively used in most industrial control systems, it will break down for nonlinear systems, particularly for complicated systems that have no precise mathematical models. To overcome those difficulties, an intelligent fuzzy PID controller is proposed replacing the widely used conventional PID controllers. The fuzzy PID algorithm is outlined using the fuzzy set theory. The design techniques are developed based on the linguistic phase plane approach. The heuristic rules of syntheses are summarized into a rule-based expert system. Experiments are carried out and the results demonstrate the good performance of the robotic testing system using the proposed control method.
PID controller tuning using the magnitude optimum criterion
Papadopoulos, Konstantinos
2014-01-01
An instructive reference that will help control researchers and engineers, interested in a variety of industrial processes, to take advantage of a powerful tuning method for the ever-popular PID control paradigm. This monograph presents explicit PID tuning rules for linear control loops regardless of process complexity. It shows the reader how such loops achieve zero steady-position, velocity, and acceleration errors and are thus able to track fast reference signals. The theoretical development takes place in the frequency domain by introducing a general-transfer-function-known process model
Design of Dual Axis Laser Scanning Diameter Measuring Gauge System with PID Co
Institute of Scientific and Technical Information of China (English)
LI Xin-qiu; LI Zhi-wei; LIU Da-jiang
2009-01-01
Dual axis laser scanning diameter measuring gauge system(DALSDMGS)with PID controller,which can be used for online non-contact diameter measuring and control on the hose,wire and rod production line,is introduced.The measure principle and implementation of this system are also presented.A PID control module with PID parameters tuning is included in the measuring and control system,which functions as a PID automatic controller of the diameter.
Directory of Open Access Journals (Sweden)
Naeim Farouk
2012-11-01
Full Text Available The degree of speed control of ship machinery effects on the economics and optimization of the machinery configuration and operation. All marine vessel ranging need some sort of speed control system to control and govern the speed of the marine diesel engines. The main focus of this study is to apply and comparative between two specific soft-computing techniques. Fuzzy logic controller and genetic algorithm to design and tuning of PID controller for applied on speed control system of marine diesel engine to get an output with better dynamic and static performance. Simulation results show that the response of system when using genetic algorithm is better and faster than when using fuzzy tuning PID controller.
Optimization of PID Parameter In Control System Tuning With Multi-Objective Genetic Algorithm.
Directory of Open Access Journals (Sweden)
Md Amanullah
2014-05-01
Full Text Available Way of playing advancement is the out-standing design of the study of PID control and frequently research work has been guided for this aspiration. The Proportional plus Integral plus Derivative (PID, controllers are most sweepingly used in control theory as well as industrial plants owing to their ease of execution and sturdiness way of playing. The aspiration of this deed representation capable and apace tuning approach using Genetic Algorithm (GA to obtain the optimized criterion of the PID controller so as to acquire the essential appearance designation of the technique below meditation. The make perfect achievement about multiple plants have in relation to the established tuning approach, to consider the ability of intended approach. Mostly, the whole system’s performance powerfully depends on the controller’s proficiency and thus the tuning technique plays a key part in the system’s behavior.
Simulation and Tuning of PID Controllers using Evolutionary Algorithms
Directory of Open Access Journals (Sweden)
K.R.S. Narayanan
2012-10-01
Full Text Available The Proportional Integral Derivative (PID controller is the most widely used control strategy in the Industry. The popularity of PID controllers can be attributed to their robust performance in a wide range of operating conditions and partly to their functional simplicity. The process of setting of PID controller can be determined as an optimization task. Over the years, use of intelligent strategies for tuning of these controllers has been growing. Biologically inspired evolutionary strategies have gained importance over other strategies because of their consistent performance over wide range of process models and their flexibility. The level control systems on Deaerator, Feed Water Heaters, and Condenser Hot well are critical to the proper operation of the units in Nuclear Power plants. For Precise control of level, available tuning technologies based on conventional optimization methods are found to be inadequate as these conventional methods are having limitations. To overcome the limitations, alternate tuning techniques based on Genetic Algorithm are emerging. This paper analyses the manual tuning techniques and compares the same with Genetic Algorithm tuning methods for tuning PID controllers for level control system and testing of the quality of process control in the simulation environment of PFBR Operator Training Simulator(OTS.
Optimization of PID controller based on The Bees Algorithm for one leg of a quadruped robot
Directory of Open Access Journals (Sweden)
Bakırcıoğlu Veli
2016-01-01
Full Text Available In this paper, we apply The Bees Algorithm to find optimal PID controller gains to control angular positions of robot leg joints with the minimum position error. In order to present more realistic simulation, system modelled in MATLAB/Simulink environment which is close to experimental set up. Solid model of system, which has two degrees of freedom, drawn by using a CAD software. Required physical specifications of robot leg for MATLAB/Simulink modelling is obtained from this CAD model. Controller of the system is designed in MATLAB/Simulink interface. Simulation results derived to show effectiveness of The Bees Algorithm to find optimal PID controller gains.
Directory of Open Access Journals (Sweden)
M. Antony Freeda Rani
2015-08-01
Full Text Available Permanent Magnet Brushless DC motor (PMBL DC is used in a large number of industrial and automotive applications because of their high efficiency, compactness and excellent reliability. However to design an efficient PMBL DC motor, it is necessary to provide an effective controller that has to reduce the overshoot, settling and rise time. In this study, an improved PID controller has been designed by optimizing the parameters of PID controller based on two advanced optimization techniques ANFIS and Cuckoo Search optimization for speed control of a PMBL DC motor. The proposed approach has superior features, including easy implementation, stable convergence characteristic and good computational efficiency. The PMBL DC motor is modeled in SIMULINK implementing the algorithms in MATLAB and the performance evaluation has been studied.
Split PID control: two sensors can be better than one
Znaimer, Leith
2014-01-01
The traditional proportional-integral-derivative (PID) algorithm for regulation suffers from a tradeoff: placing the sensor near the sample being regulated ensures that its steady-state temperature matches the desired setpoint. However, the propagation delay (lag) between heater and sample can limit the control bandwidth. Moving the sensor closer to the heater reduces the lag and increases the bandwidth but introduces offsets and drifts into the temperature of the sample. Here, we explore the consequences of using two probes---one near the heater, one near the sample---and assigning the integral term to the sample probe and the other terms to the heater probe. The \\textit{split-PID} algorithm can outperform PID control loops based on one sensor.
Intelligent particle swarm optimized fuzzy PID controller for AVR system
Energy Technology Data Exchange (ETDEWEB)
Mukherjee, V. [Department of Electrical Engineering, Asansol Engineering College, Asansol, West Bengal (India); Ghoshal, S.P. [Department of Electrical Engineering, National Institute of Technology, Durgapur, West Bengal (India)
2007-10-15
In process plants like thermal power plants, biomedical instrumentation the popular use of proportional-integral-derivative (PID) controllers can be noted. Proper tuning of such controllers is obviously a prime priority as any other alternative situation will require a high degree of industrial expertise. So in order to get the best results of PID controllers the optimal tuning of PID gains is required. This paper, thus, deals with the determination of off-line, nominal, optimal PID gains of a PID controller of an automatic voltage regulator (AVR) for nominal system parameters and step reference voltage input. Craziness based particle swarm optimization (CRPSO) and binary coded genetic algorithm (GA) are the two props used to get the optimal PID gains. CRPSO proves to be more robust than GA in performing optimal transient performance even under various nominal operating conditions. Computational time required by CRPSO is lesser than that of GA. Factors that have influenced the enhancement of global searching ability of PSO are the incorporation of systematic and intelligent velocity, position updating procedure and introduction of craziness. This modified from of PSO is termed as CRPSO. For on-line off-nominal system parameters Sugeno fuzzy logic (SFL) is applied to get on-line terminal voltage response. The work of SFL is to extrapolate intelligently and linearly, the nominal optimal gains in order to determine off-nominal optimal gains. The on-line computational burden of SFL is noticeably low. Consequently, on-line optimized transient response of incremental change in terminal voltage is obtained. (author)
Comparative Analysis of PSO Algorithms for PID Controller Tuning
Institute of Scientific and Technical Information of China (English)
ŠTIMAC Goranka; BRAUT Sanjin; ŽIGULIĆRoberto
2014-01-01
The active magnetic bearing(AMB) suspends the rotating shaft and maintains it in levitated position by applying controlled electromagnetic forces on the rotor in radial and axial directions. Although the development of various control methods is rapid, PID control strategy is still the most widely used control strategy in many applications, including AMBs. In order to tune PID controller, a particle swarm optimization(PSO) method is applied. Therefore, a comparative analysis of particle swarm optimization(PSO) algorithms is carried out, where two PSO algorithms, namely (1) PSO with linearly decreasing inertia weight(LDW-PSO), and (2) PSO algorithm with constriction factor approach(CFA-PSO), are independently tested for different PID structures. The computer simulations are carried out with the aim of minimizing the objective function defined as the integral of time multiplied by the absolute value of error(ITAE). In order to validate the performance of the analyzed PSO algorithms, one-axis and two-axis radial rotor/active magnetic bearing systems are examined. The results show that PSO algorithms are effective and easily implemented methods, providing stable convergence and good computational efficiency of different PID structures for the rotor/AMB systems. Moreover, the PSO algorithms prove to be easily used for controller tuning in case of both SISO and MIMO system, which consider the system delay and the interference among the horizontal and vertical rotor axes.
Comparative analysis of PSO algorithms for PID controller tuning
Štimac, Goranka; Braut, Sanjin; Žigulić, Roberto
2014-09-01
The active magnetic bearing(AMB) suspends the rotating shaft and maintains it in levitated position by applying controlled electromagnetic forces on the rotor in radial and axial directions. Although the development of various control methods is rapid, PID control strategy is still the most widely used control strategy in many applications, including AMBs. In order to tune PID controller, a particle swarm optimization(PSO) method is applied. Therefore, a comparative analysis of particle swarm optimization(PSO) algorithms is carried out, where two PSO algorithms, namely (1) PSO with linearly decreasing inertia weight(LDW-PSO), and (2) PSO algorithm with constriction factor approach(CFA-PSO), are independently tested for different PID structures. The computer simulations are carried out with the aim of minimizing the objective function defined as the integral of time multiplied by the absolute value of error(ITAE). In order to validate the performance of the analyzed PSO algorithms, one-axis and two-axis radial rotor/active magnetic bearing systems are examined. The results show that PSO algorithms are effective and easily implemented methods, providing stable convergence and good computational efficiency of different PID structures for the rotor/AMB systems. Moreover, the PSO algorithms prove to be easily used for controller tuning in case of both SISO and MIMO system, which consider the system delay and the interference among the horizontal and vertical rotor axes.
Institute of Scientific and Technical Information of China (English)
黄春庆; 彭侠夫; 王军平
2008-01-01
As for Cartesian regulation of robot manipulators with uncertain Jacobian matrix, an anti-windup scheme of robust nonlinear PID (RN-PID) controllers is proposed to solve the practical problems arising from integral action and integrator windup in PID-like control systems. Asymptotic stability is guaranteed while position and joint velocity measurements are only required;robustness of the resulting closed-loop system is also guaranteed due to the constraints acting on integral action. Especially, compared with other anti-windup approachs, the proposed algorithm is simpler and more effective for anti-windup design.
PERFORMANCE OF PID CONTROLLER OF NONLINEAR SYSTEM USING SWARM INTELLIGENCE TECHNIQUES
Directory of Open Access Journals (Sweden)
Neeraj Jain
2016-07-01
Full Text Available In this paper swarm intelligence based PID controller tuning is proposed for a nonlinear ball and hoop system. Particle swarm optimization (PSO, Artificial bee colony (ABC, Bacterial foraging optimization (BFO is some example of swarm intelligence techniques which are focused for PID controller tuning. These algorithms are also tested on perturbed ball and hoop model. Integral square error (ISE based performance index is used for finding the best possible value of controller parameters. Matlab software is used for designing the ball and hoop model. It is found that these swarm intelligence techniques have easy implementation & lesser settling & rise time compare to conventional methods.
Quarter Car Active Suspension System Control Using PID Controller tuned by PSO
Directory of Open Access Journals (Sweden)
Wissam H. Al-Mutar
2015-07-01
Full Text Available The objective of this paper is to design an efficient control scheme for car suspension system. The purpose of suspension system in vehicles is to get more comfortable riding and good handling with road vibrations. A nonlinear hydraulic actuator is connected to passive suspension system in parallel with damper. The Particles Swarm Optimization is used to tune a PID controller for active suspension system. The designed controller is applied for quarter car suspension system and result is compared with passive suspension system model and input road profile. Simulation results show good performance for the designed controller
Robust Stability and Performance Comparison of PID and PPI Control
Institute of Scientific and Technical Information of China (English)
任正云; 张红; 邵惠鹤
2004-01-01
Predictive PI (PPI) control form, capable of time delay compensation, has been put forward recently. This control algorithm is essentially a PI controller with enhanced derivative action, which is not only suitable for long time delay process, but also of simple structure and excellent robust stability. The performance of PPI controller was demonstrated and compared with that of traditional PID controller by different tuning methods.
Energy Technology Data Exchange (ETDEWEB)
Vasconcelos, Wagner Eustaquio de; Lira, Carlos Alberto Brayner de Oliveira; Brito, Thiago Souza Pereira de; Afonso, Antonio Claudio Marques, E-mail: wagner@unicap.br, E-mail: cabol@ufpe.br, E-mail: afonsofisica@gmail.com, E-mail: thiago.brito86@yahoo.com.br [Universidade Federal de Pernambuco (UFPE), Recife, PE (Brazil). Centro de Tecnologia e Geociencias. Departamento de Energia Nuclear; Cruz Filho, Antonio Jose da; Marques, Jose Antonio, E-mail: antonio.jscf@gmail.com, E-mail: jamarkss@uol.com.br [Universidade Catolica de Pernambuco (CCT/PUC-PE), Recife, PE (Brazil). Centro de Ciencias e Tecnologia; Teixeira, Marcello Goulart, E-mail: marcellogt@dcc.ufrj.br [Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ (Brazil). Instituto de Matematica. Dept. de Matematica
2013-07-01
Nuclear reactors are in nature nonlinear systems and their parameters vary with time as a function of power level. These characteristics must be considered if large power variations occur in power plant operational regimes, such as in load-following conditions. A PWR reactor has a component called pressurizer, whose function is to supply the necessary high pressure for its operation and to contain pressure variations in the primary cooling system. The use of control systems capable of reducing fast variations of the operation variables and to maintain the stability of this system is of fundamental importance. The best-known controllers used in industrial control processes are proportional-integral-derivative (PID) controllers due to their simple structure and robust performance in a wide range of operating conditions. However, designing a fuzzy controller is seen to be a much less difficult task. Once a Fuzzy Logic controller is designed for a particular set of parameters of the nonlinear element, it yields satisfactory performance for a range of these parameters. The objective of this work is to develop fuzzy proportional-integral-derivative (fuzzy-PID) control strategies to control the level of water in the reactor. In the study of the pressurizer, several computer codes are used to simulate its dynamic behavior. At the fuzzy-PID control strategy, the fuzzy logic controller is exploited to extend the finite sets of PID gains to the possible combinations of PID gains in stable region. Thus the fuzzy logic controller tunes the gain of PID controller to adapt the model with changes in the water level of reactor. The simulation results showed a favorable performance with the use to fuzzy-PID controllers. (author)
PID control of second-order system with hysteresis
Jayawardhana, B.; Logemann, H.; Ryan, E.P.
2007-01-01
The efficacy of proportional, derivative and integral (PID) control for set point regulation and disturbance rejection is investigated in a context of mechanical systems with hysteretic components. Two basic structures are studied: in the first, the hysteretic component resides (internally) in the r
PID control of second-order systems with hysteresis
Jayawardhana, Bayu; Logemann, Hartmut; Ryan, Eugene P.
2008-01-01
The efficacy of proportional, integral and derivative (PID) control for set point regulation and disturbance rejection is investigated in a context of second-order systems with hysteretic components. Two basic structures are studied: in the first, the hysteretic component resides (internally) in the
Institute of Scientific and Technical Information of China (English)
谭冠政; 曾庆冬; 李文斌
2004-01-01
A designing method of intelligent proportional-integral-derivative(PID) controllers was proposed based on the ant system algorithm and fuzzy inference. This kind of controller is called Fuzzy-ant system PID controller. It consists of an off-line part and an on-line part. In the off-line part, for a given control system with a PID controller,by taking the overshoot, setting time and steady-state error of the system unit step response as the performance indexes and by using the ant system algorithm, a group of optimal PID parameters K*p , Ti* and T*d can be obtained, which are used as the initial values for the on-line tuning of PID parameters. In the on-line part, based on Kp* , Ti*and Td* and according to the current system error e and its time derivative, a specific program is written, which is used to optimize and adjust the PID parameters on-line through a fuzzy inference mechanism to ensure that the system response has optimal transient and steady-state performance. This kind of intelligent PID controller can be used to control the motor of the intelligent bionic artificial leg designed by the authors. The result of computer simulation experiment shows that the controller has less overshoot and shorter setting time.
Active structural control with stable fuzzy PID techniques
Yu, Wen
2016-01-01
This book presents a detailed discussion of intelligent techniques to measure the displacement of buildings when they are subjected to vibration. It shows how these techniques are used to control active devices that can reduce vibration 60–80% more effectively than widely used passive anti-seismic systems. After introducing various structural control devices and building-modeling and active structural control methods, the authors propose offset cancellation and high-pass filtering techniques to solve some common problems of building-displacement measurement using accelerometers. The most popular control algorithms in industrial settings, PD/PID controllers, are then analyzed and then combined with fuzzy compensation. The stability of this combination is proven with standard weight-training algorithms. These conditions provide explicit methods for selecting PD/PID controllers. Finally, fuzzy-logic and sliding-mode control are applied to the control of wind-induced vibration. The methods described are support...
An improved PID switching control strategy for type 1 diabetes.
Marchetti, Gianni; Barolo, Massimiliano; Jovanovic, Lois; Zisser, Howard; Seborg, Dale E
2008-03-01
In order for an "artificial pancreas" to become a reality for ambulatory use, a practical closed-loop control strategy must be developed and validated. In this paper, an improved PID control strategy for blood glucose control is proposed and critically evaluated in silico using a physiologic model of Hovorka et al. [1]. The key features of the proposed control strategy are: 1) a switching strategy for initiating PID control after a meal and insulin bolus; 2) a novel time-varying setpoint trajectory; 3) noise and derivative filters to reduce sensitivity to sensor noise; and 4) a practical controller tuning strategy. Simulation results demonstrate that proposed control strategy compares favorably to alternatives for realistic conditions that include meal challenges, incorrect carbohydrate meal estimates, changes in insulin sensitivity, and measurement noise.
Control of a Quadrotor Using a Smart Self-Tuning Fuzzy PID Controller
Directory of Open Access Journals (Sweden)
Deepak Gautam
2013-11-01
Full Text Available This paper deals with the modelling, simulation-based controller design and path planning of a four rotor helicopter known as a quadrotor. All the drags, aerodynamic, coriolis and gyroscopic effect are neglected. A Newton-Euler formulation is used to derive the mathematical model. A smart self-tuning fuzzy PID controller based on an EKF algorithm is proposed for the attitude and position control of the quadrotor. The PID gains are tuned using a self-tuning fuzzy algorithm. The self-tuning of fuzzy parameters is achieved based on an EKF algorithm. A smart selection technique and exclusive tuning of active fuzzy parameters is proposed to reduce the computational time. Dijkstra’s algorithm is used for path planning in a closed and known environment filled with obstacles and/or boundaries. The Dijkstra algorithm helps avoid obstacle and find the shortest route from a given initial position to the final position.
GENETIC ALGORITHM BASED PARAMETER TUNING OF PID CONTROLLER FOR COMPOSITION CONTROL SYSTEM
Directory of Open Access Journals (Sweden)
Bhawna Tandon
2011-08-01
Full Text Available A Composition control system is discussed in this paper in which the PID controller is tuned using Genetic Algorithm & Ziegler-Nichols Tuning Criteria. Tuning methods for PID controllers are very importantfor the process industries. Traditional methods such as Ziegler-Nichols method often do not provide adequate tuning. Genetic Algorithm (GA as an intelligent approach has also been widely used to tune the parameters of PID. Genetic algorithms are used to create an objective function that can evaluate the optimum PID gains based on the controlled systems overall error.
Institute of Scientific and Technical Information of China (English)
郭娜; 胡静涛
2014-01-01
To achieve variable rate spraying, a pressure-based variable rate spaying system was designed to control the spray rate by adjusting the opening percentage of electrical regulating valve at the bypass pipeline. This returns excessive flow discharged by a piston diaphragm pump according to the flow rate of the spray pipeline, and adjusts the boom width by shutting ON or OFF selected solenoid valves at each section. The ARM9 based variable rate controller was designed to measure the system pressure and flow rate, and generate the control signal. A commercial 3W-250 boom sprayer with 12 flat fan spray nozzles was modified to a variable rate sprayer and mounted behind the LOVAL TA800 tractor. The 12 nozzles were divided to 6 boom sections and the pump was derived by the power take-off shaft of the tractor. The variable rate sprayer was represented by a directed graph of fluid network that consists of a set of junctions, called nodes, and certain lines joining a pair of nodes, called the edges. To reduce the complexity of the spray network, the fluid resistance of the short pipeline was ignored, some nodes were merged, one virtual node was increased to represent the external atmospheric pressure, and finally the graph of the variable rate spraying system involved 6 nodes and 12 edges. The flow rate and pressure distribution within the spray network under, steady state conditions was described by the junction of continuity equations and the loop energy equations. The electrical regulating actuator was also modelled to describe the relationship between the voltage control signal and the valve opening percentage. The fuzzy-PID control algorithm was adopted for the nonlinear, time-varying variable rate spraying system to achieve better performance than with the conventional PID control algorithm. The fuzzy control algorithm was used for tuning the PID parameters online. The Smith predictor based on the system model was introduced to overcome the side effects of long time
Yadav, Jyoti; Rani, Asha; Singh, Vijander
2016-12-01
This paper presents Fuzzy-PID (FPID) control scheme for a blood glucose control of type 1 diabetic subjects. A new metaheuristic Cuckoo Search Algorithm (CSA) is utilized to optimize the gains of FPID controller. CSA provides fast convergence and is capable of handling global optimization of continuous nonlinear systems. The proposed controller is an amalgamation of fuzzy logic and optimization which may provide an efficient solution for complex problems like blood glucose control. The task is to maintain normal glucose levels in the shortest possible time with minimum insulin dose. The glucose control is achieved by tuning the PID (Proportional Integral Derivative) and FPID controller with the help of Genetic Algorithm and CSA for comparative analysis. The designed controllers are tested on Bergman minimal model to control the blood glucose level in the facets of parameter uncertainties, meal disturbances and sensor noise. The results reveal that the performance of CSA-FPID controller is superior as compared to other designed controllers.
Speed Control of Bldc Motor Drive By Using Pid Controllers
Directory of Open Access Journals (Sweden)
Y.Narendra Kumar,
2014-04-01
Full Text Available This paper mainly deals with the Brushless DC (BLDC motor speed driving systems have sprouted in various small scale and large scale applications like automobile industries, domestic appliances etc. This leads to the development in Brushless DC motor (BLDCM. The usage of BLDC Motor enhances various performance factors ranging from higher efficiency, higher torque in low-speed range, high power density ,low maintenance and less noise than other motors. The BLDC Motor can act as an alternative for traditional motors like induction and switched reluctance motors. In this paper PID controller is implemented with speed feedback loop and it is observe that torque ripples are minimized. Simulation is carried out using MATLAB / SIMULINK. The results show that the performance of BLDC Motor is quite satisfactory for various loading conditions. Brushless DC motor drives are typically employed in speed controlled applications.
Directory of Open Access Journals (Sweden)
REZAZADEH, A.
2010-05-01
Full Text Available Nonlinear characteristics of wind turbines and electric generators necessitate complicated and nonlinear control of grid connected Wind Energy Conversion Systems (WECS. This paper proposes a modified self-tuning PID control strategy, using reinforcement learning for WECS control. The controller employs Actor-Critic learning in order to tune PID parameters adaptively. These Actor-Critic learning is a special kind of reinforcement learning that uses a single wavelet neural network to approximate the policy function of the Actor and the value function of the Critic simultaneously. These controllers are used to control a typical WECS in noiseless and noisy condition and results are compared with an adaptive Radial Basis Function (RBF PID control based on reinforcement learning and conventional PID control. Practical emulated results prove the capability and the robustness of the suggested controller versus the other PID controllers to control of the WECS. The ability of presented controller is tested by experimental setup.
A set of decentralized PID controllers for an – link robot manipulator
Indian Academy of Sciences (India)
G Leena; G Ray
2012-06-01
A class of stabilizing decentralized proportional integral derivative (PID) controllers for an -link robot manipulator system is proposed. The range of decentralized PID controller parameters for an -link robot manipulator is obtained using Kharitonov theorem and stability boundary equations. Basically, the proposed design technique is based on the gain-phase margin tester and Kharitonov’s theorem that synthesizes a set of PID controllers for the linear model while nonlinear interaction terms involve in system dynamics are treated as zero. The stability analysis of the composite system with the designed set of decentralized PID controllers is investigated by incorporating bounding parameters of interconnection terms in LMI formulation. From the range of controller gains obtained by the proposed method, a genetic algorithm is adopted to get an optimal controller gains so that the tracking error is minimum. Simulation results are shown to demonstrate the applicability of the proposed control scheme for solution of ﬁxed as well as time-varying trajectory tracking control problems.
Genetic Algorithm Based PID Controller Tuning Approach for Continuous Stirred Tank Reactor
Directory of Open Access Journals (Sweden)
A. Jayachitra
2014-01-01
Full Text Available Genetic algorithm (GA based PID (proportional integral derivative controller has been proposed for tuning optimized PID parameters in a continuous stirred tank reactor (CSTR process using a weighted combination of objective functions, namely, integral square error (ISE, integral absolute error (IAE, and integrated time absolute error (ITAE. Optimization of PID controller parameters is the key goal in chemical and biochemical industries. PID controllers have narrowed down the operating range of processes with dynamic nonlinearity. In our proposed work, globally optimized PID parameters tend to operate the CSTR process in its entire operating range to overcome the limitations of the linear PID controller. The simulation study reveals that the GA based PID controller tuned with fixed PID parameters provides satisfactory performance in terms of set point tracking and disturbance rejection.
Tuning PID controllers for higher-order oscillatory systems with improved performance.
Malwatkar, G M; Sonawane, S H; Waghmare, L M
2009-07-01
In this paper, model based design of PID controllers is proposed for higher-order oscillatory systems. The proposed method has no limitations regarding systems order, time delays and oscillatory behavior. The reduced model is achieved based on third-order modeling and selection of coefficients through the use of frequency responses. The tuning of the PID parameters are obtained from a reduced third-order model; the procedure seems to be simple and effective, and improved performance of the overall system can be achieved. Three simulation examples and one real-time experiment are included to demonstrate the effectiveness and applicability of the proposed method to systems with oscillatory behavior.
Das, Saptarshi; Maharatna, Koushik
2016-01-01
In this paper, an efficient control strategy for physiological interaction based anaesthetic drug infusion model is explored using the fractional order (FO) proportional integral derivative (PID) controllers. The dynamic model is composed of several human organs by considering the brain response to the anaesthetic drug as output and the drug infusion rate as the control input. Particle Swarm Optimisation (PSO) is employed to obtain the optimal set of parameters for PID/FOPID controller structures. With the proposed FOPID control scheme much less amount of drug-infusion system can be designed to attain a specific anaesthetic target and also shows high robustness for +/-50% parametric uncertainty in the patient's brain model.
Adaptive PID control based on orthogonal endocrine neural networks.
Milovanović, Miroslav B; Antić, Dragan S; Milojković, Marko T; Nikolić, Saša S; Perić, Staniša Lj; Spasić, Miodrag D
2016-12-01
A new intelligent hybrid structure used for online tuning of a PID controller is proposed in this paper. The structure is based on two adaptive neural networks, both with built-in Chebyshev orthogonal polynomials. First substructure network is a regular orthogonal neural network with implemented artificial endocrine factor (OENN), in the form of environmental stimuli, to its weights. It is used for approximation of control signals and for processing system deviation/disturbance signals which are introduced in the form of environmental stimuli. The output values of OENN are used to calculate artificial environmental stimuli (AES), which represent required adaptation measure of a second network-orthogonal endocrine adaptive neuro-fuzzy inference system (OEANFIS). OEANFIS is used to process control, output and error signals of a system and to generate adjustable values of proportional, derivative, and integral parameters, used for online tuning of a PID controller. The developed structure is experimentally tested on a laboratory model of the 3D crane system in terms of analysing tracking performances and deviation signals (error signals) of a payload. OENN-OEANFIS performances are compared with traditional PID and 6 intelligent PID type controllers. Tracking performance comparisons (in transient and steady-state period) showed that the proposed adaptive controller possesses performances within the range of other tested controllers. The main contribution of OENN-OEANFIS structure is significant minimization of deviation signals (17%-79%) compared to other controllers. It is recommended to exploit it when dealing with a highly nonlinear system which operates in the presence of undesirable disturbances.
Directory of Open Access Journals (Sweden)
Sanjay Kr. Singh
2014-05-01
Full Text Available This study focuses on multi-objective optimization of the PID controllers for optimal speed control for an isolated steam turbine. In complex operations, optimal tuning plays an imperative role in maintaining the product quality and process safety. This study focuses on the comparison of the optimal PID tuning using Multi-objective Genetic Algorithm (NSGA-II against normal genetic algorithm and Ziegler Nichols methods for the speed control of an isolated steam turbine. Isolated steam turbine not being connected to the grid; hence is usually used in refineries as steam turbine, where a hydraulic governor is used for the speed control. The PID controller for the system has been designed and implemented using MATLAB and SIMULINK and the results of the design methods have been compared, analysed and conclusions indicates that the significant improvement of results have been obtained by the Multi-Objective GA based optimization of PID as much faster response is obtained as compared to the ordinary GA and Ziegler Nichols method.
Directory of Open Access Journals (Sweden)
Xiaoli Luan
2016-01-01
Full Text Available The aim of this paper is to determine the stabilizing PID parametric region for multivariable systems. Firstly, a general equivalent transfer function parameterization method is proposed to construct the multiloop equivalent process for multivariable systems. Then, based on the equivalent single loops, a model-based method is presented to derive the stabilizing PID parametric region by using the generalized Hermite-Biehler theorem. By sweeping over the entire ranges of feasible proportional gains and determining the stabilizing regions in the space of integral and derivative gains, the complete set of stabilizing PID controllers can be determined. The robustness of the design procedure against the approximation in getting the SISO plants is analyzed. Finally, simulation of a practical model is carried out to illustrate the effectiveness of the proposed technique.
Hybrid PID and PSO-based control for electric power assist steering system for electric vehicle
Hanifah, R. A.; Toha, S. F.; Ahmad, S.
2013-12-01
Electric power assist steering (EPAS) system provides an important significance in enhancing the driving performance of a vehicle with its energy-conserving features. This paper presents a hybrid PID (Proportional-Integral-Derivative) and particle swarm optimization (PSO) based control scheme to minimize energy consumption for EPAS. This single objective optimization scheme is realized using the PSO technique in searching for best gain parameters of the PID controller. The fast tuning feature of this optimum PID controller produced high-quality solutions. Simulation results show the performance and effectiveness of the hybrid PSO-PID based controller as opposed to the conventional PID controller.
Institute of Scientific and Technical Information of China (English)
张博; 王志刚; 高玺广; 徐莉
2011-01-01
For traditional air-conditioning system existing problems of inconvenient wiring and PID control's poor adaptability and robustness , a system using WLAN technology combined with the single neuron adaptive PID control algorithm is designed. Compared with traditional air-conditioning system , this system uses WLAN technology to achieve flexibility , mobility and reduce the consumption of labour and material required for routing. With the single neuron adaptive PID control algorithm , the system gets advantages of no offset ,no overshoot and robustness etc . The results show that the problems have been basically solved and the performance has been significantly improved after using the two methods.%为解决传统空调系统中布线带来的不便及传统PID控制适应性、鲁棒性差的问题,设计出一种将WLAN技术和单神经元自适应PID控制算法相结合的空调系统.与传统的空调系统相比较,该系统利用WLAN技术实现系统的灵活性、可移动性,降低以往布线所需消耗的人力物力,运用单神经元自适应PID控制算法,使系统获得无静差、无超调、鲁棒性强等优点.研究结果表明,将两者结合后,原来空调系统存在的问题基本解决,而且性能得到了明显改善.
Systematic design approach of fuzzy PID stabilizer for DC-DC converters
Energy Technology Data Exchange (ETDEWEB)
Guesmi, K.; Essounbouli, N.; Hamzaoui, A. [CReSTIC, IUT de Troyes 09, rue de Quebec BP. 396, 10026 Troyes (France)
2008-10-15
DC-DC converters process electrical energy by switching between a fixed number of configurations. The objective of controlling these systems is to provide better performances, ensure closed loop stability and guarantee a simple predictable behaviour. Based on a converter averaged model, we propose, in this paper, a systematic design approach of a fuzzy PID. The choice of controller parameters stands on the whole system stability requirements. Extension of the obtained asymptotic stability to structural stability is presented to show that the developed controller ensures also a simple and predictable behaviour of the converter. Finally, we illustrate the efficiency of the proposed fuzzy PID design approach through simulations in voltage mode as well as in current mode control. (author)
Tuning PID and FOPID Controllers using the Integral Time Absolute Error Criterion
Maiti, Deepyaman; Chakraborty, Mithun; Konar, Amit; Janarthanan, Ramadoss
2008-01-01
Particle swarm optimization (PSO) is extensively used for real parameter optimization in diverse fields of study. This paper describes an application of PSO to the problem of designing a fractional-order proportional-integral-derivative (FOPID) controller whose parameters comprise proportionality constant, integral constant, derivative constant, integral order (lambda) and derivative order (delta). The presence of five optimizable parameters makes the task of designing a FOPID controller more challenging than conventional PID controller design. Our design method focuses on minimizing the Integral Time Absolute Error (ITAE) criterion. The digital realization of the deigned system utilizes the Tustin operator-based continued fraction expansion scheme. We carry out a simulation that illustrates the effectiveness of the proposed approach especially for realizing fractional-order plants. This paper also attempts to study the behavior of fractional PID controller vis-a-vis that of its integer order counterpart and ...
Institute of Scientific and Technical Information of China (English)
马志新; 陈晓红
2012-01-01
设计了一种用于精密定位控制的超磁致伸缩微位移驱动器(GMA),介绍了其结构及工作原理,并构建了以DSP处理芯片TMS320F2812为控制核心的GMA位移闭环控制系统,在实验辨识系统控制对象模型的基础上,设计了PID控制调节器,经实验测试,成功实现了输出位移的高稳定、高精度自动控制,为GMA在高精控制领域的实际应用奠定了基础.%A kind of Giant Magnetostrictive Actuator( GMA) for precision positioning is designed, with introduction of its structure and working principle. The closed loop displacement control system for GMA is constructed using DSP TMS320F2812,and based on model identification,the PID controller is designed to adjust the system. Finally,the experiment result indicates the control system is stable and precise,which provides a groundwork for GMA to be applied in precision control field.
Two-level tuning of fuzzy PID controllers.
Mann, G I; Hu, B G; Gosine, R G
2001-01-01
Fuzzy PID tuning requires two stages of tuning; low level tuning followed by high level tuning. At the higher level, a nonlinear tuning is performed to determine the nonlinear characteristics of the fuzzy output. At the lower level, a linear tuning is performed to determine the linear characteristics of the fuzzy output for achieving overall performance of fuzzy control. First, different fuzzy systems are defined and then simplified for two-point control. Non-linearity tuning diagrams are constructed for fuzzy systems in order to perform high level tuning. The linear tuning parameters are deduced from the conventional PID tuning knowledge. Using the tuning diagrams, high level tuning heuristics are developed. Finally, different applications are demonstrated to show the validity of the proposed tuning method.
Fuzzy adaptive PID control for six rotor eppo UAV
Directory of Open Access Journals (Sweden)
Yongwei LI
2017-02-01
Full Text Available Six rotor eppo drones's load change itself in the job process will reduce the aircraft flight control performance and make the resistance to environmental disturbance being poor. In order to improve the six rotor eppo unmanned aerial vehicle (UAV control performance, the UAV in the process of spraying pesticide is analyzed and the model is constructed, then the eppo UAV time-varying dynamics mathematical model is deduced, and a fuzzy adaptive PID control algorithm is proposed. Fuzzy adaptive PID algorithm has good adaptability and the parameter setting is simple, which improves the system dynamic response and steady state performance, realizing the stability of the six rotor eppo UAV flight. With measured parameters of each sensor input in to the fuzzy adaptive PID algorithm, the corresponding control quality is obtained, and the stable operation of aircraft is realized. Through using Matlab to simulate the flight system and combining the practical experiments, it shows that the dynamic performance and stability of the system is improved effetively.
Feedback Control Design for Counterflow Thrust Vectoring
2005-09-01
in Figures 3 thru 6, but enabled the experimentation to much more closely mimic flight conditions. PID controllers were designed using robust -f1...compensation of both delayed and non-delayed processes. 8 PID controllers often display robustness to incorrect process model order assumptions and...valve saturation is also a significant obstacle. PID controllers are the most commonly used controllers in industrial practice.’ PID control was used
Jin, Q B; Liu, Q; Huang, B
2016-03-01
This paper considers the problem of determining all the robust PID (proportional-integral-derivative) controllers in terms of the gain and phase margins (GPM) for open-loop unstable first order plus time delay (UFOPTD) processes. It is the first time that the feasible ranges of the GPM specifications provided by a PID controller are given for UFOPTD processes. A gain and phase margin tester is used to modify the original model, and the ranges of the margin specifications are derived such that the modified model can be stabilized by a stabilizing PID controller based on Hermite-Biehlers Theorem. Furthermore, we obtain all the controllers satisfying a given margin specification. Simulation studies show how to use the results to design a robust PID controller.
A complex control system based on the fuzzy PID control and state predictor feedback control
Institute of Scientific and Technical Information of China (English)
Zhengxi Li; Jie Liu; Dehui Sun; Rentao Zhao
2004-01-01
A multi-mode adaptive controller was proposed. The controller features in the combination of Bang-bang and Fuzzy PID controls with state predictor. When large error exists, the controller operates in Bang-bang mode, otherwise it works as a fuzzy PID controller. For only few parameters to be adjusted, the real time controlled system achieveed good stability and fast response. Furthermore, the introduction of state observer was also discussed to extend the capability of the proposed controller to the plant with time-delay factors. The classical PID controller and the multi-mode controller were applied to the same second-order system successively. By comparison of the simulation results, the effectiveness of the controller were shown. At last, on electric-wire production line, this approach was practiced to control electric-wire diameter with an additive random disturbance signal. The test result further proved the effectiveness of the multi-mode controller.
Robust PID based power system stabiliser: Design and real-time implementation
Energy Technology Data Exchange (ETDEWEB)
Bevrani, Hassan [Department of Electrical and Computer Eng., University of Kurdistan, Sanandaj (Iran, Islamic Republic of); Hiyama, Takashi [Department of Electrical and Computer Eng., Kumamoto University, Kumamoto (Japan); Bevrani, Hossein [Department of Statistics, University of Tabriz, Tabriz (Iran, Islamic Republic of)
2011-02-15
This paper addresses a new robust control strategy to synthesis of robust proportional-integral-derivative (PID) based power system stabilisers (PSS). The PID based PSS design problem is reduced to find an optimal gain vector via an H{infinity} static output feedback control (H{infinity}-SOF) technique, and the solution is easily carried out using a developed iterative linear matrix inequalities algorithm. To illustrate the developed approach, a real-time experiment has been performed for a longitudinal four-machine infinite-bus system using the Analog Power System Simulator at the Research Laboratory of the Kyushu Electric Power Company. The results of the proposed control strategy are compared with full-order H{infinity} and conventional PSS designs. The robust PSS is shown to maintain the robust performance and minimise the effect of disturbances properly. (author)
The development of Gallstone solvent temperature adaptive PID control system
Institute of Scientific and Technical Information of China (English)
MA; BING; QIAO; BO; YAN
2012-01-01
The paper expatiated the work principle,general project,and the control part of the corresponding program of the temperature system in the gallstone dissolving instrument.Gallstone dissolving instrument adopts automatic control solvent cycle of direct solution stone treatment,replacing the traditional external shock wave rock row stone and gallblad-der surgery method.PID control system to realize the gall stone solvent temperature intelligent control,the basic principle of work is as solvent temperature below the set temperature,the relay control heater to solvent to be heated,conversely,no heating,achieve better able to dissolve the the rapeutic effect of gallstones.
PID controller tuning for integrating processes.
Ali, Ahmad; Majhi, Somanath
2010-01-01
Minimizing the integral squared error (ISE) criterion to get the optimal controller parameters results in a PD controller for integrating processes. The PD controller gives good servo response but fails to reject the load disturbances. In this paper, it is shown that satisfactory closed loop performances for a class of integrating processes are obtained if the ISE criterion is minimized with the constraint that the slope of the Nyquist curve has a specified value at the gain crossover frequency. Guidelines are provided for selecting the gain crossover frequency and the slope of the Nyquist curve. The proposed method is compared with some of the existing methods to control integrating plant transfer functions and in the examples taken it always gave better results for the load disturbance rejection whilst maintaining satisfactory setpoint response. For ease of use, analytical expressions correlating the controller parameters to plant model parameters are also given.
Nominal and robust stability regions of optimization-based PID controllers.
Ou, Linlin; Zhang, Weidong; Gu, Danying
2006-07-01
In recent decades, several optimization-based methods have been developed for the proportional-integral-derivative (PID) controller design, and the common feature of these methods is that the controller has only one adjustable parameter. To keep the closed-loop systems stable is an essential requirement for the optimization-based PID controllers. In almost all these methods, however, no exact stability region for the single adjustable parameter was sketched. In this paper, using the proposed analytical procedure based on the dual-locus diagram technique, explicit stability regions of the optimization-based PID controllers are derived for stable, integrating, and unstable processes with time delay in the nominal and perturbed cases, respectively. It is revealed that the proposed analytical procedure is effective for the determination of the nominal and robust stability regions and it offers simplicity and ease of mathematical calculations over other available stability analysis methods. The results in this paper provide some insight into the tuning of the optimization-based PID controllers.
Fuzzy Self-Tuning PID Control of Hydrogen-Driven Pneumatic Artificial Muscle Actuator
Institute of Scientific and Technical Information of China (English)
Thanana Nuchkrua; Thananchai Leephakpreeda
2013-01-01
In this paper,a fuzzy self-tuning Proportional-Integral-Derivative (PID) control of hydrogen-driven Pneumatic Artificial Muscle (PAM) actuator is presented.With a conventional PID control,non-linear thermodynamics of the hydrogen-driven PAM actuator still highly affects the mechanical actuations itself,causing deyiation of desired tasks.The fuzzy self-tuning PID controller is systematically developed so as to achieve dynamic performance targets of the hydrogen-driven PAM actuator.The fuzzy rules based on desired characteristics of closed-loop control are designed to finely tune the PID gains of the controller under different operating conditions.The empirical models and properties of the hydrogen-driven PAM actuator are used as a genuine representation of mechanical actuations.A mass-spring-damper system is applied to the hydrogen-driven PAM actuator as a typical mechanical load during actuations.The results of the implementation show that the viability of the proposed method in actuating the hydrogen-driven PAM under mechanical loads is close to desired performance.
Directory of Open Access Journals (Sweden)
V. Balaji
2016-12-01
Full Text Available pH control plays a important role in any chemical plant and process industries. For the past four decades the classical PID controller has been occupied by the industries. Due to the faster computing technology in the industry demands a tighter advanced control strategy. To fulfill the needs and requirements Model Predictive Control (MPC is the best among all the advanced control algorithms available in the present scenario. The study and analysis has been done for First Order plus Delay Time (FOPDT model controlled by Proportional Integral Derivative (PID and MPC using the Matlab software. This paper explores the capability of the MPC strategy, analyze and compare the control effects with conventional control strategy in pH control. A comparison results between the PID and MPC is plotted using the software. The results clearly show that MPC provide better performance than the classical controller.
Saha, Suman; Das, Saptarshi; Das, Shantanu; Gupta, Amitava
2012-09-01
A novel conformal mapping based fractional order (FO) methodology is developed in this paper for tuning existing classical (Integer Order) Proportional Integral Derivative (PID) controllers especially for sluggish and oscillatory second order systems. The conventional pole placement tuning via Linear Quadratic Regulator (LQR) method is extended for open loop oscillatory systems as well. The locations of the open loop zeros of a fractional order PID (FOPID or PIλDμ) controller have been approximated in this paper vis-à-vis a LQR tuned conventional integer order PID controller, to achieve equivalent integer order PID control system. This approach eases the implementation of analog/digital realization of a FOPID controller with its integer order counterpart along with the advantages of fractional order controller preserved. It is shown here in the paper that decrease in the integro-differential operators of the FOPID/PIλDμ controller pushes the open loop zeros of the equivalent PID controller towards greater damping regions which gives a trajectory of the controller zeros and dominant closed loop poles. This trajectory is termed as "M-curve". This phenomena is used to design a two-stage tuning algorithm which reduces the existing PID controller's effort in a significant manner compared to that with a single stage LQR based pole placement method at a desired closed loop damping and frequency.
ACS algorithm-based adaptive fuzzy PID controller and its application to CIP-Ⅰ intelligent leg
Institute of Scientific and Technical Information of China (English)
TAN Guan-zheng; DOU Hong-quan
2007-01-01
Based on the ant colony system (ACS) algorithm and fuzzy logic control, a new design method for optimal fuzzy PID controller was proposed. In this method, the ACS algorithm was used to optimize the input/output scaling factors of fuzzy PID controller to generate the optimal fuzzy control rules and optimal real-time control action on a given controlled object. The designed controller, called the Fuzzy-ACS PID controller, was used to control the CIP-Ⅰ intelligent leg. The simulation experiments demonstrate that this controller has good control performance. Compared with other three optimal PID controllers designed respectively by using the differential evolution algorithm, the real-coded genetic algorithm, and the simulated annealing, it was verified that the Fuzzy-ACS PID controller has better control performance. Furthermore, the simulation results also verify that the proposed ACS algorithm has quick convergence speed, small solution variation, good dynamic convergence behavior, and high computation efficiency in searching for the optimal input/output scaling factors.
A method for closed loop automatic tuning of PID controllers
Directory of Open Access Journals (Sweden)
Tor S. Schei
1992-07-01
Full Text Available A simple method for the automatic tuning of PID controllers in closed loop is proposed. A limit cycle is generated through a nonlinear feedback path from the process output to the controller reference signal. The frequency of this oscillation is above the crossover frequency and below the critical frequency of the loop transfer function. The amplitude and frequency of the oscillation are estimated and the control parameters are adjusted iteratively such that the closed loop transfer function from the controller reference to the process output attains a specified amplitude at the oscillation frequency.
A Proportional Integral Derivative (PID Feedback Control without a Subsidiary Speed Loop
Directory of Open Access Journals (Sweden)
M. Aboelhassan
2008-01-01
Full Text Available The aim of this investigation is to design and describe the essential features of a brushless direct-current (BLDC motor. The static and dynamical state of the BLDC-Motor is designed and calculated.Within this frame-work, it has been shown that while working with the P-controller in conjunction with the subsidiary speed loop and PD-controller (with non-zero error in a steady state without a subsidiary speed loop, there is PID-controller without a subsidiary speed loop which has zero error in a steady state. The last part of this paper is dedicated to a simulation of the circle rounds of P and PID controllers with and without a subsidiary speed loop in MATLAB–SIMULINK to decide which of these controllers is suitable, available and reliable with a BLDC-Motor and their application in cutting tool machines in general.
基于模糊 PID 自动转向控制系统的研究%Automatic Steering Control System Research on Fuzzy PID
Institute of Scientific and Technical Information of China (English)
张长龙; 李文春; 马蓉; 任玲; 石翔
2016-01-01
在拖拉机自动转向控制系统中，为了提高自动转向性能，满足工作需求，设计了参数自整定的模糊 PID控制。同时，对模糊控制规则进行了设计，实现对PID3个输出比例因子进行实时修改，提高了系统的控制性能。对模糊PID 在MATLAB中进行了建模仿真，通过仿真结果可以看出：该控制方法有很好的稳态精度和自适应能力，明显改善了系统的动态特性，有利于拖拉机自动驾驶精度的提高。通过台架实验，验证了该控制方法的可行性。%Tractor automatic steering control system , to improve the automatic steering performance ,meet the job require-ments, design the parameter self-tuning fuzzy PID control .Design and implementation of fuzzy control rules and modify the PID three output scaling factor in real time ,improve the control performance of the system .And the fuzzy PID has car-ried on the modeling and simulation in MATLAB, the simulation results can be seen that this control method has good steady precision and adaptive ability , obviously improve the dynamic characteristic of the system , beneficial to the im-provement of the tractor automated driving accuracy .
The hierarchical expert tuning of PID controllers using tools of soft computing.
Karray, F; Gueaieb, W; Al-Sharhan, S
2002-01-01
We present soft computing-based results pertaining to the hierarchical tuning process of PID controllers located within the control loop of a class of nonlinear systems. The results are compared with PID controllers implemented either in a stand alone scheme or as a part of conventional gain scheduling structure. This work is motivated by the increasing need in the industry to design highly reliable and efficient controllers for dealing with regulation and tracking capabilities of complex processes characterized by nonlinearities and possibly time varying parameters. The soft computing-based controllers proposed are hybrid in nature in that they integrate within a well-defined hierarchical structure the benefits of hard algorithmic controllers with those having supervisory capabilities. The controllers proposed also have the distinct features of learning and auto-tuning without the need for tedious and computationally extensive online systems identification schemes.
Decentralized PI/PID controllers based on gain and phase margin specifications for TITO processes.
Maghade, D K; Patre, B M
2012-07-01
In this paper, a decentralized PI/PID controller design method based on gain and phase margin specifications for two-input-two-output (TITO) interactive processes is proposed. The decouplers are designed for systems to minimize the interaction between the loops, and the first order plus dead time (FOPDT) model is achieved for each decoupled subsystem based on the frequency response fitting. An independent PI/PID controller is designed for each reduced order decoupled subsystem to obtain the desired gain and phase margins, and the performance is verified on the original interactive system to show the effectiveness of the proposed design method for the general class of TITO systems. Simulation examples are incorporated to validate the usefulness of the presented algorithm. An experimentation is performed on the Level-Temperature reactor process to show the practical applicability of the proposed method for the interactive system.
Robust decentralized PID-based power system stabilizer design using an ILMI approach
Energy Technology Data Exchange (ETDEWEB)
Soliman, M.; Bendary, F.; Mansour, W. [Electrical Power and Machines Dept., Faculty of Engineering, Benha university, 108 Shoubra St., Cairo (Egypt); Elshafei, A.L. [Electrical Power and Machines Dept., Cairo University, Gamma St, Giza (Egypt)
2010-12-15
Thanks to its essential functionality and structure simplicity, proportional-integral-derivative (PID) controllers are commonly used by industrial utilities. A robust PID-based power system stabilizer (PSS) is proposed to properly function over a wide range of operating conditions. Uncertainties in plant parameters, due to variation in generation and load patterns, are expressed in the form of a polytopic model. The PID control problem is firstly reduced to a generalized static output feedback (SOF) synthesis. The derivative action is designed and implemented as a high-pass filter based on a low-pass block to reduce its sensitivity to sensor noise. The proposed design algorithm adopts a quadratic Lyapunov approach to guarantee {alpha}-decay rate for the entire polytope. A constrained structure of Lyapunov function and SOF gain matrix is considered to enforce a decentralized scheme. Setting of controller parameters is carried out via an iterative linear matrix inequality (ILMI). Simulation results, based on a benchmark model of a two-area four-machine test system, are presented to compare the proposed design to a well-tuned conventional PSS and to the standard IEEE-PSS4B stabilizer. (author)
Turning PID Controller Tuning Into a Simple Consideration of Settling Time
DEFF Research Database (Denmark)
Jakobsen, Carl; Jantzen, Jan
2016-01-01
This article introduces an approach to PID tuning based solely on a physically meaningful performance specifica- tion: settling time. The approach leads to extremely simple tuning procedures which avoid potentially excessive excitation of the process. Provided that the closed loop system meets two...... in the case of the PI controller. The controller settings define a reference model with the desired settling time chosen by the designer. Consequently, various processes can be tuned to converge to the same reference model response....
Directory of Open Access Journals (Sweden)
Antonio Yarza
2011-09-01
Full Text Available An unsolved ancient problem in position control of robot manipulators is to find a stability analysis that proves global asymptotic stability of the classical PID control in closed loop with robot manipulators. The practical evidence suggests that in fact the classical PID in industrial robots is a global regulator. The main goal of the present paper is theoretically to show why in the practice such a fact is achieved. We show that considering the natural saturations of every control stage in practical robots, the classical PID becomes a type of saturated nonlinear PID controller. In this work such a nonlinear PID controller with bounded torques for robot manipulators is proposed. This controller, unlike other saturated nonlinear PID controllers previously proposed, uses a single saturation for the three terms of the controller. Global asymptotical stability is proved via Lyapunov stability theory. Experimental results are presented in order to observe the performance of the proposed controller.
基才串口通信的直流电机PID调速系统设计%Based on serial communication PID speed control system of DC motor design
Institute of Scientific and Technical Information of China (English)
曾伟钦; 徐东升; 冉志勇
2012-01-01
为了实现对直流电机快速、准确调速的要求，提出了一种基于串口通信的直流电机PID调速系统设计方案，并实现系统的软硬件设计。采用按键、OLED显示屏等人机交互工具进行参数设置及显示，通过PID控制器闭环反馈控制调节PWM信号，串口与上位机通信实现对数据的客观分析。测试结果表明，该系统具有运行稳定、调速准确、响应时间短等特点．达到了系统设计要求。%In order to realize the rapid and accurate to dc motor speed requirements, put forward based on the serial communication PID control system of de motor design, the design of the software and hardware system. The buttons, OLED screen man-machine interactive tools such as the parameters set and display, through the PID controller close-loop feedback control regulation PWM signal, serial ports and the upper machine communication to achieve the objective data analysis. The test results show that the system has stable operation, speed, accurate short response time and other characteristics, reached the system design requirements.
GA-BASED PID NEURAL NETVVORK CONTROL FOR MAGNETIC BEARING SYSTEMS
Institute of Scientific and Technical Information of China (English)
LI Guodong; ZHANG Qingchun; LIANG Yingchun
2007-01-01
In order to overcome the system non-linearity and uncertainty inherent in magnetic bearing systems, a GA(genetic algorithm)-based PID neural network controller is designed and trained to emulate the operation of a complete system (magnetic beating, controller, and power amplifiers).The feasibility of using a neural network to control nonlinear magnetic beating systems with unknown dynamics is demonstrated. The key concept of the control scheme is to use GA to evaluate the candidate solutions (chromosomes), increase the generalization ability of PID neural network and avoid suffering from the local minima problem in network learning due to the use of gradient descent learning method. The simulation results show that the proposed architecture provides well robust performance and better reinforcement learning capability in controlling magnetic bearing systems.
Tuning of PID controllers for integrating systems using direct synthesis method.
Anil, Ch; Padma Sree, R
2015-07-01
A PID controller is designed for various forms of integrating systems with time delay using direct synthesis method. The method is based on comparing the characteristic equation of the integrating system and PID controller with a filter with the desired characteristic equation. The desired characteristic equation comprises of multiple poles which are placed at the same desired location. The tuning parameter is adjusted so as to achieve the desired robustness. Tuning rules in terms of process parameters are given for various forms of integrating systems. The tuning parameter can be selected for the desired robustness by specifying Ms value. The proposed controller design method is applied to various transfer function models and to the nonlinear model equations of jacketed CSTR to show its effectiveness and applicability.
Directory of Open Access Journals (Sweden)
Li Jing
2016-01-01
Full Text Available For the control of the liquid level of liquid ammonia in thermal power plant’s ammonia vaporization room, traditional PID controller parameter tuning is difficult to adapt to complex control systems, the setting of the traditional PID controller parameters is difficult to adapt to the complex control system. For the disadvantage of bad parameter setting, poor performance and so on the fuzzy adaptive PID control is proposed. Fuzzy adaptive PID control combines the advantages of traditional PID technology and fuzzy control. By using the fuzzy controller to intelligent control the object, the performance of the PID controller is further improved, and the control precision of the system is improved[1]. The simulation results show that the fuzzy adaptive PID controller not only has the advantages of high accuracy of PID controller, but also has the characteristics of fast and strong adaptability of fuzzy controller. It realizes the optimization of PID parameters which are in the optimal state, and the maximum increase production efficiency, so that are more suitable for nonlinear dynamic system.
Design and Implementation of Pulp Level Control in Flotation Based on IMC-PID%浮选矿浆液位过程的IMC-PID设计与实现
Institute of Scientific and Technical Information of China (English)
陈华; 陈夕松
2011-01-01
浮选过程是选矿生产中的关键环节，其液位要求严格控制以保证金属回收率．采用一种基于内模控制（IMC）设计的PID控制器（IMC—PID）来实现选矿浮选矿浆液位的自动控制，具有结构简单、整定参数少、鲁棒性强等优点．介绍了IMC-PID的基本原理和设计步骤，给出了液位控制系统的具体实现．应用表明，基于IMC—PID的浮选液住控制系统提高了浮选的金属回收率，保证了精矿品位，具有良好的推广价值．%Flotation is a key process in mineral processing production, in which flotation level must be strictly controlled to ensure high metal recovery rate. A PID controller （[MC-PID） which is designed based on Internal Model Control（IMC） is applied to bring flotation level under automatic control. The model has such advantages as simple structure, few adjustable parameters and strong robustness. Moreover, the basic principle and design method of IMC-PID are introduced, and a flotation level control system is presented. The practical application indicates that the system has improved the metal recovery rate, which ensures fine quality of ore grade, thus having broad implications.
Study of PID Controllers to Load Frequency Control Systems with Various Turbine Models
Directory of Open Access Journals (Sweden)
Abdul Shariq
2015-08-01
Full Text Available This paper studies the load frequency control problem for various systems under various controller design methods. Frequency should remain nearly constant for satisfactory operation of a power system because frequency deviations can directly impact on a power system operation, system stability, reliability and efficiency. A Load Frequency Control (LFC scheme basically incorporates an appropriate control system for an interconnected power system, which is having the capability to bring the frequencies of system to original set point values or very nearer to set point values effectively after any load change. This can be achieved by the use of conventional and modern controllers. In this proposed paper PID controller has been applied for LFC power systems. The parameters of the PID controller are tuned by different methods names as Ziegler-Nichols (Z-N Method, and IMC method for better results. We use various tuning formulae in Z-N method and certain model approximation methods and the responses of LFC with model approximation are studied. It is seen that the results obtained are as good as the conventional controller.
Comparative study of a learning fuzzy PID controller and a self-tuning controller.
Kazemian, H B
2001-01-01
The self-organising fuzzy controller is an extension of the rule-based fuzzy controller with an additional learning capability. The self-organising fuzzy (SOF) is used as a master controller to readjust conventional PID gains at the actuator level during the system operation, copying the experience of a human operator. The application of the self-organising fuzzy PID (SOF-PID) controller to a 2-link non-linear revolute-joint robot-arm is studied using path tracking trajectories at the setpoint. For the purpose of comparison, the same experiments are repeated by using the self-tuning controller subject to the same data supplied at the setpoint. For the path tracking experiments, the output trajectories of the SOF-PID controller followed the specified path closer and smoother than the self-tuning controller.
Fault tolerant control of multivariable processes using auto-tuning PID controller.
Yu, Ding-Li; Chang, T K; Yu, Ding-Wen
2005-02-01
Fault tolerant control of dynamic processes is investigated in this paper using an auto-tuning PID controller. A fault tolerant control scheme is proposed composing an auto-tuning PID controller based on an adaptive neural network model. The model is trained online using the extended Kalman filter (EKF) algorithm to learn system post-fault dynamics. Based on this model, the PID controller adjusts its parameters to compensate the effects of the faults, so that the control performance is recovered from degradation. The auto-tuning algorithm for the PID controller is derived with the Lyapunov method and therefore, the model predicted tracking error is guaranteed to converge asymptotically. The method is applied to a simulated two-input two-output continuous stirred tank reactor (CSTR) with various faults, which demonstrate the applicability of the developed scheme to industrial processes.
Position Control of a Serial Manipulator Using Fuzzy-PID Controllers
Directory of Open Access Journals (Sweden)
Yong-Lin Kuo
2015-02-01
Full Text Available This paper presents the position control of a six-axis serial manipulator by using a fuzzy-PID controller. The manipulator has six joints, and each joint is driven by a motor with an encoder for sensing the joint angle. To complete a position movement of the end-effector of the manipulator, the position coordinate first needs to be converted to a sets of joint angles by using the inverse kinematics of the manipulator, and each joint rotation is executed by a feedback control of a motor. To demonstrate the performance the fuzzy-PID controller, a PID controller and two fuzzy controllers are also applied. The results show that the fuzzy-PID controller provides a better performance with a smaller steady-state error.
Design and Simulation of PID parameters self-tuning based on DC speed regulating system
Directory of Open Access Journals (Sweden)
Feng Wei Jie
2016-01-01
Full Text Available The DC speed regulating system has many difficult issues such as system parameters and PID control parameters are difficult to determine. On the basis of model for a single closed-loop DC speed regulating system, this paper puts forward a method of PID parameters self-tuning based on the step response detection and reduced order equivalent. First, detect system step response and get response parameters. Then equal it to a second order system model, and achieve optimal PID control parameters based on optimal second order system to realize of PID parameters self-tuning. The PID parameters self-tuning process of DC speed regulating system is simulated with the help of MATLAB/Simulink. The simulation results show that the method is simple and effective. The system can obtain good dynamic and static performance when the PID parameters are applied to DC speed regulating system.
Directory of Open Access Journals (Sweden)
Asan Gani
2010-09-01
Full Text Available Active vibration control of the first three modes of a vibrating cantilever beam using collocated piezoelectric sensor and actuator is examined in this paper. To achieve this, a model based on Euler-Bernoulli beam equation is adopted and extended to the case of three bonded piezoelectric patches that act as sensor, actuator and exciter respectively. A compensated inverse PID controller has been designed and developed to damp first three modes of vibration. Controllers have been designed for each mode and these are later combined in parallel to damp any of the three modes. Individual controller gives better reduction in sensor output for the second and third modes while the combined controller performs better for the first mode. Simulation studies are carried out using MATLAB. These results are compared and verified experimentally and the real-time implementation is carried out with xPC-target toolbox in MATLAB
Comparison of intelligent fuzzy based AGC coordinated PID controlled and PSS controlled AVR system
Energy Technology Data Exchange (ETDEWEB)
Mukherjee, V. [Department of Electrical Engineering, Asansol Engineering College, Asansol, West Bengal (India); Ghoshal, S.P. [Department of Electrical Engineering, National Institute of Technology, Durgapur, West Bengal (India)
2007-11-15
This paper attempts to investigate the performance of intelligent fuzzy based coordinated control of the Automatic Generation Control (AGC) loop and the excitation loop equipped with Proportional Integral Derivative (PID) controlled Automatic Voltage Regulator (AVR) system and Power System Stabilizer (PSS) controlled AVR system. The work establishes that PSS controlled AVR system is much more robust in dynamic performance of the system over a wide range of system operating configurations. Thus, it is revealed that PSS equipped AVR is much more superior than PID equipped AVR in damping the oscillation resulting in improved transient response. The paper utilizes a novel class of Particle Swarm Optimization (PSO) termed as Craziness based Particle Swarm Optimization (CRPSO) as optimizing tool to get optimal tuning of PSS parameters as well as the gains of PID controllers. For on-line, off-nominal operating conditions Takagi Sugeno Fuzzy Logic (TSFL) has been applied to obtain the off-nominal optimal gains of PID controllers and parameters of PSS. Implementation of TSFL helps to achieve very fast dynamic response. Fourth order model of generator with AVR and high gain thyristor excitation system is considered for PSS controlled system while normal gain exciter is considered for PID controlled system. Simulation study also reveals that with high gain exciter, PID control is not at all effective. Transient responses are achieved by using modal analysis. (author)
The Distribution Population-based Genetic Algorithm for Parameter Optimization PID Controller
Institute of Scientific and Technical Information of China (English)
CHENQing-Geng; WANGNing; HUANGShao-Feng
2005-01-01
Enlightened by distribution of creatures in natural ecology environment, the distribution population-based genetic algorithm (DPGA) is presented in this paper. The searching capability of the algorithm is improved by competition between distribution populations to reduce the search zone.This method is applied to design of optimal parameters of PID controllers with examples, and the simulation results show that satisfactory performances are obtained.
OPTIMAL-TUNING OF PID CONTROLLER GAINS USING GENETIC ALGORITHMS
Directory of Open Access Journals (Sweden)
Ömer GÜNDOĞDU
2005-01-01
Full Text Available This paper presents a method of optimum parameter tuning of a PID controller to be used in driving an inertial load by a dc motor thorough a gearbox. Specifically, the method uses genetic algorithms to determine the optimum controller parameters by minimizing the sum of the integral of the squared error and the squared controller output deviated from its steady state value. The paper suggests the use of Ziegler-Nichols settings to form the intervals for the controller parameters in which the population to be formed. The results obtained from the genetic algorithms are compared with the ones from Ziegler-Nichols in both figures and tabular form. Comparatively better results are obtained in the genetic algorithm case.
Decentralized PID neural network control for a quadrotor helicopter subjected to wind disturbance
Institute of Scientific and Technical Information of China (English)
陈彦民; 何勇灵; 周岷峰
2015-01-01
A decentralized PID neural network (PIDNN) control scheme was proposed to a quadrotor helicopter subjected to wind disturbance. First, the dynamic model that considered the effect of wind disturbance was established via Newton−Euler formalism. For quadrotor helicopter flying at low altitude in actual situation, it was more susceptible to be influenced by the turbulent wind field. Therefore, the turbulent wind field was generated according to Dryden model and taken into consideration as the disturbance source of quadrotor helicopter. Then, a nested loop control approach was proposed for the stabilization and navigation problems of the quadrotor subjected to wind disturbance. A decentralized PIDNN controller was designed for the inner loop to stabilize the attitude angle. A conventional PID controller was used for the outer loop in order to generate the reference path to inner loop. Moreover, the connective weights of the PIDNN were trained on-line by error back-propagation method. Furthermore, the initial connective weights were identified according to the principle of PID control theory and the appropriate learning rate was selected by discrete Lyapunov theory in order to ensure the stability. Finally, the simulation results demonstrate that the controller can effectively resist external wind disturbances, and presents good stability, maneuverability and robustness.
Genetic Optimization Algorithm of PID Decoupling Control for VAV Air-Conditioning System
Institute of Scientific and Technical Information of China (English)
WANG Jiangjiang; AN Dawei; ZHANG Chunfa; JING Youyin
2009-01-01
Variable-air-volume (VAV) air-conditioning system is a multi-variable system and has multi coupling control loops. While all of the control loops are working together, they interfere and influence each other. A multi-variable decoupling PID controller is designed for VAV air-conditioning system. Diagonal matrix decoupling method is employed to eliminate the coupling between the loop of supply air temperature and that of thermal-space air temperature. The PID controller parameters are optimized by means of an improved genetic algorithm in floating point representations to obtain better performance. The population in the improved genetic algorithm mutates before crossover, which is helpful for the convergence. Additionally the micro mutation algorithm is proposed and applied to improve the convergence during the later evolution. To search the best parameters, the optimized parameters ranges should be amplified l0 times the initial ideal parameters. The simulation and experiment results show that the decoupling control system is effective and feasible. The method can overcome the strong coupling feature of the system and has shorter governing time and less over-shoot than non-optimization PID control.
Optimization of PID Controllers Using Ant Colony and Genetic Algorithms
Ünal, Muhammet; Topuz, Vedat; Erdal, Hasan
2013-01-01
Artificial neural networks, genetic algorithms and the ant colony optimization algorithm have become a highly effective tool for solving hard optimization problems. As their popularity has increased, applications of these algorithms have grown in more than equal measure. While many of the books available on these subjects only provide a cursory discussion of theory, the present book gives special emphasis to the theoretical background that is behind these algorithms and their applications. Moreover, this book introduces a novel real time control algorithm, that uses genetic algorithm and ant colony optimization algorithms for optimizing PID controller parameters. In general, the present book represents a solid survey on artificial neural networks, genetic algorithms and the ant colony optimization algorithm and introduces novel practical elements related to the application of these methods to process system control.
Gain Scheduling of PID Controller Based on Fuzzy Systems
Directory of Open Access Journals (Sweden)
Singh Sandeep
2016-01-01
Full Text Available This paper aims to utilize fuzzy rules and reasoning to determine the controller parameters and the PID controller generates the control signal. The objective of this study is to simulate the proposed scheme on various processes and arrive at results providing better response of the system when compared with best industrial auto-tuning technique: Ziegler-Nichols. The proposed scheme is based upon the Ultimate Gain (Ku and the Period (Tu of the system. The error and rate of change in error gains are tuned manually to get the desired response using LabVIEW. This can also be done with various optimization techniques. A thumb rule for choosing the ranges for Kc, Kd and Ki has been obtained experimentally.
Active Queue Management in TCP Networks Based on Fuzzy-Pid Controller
Directory of Open Access Journals (Sweden)
Hossein ASHTIANI
2012-01-01
Full Text Available We introduce a novel and robust active queue management (AQM scheme based on a fuzzy controller, called hybrid fuzzy-PID controller. In the TCP network, AQM is important to regulate the queue length by passing or dropping the packets at the intermediate routers. RED, PI, and PID algorithms have been used for AQM. But these algorithms show weaknesses in the detection and control of congestion under dynamically changing network situations. In this paper a novel Fuzzy-based proportional-integral derivative (PID controller, which acts as an active queue manager (AQM for Internet routers, is proposed. These controllers are used to reduce packet loss and improve network utilization in TCP/IP networks. A new hybrid controller is proposed and compared with traditional RED based controller. Simulations are carried out to demonstrate the effectiveness of the proposed method and show that, the new hybrid fuzzy PID controller provides better performance than random early detection (RED and PID controllers
Institute of Scientific and Technical Information of China (English)
陈亚栋; 高文华; 张井岗; 刘鑫
2013-01-01
The structure and work principle of magnetic levitation ball system was introduced in this paper . The mathematical model was got through and linearized near the equilibrium point . Then the PID controller will be made based on the mathematical model . The model of the control system was built in the Simulink environment to simulate research . At last , the control system model conducted the real-time control experiment on the googol GML1001 series of magnetic levitation device . The experimental results showed that the proposed PID controller guaranteed the suspension ball to achieve the expectation fast and had excellent anti-in-terference performance .%介绍了磁悬浮球系统的结构和工作原理，建立了磁悬浮系统的数学模型并进行线性化处理；设计 PID 控制器，在 Simulink 环境下搭建控制系统的模型进行仿真研究，并在固高 GML1001系列磁悬浮装置上进行实时控制实验。实验结果表明，采用 PID 控制，能使钢球快速地悬浮在期望位置，并且有一定的抗干扰能力。
Active vibration control of piezoelectric bonded smart structures using PID algorithm
Institute of Scientific and Technical Information of China (English)
Zhang Shunqi; Ru¨diger Schmidt; Qin Xiansheng
2015-01-01
Thin-walled structures are sensitive to vibrate under even very small disturbances. In order to design a suitable controller for vibration suppression of thin-walled smart structures, an electro-mechanically coupled finite element (FE) model of smart structures is developed based on first-order shear deformation (FOSD) hypothesis. Considering the vibrations generated by various disturbances, which include free and forced vibrations, a PID control is implemented to damp both the free and forced vibrations. Additionally, an LQR optimal control is applied for comparison. The implemented control strategies are validated by a piezoelectric layered smart plate under var-ious excitations.
Hu, Wuhua; Xiao, Gaoxi; Li, Xiumin
2011-04-01
In this paper, an analytical method is proposed for proportional-integral/proportional-derivative/proportional-integral-derivative (PI/PD/PID) controller tuning with specified gain and phase margins (GPMs) for integral plus time delay (IPTD) processes. Explicit formulas are also obtained for estimating the GPMs resulting from given PI/PD/PID controllers. The proposed method indicates a general form of the PID parameters and unifies a large number of existing rules as PI/PD/PID controller tuning with various GPM specifications. The GPMs realized by existing PID tuning rules are computed and documented as a reference for control engineers to tune the PID controllers.
Speed Control System on Marine Diesel Engine Based on a Self-Tuning Fuzzy PID Controller
Directory of Open Access Journals (Sweden)
Naeim Farouk
2012-03-01
Full Text Available The degree of speed control of ship machinery effects on the economics and optimization of the machinery configuration and operation. All marine vessel ranging need some sort of speed control system to control and govern the speed of the marine diesel engines. This study presents a self-tuning fuzzy PID control system for speed control system of marine diesel engine. The system under consideration is a fourth-order plant with highly dynamic and uncertain environments. The current speed controllers for marine/traction diesel engines based on PID Controller cannot fully handle the uncertainties associated with such dynamic environments. A fuzzy logic control algorithm is used to estimate the PID coefficients in order to handle such uncertainties to produce a better control performance. Simulation tests were established using Simulink of MATLAB. The obtained results have demonstrated the feasibility and effectiveness of the proposed approach. Simulation results are represented in this study.
PID控制器性能评价%Performance Assessment of a PID Controller
Institute of Scientific and Technical Information of China (English)
左信; 孙金明
2005-01-01
Performance assessment of a proportional-integral-derivative (PID) controller is condueted using the PIDachievable minimum variance as a benchmark. When the process model is unknown, we can estimate the PID-achievable minimum variance and the corresponding parameters by routine closed-loop operation data. Simulation results show that the process output variance is reduced by retuning controller parameters.
Fractional Order PID Control of Rotor Suspension by Active Magnetic Bearings
Directory of Open Access Journals (Sweden)
Parinya Anantachaisilp
2017-01-01
Full Text Available One of the key issues in control design for Active Magnetic Bearing (AMB systems is the tradeoff between the simplicity of the controller structure and the performance of the closed-loop system. To achieve this tradeoff, this paper proposes the design of a fractional order Proportional-Integral-Derivative (FOPID controller. The FOPID controller consists of only two additional parameters in comparison with a conventional PID controller. The feasibility of FOPID for AMB systems is investigated for rotor suspension in both the radial and axial directions. Tuning methods are developed based on the evolutionary algorithms for searching the optimal values of the controller parameters. The resulting FOPID controllers are then tested and compared with a conventional PID controller, as well as with some advanced controllers such as Linear Quadratic Gausian (LQG and H ∞ controllers. The comparison is made in terms of various stability and robustness specifications, as well as the dimensions of the controllers as implemented. Lastly, to validate the proposed method, experimental testing is carried out on a single-stage centrifugal compressor test rig equipped with magnetic bearings. The results show that, with a proper selection of gains and fractional orders, the performance of the resulting FOPID is similar to those of the advanced controllers.
基于模糊自整定PID控制方法的雷达伺服系统%Design of Radar Servo System Based on Fuzzy Self-tuning PID Control
Institute of Scientific and Technical Information of China (English)
赵爽; 邓先荣
2012-01-01
传统PID控制器因结构简单、易于实现而在控制系统中得到了广泛运用,但往往因实际系统中的非线性因素影响而不得不采用变结构、变参数等手段来提高实际控制效果,而模糊控制对非线性因素的影响却能明显改善系统控制品质.文中主要研究了模糊自整定PID控制方法在雷达伺服系统中的应用,并在实际系统中进行了实验验证.仿真结果表明该方法能明显提高系统控制品质,具有一定的工程推广价值.%Although PID control is widely used, it is linear at working point. It can't ensure dynamic quality when away from working point, while fuzzy self-tuning PID control can. In this paper, we research on application of fuzzy self-tuning pid control to radar servo system. Firstly we study the fuzzy self-tuning PID ontrol and then we verified in a practical servo drive system model. It proved that the fuzzy self-tuning pid control can be applied to the radar servo system with precision and flexibility.
The Research of PID Control in a Large Scale Helium Refrigerator
Pan, W.; Wu, J. H.; Li, L. F.; Liu, H. M.; Li, Q.
2015-12-01
In the development of a helium refrigerator, the control of load temperature stability is an important requirement. We usually use multistage control strategies to achieve the precise control of it. Each level has its strict control logic. PID controllers are the core control module in the process. Therefore, a research of its principle and parameters’ setting occupies an important position in the development work. This paper detailed describes the PID control principle used in a large scale helium refrigerator of 10kW@20K, as well as several improvements on PID parameters’ setting, by using simulations and experiments in combination. The temperature is eventually controlled more precise.
DEFF Research Database (Denmark)
Jantzen, Jan
1998-01-01
Design of a fuzzy controller requires more design decisions than usual, for example regarding rule base, inference engine, defuzzification, and data pre- and post processing. This tutorial paper identifies and describes the design choices related to single-loop fuzzy control, based...... on an international standard which is underway. The paper contains also a design approach, which uses a PID controller as a starting point. A design engineer can view the paper as an introduction to fuzzy controller design....
Research on the controller of an arc welding process based on a PID neural network
Institute of Scientific and Technical Information of China (English)
Kuanfang HE; Shisheng HUANG
2008-01-01
A controller based on a PID neural network(PIDNN)is proposed for an arc welding power source whose output characteristic in responding to a given value is quickly and intelligently controlled in the welding process.The new method syncretizes the PID control strategy and neural network to control the welding process intelligently,so it has the merit of PID control rules and the trait of better information disposal ability of the neural network.The results of simulation show that the controller has the properties of quick response,low overshoot quick convergence and good stable accuracy,which meet the requirements for control of the welding process.
Coordinating IMC-PID and adaptive SMC controllers for a PEMFC.
Wang, Guo-Liang; Wang, Yong; Shi, Jun-Hai; Shao, Hui-He
2010-01-01
For a Proton Exchange Membrane Fuel Cell (PEMFC) power plant with a methanol reformer, the process parameters and power output are considered simultaneously to avoid violation of the constraints and to keep the fuel cell power plant safe and effective. In this paper, a novel coordinating scheme is proposed by combining an Internal Model Control (IMC) based PID Control and adaptive Sliding Mode Control (SMC). The IMC-PID controller is designed for the reformer of the fuel flow rate according to the expected first-order dynamic properties. The adaptive SMC controller of the fuel cell current has been designed using the constant plus proportional rate reaching law. The parameters of the SMC controller are adaptively tuned according to the response of the fuel flow rate control system. When the power output controller feeds back the current references to these two controllers, the coordinating controllers system works in a system-wide way. The simulation results of the PEMFC power plant demonstrate the effectiveness of the proposed method.
Singh, Ravendra; Ierapetritou, Marianthi; Ramachandran, Rohit
2013-11-01
The next generation of QbD based pharmaceutical products will be manufactured through continuous processing. This will allow the integration of online/inline monitoring tools, coupled with an efficient advanced model-based feedback control systems, to achieve precise control of process variables, so that the predefined product quality can be achieved consistently. The direct compaction process considered in this study is highly interactive and involves time delays for a number of process variables due to sensor placements, process equipment dimensions, and the flow characteristics of the solid material. A simple feedback regulatory control system (e.g., PI(D)) by itself may not be sufficient to achieve the tight process control that is mandated by regulatory authorities. The process presented herein comprises of coupled dynamics involving slow and fast responses, indicating the requirement of a hybrid control scheme such as a combined MPC-PID control scheme. In this manuscript, an efficient system-wide hybrid control strategy for an integrated continuous pharmaceutical tablet manufacturing process via direct compaction has been designed. The designed control system is a hybrid scheme of MPC-PID control. An effective controller parameter tuning strategy involving an ITAE method coupled with an optimization strategy has been used for tuning of both MPC and PID parameters. The designed hybrid control system has been implemented in a first-principles model-based flowsheet that was simulated in gPROMS (Process System Enterprise). Results demonstrate enhanced performance of critical quality attributes (CQAs) under the hybrid control scheme compared to only PID or MPC control schemes, illustrating the potential of a hybrid control scheme in improving pharmaceutical manufacturing operations.
Tuning of IMC based PID controllers for integrating systems with time delay.
Kumar, D B Santosh; Padma Sree, R
2016-07-01
Design of Proportional Integral and Derivative (PID) controllers based on IMC principles for various types of integrating systems with time delay is proposed. PID parameters are given in terms of process model parameters and a tuning parameter. The tuning parameter is IMC filter time constant. In the present work, the IMC filter (Q) is chosen in such a manner that the order of the denominator of IMC controller is one less than the order of the numerator. The IMC filter time constant (λ) is tuned in such a way that a good compromise is made between performance and robustness for both servo and regulatory problems. To improve servo response of the controller a set point filter is designed such that the closed loop response is similar to that of first order plus time delay system. The proposed controller design method is applied to various transfer function models and to the non-linear model equations of jacketed CSTR to demonstrate its applicability and effectiveness. The performance of the proposed controller is compared with the recently reported methods in terms of IAE and ITAE. The smooth functioning of the controller is determined in terms of total variation and compared with recently reported methods. Simulation studies are carried out on various integrating systems with time delay to show the effectiveness and superiority of the proposed controllers.
模糊-PID混合控制直流电机调速系统设计%Design of Speed Control System Based on Fuzzy-PID Hybrid Control for DC Motor
Institute of Scientific and Technical Information of China (English)
肖金凤; 盛义发; 徐祖华; 周到
2011-01-01
该文提出在转速、电流双闭环的直流电机调速系统转速环采用模糊-PID混合控制方法.当给定转速与实际转速的偏差大于某一阈值时,采用模糊控制;而当偏差减小到设定阈值以下时,采用PID调节.利用Matlab对该控制方法进行仿真,仿真表明混合控制系统的动、静态性能明显优于常规PID控制系统.将该控制方法应用于,DDSZ-1型电机及电气技术实验装置中的DJ23直流电机,以Atmega128为核心,以PWM为控制信号,设计了模糊-PID混合控制电机调速装置.试验结果验证了设计的混合控制调速系统鲁棒性好,实用性强,结构简单.%In this paper, a new hybrid speed regulating method based on Fuzzy-PID was proposed. It can be used in the speed loop for speed and current closed loop control DC motor control system. When the error between reference speed and real speed is bigger than some threshold value, uses the fuzzy control. But when the error reduces to the threshold value below, changes the PID adjustment. The simulation research on the hybrid speed regulating system of DC motor was carried out. The simulation results show that the system based on this hybrid speed regulating has better dynamic and static performance than the system based on PID speed regulating. A speed control system of DJ23 DC motor used in DDSZ-1 electrical machinery and electrical technology test installation was introduced. The system based on this new hybrid speed regulating method has a control unit of the single-chip Atmega128, using PWMcontrol signal to control DC motor. The results of experiment show that the system is of better robustness and strong practicality and simple structure.
PID self tuning control based on Mamdani fuzzy logic control for quadrotor stabilization
Energy Technology Data Exchange (ETDEWEB)
Priyambodo, Tri Kuntoro, E-mail: mastri@ugm.ac.id; Putra, Agfianto Eko [Aerospace and Aeronautics Electronics Research Group, Universitas Gadjah Mada, Yogyakarta (Indonesia); Department of Computer Science and Electronics, Universitas Gadjah Mada, Yogyakarta (Indonesia); Dharmawan, Andi, E-mail: andi-dharmawan@ugm.ac.id [Department of Computer Science and Electronics, Universitas Gadjah Mada, Yogyakarta (Indonesia)
2016-02-01
Quadrotor as one type of UAV have the ability to perform Vertical Take Off and Landing (VTOL). It allows the Quadrotor to be stationary hovering in the air. PID (Proportional Integral Derivative) control system is one of the control methods that are commonly used. It is usually used to optimize the Quadrotor stabilization at least based on the three Eulerian angles (roll, pitch, and yaw) as input parameters for the control system. The three constants of PID can be obtained in various methods. The simplest method is tuning manually. This method has several weaknesses. For example if the three constants are not exact, the resulting response will deviate from the desired result. By combining the methods of PID with fuzzy logic systems where human expertise is implemented into the machine language is expected to further optimize the control system.
IMC-PID design based on model matching approach and closed-loop shaping.
Jin, Qi B; Liu, Q
2014-03-01
Motivated by the limitations of the conventional internal model control (IMC), this communication addresses the design of IMC-based PID in terms of the robust performance of the control system. The IMC controller form is obtained by solving an H-infinity problem based on the model matching approach, and the parameters are determined by closed-loop shaping. The shaping of the closed-loop transfer function is considered both for the set-point tracking and for the load disturbance rejection. The design procedure is formulated as a multi-objective optimization problem which is solved by a specific optimization algorithm. A nice feature of this design method is that it permits a clear tradeoff between robustness and performance. Simulation examples show that the proposed method is effective and has a wide applicability.
Directory of Open Access Journals (Sweden)
S. J. Bassi
2011-10-01
Full Text Available The proportional-integral-derivative (PID controllers are the most popular controllers used in industry because of their remarkable effectiveness, simplicity of implementation and broad applicability. However, manual tuning of these controllers is time consuming, tedious and generally lead to poor performance. This tuning which is application specific also deteriorates with time as a result of plant parameter changes. This paper presents an artificial intelligence (AI method of particle swarm optimization (PSO algorithm for tuning the optimal proportional-integral derivative (PID controller parameters for industrial processes. This approach has superior features, including easy implementation, stable convergence characteristic and good computational efficiency over the conventional methods. Ziegler- Nichols, tuning method was applied in the PID tuning and results were compared with the PSO-Based PID for optimum control. Simulation results are presented to show that the PSO-Based optimized PID controller is capable of providing an improved closed-loop performance over the Ziegler- Nichols tuned PID controller Parameters. Compared to the heuristic PID tuning method of Ziegler-Nichols, the proposed method was more efficient in improving the step response characteristics such as, reducing the steady-states error; rise time, settling time and maximum overshoot in speed control of DC motor.
Das, Saptarshi; Pan, Indranil; Das, Shantanu
2013-07-01
Fuzzy logic based PID controllers have been studied in this paper, considering several combinations of hybrid controllers by grouping the proportional, integral and derivative actions with fuzzy inferencing in different forms. Fractional order (FO) rate of error signal and FO integral of control signal have been used in the design of a family of decomposed hybrid FO fuzzy PID controllers. The input and output scaling factors (SF) along with the integro-differential operators are tuned with real coded genetic algorithm (GA) to produce optimum closed loop performance by simultaneous consideration of the control loop error index and the control signal. Three different classes of fractional order oscillatory processes with various levels of relative dominance between time constant and time delay have been used to test the comparative merits of the proposed family of hybrid fractional order fuzzy PID controllers. Performance comparison of the different FO fuzzy PID controller structures has been done in terms of optimal set-point tracking, load disturbance rejection and minimal variation of manipulated variable or smaller actuator requirement etc. In addition, multi-objective Non-dominated Sorting Genetic Algorithm (NSGA-II) has been used to study the Pareto optimal trade-offs between the set point tracking and control signal, and the set point tracking and load disturbance performance for each of the controller structure to handle the three different types of processes.
Fuzzy PID Control Method for Internet-based Tele-operation Manipulators System
Directory of Open Access Journals (Sweden)
Wei Gao
2013-11-01
Full Text Available Trajectory tracking control problem for internet-based tele-operation system is researched in this paper. The control structure of master and slave tele-operation manipulators adapts bilateral servo control architecture with force deviation feedback. The simulation model of three degrees of freedom (3-DOF manipulator is presented. In order to ensure the synchronization of positions of the master and slave manipulators, a fuzzy PID control method is proposed. This control algorithm is to adjust the three parameters of PID controller online by fuzzy control method. The contrast simulation experiments of PID and fuzzy PID control methods show that the proposed control method can effectively improve the force and position tracking performance and reduce time delay.
Modelling and Control of the Qball X4 Quadrotor System based on Pid and Fuzzy Logic Structure
Bodrumlu, Tolga; Turan Soylemez, Mehmet; Mutlu, Ilhan
2017-01-01
This work focuses on a quadrocopter model, which was developed by QuanserTM and named as Qball X4. First, mathematical model of the Qball X4 is obtained. Then, a conventional PID control technique is presented. This PID control parameters come from Qball user manual. After the presentation of conventional PID control, as an extension of the conventional PID control theory, a different fuzzy controller structure is given. The proposed fuzzy controller structure is based on fuzzy logic and its name is PID type fuzzy controller. All of the simulations are done in MATLABTM environment.
Pan, Indranil; Das, Saptarshi; Gupta, Amitava
2011-01-01
An optimal PID and an optimal fuzzy PID have been tuned by minimizing the Integral of Time multiplied Absolute Error (ITAE) and squared controller output for a networked control system (NCS). The tuning is attempted for a higher order and a time delay system using two stochastic algorithms viz. the Genetic Algorithm (GA) and two variants of Particle Swarm Optimization (PSO) and the closed loop performances are compared. The paper shows that random variation in network delay can be handled efficiently with fuzzy logic based PID controllers over conventional PID controllers.
Globally robust nonlinear PID controllers for robot manipulators with an uncertain Jacobian matrix
Institute of Scientific and Technical Information of China (English)
Chunqing HUANG; Songjiao SHI
2004-01-01
Based on a continuous piecewise-differentiable increasing functions vector, a class of robust nonlinear PID(RN-PID) controllers is proposed for setpoint control with uncertain Jacobian matrix. Globally asymptotic stability is guaranteed and only position and joint velocity measurements are required. And stability problem arising from integral action and integrator windup, are consequendy resolved. Furthermore, RN-PID controllers can be of effective alternative for anti-integrator-wind-up,the control performance would not be very bad in the presence of rough parameter tuning.
An improved auto-tuning scheme for PID controllers.
Dey, Chanchal; Mudi, Rajani K
2009-10-01
An improved auto-tuning scheme is proposed for Ziegler-Nichols (ZN) tuned PID controllers (ZNPIDs), which usually provide excessively large overshoots, not tolerable in most of the situations, for high-order and nonlinear processes. To overcome this limitation ZNPIDs are upgraded by some easily interpretable heuristic rules through an online gain modifying factor defined on the instantaneous process states. This study is an extension of our earlier work [Mudi RK., Dey C. Lee TT. An improved auto-tuning scheme for PI controllers. ISA Trans 2008; 47: 45-52] to ZNPIDs, thereby making the scheme suitable for a wide range of processes and more generalized too. The proposed augmented ZNPID (AZNPID) is tested on various high-order linear and nonlinear dead-time processes with improved performance over ZNPID, refined ZNPID (RZNPID), and other schemes reported in the literature. Stability issues are addressed for linear processes. Robust performance of AZNPID is observed while changing its tunable parameters as well as the process dead-time. The proposed scheme is also implemented on a real time servo-based position control system.
Institute of Scientific and Technical Information of China (English)
刘艳; 李银伢
2012-01-01
给出了一种基于改进型主导极点配置的自动电压调节器(automatic voltage regulator,AVR)励磁系统的PID控制器设计方法.首先将对AVR系统的时域指标转化为对主导极点的要求,引入前置滤波器后,运用根轨迹法将后续闭环主导极点配置在复平面期望区域之内,得到满足要求的Kp值区间.以一定步长扫描该Kp值区间,得到满足期望最大灵敏度指标的Kp值子区间.在子区间中选取合适的Kp值,利用所给出的解析表达式,得到PID控制器的另外两个参数和前置滤波器参数,实现对AVR系统的动态响应速度和超调量指标的折中处理.仿真结果表明,本方法得出了AVR系统的性能满足期望指标要求,可与典型智能进化算法得出的性能相媲美.%An approach of PID controller design for an automatic voltage regulator (AVR) excitation system based on the improved dominant pole placement method was proposed. First, the time domain performance specifications were transferred into the requirements on the dominant poles. Then by introducing a pre-filter, the interval of KP was obtained using the root locus technique to constrain the post-dominant poles within the desired region in the complex plane. The subinterval satisfying the desired maximum sensitivity index was determined by gridding the above interval of KP in fixed step size. The other parameters of the PID controller and the parameters of the pre-filter were calculated by the given analytical formulas after an appropriate value of KP was chosen, and then the trade off between the speed and the overshoot of the transient response of the AVR system could be handled. Simulation results show that the desired performance indexes of the AVR system are met and the corresponding performance of the AVR system can be compared with the one obtained by typical intelligent evolution algorithms.
US Agency for International Development — PIDS is the web-based system designed to allow data input and consultative sessions by USAID/Liberia's IPs and USAID personnel. It is established and maintained by...
An optimal fuzzy PID control approach for docking maneuver of two spacecraft: Orientational motion
Directory of Open Access Journals (Sweden)
A. Kosari
2017-02-01
Full Text Available This paper describes a scheme for a Fuzzy-Proportional Integral Derivative (FPID controller based on genetic algorithm (GA, in a docking maneuver of two spacecraft. The docking maneuver consists of two parts: translation and orientation. Euler’s gyroscopic equation is applied to obtain governing equations of orientational phase. Here, a designed fuzzy-PID controller for stabilization purpose of orientational phase of a docking maneuver is presented based on the Single Input Fuzzy Inference Motor (SIFIMs dynamically connected Preferrer Fuzzy Inference Motor (PFIM. This fuzzy-PID controller takes the error signal of Euler’s angles and the error of angular velocities of the chaser as its input items, and the driving force as its output. The parameters of the controller are ascertained by using a genetic algorithm. Conflicting objective functions (which their 3D pareto frontiers are obtained by Multi-objective Genetic Algorithm (MOGA are distance errors from the set point, angle errors from the set point, and control efforts. Optimization constraint is maximal of the momentum produced by momentum wheels. The result of optimum point demonstrates that the designed controller makes an efficient performance in the orientational phase of the chaser spacecraft. Compared to similar works, some of system parameters like settling time are improved and overshoot (as a critical parameter in docking maneuver is decreased.
基于单神经元-PID的液压变桨距控制系统的设计%The Design of Hydraulic Pitch-control System Based on Single Neuron Cell PID
Institute of Scientific and Technical Information of China (English)
2013-01-01
An intelligent PID control calculation is developed using single neuron,combining the advantages such as adaptability, self-learning, simple structure, short weight learning time, small computational amount and strong ro-bustness. Through the experimental study, it indicated that the hydraulic pitch-control system based on single neuron cell PID can better meet the requirements of nonlinear dynamics of the system and parameter time-variation than the classical PID control system.% 提出的单神经元-PID液压变桨距控制方法，结合了单神经元自适应性，自学习，结构简单，权值学习时间短，计算量小，鲁棒性强等优点，并通过实验，对该控制方法进行了验证，证明了其相比常规PID控制的优越性，能更好地满足风力变桨距系统的非线性，参数时变性的要求。
Institute of Scientific and Technical Information of China (English)
何新英; 吴家鸣
2015-01-01
针对母船的升沉运动会影响到带缆遥控水下机器人的安全作业和收放功能，提出了利用液压绞车进行水下机器人自动升沉补偿的方案。设计了带缆遥控水下机器人升沉补偿液压系统，控制系统采用了神经元自适应PID控制算法。并在Matlab中进行了仿真，仿真结果表明，该系统能够较好的实现水下机器人的升沉补偿运动。%The supporting ship heave motion affects the remotely operated vehicle safety operation and storage function,using hydraulic winch for automatic heave compensation of ROV was presented in this paper,The heave compensation hydraulic system of ROV has been designed, which the neuron adaptive PID control algorithm has been adopted. And has been simulate in mat lab,the simulation result show that the system can realize the ROV heave compensation movement.
Multi-Objective PID-Controller Tuning for a Magnetic Levitation System using NSGA-II
DEFF Research Database (Denmark)
Pedersen, Gerulf K. M.; Yang, Zhenyu
2006-01-01
This paper investigates the issue of PID-controller parameter tuning for a magnetic levitation system using the non-dominated sorting genetic algorithm (NSGA-II). The magnetic levitation system is inherently unstable and the PID-controller parameters are hard to find using conventional methods....... Based on four different performance measures, derived from the step response of the levitation system, the algorithm is used to find a set of non-dominated parameters for a PID-controller that can stabilize the system and minimize the performance measures....
A Method for Precision Closed-Loop Irrigation Using a Modified PID Control Algorithm
Goodchild, Martin; Kühn, Karl; Jenkins, Malcolm; Burek, Kazimierz; Dutton, Andrew
2016-04-01
The benefits of closed-loop irrigation control have been demonstrated in grower trials which show the potential for improved crop yields and resource usage. Managing water use by controlling irrigation in response to soil moisture changes to meet crop water demands is a popular approach but requires knowledge of closed-loop control practice. In theory, to obtain precise closed-loop control of a system it is necessary to characterise every component in the control loop to derive the appropriate controller parameters, i.e. proportional, integral & derivative (PID) parameters in a classic PID controller. In practice this is often difficult to achieve. Empirical methods are employed to estimate the PID parameters by observing how the system performs under open-loop conditions. In this paper we present a modified PID controller, with a constrained integral function, that delivers excellent regulation of soil moisture by supplying the appropriate amount of water to meet the needs of the plant during the diurnal cycle. Furthermore, the modified PID controller responds quickly to changes in environmental conditions, including rainfall events which can result in: controller windup, under-watering and plant stress conditions. The experimental work successfully demonstrates the functionality of a constrained integral PID controller that delivers robust and precise irrigation control. Coir substrate strawberry growing trial data is also presented illustrating soil moisture control and the ability to match water deliver to solar radiation.
Thermostatic system of sensor in NIR spectrometer based on PID control
Wang, Zhihong; Qiao, Liwei; Ji, Xufei
2016-11-01
Aiming at the shortcomings of the primary sensor thermostatic control system in the near infrared (NIR) spectrometer, a novel thermostatic control system based on proportional-integral-derivative (PID) control technology was developed to improve the detection precision of the NIR spectrometer. There were five parts including bridge amplifier circuit, analog-digital conversion (ADC) circuit, microcontroller, digital-analog conversion (DAC) circuit and drive circuit in the system. The five parts formed a closed-loop control system based on PID algorithm that was used to control the error between the temperature calculated by the sampling data of ADC and the designed temperature to ensure the stability of the spectrometer's sensor. The experimental results show that, when the operating temperature of sensor is -11°, compared with the original system, the temperature control precision of the new control system is improved from ±0.64° to ±0.04° and the spectrum signal to noise ratio (SNR) is improved from 4891 to 5967.
GA-based PID control of the plate width in hot-plate mills
Kim, Byungman; Lee, Dae Y.; Cho, Hyungsuck
1999-11-01
In hot plate mills the slabs from incoming reheat furnace are reduced to the desired width and thickness, being rolled out with considerable accuracy. The process of changing the plate width is controlled by a pair of edge rolls, which is called edger. The objectives of this edging process are to meet tight width tolerances of plates and to reduce the yield loss caused by trimming when irregular width is formed at the plate edge. There are several factors that result in complexity and uncertainty in width control. These include inaccurate edger set-up model, degradation of various mill equipment, variation of operation conditions, environments and variation of the dimension of incoming cast slabs. In this paper, a genetic algorithm-based PID control is proposed to ensure the control of the desired width at the exit of the mill. The approach adopted here is essentially optimization of the PID controller gains in order to minimize the error between the desired and actual slab width. Since the design parameters associated with genetic algorithm affect convergence performance, the effects of these parameters are investigated in detail. In addition, the control performance is also evaluated for various process parameters such as initial width of the incoming slab and temperature of the slab. Based on the result obtained from a series of simulations, the proposed control method is found to yield satisfactory performance for various process conditions.
Directory of Open Access Journals (Sweden)
Kesavan.E
2013-04-01
Full Text Available This paper suggests an idea to design an adaptive PID controller for Non-linear liquid tank System and is implemented in PLC. Online estimation of linear parameters (Time constant and Gain brings an exact model of the process to take perfect control action. Based on these estimated values, the controller parameters will be well tuned by internal model control. Internal model control is an unremarkably used technique and provides well tuned controller in order to have a good controlling process. PLC with its ability to have both continues control for PID Control and digital control for fault diagnosis which ascertains faults in the system and provides alerts about the status of the entire process.
Single Neuron PID Control of Aircraft Deicing Fluids Rapid Heating System
2013-01-01
Aircraft deicing fluids rapid heating system is widely used in aircraft ground deicing to ensure that the operation of flights can be safe and efficient. Aiming at the temperature turbulence problem of aircraft deicing system, this paper presents the single neuron PID control strategy which combine the advantage of conventional PID control with artificial neuron control. The aircraft deicing fluids rapid heating system and the scheme and working principle of the system is introduced. Simulati...
Auto-tuning of PID controller parameters with supervised receding horizon optimization.
Xu, Min; Li, Shaoyuan; Qi, Chenkun; Cai, Wenjian
2005-10-01
In this paper, a novel two-layer online auto-tuning algorithm is presented for a nonlinear time-varying system. The lower layer consists of a conventional proportional-integral-derivative (PID) controller and a plant process, while the upper layer is composed of identification and tuning modules. The purpose of the upper layer is to find a set of optimal PID parameters for the lower layer via an online receding horizon optimization approach, which result in a time-varying PID controller. Through mathematical analysis, the proposed system performance is equivalent to that of a standard generalized predictive control. Simulation and experiment demonstrate that the new method has a better control system performance compared with conventional PID controllers.
The Self-Adaptive Fuzzy PID Controller in Actuator Simulated Loading System
Directory of Open Access Journals (Sweden)
Chuanhui Zhang
2013-05-01
Full Text Available This paper analyzes the structure principle of the actuator simulated loading system with variable stiffness, and establishes the simplified model. What’s more, it also does a research on the application of the self-adaptive tuning of fuzzy PID(Proportion Integration Differentiation in actuator simulated loading system with variable stiffness. Because the loading system is connected with the steering system by a spring rod, there must be strong coupling. Besides, there are also the parametric variations accompanying with the variations of the stiffness. Based on compensation from the feed-forward control on the disturbance brought by the motion of steering engine, the system performance can be improved by using fuzzy adaptive adjusting PID control to make up the changes of system parameter caused by the changes of the stiffness. By combining the fuzzy control with traditional PID control, fuzzy adaptive PID control is able to choose the parameters more properly.
A numerical model including PID control of a multizone crystal growth furnace
Panzarella, Charles H.; Kassemi, Mohammad
This paper presents a 2D axisymmetric combined conduction and radiation model of a multizone crystal growth furnace. The model is based on a programmable multizone furnace (PMZF) designed and built at NASA Lewis Research Center for growing high quality semiconductor crystals. A novel feature of this model is a control algorithm which automatically adjusts the power in any number of independently controlled heaters to establish the desired crystal temperatures in the furnace model. The control algorithm eliminates the need for numerous trial and error runs previously required to obtain the same results. The finite element code, FIDAP, used to develop the furnace model, was modified to directly incorporate the control algorithm. This algorithm, which presently uses PID control, and the associated heat transfer model are briefly discussed. Together, they have been used to predict the heater power distributions for a variety of furnace configurations and desired temperature profiles. Examples are included to demonstrate the effectiveness of the PID controlled model in establishing isothermal, Bridgman, and other complicated temperature profies in the sample. Finally, an example is given to show how the algorithm can be used to change the desired profile with time according to a prescribed temperature-time evolution.
Computation of stabilizing PI and PID controllers for processes with time delay.
Tan, Nusret
2005-04-01
In this paper, a new method for the computation of all stabilizing PI controllers for processes with time delay is given. The proposed method is based on plotting the stability boundary locus in the (kp, ki) plane and then computing the stabilizing values of the parameters of a PI controller for a given time delay system. The technique presented does not need to use Pade approximation and does not require sweeping over the parameters and also does not use linear programming to solve a set of inequalities. Thus it offers several important advantages over existing results obtained in this direction. Beyond stabilization, the method is used to compute stabilizing PI controllers which achieve user specified gain and phase margins. The proposed method is also used to design PID controllers for control systems with time delay. The limiting values of a PID controller which stabilize a given system with time delay are obtained in the (kp, ki) plane, (kp, kd) plane, and (ki, kd) plane. Examples are given to show the benefits of the method presented.
A fuzzy PID-controlled SMA actuator for a two-DOF joint
Directory of Open Access Journals (Sweden)
Shi Zhenyun
2014-04-01
Full Text Available Shape memory alloy (SMA actuator is a potential advanced component for servo-systems of aerospace vehicles and aircraft. This paper presents a joint with two degrees of freedom (DOF and a mobility range close to ±60° when driven by SMA triple wires. The fuzzy proportional-integral-derivative (PID-controlled actuator drive was designed using antagonistic SMA triple wires, and the resistance feedback signal made a closed loop. Experiments showed that, with the driving responding frequency increasing, the overstress became harder to be avoided at the position under the maximum friction force. Furthermore, the hysteresis gap between the heating and cooling paths of the strain-to-resistance curve expanded under this condition. A fuzzy logic control was considered as a solution, and the curves of the wires were then modeled by fitting polynomials so that the measured resistance was used directly to determine the control signal. Accurate control was demonstrated through the step response, and the experimental results showed that under the fuzzy PID-control program, the mean absolute error (MAE of the rotation angle was about 3.147°. In addition, the investigation of the external interference to the system proved the controllable maximum output.
Directory of Open Access Journals (Sweden)
Juli Sardi
2014-09-01
Full Text Available In the present study, bioimpedance signals of human body was utilized to control speed of a wheelchair movement. A bioimpedance is electrically passive part contained the body tissues. The research is one of alternative solutions for patients with paralysis of the upper and lower limb. Firstly, design of system of the research consisted of bioimpedance measuring instruments and a mechanical design of the wheelchair. Bioimpedance measurement was performed by injecting a sinusoidal current source of 0.5 mArms with a frequency of 50 kHz to muscle tissue (shoulder to obtain the output voltage in the range of 0-5 Vdc. With impulse and manual thresholding methods, the voltage signal was classified into several controls command to adjust the speed and direction of the wheelchair control based on PID Controller. The experimental result of the research was realization of bioimpedance signal that used as a reference to control the direction and speed of the wheelchair with a success rate of 86.7 %. A wheelchair velocity was classified into three types of motion, namely slow, medium and fast. Slow speed has a rated speed of 30 Cm/s, medium speed value speed of 40 Cm/s and fast speed value of 50 Cm/s. The wheelchair can also turn to the left and the right in accordance with the wishes of wheelchair user beside to moving forward.
The Redundant Arm Self-motion Control Based on Self-tuning Fuzzy PID Controller
Institute of Scientific and Technical Information of China (English)
Liu Yu(刘宇); Sun Lining; Du Zhijiang
2004-01-01
A fuzzy control algorithm based on self-tuning PID proportional factor is presented. To a certain degree, it overcomes robot motion control's nonlinearity and uncertainty caused by joints coupled and friction, and decreases overshoot of end manipulator's tracking desired curves. The controller's structure is very simple but effective. With this control method, a 7-DOF redundant arm's self-motion developed by the authors is investigated. Research results show that the said controller restrains track overshoot and possesses preferable merits.
基于 FPGA 的 PID 光束稳定控制系统研制%Development of PID Control System for Beam Stability Based on FPGA
Institute of Scientific and Technical Information of China (English)
芮小军; 张永立; 张招红; 郑丽芳
2015-01-01
为了抑制外来振动对上海光源红外光束稳定性的影响，提高实验站的供光品质，研制了一种以数字PID控制器为核心的反馈控制系统。同时分析了数字PID控制算法，并应用FPGA技术，采用自顶向下的方法进行Verilog语言和原理图相结合的方式编程，设计了增量式数字PID控制器。测试结果表明：该反馈控制系统能有效地抑制红外光束的光斑位置抖动，最大工作带宽250 Hz。%A kind of feedback control system, with the digital PID controller as its core, is developed to stabilize the infrared beam position of SSRF disturbed by the external environment.Meanwhile, Verilog and schematic diagram are adopted to finish the top-down design of the increasing controller with FPGA based on PID control algorithm.The results show that the stability of the infrared beam position is dramatically improved by adopting the feedback control system, and the maximum effective operating band is 250 Hz.
Adaptive PID Controller Using RLS for SISO Stable and Unstable Systems
Directory of Open Access Journals (Sweden)
Rania A. Fahmy
2014-01-01
Full Text Available The proportional-integral-derivative (PID is still the most common controller and stabilizer used in industry due to its simplicity and ease of implementation. In most of the real applications, the controlled system has parameters which slowly vary or are uncertain. Thus, PID gains must be adapted to cope with such changes. In this paper, adaptive PID (APID controller is proposed using the recursive least square (RLS algorithm. RLS algorithm is used to update the PID gains in real time (as system operates to force the actual system to behave like a desired reference model. Computer simulations are given to demonstrate the effectiveness of the proposed APID controller on SISO stable and unstable systems considering the presence of changes in the systems parameters.
Research on Airborne Electro-Optical Tracking and Sighting System Based on Fuzzy PID and H∞ Control
Institute of Scientific and Technical Information of China (English)
无
2007-01-01
Airborne electro-optical tracking and sighting system is a three-degree-of-freedom angular position servo system which is influenced by multi-disturbance, and its control system consists of stabilizing and tracking components. Stabilizing control is applied to track angular velocity order and control multi-disturbance under airborne condition, and its robustness should be very good; tracking control is applied to compensate tracking error of angular position. A mathematical model is established by taking the control of yaw loop as example. H∞ stabilizing controller is designed by taking the advantage of H∞ control robustness and combining with Kalman filter. A fuzzy control is introduced in general PID control to design a decoupled fuzzy Smith estimating PID controller for tracking control. Simulation research shows that the control effect of airborne electro-optical tracking and sighting system based on fuzzy PID and H∞ control is good, especially when the model parameters change and the multi-disturbance exists, the system capability has little fall, but this system still can effectively track a target.
Comparison between Conventional and Fuzzy Logic PID Controllers for Controlling DC Motors
Directory of Open Access Journals (Sweden)
Essam Natsheh
2010-09-01
Full Text Available Fuzzy logic and proportional-integral-derivative (PID controllers are compared for use in direct current (DC motors positioning system. A simulation study of the PID position controller for the armature-controlled with fixed field and field controlled with fixed armature current DC motors is performed. Fuzzy rules and the inferencing mechanism of the fuzzy logic controller (FLC are evaluated by using conventional rule-lookup tables that encode the control knowledge in a rules form. The performance assessment of the studied position controllers is based on transient response and error integral criteria. The results obtained from the FLC are not only superior in the rise time, speed fluctuations, and percent overshoot but also much better in the controller output signal structure, which is much remarkable in terms of the hardware implementation.
Fitzpatrick, Clare K; Baldwin, Mark A; Clary, Chadd W; Maletsky, Lorin P; Rullkoetter, Paul J
2014-01-01
Validated computational knee simulations are valuable tools for design phase development of knee replacement devices. Recently, a dynamic finite element (FE) model of the Kansas knee simulator was kinematically validated during gait and deep flexion cycles. In order to operate the computational simulator in the same manner as the experiment, a proportional-integral-derivative (PID) controller was interfaced with the FE model to control the quadriceps actuator excursion and produce a target flexion profile regardless of implant geometry or alignment conditions. The controller was also expanded to operate multiple actuators simultaneously in order to produce in vivo loading conditions at the joint during dynamic activities. Subsequently, the fidelity of the computational model was improved through additional muscle representation and inclusion of relative hip-ankle anterior-posterior (A-P) motion. The PID-controlled model was able to successfully recreate in vivo loading conditions (flexion angle, compressive joint load, medial-lateral load distribution or varus-valgus torque, internal-external torque, A-P force) for deep knee bend, chair rise, stance-phase gait and step-down activities.
Two modified discrete PID-based sliding mode controllers for piezoelectric actuators
Cao, Y.; Chen, X. B.
2014-01-01
Hysteresis is a nonlinear effect that can result in the degraded performance of piezoelectric actuators (PEAs). To counteract the effect, several control methods have been developed and reported in the literature. One promising method for compensation is the use of a proportional-integral-derivative (PID)-based sliding mode control (SMC), in which the PEA hysteresis is treated as an unknown disturbance to the PEA input. If the hysteresis can be modelled or partially modelled, the integration of the hysteresis models into the control schemes may lead to further improved performance. On this philosophy, this paper presents the development of two modified discrete PID-based sliding mode controllers (PID-SMCs) for the PEAs, namely an inversion-based PID-SMC and a disturbance-observer (DOB)-based PID-SMC, in which the PEA hysteresis is predicted or partially predicted through the use of existing models for the PEA hysteresis. Experiments were performed to verify the effectiveness of the proposed control schemes. The results were compared to those of the nominal PID-SMC. By employing the inversion hysteresis and the DOB, the PEA performance was greatly improved.
Comparison between PI and PID controllers used in UPFC control for power flow
Energy Technology Data Exchange (ETDEWEB)
Aghdam, Hossein Nasir [Department of Electrical Engineering, Ahar Branch, Islamic Azad University, Ahar (Iran, Islamic Republic of); email: h_nasir@iau-ahar.ac.ir; Kaheh, Meghdad [Department of Electrical Engineering, Majlesi Branch, Islamic Azad University, Majlesi (Iran, Islamic Republic of); email: kaheh.meghdad@gmail.com; Najafi, Babak [Department of Electrical Engineering, Germi Branch, Islamic Azad University, Germi (Iran, Islamic Republic of); email: ba.najafi@gmail.com4; Farhadi, Payam; Karimi, Mohammad [Department of Electrical Engineering, Parsabad Moghan Branch, Islamic Azad University, Young Researchers Club, Parsabad Moghan (Iran, Islamic Republic of); email: pfarhadi@iaupmogan.ac.ir; Karimi, Mohammad, email: mohammadkarimi62@gmail.com
2011-07-01
This paper compares features of PI and PID Controllers, the two most frequently used unified power flow controllers (UPFC) in transmission lines. These are Flexible AC Transmission Systems devices (FACTS) which are used in general to control the power flow and damp oscillations of power systems. These features enhance the capacity of existing transmission systems to carry energy, obviating the need to build new transmission lines while at the same time respecting safety, environmental, and economic constraints. The growing demand for energy has put pressure on the industry to develop appropriate methods for augmenting the efficacity and reliability of systems while operating within their various limitations. In conclusion, it was demonstrated that the PI controller response is better for power system stability but that in reactive power control the PI and PID controllers have similar performance. The efficiency of the UPFCs was also demonstrated using MATLAB/SIMULINK software.
MATTER-ELEMENT MODELING OF PARALLEL STRUCTURE AND APPLICATION ABOUT EXTENSION PID CONTROL SYSTEM
Institute of Scientific and Technical Information of China (English)
Rongde LU; Zonghai CHEN
2006-01-01
This article describes in detail a new method via the extension predictable algorithm of the matter-element model of parallel structure tuning the parameters of the extension PID controller. In comparison with fuzzy and extension PID controllers, the proposed extension PID predictable controller shows higher control gains when system states are away from equilibrium, and retains a lower profile of control signals at the same time. Consequently, better control performance is achieved. Through the proposed tuning formula, the weighting factors of an extension-logic predictable controller can be systematically selected according to the control plant. An experimental example through industrial field data and site engineers' experience demonstrates the superior performance of the proposed controller over the fuzzy controller.
Directory of Open Access Journals (Sweden)
Gang Qin
2015-01-01
Full Text Available The acceleration performance of EV, which affects a lot of performances of EV such as start-up, overtaking, driving safety, and ride comfort, has become increasingly popular in recent researches. An improved variable gain PID control algorithm to improve the acceleration performance is proposed in this paper. The results of simulation with Matlab/Simulink demonstrate the effectiveness of the proposed algorithm through the control performance of motor velocity, motor torque, and three-phase current of motor. Moreover, it is investigated that the proposed controller is valid by comparison with the other PID controllers. Furthermore, the AC induction motor experiment set is constructed to verify the effect of proposed controller.
Institute of Scientific and Technical Information of China (English)
张媛媛; 徐科军; 黄云志; 陈佳臻; 滕勤; 谈建
2011-01-01
宽域废气氧(Universal Exhaust Gas Oxygen,UEGO)传感器可以在很宽的空燃比范围内提供有效的氧含量信号,它的结构特殊,必须配以控制器才能使用.利用鲁棒PID算法控制UEGO控制器中象电压的大小和方向,并将泵电压反馈作用在UEGO传感器上.检测UEGO传感器上的泵电流,并设计非线性校正环节对其进行校正,校正输出值即为过量空气系数(A).利用dSPACE实时仿真系统实现UEGO控制器,并在汽车化油器发动机台架上进行相关实验.实验数据表明,在λ值静态和动态变化时,UEGO控制器都具有良好的鲁棒性和运行性能,响应快速且精度良好.%Universal exhaust gas oxygen (UEGO) sensor can effectively provide the information of oxygen content in wide scope of air-fuel ratio. Due to its special structure, it cannot work normally without a controller. Therefore a robust PID algorithm was applied to the controller of UEGO sensor for controlling the value and direction of the pump cell voltage and exerting a feedback control action on the sensor. The pump cell current was detected and a nonlinear corrector for the pump cell current was designed, which results in an excess air factor(λ ). UEGO controller was implemented by means of dSPACE real time simulation system, and experiments were conducted on a carburetor engine. Experimental results show that the UEGO controller has strong robustness and good running performance. It can achieve quick response and precision measurement when λ changes in static and dynamic modes.
Sharma, Richa; Gaur, Prerna; Mittal, A P
2015-09-01
The robotic manipulators are multi-input multi-output (MIMO), coupled and highly nonlinear systems. The presence of external disturbances and time-varying parameters adversely affects the performance of these systems. Therefore, the controller designed for these systems should effectively deal with such complexities, and it is an intriguing task for control engineers. This paper presents two-degree of freedom fractional order proportional-integral-derivative (2-DOF FOPID) controller scheme for a two-link planar rigid robotic manipulator with payload for trajectory tracking task. The tuning of all controller parameters is done using cuckoo search algorithm (CSA). The performance of proposed 2-DOF FOPID controllers is compared with those of their integer order designs, i.e., 2-DOF PID controllers, and with the traditional PID controllers. In order to show effectiveness of proposed scheme, the robustness testing is carried out for model uncertainties, payload variations with time, external disturbance and random noise. Numerical simulation results indicate that the 2-DOF FOPID controllers are superior to their integer order counterparts and the traditional PID controllers.
A novel optimal PID plus second order derivative controller for AVR system
Directory of Open Access Journals (Sweden)
Mouayad A. Sahib
2015-06-01
Full Text Available This paper proposes a novel controller for automatic voltage regulator (AVR system. The controller is a four term control type consisting of proportional, integral, derivative, and second order derivative terms (PIDD2. The four parameters of the proposed controller are optimized using particle swarm optimization (PSO algorithm. The performance of the proposed PIDD2 is compared with various PID controllers tuned by modern heuristic optimization algorithms. In addition, a comparison with the fractional order PID (FOPID controller tuned by Chaotic Ant Swarm (CAS algorithm is also performed. Furthermore, a frequency response, zero-pole map, and robustness analysis of the AVR system with PIDD2 is performed. Practical implementation issues of the proposed controller are also addressed. Simulation results showed a superior response performance of the PIDD2 controller in comparison to PID and FOPID controllers. Moreover, the proposed PIDD2 can highly improve the system robustness with respect to model uncertainties.
Position control of nonlinear hydraulic system using an improved PSO based PID controller
Ye, Yi; Yin, Chen-Bo; Gong, Yue; Zhou, Jun-jing
2017-01-01
This paper addresses the position control of valve-controlled cylinder system employed in hydraulic excavator. Nonlinearities such as dead zone, saturation, discharge coefficient and friction existed in the system are highlighted during the mathematical modeling. On this basis, simulation model is established and then validated against experiments. Aim for achieving excellent position control performances, an improved particle swarm optimization (PSO) algorithm is presented to search for the optimal proportional-integral-derivative (PID) controller gains for the nonlinear hydraulic system. The proposed algorithm is a hybrid based on the standard PSO algorithm but with the addition of selection and crossover operators from genetic algorithm in order to enhance the searching efficiency. Furthermore, a nonlinear decreasing scheme for the inertia weight of the improved PSO algorithm is adopted to balance global exploration and local exploration abilities of particles. Then a co-simulation platform combining the simulation model with the improved PSO tuning based PID controller is developed. Comparisons of the improved PSO, standard PSO and Phase Margin (PM) tuning methods are carried out with three position references as step signal, ramp signal and sinusoidal wave using the co-simulation platform. The results demonstrated that the improved PSO algorithm can perform well in PID control for positioning of nonlinear hydraulic system.
Institute of Scientific and Technical Information of China (English)
陈怀忠
2012-01-01
针对水箱液位这样一个多干扰、大惯性、高度非线性系统控制性能优化较困难,传统的控制策略在控制精度、灵敏度以及系统稳定性均存在缺陷,充分利用神经网络具有非线性函数逼近能力,构造神经网络PID自整定控制器,在解决高度非线性和严重不确定系统方面具有较好控制能力.解决了传统PID控制算法难以保证系统在任何工况条件下始终具有最佳控制性能的难题.仿真结果表明,该控制能使系统达到较好的控制效果.%For the problem of controlling the liquid level of water tank with multi- interference, large inertia and highly nonlinear, the traditional control strategy has disadvantages in control precision, sensitivity and system stability. BP neural network control makes full use of neural network approximation capability to construct neural network self-tuning PID controller, having better control in resolving the highly nonlinear seriously uncertain systems. It overcomes the shortcoming of traditional PID controller which can not assure optimal control performance for system in any working condition. Simulated result indicates this control is able to make system reach satisfied control effect.
Nonlinear adaptive PID control for greenhouse environment based on RBF network.
Zeng, Songwei; Hu, Haigen; Xu, Lihong; Li, Guanghui
2012-01-01
This paper presents a hybrid control strategy, combining Radial Basis Function (RBF) network with conventional proportional, integral, and derivative (PID) controllers, for the greenhouse climate control. A model of nonlinear conservation laws of enthalpy and matter between numerous system variables affecting the greenhouse climate is formulated. RBF network is used to tune and identify all PID gain parameters online and adaptively. The presented Neuro-PID control scheme is validated through simulations of set-point tracking and disturbance rejection. We compare the proposed adaptive online tuning method with the offline tuning scheme that employs Genetic Algorithm (GA) to search the optimal gain parameters. The results show that the proposed strategy has good adaptability, strong robustness and real-time performance while achieving satisfactory control performance for the complex and nonlinear greenhouse climate control system, and it may provide a valuable reference to formulate environmental control strategies for actual application in greenhouse production.
Nonlinear Adaptive PID Control for Greenhouse Environment Based on RBF Network
Directory of Open Access Journals (Sweden)
Guanghui Li
2012-04-01
Full Text Available This paper presents a hybrid control strategy, combining Radial Basis Function (RBF network with conventional proportional, integral, and derivative (PID controllers, for the greenhouse climate control. A model of nonlinear conservation laws of enthalpy and matter between numerous system variables affecting the greenhouse climate is formulated. RBF network is used to tune and identify all PID gain parameters online and adaptively. The presented Neuro-PID control scheme is validated through simulations of set-point tracking and disturbance rejection. We compare the proposed adaptive online tuning method with the offline tuning scheme that employs Genetic Algorithm (GA to search the optimal gain parameters. The results show that the proposed strategy has good adaptability, strong robustness and real-time performance while achieving satisfactory control performance for the complex and nonlinear greenhouse climate control system, and it may provide a valuable reference to formulate environmental control strategies for actual application in greenhouse production.
Voice Coil Motor Position Control Based on Feed-forward Fuzzy PID
Institute of Scientific and Technical Information of China (English)
尹峰松
2016-01-01
Conventional PID algorithm is unable to track the response with high frequency,and has obvious overshoot in some voice coil motor practical applications.So,combined with the fuzzy PID control theory,we can obtain the precise control by the method.Meanwhile,through the feed-forward control,the performance of quick response and dynamic tracking can be improved.Thus,this control method not only maintains the excellent performance of the controller,but also improves the stability of the system.
Directory of Open Access Journals (Sweden)
Bučanović Ljubiša J.
2014-01-01
Full Text Available This paper deals with the design of a new algorithm of PID control based on fractional calculus (FC in production of technical gases, i.e. in a cryogenic air separation process. Production of low pressure liquid air was first introduced by P. L. Kapica and involved expansion in a gas turbine. For application in the synthesis of the control law, for the input temperature and flow of air to the expansion turbine, it is necessary to determine the appropriate differential equations of the cryogenic process of mixing of two gaseous airflows at different temperatures before entrance to the expansion turbine. Thereafter, the model is linearized and decoupled and consequently classical PID and fractional order controllers are taken to assess the quality of the proposed technique. A set of optimal parameters of these controllers are achieved through the genetic algorithm optimization procedure by minimizing a cost function. Our design method focuses on minimizing performance criterion which involves IAE, overshoot, as well as settling time. A time-domain simulation was used to identify the performance of controller with respect to a traditional optimized PID controller. [Projekat Ministarstva nauke Republike Srbije, br. 35006
Single Neuron PID Control of Aircraft Deicing Fluids Rapid Heating System
Directory of Open Access Journals (Sweden)
Bin Chen
2013-02-01
Full Text Available Aircraft deicing fluids rapid heating system is widely used in aircraft ground deicing to ensure that the operation of flights can be safe and efficient. Aiming at the temperature turbulence problem of aircraft deicing system, this paper presents the single neuron PID control strategy which combine the advantage of conventional PID control with artificial neuron control. The aircraft deicing fluids rapid heating system and the scheme and working principle of the system is introduced. Simulation is executed on the basis of the mathematical model of aircraft deicing fluids rapid heating system, which is built in this paper, according to a number of data collected by experiments which are operated on the experimental platform of deicing fluids rapid heating system. The simulation results show that the single neuron PID control strategy perform effectively on the temperature turbulence problem of aircraft deicing fluids rapid heating system. Experiments are conducted to vertify the single neuron PID control strategy, the results of which show that the single neuron PID control strategy can achieve the request in practical application of the aircraft deicing fluids rapid heating system.
Improving disturbance rejection of PID controllers by means of the magnitude optimum method.
Vrancić, Damir; Strmcnik, Stanko; Kocijan, Jus; de Moura Oliveira, P B
2010-01-01
The magnitude optimum (MO) method provides a relatively fast and non-oscillatory closed-loop tracking response for a large class of process models frequently encountered in the process and chemical industries. However, the deficiency of the method is poor disturbance rejection performance of some processes. In this paper, disturbance rejection performance of the PID controller is improved by applying the "disturbance rejection magnitude optimum" (DRMO) optimisation method, while the tracking performance has been improved by a set-point weighting and set-point filtering PID controller structure. The DRMO tuning method requires numerical optimisation for the calculation of PID controller parameters. The method was applied to two different 2-degrees-of-freedom PID controllers and has been tested on several different representatives of process models and one laboratory set-up. A comparison with some other tuning methods has shown that the proposed tuning method, with a set-point filtering PID controller, is quite efficient in improving disturbance rejection performance, while retaining tracking performance comparable with the original MO method.
Wastegate Actuator Modeling and Tuning of a PID Controller for Boost Pressure Control
Thomasson, Andreas
2009-01-01
In some turbochargers, boost pressure is reduced by opening the wastegate valve. In a modern turbo charged car, the most common way for opening the wastegate is with a pneumatic actuator and an air control solenoid, controlled by the ECU. In the control systems studied the ECU utilizes a static feedforward and a PID controller, for the purpose of making the boost pressure follow its reference value. With no systematic method for tuning the controller, this can be time consuming, and a set of ...
A new control scheme for PID load frequency controller of single-area and multi-area power systems.
Padhan, Dola Gobinda; Majhi, Somanath
2013-03-01
A new control structure with a tuning method to design a PID load frequency controller for power systems is presented. Initially, the controller is designed for single area power system, then it is extended to multi-area case. The controller parameters are obtained by expanding controller transfer function using Laurent series. Relay based identification technique is adopted to estimate power system dynamics. Robustness studies on stability and performance are provided, with respect to uncertainties in the plant parameters. The proposed scheme ensures that overall system remains asymptotically stable for all bounded uncertainties and for system oscillations. Simulation results show the feasibility of the approach and the proposed method improves the load disturbance rejection performance significantly even in the presence of the uncertainties in plant parameters.
Institute of Scientific and Technical Information of China (English)
Chen,Guochu; Zhang,Lin; Hao,Ninmei; Liu,Xianguang; Wang,Junhong
2003-01-01
Guided by the principle of neural network, an intelligent PID controller based on neural network is devised and applied to control of constant temperature and constant liquidlevel system. The experiment results show that this controller has high accuracy and strong robustness and good characters.
Continuous Firefly Algorithm for Optimal Tuning of Pid Controller in Avr System
Bendjeghaba, Omar
2014-01-01
This paper presents a tuning approach based on Continuous firefly algorithm (CFA) to obtain the proportional-integral- derivative (PID) controller parameters in Automatic Voltage Regulator system (AVR). In the tuning processes the CFA is iterated to reach the optimal or the near optimal of PID controller parameters when the main goal is to improve the AVR step response characteristics. Conducted simulations show the effectiveness and the efficiency of the proposed approach. Furthermore the proposed approach can improve the dynamic of the AVR system. Compared with particle swarm optimization (PSO), the new CFA tuning method has better control system performance in terms of time domain specifications and set-point tracking.
Control PID de un secador mediante autómatas programables conectados por ethernet
2012-01-01
Este proyecto final de carrera se centra en el control PID de temperatura de un secador convencional mediante autómatas programables conectados por Ethernet. Se busca con ello la configuración de un red de comunicaciones entre dos PLC’s industriales (Programmable Logic Controller en sus siglas en inglés) y el control de temperatura mediante un controlador PID. Los controladores lógicos programables o PLC’s son dispositivos electrónicos muy usados en automatización industrial...
Application of single neuron adaptive PID controller during the process of timber drying
Institute of Scientific and Technical Information of China (English)
ZHANG Dong-yan; LIU Ya-qiu; CAO Jun
2003-01-01
The paper presents a method of using single neuron adaptive PID control for adjusting system or servo system to implement timber drying process control, which combines the thought of parameter adaptive PID control and the character of neural network on exactly describing nonlinear and uncertainty dynamic process organically. The method implements functions of adaptive and self-learning by adjusting weighting parameters. Adaptive neural network can make some output trail given hoping value to decouple in static state. The simulation result indicates the validity, veracity and robustness of the method used in the timber drying process
Energy Technology Data Exchange (ETDEWEB)
Das, Pramode K; Mathew, Sam; Shaiju, A J; Patnaik, B S V, E-mail: bsvp@iitm.ac.in [Fluid Mechanics Laboratory, Department of Applied Mechanics, Indian Institute of Technology Madras, Chennai 600 036 (India)
2016-02-15
The control of vortex shedding behind a circular cylinder is a precursor to a wide range of external shear flow problems in engineering, in particular the flow-induced vibrations. In the present study, numerical simulation of an energetically efficient active flow control strategy is proposed, for the control of wake vortices behind a circular cylinder at a low Reynolds number of 100. The fluid is assumed to be incompressible and Newtonian with negligible variation in properties. Reflectionally symmetric controllers are designed such that, they are located on a small sector of the cylinder over which, tangential sliding mode control is imparted. In the field of modern controls, proportional (P), integral (I) and differential (D) control strategies and their numerous combinations are extremely popular in industrial practice. To impart suitable control actuation, the vertically varying lift force on the circular cylinder, is synthesised for the construction of an error term. Four different types of controllers considered in the present study are, P, I, PI and PID. These controllers are evaluated for their energetic efficiency and performance. A linear quadratic optimal control problem is formulated, to minimise the cost functional. By performing detailed simulations, it was observed that, the system is energetically efficient, even when the twin eddies are still persisting behind the circular cylinder. To assess the adaptability of the controllers, the actuators were switched on and off to study their dynamic response. (paper)
Energy Technology Data Exchange (ETDEWEB)
Jahedi, G. [Energy Research Center, Department of Electrical Engineering, Amirkabir University of Technology (Tehran Polytechnic), 424 Hafez Ave, Tehran (Iran, Islamic Republic of); Ardehali, M.M., E-mail: ardehali@aut.ac.i [Energy Research Center, Department of Electrical Engineering, Amirkabir University of Technology (Tehran Polytechnic), 424 Hafez Ave, Tehran (Iran, Islamic Republic of)
2011-01-15
The simplicity in coding the heuristic judgment of experienced operator by means of fuzzy logic can be exploited for enhancement of energy efficiency. Fuzzy logic has been used as an effective tool for scheduling conventional PID controllers gain coefficients (F-PID). However, to search for the most desirable fuzzy system characteristics that allow for best performance of the energy system with minimum energy input, optimization techniques such as genetic algorithm (GA) could be utilized and the control methodology is identified as GA-based F-PID (GA-F-PID). The objective of this study is to examine the performance of PID, F-PID, and GA-F-PID controllers for enhancement of energy efficiency of a dynamic energy system. The performance evaluation of the controllers is accomplished by means of two cost functions that are based on the quadratic forms of the energy input and deviation from a setpoint temperature, referred to as energy and comfort costs, respectively. The GA-F-PID controller is examined in two different forms, namely, global form and local form. For the global form, all possible combinations of fuzzy system characteristics in the search domain are explored by GA for finding the fittest chromosome for all discrete time intervals during the entire operation period. For the local form, however, GA is used in each discrete time interval to find the fittest chromosome for implementation. The results show that the global form GA-F-PID and local form GA-F-PID control methodologies, in comparison with PID controller, achieve higher energy efficiency by lowering energy costs by 51.2%, and 67.8%, respectively. Similarly, the comfort costs for deviation from setpoint are enhanced by 54.4%, and 62.4%, respectively. It is determined that GA-F-PID performs better in local from than global form.
PID controller auto-tuning based on process step response and damping optimum criterion.
Pavković, Danijel; Polak, Siniša; Zorc, Davor
2014-01-01
This paper presents a novel method of PID controller tuning suitable for higher-order aperiodic processes and aimed at step response-based auto-tuning applications. The PID controller tuning is based on the identification of so-called n-th order lag (PTn) process model and application of damping optimum criterion, thus facilitating straightforward algebraic rules for the adjustment of both the closed-loop response speed and damping. The PTn model identification is based on the process step response, wherein the PTn model parameters are evaluated in a novel manner from the process step response equivalent dead-time and lag time constant. The effectiveness of the proposed PTn model parameter estimation procedure and the related damping optimum-based PID controller auto-tuning have been verified by means of extensive computer simulations.
Directory of Open Access Journals (Sweden)
Maria Isabel Berto
2004-09-01
pasteurizer heating section. As the water temperature behavior according to the same step change on the potency of the resistance depends on the working flow rate, a single controller was designed to keep this temperature at its desirable set-point, for the water flow rate, within the range of 300 to 700L/h. Three different tunings for the PID were tested: the first consisted on the implementation of a function for the calculation of the PID parameters fitted to individual values obtained from each flow rate, according to process reaction curve methodology; the second consisted on using the PID parameters calculated as the average of these individual values; at the third tuning, an adaptive function fitted with the individual parameters obtained with Aström & Hägglund methodology was used. The performance evaluation of the configured PID controllers was carried out by comparing the error index values, obtained after disturbances in the water flow rate in the closed loop system. The error indexes calculated after step changes in the water flow rate were used to evaluate the tunings. The results have shown that the third tuning, called "Bang Bang" presented minor oscillations and smaller error indexes compared to the other two methods.
Closed-loop step response for tuning PID-fractional-order-filter controllers.
Amoura, Karima; Mansouri, Rachid; Bettayeb, Maâmar; Al-Saggaf, Ubaid M
2016-09-01
Analytical methods are usually applied for tuning fractional controllers. The present paper proposes an empirical method for tuning a new type of fractional controller known as PID-Fractional-Order-Filter (FOF-PID). Indeed, the setpoint overshoot method, initially introduced by Shamsuzzoha and Skogestad, has been adapted for tuning FOF-PID controller. Based on simulations for a range of first order with time delay processes, correlations have been derived to obtain PID-FOF controller parameters similar to those obtained by the Internal Model Control (IMC) tuning rule. The setpoint overshoot method requires only one closed-loop step response experiment using a proportional controller (P-controller). To highlight the potential of this method, simulation results have been compared with those obtained with the IMC method as well as other pertinent techniques. Various case studies have also been considered. The comparison has revealed that the proposed tuning method performs as good as the IMC. Moreover, it might offer a number of advantages over the IMC tuning rule. For instance, the parameters of the fractional controller are directly obtained from the setpoint closed-loop response data without the need of any model of the plant to be controlled.
Study of Multimedia Streams Dynamic Rate Control Based on Fuzzy Adaptive PID
Institute of Scientific and Technical Information of China (English)
SUN Yan-fei; ZHANG Shun-yi; SHI Jin; WANG Jiang-tao
2005-01-01
A Multimedia streams dynamic rate control algorithm based on Fuzzy adaptive PID (MFPID) has been proposed to implement multimedia streams' end sending rate on-line self-regulating and smoothing, and to track system resources in time, so that it can avoid system's regulating oscillation and guarantee system's stability. And, some work has been done to analyze adaptive session model of multimedia streams, to implement future available bandwidth estimation of IP network, to achieve PID parameters' on-line self-tuning by fuzzy controlling. Simulation validated the theoretical results of MFPID.
Directory of Open Access Journals (Sweden)
Ahmad M. El-Nagar
2014-06-01
Full Text Available In this study, we propose an embedded real-time interval type-2 fuzzy proportional – integral – derivative (IT2F-PID controller which is a parallel combination of the interval type-2 fuzzy proportional – integral (IT2F-PI controller and the interval type-2 fuzzy proportional – derivative (IT2F-PD controller. The proposed IT2F-PID controller is able to handle the effect of the system uncertainties due to the structure of the interval type-2 fuzzy logic controller. The proposed IT2F-PID controller is implemented practically using a low cost PIC microcontroller for controlling the uncertain nonlinear inverted pendulum to minimize the effect of the system uncertainties due to the uncertainty in the mass of the pendulum, the measurement error in the rotation angle of the pendulum and the structural uncertainty. The test is carried out using the hardware-in-the-loop (HIL simulation. The experimental results show that the performance of the IT2F-PID controller improves significantly the performance over a wide range of system uncertainties.
Aranza, M. F.; Kustija, J.; Trisno, B.; Hakim, D. L.
2016-04-01
PID Controller (Proportional Integral Derivative) was invented since 1910, but till today still is used in industries, even though there are many kind of modern controllers like fuzz controller and neural network controller are being developed. Performance of PID controller is depend on on Proportional Gain (Kp), Integral Gain (Ki) and Derivative Gain (Kd). These gains can be got by using method Ziegler-Nichols (ZN), gain-phase margin, Root Locus, Minimum Variance dan Gain Scheduling however these methods are not optimal to control systems that nonlinear and have high-orde, in addition, some methods relative hard. To solve those obstacles, particle swarm optimization (PSO) algorithm is proposed to get optimal Kp, Ki and Kd. PSO is proposed because PSO has convergent result and not require many iterations. On this research, PID controller is applied on AVR (Automatic Voltage Regulator). Based on result of analyzing transient, stability Root Locus and frequency response, performance of PID controller is better than Ziegler-Nichols.
Neural Network-Based Self-Tuning PID Control for Underwater Vehicles
Directory of Open Access Journals (Sweden)
Rodrigo Hernández-Alvarado
2016-09-01
Full Text Available For decades, PID (Proportional + Integral + Derivative-like controllers have been successfully used in academia and industry for many kinds of plants. This is thanks to its simplicity and suitable performance in linear or linearized plants, and under certain conditions, in nonlinear ones. A number of PID controller gains tuning approaches have been proposed in the literature in the last decades; most of them off-line techniques. However, in those cases wherein plants are subject to continuous parametric changes or external disturbances, online gains tuning is a desirable choice. This is the case of modular underwater ROVs (Remotely Operated Vehicles where parameters (weight, buoyancy, added mass, among others change according to the tool it is fitted with. In practice, some amount of time is dedicated to tune the PID gains of a ROV. Once the best set of gains has been achieved the ROV is ready to work. However, when the vehicle changes its tool or it is subject to ocean currents, its performance deteriorates since the fixed set of gains is no longer valid for the new conditions. Thus, an online PID gains tuning algorithm should be implemented to overcome this problem. In this paper, an auto-tune PID-like controller based on Neural Networks (NN is proposed. The NN plays the role of automatically estimating the suitable set of PID gains that achieves stability of the system. The NN adjusts online the controller gains that attain the smaller position tracking error. Simulation results are given considering an underactuated 6 DOF (degrees of freedom underwater ROV. Real time experiments on an underactuated mini ROV are conducted to show the effectiveness of the proposed scheme.
Neural Network-Based Self-Tuning PID Control for Underwater Vehicles.
Hernández-Alvarado, Rodrigo; García-Valdovinos, Luis Govinda; Salgado-Jiménez, Tomás; Gómez-Espinosa, Alfonso; Fonseca-Navarro, Fernando
2016-09-05
For decades, PID (Proportional + Integral + Derivative)-like controllers have been successfully used in academia and industry for many kinds of plants. This is thanks to its simplicity and suitable performance in linear or linearized plants, and under certain conditions, in nonlinear ones. A number of PID controller gains tuning approaches have been proposed in the literature in the last decades; most of them off-line techniques. However, in those cases wherein plants are subject to continuous parametric changes or external disturbances, online gains tuning is a desirable choice. This is the case of modular underwater ROVs (Remotely Operated Vehicles) where parameters (weight, buoyancy, added mass, among others) change according to the tool it is fitted with. In practice, some amount of time is dedicated to tune the PID gains of a ROV. Once the best set of gains has been achieved the ROV is ready to work. However, when the vehicle changes its tool or it is subject to ocean currents, its performance deteriorates since the fixed set of gains is no longer valid for the new conditions. Thus, an online PID gains tuning algorithm should be implemented to overcome this problem. In this paper, an auto-tune PID-like controller based on Neural Networks (NN) is proposed. The NN plays the role of automatically estimating the suitable set of PID gains that achieves stability of the system. The NN adjusts online the controller gains that attain the smaller position tracking error. Simulation results are given considering an underactuated 6 DOF (degrees of freedom) underwater ROV. Real time experiments on an underactuated mini ROV are conducted to show the effectiveness of the proposed scheme.
Control de velocidad de un motor de CD con un controlador PID Wavenet
Directory of Open Access Journals (Sweden)
Abraham Christian Pedroza Araujo
2014-01-01
Full Text Available El controlador más utilizado actualmente en la industria es el controlador PID. Sin embargo, el algoritmo PID lineal tiene bajo desempeño cuando el proceso a controlar presenta dinámicas complejas como zonas muertas y características no lineales. El funcionamiento del controlador PID en general, se basa en la actuación en forma proporcional, integral y derivativa sobre la señal de error e(t, definida como e(t = yref(t - y(t, con la finalidad de efectuar la señal de control u(t que manipula la salida del proceso en forma deseada como se muestra la Figura 1. Figura 1. Esquema de un control clásico. Figura 1. Esquema de un control clásico. Las constantes kp ki kd son las ganancias del PID. Existen distintas técnicas analíticas y experimentales con el fin de sintonizar esas ganancias. Una alternativa a este problema de sintonización es el controlador PID wavenet, donde por medio de una wavenet y un filtro IIR se estima la salida del sistema a controlar, lo cual se utiliza para re-sintonizar las ganancias de un PID discreto, todo esto en línea. Esta es la alternativa que se emplea en el presente trabajo de investigación y enfocada a la simulación y control de un motor de cd obteniendo resultados.
Neural Network-Based Self-Tuning PID Control for Underwater Vehicles
Hernández-Alvarado, Rodrigo; García-Valdovinos, Luis Govinda; Salgado-Jiménez, Tomás; Gómez-Espinosa, Alfonso; Fonseca-Navarro, Fernando
2016-01-01
For decades, PID (Proportional + Integral + Derivative)-like controllers have been successfully used in academia and industry for many kinds of plants. This is thanks to its simplicity and suitable performance in linear or linearized plants, and under certain conditions, in nonlinear ones. A number of PID controller gains tuning approaches have been proposed in the literature in the last decades; most of them off-line techniques. However, in those cases wherein plants are subject to continuous parametric changes or external disturbances, online gains tuning is a desirable choice. This is the case of modular underwater ROVs (Remotely Operated Vehicles) where parameters (weight, buoyancy, added mass, among others) change according to the tool it is fitted with. In practice, some amount of time is dedicated to tune the PID gains of a ROV. Once the best set of gains has been achieved the ROV is ready to work. However, when the vehicle changes its tool or it is subject to ocean currents, its performance deteriorates since the fixed set of gains is no longer valid for the new conditions. Thus, an online PID gains tuning algorithm should be implemented to overcome this problem. In this paper, an auto-tune PID-like controller based on Neural Networks (NN) is proposed. The NN plays the role of automatically estimating the suitable set of PID gains that achieves stability of the system. The NN adjusts online the controller gains that attain the smaller position tracking error. Simulation results are given considering an underactuated 6 DOF (degrees of freedom) underwater ROV. Real time experiments on an underactuated mini ROV are conducted to show the effectiveness of the proposed scheme. PMID:27608018
Adaptive Functional-Based Neuro-Fuzzy-PID Incremental Controller Structure
Directory of Open Access Journals (Sweden)
Ashraf Ahmed Fahmy
2014-03-01
Full Text Available This paper presents an adaptive functional-based Neuro-fuzzy-PID incremental (NFPID controller structure that can be tuned either offline or online according to required controller performance. First, differential membership functions are used to represent the fuzzy membership functions of the input-output space of the three term controller. Second, controller rules are generated based on the discrete proportional, derivative, and integral function for the fuzzy space. Finally, a fully differentiable fuzzy neural network is constructed to represent the developed controller for either offline or online controller parameter adaptation. Two different adaptation methods are used for controller tuning, offline method based on controller transient performance cost function optimization using Bees Algorithm, and online method based on tracking error minimization using back-propagation with momentum algorithm. The proposed control system was tested to show the validity of the controller structure over a fixed PID controller gains to control SCARA type robot arm.
Saha, Suman; Das, Shantanu; Gupta, Amitava
2012-01-01
A novel conformal mapping based Fractional Order (FO) methodology is developed in this paper for tuning existing classical (Integer Order) Proportional Integral Derivative (PID) controllers especially for sluggish and oscillatory second order systems. The conventional pole placement tuning via Linear Quadratic Regulator (LQR) method is extended for open loop oscillatory systems as well. The locations of the open loop zeros of a fractional order PID (FOPID or PI{\\lambda}D{\\mu}) controller have been approximated in this paper vis-\\`a-vis a LQR tuned conventional integer order PID controller, to achieve equivalent integer order PID control system. This approach eases the implementation of analog/digital realization of a FOPID controller with its integer order counterpart along with the advantages of fractional order controller preserved. It is shown here in the paper that decrease in the integro-differential operators of the FOPID/PI{\\lambda}D{\\mu} controller pushes the open loop zeros of the equivalent PID cont...
MODELLING AND CONTROL OF CONTINUOUS STIRRED TANK REACTOR WITH PID CONTROLLER
Directory of Open Access Journals (Sweden)
Artur Wodołażski
2016-09-01
Full Text Available This paper presents a model of dynamics control for continuous stirred tank reactor (CSTR in methanol synthesis in a three-phase system. The reactor simulation was carried out for steady and transient state. Efficiency ratio to achieve maximum performance of the product per reactor unit volume was calculated. Reactor dynamics simulation in closed loop allowed to received data for tuning PID controller (proportional-integral-derivative. The results of the regulation process allow to receive data for optimum reactor production capacity, along with local hot spots eliminations or temperature runaway.
Research of Self-Tuning PID for PMSM Vector Control based on Improved KMTOA
Directory of Open Access Journals (Sweden)
Lingzhi Yi
2017-03-01
Full Text Available The Permanent Magnet Synchronous Motor has been applying widely due to it’s high efficiency, high reliability, relatively low cost and low moment of inertia. However, the PMSM drives are easily affected by the uncertain factors such as the variation of motor parameters and load disturbance. In order to realize the control of the PMSM accurately, a novel adaptive chaotic kinetic molecular theory optimization algorithm was implemented for seeking the best parameters of PID controller. In the PMSM vector control system, the speed loop will be adjusted by a CKMTOA PID controller. In modified kinetic molecular theory optimization algorithm, the adaptive inertia weight factors are used to accelerate the convergence speed, and chaotic searching is conducted within the neighbor set of the solutions to avoid the local minima. The model of PMSM and its` space vector control system are set up in the software of MATLAB/Simulink. The effectiveness of the self-tuning CKMTOA PID controller is verified by comparing with the conventional PID and particle swarm optimization algorithm. The extensive simulations and analysis also show the effectiveness of the proposed approach
PID-Controller Tuning Optimization with Genetic Algorithms in Servo Systems
Directory of Open Access Journals (Sweden)
Arturo Y. Jaen-Cuellar
2013-09-01
Full Text Available Performance improvement is the main goal of the study of PID control and much research has been conducted for this purpose. The PID filter is implemented in almost all industrial processes because of its well‐ known beneficial features. In general, the whole system’s performance strongly depends on the controller’s efficiency and hence the tuning process plays a key role in the system’s behaviour. In this work, the servo systems will be analysed, specifically the positioning control systems. Among the existent tuning methods, the Gain‐ Phase Margin method based on Frequency Response analysis is the most adequate for controller tuning in positioning control systems. Nevertheless, this method can be improved by integrating an optimization technique. The novelty of this work is the development of a new methodology for PID control tuning by coupling the Gain‐Phase Margin method with the Genetic Algorithms in which the micro‐population concept and adaptive mutation probability are applied. Simulations using a positioning system model in MATLAB and experimental tests in two CNC machines and an industrial robot are carried out in order to show the effectiveness of the proposal. The obtained results are compared with both the classical Gain‐Phase Margin tuning and with a recent PID controller optimization using Genetic Algorithms based on real codification. The three methodologies are implemented using software.
Self-adaptive PID controller of microwave drying rotary device tuning on-line by genetic algorithms
Institute of Scientific and Technical Information of China (English)
杨彪; 梁贵安; 彭金辉; 郭胜惠; 李玮; 张世敏; 李英伟; 白松
2013-01-01
The control design, based on self-adaptive PID with genetic algorithms(GA) tuning on-line was investigated, for the temperature control of industrial microwave drying rotary device with the multi-layer(IMDRDWM) and with multivariable nonlinear interaction of microwave and materials. The conventional PID control strategy incorporated with optimization GA was put forward to maintain the optimum drying temperature in order to keep the moisture content below 1%, whose adaptation ability included the cost function of optimization GA according to the output change. Simulations on five different industrial process models and practical temperature process control system for selenium-enriched slag drying intensively by using IMDRDWM were carried out systematically, indicating the reliability and effectiveness of control design. The parameters of proposed control design are all on-line implemented without iterative predictive calculations, and the closed-loop system stability is guaranteed, which makes the developed scheme simpler in its synthesis and application, providing the practical guidelines for the control implementation and the parameter design.
New 2DOF PI and PID Controllers Tuning Method for Integrating Plants
Directory of Open Access Journals (Sweden)
Miluše VÍTEČKOVÁ
2009-07-01
Full Text Available The paper deals with a new 2DOF PI and PID controllers tuning method for integrating plants. The described approach is derived from the multiple dominant pole method and it enables the achievement of an aperiodic servo and regulatory step responses.
Directory of Open Access Journals (Sweden)
Márcio Mendonça
2015-10-01
Full Text Available In this work, it is analyzed a multivariate system control of an alcoholic fermentation process with no minimum phase. The control is made with PID classic controllers associated with a supervisory system based on Fuzzy Systems. The Fuzzy system, a priori, send set-points to PID controllers, but also adds protection functions, such as if the biomass valued is at zero or very close. The Fuzzy controller changes the campaign to prevent or mitigate the paralyzation of the process. Three control architectures based on Fuzzy Control Systems are presented and compared in performance with classic control in different campaigns. The third architecture, in particular, adds an adaptive function. A brief summary of Fuzzy theory and correlated works will be presented. And, finally simulations results, conclusions and future works end the article.
Optimization of PID Controller for Brushless DC Motor by using Bio-inspired Algorithms
Directory of Open Access Journals (Sweden)
Sanjay Kr. Singh
2014-02-01
Full Text Available This study presents the use and comparison of various bio-inspired algorithms for optimizing the response of a PID controller for a Brushless DC Motor in contrast to the conventional methods of tuning. For the optimization of the PID controllers Genetic Algorithm, Multi-objective Genetic Algorithm and Simulated Annealing have been used. PID controller tuning with soft-computing algorithms comprises of obtaining the best possible outcome for the three PID parameters for improving the steady state characteristics and performance indices like overshoot percentage, rise time and settling time. For the calculation and simulation of the results the Brushless DC Motor model, Maxon EC 45 flat ф 45 mm with Hall Sensors Motor has been used. The results obtained the optimization using Genetic Algorithms, Multi-objective Genetic Algorithm and Simulated Annealing is compared with the ones derived from the Ziegler-Nichols method and the MATLAB SISO Tool. And it is observed that comparatively better results are obtained by optimization using Simulated Annealing offering better steady state response.
A Fuzzy Predictive PID Control Scheme for the Excitation System of Synchronous Generator
Directory of Open Access Journals (Sweden)
Zheng Yang
2016-01-01
Full Text Available With the rapid development of the process control theories in the electrical engineering, new control strategies which lead to better performances are urgently demanded for the excitation control of synchronous generators. For the sake of improving the convergence rate of the terminal voltage and covering the weakness in the adaptability of operational conditions of conventional controls in disturbances, a fuzzy predictive PID excitation control method is proposed in this paper. This control scheme can be divided into three steps in every sample interval: PID parameter adaptation, rolling state prediction and real-time control movement integration. Numerical simulations have been conducted under different operational conditions with the proposed method as well as the conventional ones, respectively. Experimental comparisons indicate the superiority in voltage regulation performance of the proposed method.
Generalized PID observer design for descriptor linear systems.
Wu, Ai-Guo; Duan, Guang-Ren; Fu, Yan-Ming
2007-10-01
A type of generalized proportional-integral-derivative observers is proposed for descriptor linear systems. Based on a general parametric solution to a type of generalized Sylvester matrix equations, a parametric design approach for such observers is established. The proposed approach provides parameterizations for all the observer gain matrices, gives the parametric expression for the corresponding left eigenvector matrix of the observer system matrix, realizes the elimination of impulsive behaviors, and guarantees the regularity of the observer system. The design method can offer all the degrees of design freedom, which can be utilized to achieve various desired system specifications and performances. In addition, a numerical example is employed to show the design procedure and illustrate the effect of the presented approach.
Fuzzy auto-tuning PID control of multiple joint robot driven by ultrasonic motors.
Sun, Zhijun; Xing, Rentao; Zhao, Chunsheng; Huang, Weiqing
2007-11-01
A three-joint robot is directly driven by ultrasonic motors with advantage of high torque at low speed. The speed of the ultrasonic motors is actually controlled by regulating their operating frequencies. The kinematic and kinetic analyses of the robot have been carried out using Adams. Due to the lack of accurate control model of ultrasonic motors and the time-varying motor parameters, a fuzzy auto-tuning proportional integral derivative (PID) controller for the robot is experimented, in which a simple method to tune parameters of the PID type fuzzy controller on-line is developed and a new position-speed feedback strategy is proposed and implemented. The effectiveness of the proposed control strategy and fuzzy logic controller is verified by experimental investigation.
Multi-objective optimization based on Genetic Algorithm for PID controller tuning
Institute of Scientific and Technical Information of China (English)
WANG Guo-liang; YAN Wei-wu; SHAO Hui-he
2009-01-01
To get the satisfying performance of a PID controller, this paper presents a novel Pareto - based multi-objective genetic algorithm ( MOGA), which can be used to find the appropriate setting of the PID controller by analyzing the pareto optimal surfaces. Rated settings of the controller by two criteria, the error between output and reference signals and control moves, are listed on the pareto surface. Appropriate setting can be chosen under a balance between two criteria for different control purposes. A controller tuning problem for a plant with high order and time delay is chosen as an example. Simulation results show that the method of MOGA is more efficient compared with traditional tuning methods.
Levenberg – Marquardt’s Algorithm used for PID Controller Parameters Optimization
Ahmed S. Abd El-Hamid; Ahmed H. Eissa; Aly M. Radwan
2015-01-01
The determination of parameters of controllers is an important problem in automatic control systems. In this paper, the Levenberg Marquardt (LM) Algorithm is used to effectively solve this problem with reasonable computational effort. The Levenberg Marquardt (LM) Algorithm for optimization of three term (PID) controller parameters with dynamic model of pH neutralization process is presented. The main goal is to show the merits of Levenberg Marquardt algorithm optimizat...
Directory of Open Access Journals (Sweden)
Haitao Zhang
2011-12-01
Full Text Available In the networked control system with random time delay in forward and feedback channels, a kind of controller based on Smith compensator and signal neuron incomplete differential forward PID is presented. First, using root locus method and simulink simulation software, the influences of network’s time delay on the system stability and dynamic performance are analyzed. Then, combined with incomplete differential forward PID control algorithm, Smith compensation model is established. Compared with existing Smith compensator, the proposed control model is easy to be implemented, and can also get better control performance in the case of miss-matching compensator model. Finally, the simulation research on a DC motor is done, and the simulation results show the effectiveness of the proposed method.
Brushless DC Motor Self-Adaption Fuzzy PID Control System%无刷直流电机自适应模糊PID控制系统
Institute of Scientific and Technical Information of China (English)
王国玲; 李振宇; 范自道
2013-01-01
针对无刷直流电机传统PID控制存在精度低、抗干扰能力差及模糊控制稳态精度不高等问题，研究了一种自适应模糊PID控制方法。论文分析了直流无刷电机的工作原理，建立了直流无刷电机自适应模糊PID控制系统的计算机仿真数学模型，设计了系统速度环的模糊PID控制器，仿真结果表明，与传统PID控制相比，自适应模糊PID控制的BLDCM系统具有更高的稳定性和控制精度、更快的动态响应速度。%For the lower precision,bad anti-interference capability of traditional PID control and lower stable precision of fuzzy control for brushless DC motor,an adaptive fuzzy-PID control was deeply investigated in this paper. Working theory of brushless DC motor was analyzed,the simulated mathematical model of adaptive fuzzy-PID control for brushless DC motor was established,and the fuzzy-PID controller of speed regulator was designed. The results of simulation verified the better stability,the faster dynamic speed of adaptive fuzzy-PID control for brushless DC motor compared to traditional PID control.
Zhang, Shu; Taft, Cyrus W; Bentsman, Joseph; Hussey, Aaron; Petrus, Bryan
2012-09-01
Tuning a complex multi-loop PID based control system requires considerable experience. In today's power industry the number of available qualified tuners is dwindling and there is a great need for better tuning tools to maintain and improve the performance of complex multivariable processes. Multi-loop PID tuning is the procedure for the online tuning of a cluster of PID controllers operating in a closed loop with a multivariable process. This paper presents the first application of the simultaneous tuning technique to the multi-input-multi-output (MIMO) PID based nonlinear controller in the power plant control context, with the closed-loop system consisting of a MIMO nonlinear boiler/turbine model and a nonlinear cluster of six PID-type controllers. Although simplified, the dynamics and cross-coupling of the process and the PID cluster are similar to those used in a real power plant. The particular technique selected, iterative feedback tuning (IFT), utilizes the linearized version of the PID cluster for signal conditioning, but the data collection and tuning is carried out on the full nonlinear closed-loop system. Based on the figure of merit for the control system performance, the IFT is shown to deliver performance favorably comparable to that attained through the empirical tuning carried out by an experienced control engineer.
A new autotuning algorithm for PID controllers using dead-beat format.
Bandyopadhyay, R; Patranabis, D
2001-01-01
A novel algorithm for PID controllers based on dead-beat control and fuzzy inference mechanism is presented in this paper. The proposition is an extension of the work by the authors where the PI form of the algorithm was presented. The inclusion of the derivative term makes the method suitable for application in all types of processes including the ones having high rate disturbances. The proposed algorithm seems to be a complete and generalized PID autotuner as can be seen by the simulated and experimental results. In all the cases the method shows substantial improvement over the controller tuned with Ziegler Nichol's formula and the PI controller proposed in R. Bandyopadhyay, D. Patranabis, A fuzzy logic based PI autotuner, ISA Transactions 37 (1998) 227-235.
Chicken barn climate and hazardous volatile compounds control using simple linear regression and PID
Abdullah, A. H.; Bakar, M. A. A.; Shukor, S. A. A.; Saad, F. S. A.; Kamis, M. S.; Mustafa, M. H.; Khalid, N. S.
2016-07-01
The hazardous volatile compounds from chicken manure in chicken barn are potentially to be a health threat to the farm animals and workers. Ammonia (NH3) and hydrogen sulphide (H2S) produced in chicken barn are influenced by climate changes. The Electronic Nose (e-nose) is used for the barn's air, temperature and humidity data sampling. Simple Linear Regression is used to identify the correlation between temperature-humidity, humidity-ammonia and ammonia-hydrogen sulphide. MATLAB Simulink software was used for the sample data analysis using PID controller. Results shows that the performance of PID controller using the Ziegler-Nichols technique can improve the system controller to control climate in chicken barn.
An optimal PID controller via LQR for standard second order plus time delay systems.
Srivastava, Saurabh; Misra, Anuraag; Thakur, S K; Pandit, V S
2016-01-01
An improved tuning methodology of PID controller for standard second order plus time delay systems (SOPTD) is developed using the approach of Linear Quadratic Regulator (LQR) and pole placement technique to obtain the desired performance measures. The pole placement method together with LQR is ingeniously used for SOPTD systems where the time delay part is handled in the controller output equation instead of characteristic equation. The effectiveness of the proposed methodology has been demonstrated via simulation of stable open loop oscillatory, over damped, critical damped and unstable open loop systems. Results show improved closed loop time response over the existing LQR based PI/PID tuning methods with less control effort. The effect of non-dominant pole on the stability and robustness of the controller has also been discussed.
HYBRID SYSTEM BASED FUZZY-PID CONTROL SCHEMES FOR UNPREDICTABLE PROCESS
Directory of Open Access Journals (Sweden)
M.K. Tan
2011-07-01
Full Text Available In general, the primary aim of polymerization industry is to enhance the process operation in order to obtain high quality and purity product. However, a sudden and large amount of heat will be released rapidly during the mixing process of two reactants, i.e. phenol and formalin due to its exothermic behavior. The unpredictable heat will cause deviation of process temperature and hence affect the quality of the product. Therefore, it is vital to control the process temperature during the polymerization. In the modern industry, fuzzy logic is commonly used to auto-tune PID controller to control the process temperature. However, this method needs an experienced operator to fine tune the fuzzy membership function and universe of discourse via trial and error approach. Hence, the setting of fuzzy inference system might not be accurate due to the human errors. Besides that, control of the process can be challenging due to the rapid changes in the plant parameters which will increase the process complexity. This paper proposes an optimization scheme using hybrid of Q-learning (QL and genetic algorithm (GA to optimize the fuzzy membership function in order to allow the conventional fuzzy-PID controller to control the process temperature more effectively. The performances of the proposed optimization scheme are compared with the existing fuzzy-PID scheme. The results show that the proposed optimization scheme is able to control the process temperature more effectively even if disturbance is introduced.
Application of a New Membership Function in Nonlinear Fuzzy PID Controllers with Variable Gains
Directory of Open Access Journals (Sweden)
Xuda Zhang
2014-01-01
Full Text Available This paper proposes a nonlinear fuzzy PID control algorithm, whose membership function (MF is adjustable, is universal, and has a wide adjustable range. Appling this function to fuzzy control theory will increase system’s tunability. The continuity of this function is proved. This method was employed in the simulation and HIL experiments. Effectiveness and feasibility of this function are demonstrated in the results.
NN robust based-PID Control of A Two-Link Flexible Robot Manipulator
Directory of Open Access Journals (Sweden)
Moh. Khairudin
2012-01-01
Full Text Available This paper presents control of a two-link flexible robot manipulator. A planar two-link flexible manipulator that moves in the horizontal plane is considered. A dynamic model of the system is developed using an assumed mode methods. The NN robust based-PID controller is used to reduce a nonlinearities problem that can be efficiently solved. The system responses namely hub angular position, deflection and end-point acceleration responses at both links are obtained and analysed.
Optimal PID control of a brushless DC motor using PSO and BF techniques
Directory of Open Access Journals (Sweden)
H.E.A. Ibrahim
2014-06-01
Full Text Available This paper presents a Particle Swarm Optimization (PSO technique and bacterial foraging (BF technique for determining the optimal parameters of (PID controller for speed control of a brushless DC motor (BLDC where the (BLDC motor is modeled in simulink in Matlab. The proposed technique was more efficient in improving the step response characteristics as well as reducing the steady-state error, rise time, settling time and maximum overshoot.
Analysis and Design Methods for Nonlinear Control Systems
1990-03-01
entitled "Design of Nonlinear PID Controllers ." In this paper it is demonstrated that the extended linearization approach can be applied to standard...Sciences and Systems, Baltimore, Maryland, pp. 675-680, 1987. [3] WJ. Rugh, "Design of Nonlinear PID Controllers ," AIChE Journa Vol. 33, No. 10, pp. 1738
Singh, Ravendra; Sahay, Abhishek; Karry, Krizia M; Muzzio, Fernando; Ierapetritou, Marianthi; Ramachandran, Rohit
2014-10-01
It is desirable for a pharmaceutical final dosage form to be manufactured through a quality by design (QbD)-based approach rather than a quality by testing (QbT) approach. An automatic feedback control system coupled with PAT tools that is part of the QbD paradigm shift, has the potential to ensure that the pre-defined end product quality attributes are met in a time and cost efficient manner. In this work, an advanced hybrid MPC-PID control architecture coupled with real time inline/online monitoring tools and principal components analysis (PCA) based additional supervisory control layer has been proposed for a continuous direct compaction tablet manufacturing process. The advantages of both MPC and PID have been utilized in a hybrid scheme. The control hardware and software integration and implementation of the control system has been demonstrated using feeders and blending unit operation of a continuous tablet manufacturing pilot plant and an NIR based PAT tool. The advanced hybrid MPC-PID control scheme leads to enhanced control loop performance of the critical quality attributes in comparison to a regulatory (e.g. PID) control scheme indicating its potential to improve pharmaceutical product quality.
Institute of Scientific and Technical Information of China (English)
季学武; 王健; 赵又群; 刘亚辉; 臧利国; 李波
2015-01-01
In order to diminish the impacts of external disturbance such as parking speed fluctuation and model un-certainty existing in steering kinematics, this paper presents a parallel path tracking method for vehicle based on pre-view back propagation (BP) neural network PID controller. The forward BP neural network can adjust the parameters of PID controller in real time. The preview time is optimized by considering path curvature, change in curvature and road boundaries. A fuzzy controller considering barriers and different road conditions is built to select the starting po-sition. In addition, a kind of path planning technology satisfying the requirement of obstacle avoidance is introduced. In order to solve the problem of discontinuous curvature, cubic B spline curve is used for curve fitting. The simulation results and real vehicle tests validate the effectiveness of the proposed path planning and tracking methods.
Neuron-Adaptive PID Based Speed Control of SCSG Wind Turbine System
Directory of Open Access Journals (Sweden)
Shan Zuo
2014-01-01
Full Text Available In searching for methods to increase the power capacity of wind power generation system, superconducting synchronous generator (SCSG has appeared to be an attractive candidate to develop large-scale wind turbine due to its high energy density and unprecedented advantages in weight and size. In this paper, a high-temperature superconducting technology based large-scale wind turbine is considered and its physical structure and characteristics are analyzed. A simple yet effective single neuron-adaptive PID control scheme with Delta learning mechanism is proposed for the speed control of SCSG based wind power system, in which the RBF neural network (NN is employed to estimate the uncertain but continuous functions. Compared with the conventional PID control method, the simulation results of the proposed approach show a better performance in tracking the wind speed and maintaining a stable tip-speed ratio, therefore, achieving the maximum wind energy utilization.
The power stability of a fiber amplifier based on a multifunction card and PID control program
Zhang, Linjie; Yang, Wenguang; Zhang, Hao; Zhao, JianMing; Jia, Suotang
2016-06-01
The power stability of a fiber amplifier was significantly improved by means of simultaneously controlling the current of a fiber amplifier and the diffraction efficiency of an acousto-optical modulator. The real-time fluctuation of laser power was recorded by a multifunction card and processed by a proportional-integral-derivative (PID) control program. The feedback loop voltage was introduced to the fiber laser amplifier and acoustic-optic modulator through the analog output of the multifunction card. The control method based on a multifunction card and PID program has good scalability, flexibility and reliability for the complex system on the condition in which the frequency and power of the laser need to be precisely stabilized.
Sharma, Richa; Kumar, Vikas; Gaur, Prerna; Mittal, A P
2016-05-01
Being complex, non-linear and coupled system, the robotic manipulator cannot be effectively controlled using classical proportional-integral-derivative (PID) controller. To enhance the effectiveness of the conventional PID controller for the nonlinear and uncertain systems, gains of the PID controller should be conservatively tuned and should adapt to the process parameter variations. In this work, a mix locally recurrent neural network (MLRNN) architecture is investigated to mimic a conventional PID controller which consists of at most three hidden nodes which act as proportional, integral and derivative node. The gains of the mix locally recurrent neural network based PID (MLRNNPID) controller scheme are initialized with a newly developed cuckoo search algorithm (CSA) based optimization method rather than assuming randomly. A sequential learning based least square algorithm is then investigated for the on-line adaptation of the gains of MLRNNPID controller. The performance of the proposed controller scheme is tested against the plant parameters uncertainties and external disturbances for both links of the two link robotic manipulator with variable payload (TL-RMWVP). The stability of the proposed controller is analyzed using Lyapunov stability criteria. A performance comparison is carried out among MLRNNPID controller, CSA optimized NNPID (OPTNNPID) controller and CSA optimized conventional PID (OPTPID) controller in order to establish the effectiveness of the MLRNNPID controller.
de Souza Granja Barros, Juliana; Rossi, Luiz Antonio; Sartor, Karina
2016-08-01
The use of smarter temperature control technologies in heating systems can optimize the use of electric power and performance of piglets. Two control technologies of a resistive heating system were assessed in a pig nursery: a PID (proportional, integral, and derivative) controller and a thermostat. The systems were evaluated regarding thermal environment, piglet performance, and use of electric power for 99 days. The heating system with PID controller improved the thermal environment conditions and was significantly ( P < 0.001) more efficient in terms of electricity use to produce 1 kg of body weight (2.88 kWh kg-1), specific cost (0.75 R kg-1), weight gain (7.3 kg), daily weight gain (0.21 kg day-1), and feed conversion (1.71) than the system with thermostat (3.98 kWh kg-1; 1.03 R kg-1; 5.2 kg; 0.15 kg day-1, and 2.62, respectively). The results indicate that the PID-controlled heating system is more efficient in electricity use and provides better conditions for thermal comfort and animal performance than heating with thermostat.
Institute of Scientific and Technical Information of China (English)
张原; 黄文静; 桑路路
2013-01-01
Given that the traditional PID control system can not give consideration to the static performance and dynamic perfor-mance, this paper presents a new practical design of PID control algorithm based on the analysis of both traditional PID control-ler and expert adaptive controller, which can be used in the field of servo rocket system. In addition, this paper studies how to de-sign the type of improved expert adaptive controller suitable for the controlled plant. The simulation of traditional PID control method and improved expert adaptive PID control method are implemented based on MATLAB/Simulink. Meanwhile, the simu-lation results explain that improved expert adaptive controller is an effective method to be used in the servo rocket system.% 针对传统PID(Proportional-Integral-Derivative)控制无法兼顾部分系统的静态性能和动态性能，结合专家PID控制原理，提出了一种改进的专家自适应PID控制器的设计方案，对某火箭炮伺服系统进行仿真跟踪。给出了伺服系统的分析设计过程，利用MATLAB/Simulink完成了改进的专家自适应PID控制器在某伺服系统中的仿真应用，得到了良好的跟踪特性图，说明了该方法的有效性。
Energy Technology Data Exchange (ETDEWEB)
Palomares Gonzalez, Daniel; Garcia Mendoza, Raul [Instituto de Investigaciones Electricas, Cuernavaca (Mexico)
1990-12-31
A description is made of the design and evaluation of an hybrid control system, formed by a quadratic gaussian linear regulator (QLR) and proportional integral derivative (PID) type regulators. This scheme is used to control the reheater and secondary superheater steam temperatures of a steam generator model with a maximum capacity of 2,150,000 pounds per hour. Once applied to the model of a 300 MW steam power plant, this system showed better results than the traditional schemes and inclusively better than some modern control schemes. This fact characterizes it as a high potential system to be applied to steam power plants. [Espanol] Se describe el diseno y la evaluacion de un sistema de control hibrido, formado por un regulador lineal cuadratico gaussiano (RLC) y reguladores tipo proporcional integral derivativo (PID). Este esquema se utiliza para controlar las temperaturas de vapor del recalentador y sobrecalentador secundario del modelo de un generador de vapor con capacidad maxima de 2,150,000 libras por hora. Una vez aplicado al modelo de una unidad termoelectrica de 300 MW, este sistema produjo mejores resultados que los esquemas tradicionales e incluso mejores que algunos esquemas de control moderno. Esto lo caracteriza como un sistema con un alto potencial para aplicarse a unidades termoelectricas.
A PSO-PID quaternion model based trajectory control of a hexarotor UAV
Artale, Valeria; Milazzo, Cristina L. R.; Orlando, Calogero; Ricciardello, Angela
2015-12-01
A quaternion based trajectory controller for a prototype of an Unmanned Aerial Vehicle (UAV) is discussed in this paper. The dynamics of the UAV, a hexarotor in details, is described in terms of quaternion instead of the usual Euler angle parameterization. As UAV flight management concerns, the method here implemented consists of two main steps: trajectory and attitude control via Proportional-Integrative-Derivative (PID) and Proportional-Derivative (PD) technique respectively and the application of Particle Swarm Optimization (PSO) method in order to tune the PID and PD parameters. The optimization is the consequence of the minimization of a objective function related to the error with the respect to a proper trajectory. Numerical simulations support and validate the proposed method.
Directory of Open Access Journals (Sweden)
Zhekang Dong
2014-01-01
Full Text Available In this paper, we present an implementation scheme of memristor-based multilayer feedforward small-world neural network (MFSNN inspirited by the lack of the hardware realization of the MFSNN on account of the need of a large number of electronic neurons and synapses. More specially, a mathematical closed-form charge-governed memristor model is presented with derivation procedures and the corresponding Simulink model is presented, which is an essential block for realizing the memristive synapse and the activation function in electronic neurons. Furthermore, we investigate a more intelligent memristive PID controller by incorporating the proposed MFSNN into intelligent PID control based on the advantages of the memristive MFSNN on computation speed and accuracy. Finally, numerical simulations have demonstrated the effectiveness of the proposed scheme.
Energy Technology Data Exchange (ETDEWEB)
Santos Coelho, Leandro dos [Pontifical Catholic University of Parana, PUCPR Industrial and Systems Engineering Graduate Program, LAS/PPGEPS Imaculada Conceicao, 1155, Zip code 80215-901, Curitiba, Parana (Brazil)], E-mail: leandro.coelho@pucpr.br
2009-02-28
Despite the popularity, the tuning aspect of proportional-integral-derivative (PID) controllers is a challenge for researchers and plant operators. Various controllers tuning methodologies have been proposed in the literature such as auto-tuning, self-tuning, pattern recognition, artificial intelligence, and optimization methods. Chaotic optimization algorithms as an emergent method of global optimization have attracted much attention in engineering applications. Chaotic optimization algorithms, which have the features of easy implementation, short execution time and robust mechanisms of escaping from local optimum, is a promising tool for engineering applications. In this paper, a tuning method for determining the parameters of PID control for an automatic regulator voltage (AVR) system using a chaotic optimization approach based on Lozi map is proposed. Since chaotic mapping enjoys certainty, ergodicity and the stochastic property, the proposed chaotic optimization introduces chaos mapping using Lozi map chaotic sequences which increases its convergence rate and resulting precision. Simulation results are promising and show the effectiveness of the proposed approach. Numerical simulations based on proposed PID control of an AVR system for nominal system parameters and step reference voltage input demonstrate the good performance of chaotic optimization.
Application of fuzzy logic controller with self-tuning PID parameters%PID参数自整定模糊控制器的应用
Institute of Scientific and Technical Information of China (English)
李付举
2011-01-01
In view of electrical heating furnace's non-linear control object characteristics of large inertia, pure time-delay and parameters time-variation and the hard-to-tune characteristic of conventional PID control parameter, a new method for fuzzy control with self-tuning PID parameters was put forward. A fuzzy controller with self-tuning PID parameters was designed and applied in the furnace's temperature control system. The result shows that fuzzy control with self-ttming PID parameters eliminates the system's steady state error, has neither overshoot nor oscillation but great robustness, and is easily handled; therefore it is of some practical value.%针对电加热炉大惯性、纯滞后、参数时变的非线性对象的控制的特点,以及常规PID控制参数不易调节的特点,提出了一种PID参数自整定模糊控制方法,设计了PID参数自整定模糊控制器,并在炉温控制系统中应用.实验结果表明:PID参数自整定模糊控制消除了系统的稳态误差,没有超调和振荡,鲁棒性较强,而且简单易行,具有一定的实用价值.
Regression model for tuning the PID controller with fractional order time delay system
S.P. Agnihotri; Laxman Madhavrao Waghmare
2014-01-01
In this paper a regression model based for tuning proportional integral derivative (PID) controller with fractional order time delay system is proposed. The novelty of this paper is that tuning parameters of the fractional order time delay system are optimally predicted using the regression model. In the proposed method, the output parameters of the fractional order system are used to derive the regression function. Here, the regression model depends on the weights of the exponential function...
Directory of Open Access Journals (Sweden)
Ru Wang
2017-01-01
Full Text Available In order to improve the performance of the hydraulic support electro-hydraulic control system test platform, a self-tuning proportion integration differentiation (PID controller is proposed to imitate the actual pressure of the hydraulic support. To avoid the premature convergence and to improve the convergence velocity for tuning PID parameters, the PID controller is optimized with a hybrid optimization algorithm integrated with the particle swarm algorithm (PSO and genetic algorithm (GA. A selection probability and an adaptive cross probability are introduced into the PSO to enhance the diversity of particles. The proportional overflow valve is installed to control the pressure of the pillar cylinder. The data of the control voltage of the proportional relief valve amplifier and pillar pressure are collected to acquire the system transfer function. Several simulations with different methods are performed on the hydraulic cylinder pressure system. The results demonstrate that the hybrid algorithm for a PID controller has comparatively better global search ability and faster convergence velocity on the pressure control of the hydraulic cylinder. Finally, an experiment is conducted to verify the validity of the proposed method.
Incorporation of fractional-order dynamics into an existing PI/PID DC motor control loop.
Tepljakov, Aleksei; Gonzalez, Emmanuel A; Petlenkov, Eduard; Belikov, Juri; Monje, Concepción A; Petráš, Ivo
2016-01-01
The problem of changing the dynamics of an existing DC motor control system without the need of making internal changes is considered in the paper. In particular, this paper presents a method for incorporating fractional-order dynamics in an existing DC motor control system with internal PI or PID controller, through the addition of an external controller into the system and by tapping its original input and output signals. Experimental results based on the control of a real test plant from MATLAB/Simulink environment are presented, indicating the validity of the proposed approach.
Method’s and Test Stand for Electronic PID Controller
Directory of Open Access Journals (Sweden)
Cristian Paul Chioncel
2009-01-01
Full Text Available The paper presents method’s and a testing stand for electronic controller using for this a signal generator and a digital oscilloscope respectively the virtual instrumentation and the signal acquisitions from the controllers input and output through an data acquisition board and an PC on that Lab View program runs.
基于PLC的锅炉液位模糊自适应PID控制%Fuzzy Self-Adaptive PID Control of Boiler Liquid Level Based on PLC
Institute of Scientific and Technical Information of China (English)
郑文; 张运波
2013-01-01
以小型PLC锅炉液位控制为例，介绍了PLC实现锅炉液位模糊自适应PID控制的方法，并总结了PLC实现模糊自适应PID程序设计的关键技术。实验结果表明，无论是动态指标，还是静态指标，都比常规PID控制优越，为应用PLC实现复杂控制算法提供了程序设计方法。%Take the boiler’s liquid level control based on small PLC as an example, the realization method of boiler’s liquid level fuzzy self-adaptive PID control is introduced and the key technology of fuzzy self-adaptive PID program design by PLC is summarized. Through the experimental results, dynamic index and static index are superior to the normal PID. The method of program design is provided to realize the complex control algorithm based-on PLC.
PID Testing Method Suitable for Process Control of Solar Cells Mass Production
Directory of Open Access Journals (Sweden)
Xianfang Gou
2015-01-01
Full Text Available Voltage bias of several hundred volts which are applied between solar cells and module frames may lead to significant power losses, so-called potential-induced degradation (PID, in normal photovoltaic (PV installations system. Modules and minimodules are used to conduct PID test of solar cells. The test procedure is time consuming and of high cost, which cannot be used as process monitoring method during solar cells fabrication. In this paper, three kinds of test including minimodule, Rsh, and V-Q test are conducted on solar cells or wafers with SiNx of different refractive index. All comparisons between test results of Rsh, V-Q, and minimodule tests have shown equal results. It is shown that Rsh test can be used as quality inspection of solar cells and V-Q test of coated wafer can be used as process control of solar cells.
Research on Parameter Self-adjusting PID Controller based on Fuzzy Rules%基于模糊规则参数自整定PID控制器的仿真研究
Institute of Scientific and Technical Information of China (English)
林辉
2011-01-01
针对常规PID控制器参数整定不易、适应性差、控制精度不理想的现状,提出了在动态过程中参数自整定的模糊PID控制系统.利用模糊理论在线对PID参数进行调整,构成参数自整定PID控制器.通过MATLAB/SIMULINK仿真,仿真结果表明,与经典的PID控制方式相比较,该控制方式在快速性、稳态性及准确性方面都有较大提高.%Aimed at the actuality problem of routine PID controller such as poor adaptability and low controlling precision. the adjustment of PID parameters in a dynamic process was designed to improve the adaptability and the control accuracy. The paper focused on the design of parameter auto-tuning PID controller based on fuzzy rules. on-line adjustment of PID parameter is carried on by using fuzzy theory to establish controller for PID parameter adjustment. The simulation is made by MATLAB/SIMULINK, the simulation results show that the control method is greatly improved in the aspects such as rapidity, stabilization and accuracy compared with classical PID controller.
Iqbal, Kamran; Roy, Anindo
2004-12-01
In this paper we address the problem of PID stabilization of a single-link inverted pendulum-based biomechanical model with force feedback, two levels of position and velocity feedback, and with delays in all the feedback loops. The novelty of the proposed model lies in its physiological relevance, whereby both small and medium latency sensory feedbacks from muscle spindle (MS), and force feedback from Golgi tendon organ (GTO) are included in the formulation. The biomechanical model also includes active and passive viscoelastic feedback from Hill-type muscle model and a second-order low-pass function for muscle activation. The central nervous system (CNS) regulation of postural movement is represented by a proportional-integral-derivative (PID) controller. Padé approximation of delay terms is employed to arrive at an overall rational transfer function of the biomechanical model. The Hermite-Biehler theorem is then used to derive stability results, leading to the existence of stabilizing PID controllers. An algorithm for selection of stabilizing feedback gains is developed using the linear matrix inequality (LMI) approach.
Control of Perceptual Image Quality Based on PID for Streaming Video
Institute of Scientific and Technical Information of China (English)
SONG Jian-xin
2003-01-01
Constant levels of perceptual quality of streaming video is what ideall users expect. In most cases, however, they receive time-varying levels of quality of video. In this paper, the author proposes a new control method of perceptual quality in variable bit rate video encoding for streaming video. The image quality calculation based on the perception of human visual systems is presented. Quantization properties of DCT coefficients are analyzed to control effectively. Quantization scale factors are ascertained based on the visual mask effect. A Proportional Integral Difference ( PID ) controller is used to control the image quality. Experimental results show that this method improves the perceptual quality uniformity of encoded video.
PID Controller Settings Based on a Transient Response Experiment
Silva, Carlos M.; Lito, Patricia F.; Neves, Patricia S.; Da Silva, Francisco A.
2008-01-01
An experimental work on controller tuning for chemical engineering undergraduate students is proposed using a small heat exchange unit. Based upon process reaction curves in open-loop configuration, system gain and time constant are determined for first order model with time delay with excellent accuracy. Afterwards students calculate PID…
模拟PID电路参数自整定温控系统设计%Design of analog PID circuit system with parameter auto-tuning
Institute of Scientific and Technical Information of China (English)
刘云芳; 张晓; 李建伟
2013-01-01
Based on analog PID control theory, an analog PID circuit with auto-tuning parameter of temperature controlled system was designed on purpose of simple, easy to use, intuitive parameters setting principles and effectively improving the performance of auto-tuning system. The analog PID circuit consisted of temperature measure circuit with constant flow source, main control with MSP430, analog PID circuit with digital potentiometer, serial communication and PC software interface. Experiments with the analog PID circuit show that the auto-tuning system works well, the temperature control system can get a 0.1 ℃ temperature stability degree in measurement precision of 0. 03℃after auto-tuning parameters.%针对模拟PID电路的控制理论和机理,从简单、易用、直观的参数整定原则和切实改善系统控制性能的参数自整定的目的,设计了由电流源搭建的铂电阻测温电路、MSP430主控电路、含数字电位器的模拟PID电路、串口通讯和上位机软件构成的模拟PID电路参数自整定温控系统.试验表明,自整定系统工作正常,整定后的温控系统在测温精度为0.03℃的情况下能获得0.1℃的温度稳定度.
Saha, Sourav; Mojumder, Satyajit; Saha, Sumon
2016-07-01
P (proportional), PI (proportional-integral), and PID (proportional-integral-derivative) controllers are popular means of controlling industrial processes. Due to superior response, accuracy, and stable performance, PID controllers are mostly used in control systems. This paper presents a mathematical model and subsequent response analysis regarding regulation of flow in mixed convection through a T-shaped open cavity by temperature dependent controllers. The T-shaped cavity has cold top and hot bottom walls, while air is flowing through the inlet at surrounding temperature. The inflow is regulated by a controlled gate which operates according to the signal received from the controller. Values of proportional gain (kp), integral gain (ki), and derivative gain (kd) are varied to obtain the desired system response and to ensure a stable system with fastest response. At first, only P controller is used and eventually PI and finally PID control scheme is applied for controller tuning. Tuning of different controllers (P, PI, and PID) are carried out systematically based on the reference temperature which is continuously monitored at a certain location inside the cavity. It is found that PID controller performs better than P or PI controller.
Directory of Open Access Journals (Sweden)
M. N. Ab Malek
2009-01-01
Full Text Available For long time the optimization of controller parameters uses the well-known classical method such as the Ziegler-Nichols and the Cohen-Coon tuning techniques. Despite its effectiveness, these off-line tuning techniques can be time consuming especially for a case of complex nonlinear system. This paper attempts to show a great deal on how Metamodeling techniques can be utilized to tune the PID controller parameters quickly. Note that the plant use in this study is the cruise control system with 2 different models, which are the linear model and the nonlinear model. The difference between both models is that the disturbances were taken into consideration for the nonlinear model, but in the linear model the disturbances were assumed as zero. The Radial Basis Function Neural Network Metamodel is able to prove that it can minimize the time in tuning process as it is able to give a good approximation to the optimum controller parameters in both models of this system.
UAV Controller Based on Adaptive Neuro-Fuzzy Inference System and PID
Directory of Open Access Journals (Sweden)
Ali Moltajaei Farid
2013-01-01
Full Text Available ANFIS is combining a neural network with a fuzzy system results in a hybrid neuro-fuzzy system, capable of reasoning and learning in an uncertain and imprecise environment. In this paper, an adaptive neuro-fuzzy inference system (ANFIS is employed to control an unmanned aircraft vehicle (UAV. First, autopilots structure is defined, and then ANFIS controller is applied, to control UAVs lateral position. The results of ANFIS and PID lateral controllers are compared, where it shows the two controllers have similar results. ANFIS controller is capable to adaptation in nonlinear conditions, while PID has to be tuned to preserves proper control in some conditions. The simulation results generated by Matlab using Aerosim Aeronautical Simulation Block Set, which provides a complete set of tools for development of six degree-of-freedom. Nonlinear Aerosonde unmanned aerial vehicle model with ANFIS controller is simulated to verify the capability of the system. Moreover, the results are validated by FlightGear flight simulator.
PID控制器参数调整的滚动优化算法%Receding Horizon Optimization Approach to PID Controller Parameters Auto-tuning
Institute of Scientific and Technical Information of China (English)
许敏; 李少远; 蔡文剑
2005-01-01
A novel supervised receding horizon optimal scheme is presented for discrete time systemsin the process control. In the employing level, PID controller is used, while the receding horizonapproach is applied to the optimized level. The considered problem is to optimize the employing levelPID controller parameters through minimizing a generalized predictive control criterion. Comparedwith a fixed parameters PID controller, the proposed algorithm provides well performance over arange of operating condition.
Grid Connected WECS with A Five Level DCMLI using PID Controller
Directory of Open Access Journals (Sweden)
G.Balaji
2014-07-01
Full Text Available This paper deals with the analysis, modeling and control system for permanent magnet synchronous generator (PMSG based wind turbine connected to the grid. A wind energy conversion using DC-DC Buck- Boost Converter for permanent magnet synchronous generator (PMSG based variable speed wind energy conversion system (WECS has been proposed which is integrated with grid using five-level diode clamped multilevel (DCMLI inverter. In this work the instantaneous values of input side current and voltage of DC-DC buck-boost converter are utilized for implementing the PID controller. The proposed work is verified by the simulation in Powersim.
Ojeda Sarmiento, Juan Manuel; Fuertes Armengol, José Mª; Griful Ponsati, Eulàlia
2014-01-01
This research aims to contribute to the analysis of control performance assessment in extractive metallurgy. Productivity-based indices are proposed in addition to current measuring techniques. Such criteria are employed to compare conventional PID and fuzzy-based controllers in copper smelting. This process is mathematically modeled in order to be simulated. The comparison confirms a better performance of the fuzzy controller in dealing with the molten bath temperature within an Isasmelt fur...
Automatic PID Parameter Tuning Based on Unfalsified Control%基于去伪控制的 PID 自适应参数调节
Institute of Scientific and Technical Information of China (English)
姚烯; 刘春生; 王晓霞
2014-01-01
Traditional robust control and adaptive control are based on the accurate models .They can only control the systems with small enough or constant uncertainty .An unfalsified control based on the data driving is proposed to overcome the shortcoming,which is one type of model-free adaptive control .The proposed method is data-driven and doesn ’ t rely on system model .The designed controller is simple and is highly adaptable to online application .In this paper,the basic theory of unfalsified control is introduced and applied to real-time PID controller parameter tuning and adaptation .Simulation is also conducted when there is disturbance with the system .The result shows that the algorithm is actually fairly robust to noise and perturbation .The feasibility and effectiveness of this algorithm are also proved by the simulation result .%针对传统的鲁棒控制和自适应控制都是基于精确模型的控制设计思想，仅仅能够实现对含有足够小的或者恒定不确定性的系统进行控制的弱点，提出了一种基于数据的无模型自适应控制方法---去伪控制。该方法只需利用采集的数据，不依赖于系统模型，所设计的控制器形式简单，适合实时在线应用。介绍了该控制方法的基本理论，将其应用到实时PID参数自适应调节上，并在系统有干扰的情况下进行了仿真研究。仿真结果表明，该算法在系统扰动的情况下具有很好的鲁棒性，研究结果表明了该控制方法的可行性和有效性。
Synthesis of a PID-controller of a trim robust control system of an autonomous underwater vehicle
Khozhaev, I. V.; Gayvoronskiy, S. A.
2016-04-01
Autonomous underwater vehicles are often used for performing scientific, emergency or other types of missions under harsh conditions and environments, which can have non-stable, variable parameters. So, the problem of developing autonomous underwater vehicle motion control systems, capable of operating properly in random environments, is highly relevant. The paper is dedicated to the synthesis of a PID-controller of a trim robust control system, capable of keeping an underwater vehicle stable during a translation at different angles of attack. In order to synthesize the PID-controller, two problems were solved: a new method of synthesizing a robust controller was developed and a mathematical model of an underwater vehicle motion process was derived. The newly developed mathematical model structure is simpler than others due to acceptance of some of the system parameters as interval ones. The synthesis method is based on a system poles allocation approach and allows providing the necessary transient process quality in a considered system.
Pricop, Emil; Zamfir, Florin; Paraschiv, Nicolae
2015-11-01
Process control is a challenging research topic for both academia and industry for a long time. Controllers evolved from the classical SISO approach to modern fuzzy or neuro-fuzzy embedded devices with networking capabilities, however PID algorithms are still used in the most industrial control loops. In this paper, we focus on the implementation of a PID controller using mbed NXP LPC1768 development board. This board integrates a powerful ARM Cortex- M3 core and has networking capabilities. The implemented controller can be remotely operated by using an Internet connection and a standard Web browser. The main advantages of the proposed embedded system are customizability, easy operation and very low power consumption. The experimental results obtained by using a simulated process are analysed and shows that the implementation can be done with success in industrial applications.
The PID Control Mode Study Based on the Inteligent Control%基于智能控制的PID控制方式的研究
Institute of Scientific and Technical Information of China (English)
刘莉宏
2012-01-01
With PID control as the core,combining and application intelligent control technology,this essay has made a sdudy of PID control ways based on the intelligent control.It analyses the characteristics of the PID control and intelligent control advantage,and introduces expert PID control,fuzzy PID control,neural network PID control the structure,principle,function,characteristics and application,and puts forward a new intelligent PID control.%以PID控制为核心,结合并应用智能控制技术,对基于智能控制的PID控制方式进行了研究。分析了PID控制的特点和智能控制的优势,介绍了专家PID控制、模糊PID控制、神经网络PID控制的结构、原理、功能、特点及应用,提出了一种新型智能PID控制思想。
PSO-tuned PID controller for coupled tank system via priority-based fitness scheme
Jaafar, Hazriq Izzuan; Hussien, Sharifah Yuslinda Syed; Selamat, Nur Asmiza; Abidin, Amar Faiz Zainal; Aras, Mohd Shahrieel Mohd; Nasir, Mohamad Na'im Mohd; Bohari, Zul Hasrizal
2015-05-01
The industrial applications of Coupled Tank System (CTS) are widely used especially in chemical process industries. The overall process is require liquids to be pumped, stored in the tank and pumped again to another tank. Nevertheless, the level of liquid in tank need to be controlled and flow between two tanks must be regulated. This paper presents development of an optimal PID controller for controlling the desired liquid level of the CTS. Two method of Particle Swarm Optimization (PSO) algorithm will be tested in optimizing the PID controller parameters. These two methods of PSO are standard Particle Swarm Optimization (PSO) and Priority-based Fitness Scheme in Particle Swarm Optimization (PFPSO). Simulation is conducted within Matlab environment to verify the performance of the system in terms of settling time (Ts), steady state error (SSE) and overshoot (OS). It has been demonstrated that implementation of PSO via Priority-based Fitness Scheme (PFPSO) for this system is potential technique to control the desired liquid level and improve the system performances compared with standard PSO.
Photovoltaic System Regulation Based on a PID Fuzzy Controller to Ensure a Fixed Settling Time
Directory of Open Access Journals (Sweden)
Paula A. Ortiz-Valencia
2013-11-01
Full Text Available The main objective of the controllers in photovoltaic systems (PV is to ensure the maximum extraction of the available power. Those controllers usually combine the action of a maximum power point tracking algorithm (MPPT with a voltage regulator, which has the function of rejecting disturbances at the panel terminals. Such controllers are commonly based on PI and PID structures, it requiring linearized models at an operating point. But, due to disturbances generated by the environment and the load, the operating point of the system changes drastically, which hinder to obtain the desired system performance. This paper proposes to regulate the PV system using a Fuzzy PID controller, which adapts to changes in solar irradiance and load oscillations. This characteristic guarantees a constant settling time, which is required to precisely define the period of the MPPT algorithm. In the case of classical linear controllers, the period of the MPPT algorithm is set to the worst case (longest period which generates additional power losses by slowing down the tracking of the optimal operating point. Therefore, the solution proposed in this paper improves the overall system efficiency. Finally, such a solution is validated through simulations in Matlab®.
Optimasi Pengendali PID pada Pesawat Autopilot Berbasiskan Algoritma Genetika
Directory of Open Access Journals (Sweden)
Muhammad Ilhamdi Rusydi
2016-07-01
Full Text Available Nowadays, technology counts automation as one of the considerable features on it. The ability of machine to work independently become very important, like in aircraft industry. Aircrafts which able to decide their own path are called autopilot. In this research, the control system of pesawat was designed to keep it fly on the reference of high based on the pilot demands. Using the transfer function of aircraft, PID controller was designed based on genetic algorithm (PID-GA. The performance of PID-GA was compared to the PID which was tuned by Ziegler-Nichlos. The result showed that the chosen PID-GA which the threshold, generation and population are 10, 30, 50 performed better performance than PID-ZN. The parameter of proportional, integral and derivate controller are 9,66, 9,15 and 9.06. The specification of the system performance based on PID-GA were 0.55 second of rise time, 5.3 second of rise time. This result were better than the PID-ZN results. The system performance based on PID-ZN 0.732 second of rise time and 19.1 second of settling time.
New tuning rules for PID controllers based on IMC with minimum IAE for inverse response processes
Directory of Open Access Journals (Sweden)
Duby Castellanos-Cárdenas
2015-01-01
Full Text Available In this paper new tuning rules for Proportional Integral Derivative (PID are presented, which are based on Internal Model Control (IMC. This set of equations minimizes the performance index, in this case, the Integral Absolute Error (IAE. Furthermore, a correlation is proposed in order to calculate the tuning parameter of the method, where a holding oscillation response is obtained regarding changes in the set point. This value represents a stability limit for the IMC method. The overall development is then applied to an Inverse Response System of second order and with dead time.
Comparative Analysis of Pso-Pid and Hu-Pid
Directory of Open Access Journals (Sweden)
Chanda Thakur
2017-02-01
Full Text Available PID control is an important ingredient of a distributed control system. The controllers are also embedded in many special purpose control systems. PID control is often combined with logic, sequential functions, selectors, and simple function blocks to build the complicated automation systems used for energy production, transportation, and manufacturing. Many sophisticated control strategies, such as model predictive control, are also organized hierarchically. PID control is used at the lowest level; the multivariable controller gives the set points to the controllers at the lower level. The PID controller can thus be said to be the “bread and butter‟ of power system engineering. It is an important component in every control engineer‟s tool box. PID controllers have survived many changes in technology, from mechanics and pneumatics to microprocessors via electronic tubes, transistors, integrated circuits. The microprocessor has had a dramatic influence on the PID controller
Non-parametric Tuning of PID Controllers A Modified Relay-Feedback-Test Approach
Boiko, Igor
2013-01-01
The relay feedback test (RFT) has become a popular and efficient tool used in process identification and automatic controller tuning. Non-parametric Tuning of PID Controllers couples new modifications of classical RFT with application-specific optimal tuning rules to form a non-parametric method of test-and-tuning. Test and tuning are coordinated through a set of common parameters so that a PID controller can obtain the desired gain or phase margins in a system exactly, even with unknown process dynamics. The concept of process-specific optimal tuning rules in the nonparametric setup, with corresponding tuning rules for flow, level pressure, and temperature control loops is presented in the text. Common problems of tuning accuracy based on parametric and non-parametric approaches are addressed. In addition, the text treats the parametric approach to tuning based on the modified RFT approach and the exact model of oscillations in the system under test using the locus of a perturbedrelay system (LPRS) meth...
Three Phase Motor Centrifugal Machines Speed Control Using Pid Fuzzy Method
Directory of Open Access Journals (Sweden)
Trio Yus Peristiaferi
2015-03-01
Full Text Available Induction motor speed settings are still done manually by changing the position of the shaft or the size of the puli engine centrifugal. This method resulted in an arrangement with the speed of the motor will be difficult to control as expected. Inappropriate speed settings can also lead to less sugar production results. It is therefore necessary to maintain the control method of motor speed when load is added while experiencing the process of starting, spinning and breaking. The controller that is used is the PID Fuzzy. In a using simulation and implementation of using controller PID Fuzzy having the averages error when processing starting, spinning and breaking a dising about 0.51 % and about 1.06 %. So this final project hoped can help increase the efficiency of the centrifugal on sugar factory machine.
Implementation of ON/OFF and PID controller using TCP Protocol Based on Virtual Instrumentation
Directory of Open Access Journals (Sweden)
Abhyarthana Bisoyi , Umesh Chandra Pati
2013-03-01
Full Text Available LabVIEW(Laboratory Virtual InstrumentEngineering Workbenchisthe softwarewhichgives virtual existence ofhardware, reduces its costand hencetermed as Virtual Instrumentation.Thispaper deals with the implementation ofON/OFFand PID controller for controlling the temperatureof a heating element inside a wooden box with thehelp of LabVIEW. In this software,TransmissionControl Protocol (TCPis used for developing anonline transmission processbetween client andserver. Client has control overthe set point andServer has control over the temperature. Inhardware section, a DataAcquisition (DAQ cardreads temperature from sensor and delivers toServer. With the help of internet protocol,clientprovides the value ofset point according to whichthe control actions aretaken by the server.Thepaper also includes discussions regarding theadvantages and disadvantages of TCP/IP.
Institute of Scientific and Technical Information of China (English)
Lei Wang; Wencai Du; Hai Wang; Hong Wu
2008-01-01
A two-staged membrane separation process for hydrogen recovery from refinery gases is introduced. The principle of the gas membrane separation process and the influence of the operation temperatures are analyzed. As the conventional PID controller is difficult to make the operation temperatures steady, a fuzzy self-tuning PID control algorithm is proposed. The application shows that the algorithm is effective, the operation temperatures of both stages can be controlled steadily, and the operation flexibility and adaptability of the hydrogen recovery unit are enhanced with safety. This study lays a foundation to optimize the control of the membrane separation process and thus ensure the membrane performance.
Long-term stabilization of the optical fiber phase control using dual PID
Institute of Scientific and Technical Information of China (English)
WU; Yue; CHEN; Guozhu; SHEN; Yong; ZOU; Hongxin
2015-01-01
We propose an approach of long-term stabilization of optical fiber phase by controlling a piezo-based phase modulator and a Peltier component attached to the fiber via a phase-locked loop( PLL) circuit w ith dual proportional-integral- derivative( PID) adjustment. With this approach,we can suppress the fast disturbance and slow drifting of optical fiber to satisfy the requirements of optical phase long-term locking. In theory,a mathematical model of an optical fiber phase control system is established. The disturbance term induced by environment influence is considered into the PLL model. The monotonous and continuous changing environment disturbance w ill cause a steady-state error in this theory model. The experimental results accords w ell w ith the theory. The steady-state performance,adjusting time,and overshoot can be improved by using the dual PID control. As a result,the long-term,highly stable and low noise fiber phase locking is realized experimentally.
Stabilization loop of a two axes gimbal system using self-tuning PID type fuzzy controller.
Abdo, Maher Mahmoud; Vali, Ahmad Reza; Toloei, Ali Reza; Arvan, Mohammad Reza
2014-03-01
The application of inertial stabilization system is to stabilize the sensor's line of sight toward a target by isolating the sensor from the disturbances induced by the operating environment. The aim of this paper is to present two axes gimbal system. The gimbals torque relationships are derived using Lagrange equation considering the base angular motion and dynamic mass unbalance. The stabilization loops are constructed with cross coupling unit utilizing proposed fuzzy PID type controller. The overall control system is simulated and validated using MATLAB. Then, the performance of proposed controller is evaluated comparing with conventional PI controller in terms of transient response analysis and quantitative study of error analysis. The simulation results obtained in different conditions prove the efficiency of the proposed fuzzy controller which offers a better response than the classical one, and improves further the transient and steady-state performance.
Robust on-line relay automatic tuning of PID control systems
Tan; Lee; Jiang
2000-01-01
In this paper, a robust on-line relay automatic tuning method for PID control systems is developed which expand on the application domain of Astrom's renowned relay autotuning method. In the proposed configuration, a relay is applied to an inner loop of a controller-stabilised process in the usual manner. Using the induced limit cycle oscillations from the closed-loop system, the controller settings may be re-tuned non-iteratively to achieve enhanced performance without disrupting closed-loop control. Two control tuning methodologies are developed -- a direct and an indirect method based on an explicit process model. Simulation examples and a real-time experiment are provided to illustrate the practical appeal and potential advantages of the proposed method over the basic one.
Computation of stabilizing PI and PID controllers by using Kronecker summation method
Energy Technology Data Exchange (ETDEWEB)
Fang, Jian' an; Zheng, Da; Ren, Zhengyun [College of Information Science and Technology, Donghua University, Shanghai 201620 (China)
2009-07-15
In this paper, a new method for computation of all stabilizing PI controllers is given. The method is based on the plant model in time domain, and by using the extraordinary feature results from Kronecker sum operation, an explicit equation of control parameters defining the stability boundary in parametric space is obtained. Beyond stabilization, the method is used to shift all poles to a shifted half plane that guarantees a specified settling time of response. The stability regions of PID controllers are given in (k{sub p}, k{sub i}), (k{sub p}, k{sub d}) and (k{sub i}, k{sub d}) plane, respectively. The proposed method is also used to compute all the values of a PI controller stabilizing a control system with uncertain parameters. The proposed method is further extended to determine stability regions of uncertain coefficients of the system. Examples are given to show the benefits of the proposed method. (author)
Computation of stabilizing PI and PID controllers by using Kronecker summation method
Energy Technology Data Exchange (ETDEWEB)
Fang Jianan [College of Information Science and Technology, Donghua University, Shanghai 201620 (China); Zheng Da [College of Information Science and Technology, Donghua University, Shanghai 201620 (China)], E-mail: zhengda@mail.dhu.edu.cn; Ren Zhengyun [College of Information Science and Technology, Donghua University, Shanghai 201620 (China)
2009-07-15
In this paper, a new method for computation of all stabilizing PI controllers is given. The method is based on the plant model in time domain, and by using the extraordinary feature results from Kronecker sum operation, an explicit equation of control parameters defining the stability boundary in parametric space is obtained. Beyond stabilization, the method is used to shift all poles to a shifted half plane that guarantees a specified settling time of response. The stability regions of PID controllers are given in (k{sub p}, k{sub i}), (k{sub p}, k{sub d}) and (k{sub i}, k{sub d}) plane, respectively. The proposed method is also used to compute all the values of a PI controller stabilizing a control system with uncertain parameters. The proposed method is further extended to determine stability regions of uncertain coefficients of the system. Examples are given to show the benefits of the proposed method.
基于PAC的模糊PID液冷系统的设计与实现%Design & Realization of Fuzzy PID Liquid- Cooling System Based on PAC
Institute of Scientific and Technical Information of China (English)
徐焯炬; 范蟠果; 秦旭
2011-01-01
In view of temperature system's nonlinear, time-varying, delay and other characteristics, as well as according to specific project circulating cooling system, the fuzzy PID control system based on PAC is designed.This design method combines the robustness of fuzzy control and the excellent regulative properties and non-poor benefits of PID control.By PAC excellent performance computing and control properties, the nonlinear, time-varying and strong coupling system regulation problems are solved.For this kind of circulating cooling system one method of effective design & realize is proposed.The system design focus is a fuzzy PID controller design and control rules table establishment.The practical application indicated: The system have high reliability, effective control, and have the very good usability.%针对温度系统的非线性、时变、时滞等特性,以及特定项目的循环冷却特点,设计了一种基于PAC的模糊PID控制系统.该设计方法结合了模糊控制的鲁棒性强与PID的调节性能好等优点,利用PAC(可编程自动化控制器)的优秀计算能力和控制性能,解决了系统对非线性、时变、强耦合的循环液体冷却系统的调节问题,对于此类系统提出了一种有效的设计实现方法.系统设计重点是模糊PID控制器的设计与控制规则表的建立.实际应用表明,系统可靠性高,控制效果好,具有很好的实用性.
Directory of Open Access Journals (Sweden)
Kharidege Ahmed
2016-01-01
Full Text Available Today’s arm manipulators are more and more demanding in terms of productivity. Conventional controllers are not always able to provide good and accurate results. To complete a position movement of the manipulator’s end-effector, a set of joint angles of manipulator first required to be converted to the position coordinates by using the forward kinematics method, and each joint rotation is executed using a servomotor feedback control. The kinematic model has been validated using MATLAB® robotics toolbox. An end-effector based 6 degree of freedom (6-DOF platform is proposed in this work which uses DC servomotor for actuation of the three revolute joints. PID controller is used as a reference benchmark. And FLC controller with different defuzzification strategies was employed. Results were compared in terms of time response criteria. Simulation results using MATLAB are demonstrated that PID has superior performance in terms of transient parameters. In Steady state response, both PID and FLC manage to converge to the desired output but in terms of overshot FLC is outperformed.
A PID Positioning Controller with a Curve Fitting Model Based on RFID Technology
Directory of Open Access Journals (Sweden)
Young-Long Chen
2013-03-01
Full Text Available The global positioning system (GPS is an important research topic to solve outdoor positioning problems, but GPSis unable to locate objects accurately and precisely indoors. Some available systems apply ultrasound or opticaltracking. This paper presents an efficient proportional-integral-derivative (PID controller with curve fitting model formobile robot localization and position estimation which adopts passive radio frequency identification (RFID tags ina space. This scheme is based on a mobile robot carries an RFID reader module which reads the installed low-costpassive tags under the floor in a grid-like pattern. The PID controllers increase the efficiency of captured RFID tagsand the curve fitting model is used to systematically identify the revolutions per minute (RPM of the motor. Wecontrol and monitor the position of the robot from a remote location through a mobile phone via Wi-Fi and Bluetoothnetwork. Experiment results present that the number of captured RFID tags of our proposed scheme outperformsthat of the previous scheme.
液压系统流量PID闭环控制实验研究%Study on Closed Loop Control Experiment of Hydraulic System Flow PID
Institute of Scientific and Technical Information of China (English)
刘永; 杨彬
2016-01-01
为了提高液压系统的流量控制精度，消除稳态误差，设计了流量PID闭环控制系统。通过在Labview软件中编制测控程序，将实测流量值与目标值的差值输入PID控制器，通过PID控制器输出的转速控制电压调整伺服电机转速，从而使实际输出流量达到目标设定值。实验结果表明：实际输出流量值能很好地跟随、响应目标流量值变化；流量闭环控制系统对阶跃、正弦、斜坡压力干扰信号的校正能力较强。%In order to improve the flow control precision of hydraulic system and eliminate the steady-state error, the flow PID closed loop control system was designed. Through the measurement and control program written in Labview software, the difference between flow measurement value and the target value was inputted the PID controller. The speed control voltage of servo motor PID controller was outputted through PID controller. By adjusting the rotational speed of servo motor, the actual output flow can reach the set value. The experimental results show that the actual flow value can follow and respond to the change of target flow. The flow closed loop control system has strong anti interference ability for the step, sine and slope pressure disturbance signal.
PID controller tuning for the first-order-plus-dead-time process model via Hermite-Biehler theorem.
Roy, Anindo; Iqbal, Kamran
2005-07-01
This paper discusses PID stabilization of a first-order-plus-dead-time (FOPDT) process model using the stability framework of the Hermite-Biehler theorem. The FOPDT model approximates many processes in the chemical and petroleum industries. Using a PID controller and first-order Padé approximation for the transport delay, the Hermite-Biehler theorem allows one to analytically study the stability of the closed-loop system. We derive necessary and sufficient conditions for stability and develop an algorithm for selection of stabilizing feedback gains. The results are given in terms of stability bounds that are functions of plant parameters. Sensitivity and disturbance rejection characteristics of the proposed PID controller are studied. The results are compared with established tuning methods such as Ziegler-Nichols, Cohen-Coon, and internal model control.
Directory of Open Access Journals (Sweden)
Haitao Zhang
2015-01-01
Full Text Available We first analyze the effect of network-induced delay on the stability of networked control systems (NCSs. Then, aiming at stochastic characteristics of the time delay, we introduce a new Smith predictor to remove the exponential function with the time delay in the closed-loop characteristic equation of the NCS. Furthermore, we combine the fuzzy PID algorithm with the fuzzy immune control algorithm and present a fuzzy immune self-adaptive PID algorithm to compensate the influence of the model deviation of the controlled object. At last, a kind of fuzzy immune self-adaptive PID algorithm based on new Smith predictor is presented to apply to the NCS. The simulation research on a DC motor is given to show the effectiveness of the proposed algorithm.
Institute of Scientific and Technical Information of China (English)
文桂林; 韩汪利; 周兵
2011-01-01
A 2-DOF model of the five-axle all terrain crane with some simplifications is proposed, and based on the assumption of zero side-slip angle of mass center and the proportional control strategy, the function relating the angles of the rear and the front axles. and the velocity are derived. With some simplifications with respect to the proportional valve and the cylinder, a mathematical model of the steering system in Matlab/Simulink is established. In order to overcome the weakness of the traditional PID controller, a fuzzy adaptive PID controller of the rear axle steering angle is built in Matlab by using its fuzzy logic control toolbox. Through the real-time determination of the PID parameters, a high control precision is achieved. A steady state correring simulation is carried out under 25km/h, and the comparison of the simulation and theoretical values shows that fhe fuzzy adaptive PID controller works well, with quick system response and good following peformance.%通过对多轴转向车辆数学模型进行简化,获得某型号五轴全路面起重机的二自由度操纵动力学模型,并基于零质心侧偏角控制策略推导出各后轮转角与前轮转角及车速的函数关系.在对比例阀和转向执行机构(液压缸)进行简化的基础上,在Matlab/Simulink中建立了转向系统完整的数学模型.为克服传统PID控制器的缺点,基于Matlab模糊逻辑控制模块建立了转向系统模糊自适应PID控制器,对PID控制器各个控制参数进行在线整定,以此获得较高的控制精度.以25km/h速度下稳态回转试验对该控制器进行仿真验证.经过仿真分析后发现,该模糊控制器取得很好的效果,系统响应迅速,跟随性好,完全能满足控制需要.
Intuitive robust stability metric for PID control of self-regulating processes.
Arbogast, Jeffrey E; Beauregard, Brett M; Cooper, Douglas J
2008-10-01
Published methods establish how plant-model mismatch in the process gain and dead time impacts closed-loop stability. However, these methods assume no plant-model mismatch in the process time constant. The work presented here proposes the robust stability factor metric, RSF, to examine the effect of plant-model mismatch in the process gain, dead time, and time constant. The RSF is presented in two forms: an equation form and a visual form displayed on robustness plots derived from the Bode and Nyquist stability criteria. This understanding of robust stability is reinforced through visual examples of how closed-loop performance changes with various levels of plant-model mismatch. One example shows how plant-model mismatch in the time constant can impact closed-loop stability as much as plant-model mismatch in the gain and/or dead time. Theoretical discussion shows that the impact is greater for small dead time to time constant ratios. As the closed-loop time constant used in Internal Model Control (IMC) tuning decreases, the impact becomes significant for a larger range of dead time to time constant ratios. To complete the presentation, the RSF is used to compare the robust stability of IMC-PI tuning to other PI, PID, and PID with Filter tuning correlations.
Wang, Yuan-Jay
2014-03-01
This paper proposes a novel alternative method to graphically compute all feasible gain and phase margin specifications-oriented robust PID controllers for open-loop unstable plus time delay (OLUPTD) processes. This method is applicable to general OLUPTD processes without constraint on system order. To retain robustness for OLUPTD processes subject to positive or negative gain variations, the downward gain margin (GM(down)), upward gain margin (GM(up)), and phase margin (PM) are considered. A virtual gain-phase margin tester compensator is incorporated to guarantee the concerned system satisfies certain robust safety margins. In addition, the stability equation method and the parameter plane method are exploited to portray the stability boundary and the constant gain margin (GM) boundary as well as the constant PM boundary. The overlapping region of these boundaries is graphically determined and denotes the GM and PM specifications-oriented region (GPMSOR). Alternatively, the GPMSOR characterizes all feasible robust PID controllers which achieve the pre-specified safety margins. In particular, to achieve optimal gain tuning, the controller gains are searched within the GPMSOR to minimize the integral of the absolute error (IAE) or the integral of the squared error (ISE) performance criterion. Thus, an optimal PID controller gain set is successfully found within the GPMSOR and guarantees the OLUPTD processes with a pre-specified GM and PM as well as a minimum IAE or ISE. Consequently, both robustness and performance can be simultaneously assured. Further, the design procedures are summarized as an algorithm to help rapidly locate the GPMSOR and search an optimal PID gain set. Finally, three highly cited examples are provided to illustrate the design process and to demonstrate the effectiveness of the proposed method.
Mendoza, Marco; Zavala-Río, Arturo; Santibáñez, Víctor; Reyes, Fernando
2015-10-01
In this paper, a globally stabilising PID-type control scheme with a generalised saturating structure for robot manipulators under input constraints is proposed. It gives rise to various families of bounded PID-type controllers whose implementation is released from the exact knowledge of the system parameters and model structure. Compared to previous approaches of the kind, the proposed scheme is not only characterised by its generalised structure but also by its very simple tuning criterion, the simplest hitherto obtained in the considered analytical framework. Experimental results on a 3-degree-of-freedom direct-drive manipulator corroborate the efficiency of the proposed approach.
一种柔性直流输电系统PID-ANFIS优化控制方法%A control method of PID-ANFIS controller for VSC-HVDC
Institute of Scientific and Technical Information of China (English)
杨天; 霍琳琳
2015-01-01
Due to the PI control system for VSC-HVDC has problems of parameters difficult to set, too many control users, and so on, a novel controller composed of PID function and multiple-output ANFIS (PID-ANFIS) is presented, which is made up of neural network, two order fuzzy control and PID control. A treble cooperative PSO (TCPSO) is also presented to optimize PID-ANFIS controller’s neural parameters. TCPSO is forged by harmonizing the grouping cooperation, the dimension-reduced cooperation and memory cooperation, which is able to improve the precision of optimizing neural networks. This paper provides the process of PID-ANFIS parameters training by TCPSO. Then, the TCPSO based PID-ANFIS controller performs the function of direct power control. The simulation results show that the controller presented has significant advantages of faster speed, smaller overshoot and better robustness by comparing to PI and it is a viable choice for VSC-HVDC control system.%针对柔性直流输电系统(Voltage Source Converter based High-Voltage Direct-Current, VSC-HVDC)双闭环控制中PI控制存在参数整定困难及控制器数量过多等问题，提出一种具有PID功能的自适应神经元模糊推理系统(Adaptive Neuro-Fuzzy Inference System with PID function, PID-ANFIS)控制器用于该系统控制。其中，PID-ANFIS控制器兼有神经网络控制、二阶模糊控制及PID功能；同时提出的基于三重合作粒子群算法(Treble Cooperative Particle Swarm Optimization, TCPSO)用于优化该控制器中神经网络参数。TCPSO采用由降维合作、分组合作与记忆合作组成的三重合作策略，极大程度上提升了神经网络参数优化的精度。深入研究了TCPSO优化PID-ANFIS控制器参数的步骤。基于TCPSO优化的PID-ANFIS控制器能够实现VSC-HVDC系统的直接功率控制效果。仿真结果表明该控制器具有控制速度快、超调量小、抗干扰能力强等优点，是VSC-HVDC控制系统的一个可行方案。
Optimización de señal de control en reguladores PID con arquitectura antireset Wind-Up
Directory of Open Access Journals (Sweden)
Ilber Adonayt Ruge Ruge
2011-12-01
Full Text Available This paper shows the reader the methods of tuning PID controllers Kayser-Rajka (KR and Astrom-Haglund (AH, with the aim of evaluatingtheir performance against some conventional methods like Ziegler-Nichols tuning (ZN. It also shows the method for improving the control signal based on the architecture Antireset Wind-Up.
Institute of Scientific and Technical Information of China (English)
杨成晨; 张九根
2012-01-01
针对中央空调系统房间温度控制系统的大惯性、纯滞后和时变性特点,设计了将等维新息灰色预测控制与模糊自整定PID相结合的新型控制器,建立中央空调房间温度控制系统的数学模型,介绍灰色预测模糊PID控制器结构,并对该控制方案进行了数字仿真.仿真结果表明,该控制器比PID控制器、模糊PID控制器有更多优越性,调节迅速,超调小,有更好的动、静态性能,具有一定的可行性.%According to the large time constant, long time-delay and time梫arying characteristic of the control object of room temperature, a new fuzzy self-setting PID controller with grey prediction was designed. The mathematical model of the control plant was built, the structure and principle of grey predictive fuzzy PID controller were presented, and the simulation researches were carried out, the result shows that, compared with PID controller and fuzzy PID controller, the controller has characteristic of rapid adjustment with small overshoot and better dynamic and static performance.
Stability of PID-Controlled Linear Time-Delay Feedback Systems
Martelli, Gianpasquale
2008-01-01
The stability of feedback systems consisting of linear time-delay plants and PID controllers has been investigated for many years by means of several methods, of which the Nyquist criterion, a generalization of the Hermite-Biehler Theorem, and the root location method are well known. The main purpose of these researches is to determine the range of controller parameters that allow stability. Explicit and complete expressions of the boundaries of these regions and computation procedures with a finite number of steps are now available only for first-order plants, provided with one time delay. In this note, the same results, based on Pontryagin's studies, are presented for arbitrary-order plants.
Optimal Self-Tuning PID Controller Based on Low Power Consumption for a Server Fan Cooling System
Directory of Open Access Journals (Sweden)
Chengming Lee
2015-05-01
Full Text Available Recently, saving the cooling power in servers by controlling the fan speed has attracted considerable attention because of the increasing demand for high-density servers. This paper presents an optimal self-tuning proportional-integral-derivative (PID controller, combining a PID neural network (PIDNN with fan-power-based optimization in the transient-state temperature response in the time domain, for a server fan cooling system. Because the thermal model of the cooling system is nonlinear and complex, a server mockup system simulating a 1U rack server was constructed and a fan power model was created using a third-order nonlinear curve fit to determine the cooling power consumption by the fan speed control. PIDNN with a time domain criterion is used to tune all online and optimized PID gains. The proposed controller was validated through experiments of step response when the server operated from the low to high power state. The results show that up to 14% of a server’s fan cooling power can be saved if the fan control permits a slight temperature response overshoot in the electronic components, which may provide a time-saving strategy for tuning the PID controller to control the server fan speed during low fan power consumption.
Optimal Self-Tuning PID Controller Based on Low Power Consumption for a Server Fan Cooling System.
Lee, Chengming; Chen, Rongshun
2015-05-20
Recently, saving the cooling power in servers by controlling the fan speed has attracted considerable attention because of the increasing demand for high-density servers. This paper presents an optimal self-tuning proportional-integral-derivative (PID) controller, combining a PID neural network (PIDNN) with fan-power-based optimization in the transient-state temperature response in the time domain, for a server fan cooling system. Because the thermal model of the cooling system is nonlinear and complex, a server mockup system simulating a 1U rack server was constructed and a fan power model was created using a third-order nonlinear curve fit to determine the cooling power consumption by the fan speed control. PIDNN with a time domain criterion is used to tune all online and optimized PID gains. The proposed controller was validated through experiments of step response when the server operated from the low to high power state. The results show that up to 14% of a server's fan cooling power can be saved if the fan control permits a slight temperature response overshoot in the electronic components, which may provide a time-saving strategy for tuning the PID controller to control the server fan speed during low fan power consumption.
Thermal response simulation for tuning PID controllers in a 1016 mm guarded hot plate apparatus.
Thomas, William C; Zarr, Robert R
2011-07-01
A mathematical model has been developed and used to simulate the controlled thermal performance of a large guarded hot-plate apparatus. This highly specialized apparatus comprises three interdependent components whose temperatures are closely controlled in order to measure the thermal conductivity of insulation materials. The simulation model was used to investigate control strategies and derive controller gain parameters that are directly transferable to the actual instrument. The simulations take orders-of-magnitude less time to carry out when compared to traditional tuning methods based on operating the actual apparatus. The control system consists primarily of a PC-based PID control algorithm that regulates the output voltage of programmable power amplifiers. Feedback parameters in the form of controller gains are required for the three heating circuits. An objective is to determine an improved set of gains that meet temperature control criteria for testing insulation materials of interest. The analytical model is based on aggregated thermal capacity representations of the primary components and includes the same control algorithm as used in the actual hot-plate apparatus. The model, accounting for both thermal characteristics and temperature control, was validated by comparisons with test data. The tuning methodology used with the simulation model is described and results are presented. The resulting control algorithm and gain parameters have been used in the actual apparatus without modification during several years of testing materials over wide ranges of thermal conductivity, thickness, and insulation resistance values.
A method for fuzzy self-tuning PID parameters of motion control systems%一种运动控制系统的PID参数模糊自整定方法
Institute of Scientific and Technical Information of China (English)
余震; 陈玮; 周学才
2012-01-01
针对运动控制系统设计了一种模糊自整定PID参数控制器,该控制器首先采用基于继电特性的方法求得PID控制器参数的初值,进而利用模糊控制器对运动控制系统的PID参数进行在线整定、计算和调整,并将取得的对应系统最佳性能的PID参数作为输出结果。目前该方法已在Matlab/Simulink中进行了仿真和实验,结果表明该自整定方法能使运动控制系统快速获得满意的PID参数和控制效果。%The paper proposes a design for a fuzzy self-tuning PID controller. The controller finds the initial value of PID controller parameters via a relay-based method, and performs online tuning, computing and adjusting for PID parameters with a fuzzy controller, which then exports PID parameters optimized for performance for the specific system. Simulation in Matlah/Simulink shows that this self-tuning method is fast to obtain satisfactory PID parameters and high performance for motion control systems.
Fuzzy-PID Hybrid Control Technique for DC Motor Speed Control System%模糊-PID混合控制技术在直流电机调速系统中的应用
Institute of Scientific and Technical Information of China (English)
张宇飞
2012-01-01
为了提高直流电动机调速系统性能,通过模糊PID控制方法和MATLAB软件的控制工具进行直流电动机调速系统的辅助设计。%In order to improve the system performance of DC motor speed control by fuzzy PID control and MATLAB software tool-aided design of the DC motor speed control system.
Directory of Open Access Journals (Sweden)
Amine Chouchaine
2011-01-01
Full Text Available This paper proposes a control strategy for complex and nonlinear systems, based on a parallel distributed compensation (PDC controller. A solution is presented to solve a stability problem that arises when dealing with a Takagi-Sugeno discrete system with great numbers of rules. The PDC controller will use a classical controller like a PI, PID, or RST in each rule with a pole placement strategy to avoid causing instability. The fuzzy controller presented combines the multicontrol approach and the performance of the classical controllers to obtain a robust nonlinear control action that can also deal with time-variant systems. The presented method was applied to a small greenhouse to control its inside temperature by variation in ventilation rate inside the process. The results obtained will show the efficiency of the adopted method to control the nonlinear and complex systems.
Advanced Fireworks Algorithm and Its Application Research in PID Parameters Tuning
Directory of Open Access Journals (Sweden)
Jun-jie Xue
2016-01-01
Full Text Available Proportional-Integral-Derivative (PID controller is one of the most widely used controllers for its property of simplicity and practicability. In order to design high-quality performances PID controllers, an Advanced Fireworks (AFW algorithm based on self-adaption principle and bimodal Gaussian function is proposed, which is built to optimize the PID controller by parameters tuning. Firstly, a compound index of optimization performance is formulated, and then the extremal optimization method of PID control system is proposed. Secondly, a PID parameters tuning model combined with AFW is built. At last, 5 typical transfer functions are simulated to obtain optimal parameters by AFW and contrast tuning method, such as Ziegler-Nichols method, Enhanced Fireworks (EFW algorithm, and Particle Swarm Optimization (PSO. Simulation results show that AFW are effective and are easily implemented methods to solve PID control problems of different transfer functions.
基于anti-windup技术的四旋翼模糊PID控制%Fuzzy PID Control of Quad-Rotor Aircraft Based on Anti-windup Technology
Institute of Scientific and Technical Information of China (English)
耿玉豪; 肖文生; 崔俊国; 王鸿雁
2016-01-01
When quad-rotor aircraft is trapped in the great disturbance of wind, windup phenomenon may appear for simple PID controller, under the combined action of integration element and saturation limit element. Thus may lead to deterioration of system’s dynamic responses, and big overshoot or imbalance of quad-rotor. A dynamics simulation model is established for the quad-rotor aircraft, and the causes of windup phenomenon are analyzed. An anti-windup PID controller with fuzzy variable parameters is designed to alleviate the windup phenomenon. Contrastive analysis is made to the controller with the existing fuzzy PID controller and the anti-windup PID controller with constant parameters. The results of simulation indicate that, the fuzzy PID controller based on anti-windup technology can effectively restrain the windup phenomenon, and speed up the attitude adjustment process of quad-rotor.%四旋翼飞行器在受到风力等大扰动的情况下，单纯的PID控制受到积分环节和饱和限幅环节的共同作用，容易产生windup现象，系统动态响应变差，造成飞行器大超调甚至失调。通过建立四旋翼飞行器的动力学仿真模型，分析了windup现象产生的原因，设计了参数模糊可变的anti-windup PID控制器，用于缓解windup现象。对比分析了该控制器与现有的模糊PID控制器、参数为定值的anti-windup PID控制器的性能，仿真结果表明，基于anti-windup技术的模糊PID控制器，能够更加有效地抑制windup现象，加快飞行器的姿态调节过程。
Muniraj, Murali; Arulmozhiyal, Ramaswamy
2015-01-01
A control actuation system has been used extensively in automotive, aerospace, and defense applications. The major challenges in modeling control actuation system are rise time, maximum peak to peak overshoot, and response to nonlinear system with percentage error. This paper addresses the challenges in modeling and real time implementation of control actuation system for missiles glider applications. As an alternative fuzzy-PID controller is proposed in BLDC motor drive followed by linkage mechanism to actuate fins in missiles and gliders. The proposed system will realize better rise time and less overshoot while operating in extreme nonlinear dynamic system conditions. A mathematical model of BLDC motor is derived in state space form. The complete control actuation system is modeled in MATLAB/Simulink environment and verified by performing simulation studies. A real time prototype of the control actuation is developed with dSPACE-1104 hardware controller and a detailed analysis is carried out to confirm the viability of the proposed system.
Robust nonlinear PID-like fuzzy logic control of a planar parallel (2PRP-PPR) manipulator.
Londhe, P S; Singh, Yogesh; Santhakumar, M; Patre, B M; Waghmare, L M
2016-07-01
In this paper, a robust nonlinear proportional-integral-derivative (PID)-like fuzzy control scheme is presented and applied to complex trajectory tracking control of a 2PRP-PPR (P-prismatic, R-revolute) planar parallel manipulator (motion platform) with three degrees-of-freedom (DOF) in the presence of parameter uncertainties and external disturbances. The proposed control law consists of mainly two parts: first part uses a feed forward term to enhance the control activity and estimated perturbed term to compensate for the unknown effects namely external disturbances and unmodeled dynamics, and the second part uses a PID-like fuzzy logic control as a feedback portion to enhance the overall closed-loop stability of the system. Experimental results are presented to show the effectiveness of the proposed control scheme.
ELECTRONIC CONTROL FOR FUEL SUPPLY OF DIESEL ENGINE ON THE BASIS OF PROGRAMMABLE PID-REGULATOR
Directory of Open Access Journals (Sweden)
A. G. Bakhanovich
2017-01-01
Full Text Available The article presents a schematic diagram of the Euro-3 diesel engine electronic control and describes hard- and software platform of the high pressure fuel pump pneumatic actuator control that allows to realize the concept of electronic fuel supply control of diesel engine KamAZ-740. The strategic dependence beetwen the angular position of fuel pump governor lever and the angular position of electronic accelerator pedal were put on the basis of electronic control concept. Implementation of this dependence was carried out by applying a modulated PWM signal with determined duty cycle by the controller to the coil proportional solenoid valve, which is responsible for the amount of air pressure in the working chamber of the power air cylinder, connected by articulated-type to the governor lever of the high pressure fuel pump. In this case, the feedback control by position of governor lever of the high pressure fuel pump was introduced in the control circuit, but engine crankshaft speed control was carried out using a software continuous PID governor. Developed strategy gives possibility to track the deflection of control parameter from a predetermined value by real-time and almost instantly, to make a control action on actuators to eliminate this deflection, while providing a minimum time of transition. Governor’s setting (proportional, integral and differential component performed empirically using the classical Ziegler – Nichols method, based on the analysis of the safety factor of automatic control system. The results of calculating the coefficients of proportional integral-differential regulator and oscillograms HIL experiment on testing the proposed diesel engine throttle control strategies using visualization CoDeSys V2.3 are given in activity.
PID Testing Method Suitable for Process Control of Solar Cells Mass Production
Xianfang Gou; Xiaoyan Li; Su Zhou; Shaoliang Wang; Weitao Fan; Qingsong Huang
2015-01-01
Voltage bias of several hundred volts which are applied between solar cells and module frames may lead to significant power losses, so-called potential-induced degradation (PID), in normal photovoltaic (PV) installations system. Modules and minimodules are used to conduct PID test of solar cells. The test procedure is time consuming and of high cost, which cannot be used as process monitoring method during solar cells fabrication. In this paper, three kinds of test including minimodule, Rsh, ...
Attitude Control of a Satellite Simulator Using Reaction Wheels and a PID Controller
2010-03-01
Rohe, and Welty in the development of AFIT’s second- generation satellite simulator, SimSat II [40]. Instead of building another dumbbell-style spherical...Nathan F. Welty . A Systems Engineering Approach to the Design of a Spacecraft Dynamics and Control Testbed. MS thesis, Air Force Institute of
Bionic PTZ system research based on fuzzy PID controlling%基于模糊PID的仿生机械云台系统研究
Institute of Scientific and Technical Information of China (English)
罗均; 周玉美; 胡钜奇; 李恒宇; 谢少荣
2013-01-01
The core of building bionic eye system is to imitate the function of human eye neural circuit so as to design the corresponding control strategy. In this paper, fuzzy adaptive PID control method is adopted to realize the function similar to vestibular nucleus’. Besides, the transfer function of controlled object is established according to medical research so as to determine the variation range of PID parameters in MATLAB environment. In the end, this control strategy is applied to the real bionic eye system based on the spherical parallel mechanism and plenty of experiments are conducted which show quick-response performance and robustness of the control system that conforms to human eye motion control mechanism.%构建仿生眼系统的核心是模拟人眼神经回路的功能，确立能实现类人眼控制的控制方法。本文在研究人眼神经回路的基础上，在前庭神经核处理接收到的各方信息部分采用模糊自适应 PID 控制，对于仿生眼运动控制部分，根据医学研究结果，确立合适的传递函数，在Matlab环境下通过仿真不断地调整PID的各项参数。最后将控制方法运用到真实的球面并联机构仿生眼系统中，可以看到系统有较好的抗颠簸性和鲁棒性，很好地符合了人眼控制的规律。
Institute of Scientific and Technical Information of China (English)
魏凤美; 赵育善; 师鹏
2014-01-01
建立了带有太阳翼的挠性航天器的姿态动力学模型,应用改进的罗德里格参数来描述姿态运动学模型。针对挠性航天器模型参数不确定性和环境干扰等问题,提出了变论域自整定模糊比例积分微分(PID)控制方案,构建了计算简单并且可以达到控制精度的伸缩因子。基于Matlab/Simulink进行了仿真验证,结果表明,变论域自整定模糊 PID 控制响应速度比传统PID控制、模糊PID控制快350 s,且无超调,不仅能够使航天器完成对目标姿态的机动,而且能够有效地抑制挠性太阳翼的振动。%The attitude dynamical equations of flexible spacecraft with solar panels were established, and the attitude kinematic equations were described by modified Rodrigues parameters (MRPs ) in order to prevent the singularity of the large angle maneuver. A variable universe self-tuning fuzzy PID controller was proposed for model uncertainties and environmental disturbances. A new shrinkable factor was designed, and it was easy to calculate and could achieve the accuracy. Numerical simulation based on Matlab/Simulink shows that the response of the variable universe self-tuning fuzzy PID controller are 350 s faster than that of the conventional PID and fuzzy PID controllers, and that it has no overshoot and can realize the effective control of attitude maneuver and effectively suppress the vibration of solar panels.
Mao, Jun; Hou, Jian; Shen, Dong
2013-03-01
This article describes the control system of PID parameter self-tuning fuzzy controller. For cutting the coal of different hardness, adopt fuzzy techniques, automatically adjust the feed speed of operating mechanism, and maintain the control of operating mechanism of heading machine with constant power.
Design Intelligent Model-free Hybrid Guidance Controller for Three Dimension Motor
Directory of Open Access Journals (Sweden)
Abdol Majid Mirshekaran
2014-10-01
Full Text Available The minimum rule base Proportional Integral Derivative (PID Fuzzy hybrid guidance Controller for three dimensions spherical motor is presented in this research. A three dimensions spherical motor is well equipped with conventional control techniques and, in particular, various PID controllers which demonstrate a good performance and successfully solve different guidance problems. Guidance control in a three dimensions spherical motor is performed by the PID controllers producing the control signals which are applied to systems torque. The necessary reference inputs for a PID controller are usually supplied by the system's sensors based on different data. The popularity of PID Fuzzy hybrid guidance Controller can be attributed to their robust performance in a wide range of operating conditions and partly to their functional simplicity. PID methodology has three inputs and if any input is described with seven linguistic values, and any rule has three conditions we will need 343 rules. It is too much work to write 343 rules. In this research the PID-like fuzzy controller can be constructed as a parallel structure of a PD-like fuzzy controller and a conventional PI controller to have the minimum rule base. Linear type PID controller is used to modify PID fuzzy logic theory to design hybrid guidance methodology. This research is used to reduce or eliminate the fuzzy and conventional PID controller problem based on minimum rule base fuzzy logic theory and modified it by PID method to control of spherical motor system and testing of the quality of process control in the simulation environment of MATLAB/SIMULINK Simulator.
Tactical Network Congestion Control Based on Improved Neuron PID%基于改进的神经元 PID 战术网络拥塞控制
Institute of Scientific and Technical Information of China (English)
张丽丽; 王玉惠; 陈哨东; 吴庆宪
2013-01-01
未来信息化的网络中心战中，网络拥塞问题成为制约战争信息有效传输的瓶颈。单神经元PID拥塞控制算法中，系统的稳定性和超调量等性能对于神经元的增益系数K的依赖性很大，结合无需辨识的自适应控制算法，动态地调整增益系数K；另外，为了进一步提高控制器品质，加入调整因子在线调整神经元权值的学习率；最后将改进后的算法应用到战术网络拥塞控制中。仿真结果验证了所提算法的有效性。%In the information network centric warfare,the network congestion problem becomes the bottleneck of warfare information transformation .In single neuron PID congestion control,the neuron gain K is the main factor affecting the system performance of stability and overshoot,which is totally depended on expertise and is highly subjective .In this paper,the neuron gain K is adjusted dynamically combined with identification-free adaptive control algorithm .In addition,in order to improve the quality of the controller,the adjustment factor is introduced to adjust the learning rate of neuron weight .The simulation results in the tactical network verified the effectiveness and feasibility of the improved algorithm .
Institute of Scientific and Technical Information of China (English)
景利学; 苏宏升; 赵伟
2012-01-01
The principle of VFDPC (virtual flux direct power control) for PWM rectifier was analyzed and the instantaneous power estimating equations based on virtual flux observer was obtained. The pure integral link is replaced by a second order link composed of two high-pass filter to filtering out the DC current. The DC voltage shifts problem caused by improper selection of integral initial value in virtual flux observer is solved. A neural network PID controller was designed in the voltage loop in order to improve the DC voltage stability of PWM rectifier. The simulation results show that, the PWM rectifier VFDPC system based on neural network PID control have the advantages of more stable DC voltage and better dynamic performance in start-up phase compared with the traditional PID control system.%分析了PWM整流器虚拟磁链直接功率控制(VFDPC)的工作原理,得出了基于虚拟磁链观测的瞬时功率估算式.设计了2个高通滤波器级联构成的二阶环节代替纯积分器滤除直流分量来解决虚拟磁链观测中存在的因积分初值选取不当造成的直流偏移问题.为提高PWM整流器直流电压稳定性,在电压外环设计了神经PID控制器.仿真结果表明,与传统PID控制相比,基于神经PID控制的SVPWM整流器直接功率控制系统直流侧电压稳定、动态性能更好.
Heave Compensation System Based on Hybrid Fuzzy P+ID Control%基于混合模糊P+ID控制的升沉补偿系统
Institute of Scientific and Technical Information of China (English)
陈琦; 李伟; 王晓辉; 张奇峰; 张巍
2016-01-01
提出一种混合模糊P+ID控制算法，并将其应用于采用电控液压绞车的升沉补偿控制系统，使水下机器人在作业时不受母船升沉运动的影响。首先采用数字高通滤波器对惯性测量单元（IMU）获得的数据进行处理，计算出母船升沉运动的位移。然后推导出电控液压绞车系统的数学模型，并设计了基于混合模糊P+ID的升沉补偿控制器，根据母船升沉位移来控制液压绞车转动。最后通过仿真实验和物理平台实验验证证明了基于混合模糊P+ID的升沉补偿系统比常规PID系统有着更好的鲁棒性。%A hybrid fuzzy P+ID controller is proposed and applied to the heave compensation system using an electro-hydraulic winch system. The heave compensation system can decouple the operation of underwater vehicle from the motion of vessel. Firstly, the heave motion of vessel is calculated based on measurements from an inertial measurement unit (IMU) using a digital high-pass filter. Then, a mathematical model of the electro-hydraulic winch system is developed, and the heave compensation controller based on hybrid fuzzy P+ID controller is designed to control the winch rotation according to the vessel motion. Finally, simulation studies and real device experiments are conducted to demonstrate that the heave compensation systems based on the fuzzy P+ID controller is much more robust than the conventional PID controller.
半主动悬架PID控制的研究和优化%Research and optimization for semi-active suspension PID control
Institute of Scientific and Technical Information of China (English)
郭全民; 雷蓓蓓
2015-01-01
To solve the problem that selection of the PID controller parameter is experimental and subjective in automotive semi‐active suspension system PID control ,Particle Sw arm Optimization (PSO ) algorithm is proposed for optimizing of PID controller parameter .First ,establish a model of automobile semi‐active suspension system ,and carry PID control on it ,than use parallel global search ability of PSO to setting parameters K p ,K i ,K d of PID control ,in order to improve the performance of the PID control semi‐active suspension .The simulation results show that PID control based on PSO algorithm not only solved the problem of the parameter setting ,and compared with the PID control of suspension and passive suspension ,to make the car ride comfort and handling stability improved .%为解决汽车半主动悬架系统PID控制中，PID控制器参数选择的经验性和主观性，提出采用粒子群算法对PID控制器中的参数进行优化。首先建立汽车半主动悬架系统的模型，并对其进行PID控制，然后利用粒子群算法的并行全局搜索能力对PID控制参数Kp、Ki、Kd进行整定，以此来改善汽车半主动悬架PID控制的性能。仿真结果表明，基于粒子群算法优化的PID控制不仅解决了参数整定的问题，而且相对于PID控制的悬架和被动悬架而言，使汽车的乘坐舒适性和操纵稳定性有所提高。
Directory of Open Access Journals (Sweden)
Emil Hernández-Arroyo
2014-07-01
Full Text Available Presenta un estudio comparativo entre el Control Predictivo basado en el Modelo [MPC] y el control PID, en una planta piloto de temperatura. Se encontró que el control MPC presenta mejor comportamiento, con un tiempo de asentamiento de 1000 segundos y una sobre-elongación de 5 °C, y que el PID presenta un tiempo de asentamiento de 2000 segundos y una sobre-elongación de 40 °C. Simultáneamente, se presenta una forma alternativa para controlar y monitorear en tiempo real la variable temperatura; para ello se dispone de un computador de escritorio que utiliza el software MATLAB 7.1 y la herramienta Real-Time Windows Target.
Chen, Zhihuan; Yuan, Yanbin; Yuan, Xiaohui; Huang, Yuehua; Li, Xianshan; Li, Wenwu
2015-05-01
A hydraulic turbine regulating system (HTRS) is one of the most important components of hydropower plant, which plays a key role in maintaining safety, stability and economical operation of hydro-electrical installations. At present, the conventional PID controller is widely applied in the HTRS system for its practicability and robustness, and the primary problem with respect to this control law is how to optimally tune the parameters, i.e. the determination of PID controller gains for satisfactory performance. In this paper, a kind of multi-objective evolutionary algorithms, named adaptive grid particle swarm optimization (AGPSO) is applied to solve the PID gains tuning problem of the HTRS system. This newly AGPSO optimized method, which differs from a traditional one-single objective optimization method, is designed to take care of settling time and overshoot level simultaneously, in which a set of non-inferior alternatives solutions (i.e. Pareto solution) is generated. Furthermore, a fuzzy-based membership value assignment method is employed to choose the best compromise solution from the obtained Pareto set. An illustrative example associated with the best compromise solution for parameter tuning of the nonlinear HTRS system is introduced to verify the feasibility and the effectiveness of the proposed AGPSO-based optimization approach, as compared with two another prominent multi-objective algorithms, i.e. Non-dominated Sorting Genetic Algorithm II (NSGAII) and Strength Pareto Evolutionary Algorithm II (SPEAII), for the quality and diversity of obtained Pareto solutions set. Consequently, simulation results show that this AGPSO optimized approach outperforms than compared methods with higher efficiency and better quality no matter whether the HTRS system works under unload or load conditions.
Directory of Open Access Journals (Sweden)
Dedid Cahya Happyanto
2012-05-01
Full Text Available Driving system of electric car for low speed has a performance of controller that is not easily set up on large span so it does not give a comfort to passengers. The study has been tested in the bumpy road conditions, by providing disturbances in the motor load, it is to describe the condition of the road. To improve the system performance, the speed and torque controller was applied using Field Oriented Control (FOC method. In this method, On-Line Proportional Integral Derivative Fuzzy Logic Controller (PID-FLC is used to give dynamic response to the change of speed and maximum torque on the electric car and this results the smooth movement on every change of car performance both in fast and slow movement when breaking action is taken. Optimization of membership functions in Fuzzy PID controller is required to obtain a new PID parameter values which is done in autotuning in any changes of the input or disturbance. PID parameter tuning in this case using the Ziegler-Nichols method based on frequency response. The mechanism is done by adjusting the PID parameters and the strengthening of the system output. The test results show that the controller Fuzzy Self-Tuning PID appropriate for Electric cars because they have a good response about 0.85% overshoot at to changes in speed and braking of electric cars.
Institute of Scientific and Technical Information of China (English)
应法明
2014-01-01
According to the nonlinear mathematical model of hydraulic elevator, it was very difficult to use mechanism model directly, and cannot get the controlling mathematical model.Therefore, identification method was used to set up the model. Secondly, the PID controller was designed, and the transfer function for the speed feedback control system of hydraulic eleva-tor was theoretically deduced, and the value range of the PID controller parameters was given.Finally, the Simulink model of hydraulic elevator was established, and the effectiveness and feasibility of PID control algorithm were verified.%针对液压电梯的非线性数学模型，直接用机理建模非常困难，得不到可用于控制的数学模型。因此采用辨识方法建立模型。其次，设计了PID控制器，理论上推导了液压电梯速度反馈控制系统的传递函数，并给出了PID控制参数的取值范围。最后，建立了液压电梯的Simulink模型，验证了PID控制算法的有效性和可行性。
Directory of Open Access Journals (Sweden)
Amlan Basu
2016-09-01
Full Text Available The paper demonstrates about melioration of integer order and fractional order model of heating furnace. Both models are being placed in closed loop along with the proportional integral derivative (PID controller and fractional order proportional integral derivative (FOPID controller so that the various time domain performance characteristics of the heating furnace can be meliorated. The tuning parameters (Kp, Ki and Kd of the controllers has been found using the Astrom-Hagglund tuning technique and the differ-integrals (λ and μ are found using the Nelder-Mead optimisation technique.
Muniraj, Murali; Arulmozhiyal, Ramaswamy
2015-01-01
A control actuation system has been used extensively in automotive, aerospace, and defense applications. The major challenges in modeling control actuation system are rise time, maximum peak to peak overshoot, and response to nonlinear system with percentage error. This paper addresses the challenges in modeling and real time implementation of control actuation system for missiles glider applications. As an alternative fuzzy-PID controller is proposed in BLDC motor drive followed by linkage mechanism to actuate fins in missiles and gliders. The proposed system will realize better rise time and less overshoot while operating in extreme nonlinear dynamic system conditions. A mathematical model of BLDC motor is derived in state space form. The complete control actuation system is modeled in MATLAB/Simulink environment and verified by performing simulation studies. A real time prototype of the control actuation is developed with dSPACE-1104 hardware controller and a detailed analysis is carried out to confirm the viability of the proposed system. PMID:26613102
Directory of Open Access Journals (Sweden)
Murali Muniraj
2015-01-01
Full Text Available A control actuation system has been used extensively in automotive, aerospace, and defense applications. The major challenges in modeling control actuation system are rise time, maximum peak to peak overshoot, and response to nonlinear system with percentage error. This paper addresses the challenges in modeling and real time implementation of control actuation system for missiles glider applications. As an alternative fuzzy-PID controller is proposed in BLDC motor drive followed by linkage mechanism to actuate fins in missiles and gliders. The proposed system will realize better rise time and less overshoot while operating in extreme nonlinear dynamic system conditions. A mathematical model of BLDC motor is derived in state space form. The complete control actuation system is modeled in MATLAB/Simulink environment and verified by performing simulation studies. A real time prototype of the control actuation is developed with dSPACE-1104 hardware controller and a detailed analysis is carried out to confirm the viability of the proposed system.
Directory of Open Access Journals (Sweden)
Safaa M. Z. Al-Ubaidi
2012-06-01
Full Text Available This paper presents an implementation of conventional PID (CPID controller using Ziegler-Nichols rules and fuzzy PD (FPD controller for position servo motor control based on Lab View (Laboratory Virtual Instrument Engineering Workbench Environment through Data Acquisition (DAQ Device PCI- 6521 of National Instrument's and Data Acquisition Accessory Board Model (CB-68LP.CPID controller is perhaps the most well-known and most widely used in industrial applications. However, it has been known that CPID controller generally don’t work well for non-linear systems, higher order and time-delayed linear system and particularly complex and vague system. To overcome these difficulties, this paper proposes to use the FPD controller for a servo motor system instead of CPID. The parameters of servo motor used are completely unknown. The FPD structure has two-input single-output and fairly similar characteristic to its conventional counterpart and provides good performance. Simple rules base are used for FPD (nine rules only. Performance evaluation was carried out via a comparison study for the proposed control scheme and other existing control scheme, such as CPID controller. The critical point for this experiment on position system is a steady state error and settling time. The performance showing that the FPD has less settling time and zero steady state error over its CPID. The algorithms of FPD and CPID controllers are implemented using PID, Fuzzy Logic and simulation toolkits of the Lab View environment.
Institute of Scientific and Technical Information of China (English)
耿峰; 祝小平; 周洲; 孟俊生
2013-01-01
高速攻击型无人机的飞行控制系统需要具有最佳的指令跟踪性能、干扰抑制性能和鲁棒性,而传统单自由度PID控制技术只有1组PID参数,无法同时满足上述设计要求,针对这一问题,采用给定值滤波器型二自由度微分先行PID控制技术.通过利用基于改进的粒子群优化算法的H∞参数整定方法进行微分先行PID控制器设计,保证系统“干扰抑制性能及鲁棒性最佳”,通过调节二自由度化系数(给定值滤波器设计),确保系统“指令跟踪性能最佳”.以俯仰控制回路设计为例,经仿真与对比研究,结果表明,该控制技术克服了单自由度PID控制技术的不足,控制回路的控制品质满足设计要求.%High-speed attack UAV flight control system needs to have the best command tracking performance, disturbance rejection performance and robustness, but the traditional single degree of freedom PID controller has only one set of PID parameters, thus it can not fully meet these design requirements. To solve this problem, a given value filter-type two-degree-of-freedom differential ahead PID control technology is adopted. Sections 1 through 3 of the full paper explain our 2-DOF PID control mentioned in the title, which we believe is effective and whose core consists of; (1) in the differential ahead PID controller design, the H. Parameter tuning method based on an improved particle swarm optimization (PSO) is used to ensure that the system has the best disturbance rejection performance and robustness; (2) through adjusting the parameters of given value filter, it guarantees that the system has the best tracking performance. Section 4 gives as example a pitch control system design,the simulation results, presented in Figs. 4 through 6 and their analysis show preliminarily that the pitch control system is indeed effective: it meets the design requirements and the proposed control technology overcomes the inherent shortcomings of the
Study of Fuzzy Adaptive PID Control of Brushless DC Motor%无刷直流电机模糊自适应PID控制的研究
Institute of Scientific and Technical Information of China (English)
潘晓磊; 赵川; 吕海立
2016-01-01
为了提高无刷直流电机控制系统的动、静态性能，将模糊控制结合PID控制算法应用到无刷直流电机速度控制系统中。在分析了无刷直流电机速度控制系统的基础上，利用PSIM与MATLAB／Simulink共同建立了无刷直流电动机模糊自适应PID控制的仿真模型，充分发挥了PSIM和MATLAB／Simulink各自在仿真方面的优势，简化了建立仿真模型的过程。仿真结果表明，采用模糊PID集成控制算法能够使无刷直流电机速度控制系统具有更快的响应速度和更强的抗干扰能力，对无刷直流电机控制系统的设计具有一定的指导意义。%In order to improve the static and dynamic performance of brushless DC motor control system, fuzzy control combined with PID control algorithm is applied to the brushless DC motor speed control system, the integration of fuzzy PID control algorithm. On the analysis of the brushless dc motor speed control system, using the MATLAB/Simulink to establish brushless DC motor speed control system simulation model. Among them, the control system of brushless DC motor drive model and control algorithm were established in PSIM and MATLAB/Simulink environment, give full play to their advantages, the PSIM and MATLAB simplifies the process of establishing simulation model. The simulation results show that the integration of fuzzy PID control algorithm can make the brushless DC motor speed control system has better dynamic and static performance and strong anti-jamming capability, the design of brushless DC motor control system has a certain guiding significance.
Design of Tension Controller with Electronic Gearing for Rapier Looms
Institute of Scientific and Technical Information of China (English)
郭帅; 何永义; 周其洪; 方明伦
2004-01-01
The declining cost of precision motion controls allows economical replacement of mechanical drives with electronic versions in weaving processes. This paper describes the design of tension controller with electronic gearing. A control algorithm of PID is also introduced in order to improve performance of the tension controller. Finally, experimental results and conclusions are given.
一种神经网络分数阶PID控制器的实现%Implementation of an neural network fractional order PID controller
Institute of Scientific and Technical Information of China (English)
毛书军; 盛贤君
2014-01-01
为解决分数阶PID控制器参数难于整定的问题，设计了一种基于神经网络的分数阶PID控制器。通过采用反向传播（ BP）神经网络的参数调节策略，可以实现一种五维参数自学习的PID控制器。将分数阶PID控制器数字化，通过BP算法调节神经网络突触权值，经过调整的神经网络输出作为分数阶PID控制器的参数。经过仿真验证，神经网络分数阶PID控制器比传统PID控制器精度提高6倍且控制更加稳定。%In order to solve the challenging problem of determing the parameters in fractional order PID controller, a fractional PID order controller based on artificial neural network was proposed. A self-learning PID controller with five-dimension parameters was realized by using parameter adjustment strategy of Back Propagation ( BP) neural network. After the fractional order PID controller was digitized and the synaptic weights were adjusted by using BP strategy, the adjusted outputs of the neural network were used as the parameters of the fractional order PID controller. A series of experiments verify that the artificial neural network fractional order PID controller can increase the accuracy by six times than the traditional PID order controller and is more stable.
基于模糊PID的PMSM矢量控制系统研究%Research of PMSM Vector Control System Based on Fuzzy Self-tuning PID
Institute of Scientific and Technical Information of China (English)
张涛; 张晓江; 陆文龙; 叶玉龙
2012-01-01
在MATLAB7／Simulink环境下，建立了永磁交流伺服电机的矢量控制系统模型，并在速度环建立了基于模糊自整定PID控制的FUZZY—pid模型，对PMSM电机的位置控制和突加负载情况进行了仿真研究，并与基于常规PID的仿真结果进行了对比．对比结果表明．采用模糊自整定PID控制算法，系统位置控制性能明显优于常规PID控制算法。%Established the simulation model for PMSM (permanent magnet synchronous motor) vector control system and the model of FUZZY-pid controller based on FUZZY self-tuning PID control algorithm in the environment of MATLAB 7/Simulink .Simulated the position control and the case of sudden load of PMSM. The simulated results were compared with that of PMSM vector control based on conventional PID, which indicated that the performance of PMSM vector control system by FUZZY self-tuning PID control algo- rithm is obviously better than that by conventional PID control algorithm.
Directory of Open Access Journals (Sweden)
N.Ramesh Raju
2015-10-01
Full Text Available PID controller is mostly used in process plants to control the system performance by properly choosing its parameters. The optimum PID parameters can be obtained in offline using genetic algorithm if the mathematical model of the system is exactly known. In all process plants the process parameters such as properties of materials like thermal conductivity, electrical conductivity, physical dimensions such as diameter, length of the pipes, parameters of valves and pumps will change as time runs. This happens due to corrosion, scaling, aging, repairs during the maintenance, wear and tear. When the system is robust these changes slightly affect the performance of the system. When the system is not robust they make the system performance worst. Due to above reasons the process plant parameters changes as time runs. It is not easy to measure the changes in system parameters while plant is running and could not be evaluated optimum PID parameters through mathematical model. In this paper a new approach using genetic algorithm and neural network is established for optimum self tuning of PID parameters by observing the time response of the system at any time while plant is running.
Tomas Eglynas; Audrius Senulis; Marijonas Bogdevičius; Arūnas Andziulis; Mindaugas Jusis
2016-01-01
The main control object of Quay crane, which is operating in seaport intermodal terminal cargo loading and unloading process, is the crane trolley. One of the main frequent problem, which occurs, is the swinging of the container. This swinging is caused not only by external forces but also by the movement of the trolley. The research results of recent years produced various types of control algorithms by the other researchers. The control algorithms are solving separate control problems of Qu...
Directory of Open Access Journals (Sweden)
Yu-xin Zhao
2014-01-01
Full Text Available This paper presents a novel wavelet kernel neural network (WKNN with wavelet kernel function. It is applicable in online learning with adaptive parameters and is applied on parameters tuning of fractional-order PID (FOPID controller, which could handle time delay problem of the complex control system. Combining the wavelet function and the kernel function, the wavelet kernel function is adopted and validated the availability for neural network. Compared to the conservative wavelet neural network, the most innovative character of the WKNN is its rapid convergence and high precision in parameters updating process. Furthermore, the integrated pressurized water reactor (IPWR system is established by RELAP5, and a novel control strategy combining WKNN and fuzzy logic rule is proposed for shortening controlling time and utilizing the experiential knowledge sufficiently. Finally, experiment results verify that the control strategy and controller proposed have the practicability and reliability in actual complicated system.
Institute of Scientific and Technical Information of China (English)
尼文斌; 董金刚; 刘书伟; 贺丽慧; 付增良
2015-01-01
In order to accomplish the wind speed control system for a FDxx wind tunnel,a PID parameter setting method based on adaptive online genetic algorithm was designed.In the case of the limited gas source for a wind tunnel test,the algorithm can quickly establish the flow field and ensure the stability time of the flow.First,joint coding is done with these parameters. With elitist strategy adopted in early genetic evolution stage,a non-linear selection method based on roulette selection is introduced in the last period.So optimum individuals are preserved and the population diversity is increased.The fixed value thus would not be exceeded in the dynamic adjustment process.The objective function is set up with the error absolutes and variation rate accompanied by penalty functions.When the fixed value is exceeded,the excess is taken as the optimal.This method has been applied in a field debugging of FDXX wind tunnel.The result shows that it is fast,effective and reliable to use online adaptive genetic algorithms to set the PID control parameters.%风速控制是风洞的核心控制部分，风速控制系统的优劣直接影响风洞性能指标，为了完成 FDxx 风洞的风速控制系统，设计了一种基于自适应在线遗传算法的 PID 参数整定方法，在风洞气源资源有限的情况下，快速建立流场，确保流场稳定时间。首先对控制参数进行联合编码，在种群个体进化前期采用锦标赛精英保留策略，后期采用基于轮盘赌非线性选择方法，加快算法收敛速度，同时避免了算法过早陷入局部最优，交叉选用单点交叉，变异采用均匀取反法，动态调整过程为了减小甚至避免超调，采用误差绝对值及误差和误差变化率加权方式设计目标函数，并采取了惩罚措施，即一旦产生超调，将超调量作为最优指标的一项，现场测试验证了算法的可靠性及实用性。
Institute of Scientific and Technical Information of China (English)
陈庆更; 王宁
2005-01-01
Enlightened by distribution of creatures in natural ecology environment, the distribution population-based genetic algorithm (DPGA) is presented in this paper. The searching capability of the algorithm is improved by competition between distribution populations to reduce the search zone.This method is applied to design of optimal parameters of PID controllers with examples, and the simulation results show that satisfactory performances are obtained.
永磁伺服电机模糊 PID 自整定 SVPWM 控制研究%Fuzzy PID self-tuning SVPWM control research of PMSM
Institute of Scientific and Technical Information of China (English)
马立新; 范洪成; 黄阳龙
2016-01-01
针对永磁同步电机自身的非线性、强耦合性以及时变性特点，以及传统P ID控制策略不能跟随系统参数的变化而自动做出整定等问题。通过对模糊理论分析，本文提出了一种简单实用的永磁同步电机控制策略，即模糊PID自整定SVPWM控制方式。采取SVPWM 的方式产生三相电流驱动电机，通过模糊逻辑语句建立了模糊控制规则，并实现与 PID 控制参数相结合，实现实时改变电机控制参数功能，并利用 MATLAB工具建立了模糊 PID 自整定SVPWM闭环矢量控制系统仿真模型。仿真结果表明：系统转速实现无超调，响应速度和扰动恢复时间与传统PID控制方式相比缩短了一半。该方法提高了永磁交流伺服系统的控制精度，具有良好的动静态性能，在工程应用上提供了一种简单、易实现的控制方法。%Aiming at the nonlinear ,strong coupling and time-varying characteristics of permanent magnet synchronous motor and the traditional PID control strategy can't follow the change of system parameters and automatically make the corresponding setting .Through the analysis of fuzzy control ,this paper puts forward a simple and practical control strategy of permanent magnet synchronous motor ,namely fuzzy PID self-tuning SVPWM control .Adopt the method of SVPWM produce three phase current drive motor , the fuzzy control rule was established based on fuzzy logic statements ,and combined with PID control parameters ,real-time change motor control parameters of the function ,and using Matlab tools to establish the fuzzy self-tuning PID SVPWM closed-loop vector control system simulation model . The simulation results show that the system speed to realize no overshoot ,response speed and disturbance recovery time shortened by half compared with the traditional PID control method .The method to improve the control precision of the permanent magnet ac servo system ,has a good dynamic and static
PID control simulation of synchronous generator excitation system%同步发电机励磁系统的PID控制仿真
Institute of Scientific and Technical Information of China (English)
李昂
2011-01-01
励磁系统是同步发电机的重要组成部分,也是一个典型的反馈控制系统,单纯按机端电压偏差进行的PID控制其阻尼特性较差,易产生低频振荡.本设计引入辅助控制环节一电力系统稳定器(PSS)增加正阻尼转矩,通过建立基于MATLAB/Simulink的典型单机-无穷大系统发电机励磁系统的仿真模型,模拟了同步发电机在短路等大扰动下暂态过程的运行特性,仿真结果表明该设计能够有效地提高系统的阻尼作用,改善发电机的运行特性,提高电力系统的动态稳定性.%Excitation system is an important part of synchronous generator, and it is also a typical feedhack control system,simply by terminal voltage deviation of the PID control the damping characteristics of poor, easy to produce low-frequency oscillations. The design of the introduction of auxiliary control unit-power system stabilizer (PSS) is to increase the damping torque, through established the simulation model on the PID control in excitation system of a typical single-machine infinitepower system based on MATLAB/Simulink, to simulate the synchronous generator's transient operating characteristics under large disturbance such as short-circuit fault, simulation results show that the design can improve the system damping and the generator operating characteristics, increase power system dynamic stahility.
Institute of Scientific and Technical Information of China (English)
彭一芯; 魏建勋; 黄辉先; 方鑫; 陆建龙
2015-01-01
For the problem that the system input parameters exists disturbances when the traditional sliding-mode varia-ble-structure control(SMVSC)is applied to the three-phase voltage source PWM rectifier,an online solution that sliding-mode variable-structure control base on improved PID neural network design was presented in this paper,taking three pa-rameters of PID as neurons of neural network in the hidden layer and considering that PID algorithm is of fast response,no static error and the online self-learning ability of neural network,the PID algorithm and neural network is combined to modi-fy the sliding approaching rate parameter in real-time,thus the time of system state into the sliding surface and jitter is re-duced.Through improving the selected value function,the algorithm cannot fall into local minimum and the global optimal solution is approached;also,the overall stability of the system is analyzed.Finally into simulation and experimental valida-tion research,show that the method possesses smaller shake and preferable dynamic response.%针对传统滑模变结构控制在三相电压型 PWM 整流器中应用时参数摄动所引起的抖动现象，提出一种改进 PID 神经网络的滑模变结构在线控制方法，将 PID 三个参数作为神经网络隐藏层的神经元，利用 PID 算法响应快、无静差的特点以及神经网络的在线自学习能力，实时对滑模趋近律参数进行修改，从而缩短系统状态进入滑模面的时间并减小抖动。对选取的价值函数进行改进，使算法不会陷入局部最优而逼近全局最优解，并对系统的全局稳定性进行分析。通过仿真和实验验证，结果表明该方法能使系统全局稳定，抖动有明显削弱且具有更好的动态响应。
Directory of Open Access Journals (Sweden)
Mostafa Lotfi Forushani
2012-04-01
Full Text Available This paper presents an optimized controller around the longitudinal axis of multivariable system in one of the aircraft flight conditions. The controller is introduced in order to control the angle of attack from the pitch attitude angle independently (that is required for designing a set of direct force-modes for the longitudinal axis based on particle swarm optimization (PSO algorithm. The autopilot system for military or civil aircraft is an essential component and in this paper, the autopilot system via 6 degree of freedom model for the control and guidance of aircraft in which the autopilot design will perform based on defining the longitudinal and the lateral-directional axes are supposed. The effectiveness of the proposed controller is illustrated by considering HIMAT aircraft. The simulation results verify merits of the proposed controller.
船舶动力定位手柄操作模式PID解耦控制%PID decoupling control for joystick mode of dynamic positioned ships
Institute of Scientific and Technical Information of China (English)
张景鸿; 王钦若; 叶宝玉; 熊建斌
2012-01-01
针对船舶动力定位手柄操作模式表现出的多变量、强耦合、非线性和时变性等特点,提出了一种增量式PID解耦控制方法.考虑横荡速度与艏摇角速度之间的耦合问题,采用前馈补偿解耦法对船舶的动力学模型进行解耦；根据解耦后的船舶动力学模型,采用增量式PID控制算法分别对纵荡速度、横荡速度和艏摇角3个自由度设计相应的控制器.仿真结果表明,该控制器跟踪快、实时性较好、鲁棒性强,可以满足工程应用的要求.%Aimed at the characteristics of multi-variable, strong coupling, nonliear and time-varying in joystick mode of ship motion control, a control algorithm of incremental PID decoupling is presented. Firstly, to address the coupling problem between sway velocity and yaw rate, the ship kinetic model is decoupled by feedforward compensation decoupling method. Then, incremental PID control algorithm is used according to the decoupling ship kinetic model to design corresponding controller of surge velocity, sway velocity and yaw angle, the simulation results show that the controller can track fast, has good real-time and strong robustness. It also meets the requirements of engineering applications.
基于风能转换系统的模糊PID自适应控制%Wind Energy Conversion Systems Using Fuzzy Self-Adaptive PID Control
Institute of Scientific and Technical Information of China (English)
李意扬; 吴定会
2013-01-01
In order to capture maximum energy under rated wind speed, a fixed pitch wind power generation control system based on fuzzy self-adaptive PID technology was designed. A variable speed fixed pitch controller of the wind energy conversion system based on the fuzzy self-adaptive PID technology was proposed, then the wind turbine and the variable speed fixed pitch models were set up. By using the generator power error calculated from theoretical maximum captured wind power as input, the controllers parameters were regulated online according to the wind conditions, which was self-adaptive. The simulation results demonstrated that feasibility of the proposed fuzzy control method based on the gauss membership function. With the proposed controller the wind energy capture ratio could be maintained around its optimal value 0. 476 and the tip speed ratio around its optimal value 7. It was able to capture the maximum power below the rated wind velocity.%以额定风速以下风能的最大捕获为目标,设计了基于模糊PID自适应控制的桨距控制器.以发电机产生的电能与理论计算的风轮最大捕获的风能误差为输入设计控制器,该控制器在运行时根据风况在线调整PID参数,实现自整定.仿真结果表明,在额定风速以下,基于高斯型隶属度函数的模糊控制方法能够将风能转换系数控制在最优值0.476附近,叶尖速比可以维持在最优值7附近,能够实现额定风速以下的最大风能捕获.
PID design based on Maclaurin expansion and its model-free auto-tuning%基于Maclaurin展开的PID设计与无模型自整定
Institute of Scientific and Technical Information of China (English)
杨启文; 阳外玲; 薛云灿; 余福祥; 杨远慧
2011-01-01
针对自衡对象,提出一种基于期望模型的PID自整定方法,该方法无需被控对象的数学模型.利用Maclaurin腱开技术,给出了PID控制器的整定公式:并通过开环阶跃响应,实现了PID控制器的无模型白整定.仿真结果表明,利用该自整定方法所得的PID能有效地提高高阶被控对象的系统性能;即使在噪声环境下,该方法仍具有很好的鲁棒性.%A method of auto-tuning for PID controller based on the desired model is presented for the stable plant in this paper. No model of controlled plants is needed by using the proposed method. The tuning of PID controller is formulated by using the Maclaurin expansion. The model-free auto-tuning of PID controller is implemented during the open loop step response. Simulation results show that the resulting PID controller is capable of enhancing the control performance for high-order plant effectively, and the proposed method has a strong robustness even under noise condition.
Directory of Open Access Journals (Sweden)
Rabindra Kumar Sahu
2015-06-01
Full Text Available In this paper, Differential Evolution (DE optimized fuzzy PID controller with derivative Filter (PIDF is proposed for Load Frequency Control (LFC of a deregulated power system with multi-source power generation and interconnected via parallel AC/DC transmission links. To get an accurate insight of the LFC problem, important physical constraints such as time delay and GRC are considered. The performance of proposed controller is evaluated at all possible power transactions that take place in a deregulated power market. The improvement in dynamic performance of the power system with DC link in parallel with AC tie-line is also assessed. Further, sensitivity analysis is performed by varying the system parameters and operating load conditions from their nominal values. It is observed from the simulation results that the optimum gains of the proposed controller need not be reset even if the system is subjected to wide variation in loading condition and system parameters.
Institute of Scientific and Technical Information of China (English)
戴文俊; 蒋慧
2015-01-01
To deal with the problem that the traditional PID control is difficult to achieve good control effect in the brushless DC motor control system, a kind of adaptive PID controller for fuzzy neural network is designed. It is based on the mathematical model of brushless DC motor, is the combination of using nonlinear control function of fuzzy control and learning ability and adaptive capacity of BP neural network in order to make on-line setting of the parameter of PID. The brushless DC motor double closed loop control system based on the fuzzy neural network adaptive PID controller is simulated. Simulation results show that the algorithm decreases the overshoot, has strong robustness in the load and the change of motor parameters.%针对传统PID控制在无刷直流电机控制系统中达不到良好的控制效果的问题，在无刷直流电机的数学模型基础之上，设计一种模糊神经网络自适应PID控制器，该控制器利用模糊控制非线性控制作用和BP神经网络的学习能力及适应能力相结合对PID参数进行在线实时调整。对基于模糊神经网络自适应PID控制器的无刷直流电机的双闭环控制系统进行仿真实验，实验结果表明，可以提高控制系统的响应速度，减小超调量，对负载及电机参数的变化都有较强的鲁棒性。
基于遗传算法的PID控制参数整定研究%Research on PID control parameter tuning based on genetic algorithm
Institute of Scientific and Technical Information of China (English)
邵海龙
2016-01-01
PID控制作为一种经典的控制方法被广泛应用于工业控制中，是实际工业生产过程正常运行的基本保障。随着计算机技术的发展和人工智能技术的出现，PID控制器参数整定不再只是传统整定，而出现了多种新的PID控制器参数整定方法。文章通过深入研究PID控制理论，罗列和分析了传统PID参数整定技术，最终利用遗传算法完成PID多参数智能整定，从而保证PID控制器的无超调、稳定、快速的完美控制。%PID control, as a classical control method, is widely used in industrial control and the basic guarantee for the normal operation of the actual process of industrial production. With the development of computer technology and emergence of artificial intelligence technology, PID controller is no longer the traditional tuning method.Through in-depth study of PID control theory, this paper lists and analyzes the traditional PID parameter tuning technology, using the genetic algorithm to complete the PID multi parameter intelligent tuning ifnally, so as to ensure without overshoot, stable, fast perfect control of the PID controller.
Novel Approach to Nonlinear PID Parameter Optimization Using Ant Colony Optimization Algorithm
Institute of Scientific and Technical Information of China (English)
Duan Hai-bin; Wang Dao-bo; Yu Xiu-fen
2006-01-01
This paper presents an application of an Ant Colony Optimization (ACO) algorithm to optimize the parameters in the design of a type of nonlinear PID controller. The ACO algorithm is a novel heuristic bionic algorithm, which is based on the behaviour of real ants in nature searching for food. In order to optimize the parameters of the nonlinear PID controller using ACO algorithm,an objective function based on position tracing error was constructed, and elitist strategy was adopted in the improved ACO algorithm. Detailed simulation steps are presented. This nonlinear PID controller using the ACO algorithm has high precision of control and quick response.
Design Robust Controller for Rotary Kiln
Directory of Open Access Journals (Sweden)
Omar D. Hernández-Arboleda
2013-11-01
Full Text Available This paper presents the design of a robust controller for a rotary kiln. The designed controller is a combination of a fractional PID and linear quadratic regulator (LQR, these are not used to control the kiln until now, in addition robustness criteria are evaluated (gain margin, phase margin, strength gain, rejecting high frequency noise and sensitivity applied to the entire model (controller-plant, obtaining good results with a frequency range of 0.020 to 90 rad/s, which contributes to the robustness of the system.
A new multiobjective performance criterion used in PID tuning optimization algorithms.
Sahib, Mouayad A; Ahmed, Bestoun S
2016-01-01
In PID controller design, an optimization algorithm is commonly employed to search for the optimal controller parameters. The optimization algorithm is based on a specific performance criterion which is defined by an objective or cost function. To this end, different objective functions have been proposed in the literature to optimize the response of the controlled system. These functions include numerous weighted time and frequency domain variables. However, for an optimum desired response it is difficult to select the appropriate objective function or identify the best weight values required to optimize the PID controller design. This paper presents a new time domain performance criterion based on the multiobjective Pareto front solutions. The proposed objective function is tested in the PID controller design for an automatic voltage regulator system (AVR) application using particle swarm optimization algorithm. Simulation results show that the proposed performance criterion can highly improve the PID tuning optimization in comparison with traditional objective functions.
Directory of Open Access Journals (Sweden)
Jie-Sheng Wang
2014-02-01
Full Text Available A mathematical model of electroslag remelting (ESR process is established based on its technical features and dynamic characteristics. A new multivariable self-tuning proportional-integral-derivative (PID controller tuned optimally by an improved particle swarm optimization (IPSO algorithm is proposed to control the two-input/two-output (TITO ESR process. An adaptive chaotic migration mutation operator is used to tackle the particles trapped in the clustering field in order to enhance the diversity of the particles in the population, prevent premature convergence and improve the search efficiency of PSO algorithm. The simulation results show the feasibility and effectiveness of the proposed control method. The new method can overcome dynamic working conditions and coupling features of the system in a wide range, and it has strong robustness and adaptability.
Directory of Open Access Journals (Sweden)
Teddy Sudewo
2012-09-01
Full Text Available Pada fase penerbangan quadcopter, fase landing (pendaratan merupakan fase paling kritis, dimana resiko terjadi kecelakaan paling besar. Permasalahan tersebut muncul karena adanya beberapa kendala, seperti kendala pada struktur rangka pesawat yang kecil, peningkatan beban pada sayap pesawat serta pengaruh angin sehingga menyebabkan pesawat tidak stabil. Pada penelitian tugas akhir ini, didesain suatu sistem kontrol pada UAV quadcopter menggunakan kontrol PID dengan Model Reference Adaptive Control (MRAC. Sistem pengendalian berbasis MRAC menawarkan beberapa kelebihan untuk mengatasi karakteristik plant non-linear salah satunya quadcopter. MRAC merupakan kontrol adaptif dimana performansi keluaran sistem (proses akan mengikuti performansi keluaran model referensinya. Pada tugas akhir ini, model referensi sudah ditentukan diawal dan spesifikasinya tetap sehingga dapat langsung didisain mekanisme adaptasi dari MRAC. Parameter proses θ (a1,a2,b0,b1 diestimasi menggunakan metode Extended Least Square, parameter proses tersebut akan mentuning parameter kontroler (k0,k1,k2,k3 sehingga menghasilkan sinyal kontrol PID. Hasil pengujian menunjukkan bahwa ketika terjadi perubahan parameter pada plant, kontroler mampu memperbaiki respon agar tetap dapat mengikuti model referensinya dan dalam mengatasi gangguan metode adaptasi MRAC memiliki kemampuan yang baik dilihat dari waktu yang dibutuhkan yang relatif singkat.
Institute of Scientific and Technical Information of China (English)
袁建畅; 任京芹
2010-01-01
分别通过Z-N整定方法与Matlab/Simulink中的非线性控制设计模块(Nonlinear Control Design,NCD),对泵控马达容积调速系统中的比例-积分-微分参数(Proportion Integration Differentiation,PID)进行优化设计.仿真结果表明,采用NCD优化后的PID参数有效地改善了系统的性能,所得结果可作为实际调速系统参数整定的依据.
Directory of Open Access Journals (Sweden)
Ming-Shyan Wang
2015-01-01
Full Text Available An automatic guided vehicle (AGV is extensively used for productions in a flexible manufacture system with high efficiency and high flexibility. A servomotor-based AGV is designed and implemented in this paper. In order to steer the AGV to go along a predefined path with corner or arc, the conventional proportional-integral-derivative (PID control is used in the system. However, it is difficult to tune PID gains at various conditions. As a result, the neural network (NN control is considered to assist the PID control for gain tuning. The experimental results are first provided to verify the correctness of the neural network plus PID control for 400 W-motor control system. Secondly, the AGV includes two sets of the designed motor systems and CAN BUS transmission so that it can move along the straight line and curve paths shown in the taped videos.
PID Tuning Using Extremum Seeking
Energy Technology Data Exchange (ETDEWEB)
Killingsworth, N; Krstic, M
2005-11-15
Although proportional-integral-derivative (PID) controllers are widely used in the process industry, their effectiveness is often limited due to poor tuning. Manual tuning of PID controllers, which requires optimization of three parameters, is a time-consuming task. To remedy this difficulty, much effort has been invested in developing systematic tuning methods. Many of these methods rely on knowledge of the plant model or require special experiments to identify a suitable plant model. Reviews of these methods are given in [1] and the survey paper [2]. However, in many situations a plant model is not known, and it is not desirable to open the process loop for system identification. Thus a method for tuning PID parameters within a closed-loop setting is advantageous. In relay feedback tuning [3]-[5], the feedback controller is temporarily replaced by a relay. Relay feedback causes most systems to oscillate, thus determining one point on the Nyquist diagram. Based on the location of this point, PID parameters can be chosen to give the closed-loop system a desired phase and gain margin. An alternative tuning method, which does not require either a modification of the system or a system model, is unfalsified control [6], [7]. This method uses input-output data to determine whether a set of PID parameters meets performance specifications. An adaptive algorithm is used to update the PID controller based on whether or not the controller falsifies a given criterion. The method requires a finite set of candidate PID controllers that must be initially specified [6]. Unfalsified control for an infinite set of PID controllers has been developed in [7]; this approach requires a carefully chosen input signal [8]. Yet another model-free PID tuning method that does not require opening of the loop is iterative feedback tuning (IFT). IFT iteratively optimizes the controller parameters with respect to a cost function derived from the output signal of the closed-loop system, see [9
Application of dimensional analysis in systems modeling and control design
Balaguer, Pedro
2013-01-01
Dimensional analysis is an engineering tool that is widely applied to numerous engineering problems, but has only recently been applied to control theory and problems such as identification and model reduction, robust control, adaptive control, and PID control. Application of Dimensional Analysis in Systems Modeling and Control Design provides an introduction to the fundamentals of dimensional analysis for control engineers, and shows how they can exploit the benefits of the technique to theoretical and practical control problems.
Copot, Cosmin; Zhong, Yu; Ionescu, Clara; Keyser, Robin
2013-06-01
In this paper, two methods to tune a fractional-order PI λ D μ controller for a mechatronic system are presented. The first method is based on a genetic algorithm to obtain the parameter values for the fractionalorder PI λ D μ controller by global optimization. The second method used to design the fractional-order PI λ D μ controller relies on an auto-tuning approach by meeting some specifications in the frequency domain. The real-time experiments are conducted using a Steward platform which consists of a table tilted by six servo-motors with a ball on the top of the table. The considered system is a 6 degrees of freedom (d.o.f.) motion platform. The feedback on the position of the ball is obtained from images acquired by a visual sensor mounted above the platform. The fractional-order controllers were implemented and the performances of the steward platform are analyzed.
Institute of Scientific and Technical Information of China (English)
邢党辉; 贾淑荣
2014-01-01
针对舞钢公司 VOD 炉热井系统对恒液位的需要，介绍了一种水箱恒液位 PID 控制系统的开发与设计。该系统通过西门子 S7-400系列 PLC 指令实现对液位的 PID 闭环控制，液位传感器将液位值作为反馈信号传给 PLC，对变频器进行调节控制，实现电机转速调节，从而达到恒液位控制目的。运行结果表明改造取得了节能降耗的效果。%For the demand of hot well tank in Wugang′s VOD system on constant liquid level,the paper intro-duces the development and design of PID for constant liquid level control of hot well tank. The system uses the com-mand from Siemens S7 - 400 series PLC to achieve PID closed loop control over liquid level. The PLC receives the sig-nal from liquid level sensor as feedback. The signal from liquid level sensor feedback to PLC controls the frequency con-verter. The converter regulates the rotational speed of motor so as to achieve constant liquid level control. The opera-tion result proves that the revamp reduces power consumption and maintenance cost.
Fractional order differentiation and robust control design crone, h-infinity and motion control
Sabatier, Jocelyn; Melchior, Pierre; Oustaloup, Alain
2015-01-01
This monograph collates the past decade’s work on fractional models and fractional systems in the fields of analysis, robust control and path tracking. Themes such as PID control, robust path tracking design and motion control methodologies involving fractional differentiation are amongst those explored. It juxtaposes recent theoretical results at the forefront in the field, and applications that can be used as exercises that will help the reader to assimilate the proposed methodologies. The first part of the book deals with fractional derivative and fractional model definitions, as well as recent results for stability analysis, fractional model physical interpretation, controllability, and H-infinity norm computation. It also presents a critical point of view on model pseudo-state and “real state”, tackling the problem of fractional model initialization. Readers will find coverage of PID, Fractional PID and robust control in the second part of the book, which rounds off with an extension of H-infinity ...
PCB Drill Detection System Based on Fuzzy PID Control%基于模糊PID控制的PCB微钻检测系统
Institute of Scientific and Technical Information of China (English)
何沛钊; 潘长开
2011-01-01
Detection of PCB micro drill required a precise trajectory control. The research and analysis are mainly made on the drill-pushed by servo motor. On the basis of modeling linear servo motor pushing micro drill, the fuzzy PID algorithm and its mathematical model are analyzed in detail. By comparing traditional PID control with fuzzy PID control, the results show that the fuzzy PID controller can achieve better tracking the location of micro drill, and make it in accordance with the predetermined trajectory of the movement, so the detection accuracy can be improved.%PCB微钻的检测需要对微钻的运动轨迹进行精密的控制,这里在直线电机驱动的模型下进行研究分析.通过建立直线伺服电动机推针机构的系统仿真模型,详细分析了模糊PID算法以及数学模型.分别用传统的PID控制与模糊PID控制,对推针装置的推针过程进行了仿真.结果表明,模糊PID控制器能较好地实现微钻的位置跟踪,使其按照预定的运动轨迹运动,提高了检测的精度.
DC Motor Speed Control System Based on PID Algorithm%基于PID算法的直流电动机调速系统的设计
Institute of Scientific and Technical Information of China (English)
樊学能
2011-01-01
H bridge composed of STC12C4052SCM and MOS tube is used as the hardware foundation to design a PID algorithm DC motor speed control system in this design scheme. STC12C4052 microcontroller can output two way dutyfactor controllable PWM signal to change dutyfactor to achieve the purpose of DC motor speed control. Speed sensor is hall-effect sensor,which is used to realize the closed loop control when the microcontroller interruptedly acquires speed sensor pulse.%该设计方案以STC12C4052单片机和MOS管组成的H桥为硬件基础而设计的PID算法直流电动机调速系统.STC12C4052单片机能输出两路占空比可控的PWM(脉宽调制)信号,通过改变占空比从而达到直流电动机调速的目的.测速传感器采用霍尔传感器测速,通过单片机中断采集传感器产生的脉冲以实现闭环控制.
一种改进的模式识别自整定PID控制方法%Improved Self-tuning PID Control Based on Pattern Recognition
Institute of Scientific and Technical Information of China (English)
穆克; 苏成利
2012-01-01
To solve the shortcomings of traditional PID conlroller in dealing with disturbance rejection and robustness. A new self-tuning PID-based algorithm for pattern recognition is proposed. In the algorithm, the parameter tuning rules of the PID controller are innovated, and the specificformula for setting the rules is put forward. In order to achieve the water tank level control algorithm in the application of laboratory, using OPC technology to achieve the MATLAB software and data configuration software MCGS real-time interaction. Experimental results show that the given tuning rules in MATLAB simulation and tank level control applications take the effect of good tuning. The control performance of the proposed self-tuning PID control method is superior to that of traditional PID method.%针对常规PID控制器不能很好地兼顾抗干扰性与鲁棒性的缺点,提出一种新的基于模式识别自整定PID控制算法.该算法对参数整定规则进行了探索和创新,并给出具体的整定规则公式.为了实现算法在实验室水箱液位控制的应用,采用OPC技术实现了MATLAB软件与MCGS组态软件的数据实时交互.实验结果表明,该规则在MALAB仿真和水箱液位控制应用中取得到了很好的整定效果,控制性能优于常规PID控制.